

Sander van Vugt

Beginning Ubuntu LTS
Server Administration
From Novice to Professional,
Second Edition

Beginning Ubuntu LTS Server Administration: From Novice to Professional, Second Edition

Copyright © 2008 by Sander van Vugt

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1082-5

ISBN-13 (electronic): 978-1-4302-1081-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editor: Frank Pohlmann
Technical Reviewers: Tim Hall, Samuel Cuella
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editor: Nancy Sixsmith
Associate Production Director: Kari Brooks-Copony
Production Editor: Liz Berry
Compositor: Dina Quan
Proofreader: Liz Welch
Indexer: Odessa&Cie
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

This book is dedicated to Florence.

Contents at a Glance

About the Author . xv

About the Technical Reviewers. xvii

Introduction. xix

■CHAPTER 1 Installing Ubuntu Server . 1

■CHAPTER 2 Getting the Most from the Command Line . 29

■CHAPTER 3 Performing Essential System Administration Tasks 53

■CHAPTER 4 Performing File System Management Tasks . 83

■CHAPTER 5 Configuring Your Server for Security . 117

■CHAPTER 6 Setting the System to Your Hand . 153

■CHAPTER 7 Running It Any Way You Like . 191

■CHAPTER 8 Making a Connection . 223

■CHAPTER 9 Configuring Network Infrastructure Services 265

■CHAPTER 10 Using Ubuntu Server As a File and Print Server 299

■CHAPTER 11 Setting Up Web Services . 325

■CHAPTER 12 Setting Up the Netfilter Firewall with
iptables and ufw. 351

■CHAPTER 13 Multiplying Your Server . 363

■INDEX . 385

v

Contents

About the Author . xv

About the Technical Reviewers. xvii

Introduction. xix

■CHAPTER 1 Installing Ubuntu Server . 1

Preparing for the Installation . 1

Starting the Ubuntu Server Installation Process. 2

Configuring the Server’s Hard Drive . 8

Completing the Installation. 26

Summary. 27

■CHAPTER 2 Getting the Most from the Command Line 29

Working As root? . 29

Working with the Shell . 30

Using Bash to Best Effect . 30

Managing Bash with Key Sequences . 33

Performing Basic File System Management Tasks 34

Working with Directories . 34

Working with Files . 35

Viewing the Content of Text Files . 37

Finding Files That Contain Specific Text . 39

Creating Empty Files . 41

Piping and Redirection . 41

Piping . 41

Redirection . 42

Finding Files . 44

Working with an Editor . 45

Vi Modes . 46

Saving and Quitting . 46

Cut, Copy, and Paste . 47

Deleting Text. 47

vii

Getting Help . 47

Using man to Get Help . 48

Using the --help Option . 50

Getting Information on Installed Packages . 50

Summary. 51

■CHAPTER 3 Performing Essential System Administration Tasks. 53

Software Management . 53

Software Repositories and Package Databases 54

Package Management Utilities . 55

Understanding apt . 56

Installing Software from Tarballs . 63

Configuring a Graphical User Interface . 64

Creating Backups . 69

Making File Backups with tar . 69

Making Device Backups Using dd. 72

Configuring Logging . 73

Configuring syslog . 74

Logging in Other Ways . 78

Rotating Log Files . 79

Summary. 81

■CHAPTER 4 Performing File System Management Tasks 83

Mounting Disks . 83

Using the mount Command . 83

Unmounting Devices . 88

Automating Mounts with /etc/fstab . 89

Checking File System Integrity . 92

Working with Links . 93

Why Use Links? . 93

Working with Symbolic Links. 93

Working with Hard Links . 96

Configuring Storage . 96

Comparing File Systems. 96

Creating File Systems . 105

Working with Logical Volumes . 108

Doing Magic on Your File Systems with dd. 113

Summary . 116

■CONTENTSviii

■CHAPTER 5 Configuring Your Server for Security . 117

Setting Up User Accounts. 117

Commands for User Management . 117

Managing Passwords . 120

Modifying and Deleting User Accounts . 122

Behind the Commands: Configuration Files 122

Creating Groups . 126

Commands for Group Management . 127

Behind the Commands: /etc/group. 127

Using Group Passwords . 128

Managing the User’s Shell Environment . 128

Configuring Permissions . 129

Read, Write, and Execute: The Three Basic Linux Permissions . . . 129

Permissions and the Concept of Ownership 130

Working with Advanced Linux Permissions . 132

Setting Permissions. 134

Using umask to Set Default Permissions for New Files 136

Working with Access Control Lists . 136

Preparing the File System for ACLs . 137

ACL Limitations . 140

Applying File Attributes . 140

Apply Quota to Allow a Maximum Amount of Files 142

Installing the Quota Software. 142

Preparing the File System for Quota. 142

Initializing Quota. 143

Setting Quota for Users and Groups . 143

Understanding Pluggable Authentication Modules 144

Creating a Default Security Policy. 146

Discovering PAM Modules . 147

Configuring Administrator Tasks with sudo . 150

Summary. 152

■CHAPTER 6 Setting the System to Your Hand . 153

Process Monitoring and Management . 153

Different Kinds of Processes . 153

Foreground and Background . 154

Managing Processes . 156

Other Tools to Monitor System Activity . 160

Setting Process Priority. 163

■CONTENTS ix

Executing Processes Automatically . 163

Configuring cron. 164

Executing Once with at . 166

Tuning the Boot Procedure . 166

Managing the GRUB Boot Loader . 167

The GRUB Configuration File . 167

Installing GRUB. 170

Working with the GRUB Boot Menu . 171

Upstart . 172

Runlevels. 174

Making Service Management Easier . 175

Managing Hardware . 176

Kernel Management . 177

Installing Your Own Custom Kernel . 183

Hardware Management with udev . 186

Summary. 190

■CHAPTER 7 Running It Any Way You Like . 191

Before You Even Start . 191

To Script or Not to Script? . 191

What Shell?. 192

Basic Elements of a Shell Script . 193

Making It Executable . 194

Making a Script Interactive . 196

Working with Arguments . 197

Working with Variables. 200

Command Substitution . 200

Changing Variables . 201

Substitution Operators . 201

Pattern-Matching Operators . 203

Performing Calculations in Scripts . 205

Using Flow Control . 209

Using if...then...else. 210

Case . 213

Using while . 214

Using until . 215

Using for . 216

■CONTENTSx

Using a Stream Editor . 217

Working with Functions . 218

A Complex Scripting Example . 219

Summary. 221

■CHAPTER 8 Making a Connection . 223

Configuring the Network Card. 223

Using ifup, ifdown, and Related Tools . 225

Using ifconfig . 225

Using the ip Tool . 228

Managing IPv6 . 231

Managing Routes . 234

Configuring the DNS Resolver . 235

Configuring Network Card Properties with the
ethtool Command . 237

Troubleshooting Network Connections . 240

Testing Connectivity . 240

Testing Routability . 242

Testing Availability of Services . 243

Monitoring the Network Interface . 247

Monitoring Network Traffic . 250

Connecting Remotely with SSH. 252

Working with Public/Private Key Pairs . 253

Working with Secure Shell . 254

Configuring SSH. 255

Using Key-Based Authentication. 257

A Short Introduction to Cryptography . 257

Using Public/Private Key–Based Authentication in an
SSH Environment . 258

Setting Up SSH for Key-Based Authentication 259

Caching Keys with ssh-agent . 260

Tunneling Traffic with SSH . 261

X Forwarding . 261

Generic TCP Port Forwarding. 262

Summary . 263

■CONTENTS xi

■CHAPTER 9 Configuring Network Infrastructure Services 265

Configuring DNS . 265

Methods of Name Resolution. 265

Structure of the DNS Hierarchy . 267

Introducing Forward and Reverse DNS . 271

Configuring DNS. 271

Configuring Reversed Lookup . 277

Testing Your Name Server . 278

Configuring DHCP . 279

Understanding the DHCP Protocol. 279

Creating the DHCP Server Configuration . 280

The DHCP Process . 280

The /etc/dhcp/dhcpd.conf Configuration File 280

Advanced DHCP Configuration Options . 283

The DHCP Relay Agent . 286

Configuring NTP. 286

How NTP Works . 287

Configuring a Stand-Alone NTP Time Server 288

Pulling or Pushing the Time . 289

Configuring an NTP Client . 289

Checking NTP Synchronization Status . 290

Customizing Your NTP Server . 291

Applying NTP Security. 292

Starting Services with xinetd. 292

Setting up xinetd by Hand . 293

Tuning Access to Services with TCP Wrapper 294

Summary. 297

■CHAPTER 10 Using Ubuntu Server As a File and Print Server. 299

Setting Up a CUPS Print Server . 299

Adding Printers. 299

Sharing Printers . 302

Managing Printers . 303

Accessing CUPS Printers . 304

Sharing Files with NFS . 305

Using the NFS Server . 306

Understanding How the NFS Works . 306

Configuring an NFS Server. 308

■CONTENTSxii

Configuring an NFS Client . 310

Monitoring the NFS Server . 311

Sharing Files with Samba . 311

Samba Server Possibilities and Impossibilities. 312

Configuring the Samba Server. 312

Integrating CUPS with Samba . 317

Setting Up Samba As a Domain Controller . 319

Client Access to the Samba Server. 321

Summary. 323

■CHAPTER 11 Setting Up Web Services . 325

Setting Up Apache. 325

Apache Components . 326

Starting, Stopping, and Testing the Apache Web Server 326

Exploring the Configuration Files. 328

The Structure of the Apache Configuration Files 329

Checking the Configuration . 330

Working with Virtual Hosts. 332

Configuring Virtual Hosts . 332

Managing Access to the Web Server . 333

Configuring Host-Based Access Restrictions 334

Configuring User-Based Access Restrictions 335

Enabling HTTPS . 336

Creating a Self-Signed Certificate. 337

Configuring Apache to Use the Self-Signed Certificate. 338

Some Words on Apache Performance Tuning . 339

Using PHP . 340

Setting Up MySQL . 341

Setting the MySQL Root Password . 342

Creating a MySQL Database . 342

Configuring a Squid Proxy Server . 342

Installing a Squid Proxy Cache . 343

Configuring Squid Access Control Policies . 343

Configuring User Authentication . 345

Setting Up FTP . 347

Configuring the pure-ftpd Server . 347

Summary . 349

■CONTENTS xiii

■CHAPTER 12 Setting Up the Netfilter Firewall with
iptables and ufw . 351

Netfilter Building Blocks . 352

Using iptables to Create a Firewall . 353

Firewall Management Made Easy: Uncomplicated Firewall 360

Summary. 361

■CHAPTER 13 Multiplying Your Server . 363

Understanding Virtualization . 363

Virtualization Solutions . 363

Approaches to Virtualization . 365

Installing Virtual Machines with KVM. 366

Preparing Your Server for KVM Virtualization: Networking 367

Setting Up KVM on Ubuntu Server . 367

Installing Windows As a Guest Operating System on KVM. 368

Installing Ubuntu Server As a Guest Operating System
on KVM . 370

Managing Virtual Machines with Virtual Manager 370

Managing Virtual Machines with libvirt Tools 374

Installing Virtual Machines Using Xen . 376

Setting Up Xen on Ubuntu Server . 377

Installing Windows as a Guest Operating System on Xen. 379

Installing Ubuntu Server As a Guest Operating System
on Xen. 381

Using Xen Management Commands . 382

Ubuntu Server in a VMware Environment . 383

Ubuntu JeOS. 383

Summary. 384

■INDEX . 385

■CONTENTSxiv

About the Author

■SANDER VAN VUGT is an independent trainer and consultant who lives in
the Netherlands and works in the extended EMEA (Europe, Middle East,
and Africa) area. He specializes in Linux high availability, storage solu-
tions, and performance problems; and has successfully implemented
Linux clusters across the globe. Sander has written several books about
Linux-related subjects, including The Definitive Guide to SUSE Linux
Enterprise Server (Apress, 2006).

Sander’s articles can be found on several international web sites and
in magazines such as SearchEnterpriseLinux.com, Linux Journal, and Linux Magazine. He
works as a volunteer for the Linux Professional Institute (LPI), contributing topics for different
certification levels. Most important, Sander is the father of Alex and Franck, and is the loving
husband of Florence.

For more information, consult Sander’s web site: www.sandervanvugt.com. Sander can be
reached by email at mail@sandervanvugt.com.

xv

About the Technical
Reviewers

■SAMUEL CUELLA was born in 1985. He is currently an IT student and also works as a
Linux/Solaris trainer. Samuel taught the complete Mandriva certification program in
China (JUST University) and also teaches Linux for LPI certification training.

■TIM HALL currently provides front-line support for 64 Studio. He has also written newbie
tutorials for Linux User & Developer magazine in between more mundane system admin and
web authoring jobs. Tim has released albums and performed as a musician and songwriter,
both solo and in collaboration with other artists. He has been further honored as the holder
of the Bardic chair of Glastonbury between 2005 and 2007.

xvii

Introduction

Beginning Ubuntu LTS Server Administration: From Novice to Professional, Second Edition
provides a complete introduction to Ubuntu Server. I wrote it for people who are new to
Ubuntu Server administration but have a solid foundation in IT. The target readers are Win-
dows administrators as well as people who are used to managing other flavors of Linux (or
UNIX). It was the goal of this book to give a no-nonsense introduction to working with
Ubuntu Server, so it provides all the basics that are needed to get you going. It also includes
many useful tips that help you do your work in a more efficient manner.

Many books about Ubuntu are presently available, but you can’t do Ubuntu Server justice
by covering both the desktop and the server version in one book. The needs of a server admin-
istrator are vastly different from the needs of a desktop administrator. So I chose an approach
that makes sense for the server administrator, and all topics are selected and organized to
make sense for your day-to-day work as a server administrator.

Who This Book Is For
This book is written for Linux administrators, whether novice or experienced, who are looking
for a quick, thorough, and authoritative introduction to daily Ubuntu Server management.

How This Book Is Structured
The book starts by describing Ubuntu Server, with a special focus on storage configuration,
which is an especially important concern when dealing with server environments. You’ll
then find a quick introduction to driving Ubuntu Server from the command line, in case you
haven’t done this before. The third chapter tackles some of the common generic tasks of a
server administrator, including managing software packages and configuring a graphical user
interface. Next are chapters about file system management, Ubuntu Server security, managing
processes, and the boot procedure. The last chapter, which deals with stand-alone server
functionality, explains Bash shell scripting—in fewer than 30 pages, you’ll learn everything
you ever need to know about this complex topic.

The second part of the book teaches you all about network services. First, you’ll learn how
to configure and troubleshoot a network interface. Next, you’ll read how to set up infrastruc-
ture services such as time services, name services, and DHCP. The following chapters discuss
managing file services, the Apache web server (including performance tuning hints and a sec-
tion on virtual hosts), and related packages such as MySQL. Finally, the last chapter provides
an overview of the approaches to running virtualization on Ubuntu Server.

xix

Prerequisites
To get the most out of this book, you should have a computer that you can use to install
Ubuntu Server. Any Pentium-based system with 128 MB of RAM and a hard disk with at least
2 GB of free space will do fine. You also need the Ubuntu Server software, which you can
download from www.ubuntu.com. Apart from these simple elements, there are no further pre-
requisites. This book assumes no preliminary knowledge of Linux or Ubuntu.

Downloading the Code
The source code for this book is available at www.apress.com in the Downloads section of this
book’s home page. Please feel free to visit the Apress web site and download all the code there.
You can also check for errata and find related Apress titles.

Contacting the Author
The author can be reached via his web site (www.sandervanvugt.com) and by mail at
mail@sandervanvugt.com.

■INTRODUCTIONxx

Installing Ubuntu Server

You probably chose Ubuntu as a server solution because of either your gratifying experience
using it on the desktop or the raves you’ve heard from others about its user-friendly approach.
Accordingly, you might expect the general Ubuntu Server installation process to be fairly easy,
and indeed it is. Nevertheless, because your ultimate goal is to deploy the server in a produc-
tion environment, it’s a good idea to follow some key aspects of the installation process with
rigor, and this chapter is intended to help you do exactly that.

To keep things as simple as possible, you’ll read how to complete the installation on a real
server, with no virtualization involved. You’ll explore the different options presented to you
while installing Ubuntu, as well as the best choice to make to ensure that your installation is
successful.

Preparing for the Installation
Before starting the installation, you have to do a bit of preparation. First, you must make sure
that the required hardware is available. At the most basic, any PC will do, but, if you are inter-
ested in putting a real server to work, I recommend using server-grade hardware because that
kind of hardware is optimized for the tasks that servers typically perform. On such hardware,
you can install Ubuntu directly or virtualized. If you don’t have server-grade hardware avail-
able, a standard PC is fine. In the end, it all depends on what you plan to do with your Ubuntu
Server. An Apache web server at home does have some other requirements—as a corporate
database server, for example.

In this chapter you won’t learn how to install Ubuntu Server on a computer that already
has some Windows installation. The reason for this is simple: on a real server you want only
your server operating system and nothing else. Creating a dual-boot machine is cool for a
desktop operating system, but you just don’t want that for a production server. Because your
Ubuntu Server probably has to be available at all times, it won’t have any time to run anything
but Ubuntu Server. So at this point, make sure that you have the hardware available to start
the installation of a dedicated server.

Also make sure that you have the installation CD, which can be downloaded from
www.ubuntu.com. (Make sure that you select the server version of Ubuntu.) In this book, I’m
working with Ubuntu Server 8.04 LTS. The letters LTS stand for Long Term Support, which
means that this version of Ubuntu Server will have five years of support. That makes it a per-
fect server operating system to run in an enterprise environment, in which support is of the
highest importance.

1

C H A P T E R 1

Are you looking for the latest that Ubuntu Server has to offer? You can download the latest
version of Ubuntu Server from www.ubuntu.com.

Starting the Ubuntu Server Installation Process
Have everything ready? Time to go! I assume that you already found the CD image at
www.ubuntu.com and burned it as an image to a CD. Insert the installation CD in your server’s
optical drive and boot your server. Make sure the server boots from the CD-ROM and follow
these steps to complete the installation.

1. In the installation menu that appears once the CD spins up, specify what you want to
do. Often, it will be enough to select Install to the hard disk, but in certain cases other
options are required as well. This is especially the case if you want to install in a lan-
guage other than English and you’re using a keyboard different from a US keyboard. If
this is the case, use the F2 and the F3 keys to specify your language settings. The other
options are rarely used, although the F6 key hides an option that some will like: Free
software only in this menu ensures that no commercial packages are installed on your
server. Make sure that you have everything you need, select Install Ubuntu Server, as
shown in Figure 1-1, and then press the Enter key to start the installation.

Figure 1-1. In many situations, you just have to press the Enter key to start the
installation.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER2

■Note If your graphical hardware doesn’t support displaying the full graphical menu, you might get an
installation screen that looks a little different. In that case, press F1 to see the options that are mentioned
before.

2. The next screen shows a menu-driven interface. Ubuntu Server does not have a
graphical user interface (GUI) by default because it runs on servers that are hidden in
a data center, anyway. Using a GUI would be a waste of precious system resources, so
the installation procedure itself is also text-based. In case you did not choose your
installation language in the first step of this procedure, you get another chance in the
second screen. In this book we’ll use English; if you want to install in another language,
select it from the menu that you see in Figure 1-2.

Figure 1-2. If you did not specify the installation language in the boot screen, you have
another chance of selecting the language here.

3. Based on the language that you selected, you’ll see a list of countries (see Figure 1-3).
Select your country to make sure that other local settings are applied automatically. If
your country is not in the default list, browse to the bottom of the list and select Other,
which supplies a larger list.

■Tip Ubuntu Server makes some choices for you automatically. If you want to make these choices your-
self, use the Go Back button that appears in almost every screen of the installer. This will display a more
detailed list of options that are relevant to that particular stage of the installation, and you can choose what
you want to do yourself.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 3

Figure 1-3. If your country doesn’t appear in the default list of countries, select Other to
choose from a larger list of countries.

4. Next, you can have the installer automatically detect the keyboard that you are using.
After selecting this option, the installer will ask you to use some keys on your keyboard;
based on the keys you use, the installer will determine the correct keyboard setting. If
you don’t want to use this feature, click No from the screen that you see in Figure 1-4,
and select your keyboard type from the list displayed next.

Figure 1-4. The installation program can automatically detect the keyboard layout that
you are using.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER4

5. If you want the program to detect the keyboard automatically, select Yes. Next, the
installer will ask you to hit a specified key (see Figure 1-5), by which it can detect the
right keyboard layout in a matter of seconds. If you don’t want to do the automatic
detection, that’s fine. You can just select the keyboard from a list of keyboards.

Figure 1-5. Based on the keys that you pressed, the installation program will quickly
detect the proper keyboard layout.

6. After the keyboard is configured, most hardware is detected and configured automati-
cally. Some hardware—such as WiFi network cards or graphical adapters—may require
later configuration. Among the most important settings is the network configuration. If
a DHCP server is available in the network to automatically assign IP addresses, your
server will be provided with an IP address and ask you only for a name for the server;
you’ll see nothing that is related to the configuration of the network board at all! If you
don’t have a DHCP server, the network configuration program will start automatically.
For a server, it is always a good idea to work with a fixed IP address, because you
wouldn’t want your services to suddenly switch to a different IP address suddenly. To
start the manual network configuration, use the Go Back button now and manually
configure the network card. You’ll see a list of the available options. In the next step,
you manually configure the IP address of your server.

7. After selecting the Go back option, move your cursor to Configure network manually
(see Figure 1-6) and press Enter.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 5

Figure 1-6. If you don’t use the Go Back option, you can’t configure your network
manually.

8. Enter the IP address that you want to use for your server, select Continue, and press
Enter. Not sure what information you need here? Then either return to step 6 and have
DHCP automatically assign an IP address, or ask your service provider or network
administrator for the proper address configuration.

9. Every IP address needs a netmask that explains to your server what network it is in.
Most IP addresses can use the netmask that is assigned to them by default. If this
doesn’t work in your situation, enter the proper netmask in the screen shown in
Figure 1-7, select Continue, and press Enter.

10. Now you’re asked to enter the IP address of the default gateway. This is the IP address
of the router that is connected to the rest of the Internet. If you don’t know what to
enter, ask your network administrator what to use here and then proceed to the next
step.

11. Enter the IP address of the DNS server that you want to use (see Figure 1-8). This server
allows you to reach other computers on the Internet by their names instead of their IP
addresses. If you are on a small network, this is probably the address of a server at your
Internet service provider. If you are on a larger network, the network administrator
may have configured a separate DNS server. Ask what IP address you should use and
then proceed to the next step. You would normally enter two IP addresses for DNS
name servers to ensure that names will still be resolved if the first DNS server is down.
To enter a second IP address for a DNS server, just enter the address with a space as the
separator between the two addresses. Use the actual IP addresses here, not names
(because using names requires a means for them to be resolved, and setting up that
mechanism is just what you’re doing here).

CHAPTER 1 ■ INSTALLING UBUNTU SERVER6

Figure 1-7. On most networks, the default netmask can be used.

Figure 1-8. The IP address of the DNS server is necessary to contact other computers on
the Internet by their names instead of their IP addresses.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 7

12. Now you are asked for the name you want to use for your computer. By default, the
installer assigns a host name automatically (depending on the hardware configuration
you’re using, it will usually be Ubuntu). There’s nothing wrong with using this assigned
name, but you may want to use a name that provides a little more information or indi-
viduality. Also, the name typically has to conform to the naming scheme of your
network.

Figure 1-9. The default host name is set to Ubuntu. You may want to change that to some-
thing that provides more information.

13. As the last part of the network configuration, you have to enter a domain name now.
If there’s a DHCP server on your network, you’ll see that a domain name was entered
automatically. (You’re free to change that automatically assigned name to any other
name if it doesn’t fit what you want to do with your server.)

14. Now you have to select your server’s time zone. It is based on the country that you
selected earlier, so if you don’t see the time zone you want to use, go back and change
the country that you selected or change the time zone after your server has been
installed completely.

Configuring the Server’s Hard Drive
You’ve now completed the first part of the installation, but basically nothing has changed on
your computer yet. So, if you want to stop the installation of Ubuntu Server and install Win-
dows NT anyway, you can. If you want to continue, it’s time to do some thinking. The installer
is going to ask you how you want to lay out your server’s hard drive. You have a couple of
choices here, and you’d better make them now because they’ll be very difficult to change later.
So wait before you press Enter and read this section first.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER8

The first choice you have to make is between using just one partition or volume to install
your server, or using several of them. Using more than one storage unit can make your server
more flexible and more secure. If, for example, you put all data on one large storage unit (like
one root partition), a user or a process can fill that partition completely by accident, thus mak-
ing your server completely unusable. It’s useful to use more than one storage unit for the
following reasons, as well:

• Working with more than one partition or logical volume makes it possible to mount
them with different properties while mounting. For example, a partition where things
normally wouldn’t change can be mounted as read-only, thus increasing the security of
your server.

• Using more than one partition makes it easier to work with external storage like a
storage area network (SAN). For example, you could put all the system data on the
server’s local hard drive, and all the user data could reside on the SAN.

• Working with more than one partition is necessary in some situations. For example, to
make sure that your server will always be able to start up, you could create a separate
partition to boot from.

Next, you have to decide between using logical volumes or partitions. Partitions are fixed-
size slices of disk space. It is very hard (although not impossible) to change them later. Logical
volumes from the Logical Volume Manager (LVM) system are much more flexible. It’s very easy
to resize them, and they offer some other cool advanced features as well (about which you’ll
read in Chapter 4 of this book). In the next subsections you’ll learn more about partitions and
volumes.

Working with Traditional Partitions
Partitions have been used to divide server hard disks in several usable slices since the very first
days of the personal computer. To create partitions, you use the partition table in the master
boot record of your server’s hard disk. Because this partition table is only 64 bytes, you can
create only four partitions here. Originally, these were so-called primary partitions. In some
cases, four is not enough, and that’s what the extended partition was invented for. A primary
partition can contain a file system directly. This is not the case for extended partitions. An
extended partition functions like an empty box that allows you to create logical partitions
inside of it. So the only purpose of extended partitions is to allow you to create logical parti-
tions. No logical partitions without extended partitions. The number of logical partitions that
can be created depends on the hardware and software that you are using, but it is never more
than 16. So, using the traditional partitioning scheme, a maximum of 20 partitions can be cre-
ated. This number may seem enough, but in some situations it isn’t.

The next characteristic of a traditional partition is that it is not very flexible. If, after some
time, you learn that one of the partitions is almost full, it is very difficult in a traditional parti-
tioning scheme to increase the size of one partition while decreasing the size of another
partition. It can be done, but the work is really best left to the experts, because you could lose
all data on all partitions involved.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 9

■Caution You think you’re an expert? Okay. Here’s how it works: first shrink the size of the file system in
the partition (check Chapter 4 for more information). After that, delete the partition you want to reduce in size
and create it again, using the same start cylinder and the new size you want to use for the partition. But
remember when you do this, you’re only one small step away from destroying all files on your partition, so
be careful and don’t blame me if it goes wrong. Better wait until you read Chapter 4 before you try to per-
form a potentially dangerous action like this.

Advantages of Logical Volumes
The LVM system can be used to avoid the disadvantages of traditional partitions. If you use an
LVM layout, you format the logical volumes instead of the partitions. The logical volume has
more or less the same functionality as the partition, but LVMs have some important benefits:

• You can create as many as 256 LVM logical volumes.

• Logical volumes are very easy to resize.

• A logical volume does not have a one-to-one relationship with the storage device that
it’s created on. Thus, it’s possible to create a logical volume that uses three hard disks at
the same time. (Although this process is certainly not recommended because if you lost
one hard disk, you would lose your complete volume, but it’s cool that you can do it,
and there are ways of coping with hard disk failure.)

• Logical volumes support working with snapshots. A snapshot allows you to freeze the
state of a volume at a given point in time, which makes backing up data on a logical vol-
ume very convenient. This is done in a very clever way, so that the snapshot uses only a
fraction of the disk space of the original volume.

■Note Really want to understand how LVM is working? The LVM-HOWTO at http://tldp.org/HOWTO/
LVM-HOWTO has some good in-depth information. Chapter 4 has some more information as well.

Apart from all the good news, LVMs have one drawback: it is very hard to boot from a logi-
cal volume. Therefore, even if you’re using LVMs, you’ll always need at least one traditional
partition to boot your server.

Creating an Efficient Hard Disk Layout on the Server
When installing a Linux server, it’s common not to put all files on one huge partition or logical
volume for the reasons just discussed. Because Linux servers normally contain many different
files, it is a good idea to create some partitions or volumes to store these files. Each of these
partitions or volumes is assigned to (mounted on) a specific directory. Of course, you can put
everything on one partition only, but you may run into troubles later, such as if a user com-
pletely fills this partition. Before starting the actual installation of your server, you should
decide on the most appropriate way to use your hard drive.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER10

■Tip You don’t want to go for the complicated setup straight away—just a simple Ubuntu Server? Use the
first Guided partitioning option from the menu in Figure 1-10 (in the section “Using the Guided Partitioning
Procedure”) and press Enter. In that case, you can also skip the next couple of pages of this chapter. Want to
have not just a Ubuntu Server but also a well-performing Ubuntu Server? Read on, please.

It is a good idea to give the directories their own partition or logical volume on your server.

• /boot: Because the information in the /boot directory is needed to start a server, it’s a
rather important directory. For that reason and especially to protect it from everything
else that is used on your server, /boot often has its own partition. This directory cannot
be on a logical volume because booting from logical volumes is currently not supported
out of the box. Because this directory is the first thing that is needed when booting a
server, it’s a very good idea to put it at the beginning of your server’s hard drive. Doing
so will prevent time-out issues while booting the server. It will also make troubleshoot-
ing a lot easier. And if these reasons are not enough, it is a good idea to have a separated
/boot partition if working on a server with an older BIOS because it should be at the
beginning of your hard disk. Typically, it is more than enough to allocate the /boot
directory to a 100 MB partition.

• /: The root directory of the file system always has its own file system, which is also
referred to as the root file system. The root file system is rather simple: it contains every-
thing that hasn’t been split off to another partition. If no data files are stored here, 8 GB
is typically large enough.

• /var: The /var directory is used by lots of processes that need to create files on your
server dynamically (such as printer spool files or the cache that is created by your proxy
cache server). However, because the /var directory is so very dynamic, it has an
increased chance of problems. So it’s always a good idea to put it on its own partition.
In a normal environment, 4 GB is a reasonable amount of disk space to assign to this
partition, but in some specific environments, you’ll need lots more.

■Caution A badly configured log system can eat up available disk space very fast. So don’t just create a
/var volume and never look at it again; make sure that you tune your logging services as well. (More on that
in Chapter 3.)

• /home: The /home directory belongs to the user and is where he or she will normally store
files if the server is a file server. Because it also is very dynamic, and users are accessing
it all the time, make sure that it also has its own partition. The amount of disk space you
reserve for this partition depends on how much space you want to grant to your users.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 11

• /srv: The /srv directory is used by servers such as the Apache web server and the FTP
server to store data. Because files in this directory can be accessed by users that make a
connection from the Internet, it should have some extra security. A simple way to do
this is to place it in its own partition or volume. The amount of disk space on this parti-
tion depends on how you are going to use your server. If it is a public FTP server, assign
it the maximum space; if your servers serve web or FTP files only occasionally, you can
keep the disk space in this directory quite moderate.

File Systems
Because it’s a Linux server, Ubuntu offers a choice from many file systems. When creating disk
partitions or volumes, you have to tell the partitioning utility what type of file system you want
to use on that volume. The following file systems are available for Ubuntu Server:

• Ext3: This is the default file system on almost all Linux distributions. Although it is a
very stable file system with many debug tools available, there is a major drawback: Ext3
isn’t the best file system to handle many files on one volume. It also isn’t the fastest if
you have to write many small files to your volume.

• Ext2: Ext2 and Ext3 are largely the same, except that Ext3 uses a journal to make it eas-
ier to recover a corrupted file system. This isn’t the case for Ext2. Despite the absence of
a journal, Ext2 is still a good choice for small volumes where the services of a journal
aren’t necessarily needed (because, for example, the files are not supposed to be
opened for writing anyway). For instance, if you create a 100 MB /boot partition, the
Ext2 file system is an excellent choice for it.

• ReiserFS: ReiserFS is a very advanced file system with great features. These features
include journaling, advanced indexing, and many others. ReiserFS is particularly strong
if many small files have to be written. However, it has two drawbacks: its main devel-
oper is currently facing myriad legal issues, and the file system is not particularly
known for its stability and active community support. Use it if you want to write inten-
sively or if you want to store many files in one directory, but make sure that you make a
good backup at the same time. Want something that offers the same functionality but is
more stable? Better use XFS.

• XFS: XFS was developed by SGI as a special-purpose open source file system. It is espe-
cially meant to be used when the server will see lots of usage or when the files are very
large. So use it if you want to stream lots of media files or if you have an FTP server with
multiple terabytes of data. In its most recent versions, XFS offers a good alternative for
ReiserFS.

• Ext4: As you can probably guess from its name, Ext4 is the next generation of the Ext file
systems. At the time of this writing, the first code was just available and it was far from
being a usable file system. It is not in Ubuntu Server 8.04, but you will probably see it
soon in future releases of Ubuntu Server.

• FAT: FAT vfat and NTFS file systems allow you to create a multiboot environment for a
computer on which both Windows and Linux are installed. The purpose of these file
systems is to access files stored in Windows partitions. Because there’s no Windows on
your Ubuntu Server, you don’t need it there.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER12

Continuing the Installation of Ubuntu Server
Now that you know some more about the choices that are offered when installing Ubuntu
Server, let’s continue. You now have to specify how you want to partition your server’s hard
disk. Because the partitioning of a hard disk is one of the most important parts of the server
installation process, we will cover all choices. The choices are divided into three main cate-
gories:

• Guided - use entire disk: This is the easiest option. It offers a guided installation of your
hard disk, based on traditional partitions. If you want to keep the partitions that already
are on your server’s hard drive, use Guided – resize instead. This option will shrink any
installed operation system and use the space that is freed for installing Ubuntu Server.
There is also an option that allows you to use the largest continuous free space, but this
option is usable only if you have some free, unpartitioned disk space on your server’s
hard drive. Because the last of these two options is useful only for multiboot configura-
tions, it is not covered in this chapter.

• Guided - use entire disk and set up LVM: This configuration option is a bit more com-
plex. It offers you a wizard that allows you to create an LVM-based disk configuration.
If you want to put up a well-secured environment, you can even choose to set up
encrypted LVM instead. This is a good idea if you want to be sure that unauthorized
people will never be able to access the data on your volume. Be aware, though, that an
encrypted LVM volume will never be accessible if the related user credentials get lost.
Also, there is a performance price for using encrypted volumes, so make sure that you
really want them before applying them.

• Manual: Use this procedure if you’re sure you know what you are doing and you don’t
need the help of any wizard.

Using the Guided Partitioning Procedure
Let’s first talk about the guided procedure to set up a server hard disk. Your starting point is the
screen shown in Figure 1-10. (At least, something that looks like it because the exact offering
depends on what you already have on your server’s hard drive.)

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 13

Figure 1-10. You have several choices for configuring your server’s hard disk.

1. From the screen shown in Figure 1-10, select Guided - use entire disk.

2. The installation shows an overview of all the available hard disks (see Figure 1-11).
Choose the disk that you want to use and press the Enter key.

Figure 1-11. Choose the hard disk that you want to partition.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER14

3. Now the installation program shows you what it intends to do with your server’s hard
disk (see Figure 1-12). The program isn’t very verbose about this, as it just shows that it
wants to create a swap partition and an Ext3 partition. But you probably don’t care
because this option is meant to offer a simple partitioning for your server. So select Yes
and then press Enter to continue.

Figure 1-12. The default partitioning scheme is rather basic.

Using the Guided LVM-Based Setup
The procedure for an LVM-based disk layout is a lot like the simple guided disk setup. Choos-
ing the guided LVM-based setup also brings you to a screen from which you can select the disk
or disks that you want to use. Press Enter to select your disk. The partitioning program next
tells you that it wants to write a basic partitioning scheme to disk before it can continue (see
Figure 1-13). This is needed because an LVM environment is created on top of a traditional
partition. Be aware that this is the point of no return; after you’ve written this basic partition-
ing scheme to hard disk, you can’t undo your installation.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 15

Figure 1-13. Before the logical volumes can be created, some traditional partition setup has to be
written to disk.

Once the default partitioning has been set up, the installation program makes a proposi-
tion for two logical partitions that are set up on top of that (see Figure 1-14). By default, this is
a root partition, formatted as Ext3 and a swap partition. Select Finish partitioning and write
changes to disk and press Enter to continue with the installation.

Figure 1-14. By default, two logical volumes are created on top of the partitions.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER16

Manually Setting Up Your Hard Drive
If you want to set up your server’s hard drive manually, that’s perfectly fine, but you need to do
some thinking before you start. First, you need to decide if you want to use LVM or traditional
partitions only. Once you have made this decision, you need to choose between the different
file systems that are available for Linux. I recommend making a small overview like the one in
Table 1-1. While making such an overview, don’t forget to assign some swap space as well. In
Linux, swapping happens to a partition or volume, so you must consider it while setting up
your server. In general, there is no need to make your swap space larger than 1 GB, with the
exception of servers with special applications such as Oracle. If that is the case for your envi-
ronment, consult your application documentation to find out what amount of swap space is
reasonable for your situation.

Table 1-1. Hard Disk Configuration Overview

Directory Type File System Size

/boot Primary partition Ext2 100 MB

/var LVM XFS 4 GB

/home LVM XFS 200 GB

/ LVM Ext3 50 GB

swap LVM Swap 1 GB

Once you have made up your mind about the hard disk usage, follow these steps to apply
your decision.

1. From the Partition disks interface, select Manual.

2. You now see a screen like the one in Figure 1-15. In this screen, select the hard disk that
you want to configure first.

Figure 1-15. Select the hard disk on which you want to create partitions and volumes.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 17

3. Because you have just selected an entire hard disk to configure, the installation pro-
gram warns you, stating that continuing will remove all existing partitions on the hard
drive. If you are sure you want to do this, select Yes and press the Enter key. If there’s
more than one hard disk on which you want to create partitions, select this additional
hard disk and repeat these steps.

4. You now see an overview of all available unconfigured disk space on the selected hard
drive (see Figure 1-16). Select this free space and press Enter.

Figure 1-16. Select the available disk space and press Enter.

5. Now the installer asks how to use the available disk space. To create the setup detailed
in Table 1-1, you first have to set up two partitions. One of them will be used by the
/boot partition, and the other will contain all available disk space on the hard drive.
This second partition is used to create a partition of the type 0x8e (LVM), which will be
used to set up logical volumes later. To set up the /boot partition first, select Create a
new partition (see Figure 1-17) and press Enter.

■Note Partition types are written as hexadecimal numbers. You know that they are hexadecimal numbers
because you can often see them as 0x8e (the 0x indicates that it is a hexadecimal number). In most cases,
however, there is no problem in omitting this 0x, so 0x8e and 8e can both be used to refer to the partition ID.

6. Next, enter the size that you want to assign to the partition. You can enter a percentage
of disk space that you want to use or just type max if you want to use the maximum
available size. Next, select Continue and press the Enter key.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER18

7. Now you have to enter the type of partition you need, and the installation program
offers a choice between a primary and a logical partition. If you choose a logical parti-
tion, the program will automatically create the necessary extended partition. Because
you need only two partitions in this scenario, you can choose the primary partition
type for both of the partitions.

Figure 1-17. You first have to create two traditional partitions, even if you want to create
an LVM-based setup.

8. Now specify where the new partition should start. Choose Beginning to create the par-
tition at the beginning of the available disk space, or choose End to create it at the end
of the available disk space. It makes sense to create the first partition at the beginning,
so select Beginning and then press the Enter key.

9. Next, you see a screen that contains all the default properties for the new partition (see
Figure 1-18). Assuming that this really is the partition that you want to use for /boot,
make sure you enter the following values, select Done setting up the partition, and
press the Enter key to continue.

• Use as: Ext2 file system. You are going to create a very small file system with files
that will rarely change, so it doesn’t make sense to use a journaling file system here.

• Mount point: /boot

• Mount options: Use the options that are selected by default

• Label: none

• Reserved blocks: 5%

• Typical usage: standard

• Bootable flag: off

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 19

Figure 1-18. Make sure your boot partition uses these settings.

10. In the screen shown in Figure 1-19, select the available free space to create the LVM
partition.

Figure 1-19. Select the available free space again to create the LVM partition.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER20

11. Select Create a new partition and accept the default in which all available disk space is
assigned to the new partition. Then specify that the new partition should be a primary
partition. Next, in the screen with the partition settings, make sure you set the follow-
ing options as shown:

• Use as: physical volume for LVM

• Bootable flag: off

■Tip Did something not work out the way it should have? Take a look at the syslog screen. You’ll be able to
see exactly what the installation program is trying to do and whether it succeeds. You can access the syslog
screen by using Alt+F4. To return to the main installation screen, use Alt+F1.

12. Now select Done setting up the partition, and press Enter.

13. Once back in the main screen (see Figure 1-20), select Configure the Logical Volume
Manager and press Enter.

Figure 1-20. After setting up the partitions, you must create the LVM environment.

14. You’ll now get a message (see Figure 1-21) that the current partitioning scheme has to
be written to disk before setting up LVM. Select Yes and press Enter.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 21

Figure 1-21. You must write the changes in the partitioning to hard disk before you can
create logical volumes.

15. As the first step in the setup of an LVM environment, you must now assign all usable
disk space to a volume group. From the screen shown in Figure 1-22, select Create
volume group.

Figure 1-22. An LVM setup is based on one or more volume groups.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER22

16. Next, enter a name for the volume group. In this example setup, I’ll use “system”. After
specifying the name, select Continue and press Enter. You next see a list of all devices
that are available for the LVM environment, which in this case is just one device that
probably has the name /dev/sda2 (see Figure 1-23). Select the device and select Con-
tinue once more to return to the main screen of the LVM setup program.

Figure 1-23. In most situations, you’ll select the device /dev/sda2 to be used by the Logical
Volume Manager.

17. From the LVM main screen, select Create logical volume. Next, select the volume group
that you have just created and enter a name for the first logical volume that you want
to use (see Figure 1-24). I recommend using the name of the file system you are going
to mount on the logical volume, so root is a decent name for the root file system, var is
good if you are going to mount the /var directory on it, and so on. I’ll show you how to
create the root logical volume in this and the following step. Make sure to repeat these
steps for all other volumes that you want to create.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 23

Figure 1-24. Every logical volume needs a unique name.

18. Now enter the size that you want to assign to the logical volume. Even if logical vol-
umes are quite flexible, you should try to specify a realistic size here. Next, specify the
file system sizes that you want to use on your logical volumes and finalize the LVM
setup procedure by clicking Finish.

■Tip If you run into problems while writing the new partitioning scheme to disk, this is probably due to a
conflict with some already existing setup. In this case, it may be a good idea to wipe your server’s master
boot record (MBR). From the installation program, use Alt+F2 to display a console window. Press Enter to
activate the console and enter the following command: dd if=/dev/zero of=/dev/sda bs=512
count=1. This will wipe your server’s MBR so that you can start all over again. You’ll have to restart the
installation as well.

19. Back in the main partitioning screen, you now see a list of all the logical volumes that
you have created; they’re just on top of the list (see Figure 1-25). You now have to put a
file system on every one of them. To do that, select the logical volume from the list and
press Enter.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER24

Figure 1-25. Select the logical volume you want to format and press Enter to put a file
system on it.

20. You now see the Partition Settings screen, in which the option Use as shows do not use.
Select this option and press Enter. Now from the list of available file systems, select the
file system that you want to use on this volume; for example, Ext3 if this is the root vol-
ume (see Figure 1-26).

Figure 1-26. Select Use as to specify the file system that you want to use on your logical
volume.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 25

21. Select the Mount Point option and select the directory to which you want to assign this
volume (/ for the root volume). Select any specific options you want to use on this file
system as well and then select Done setting up the partition.

22. Repeat this procedure to put a file system on all the remaining logical volumes. When
finished, from the Partition disks main screen (refer to Figure 1-25), select Finish parti-
tioning and write changes to disk. Select Yes when asked if you want to write the
changes to disk. This brings you to the next stage of the installation, in which all rele-
vant software packages are copied to your server.

Completing the Installation
Now that you have created the partitioning scheme for your server’s hard drive, it’s time to
finalize the installation of your server. In this part of the installation, you enter some generic
properties (like some user information), and you specify what software packages to install.

1. Next, the installer asks you to create a user account. This is the user account that you
will normally be working with, instead of using the root user account by default. Enter
the name of the user account and then enter (twice) the password for this user. The
installation of the base system now begins. In this phase, some basic packages that are
needed at all times are copied to your server. Hang on because this can take a couple
of minutes.

2. After the core system is installed, the installer asks if you want to use an HTTP proxy. If
this is the case, enter its details now, or leave the information bar empty and select
Continue to go on.

3. Next, you can choose additional software to install. The default choices allow you to
select between some of the most important server tasks (see Figure 1-27):

• DNS server: A DNS server allows your server to participate in the DNS hierarchy
and translate computer names into IP addresses.

• LAMP server: Selecting the LAMP (Linux, Apache, MySQL, and PHP server) option
will set up a versatile web server for you.

• Mail server: Want to set up your server as an MTA? Select this option to make it a
mail server that allows you to send and receive e-mail messages for all users in
your company.

• OpenSSH server: This is the option you’ll want to use in almost all situations. It
allows you to access your server remotely, which is very useful for doing mainte-
nance work on it.

• PostgreSQL: Use this option if you want to install your server as an application
server, hosting a PostgreSQL database.

• Print server: This option installs the Common UNIX Print System (CUPS). Select it
if you want your server to control access to shared printers.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER26

• Samba File server: Need a server to offer shared files to the Windows users in your
network? Check this option. The Samba file server offers the best-performing
CIFS-based file server in the world, and it even is a good solution if you want to
offer shared files to Linux and Apple users!

That’s it for installation choices! If you need additional software to be started on your
server, you need to install that software later. See Chapter 3 for more details on that.

Figure 1-27. The installation program lets you choose between different server profiles.

4. Once all software packages have been copied to your server, the system is ready for
use. You just have to press the Enter key once more to restart the server, and it will be
usable.

Once the server has been restarted, you will see the text-based login prompt of your
server. You are supposed to enter your user name and password here. A text-based prompt?
Yes, this is a server, and a server is generally locked behind doors in an air-conditioned room.
Therefore, there is no need to set up a graphical user environment in most cases. But because
many people consider a GUI quite useful anyway, you’ll learn how to set it up in Chapter 3. For
now, though, you’ll learn in Chapter 2 how to manage Ubuntu Server from the command line.

Summary
You learned in this chapter how to set up Ubuntu Server. Because the file system layout is a
very important part of a server configuration, special attention was paid to configuring your
server’s file system with LVM or traditional partitions. At the end of this chapter, you ended up
with a text-based console that’s not so user friendly. In Chapter 2, you will learn to work with
the most important commands needed for Linux server administration.

CHAPTER 1 ■ INSTALLING UBUNTU SERVER 27

Getting the Most from the
Command Line

You may know the workstation versions of Ubuntu as very accessible graphical desktops.
This is not the case, however, for Ubuntu Server! You can’t manage a server properly without
using the command line, so it’s absolutely necessary that you can find your way around the
Bash interface. Once you have mastered the command line, you will find it so much more
powerful and flexible that you may not miss the graphical interface at all. For command-line
newbies, this chapter offers an introduction.

Working As root?
By default, every Linux system installation creates a user with the name root. Many Linux
distributions ask you to enter a password for this user during the installation. Ubuntu Server
doesn’t, and it instead takes a radically different approach to performing privileged tasks.

Ubuntu Server takes a different approach for several good reasons. The powers of the user
root are limitless within the confines of that operating system. As root, you can bypass all sys-
tem security and do anything at all. And you will not be given a warning screen if, for instance,
you log in as root and then mistakenly type in a command that destroys all the files.

This is why Ubuntu Server handles privileged access in a different way. By default, the
user root does not have a password, so you cannot log in and work as root in the conventional
way, but you still need to perform many tasks that require root privileges. For this purpose,
Ubuntu offers the sudo mechanism, which is explained in detail in Chapter 5. With sudo,
normal users can perform tasks that require root privileges. And it’s very simple: for every
command that needs root permissions, you type sudo first. For example, whereas user root
could just type passwd linda to change the password of user linda, a normal user enters sudo
passwd linda.

■Note Want to work as root? Use the command sudo su, and you’ll be root. Alternatively, you can change
the password of user root as well, which allows you to log in as user root directly. Don’t ever want the possi-
bility to log in as root? In that case, you should change the default shell for this user to /bin/false. In
Chapter 5, you’ll read how to do that.

29

C H A P T E R 2

In a default installation, any user can use sudo to perform tasks as root. As you can guess,
this doesn’t make for a very secure situation. So you should limit this privilege. In Chapter 5,
you can read how to do that. Before you do this, however, you need more understanding of
Linux commands.

■Tip You don’t like sudo and want to work as root anyway? You can do that, but you need to first set a
password for user root. To give root a password, as a normal user, use the command sudo passwd root.
Next, you can enter the new password that you want to set for the user root.

Working with the Shell
Ubuntu Server uses the kernel to address and control the machine’s hardware. The kernel can
be considered the heart of the Linux operating system. Ubuntu Server gives users the shell
interface to tell this kernel and the services running on top of it what they should do. Typically,
the shell is a command-line interface in which users can enter their commands. This interface
interprets the commands that users type and translates them to machine code.

Several shells are available. The very first shell that was ever created for UNIX, back in the
1970s, was the Bourne shell. In Ubuntu Server you also have /bin/sh, but it’s not the real origi-
nal sh; it’s just a link to the /bin/dash shell. Another popular shell is Bash (short for the Bourne
Again Shell). The Bash shell is completely compatible with the original Bourne shell, but it has
many enhancements. Most system scripts on your server are executed with dash as well; dash
is used as the default shell for all users. The user root, however, has Bash as its default shell.*
Some people prefer using other shells, three of which follow:

• tcsh: A shell with a scripting language that works like the C programming language (and
is thus fairly popular with C programmers).

• zsh: A shell that is based on the Bash shell, but offers more features. Because of these
additional features, you can run Bash scripts in zsh, but you can’t run zsh scripts in a
Bash environment.

• sash: The standalone shell. This is a very minimal shell that runs in almost all environ-
ments. It is thus very well suited for troubleshooting systems.

Using Bash to Best Effect
Basically, in the Bash environment, an administrator is working with text commands. An
example of such a command is ls, which can be used to display a list of files in a directory.
Bash has some useful features to make working with these line commands as easy as possible.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE30

* Because it has many more features and ensures better compatibility, I prefer working with Bash. For that
reason, I’ll focus on discussing Bash rather than dash features in this book. When administering your
server as root,you will be working with Bash anyway.

Some shells offer the option to complete a command automatically. Bash has this feature,
but it does more than just complete commands. Bash can complete almost everything: not
just commands, but also file names and shell variables.

Using Automatic Command Completion
Using this feature is as simple as pressing the Tab key. For example, the cat line command is
used to display the contents of an ASCII text file. The name of this file, which is in the current
directory, is this_is_a_file. So, to open this file, the user can type cat thi and then press the
Tab key. If the directory has only one file that starts with the letters t-h-i, Bash automatically
completes the name of the file. If the directory has other files that start with the same letters,
Bash completes the name of the file as far as possible. For example, let’s say that there is a
file in the current directory with the name this_is_a_text_file and another named
thisAlsoIsAFile. Because both files start with the text this, Bash will complete only up to
this and no further. To display a list of possibilities, you then press the Tab key again. This
allows you to manually enter more information. Of course, you can then use the Tab key
again to use the completion feature once more.

■Tip Working with the Tab key really makes the command-line interface much easier. Imagine that you
need to manage logical volumes on your server and you remember only that the command for that starts
with lv. In this case, you can type lv and press the Tab key twice. The result will be a nice list of all com-
mands that start with lv, from which you’ll probably recognize the command that you need.

Working with Variables
A variable is simply a common value that is used often enough by the shell that it is stored
with a name. An example of such a variable is PATH, which stores a list of directories that
should be searched when a user enters a command. To refer to the contents of a variable, pre-
fix a $ sign before the name of the variable. For example, the command echo $PATH displays
the content of the current search path that Bash is using.

On any Linux system, you’ll get quite a few variables automatically. For an overview of all
of them, you can use the env (short for environment) command. Listing 2-1 shows the result of
this command.

Listing 2-1. The env Command Shows All Variables That Are Defined in Your Shell Environment

root@RNA:~# env
TERM=xterm
SHELL=/bin/bash
SSH_CLIENT=192.168.1.71 1625 22
SSH_TTY=/dev/pts/1
USER=root
LS_COLORS=no=00:fi=00:di=01;34:ln=01;36:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd\
=40;33;01:
or=40;31;01:su=37;41:sg=30;43:tw=30;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tgz\

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 31

=01;31:*.arj=0
1;31:*.taz=01;31:*.lzh=01;31:*.zip=01;31:*.z=01;31:*.Z=01;31:*.gz=01;31:*.bz2=01;\
31:*.deb=01;31:*.
rpm=01;31:*.jar=01;31:*.jpg=01;35:*.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;\
35:*.pgm=01;35:
.ppm=01;35:.tga=01;35:*.xbm=01;35:*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;\
35:*.mov=01;3
5:*.mpg=01;35:*.mpeg=01;35:*.avi=01;35:*.fli=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;\
35:*.xwd=01;35:
.flac=01;35:.mp3=01;35:*.mpc=01;35:*.ogg=01;35:*.wav=01;35:
MAIL=/var/mail/root
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games
PWD=/root
LANG=en_US.UTF-8
SHLVL=1
HOME=/root
LOGNAME=root
VISUAL=vi
SSH_CONNECTION=192.168.1.71 1625 192.168.1.70 22
LESSOPEN=| /usr/bin/lesspipe %s
LESSCLOSE=/usr/bin/lesspipe %s %s
_=/usr/bin/env

Normally, as a user, you’ll get your variables automatically when logging in to the system.
The most important source of new variables is the /etc/profile file, a script that is processed
for every user who logs in to the system. Want to add a new variable? Add it to the bottom of
the /etc/profile file to make sure it is available for all users. If you have some code that you
want to apply to /etc/profile, you can put it in a separate file and put that file in the
/etc/profile.d directory as well. The master script /etc/profile will make sure that these
commands also are executed automatically. Don’t worry about naming conventions for this
file because there are none. The only requirement is that the script you put in here contains
valid shell code.

Working with Bash History
Another useful feature of the Bash shell is the history feature, which remembers and lets you
reuse commands you have recently used. By default, the last 1,000 commands are remem-
bered. This feature is useful for sessions beyond even the current one. A file named
.bash_history is created in the home directory of every user, and this file records the last 1,000
commands that the user has entered. You can see an overview of these commands by typing
history at the Bash prompt. Listing 2-2 is an example of this list.

■Note In addition to the history command, you can also use the up/down arrow keys, page up/down
keys, and Ctrl+p/Ctrl+n to browse the history.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE32

Listing 2-2. The history Command Shows a List of All Commands That You Recently Used

sander@RNA:~$ history
1 clear
2 dpkg -l "*" | grep ^un
3 aptitude search xen
4 aptitude show xen-source
5 aptitude show xen-source-2.6.16
6 exit
7 apt-get install xen
8 sudo apt-get install xen

This is where the history feature becomes especially useful because you can reissue any
command from this list without typing it all over again. If you want to run any of the listed
(and numbered) commands again, simply type its number preceded by an exclamation mark.
In this example, typing !5 would run aptitude show xen-source-2.6.16 again.

Users can also erase their history by using the history command. The most important
option offered by this Bash internal command is the option -c, which clears the history list for
that user. This is especially useful because everything that a user types at the command line—
such as passwords—is recorded. So use history -c to make sure your history is cleared if
you’d rather not have others knowing what you’ve been up to. Once using this option, how-
ever, you can’t use the up arrow key to access previous commands because those commands
are all erased.

Because everything you enter from the command line is saved, I recommend never typing
a plain-text password in the first place, even if you regularly erase the history. Most commands
that do require you to enter a password will prompt you anyway if you don’t enter one right
away.

Managing Bash with Key Sequences
Sometimes, you’ll enter a command from the Bash command line and either nothing happens
at all or else something totally unexpected happens. In such an event, it’s good to know that
some key sequences are available to perform basic Bash management tasks. Here are some of
the most useful key sequences:

• Ctrl+C: Use this key sequence to quit a command that is not responding (or simply
takes too long to complete). This key sequence works in most scenarios where the com-
mand is operational and producing output to the screen. In general, Ctrl+C is also a
good choice if you absolutely don’t have a clue as to what’s happening and you just
want to terminate the command that’s running in your shell. If used in the shell itself, it
will close the shell as well.

• Ctrl+D: This key sequence is used to send the end of file (EOF) signal to a command.
Use this sequence when the command is waiting for more input, which is indicated by
the secondary prompt (>). You can also use this key sequence to close a shell session.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 33

• Ctrl+R: This is the reversed search feature. It will open the “reversed I-search” prompt,
which helps you locate commands that you used previously. The Ctrl+R key sequence
searches the Bash history, and the feature is especially useful when working with longer
commands. As before, type the first characters of the command and you will see the last
command you’ve used that started with the same characters.

• Ctrl+Z: Some people use Ctrl+Z to stop a command that is running interactively on the
console (in the foreground). Although it does stop the command, it does not terminate
it. A command that is stopped with Ctrl+Z is merely paused, so that you can easily start
it in the background using the bg command or in the foreground again with the fg com-
mand. To start the command again, you need to refer to the job number that the
program is using. You can see a list of these job numbers using the jobs command.

Performing Basic File System Management Tasks
On a Linux system such as Ubuntu, everything is treated as a file. Even a device like your hard
disk is addressed by pointing to a file (which, for your information, has the name /dev/sda in
most cases). Therefore, working with files is the most important task when administering
Linux. In this section, you’ll learn the basics of managing a file system. The following subjects
are covered:

• Working with directories

• Working with files

• Viewing text files

• Creating empty files

Working with Directories
Because files are normally organized in directories, it is important that you know how to han-
dle these directories. This involves a few commands:

• cd: This command changes the current working directory. When using cd, make sure to
use the proper syntax. First, names of commands and directories are case sensitive;
therefore, /bin is not the same as /BIN. Next, you should be aware that Linux uses a for-
ward slash instead of a backslash for directory paths. So use cd /bin and not cd \bin to
change the current directory to /bin.

■Tip Switching between directories? Use cd - to return to the last directory you were in.

• pwd: The pwd command stands for print working directory. Although you can usually see
the directory you are currently in from the command-line prompt (this is a Bash shell
setting), sometimes you can’t. If this is the case, pwd offers help.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE34

• mkdir: If you need to create a new directory, use mkdir. With mkdir you can create a
complete directory structure in one command as well, which is something you can’t do
on other operating systems. For example, the command mkdir /some/directory will fail
if /some does not already exist. In that case, you can force mkdir to create /some as well:
do this by using the mkdir -p /some/directory command.

• rmdir: The rmdir command is used to remove directories. However, this isn’t the most
useful command because it works only on directories that are already empty. If the
directory still has files and/or subdirectories in it, use rm –r or (eveb better) rm –rf,
which makes sure that you’ll never get a prompt for confirmation. You should be sure
that you know what you’re doing when using this option.

Working with Files
An important task from the command line is managing the files in the directories. Four impor-
tant commands are used for this purpose:

• ls lists files.

• rm removes files.

• cp copies files.

• mv moves files.

Listing Files with ls
Before you can manage files on your server, you must first know what files are there; to do that
you can use the ls command. If you just use ls to show the contents of a given directory, it
displays a list of files. Of course, these files have properties as well, such as a user who is the
owner of the file, some permissions, and the size of the file. To list all the files along with their
properties, use ls -l. See Listing 2-3 for an example.

Listing 2-3. Example Output of ls -l

root@RNA:/boot# ls -l
total 10032
-rw-r--r-- 1 root root 414210 2007-04-15 02:19 abi-2.6.20-15-server
-rw-r--r-- 1 root root 83298 2007-04-15 00:33 config-2.6.20-15-server
drwxr-xr-x 2 root root 4096 2007-07-29 02:51 grub
-rw-r--r-- 1 root root 6805645 2007-06-05 04:15 initrd.img-2.6.20-15-server
-rw-r--r-- 1 root root 94600 2006-10-20 05:44 memtest86+.bin
-rw-r--r-- 1 root root 812139 2007-04-15 02:20 System.map-2.6.20-15-server
-rw-r--r-- 1 root root 1763308 2007-04-15 02:19 vmlinuz-2.6.20-15-server
-rw-r--r-- 1 root root 240567 2007-03-24 10:03 xen-3.0-i386.gz

Apart from the option -l, ls has many other options as well. An especially useful one is
the -d option, and the following example shows why. When working with the ls command,
wildcards can be used. So, ls * will show a list of all files in the current directory, ls /etc/*a.*

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 35

will show a list of all files in the directory /etc that have an “a” followed by a dot somewhere in
the file name, and ls [abc]* will show a list of all files whose names start with either an “a,”
“b,” or “c” in the current directory. But something strange happens without the option -d. If a
directory matches the wildcard pattern, the entire contents of that directory are displayed as
well. This doesn’t really have any useful application, so you should always use the -d option
with ls when using wildcards.

■Tip If you really are sure that you want to use a given option every time you issue a certain command,
you can redefine the command by making an alias for it. If you put the definition of this alias in the system
generic “login script” /etc/profile, it will be available to all users after they log in. To do this, open the
profile file for editing with a command like sudo vi /etc/profile. Next, use the o command to open a
new line and enter alias ls='ls -d' on that line. Now press Esc to return to Vi command mode and use the
:wq! command to save your changes. The redefined ls command will now be available to all users who log
in at your server. If the alias is intended for only one user, you can also make sure that it is executed when
logging in by including it in the file .bash_profile in the user’s home directory.

One last thing you should be aware of when using ls is that it will normally not show any
hidden files. If you want to see hidden files as well, use the -a option.

■Note A hidden file is a file whose name starts with a period. Most configuration files that are stored in
user home directories are created as hidden files to prevent the user from deleting the files by accident.

Removing Files with rm
Cleaning up the file system is another task that needs to be performed regularly, and for this
you’ll use the rm command. For example, rm /tmp/somefile removes somefile from the /tmp
directory. If you are root or if you have all the proper permissions on the file, you will succeed
without any problem. (See Chapter 5 for more on permissions.) Removing files can be a deli-
cate operation (imagine removing the wrong files), so it may be necessary to push the rm
command a little to convince it that it really has to remove everything. You can do this by
using the -f (force) switch (but only if you really are quite sure). For example, use rm -f
somefile if the command complains that somefile cannot be removed for some reason.
Conversely, to stay on the safe side, you can also use the -i option to rm, which makes the
command interactive. When using this option, rm will ask for every file that it is about to
remove if you really want to remove it.

The rm command can be used to wipe entire directory structures as well; in this case the
-r option has to be used. If this option is combined with the -f option, the command will
become very powerful and even dangerous. For example, use rm -rf /somedir to clear out the
entire content of /somedir, including the directory /somedir itself.

Obviously, you should be very careful when using rm this way, especially because a
small typing mistake can have serious consequences. Imagine, for example, that you type

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE36

rm -rf / somedir (with a space between / and somedir) instead of rm -rf /somedir. The rm
command will first remove everything in /. When the rm command is finished with /, it will
remove somedir as well. Hopefully you understand that the second part of the command is no
longer required once the first part of the command has completed.

■Caution Be very careful using potentially destructive commands like rm. There is no good undelete
mechanism for the Linux command line, and, if you ask Linux to do something, it doesn’t ask whether you
are sure (unless you use the -i option).

Copying Files with cp
If you need to copy files from one location in the file system to another, use the cp command.
This command is straightforward and easy to use; for example, use cp ~/* /tmp to copy all
files from your home directory to the /tmp directory. As you can see, in this example I intro-
duced a new item: the tilde (~). The shell interprets that as a way to refer to the current user’s
home directory (normally /home/username for ordinary users and /root for the user root. If
subdirectories and their contents need to be included in the copy command as well, use the
option -r.

You should, however, be aware that cp normally does not copy hidden files. If you need to
copy hidden files as well, make sure to use a pattern that starts with a dot; for example, use cp
~/.* /tmp to copy all files whose names start with a dot from your home directory to the /tmp
directory.

Moving Files with mv
As an alternative to copying files, you can move them. This means that the file is removed
from its source location and placed in the target location, so you end up with just one copy
instead of two. For example, use mv ~/somefile /tmp/otherfile to move the somefile file
to /tmp.

If a subdirectory with the name otherfile already exists in the /tmp directory, somefile
will be created in this subdirectory. If /tmp has no directory with this name, the command will
save the contents of the original somefile under its new name otherfile in the /tmp directory.

The mv command also does more than just move files. You can use it to rename files or
directories, regardless of whether there are any files in those directories. If, for example, you
need to rename the directory /somedir to /somethingelse, use mv /somedir /somethingelse.

Viewing the Content of Text Files
When administering your server, you will find that you often need to modify configuration
files, which take the form of ASCII text files. Therefore, it’s very important to be able to browse
the content of these files. You have several ways of doing this:

• cat: Displays the contents of a file

• tac: Does the same as cat, but displays the contents in an inverse order

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 37

• tail: Shows just the last lines of a text file

• head: Displays the first lines of a file

• less: Opens an advanced file viewer

• more: Like less, but not as advanced

First is the cat command. This command just dumps the contents of a file on the screen
(see Listing 2-4). This can be useful, but if the contents of the file do not fit on the screen,
you’ll see some text scrolling by and, when it stops, you’ll only see the last lines of the file dis-
played on the screen. As an alternative to cat, you can use tac as well. Not only is its name
opposite to cat, its result is, too. This command will dump the contents of a file to the screen,
but with the last line first and the first line last.

Listing 2-4. The cat Command Is Used to Display the Contents of a Text File

root@RNA:/boot# cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 RNA.lan RNA

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Another very useful command is tail. If no options are used, this command will show the
last ten lines of a text file. The command can also be modified to show any number of lines on
the bottom of a file; for example, tail -2 /etc/passwd will display the last two lines of the
configuration file in which user names are stored. Also very useful for monitoring what hap-
pens on your system is the option to keep tail open on a given log file. For example, if you use
tail -f /var/log/messages, the most generic log file on your system is opened, and, when a
new line is written to the bottom of that file, you will see it immediately. Use Ctrl+C to stop
viewing the file that you opened using tail –f. The opposite of tail is the head command,
which displays the top lines of a text file.

The last two files used to view the contents of text files are less and more. The most
important thing you need to remember about them is that you can do more with less. Con-
trary to common sense, the less command is actually the improved version of more. Both
commands will open your text file in a viewer, as you can see in Listing 2-5. In this viewer you
can browse down in the file by using the Page Down key or the spacebar. Only less offers the
option to browse up as well. Also, both commands have a search facility. If the less utility is
open and displays the content of your file, use /sometext from within the less viewer to locate
sometext in the file. To quit both utilities, use the q command.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE38

Listing 2-5. The less Command Can be Used as a Viewer to View File Contents

127.0.0.1 localhost
127.0.1.1 RNA.lan RNA

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
/etc/hosts (END)

Finding Files That Contain Specific Text
As a Linux administrator, you’ll sometimes need to search for a specific file by some word or
phrase within the file. Because most configuration files created on your server are ASCII text
files (in the /etc directory or one of its subdirectories), it is rather easy to search for text within
them using the grep utility, which is one of Linux’s most useful utilities. Let’s start with a rather
basic example, in which you want to get a list of all files that contain the text “linda” in /etc.
You can just use grep linda /etc/* and if you want to make sure that you can search files that
are readable for root only, use sudo grep linda /etc/*. Notice that the grep command is case
sensitive. If you want it to be case insensitive, you should include the -i option: grep -i linda
/etc/*. This command produces a list of file names, followed by the line in which the text you
were looking for is shown; see Listing 2-6.

Listing 2-6. The grep Utility Is Useful for Searching Files That Contain a Certain Word or Phrase

sander@RNA:~$ sudo grep linda /etc/*
/etc/group:linda:x:1001:
/etc/gshadow:linda:!::
/etc/passwd:linda:x:1001:1001::/home/linda:/bin/sh
/etc/shadow:linda:!:13671:0:99999:7:::

If the output gets a little longer, you may find it confusing to see the lines that contain the
text you were looking for as well. If that’s the case, use the -l (list) option. You’ll see only file
names when using this option. Another disadvantage is that grep does not search subdirecto-
ries by default, but you can tell it to do so by using the -r option. If, however, you want fast
results, be careful with the -r option because searching an entire directory tree structure for
the occurrence of some word in a file is very labor intensive.

Using Regular Expressions
When you get more experience with grep, you’ll find that it is a very powerful and versatile
command. Particularly useful is the option to work with advanced regular expressions, which
let you search for very specific text patterns in a file. Imagine, for example, that you want to
find files that contain the text string “nds”, but only if that string occurs as a separate word.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 39

You wouldn’t want to retrieve all files that contain the word “commands”, for instance. So you
would use regular expressions, and they offer a wide range of options. Four of them, which are
also known as anchors, are particularly useful:

• ^text searches for text at the beginning of a line.

• text$ searches for text at the end of a line.

• \<text searches for text at the beginning of a word.

• text\> searches for text at the end of a word.

When using any of these regular expressions, it is always a good idea to put the search
pattern between single quotes. The single quotes tell the shell not to interpret anything in the
regular expression, so that grep can do the interpretation. So use grep '\<linda' * and not
grep \<linda *. Let’s examine some examples. To show how it works, consider the name
poem file in Listing 2-7.

Listing 2-7. Example Text File

blah ra dala ma na
na blahra dala ma nana
narablah naka dala ma
ka ka radalamanablah

Listing 2-8 shows the result of the different regular expressions.

Listing 2-8. Example of Regular Expression Usage

sander@RNA:~$ grep '^blah' poem
blah ra dala ma na
sander@RNA:~$ grep 'blah$' poem
ka ka radalamanablah
sander@RNA:~$ grep '\<blah' poem
blah ra dala ma na
na blahra dala ma nana
sander@RNA:~$ grep 'blah\>' poem
blah ra dala ma na
narablah naka dala ma
ka ka radalamanablah
sander@RNA:~$ grep '\<blah\>' poem
blah ra dala ma na

As you can see, in the first example line (grep '^blah' poem), grep locates only those lines
that start with the text “blah”, which produces one match only. Next, grep 'blah$' poem is
used to find lines that end with the text “blah”. Following that, grep '\<blah' poem is used to
find all lines that contain a word that starts with the string “blah”. Next, you can see that grep
'blah\>' poem finds all words that end with the poem string. Finally, the command grep
'\<blah\>' poem finds only those lines in which “blah” occurs as a word on its own.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE40

Creating Empty Files
The last file management task discussed in this section is the option to create empty files,
which can be very useful for testing purposes when you need a file to exist but without neces-
sarily having any contents. The touch command will do just that. For example, touch somefile
will create a zero-byte file with the name somefile in the current directory.

You should be aware that it was never the purpose of touch to create empty files. The
main purpose of the command is to open a file so that the last access date and time of the file
that are displayed with ls are modified to the current time. For example, touch * will set this
time stamp to the present date and time on all files in the current directory. If, however, touch
is used with the name of a file that doesn’t exist as its argument, it will create this file as an
empty file.

Piping and Redirection
Piping and redirection are some of the most powerful features of the Linux command line.
Piping sends the result of a command to another command, and redirection sends the output
of a command to a file. You can also use redirection to send the contents of a file to a com-
mand. The file doesn’t have to be a regular file; for example, it can be a device file. So you can
send output directly to a device, as you will see in the following examples.

■Note Every device present on your server is represented by a device file. One of the cool things of Linux
is that you can talk to these device files directly. Try the command cat /dev/sda, for example. It will show
you the binary contents of your server’s hard drive. Pretty cool, isn’t it? You may want to use Ctrl+C to get
out of this stream of data; you can also use the reset command to get the normal appearance of your ter-
minal back.

Piping
The goal of piping is to execute one command and send its output to a second command so
that the second command can do something with it. For instance, a common scenario is when
the output of a command doesn’t fit on the screen, in which case the command can be piped
to less, thus allowing you to browse the output of the first command screen by screen. This is
useful when working with ls -lR, which normally displays a list of files with all properties as
well as all subdirectories of the current directory. To view the output of this command screen
by screen, you can use ls -lR | less to send the output from the first command (ls -lR) to
the second command (less).

Another very useful command that can be used in a pipe construction is grep. You’ve
already seen grep as a way of searching files for a given string, but it can also be used to filter
information. This technique is often used to find out whether a given process is running or to
check that a certain network port is offered by your server. For example, the command sudo
ps aux | grep http will show you all lines in the output of the command ps aux (which pro-
duces a list of all processes active at your server) that contain the text “http”. Another example
is sudo netstat -tulpen | grep 22, in which the output of netstat -tulpen (which produces

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 41

a list of all processes that are offering network connections on your server) is examined for the
occurrence of the number 22 (the SSH port). You can see what this looks like in Listing 2-9.

Listing 2-9. Filtering Command Output by Piping to grep

sander@RNA:~$ sudo netstat -tulpen | grep 22
tcp6 0 0 :::22 :::* LISTEN 0 15332 4321/sshd

Redirection
Although piping sends the result of a command to another command, redirection sends the
result of a command to a file or the contents of a file to a command. As I mentioned, this file
can be a text file, but it can also be a special file like a device file. An easy example of redirec-
tion is shown in the command ls -l > list_of_files. In this command, the redirector (>)
sign will make sure that the result of the ls -l command is redirected to the file list_of_
files. If list_of_files doesn’t exist yet, this command creates it. If it already exists, this
command overwrites it.

If you don’t want to overwrite the content of existing files, you should use the double redi-
rector sign (>>) instead of the single redirector sign (>). For example, who > myfile will put the
result of the who command (which displays a list of users currently logged in) in the file myfile.
If you want to append the result of the free command (which shows information about mem-
ory usage on your system) to the same file (myfile), then use free >> myfile.

Apart from redirecting output of commands to files, the inverse is also possible when
using redirection. In this case, you are redirecting the content of a text file to a command that
will use that content as its input. For example, the command mail -s "Hi there" root < .
sends a mail to root with the subject line “Hi there”. Because the mail command always needs
a dot at a separate line to indicate the end of the message, in this command the construction
< . is used to feed a dot to the mail command.

■Tip The mail command is a very useful command to send messages to users on your system. I also use
it a lot in shell scripts to send a message to the user root if something goes wrong. To see a list of the mes-
sages that you’ve received this way, just type mail on the command line. Once you stop viewing your e-mail,
press the q key to get out of the list.

When using redirection, you should be aware that you can do more than redirect output
(technically referred to as STDOUT). Commands may produce error output as well, as in the
following example, in which I deliberately made an error (no files that start with a* existed in
the current directory):

ls -l a*
ls: cannot access a*: No such file or directory

This error output is technically referred to as STDERR. It is possible to redirect STDERR as
well; and you can do this with the 2> construction, which indicates that you are interested in
redirecting only error output. For example, the command grep root * 2> err.txt would

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE42

have the grep command find the text root in all files in the current directory. Now the redirec-
tor 2> err.txt will make sure that all error output is redirected to the file err.txt that will be
created for this purpose, whereas STDOUT will be written to the console where the user has
issued this command.

■Note The STDIN, STDOUT, and STDERR can be referred to by numbers as well; STDIN = 0, STDOUT = 1,
and STDERR = 2.

That’s also the reason why you are using 2> to redirect error output. Similarly, you could use 1> to redi-
rect the standard output instead of > (in the following line in the example).

It’s also possible to redirect both STDOUT as STDERR. This would happen if you use the
command grep root * 2> somefile > someotherfile. In this command, 2> is used to redirect
all error output to somefile; > is then used to redirect all standard output to someotherfile.

As I mentioned previously, one of the interesting features of redirection is that you can
use it to redirect output to regular files, and you can also redirect output to device files. One
of the nice features of a Linux system is that any device connected to your system can be
addressed by addressing a file. Before discussing how this works, take a look at this short and
incomplete list of some important device files that can be used:

• /dev/null: The null device is a special software routine that helps with testing. It throws
away all data written to it (while reporting success) and immediately returns EOF when
read from. Use this device to redirect to “nowhere”.

• /dev/zero: This is your friendly zero generator. Use this device before selling your old
hard drive online; cat /dev/zero > /dev/sda will erase all data on your hard drive and
put zeroes there instead. Want to make sure that no one can ever reconstruct data on
your hard drive? Make sure to run this command several times.

• /dev/ttyS0: The first serial port.

• /dev/lp0: The first legacy LPT printer port.

• /dev/hda: The master IDE device on IDE interface 0 (typically your hard drive).

• /dev/hdb: The slave IDE device on IDE interface 0 (not always in use).

• /dev/hdc: The master device on IDE interface 1 (typically your optical drive).

• /dev/sda: The first SCSI or serial ATA device in your computer.

• /dev/sdb: The second SCSI or serial ATA device in your computer.

• /dev/sda1: The first partition on the first SCSI or serial ATA device in your computer.

• /dev/tty1: The name of the first text-based console that is active on your computer
(from tty1 up to tty12).

• /dev/fd0: If available: the diskette drive in your PC.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 43

One way of using redirection together with a device name is to redirect error output of a
given command to the null device. You would use a command like grep root * 2> /dev/null
to do this. Of course, there’s always the risk that your command is not working properly
because it’s been prevented, and for a good reason. In this case, use (for example) the com-
mand grep root * 2> /dev/tty12, which would log all error output to tty12. This can also be
activated with the key sequence Alt+F12 (use Ctrl+Alt+F12 if you are working from a graphical
environment).

Another cool feature you can use with redirection is to send the output from one device to
another device. To understand how this works, let’s first look at what happens when you are
using cat on a device, as in cat /dev/sda. This command would display the complete content
of the sda device on the standard output.

When displaying the contents of a storage device like this, the interesting thing is that you
can redirect it. Imagine a situation in which you have a /dev/sdb as well, and this sdb device is
at least as large as /dev/sda and is empty at the moment. You can clone the disk just by using
cat /dev/sda > /dev/sdb! However, this redirecting to devices can be very dangerous. Imag-
ine what would happen if you were foolish enough to issue the command cat /etc/passwd >
/dev/sda; it would just dump the content of the passwd file to the beginning of the /dev/sda
device. And because you’re working on the raw device here, no file system information is used,
and this command would overwrite all important administrative information that is stored at
the beginning of the device that is mentioned. And you would never be able to boot the device
again! (If you’re not an expert in Linux troubleshooting, that is. If you are, it can usually be
repaired.) In Chapter 4, you will learn about the dd command, which can be used to copy data
from one device to another in a way that is much more secure.

Finding Files
Another useful task you should be able to perform on your server is to find files, and find is
the most powerful command to use to do that. The find command helps you find files based
upon any property a file can have. For starters, you can find a file by its name; the access, cre-
ation, or modification date; the user who created the file; or the permissions set on the file. If
you want to find all files whose name begins with hosts, use sudo find / -name "hosts*". I
recommend always putting the string that refers to the file you are looking for between quotes
because doing so ensures that find knows where the argument starts and where it stops.

■Note When analyzing a command, the shell parses the command to see what exactly you want to do.
While doing this, it will interpret signs that have a special meaning for the shell (such as *, which is used to
refer to all files in the current directory). To prevent the shell from doing this (so that the special character
can be interpreted by something else; by the command you are using, for example), you should tell the shell
not to interpret the special characters. You can do this by escaping them using any of three methods. If it is
just one character that you don’t want interpreted, put a \ in front of it. If it is a series of characters that you
don’t want interpreted, put them between single quotes. If it is a string that contains certain elements that
you do want to be interpreted, use double quotes. Between double quotes, many special signs such as * and
$ are still interpreted. Chapter 7 deals with shell scripting, and you’ll find more details there.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE44

Another way of locating files is by the name of the user who created the file. The com-
mand find / -user "alex" will find all files created by user alex. The fun thing about find is
that you can execute a command on the result of the find command by using the -exec option
(for example, if you want to copy all files of user alex to the directory /groups/sales, use find
/ -user "alex" -exec cp {} /groups/sales \;). In such a command, you should pay atten-
tion to two specific elements. First is the {} construction, which is used to refer to the result of
the find command that you started with. Next is the \; element, which is used to tell find that
this is the end of the part that began with -exec.

To illustrate how this rather complex construction works, let’s have a look at another
example. In this example, you want to search all files owned by user susan to check if the word
“root” occurs in it. So the first thing you need to do is find all files that are owned by user
susan; you can do this by typing find / -user "susan". Next, you need to search these files to
see if they contain the word “root”. To do this, you need a construction like grep root *. How-
ever, that construction is not the right way of doing it because the grep command would
search all files in the current directory. Therefore, you first need to combine the two com-
mands using -exec. Next, you need to replace the * from the grep root * example by {},
which refers to the result of the find command. So the final construction would be find /
-user susan –exec grep root {} \;. If this command gives you too much information, you
can pipe the result through the less command to read the output screen by screen. In that
case, the command would be find / -user susan -exec grep root {} \; | less.

Working with an Editor
For your day-to-day management tasks from the command line, you’ll often need a text editor
to change ASCII text files. Although many editors are available for Linux, Vi is still the best and
most popular because of its power and versatility. It is a rather complicated editor, however,
and Ubuntu Server fortunately includes Vim, which is Vi Improved, the user-friendly version
of Vi. To make sure that you use Vim and not Vi, use the following command: echo alias
vi=vim >> /etc/profile. When talking about Vi in this book, I assume that you are using Vim.

Every Linux administrator should be capable of working with Vi. Why? You’ll find it on
every Linux distribution and every version of UNIX. Another important reason why you
should get used to working with Vi is that some other commands are based on it. For example,
to edit quota for the users on your server, you would use edquota, which is just a macro built
on Vi. If you want to set permissions for the sudo command, use visudo which, as you likely
guessed, is another macro that is built on top of Vi.

■Tip If you’d rather work with an editor that is simple, doesn’t have too many options, and just does the
job, you can use nano instead. This editor doesn’t really require much further explanation.

In this section, I’ll provide the bare minimum of information that is needed to work with
Vi. The goal here is just to get you started. You’ll learn more about Vi if you really start working
with it on a daily basis.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 45

Vi Modes
One of the hardest things to get used to when working with Vi is that it uses two modes: the
command mode that is used to enter new commands and the insert mode (also referred to as
the input mode) that is used to enter text. Before being able to enter text, you need to enter
insert mode because, as its name suggests, command mode will just allow you to enter com-
mands. Notice that these commands also include cursor movement. The nice thing about Vi is
that it offers you many choices. For example, you can use many methods to enter insert mode.
I’ll list just four of them:

• Press i to insert text at the current position of the cursor.

• Use a to append text after the current position of the cursor.

• Use o to open a new line under the current position of the cursor (my favorite option).

• Use O to open a new line above the current position of the cursor.

After entering insert mode, you can enter text and Vi will work just like any other editor.
Now if you want to save your work, you should get back to command mode and use the
appropriate commands. The magic key to return to command mode from insert mode is
Escape.

■Tip When starting Vi, always give as an argument the name of the file you want to create with it, or the
name of an existing file you would like to modify. If you don’t do that, Vi will display help text, and you will
have the problem of finding out how to get out of this help text. Of course, you can always just read the
entire help text to find out how that works (or just type :q to stop viewing help).

Saving and Quitting
After activating command mode, you can use commands to save your work. The most com-
mon method is to use the :wq! command, which performs several tasks at once. First, a colon
is used, just because it is part of the command. Then, w is used to save the text you have typed
so far. Because no file name is specified after the w, the text will be saved under the same file
name that was used when opening the file. If you want to save it under a new file name, just
enter the new name after the w command. Next in the :wq! command is q, which makes sure
that the editor is quit as well. Finally, the exclamation mark tells Vi that it shouldn’t complain,
but just do its work. Vi has a tendency to get smart with remarks like “a file with this name
already exists”, so you are probably going to like the exclamation mark. After all, this is Linux,
and you want your Linux system to do as you tell it, not to second-guess you all the time.

As you have just learned, you can use :wq! to write and quit Vi. You can also use the parts
of this command separately. For example, use :w if you just want to write the changes while
working on a file without quitting it, or use :q! to quit the file without writing changes. The
latter option is a nice panic key if something has happened that you absolutely don’t want to
store on your system. This is useful because Vi will sometimes work magic with the content of
your file when you hit the wrong keys. Alternatively, you can recover by using the u command
to undo the most recent changes you made to the file.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE46

Cut, Copy, and Paste
You don’t need a graphical interface to use cut, copy, and paste features; Vi could do this back
in the seventies. But you have two ways of using cut, copy, and paste: the easy way and the
hard way. If you want to do it the easy way, you can use the v command to enter the visual
mode, from which you can select a block of text by using the arrow keys. After selecting the
block, you can cut, copy, and paste it.

• Use d to cut the selection. This will remove the selection and place it in a buffer.

• Use y to copy the selection to the area designated for that purpose in your server’s
memory.

• Use p to paste the selection. This will copy the selection you have just placed in the
reserved area of your server’s memory back into your document. It will always paste
the selection at the cursor’s current position.

Deleting Text
Deleting text is another process you’ll have to do often when working with Vi, and you can use
many different methods to delete text. The easiest, however, is from insert mode: just use the
Delete key to delete any text. This works in the exact same way as in a word processor. As
usual, you have some options from Vi command mode as well:

• Use x to delete a single character. This has the same effect as using the Delete key while
in insert mode.

• Use dw to delete the rest of the word. That is, dw will delete everything from the cursor’s
current position of the end of the word.

• Use dd to delete a complete line. This is a very useful option that you will probably like
a lot.

That’s enough of Vi for now because I don’t want to bother you with any more obscure
commands. Let me show you how to get help next.

Getting Help
Linux offers many ways to get help. Let’s start with a short overview:

• The man command offers documentation for most commands that are available on your
system.

• Almost all commands accept the --help argument. Using it will display a short
overview of available options that can be used with the command.

• For Bash internal commands, you can use the help command. This command can be
used with the name of the Bash internal command that you want to know more about.
For example, use help for to get more information about the Bash internal command
for.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 47

■Note An internal command is a command that is a part of the shell and does not exist as a program file
on disk. To get an overview of all available internal commands, just type help on the command line.

• The directory /usr/share/doc/ has extensive documentation for almost all programs
installed on your server.

Using man to Get Help
The most important source of information about commands on your Linux system is man,
which is short for the System Programmers Manual. In the early days, they were nine different
volumes that documented every aspect of the UNIX operating system. This structure of sepa-
rate books (nowadays called sections) is still present in the man command. Here is a list of the
available sections and the type of help you can find in these sections:

0 Section 0. Contains information about header files. These are files that are typically in
/usr/include and contain generic code that can be used by your programs.

1 Executable programs or shell commands. For the user, this is the most important sec-
tion because it normally documents all commands that can be used.

2 System calls. As an administrator you will not use this section on a frequent basis. The
system calls are functions that are provided by the kernel. It’s all very interesting if you
are a kernel debugger, but normal administrators won’t need this information.

3 Library calls. A library is a piece of shared code that can be used by several different
programs. Typically, a system administrator won’t need the information here.

4 Special files. In here, the device files in the directory /dev are documented. This section
can be useful to learn more about the working of specific devices.

5 Configuration files. Here you’ll find the proper format you can use for most configura-
tion files on your server. If, for example, you want to know more about the way
/etc/passwd is organized, use the entry for passwd in this section by issuing the com-
mand man 5 passwd.

6 Games. On a modern Linux system, this section contains hardly any information.

7 Miscellaneous. This section contains some information on macro packages used on
your server.

8 System administration commands. This section does contain important information
about the commands you will use on a frequent basis as a system administrator.

9 Kernel routines. This is documentation that isn’t even installed standard and option-
ally contains information about kernel routines.

So the information that matters to you as a system administrator is in sections 1, 5, and 8.
Mostly you don’t need to know anything about the other sections, but sometimes an entry can
be found in more than one section. For example, information on an item called passwd is

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE48

found in section 1 as well as section 5. If you just type man passwd, you’ll see the content of
the first entry that man finds. If you want to make sure that all the information you need is dis-
played, use man -a <yourcommand>. This makes sure that man browses all sections to see if it can
find anything about <yourcommand>. If you know what section to look in, specify the section
number as well, as in man 5 passwd, which will open the passwd item from section 5 directly.

The basic structure for using man is to type man followed by the command you want infor-
mation about. For example, type man passwd to get more information about the passwd item.
You’ll then see a page displayed by the less pager, as can be seen in Listing 2-10.

Listing 2-10. Example of a man Page

PASSWD(1) User Commands PASSWD(1)

NAME
passwd - change user password

SYNOPSIS
passwd [options] [LOGIN]

DESCRIPTION
passwd changes passwords for user accounts. A normal user
may only change the password for his/her own account, while
the super user may change the password for any account.
passwd also changes account information, such as the full
name of the user, the user's login shell, or his/her
password expiry date and interval.

Password Changes
Manual page passwd(1) line 1

Each man page consists of the following elements:

• Name: This is the name of the command. It describes in one or two lines what the com-
mand is used for.

• Synopsis: Here you can find short usage information about the command. It will show
all available options and indicate whether an option is optional (shown between square
brackets) or mandatory (not between brackets).

• Description: The description gives the long description of what the command is doing.
Read it to get a clear and complete picture of the purpose of the command.

• Options: This is a complete list of all options that are available, and it documents the
use of them all.

• Files: If it exists, this section provides a brief list of files that are related to the command
you want more information about.

• See also: A list of related commands.

• Author: The author and also the mail address of the person who wrote the man page.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 49

Now man is a very useful system to get more information on how to use a given command.
On its own, however, it is useful only if you know the name of the command you want to read
about. If you don’t have that information and need to locate the proper command, you will
like man -k. The -k option allows you to locate the command you need by looking at keywords.
This option often produces a very long list of commands from all sections of the man pages,
and in most cases you don’t need to see all that information; the commands that are relevant
for the system administrator are in sections 1 and 8. Sometimes, when you are looking for a
configuration file, section 5 should be browsed as well. Therefore, it’s good to pipe the output
of man -k through the grep utility that can be used for filtering. For example, use man -k time
| grep 1 to show only lines from man section 1 that have the word “time” in the description.

■Tip Sometimes man -k provides only a message stating that there is nothing appropriate. If this is the
case, run the mandb command. This will create the database that is necessary to search the man indexes.

Using the --help Option
The --help option is pretty straightforward. Most commands accept this option, although
not all commands recognize it. But the nice thing is that if your command doesn’t recognize
the option, it will give you a short summary on how to use the command anyway because it
doesn’t understand what you want it to do. You should be aware that although the purpose of
the command is to provide a short overview of the way it should be used, the information is
very often still too long to fit on one screen. If this is the case, pipe it through less to view the
information page by page.

Getting Information on Installed Packages
Another nice source for information that is often overlooked is the documentation that is
installed for most software packages in the directory /usr/share/doc/. Beneath this directory
you’ll find a long list of subdirectories that all contain some usage information. In some cases,
the information is really short and not very good, but in other cases, thorough and helpful
information is available. Often this information is available in ASCII text format and can be
viewed with less or any other utility that is capable of handling clear text.

In many cases, the information in /usr/share/doc is stored in a compressed format. You
can recognize this format by the extension .gz. To read files in this format, you can use zcat
and pipe the output of that to less, which allows you to browse through it page by page. For
example, if you see a file with the name changelog.gz, use zcat changelog.gz | less to
read it.

In other cases, you will find the documentation in HTML format, which can only be dis-
played properly with a browser. If this is the case, it is good to know that you don’t necessarily
need to start a graphical environment to see the contents of the HTML file because Ubuntu
Server comes with the w3m browser, which is designed to run from a nongraphical environ-
ment. In w3m you can use the arrow keys to browse between hyperlinks. To quit the w3m utility,
use the q command.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE50

Summary
This chapter has prepared you for the work you will be doing at the command line. Because
even a modern Linux distribution like Ubuntu Server still relies heavily on its configuration
files and the commands to manage them, this is important information. The real work,
though, starts in Chapter 3, where you’ll learn how to perform some of the most important
administration tasks.

CHAPTER 2 ■ GETTING THE MOST FROM THE COMMAND LINE 51

Performing Essential System
Administration Tasks

So you have your server up and running, and you’ve just learned how to get your work done
from the command line. This is where the real work starts! Next, you need to learn how to tune
your server so it does exactly what you want it to. First, you need to know how to manage soft-
ware. Next, even if many in the Linux community will flame you for it, you may want to work
with a graphical interface on your server to accomplish common tasks. Even if Ubuntu Server
is a command line–oriented server, in some situations the graphical interface just makes
things much easier. So I’ll explain how to install that at your server. Once the server starts to
take shape, you’ll want to make sure that it is properly backed up. And finally, if something
goes wrong, you’ll need logging to find out what happened. All these are considered essential
system administration tasks, and you’ll learn about them in this chapter.

Software Management
As on any other computer, you’ll need to install software on Ubuntu Server on a regular
basis. You can approach software installations in two ways. First and most important are the
software packages containing programs that are ready to install and integrate easily with
Ubuntu Server. The server keeps a list of all software packages that are installed, which makes
managing them much easier. The second approach to software installation is the tarball,
which is basically just an archive that contains files. (For more information about archives, see
the section titled “Creating Backups” later in this chapter.) These files can be really anything
(for example, a backup of your server’s data is stored in a tarball), but the tarball can also be
used to deliver software to install.

You should be aware of two important differences between the two methods of software
installation. One is that your server keeps track of everything that is installed only if that soft-
ware is installed from a package. Software installed from tarballs is not tracked. The second
difference between tarballs and packages is that some software needs other software to be
present before it can be installed. (This is called a dependency.) An example of such a depend-
ency is an application that would need a graphical user interface (GUI) to be present before
you can use it. Both the tarball and the software package have installation programs that can
check if all dependencies have been met, but only the software package interacts via the pack-
age manager software with a database of packages that are installed and packages that are
available at your server. Because of this interaction, the package manager can install missing

53

C H A P T E R 3

dependencies for you automatically, and this is why software packages are preferred over tar-
balls on modern Linux distributions.

From the preceding information, you may have guessed which way of managing software
is best: use packages and a decent package manager if they’re available; use tarballs only if
such a solution is not present for the software you want to install.

For Ubuntu Server, the package manager to use is apt-get. This package manager is
focused on the Debian (.deb) package format. These packages can be managed perfectly with
the apt-get package manager.

Software Repositories and Package Databases
To understand a Linux package manager, you need to know about software repositories. A
software repository can be considered a source of installation for software. On your server, a
list of all these installation sources is kept in the file /etc/apt/sources.list. As an administra-
tor, it is important to be aware of this list. Although the most important software repositories
are added to this file automatically, you may occasionally want to add other software reposito-
ries to this list.

In all repositories, you’ll always find the following five package categories:

• main: The main category portion of the software repository contains software that is
officially supported by Canonical, the company behind Ubuntu. The software that is
normally installed to your server is in this category. By working with only this software,
you can make sure that your system remains as stable as possible and—very important
for an enterprise environment—that you can get support for it at all times.

• restricted: The restricted category is basically for supported software that uses a license
that is not freely available, such as drivers for specific hardware components that use a
specific license agreement or software that you have to purchase. You’ll typically find
restricted software in a specific subdirectory on the installation media.

• universe: The universe category contains free software that is not officially supported.
You can use it, and it is likely to work without problems, but you won’t be able to get
support from Canonical for software components in this category.

• multiverse: The multiverse component contains unsupported software that falls under
license restrictions that are not considered free.

• backports: In this category, you’ll find bleeding-edge software. If you really need to work
with the latest software available, you should definitely get it here. Never use it if your
goal is to install a stable server.

When installing software with the apt-get utility, it will look for installation sources in the
configuration file /etc/apt/sources.list. Listing 3-1 shows a part of its contents.

Listing 3-1. Definition of Installation Sources in sources.list

deb http://security.ubuntu.com/ubuntu hardy-security main restricted
deb-src http://security.ubuntu.com/ubuntu hardy-security main restricted
deb http://security.ubuntu.com/ubuntu hardy-security universe
deb-src http://security.ubuntu.com/ubuntu hardy-security universe

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS54

deb http://security.ubuntu.com/ubuntu hardy-security multiverse
deb-src http://security.ubuntu.com/ubuntu hardy-security multiverse

As you can see, the same format is used in all lines of the sources.list file. The first field
in these lines specifies the package format to be used. Two different package formats are used
by default: deb for binary packages (basically precompiled program files) and deb-src for
packages in source file format. Next, the Universal Resource Identifier (URI) is mentioned.
This typically is an HTTP or FTP URL, but it can be something else as well. For instance, it can
refer to installation files that you have on an installation CD or in a directory on your server.
After that you’ll see the name of the Ubuntu Server distribution that is used, and you’ll always
see the current server version there. Last, every line refers to the available package categories.
As you can see, most package categories are in the list by default. Only installation sources for
security patches have been included in the partial listing of sources in Listing 3-1. For a com-
plete overview, take a look at the configuration file itself.

Now that you understand how the sources.list file is organized, it follows almost auto-
matically what should happen if you want to add some additional installation sources to this
list: make sure that all required components are specified on the same line and add as many
lines as you want to include additional installation sources. Once an additional installation
source has been added, it will be automatically checked when working on software packages.
For example, if you should use the apt-get update command to update the current state of
your system, the package manager will check your new installation sources as well.

A second important management component used by package managers on your server
is the package database. The most fundamental package database is the dpkg database, which
is managed by the Debian utility dpkg. On Ubuntu, however, the Advanced Packaging Tools
(apt) set is used for package management. These tools add functionality to package manage-
ment that the traditional dpkg approach typically cannot offer. Because of this added
functionality, the apt tools use their own database, which is stored in /var/lib/apt. By com-
municating with this database, the package manager can query the system for installed
software, and this enables your server to automatically solve package-dependency problems.

Every time a package is installed, a list of all installed files is added to the package data-
base. By using this database, the package manager can even see whether certain configuration
files have been changed, which is very important if you want to update packages at your
server!

■Caution Because working with two different package management databases can be confusing, I sug-
gest you choose the package management system that you want to work with and stick to it. In this book,
I will cover only the apt utilities.

Package Management Utilities
You can use any of several package management utilities on Ubuntu Server. The most impor-
tant of these interact directly with the package database in /var/lib/apt. You would typically
use the apt-get command for installation, updates, and removal of packages, so you’ll find
yourself working with that utility most of the time. You should also know about the aptitude
utility, which works in two ways. You can use aptitude as a command-line utility to query your

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 55

server for installed packages, but aptitude also has a menu-driven interface that offers an
intuitive way to manage packages. If this still isn’t easy enough, you can use the graphical util-
ity Synaptic as an alternative. Both aptitude and Synaptic are front-end utilities for apt. Before
you can use Synaptic, however, you need to install a GUI, and I don’t recommend doing that.
You can read more about that later in this chapter.

Understanding apt
Before you start working on packages on Ubuntu Server, it is a good idea to decide what tool
you want to use. It’s a good idea because many tools are available for Ubuntu Server, and each
of them uses its own database to keep track of everything installed. To prevent inconsistencies
in software packages, it’s best to choose your favorite utility and stick to that. In this book I’ll
focus on the apt-get utility, which keeps its database in the /var/lib/apt directory. This is my
favorite utility because you can run apt-get as a very easy and convenient tool from the com-
mand line to perform tasks very quickly. The apt-get utility works with commands that are
used as its argument, such as sudo apt-get install something. In this example, install is the
command you use to tell apt-get what you really want to do. Likewise, you can use some other
apt-get commands. The following four commands are the most important building blocks
when working with apt-get:

• update: This is the first command you want to use when working with apt-get. It
updates the list of packages that are available for installation. Use it to make sure that
you install the most recent version of a package.

• upgrade: Use this command to perform an upgrade of your server’s software packages.

• install: This is the command to use every time you want to install a specific software
package. It’s rather intuitive. For example, if you want to install the Xen software pack-
age, you would just type apt-get install xen.

• remove: You’ve probably guessed already, but you’ll use this one to remove installed
packages from your server.

■Note To work with apt-get, you need root privileges. So make sure to use sudo for all apt-get
commands.

Showing a List of Installed Packages
Before you start managing packages on Ubuntu Server, you probably want to know what
packages are already installed, and you can do this by issuing the dpkg -l command. It will
generate a long list of installed packages. Listing 3-2 shows a partial result of this command.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS56

■Note The apt-get utility is not the most appropriate way to list installed packages because it can see
only those packages that are installed with apt. If you have installed a package with dpkg (which I do not
recommend), you won’t see it with apt-get. So to make sure that you don’t miss any packages, I recom-
mend using dpkg -l to get a list of all installed packages.

Listing 3-2. The dpkg -l Command Shows Information About Installed Packages

$ dpkg -l
ii xvidtune 1.0.1-0ubuntu1 X client - xvidtune
ii xvinfo 1.0.1-0ubuntu1 XVideo information
ii xwd 1.0.1-0ubuntu1 X client - xwd
ii xwininfo 1.0.1-0ubuntu1 X client - xwininfo
ii xwud 1.0.1-0ubuntu1 X client - xwud
ii yelp 2.18.1-0ubuntu Help browser for GNOME 2
ii zenity 2.18.1-0ubuntu Display graphical dialog boxes from shell sc
ii zip 2.32-1 Archiver for .zip files
ii zlib1g 1.2.3-13ubuntu compression library - runtime
ii zlib1g-dev 1.2.3-13ubuntu compression library - development

The result of the dpkg command shows information about packages and their status. The
first character of the package shows the desired status for a package, and this status indicates
what should happen to the package. The following status indicators are used:

• i: You’ll see this option in most cases, indicating that the package will be installed.

• h: This option (for “hold”) indicates that the package cannot be modified.

• p: This option indicates that the package will be purged.

• r: This option indicates that the package will be removed without removing associated
configuration files.

• u: This option indicates that the current desired status is unknown.

The second character reveals the actual state of the package. You’ll find the following
options:

• I: The package is installed.

• c: Configuration files of the package are installed, but the package itself is not.

• f: The package is not guaranteed to be correctly installed.

• h: The package is partially installed.

• n: The package is not installed.

• u: The package did install, but the installation was not finalized because the configura-
tion script was not successfully completed.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 57

The third character indicates any known error state associated with the package. In most
cases you’ll just see a space (so basically you don’t see anything at all), indicating that nothing
is wrong. Other options are as follows:

• H: The package is put on hold by the package management system. This means that
dependency problems were encountered, in which case some required packages are
not installed.

• R: Reinstallation of the package is required.

• X: The package requires reinstallation and has been put on hold.

The dpkg command can be used to show a list of packages that are already installed in
your system, but you can also use it to display a list of packages that are available to your sys-
tem. The only difference is that you have to provide some information about the package. For
example, the command dpkg -l "samba*" would provide information about the current
installation status of the Samba package. Listing 3-3 shows the result of this command.

Listing 3-3. Dpkg Can Be Used to Display a List of Packages That Are Available

sander@mel:~$ dpkg -l "samba*"
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description
+++-==============-==============-==
un samba-common <none> (no description available)

As you can see in the output that is provided for each package, the first two positions
show that the package status is currently unknown. In combination with some smart use of
the grep command, you can even use this construction to find out what packages are available
for installation on your server. In the command dpkg -l "*" | grep ^un, the grep command
is used to filter out all packages that show a result that starts with the letters “un,” which is
very typical for a package that is not installed.

You can also use the dpkg utility to find out what package owns a certain file. This is very
useful information. Imagine that a file is broken and you need to refresh the package’s installa-
tion. To find out what package owns a file, use dpkg --seach /your/file. The command will
immediately return the name of the package that owns this file.

Using aptitude
On Ubuntu, a few solutions are available for package management. One of these is aptitude.
The major benefit of this solution is that it is somewhat more user friendly because it can work
with keywords, which are words that occur somewhere in the description of the package. For
example, to get a list of all packages that have “xen” (the name of the well-known Linux virtu-
alization product) in their description, you would use aptitude search samba. Listing 3-4
shows the result of this command.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS58

Listing 3-4. Showing Package Status Based on Keywords

sander@mel:~$ aptitude search samba
[sudo] password for sander:
p dpsyco-samba - Automate administration of access to samba
p ebox-samba - ebox - File sharing
p egroupware-sambaadmin - eGroupWare Samba administration application
p gsambad - GTK+ configuration tool for samba
p samba - a LanManager-like file and printer server
v samba-client -
p samba-common - Samba common files used by both the server
p samba-dbg - Samba debugging symbols
p samba-doc - Samba documentation
p samba-doc-pdf - Samba documentation (PDF format)
p system-config-samba - GUI for managing samba shares and users

Once you have found a package using the aptitude command, you can also use it to
show information about the package. To do this, you’ll use the show argument. For example,
aptitude show samba | less will show you exactly what the package samba is all about (see
Listing 3-5). As you can see, in some cases very useful information is displayed.

Listing 3-5. The aptitude show Command Shows What Is Offered by a Package

sander@mel:~$ aptitude show samba
Package: samba
State: not installed
Version: 3.0.28a-1ubuntu4
Priority: optional
Section: net
Maintainer: Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Uncompressed Size: 9425k
Depends: adduser, debconf (>= 0.5) | debconf-2.0, libacl1 (>= 2.2.11-1),

libattr1 (>= 2.4.4-1), libc6 (>= 2.7-1), libcomerr2 (>= 1.33-3),
libcupsys2 (>= 1.3.4), libgnutls13 (>= 2.0.4-0), libkrb53 (>=
1.6.dfsg.2), libldap-2.4-2 (>= 2.4.7), libpam-modules, libpam-runtime
(>= 0.76-13.1), libpam0g (>= 0.99.7.1), libpopt0 (>= 1.10), logrotate,
lsb-base (>= 3.0-6), procps, samba-common (= 3.0.28a-1ubuntu4),
update-inetd, zlib1g (>= 1:1.2.3.3.dfsg-1)

Suggests: openbsd-inetd | inet-superserver, smbldap-tools
Replaces: samba-common (<= 2.0.5a-2)
Description: a LanManager-like file and printer server for Unix
The Samba software suite is a collection of programs that implements the
SMB/CIFS protocol for unix systems, allowing you to serve files and printers to
Windows, NT, OS/2 and DOS clients. This protocol is sometimes also referred to
as the LanManager or NetBIOS protocol.

This package contains all the components necessary to turn your Debian
GNU/Linux box into a powerful file and printer server.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 59

Currently, the Samba Debian packages consist of the following:

samba - LanManager-like file and printer server for Unix.
samba-common - Samba common files used by both the server and the client.
smbclient - LanManager-like simple client for Unix.
swat - Samba Web Administration Tool
samba-doc - Samba documentation.
samba-doc-pdf - Samba documentation in PDF format.
smbfs - Mount and umount commands for the smbfs (kernels 2.2.x and above).
libpam-smbpass - pluggable authentication module for SMB/CIFS password

database
libsmbclient - Shared library that allows applications to talk to SMB/CIFS

servers
libsmbclient-dev - libsmbclient shared libraries
winbind - Service to resolve user and group information from Windows NT

servers

It is possible to install a subset of these packages depending on your
particular needs. For example, to access other SMB/CIFS servers you should only
need the smbclient and samba-common packages.

http://www.samba.org/

Adding and Removing Software with apt-get
The best tool to perform package management from the command line is apt-get. It provides
a very convenient way to install, update, or remove software packages on your machine. It
requires root permissions, so you should always start the command with sudo.

Before you do anything with apt-get, you should always use the apt-get update com-
mand first. Because apt-get gets most software packages online, it should always know about
the latest available versions of those packages. The apt-get update command makes sure of
this, and it caches a list of the most recent version of packages that are available on your
server. Once the update is performed, you can use apt-get to install and remove software.
Installation is rather easy: to install the package blah, use apt-get install blah. The advan-
tage of the apt-get command is that it really tries to understand what you are doing. This is
shown in Listing 3-6, where the apt-get command is used to install the Samba server software.

Listing 3-6. The apt-get Command Tries to Understand What You Want to Do

sander@mel:~$ sudo apt-get install samba
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
libcupsys2 samba-common

Suggested packages:
cupsys-common openbsd-inetd inet-superserver smbldap-tools

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS60

The following NEW packages will be installed:
libcupsys2 samba samba-common

0 upgraded, 3 newly installed, 0 to remove and 0 not upgraded.
Need to get 6849kB of archives.
After this operation, 16.8MB of additional disk space will be used.
Do you want to continue [Y/n]? y
Get:1 http://us.archive.ubuntu.com hardy/main libcupsys2 1.3.7-1ubuntu3 [174kB]
1% [1 libcupsys2 99595/174kB 57%]

In the example from Listing 3-6, everything went all right because a package with the
name samba exists. In some cases, you’ll see that apt-get doesn’t understand what you want it
to do. If that happens, it sometimes gives a hint about the package that you need to install
instead. If that doesn’t happen either, try to search the appropriate package first, using the
aptitude search command.

You can also use apt-get to remove software, upgrade your system, and much more. The
following list provides an overview of the most important functions of the apt-get command.
Be aware that you should always run the command with root permissions, so use sudo to start
apt-get (or set a root password and work as root directly).

• Install software: Use sudo apt-get install package. If you have problems installing the
packages, use sudo apt-get -f install. It will force installation of the packages and
not halt on errors.

• Remove software: Use sudo apt-get remove package. This option does not remove con-
figuration files. If you need to remove those as well, use sudo apt-get remove --purge
package.

• Upgrade software: To upgrade your complete operating system, use sudo apt-get
update first so that you’re sure that apt-get is aware of the most recent version of the
packages. Then use sudo apt-get dist-upgrade.

Making Software Management Easy with Synaptic
I know, Ubuntu Server is not supposed to be a graphical operating system, but, as you’ll see
later in this chapter, it is perfectly possible to install a graphical system. A GUI makes adminis-
tering your Ubuntu Server a lot easier. One of the tools that come with the graphical interface
is the Synaptic package manager. As you can see in Figure 3-1, it offers a very intuitive inter-
face to help you install and manage software packages. It isn’t installed by default, however, so
use sudo apt-get install synaptic first to install it. Make sure to do this only after you have
installed X, as described in the next section of this chapter.

In Synaptic, the Sections button is a good starting point because clicking it allows you to
see all available software, organized by software category. To see what’s inside a category, click
it; a list of available packages will be displayed in the right part of the Synaptic window. Click-
ing an individual package will provide a description of the package, allowing you to see exactly
what is in it. Next, select the Mark for Installation option and click Apply. You’ll then see the
window in Figure 3-2, asking you if you really want to install this package. Click Apply to start
the installation.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 61

Figure 3-1. The Synaptic package management tool really makes software management easy.

Figure 3-2. Click Apply to start installation of the selected package.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS62

Another very useful option from the Synaptic interface is the Search feature. Click Search
and select the software you are looking for from the window that’s displayed. Click Search
again and you’ll see a list with all matching packages. If you want to use these packages, mark
these for installation and click Apply.

Installing Software from Tarballs
Most software for Ubuntu is available from the normal Ubuntu installation channels. Some-
times, however, you’ll encounter software in other formats, such as source files that are
delivered in the .tar.gz format. These packages have been archived with the tar utility and
then compressed with gzip, so they’re known as tarballs.

Before doing anything with the files in a tarball, you need to extract them. For instance,
the tarball blah.tar would be extracted using tar -xf blah.tar. Extraction will reveal that the
tarball contains one of two types of files: source files and binary files. You will recognize the
source files by their extension; if you see many files that have the extension .c, you are defi-
nitely dealing with source files. If the tarball contains binary files, it’s normally enough to run
the installation program and install them. This installation program will normally be included
in the archive. The best way to find it is to look at the names of the files you’ve just extracted.
In many cases, you will see files with a name such as setup or install, and if you don’t see
anything that looks like an installation program, see if there is a file with the name readme that
contains a clue about how to install your software. If the tarball contains source files, you first
have to compile them.

Before starting to install software by compiling its source files, you need to be aware of
something. Although you’ll probably end up with perfectly working software, all the software
that you install in this way is unmanaged. This means that it will not be updated when you
update everything else on your server, simply because the software is not in the databases
maintained by software management programs such as apt-get. Therefore, I always recom-
mend that you try to install software using the regular Ubuntu software installation methods
first. If that doesn’t work (and only then), use the method described next.

■Caution The procedure described here works in many cases, but it doesn’t work all the time for the
simple reason that it is all dependent on the person who created the package. I always recommend that you
read the readme file that comes with most source files to see if the software installation has any specific
instructions or requirements.

1. Before starting to compile the source files, you need to make sure that the required
compiler is installed on your server. The command dpkg -l | grep gcc is an excellent
choice to do that because most (although not all) software is written in the C program-
ming language, which uses gcc as its compiler. If you don’t see the gcc compiler, use
apt-get install gcc to install it before you proceed.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 63

■Tip To describe this procedure, I’ve downloaded the latest version of nmap from http://insecure.
org/nmap/download.html. If you want to follow this procedure, download this file as well.

2. Once you have downloaded the software you want to install into your home directory,
use ls -l to check how the file is compressed. If the file has the .bz2 extension, it has
been compressed with the bzip2 utility. To uncompress it, you need the tar command-
line switch -j. If the file has the .gz extension, it has been compressed with the gzip
utility, and the tar utility needs the -z switch to extract it. Our example file is com-
pressed with bzip2, so run the tar -jxvf nmap* command to extract the archive. In this
command, the option x is used to extract the tar archive, the option v does that in a
verbose way so that you’ll see what happens, and the option f nmap* specifies that the
name of the file you want to extract is anything that starts with “nmap.” This creates a
subdirectory in your current directory in which all source files are installed. Now acti-
vate this subdirectory with the cd command.

3. From the directory that was created while extracting the tarball, run the ./configure
command. This command will verify that everything required to install the selected
software is present on your server. If the utility fails, it is usually because some required
software component was not installed. If this is the case, you’ll see an error message
stating what exactly is missing. Read what software component that is, and install it
before you proceed. When ./configure runs without errors, continue with the next
step.

4. Compiling software is a lot of work and involves very complex commands. However,
the make utility is available to make the compiling process easier. This utility reads a file
with the name Makefile that has to be present in the directory with the source files;
based on the instructions in that file, it compiles the software. Depending on the soft-
ware that you want to install, the compiling process can take a long time. Once it’s
finished, though, continue with the next step.

5. You should now have all the program files that you need. But you’re not quite done
because you still have to make sure that these files are copied to the appropriate paths
on your server. To do this, you must run the make install command as root. Type sudo
make install and press Enter. This completes the installation of the source files for
your machine, and they’re ready for use.

Configuring a Graphical User Interface
I’ll make this clear from the start: you shouldn’t be reading this section, and I shouldn’t have
written it. Installing a GUI on Ubuntu Server is not a good idea for several reasons:

• You’ll make your server more vulnerable.

• You don’t get the full five years of support on the graphical elements.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS64

• Valuable system resources are required to run the GUI.

• Most essential tasks cannot be performed from a graphical interface. You’ll still have to
create and configure text configuration files, anyway.

Despite all the objections, doing everything at the command line can be quite a chore if
you have no Linux experience. Personally, I believe in freedom of choice. You want to use a
graphical interface to get familiar with Ubuntu Server? That’s fine with me. However, if you are
an experienced Linux server administrator and you don’t want to waste system resources on a
useless graphical interface, please skip ahead to the section called “Creating Backups.” That’s
fine with me as well. Are you still hesitant about whether or not to install a GUI? If so, Table 3-1
lists some advantages and disadvantages for you to consider.

Table 3-1. GUI Advantages and Disadvantages

Advantages Disadvantages

Makes administration easier Security risks

Slows down your server

GUIs are often rather limited

Are you still with me? Okay, that means you want to install a GUI. As you saw in the pre-
ceding section, installing software is easy with Ubuntu Server. When installing a graphical
interface, however, you need to make some choices, the first of which is the kind of graphical
interface you want to use. You basically have two different options: the window manager and
the desktop environment.

In general, a window manager is a program that manages graphical program windows
and other graphical elements on your server. A desktop environment is a complete graphical
workspace that also offers a wide range of applications. If you have worked with Ubuntu on
the desktop, you are probably familiar with the GNOME desktop manager, which is the default
graphical user environment for the desktop. Besides window managers and desktop environ-
ments, you can also choose to install graphical tools that help you do remote administration
of your server. In the next subsections you’ll learn how to install these three components. I’ll
also explain how to turn Ubuntu Server into something very similar to Ubuntu Desktop by
installing the complete Ubuntu Desktop graphical interface.

Installing the GNOME Desktop Manager
Because you probably want to install a graphical desktop to make managing Ubuntu Server
easier, in this section you’ll learn how to set up the GNOME desktop. I chose GNOME because
it is the most complete graphical desktop environment available for Linux. Installing it is
rather easy with apt-get; you just have to know what to install. To install everything that is
needed, enter the following command:

sudo apt-get install xserver-xorg xfonts* gnome gdm

This command makes sure that all required software is copied to your system. Some of
the software has to be downloaded from the Internet, and it can take awhile before everything
is installed. After that, reboot and you will have a complete graphical user environment, like
the one shown in Figure 3-3.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 65

Figure 3-3. It doesn’t come by default, but you certainly can manage Ubuntu Server from a
graphical interface.

■Note Even if the graphical interface that you have just enabled makes system administration a lot easier,
installing it doesn’t make Ubuntu Server a graphical system. At some points, it makes sense to use a graphi-
cal interface, such as if you need a browser to look up some information on the Internet or if you want to
install software packages using the Synaptic package management program. In essence, however, system
administration on Ubuntu Server happens from the command line. Where relevant, though, I’ll indicate which
graphical programs can make administration tasks easier for you.

Installing a Lightweight Graphical Environment
Let’s face it. GNOME is pretty, but it’s also a rather heavy graphical environment. If you want to
work with a GUI anyway, it may be a better idea to install a lightweight window manager
instead, such as openbox. To install it, use the following command:

sudo apt-get install xserver-xorg x-window-system-core openbox

You can now start the graphical user environment by running the startx command.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS66

Installing a Full-Scale Graphical Desktop
You really should not do this because it will turn your Ubuntu Server into a Ubuntu Desktop
with all server programs installed; but because some people like to know how to do it, you can
install the complete graphical desktop on Ubuntu Server. Before doing so, make sure that you
really want to do it because support for your server will be a problem. For example, if there is a
conflict between a package that is used by both a core server element and a core desktop ele-
ment, there is a risk that the desktop element will break server functionality. If you have a
support contract with Canonical, it can’t help you because the graphical desktop is not sup-
ported on Ubuntu Server. You’ll also find that not many people on the Internet can help you,
either, because very few people want to use this unsupported method.

Some people just want to run everything on one computer and instead of running it on
Windows, they want to make it an all-Ubuntu computer. One of the cool things about Linux is
that you can use it any way you want. To install the full-scale graphical desktop on Ubuntu
Server, use the following command:

apt-get install ubuntu-desktop

■Caution It may look useful to work with a GUI on your server, but you won’t get support if you do. So it’s
better to avoid it altogether!

Managing Your Server Remotely with eBox
The new eBox utility offers a way to manage your server remotely from a web interface. So if
you want graphical management options without installing the complete GUI, use eBox. eBox
is modular, which means that there are different modules for different services. You can just
install the complete package by using the following:

sudo apt-get install ebox

You can choose to install the bare minimum as well. To find out what that is, you first
need an overview of all eBox modules that are available. Use the following command to get
that information:

apt-cache rdepends ebox | uniq

While installing eBox, you’ll be asked to supply a password for the eBox user. Remember
this password and keep it in a safe place; you’ll need it to access eBox from the web browser
later. Once installed, you can access the eBox web interface from https://yourserver/ebox.
Figure 3-4 shows you what its interface looks like.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 67

Figure 3-4. If you want graphical management, but not the graphical interface on your server,
eBox offers a decent web-based administration platform.

When installing eBox, normally only the default modules are installed. Although these
modules fit in most situations, sometimes a module that you need is not installed. If that hap-
pens too often, install the eBox-all package as well. From this package you’ll find several
modules, such as the network module that allows you to change network configuration, the
firewall module that makes configuring a firewall a lot easier, and even a CA module that
helps you set up a Certificate Authority for your server. So it might be a good idea to install the
eBox-all package in all situations by using sudo apt-get install ebox-all.

After installing the modules, you can’t use them immediately. This makes sense because
you don’t want to enable a module that manages a server that’s not installed on your server. So
you have to enable a module before you can use it. To enable a disabled module, click Module
status. Next, click all modules that you want to enable and then click Save to apply the
changes.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS68

You’ll find that working with eBox is rather easy. Just remember one vital thing: everything
you change from the eBox interface has to be saved. For most modules, you’ll find a Save
changes link in the upper-right corner; click it to make sure that your changes are applied to
your server.

Creating Backups
One thing always seems to be true about computers: one day they’ll fail. If the computer in
question is a server, the failure can cause huge problems. Companies have gone bankrupt
because their vital data was lost. Therefore, making decent backups of your data is essential.
In this section, I’ll cover two different methods of creating backups, all of which are native
Linux solutions. Apart from these solutions, quite a few commercial backup solutions are
available that fit into the backup infrastructure that is often used at the enterprise level in a
company. Those solutions are very specific, and I do not include them in this book. I’ll discuss
two backup solutions: making file backups with tar and making device backups using dd.

Making File Backups with tar
The command-line utility tar is probably the most popular Linux backup utility. It functions
as a standalone utility to write backups to an archive. This archive can be tape (hence the
name tar, which stands for tape archiver), but it can also be anything else. For instance, tar-
based backups are often written to a file instead of a tape, and if this file is compressed with a
compression utility like bzip2 or gzip, you’ll get the famous tarball, which is a common
method to deliver software installation archives. In this section, you’ll learn how to create tar
archives and how to extract files from them. I’ll also provide some tips and tricks to help you
get the most out of the tar utility.

■Note The tar command is not only used for backup and restore; on the Internet you’ll find many tar
packaged software archives as well. Even when working in an environment in which a package manager is
used, you’ll find that occasionally you need to unpack tar archives as well. In the section “Installing Soft-
ware from Tarballs,” you’ll find more information.

Creating an Archive File
In its most basic form, tar is used to create an archive file. The typical command to do so is
tar -cvf somefile /somedirectory. This tar command has a few arguments. First, you need
to indicate what you want to do with the tar command. In this case, you want to create an
archive. (That’s why the option c is used; the “c” stands for create.)

After that, I used the option v (verbose). Although it’s not required, it often comes in handy
because verbose output lets you see what the tar command is actually doing. I recommend
always using this option because sometimes a tar job can take a really long time. (For
instance, imagine creating a complete archive of everything that’s on your hard drive.) In cases
such as these, it’s nice to be able to monitor what exactly happens and that’s what the option v
is meant to do.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 69

Next, you need to specify where you want the tar command to send its output. If you
don’t specify anything here, tar defaults to the standard output (STDOUT). In other words, it
simply dumps all the data to your server’s console. This doesn’t accomplish much, so you
should use the option f (file) to specify what file or device the output should be written to.

In this example, I’ve written the output to a file, but, alternatively, you can write output to
a device file as well. For example, the command tar -cvf /dev/mt0 /somedir will write the
result of the tar command to the /dev/mt0 device, which typically is your tape drive.

The last part of the tar command specifies exactly what you want to put into your tar
archive. In the example, the directory /somedir is archived. It’s easy to forget this option, but if
you do, tar will complain that it is “cowardly refusing to create an empty archive.”

And you should know a couple of other things about tar. First, the order of arguments
does matter. So there is a difference between tar -cvf /somefile /somedir and, for example,
tar -f /somefile -vc /somedir. The order is wrong in the last part, and tar won’t know what
you want it to do. So, in all cases, first specify what you want tar to do. In most cases, it’s either
c (to create an archive), x (to extract an archive), or t (to list the contents of the archive). Then
specify how you want tar to do that; for example, you can use v to tell tar that it should be
verbose. Next, use the f option to indicate where you want tar to write the backup, and then
specify what exactly you want to back up.

Creating an archive with tar is useful, but you should be aware that tar doesn’t compress
one single bit of your archive. This is because tar was originally conceived as a tape streaming
utility. It streams data to a file or (typically) a tape device. If you want tar to compress the con-
tents of an archive as well, you must tell it to do so. And so tar has two options to compress
the archive file:

• z: Use this option to compress the tar file with the gzip utility. This is the most popular
compression utility because it has a pretty decent compression ratio and it doesn’t take
too long to create a compressed file.

• j: Use this option to compress the tar file with the bzip2 utility. This utility compresses
10 to 20 percent better than gzip2, but at a cost: it takes as twice as long.

So, if you want to create a compressed archive of the directory /home and write that
backup to a file with the name home.tar.gz, you would use the following command:

tar -czvf home.tar.gz /home

■Note Of course, you can use the bzip2 and gzip utilities from the command line as well. Use gzip
file.tar to compress file.tar. This command produces file.tar.gz as its result. To decompress that
file, use gunzip file.tar.gz, which gives you the original file.tar back. If you want to do the same
with bzip2, use bzip2 file.tar to create the compressed file. This creates a file with the name
file.tar.bz2, which you can decompress using the command bunzip2 file.tar.bz2.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS70

Extracting an Archive File
Now that you know how to create an archive file, it’s rather easy to extract it. Basically, the
command-line options that you use to extract an archive file look a lot like the ones you
needed to create it in the first place. The important difference is that, to extract a file, you need
the option x (extract), instead of c (create). Here are some examples:

• tar -xvf /file.tar: Extracts the contents of file.tar to the current directory

• tar -zxvf /file.tar.gz: Extracts the contents of the compressed file.tar to the cur-
rent directory

• tar -xvf /file.tar C /somedir: Extracts the contents of /file.tar to a directory with
the name /somedir

Moving a Complete Directory
Most of the time, tar is used to write a backup of one or more directories to a file. Because of
its excellent handling of special files (such as stale files that are used quite often in databases),
tar is also quite often used to move the contents of one directory to another. Some people
perform this task by first creating a temporary file and then extracting the temporary file into
the new directory. This is not the easiest way because you need twice the disk space taken by
the directory whose contents you want to move: the size of the original directory plus the
space needed for the temporary file. The good news is that you don’t have to do it this way.
Use a pipe and you can directly blow the contents of one directory to another directory.

To understand how this works, first try the command tar -cC /var .. In this command,
the option c is used to tell tar that it should create an archive. The option C is used to archive
the contents of the directory /var, not the complete directory. This means that in the archive
itself, you won’t see the original directory name /var. So, if there’s a file called /var/blah, you
will see blah in the archive, not var/blah, which would have been the case if you omitted the
option C (a leading / is always stripped from the pathname in a tar archive). Now, as you may
have noticed, in the tar -cC /var example, the option f /somefile.tar isn’t used to specify
where the output goes, so all the output is sent to STDOUT, which is your console. Don’t forget
the dot at the end of the command line; it tells the tar command what it has to archive. If you
forget it, tar won’t archive anything and just give you the error message “cowardly refusing to
create an empty archive”.

So that’s the first half of the command, and you ended up with a lot of output dumped
on the console. Now, in the second part of the command, you’ll use a pipe to redirect all that
output to another command, which is tar -xC /newvar. This command will capture the tar
archive from STDOUT and extract it to the directory /newvar (make sure that newvar exists
before you run this command). You’ll see that this method allows you to create a perfect copy
of one directory to another. So the complete command that you need in this case looks like
this:

tar -cC /var . | tar -vxC /newvar

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 71

Creating Incremental Backups
Based on the information in the previous section, you can probably see how to create a
backup of one or more directories. For instance, the tar -cvf /backup.tar /var /home /srv
command creates a backup of three directories: /home, /var, and /srv. Depending on the size
of these directories, this command may take some time. Because such large backups can take
so long, it’s often useful to make incremental backups, which is a backup in which the only
files that get written to the backup are those that have changed since the last backup. To do
this, you need the option g to create a snapshot file.

An incremental backup always follows a full backup, so you have to create the full backup
first. In this full backup, you should create a snapshot file, which contains a list of all files that
have been written to the backup. The following command would do that for you (make sure
that the directory /backup exists before running the command):

tar -czvg /backup/snapshot-file -f /backup/full-backup.tar.gz /home

The interesting thing about the snapshot file is that it contains a list of all files that have
been written to the backup. If, two days after the full backup, you want to make a backup of
only the files that have been changed in those two days, you can repeat essentially the same
command. This time, the command will check the snapshot file to find out what files have
changed since the last full backup, and it’ll back up only those changed files. So your Monday
backup would be created by the following command:

tar -czvg /backup/snapshot-file -f /backup/monday-backup.tar.gz /home

These two commands created two files: a small file that contains the incremental backup,
and a large file that contains the full backup. In an incremental backup scheme, you’ll need to
make sure that at some point a full backup is created. To do this, just remove the snapshot-file
that was used in the preceding example. Because tar doesn’t find a snapshot file, it will
assume that you need to make a full backup and create the new snapshot file for you.

If you want to restore all files from an incremental backup, you need to restore every
single file, starting with the first file that was created (typically the full backup) and ending
with the last incremental backup. So, in this example, the following two commands would
restore the file system back to the status at the time that the last incremental backup was
created:

tar -xzvf /backup/full-backup.tar.gz
tar -xzvf /backup/monday-backup.tar.gz

Making Device Backups Using dd
You won’t find a more versatile utility than tar to create a file system–based backup. In some
cases, however, you don’t need a backup based on a file system; instead, you want to create a
backup of a complete device or parts of it. This is where the dd command comes in handy. The
basic use of the dd command is rather easy because it takes just two arguments: if= to specify
the input file and of= to specify the output file. The arguments to those options can be either
files or block devices. So, the command dd if=/etc/hosts of=/home/somefile can be used as a
complicated way to copy a file.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS72

■Note dd is, strangely enough, short for “convert and copy.” Unfortunately, the cc command was already
being used by something else, and the developers choose to use dd instead.

More interesting is the use of dd to copy a complete device. For example, consider the
command dd if=/dev/cdrom of=/mycd.iso. It would help you create an ISO file of the CD-
ROM that’s in the drive at that moment.

You may wonder why you shouldn’t just copy the contents of your CD-ROM to a file with
the name /mycd.iso. Well, the reason is that a CD-ROM, like most other devices, typically
contains information that cannot be copied by a mere file copy. For example, how would you
handle the boot sector of a CD-ROM? You can’t find that as a file on the device because it’s just
the first sector. Because dd copies sector by sector, on the other hand, it will copy that informa-
tion as well.

■Tip Did you know that it’s easy to mount an ISO file created with dd? You only need to know that you
have to use the -o loop option, which allows you to mount a file like any normal device. So to mount
/mycd.iso on the /mnt directory, you would need sudo mount -o loop /mycd.iso /mnt. Check
Chapter 4 for more information about the mount command.

Making a backup of a CD-ROM with dd is one option. And any other similar device can be
copied as well. How would you go about making a complete copy of your entire hard disk? It’s
easy, but I recommend that you first boot your server using the rescue option that you can
find on the installation CD-ROM. Doing this gives you a complete Linux system that doesn’t
use any of the files on your server’s hard disk, which ensures that no files are in use at that
moment. As an alternative, you can boot your server from any live CD-ROM or DVD. A
Knoppix CD-ROM would work, for example. Before you start, make sure that you know what
device is used by your server’s hard drive. The best way to find out is by using the sudo fdisk -l
command, which provides a list of all partitions found on your server, with the local hard disk
coming first.

In most cases, the name of your hard drive will be /dev/sda, but it may be /dev/hda or
something completely different. Let’s assume that your server’s hard drive is /dev/sda, and you
now have to attach a second hard drive to your server. Typically, this second drive would be
known as /dev/sdb. Next, you can use the dd command to clone everything from /dev/sda to
/dev/sdb: dd if=/dev/sda of=/dev/sdb. This command takes quite some time to complete,
and it also wipes everything that currently exists on /dev/sdb, replacing it with the contents of
/dev/sda. Unfortunately, it often takes several hours to dd everything from one hard disk to
another.

Configuring Logging
The last essential system administration task covered in this chapter is logging. It’s obviously
very important to understand where certain information is recorded on your server. Knowing

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 73

this helps you troubleshoot when something doesn’t work out the way you expect. Also,
understanding how logging works may help prevent your entire server from filling up with log
files. On Ubuntu Server, syslog is used to configure logging. You’ll learn now how to configure
it and where its associated log files are written.

Configuring syslog
Logging on to Ubuntu Server is handled by the syslogd process. The process reads its configu-
ration file /etc/syslog.conf and based on the instructions it finds there, it determines what
information is logged to what location. You can even define different destinations for different
logs. For example, information can be logged to files or a terminal, or (if it is very important) a
message can be written to one or more users who are logged in at that moment. Listing 3-7
shows the default contents of /etc/syslog.conf.

Listing 3-7. Contents of syslog.conf

root@RNA:~# cat /etc/syslog.conf
/etc/syslog.conf Configuration file for syslogd.
#
For more information see syslog.conf(5)
manpage.

#
First some standard logfiles. Log by facility.
#

auth,authpriv.* /var/log/auth.log
.;auth,authpriv.none -/var/log/syslog
#cron.* /var/log/cron.log
daemon.* -/var/log/daemon.log
kern.* -/var/log/kern.log
lpr.* -/var/log/lpr.log
mail.* -/var/log/mail.log
user.* -/var/log/user.log
uucp.* /var/log/uucp.log

#
Logging for the mail system. Split it up so that
it is easy to write scripts to parse these files.
#
mail.info -/var/log/mail.info
mail.warn -/var/log/mail.warn
mail.err /var/log/mail.err

Logging for INN news system
#

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS74

news.crit /var/log/news/news.crit
news.err /var/log/news/news.err
news.notice -/var/log/news/news.notice

#
Some 'catch-all' logfiles.
#
*.=debug;\

auth,authpriv.none;\
news.none;mail.none -/var/log/debug

.=info;.=notice;*.=warn;\
auth,authpriv.none;\
cron,daemon.none;\
mail,news.none -/var/log/messages

#
Emergencies are sent to everybody logged in.
#
*.emerg *

#
I like to have messages displayed on the console, but only on a virtual
console I usually leave idle.
#
#daemon,mail.*;\
news.=crit;news.=err;news.=notice;\
.=debug;.=info;\
.=notice;.=warn /dev/tty8

The named pipe /dev/xconsole is for the 'xconsole' utility. To use it,
you must invoke 'xconsole' with the '-file' option:
#
$ xconsole -file /dev/xconsole [...]
#
NOTE: adjust the list below, or you'll go crazy if you have a reasonably
busy site..
#
daemon.*;mail.*;\

news.crit;news.err;news.notice;\
.=debug;.=info;\
.=notice;.=warn |/dev/xconsole

You can see from this listing that different rules are specified to define logging, and each
of these rules has different parts. The first part of a log definition is the facility, which provides
a basic idea of what part of the system the log message came from. The following available
facilities are predefined:

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 75

• auth: Generic information, related to the authentication process. This is the process in
which users log in and get access to system resources.

• authpriv: See auth.

• cron: Information that is related to the crond and atd processes. Both are processes that
can be used to schedule processes to run at a specific time in the future.

• daemon: Generic information used by different system processes (daemons) that don’t
have a log facility of their own.

• kern: Everything that is related to the kernel. To log this information, a helper process
named klogd is used. This process makes sure that information generated during the
boot procedure is also logged.

• lpr: Information related to the printing subsystem.

• mail: Everything related to the mail system. Pay special attention to this because a mis-
configured log line for the mail facility may cause lots and lots of information to be
logged.

• mark: This is a marker that can be periodically written to the log files automatically.
Using them makes it easier to read log files.

• news: All events related to a news server (if such a server is used).

• syslog: Internally used by the syslogd process.

• user: Generic facility that can be used for user-related events.

• uucp: Messages that are related to the legacy UUCP system. In the old days of UNIX,
this was a way of exchanging information between UNIX systems (hence its name,
which stands for UNIX to UNIX copy). Because UUCP is rather insecure, almost no
one uses it anymore.

• local0-7: Local log facilities available for customized use. This facility can be used to
assign a log facility to specific processes.

Apart from these specific facilities, a * can also be used to refer to all facilities. You can see
an example of this in the last line of Listing 3-7, in which *=warn is used to handle warnings
that are generated by whatever service.

For each facility, a priority is used to specify the severity of an event. Apart from *, which
refers to all priorities, the following priorities can be used:

• none: Use this to ensure that no information related to a given facility is logged.

• debug: This priority is used only for troubleshooting purposes. It logs as much informa-
tion as it can and is therefore very verbose. (Don’t ever switch it on as a default setting.)

• info: This priority logs messages that are categorized as informational. Don’t use this
one as a default setting, either, because it generates lots of information.

• notice: Use this priority to log normal system events. This priority keeps you up to date
about what specific services are doing.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS76

• warning: This priority should be switched on by default for most services. It logs warn-
ings related to your services.

• err: Use this priority to log serious errors that disrupt the process functionality.

• crit: This priority is used to log critical information that is related to programs. This cat-
egory of error relates to critical errors that may disrupt your server’s availability.

• alert: Use this priority to log information that requires immediate action to keep the
system running.

• emerg: This priority is used in situations in which the system is no longer usable.

These priorities are shown in increasing order of severity. The first real priority (debug)
relates to the least important events, whereas the emerg priority should be reserved for the
most important. If a certain priority is specified, as in *.warn, all priorities with a higher
importance are automatically included as well. If you want to refer to a specific priority, you
should use the = sign, as in *.=warn. Using the = sign allows you to log events with a specific
priority to specific destinations only. This happens for the mail process, for example, which by
default has a log file for warnings, both for errors and for informational purposes.

The last part of the syslog configuration is the specification of the log destination. Most
processes log to a file by default, but other possibilities exist:

• To log to a file, specify the name of the file. If you anticipate large numbers of log mes-
sages, it’s a good idea to prepend the name of the file with a -, as in news.* -/var/log/
news. Using the hyphen ensures that messages are cached before they are written to a
log file. This decreases the workload caused by logging information. If the system
crashes and the cache isn’t written to disk, messages will be lost.

• To log to a device, just specify the name of the device that you want to log to. As can be
seen from the example log file in Listing 3-7, important messages are logged to /dev/
xconsole by default. It may also be a good idea to log important messages, such as
those that have a priority of warn and higher, to an unused tty.

• To send alerts to users who are logged in, just specify the name of the user. In the exam-
ple *.alert root,linda, all messages with at least an alert priority are written to the tty
in which users linda and root are logged in at that moment.

• To send log messages to a specific log server, include the name of the server, preceded
by an @. This server has to be configured as a log server by starting the log process with
the -r option.

• For the most serious situations, use * to ensure that a message is written to all users
who are logged in at that moment.

By default, syslog writes log messages to log files in the /var/log directory, in which you
can find log information that is created in many different ways. One of the most important log
files that you’ll find in this directory is /var/log/messages. Listing 3-8 shows some lines from
this file.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 77

Listing 3-8. Some Lines from /var/log/messages

Jun 7 03:14:58 RNA gconfd (root-5150): Resolved address "xml:readwrite:/root/.gconf
" to a writable configuration source at position 1
Jun 7 03:14:58 RNA gconfd (root-5150): Resolved address "xml:readonly:/etc/gconf/gc
onf.xml.defaults" to a read-only configuration source at position 2
Jun 7 03:14:58 RNA gconfd (root-5150): Resolved address "xml:readonly:/var/lib/gcon
f/debian.defaults" to a read-only configuration source at position 3

All lines in /var/log/messages are structured in the same way. First, you see the date and
time that the message was logged. Next, you see the name of the server that the message
comes from. In the example lines in Listing 3-8, you can see that the three log messages all
come from the same server (RNA), and you can see the name of the process that generated the
message. This process name is followed by the unique process ID and the user who runs the
process. Finally, the message itself is written.

The files that are created on your server really depend on the services that are installed.
Here’s a list of some of the important ones:

• apache2: This subdirectory contains the access log and error log for your Apache web
server.

• auth.log: Here you’ll find a list of events that relate to the login procedure. Typically,
you’ll see when user root has authenticated to the server.

• dmesg: This file has a list of messages generated by the kernel. Typically, it’s quite helpful
when analyzing what has happened at the kernel level when booting your server.

• faillog: This is a binary file that contains messages about login failures that have
occurred. Use the faillog command to check its contents.

• mail.*: These files contain information on what happened on the mail service that may
be running at your server. These logs can become quite big if your server is a mail
server because all mail activity will be logged by default.

• udev: In this file you can see all the events that have been generated by the hardware
plug-and-play manager udev (see Chapter 6 for more information about this). The
information in this file can be very useful when troubleshooting hardware problems.

Logging in Other Ways
Many processes are configured to work with syslog, but some important services have their
own log configuration. For example, the Apache web server handles its own logs by specifying
the names of the files that information has to be logged to in the Apache configuration files.
And many other similar services don’t use syslog, so, as an administrator, you always have to
take a careful look at how logging is handled for each specific service.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS78

■Tip If you need logging from shell scripts, you can use the logger command, which writes log messages
directly to the syslog procedure. It’s a useful way to write a failure in a shell script to a log file. For example,
use logger this script completed successfully if you want to write to the log files that a script has
completed successfully.

Rotating Log Files
Logging is good, but, if your system writes too many log files, it all can become rather prob-
lematic. Log files grow quite large and can rapidly fill your server’s hard drive. As a solution to
this, you can configure the logrotate service. This runs as a daily cron job, which means that it
is started automatically and checks its configuration files to see whether any rotation has to
occur. In these configuration files, you can configure when a new log file should be opened
and, if so, what exactly should happen to the old log file: should it be compressed or just
deleted? And if it is compressed, how many versions of the old file should be kept?

You can use logrotate with two different kinds of configuration files. The main configura-
tion file is /etc/logrotate.conf. In this file, generic settings are defined to tune how logrotate
should do its work. Listing 3-9 shows the contents.

Listing 3-9. Contents of the logrotate.conf Configuration File

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

uncomment these to switch compression to bzip2
compresscmd /usr/bin/bzip2
uncompresscmd /usr/bin/bunzip2

former versions had to have the compress command set accordingly
#compressext .bz2

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 79

no packages own wtmp -- we'll rotate them here
#/var/log/wtmp {
monthly
create 0664 root utmp
rotate 1
#}

system-specific logs may be also be configured here.

In this example, some important keywords are used, and Table 3-2 describes them.

Table 3-2. Options for logrotate

Option Description

weekly This option specifies that the log files should be created on a weekly basis.

rotate 4 This option makes sure that the four previous rotations of the file are saved.
If the rotate option is not used, old files are deleted.

create The old file is saved under a new name (for instance, Xorg.0.log would be
changed to Xorg.0.log.old), and a new file is created.

compress Use this option to make sure that the old log files are compressed.

compresscmd This option specifies the command to be used for creating the compressed
log files.

uncompresscmd Use this command to specify what command to use to uncompress
compressed log files.

include This important option makes sure that the content of the directory
/etc/logrotate.d is included. In this directory, files exist that specify
how to handle some individual log files.

As you have seen, the logrotate.conf configuration file includes some very generic code
to specify how log files should be handled. In addition to that, most log files have a specific
logrotate configuration file in /etc/logrotate.d/.

The content of the service-specific configuration files in /etc/logrotate.d is generally
more specific than the content of the generic logrotate.conf. Listing 3-10 shows the configu-
ration script for files that are written by Apache to /var/log/apache2/.

Listing 3-10. Example of the logrotate Configuration for Apache

/var/log/apache2/*.log {
weekly
missingok
rotate 52
compress
delaycompress
notifempty
create 640 root adm
sharedscripts
postrotate

if [-f /var/run/apache2.pid]; then

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS80

/etc/init.d/apache2 restart > /dev/null
fi

endscript
}

This example uses some more important options. Table 3-3 provides a description of
these options.

Table 3-3. Options in Service-Specific logrotate Files

Option Description

dateext Uses the date as an extension for old versions of the log files.

maxage Specifies the number of days after which old log files should be removed.

rotate Used to specify the number of times a log file should be rotated before being
removed or mailed to the address specified in the mail directive.

size The size limit of a log file is specified here.

notifempty Do not rotate the log file when it is empty.

missingok If the log file does not exist, go on to the next one without issuing an error
message.

copytruncate Truncate the old log file in place after creating a copy, instead of moving the old
file and creating a new one. This is useful for services that cannot be told to close
their log files.

postrotate Use this option to specify some commands that should be executed after
performing the logrotate on the file.

endscript This option denotes the end of the configuration file.

Like the previous example for the Apache log file, all other log files can have their own
logrotate file. Some more options are available when creating such a logrotate file. Check the
man pages for a complete overview.

Summary
As the administrator of a Linux server, you will be doing certain tasks on a regular basis. In this
chapter you read about the most important of these tasks: managing software, creating back-
ups, scheduling services to start automatically, and configuring logging. In Chapter 4, you’ll
learn how to manage your file systems on Ubuntu Server.

CHAPTER 3 ■ PERFORMING ESSENTIAL SYSTEM ADMINISTRATION TASKS 81

Performing File System
Management Tasks

In Chapter 2, you learned how to perform basic management tasks related to the file system
of your server. For example, you read about file copying and navigating between directories.
In this chapter, you’ll learn about some more elementary file system management tasks. The
concept of a mount will be discussed, and you will find out how to perform mounts automati-
cally by using the /etc/fstab configuration file. You’ll learn about the purpose of hard and
symbolic links and how you can create them. Last but not least, you’ll understand more about
how the most important file systems, such as Ext3 and XFS, are organized; and how knowledge
of that organization may come in handy, using advanced tools such as dd.

Mounting Disks
On a Linux server such as Ubuntu Server, devices are not always mounted automatically. They
are if you’re using the GUI, but otherwise you must know how to mount a device manually.
Before you can access a device, you have to mount it, and in this section you’ll learn every-
thing you need to work with this command.

Using the mount Command
To mount devices manually, you use the mount command. The structure of this command is
easy to understand: mount /what /where. For the “what” part, you specify a device name; for
the “where” part, you provide a directory. In principle, any directory can be used, but it doesn’t
make sense to mount a device (for example on /usr) because doing so will temporarily make
all other files in that directory unavailable.

Therefore, on Ubuntu Server, two directories are created as default mount points. These
are the directories that you would typically use to mount devices. The first of these is the
directory /mnt. This is typically the directory that you would use for a mount that happens
only occasionally, such as if you want to test whether some device is really mountable. The
second of these directories is /media, in which you would mount devices that are connected
on a more regular basis. You would mount a CD-ROM or DVD in that directory with the com-
mand mount /dev/cdrom /media/cdrom. To make life easier for some of the veterans who aren’t
used to a /media directory in which a CD-ROM is mounted, a third directory is available,
/cdrom, which is really just a symbolic link (a kind of shortcut) to /media/cdrom.

83

C H A P T E R 4

The mount command lets you mount devices like CD-ROMs or DVDs, but network shares
can also be mounted with this command. You just have to be more specific. If, for example,
you want to mount a share named myshare that is offered by a Windows computer named lor,
you would use the command mount -t cifs -o username=yourname //lor/myshare /mnt.

You’ll notice in the last example that some extra information is specified. First, the file
system to be used is mentioned. The mount command is perfectly capable of determining the
file system for local devices by looking at the superblock that contains a short description of
the file system and exists in the beginning of every file system. But if you’re using a network
device, it is a good idea to avoid confusion and specify the file system type because the mount
command needs to know what type of file system it is before being able to access it. The com-
mand does quite a good job guessing the right file system on the network, but you may want
to avoid confusion by adding the file system type to be used as an option to mount.

In the example of the share on a Windows machine, the cifs file system type is used
because you want to mount on a Windows file system. You also can use this file system type to
access shares on a Samba server. Next, the name of the user who performs the mount must be
specified. This must be the name of a valid user account on the other system. Then the name
of the share is given. In the prior example, a computer name (lor) is used, but if your system
has problems working with computer names, an IP address can be used just as easily. The
computer name is followed by the name of the share. Finally, the name of the directory where
the mount has to be created is given. In this example, I’ve mounted it on /mnt, because this is a
mount that you would perform only occasionally. If it were a mount you used on a more regu-
lar basis, you would create a subdirectory under /media (/media/lor would make sense here)
and create the mount in that subdirectory.

In Table 4-1, you can see a list of some of the most popular devices that you typically want
to mount on a regular basis.

Table 4-1. Mounting Popular Devices

Device Address as Remarks

Floppy disk /dev/fd0 Because modern servers rarely have more than one
floppy device drive, the floppy drive (if present) will be
fd0. If more than one drive is available, use fd1, and
so on.

USB drive /dev/sdX USB drives (including USB keys) appear on the SCSI
bus. Typically, you’ll see them as “the next” SCSI disk.
So, if you already have an sda, the USB device will
appear as sdb.

Optical drive /dev/sr0, /dev/hdX If the optical drive is installed on the IDE interface, it
is typically /dev/hda or /dev/hdc, depending on other
IDE devices already present. On modern servers, you’ll
find the optical drive more often as /dev/sr0.

Hard drive /dev/hdX, /dev/sdX Depending on the bus the hard drive is installed on,
you will see it as /dev/hdX (IDE) or /dev/sdX (SCSI
and SATA). X is replaced by “a” for the first drive, “b”
for the second drive, and so on. Notice that normally
you don’t mount a complete hard drive, but a file
system on a partition on the hard drive. The partition
on the drive is referred to by a number: /dev/sda1 for
the first partition on an SCSI hard drive, and so on.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS84

Device Address as Remarks

Tape drive /dev/st0 Typically, a tape drive is installed at the SCSI bus and
can be mounted as /dev/st0.

Windows Share //server/share Use // followed by the server name, followed by the
share. Additional options are required, such as -t
cifs to indicate the type of file system to be used and
-o username=yourusername to specify the name of the
user account that you want to use.

NFS Share server:/share Add -t nfs to indicate that it is an NFS server.

Options for the mount Command
The mount command offers many options, and some of them are rather advanced. For exam-
ple, to perform the mount using the backup of the superblock that normally sits on block
8193, you can use the command mount -o sb=8193 /dev/somefilesystem /somedirectory.
Why would you want to do this? Because mounting a file system using the backup superblock
may be very useful if some problem is preventing you from mounting it normally.

■Note The superblock is where all administrative data of a file system is kept. On an Ext2/Ext3 file system,
a superblock is stored at the beginning of the file system, but some backup superblocks are created auto-
matically as well. You’ll learn more about this later in the chapter.

Although these are options you would use only in an emergency, some of the more
advanced options are really useful. For example, when troubleshooting your server, you may
find that the root file system is automatically booted read-only. When the system is mounted
read-only, you cannot change anything, so after successfully starting in read-only mode, you
would want to mount read/write as soon as possible. To do that, use the command mount -o
remount,rw / to make your root file system readable/writeable without disconnecting the
device first. In fact, the -o remount option allows you to change any parameter of a mounted
file system without unmounting it first. It’s very useful to change a parameter without losing
your connection to the file system.

One of the most important options for mount is the -t option, which specifies the file sys-
tem type you want to use. Your server normally would detect what file system to use by itself,
but sometimes you need to help it because this file system self-check isn’t working properly.
Table 4-2 lists some file systems that you may encounter on your server (or other Linux
systems).

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 85

Table 4-2. Linux File System Types

Type Description

Minix This is the mother of all Linux file systems (it was used in the earliest Linux version).
Because it has some serious limitations, like the inability to work with partitions
greater than 32 MB, it isn’t used much anymore. Occasionally, it can still be seen on
very small media, like boot diskettes.

Ext2 This system has been the default Linux file system for a very long time (it was first
developed in the early 1990s). The Ext2 file system is a completely POSIX-compliant file
system, which means it supports all the properties of a typical UNIX environment.
However, it has one serious drawback: it doesn’t support journaling and therefore is
being replaced by journaling file systems like Ext3 and ReiserFS.

Ext3 Basically, Ext3 is Ext2 with a journal added to it. The major advantage of Ext3 is that it is
completely backward-compatible with Ext2. Its major disadvantage is that it is based
on Ext2, an elderly file system that was never designed for a world in which partitions
of several hundreds of gigabytes are used. For instance, it does have problems with
directories that contain more than about 5,000 files. It is, however, the most stable file
system we have today and therefore is used as the default file system on Ubuntu Server.

ReiserFS ReiserFS is another journaling file system. It was developed by Hans Reiser as a
completely new file system in the late 1990s. ReiserFS was used only as the default file
system on SUSE Linux, but even SUSE has changed to Ext3 as its default because there
just isn’t enough community support for ReiserFS.

Ext4 Ext4 is the successor to Ext3 and will fix some of the most important shortcomings of
Ext3. For example, Ext4 will use a strong indexing system that helps you work with lots
of files in one single directory. At the time of writing, Ext4 is still experimental, so I will
not discuss it in this book.

XFS The XFS file system was created as an open source file system by supercomputer
manufacturer SGI. It has some excellent tuning options, which makes it a very good file
system to store data. You’ll read some more about this file system and its options later
in this chapter.

msdos If, for example, you need to read a floppy disk with files on it that were created on a
computer using MS-DOS, you can mount it with the msdos file system type. This
system is something of a legacy file system that has been replaced with vfat, however.

vfat The vfat file system is used for all Windows and DOS file systems that use a FAT file
system. Use it for accessing files from a Windows-formatted diskette or optical media.

ntfs On Windows systems, NTFS is now the default file system. However, it is possible to
read from an NTFS file system. To do this, mount the medium with the ntfs file system
type. Some people even trust it to write files as well, but there have been problems with
that, so I wouldn’t recommend it. Anyway, there’s no reason to use it on a server.

iso9660 This is the file system that is used to mount CD-ROMs. Normally, you don’t need to
specify that you want to use this file system as it will be detected automatically when
you insert a CD-ROM.

cifs When working on a network, the cifs file system is very important. This file system
allows you to make a connection over the network to a share that is offered by a
Windows server, as in the previous example. In the past, the smbfs file system type was
used to do the same, but because cifs offers a better solution, it has replaced smbfs on
modern Linux distributions. In case mounting a Samba share doesn’t work with cifs,
try smbfs.

nfs This system is used to make connections between UNIX computers.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS86

Apart from -t, the mount command has many other options as well, which can be prefixed
by using the -o option. Most of these options are file system–dependent, so no generic list of
these options is provided here. You’ll find information that is specific for your file system in
the man page of the mount command.

■Tip More than just partitions and external media can be mounted. For example, it’s also possible to mount
an ISO file. To do this, use the command mount -t iso9660 -o loop nameofyouriso.iso /mnt. This
will mount the ISO file on the directory /mnt, which allows you to work on it like you work on real optical
media. Because normally you can mount devices but not files, in this command the loop kernel module is
used. This module makes it possible to mount a file as if it were a device.

The last option that might interest you when using the mount command is the rather
advanced -o bind option. Its purpose? It allows you to mount a directory on another directory.
You can’t do that using the loop option, so if you ever need to mount a directory on another
directory, use mount –o bind /somedir /someotherdir. I use it when troubleshooting a Linux
server with the chroot command, for example. I first boot my server that has problems from a
Linux live CD-ROM. Next, I mount my server’s root file system in a temporary directory (in
/mnt, for example). Because some utilities don’t expect their configuration files to be in
/mnt/etc but in /etc instead, I next use chroot /mnt to make /mnt my new fake root directory.
There is one problem, though. Because the /proc and /dev directories are generated automati-
cally, they will not be available in the chroot environment. The solution? I use mount –o bind
before using chroot. The following steps show the proper command sequence to mount your
Linux distribution completely using chroot and mount –o bind:

1. Boot your server from a live CD-ROM, such as Knoppix, or use the rescue system boot
option that you’ll find on your Ubuntu Server installation CD-ROM. This procedure
will generate the directories /proc and /dev.

2. Mount your root partition on /mnt. You’ll see that the directories /mnt/proc and
/mnt/dev are almost empty.

3. Use the command mount –o bind /dev /mnt/dev and next mount –o bind /proc
/mnt/proc to make sure that complete /proc and /dev directories are available in the
chroot environment.

4. Use chroot /mnt to make /mnt your new root environment and do your troubleshoot-
ing. You’ll see that everything works neatly now.

5. When finished doing the troubleshooting, use exit to escape from the chroot environ-
ment and then reboot your server.

Getting an Overview of Mounted Devices
Every device that is mounted is recorded in the configuration file /etc/mtab. You can browse
the content of this file with a utility like cat or less. You can also use the mount command to
get an overview of file systems that are currently mounted. If this command is used without

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 87

any other parameters, it reads the contents of /etc/mtab and displays a list of all mounted file
systems that it can find, as seen in Listing 4-1.

Listing 4-1. The mount Command Gives an Overview of All Devices Currently Mounted

sander@ubuntu:~$ mount
/dev/mapper/ubuntu-root on / type ext3 (rw,errors=remount-ro)
proc on /proc type proc (rw,noexec,nosuid,nodev)
/sys on /sys type sysfs (rw,noexec,nosuid,nodev)
varrun on /var/run type tmpfs (rw,noexec,nosuid,nodev,mode=0755)
varlock on /var/lock type tmpfs (rw,noexec,nosuid,nodev,mode=1777)
procbususb on /proc/bus/usb type usbfs (rw)
udev on /dev type tmpfs (rw,mode=0755)
devshm on /dev/shm type tmpfs (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda1 on /boot type ext3 (rw)

Unmounting Devices
On a Linux system, a device not only has to be mounted, but, when you want to disconnect
the device from your computer, you have to unmount it first. Unmounting devices ensures
that all the data that is still in cache and has not yet been written to the device is written to the
file system before it is disconnected. You’ll use the umount command to do this. The command
can take two arguments: either the name of the device or the name of the directory where the
device is mounted. So umount /dev/cdrom and umount /media/cdrom will both work.

When using the umount command, you may get the message “Device is busy” and the dis-
mount will fail. This is likely because a file on the device is open, and the reason you’re not
allowed to disconnect the device is probably obvious: disconnecting a mounted device may
lead to data loss. So first make sure that the device has no open files. The solution is some-
times simple: if you want to dismount a CD-ROM, but you are currently in the directory
/media/cdrom, it is not possible to disconnect the device. Browse to another directory and try
again. Sometimes, however, the situation can be more complex, and you need to first find out
which processes are currently using the device.

To do this, you can use the fuser command. This command displays the Process IDs
(PIDs) of processes using specified files or file systems. For example, fuser -m /media/cdrom
displays a list of all processes that currently have open files in /media/cdrom. The fuser com-
mand also allows you to kill the processes that have these files open automatically. For open
files on /media/cdrom, use fuser -km /media/cdrom. Be careful when using the option: if you
are root, it may blindly kill important processes and make your server unreadable.

As an alternative to the fuser command, you can use lsof as well. This also provides a list
of all processes that currently are using files on a given file system, but it provides more infor-
mation about these processes. Whereas fuser just gives the PID of a process, lsof also gives
information like the name of the process and the user who owns the process.

After using fuser with the -k switch to kill active processes, you should always make sure
that the process is really terminated by using fuser -m /var again because this will show you
whether there are still processes with open files.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS88

Another way of forcing the umount command to do its work is to use the -f option. You can
force an umount with umount -f /somemount. This option is especially intended for use on an
NFS or a Samba network mount that has become unreachable, and does not work on other
file systems. So you will not have much success if you try it on a local file system. Another nice
option, especially if you don’t like to hurry, is the -l option, which performs a “lazy umount”
by detaching the file system from the file system hierarchy and cleaning up all references to
the file system as soon as it is no longer busy. Using this option lets you do an umount right
away, even if the file system is busy. But it may take some time to complete.

■Tip The eject command is a very easy way to dismount and eject optical media. This command will
open the CD or DVD drive and eject the optical media that is currently in the drive. All you have to do is
remove it. And then you can use eject -t to close the optical drive drawer.

Automating Mounts with /etc/fstab
When starting your server, some mounts need to be issued automatically. For this purpose,
Ubuntu Server uses the /etc/fstab file to specify how and where these file systems must be
mounted. This file contains a list of all mounts that have to occur on a regular basis. In
/etc/fstab, you can state per mount if it has to happen automatically when your system
starts. Listing 4-2 shows the contents of the /etc/fstab file on a test server that uses LVM.

In the listing, you can see that it is not only real file systems that are specified in /etc/
fstab. The /proc file system is defined here as well. This file system offers an interface to the
kernel from the file system. You can read more about this in Chapter 6.

■Note The /etc/fstab file is used at system boot, but you can also use it from the command line: enter
the mount -a command to mount all file systems in /etc/fstab that are currently not mounted and have
the option set to mount them automatically. Also, if a device is defined in /etc/fstab with its most common
mount options, you don’t need to specify all mount options on the command line. For example, if the
/dev/cdrom device is in /etc/fstab, you can mount it by using a shortened mount /dev/cdrom (or
mount /media/cdrom) command instead of the complete mount /dev/cdrom /media/cdrom command.

Listing 4-2. The /etc/fstab File Makes Sure That File Systems Are Mounted During System Boot

sander@ubuntu:~$ cat /etc/fstab
/etc/fstab: static file system information.
#
<file system> <mount point> <type> <options> <dump> <pass>
proc /proc proc defaults 0 0
/dev/mapper/ubuntu-root / ext3 defaults,errors=remount-ro 0 1
/dev/sda1
UUID=62ec320f-491f-44cb-a395-1c0ee5c4afb2 /boot ext3 defaults 0 2

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 89

/dev/mapper/ubuntu-swap_1 none swap sw 0 0
/dev/hda /media/cdrom0 udf,iso9660 user,noauto 0 0
/dev/fd0 /media/floppy0 auto rw,user,noauto 0 0

In fstab, each file system is described on a separate line, and the fields in these lines are
separated by tabs or spaces. The following fields are always present:

• fs_spec: This first field describes the device or the remote file system to be mounted.
Typically, you will see names like /dev/sda1 or server:/mount on this line. As you can
see in the example, some /dev/mapper devicenames are used. These refer to the LVM
logical volumes that have been created on this system (you’ll find more information on
logical volumes later in this chapter). You can also see that the device /dev/sda1, which
is mounted on the directory /boot, uses its Universal Unique ID (UUID). Every disk
device has a UUID, and the advantage of using it instead of a device name is that the
UUID always remains the same, whereas the device name itself may change, especially
in a SAN environment. UUIDs are generated automatically. In the directory /dev/disk/
by-uuid you can see the names of all existing UUIDs. If you use the ls -l command
from this directory (shown in Listing 4-3), you can see to what device a certain UUID
relates. The server used in Listing 4-3 uses two LVM logical volumes as well as a normal
sda1 device.

Listing 4-3. In the Directory /dev/disk/by-uuid, You Can See What Device a UUID
Relates To

sander@ubuntu:/dev/disk/by-uuid$ ls -l
total 0
lrwxrwxrwx 1 root root 26 2007-07-01 23:23 2ec482ed-2046-4e99-9a4d
-583db1f31ef4 -> ../../mapper/ubuntu-swap_1
lrwxrwxrwx 1 root root 10 2007-07-01 23:23 62ec320f-491f-44cb-a395
-1c0ee5c4afb2 -> ../../sda1
lrwxrwxrwx 1 root root 24 2007-07-01 23:23 901533ec-95d5-45d7-80f2
-9f6948e227d2 -> ../../mapper/ubuntu-root

■Tip On most file systems, the device name can be replaced with a label like “ROOT”. On an Ext2 or Ext3
file system, these labels can be created with the tune2fs -L command or with xfs_admin on an XFS sys-
tem. Using labels makes the system more robust and avoids the situation in which adding a SCSI disk adds
all the device names. Labels are static and are not changed automatically when a disk is added. Although
labels are more obvious than the UUIDs generated by the system, you should consider working with UUIDs
anyway because a UUID is in the device itself, and a label is in the file system. Therefore, a UUID is more
direct and used by most modern Linux distributions.

• fs_file: The second field is used to describe the mount point for the file system. This
is normally a directory in which the file system must be mounted. Some file systems
(such as the swap file system) don’t work with a specific directory as their mount point.
In the case of swap partitions, just swap is used as the mount point instead.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS90

■Note For special devices that are mounted from /etc/fstab, the specification of the file system type
and mount point aren’t really necessary. For instance, you can mount the swap device also using none or
foo as a placeholder instead of the word swap.

• fs_vfstype: The third field is used to specify the file system type you can use. As seen
previously, many file systems are available for use on Linux. No specific kernel configu-
ration is needed to use them, as most file systems can be activated as a kernel module
that is loaded automatically when needed. Instead of the name of a file system, you can
also use ignore in this field. This is useful to show a disk partition that is currently not in
use. To determine the file system type automatically, use the option auto. This is what
you want to use on removable media like CD-ROMs and diskettes. Don’t use it, how-
ever, on fixed media like partitions and logical volumes because it may lead to a failure
in mounting the file system when booting your server.

• fs_mntops: The fourth field is used to specify the options that should be used when
mounting the file system. Many options are available and of these, many are file sys-
tem–specific. For most file systems, the option default is used, which makes sure the
file system is mounted automatically when the server boots and normal users are not
allowed to disconnect the mount. Also, the options rw, suid, dev, exec, and async are
used. The following list contains some of the most-used options:

• async: Does not write to the file system synchronously, but through the write cache
mechanism. This ensures that file writes are performed in the most efficient way,
but you risk losing data if contact with the file system is suddenly lost.

• dev: Treats block and character devices on the file system as devices, not as regular
files. For security reasons, it’s a good idea to avoid using this option on devices that
can be mounted by ordinary users.

• exec: Permits execution of binary files.

• hotplug: Do not report errors for this device if it does not currently exist. This
makes sense for hot-pluggable devices like USB media.

• noatime: Do not update the access times on this file system every time a file is
opened. This option makes your file system somewhat faster if many reads are per-
formed on it.

• noauto: The file system will not be mounted automatically when the system boots
or if a user uses the mount -a command to mount everything in /etc/fstab auto-
matically.

• mode: Used to set a permission mode (see Chapter 5) for new files that are created
on the file system.

• remount: Remounts a file system that is already mounted. It only makes sense to
use this option from the command line.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 91

• user: Allows a user to mount the file system. This option is normally used only for
removable devices like diskettes and CD-ROMs.

• sync: Makes sure the content of the file system is synchronized with the medium
before the device is dismounted.

• fs_freq: This field is for use of the dump command, which is a way of making backups of
your file system. The field determines which file systems need to be dumped when the
dump command is called. If the value of this field is set to 0, it will not be dumped; if set
to 1, it will be dumped when dump is invoked. Make sure that the value is set to 0 on all
file systems that contain important data that should always be included when making
backups with dump.

■Note Although you might not ever use the dump command to create backups, some backup utilities do.
So if you want to make sure that your backup utilities are successful, give all file systems that contain
important data the value 1 in this column.

• fs_passno: This last field in fstab determines how a file system needs to be checked
with the fsck command. At boot time, the kernel will always see whether a file system
has to be checked with fsck or not. If this is the case, the root file system must always
be checked first, and therefore has the value 1. Other file systems should have the value
2. If the file systems have the same fsck number, they will be checked sequentially. If
the files are on different drives, they can be checked in parallel. If the value is set to 0,
no automatic check will occur.

Checking File System Integrity
When a system crashes unexpectedly, any file systems that are open can be damaged, which
might prevent you from using these file systems in a normal way. If this happens, the consis-
tency of these file systems needs to be checked; you do this with the fsck command for most
file systems. XFS has some other commands, which you’ll read about later in this chapter. You
can start this command with the name of the device you want to check as its argument: for
example, use fsck /dev/hda1 to check files on /dev/hda1. If you run the command without any
options, fsck will check the file systems in /etc/fstab serially, according to the setting in the
fs_passno field in /etc/fstab. Normally, this will always happen when booting your system.

Nowadays, a system administrator does not have to regularly use fsck because most
modern file systems are journaling file systems. If a journaling file system gets damaged, the
journal is checked, and all incomplete transactions can easily be rolled back. To offer some
protection regardless, an Ext2 or Ext3 file system is checked automatically every once in
awhile.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS92

■Tip On a non-journaling file system, the fsck command can take a very long time to complete. In that
case, the -C option can be used when performing a manual check. This option displays a progress bar . . .
which doesn’t, of course, make it go any faster, but it at least lets you know how long you still have to wait
for the process to complete. Currently, the -C option is supported only on Ext2 and Ext3 file systems.

Working with Links
A very useful option—although one that is often misunderstood—is the link. A link can be
compared to a shortcut: it’s basically a pointer to another file. On Linux (as on any UNIX sys-
tem), two different kinds of links are supported: the hard link and the symbolic link.

Why Use Links?
Basically, a link makes it easier to find files you need. Links can be created for the operating
system and program files that are used on that operating system, and they can be used to
make life easier for users as well. Imagine that some users belong to the group account and
you want the group members to create files that are readable by all other group members in
the directory /home/groups/account. To do this, you can ask the users to change to the proper
directory every time they want to save a file. Or you can create a link for each user in his or her
home directory. Such a link can have the name account and can be placed in the home direc-
tory of all users who need to save work in the shared directory for the group account, and it’s
easy to see how this link makes it a lot easier for the users to save their files to the proper
location.

Another example of why links can be useful comes from the world of FHS, the Filesystem
Hierarchy Standard. This standard prescribes in which directory a Linux system should store
files of a particular kind. In the old days, the X Windowing System had all its binaries installed
in the /usr/X11 directory. Later, the name of the directory where the X Windowing System
stored its configuration files was changed to /usr/X11R6. Now imagine what would happen if
an application referred to the /usr/X11 directory after this change. It would naturally fail
because that directory no longer exists. A link is the solution here as well. If the administrator
just creates a link with the name /usr/X11 that points to the /usr/X11R6 directory, all applica-
tions that still refer to /usr/X11 can still be used.

On a Linux system, links are everywhere. After Ubuntu Server is installed, several links
already exist, and as an administrator, it’s easy for you to add new ones. To do so, you should
understand the difference between a symbolic link and a hard link, which is explained in the
next two sections: “Working with Symbolic Links” and “Working with Hard Links.”

Working with Symbolic Links
A link can refer to two different things. A symbolic link is a link that refers to the name of a file.
Its most important advantage is that it can be used to refer to a file that is anywhere, even on a
server on the other side of the world. The symbolic link will still work. However, the biggest
disadvantage is that the symbolic link is naturally dependent on the original file. If the original
file is removed, the symbolic link will no longer work.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 93

To create a symbolic link, use the ln command with the option -s. When using the ln
command, make sure that you first refer to the name of the original file and then to the name
of the link you want to create. If, for example, you want to create a symbolic link with the
name computers in your home directory that refers to the file /etc/hosts, use the command
ln -s /etc/hosts ~/computers. As a result, a shortcut with the name ~/computers will be cre-
ated in your home directory. This shortcut refers to /etc/hosts. Therefore, any time you open
the ~/computers file, you would really be working in the /etc/hosts file.

Understanding Inodes
To understand the difference between a hard link and a symbolic link, you should understand
the role of inodes on a Linux file system. Every Linux file or directory (from a technical point of
view, there’s no real difference between them) has an inode, and this inode contains all the
file’s metadata (that is, all the administrative data needed to read a file is stored in its inode).
For example, the inode contains a list of all the blocks in which a file is stored, the owner infor-
mation for that file, permissions, and all other attributes that are set for the file. In a sense, you
could say that a file really is the inode, and names are attached to these inodes to make it eas-
ier for humans to work with them.

If you want to have a look at inodes, on an Ext2 or Ext3 file system you can use the (poten-
tially dangerous!) command debugfs. This opens a low-level file system debugger from which
you can issue advanced repair commands. You can also just check the properties of the file
system and files that are used in it (which is not dangerous at all). The following procedure
shows how to display the inode for a given file using this file system debugger on Ext2 or Ext3:

■Note Only the Ext2/Ext3 command debugfs offers you the possibility to show inodes. The fact that this
file system has powerful utilities like this one helps to make it a very popular file system.

1. Use the command ls -il to find the inode number of the file /etc/hosts. As you can
see in Listing 4-4, the inode number is the first item mentioned in the output of this
command.

Listing 4-4. The Command ls -il Shows the Inode Number of a File

sander@ubuntu:/$ ls -il /etc/hosts
15024138 -rw-r--r-- 1 root root 253 2007-06-05 00:20 /etc/hosts

2. Using root permissions, open the file system debugger. While starting it, use as an
argument the name of the Ext2 or Ext3 file system on which your file resides. For
example, our example file /etc/hosts is on a logical volume with the name
/dev/ubuntu/root, so the command would be sudo debugfs /dev/ubuntu/root.
This opens the debugfs interactive prompt.

3. Now use the debugfs command stat to display the contents of the inode that you want
to examine. For example, in this case you would type stat <15024138>. The result of
this command is similar to what you see in Listing 4-5.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS94

Listing 4-5. Showing the Contents of an Inode

Inode: 13 Type: regular Mode: 0644 Flags: 0x0 Generation: 5
84821287
User: 0 Group: 0 Size: 1763308
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 3460
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x4664e51e -- Tue Jun 5 00:22:54 2007
atime: 0x4664e51e -- Tue Jun 5 00:22:54 2007
mtime: 0x4621e007 -- Sun Apr 15 04:19:19 2007
BLOCKS:
(0-11):5716-5727, (IND):5728, (12-267):5729-5984, (DIND):5985, (IND):
5986, (268-523):5987-6242, (IND):6243, (524-779):6244-6499, (IND):650
0, (780-1035):6501-6756, (IND):6757, (1036-1291):6758-7013, (IND):701
4, (1292-1547):7015-7270, (IND):7271, (1548-1721):7272-7445
TOTAL: 1730

(END)

4. Use the quit command to close the debugfs interface.

Understanding the Differences Between Hard and Symbolic Links
When comparing the symbolic link and the original file, you will notice a clear difference
between them (see Listing 4-6). First, the symbolic link and the original file have different
inodes: the original file is just a name that is connected directly to the inode, and the symbolic
link refers to the name. The latter can be seen from the ls -il (-i displays the inode number)
output: after the name of the symbolic link, an arrow is used to indicate what file you are really
working on. Also you can see that the size of the symbolic link is significantly different from
the size of the real file. The size of the symbolic link is the number of bytes in the name of the
file it refers to because no other information is available in the symbolic link. Also, you can see
that the permissions on the symbolic link are completely open because the permissions are
not managed here, but on the original file instead. Finally, you can see that the file type of the
symbolic link is set to l, which indicates that it is a symbolic link.

Listing 4-6. Showing the Differences Between Symbolic and Hard Links

root@ubuntu:~# ln -s /etc/hosts symhosts
root@ubuntu:~# ln /etc/hosts hardhosts
root@ubuntu:~# ls -il /etc/hosts hardhosts symhosts
15024138 -rw-r--r-- 2 root root 253 2007-06-05 00:20 /etc/hosts
15024138 -rw-r--r-- 2 root root 253 2007-06-05 00:20 hardhosts
13500422 lrwxrwxrwx 1 root root 10 2007-07-02 05:45 symhosts -> /etc/hosts

You may ask what happens to the symbolic link when the original file is removed. Well,
that isn’t hard to predict! The symbolic link fails. Ubuntu Server will show this when displaying
file properties with the ls command; you’ll get a “File not found” error message when you try
to open it.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 95

Working with Hard Links
Every file on a Linux file system has an inode. As explained earlier, all of a file’s administrative
data is kept in its inode. Your computer actually works entirely with inodes, and the file names
are only a convenience for people who are not too good at remembering numbers. Every
name that is connected to an inode can be considered a hard link. So when you create a hard
link for a file, all you really do is add a new name to an inode. To do this, use the ln command
without any options; ln /etc/hosts ~/computers will create such a hard link.

The interesting thing about hard links is that there is no difference between the original
file and the link—they are just two names connected to the same inode. The disadvantage of
using them is that hard links must exist on the same device, which is rather limiting. If possi-
ble, you should always create a hard link instead of a symbolic link because they are faster and
they don’t waste an inode. Figure 4-1 shows an overview of the relationship of hard links,
inodes, and blocks.

Figure 4-1. Relationship of Inodes, Hard Links, and Symbolic Links

Configuring Storage
At the beginning of this chapter, you learned how to perform some of the most common file
system management tasks. However, there’s more to managing storage on your server. In
Chapter 1, you saw how to install your server using LVM and how to use different file systems
for your server. I will now go into more depth with regard to these subjects. First, differences
between file system types will be discussed in depth. Then you will learn about the creation of
file systems, which involves creating and formatting partitions and logical volumes.

Comparing File Systems
An important goal of this chapter is to learn about setting up the best file storage for your
server. Because everything on Linux is available as a file, setting up file storage space is one of
the most important tasks on a Linux server. This goes for programs and regular text files, but
also for more advanced things such as devices. Your server is probably going to host lots of

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS96

different applications that all create their own files: some will create a few huge files; others
will require the fastest possible access to no matter what files; and others may be something
like a mail server, creating thousands and thousands of small files. Ubuntu Server provides
you the flexibility to choose the best file system for all these different needs because many file
systems are supported right out of the box. Before diving in to the details that are needed to
create the partitions hosting the different file systems, let’s first compare the most important
file systems that you can use. The next subsections will cover the following file systems:

• Ext2

• Ext3

• ReiserFS

• FAT

• XFS

Ext2
Version 2 of the Extended File System has been the de facto standard for Linux for many years.
It was the first stable file system that had all elements of a POSIX file system. The only reason
why it doesn’t see much use anymore is because it doesn’t offer journaling.

■Note POSIX stands for Portable Operating System Interface, and its aim is to provide a standard level of
UNIX compatibility. If any element running on Linux or any other UNIX version is POSIX-compliant, it will run
without problems on any flavor of UNIX. The POSIX standard is not just limited to Linux and UNIX operating
systems; most versions of Windows based on the NT kernel (up to and including Vista) are POSIX-compliant.

For modern file systems, journaling is an important option. In a journal, all transactions
on open files can be tracked. The advantage is that if anything goes wrong while working with
a system, all you have to do to repair damage to the file system is to do a roll-back based upon
the information in the journal. Ext2 doesn’t have a journal, and therefore it isn’t a good choice
for very large volumes: larger volumes will always take longer to check if no journal is present.
If a small (less than 500 MB) volume is created, Ext2 is still a good choice, however. The first
reason is that it doesn’t make sense to create a journal on a small file system because the jour-
nal itself will occupy space (an average journal can be about 40 MB). Other good reasons to
use Ext2 include the facts that it is a very mature file system, everyone knows how it works, it
works on many distributions, and many utilities are available for management of an Ext2 file
system. Some advanced utilities are available for tuning and troubleshooting as well. A short
overview of some of them is provided next. You should notice that these commands are all
available for Ext3 (Ext2’s successor) as well.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 97

• e2fsck: This utility is run automatically when an administrator issues the fsck com-
mand. It has some options that are specific for an Ext2 file system, one of which is the
-b option that allows you to repair the file system in case the first sectors are damaged.
In an Ext2 file system, the critical information about the file system is written to the
superblock. A backup superblock is always present, and its exact location depends on
the block size that is used. If 1 KB blocks are used, the backup superblock is in block
8193; if 2 KB blocks are used, it is in 16384; and, if 4 KB blocks are used, you can find it
in 32768. By running the e2fsck -s 8193 command, for example, you may be able to
repair a file system that can’t be mounted any more by using its backup superblock.
Another very interesting use is e2fsck -D, which causes e2fsck to optimize directories.
It can do this by trying to index them, to compress them, or by using other optimization
techniques.

• tune2fs: The Ext2 file system has some tunable parameters. For example, there is the
maximum mount count option (which can be set using the -C option). By using this
option, you can force e2fsck to run automatically every once in awhile by forcing an
integrity check. This option may sound good, but on a server in which a file system is
sometimes rarely remounted, it can make more sense to use the -i option to set an
interval defined as a time period. For example, tune2fs -i 2m will force an e2fsck on
your Ext2 file system every two months. The options to check the consistency of your
Ext2 file system automatically are not the only options you can use with tune2fs. For
example, the option -l will list all information from the file system’s superblock.
Another interesting option is -L label, which allows you to set a volume label. This can
be very useful if device names on your system do change on a regular basis: by using
volume names, you can use the name of the volume when mounting the file system in
/etc/fstab instead of the name of the device where the file system was created. The last
interesting option is -m, which you can use to set a percentage of reserved blocks for
your Ext2 file system. By default, the last 5 percent of available disk space is always
reserved for the user root to prevent users from filling up the file system by accident.
Use the e2fsck -m 2 command to decrease the amount of reserved disk space.

• dumpe2fs: Every file system maintains a lot of administrative information, and Ext2
stores this in the file system superblock. Also, in Ext2, the block groups that are used as
groups of data files can be administered as one entity. If you need to see the informa-
tion about this file system administration, use dumpe2fs followed by the name you
want to dump the administrative information for. Listing 4-7 shows the result of this
command.

■Note When using a tool like dumpe2fs, you will see information about available inodes. Every file on
every POSIX-compliant file system needs an inode to store its administrative information. On Ext2 and Ext3,
inodes are created only when you are creating the file system. Normally one inode is created for about every
four data blocks. If, however, you create many very small files, you can run into a situation in which free disk
blocks are still available, but there are no more available inodes. This will make it impossible to create new
files. As an administrator, you can use the dumpe2fs command to get an overview of available inodes on
your Ext2 file system.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS98

Listing 4-7. The dumpe2fs Command Displays Properties of the Ext2 File System

root@ubuntu:~# dumpe2fs /dev/sad1
dumpe2fs 1.40-WIP (14-Nov-2006)
dumpe2fs: No such file or directory while trying to open /dev/sad1
Couldn't find valid filesystem superblock.
root@ubuntu:~# dumpe2fs /dev/sda1
dumpe2fs 1.40-WIP (14-Nov-2006)
Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID: 62ec320f-491f-44cb-a395-1c0ee5c4afb2
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal resize_inode dir_index filetype
needs_recovery sparse_super
Filesystem flags: signed directory hash
Default mount options: (none)
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 62248
Block count: 248976
Reserved block count: 12448
Free blocks: 224527
Free inodes: 62218
First block: 1
Block size: 1024
Fragment size: 1024
Reserved GDT blocks: 256
Blocks per group: 8192
Fragments per group: 8192
Inodes per group: 2008
Inode blocks per group: 251
Filesystem created: Mon Jun 4 22:56:35 2007
Last mount time: Mon Jul 2 03:22:21 2007
Last write time: Mon Jul 2 03:22:21 2007
Mount count: 3
Maximum mount count: 26
Last checked: Mon Jun 4 22:56:35 2007
Check interval: 15552000 (6 months)
Next check after: Sat Dec 1 21:56:35 2007
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 128
Journal inode: 8
Default directory hash: tea
Directory Hash Seed: 0f4e7f5e-c83c-491b-85ca-a83d7c06f1b5

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 99

Journal backup: inode blocks
Journal size: 4114k

Group 0: (Blocks 1-8192)
Primary superblock at 1, Group descriptors at 2-2
Reserved GDT blocks at 3-258
Block bitmap at 259 (+258), Inode bitmap at 260 (+259)
Inode table at 261-511 (+260)
993 free blocks, 1993 free inodes, 2 directories
Free blocks: 4640-5632
Free inodes: 16-2008

Group 1: (Blocks 8193-16384)
Backup superblock at 8193, Group descriptors at 8194-8194
Reserved GDT blocks at 8195-8450
Block bitmap at 8451 (+258), Inode bitmap at 8452 (+259)
Inode table at 8453-8703 (+260)
7221 free blocks, 2008 free inodes, 0 directories
Free blocks: 9164-16384
Free inodes: 2009-4016

• debugfs: The debugfs utility allows you to open the Ext2 file system debugger, from
which you can perform powerful tasks. These tasks are performed using the special
debugfs commands that can be started from the debugfs interactive shell. One of them
is the lsdel command, which lists files that were recently deleted from your file system.
After finding the inodes of these recently deleted files, you can use the debugfs dump
command (not to be confused with the generic Linux dump command), followed by the
number of the inode. For example, use dump <17468> /somefile to dump everything the
inode refers to in the file /somefile that is created automatically. However, be aware
that this works only if you are acting very fast: when a file is removed on any Linux file
system, the inode and blocks that were used by the file are flagged as available, and the
next time data is written to the volume, the inode and blocks can be overwritten. You
should also be aware of the primary disadvantage of the debugfs method: it doesn’t
know anything about file or directory names. Therefore, you can see the inode number
of a deleted file but not its name, and that can make recovery rather difficult. Currently,
however, it is the only way to recover deleted files from an Ext2 or Ext3 file system.

To summarize Ext2, it offers some advantages and disadvantages. It is the file system to
use for small volumes. If the size of a volume grows up to several gigabytes, though, it’s best
not to use Ext2 because it can take ages to complete a file system check.

Ext3
The Ext3 file system is just Ext2 with a journal added to it—nothing more, nothing less. There-
fore, Ext3 is completely compatible with Ext2. As compared with other journaling file systems,
however, Ext3 has some important disadvantages, most of which are based on the fact that
Ext3 uses tables for storage of information about the files and not a B-tree database, as is the
case in ReiserFS and XFS file systems. Because these tables have to be created and are

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS100

accessed in a linear way, Ext3 is slow when dealing with large volumes or large amounts of
data. Here are the most important disadvantages of using Ext3:

• It takes a relatively long time to create a large Ext3 file system.

• Ext3 isn’t good in handling large numbers of small files in the same directory.

• Ext3 has no option to create new inodes after the file system has been created. This
leaves a possibility in which disk space is still available but cannot be used because no
inodes are available to address that disk space.

And, on the other hand, Ext3 has two important advantages. Most important, it is a very
stable file system that has wide community support. Also, it is easy to convert an existing Ext2
file system to a journaling file system. The following procedure describes how to do this:

1. Make a complete backup of the file system you want to convert.

2. Use the tune2fs program to add a journal to a mounted or an unmounted Ext2 file sys-
tem. If you want to do this on /dev/sdb1, use tune2fs -j /dev/sdb1. After creating the
journal, a file with the name .journal will be created on the mounted file system. This
file indicates that the conversion was successful.

3. Change the entry in /etc/fstab where your file system is mounted. Normally, it would
be set to the Ext2 file system type, so change the type to Ext3.

4. Reboot your server and verify that the file system was mounted successfully.

The journal is the most important item in an Ext3 file system, and this journal can be con-
figured in different ways. These journaling options are specified when mounting the file
system, so you have to put them in /etc/fstab.

Before discussing the different journaling options, you need to know how data is written
to a hard drive. In each file-write operation, two different kinds of information need to be
written: the data blocks themselves and then the metadata of a file. This includes all adminis-
trative information about the file. You can basically think of the file metadata as the
information that is displayed when using the ls -l command (but some more information
is added as well).

When tuning the use of an Ext3 journal, you can specify whether both metadata and
blocks need to be written to the journal, or just the metadata. Two options are available to
you: activate them by using mount -t ext3 -o data=xxxx /yourdevice /yourmountpoint or
put the data=xxxx option in fstab:

• data=journal: In this option, both the data and metadata of the file that is written are
written to the journal. This is the safest option, but it’s also the slowest.

• data=ordered: In this option, only the file’s metadata is journaled. However, before
updating the metadata with information about the changed file, a data write is forced.
This ensures consistency within the file system with minimal performance impact. This
is the default option when creating an Ext3 file system on Ubuntu Server.

• data=writeback: This option ensures that only metadata is written to the journal and
that nothing happens to the data blocks themselves. This is a rather insecure option
with a serious risk of corruption of the file system.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 101

ReiserFS
Hans Reiser developed the ReiserFS file system in the late 1990s as a completely new file sys-
tem, no longer based on file system tables but on a balanced tree database structure. This
database makes locating files very fast as compared with older file systems like Ext2 and Ext3.
And ReiserFS offers other advantages as well, one of which is that it has a better disk utiliza-
tion. This is because it is capable of using disk suballocation, in which it is not necessary to
use a complete block when writing a very small file. More than one small file can be written to
the same disk block, using one leaf node in the B-tree database. Therefore, ReiserFS is more
efficient in writing many small files.

ReiserFS is also more flexible because it allows for dynamic inode allocation: if a file sys-
tem runs out of available inodes, new inodes can be created dynamically. Because small files
are stored with their metadata in the same database record, ReiserFS is fast in handling small
files. Of course, ReiserFS has some minor disadvantages as well: it’s relatively slow in heavy
write environments and it also gets slow if it is more than 90 percent full.

Unfortunately, ReiserFS has one hugely important disadvantage: the lack of community
support. It was because of this that Novell—traditionally the most important Linux distribu-
tion that uses ReiserFS—decided to drop ReiserFS as the default file system and turned to Ext3
instead. In the long term, this doesn’t bode well for ReiserFS, nor does the fact that Hans
Reiser is currently in jail, facing some serious charges. Therefore, even if ReiserFS has some
nice technical features, you should not depend on it too much. Better to use the XFS file sys-
tem instead.

Like Ext2 and Ext3, ReiserFS also has some management utilities. Here’s a short descrip-
tion of these tools, including some of the most interesting options:

• reiserfsck: The reiserfsck tool is used to check the consistency of a Reiser file system,
and it has some powerful repair options. One of them is --rebuild-sb, which stands for
rebuild superblock. Use this option when you get the error “read super_block: can’t find
a reiserfs file system”. Another option is the --rebuild-tree option, which hopefully
you won’t see too often. This option is required when reiserfsck wasn’t able to repair
the file system automatically because it found some serious tree inconsistencies. Basi-
cally, the --rebuild-tree option will rebuild the complete B-tree database. Before using
this option, always make a backup of the complete partition where you are running it
and never interrupt the command; doing so will definitely leave you with an inaccessi-
ble file system.

• reiserfstune: The reiserfstune command can be used for several purposes. Basically,
you use it to tune options with regard to the Reiser journal, but you can also use it to set
a UUID and a label that allow you to mount the file system without being dependent on
the name of the device where it resides. This command has some interesting options as
well. One of them is the -j option that allows you to specify the journal device you want
to use. This option makes it possible to separate the Reiser journal from the actual file
system; it’s a very useful option if you want to avoid a situation where a single-point
failure can render your system inaccessible. Another interesting option that can be
used with reiserfstune is the option -l that allows you to specify a label for the file sys-
tem. This label can be used when mounting the file system and thus increases your
flexibility when working on the file system.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS102

• resize_reiserfs: As its name suggests, the resize_reiserfs utility is used to resize a
Reiser file system. You should be aware that resizing a file system involves two steps:
you first need to resize the device where the file system is created, and only then can
you resize the file system itself. There’ll be more on resizing devices later in this chapter.
And using resize_reiserfs is rather simple: for example, use resize_reiserfs -s
/dev/sdb2 to resize the Reiser file system on sdb2 so that it fills this device completely.
Alternatively, you can specify the size to resize it with in kilobytes (-K), megabytes (-M),
or gigabytes (-G). If you want to shrink a file system by 500 MB, use resize_reiserfs -M
500 /dev/sdb2. Be aware, however, that it is not fully supported; things could go wrong
when shrinking a ReiserFS file system.

■Tip If you want to shrink a ReiserFS file system, make sure to run reiserfsck immediately after the
shrinking process to limit the risk of things going wrong.

• debugreiserfs: The debugreiserfs command allows you to dive into the ReiserFS
administrative information to see if all is set according to your expectations. If you run
it without options, you’ll just get an overview of the superblock. Several options are
available to tune its workings. For example, debugreiserfs -j /dev/sdb2 prints the
contents of the journal. It’s also possible to dive into specific blocks when using the -l
option, which takes as its argument the block you want to see the contents of. Using
this option can be useful if you want to do a block-by-block reconstruction of a file that
was destroyed by accident.

Summarized, ReiserFS is a robust file system that offers many advantages. Because of its
current lack of support and the unpredictable future of the company, it’s not a very good idea
to depend too heavily on it.

XFS
For very large environments, the XFS file system is probably the best choice. It was, after all,
developed by SGI for use on supercomputers. Like ReiserFS, it is a full 64-bit file system, and
its major benefit is that it works great on very large files. One of the key factors of XFS is that it
uses allocation groups, which are like file systems in a file system. The advantage of using
these allocation groups is that the kernel can address more than one group at the same time,
and each group has its own administration of inodes and free disk space. Of course, XFS is
capable of creating new inodes dynamically when this is needed. All of this makes the XFS file
system very flexible and robust.

The XFS file system consists of three different sections: data, log, and real-time. User data
and metadata are written in the data section. The log section contains the journaling informa-
tion for XFS, and the real-time section is used to store real-time files. These files are updated
immediately. Each XFS file system is identified by a UUID, which is stored in the header of
each allocation group and helps you distinguish one XFS file system from the other. For this
reason, never use a block-copying program like dd to copy data from one XFS volume to
another XFS volume; use xfsdump and xfsrestore instead.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 103

A unique feature of XFS is its delayed allocation, which makes sure that a pending write is
not written to hard disk immediately, but to RAM first. The decision to write is delayed to the
last minute. The advantage is that, when the file doesn’t need to be written after all, it isn’t
written. In this way, XFS reduces file system fragmentation and simultaneously increases write
performance. Another great feature of XFS is preallocation, which makes sure that space is
reserved before the data blocks are actually written. This feature increases the chances that a
complete file can be written to a series of consecutive blocks and thus avoids fragmentation.
When creating an XFS file system with the mkfs.xfs command, some specific options are
available:

• Block size in bytes: This option allows you to set the block size you want to use. By
default, the block size is set to 4,096 bytes, but you can also set it to 512, 1,024, or 2,048.

• Inode size: Use this option to specify the size of inodes you want to create on the file
system. This option is needed only if you have to do very specific things on your file sys-
tem, like working with files that have lots of extended attributes.

• Percentage of inode space: If so required, you can limit the percentage of the file system
that can be used for storage of inodes. By default, there is no maximum setting.

• Inode aligned: Make sure this option is always set to “yes” so it will ensure that no frag-
mentation occurs in the inode table.

Like all other file systems, XFS also has its own management tools, and, because it’s a
rather complex file system, many utilities are available. Here’s an overview of these utilities
with a short description:

• xfs_admin: Changes the parameters of an XFS file system.

• xfs_logprint: Prints the log (journal) of an XFS file system.

• xfs_db: Serves as the XFS file system debugger.

• xfs_growfs: Expands the XFS file system.

• xfs_repair: Repairs an XFS file system.

• xfs_copy: Copies the content of an XFS file system while preserving all its attributes.
The main advantage of using xfs_copy instead of normal cp is that it will copy data in
parallel and thus will work much faster than a normal copy command.

• xfs_info: Shows generic administrative information on XFS.

• xfs_rtcp: Copies files by placing them in the real-time section of the XFS file system,
which makes sure that they will be updated immediately.

• xfs_check: Checks the consistency of an XFS file system.

• xfs_quota: Allows you to work with quotas on an XFS file system.

• xfs_io: Debugs the input/output path of an XFS file system.

• xfs_bmap: Prints block mapping for an XFS file system. The command allows you to see
exactly what extents are used by a file.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS104

■Note An extent is a group of blocks. Working with extents speeds up administration and file handling on
file systems that work with large files. Also, because every file is initially written to its own extent, working
with extents prevents fragmentation of your file system.

• xfs_ncheck: Generates pathnames for inode numbers for XFS. Basically, it displays a list
of all inodes on the XFS file system and the path to where the file with the given inode
number is stored.

• xfs_mkfile: Creates an XFS file. This command is used to create files of a fixed size to an
XFS file system. By default, these files are filled with zeroes.

Summarized, XFS is the most feature-rich file system of all. Because of its flexibility, it is
probably the best choice to store your company data, so use it for Samba shares, for example.
Because you can also tune the size of the allocation unit, XFS is also a very efficient file system
when writing very large files. Upon creation, make sure that you specify a large allocation unit
to be used and you will get great performance.

Creating File Systems
You probably have an idea now as to what file system best fits the needs of your application.
The next step is to create these file systems, which involves two steps. First, you need to create
the device in which you want to store the files. This can be a partition, but it can also be an
LVM logical volume. After creating the device, you can use the mkfs command to create the file
system of your choice. I’ll first explain how to create the devices in which you want to store
your files.

Creating Traditional Partitions
You can use many utilities to create partitions on a server, but one utility can be considered
the mother of all other utilities: fdisk. In this section, you’ll learn how to use fdisk to create
partitions on your disk.

1. From the command line as root, use the fdisk command followed by the name of the
device in which you want to create the partition. If you want to create a partition on
/dev/sdb, use fdisk /dev/sdb to open the partitioning utility.

2. The fdisk utility now opens its prompt. It may complain about the number of cylin-
ders being greater than 1,024, but this dates from when many boot loaders were not
able to handle hard drives with more than 1,024 cylinders, so you can ignore this mes-
sage. A good start is to press the m (menu) key to tell fdisk to show a menu with all
available options (see Listing 4-8).

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 105

Listing 4-8. Working with fdisk

root@ubuntu:~# fdisk /dev/sdb

The number of cylinders for this disk is set to 36483.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs

(e.g., DOS FDISK, OS/2 FDISK)

Command (m for help): m
Command action

a toggle a bootable flag
b edit bsd disklabel
c toggle the dos compatibility flag
d delete a partition
l list known partition types
m print this menu
n add a new partition
o create a new empty DOS partition table
p print the partition table
q quit without saving changes
s create a new empty Sun disklabel
t change a partition's system id
u change display/entry units
v verify the partition table
w write table to disk and exit
x extra functionality (experts only)

Command (m for help):

3. Press the p key to print the current partition table, which will provide an overview of
the size of your disk in cylinders, the size of a cylinder, and all partitions that exist on
that disk. Then fdisk asks again what you want to do. Press the n key on your keyboard
to create a new partition.

Listing 4-9. When Working with fdisk, Use the p Key Often So That You Can See the
Current Partitioning

Command (m for help): p

Disk /dev/sdb: 300.0 GB, 300090728448 bytes
255 heads, 63 sectors/track, 36483 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

Device Boot Start End Blocks Id System

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS106

4. After pressing n to create a new partition, fdisk will ask what kind of partition you
want to create. On a hard disk you can create a maximum of four primary partitions. If
you need more than four, you have to create one extended partition in which logical
partitions can be created. In this example, I’ll show you how to create an extended par-
tition, so press the e key to start the interface that helps you create an extended
partition.

5. The utility now asks what partition number you want to use. It will also show the num-
bers that are available.

6. Now you have to enter the first cylinder. By default, fdisk offers you the first cylinder
that is still available. It’s often a good idea to accept this choice, so press Enter.

7. Next, fdisk asks for the last cylinder that you want to use for your partition. Instead of
entering a cylinder number, you can also enter a size in megabytes or gigabytes. How-
ever, because this is an extended partition that serves only as a repository where
logical partitions are created, you can press Enter to accept the default value that will
use all available disk space to create the partition. Listing 4-10 is an overview of what
has happened so far.

Listing 4-10. Creating an Extended Partition with fdisk

Command (m for help): n
Command action

e extended
p primary partition (1-4)

e
Partition number (1-4): 1
First cylinder (1-36483, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-36483, default 36483):
Using default value 36483

Command (m for help):

8. The extended partition is now created. By itself, an extended partition is useless; it’s
just an empty box that you can use to create logical partitions. Use the n key again to
create a logical partition in the extended partition. The partition number of any logical
partition is always 5 or greater, regardless of whether lower partition numbers are
already in use. You can follow the same guidelines for creating logical partitions as the
ones you followed for creating the extended partition. When finished, press p to print
the partition table you have created so far.

■Note When creating a partition, Linux fdisk will flag the partition as a Linux partition with ID 83 auto-
matically. If you are planning on doing something else with it, you can press the t key to change the partition
ID of your partition. A list of all available partition types is displayed by using the l key from the fdisk menu.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 107

9. Until now, nothing has really been written to the partition table. If you want to back
out, you can still do that by pressing the q key. If you are sure that you are happy with
what you have done, press w to write the changes to the partition table on disk and exit
the partitioning utility.

10. The partition table has now been updated, but your kernel currently does not know
about it; you can see that by comparing the result of the command fdisk -l /dev/sdb
(which shows the current contents of the partition table) with the file /proc/partitions
(which shows the partitions that the kernel currently sees). To update the kernel with
this new information, as root type partprobe /dev/sdb.

Now that you have created a new partition, the next step is to create a file system on it.
This isn’t too hard if you know what file system you want to create. You just have to create the
file system with the proper utility, and fsck is a perfect wrapper utility to create any type of file
system. Just remember to use the -t option to specify the type of file system you want to cre-
ate. Before explaining how to create a file system, let’s first take a look at logical volume
management.

Working with Logical Volumes
There’s one major disadvantage when working with fixed-size partitions. Imagine a system
with multiple partitions, and you are running out of available disk space on one partition but
there’s more than enough disk space available on another partition. When using fixed-size
partitions, there’s really nothing you can do.

■Note “There’s really nothing you can do?” Well, that’s not completely true. You can do something: delete
and re-create the partitions from the partition table and resize the file systems that are in use on them, but
this is a difficult procedure in which you risk losing all data. Alternatively, you can use utilities like Partition
Magic or the parted utility (which is a common Ubuntu utility), but partitions were never meant for easy
resizing, which means that things might go wrong when trying to do it. Therefore, if you want to be able to
resize partitions in an easy way, use logical volumes.

If logical volumes are used, you can easily resize them and their file systems to make
some more space. Another advantage of using logical volumes is that you can create snapshot
volumes of them. These snapshot volumes allow you to create backups in a flexible way, and
I’ll explain how it works later in this chapter. Therefore, for a flexible environment, it’s best to
work with logical volumes.

In a system that uses logical volumes, all available disk space is assigned to one or more
volume groups (basically pools from which volumes can be created). The advantage of work-
ing with volume groups is that a volume group can include several storage devices and is
therefore not limited to one physical device. Even better, if you run out of disk space in a vol-
ume group, you can just simply add a new device to it to increase the amount of usable disk
space.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS108

Currently, two systems are available for working with logical volumes. The first is Logical
Volume Manager (LVM). It’s been around for some time and can be considered mature tech-
nology. The other option is Enterprise Volume Manager System (EVMS), a volume manager
that was created by IBM and then open sourced. Although LVM is the more mature volume
manager, EVMS functions better in a cluster environment in which volumes have to swap over
from one node to another (because volumes can be marked as shareable). Although the per-
fect volume manager system for such a system, EVMS is not very common on Ubuntu Server,
so I’ll focus on working with LVM in the rest of this chapter.

Creating LVM Volumes
Creating LVM logical volumes is a simple procedure that can be performed by using a few dif-
ferent commands. If you understand the way an LVM environment is organized, creating
logical volumes from the command line is not difficult. The bottom layer of the LVM setup is
the layer of the physical volumes (pv). These include complete hard disks, or partitions that
were created with the partition type 0x8e. Based on the physical volumes, a volume (vg) group
is created. From there, one or more logical volumes (lv) are created. Figure 4-2 shows how all
components in an LVM setup relate to each other. To work with LVM, the lvm-binaries pack-
age must be installed, so run apt-get install lvm-binaries before you start.

Figure 4-2. Schematic of LVM structure

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 109

■Tip If you understand the role of pv, vg, and lv, the rest is peanuts. All relevant commands start with either
pv, vg, or lv and are followed by the specific task you want to perform. For example, if you want to create a
pv, a vg, or an lv, use pvcreate, vgcreate, or lvcreate. If you want to extend them, use vgextend or
lvextend (a pv cannot be extended). You want to show the current setup? Display it with pvdisplay,
vgdisplay, or lvdisplay. More commands are also involved, and a good way of getting to know them all
is to type the first two letters of the command that you are interested in at the Bash prompt; for example,
type vg. Then press the Tab key twice. The automatic command-completion feature displays a list of all
commands that start with “vg”, which makes it rather easy to pick the right one.

1. Before you start, you have to decide what exactly you want to do. If you want to use a
complete hard drive, no extra preparation is required. However, if you want only to add
a partition to an LVM setup, create the partition with the partition type 0x8e and make
sure not to format it.

2. Use the pvcreate command to mark the devices that you want to use in an LVM envi-
ronment. For example, use pvcreate /dev/sd{b,c,d} to assign devices sdb, sdc, and
sdd to be used by LVM.

3. Next, create the volume group. If you have used pvcreate before to assign the physical
volumes, you can now use vgcreate to create the volume group. For example, use the
command vgcreate somegroup /dev/sd{b,c,d} to create the volume group. Note that
in this command, somegroup is the name of the volume group that is created. When
making volumes from the volume group, you have to refer to this volume group name.

4. Now use lvcreate to create the logical volumes. For example, lvcreate -n somevol
-L150M somegroup will create the volume somevol as a new volume with a size of
150 MB from logical volume group somegroup.

■Tip If you want to include a complete hard disk in a volume group, no partition table can be present on
that hard disk. To wipe an existing partition table, use the command dd if=/dev/zero of=/dev/sdx
bs=1k count=1, after which the hard disk will be ready for use by LVM.

Managing LVM
After you’ve created logical volumes in this manner, you’ll manage them with their associated
commands. For example, you can add new devices to the volume group after the device has
been installed in your computer. If you have created a physical volume /dev/sde, use vgextend
somegroup /dev/sde to add the /dev/sde device to the somegroup volume group.

As long as the physical volume media is not in use, you can remove it from the volume
group as well by using the vgreduce command. For example, vgreduce somegroup /dev/sde
would remove sde from the volume group again. Be aware that you risk losing data if you issue
this command on a disk that currently is in use. Another important task is to monitor the sta-
tus of the volume group or the volume. Use the vgdisplay somegroup command to display the

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS110

properties of the volume group, and if you want to show properties of a logical volume, use
lvdisplay somevol instead. It speaks for itself that somegroup is the name of the volume group
you want to monitor the properties of, and somevol is the name of the volume you want to
inspect. Listing 4-11 shows what the result of the vgdisplay command looks like.

Listing 4-11. Use the vgdisplay Command to Show the Properties of a Volume Group

root@ubuntu:~# vgdisplay
--- Volume group ---
VG Name ubuntu
System ID
Format lvm2
Metadata Areas 1
Metadata Sequence No 3
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 2
Open LV 2
Max PV 0
Cur PV 1
Act PV 1
VG Size 279.23 GB
PE Size 4.00 MB
Total PE 71484
Alloc PE / Size 71484 / 279.23 GB
Free PE / Size 0 / 0
VG UUID kl304T-T8Qx-gQiE-b8So-1LWo-SfiP-ctS6z1

Depending on what you’re looking for, vgdisplay gives useful information. For example, if
you were thinking about creating another logical volume, you would first have to be sure that
some physical extents (the building blocks of both vg and lv) are available. As you can see in
the example in Listing 4-11, this is not the case, so you have to add a physical volume first
before you can proceed.

Using Advanced LVM Features
You can easily resize existing volumes in an LVM environment. It’s also possible to create a
snapshot of a volume. Let’s explore how to do that.

Resizing Logical Volumes

When resizing logical volumes, you should be aware that the procedure always involves two
steps: you need to resize both the volume as well as the file system that is used on the volume.
Of all the different file systems, ReiserFS and Ext3 support resizing with the fewest problems.
The following procedure details how the volume is first brought offline and then the file sys-
tem that sits on the volume is resized. It is presumed that the volume you want to shrink is
called data and that it uses an Ext3 file system. It is mounted on the directory /data.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 111

■Caution Online resizing of a file system is possible in some cases. For example, the command
ext2online makes it possible to resize a live file system. However, because resizing file systems is very
labor intensive, I wouldn’t recommend doing it this way. There’s always a risk that it won’t work out simply
because all of the work that has to be done. So, to stay on the safe side, umount your volume before
resizing it.

1. Use umount /data to unmount the volume from the directory /data.

2. Before shrinking the volume itself, you must shrink the file system used on it. Use
resize2fs /dev/system/data 2G to make it a 2 GB file system.

3. Now you have to resize the volume itself: use lvreduce -L -1G /dev/system/data.

4. Finally, you can mount the volume again. Use mount /dev/system/data /data.

5. Use the df -h command to show the current size of the file system. It should be a giga-
byte smaller than it was before.

In this procedure, you learned how to shrink a volume, and of course you can also
increase its size. When increasing a volume, you just have to invert the order of the steps. First,
you need to extend the size of the volume, and then the size of the file system can be increased
as well. After dismounting the volume, this is a two-step procedure:

1. Use lvextend -L+10G /dev/system/data to add 10 GB of available disk space from the
volume group to the volume.

2. Next, use resize_reiserfs -f /dev/system/data. This command will automatically
increase the Reiser file system that is sitting in the volume to the maximum amount of
available disk space.

You now know how to resize a volume with a Reiser file system in it. Of course, you can
resize Ext3 and Ext2 as well. To increase the size of an Ext3 file system, you would use
resize2fs -f /dev/system/data.

Creating LVM Snapshots

One of the best features of LVM is the possibility to make snapshots. A snapshot is a new block
device that functions as a complete copy of the original volume. This works without a com-
plete copy being made; only changes are written to the snapshot, and therefore a snapshot
can be very efficient in its use of disk space.

A snapshot captures the file system metadata that is used to provide an overview of all
existing files on a device and the blocks on a device that are occupied or free. So initially, the
snapshot records only administrative information that is used to tell what file is at what loca-
tion. Because of the close relation between the original device and its snapshot, all reads to
the snapshot device are redirected to the original device.

When writing anything to the original device, a backup of the old data is written to the
snapshot device. Therefore, the snapshot volume will contain the original status, whereas the
original volume will always include the changed status. The advantage of this technique is that

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS112

it requires a very limited amount of disk space. For example, if you create a snapshot of a
100 GB volume to exist only for an hour, it must be large enough to keep the file system’s
metadata as well as all data that is changed within that hour. In most cases, this means that
a 5 GB snapshot is more than enough. If, however, your snapshot has to exist for a longer
period, the amount of disk space that is used by the snapshot will be larger.

Using snapshot technology can also be very convenient for making backups of volumes
that cannot be closed. Imagine, for example, the data volume of a mail server: you cannot just
take the mail server down for a couple of hours to make a backup. The solution then is to
make a snapshot of the original volume, back up the snapshot volume (which contains the
frozen state of the logical volume at the moment the snapshot was made) and, when the
backup is finished, remove the snapshot again. This is even something that you can put in a
shell script and configure with cron so that it runs automatically every night. The procedure
described next shows you how to create a snapshot of an existing LVM volume.

1. In the first step, you are using the lvcreate command to make a snapshot volume for
the original volume /dev/system/data. The snapshot gets the name databackup.
Because the original volume is in the system volume group, the snapshot will be cre-
ated from that group as well. Do this by using the command lvcreate -L500M -s -n
databackup /dev/system/data. Here, the option -L500M makes the snapshot 500 MB,
-s makes it a snapshot volume, and -n uses the name databackup. Finally, /dev/system/
data refers to the original volume that will be captured in the snapshot.

■Tip Problems creating the snapshot volume? Make sure that the kernel module dm_snapshot is loaded!
Check this with the lsmod command; if it isn’t loaded, load it manually with modprobe dm_snapshot.

2. If next you want to create a backup of the volume, first mount it. Do this the same way
that you would mount any other volume, such as with mount /dev/system/databackup
/somewhere.

3. To create a backup from the snapshot volume, use your regular backup (or tar, for
example). To write a backup to a rewindable tape device, you would use tar -cvf
/dev/rmt0 /somewhere.

4. Finished making the backup? Then you can remove the snapshot with lvremove
/dev/system/databackup. Of course, this works only after you have unmounted the
snapshot device.

Doing Magic on Your File Systems with dd
In your life as a system administrator, it is often necessary to copy data around. If it’s ordinary
data, an ordinary command like cp works well enough. But if the data is not ordinary, cp just
isn’t powerful enough. We’ll now discuss some of the options that the dd command has to
offer.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 113

■Caution If the file system metadata contains important information, like a UUID that makes it possible
for you to uniquely identify a file system, dd can cause some unpredicted results. If you are using dd to copy
the complete file system, you will copy information like the UUID as well, so you can’t differentiate the old
file system from the new one.

Speaking in generic terms, the nice thing about the dd command is that it doesn’t just
copy files; it can copy blocks as well. As a simple example, I’ll show you how to clone your
complete hard drive. Assuming that /dev/sda is the drive that you want to clone, and
/dev/sdb is an empty drive that can be used as the target, the dd command is rather easy: dd
if=/dev/sda of=/dev/sdb. In this example, dd is used with two parameters only: if is used to
specify an input file, and of is used to specify the output file (both of which are device files in
this case). Next, wait until the command is finished, and you will end up with an exact copy of
the original hard drive.

In this example, the contents of one device were copied to another device. A slight varia-
tion is the way that dd is used to clone a DVD or CD-ROM and write it to an ISO file. To do that,
in case your optical drive can be accessed via /dev/cdrom, you can clone the optical disk using
dd if=/dev/cdrom of=/tmp/cdrom.iso. And, of course, you can mount that ISO file as well
using mount -o loop /tmp/cdrom.iso /mnt. Next, you can access the files in the ISO file from
the directory where the ISO is mounted.

So far we have used dd only to do things that can be done with other utilities as well. It
becomes really interesting if we go beyond that. What do you think of the following example,
in which a backup of the master boot record (MBR) is created? Just make sure that the first 512
bytes of your hard drive, which contains the MBR, is copied to some file, as in dd if=/dev/sda
of=/boot/mbr_backup bs=512 count=1. In this example, two new parameters are used. First,
the parameter bs=512 specifies that the block should be 512 bytes. Next, the parameter
count=1 indicates that only one such block has to be copied. Without this parameter, you
would copy your entire hard drive, which I don’t recommend. The backup copy of your MBR
may be useful if some day you can’t boot your server anymore because of a problem in the
MBR. If this happens, just boot from a rescue disk and use the command dd
if=/boot/mbr_backup of=/dev/sda bs=446 count=1. As you notice, in this restore command,
only 446 bytes are written back because you may have changed the partition table since you
created the backup. By writing back only the first 446 bytes of your backup file, you don’t over-
write the original partition table which is between bytes 447 and 511.

Now I’ll show you how to extend your swap space by adding a swap file. This is useful if
you get an alert in the middle of the night that your server is almost running completely out of
memory because of a memory leak you hadn’t discovered so far. All you have to do is to create
an empty file and specify that it should be added to the swap space. Creating this empty file is
an excellent task for the dd command. In the following command, you are using dd to create a
file that is filled with zeros completely by using the /dev/zero device: dd if=/dev/zero
of=/swapfile bs=1024 count=1000000. This would write a file of 1 GB that can be added to the
swap space using mkswap /swapfile and swapon /swapfile.

In the next example of the marvelous things you can do with dd, let’s use it to recover the
superblock on an Ext2 or Ext3 file system. To access a file system, you need the superblock,
which is a 1 KB block that contains all metadata about the file system. It normally is the

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS114

second 1 KB block on an Ext3 file system. In Listing 4-12, you can see a part of the contents of
the superblock as displayed with the debugfs utility.

Listing 4-12. Partial Contents of the Superblock

Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID: 09979101-96e0-4533-a7f3-0a2db9b07a03
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal ext_attr filetype needs_recovery
sparse_super large_file
Default mount options: (none)
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 5248992
Block count: 10486428
Reserved block count: 524321
Free blocks: 3888202
Free inodes: 4825213
First block: 0
Block size: 4096
Fragment size: 4096
Blocks per group: 32768
Fragments per group: 32768
Inodes per group: 16352
Inode blocks per group: 511

If the superblock isn’t accessible anymore because of an error, you have a serious chal-
lenge. Fortunately, some backup copies of the superblock are written on the Ext3 file system
by default. Using these backup copies, you can still mount a file system that you may have
otherwise considered lost. And, as you can guess, the dd command is an excellent help.

The actual position on disk of the first backup of the superblock depends on the size of
the file system. On modern large file systems, you will always find it at block 32768. To see if it
really works, you can mount from it directly using the mount option -o sb. The issue, how-
ever, is that mount expects you to specify the position of the superblock in 1,024 byte blocks,
whereas the default block size for a modern Ext3 volume or partition is often 4,096 bytes. (Use
dumpe2fs if you want to be sure about that.) Therefore, to tell the mount command where it
can find the superblock, you have to multiply the position of the superblock by 4, which in
most cases results in a block value 131072. If, for example, your /dev/sda5 file system should
have a problem, you can try mounting it with the command mount -o sb=131072 /dev/hda5 /
somewhere.

Did the file system mount successfully? If so, the problem really was in the superblock. So
let’s fix that problem by copying the backup superblock back to the location of the old
superblock. You can do this using dd if=/dev/hda5 of=/dev/hda5 bs=1024 skip=131072
count=1 seek=1. Once finished, your file system is accessible again, just as it was before.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS 115

Summary
In this chapter, you learned about the most important file system management tasks. In the
first part of the chapter, you read how to mount and unmount file systems. You also learned
how links can make your life easier. The second part of this chapter concerned the organiza-
tion of a file system. You learned how to use partitions or logical volumes to set up a file
system, and you read how to use the dd command to perform some advanced file system
management tasks. In Chapter 5, you’ll find out how to secure your server with user and group
accounts, permissions, sudo, and many more.

CHAPTER 4 ■ PERFORMING FILE SYSTEM MANAGEMENT TASKS116

Configuring Your Server
for Security

No matter what you want to use your server for, it’ll be useless if it isn’t secure. In this chap-
ter, you’ll learn about the different security-related items that you’ll encounter when setting
up your server. First I’ll talk about the configuration of users and groups because most of the
security you’ll be using on your server will be bound to users and groups. Next, I’ll cover the
Linux permissions that you can use to restrict access to your server’s file system. Following
that, I’ll discuss some security mechanisms that aren’t so obvious, like the sudo mechanism
and the system of pluggable authentication modules (PAMs).

■Note In this section you’ll learn all about securing services on your server, but also know that none of
your software skills will do you any good unless your hardware—and I mean the server itself—is physically
secured. So, before you start securing your server, make sure that it is locked in a restricted-access room.

Setting Up User Accounts
You have two approaches when creating users from a command-line environment: you can
use the useradd command, or you can add users to the relevant configuration files by manu-
ally editing these files. Although this second approach—editing the configuration files—may
be useful in an environment in which users are added from a custom-made shell script, it
generally is not recommended. The reason for this is probably obvious: an error in the main
user configuration files might make it impossible for every user to log in to the server. In this
section, I’ll discuss how to manage users from the command line using useradd and other
related commands such as usermod and userdel. You can edit related configuration files to
make creating users easier.

Commands for User Management
If you want to add users from the command line, useradd is just the ticket. And the other com-
mands for user management are just as convenient:

117

C H A P T E R 5

• useradd: Adds users to the local authentication system

• usermod: Modifies properties for users

• userdel: Deletes users properly from a system

• passwd: Modifies passwords for users

Using useradd is simple. In its easiest form, it just takes the name of a user as its argument;
thus, sudo useradd zeina creates a user called “zeina” to the system. However, you should also
use the -m option because if you don’t, that user will be without a home directory. In most
cases, a user should have a home directory because it allows that person to store files some-
where. Unfortunately, if you create a user without a home directory, there’s really no easy way
to correct this problem later (but see the following tip for the not-so-easy way).

■Tip Did you forget to create a home directory for user zeina and want to create one now? First, use
mkdir /home/zeina to make the directory itself. Then use cd /etc/skel to activate the directory that
contains all files that normally need to be present in a user’s home directory. Use tar cv . | tar xvC
/home/zeina to copy all files, including hidden files from this directory to the user’s home directory. Next,
use chown -R zeina:users /home/zeina to set proper file ownership for all these files. You’ve now
created a home directory, but wouldn’t it have been easier just to use -m?

You have a few options with the useradd command. If an option isn’t specified, useradd
will read its configuration file in /etc/default/useradd, where it finds some default values
such as what groups the user should become a member of and where to create the user’s
home directory. But let’s take a look at the most important options, which are listed next.
(For a complete list of available options, use man useradd or useradd --help for a summary.)

• -c comment: Allows you to enter a comment field to the user. Information set this way
can be requested with the finger command, and this comment field typically is used
for the user’s name.

• -e date: Sets the expiration date for the user. Use this option to automatically disable
the user’s account on the specified date. This can be entered in the YYYY-MM-DD for-
mat or as the number of days since January 1, 1970. You’ll probably prefer to specify
the date.

• -G groups: Makes the user a member of some additional groups. By default, the user
becomes a member of only those groups listed in /etc/default/useradd.

• -g gid: Sets the primary group of a user (see the section called “Group Membership”
later in this chapter for more details).

• -m: Creates a home directory automatically.

When setting up user accounts, the user is added to two configuration files: /etc/passwd
and /etc/shadow. The /etc/passwd file contains generic user-related information, such as
the groups the user belongs to and the unique ID assigned to the user. The /etc/shadow file

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY118

contains password-related information about the user. In the following subsections, you’ll
find information about the properties used in these files.

UID
The user ID (UID) is another major piece of information when creating a user. For your server,
this is the only way to identify a user; user names are just a convenience for humans (who
can’t quite handle numbers as well as a computer does). In general, all users need a unique
UID. Ubuntu Server starts generating UIDs for local users at 1000, and a total of 16 bits is
available for creating UIDs. This means that the highest available UID is 65535, so that’s also
the maximum number of local users that your server will support. If you exceed this limit,
you’ll need a directory server such as OpenLDAP. Typically, UIDs below 500 are reserved for
system accounts that are needed to start services. The UID 0 is also a special one: the user
with it has complete administrative permissions to the server. UID 0 is typically reserved for
the user root.

That said, you may want to give the same ID to more than one user in one situation: to
create a backup root user. If you want to do this with useradd, use the options -o and -u 0.
For example, to make user stacey a backup root user, use useradd -o -u 0 stacey.

■Tip Want to use some specific settings for all users that you are creating on your server? If so, you might
be interested in the /etc/default/useradd file, which contains default settings that are used all the time
when using useradd. Check the other files in this directory as well; many commands read configuration
files from it.

Group Membership
In any Linux environment, a user can be a member of two different kinds of groups. First,
there’s the primary group, which every user has. (If a user doesn’t have a primary group setting,
he won’t be able to log in.) The primary group is the group that is specified in the /etc/passwd
file. By default, on an Ubuntu Linux system, all users get their own private groups as their pri-
mary groups, and this private group has the same name as the user. A user can be a member
of more than just the primary group and will automatically inherit the rights granted to these
other groups. The most important difference between a primary group and other groups is
that the primary group will automatically become group owner of any new file that a user cre-
ates. Because every user has his or her own private group, this won’t be a great challenge for
your server’s security settings (because the user is the only member). I’ll discuss file permis-
sions and ownership in detail later in this chapter, but I’ll provide an example just to give you
an idea of how it works.

Imagine that user zeina is a member of the private group zeina and also of the group
sales. Now user zeina wants to create a file to which only members of the group sales have
access. If she does nothing to change her primary group and creates a file, the default group
zeina will become group owner of the file, and all users who are members of this group (in
other words, just zeina) will have access to the file.

One solution is to use the newgrp command to set the primary group to sales on a tempo-
rary basis. If user zeina creates the file after using newgrp sales, the group sales will be owner

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 119

of that file and all other files that the user creates until she uses newgrp zeina to switch the
primary group setting back to users. This is just one way of using groups, and I discuss other
methods later in the chapter.

As you can see, group membership in a stand-alone Linux file system environment isn’t
that sophisticated. The method sounds primitive, but it hardly ever causes problems because
permissions are just set at another level, such as when the user is accessing the server through
a Samba share. (See Chapter 10 for more on that.)

You now know some more about the relation between the primary group and the other
groups that a user belongs to. In the sections about group management later in this chapter,
you’ll learn how to apply this knowledge.

Shell
Any user who needs to log in to your server needs a shell. (Conversely, users who don’t need
to work on your server directly generally don’t need a shell; they just need a connection.)
The shell will enable the user’s commands to be interpreted. The default shell in Ubuntu is
/bin/ bash, a shell that offers many features.

However, you should know that not every user needs a shell. A user with a shell is allowed
to log in locally to your system and access any files and directories stored on that system. If
you’re using your system as a mail server (and so all that your users need is to access their mail
boxes with the POP protocol), it makes no sense at all to give them a login shell. Therefore,
you could choose to specify an alternative command to be used as the shell. For example, use
/bin/false if you don’t want to allow the user any local interaction with your system. Any
other command will do as well. If, for example, you want the Midnight Commander (a clone of
the once very popular Norton Commander) to be started automatically when a user logs in to
your system, make sure that /usr/bin/mc is specified as the shell for that user.

■Tip Make sure that you include the complete path to the command you want to execute as the shell
environment for a user. If you don’t know the complete path for your favorite command, use the which com-
mand. For example, which mc shows the exact location of the program file you’re looking for. Not installed
yet? Use sudo apt-get install mc to install it now.

Managing Passwords
If your user really needs to do something on your system, she needs a password. By default,
login for the users you create is denied, and no password is supplied. Basically, your freshly
created user does not have any permissions on your server. However, the simple passwd com-
mand will let her get to work. If the user uses the command to change her password, she will
be prompted for the old password and then the new one. It’s also possible for the root user to
change passwords as well. Only root can add the name of a user, for whom root wants to
change a password, as an argument to the passwd command. For example, root can use the
command passwd linda to change the password for user linda, which is always useful in case
of forgotten user passwords.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY120

The passwd command can be used in three generic ways. First, you can use it for password
maintenance (such as changing a password, as you have just seen). Second, it can also be
used to set an expiration date for the password. Third, the passwd command can be used for
account maintenance. For example, an administrator can use it to lock a user’s account so that
login is temporarily disabled. In the next subsection, you’ll learn more about password man-
agement.

Performing Account Maintenance with passwd
In an environment in which many users use the same server, it’s crucial that you perform
some basic account maintenance. These tasks include locking accounts when they are
unneeded for a longer time, unlocking an account, and reporting password status. Also, an
administrator can force a user to change his password after he logs in for the first time. To
perform these tasks, the passwd command has the following options:

• -l: Enables an administrator to lock an account (for example, passwd -l jeroen locks
the account for user jeroen)

• -u: Unlocks a previously locked account

• -S: Reports the status of the password for a given account

• -e: Forces the user to change his or her password upon next login

Managing Password Expiration
Although not many people are aware of this feature, it allows you to manage the maximum
number of days that a user can use the same password. The passwd command has four options
to manage expirations:

• -n min: This option is applied to set the minimum number of days that a user must use
his password. If this option is not used, the user can change his password any time he
wants. This option can be useful if you want to apply a password policy that forces
users to change their passwords on a regular basis. Using a minimum number of days
prevents users from changing a password and then immediately changing it back to the
old password.

• -x max: With this option, you can set the maximum number of days that the user can
use his password without changing it.

• -c warn: Use this option to send a warning to the user when his password is about to
expire. The argument of this option specifies how many days the user is warned before
his password expires.

• -i inact: Use this option to make an account expire automatically if it hasn’t been used
for a given period. The argument of this option specifies the exact duration in days of
this period.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 121

■Caution By default, a password can be used for 99,999 days. So, if you do nothing, a user may use his
password for 273 years without changing it. If you don’t want that, make sure you use the –x option.

Modifying and Deleting User Accounts
If you know how to create a user, modifying an existing user account is no big deal, and the
usermod command has many options that are exactly the same as those used with useradd.
For example, use usermod -g 101 linda to set the new primary group of user linda to the
group with the unique ID 101. For a complete overview of the options that usermod shares
with useradd, consult the man page of usermod, but some of the useful and unique options are
listed here:

• -a, --append: Adds the user to some new groups. This option is followed by the group
ID of the groups you want to add the user to.

• -L, --lock: Disables the account temporarily.

• -U, --unlock: Unlocks an account.

Another command that you’ll occasionally need is userdel, which you’ll use to delete user
accounts from your server. Basically, userdel is a very simple command: userdel lynette
deletes user lynette from your system. However, if used this way, userdel leaves the home
directory of your user untouched. This may be desired (such as to ensure that your company
still has access to the work a user has done), but you may just as well wish to delete the user’s
home directory. For this purpose, you can use the option -r; for example, userdel -r lynette
deletes the home directory of user lynette. However, if the home directory of user lynette con-
tains files that are not owned by user lynette, userdel can’t remove the home directory. In this
case, use the option -f, which removes every file from the home directory, even those not
owned by the given user. So, to make sure that user lynette and all the files in her home direc-
tory are removed, use userdel -rf lynette.

You now know how to remove a user along with all the files in his home directory. But
what about other files the user may have created in other directories on your system? The
userdel command won’t automatically find and remove these. In such a case, the find com-
mand is very useful. You can use find to search for and remove all files owned by a given user.
To locate and remove all files on your system that are created by user lynette, you can use
find / -user "lynette" -exec rm {} \;. However, this may lead to problems on your server
in some circumstances. Let’s say lynette was a very active user of the group sales and created
many important files in the directory /home/sales that are used by other members of the
group. So instead of immediately removing the files, it’d be better to copy them to a safe place
instead. If no one has complained after a couple of months, you can remove them safely. To
move all files owned by user lynette to a directory called /trash/lynette (that you must create
beforehand), use find / -user lynette -exec mv {} /trash/lynette \;.

Behind the Commands: Configuration Files
In the previous section, you learned about the commands to manage users from a console
environment. All these commands put the user-related information into what are known as

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY122

configuration files, and a configuration file is also used for default settings that are applied
when managing the user environment. The aim of this section is to give you some insight into
the following configuration files:

• /etc/passwd

• /etc/shadow

• /etc/login.defs

/etc/passwd

The first and probably most important of all user-related configuration files is /etc/passwd,
which is the primary database for user information: everything except the user password is
stored in this file. Listing 5-1 should give you an impression of what the fields in this file
look like.

Listing 5-1. Contents of the User Database file /etc/passwd

root@RNA:~# cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh
proxy:x:13:13:proxy:/bin:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
list:x:38:38:Mailing List Manager:/var/list:/bin/sh
irc:x:39:39:ircd:/var/run/ircd:/bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534:nobody:/nonexistent:/bin/sh
dhcp:x:100:101::/nonexistent:/bin/false
syslog:x:101:102::/home/syslog:/bin/false
klog:x:102:103::/home/klog:/bin/false
mysql:x:103:106:MySQL Server,,,:/var/lib/mysql:/bin/false
bind:x:104:109::/var/cache/bind:/bin/false
sander:x:1000:1000:sander,,,:/home/sander:/bin/bash
messagebus:x:105:112::/var/run/dbus:/bin/false
haldaemon:x:106:113:Hardware abstraction layer,,,:/home/haldaemon:/bin/false
gdm:x:107:115:Gnome Display Manager:/var/lib/gdm:/bin/false
sshd:x:108:65534::/var/run/sshd:/usr/sbin/nologin
linda:x:1001:1001::/home/linda:/bin/sh
zeina:x:1002:1002::/home/zeina:/bin/sh

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 123

You can see that /etc/passwd uses different fields, and they all are separated with a colon.
Here’s a short explanation of these fields:

• Loginname: This is the first field and it stores the user’s login name. In older UNIX ver-
sions, the field was limited to eight characters. Fortunately, Ubuntu Server does not
have this limitation.

• Password: In the old days of UNIX, this file stored the encrypted passwords. The only
problem was that everyone—including an intruder—was allowed to read the /etc/
passwd file. This poses an obvious security risk, so passwords are now stored in the
configuration file /etc/shadow, which is discussed in the next section. The “x” in the
password field denotes the use of shadow passwords.

• UID: As you already learned, every user has a unique user ID. Ubuntu Server starts
numbering local user IDs at 1000 and typically the highest number that should be used
is 65535.

• GID: As discussed in the previous section, every user has a primary group, and its group
ID (GID) is listed here. This is the numeric ID of the group that the user uses as his pri-
mary group. For ordinary users, the GID defaults to 100 (which belongs to the group
users).

• GECOS: The General Electric Comprehensive Operating System (GECOS) field is used
to include some comment to make it easier for the administrator to identify the user.
However, the GECOS field is optional, and it’s often not used at all.

• Home directory: This is a reference to the directory that serves as the user’s home
directory; it is typically the location in which a user stores files. Note that it is only a ref-
erence and has nothing to do with the real directory; just because you see a directory
listed here doesn’t mean that it actually exists.

• Shell: The last field in /etc/passwd refers to the program that should be started auto-
matically when a user logs in. Most often, it’s /bin/bash, but, as discussed in the
preceding section, every binary program can be referred to here as long as the complete
pathname is used.

As an administrator, you can manually edit /etc/passwd and the related /etc/shadow. If
you intend to do this, however, don’t use any editor; use vipw instead. This tailored version of
the Vi editor is specifically designed for editing these critical files. Any error can have serious
consequences, such as no one being able to log in. Therefore, if you make manual changes to
any of these files, you should check their integrity. Besides vipw, another way to do this is to
use the pwck command, which you can run without any options to see whether there are any
problems you need to fix.

/etc/shadow

Encrypted user passwords are stored in the /etc/shadow file. The file also stores information
about password expiration. Listing 5-2 shows an example of its contents.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY124

Listing 5-2. Example Contents of the /etc/shadow File

root:$1$15CyWuRM$g72U2o58j67LUW1oPtDS7/:13669:0:99999:7:::
daemon:*:13669:0:99999:7:::
bin:*:13669:0:99999:7:::
sys:*:13669:0:99999:7:::
sync:*:13669:0:99999:7:::
games:*:13669:0:99999:7:::
man:*:13669:0:99999:7:::
lp:*:13669:0:99999:7:::
mail:*:13669:0:99999:7:::
news:*:13669:0:99999:7:::
uucp:*:13669:0:99999:7:::
proxy:*:13669:0:99999:7:::
www-data:*:13669:0:99999:7:::
backup:*:13669:0:99999:7:::
list:*:13669:0:99999:7:::
irc:*:13669:0:99999:7:::
gnats:*:13669:0:99999:7:::
nobody:*:13669:0:99999:7:::
dhcp:!:13669:0:99999:7:::
syslog:!:13669:0:99999:7:::
klog:!:13669:0:99999:7:::
mysql:!:13669:0:99999:7:::
bind:!:13669:0:99999:7:::
sander:1Qqn0p2NN$L7W9uL3mweqBa2ggrBhTB0:13669:0:99999:7:::
messagebus:!:13669:0:99999:7:::
haldaemon:!:13669:0:99999:7:::
gdm:!:13669:0:99999:7:::
sshd:!:13669:0:99999:7:::
linda:!:13671:0:99999:7:::
zeina:!:13722:0:99999:7:::

Just as in /etc/passwd, the lines in /etc/shadow are divided into several fields as well, but
only the first two fields matter for the typical administrator. The first field stores the name of
the user, and the second field stores the encrypted password. Note that, in the encrypted pass-
word field, the ! and * characters can be used as well. The ! character denotes that login is
currently disabled, and * denotes a system account that can be used to start services but that
is not allowed for interactive shell login. Also note that an encrypted password is stored here
by default, but it’s perfectly possible to store an unencrypted password as well. The
/etc/shadow file uses the following fields:

• Login name

• Encrypted password

• Days between January 1, 1970 and the date when the password was last changed

• Days before password may be changed (this is the minimum amount of time that a user
must use the same password)

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 125

• Days after which password must be changed (this is the maximum amount of time that
a user may use the same password)

• Days before password expiration that user is warned

• Days after password expiration that account is disabled (if this happens, administrator
intervention is required to unlock the password)

• Days between January 1, 1970 and the date when the account was disabled

• Reserved field (this field is currently not used)

/etc/login.defs

The /etc/login.defs file is a configuration file that relates to the user environment, but is
used only in the background. This file defines some generic settings that determine all kinds
of things relating to user login. The login.defs file is a readable configuration file that con-
tains variables. The variable relates to logging in or to the way in which certain commands are
used. This file must exist on every system because you would otherwise experience unexpected
behavior. The following list contains some of the more interesting variables that can be used
in the login.defs file (for a complete overview, consult man 5 login.defs):

• DEFAULT_HOME: By default, a user will be allowed to log in, even if his home directory
does not exist. If you don’t want that, change this parameter’s default value of 1 to the
Boolean value 0.

• ENV_PATH: This variable contains the default search path that’s applied for all users who
do not have UID 0.

• ENV_ROOTPATH: This variable works in the same manner as ENV_PATH, but for root.

• FAIL_DELAY: After a login failure, it will take a few seconds before a new login prompt is
generated. This variable, set to 3 by default, specifies how many seconds it takes.

• GID_MAX and GID_MIN: Specify the minimum and maximum GID used by the groupadd
command (see “Commands for Group Management” in the next section).

• LASTLOG_ENAB: If enabled by setting the Boolean value to 1, LASTLOG_ENAB specifies that
all successful logins must be logged to the file /var/log/lastlog. This works only if the
lastlog file also exists. (If it doesn’t, create it by using touch /var/log/lastlog.)

• PASS_MIN_LEN: This is the minimum number of characters that must be used for new
passwords.

• UID_MAX and UID_MIN: These are the minimum and maximum UIDs to be used when
adding users with the useradd command.

Creating Groups
As you’ve already learned, all users require group membership. You’ve read about the differ-
ences between the primary group and the other groups, so let’s have a look at how to create

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY126

these groups. We’ll discuss the commands that you can run from the shell and the related
configuration files.

Commands for Group Management
Basically, you manage the groups in your environment with three commands: groupadd,
groupdel, and groupmod. So, as you can see, group management follows the same patterns as
user management. The basic structure for the groupadd command is simple: groupadd
somegroup, where somegroup is the name of the group you want to create. Also, the options are
largely self-explanatory: it probably doesn’t surprise you that the option -g gid can be used to
specify the unique GID number you want to use for this group.

Behind the Commands: /etc/group
When a group is created with groupadd, the information entered needs to be stored some-
where, and that’s the /etc/group file. As seen in Listing 5-3, this is a rather simple file that has
just two fields for each group definition.

Listing 5-3. Content of /etc/group

plugdev:x:46:sander,haldaemon
staff:x:50:
games:x:60:
users:x:100:
nogroup:x:65534:
dhcp:x:101:
syslog:x:102:
klog:x:103:
scanner:x:104:sander
nvram:x:105:
mysql:x:106:
crontab:x:107:
ssh:x:108:
bind:x:109:
sander:x:1000:
lpadmin:x:110:sander
admin:x:111:sander
messagebus:x:112:
haldaemon:x:113:
powerdev:x:114:haldaemon
gdm:x:115:
linda:x:1001:
zeina:x:1002:

The first field in /etc/group is reserved for the name of the group. The second field stores
the password for the group (a ! character signifies that no password is allowed for this group).
You can see that most groups have an “x” in the password field, and this refers to the
/etc/gshadow file, in which you can store encrypted group passwords. However, this feature

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 127

isn’t used very often because it is very rare to work with group passwords. The third field of
/etc/group provides a unique GID, and the last field presents the names of the members of the
group. These names are required only for users for whom this is not the primary group; pri-
mary group membership itself is managed from the /etc/passwd configuration file. However,
if you want to make sure that a user is added to an additional group, you have to do it here.

Using Group Passwords
Although not many administrators use group passwords, what can they be used for? In all
cases, a user has a primary group. When the user creates a file, the primary group is assigned
as the group owner automatically. If a user wants to create files that have a group owner differ-
ent from the primary group, the user can use the newgrp command. For example, newgrp
sales would set the primary group of a user to the group sales. Using this command would
work without any questions if the user is a member of the group sales. If the user is not a
member of that group, however, the shell would prompt the user to enter a password. This
password is the password that needs to be assigned to that group. You can change it using the
gpasswd command.

Managing the User’s Shell Environment
As a system administrator of a server that users access directly, you have to do more than just
create users and make them members of the appropriate groups. You also have to give them
login environments. Without going into detail about specific shell commands, this section
provides an overview of what is needed for that. I’ll first explain about the files that can be
used as login scripts for the user, and next you’ll learn about files that are used to display mes-
sages for users logging in to your system.

■Note The task described as follows makes sense on a server in which users log in directly. If your server
is used as a mail server or file server, and users don’t log in directly, it doesn’t make sense to tune it by
using these commands.

Creating Shell Login Scripts
When a user logs in to a system, the /etc/profile configuration file is used. This generic shell
script (which can be considered a login script) defines environment settings for users. Also,
commands can be included that need to be issued when the user first logs in to a server. The
/etc/profile file is a generic file processed by all users logging in to the system. It also has a
user-specific version (~/.profile) that can be created in the home directory of the user. The
user-specific ~/.profile of the shell login script is executed last, so if there is a conflict in set-
tings between the two files, the settings that are user-specific will always be used. In general,
it isn’t a good idea to give a login file to too many individual users; instead, work it all out in
/etc/profile. This makes configuring settings for your users as easy as possible.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY128

The /etc/profile file is not the only file that can be processed when starting a shell. If a
user starts a subshell from a current environment, such as by executing a command or by
using the command /bin/sh again, the administrator may choose to define additional settings
for that. The name of this configuration file is /etc/bashrc, and it also has a user-specific ver-
sion, ~/.bashrc (the tilde in the file name means that the file is located in the user’s home
directory).

Displaying Messages to Users Logging In
As an administrator, it’s sometimes necessary to display messages to users logging in to your
server. Two files can be used for this: /etc/issue and /etc/motd. The first, /etc/issue, is a text
file whose content is displayed to users before they log in. To process this file, the /sbin/getty
program, which is responsible for creating login terminals, reads it and displays the content.
You may, for example, use the file to display a message instructing users how to log in to your
system, or include a message if login has been disabled on a temporary basis. Related to this
file is /etc/motd, which can be used to display messages to users after they have logged in.
Typically, this file can be used to display messages related to day-to-day system maintenance.

Configuring Permissions
At first glance, it seems easy to manage permissions in a Linux environment: instead of the
many permissions some other operating systems work with, Linux has just three. However,
upon closer examination, you’ll see that the system that was invented somewhere in the 1970s
is only the foundation for a system that can be pretty complex. The following subsections are
overviews of all subjects relevant to permission management.

Read, Write, and Execute: The Three Basic Linux Permissions
The three elementary permissions—read (r), write (w), and execute (x)—are the foundation to
working with permissions in a Linux system. The use of these permissions is not hard to
understand: read allows a user to read the file or the contents of the directory the permission
is applied to, write allows the user to change an existing file if applied to a file and to create or
remove files in a directory it is applied to, and execute is used to allow a file to execute exe-
cutable code. If applied to a directory, it allows a user to access that directory with a command
like cd. Therefore, the execute permission is applied as a default permission to all directories
on a Linux system. Table 5-1 summarizes the workings of these three basic permissions.

Table 5-1. Overview of Linux Basic Permissions

Permission Applied to Files Applied to Directories

read Read contents of a file See files existing in a directory by
using the ls command

write Modify existing files and their properties Create or delete files from a directory

execute Execute files that contain executable code Activate a subdirectory with the cd
command

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 129

Permissions and the Concept of Ownership
To determine the permissions that a given user has on a file or directory, Linux works with the
concept of ownership. Ownership is set on every file and on every directory, so when working
with the three basic Linux permissions, there’s no such thing as “inheritance,” as there is with
some other operating systems.

■Note In fact, on Linux, inheritance can be applied when working with Set Group ID (SGID) permissions
and access control lists (ACLs), both of which I’ll cover later in this chapter.

Linux works with three entities that can be set as the owner of a file or directory. First is
the user who is owner. By default, the user who creates a file becomes the owner of that file
(but an administrator can change ownership later using the chown command). Next is the
group owner. By default, the primary group of the user who is owner of a file will also become
the group owner of that file.

■Note When in this section I refer to a file, I also refer to a directory, unless stated otherwise. From a file-
system point of view, a directory is just a special kind of file.

Last is the others entity. Typically, this entity refers to the rest of the world; permissions
granted to the others entity apply to everyone who is able to access the given file. The owner-
ship of files and the permissions that are set for the three different file owners can be reviewed
with the ls -l command, as seen in the following line:

-rw-rw-r-- 1 linda users 145906 2006-03-08 09:21 somefile

In this output, the name of the file is somefile. The first character refers to the type of file.
In this case, it’s just an ordinary file, therefore the - character is displayed. The next three
groups of three characters refer to the permissions applied to the user, group, and others,
respectively. As you can see, the user has read and write permissions, the group has read as
well and write permissions, and all others just have read permission. The next important
pieces of data in the preceding line are the names linda and users; they refer to user linda
(who is owner) and the group users (which is group owner). Note that in the basic Linux per-
mission scheme, just one user and just one group can be assigned as owner of a file. If you
want more, you need to use ACLs.

With regards to Linux rights, ownership is the only thing that really matters. An example
shows why this is important; imagine the home directory of user linda. Typically, the permis-
sions on a home directory are set, as in the following output line of the ls command:

-rwxr-xr-x 1 linda users 1024 2006-03-08 09:28 linda

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY130

■Note In the examples shown here, the users are all members of the group user, which has GID 100.
Although this is not default behavior on Ubuntu, it can be useful if you want to help users share information.
If you want all new users created with useradd to automatically become members of this group 100 (which
is actually the GID for the group user), make sure that you have the line GROUP=100 in the /etc/default/
useradd file.

Ownership is naturally very important when determining what a user can do to a file.
Imagine that a file is created by the user root in the user linda home directory and that the
permissions on this file are set as follows:

-r--r----- 1 root root 1 537 2006-03-08 10:15 rootsfile

The big question is what user linda can do to this file. The answer is simple, but there is a
caveat. Because user linda is not the owner of the file and is not a member of the group that
owns the file, she has no permissions at all to this file. The fact that the file is in her home
directory doesn’t mean much because Linux doesn’t support inheritance of permissions by
default. However, user linda has the write permissions in her home directory, so she can
remove the file from her home directory. This is not inheritance; write permissions in a direc-
tory apply to the things that a user can do to files in that directory. What you should remember
from this example is that to determine what a user can do to a file, the most important ques-
tion to ask is “Is the user also the owner of the file?” The fact that a file is in the user’s directory
isn’t relevant here; it’s ownership that counts.

Changing File Ownership
To change the ownership of a file, use the chown command. The structure of this command is
as follows:

chown {user|:group} file

For example, to make user linda owner of rootsfile, the command chown linda
rootsfile must be used. To change the group owner of somefile to the group sales, the chown
.sales somefile command is used. Note that for changing group ownership, the chgrp com-
mand can be used as an alternative. Therefore, chown .sales somefile does the same thing as
chgrp sales somefile. When using chgrp, the name of the group does not need to be pre-
ceded by a dot.

By default, chown and chgrp apply only to the file or directory on which they are used.
However, you can use the commands to work recursively as well: chown -R linda somedir
makes user linda owner of all files in somedir and all subdirectories of it.

Group Ownership
When working with group ownership, you should be aware of how group ownership is han-
dled. By default, the primary group of the user who creates a new file becomes the group
owner of that file. If, however, the user is a member of more than one group, this default set-
ting can be manipulated. When a user issues the newgrp command, he can change the primary
group setting on a temporary basis. The following steps show what happens next:

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 131

1. Log in as some normal user on your computer. Then use the groups command from a
console window to get an overview of all groups that you are currently a member of.
The primary group is listed first. If you haven’t modified anything for this user, it will
have the same name as your user account. Listing 5-4 is an example of this output.

Listing 5-4. The groups Command Always Shows Your Primary Group First

sander@RNA:~$ groups
sander adm dialout cdrom floppy audio dip video plugdev scanner lpadmin admin

2. From the console window, issue the touch newfile command to create a new file
with the name newfile. Then use ls -l newfile to display the ownership information
for newfile. You will see that the primary group is set as the owner of the file (see
Listing 5-5).

Listing 5-5. The User’s Primary Group Is Always Set As Its Owner

sander@RNA:~$ ls –l newfile
-rw-r--r-- 1 sander sander 0 2007-07-28 10:05 newfile

3. Use su to become root. Then use groupadd to create a new group (for example, use
groupadd -g 901 sales to create a group with the name sales and group ID 901). Next,
as root, use usermod -g 901 youruser to make youruser (the user you used in step 1) a
member of that group. After changing this group information, use exit to close the su
session and become the normal user account again.

4. As the normal user, use groups again to get an overview of all groups you are currently
a member of. The new group should appear now, probably as the last group in the list.

5. As the normal user, use newgrp yournewgroup to set the primary group to your new
group on a temporary basis. You can use the groups command to check this; the new
group should now be listed first. You’ll also see that if you create a new file (use touch
somenewfile), the new group will be group owner of the new file. This ensures that all
users who are members of the same group can do the same thing to this file.

Working with Advanced Linux Permissions
Until now, I’ve covered just the three basic Linux permissions. But there are more. To start
with, Linux has a set of advanced permissions, and this section describes the working of these
permissions. Before diving into detail, the following list provides a short overview of the
advanced permissions and the way they’re used:

• SUID: If this permission is applied to an executable file (also known as “Set User ID”
and “setuid”), the user who executes that file will have the permissions of the owner of
the file while he is executing it. You can see that SUID is a very dangerous permission
that, if wrongly applied, creates serious back doors on your server. On the other hand,
some applications—/usr/bin/passwd, for example—can’t function without it because
these applications need the permissions of their owner root to be able to do their job.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY132

• SGID: This permission is also known as the Set Group ID (also commonly known as
“setgid”) permission. It is applied in two ways. First, if applied to executable files, the
user who executes the file will get the permissions of the group who is owner of the file
upon execution. Next, the permission can be used to set the default group owner of files
created in a given directory. If applied to a directory, all files and directories created in
this directory, and even in its subdirectories, will get the group owner of the directory as
its group owner. Imagine that all members of the group sales normally save the files
they create in /data/salesfiles. In that case, you would want all files created in that
directory to be owned by the group sales as well. This goal can be accomplished when
setting sales as the group owner for salesfiles and next applying the SGID permission
bit to this directory.

• Sticky bit: If the sticky bit is used on a directory; users can remove files only if one of the
following conditions is met:

• The user has write permissions on the file.

• The file is in a directory of which the user is owner.

• The user is owner of the file.

The sticky bit permission is especially useful in a shared data directory. Suppose that
user linda creates a file in the directory /data/sales. She wouldn’t want her coworkers
from the group sales who also have write permissions in that directory to remove her
file by accident (normally they’d be able to because they have the write permission on
the directory). If the sticky bit is applied, however, other users can remove the file only
if one of those listed conditions has been met.

Some comments on these permissions may be helpful. First, you should realize the dan-
gers of the SUID and SGID permissions if they are applied improperly. Imagine, for example,
that a given application has a security issue that allows users with the right knowledge to
access a shell environment, and at the same time the user root owns this application. This
would make the user misusing the security issue root and give him permissions on your entire
system! So you should be extremely careful when applying SUID or SGID to files. On the other
hand, you may notice that some files have SUID set by default. For example, the program file
/usr/bin/passwd cannot work without it. This is because a user who changes his password
needs to write information to the /etc/shadow file. Only the user root can write data to this file,
and normal users cannot even read its contents. The operating system solves this problem by
applying the SUID permission to /usr/bin/passwd, which temporarily grants users root per-
missions to change their passwords.

■Tip Someone using a back door to get access to your server may use SUID on some obscure file to get
access the next time as well. As an administrator, you should regularly check your server for any occurrence
of the SUID permission on unexpected files. You can do this by running find / -perm +4000, which will
display all files that have the SUID permissions set.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 133

The SGID permission has a dangerous side because it gives the user who runs a com-
mand that has this permission the same permissions as the group owner of the command.
However, the SGID permission can be very useful. You may apply it on directories in which
members of some user group need to share data with each other. The advantage of the SGID
permission, if it is applied to a directory, is that all files created in that directory will get the
same group owner. This allows all members of that group to read the file. Even if the group just
has read rights on files that are created in this directory, the SGID permission may create a
workable situation by allowing a user who is a member of the group to read the original file.
Without the write permission she cannot change its contents, but she can save the file with a
new name in the same directory. With the SGID permission applied to the directory, all files
created in the complete tree structure under this directory will get the same group as owner,
so the file will always be accessible for all members of the group. Thus, all users can work
together in a shared group-data directory in an efficient way.

However, in the scenario I’ve just described, there is still the problem that one user can
remove the files created by another user who is a member of the same group; both have write
permissions in the directory, and that’s enough to remove files. This can be prevented by
applying the sticky bit as well. When this permission is set, a user can’t remove a file if he has
only write permissions to the directory the file is in, without being the owner of the file.

Setting Permissions
Okay, that’s enough about how the permissions can be used. It’s time to set them. You’ll use
two commands to set and manipulate permissions: the chmod command to initially set per-
missions and the umask command to set default permissions.

Using chmod to Change Permissions
The chmod command is used to set permissions on existing files. The user root or the owner
of a file can use this command to change permissions of files or directories. It can be used
in either an absolute or a relative mode. When using chmod in a relative way, the entity (user,
group, or others) to which permissions are granted is specified, followed by the + (add),
? (remove), or = (set) operator, and then followed by the permissions you want to apply. In
the absolute mode, a numeric value is used to grant the permissions.

Using chmod in Relative Mode

If working in relative mode, the following values have to be used for the permissions that are
available:

• read: r

• write: w

• execute: x

• SUID: u+s

• SGID: g+s

• Sticky bit: t

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY134

The relative mode is useful when you want to add or remove one permission in an easy
and convenient way. For example, you can easily make a script file executable by using chmod
+x myscript. Because no u, g, or o is used in this command to refer to the entity the permis-
sions are applied for, the file will be made executable for everyone. You can, however, be more
specific and just remove the write permission for the other entity by using chmod o-w
somefile, for example.

As for the special permissions, SUID is set with u+s, and SGID is set with g+s. As the result,
you will see the SUID permission at the position of the x for users and the SGID permission at
the position of the x for groups. Listing 5-6 shows where the first file has SUID applied, and the
second file has SGID applied. Both permissions really make sense only in combination with
the execute permission, so I won’t discuss the hypothetical situation in which a file has SUID
applied but not executed for the owner, or has SGID applied but not executed for the group.

Listing 5-6. Displaying SUID and SIGD with ls -l

-rwsr-xr-x 2 root root 48782 2006-03-09 11:47 somefile-withSUID
-rwxr-sr-x 2 root root 21763 2006-03-09 11:48 someotherfile-withSGID

Using chmod in Absolute Mode

Although the chmod relative mode is easy to work with if you just want to set or change one
permission, it can get complicated if you need to change more than that. In such a case, the
absolute mode is more useful because it offers a short and convenient way to refer to the per-
missions that you want to set. In the absolute mode, you work with numeric values to refer to
the permissions that you want to set. For example, chmod 1764 somefile can be used to
change the permissions on a given file. Of these four digits, the first refers to the special per-
missions, the second indicates permissions for the user, the third refers to the group
permissions, and the last refers to permissions for others.

Of the four digits that are used in absolute mode, the first can be omitted in most
instances. If you do that, no special permissions are set for this file. When working with chmod
in absolute mode, you have to be aware of the values for the permissions you are working
with:

• Read: 4

• Write: 2

• Execute: 1

• SUID: 4

• SGID: 2

• Sticky bit: 1

For example, to set permissions to read, write, and execute for others; to read and execute
for group; and to do nothing for others, you would use chmod 750 somefile. In this example,
the digit 7 refers to the user permissions. Because 7 is equal to 4 + 2 + 1, the user has read,
write, and execute permission. The group has 5, which equals 4 + 1. The others have no per-
missions.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 135

As an alternative, you can use the command but with a 0 preceding the value (chmod 0750
somefile). However, it makes no sense in this case to use the initial 0 because no special per-
missions are used here.

Using umask to Set Default Permissions for New Files
You have probably noticed that default permissions are set when creating a new file, and these
permissions are determined by the umask setting. This is a shell setting that is set for all users
when logging in to the system. The default umask makes sure that all users have read access to
all new files. Because this isn’t very secure, it makes sense to restrict the default umask a little.

A numeric value is used in the umask setting, and this value is subtracted from the maxi-
mum permissions that can be set automatically; the maximum settings are 666 for files and
777 for directories. Of course, some exceptions to this rule make it all quite hard to under-
stand, but you can find a complete overview of umask settings in Table 5-2.

Of the digits used in the umask, as with the numeric arguments for the chmod command,
the first digit refers to user permissions, the second digit refers to the group permissions, and
the last digit refers to the default permissions for others. The default umask setting of 022 gives
644 for all new files and 755 for all new directories that are created on your server.

Table 5-2. umaskValues and Their Results

Value Applied to Files Applied to Directories

0 read and write everything

1 read and write read and write

2 read read and execute

3 read read

4 write write and execute

5 write write

6 nothing execute

7 nothing nothing

You can change the umask setting for all users or for individual users. If you want to set the
umask for all users, you must make sure the umask setting is entered in the /etc/profile config-
uration file. If the umask is changed in this file, it applies to all users logging in to your server.

An alternative to setting the umask in /etc/profile (where it is applied to all users logging
in to the system) is to change the umask settings in a file with the name .profile that is created
in the home directory of an individual user. Settings applied in this file are applied for only the
user who owns the home directory, so this is a nice method to create an exception for a single
user. You could, for example, create a .profile in the home directory of the user root and in
there apply the umask setting of 027, whereas the generic umask setting for ordinary users is set
to 022 in /etc/profile.

Working with Access Control Lists
Up to now, you’ve just read about the basic model to apply permissions on a Linux system.
When an advanced file system like Ext3 is used, it’s possible to add some options to this

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY136

default model. You’d do this by using the ACL feature. In this section, you’ll learn how this
technique can be applied to allow for a more flexible security mechanism.

The main reason behind the development of the Linux ACL system was to compensate for
the shortcomings of default Linux permissions. Basically, the system had two problems:

• Default Linux permissions do not allow more than one entity to be set as user or group
owner of a file.

• In a default Linux permissions scheme, there is no option to set default permissions.

ACLs offer an optional system that can be used to compensate for these shortcomings. In
this section you’ll learn how to apply this system.

Preparing the File System for ACLs
Before you can use ACLs on a file system, you must add an option to /etc/fstab for all file sys-
tems that must support ACLs (all relevant Linux file systems do). The following procedure
describes how:

1. Open /etc/fstab with an editor.

2. Select the column in which the mount options are specified. Add the option acl.
Repeat this procedure for all file systems in which you want to use ACLs.

3. Remount all partitions in which ACLs have been applied (or restart your server). For
example, to remount the root partition so that new settings are applied, use mount -o
remount /.

Using ACLs to Grant Permissions to More than One Object
The idea of an ACL is that connected to a file or directory, a list of users and groups is created
that has permission on a file or directory. By default, in the inode that is used for the complete
administration of files and directories, there simply isn’t enough room, and you can’t easily
change this because of backward compatibility. As a result, you must specify for all devices
with which you want to use ACLs that ACLs have to be enabled for that device. Only then can
ACLs be set. ACLs can be used on most modern Linux file systems.

■Note The /etc/fstab file on Ubuntu server uses UUIDs instead of the device names of your file system.
Remember, a UUID is a unique ID that can be assigned to a file system. In the case of an Ext3 file system, for
example, this is done with the tune2fs command. For better readability, I’ve chosen to omit the UUIDs from
the examples in this book, and I’ll just refer to the device name of the file system.

If ACLs are enabled for a given device, you can use the setfacl command to set them. If
this command isn’t available, run apt-get install acl first. The use of setfacl is not too hard
to understand: for example, setfacl -m u:linda,rwx somefile can be used to add user linda
as a trustee (someone who has rights to a file) on the file somefile. This command does not
change file ownership, though; it just adds to the ACL a second user who also has rights to the

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 137

file. The normal output of the ls -l command does not show all users who have rights by
means of an ACL, but the + character appears behind the permissions list on that file. To get
an overview of all ACLs currently set to a given file, use the getfacl command. The following
procedure gives you an opportunity to try it:

1. Make sure that you are root and then create a file somewhere in the file system. You
can use the touch command to create an empty file; for example, use touch somefile
to create the file somefile.

2. Now use getfacl somefile to monitor the permissions that are set for this file. You will
see an overview, as shown in Listing 5-7, indicating only the default permissions that
are granted to user, group, and others.

Listing 5-7. Before Applying an ACL, getfacl Just Displays Normal User, Group, and
Others Information

myserver:~# touch somefile
myserver:~# getfacl somefile
file: somefile
owner: root
group: root
user::rw-
group::r--
other::r--

3. Now use the command setfacl -m g:account:rw somefile (you must have a group
with the name account for this to work). The group will now be added as a trustee to
the file, which can be seen when you use getfacl on the same command again.
Listing 5-8 provides an example of this.

Listing 5-8. After Adding Another Trustee, getfaclWill Show Its Name and the Rights You
Have Granted to This Trustee

myserver:~# touch somefile
myserver:~# getfacl somefile
file: somefile
owner: root
group: root
user::rw-
group::r--
group:account:rw-
mask::rw-
other::r--

Working with ACL Masks
In the example in Listing 5-8, you can see what happens when a simple ACL is created: not
only is a new entity added as the trustee of the object but a mask setting is also added. The

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY138

mask is the summary of the maximum of permissions an entity can have on the file. This mask
is not very important because it is modified automatically when new permissions are set with
the ACL. However, the mask can be used to reduce the permissions of all trustees to a com-
mon denominator. Because it’s set automatically when working with ACLs, I recommend that
you just ignore the ACL masks: it makes things very complicated if you try to modify them in a
useful way.

Using Default ACLs
A default ACL can be applied on a directory. When using a default ACL, you can specify the
permissions that new files and directories will get when they are created in a given directory.
Therefore, you can consider default ACLs as a umask setting that is applied on a directory only.
If a directory has a default ACL, all files will get the permissions specified in that default ACL.
Also, subdirectories will get the permissions from the default ACL, and these permissions will
be set as their own permissions as well. If a default ACL exists for a directory, the umask setting
is not used for that directory.

To set a default ACL, the setfacl command must be used with the -d option. Otherwise, it
can be used with parameters as seen earlier. The following example will apply a default ACL to
somedir:

setfacl -d -m group:account:rwx somedir

Because this command uses the -d option, a default ACL is set for all entities that cur-
rently are listed as trustees of the directory. You can see in Listing 5-9 that the command
getfacl is used to display the permissions currently applied to that directory.

Listing 5-9. Displaying the Default ACL for a Directory

myserver:~# getfacl somefile
file: somedir
owner: root
group: root
user::rwx
group::r-x
other::r-x
default:user::rwx
default:group::r-x
default:group:account:rw-
default:mask::rwx
default:other::r-x

The nice thing about working with default ACLs is that the rights that are granted in a
default ACL are automatically added for all new files and directories created in that directory.
However, you should be aware that when you apply a default ACL to a directory, files and
directories that currently exist within that directory are not touched by this default ACL. If you
want to change permission settings in ACLs for existing files and directories, use the setfacl
command with the option -R (recursive).

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 139

ACL Limitations
You should also be aware of the limitations of working with ACLs, such as the fact that ACLs
are not cumulative (which is also the case for the normal Linux permissions). Let’s imagine the
not-so-realistic situation in which user stacey is the owner of a file and has only read permis-
sion. She is also a member of the group sales, which is a trustee of the same file and has
read-write permission. So, when the permissions for this user are calculated, she will not have
both read and write permissions. When determining the effective permission, the operating
system will check if she is the owner of the file. She is, and so the operating system will look no
further and the permissions for the owner are applied. The permissions for the group are
ignored.

The problem of nonaccumulation becomes even more complex if a process belongs to
more than one group. When determining group rights, the group from which the process will
get its rights is selected randomly.

Another problem when working with ACLs is that many applications still don’t support
them. For example, most backup applications cannot handle ACLs, and your database
probably doesn’t either. However, changes are coming, and some applications have begun
supporting ACLs. One of these is the Samba file server, which uses ACLs extensively to emu-
late the working of Windows rights (check Chapter 10 for complete coverage of this server).
Also, some of the basic Linux utilities such as cp, mv, and ls currently support ACLs. However,
you should always check that the utility you want to use supports ACLs before you start
using it.

Applying File Attributes
When working with permissions, there’s always a combination between a user or group object
and the permissions that these user or group objects have on a file or directory. An alternate
but seldom-used method of securing files on a Linux system is to work with attributes, which
do their work regardless of the user who accesses the file. Of course, the difference is that the
owner of a file can set file attributes, whereas other users (except for the almighty root)
cannot.

For file attributes, an option must be provided in /etc/fstab before they can be used. This
is the user_xattr option that can be seen in the fstab example in Listing 5-7. Here’s a list of
the useful attributes that can be applied:

• A: This attribute ensures that the file access time of the file is not modified. Normally,
every time a file is opened, the file access time must be written to the file’s metadata,
which slows system performance. So, on files that are accessed on a regular basis, the
A attribute can be used to disable this feature.

■Tip You don’t like the access time being modified at all? In this case, use the noatime option in
/etc/fstab to specify that this feature be disabled for all files on a volume.

• a: This attribute allows a file to be modified but not removed.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY140

• c: If you are using a file system that supports volume-level compression, this file attrib-
ute makes sure that the file is compressed the first time the compression engine is
activated. This attribute is currently ignored by Ext2/Ext3 file systems.

• D: This attribute makes sure that changes to files are written to disk immediately and
not to cache first. This is a useful attribute on important database files to make sure
that they don’t get lost between file cache and hard disk. Using this option decreases
the risk of losing data because of a power failure, for instance.

• d: This attribute ensures that the file is not backed up in backups when the dump utility is
used.

• I: This attribute enables indexing for the directory in which it is enabled. You’ll thus
enjoy faster file access for primitive file systems such as Ext3 that don’t use a B-tree
database for fast access to files. Users cannot set this attribute using chattr; it will be
managed by file system–specific utilities.

■Note A B-tree is a tree data structure that keeps data sorted, even if changes occur. A file system can
operate very quickly using a B-tree.

• j: This attribute ensures that on an Ext3 file system the file is first written to the journal;
only after that it is written to the data blocks on hard disk.

• s: This attribute overwrites the blocks in which the file was stored with zeros after the
file has been deleted. This makes sure that recovery of the file is not possible after it has
been deleted. This attribute is not currently supported by Ext2/Ext3 file systems.

• u: This attribute saves undelete information. A utility can then be developed that works
with that information to salvage deleted files. This attribute is not currently supported
by Ext2/Ext3 file systems.

■Note Although you can use quite a few attributes, you should be aware that most of them are rather
experimental and are useful only if an application is used that can work with the given attribute. For exam-
ple, it doesn’t make sense to apply the u attribute if no application has been developed that can use this
attribute to recover deleted files.

Use the chattr command if you want to apply attributes. For example, use chattr +s
somefile to apply the attribute s to somefile. Need to remove the attribute again? Use chattr
-s somefile. For an overview of all attributes that can be used, use the lsattr command.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 141

Apply Quota to Allow a Maximum Amount of Files
User quota is a completely different way to apply restrictions to control how users can create
files and directories. By using quota, the amount of space that a user can occupy is limited.
Configuring user quota is a simple five-step procedure:

1. Install the quota software.

2. Prepare the file system in which you want to use quota.

3. Initialize the quota system.

4. Apply quota to users and groups.

5. Start the quota service.

Before starting to apply quota, you should first realize how it must be applied. Quotas are
always user- or group-related and apply to a complete volume or partition. That is, if you have
one disk in your server with one partition on it that holds your complete root file system, and
you apply a quota of 100 MB for user zeina, this user can create no more than 100 MB of files
anywhere on the file system.

When working with quotas, you need to apply a hard limit, a soft limit, and a grace period.
The soft limit is a limit that cannot be surpassed on a permanent basis. (The user can create
more data than the quota allows on a temporary basis.) The grace period is the length of time
that the user can temporarily exceed the soft limit. The hard limit is an absolute limit; after it’s
reached (or when the grace period elapses, whichever is sooner), the user can’t create new
files.

Working with soft and hard limits is confusing at first glance, but it has some advantages:
if a user has more data than the soft limit allows, she still can create new files and isn’t stopped
in her work immediately. She will, however, get a warning to create some space before the
hard limit is reached.

Installing the Quota Software
To work with quotas, it makes sense that the quota software must be installed. You’ll do this
with the apt-get install quota command, and you’ll notice soon enough whether you need
to run it. If you try to use one of the quota management utilities (such as edquota) when the
quota software has not been installed yet, you’ll see a message that it has to be installed first.

Preparing the File System for Quota
Before you can use the quota software to limit the amount of disk space that a user can use on
a given file system, you must add an option to /etc/fstab for all file systems that must sup-
port quota. Here’s the procedure:

1. Open /etc/fstab with an editor.

2. Select the column with options. Add the option usrquota if you want to apply quota to
users and grpquota for groups. Repeat this procedure for all file systems in which you
want to use quota.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY142

3. Remount all partitions in which quota has been applied (or restart your server). For
example, to remount the root partition so that new settings are applied, use mount -o
remount /.

Initializing Quota
Now that you’ve finished the preliminary steps, you need to initialize the quota system. This is
necessary because all file systems have to be searched for files that have already been created,
and for a reason that’s probably obvious: existing files count toward each user’s quota, so a
report must be created in which the quota system can see which user owns which files. The
report generated by this quota initialization is saved in two files: aquota.user is created to reg-
ister user quotas, and aquota.group is created for group quotas.

To initialize a file system for the use of quotas, you need to use the quotacheck command.
This command can be used with some options, and I’ll list only the most important ones here:

• -a: This option ensures that all file systems are searched when initializing the quota
system.

• -u: This option ensures that user information is searched. This information will be
written to the aquota.user file.

• -g: This option ensures that group information is searched as well. This information is
written to the aquota.group file.

• -m: Use this option to make sure that no problems will occur on file systems that are
currently mounted.

• -v: This option ensures that the command will work in verbose mode to show exactly
what it is doing.

So, the best way to initialize the quota system is to use the quotacheck -augmv command,
which (after awhile) creates the files aquota.user and aquota.group to list all quota informa-
tion for current users.

Setting Quota for Users and Groups
Now that the quota databases have been created, it’s time for the real work because you’re
ready to apply quota to all users and groups on your system. You’ll do this with the edquota
command, which uses the nano editor to create a temporary file. This temporary file is where
you’ll enter the soft and hard limits you’ve decided upon for your users and groups. If, for
example, you want to apply a soft limit of 100,000 blocks and a hard limit of 110,000 blocks for
user florence, follow these steps:

■Tip The edquota command works only with blocks, not bytes, kilobytes, or anything else. So, to set quota
properly, you need to know the block size that’s currently used. To find that block size, use the dumpe2fs |
less command. You’ll find the block size in the second screen.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 143

1. Issue the command edquota -u florence.

2. In the editor screen, six numbers specify the quota for all file systems on your com-
puter. The first of these numbers is the number of blocks that are currently being used
by the user you’re creating the quota file for. The second and third numbers are impor-
tant as well: the second number is the soft limit for the number of blocks, and the third
number is the hard limit on blocks in kilobytes. The fifth and sixth numbers do the
same for inodes, which roughly equal the number of files you can create on your file
system. The first and fourth numbers are used to record the number of blocks and
inodes that are currently being used for this user.

3. Close the editor and write the changes in the quota files to disk.

In this procedure, you learned that quota can be applied to the number of inodes and
blocks. If quotas are used on inodes, they specify the maximum number of files that can be
created. Most administrators think it doesn’t make sense to work that way, so they set the
values for these to 0. A value of 0 indicates that this item currently has no limitation.

After setting the quota, if the soft limit and hard limit are not set to the same value, you
need to use the edquota -t command to set the grace time. This command opens another
temporary file in which you can specify the grace time you want to use, either in hours or in
days. The grace time is set per file system, so there’s no option to specify different grace time
settings for different users.

Once you have set quotas for one user, you may want to apply them to other users.
Instead of following the same procedure for all users on your system, you can use the edquota
-p command. For example, edquota -p florence alex copies the quotas currently applied for
user florence to user alex.

■Caution To set quotas, the user you are setting quotas for must be known to the quota system. This is
not done automatically. To make sure that new users are known to the quota system, you must initialize the
quota system again after creating the new users. I recommend setting up a cron job (see the “Setting the
System to Your Hand” section in Chapter 6 to do this automatically at a reasonable interval).

When all the quotas have been set the way you want, you can use the repquota command
to monitor the current quota settings for your users. For example, the repquota -aug com-
mand shows current quota settings for all users and groups on all volumes. Now that you’ve
set all the quotas you want to work with, you just have to start the quota service, and you’ll do
this with the /etc/init.d/quota start command.

Understanding Pluggable Authentication Modules
In the normal situation, the local user database in the Linux files /etc/passwd and /etc/shadow
is checked at login to a Linux workstation. In a network environment, however, the login pro-
gram must fetch the required information from somewhere else (for example, an LDAP
directory service such as OpenLDAP). But how does the login program know where it has to
search for authentication information? That’s where the PAMs come in, and PAMs are what

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY144

makes the login procedure on your workstation flexible. Using a PAM in conjunction with
nsswitch.conf, you can redirect any application that has to do anything related to authentica-
tion to any service that handles authentication. A PAM is used, for example, if you want to
authenticate with a private key stored on a USB stick, to enable password requirements, to
prevent the root user from establishing a telnet session, and in many other situations. The
only thing you need is a PAM that supports your authentication method.

The main advantage of a PAM is its modularity. In a PAM infrastructure, anything can be
used for authentication, provided there’s a PAM module for it. So, if you want to implement
some kind of strong authentication, ask your supplier for a PAM module and it will work. PAM
modules are stored in the directory /lib/security, and the configuration files specifying how
these modules must be used (and by which procedures) are in /etc/pam.d. Listing 5-10 is an
example of just such a configuration file, in which the login procedure learns that it first has to
contact an LDAP server before trying any local login.

Listing 5-10. Sample PAM Configuration File

auth sufficient /lib/security/pam_ldap.so
account sufficient /lib/security/pam_ldap.so
password sufficient /lib/security/pam_ldap.so
session optional /lib/security/pam_ldap.so
auth requisite pam_unix2.so
auth required pam_securetty.so
auth required pam_nologin.so
#auth required pam_homecheck.so
auth required pam_env.so
auth required pam_mail.so
account required pam_unix2.so
password required pam_pwcheck.so nullok
password required pam_unix2.so nullok use_first_pass use_authok
session required pam_unix2.so
session required pam_limits.so

The authentication process features four different instances, and they are reflected in
Listing 5-10. Authentication is handled in the first instance; these are the lines that start with
the keyword auth. During the authentication phase, the user login name and password are
first checked, followed by the validity of the account and other account-related parameters
(such as login time restrictions). This happens in the lines that start with account. Then, all
settings relating to the password are verified (the lines that start with password). Last, the set-
tings relating to the establishment of a session with resources are defined; this happens in the
lines that start with session.

The procedure that will be followed upon completion of these four instances is defined by
calling the different PAM modules. This occurs in the last column of the example configura-
tion file in Listing 5-10. For example, the module pam_securetty can be used to verify that the
user root is not logging in to a Linux computer via an insecure terminal. The keywords
sufficient, optional, required, and requisite are used to qualify the degree of importance
that the conditions in a certain module are met. Except for the first four lines (which refer to
the connection a PAM has to make to an LDAP server), conditions defined in all modules must

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 145

be met; they are all required. Without going into detail, this means that authentication will fail
if one of the conditions implied by the specified module is not met.

When enabling a server for logon to an LDAP server (as in the example in Listing 5-10),
four lines are added to the default PAM configuration file in /etc/pam.d/login. They are the
first four lines, and they offer an alternative for valid authentication by using the pam_ldap.so
module. Passing the conditions imposed by these first four modules is sufficient to authenti-
cate successfully, but it is not required. Sufficient in this context means that if, for example,
the instance auth passes all the conditions defined in pam_ldap.so, that’s enough for local
authentication. The local Linux authentication mechanism will no longer be used because the
user can authenticate against the LDAP server in this case. For this to work, you of course
need a valid user account that has all the required Linux properties on the LDAP server.

■Note Configuring LDAP is beyond the scope of this book, but have a look at www.padl.com, for example,
for more information about this subject.

A nice thing about this example PAM configuration file is that it first sees whether the
LDAP server can be used to authenticate to the network. The default Linux login mechanism is
used only if this procedure doesn’t work. The workings of this default mechanism are defined
from the fifth line on in the example configuration file.

By default, many services on Ubuntu Server are PAM-enabled. (You can see this from a
simple ls command in the directory /etc/pam.d, which will show you that there is a PAM file
for login, su, sudo, and many other programs. I won’t cover all of them here, but will explain a
bit about some when the time is relevant.) The true flexibility of PAM is in its modules, which
you can find in /lib/security. Each of these modules has a specific function. The next section
provides a short description of some of the more interesting modules. But, before we dive into
that, you’ll quickly learn how to set a secure default policy.

Creating a Default Security Policy
In a PAM environment, every service should have its own configuration for PAM. However, the
world isn’t perfect, and a given service may not have a PAM configuration. In this case, I rec-
ommend creating /etc/pam.d/other as a PAM configuration file. This file is processed by all
PAM applications that don’t have their own configuration file. If you really want to know
whether your system is secure, give it the contents detailed in Listing 5-11.

Listing 5-11. Configuring PAM for Security in /etc/pam.d/other

auth required pam_warn.so
auth required pam_deny.so
account required pam_warn.so
account required pam_deny.so
password required pam_warn.so
password required pam_deny.so
session required pam_warn.so
session required pam_deny.so

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY146

All four phases in the authentication process call two modules: pam_warn and pam_deny.
The pam_warn module generates a warning and writes that to your log environment (/var/log/
messages by default). Next, for all these instances, the module pam_deny is called. This simple
module will just deny everything. The results? All modules will handle authentication prop-
erly, as defined in their own configuration file, but when that file is absent, this generic
configuration will make sure that all access is denied.

■Tip Want to know if a program is PAM-enabled? Use ldd programname. For example, use ldd
/usr/bin/passwd to find the library files used by this command. If the modules libpam_misc and libpam
are listed, the module is PAM-enabled. And so it should have its own configuration file for handling user
authentication.

Discovering PAM Modules
The usefulness of a system like PAM is entirely determined by its modules. Some of these
modules are still experimental, and others are pretty mature and can be used to configure a
Linux system. I’ll discuss some of the most important modules in the following sections.

pam_deny

As seen in Listing 5-11, the pam_deny module can be used to deny all access. It’s very useful if
used as a default policy to deny access to the system.

pam_env

The module pam_env is used to create a default environment for users when logging in. In this
default environment, several system variables are set to determine what the environment a
user is working in looks like. For example, there is a definition of a PATH variable in which some
directories are included that must be in the search path of the user. To create these variables,
pam_env uses a configuration file in /etc/security/pam_env.conf. In this file, several variables
are defined, each with its own value to define essential items like the PATH environment vari-
able.

pam_limits

Some situations require an environment in which limits are set to the system resources that a
user can access. Think, for example, of an environment in which a user can use no more than
a given number of files at the same time. To configure these limitations, you would modify the
/etc/security/limits.conf file. To make sure that the limitations that you set in /etc/
security/limits.conf are applied, use the pam_limits module.

In /etc/security/limits.conf, limits can be set for individual users as well as groups. The
limits can be applied to different items, some of which are listed here:

• fsize: Maximum file size

• nofile: Maximum number of open files

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 147

• cpu: Maximum CPU time in minutes

• nproc: Maximum number of processes

• maxlogins: Maximum number of times this user can log in simultaneously

The following code presents two examples of how these limitations can be applied. In the
first line, the user ftp is limited to start a maximum of one process simultaneously. Next,
everyone who is a member of the group student is allowed to log in four times simultaneously.

ftp hard nproc 1
@student - maxlogins 4

When applying these limitations, you should remind yourself of the difference between
hard and soft limits: a hard limit is absolute, and a user cannot exceed it. A soft limit can be
exceeded, but only within the settings that the administrator has applied for these soft limits.
If you want to set the hard limit to the same as the soft limit, use a – character, as seen in the
previous code example for the group student.

pam_mail

This useful module looks at the user’s mail directory and indicates whether there is any new
mail. It is typically applied when a user logs in to the system with the following line in the rele-
vant PAM configuration file:

login session optional pam_mail.conf

pam_mkhomedir

If a user authenticates to a machine for the first time and doesn’t have a home directory yet,
pam_mkhomedir can be applied to create this home directory automatically. This module will
also make sure that the files in /etc/skel are copied to the new home directory. This module is
especially useful in a network environment in which users authenticate through NIS or LDAP
and do not always work on the same machine. However, it’s recommended in such situations
to centralize user home directories on an NFS server so that no matter where a user logs in to
a server, a home directory will always be present. Chapter 8 contains more information about
configuring an NFS server. The disadvantage of pam_mkhomedir is that if the module is not
applied correctly, a user may end up with home directories on many different machines in
your network.

pam_nologin

If an administrator needs to conduct system maintenance like installing new hardware, and
the server must be brought down for a few moments, the pam_nologin module may prove use-
ful. This module makes sure that no users can log in when the file /etc/nologin exists. So
before you perform any maintenance, make sure to create this file. The user root will always
be allowed to log in to the system, regardless of whether this file exists or not.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY148

pam_permit

Pam_permit is by far the most insecure PAM service available. It does only one thing: it grants
access—always—no matter who tries to log in. All security mechanisms will be completely
bypassed in this case, and even users who don’t have a valid user account can use the services
that are configured to use pam_permit. The only sensible use of pam_permit is to test the PAM
awareness of a certain module or to disable account management completely and create a
system that is wide open to everyone.

pam_rootok

This module lets user root access services without entering a password. It’s used, for example,
by the su utility to make sure the user root can su to any account, without having to enter a
password for that user account.

pam_securetty

In the old days when telnet connections were still very common, it was important for the user
root never to use a telnet session for login because telnet sends passwords in clear text over
the network. For this purpose, the securetty mechanism was created: a file /etc/securetty
can be created to provide a list of all TTYs from which root can log in. By default, these include
only local TTYs 1 through 6. On Ubuntu Server, this module is still used by default, which
means that you can limit the TTYs in which root can log in by manipulating this file.

pam_tally

This very useful module can be used to keep track of attempts to access the system. It also
allows the administrator to deny access if too many attempts fail. The PAM module pam_tally
works with an application that uses the same name pam_tally that can be used to set the
maximum amount of failed logins that are allowed. All attempts are logged by default in the
/var/log/faillog file. If this module is called from a configuration file, be sure to at least use
the options deny=n and lock_time. The first determines the maximum number of login
attempts a user can make, and the second determines how long an account will be locked
after that number of login attempts has been reached. The value given to lock_time is
expressed in seconds by default.

pam_time

Based upon the configuration file /etc/security/time.conf, the pam_time module is used to
limit the times between which users can log in to the system. You can use this module to limit
the access for certain users to specific times of the day. Also, access can be further limited to
services and specific TTYs that the user logs in from. The configuration file time.conf uses
lines with the following form:

services;ttys;users;times

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 149

The next line is an example of a configuration line from time.conf that denies access to all
users except root (the ! character in front of the times is used to deny access). This might be a
perfect solution to prevent users from breaking into a system that they shouldn’t be trying to
log in to anyway.

login ; tty* ; !root ; !Al0000-2400

pam_unix

This is probably the most important of all modules: it is used to redirect authentication
requests through the /etc/passwd and /etc/shadow files. The module can be used with several
arguments, such as nullok and try_first_pass. The nullok argument allows a user with an
empty password to connect to a service, and the try_first_pass argument will always try the
password a user has already used (if a password is asked for again). Notice that many PAM
configuration files include a line to call the common configuration file common-auth. The
pam_unix file is called from here.

pam_warn

The pam_warn module is particularly useful with log errors: its primary purpose is to enable
logging information about proposed authentication or password modification. For example, it
can be used in conjunction with the pam_deny module to log information about users trying to
connect to your system.

Configuring Administrator Tasks with sudo
Once upon a time, if the system administrator wanted to perform his administration tasks, he
would do that as root. However, this has some security risks, the most important of which is
that you might make a mistake and thus remove everything from your server by accident.
Therefore, on Ubuntu Server, the root account is disabled by default. It doesn’t even have a
password, so you can’t log in as root after a default installation. To perform tasks for which
root privileges are required, use the sudo mechanism instead.

The idea of sudo is that specific administrator tasks can be defined for specific users. If
one such user wants to execute one of the sudo commands that she has been granted access
to, she has to run it with sudo. For example, where normally the user root would type shutdown
–h to shut a machine down, a random user with sudo privileges would type sudo shutdown –h
now. Next, the user enters his password and the machine shuts down.

Because sudo is the basic mechanism on Ubuntu to perform tasks that normally are
reserved for root only, after a normal installation every administration tasks is performed that
way. As discussed in Chapter 2, if you first run as an ordinary user the sudo passwd root com-
mand, you can then set a password for the user root and do your work as root anyway. This
technique can be quite handy for administration of a server for which root privileges are
required all the time. After all, you have to work in the way that you like best.

To create a sudo configuration, you need to use the editor visudo. This editor is used to
open a temporary file with the name /etc/sudoers. In this file, you can define all sudo tasks
that must be available on your server. You should never open the /etc/sudoers file for editing
directly because that involves the risk of completely locking yourself out if you make an error.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY150

■Tip On Ubuntu Server, visudo uses the text editor nano by default. If you are a Linux veteran who is used
to Vi, you probably won’t like this. Want to use Vi instead of nano? Use the command export VISUAL=vi.
Like what you see? Put it as the last line in /etc/profile. From now on, every time that you use either
visudo or edquota, Vi is started instead of nano. In this book, I’m using the Vi alternative because it auto-
matically saves all files in the locations where they have to be saved.

As you can see in Listing 5-12, the default configuration in /etc/sudoers is rather simple.

Listing 5-12. Default Configuration in /etc/sudoers

root@RNA:/etc# cat sudoers
/etc/sudoers
#
This file MUST be edited with the 'visudo' command as root.
#
See the man page for details on how to write a sudoers file.
Host alias specification
User alias specification

Cmnd alias specification

Defaults

Defaults !lecture,tty_tickets,!fqdn

User privilege specification
root ALL=(ALL) ALL

Members of the admin group may gain root privileges
%admin ALL=(ALL) ALL

It’s really just two lines of configuration. The first line is root ALL=(ALL) ALL, which speci-
fies that user root has the right to run all commands from all machines. Next, you can see that
the same is true for all users who belong to the user group admin. Typically, this is only the user
you have created during the installation of Ubuntu Server. If, for example, you would like to
specify that user linda is allowed to run the command /sbin/shutdown no matter which host
she is connecting from, add the following line:

linda ALL=/sbin/shutdown

This line consists of three parts. In the first part, the user name is entered. (Instead of the
name of a specific user, you can refer to groups as well, but, if you do that, make sure to put a
% sign before the group name.) The second part—ALL in this example—refers to the name of
the host where the user is logged on. Here, that host name has no limitations, but you can
specify the name of a specific machine to minimize the risk of abuse by outsiders. Next, the
command that this user is allowed to use (/sbin/shutdown, no options) is specified. This

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY 151

means that the user is allowed to run all options that can be used with this command. If you
want to allow the user just one option, you need to include that option in the command line.
If that’s the case, all options that do not match the pattern you have specified in sudoers are
specifically denied.

Now that the sudo configuration is in place, the specified user can run his commands. To
do this, the complete command should be referred to because the directories that typically
house the root commands (/sbin, /usr/sbin) are not in the search path for normal users. So,
user linda should use the following command to shut down the machine:

sudo /sbin/shutdown -h now

Summary
In this chapter, you learned how to configure local security on your server by using user
accounts, groups, and permissions. I introduced some advanced file-system security options:
ACLs and user-extended attributes. Next, you read about some important internal mecha-
nisms: PAM and sudo. Your server ought to be relatively secure by now, so let’s proceed to
Chapter 6, in which you’ll learn how to let the system do exactly what you want it to do. I’ll
cover topics like process management, the boot procedure, and kernel management.

CHAPTER 5 ■ CONFIGURING YOUR SERVER FOR SECURITY152

Setting the System to Your Hand
Management of Processes,
Boot Procedure, Kernel,
and Hardware

After reading the first five chapters of this book, you should have your server up, running,
and secure. Up to now, however, you haven’t really changed the way processes on your server
are running. So in this chapter, you will learn how to customize and optimize your server.

We’ll have a look at some important aspects of your server that can be tuned and modi-
fied to increase its efficiency. First, I’ll talk about process monitoring and management. Then,
I’ll talk about cron and how you can use it to automate process execution. After that, you’ll
learn about the system boot procedure, followed by kernel and hardware management.

Process Monitoring and Management
Everything you do on a Linux server is handled as a process by that server, so it’s very impor-
tant that you know how to manage these processes. In this section, you’ll learn how to start
and stop processes, which processes can be used, and how to run and manage processes in
both the foreground and background. You will also learn how to use cron and schedule
processes for future execution.

Different Kinds of Processes
It depends on the way you look at them, but you could say that Linux basically has two differ-
ent kinds of processes: automatic and interactive. The automatic processes include services
that are started automatically when you boot your server—they are known as daemons. The
upstart process that is responsible for an important part of your server’s boot procedure takes
care that these processes are started properly. Daemons are service processes that run in the
background; in other words, they do not write their output directly to the standard output.
The interactive processes are started by users from a shell. Any command started by a user
and producing output on the standard output is an interactive process.

153

C H A P T E R 6

To start an interactive process, a user needs to type the corresponding command. The
process then runs as a child process from the shell in which the user entered the command.
The process will do its work and will terminate when it’s finished. While terminating, it will
write its exit status to its parent (which is the shell if the process was an interactive process).
Only after a child process has told its parent that it has terminated can it be closed properly.
In case the parent is no longer present (which is generally considered an error condition), the
child process will become a so-called zombie process, and it won’t be possible to perform any
management on the process except for trying to restart the parent process. In general, zombie
processes are the result of bad programming. You should try to upgrade (or maybe rewrite)
your software if you see too many of them.

The concepts of parent and child processes are universal on your system. The init
process is started by upstart (which I’ll cover later) as the first process; from there, all other
processes are started. You can get an overview of the hierarchical process structure by using
the pstree command, which provides a result such as that shown in Listing 6-1.

Listing 6-1. The pstree Command Shows Relations Between Parent and Child Processes

init ----apache2----5*[apache2]
|--atd
|--cron
|--dd
|--dhclient3
|--events/0
|--5*[getty]
|--khelper
|--klogd

Although interactive processes are important to users working on your machine, daemon
processes are more important on a server because those daemon processes usually provide
the services that are needed on a server. Daemon processes typically run in the background
and normally don’t send any output to the terminal. To see what they’re doing, you must
check the log files to which the daemon processes write. Generally speaking, it’s a good idea
to start with /var/log/messages if you’re looking for daemon output. From a perspective of
process management, it doesn’t really matter if you’re working with daemon or interactive
processes; both can be handled the same way using the same commands.

Foreground and Background
When working with interactive processes, it can be useful to know that processes can run in
the foreground and in the background. A foreground process takes up the current terminal,
which gives optimal control of the process; the background process runs without an interface
and has to be interrupted with a special command before it can be stopped or parameters can
be passed to it. It might be useful for processes that take some time to complete. Before talk-
ing about the way you can start and manage processes that run in the background, let’s talk
about some process details so that you can understand what’s happening.

A process always works with three standard file handlers that determine where the
process should send its output and accept its input. They are the standard input (STDIN), the
standard output (STDOUT), and the standard error (STDERR). Normally, when a process is

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND154

running in the foreground, the STDIN is the keyboard, the STDOUT is the terminal the
process is working on, and the STDERR is also the terminal that the process is working on. As
you learned in Chapter 2, you can change them all by using redirection (for example, grep –i
blah * 2> /dev/null would redirect the error output of the grep command to the null device).

It can be a little confusing that the three file descriptors don’t change when you decide to
run a process in the background. When it starts, the STDIN, STDOUT, and STDERR for a
process are set; once they are set, they stay like that no matter what you do to the process.
Therefore, you can run a long command like find / -name "*" -exec grep -ls something {}
\; as a background job, but you’ll still see its output and errors on your screen if you haven’t
redirected STDERR as well. If you don’t want to see errors, you should use redirection to send
STDOUT and STDERR somewhere else: by putting > /somewhere after the command, you are
redirecting the standard output to a file called /somewhere; and by using 2> /dev/null, you can
arrange for all errors to be redirected to the null device.

■Tip Want to know what’s really happening? In the /proc file system, you can see how STDIN, STDOUT,
and STDERR are defined. Check the directory with the process ID (PID) of the process as its name (see the
section “Managing Processes” later in this chapter for more details on process IDs). In this directory, activate
the subdirectory fd (short for “file descriptors”). You’ll see a list of all files the process currently has open—
these are the so-called file descriptors. Number 0 is STDIN, 1 is STDOUT, and 2 is STDERR. Use the
command ls -l to check what they are linked to, and you will know how STDIN, STDOUT, and STDERR
are set for this process. If the subdirectory fd is empty, you’re probably dealing with a daemon process
that has no file descriptors.

Now that you know what to expect when working with processes in the background, it’s
time to learn how you can tell a process that it should be a background process. Basically, you
can do this in one of two ways:

• Put an & after the name of the command when starting it. This makes it a background
job immediately. For example, use nmap 192.168.1.10 > ~/nmap.out & to run the nmap
command as a background process. What’s the advantage of this? While waiting for the
command to produce its output, you can do something else.

• Interrupt the process with the Ctrl+Z key sequence and then use the bg command to
restart it in the background.

Once the command is running as a background job, you can still control it. Use the jobs
command for an overview of all current background processes. You’ll see a list of all interac-
tive processes that have been started as a background job from the same shell environment.
In front of each of these processes, you can see their current job number, and this job number
can be used to manage the process with the fg command. For example, if jobs gives you a
result such as

RNA:~# jobs
[1]- Running cat /dev/sda > /dev/null &
[2]+ Running find / -name "*" -exec grep -ls help \; > /dev/null &

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 155

and you want to be able to terminate the cat command with Ctrl+C, use fg 1 to bring the cat
command to the foreground again.

Managing Processes
As a Linux administrator, process management is a major task. If, for example, your server is
reacting very slowly, you can probably find a process that’s causing the problem. If this is the
case, you need to know how to terminate that process, or maybe how you can reset its priority
so that it can still do its work while not stopping other processes. The following sections
describe what you need to know to perform daily process management tasks.

Tuning Process Activity
If something isn’t going well on your server, you want to know about it. So, before you can con-
duct any process management, you need to tune process activity. Linux has an excellent tool
that allows you to see exactly what’s happening on your server: the top utility. From this utility
you can see everything you need to know. It is very easy to start top: use the top command.
When the utility starts, you’ll see something like Figure 6-1.

Figure 6-1. The top utility gives you everything you need to know about the current state of your
server.

Using top to Monitor System Activity

The top window consists of two major parts. The first (upper) part provides a generic overview
of the current state of your system. These are the first five lines in Figure 6-1. In the second
(lower) part of the output, you can see a list of processes, with information about the activity
of these processes.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND156

The first line of the top output starts with the current system time. This time is followed by
the “up” time; in Figure 6-1, you can see that the system has been up for only a few minutes.
Next, you see the number of users currently logged in to your server. The end of the first line
contains some very useful information: the load average. This line shows three different num-
bers. The first is the load average for the last minute, the second is the load average for the last
5 minutes, and the third is the load average for the last 15 minutes.

The load average is displayed by a number that indicates the current activity of the
process queue. The value here is the number of processes that are waiting to be handled by
the CPU on your system. On a system with one CPU, a load average of 1.00 indicates that the
system is completely busy handling the processes in the queue, but there are no processes
waiting in the queue. If the value increases past 1.00, the processes are lining up, and users
may experience delays while communicating with your server. It’s hard to say what a critical
value exactly is. On many systems, a value anywhere between 1 and 4 indicates that the sys-
tem is just busy, but if you want your server to run as smoothly as possible, make sure that this
value exceeds 1.00 only rarely.

If an intensive task (such as a virus scanner) becomes active, the load average can easily
rise to a value of 4. It may even happen that the load average reaches an extreme number like
254. In this case, it’s very likely that processes will wait in the queue for so long that they will
die spontaneously. What exactly indicates a healthy system can be determined only by doing
some proper baselining of your server. In general, 1.00 is the ideal number for a one-CPU sys-
tem. If your server has hyperthreading, dual-core, or two CPUs, the value would be 2.00. And,
on a 32-CPU system with hyperthreading enabled on all CPUs, the value would be 64. So the
bottom line is that each (virtual) CPU counts as 1 toward the overall value.

The second line of the top output shows you how many tasks currently are active on your
server and also shows you the status of these tasks. A task can have four different statuses:

• Running: In the last polling interval, the process has been active. You will normally see
that this number is rather low.

• Sleeping: The process has been active, but it was waiting for input. This is a typical
status for an inactive daemon process.

• Stopped: The process is stopping. Occasionally, you’ll see a process with the stopped
status, but that status should disappear very soon.

• Zombie: The process has stopped, but it hasn’t been able to send its exit status back to
the parent process. This is a typical example of bad programming. Zombie processes
will sometimes disappear after a while and will always disappear when you have
rebooted your system.

The third row of top provides information about current CPU activity. This activity is sep-
arated into different statistics:

• us: CPU activity in user space. Typically, these are commands that have been started by
normal users.

• sy: CPU activity in system space. Typically, these are kernel routines that are doing their
work. Although the kernel is the operating system, kernel routines are still often con-
ducting work on behalf of user processes or daemons.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 157

• id: CPU inactivity, also known as the idle loop. A high value here just indicates that your
system is doing nothing.

• wa: For “waiting,” this is the percentage of time that the CPU has been waiting for new
input. This should normally be a very low value; if not, it’s time to make sure that your
hard disk can still match up with the other system activity. If your CPU utilization is
high, this should be the first parameter to check because a high workload on the CPU
might be caused by a slow I/O channel.

• hi: For “hardware interrupt,” this is the time the CPU has spent communicating with
hardware. It will be rather high if, for example, you’re reading large amounts of data
from an optical drive.

• si: For “software interrupt,” this is the time your CPU has spent communicating with
software programs. It should be rather low on all occasions.

• st: This parameter indicates the time that is stolen by the virtualization hypervisor
(see Chapter 13 for more details about virtualization and the hypervisor) from a virtual
machine. On a server that doesn’t use any virtualization, this parameter should be set to
0 at all times. If there is a virtual machine that is very active on your server, this parame-
ter will increase from time to time because it measures activity in the host operating
system; the host operating system has to share CPU cycles with the virtual machine.

The fourth and fifth lines of the top output display the memory statistics. These lines
show you information about the current use of physical RAM (memory) and swap space.
(Similar information can also be displayed using the free utility.) An important thing that you
should see here is that not much swap space is in use. Swapping is bad because the disk space
used to compensate for the lack of physical memory is approximately 1,000 times slower than
real RAM.

If all memory is in use, you should take a look at the balance between buffers and cache.
Cache is memory that is used to store files recently read from the server’s hard drive. When
files are stored in the cache, the request can be handled very quickly the next time a user
requests the same file, thus improving the general speed of the server. Cache is good, and
having a lot of it isn’t bad at all.

A buffer is a region of memory reserved for data that still has to be written to the server’s
hard drive. After the data has been written to the buffers, the process that owns the data gets a
signal that the data has been written. This means that the process can go on doing what it was
doing and has to wait no longer. Once the disk controller has time to flush the buffers, it will
flush them. Although using buffers is helpful, there is a disadvantage: everything that was
stored in the server’s buffers will be lost in case of a power outage if it hasn’t yet been written
to disk. And that’s where the journal becomes useful: when the server reboots, the journal is
read to recover the damaged files as fast as possible (see Chapter 4 for more information about
journaling).

The bottom line of monitoring the cache and buffers parameter is that it is occupied
memory that can be freed as soon as it is needed for something else. If a process has a mem-
ory request, the server can clear these memory areas immediately to give the memory that
becomes available to the process in need.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND158

The lower part of the top window provides details about the process that’s most active in
terms of CPU usage. It will be the first process listed, and the line also displays some usage
statistics:

• PID: Every process has a unique process ID. Many tools such as kill need this PID for
process management.

• User: This is the name of the user ID the process is using. Many processes run as root,
so you will see the user name root rather often.

■Note For well-programmed processes, it’s generally not a problem that they’re running as root. It’s a dif-
ferent story, though, for logging in as the user root.

• PRI: This is the priority indication for the process. This number is an indication of when
the process will get some CPU cycles again. A lower value indicates a higher priority so
that the process will have its share of CPU cycles sooner. The value RT indicates that it
is a real-time process and is therefore given top priority by the scheduler.

• NI: The nice value of the process. See “Setting Process Priority” later in this chapter for
more details on nicing processes.

• VIRT: The total amount of memory that is claimed by the process.

• RES: The resident memory size is the amount of memory that is actually mapped to
physical memory. In other words, it represents the amount of process memory that is
not swapped.

• SHR: The amount of shared memory is what the process shares with other processes.
You’ll see this quite often because processes often share libraries with other processes.

• S: This is the status of the process; they’re the same status indications as the ones in the
second line of the top screen.

• %CPU: This is the amount of CPU activity that the process has caused in the last polling
cycle (which is typically every five seconds).

• %MEM: This is the percentage of memory that the process used in the last polling cycle.

• TIME+: This indicates the total amount of CPU time that the process has used since it
was first started. You can display this same value by using the time command, followed
by the command that you want to measure the CPU time for.

• Command: This is the command that started the process.

As you have seen, the top command really provides a lot of information about current sys-
tem activity. Based upon this information, you can tune your system so that it works in the
most optimal way.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 159

Other Tools to Monitor System Activity
Although top is not the only tool that you can use for process monitoring, it’s the most impor-
tant. Its major benefit is that it shows you almost all you need to know about your system’s
current activity, but you should be aware that top itself takes up system resources as well, thus
skewing the parameters that it shows. Some other good performance-monitoring tools are
available as well:

• ps: This tool gives a list of processes.

• uptime: This tool shows how long the server is up and gives details about the load aver-
age as well. Basically, it displays the same output as the first line of output of the top
command.

• free: Use this tool to show information about memory usage. Use the –m option to dis-
play the result in megabytes.

Terminating Processes
In your work as an administrator, you’ll need to terminate misbehaving processes on a regular
basis. When terminating a process, you’ll send it a predefined signal. In general, the three
important ones are SIGHUP, SIGKILL, and SIGTERM.

If you send the SIGHUP signal to a process, it doesn’t really terminate the process, but just
forces it to reread its configuration files. This is very useful to make sure that changes you
made to configuration files are applied properly. Next is SIGKILL, which is sent to a process
when someone uses the infamous kill -9 <PID> command to terminate a process. In this
command, the -9 is a numerical representation for the SIGKILL signal. (Check the signal(7)
man page for more details about signals and their numerical representations.) The SIGKILL sig-
nal doesn’t terminate a process nicely: it just cuts it off, and the results can be severe because
the process doesn’t have an opportunity to save open files. Therefore, SIGKILL will definitely
damage any open files and possibly even lead to system instability. So use it only as a last
resort.

SIGTERM is the third signal that a process will always listen to. When a process receives
this signal, it shuts down gracefully. It closes all open files and also tells its parent that it’s
gone. Using SIGTERM is the best way to terminate processes you don’t need anymore.

Commands for Process Termination
You can use different commands to terminate a process. The following list provides a short
description of the most important ones:

• kill: This is one of the most commonly used commands to terminate processes. It
works with the PID of the process you need to kill. If a special signal needs to be sent to
a process, the signal is commonly referred to with its numeric argument (for example,
kill -9 1498), but you can use kill --sigkill <pid> instead. If no signal is referred
to, the default SIGTERM signal (15) is sent to the process.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND160

• killall: The major disadvantage of kill is that it works with one or more PIDs and
thus isn’t the best solution to kill more than one process at once. If you need to kill
more than one process, you’d better use killall, which works with the name of the
process. For example, killall httpd kills all instances of the Apache web server that
are currently active on your server. By default, killall sends SIGTERM to the processes
you want to kill. If you need it to do something else, add the name or number of the sig-
nal you want to send to the process. For example, use killall -SIGKILL httpd to kill all
instances of the Apache web server.

■Tip The killall command works with processes that have exactly the name you’ve specified. It doesn’t
work for processes that have that name somewhere in the command line that was started to invoke them.
Thus, killall won’t kill these processes. To kill these processes anyway, you’ll need to issue a somewhat
more complex command. The following command kills all processes that have the text “evolution” some-
where in the command line: kill `ps aux | grep evolution | grep –v grep | awk '{ print
$2 }'`. The technique used in this line is referred to as command substitution, which means that the result
of a command is used as input for another command. In this example, the command ps aux | grep

evolution | grep –v grep | awk '{ print $2 }' results in a list of PIDs of all processes that have
the text “evolution” somewhere in the command line. This list is next used by the kill command to termi-
nate all these processes. You do want to be very sure about what you type before you run this command
because a typo will kill processes that you maybe don’t want to.

• top: Killing a process from top is easy. From the top interface, press the k key. You’ll first
be asked for the PID of the process you want to kill. Enter it, and then you’ll be asked
what signal to send to the process. Specify the numeric value of the signal and press
Enter. This terminates the process.

• pkill: The pkill command is useful if you want to kill a process based on any informa-
tion about the process. This command is related to the pgrep command, which allows
you to find process details easily. For example, you can use pkill to kill all processes
owned by a certain user: pkill -U 501 kills all processes owned by the user with UID
501. Because it knows many ways to refer to processes that you want to terminate,
pkill is a very convenient command.

Using ps to Get Details About Processes
Before killing a process, you most likely want some more information about it. Of course, you
can use top to do this, but the utility has the disadvantage that it shows only the most active
processes in its standard output. You can run it in batch mode, though, to get a complete list
of all processes. Use top –b to obtain this result. If you need to manage a process that isn’t
among the most active processes, the ps utility is very useful. By using the right parameters,
this command will show all processes that are currently active on your server and, combined
with grep, it offers a flexible way to find exactly what you were looking for.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 161

If you don’t use any options with ps, it will just show you the processes that are interactive
and that you own. Normally, this will be a rather short list. As a system administrator, you
probably want to see a complete list of all processes. Now there is something funny with the
ps command: you can use it in the BSD-style UNIX syntax, but also with the System V-style
syntax.

■Note In the history of UNIX, two different flavors of UNIX developed: the BSD style and the System V style.
Both flavors had different ways of doing things. In some Linux commands, Linux tries to make both users
happy by implementing both flavors in one command. Therefore, the ps command has two different styles
you can use.

You probably don’t care what kind of syntax you’re using, and you just want to see a list of
active processes. This can be done by using the ps -ef command. Alternatively, ps -aux does
this as well; check Listing 6-2 for an example of the output of this command. Both commands
provide a complete list of all processes that are running on your system, and it’s just a matter
of taste as to which you prefer. Although ps has some options to do sorting, instead of remem-
bering what these options do, you can use grep to do some filtering. For example, ps -ef |
grep httpd shows detailed information, but only about the output line where the httpd string
occurs.

Listing 6-2. The ps –aux Command Displays a Complete List of All Processes on the Server

root@ubuntu:~# ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.3 2908 1844 ? Ss 11:43 0:01 /sbin/init
root 2 0.0 0.0 0 0 ? S 11:43 0:00 [migration/0]
root 3 0.0 0.0 0 0 ? SN 11:43 0:00 [ksoftirqd/0]
root 4 0.0 0.0 0 0 ? S 11:43 0:00 [watchdog/0]
root 5 0.0 0.0 0 0 ? S< 11:43 0:00 [events/0]
root 6 0.0 0.0 0 0 ? S< 11:43 0:00 [khelper]
root 7 0.0 0.0 0 0 ? S< 11:43 0:00 [kthread]
root 30 0.0 0.0 0 0 ? S< 11:43 0:00 [kblockd/0]
root 31 0.0 0.0 0 0 ? S< 11:43 0:00 [kacpid]
root 32 0.0 0.0 0 0 ? S< 11:43 0:00 [kacpi_notify]
root 90 0.0 0.0 0 0 ? S< 11:43 0:00 [kseriod]
root 115 0.0 0.0 0 0 ? S 11:43 0:00 [pdflush]
root 116 0.0 0.0 0 0 ? S 11:43 0:00 [pdflush]
...
root 4202 0.0 0.1 5084 968 ? Ss 11:44 0:00 /usr/sbin/sshd
root 4213 0.0 0.4 7864 2472 ? Ss 11:44 0:00 sshd: root@pts/
root 4215 0.0 0.3 4048 1780 pts/0 Ss 11:44 0:00 -bash
root 4237 0.0 0.1 2564 996 pts/0 R+ 12:02 0:00 ps aux

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND162

Setting Process Priority
Killing a process may improve the performance of your server, but what if you still need that
process? In this case, resetting its priority (renicing) may be an option. To understand what the
commands nice and renice are doing, we first need to have a look at how the process sched-
uler works.

Every system uses a process queue. All processes sit in this queue to wait for some CPU
cycles. So, if three processes are named A, B, and C, they will each get an equal number of CPU
cycles. If a process still needs more cycles after the process has been handled, it reenters the
queue. Because it was the last process that was handled, it rejoins the process queue at the
end.

This all sounds pretty fair to all processes, but it just doesn’t work in some cases. Imagine
that process A is the company database that causes 90 percent of all the workload on your
server, and processes B and C are less important. In this case, you’d want to give process A a
higher priority, and give a slightly lower priority to the other two processes. This is exactly
what the nice and renice commands do. Both commands work with a numeric argument
from –20 up to 19. If a process has the nice value –20 (which means that it is not nice at all to
other processes), it gets the most favorable scheduling (highest priority), and if it gets 19, it
gets the least favorable scheduling.

Giving a nice value of –20 to a very important process may look like a good solution. But
you should never do this. A very busy process that gets a nice value of –20 will exclude all
other processes. Because, for example, kernel processes such as writing to disk also need to
enter the process queue, you could give your database the highest priority, but then the data-
base wouldn’t be able to write its data to disk. So that wouldn’t work. Let’s just say that –20 is a
nice value you should never use. If you want to renice a process, do it carefully, such as by
increasing or decreasing the nice value of a process in increments of 5.

Several methods are available to renice processes:

• nice: The nice command can be used to start a process with a given nice value. For
example, nice 10 find / -name "*" -exec grep -ld help {} \; starts the find com-
mand with a lower priority. The disadvantage of this command is that you have to know
beforehand that you are going to want to adjust the nice value of a process.

• renice: The renice command is used to change the priority of a running command.
This command normally works with the PID of the process you want to renice. For
example, renice -10 1234 increases the priority of process 1234.

• top: A very convenient way to renice a process is to use the top interface. From this
interface, press the n key. You’ll then be asked to enter the PID of the process you want
to renice. After entering this PID, enter the new nice value you want this process to
have.

Executing Processes Automatically
On a server system, it’s often important that processes are executed at a regular predefined
time, and Linux offers the cron facility to do this. It works with two parts: a daemon called
crond and some configuration files that the administrator can use to specify when the

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 163

processes should be started. Both parts ensure that the command is executed at regular times.
Apart from cron, the at command can be used to run a command just once.

Configuring cron
The cron service is activated by default. It checks its configuration files every minute to see if
something needs to be done. The cron process looks for configuration data in different places:

• The generic file /etc/crontab can contain lines that tell cron when to execute a given
command.

• In the directory /etc/cron.d, an administrator can put a file that defines what should
happen, and when. When installing software packages, you’ll see that some files are
automatically created in here as well.

• Every user can have its own cron configuration file, telling the system when to execute
certain tasks. A user can enter the command crontab –e to create a personal crontab
configuration file.

• The directories /etc/cron.hourly, cron.daily, cron.weekly, and cron.monthly are used
to activate jobs once per hour, per day, per week, or per month, respectively. These
directories contain files that are activated every hour, day, week, or month.

Working with the cron time activation mechanisms makes it very easy for an administra-
tor to start jobs on a regular basis. The scripts in these directories are just regular shell scripts
that make sure the job gets done. So all you have to do is include a shell script that activates
the job you want to start. These scripts can be very simple: just a line that starts the service is
enough.

■Note Some daemons need to be restarted to make sure that changes are activated, but this isn’t true for
cron, which rereads its configuration every minute to see whether any new jobs have been scheduled.

cron User Jobs
You can set up your system to allow individual users to start their cron jobs. Such a configura-
tion starts with the files /etc/cron.allow and /etc/cron.deny. A user who is listed in /etc/
cron.allow or who isn’t listed in /etc/cron.deny is capable of adding cron jobs. If /etc/cron.
allow exists, only this file is evaluated and settings in /etc/cron.deny are ignored. If both files
don’t exist, only root can create cron jobs. The cron configuration files for individual users are
stored in the directory /var/spool/cron/crontabs. The crontab command can be used to edit
these files. Next we’ll look at some examples of the crontab command in action.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND164

■Note By default, the crontab command uses the nano editor to do its work. The problem with nano,
however, is that it doesn’t write its configuration files to the right location by default. To fix this, as root add
the following line to the end of /etc/profile: export VISUAL=vim. After logging in again, vim will be
used as the default editor for crontab and some other editor-related commands as well. The advantage?
The right file will be created at the right location automatically.

• crontab -e: This creates or edits cron jobs for the user who executes the command.
Again, nano is used as the editor to modify these files.

• crontab -l: This command displays a list of all jobs that are scheduled for the current
user.

• crontab -r: This command deletes all jobs for the current user.

In the cron files, you use lines to define what should happen, and each line specifies one
command. The lines consist of six fields each: the first five specify when the command should
be activated, and the last field specifies what command should be activated. The following
code is an example of such a line:

*/5 8-18 * * 1-6 fetchmail mailserver

The easiest part to understand in this line is the actual command: fetchmail mailserver.
This command makes sure that incoming mail is fetched from mailserver. Then, in the first
five fields, you can see an indication of the times that it should happen. These fields have the
following meanings:

• Minutes: This field specifies the minute when the command should be executed. It has
a range from 0 to 59. Always specify something for this field; if you don’t, the command
will run every minute. In the example, the construct */5 is used to specify that the com-
mand should run every 5 minutes.

• Hours: This field specifies the hour that the command should run. Possible values are
between 0 and 23. In the example, you can see that the command will run every hour
between 8 and 18.

• Day of the Month: Use this field to execute a command only on given days of the
month. This field is often not specified.

• Month: Use this field to specify in which month of the year the command should run.

• Day of Week: This field specifies on which day of the week the command should run.
The range is 0 to 7, and both of the values 0 and 7 should be used to specify that the
command should run on Sunday.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 165

■Note You normally will not use it, but, if you ever want to work with the /etc/crontab file, be aware
that, between the time setting and the command you want to execute, the name of the user whose account
should be used to execute the command is entered. For example, 0 17 * * * root /sbin/shutdown -h

now would make sure the system shuts down automatically every day at 5 p.m. by using the permissions of
the user root.

Executing Once with at
The cron mechanism is used to execute commands automatically on a regular basis. If you
want to execute a command just once, at is the solution you need. The at mechanism com-
prises different parts:

• The service atd: Make sure it is started if you want to schedule commands to run once.

• The files /etc/at.allow and /etc/at.deny: Used to specify which users can and cannot
schedule commands with at.

• The at command: Used to schedule a command.

• The atq command: Used to display an overview of all commands that currently have
been scheduled.

• The atrm command: Used to delete jobs from the at execution queue.

Scheduling a job with the at command is not hard; just use the at command followed by
the time when you want to run the command, for example at 17:00. This command opens
the interactive at prompt, where you’ll enter the commands you want to schedule for execu-
tion at the specific time. When you’ve finished entering the names of commands, use the
Ctrl+D key sequence to close the interactive at prompt, and the commands will be scheduled.

The at command has different options to specify when exactly a command should be
executed. Some of the most useful options are listed here:

• HH:MM: In its most elementary form, time is indicated in an HH:MM format; for example
an entry of 17:00 will execute the command the next time it is 17:00 hours.

• am/pm: If you don’t like the HH:MM notation, use am/pm instead; for example, at 5 pm.

• DDMMYY HH:MM: To run a command at a specific time on a specific day, you can use a full
day specification as well.

Other options are available. For example, you can use words to tell at when to run a com-
mand. For example, at teatime tomorrow would run the command at 4 p.m. the next day.
Check the at man page for more details.

Tuning the Boot Procedure
It’s important that you know what happens during the boot procedure of your computer for
two reasons. First, you need to know how it works to be able to perform troubleshooting.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND166

Second, you need to be aware of what happens if you want to make sure that a service is acti-
vated automatically. In the Linux boot procedure, the following phases can be distinguished:

• The boot loader GRUB is executed.

• The upstart process is started.

• The initial boot phase is executed.

• The runlevel is activated.

In the next subsections, you’ll learn in detail how these phrases work and how you can
modify the boot procedure.

Managing the GRUB Boot Loader
The BIOS of every computer has a setting for the device that should be used for booting by
default. Often, the server will try to initiate the boot procedure from its hard drive. It reads the
very first sector of 512 bytes (the master boot record, or MBR), in which it finds the GRUB pri-
mary boot loader in the first 446 bytes. After that are the 64 bytes in which the partition table is
stored; and to finish, in the last 2 bytes are where a magic code is written. Upon installing your
server, the installation program writes the GRUB boot code onto the hard drive. This code
makes sure that your server is started automatically. However, you can also interrupt the auto-
matic startup by pressing the Esc key. Figure 6-2 shows the menu that you’ll see in this case.

Figure 6-2. The GRUB boot menu allows you to interrupt the boot procedure.

The GRUB Configuration File
GRUB has a text configuration file—/boot/grub/menu.lst—that defines all options from the
boot menu. Here, you can specify the different boot options on your server. Listing 6-3 shows

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 167

the data that is normally in the GRUB configuration file just after installation of Ubuntu
Server. For better readability, I removed all the comment sections from this file.

Listing 6-3. Default GRUB menu.lst File

default 0
timeout 3
hiddenmenu

title Ubuntu 8.04, kernel 2.6.24-16-server
root (hd0,0)
kernel /boot/vmlinuz-2.6.24-16-server\
root=UUID=1aa61aba-4b23-4e9d-9718-289f1c84a3a ro quiet splash
initrd /boot/initrd.img-2.6.24-16-server
quiet

title Ubuntu 8.04, kernel 2.6.24-16-server (recovery mode)
root (hd0,0)
kernel /boot/vmlinuz-2.6.24-16-server\
root=UUID=1aa61aba-4b23-4e9d-9718-e289f1c84a3a ro single
initrd /boot/initrd.img-2.6.24-16-server

title Ubuntu, memtest86+
root (hd0,0)
kernel /boot/memtest86+.bin

This file consists of several parts. The first is the general section, which defines some
options that determine how the menu is used. Next are three sections, each devoted to one of
the three different boot menu options.

The first parts of the GRUB boot menu are the generic options. The example file shown in
Listing 6-3 has three of them. The option default 0 specifies that the first section in menu.lst
should be executed as the default section. Next, timeout 3 is used to give the user 3 seconds to
interrupt the startup procedure. If the user doesn’t do anything during these 3 seconds, the
server will continue with the boot process. The last generic boot option is hiddenmenu. As you
can guess, this option causes the boot menu to be hidden by default. If the user presses the
Esc key at this moment, the menu in Figure 6-2 will be displayed.

In the second part, the first item in the boot menu is specified. This item has the title
Ubuntu, kernel 2.6.20-15 server, which is defined with the title option. Next, everything that
is needed to start the server is defined. First is the name of the root device that should be read.
This line is needed for GRUB to know where it can find the kernel that it should load. In this
example, this is the device root (hd0,0), which corresponds to /dev/sda1 or /dev/hda1. How-
ever, because the device names are not known at this stage in the boot procedure, it’s not
possible to refer to these device names, so that’s why (hd0,0) is used. Check the file
/boot/grub/device.map to see how these device mappings are currently defined.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND168

After specifying the root device, the kernel itself is referred to in the line that starts with
kernel /boot/vmlinuz. This line also specifies all the options that are required to load the
kernel properly. Some of the more common options are as follows:

• root: This option refers to the device where the root file system is found. It’s possible to
refer to common device names such as /dev/sda1 here. To add increased flexibility,
however, file system UUIDs are used. In case your root is on a logical volume, you’ll see
the logical volume device name here. Check Chapter 4 for more details, or use the
dumpe2fs command to see parameters that are set for your Ext2/Ext3 file systems.

• ro: Use this option to make sure that the root device is mounted read-only at this stage.
This is necessary so that you’ll be able to perform a file system check later during the
system boot.

• quiet: This option suppresses most messages that are generated while booting. If you
want to see exactly what happens, remove this option from menu.lst.

• splash: Use this option to show a splash screen. In general, this is a graphical screen
that is shown to the user during the boot process. You don’t want this option on a
server; you should disable it so that you can see what happens when the server
comes up.

• vga: Use this option to specify the VGA mode as a hexadecimal argument when booting.
This line determines the number of columns and lines used when starting your system.
As an alternative to a value such as 0x314, you can use the option ask. In that case, you
can enter the mode you want to use when booting.

• ide: You can use this option to specify the mode that should be used for starting the IDE
device. Use ide=nodma if you suspect that your server might have problems initializing
IDE in DMA mode.

• acpi: The advanced configuration and power interface (ACPI) option allows you to
specify what to do with this sometimes problematic technique. By default, ACPI is on.
Use acpi=off if you suspect that it’s causing some problems.

• noresume: If your system was suspended, this option will just ignore that fact and start a
new system. While starting this new system, the suspended system is terminated.
Because normally you wouldn’t suspend a server, you probably don’t need this option,
either.

• nosmp: Use this option if symmetric multiprocessing (SMP) is causing you any trouble.
But be aware that you’ll be using only one CPU if this option is used.

• noapic: The advanced programmable interrupt controller (APIC) allows you to use
interrupts with many more outputs and options than when using normal interrupts.
However, this option can cause problems; so use noapic if you think that your system
can’t properly handle APICs.

• maxcpus: This option tells your kernel how many CPUs to work with. Use maxcpus=0 to
force all off except the primary processor.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 169

• edd: This option specifies whether enhanced disk drive (EDD) support should be used.
If you suspect that it’s causing problems, switch it off here.

• single: This option is used only in recovery mode. It starts single-user mode, in which a
minimal amount of services is started so that the administrator can perform trouble-
shooting.

The following line specifies what to load as the initial RAM drive (initrd). The use of an
initrd is very important on modern Linux systems because it’s used to load the kernel mod-
ules that are needed to boot the system.

The other menu items that are defined in this boot menu work in more or less the same
way: each starts with a specification of the root device and then a referral to the kernel that
should be loaded.

One of the nice features of GRUB is that it reads its configuration dynamically, which
means that if you made any modifications to the options used in menu.lst, you don’t have to
recompile or reinstall GRUB. This is a huge advantage as compared with LILO, the boot loader
from the early days of Linux, in which you had to run the lilo command after all changes or
modifications to the configuration. Any changes that you make to menu.lst will show immedi-
ately the next time you restart your server.

Installing GRUB
Installing GRUB is not something that you’ll do very frequently because it’s installed by
default. However, if your GRUB ever causes a problem when booting your server, you may
need to reinstall it. Before you do this, however, you’ll have to boot your server from the instal-
lation CD-ROM. From the boot menu on the CD-ROM, select the option to rescue a broken
system. After answering some generic questions about your server, a menu will offer different
options (see Figure 6-3). From this menu, you can choose to reinstall the GRUB boot loader
to reinstall GRUB directly. Or you may choose to select a shell in either your root device or
your installer’s environment. When choosing this latter option, you can use the command
grub-install /dev/sda to reinstall GRUB.

Figure 6-3. It’s relatively easy to reinstall GRUB from the rescue environment.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND170

Working with the GRUB Boot Menu
When GRUB runs, it displays a boot menu. (Remember to press the Esc key when booting
your server in silent mode.) From the boot menu, you will normally have a choice between the
three different sections that are defined in /boot/grub/menu.lst. Normally you will select the
first option to boot the server. If you want to use your server for XEN virtualization, select the
XEN option from the boot menu. (This option is available only if you selected the XEN soft-
ware when installing your server. See Chapter 13 for more on XEN.) The failsafe option is the
one you need if you run into trouble, and finally, you can select the Memory Check option if
you suspect that you have problems with your server’s RAM.

■Note The failsafe option is more than just a single-user mode. A minimal number of services are loaded
in single-user mode, but the kernel is loaded in the normal way. Selecting the failsafe option from the boot
menu starts the single-user mode, but the kernel is also started with minimal options to increase chances
that you can boot successfully.

If the default startup option from the GRUB menu is not good enough, select the item
that you want to start and press the e key. You’ll next see a window like the one in Figure 6-4.

Figure 6-4. After pressing the e key, you can choose from more details when booting your server.

You’ll now see the selected boot item in more detail. Every line in the selected item can be
edited from this interface. From this interface, you can perform the following tasks:

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 171

• Press b to boot: Use this option if you want to boot your computer with the selected
settings.

• Select a line and press the e key to edit the selected line. This option is very convenient
if you know that you have made an error in a certain line and you want to fix it.

• Press c to open the GRUB command line. This not-so-intuitive interface allows you to
type GRUB-specific commands to tell your server what you want to do. If GRUB still is
capable of showing you some boot options, you probably won’t use this option much.

• Press o or O to open a new line. On this line, you can add new options that you want to
pass to GRUB while starting your machine. For example, if you want to start your server
in troubleshooting mode instead of its normal startup mode, type single to start single-
user mode.

• Press d to remove a line from the menu.

• Press Esc to return to the main menu. From there, you can press Enter to continue
booting.

Upstart
After GRUB, the kernel is loaded. In the old days, the kernel loaded the init process that read
its configuration file /etc/inittab. Since Ubuntu 7.04, however, a new program is used
instead. The Upstart program is responsible for the remainder of the boot procedure. To start
your computer, it still uses a boot method that looks a lot like the one that was used in the
old days.

The most important part of Upstart is found in the /etc/event.d directory. It’s here that
Upstart looks for a definition of all the jobs it has to start, and there’s a file for every job. Next,
you’ll find a description of all the available jobs:

• control-alt-delete: This job defines what should happen when a user presses the
Ctrl+Alt+Del key sequence. The default behavior is that the system will reboot. If you
don’t like that, open the /etc/event.d/control-alt-delete file and replace this shut-
down command with something else.

• logd: This job makes sure that the log process /sbin/logd is started. This process
ensures that all log messages generated by daemons on your server can be logged.

• rc0-rc6: A Linux computer uses the concept of runlevels, which are used to define what
services have to be started when booting your server. The scripts with the names rc0 up
to rc6 define what should happen in the corresponding runlevels. Typically, Ubuntu
Server is started in runlevel 2. This master script makes sure that all services normally
required in that runlevel are launched. Later in this chapter you’ll learn how to define
what happens in a given runlevel.

• rc-default: This script determines the default runlevel, which is normally runlevel 2
on Ubuntu Server. If you want to use something else for the default runlevel, you
should create a file with the name /etc/inittab that contains the following line:
id:N:initdefault:. In this line, N refers to the number of the runlevel that you want
to activate.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND172

• rcS: This script is used to ensure compatibility with System V startup scripts. Ubuntu
Server still uses these old scripts to start services, and you can read in more detail how
to configure them in the section “Runlevels” later in this chapter.

• rcS-sulogin: Normally, single-user mode is used for troubleshooting, and no adminis-
trator password is asked for. Of course, this is a serious security issue, and some
measures have to be taken. The rcS-sulogin service makes sure that the root password
has to be provided every time the single-user mode is entered.

• sulogin: In this script, the administrator can specify the message that a user should see
when entering single-user mode.

• tty1-tty6: On Ubuntu Server, virtual terminals are used. To activate a virtual terminal,
the key sequences Ctrl+Alt+F1 up to Ctrl+Alt+F6 have to be used. The services files in
/etc/event.d specify what needs to be done when activating one of these virtual termi-
nals. If you want to have more than six virtual terminals, copy one of these files to (for
example) a file with the name tty8 (never use tty7 because it is by default used for the
graphical environment). Next, change the last line of this file to reflect the name of the
TTY it is related to. See Listing 6-4 for an example.

Listing 6-4. The TTY Files Specify What Should Happen on a Virtual Console

root@ubuntu:~# cat /etc/event.d/tty1
tty1 - getty
#
This service maintains a getty on tty1 from the point the system is
started until it is shut down again.

start on runlevel 2
start on runlevel 3
start on runlevel 4
start on runlevel 5

stop on runlevel 0
stop on runlevel 1
stop on runlevel 6

respawn
exec /sbin/getty 38400 tty1

As you have seen, the Upstart service activates services as specified in the different files in
/etc/event.d. This is pretty much the same as what happened on older versions of Ubuntu
Server that still used the init process. One of the most important tasks of Upstart is that it’s
also responsible for starting all the services that are needed on your server. To do this, it uses
the concept of runlevels.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 173

Runlevels
The default runlevel on Ubuntu Server is runlevel 2, in which all the services that have to be
started are referred to. Before entering runlevel 2, Ubuntu Server passes through runlevel S. In
this runlevel, all the essential services that are always required on your server are started. The
configuration of both works in more or less the same way.

To understand the working of a runlevel, you need to understand two components: the
service scripts and the scripts that execute these service scripts. All the service scripts are
found in the /etc/init.d directory, and they are used to start fundamental services such as
the mounting of file systems as well as network services like your Apache server. To specify
which of these scripts have to be executed when starting your server, two runlevel-related
directories are used. The first of these directories is /etc/rcS.d, and on a system that follows a
default installation, the second of them is /etc/rc2.d. In the /etc/rcS.d directory, services are
started that are always needed, whereas in the /etc/rc2.d directory, services are started that
are specific to a given runlevel.

To make sure that a service starts automatically during system initialization, a symbolic
link is created in the /etc/rcS.d directory. The name of this link starts with an S, followed by a
two-digit number, followed by the name of the script in /etc/init.d that the link refers to. All
these links are processed when booting your server, and they are processed in alphabetical
order. So S01blah is processed before S99blah.

The same thing happens for the runlevel directories, except that when working with run-
levels, there is an option to change the current runlevel. When changing a runlevel, some
scripts may have to be started as well. To do this, more symbolic links are created. The name
of these links starts with K, followed by a two-digit number. Listing 6-5 shows an example of
the default runlevel 2.

Listing 6-5. To Determine What Is Started and What Is Stopped in a Runlevel, Some Symbolic
Links Are Processed

root@ubuntu:/etc/rc2.d# ls -l
total 4
-rw-r--r-- 1 root root 556 2007-04-10 17:46 README
lrwxrwxrwx 1 root root 18 2007-07-29 07:34 S10sysklogd -> ../init.d/sysklogd
lrwxrwxrwx 1 root root 15 2007-07-29 07:34 S11klogd -> ../init.d/klogd
lrwxrwxrwx 1 root root 15 2007-07-29 07:36 S15bind9 -> ../init.d/bind9
lrwxrwxrwx 1 root root 23 2007-07-29 07:36\
S17mysql-ndb-mgm -> ../init.d/mysql-ndb-mgm
lrwxrwxrwx 1 root root 19 2007-07-29 07:36 S18mysql-ndb -> ../init.d/mysql-ndb
lrwxrwxrwx 1 root root 15 2007-07-29 07:36 S19mysql -> ../init.d/mysql
lrwxrwxrwx 1 root root 17 2007-07-29 07:32 S20makedev -> ../init.d/makedev
lrwxrwxrwx 1 root root 15 2007-07-29 07:36 S20rsync -> ../init.d/rsync
lrwxrwxrwx 1 root root 13 2007-07-29 11:44 S20ssh -> ../init.d/ssh
lrwxrwxrwx 1 root root 13 2007-07-29 07:36 S89atd -> ../init.d/atd
lrwxrwxrwx 1 root root 14 2007-07-29 07:36 S89cron -> ../init.d/cron
lrwxrwxrwx 1 root root 17 2007-07-29 07:36 S91apache2 -> ../init.d/apache2
lrwxrwxrwx 1 root root 18 2007-07-29 07:33 S99rc.local -> ../init.d/rc.local
lrwxrwxrwx 1 root root 19 2007-07-29 07:33 S99rmnologin -> ../init.d/rmnologin

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND174

If you want to make sure that a given service is started automatically, it follows that you
first need to make sure that it has a service script in /etc/init.d. If it does, you next need to
make a symbolic link for this service. If it is a service that has to be started when your server is
booting, you just need a start link in /etc/rcS.d. If it is a service that you want to be included
in your server’s runlevels, you need to create a start link as well as a stop link in the directory of
the default runlevel, which would be /etc/rc2.d in most cases. So let’s see how this works for
the imaginary service blahd.

1. To include blahd in system startup, make sure that it has a start script in /etc/init.d.
If blahd was developed to be used on either Debian or Ubuntu Linux, it will have such
a script. Let’s say that the name of this script is /etc/init.d/blah. If you can write a
decent Bash shell script, open the example script /etc/init.d/skeleton and change it
to start the blah service instead of the default foo service.

2. If blahd is a nonessential service, you should include it in the default runlevel. There-
fore, you’re going to create two symbolic links in /etc/rc2.d, and to put the service in
the right place, you should first analyze its dependencies. If it depends on some other
service to be started first, give it a relatively high number after the S, such as S50. If it
doesn’t depend on anything, you can give it a relatively low number. The inverse is true
for the kill scripts that make sure that the service is stopped once you quit the runlevel:
scripts that depend on many other services but don’t have dependencies themselves
get a low number; scripts that don’t depend on other services get a high number.

3. Now create the links. To create the start link, first use cd /etc/rc2.d and then ln -s
../init.d/blah S10blahd. Next, to create the kill link, use ln -s ../init.d/blah
K90blahd. When restarting your server, the service will now be executed automatically.

■Tip When determining the proper load number for a script, on Ubuntu Server you can always assume that
all device drivers are initialized, local file systems have been mounted, and networking is available after the
S40 scripts have been processed. So in case of doubt, use S41 or higher.

Making Service Management Easier
When reading the information about starting services in the preceding section, maybe you
began to suspect that it’s not really easy. And you know what? You’re right. Even with the mod-
ern Upstart system, Ubuntu Server is still compatible with the old way of starting services
(System V); you can use one of the many tools available for System V service management to
make service configuration easier. One of these tools is sysv-rc-conf. Use apt-get install
sysv-rc-conf to install it. Once installed, you can start it with the command sysv-rc-conf, and
what follows is an interface similar to that shown in Figure 6-5. From this interface, you’ll see
all the services available on your server. To make sure that a given service is started, move the
arrow key to the right location in the runlevel columns for the runlevel in which you want the
service started; then press the spacebar to select it. All required symbolic links will be auto-
matically created for you.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 175

Figure 6-5. The sysv-rc-conf tool makes service management a lot easier.

■Tip Don’t worry about service management too much. You will find that after installing a package with
apt-get, most service management tasks are accomplished automatically. So you just have to see whether
the required link is really created as well. Everything usually works just fine.

Managing Hardware
One of the hardest challenges when working with Linux is making your hardware do what you
want it to do. Many times, the real cause for not being able to get your hardware to work is the
lack of the right drivers. Many hardware vendors still think that Windows is the only operating
system on Earth, so they don’t offer any Linux drivers for their devices. This means that it’s up
to the open source community to do the work. Often this goes very well, especially if the spec-
ifications of the hardware are clear. However, in some cases, hardware vendors think that their
product is unique and therefore are unwilling to share their code specifications with the rest
of the world, which makes it sometimes nearly (sometimes completely) impossible to produce
the right drivers.

In this subsection you’ll learn what you can do to get your hardware working. To begin
with, you’ll have a look at the kernel and its capability to add load modules to get your hard-
ware working. Related to the kernel, I’ll also talk about the initial RAM drive (initrd) and how
you can configure it to load additional modules while booting. Next, I’ll talk about udev and
the way it has changed hardware management on modern Linux distributions. At the end of
this chapter, you’ll learn how the lspci and lsusb commands can be useful for finding out

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND176

what kind of hardware you are using. You’ll also learn how the sysfs file system can help you
manage hardware.

Kernel Management
The kernel is the heart of the operating system; it is the software layer that sits directly on top
of the hardware and makes it possible to do something useful with that hardware. With
Ubuntu Server, you are working with a default kernel in which certain functionality is enabled
and other functionality is not. I’ll now explain how the kernel is organized and what you can
do to tune it to your needs.

Working with Modules
On all modern Linux distributions, kernels are modular—which means that the core of the
operating system is in the kernel file itself, but lots of drivers that aren’t needed by default are
dynamically loaded as modules. The idea of this modularity is an increased efficiency—if a
driver is needed, its module is loaded; if it isn’t needed, the module isn’t loaded either. It’s
really as simple as that.

As an administrator, you’ll find that module management is an important task. With
Ubuntu Server, modules are installed in the directory /lib/modules/`uname –r`. As you can
see, command substitution is used in this directory name: the command uname –r gives the
correct version of the current kernel; by using this command in the directory path, you can be
sure always to refer to the right path in which kernel modules can be found. Under this direc-
tory, you can find a directory structure in which all modules are stored in an organized way,
according to the type of module. You can recognize the kernel modules in this directory struc-
ture by their file name: all kernel modules have the extension .ko.

You should be aware how modules are loaded. The good thing is that on a default installa-
tion, most of your hardware is detected automatically, and the required modules are loaded
automatically as well. So in most cases there is no need to do anything. Sometimes, however,
some tuning of the load process of modules is required. In the next subsection you can read
how.

Loading Modules
You can load modules in one of three methods: manually, from initrd, or by udev. Let’s see
how this process works.

Tuning initramfs

As soon as your system boots, it immediately needs some modules, such as the modules nec-
essary to access the root device on your server. These modules are loaded by the initial RAM
file system (initrd), which is loaded from GRUB. Normally, this initial RAM drive is created
automatically, and you don’t have to worry about it. However, you may need to tune your own
initrd in some situations; in this case, the mkinitramfs command can be used.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 177

■Note The correct way to refer to initrd is to call it the initial RAM file system (initramfs). In the old
days, the initramfs was referred to as the initrd. It basically is the same thing, and you can use either
term to refer to it.

To create your own initramfs, the first thing you should tune is the /etc/initramfs-
tools/initramfs.conf file. This file is used to specify generic options that should be used on
your initramfs, such as a time-out parameter that specifies how long you’ll have to interrupt
the boot procedure. Normally, it’s not necessary to change anything in this file. Also, there is
the /etc/ initramfs-tools/modules file, in which you refer to the modules that you want to be
loaded automatically. Next, in the /etc/initramfs-tools/scripts directory you can create
scripts that allow the mkinitramfs command to find the proper modules. Done all that? Then
it’s time to run the mkinitramfs command to create your own initramfs.

When using mkinitramfs, the command needs the option -o to specify the name of the
output file it needs to create; for example, mkinitramfs -o newinitrd. Once created, it is a
good idea to copy newinitrd to the /boot directory; everything your kernel needs to boot the
system must be in this directory. Next, tune /boot/grub/menu.lst to make sure the new
initramfs is included in one of the GRUB sections (be aware that in the menu.lst file it is
referred to as initrd when doing so):

1. Open /boot/grub/menu.lst with your favorite editor.

2. Copy the default section that is used to boot your system in the file. This will result in
this section occurring twice in the menu.lst file.

3. Change the title of the default boot section to something else (“test with new initrd”
would be a decent name while you are still testing) and make sure the initrd line
refers to the new initrd that you just created. This would result in something like the
following lines:

title Test with new initrd
root (hd0,0)
kernel /boot/vmlinuz-2.6.24-16-server root=/dev/sda1 ro quiet splash
initrd /boot/newinitrd

4. Reboot your server, and while rebooting, select the new GRUB menu item to test if the
new initrd is working properly. If it does, change /boot/grub/menu.lst to make the
test section permanent.

Loading Modules on Boot

Normally, the kernel ensures that all modules you need when booting your server are loaded
when the hardware that requires them is detected. In some situations, though, this doesn’t
work out. If not, you can make sure that the module is loaded anyway by including it in the
/etc/modules configuration file. The structure of this file is not complicated; just specify the
names of all the modules that you want to load, one per line, and they will be loaded when
you reboot your server. The following listing shows an example of the contents of this file:

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND178

root@RNA:/etc# cat modules
/etc/modules: kernel modules to load at boot time.
#
This file contains the names of kernel modules that should be loaded
at boot time, one per line. Lines beginning with "#" are ignored.

loop
lp
sbp2
fuse

Need to add a new module? Make sure that it is listed in this file and it will be loaded
when your server restarts.

Loading Modules Manually

Modules can be managed manually as well, which can be useful when testing new hardware
devices. Here are the commands:

• lsmod: This command displays a list of all currently loaded modules. In this list, you’ll
also see the current status of the module. The output of lsmod is given in four columns
(as can be seen in Listing 6-6). The first column provides the name of the module. The
second column shows its size. In the third column, a 0 indicates that the module cur-
rently is not used. Everything greater than 0 indicates that the module is in use. The last
column shows the name of other modules that require this module to be loaded.

Listing 6-6. Output of lsmod

root@ubuntu:/etc/init.d# lsmod
Module Size Used by
ipv6 273344 20
lp 12324 0
af_packet 23688 2
snd_ens1371 27552 0
gameport 16520 1 snd_ens1371
snd_ac97_codec 97952 1 snd_ens1371
ac97_bus 3200 1 snd_ac97_codec
snd_pcm_oss 44416 0
snd_mixer_oss 17408 1 snd_pcm_oss
snd_pcm 79876 3 snd_ens1371,snd_ac97_codec,snd_pcm_oss
snd_seq_dummy 4740 0
snd_seq_oss 32896 0
snd_seq_midi 9600 0
snd_rawmidi 25472 2 snd_ens1371,snd_seq_midi
snd_seq_midi_event 8448 2 snd_seq_oss,snd_seq_midi
snd_seq 52464 6\
snd_seq_dummy,snd_seq_oss,snd_seq_midi,snd_seq_midi_event
snd_timer 23684 2 snd_pcm,snd_seq

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 179

...
capability 5896 0
commoncap 8192 1 capability

• modprobe: If you want to load a module by hand, the modprobe command is the way to
do it. The importance of this command is that it will do a dependency check. Some
modules need another module to be present before they can do their job, and modprobe
makes sure that these dependencies are fulfilled. To load the dependent modules, it
looks in the configuration file modules.dep, which is created automatically by the depmod
command (see later in this section). Loading a module with modprobe isn’t hard; if, for
example, you want to load the module vfat by hand, just use the modprobe vfat com-
mand. In the early days, modprobe had an alternative: the insmod command. But insmod
has the disadvantage that it doesn’t check for dependencies, so you probably shouldn’t
use it anymore.

• rmmod: An unused module still consumes system resources. It usually won’t be much
more than 50 KB of system memory, but some heavy modules (such as the XFS module
that offers support for the XFS file system) can consume up to 500 KB. On a system that
is short on memory, this is a waste, and you can use rmmod followed by the name of the
module you want to remove (for example, rmmod ext3). This command will remove the
module from memory and free up all the system resources it was using. A more modern
alternative for rmmod is the modprobe -r command. The major difference is that modprobe
-r takes dependencies into consideration as well.

• modinfo: Have you ever had the feeling that a module was using up precious system
resources without knowing exactly what it was doing? Then modinfo is your friend. This
command will show some information that is compiled in the module itself. As an
example, you can see how it works on the pcnet32 network board driver in Listing 6-7.
Especially for network boards, the modinfo command can be very useful because it
shows you all the parameters the network board is started with (for instance, its duplex
settings), which can be handy for troubleshooting.

Listing 6-7. The modinfo Command Shows What a Module Is Used For

myserver # modinfo pcnet32
root@ubuntu:/etc/init.d# modinfo pcnet32
filename: /lib/modules/2.6.20-15-server/kernel/drivers/net/pcnet32.ko
license: GPL
description: Driver for PCnet32 and PCnetPCI based etherboards
author: Thomas Bogendoerfer
srcversion: 8C4DDF304B5E88C9AD31856
alias: pci:v00001023d00002000sv*sd*bc02sc00i*
alias: pci:v00001022d00002000sv*sd*bc*sc*i*
alias: pci:v00001022d00002001sv*sd*bc*sc*i*
depends: mii
vermagic: 2.6.20-15-server SMP mod_unload 686
parm: debug:pcnet32 debug level (int)
parm: max_interrupt_work:pcnet32 maximum events\
handled per interrupt (int)

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND180

• depmod: The depmod command is used to generate the modules dependency file in /lib/
modules/`uname -r`. The name of this file is modules.dep, and it simply contains a list of
all dependencies that exist for modules on your system. As can be seen in Listing 6-7,
modules normally know what dependencies they have (indicated by the depends field).
The depmod command just analyzes this data and makes sure that the dependency file is
up to date. There’s normally no need to run this command manually because it’s started
automatically when your system boots. If, however, you’ve installed new kernel mod-
ules and you want to make sure the dependency file is up to date, run depmod manually.

The Role of the sysfs File System
When trying to understand what happens with your hardware, you need to take the sysfs file
system into consideration. This file system is created dynamically by the kernel, and it is
mounted in the /sys directory. In this file system you can find configuration information that
relates to the way your system loads modules. Consider the /sys/devices/pci0000:00 direc-
tory shown in Listing 6-8. You’ll find a subdirectory for each device that was found on the PCI
bus. In the names of these subdirectories, the PCI ID is used.

Listing 6-8. The /sysfs Keeps Information About Drivers that Are Used

root@mel:/sys/devices/pci0000:00# ls
0000:00:00.0 0000:00:1a.1 0000:00:1c.2 0000:00:1d.2 0000:00:1f.3
0000:00:01.0 0000:00:1a.7 0000:00:1c.3 0000:00:1d.7 0000:00:1f.5
0000:00:03.0 0000:00:1b.0 0000:00:1c.4 0000:00:1e.0 power
0000:00:19.0 0000:00:1c.0 0000:00:1d.0 0000:00:1f.0 uevent
0000:00:1a.0 0000:00:1c.1 0000:00:1d.1 0000:00:1f.2

It’s not hard to find out which device is using which PCI ID. To do this, you can use the
lspci command. An example of usage of this command is shown in Listing 6-9.

Listing 6-9. To Find Out What Device Is On What PCI ID, Use lspci

root@mel:/sys/devices/pci0000:00# lspci

00:00.0 Host bridge: Intel Corporation 82P965/G965 Memory Controller Hub (rev 02)
00:01.0 PCI bridge: Intel Corporation 82P965/G965 PCI Express Root Port (rev 02)
00:03.0 Communication controller: Intel Corporation\
82P965/G965 HECI Controller (rev 02)
00:19.0 Ethernet controller: Intel Corporation 82566DC\

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 181

parm: rx_copybreak:pcnet32 copy breakpoint for\
copy-only-tiny-frames (int)
parm: tx_start_pt:pcnet32 transmit start point (0-3) (int)
parm: pcnet32vlb:pcnet32 Vesa local bus (VLB) support (0/1) (int)
parm: options:pcnet32 initial option setting(s) (0-15) (array of int)
parm: full_duplex:pcnet32 full duplex setting(s) (1) (array of int)
parm: homepna:pcnet32 mode for 79C978 boards (1\
for HomePNA, 0 for Ethernet, default Ethernet (array of int)
root@ubuntu:/etc/init.d#

Gigabit Network Connection (rev 02)
00:1a.0 USB Controller: Intel Corporation 82801H (ICH8 Family)\
USB UHCI Controller #4 (rev 02)
00:1a.1 USB Controller: Intel Corporation 82801H (ICH8 Family)\
USB UHCI Controller #5 (rev 02)
00:1a.7 USB Controller: Intel Corporation 82801H (ICH8 Family)\
USB2 EHCI Controller #2 (rev 02)
00:1b.0 Audio device: Intel Corporation 82801H (ICH8 Family)\
HD Audio Controller (rev 02)
00:1c.0 PCI bridge: Intel Corporation 82801H (ICH8 Family)\
PCI Express Port 1 (rev 02)
00:1c.1 PCI bridge: Intel Corporation 82801H (ICH8 Family)\
PCI Express Port 2 (rev 02)
00:1c.2 PCI bridge: Intel Corporation 82801H (ICH8 Family)\
PCI Express Port 3 (rev 02)
00:1c.3 PCI bridge: Intel Corporation 82801H (ICH8 Family)\
PCI Express Port 4 (rev 02)
00:1c.4 PCI bridge: Intel Corporation 82801H (ICH8 Family)\
PCI Express Port 5 (rev 02)
00:1d.0 USB Controller: Intel Corporation 82801H (ICH8 Family)\
USB UHCI Controller #1 (rev 02)
00:1d.1 USB Controller: Intel Corporation 82801H (ICH8 Family)\
USB UHCI Controller #2 (rev 02)
00:1d.2 USB Controller: Intel Corporation 82801H (ICH8 Family)\
USB UHCI Controller #3 (rev 02)
00:1d.7 USB Controller: Intel Corporation 82801H (ICH8 Family)\
USB2 EHCI Controller #1 (rev 02)
00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev f2)
00:1f.0 ISA bridge: Intel Corporation 82801HB/HR (ICH8/R)\
LPC Interface Controller (rev 02)
00:1f.2 IDE interface: Intel Corporation 82801H (ICH8 Family)\
4 port SATA IDE Controller (rev 02)
00:1f.3 SMBus: Intel Corporation 82801H (ICH8 Family) SMBus Controller (rev 02)
00:1f.5 IDE interface: Intel Corporation 82801H (ICH8 Family)\
2 port SATA IDE Controller (rev 02)
01:00.0 VGA compatible controller: nVidia Corporation GeForce 8600 GTS (rev a1)
03:00.0 IDE interface: Marvell Technology Group Ltd. 88SE6101\
single-port PATA133 interface (rev b1)
07:02.0 Ethernet controller: Realtek Semiconductor Co., Ltd.\
RTL-8169 Gigabit Ethernet (rev 10)
07:03.0 FireWire (IEEE 1394): Texas Instruments TSB43AB22/A\
IEEE-1394a-2000 Controller (PHY/Link)

Suppose that you want to know more about the network card that uses the Intel chip set.
At the top of the lspci output, you can find its PCI ID, which is 00:19.0. The complete config-
uration relating to this PCI ID is located in the sysfs file system inside the /sys/devices/
pci0000:00/0000:00:19.0 directory. You can now change to this directory to get an overview of
the configuration that is stored for this device. You’ll find a set of configuration files that will

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND182

tell you exactly what the device is all about. For instance, you can find the driver file, which is
a symbolic link and in this example refers to /sys/bus/pci/drivers/e1000 (see Listing 6-10).
So this network board is using the e1000 driver! If you are having problems with the network
board, this information might help you. For instance, you now know what driver to update to
try solving its current problems.

Listing 6-10. From the sys File System, You Get Information About the Drivers Your
Hardware Uses

root@mel:/sys/devices/pci0000:00/0000:00:19.0# ls -l
total 0
-rw-r--r-- 1 root root 4096 2008-05-19 04:06 broken_parity_status
-r--r--r-- 1 root root 4096 2008-05-19 04:03 class
-rw-r--r-- 1 root root 256 2008-05-19 04:03 config
-r--r--r-- 1 root root 4096 2008-05-19 04:03 device
lrwxrwxrwx 1 root root 0 2008-05-19 02:24 driver\
-> ../../../bus/pci/drivers/e1000
-rw------- 1 root root 4096 2008-05-19 04:06 enable
-r--r--r-- 1 root root 4096 2008-05-19 04:03 irq
-r--r--r-- 1 root root 4096 2008-05-19 04:06 local_cpus
-r--r--r-- 1 root root 4096 2008-05-19 04:06 modalias
-rw-r--r-- 1 root root 4096 2008-05-19 04:06 msi_bus
drwxr-xr-x 3 root root 0 2008-05-19 02:24 net
drwxr-xr-x 2 root root 0 2008-05-19 04:06 power
-r--r--r-- 1 root root 4096 2008-05-19 04:03 resource
-rw------- 1 root root 131072 2008-05-19 04:06 resource0
-rw------- 1 root root 4096 2008-05-19 04:06 resource1
-rw------- 1 root root 32 2008-05-19 04:06 resource2
lrwxrwxrwx 1 root root 0 2008-05-19 02:24 subsystem -> ../../../bus/pci
-r--r--r-- 1 root root 4096 2008-05-19 04:06 subsystem_device
-r--r--r-- 1 root root 4096 2008-05-19 04:06 subsystem_vendor
-rw-r--r-- 1 root root 4096 2008-05-19 02:24 uevent
-r--r--r-- 1 root root 4096 2008-05-19 04:03 vendor

Installing Your Own Custom Kernel
In the early days of Linux, it was often necessary to recompile your own kernel. Today this
process is almost never necessary. Here’s why:

• In the old days, drivers were included in the kernel. To add a driver, you had to recom-
pile the kernel. Today’s drivers are modular; you just have to load them. In some
situations, however, you need to recompile the driver, not the kernel itself.

• In early Linux versions, to tune the Linux kernel, you had to recompile it. Now you can
write parameters to tune the kernel directly to the /proc file system. For instance, to tell
your server that it has to do packet forwarding between its network boards, you have to
write the value 1 to the /proc/sys/net/ipv4/ip_forward file. You can do that by using
the echo "1" > /proc/sys/net/ipv4/ip_forward command.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 183

• Some Linux servers are supported by external parties, which don’t like you to change
the kernel (you could even lose support when doing it).

The kernels that are used on Ubuntu Linux (no matter what version of the operating sys-
tem you’re using) are pretty close to the official Linux kernels as found on ftp.kernel.org.
Ubuntu distinguishes between the Linux kernel (the so-called vanilla kernel) and the kernel
that Ubuntu uses, which is installed automatically for the hardware platform that you are
using. When using special software, such as XEN (see Chapter 13), an additional kernel may
be installed as well. To use them, the GRUB boot menu will be automatically modified as
necessary.

You can create your own binary kernel from the kernel sources. This is referred to as com-
piling the kernel, and it’s a four-step procedure:

1. Install the kernel sources for your platform.

2. Configure the kernel using a command such as make menuconfig.

3. Build the kernel and all its modules.

4. Install the new kernel.

Installing the Kernel Source Files
In some situations—if you want to build a custom kernel, for example—the kernel sources
may have to be present. This is mainly the case if you need to be able to add new functionality
to the kernel, such as to compile a module for a certain piece of hardware for which you have
only the source code and no compiled version. To install the kernel sources, use the following
procedure:

1. Use the command apt-cache search linux-source to see a list of all kernel sources
that are suitable for your server. See Listing 6-11 for an example.

2. Now, as root, use the apt-get install command to install the sources that you want to
use; for instance, use apt-get install linux-source-2.6.20. If this command causes
an error message, run apt-get update before you start.

3. After downloading the kernel sources, an archive file is placed in /usr/src/. Now you
need to extract this file by using tar -jxvf linux-source-2.6.20.tar.bz2. This com-
mand will create a subdirectory and put the new kernel sources in it.

4. To make sure that you don’t run into problems later, you now need to create a symbolic
link to the directory that was just created in /usr/src. The name of this link is linux: ln
-sf linux-source-2.6.20 linux. The kernel sources are now ready and waiting for you
to do anything you want.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND184

Listing 6-11. Before Installing Kernel Sources, Use apt-cache search to Find Out What Sources
Are to Be Used on Your Server

root@ubuntu:/# apt-cache search linux-source
xen-source-2.6.16 - Linux kernel source for version 2.6.17 with Ubuntu patches
linux-source - Linux kernel source with Ubuntu patches
linux-source-2.6.20 - Linux kernel source for version 2.6.20 with Ubuntu patches

Configuring the Kernel
You should compile your own kernel if some modifications to the default kernel are required
or if some new functionality has to be included in your default kernel. This latter scenario is
the more realistic because the default kernel on Ubuntu Server is flexible enough to meet
most situations. Because of its modularity, it will do the right things in almost any circum-
stances. But, in general, you would want to recompile a kernel for four reasons:

• You need access to a new type of hardware that isn’t yet supported by the kernel. This
option is pretty rare now that most hardware is supported by loading kernel modules
dynamically.

• You need some specific feature that isn’t available in the default binary kernel yet.

• You really need to strip the kernel to its essential components, removing everything
that isn’t absolutely necessary.

• You are running Ubuntu Server on old hardware that the default binary kernel doesn’t
support.

To tune a kernel, you need to create a new configuration for it, and you can choose among
several methods of tuning what you do and don’t need in your kernel:

• Run make config if you want to create the .config file that is needed to compile a new
kernel completely by hand. The one drawback is that if you realize that you’ve made a
mistake in the previous line after entering the next line, there’s no going back.

• Use make oldconfig after installing patches to your kernel. This command makes sure
that only the settings for new items are prompted for.

• Use make menuconfig if you want to set all kernel options from a menu interface.

• Use make xconfig to tune kernel options from an X-windows interface.

If you are configuring kernel settings with make menuconfig, you’re working from a menu
interface in which kernel functionality is divided into different sections. Each of these sections
handles different categories of kernel options. For example, the File Systems section handles
everything related to the available file systems, and Networking is the place to activate some
obscure networking protocol.

After opening the selection of your choice, you’ll get access to the individual parameters.
For many of these parameters, you won’t necessarily see immediately what it’s used for. If so,
use the Tab key to navigate to the Help button while the parameter is selected and then press
Enter. You’ll be provided with a description of the selected option that in most cases will be
very informative as to whether this is a reasonable option to use. Most options have three

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 185

possibilities. First, it can be selected with an * character, which means that the selected func-
tionality is hard-coded in the kernel. Second, it can be selected with an M (not available for all
options), which means that the selected component will be available as a kernel module.
Third, you can choose not to select it at all.

Build the New Kernel
After specifying what you need and what you don’t in the new kernel, you must build the new
kernel. This involves running the gcc compiler to write all the changed kernel source files to
one new kernel program file. To do this, you’ll use the make-kpkg kernel-image command.
This reads all the changes that you made to your kernel and writes the new kernel to a Debian
package with the name kernel-image-<version>.deb, which is then placed in /usr/src.

Install the New Kernel
After creating the Debian package with make-kpkg kernel-image, you have to install it. Use the
command dpkg -i kernel-image-<version>.deb, which not only installs the new kernel but
also updates your GRUB configuration. Next, reboot your server, and the new kernel will be
used.

Hardware Management with udev
When earlier kernel modules were loaded by specifying them in /etc/modules.conf and later
/etc/modprobe.conf, on a recent Ubuntu Server the udev system is the most common way of
loading kernel modules; in fact, udev is the central service to handle hardware initialization on
your server. It’s implemented as the daemon udevd, which is started at a very early stage in the
boot process.

When the kernel detects a device by some event that occurs on one of the hardware
busses, it tells udev about the device. After receiving a signal from the kernel that a device has
been added or removed, udev initializes this device. Then it creates the proper device files in
the /dev directory. This all is a major improvement in the way devices are handled on a Linux
system. In older versions of Linux, a device file existed for all devices that could possibly exist.
Now, a device file is created only for devices that are really present. This is the task of udev.
After initializing the device, udev informs all applications about the new device through the
hardware abstraction layer (HAL).

One problem with udev is that it loads at a stage when some devices have already been
initialized. Think, for example, about the hard disk your system is working from. To initialize
these devices properly, udev parses the sysfs file system, which is created in the directory /sys
when the kernel is starting. This file system contains configuration parameters and other
information about devices that have already been initialized.

As an administrator, it is useful to know that udev can be monitored using the udevmonitor
tool. Listing 6-12 shows what happens in the udevmonitor when a USB stick is plugged in the
system.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND186

Listing 6-12. In udevmonitorYou Can See Exactly What Happens When a Device Is Connected to
Your System

SFO:/ # udevmonitor
udevmonitor prints the received event from the kernel [UEVENT]
and the event which udev sends out after rule processing [UDEV
]

UEVENT[1158665885.090105] add@/devices/pci0000:00/0000:00:1d.7
/usb4/4-6
UEVENT[1158665885.090506] add@/devices/pci0000:00/0000:00:1d.7
/usb4/4-6/4-6:1.0
UEVENT[1158665885.193049] add@/class/usb_device/usbdev4.5
UDEV [1158665885.216195] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6
UDEV [1158665885.276188] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6/4-➥

6:1.0
UDEV [1158665885.414101] add@/class/usb_device/usbdev4.5
UEVENT[1158665885.500944] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6/4-6.1
UEVENT[1158665885.500968] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6/4-➥

6.1/4-6.1:1.0
UEVENT[1158665885.500978] add@/class/usb_device/usbdev4.6
UDEV [1158665885.604908] add@/devices/pci0000:00/0000:00:1d.7 /usb4/4-6/4-6.1
UEVENT[1158665885.651928] add@/module/scsi_mod
UDEV [1158665885.652919] add@/module/scsi_mod
UEVENT[1158665885.671182] add@/module/usb_storage
UDEV [1158665885.672085] add@/module/usb_storage
UEVENT[1158665885.672652] add@/bus/usb/drivers/usb-storage
UDEV [1158665885.673200] add@/bus/usb/drivers/usb-storage
UEVENT[1158665885.673655] add@/class/scsi_host/host0
UDEV [1158665885.678711] add@/devices/pci0000:00/0000:00:1d.7\

/usb4/4-➥

6/4-6.1/4-6.1:1.0
UDEV [1158665885.854067] add@/class/usb_device/usbdev4.6
UDEV [1158665885.984639] add@/class/scsi_host/host0
UEVENT[1158665890.682084] add@/devices/pci0000:00/0000:00:1d.7/usb4/4- 6/4-➥

6.1/4-6.1:1.0/host0/target0:0:0/0:0:0:0
UEVENT[1158665890.682108] add@/class/scsi_device/0:0:0:0
UDEV [1158665890.858630] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-6/4 -6.1/4-➥

6.1:1.0/host0/target0:0:0/0:0:0:0
UEVENT[1158665890.863245] add@/module/sd_mod
UEVENT[1158665890.863971] add@/bus/scsi/drivers/sd
UDEV [1158665890.864828] add@/module/sd_mod
UDEV [1158665890.865941] add@/bus/scsi/drivers/sd
UEVENT[1158665890.875674] add@/block/sda
UEVENT[1158665890.875949] add@/block/sda/sda1

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 187

UEVENT[1158665890.880180] add@/module/sg
UDEV [1158665890.880180] add@/class/scsi_device/0:0:0:0
UEVENT[1158665890.880207] add@/class/scsi_generic/sg0
UDEV [1158665890.906347] add@/module/sg
UDEV [1158665890.986931] add@/class/scsi_generic/sg0
UDEV [1158665891.084224] add@/block/sda
UDEV [1158665891.187120] add@/block/sda/sda1
UEVENT[1158665891.413225] add@/module/fat
UDEV [1158665891.413937] add@/module/fat
UEVENT[1158665891.427428] add@/module/vfat
UDEV [1158665891.436849] add@/module/vfat
UEVENT[1158665891.449836] add@/module/nls_cp437
UDEV [1158665891.451155] add@/module/nls_cp437
UEVENT[1158665891.467257] add@/module/nls_iso8859_1
UDEV [1158665891.467795] add@/module/nls_iso8859_1
UEVENT[1158665891.489400] mount@/block/sda/sda1
UDEV [1158665891.491809] mount@/block/sda/sda1

The interesting part of this rather lengthy listing is that you can see exactly how udev
interacts with the /sys file system that contains information about devices. First, the kernel
detects the new device. At that moment, almost nothing is known about the nature of the
device; udev sees only the PCI ID for the device (you can reveal these IDs with the lspci com-
mand as well). Based on this PCI information, udev can communicate with the device and it
finds out what kernel modules need to be loaded to communicate with the device. You can see
this in the lines where the scsi_mod and usb_storage modules are added. Based on that infor-
mation, udev finds out that an sda and sda1 are present on the device. After finding that out, it
can read the file system signature and load the proper modules for that as well; in this case,
these are the fat and vfat modules. Once the proper file system drivers are loaded, some sup-
port modules can be used to read the files that are on the stick. Finally, the file system on the
device is mounted automatically. As you can see, working with udev makes “automagic” load-
ing of modules a lot less magical than it was.

When working with udev, you can do some tweaking. For instance, imagine a server that
has two network boards. One of those network boards would be known as eth0, whereas the
other one would be available as eth1. You can use the configuration files that you’ll find in the
/etc/udev/rules.d directory if you want to change the device names that are associated with
the network cards. In this directory, you can find files that define rules for all hardware devices
that support working with rules on your server. For instance, there is the file with the name
70-persistent-net.rules. You can see the contents of this file in Listing 6-13.

Listing 6-13. The 70-persistent-net.rules File Determines How Your Network Boards Are
Initialized

root@mel:/etc/udev/rules.d# cat 70-persistent-net.rules
This file was automatically generated by the /lib/udev/write_net_rules
program run by the persistent-net-generator.rules rules file.
#
You can modify it, as long as you keep each rule on a single line.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND188

PCI device 0x8086:0x104b (e1000)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",\
ATTR{address}=="00:19:d1:ed:82:07", ATTR{type}=="1",\
KERNEL=="eth*", NAME="eth0"

PCI device 0x10ec:0x8169 (r8169)
SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*",\
ATTR{address}=="00:0c:f6:3f:5d:bb", ATTR{type}=="1",\
KERNEL=="eth*", NAME="eth1"

As you can see, this file matches the MAC addresses of your network boards with their
device names. Imagine that this configuration is wrong, and you want to make sure that MAC
address 00:0c:f6:3f:5d:bb is available as eth0 in the future. Just change the eth name of the
device, and udev will do the rest for you. Likewise, configuration scripts are available for
almost all other devices. Some of them tend to be pretty complex, though, and you shouldn’t
touch them if you don’t have a deep understanding of shell scripting.

Working with udev has one other major advantage as well: it ensures that your storage
devices can be referred to by unique names. Unique names are names that relate to the
devices, and they don’t ever change—no matter how and where the device is loaded. Normally
a storage device gets its device name (/dev/sda and so on) based on the order that it is plugged
into the system: the first storage device gets /dev/sda, the second storage device gets /dev/sdb,
and so on. When activating a device, udev generates more than just the device name /dev/sda,
and so on. For storage devices, some links are created in the directory /dev/disk. These links
are in the following subdirectories and all contain a way to refer to the disk device:

• /dev/disk/by-id: This subdirectory contains information about the device based on the
vendor ID and the name of the device. Because this name never changes during the life
of a device, you can use these device names as an alternative to the /dev/sda devices
that may change in an uncontrolled way. The only disadvantage is that the /dev/disk/
by-id names are rather long.

• /dev/disk/by-path: This subdirectory contains links with a name that is based on the
bus position of the device.

• /dev/disk/by-uuid: In this subdirectory, you can find links with a name that is based on
the serial number (the UUID) of the device.

Because the information in /dev/disk won’t change for a device the next time it is plugged
in, you can create udev rules that work with that information and make sure that the same
device name is always generated. The udev rules for storage devices are in /etc/udev/rules.d/
60-persistent-storage.rules, in which you can create a persistent link that makes sure that a
device is always initialized with the same device name. This solution can be used for disk
devices and other devices as well. Just have a look at the files in /etc/udev/rules.d to see how
the different device types are handled.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND 189

Summary
In this chapter, you learned how to manage and customize your server. In the first part of this
chapter, you learned how to manage processes with utilities such as top, ps, and kill. After
that, you learned how to schedule processes to run in the future. Next, you read about the
boot procedure, which may help you when troubleshooting or optimizing your server’s boot
procedure. In the last part of this chapter, you read about the kernel and hardware manage-
ment. In Chapter 7, you’ll learn how to create shell scripts on Ubuntu Server.

CHAPTER 6 ■ SETTING THE SYSTEM TO YOUR HAND190

Running It Any Way You Like
An Introduction to Bash
Shell Scripting

Knowing your way around commands on Linux is one thing. But if you really want to under-
stand what is happening on Ubuntu Server, you must at least be able to read shell scripts. On
Ubuntu Server, many things are automated with shell scripts. For example, the entire startup
procedure consists of ingenious shell scripts that are tied together. As an administrator, it’s
very useful to know how to do some shell scripting yourself.

For these reasons, this chapter will give you an introduction to Bash shell scripting. After a
short introduction, you’ll learn about the most important components that you’ll see in most
shell scripts, such as iterations, functions, and some basic calculations. Notice that this chap-
ter is meant to give a basic overview of the way that a shell script is organized and should help
you write a simple shell script. It’s not meant to be a complete tutorial that discusses all ele-
ments that can be used in a script.

Before You Even Start
If you know how to handle your Linux commands properly, you can perform magic. But imag-
ine the magic when combining multiple Linux commands in a shell script. Shell scripting is a
fine art, and you aren’t going to learn it by just studying this chapter: you need to do it your-
self, again and again. Expect to spend a few frustrating hours trying it without success. You
should know that that is only part of the fun because you’ll get better bit by bit. It takes prac-
tice, though. I hope you’ll find the examples in this chapter inspiring enough to start
elaborating on them, improving on them, and converting them to your own purposes.

To Script or Not to Script?
Before you start writing shell scripts, you should ask whether a shell script is really the best
solution. In many cases, other approaches are available and maybe even preferable. Instead of
using the Bash shell as your scripting language, you can use Perl or write a complete program
in C. Each of these solutions has advantages and disadvantages.

191

C H A P T E R 7

That said, Bash offers some important advantages as a scripting language:

• Bash scripts are relatively easy to understand and to write.

• You don’t have to compile a Bash script before you can start using it. The only thing you
need on the computer where you will run your shell script is the shell for which the
script is written. The Bash shell is omnipresent, so it’s no problem performing tasks
with your script on other Linux computers as well.

• A shell script is platform independent. You can run the same script on a Solaris
machine, a Power PC, or an Intel machine. It just doesn’t matter.

• Although Bash is almost always present, you can get even greater portability by using
the Bourne shell (/bin/sh) instead of Bash. Bourne shell scripts run on any flavor of
Linux and even different brands of UNIX, without the need to install anything else on
your server.

The most important disadvantage of using Bash to create your script, however, is that it is
relatively slow. It’s slow because the shell always has to interpret the commands that it finds in
the script before it can do its job. For contrast, a C program is compiled code, optimized to do
its work on the hardware of your computer directly and therefore is much faster. Of course, it’s
also much more difficult to create such a program.

What Shell?
Many shells are available for Linux. When writing a shell script, you should be aware of that
and choose the best shell for your script. A script written for one shell will not necessarily run
on another. Bash is the best choice to write shell scripts on Linux. Bash is compatible with the
UNIX Bourne shell /bin/sh, which has been used on UNIX since the 1970s. The good thing
about that compatibility is that a script that was written to run on /bin/sh will work on Bash
as well. However, the opposite is not necessarily true because many new features have been
added to Bash that don’t exist in the traditional UNIX Bourne shell.

On Ubuntu, dash is used as the default shell. You can see this in most system scripts that
call #!/bin/sh, which is a link to /bin/dash, on the first line of the script. However, because I
have had problems with dash and scripting on several occasions, I recommend using Bash
for scripting. You can ensure that Bash is used by including #!/bin/bash on the first line of
each script you create.

You’ll likely occasionally encounter Linux shells other than Bash or dash. The most
important of these includes the Korn shell (/bin/ksh), which is the default shell on Sun
Microsystems’ Solaris. An open source derivative of that shell is available as the Public
Domain Korn Shell /bin/pdksh. Another popular shell is the C shell, which on Linux exists as
/bin/tcsh. The C shell is especially popular among C programmers because it has a scripting
language that closely resembles the C programming language. You’ll sometimes encounter C
shell users in a Linux environment. The Korn shell, however, is not used often in Linux envi-
ronments because almost all its important features are also offered by Bash.

Both the Korn shell and the C shell are incompatible with Bash, and this incompatibility
could prevent you from running a C shell script in a Bash environment. However, there is a
solution, and that’s to include the so-called shebang in your shell script. This is an indicator of
the program that must be used when executing the script. The shebang consists of the pound
sign (#), followed by an exclamation mark, followed by the name of the required command

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE192

interpreter. If the program that is referred to by the shebang is present on your system, the
script will run, no matter what shell environment you’re currently in as a user. Listing 7-1
shows a script that starts with a shebang.

Listing 7-1. Shell Scripts Should Always Start with the Shebang

#!/bin/bash
#
myscript [filename]
#
Use this script to....

Basic Elements of a Shell Script
Some elements should occur in all shell scripts. First, as you’ve just read, every shell script
should start with the shebang. After this, it’s a good idea to add some comment lines to
explain what the script is for. A comment line starts with a pound sign, which ensures that the
line is not interpreted by the shell. Of course, how you create your scripts is entirely up to you,
but starting every script with some comment that explains how to use the script will make
your scripts much easier to use. It’s really a matter of perspective: you know exactly what
you’re doing at the moment you’re writing the script, but months or years later you might have
forgotten what your shell script is all about.

The first line in a good comment shows the exact syntax to be used for launching it. After
the syntax line, it’s normally a good idea to explain in two or three lines what exactly your
script is doing. Such an explanation makes it much easier for others to use your script the
right way. If the script starts growing, you might even add comments at other places in the
script. It’s not a bad idea to start every new chunk of code with a short comment, just to
explain what it’s doing. One day you’ll be glad that you took the few extra seconds to add a
comment or two.

Apart from the comments, your script naturally includes some commands. All legal
commands can be used, and you can invoke Bash internal commands as well as work with
external commands. An internal command is loaded into memory with Bash and therefore
can execute very fast. An external command is a command that is somewhere on disk, and
this is its main disadvantage: it needs to be loaded first and that takes time. Listing 7-2 is a
shell script that although rather simple, still includes all the basic elements.

Listing 7-2. Example of a Simple Shell Script That Contains All Basic Elements

#!/bin/bash
#
This is just a friendly script. It echoes "Hello World" to the person
who runs it.
#
Usage: hello
#
echo 'Hello World!'
exit 0

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 193

In the example script, you can see some things happening. After the comment, the echo
command is used to greet the user who runs the script. Notice that the text to be echoed to the
screen is placed between single quotes. These are also called “strong quotes,” and they make
sure that the shell does not actually interpret anything that appears between them. In this
example, it’s a good idea to use them because the exclamation mark has a special meaning for
the shell.

Also note that after the successful termination of the script, the exit 0 command is used.
This command generates the so-called exit status of the script; it tells the parent shell whether
the script executed successfully. Normally, the exit status 0 is used to indicate that everything
went well. If some problems were encountered executing the script, an exit status value of 1
can be used. Any other exit status can be used at the discretion of the programmer. Using
more than just 0 and 1 as values for exit status can make troubleshooting much easier. Using
an exit status is important in more complex shell scripts because you can decide that some-
thing else needs to happen based on the success or failure of your script.

■Tip Did you know that you can request the exit status of the last command executed by the shell? Typing
echo $? displays the exit status of that command as a numerical value.

Making It Executable
Now that you created your shell script, it’s time to do something with it. You can execute it
with several different options:

• Activate it as an argument of your shell.

• “Source” the script.

• Make it executable and run it.

If you just need to check that the script works, the easiest way to test it is as a shell argu-
ment. To do this, you have to start a new shell that starts the script for you. If the name of your
script is hello, you can start the script with the bash hello command.

This method starts a subshell and executes the script from there. If a variable is set in this
subshell, it’s available within that subshell only, not in the parent shell. If you want to set a
variable from a shell script and make sure that that variable is available in the parent shell as
well, use the source command to run the shell script. You’ll learn more about variables later in
“Changing Variables.”

■Tip Want a variable that’s set in a script to be available in all subshells? Use the export command when
defining the variable. However, there’s no way to define a variable in a subshell that will also be set in the
parent shell.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE194

The second way to execute a script is with the source command. This command is
referred to by entering a dot, followed by a space and the name of the script. For example, the
script with the name hello can be started with . hello.

The important difference with the source command is that no subshell is started, and the
script runs directly from the current shell. The result is that all variables that are defined when
running the script are also available after running the script. This can be both useful and con-
fusing. The source method is often used to include another script in a generic script. In this
other script, for example, some system variables are set. Listing 7-3 shows how this works in
the script that starts networking: /etc/init.d/networking. As you can see in about the approx-
imate middle of the listing, the . /lib/lsb/init-functions command is included to set some
generic functions that should be used in this script.

Listing 7-3. The Sourcing Method Is Used to Include Scripts Containing Variables in Many
Startup Scripts

#!/bin/sh -e
BEGIN INIT INFO
Provides: networking
Required-Start: mountkernfs ifupdown $local_fs
Required-Stop: ifupdown $local_fs
Default-Start: S
Default-Stop: 0 6
END INIT INFO

PATH="/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin"

[-x /sbin/ifup] || exit 0

. /lib/lsb/init-functions

case "$1" in
start)

log_action_begin_msg "Configuring network interfaces"
type usplash_write >/dev/null 2>/dev/null && usplash_write "TIMEOUT 120"

|| true
if ["$VERBOSE" != no]; then

if ifup -a; then
networking

The last and possibly the most frequently used method to run a script is to make it an
executable first. Do this by adding the execute permission to your script, as in the following
command:

chmod +x hello

Next, you can simply run the script:

./hello

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 195

Notice that in this example the script is executed as ./hello, not just hello (assuming that
the script is in the current directory). This is because you need to indicate that the script must
run from the current directory. As a default security feature, no Linux shell looks for executable
code in the current directory. Excluding the current directory from the search path ensures
that a user or an administrator who runs a command always runs the proper command from
the search path, not some rogue command that was installed in the current directory. Without
the ./, Bash would search for hello in its current PATH setting and would probably not find it.

■Note The shell PATH variable is used to specify a list of directories that should always be searched for
executable files. You can see its contents by using the echo $PATH command.

One last remark before diving into real scripting: always be careful about what you name
your script and try to avoid names that already exist. For example, you might be tempted to
use test as the name of a test script. This would, however, conflict with the test command
that’s installed on all Linux systems by default. Want to see whether the name of your script is
already used by some other command? Use the which command to search all directories set in
the PATH variable for a binary with the name you’ve entered. Listing 7-4 shows the result of this
command issued for the test command.

Listing 7-4. Using which to Check Whether a Command with a Given Name Already Exists

root@RNA:/# which test
/usr/bin/test

Making a Script Interactive
It’s cool if your script can execute a list of commands, but it’ll be much better if you can make
it interactive. This way, the script can ask a user for input, and the user decides how the script
should be run. To make a script interactive, use the read command followed by the name of a
variable. This variable is used as a label to the input of the user, but the great thing is that you
can use it later in the script to check exactly what the user entered. Listing 7-5 is an example of
an interactive script. You’ll also learn a new method to display script output on the screen.

Listing 7-5. Making Your Script Interactive

#!/bin/bash
#
Send a message to the world
#
Usage: ./hello

cat << EOF
Tell us, what message do you want to tell the world today? Don't hesitate, anything

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE196

is allowed, just tell me what friendly message you want to enter.
EOF

read MESSAGE
echo "$MESSAGE"

In the script of Listing 7-5, the first new item that you see is the so-called here document,
which is an alternative way to echo text to the user’s screen. It’s particularly useful if you want
to display some lines of text on the user’s screen. The advantage of using this construction is
that you open it by using cat << followed by anything. In this example, I used EOF (end of file),
but if you want to use “mydoggie” instead, that’s fine as well. Just make sure that the opening
statement for the here document is on a line of its own. Next, enter all the text you want to
enter and close the here document by referring to the text that you entered to open the here
document on a single line. In the example from Listing 7-5, this means that you just put EOF
on a line by itself.

After the here document, the read command asks the user for some input. The input is
placed in the temporary variable MESSAGE, which is echoed in the last line of the script. Also
notice that no $ character is required to define the variable, but one is necessary to display the
contents of the variable. Otherwise, echo would have no way of knowing that you are referring
to a variable. One more remark about the use and definition of variables: I like to write them
all uppercase. Why? It makes a script more readable. Listing 7-6 shows what exactly this script
will do when you run it.

Listing 7-6. Running the Interactive Script

SFO:~/bin # ./hello
Tell us, what message do you want to pass to the world today? Don't hesitate,
anything is allowed, just tell me what friendly message you want to enter
Good morning folks
Good morning folks

Working with Arguments
Although making a script interactive is a good way to get user input, it does have a disadvan-
tage: it requires a user who provides input to your script. This is not ideal because many
scripts are created to run automatically. Instead, such scripts can be started with specific
parameters that are specified as arguments when the script is launched. For example, you
would run the hello script from the previous section, just as ./hello hi to let it output the text
hi. In this example, hi is the argument used by this script.

To work with arguments that are provided when activating the script, you need names for
them. The first argument is named $1, the second argument is $2, and so forth, up to $9 ($10
would be interpreted as $1, followed by a 0). So you’re basically limited to the use of only nine
arguments. If you need more than nine, use $@ as explained next in the “Referring to Argu-
ments” section. The name of the script itself is referred to by using $0. Listing 7-7 is a simple
example of a script that can work with arguments.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 197

Listing 7-7. Working with Arguments

#!/bin/bash
#
Script that allows you to greet someone
Usage: ./hello [name]

echo "Hello $1, how are you today"

Let’s imagine that you activate this script by entering ./hello linda on the command
line. This means that when calling the script, $1 is filled with the value linda. When called in
the actual code line, the script will therefore echo “Hello linda, how are you today” on the
screen of the user. When working with arguments, you must be aware that every single word
you enter is interpreted as a separate argument. You can see this if you execute the example
script by entering ./hello mister president. As the result, only the text “Hello mister, how are
you today” is displayed. This is because your script has no definition for $2.

Do you want to make sure that cases like this are handled correctly? Use the construction
$* to denote an unknown number of arguments. So, to handle any number of arguments,
without knowing beforehand how many arguments are going to be used, edit the script in
Listing 7-7, as shown in Listing 7-8.

Listing 7-8. Handling an Unknown Number of Arguments

#!/bin/bash
#
Script that allows you to greet one or more persons
Usage: ./hello [name1] [name2] ... [namen]
echo "Hello $*, how are you today"

Referring to Arguments
In Listing 7-8, you saw that $* is used to refer to a number of arguments that is unknown at the
time of running the script. And you can refer to other arguments that you might be using in
other ways:

• $*: Refers to all arguments, treating them as one string

• $@: Refers to all arguments, treating each argument as a string on its own

• $#: Shows how many arguments were used when first running the script

Sounds complicated, doesn’t it? Let’s have a look at an example to show how it works. In
Listing 7-9, I’m using the for i in ... do ... done construction to show the difference
between $* and $@. I’ll explain in more detail later how the for i in construction works, but
all you have to know for now is that it looks at its arguments and performs an action for every
element that it sees.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE198

Listing 7-9. Showing the Difference Between $* and $@

#!/bin/bash
Script that shows the difference between $* and $@
Usage: ./showdifference [arguments]

echo "\$* shows $*"
echo "\$# shows $#"
echo "\$@ shows $@"
echo "The name of the script itself is $0"

echo showing the interpretation of \$*
for i in "$*"
do

echo $i
done

echo showing the interpretation of \$@
for i in "$@"
do

echo $i
done

Listing 7-10 shows what this script does when activated.

Listing 7-10. Showing the Working of the Script from Listing 7-9

root@RNA:~/scripts# ./showdifference a b c d e f
$* Shows a b c d e f
$# shows 6
$@ shows a b c d e f
The name of the script is ./showdifference
showing the interpretation of $*
a b c d e f
showing the interpretation of $@
a
b
c
d
e
f
root@RNA:~/scripts#

Now let’s try to understand all this. In the first part of the script (the lines that start with
echo), we show the result of using the different items when running this script. You may notice
that the lines start with a / before the $. This / makes sure that the $ is not interpreted the first
time. The second time the same $ is referred to, I’m not using the / because we actually want
to see a real result.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 199

Next, in the for i in ... loops a temporary variable with the name i is defined. You can
understand the use of this variable as “for each element in ... ,” whereby every element in turn
is temporarily put in the variable i. Now, for every element encountered in $* in the first loop,
the command echo $i is executed. The result of this is that the name of the element (which is
an argument in this script) is echoed to the screen.

The difference between $* and $@ becomes clear from this example. Where just one ele-
ment is seen in the first loop, every argument is treated as an element on its own in the loop
that uses $@. So, to make sure that from a range of arguments every argument is treated as an
argument on its own, use $@.

Working with Variables
Variables play an important role in creating a good working shell script. In the previous sec-
tion, you learned how variables are used to store the arguments that are entered when
activating a script. And you can define variables in other ways as well. This section explores
more of the possibilities when working with variables.

Command Substitution
One way of handling variables automatically is to use command substitution, which is a tech-
nique that puts the result of a command in a variable that can be used in a script (or on the
command line). This technique is especially useful if you need to work with information that
changes often or automatically, such as the version of the kernel that you’re using. To use
command substitution, put the command you want to use between backquotes; for example
echo `whoami` would put the result of the whoami command in the echo command. An alterna-
tive way of writing this is echo $(whoami). Notice that there’s really no difference between
these two.

An example could be a script that refers to the directory in which kernel modules are
installed. The name of this directory changes with every kernel update that is installed, so it’s
not really a good idea to use hard references to this directory in your scripts. Command substi-
tution is an ideal solution.

The name of the current kernel version can be displayed with the uname -r command. So,
instead of referring to the directory /lib/modules/2.6.20 (or whatever the name of the module
directory for the currently loaded kernel is), you can refer to /lib/modules/`uname -r` instead.
The example script in Listing 7-11 shows how command substitution is used.

Listing 7-11. Example of Command Substitution

#!/bin/bash
#
Copy a kernel module to the appropriate directory
Usage: ./modcop

echo Enter the full path name of the file that you want to copy
read FILE
cp $FILE /lib/modules/`uname -r`

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE200

In this example, the script first asks the user to input the complete name of the file that
should be copied. Next, it will copy the file to the directory where the current kernel stores its
kernel modules.

Changing Variables
Sometimes the name of a variable needs to be changed. To do this, you need to define a new
variable that’s based on the value of an old variable. This may be useful, for example, to
change the argument that a user has entered when starting the script. When changing a vari-
able, you should be aware that you can redefine all variables except arguments that were
entered when starting the script ($1, $2, and so on). So, if you need to do something to the
value that is assigned to an argument, put the current value of the argument in a new variable
and change it. The example in Listing 7-12 shows how to put the result of an existing variable
in a new variable.

Listing 7-12. Assigning the Value of Existing Variables to New Variables

#!/bin/bash
#
Greet the user in a friendly way
Usage: ./hello <firstname> <surname>

NAME="$1 $2"
echo hello $NAME

If, for example, a user named Linda Thomson starts the script by using the ./hello Linda
Thomson command, the script will output “hello Linda Thomson” to the screen. Put in this way,
it is not extremely useful to put the current values of $1 and $2 in a new variable called NAME. If,
however, you want to change the value currently assigned to a variable, it can be very useful to
assign the value of old variables to a temporary new variable. The next section makes this
clear.

Substitution Operators
Within a script, it may be important to check whether a variable really has a value assigned to
it before the script continues. To do this, Bash offers substitution operators. By using substitu-
tion operators, you can assign a default value if a variable doesn’t have a value currently
assigned, and much more. Table 7-1 provides an overview of the substitution operators with
a short explanation of their use.

Table 7-1. Substitution Operators

Operator Use

${parameter:-value} Show value if parameter is not defined.

${parameter=value} Assign value to parameter if parameter does not exist at all. This operator
does nothing if parameter exists, but doesn’t have a value.

${parameter:=value} Assign value if parameter currently has no value, or if parameter doesn’t
exist at all.

Continued

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 201

Table 7-1. Continued

Operator Use

${parameter:?value} Show a message that is defined as value if parameter doesn’t exist or is
empty. Using this construction will force the shell script to be aborted
immediately.

${parameter:+value} If parameter does have a value, the value is displayed. If it doesn’t have a
value, nothing happens.

Substitution operators can be hard to understand. To make it easier to see how they work,
Listing 7-13 provides some examples. In all these examples, something happens to the $BLAH
variable. You’ll see that the result of the given command is different depending on the substi-
tution operator that’s used. To make it easier to discuss what happens, I added line numbers
to the listing. Notice that when trying this yourself, you should omit the line numbers.

Listing 7-13. Using Substitution Operators

1. sander@linux %> echo $BLAH
2.
3. sander@linux %> echo ${BLAH:-variable is empty}
4 variable is empty
5. sander@linux %> echo $BLAH
6.
7. sander@linux %> echo ${BLAH=value}
8. value
9. sander@linux %> echo $BLAH
10. value
11. sander@linux %> BLAH=
12. sander@linux %> echo ${BLAH=value}
13.
14. sander@linux %> echo ${BLAH:=value}
15. value
16. sander@linux %> echo $BLAH
17. value
18. sander@linux %> echo ${BLAH:+sometext}
19. sometext

The example of Listing 7-13 starts with the echo $BLAH command, which reads the vari-
able BLAH and shows its current value. Because BLAH doesn’t have a value yet, nothing is shown
in line 2. Next, a message is defined in line 3 that should be displayed if BLAH is empty. As you
can see, the message is displayed in line 4. However, this doesn’t assign a value to BLAH, which
you see in lines 5 and 6 where the current value of BLAH is asked again. In line 7, BLAH finally
gets a value, which is displayed in line 8. The shell remembers the new value of BLAH, which
you can see in lines 9 and 10 where the value of BLAH is referred to and displayed. In line 11,
BLAH is redefined but it gets a null value. The variable still exists; it just has no value here. This
is demonstrated when echo ${BLAH=value} is used in line 12; because BLAH has a null value at
that moment, no new value is assigned. Next, the construction echo ${BLAH:=value} is used to
assign a new value to BLAH. The fact that BLAH really gets a value from this is shown in lines 16

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE202

and 17. Finally, the construction in line 18 is used to display sometext if BLAH currently does
have a value. Notice that this doesn’t change anything to the value that is assigned to BLAH at
that moment; sometext just indicates that it has a value and that’s all.

Pattern-Matching Operators
You’ve just seen how substitution operators can be used to do something if a variable does not
have a value. You can consider them a rather primitive way of handling errors in your script.
A pattern-matching operator can be used to search for a pattern in a variable and modify the
variable if that pattern is found. This can be very useful because it allows you to define a vari-
able exactly the way you want. For example, think of the situation in which a user enters a
complete pathname of a file, but only the name of the file itself (without the path) is needed in
your script.

The pattern-matching operator is the way to change this. Pattern-matching operators
allow you to remove part of a variable automatically. Listing 7-14 is an example of a script that
works with pattern-matching operators.

Listing 7-14. Working with Pattern-Matching Operators

#!/bin/bash
#
script that extracts the file name from a file name that includes the complete path
usage: stripit <complete file name>

filename=${1##*/}
echo "The name of the file is $filename"

When executed, the script shows the following result:

sander@linux %> ./stripit /bin/bash
the name of the file is bash

Pattern-matching operators always try to locate a given string. In this case, the string is */.
In other words, the pattern-matching operator searches for a /, preceded by another charac-
ter. In this pattern-matching operator, ## is used to search for the longest match of the
provided string, starting from the beginning of the string. So, the pattern-matching operator
searches for the last / that occurs in the string and removes it and everything that precedes the
/ as well. You might ask how the script comes to remove everything in front of the /. It’s
because the pattern-matching operator refers to */ and not to /. You can confirm this by run-
ning the script with /bin/bash/ as an argument. In this case, the pattern that’s searched for is
in the last position of the string, and the pattern-matching operator removes everything.

This example explains the use of the pattern-matching operator that looks for the longest
match. By using a single #, you can let the pattern-matching operator look for the shortest
match, again starting from the beginning of the string. If, for example, the script in Listing 7-14
used filename=${1#*/}, the pattern-matching operator would look for the first / in the com-
plete file name and remove that and everything before it.

You should realize that in these examples the * is important. The pattern-matching
operator ${1#*/} removes the first / found and anything in front of it. The pattern-matching

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 203

operator ${1#/} removes the first / in $1 only if the value of $1 starts with a /. However, if
there’s anything before the /, the operator will not know what to do.

These examples showed how a pattern-matching operator is used to start searching from
the beginning of a string. You can start searching from the end of the string as well. To do so, a
% is used instead of a #. This % refers to the shortest match of the pattern, and %% refers to its
longest match. The script in Listing 7-15 shows how this works.

Listing 7-15. Using Pattern-Matching Operators to Start Searching at the End of a String

#!/bin/bash
#
script that isolates the directory name from a complete file name
usage: stripdir <complete file name>

dirname=${1%%/*}
echo "The directory name is $dirname"

While executing, you’ll see that this script has a problem:

sander@linux %> ./stripdir /bin/bash
The directory name is

As you can see, the script does its work somewhat too enthusiastically and removes every-
thing. Fortunately, this problem can be solved by first using a pattern-matching operator that
removes the / from the start of the complete file name (but only if that / is provided) and then
removing everything following the first / in the complete file name. The example in Listing 7-16
shows how this is done.

Listing 7-16. Fixing the Example from Listing 7-15

#!/bin/bash
#
script that isolates the directory name from a complete file name
usage: stripdir <complete file name>

dirname=${1#/}
dirname=${1%%/*}
echo "The directory name is $dirname"

As you can see, the problem is solved by using ${1#/}. This construction starts searching
from the beginning of the file name to a /. Because no * is used here, it looks for a / only at the
very first position of the file name and does nothing if the string starts with anything else. If it
finds a /, it removes it. So, if a user enters usr/bin/passwd instead of /usr/bin/passwd, the
${1#/} construction does nothing at all. In the line after that, the variable dirname is defined
again to do its work on the result of its first definition in the preceding line. This line does the
real work and looks for the pattern /*, starting at the end of the file name. This makes sure that
everything after the first / in the file name is removed and that only the name of the top-level
directory is echoed. Of course, you can easily edit this script to display the complete path of
the file: just use dirname=${dirname%/*} instead.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE204

So, to make sure that you are comfortable with pattern-matching operators, the script in
Listing 7-17 gives another example. This time, though, the example does not work with a file
name, but with a random text string.

Listing 7-17. Another Example with Pattern Matching

#!/bin/bash
#
script that extracts the file name from a file name that includes the complete path
usage: stripit <complete file name>

BLAH=babarabaraba
echo BLAH is $BLAH
echo 'The result of ##ba is '${BLAH##*ba}
echo 'The result of #ba is '${BLAH#*ba}
echo 'The result of %%ba is '${BLAH%ba*}
echo 'The result of %ba is '${BLAH%%ba*}

When running it, the script gives the result shown in Listing 7-18.

Listing 7-18. The Result of the Script in Listing 7-17

root@RNA:~/scripts# ./pmex
BLAH is babarabaraba
The result of ##ba is
The result of #ba is barabaraba
The result of %%ba is babarabara
The result of %ba is
root@RNA:~/scripts#

Performing Calculations in Scripts
Bash offers some options that allow you to perform calculations from scripts. Of course, you’re
not likely to use them as a replacement for your spreadsheet program, but performing simple
calculations from Bash can be useful. For example, you can use calculation options to execute
a command a number of times or to make sure that a counter is incremented when a com-
mand executes successfully. The script in Listing 7-19 provides an example of how counters
can be used.

Listing 7-19. Using a Counter in a Script

#!/bin/bash
counter=1
while true
do

counter=$((counter + 1))
echo counter is set to $counter

done

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 205

As you can see, this script uses a construction with while (which is covered in more detail
in the “Using while” section). The construction is used to execute a command as long as a
given condition is met. In this example, the condition is simple: you must be able to execute
the true command successfully. This won’t be a problem: the name of the command is true
because it always executes successfully. That is, true always gives an exit status of 0, which
tells the shell that it has executed with success, just like the false command always gives the
exit status of 1.

What has to happen if the condition is met is specified between the do and done. First, the
line counter=$((counter + 1)) takes the current value of the variable counter (which is set in
the beginning of the script) and increments that by 1. Next, the value of the variable counter is
displayed with the line echo counter is set to $counter. Once that’s happened, the condi-
tion is checked again and the command is executed again as well. The result of this script will
be that you see a list of numbers on your screen that’s updated very quickly. Does it go too
fast? Just add a line with the command sleep 1 in the loop. Now the calculation of the new
value of counter is performed only once per second.

Although the previous example explains how a simple calculation can be performed from
a script, it isn’t very useful. Listing 7-20 provides a more useful one. I once had to test the dura-
bility of USB sticks for a computer magazine. As you have probably heard, some people think
that the life of flash storage is limited. After a given number of writes, according to some peo-
ple, the stick dies. Such a claim called for a test, which can be performed through the following
shell script with the name killstick:

Listing 7-20. Script to Test USB Sticks

#!/bin/bash
#
Script to test USB sticks
#
usage: killstick <mountpoint of the stick>
#
counter=0
while cp /1MBfile $1
do

sync
rm -rf $1/1MBfile
sync
counter=$((counter + 1))
echo Counter is now set to $counter

done
echo Your stick is now non-functional

The script again starts with a little explanation of how it works. To run this script, you first
need to mount the stick on a certain mount point, and this mount point needs to be declared
by specifying it as an argument to the script. Next, a while loop is started. The command that
needs to execute successfully is cp /1MBfile $1. You can use this script on a stick of any size,
but before starting it, make sure that all the available disk space on the stick is used—with the
exception of 1 MB. Next, create a file with a size of 1 MB (or just a little smaller). This way you’ll

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE206

make sure that the controller of the stick isn’t playing any tricks on you, and the write always
occurs at the same spot.

As long as the file copy is successful, the commands in the do loop are executed. First, the
file is synchronized to the stick using the sync command to make sure that it isn’t just kept
somewhere in memory. Next, it’s immediately removed again, and this removal is synchro-
nized to the physical storage media. Finally, the calculation is used again to increment the
counter variable by 1. This continues as long as the file can be copied successfully. When
copying fails, the while loop is terminated and the echo Your stick is now non-functional
command is displayed, thus allowing you to know exactly how often the file could be copied
to the stick.

■Note Would you like to know how many writes it takes to kill a stick completely? As it turns out, flash
memory has improved enormously over the last few years, and you can expect the memory chip to support
at least 100,000 writes. In many cases, however, more than 1,000,000 writes can be performed without any
problem.

So far, we’ve dealt with only one method to do script calculations, but you have other
options as well. First, you can use the external expr command to perform any kind of calcula-
tion. For example, the following line produces the result of 1 + 2:

sum=`expr 1 + 2`; echo $sum

As you can see, a variable with the name sum is defined, and this variable gets the result of
the command expr 1 + 2 by using command substitution. A semicolon is then used to indi-
cate that what follows is a new command. After the semicolon, the command echo $sum shows
the result of the calculation.

The expr command can work with addition, and other types of calculation are supported
as well. Table 7-2 summarizes the options.

Table 7-2. expr Operators

Operator Meaning

+ Addition (1 + 1 = 2)

- Subtraction (10 – 2 = 8)

/ Division (10 / 2 = 5)

* Multiplication (3 * 3 = 9)

% Modulus—calculates the remainder after division; this works because expr can handle
integers only (11 % 3 = 2)

When working with these options, you’ll see that they all work fine with the exception of
the multiplication operator *. Using this operator results in a syntax error:

linux: ~> expr 2 * 2
expr: syntax error

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 207

This seems curious, but can be easily explained. The * has a special meaning for the shell,
as in ls -l *. When the shell parses the command line, it interprets the * (you don’t want it to
do that here). To indicate that the shell shouldn’t touch it, you have to escape it. Therefore,
change the command as follows:

expr 2 * 2

Alternatively, you could have escaped the * with single quotes by using the following
command:

expr 2 '*' 2

Another way to perform some calculations is to use the internal command let. Just the
fact that let is internal makes it a better solution than the external command expr: it can be
loaded from memory directly and doesn’t have to come all the way from your computer’s hard
drive. Using let, you can make your calculation and apply the result directly to a variable, as
in the following example:

let x="1 + 2"

The result of the calculation in this example is stored in the variable x. The disadvantage
of working this way is that let has no option to display the result directly as can be done when
using expr. For use in a script, however, it offers excellent capabilities. Listing 7-21 shows a
script in which let is used to perform calculations.

Listing 7-21. Performing Calculations with let

#!/bin/bash
#
usage: calc $1 $2 $3
$1 is the first number
$2 is the operator
$3 is the second number
let x="$1 $2 $3"
echo $x

If you think that we’ve now covered all methods to perform calculations in a shell script,
you’re wrong. Listing 7-22 shows another method that you can use.

Listing 7-22. Another Way to Calculate in a Bash Shell Script

#!/bin/bash
#
usage: calc $1 $2 $3
$1 is the first number
$2 is the operator
$3 is the second number
x=$(($1 $2 $3))
echo $x

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE208

You saw this construction when you read about the script that increases the value of the
variable counter. Note that the double pair of parentheses can be replaced by one pair of
square brackets instead, assuming that the preceding $ is present.

Using Flow Control
Up until now, you haven’t read much about the way in which the execution of commands can
be made conditional. The technique for enabling this in shell scripts is known as flow control.
Bash offers many options to use flow control in scripts:

• if: Use if to execute commands only if certain conditions were met. To customize the
working of if some more, you can use else to indicate what should happen if the con-
dition isn’t met.

• case: Use case to work with options. This allows the user to further specify the working
of the command when he runs it.

• for: This construction is used to run a command for a given number of items. For
example, you can use for to do something for every file in a specified directory.

• while: Use while as long as the specified condition is met. For example, this construc-
tion can be very useful to check whether a certain host is reachable or to monitor the
activity of a process.

• until: This is the opposite of while. Use until to run a command until a certain condi-
tion has been met.

The following subsections cover flow control in more detail. Before going into these
details, however, you can first read about the test command. This command is used to per-
form many checks to see, for example, whether a file exists or whether a variable has a value.
Table 7-3 shows some of the more common test options. For a complete overview, consult its
man page.

Table 7-3. Common Options for the test Command

Option Use

test -e $1 Checks if $1 is a file, without looking at what particular kind of file it is.

test -f $1 Checks if $1 is a regular file and not (for example) a device file, a directory, or an
executable file.

test -d $1 Checks if $1 is a directory.

test -x $1 Checks if $1 is an executable file. Note that you can test for other permissions
as well. For example, -g would check to see if the SGID permission (see
Chapter 5) is set.

test $1 -nt $2 Controls if $1 is newer than $2.

test $1 -ot $2 Controls if $1 is older than $2.

test $1 -ef $2 Checks if $1 and $2 both refer to the same inode. This is the case if one is a hard
link to the other (see Chapter 4 for more on inodes).

test $1 -eq $2 Sees if the integers $1 and $2 are equal.

Continued

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 209

Table 7-3. Continued

Option Use

test $1 -ne $2 Checks if the integers $1 and $2 are not equal.

test $1 -gt $2 Gives true if integer $1 is greater than integer $2.

test S1 -lt $2 Gives true if integer $1 is less than integer $2.

test $1 -ge $2 Sees if integer $1 is greater than or equal to integer $2.

test $1 -le $2 Checks if integer $1 is less than or equal to integer $2.

test -z $1 Checks if $1 is empty. This is a very useful construction to find out if a variable
has been defined.

test $1 Gives the exit status 0 if $1 is defined.

test $1=$2 Checks if the strings $1 and $2 are the same. This is most useful to compare the
value of two variables.

test $1 != $2 Sees if the strings $1 and $2 are not equal to each other. You can use ! with all
other tests to check for the negation of the statement.

You can use the test command in two ways. First, you can write the complete command,
as in test -f $1. This command, however, can be rewritten as [-f $1]. Most of the time
you’ll see the latter option only because people who write shell scripts like to work as effi-
ciently as possible.

Using if...then...else
Possibly the classic example of flow control consists of constructions that use if...then...
else. Especially if used in conjunction with the test command, this construction offers
various interesting possibilities. You can use it to find out whether a file exists, if a variable
currently has a value, and much more. Listing 7-23 provides an example of a construction
with if...then...else that can be used in a shell script.

Listing 7-23. Using if to Perform a Basic Check

#!/bin/bash
if [-z $1]
then

echo You have to provide an argument with this command
exit 1

fi

echo the argument is $1

The simple check from the Listing 7-23 example is used to see if the user who started your
script provided an argument. If he or she didn’t, the code in the if loop becomes active, in
which case it displays the message that the user needs to provide an argument and then ter-
minates the script. If an argument has been provided, the commands within the loop aren’t
executed, and the script will run the line echo the argument is $1, and in this case echo the
argument to the user’s screen.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE210

Also notice how the syntax of the if construction is organized. First, you have to open it
with if. Then, separated on a new line (or with a semicolon), then is used. Finally, the if loop
is closed with an fi statement. Make sure that all those ingredients are used all the time or
your loop won’t work.

■Note You can use a semicolon as a separator between two commands. So ls; who would first execute
the command ls and then the command who.

The example in Listing 7-23 is rather simple, and it’s also possible to make if loops more
complex and have them test for more than one condition. To do this, use else or elif. By
using else within the loop, you can make sure that something happens if the condition is met,
but it allows you to check another condition if the condition is not met. You can even use else
in conjunction with if (elif) to open a new loop if the first condition isn’t met. Listing 7-24 is
an example of the latter construction.

Listing 7-24. Nesting if Loops

if [-f $1]
then

echo "$1 is a file"
elif [-d $1]

echo "$1 is a directory"
else

echo "I don't know what \$1 is"
fi

In this example, the argument that was entered when running the script is checked. If it
is a file (if [-f $1]), the script tells the user that. If it isn’t a file, the part under elif is exe-
cuted, which basically opens a second loop. In this second loop, the first test performed is to
see if $1 is perhaps a directory. Notice that this second part of the loop becomes active only if
$1 is not a file. If $1 isn’t a directory either, the part after else is run, and the script reports that
it has no idea what $1 is. Notice that for this entire construction, only one fi is needed to close
the loop.

You should know that if .. then ... else constructions are used in two different ways.
You can write out the complete construction as in the previous examples, or you can use con-
structions that use && and ||. These so-called separators are used to separate two commands
and establish a conditional relationship between them. If && is used, the second command is
executed only if the first command is executed successfully (in other words, if the first com-
mand is true). If || is used, the second command is executed only if the first command isn’t
true. So, with one line of code, you can find out if $1 is a file and echo a message if it is:

[-f $1] && echo $1 is a file

Note that this can be rewritten differently as well:

[! -f $1] || echo $1 is a file

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 211

■Note This example only works as a part of a complete shell script. Listing 7-25 shows how the example
from Listing 7-24 is rewritten if you want to use this syntax.

In case you don’t quite follow what is happening in the second example: it performs a test
to see if $1 is not a file. (The ! is used to test if something is not the case.) Only if the test fails
(which is the case if $1 is indeed a file), it executes the part after the || and echoes that $1 is a
file. Let’s have a look (see Listing 7-25) at how you can rewrite the script from Listing 7-24 with
the && and || tests.

Listing 7-25. The Example from Listing 7-24 Rewritten with && and ||

([-z $1] && echo please provide an argument; exit 1) || (([-f $1] && echo $1 is\
a file) || ([-d $1] && echo $1 is a directory || echo I have no idea what $1 is))

■Note You’ll notice in Listing 7-25 that I used a \ at the end of the line. This slash makes sure that the
carriage return sign at the end of the line is not interpreted and is used only to make sure that you don’t type
two separated lines. I’ve used the \ for typographical reasons only. In a real script, you’d just put all code on
one line (which wouldn’t fit on these pages without breaking it, as I’ve had to do). I’ll use this convention in
some later scripts as well.

If you understand what the example script from Listing 7-24 does, it is not really hard to
understand the script in Listing 7-25 because it does the same thing. However, you should be
aware of a few things. First, I added a [-z $1] test to give an error if $1 is not defined. Next,
the example in Listing 7-25 is all on one line. This makes the script more compact, but it also
makes it a little harder to understand what is going on. I used brackets to increase the read-
ability a little bit and also to keep the different parts of the script together. The parts between
brackets are the main tests, and within these main tests some smaller tests are used as well.

Let’s have a look at some other examples with if ... then ... else. Consider the follow-
ing line, for example:

rsync -vaze ssh --delete /srv/ftp 10.0.0.20:/srv/ftp || echo "rsync failed" | mail
admin@mydomain.com

Here, the rsync command tries to synchronize the content of the directory /srv/ftp with
the content of the same directory on some other machine. If this succeeds, no further evalua-
tion of this line is attempted. If something happens, however, the part after the || becomes
active and makes sure that user admin@mydomain.com gets a message.

Another more complex example could be the following script that checks whether avail-
able disk space has dropped below a certain threshold. The complex part lies in the sequence
of pipes used in the command substitution:

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE212

if [`df -m /var | tail -n1 | awk '{print $4} '` -lt 120]
then

logger running out of disk space
fi

The important part of this piece of code is in the first line, where the result of a command
is used in the if loop by using backquoting, and that result is compared with the value 120. If
the result is less than 120, the following section becomes active. If the result is greater than
120, nothing happens. As for the command itself, it uses the df command to check available
disk space on the volume where /var is mounted, filters out the last line of that result, and
from that last line filters out the fourth column only, which in turn is compared with the value
120. And if the condition is true, the logger command writes a message to the system log file.
This example isn’t really well organized; the following rewrite does exactly the same, but
makes it somewhat more readable:

[`df -m /var | tail -n1 | awk '{print $4}'` -lt $1] && logger running out of
disk space

This shows why it’s fun to write shell scripts: you can almost always make them better.

Case
Let’s start with an example this time (see Listing 7-26). Create the script, run it, and then try to
explain what it’s done.

Listing 7-26. Example Script with Case

#!/bin/bash
Your personal soccer expert
usage: soccer

cat << EOF
Enter the name of the country you think will be world soccer champion in 2010.
EOF

read COUNTRY
translate $COUNTRY into all uppercase
COUNTRY=`echo $COUNTRY | tr a-z A-Z`

perform the test
case $COUNTRY in

NEDERLAND | HOLLAND | NETHERLANDS)
echo "Yes, you are a soccer expert "
;;
DEUTSCHLAND | GERMANY | MANNSCHAFT)
echo "No, they are the worst team on earth"
;;
ENGLAND)
echo "hahahahahahaha, you must be joking"

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 213

;;
*)
echo "Huh? Do they play soccer?"
;;

esac

In case you didn’t guess, this script can be used to analyze the next World Cup champi-
onship (of course you can modify it for any major sports event you like). It will first ask the
person who runs the script to enter the name of the country that he or she thinks will be the
next champion. This country is put in the $COUNTRY variable. Notice the use of uppercase for
this variable; it’s a nice way to identify variables easily if your script becomes rather big.
Because the case statement that’s used in this script is case sensitive, the user input in the first
part is translated into all uppercase using the tr command. Using command substitution with
this command, the current value of $COUNTRY is read, translated to all uppercase, and assigned
again to the $COUNTRY variable using command substitution. Also notice that I made it easier
to distinguish the different parts of this script by adding some additional comments.

The body of this script consists of the case command, which is used to evaluate the input
the user has entered. The generic construction used to evaluate the input is as follows:

alternative1 | alternative2)
command
;;

So the first line evaluates everything that the user can enter. Notice that more than one
alternative is used on most lines, which makes it easier to handle typos and other situations
where the user hasn’t typed exactly what you were expecting him to type. Then on separate
lines come all the commands that you want the script to execute. In the example, just one
command is executed, but you can enter 100 lines to execute commands if you like. Finally,
the test is closed by using ;;. Don’t forget to close all items with the double semicolons; other-
wise, the script won’t understand you. The ;; can be on a line by itself, but you can also put it
directly after the last command line in the script.

When using case, you should make it a habit to handle “all other options.” Hopefully, your
user will enter something that you expect. But what if he doesn’t? In that case, you probably do
want the user to see something. This is handled by the *) at the end of the script. So, in this
case, for everything the user enters that isn’t specifically mentioned as an option in the script,
the script will echo "Huh? Do they play soccer?" to the user.

Using while
You can use while to run a command as long as a condition is met. Listing 7-27 shows how
while is used to monitor activity of an important process.

Listing 7-27. Monitoring Process Activity with while

#!/bin/bash
#
usage: monitor <processname>

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE214

while ps aux | grep $1
do

sleep 1
done

logger $1 is no longer present

The body of this script consists of the command ps aux | grep $1. This command moni-
tors for the availability of the process whose name was entered as an argument when starting
the script. As long as the process is detected, the condition is met, and the commands in the
loop are executed. In this case, the script waits one second and then repeats its action. When
the process is no longer detected, the logger command writes a message to syslog.

As you can see from this example, while offers an excellent method to check whether
something (such as a process or an IP address) still exists. If you combine it with the sleep
command, you can start your script with while as a kind of daemon and perform a check
repeatedly. For example, the script in Listing 7-28 would write a message to syslog if due to
an error the IP address suddenly gets lost.

Listing 7-28. Checking if the IP Address Is Still There

#!/bin/bash
#
script that monitors an IP address
usage: ipmon <ip-address>

while ip a s | grep $1/ > /dev/null
do

sleep 5
done

logger HELP, the IP address $1 is gone.

Using until
Although while does its work as long as a certain condition is met, until is used for the oppo-
site: it runs until the condition is met. This can be seen in Listing 7-29, in which the script
monitors whether the user, whose name is entered as the argument, is logged in.

Listing 7-29. Monitoring User Login

#!/bin/bash
#
script that alerts when a user logs in
usage: ishere <username>

until who | grep $1 >> /dev/null
do

echo $1 is not logged in yet

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 215

sleep 5
done

echo $1 has just logged in

In this example, the who | grep $1 command is executed repeatedly. In this command,
the result of the who command that lists users currently logged in to the system is grepped for
the occurrence of $1. As long as that command is not true (which is the case if the user is not
logged in), the commands in the loop will be executed. As soon as the user logs in, the loop is
broken and a message is displayed to say that the user has just logged in. Notice the use of
redirection to the null device in the test, ensuring that the result of the who command is not
echoed on the screen.

Using for
Sometimes it’s necessary to execute a series of commands, whether for a limited or an unlim-
ited number of times. In such cases, for loops offer an excellent solution. Listing 7-30 shows
how you can use for to create a counter.

Listing 7-30. Using for to Create a Counter

#!/bin/bash
#
counter that counts from 1 to 9
for ((counter=1; counter<10; counter++)); do

echo "The counter is now set to $counter"
done
exit 0

The code used in this script isn’t difficult to understand: the conditional loop determines
that as long as the counter has a value between 1 and 10, the variable counter must be auto-
matically incremented by 1. To do this, the construction counter++ is used. As long as this
incrementing of the variable counter continues, the commands between do and done are exe-
cuted. When the specified number is reached, the loop is left, and the script will terminate and
indicate with exit 0 to the system that it has done its work successfully.

Loops with for can be pretty versatile. For example, you can use it to do something on
every line in a text file. The example in Listing 7-31 illustrates how this works.

Listing 7-31. Displaying Lines from a Text File

#!/bin/bash
for i in `cat /etc/passwd`
do

echo $i
done

In this example, for is used to display all lines in /etc/passwd one by one. Of course, just
echoing the lines is a rather trivial example, but it’s enough to show how for works. If you’re
using for in this way, you should notice that it cannot handle spaces in the lines. A space
would be interpreted as a field separator, so a new line would begin after the space.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE216

One more example with for: in this example, for is used to ping a range of IP addresses.
This is a script that one of my customers likes to run to see whether a range of machines is up
and running. Because the IP addresses are always in the same range, starting with 192.168.1,
there’s no harm in including these first three bits in the IP address itself. Of course, you’re free
to work with complete IP addresses instead.

Listing 7-32. Testing a Range of IP Addresses

#!/bin/bash
for i in $@
do

ping -c 1 192.168.1.$i
done

Notice the use of $@ in this script. This operator allows you to refer to all arguments that
were specified when starting the script, no matter how many there are.

Using a Stream Editor
In scripting, some fixed Bash functionality can be used, such as if...then...else, for, read,
and others that you’ve read about in this chapter. To make a script really powerful, external
utilities can be used as well. One of these is the stream editor sed. In this section, I’ll introduce
you to some sed basics.

The stream editor sed can be compared with grep. Although grep is merely used to find
patterns in files, the purpose of sed is to do something to these patterns as well. To accomplish
this, a sed command consists of different parts. In the first part, you indicate what exactly you
want the command to do. Then you specify what it has to search for. Next, a pattern can be
specified to indicate the replacement text, and finally you can specify how a replacement has
to take place. You can see an example of this in the following line:

sed "s/english/french/g" languages.txt

In this example, the action that has to be performed is a substitution (s). The text that has
to be located is english, and its replacement text is french. Finally, the letter g indicates that
the command has to be executed until matches are found. Also notice that the command that
sed has to execute is always between quotes; this is to prevent the shell from interpreting the
text string.

If you want to modify the file with sed, you can use the -i (edit in place) option. For
instance, sed -i "s/English/French/g" languages.txt would replace the word English in
languages.txt with French everywhere it is found.

If you want to work safely with sed and avoid accidental erasure of the original file con-
tents, it is better not to write the result of the replacement directly to the original file. So omit
the option -i, which will write any modifications that it makes in the original text to STDOUT.
If you want these modifications to be saved somewhere, you need to write it to a new file. The
most common way to do this is by redirection to a temporary file. If required, the temporary
file can be used later to overwrite the original file. To accomplish this, the preceding example
would be modified in the following way:

sed "s/english/french/g" languages.txt > languages2.txt

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 217

Next, you can copy the new output file over the old file.

■Caution Never redirect the output to the file that you are analyzing, as in sed "s/English/French/g"

languages.txt > languages.txt. It will completely erase the content of the file!

Another useful task that can be accomplished with sed is to remove text from a file. In that
case, just add empty replacement text, as seen in the following example:

sed "s/something//g" list.txt

Of course you then have to make sure that the result is then written to some temporary
file.

Also very useful is the option to remove any lines that match a certain pattern from a file.
For example, the following command would remove user sander from the /etc/passwd file:

sed "/sander/d" /etc/passwd

Notice that no substitution is used in this example; instead, the d (delete) command
removes the line. You can even make it somewhat more complicated by removing an empty
line. In this case, you need to use a regular expression. The next example shows how:

sed "/^$/d" /myfile

The special construction used here is a regular expression that searches for the beginning
of the line, indicated by a ^, which is followed immediately by the end of the line, which is
indicated by a $. Because there’s nothing between the two of them, this construction helps you
to find empty lines.

Working with Functions
The function is an element that can be very useful in longer shell scripts. A function is a sub-
routine in a script that is labeled with a name. Using functions makes it easier to refer to
certain command sequences that have to be used more than once in a script. For instance,
you could create a generic error message if something went wrong. You can define functions
in two ways. You can use something like this:

function functionname
{

command1
command2
commandn

}

Or you could do it this way:

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE218

functionname ()
{

command1
command2
commandn

}

To increase the readability of a script, it’s a good idea to use functions if certain code
sequences are needed more than once. Listing 7-33 is an example of a script in which a func-
tion is used to display an error message. This script is a replacement for the file command,
with the difference that the script displays a more elegant error message.

Listing 7-33. Displaying Error Codes Using Functions

#!/bin/bash
This script shows the file type
#
usage: filetype $1
function noarg
{

echo "You have made an error"
echo "When running this script, you need to specify the name of the file"
echo "that you want to check"
exit 1

}

if [-z $1]; then
noarg

else
file $1

fi
exit 0

In Listing 7-33, the function has the name noarg. In it, some text is specified that has to be
echoed to the screen when the function is called. The function basically defines an error mes-
sage, so it makes sure that the script terminates with an exit status of 1. As you can see, the
function is called just once in this script, when a user forgets to enter the required argument.

A Complex Scripting Example
Let’s discuss one more script—one that provides a rather complex example in which process
activity is monitored (see Listing 7-34). To do this, the script will periodically check the most
active process, and if this script’s activity rises above a threshold, it will send an e-mail to the
user root.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 219

Listing 7-34. Complex Scripting Example

#!/bin/bash
Script that monitors the top-active process. The script sends an email to the user
root if utilization of the top active process goes beyond 80%. Of course, this
script can be tuned to do anything else in such a case.
#
Start the script, and it will run forever.

while true
do

Check if we have a process causing high CPU load every 60 seconds
sleep 10
BLAH=`ps -eo pcpu,pid -o comm= | sort -k1 -n -r | head -1`
USAGE=`echo $BLAH | awk '{ print $1 }'`
USAGE=${USAGE%.*}
PID=`echo $BLAH | awk '{print $2 }'`
PNAME=`echo $BLAH | awk '{print $3 }'`

Only if we have a high CPU load on one process, run a check within 7 sec.
In this check, we should monitor if the process is still that active
If that's the case, root gets a message
if [$USAGE -gt 70]
then

USAGE1=$USAGE
PID1=$PID
PNAME1=$PNAME
sleep 7
FIX MIJ

BLAH2=`ps -eo pcpi,pid -o comm= | sort -k1 -n -r | head -1`
USAGE2=`echo $BLAH2 | awk '{ print $1 } '`
USAGE2=${USAGE2%.*}
PID2=`echo $BLAH2 | awk '{print $2 }'`
PNAME2=`echo $BLAH2 | awk '{print $3 }'`

Now we have variables with the old process information and
with the new information

[$USAGE2 -gt 70] && [$PID1 = $PID2] && mail -s "CPU load of\
$PNAME is above 70%" root < .

fi
done

Again, you can see that this script comprises several parts. The first thing that happens is
that a variable with the name BLAH is defined. In this variable, three values are stored for the
most active process: the first value indicates CPU usage, the second value indicates the PID
of that process, and the third value refers to the name of the process. These three values are

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE220

stored in the variables USAGE, PID, and PNAME. Notice that the script performs a pattern-
matching operation on the variable USAGE. This is to make the value of this variable a whole
number, such as 81 instead of a fractional number like 81.9. (This is necessary because Bash
cannot perform calculations on fractional numbers.) Also notice the use of the awk command,
which plays an essential role in the script, and that’s to strip the value of the different fields
that are stored in the variables BLAH and BLAH2.

In the second part, the script looks to see whether the CPU utilization of the most active
process is higher than 70 percent. If it is, a second check is made to get the usage, name, and
PID of that process at that time. These values are stored in the variables USAGE2, PID2, and
PNAME2.

In the third part, the script determines whether the script that has a CPU utilization
greater than 70 percent in the first run is the same as the script with the highest CPU utiliza-
tion in the second run. If so, a message is sent to the user root.

Summary
In this chapter, you learned about some basic ingredients of shell scripts. This chapter is in no
way a complete overview of everything that can be used in a shell script; it’s just meant to
familiarize you with the basic ingredients of a script, so that you can analyze scripts that are
used on your server or write simple scripts yourself to simplify tasks that you have to perform
repeatedly. In Chapter 8, you’ll learn how to set up networking on Ubuntu Server.

CHAPTER 7 ■ RUNNING IT ANY WAY YOU L IKE 221

Making a Connection
Configuring the Network
Interface Card and SSH

What is a server without a network connection? Of no use whatsoever. We’ve already
explored the possibilities of the Linux operating system itself, and now we need to talk about
the network. In this chapter, you’ll learn how to configure the network card. Also, I’ll talk about
setting up remote connections using SSH. And you’ll learn some basic steps to troubleshoot a
network connection.

Configuring the Network Card
When installing your server, the installer automatically configures your server’s network board
to get its IP configuration from a DHCP server. As you read in Chapter 1, you can configure it
to use a static IP address instead. Also, after installing a server, it’s possible to change the IP
address assignment of your server’s network card. Let’s see how this works.

When your server boots, it starts the networking script from /etc/init.d. The script reads
the configuration that is stored in the /etc/network directory, paying particular attention to
the /etc/network/interfaces file. This configuration file stores the entire configuration of the
network board. Listing 8-1 shows an example configuration for a server that has two Ethernet
network cards.

Listing 8-1. Example Configuration for a Network Board

root@ZNA:~# cat /etc/network/interfaces
This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

The loopback network interface
auto lo
iface lo inet loopback

223

C H A P T E R 8

The primary network interface
auto eth0
iface eth0 inet static

address 192.168.1.33
netmask 255.255.255.0
network 192.168.1.0
broadcast 192.168.1.255
gateway 192.168.1.254
dns-* options are implemented by the resolvconf package, if installed
dns-nameservers 193.79.237.39
dns-search lan

#The second network board
auto eth1
iface eth1 inet static

address 10.0.0.10
netmask 255.255.255.0
network 10.0.0.0
broadcast 10.0.0.255

As you can see from the configuration file, the server has activated three network devices.
The first is lo, which is the loopback interface. It’s required for many services to function, even
if your server has no network connection at all. Typically, it uses the IP address 127.0.0.1.

In most cases, an Ethernet network board is used to connect with the rest of the world.
This network board is represented by the name eth0 if it’s the first, and names such as eth1
and so on for the next cards. The definition of each of the network cards starts with auto ethn,
in which n is the number of the network interface. This line is used to start the network board
automatically when your server boots. Although you can omit this line, you need to use the
ifup or ifconfig commands (as described in a bit) to start the network board by hand. In most
situations, you don’t want to do that, so make sure that the line that starts with auto is used at
all times.

Following the auto line, there is a definition of the interface itself. In this example, a server
is configured with two static IP addresses (which is what you typically want for a server). If you
need DHCP on an interface, make sure that the iface line reads iface ethn inet dynamic.
Following is the rest of the configuration for the network board. You’ll need address, netmask,
network, and broadcast in all cases. The other options are optional.

To show the current network configuration of your server, the ifconfig command is the
easiest command to use. For more versatile management of your network board, you should
use the ip command, which is discussed later in this chapter. Listing 8-2 is an example of the
output of ifconfig. Especially notice the address given by the inet addr parameter, which is
the IP address your server uses to connect to the rest of the world.

Listing 8-2. The ifconfig Command Shows the Current Network Configuration

root@RNA:/etc/network# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:03:C4:1C

inet addr:192.168.1.70 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe03:c41c/64 Scope:Link

CHAPTER 8 ■ MAKING A CONNECTION224

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:2627 errors:0 dropped:0 overruns:0 frame:0
TX packets:335 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:282945 (276.3 KiB) TX bytes:35050 (34.2 KiB)
Interrupt:16 Base address:0x2000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:14 errors:0 dropped:0 overruns:0 frame:0
TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:700 (700.0 b) TX bytes:700 (700.0 b)

Now that you know where the server stores its network configuration, you can also
change it directly in this file. This is useful if you want to change the IP address of your net-
work card quickly, for example. Next, you can restart the network card with the ifdown and
ifup commands, after which the new configuration is activated. Or you can use /etc/init.d/
networking restart if you want to reread the configuration for all your network interfaces.

Using ifup, ifdown, and Related Tools
The ifup and ifdown commands make managing a network board easy, and these tools are
simple: call the tool followed by the name of the network board that you want to manage. For
example, ifup eth0 starts network card eth0 and ifdown eth0 stops it again.

Another useful tool to manage the network card is ifplugstatus, which shows the state of
a network interface. As seen in Listing 8-3, this utility shows if a link is detected on a network
interface. (If the ifplugstatus utility hasn’t been installed yet, use apt-get install ifplugd.)

Listing 8-3. The ifplugstatus Tool Shows the Current Connection State of a Network Boar

root@RNA:/# ifplugstatus
lo: link beat detected
eth0: link beat detected

Using ifconfig
The ifconfig command is used to manage a network interface card. The command has been
around for years, so it’s not the most flexible command, but it’ll still do the job. And the
biggest advantage is that it’s a relatively easy command to use. If you just use the ifconfig
command without any parameters, you’ll see information about the current configuration of
the network cards in your server. You saw an example of this in Listing 8-2.

CHAPTER 8 ■ MAKING A CONNECTION 225

Displaying Information with ifconfig

The ifconfig command provides different kinds of information about a network card. It starts
with the name of the protocol used on the network card. The protocol is indicated by (for
example) Link encap: Ethernet, which states that it is an Ethernet network board. Almost all
modern LAN interfaces will show you Ethernet as the link encapsulation type. Then, if appli-
cable, the MAC address is given as the HWaddr (hardware address). This address is followed by
first the IPv4-related address information and then the IPv6 address information if IPv6 hasn’t
been disabled. Then several statistics about the network board are given. Pay special attention
to the RX packets (received packets) and TX packets (transmitted packets) because you can
see from these statistics what the network board is doing and whether any errors have
occurred. You typically shouldn’t see any errors at all.

Apart from the information about the physical network cards that are present in your
server, you’ll also always see information about the loopback device (lo), which is the network
interface that’s used for internal purposes on your server. You need this loopback device
because some services depend on it; for example, the graphical environment that’s used on
Linux is written on top of the IP stack offered by the loopback interface.

Configuring a Network Card with ifconfig

Although the server is provided with an IP address upon installation, it’s important for you to
be able to manage IP address configuration on the fly, using the ifconfig command. Fortu-
nately, it’s relatively easy to configure a network board in this way: just add the name of the
network board you want to configure, followed by the IP address you want to use on that net-
work board (for example, ifconfig eth0 192.168.1.125). This command will configure eth0
with a default class C subnet mask of 255.255.255.0, which indicates that the first three bytes
of the IP address are a part of the network address and that the last byte is the unique host
identifier within that network.

■Tip Not sure which eth device number is used? You can manage this via the udev mechanism. In the
/etc/udev/rules.d/70-persistent-net.rules file, a mapping is made between the MAC address
and interface number of your network cards; see the section about udev in Chapter 6 for more details. So if
you want your eth1 device to be presented as eth20, this is the place where you can change the device
number.

If you need something other than a default subnet mask, add an extra parameter. An
example of this is the ifconfig eth0 172.16.18.18 netmask 255.255.255.0 broadcast
172.16.18.255 command, which configures the eth0 device with the given IP address and a
24-bit subnet mask. Note that this example uses a nondefault subnet mask. If this happens,
you have to specify the broadcast address that’s used to address all nodes in the same network
as well; the ifconfig command just isn’t smart enough to realize that you’re using a non-
default IP address and to calculate the right broadcast address accordingly.

CHAPTER 8 ■ MAKING A CONNECTION226

Bringing Interfaces Up and Down with ifconfig

Apart from adding an IP address to a network board, you can use the ifconfig command to
bring a specific network board up or down. For example, ifconfig eth0 down shuts down the
interface, and ifconfig eth0 up brings it up again with its default settings as specified in the
/etc/network/interfaces configuration file. This is useful if you want to test a new configura-
tion, but you’re not sure whether it will really work properly.

Instead of using ifconfig to manipulate your network card, you can also use ifup and
ifdown. These commands allow you to bring a network card up or down easily, and without
changing the configuration of a given network board. For example, to bring a network board
down, use ifdown eth0; to bring it up again, use ifup eth0. In both cases, the default configu-
ration for the network board as specified in /etc/network/interfaces is applied.

Using Virtual IP Addresses with ifconfig

Another rather useful way of using ifconfig is to add virtual IP addresses, which are just
secondary IP addresses that are added to a network card. A network board with virtual IP
addresses can listen to two different IP addresses, which is useful if you are configuring serv-
ices on your server that all need their own IP addresses. Think of different virtual Apache web
servers, for example.

You can use the virtual IP address within the same address range or on a different one. To
add a virtual IP address, add :n where n is a number after the name of the network interface.
For example, ifconfig eth0:0 10.0.0.10 adds the address 10.0.0.10 as a virtual IP address to
eth0. The number after the colon must be unique, so you can add a second virtual IP address
with ifconfig eth0:1 10.0.0.20, and so on. When you use the ifconfig tool to display the
current configuration of your server, you’ll see all virtual IP addresses that are configured, as
shown in Listing 8-4.

Listing 8-4. The ifconfig Tool Shows Virtual IP Addresses

root@ZNA:~# ifconfig eth0:0 10.0.0.10
root@ZNA:~# ifconfig eth0:1 10.0.0.20
root@ZNA:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80

inet addr:192.168.1.33 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fea0:a580/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:3035 errors:0 dropped:0 overruns:0 frame:0
TX packets:199 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:240695 (235.0 KiB) TX bytes:19035 (18.5 KiB)
Interrupt:18 Base address:0x1400

eth0:0 Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80
inet addr:10.0.0.10 Bcast:10.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
Interrupt:18 Base address:0x1400

CHAPTER 8 ■ MAKING A CONNECTION 227

eth0:1 Link encap:Ethernet HWaddr 00:0C:29:A0:A5:80
inet addr:10.0.0.20 Bcast:10.255.255.255 Mask:255.0.0.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
Interrupt:18 Base address:0x1400

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Using the ip Tool
Although the ifconfig tool can still be used to display information about the configuration of
a network card, it’s not the only tool available. A more flexible (but also more difficult) tool is
ip. The ip tool has many options that allow you to manage virtually all aspects of the network
connection. For example, you can use it to configure an IP address, but it manages routing as
well, which is something that ifconfig can’t do.

■Note The ip tool offers more than ifconfig. Its syntax is also more difficult, so many people stick to
using ifconfig instead. To be honest, it doesn’t really matter because they can both be used for the same
purposes in almost all cases. If you really want to be sure not to run into trouble, you should use ip,
however.

The first option you use after the ip command determines exactly what you want to do
with the tool. This first option is a reference to the so-called object, and each object has differ-
ent possibilities. The following objects are available:

• link: Used to manage or display properties of a network device

• addr: Used to manage or display IPv4 or IPv6 network addresses on a device

• route: Used to manage or display entries in the routing table

• rule: Used to manage or display rules in the routing policy database

• neigh: Used to manage or display entries in the ARP cache

• tunnel: Used to manage or display IP tunnels

• maddr: Used to manage or display multicast addresses for interfaces

• mroute: Used to manage or display multicast routing cache entries

• monitor: Used to monitor what happens on a given device

CHAPTER 8 ■ MAKING A CONNECTION228

Each of these objects has options of its own. The easiest way to learn about these options
is to use the ip command, followed by the object, and then followed by the keyword help. For
example, ip address help provides information on how to use the ip address command, as
shown in Listing 8-5.

Listing 8-5. The ip address help Command Gives Help on Configuring IP Addresses with the
ip Tool

root@ZNA:~# ip address help
Usage: ip addr {add|del} IFADDR dev STRING

ip addr {show|flush} [dev STRING] [scope SCOPE-ID]
[to PREFIX] [FLAG-LIST] [label PATTERN]

IFADDR := PREFIX | ADDR peer PREFIX
[broadcast ADDR] [anycast ADDR]
[label STRING] [scope SCOPE-ID]

SCOPE-ID := [host | link | global | NUMBER]
FLAG-LIST := [FLAG-LIST] FLAG
FLAG := [permanent | dynamic | secondary | primary |

tentative | deprecated]

It can be quite a challenge to find out how the help for the ip tool works, so I’ll give you
some help with this help feature. To understand what you need to do, you must first analyze
the Usage: lines. In this output, you see two of them: a usage line that starts with ip addr
{add|del} and another that starts with ip addr {show|flush}. Let’s have a look at the first one.

The complete usage line is ip addr {add|del} IFADDR dev STRING. You can add or delete
an IP address that is referred to by IFADDR from a device (dev) that is referred to by STRING. Now
a string is just a string, and that can be anything, but that’s not the case for the IFADDR part.
Therefore, you can find an explanation of that part in the next section of the help output:
IFADDR := PREFIX | ADDR peer PREFIX [broadcast ADDR] [anycast ADDR] [label
STRING] [scope SCOPE-ID]. In this line, the help explains that you have to use a PREFIX or
an ADDR statement, which might be followed by several options such as the broadcast address,
the anycast address, a label, or a SCOPE-ID. Now that you understand how help works, let’s
have a look at some examples.

Displaying IP Address Setup Information with the ip Tool
A common use of the ip tool is to display information about the use of IP addresses for a given
interface. The command to use is ip address show. Note that if it is clear exactly what you
want and there can be no confusion between options, you can specify the options used with
the ip command in short form, such as ip a s, which accomplishes the same thing as ip
address show. This command displays the information shown in Listing 8-6.

Listing 8-6. Showing ip Address Configuration with ip address show

root@ZNA:~# ip address show
1: lo: <LOOPBACK,UP,10000> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
inet6 ::1/128 scope host

CHAPTER 8 ■ MAKING A CONNECTION 229

valid_lft forever preferred_lft forever
2: eth0: <BROADCAST,MULTICAST,UP,10000> mtu 1500 qdisc pfifo_fast qlen 1000

link/ether 00:0c:29:a0:a5:80 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.33/24 brd 192.168.1.255 scope global eth0
inet 10.0.0.10/8 brd 10.255.255.255 scope global eth0:0
inet 10.0.0.20/8 brd 10.255.255.255 scope global secondary eth0:1
inet6 fe80::20c:29ff:fea0:a580/64 scope link

valid_lft forever preferred_lft forever

If you look hard enough, you can see that the result of ip address show is almost the same
as the result of ifconfig. It’s just presented differently.

Monitoring Device Attributes
Another simple use of the ip tool is to show device attributes, which you can do with the ip
link show command. This command shows usage statistics for the device you specified, but
no address information. Listing 8-7 provides an example of its output.

Listing 8-7. Use the ip link show Command for an Overview of Link Attributes

root@ZNA:~# ip link show
1: lo: <LOOPBACK,UP,10000> mtu 16436 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST,UP,10000> mtu 1500 qdisc pfifo_fast qlen 1000

link/ether 00:0c:29:a0:a5:80 brd ff:ff:ff:ff:ff:ff

The information displayed by ip link show is related to the activity on the network board.
Of particular interest are the device attributes returned for each of the devices (they’re dis-
played in brackets right after the name of the device). For example, in most cases you can see
the attributes BROADCAST,MULTICAST,UP for a normal network interface card. The BROADCAST
attribute indicates that the device is capable of sending broadcasts to other nodes in the net-
work, the MULTICAST attribute indicates that the device can also send multicast packets, and UP
indicates that the device is working. The command also shows all IP protocol attributes, such
as the maximum transmission unit (mtu) that is used on the interface.

Setting the IP Address
Just as with the ifconfig tool, you can use the ip tool to assign an IP address to a device. To do
this, you could use a command like ip address add 10.0.0.10/16 brd + dev eth0. This com-
mand sets the IP address to 10.0.0.10 for eth0. With this IP address, a 16-bit subnet mask is
used, which is indicated by the /16 directly behind the IP address. The broadcast address is
calculated automatically, which is indicated with the brd + construction. Once you have set
the IP address with the ip tool, you can use the following command to check whether it’s set
correctly: ip address show dev eth0.

As with the ifconfig command, you can add more than one IP address to a network inter-
face when using the ip tool as well. And it isn’t hard: just use ip address add 10.0.0.20/16
brd + dev eth0 and 10.0.0.20 with its specified properties is added as a second IP address to
eth0. You should, however, note the difference between the secondary IP addresses that are
added with ifconfig and the IP addresses that are added with the ip tool. An address added

CHAPTER 8 ■ MAKING A CONNECTION230

with ip won’t show up when you use ifconfig. So, when using secondary IP addresses, make
sure that you use the right tool to check their properties.

Managing IPv6
Currently, IPv4 is the default protocol on most servers. However, because it has some serious
shortcomings, a new version of the IP protocol began development a few years ago. Because
this draft for IP version 5 just didn’t make it, the new generation of Internet protocol is referred
to as IPv6, and it’s this version that’s installed by default on Ubuntu Server, so you can use it as
an alternative to IPv4. In this section, you’ll learn about the properties of IPv6 and how to con-
figure it on your server. This section isn’t meant as an in-depth coverage of IPv6 and all its
properties. Instead, it aims to help you configure IPv6 on a server and see whether it’s useful
in your environment.

IPv6 Addressing
Before you start the actual implementation of IPv6, you should know about its peculiarities,
of which the first and most important is the address length. Although IPv4 has to work with
32-bit addresses that are grouped in 4 groups of 8 bits (such as 192.168.1.13) and that theoreti-
cally allow for approximately 4,000,000,000 unique addresses, IPv6 offers a 128-bit address
space, which yields more than enough IP addresses to assign one to every square meter of the
Earth’s surface, including the oceans. Opposite to the decimal-written IPv4 addresses, the
IPv6 addresses are written in hexadecimal and split into 16-bit groups. An example of such an
address is 2bad:babe:5655:8812:0BFC:1234:0:1234. Not really something you would care to
memorize.

If an IPv6 address has more than one group of 16 bits with the value of 0, you can
abbreviate this using the double colon (::). For example, the IPv6 address
2bad:0:0:0:0:1234:5678:90ab can also be written as 2bad::1234:5678:90ab, and
0:0:0:0:0:0:0:1 is just ::1. This clever shortcut makes working with IPv6 addresses much
easier. Another nice feature of IPv6 is that you can share an IP address among different
NICs so that several network cards listen to the same IP address. This easy-to-implement
method is for load balancing.

Because more than enough bits are available in an IPv6 address, there’s a default division
between the network part of the address and the node part of the address. This is an impor-
tant advantage of IPv4, in which you must use a subnet mask to specify which part of the
address refers to the network and which part refers to the node on that network. So with IPv6
you don’t need to struggle with subnet masks any more.

The last 64 bits of an IPv6 address are normally used as the node ID. This node ID is a so-
called IEEE EIA-64 ID, which on Ethernet consists of the 48-bit MAC address with FFFE added
between the vendor identifier and the node identifier. If a network interface doesn’t have a
MAC address, the node ID is randomly generated.

Because the IPv6 address includes the MAC address, something important follows: the
node in an IPv6 network can determine its own IPv6 address. All that a node must do is listen
on the network to check for the address that’s in use. Next, it can add its own MAC address,
transform that to an IEEE EIA-64 ID, and it’ll be able to communicate with the rest of the
network automatically. So there goes the need for the DHCP server that was required for
automatic address configuration in IPv4 as well.

CHAPTER 8 ■ MAKING A CONNECTION 231

If you really need it, an IPv6 address can work with a subnet mask. By default, this subnet
mask for all addresses is /64 (64 bits), which specifies that the first half of the IPv6 address
refers to the network, but you can use something other than this default subnet mask as well.
However, the last 64 bits of an address are always reserved for the node address, so you can’t
use them in the subnet mask.

Address Types
In IPv6, you can use different types of addresses:

• Link local addresses: These IP addresses are used if no specific information about the
network configuration could be found. They’re intended for local use only, and they
always start with FE80 in the first two bytes. They aren’t routable, but they are necessary
for neighbor discovery (see the next section, “The Neighbor Discovery Protocol”). Link
local addresses are always created automatically if IPv6 is enabled.

• Site local addresses: These are similar to addresses that are defined in the private
address ranges for IPv4. They cannot be addressed from nodes outside this network.
Site local addresses always start with FEC0 and have a default 48-bit subnet mask. The
last 16 bits can be used for internal subnetting. Site local addresses are not created
automatically.

• Aggregatable global unicast addresses: These are the “normal” worldwide unique
addresses that are used on IPv6 networks. They are assigned by an administrator and
always start with a 2 or 3 (binary 001).

• Multicast addresses: These addresses are used to address groups of nodes. They always
start with FF.

• Anycast addresses: This is the IPv6 alternative for a broadcast address. When using any-
cast, the IPv6 node gets an answer from any node that matches the anycast criteria.

• In IPv6, broadcast addresses are not used.

On a single Linux host that uses IPv6 (which by default is the case on Ubuntu Server),
you’ll always find more than one IPv6 address:

• A loopback address (::1) is used on the loopback interface.

• A link local address is generated automatically for every interface.

• If the administrator has configured it, every interface has a unicast address. This can be
a site local address, an aggregatable global unicast address, or both.

Neighbor Discovery Protocol
One of the design goals of IPv6 was to make network configuration easier. For this purpose,
the neighbor discovery protocol was defined in RFC 2461 (see www.ietf.org/
rfc-rfc2461.txt). The purpose of this protocol is to provide an automatic IP address assign-
ment: neighbor discovery makes sure that a node can automatically find routers, addresses,
prefixes, and other required configuration information, just by looking at what happens on
the network.

CHAPTER 8 ■ MAKING A CONNECTION232

In the neighbor discovery protocol, a router advertises all relevant information such as
the best next hop. Individual nodes check their neighbors and keep information about the
neighbors in the neighbor cache, so that they always have current and reliable information
about the rest of the network. In the neighbor cache, a node keeps information such as
addresses of neighbors, a list of prefixes (IPv6 addresses) that are in use by the neighbors, and
a list of routers that can be used as default routers. So, the neighbor discovery protocol really
makes IPv6 a plug-and-play protocol.

Assigning IPv6 Addresses in Ubuntu Server
On Ubuntu Server, you can use ip as well as ifconfig to configure an IPv6 address. All
required kernel modules are loaded by default, so, with regard to that, no extra work needs to
be done. Let’s look at the following examples of how to configure IPv6 on your server:

• ifconfig eth0 inet6 add 2000:10:20:30:20c:29ff:fec7:82f6/64: This command con-
figures eth0 with an IPv6 address that is an aggregatable global unicast address (a
worldwide unique address). Note that the second part of the address assigned here is
the IEEE EIA-64 ID of the network interface card that the address is added to. You need
to configure only one address per LAN in this way, and all other nodes will get the
aggregatable global unicast address assigned automatically by means of the neighbor
discovery protocol. To make this a functional IPv6 address, you should also make sure
that the EIA-64 ID of your network card matches your MAC address. To get to an EIA-ID
from the MAC address, you should insert ff:fe in the middle of the MAC address and
put a 2 in front of it. For instance, the MAC address 00:19:d1:ed:82:07 would get the
EIA-ID of 219:d1ff:feed:8207.

• ip address add 2000:10:20:30:20c:29ff:fec7:82f6/64 dev eth0: This is exactly the
same as the command used in the previous example, with the exception that the ip tool
is used instead of ifconfig.

• ip address add fec0:10:20:30:29ff:fec7:82f6 dev eth0: This command adds a site
address to interface eth0. Note that this also has to be performed for just one node per
LAN. Instead of using the ip tool, you can do the same with ifconfig eth0 inet6 add
fec0:10:20:30:29ff:fec7:82f6 dev eth0.

• route -A inet6: This command shows information about current IPv6 routes.

• route -A inet6 add 2000::/3 gw 3ffe:ffff:0:f101::1: This adds a route in which all
addresses that start with binary 001 (decimal notes as 2) will be sent to the specified
default gateway.

Once your IPv6 interface is set up, you’ll probably want to test its operation as well. You
can find some tools in the Linux iputils package such as the ping6 utility that you can use to
ping other hosts to check for their availability. Note that when using ping6, you always need to
specify the interface you want to send the ping packets from: for example, ping6 -I eth0
fe80::2e0:18ff:fe90:9205.

Also in the same iputils package are the traceroute6 tool that can be used to trace the
route to a given destination and the tracepath6 tool, which does more or less the same thing
but without the need to use superuser privileges. You can read more about these tools in the
“Troubleshooting Network Connections” section of this chapter.

CHAPTER 8 ■ MAKING A CONNECTION 233

Managing Routes
You’ve read about how a network interface is provided with an IP address. But to be com-
pletely functional on the network, you have to specify some routes as well. These routes allow
you to communicate with computers on other networks; conversely, they allow computers on
other networks to communicate with your server.

As a minimal requirement, you need a default route. This route specifies where to send
packets that don’t have a destination on the local network. The router used for the default
route is always on the same network as your server; just consider it to be the door that helps
you get out of the local network. Your server typically gets the information about the default
router that it should use from the /etc/network/interfaces file. To set the default route, two
tools can be used: the ip tool and the route utility. The ifconfig utility was never meant to
create or maintain routes, so you can’t use it for this purpose.

Setting the Default Route with route

The old command to set the default route is route. If no options are used, it will display a list
of all routes that are currently defined on this host. Listing 8-8 provides an example. When
using the route command without options, it will always try to resolve the name for a given IP
address, which takes some time. If you don’t want any name resolution to be performed, use
the option -n, which makes the command a lot faster.

Listing 8-8. Use the route Command to Get an Overview of All Routes That Are Currently
Configured

root@ZNA:~# route
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
localnet * 255.255.255.0 U 0 0 0 eth0
10.0.0.0 * 255.0.0.0 U 0 0 0 eth0
default 192.168.1.254 0.0.0.0 UG 0 0 0 eth0

Several columns are displayed in the output of the route command, as you can see in
Listing 8-8. The first column provides the destination, which is the network or host that a
route is defined for. Next is the gateway, which is the router that needs to be contacted to
reach the specified destination. An asterisk (*) in the gateway column indicates that the local-
host is the gateway for that destination. For external routers used as the destination, you’ll see
the IP address (or name) of that router. Next is the genmask, which is the subnet mask used on
the specified destination. Then come the flags, metric, ref, and use columns, all of which
reveal more detailed information about this route. Finally, the iface column reveals what net-
work interface is used to route packets.

To specify a route, you need to provide a minimum of two pieces of information: what
network you want to add an entry for and what router is used as a gateway. All the other infor-
mation is added automatically. For example, if you want to specify that the router with IP
address 192.168.1.254 should be used as the default gateway, use the route add default gw
192.168.1.254 command.

If you need to change the default gateway, you should be aware that you first have to
remove the old route. Use the route del command to do this. For example, to remove the
current setting for the default gateway, use route del default gw.

CHAPTER 8 ■ MAKING A CONNECTION234

Using the ip Tool to Specify the Default Gateway
If you know what information has to be entered when defining a route, it’s easy to do it with
either the ifconfig or the ip tool. The only differences are minor changes in the syntax that’s
used. To set the default gateway to 192.168.1.254 using the ip tool, use the ip route add
default via 192.168.1.254 command. This command makes sure that all packets sent to
nonlocal destinations are sent through 192.168.1.254. Likewise, you can delete the default
route with ip route del default.

Storing Routing Information
When you enter information, such as the default gateway, from the command line, it will be
lost the next time you reboot your server. To make sure that the information remains after a
reboot, store it in the /etc/network/interfaces file. This file is read every time the network is
activated. The entry used in this file to store the default route isn’t complex:

gateway 192.168.1.254

If you have just one network card in your server, include it in the entry for your network
card. If you want to specify a default route per network card (for example, one for your private
internal network and one for the public external network), you can specify a default route set-
ting for each of the network cards.

Configuring the DNS Resolver
If you want to manually configure a network connection as the last part, you need to specify
what DNS name server to use. This is the so-called DNS resolver. With Linux, you do this by
modifying the /etc/resolv.conf file. Typically, this file will contain the IP address of at least
two DNS name servers and a search domain. The name server specifications indicate what
DNS name server should be contacted to translate DNS names to IP addresses, and vice versa.
Specify at least two name servers, so that if the first one cannot be reached, the second one
can do the job. The search domain specifies what domain name should be appended if an
incomplete host name is used. On Ubuntu Server, this is typically set to lan. Listing 8-9 is an
example of the content of the /etc/resolv.conf file.

Listing 8-9. Example of the /etc/resolv.conf File

nameserver 192.168.1.10
nameserver 193.79.237.39
search lan

In this example, you see that name server 192.168.1.10 is used as the default name server,
and all DNS requests will be sent to it. If this server cannot be reached, only then will the sec-
ond server in the list (193.79.237.39) be contacted. Make sure to always specify the addresses
of two name servers. You can specify a third name server if you like, but it probably will never
be used (just because of the slim chance that the first and second names are both unavail-
able). You’ll see that the third line of the Listing 8-9 example specifies the search domain. For
example, if a user uses the command ping ftp, which includes an incomplete host name, the
name of the domain specified with the search option in resolv.conf is added automatically to
it (this works only if there really is a host with the name ftp in your local network).

CHAPTER 8 ■ MAKING A CONNECTION 235

The Role of the nsswitch.conf File
Most people take it for granted that DNS resolves host names to IP addresses, but this isn’t
necessarily so. Every Linux box has the /etc/nsswitch.conf file that determines what exactly
should happen when translating a host name to an IP address and vice versa. This file speci-
fies many things, but only the following lines are important for resolving host names:

hosts: files dns
networks: files

These two lines specify that when resolving host names and network names, the files
should be searched first, and the DNS subsystem should be used only if the files have no infor-
mation about the given host. Thus, an administrator can make sure that frequently accessed
host names are resolved locally, with the DNS server being contacted only when the files don’t
have information about a particular host. The most important file used for resolving names to
IP addresses is the /etc/hosts file.

Using the /etc/hosts File
One of the oldest ways to resolve host names to IP addresses (and vice versa) is to use the
/etc/hosts file. It’s rather primitive because the file has to be maintained on every single host
where you need it, and no synchronization is established between hosts. But it’s also a very
efficient way to supply information that needs to be available locally.

■Note To resolve the problem of decentralized management, the Network Information Service (NIS, for-
merly known as Yellow Pages) was invented by Sun. It’s rarely used now because most companies keep
their hosts-related information in DNS files.

Using the /etc/hosts file makes resolving names faster and reduces Internet traffic, and
you can use it to add any host names that need to be available only locally. Listing 8-10 shows
the contents of this file as it is created after a default installation of Ubuntu Server.

Listing 8-10. Example of the /etc/hosts File

root@ZNA:~# cat /etc/hosts
127.0.0.1 localhost
192.168.1.33 ZNA.lan ZNA

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts
root@ZNA:~#

CHAPTER 8 ■ MAKING A CONNECTION236

As you can see, the contents of this file are rather simple. First, you specify the IP address
of the host, which can be an IPv4 or an IPv6 address. Next, the fully qualified host name of the
host is specified. This is the name of the host itself, followed by its DNS suffix. Last, the short
host name is used. Alternatively, you can just provide the IP address followed by the name of
the host you want to add, as in the following line:

192.168.1.180 RNA

On a modern Linux server, it’s not necessary to set up /etc/hosts except for local name
resolving. Network name resolution is typically managed by DNS. So you’ll always need your
own host name and IP address in this file. This is configured automatically when installing
Ubuntu Server.

Configuring Network Card Properties with the ethtool
Command
Up to now, we’ve talked about stuff related to IP addresses. But the network card itself has set-
tings that you may need to modify, and you’ll use the ethtool command to do this. With it, you
can change network board properties such as link speed and duplex mode. Don’t overestimate
this tool, however. Some Ethernet cards are not supported, and the only way to change set-
tings on them might be through the network card’s BIOS settings. Let’s start by displaying
some information: use ethtool -i eth0 to see an overview of driver properties that are cur-
rently used, as shown in Listing 8-11.

Listing 8-11. The ethtool -i Command Provides an Overview of Driver Properties

root@ZNA:~# ethtool -i eth0
driver: pcnet32
version: 1.33
firmware-version:
bus-info: 0000:00:11.0

To change duplex settings and link speed on your network board, you’ll use the -s option,
followed by one of these arguments:

• speed: This option changes the speed. Valid options are 10, 100, and 1000 (all of them
expressing megabits per second).

• duplex: This option changes the duplex settings. Set it to half or full.

• port: This option specifies what port to use. This option is used for network interfaces
with different ports available (which is not very common). Valid choices are tp, aui, bnc,
mii, and fibre.

• autoneg: This option indicates whether you want to use auto negotiation to discover the
settings that are used on the network. Valid choices are on and off.

So, for example, if you want to change the settings of your network card to full duplex and
a link speed of 1000 Mbps, use ethtool -s eth0 speed 1000 duplex full. Now there is a
problem when using ethtool like this because you need to enter these settings again the next

CHAPTER 8 ■ MAKING A CONNECTION 237

time you start your server. If you don’t want to do that all the time, you can create a simple
script that contains all the settings. The following procedure describes how to do this:

1. Use Vi to create a script: vim /etc/init.d/ethtool.

2. Append the following lines (change them to reflect the settings that you need to use):

#!/bin/bash
ETHTOOL="/usr/sbin/ethtool"
DEV="eth0"
SPEED="1000 duplex full"
case "$1" in
start)
echo –n "Setting eth0 speed…";
$ETHTOOL –s $DEV speed $SPEED;
echo " done.";;
stop)
;;
esac
exit 0

3. Make this script executable using the command chmod +x /etc/init.d/ethtool.

4. Run the update-rc.d command to update your runlevels. This process ensures that this
script will be executed in all appropriate runlevels. Run it as follows: update-rc.d
ethtool defaults.

■Note The update-rc.d command is available to add startup scripts to the System-V–style boot proce-
dure. You can use it on any script, as long as the script fits these minimal requirements: the script should use
a case construction; within the case, there should be a start) and a stop) section. If your script complies
with these requirements, you can add it to your runlevels.

Besides the brief summary you get about your network board when you use the –i
option with ethtool, there are also some other useful options. For instance, you can get some
very detailed statistics about your network board when using ethtool –S, as you can see in
Listing 8-12.

■Note The drivers of some network boards don’t support ethtool. Therefore, in some cases this com-
mand shows nothing at all. If that happens, your network card doesn’t support ethtool, and there’s nothing
you can do about it.

CHAPTER 8 ■ MAKING A CONNECTION238

Listing 8-12. The ethtool –S Tool Gives Very Detailed Statistics About Network Cards

root@mel:~# ethtool -S eth0
NIC statistics:

rx_packets: 1691
tx_packets: 319
rx_bytes: 183662
tx_bytes: 37876
rx_broadcast: 1441
tx_broadcast: 72
rx_multicast: 0
tx_multicast: 6
rx_errors: 0
tx_errors: 0
tx_dropped: 0
multicast: 0
collisions: 0
rx_length_errors: 0
rx_over_errors: 0
rx_crc_errors: 0
rx_frame_errors: 0
rx_no_buffer_count: 0
rx_missed_errors: 0
tx_aborted_errors: 0
tx_carrier_errors: 0
tx_fifo_errors: 0
tx_heartbeat_errors: 0
tx_window_errors: 0
tx_abort_late_coll: 0
tx_deferred_ok: 0
tx_single_coll_ok: 0
tx_multi_coll_ok: 0
tx_timeout_count: 0
tx_restart_queue: 0
rx_long_length_errors: 0
rx_short_length_errors: 0
rx_align_errors: 0
tx_tcp_seg_good: 0
tx_tcp_seg_failed: 0
rx_flow_control_xon: 0
rx_flow_control_xoff: 0
tx_flow_control_xon: 0
tx_flow_control_xoff: 0
rx_long_byte_count: 183662
rx_csum_offload_good: 1504
rx_csum_offload_errors: 0

CHAPTER 8 ■ MAKING A CONNECTION 239

rx_header_split: 0
alloc_rx_buff_failed: 0
tx_smbus: 0
rx_smbus: 0
dropped_smbus: 0

■Note Some people seem to think that ethtool is the most important tool for proper functioning of your
network. In fact, it isn’t. In the early days of switched Ethernet, auto negotiate settings didn’t work that well.
Nowadays, auto negotiate works fine at almost all times. Therefore, you will find that in most situations you
can do perfectly without ethtool.

Troubleshooting Network Connections
Once you have finished the setup tasks I just described, you should have a working network
connection. But even if it’s working fine right now, you might at some point need to perform
some tuning and troubleshooting, and that’s exactly what this section is about. Here, you’ll
learn how to test that everything is working the way it should and how to monitor what is hap-
pening on the network itself, as well as on the network interface. The tools I’m talking about in
this section are the top-notch troubleshooting tools.

Testing Connectivity
After configuring a network card, you want to make sure it’s working correctly. For this, the
ping command is your friend, and more so because it’s easy to use: enter the command fol-
lowed by the name or address of the host you want to test connectivity to, such as ping
www.ubuntu.com. This forces ping to start continuous output, which you can interrupt by using
the Ctrl+C key sequence. You can also send a limited number of packets; for example, the ping
-c 3 192.168.1.254 command sends just three packets to the specified host. If you use ping in
a clever way, you can test a lot of things with it. I recommend using it in the following order:

1. Ping the localhost. If you pass this test, you’ve verified that the IP stack on your local
machine is working properly.

2. Ping a machine on the local network by using its IP address: if this works, you’ve veri-
fied that IP is properly bound to the network board of your server and that it can make
a connection to other nodes on the network. If it fails, you need to check the informa-
tion you’ve entered with the ifconfig or ip commands; you may have made an error
entering the subnet mask for your network interface.

3. Ping a machine on the Internet using its IP address. A good bet is 137.65.1.1, which is a
name server that hasn’t failed me in the last 15 years. Of course, you can use any other
host as long as you know its IP address. If the ping is successful, you’ve verified that the
routers between the localhost and the destination are all working. If it fails, there’s an
error somewhere in the routing chain. Check route -n or ip route show on your local-
host to see if the default route is defined.

CHAPTER 8 ■ MAKING A CONNECTION240

4. Ping a machine on the Internet using its DNS name. If this succeeds, everything is
working. If this step fails (but test 3 was successful), make sure you’ve entered the
name of the DNS server that should be used in /etc/resolv.conf. If this is okay, check
to see if your DNS server is working.

In many cases, you’ll use the ping command without options. But some options can be
useful, as seen in Table 8-1.

Table 8-1. Useful ping Options

Option Description

-c count Specifies the number of packets to be sent. The ping command terminates
automatically after reaching this number.

-l device Specifies the name of the network device that should be used. Useful on a computer
with several network devices.

-i seconds Specifies the number of seconds to wait between individual ping packets. The
default setting is one second.

-f Sends packets as fast as possible, but only after a reply comes in.

-l Sends packets without waiting for a reply. If used with the -f option, this may cause
a denial-of-service attack on the target host and the host may stop functioning
properly or even crash. Apart from the unknown harm that this may do to the target
server, you may find yourself blacklisted or even charged with a criminal offense.
Because this is such a very dangerous option, only the user root is allowed to use it.

-t ttl Sets the time to live (TTL) for packets that are sent. This indicates the maximum
number of routers that each packet may pass through on its way to a destination.
The TTL is decremented by one by each router it passes until the TTL becomes 0,
which means that the packet won’t be routed any more.

-b Sends packets to the broadcast address of the network. This prompts a reply from
every host that’s up and allowed to answer to ping packets.

■Note To protect against a denial-of-service attack, many hosts are configured not to answer a ping
request. Therefore, when testing connectivity, make sure that you use a host that’s allowed to answer.

The ping command is not just used to test that a connection can be established; you can
also use it to check the roundtrip delay between your computer and a given host. The elapsed
time is an important indication of the quality of the network connection. To check the
roundtrip delay, have a look at the time parameter that’s listed in the result of the ping com-
mand. Listing 8-13 provides an example in which ping is used to send four packets to
www.ubuntu.com.

Listing 8-13. Testing Connectivity to www.ubuntu.com

root@ZNA:~# ping -c 4 www.ubuntu.com
PING www.ubuntu.com (82.211.81.158) 56(84) bytes of data.
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp_seq=1 ttl=51 time=22.0 ms

CHAPTER 8 ■ MAKING A CONNECTION 241

64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp_seq=2 ttl=51 time=10.7 ms
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp_seq=3 ttl=51 time=18.6 ms
64 bytes from arctowski.ubuntu.com (82.211.81.158): icmp_seq=4 ttl=51 time=20.8 ms

--- www.ubuntu.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3015ms
rtt min/avg/max/mdev = 10.741/18.092/22.057/4.417 ms

Testing Routability
If you can ping your default router, but you can’t ping a given host on the Internet, it’s proba-
bly obvious that something is wrong with one of the routers between your network and the
destination host. You can use the traceroute command to find out exactly where things are
going wrong (use apt-get install traceroute to install traceroute first). The traceroute
command uses the TTL value of the UDP datagrams it sends out.

■Note A datagram is a packet sent over the OSI model network layer.

The idea is that, when the TTL value reaches 0, the packet is discarded by the router and a
message is sent back to the sender. When starting, traceroute uses a TTL value of 0, which
causes the packet to be discarded by the very first router. This is how traceroute identifies the
first router. Next, it sends the packet to the target destination again, but with a TTL of 1, which,
as you can see, causes the packet to be discarded by the second router. Things continue in this
manner until the packet reaches its final destination.

To use traceroute, you normally put the host name as the argument, such as traceroute
www.ubuntu.com. It’s possible as well to use the IP address of a host, which will produce a result
as seen in Listing 8-14.

Listing 8-14. Testing a Network’s Route with traceroute

root@ZNA:~# traceroute www.ubuntu.com
traceroute to www.ubuntu.com (82.211.81.158), 30 hops max, 40 byte packets
1 192.168.1.254 (192.168.1.254) 72.668 ms 10.361 ms 176.306 ms
2 195.190.249.90 (195.190.249.90) 3.353 ms 9.199 ms 10.351 ms
3 42.ge-4-0-0.xr1.3d12.xs4all.net (194.109.5.49) 6.386 ms 7.237 ms 16.421 ms
4 0.so-6-0-0.xr1.tc2.xs4all.net (194.109.5.10) 11.407 ms 11.447 ms 9.599 ms
5 217.149.46.21 (217.149.46.21) 31.989 ms 29.321 ms 22.756 ms
6 sl-bb21-ams-8-0.sprintlink.net (217.149.32.41) 13.415 ms 13.244 ms 12.569 ms
7 213.206.131.46 (213.206.131.46) 11.147 ms 12.282 ms 11.222 ms
8 ae-0-56.mp2.Amsterdam1.Level3.net (4.68.120.162) 7.862 ms ae-0-54.mp2.Amster\
dam1.Level3.net (4.68.120.98) 11.796 ms ae-0-52.mp2.Amsterdam1.Level3.net\
(4.68.120.34) 11.000 ms
9 as-0-0.bbr2.London2.Level3.net (4.68.128.110) 21.047 ms ae-1-0.bbr1.London2.\

CHAPTER 8 ■ MAKING A CONNECTION242

Level3.net (212.187.128.46) 35.125 ms as-0-0.bbr2.London2.Level3.net\
(4.68.128.110) 17.183 ms
10 ae-15-53.car1.London2.Level3.net (4.68.117.79) 18.917 ms 17.388 ms ae-25-52.\
car1.London2.Level3.net (4.68.117.47) 18.992 ms
11 tge9-3-146.core-r-1.lon2.\
mnet.net.uk (212.187.196.82) 14.699 ms 17.381 ms 15.293 ms
12 85.133.32.134 (85.133.32.134) 27.130 ms 33.310 ms 37.576 ms
13 82.211.81.76 (82.211.81.76) 16.784 ms 20.140 ms 17.556 ms
14 * * *
15 * * *
16 * * *
17 * * *

With the traceroute command, you’ll see every router that’s passed. For each router, the
name of the router is displayed, followed by its IP address and then the roundtrip times of the
three packets that were sent to that router. You’ll often see that a router replies with only a
string of three asterisks (* * *), which indicates that the router forwards packets normally but is
configured not to reply to ping packets for security reasons.

Testing Availability of Services
When the ping and traceroute commands show that everything is working, you’re the proud
owner of a working network interface. Next you can test the availability of two kinds of serv-
ices: those on your computer itself and those on external computers. Because so many tools
are available to test service availability, I won’t try to cover them all, but I do want to discuss
two of the most popular. First is the netstat tool, which you can use to test for the availability
of services on the host where you run the command. And second is nmap, which is used to test
availability on other hosts.

■Caution Some administrators consider any use of nmap on their hosts or their network as an attack
against their security, so they don’t allow it. I once used it in a hotel room in the United States to see if my
server in Amsterdam was still offering all its services, and the hotel network shut me off immediately. In
these circumstances, it can be a real pain to get your connection back, so be careful.

Using netstat to Check Your Server
If you want to know what services are available on your server and what these services are
doing, the netstat command is an excellent choice. However, because many of its options
require you to be root, I recommend that you use netstat as root only. To see the most useful
information offered by netstat, use the -platune options, which make sure that you see infor-
mation about programs connected to ports (-p) and what ports are actually listening (-l).
Other options show you everything there is to show (-a), do that for TCP (-t) as well as UDP
(-u), without translating IP addresses to DNS names (-n), and with extended information (-e).

CHAPTER 8 ■ MAKING A CONNECTION 243

If you think that netstat -platune offers too much information, use netstat -tulp
instead. The results are slightly less verbose, which makes it easier to get the data you really
need. Listing 8-15 shows the first screen of output generated by netstat -platune.

Listing 8-15. The netstat -platune Command Provides an Exhaustive Overview of Everything
Happening on Your Computer

root@ZNA:~# netstat -platune
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State User\

Inode PID/Program name
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 103\

12937 3839/mysqld
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 0\

13209 3965/apache2
tcp 0 0 10.0.0.20:53 0.0.0.0:* LISTEN 104\

13737 3737/named
tcp 0 0 10.0.0.30:53 0.0.0.0:* LISTEN 104\

13735 3737/named
tcp 0 0 10.0.0.10:53 0.0.0.0:* LISTEN 104\

13733 3737/named
tcp 0 0 192.168.1.33:53 0.0.0.0:* LISTEN 104\

12821 3737/named
tcp 0 0 127.0.0.1:53 0.0.0.0:* LISTEN 104\

12819 3737/named
tcp 0 0 127.0.0.1:953 0.0.0.0:* LISTEN 104\

12824 3737/named
tcp6 0 0 :::53 :::* LISTEN\

104 12816 3737/named
tcp6 0 0 :::22 :::* LISTEN\

0 13585 4150/sshd
tcp6 0 0 ::1:953 :::* LISTEN\

104 12825 3737/named
tcp6 0 0 ::ffff:192.168.1.33:22 ::ffff:192.168.1.6:4197 ESTABLISHED0\

13761 4229/1
tcp6 0 164 ::ffff:192.168.1.33:22 ::ffff:192.168.1.7:9688 ESTABLISHED0\

13609 4158/0
udp 0 0 0.0.0.0:1024 0.0.0.0:* 104\

12822 3737/named
udp 0 0 10.0.0.20:53 0.0.0.0:* 104\

13736 3737/named
udp 0 0 10.0.0.30:53 0.0.0.0:* 104\

13734 3737/named
udp 0 0 10.0.0.10:53 0.0.0.0:* 104\

13732 3737/named
udp 0 0 192.168.1.33:53 0.0.0.0:* 104\

12820 3737/named
udp 0 0 127.0.0.1:53 0.0.0.0:* 104\

CHAPTER 8 ■ MAKING A CONNECTION244

12818 3737/named
udp6 0 0 :::1025 :::* 104\

12823 3737/named
udp6 0 0 :::53 :::* 104\

12815 3737/named

As you can see, the netstat command yields a lot of information when used with the
-platune options. Table 8-2 explains the information displayed in Listing 8-15.

Table 8-2. Information Offered by netstat -platune

Item Explanation

Proto The protocol that’s used; can be TCP or UDP.

Recv-Q The number of packets waiting in the receive queue for this port at the
moment that netstat was used.

Send-Q The number of packets waiting to be sent from this port at the moment
that netstat was used.

Local address The local socket address (the local IP address followed by the port number
that’s used).

Foreign address The address of the foreign host (if any) that currently has an open
connection to this host.

State The current state of the protocol connected to the mentioned port.

User The numeric user ID of the user with whose permissions the process was
started.

Inode The inode(s) of files that currently are opened by the process.

PID/program name The PID and name of the program that has currently claimed the men-
tioned port.

As you can see, netstat provides a complete overview of what’s happening on your server.
It’s especially useful if you get error messages like “port already in use.” In combination with
the grep utility, it’s easy to learn what port program is currently holding a port open and, if
required, to terminate that program. For example, to find out what program is currently occu-
pying port 80, use netstat -platune | grep 80. This returns a line like this:

root@ZNA:~# netstat -platune | grep 80
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 0\

13209 3965/apache2

From this line, you can see that an Apache web server with a PID of 3965 is currently
listening on port 80. Want to remove it? Use kill 3965 and it’s gone.

Using nmap to Check Service Availability on Remote Servers
The netstat command is a useful tool, but it works only on the host where you run it. Some-
times, when you cannot connect to a given service on a given host, you’d like to know if the
service is available at all. You can do this with the nmap command. (Use apt-get install nmap
to install it.) Like most powerful network tools, nmap also works best if you are root.

CHAPTER 8 ■ MAKING A CONNECTION 245

The nmap command is an expert tool that helps you find out exactly what’s happening at
another host. If you use it properly, the owner of that host will never even know that you were
there. However, you should be aware that running a so-called port scan to monitor open ports
on a given host is considered an intrusion by many administrators, so be careful about what
you’re doing with it because you might run into trouble if you use nmap on a host that isn’t
yours and you haven’t notified its owner.

If you really want to keep things simple, just use nmap without arguments. For example,
nmap 192.168.1.69 performs a basic scan on host 192.168.1.69 to find what common ports are
open on it. This gives good results for day-to-day use; see Listing 8-16 for an example.

Listing 8-16. The nmap Command Shows You What Services Are Offered by a Host

root@ZNA:~# nmap 192.168.1.69

Starting Nmap 4.20 (http://insecure.org) at 2007-08-01 11:08 EDT
Interesting ports on 192.168.1.69:
Not shown: 1693 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
139/tcp open netbios-ssn
445/tcp open microsoft-ds
MAC Address: 00:18:8B:AC:C9:54 (Dell)

Nmap finished: 1 IP address (1 host up) scanned in 0.626 seconds

A very common reason why the test shown in Listing 8-16 could fail is that nmap normally
tries to ping its targets first. On many hosts, ping commands are administratively prohibited,
dropped, or ignored. And these hosts won’t reveal anything when you issue nmap on them. To
make sure that they’re working even when you cannot ping, use the -P0 option to disable ping.
Another useful option is -O, which tries to guess the operating system that is on the target
host. And if you want to make sure that both TCP and UDP ports are scanned, you should
include -sT and -sU as well. So the command becomes somewhat longer: nmap -sT -sU -P0
-O 192.168.1.69 would scan the target host with all those options. You’ll notice that because
nmap has to do a lot more work with these options, it takes considerably longer for the com-
mand to complete. Listing 8-17 shows the result of this scan.

Listing 8-17. You Have Lots of Options to Specify How nmap Should Do Its Work

root@ZNA:~# nmap -sT -sU -P0 -O 192.168.1.69

Starting Nmap 4.20 (http://insecure.org) at 2007-08-01 11:11 EDT
Interesting ports on 192.168.1.69:
Not shown: 3176 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
139/tcp open netbios-ssn

CHAPTER 8 ■ MAKING A CONNECTION246

445/tcp open microsoft-ds
68/udp open|filtered dhcpc
111/udp open|filtered rpcbind
631/udp open|filtered unknown
5353/udp open|filtered zeroconf
32768/udp open|filtered omad
MAC Address: 00:18:8B:AC:C9:54 (Dell)
Device type: general purpose
Running: Linux 2.6.X
OS details: Linux 2.6.14 - 2.6.17
Uptime: 0.176 days (since Wed Aug 1 07:23:05 2007)
Network Distance: 1 hop

OS detection performed. Please report any incorrect results at➥

http://insecure.org/ nmap/submit/ .
Nmap finished: 1 IP address (1 host up) scanned in 1482.860 seconds

In the last command, you’ll most likely get a better result, but there’s still a problem: the
scan is rather noisy, and so the target host might log messages to tell its owner that you’re
using nmap on it. There’s nothing wrong with that in most cases, but if you really want to put
nmap through a thorough security test, you should use some stealth options such as -sF (FIN-
scan), -sX (X-mas tree scan), or -sN (NULL-scan). All of these options use specific properties of
the IP protocol to perform a stealth scan so that the target host never knows you were there.
The disadvantage of these scan options is that they don’t always work! On many modern oper-
ating systems, you’ll find that the operating system ignores them, so you’ll end up waiting a
long time without a result.

Monitoring the Network Interface
Two useful tools are available to monitor what’s happening on your servers’ network cards.
IPTraf offers a menu-driven interface from which you can monitor protocol activity, and the
iftop utility shows how much bandwidth is used by a given connection.

Monitoring Protocol Activity with IPTraf
IPTraf is another useful tool to see what’s happening on the network. It’s not installed by
default, however, so make sure that it’s installed before you try to launch it from the command
line with the iptraf command. (If it’s not installed yet, use apt-get install iptraf.) After
launching it as root, you’ll see the menu interface (see Figure 8-1). You have several options in
this interface:

• IP traffic monitor: This option tells IPTraf to monitor what’s happening on the network
interfaces in your server. You can select one particular network interface, but it’s possi-
ble to check all the interfaces as well. When a connection is established, you’ll see the
connection happening in real time, indicating with what other node the connection is
established and how many packets are flowing across that connection.

CHAPTER 8 ■ MAKING A CONNECTION 247

Figure 8-1. The IPTraf tool offers different menu options to see what’s happening on your
server.

• General interface statistics: This option provides generic information on what’s happen-
ing on a network board. You’ll see information such as the number of packets sent and
received by the network interface, which is a good statistical overview of what’s hap-
pening on a network board.

• Detailed interface statistics: As you would guess, this option provides more detail, such
as the number of sent packets of a specific protocol type (see Figure 8-2).

Figure 8-2. If you choose to view the detailed interface statistics, you’ll see how many pack-
ets of a given protocol type are sent on an interface.

CHAPTER 8 ■ MAKING A CONNECTION248

• Statistical breakdown: This option lets you divide the incoming information into differ-
ent columns, sorted by the protocols in use.

• LAN station monitor: This option provides an overview of the most active stations on
the LAN. However, be aware that only those packets coming in on the host where you
are running IPTraf are seen, unless you’re connected directly to the monitoring port of a
switch.

Apart from these options that you can use to specify how IPTraf should do its work, you
also have a filter option and a configure option. The filter option is used to specify what kind
of packets you want to see, and the configure option is used to configure IPTraf itself. For
example, there’s an option that allows you to specify what colors are used in the IPTraf inter-
face.

Monitoring Bandwidth Usage with the iftop Utility
The iftop utility is simple but efficient. It shows you who has an open connection to a
network card on your server and how much bandwidth they’re consuming. It displays a sum-
mary total of transmitted and received packets for the selected network card, but a progress
bar also provides a visual indication of the actual bandwidth usage of the given connection. As
root, run iftop from the command line (if it’s not installed yet, use apt-get install iftop to
install it), and it will display the results window shown in Figure 8-3. On servers with more
than one network card, don’t forget to specify on which network card you want to run iftop.
You can do that with the option –i; for instance, iftop –i eth1 would show you usage statis-
tics for eth1.

Figure 8-3. The iftop utility displays actual bandwidth usage on your server.

CHAPTER 8 ■ MAKING A CONNECTION 249

Monitoring Network Traffic
So, you’ve seen the tools that will help you monitor the local network cards of your server, but
there are also some excellent tools to see what’s happening on the network. The mother of all
of these tools is tcpdump, which just dumps IP packets on the console you run it from. This tool
is for the hardcore system administrator because it provides lots of information that normally
scrolls by much too fast to see what’s happening. Listing 8-18 shows the results of the tcpdump
command.

Listing 8-18. When Using tcpdump, You’ll See Packet Headers Flying by on Your Server’s Console

root@RNA:/ # tcpdump
16:00:21.044803 IP ida.lan.9603 > RNA.lan.ssh: . ack 2705288 win 64503
16:00:21.044856 IP RNA.lan.ssh > ida.lan.9603: P 2705420:2705632(212) ack 12377 win\
13936
16:00:21.044945 IP RNA.lan.ssh > ida.lan.9603: P 2705632:2705844(212) ack 12377 win\
13936
16:00:21.045023 IP ida.lan.9603 > RNA.lan.ssh: . ack 2705632 win\
64159
16:00:21.045076 IP RNA.lan.ssh > ida.lan.9603: P 2705844:2705976(132) ack 12377 win\
13936
16:00:21.045166 IP RNA.lan.ssh > ida.lan.9603: P 2705976:2706188(212) ack 12377 win\
13936
16:00:21.045220 IP RNA.lan.ssh > ida.lan.9603: P 2706188:2706320(132) ack 12377 win\
13936
16:00:21.045267 IP ida.lan.9603 > RNA.lan.ssh: . ack 2705976 win 65535
16:00:21.045336 IP RNA.lan.ssh > ida.lan.9603: P 2706320:2706452(132) ack 12377 win\
13936
...
23826 packets captured
24116 packets received by filter
288 packets dropped by kernel

Wireshark is built on top of tcpdump and can be used to view network packets from a
graphical interface. This allows you to see what protocols are used, who is sending the pack-
ets, and even what is inside them. Before starting with these tools, however, you should know
one thing: you can monitor only what you can see. If you’re on a shared network in which
every node sees every packet coming by, it’s easy to monitor everything sent by all hosts on
the network. But this isn’t the case on modern switched networks.

If your computer is connected to a switch, you can see only those packets that are
addressed to the host from where you run the monitoring software. To see the packets sent by
others, you need a specialized tool, like the ARP poisoning tool Ettercap. (This is a very dan-
gerous tool that can severely disturb network communications, and I won’t be covering it in
this book.) Another way of seeing all packets that are sent on the network is to connect the
computer on which you’re capturing packets to your switch’s management port. This allows
you to see all the packets sent on the network.

CHAPTER 8 ■ MAKING A CONNECTION250

Using tcpdump

Because tcpdump is a very straightforward tool, it does exactly what its name promises: it
dumps TCP packets on the console of your machine so you can see all packets received by the
network board of your server. By default, it shows the first 96 bytes of every packet, but, if you
need more details, you can start it with the -v option, or even the -vv option, so that it will be
more verbose.

On a very busy server, tcpdump isn’t very useful. The information passes by way too fast to
see what’s happening, so it makes sense to pipe its output to a file and grep that file for the
information that you really need. Although tcpdump is an excellent tool for capturing packets,
it isn’t the best solution if you want to do something with the captured packets afterward. That
would be Wireshark.

Analyzing Packets with Wireshark
Wireshark provides a graphical interface that you can use to capture and analyze packets, so it
doesn’t work directly on a server that’s running without X. Also, you wouldn’t want to install a
complete GUI environment on your server just to run Wireshark. Instead of using it from your
server directly, I recommend running it from a graphical workstation that is connected on the
same network. It would show you the same information, anyway.

To start Wireshark, as root install it using apt-get install wireshark. Then run the
wireshark command from the run command box, which you can open from the graphical
console with Ctrl+F2. To start a Wireshark capture session, select Capture ➤ Interfaces. From
the pop-up window, select the interface that you want to use to perform your packet capture
(see Figure 8-4). Click Start to start the packet capture.

Figure 8-4. Before starting a Wireshark packet capture, select the interface you want to perform
the packet capture on and then click Start.

Wireshark now starts filling its buffers. You won’t see any packet contents while this is
happening. To see the content of the packet buffer, you need to click the Stop button. As a
result, you’ll see the window shown in Figure 8-5. From this window you can sort packets and
see packet details. To sort packets, click one of the columns. By default, they’re sorted on the
number they came in with, but if you click the Source column, you can sort the packets by
their source address; and if you click the Protocol column, you can sort the packets by the pro-
tocol that was used. Any of the columns in the results window can be clicked to filter the
information.

CHAPTER 8 ■ MAKING A CONNECTION 251

Figure 8-5. You can browse the contents of packets from this results window.

Click one of the packets to display more detail. For every packet that’s captured, you can
analyze all its layers. The top part of the Wireshark capture results window displays just the list
of packets, but after selecting a packet in the lower part, you’ll see the packet’s different head-
ers. If you really need to see details of any of these parts, click the part you want to zoom in on
to display its contents. You might even see passwords being sent in plain text over the net-
work.

Connecting Remotely with SSH
The essence of SSH is its security, and public and private keys naturally play an important role
in it. On first making contact, the client and the server exchange public and private keys. In
this communication, the server creates a key based on its private key—the so-called host key—
and uses it as its proof of identity. When connecting, the server sends its public key to the
client. If this is the first time the client has connected to this host, the host replies with the
message shown in Listing 8-19.

Listing 8-19. Establishing an SSH Session with an Unknown Host

root@ZNA:~# ssh 192.168.1.70
The authenticity of host '192.168.1.70 (192.168.1.70)' can't be established.
RSA key fingerprint is fd:07:f6:ce:5d:df:6f:a2:84:38:c7:89:f1:3a:a6:34.
Are you sure you want to continue connecting (yes/no)? yes

CHAPTER 8 ■ MAKING A CONNECTION252

Warning: Permanently added '192.168.1.70' (RSA) to the list of known hosts.
Password:
Last login: Tue Jul 31 15:34:15 2007 from ida.lan
root@RNA:~#

If the client trusts that this is really the intended host, it should answer yes to the request,
in which case the host is then added to the .ssh/known_hosts file in the home directory of the
user who initiated the SSH session. The next time the client connects to the host, this file is
checked to see if the host is already known. The check is based on the public key fingerprint of
the host, which is a unique checksum related to the public key of the host. The connection is
established only if this check matches the name and public key of the server that the client is
connecting to. If these two pieces of data don’t match, it’s very likely that the host the client
is trying to connect to isn’t the intended host, and the connection is refused.

Once the identity of the server you want to connect to is established, a secured channel is
set up between the client and server. These secured channels are established by a session key,
which is an encryption key that’s the same on both the server and the client and encrypts all
data sent between the two machines. The client and the server negotiate this session key
based on their public keys. One of the things determined in this negotiation is the protocol
that should be used. For example, session keys can use different encryption protocols such as
3DES, Blowfish, or IDEA.

After establishing the secured channel, the user on the client is asked for credentials; if
nothing is configured, a prompt asks the user to enter his user name and password. Alterna-
tively, the user can authenticate with his public/private key pair, thus proving that he really
is the user that he says he is, but some more things have to be configured before that can
happen.

All this might sound pretty complicated, but the nice thing is that the user doesn’t notice
any of it. The user just has to enter a user name and a password. If, however, you want to
move beyond simple password-based authentication, it’s necessary to understand what’s
happening.

Working with Public/Private Key Pairs
The security of SSH relies on the use of public/private key pairs. By default, the client tries to
authenticate using RSA or DSA key pairs. To make this work, the server must have the client’s
public key, which is something that you have to configure by hand, as you’ll see later. When
the client has a public/private key pair, it generates an encrypted string with its private key. If
the server can decrypt this string using the client’s public key, the client’s identity is authenti-
cated.

When using public/private key pairs, you can configure different things. First, the user
needs to determine what cryptographic algorithm she wants to use. For this purpose, she can
choose between RSA and DSA (DSA is considered stronger). Next, she has to decide if she
wants to protect her private key with a passphrase.

Using a passphrase is important because the private key really is used as the identity of
the user. Should anyone steal this private key, it would be possible to forge the identity of the
key’s owner, so it’s a very good idea to secure private keys with a passphrase.

CHAPTER 8 ■ MAKING A CONNECTION 253

Working with Secure Shell
Basically, Secure Shell is a suite of tools that consists of three main programs and a daemon:
sshd. Before being able to use it, of course, you have to install it using apt-get install
openssh-server (you might have installed it already using the SSH installation pattern when
you installed your server). The tools are ssh, scp, and sftp. The first, ssh, is used to establish a
secured remote session. Let’s say that it’s like telnet but cryptographically secured. The sec-
ond, scp, is a very useful command that’s used to copy files to and from another server where
the SSH process is running. The third, sftp, is a secure FTP client interface. Using it estab-
lishes a secured FTP session to a server that’s running the sshd.

Two of the best things of all these tools are that they can be used without any preparation
or setup, and you can set them up to work entirely according to your needs. They are at once
easy-to-use and very specialized tools.

Using the ssh Command
The simplest way to work with SSH is to just enter the ssh command, followed by the name of
the host you want to connect to. For example, to connect to the host AMS.sandervanvugt.com,
use ssh AMS.sandervanvugt.com.

Depending on whether you’ve connected to that host before, it may check the host
credentials or just ask for your password. The ssh command doesn’t ask for a user name
because it assumes that you want to connect to the other host with the same identity that
you’re logged in with locally. If you’d rather log in with another user account, you can indicate
this intention in one of two ways. You can specify the user name and follow it with an at sign
(@) when establishing the connection to the remote host, and you can also use the -l option
followed by the name of the user account you want to use to connect to the other host. So ssh
linda@AMS.sandervanvugt.com and ssh -l linda AMS.sandervanvugt.com accomplish the
same thing. After establishing a session, use the exit command (or Ctrl+D) to close the ses-
sion and return to your own machine.

Now, it seems a lot of trouble to log in to a remote host if you just need to enter one or two
commands. If you face this situation often, it’s good to know that you can just specify the
name of the command at the end of the ssh command: ssh -l linda@AMS.sandervanvugt.com
ls -l provides a long listing of files that user linda has in her home directory at the other host.
Of course, this isn’t the most realistic example of how to use “one command only” sessions to a
host, but you probably can see its value when working from shell scripts.

Using scp to Copy Files Securely
The scp command is another part of the SSH suite that you’ll definitely like. It’s used to copy
files securely. If you know how the cp command works, you’ll know how to handle scp. The
only difference is that it requires a complete network pathname, including the names of the
host and the file you want to copy. Also, if you don’t want to use the name of the user you are
currently logged in as, a user name should be included as well. Consider the following
example:

scp /some/file linda@AMS.sandervanvugt.com:/some/file

This easy command copies /some/file to AMS.sandervanvugt.com and places it in the
directory /some/file on that host. Of course, it’s possible to do the opposite as well: scp

CHAPTER 8 ■ MAKING A CONNECTION254

root@SFO.sandervanvugt.com:/some/file /some/file copies /some/file from a remote host
with the name SFO.sandervanvugt.com to the localhost. You’ll like the -r option as well
because it allows you to copy a complete subdirectory structure.

Using sftp for Secured FTP Sessions
As an alternative to copying files with scp, you can use the sftp command. This command is
used to connect to servers running the sshd program and to establish a secured FTP session
with it. From the sftp command, you have an interface that really looks a lot like the normal
FTP client interface. All the standard FTP commands work here as well, except that it’s secure
in this case. For example, you can use the ls and cd commands to browse to a directory and
see what files are available and use the get command from there to copy a file to the current
local directory.

Configuring SSH
In an SSH environment, a node can be client and server simultaneously. So, as you can imag-
ine, there’s a configuration file for both of these aspects. The client is configured in /etc/ssh/
ssh_config, and the server uses /etc/ssh/sshd_config. Setting options for the server isn’t hard
to understand: just put them in the configuration file for the /etc/ssh/sshd_config daemon.
For the client settings, however, the situation is more complicated because there are several
ways of overwriting the default client settings:

• The generic /etc/ssh/ssh_config file is applied to all users initiating an SSH session. An
individual user can overwrite them if he creates a .ssh_config file in the .ssh directory
of his home directory.

• An option in /etc/ssh/ssh_config has to be supported by the sshd_config file on the
server you are connecting to. For example, if you’re allowing password-based authenti-
cation from the client side, but the server doesn’t allow it, it won’t work.

• Options in both files can be overwritten with command-line options.

Table 8-3 is an overview of some of the most useful options that you can use to configure
the client in ssh_config.

Table 8-3. Useful options in ssh_config

Option Description

Host This option restricts the following declarations (up to the next Host
keyword) to a specific host. Therefore, this option is applied on a
host that a user is connecting to. The host name is taken as specified
on the command line. Use this parameter to add some extra security
to specific hosts. You can also use wildcards such as * and ? to refer
to more than one host name.

CheckHostIP If this option is set to yes (the default value), SSH will check the host
IP address in the known_hosts file. Use this as a protection against
DNS or IP address spoofing.

Continued

CHAPTER 8 ■ MAKING A CONNECTION 255

Table 8-3. Continued

Option Description

Ciphers This option, which takes multiple arguments, is used to specify the
order in which the different encryption algorithms should be tried to
use in an SSHv2 session (version 2 is the default SSH version
nowadays).

Compression The yes/no values for this option specify whether to use
compression. The default is no.

ForwardX11 This very useful option specifies if X11 connections will be
forwarded. If set to yes, graphical screens from an SSH session can
be forwarded through a secure tunnel. The result is that the DISPLAY
environment variable that determines where to draw graphical
screens is set correctly. If you don’t want to enable X forwarding by
default, use the -X option on the command line when establishing
an SSH session.

LocalForward This option specifies that a TCP/IP port on the local machine is
forwarded over SSH to the specified port on a remote machine.
(See “Generic TCP Port Forwarding” later in this chapter for more
details.)

LogLevel Use this option to specify the level of verbosity for log messages. The
default value is INFO. If this doesn’t go deep enough, VERBOSE, DEBUG,
DEBUG1, DEBUG2, and DEBUG3 provide progressively more information.

PasswordAuthentication Use this option to specify whether or not you want to use password
authentication. By default, password authentication is used. In a
secure environment in which keys are used for authentication, you
can safely set this option to “no” to disable password authentication
completely.

Protocol This option specifies the protocol version that SSH should use. The
default value is set to 2,1 (which indicates that version 2 should be
used first and, if that doesn’t work, version 1 is tried). It’s a good idea
to disable version 1 completely because it has some known security
issues.

PubkeyAuthentication Use this option to specify whether you want to use public key–based
authentication. This option should always be set to the default value
(yes) because public key–based authentication is the safest way of
authenticating.

The counterpart of ssh_config on the client computer is the sshd_config file on the
server. Many options that you can use in the ssh_config file are also available in the sshd_
config file. However, some options are specific to the server side of SSH. Table 8-4 gives an
overview of some of these options.

CHAPTER 8 ■ MAKING A CONNECTION256

Table 8-4. Important Options in sshd_config

Option Description

AllowTcpForwarding Use this option to specify whether you want to allow
clients to do TCP port forwarding. This is a very useful
feature, and you’ll probably want to leave it at its default
value (yes).

Port Use this option to specify the port that the server is
listening on. By default, sshd is listening on port 22. If the
SSH process is connected directly to the Internet, this will
cause many people to try a brute-force attack on your
server. Consider running the SSH process on some other
port for increased security.

PermitRootLogin Use this option to specify whether you want to allow root
logins. To add additional security to your server, consider
setting this option to the no value. If set to no, the root user
has to establish a connection as a normal user and from
there use su to become root or use sudo to perform certain
tasks with root permissions.

PermitEmptyPasswords Use this option to specify if you want to allow users to log
in with an empty password. From a security perspective,
this isn’t a very good idea, so the default no value is suitable
in most cases. If, however, you want to run SSH from a
script and establish a connection without entering a
password, it can be useful to change the value of this
parameter to yes.

ChallengeResponseAuthentication This option specifies whether users are allowed to log in
using passwords. If you want to add additional security to
your server by forcing users to log in with public/private
key pairs only, give this parameter the value no.

X11Forwarding Use this option to specify if you want to allow clients to use
X11 forwarding. On Ubuntu Server, the default value for
this parameter is yes.

Using Key-Based Authentication
Now that you know all about the basics of SSH, let’s look at some of the more advanced
options. One of the most important is key-based authentication, which SSH uses via
public/private key–based authentication. Before diving into the configuration of key-based
authentication, let’s first have a look on how these keys are used.

A Short Introduction to Cryptography
In general, you can use two methods for encryption: symmetric and asymmetric. Symmetric
encryption is faster but less secure, and asymmetric encryption is slower but more secure. In a
symmetric key environment, both parties use the same key to encrypt and decrypt messages.
With asymmetric keys, a public and a private key are used, and this is the important technique
that’s used for SSH.

CHAPTER 8 ■ MAKING A CONNECTION 257

If asymmetric keys are used, every user needs his own public/private key pair and every
server needs a pair of them as well. Of these keys, the private key must be protected at all
times; if the private key is compromised, the identity of the owner of the private key is com-
promised as well. In short, stealing a user’s private key is like stealing their identity. Therefore,
a private key is normally stored in a very secure place where no one other than its owner can
access it; typically this is in ~/.ssh. The public key, on the other hand, is available to everyone.

Public/private keys are generally used for three purposes: encryption, authentication, and
non-repudiation.

To send an encrypted message, the sender encrypts the message with the public key of
the receiver who can decrypt it with the matching private key. This scenario requires that
before you send an encrypted message, you have the public key of the person you want to
send the message to.

The other options are to use public/private keys for authentication or to prove that a mes-
sage has not changed since it was created. This method is known as nonrepudiation. In the
example of authentication, the private key is used to generate an encrypted token, the salt.
If this salt can be decrypted with the public key of the person who wants to authenticate,
that proves that the server really is dealing with the right person, and access can be granted.
However, this technique requires the public key to be copied to the server before any authenti-
cation can occur, which is also the case when keys are used to prove that a message hasn’t
been tampered with.

Using Public/Private Key–Based Authentication in an
SSH Environment
When SSH key-based authentication is used, you must make sure that for all users who need
to use this technology, the public key is available on the servers they want to log in to. When
logging in, the user creates an authentication request that’s signed with the user’s private key.
This authentication request is matched to the public key of the same user on the server where
that user wants to be authenticated. If it matches, the user is allowed access; if it doesn’t, user
access is denied.

Public/private key–based authentication is enabled by default on Ubuntu Server, so it’s
only when no keys are present that the server prompts users for a password. The following
steps provide a summary of what happens when a user tries to establish an SSH session with
a server:

1. If public key authentication is enabled (the default), SSH checks the .ssh directory in
the user’s home directory to see if a private key is present.

2. If a private key is found, SSH creates a packet with some data in it (the salt), encrypts
that packet with the private key, and sends it to the server. The public key is also sent
with this packet.

3. The server now checks whether a file with the name authorized_keys exists in the
home directory of the user. If it doesn’t, the user can’t be authenticated with his keys.
If the file does exist, and the public key is an allowed key (and also is identical to the
key that was previously stored on the server), the server uses this key to check the
signature.

CHAPTER 8 ■ MAKING A CONNECTION258

4. If the signature is verified, the user is granted access. If the signature can’t be verified,
the server prompts the user for a password instead.

All this sounds pretty complicated, but it really isn’t. Everything happens transparently if
it has been set up right. Also, there’s hardly any noticeable delay when establishing a connec-
tion. It normally takes no more than a second.

Setting Up SSH for Key-Based Authentication
The best way to explain how to set up SSH for key-based authentication is by working through
an example. In the following procedure, key-based authentication is enabled for the user root.

1. On the desktop where root is working, use the ssh-keygen -t dsa -b 1024 command.
This generates a public/private key pair of 1,024 bits. Listing 8-20 shows what happens.

Listing 8-20. Generating a Public/Private Key Pair with ssh-keygen

workstation # ssh-keygen -t dsa -b 1024
Generating public/private dsa key pair.
Enter file in which to save the key (/root/.ssh/id_dsa) :
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /root/.ssh/id_dsa.
Your public key has been saved in /root/.ssh/id_dsa.pub.
The key fingerprint is:
59:63:b5:a0:c5:2c:b5:b8:2f:99:80:5b:43:77:3c:dd root@workstation

I’ll explain what happens. The user in this example uses the ssh-keygen command to gen-
erate a public and a private key. The encryption algorithm used to generate this key is DSA,
which is considered more secure than its alternative, RSA. The option -b 1024 specifies that
1024-bit encryption should be used for the key. The longer this number, the more secure it is.
Notice, however, that a many-bits encryption algorithm also requires more system resources
to use it. After generating the keys, the command prompts you to save it somewhere. By
default, a directory with the name .ssh is created in your home directory and, within this
directory, a file with the name id_dsa. This file contains the private key.

Next, you’re prompted to enter a passphrase, which is an important extra layer of protec-
tion that can be added to the key. Because anyone who has access to your private key (which
isn’t that easy) can forge your identity, your private key should always be protected with a
passphrase. After entering the same passphrase twice, the private key is saved, and the related
public key is generated and saved in the /root/.ssh/id_dsa.pub file. Also, a key fingerprint is
generated. This fingerprint is a summary of your key, a checksum that’s calculated on the key
to alert you if the key has been changed. Make sure that your passphrase is not too easy to
guess; a weak passphrase makes a strong key useless.

CHAPTER 8 ■ MAKING A CONNECTION 259

2. After creating the public/private key pair, you must transfer the public key to the
server. The ultimate goal is to place the contents of the id_dsa.pub file in the /root/
.shh/authorized_keys file on the server. But you can’t simply copy the file to the
authorized_keys destination file because other keys may already be stored there.
Therefore, first use scp to copy the file to a temporary location. The command scp
/root/.ssh/id_dsa.pub root@server:/root/from_workstation_key.pub would do
the job.

3. Now that the public key is on the server, you have to put it in the authorized_keys file.
Before doing this, though, make sure that the .ssh directory exists on the server in the
home directory of the user root, and that it has user and group root as its owner and
permission mode 700. Then, on the server with /root as your current directory, use cat
from_workstation_key.pub >> .ssh/authorized_keys. This command appends the
content of the public key file to the authorized_keys file, thus not overwriting any file
that may have been there already.

4. Hopefully, no errors have occurred, and you’ve been successful. Go back to your work-
station and start an SSH session to the server in which you just copied your public key
to the authorized_keys file. You’ll notice that you are no longer prompted for a pass-
word, but for a passphrase instead. This proves that everything worked. Do notice,
however, that you need to repeat this procedure for every key-secured server with
which you want to be able to establish a session.

Working with keys as described in these steps is an excellent way to make SSH authenti-
cation more secure. But there’s a drawback: if you need to establish an SSH session
automatically from a shell script or cron job, it’s not very handy if you’re first prompted for a
key. Therefore, some method is needed to execute such jobs automatically. One solution is to
create a special user account with limited permissions and without a passphrase on its private
key. Another solution is to run ssh-agent, which caches the keys before they are used (you’ll
learn how to do this in the next section).

Caching Keys with ssh-agent
You can use ssh-agent to save yourself from constantly having to enter private keys. With this
program, you can cache keys for a given shell environment. After starting ssh-agent from a
shell prompt, you need to add the passphrase for the private key that belongs to it. This is
something that you’ll do for a specific shell, so after you close that specific shell or load
another shell, you’ll need to add the passphrase to that shell again.

After adding a passphrase to ssh-agent, the passphrase is stored in RAM, and only the
user who added the key to RAM can read it from there. Also, ssh-agent listens only to the ssh
and scp commands that you’ve started locally, so there’s no way you can access a key that is
kept by ssh-agent over the network. So you can be sure that using ssh-agent is pretty secure.
Apart from being secure, it’s pretty easy as well. Enabling ssh-agent and adding a passphrase
to it is a simple two-step procedure:

CHAPTER 8 ■ MAKING A CONNECTION260

1. From the shell prompt, use ssh-agent followed by the name of the shell you want to
use it from. For example, use ssh-agent /bin/bash to activate ssh-agent for the Bash
shell.

2. Now type ssh-add. You’ll be prompted for the passphrase of your current private key,
and you’ll then see the message identity added, followed by the private key whose
passphrase is added to ssh-agent.

■Tip Secure Shell is a great way of accessing other hosts. But did you know that you can also use it to
mount a file system on a remote computer? All modern versions of SSH support this feature: just use sshfs

for access to all the files and directories on the remote server, just like a local user on that server. If you
know how to mount a directory with the mount command, working with sshfs is easy. For example, the
command sshfs linda@AMS:/data /mnt allows access to the /data directory on the remote server and
connects that directory to /mnt on the local server. Secure Shell is not installed by default, so use apt-get

install sshfs to install it on your server.

Tunneling Traffic with SSH
Apart from establishing remote login sessions, copying files, and executing commands on
remote hosts, you can also use SSH for TCP port forwarding. When used like this, SSH is a
simple VPN solution with the capability of tunneling to almost any unsecured protocol over
a secured connection. In this section, I’ll first talk about X forwarding and then you’ll see how
to forward almost any protocol using SSH.

X Forwarding
Wouldn’t it be useful if you could start an application on a server, where all the workload is
performed by the server while you control the application from your client? Well, you can with
SSH X forwarding. To use X forwarding, you first must establish an SSH session to the server
you want to connect to. Next, from this SSH session, you start the graphical application, which
will draw its screen on your workstation while doing all the work on the server itself.

Sounds good? Establishing such an environment has only two requirements:

• Make sure that the X11Forwarding option is set to yes in /etc/ssh/sshd_config on the
server.

• Connect to the server with the ssh -X command from your client. Alternatively, you
can set the X11Forwarding option in the client configuration file /etc/ssh/ssh_config,
which allows you to forward graphical sessions by default. This poses a minor security
problem, however, so this setting is not enabled by default on Ubuntu Server.

Now that you have established the SSH session with your server, start your favorite graph-
ical program. The program itself will be executed at the remote host, and you’ll see the screen
locally.

CHAPTER 8 ■ MAKING A CONNECTION 261

■Note X-forwarding sessions with SSH are really cool, but there is a limitation: you need an X server on
the client from which you are establishing the SSH session. This X server is used as the driver for your
graphical hardware, and the application that you want to run on your client needs it to display its screens.
This won’t be a problem on Linux, UNIX, or Macintosh machines because an X server is present by default.
It’s a problem on Windows, however. The most common SSH client for Windows is PuTTY, which, although
very useful, doesn’t contain an X server. A good X server for Windows is Xming, which is a free X server that
you can download from the Internet.

Generic TCP Port Forwarding
X is the only service for which port forwarding is hard-coded in the SSH software. For every-
thing else, you need to do it by hand using the -L (local forwarding) or the -R (remote port
forwarding) options. Let’s have a look at the example in Figure 8-6.

Figure 8-6. Example network

This network has three nodes: AMS is the node in which the administrator is working; ATL
is the node in the middle; and AMS has a direct connection to ATL, but not to SLC which is
behind a firewall. ATL does have a direct connection to SLC and is not obstructed by any fire-
wall.

The following command illustrates a simple case of port forwarding:

linda@AMS:~> ssh -L 4444:ATL:110 linda@ATL

In this example, user linda forwards connections to port 4444 on her localhost to port 110
on the host ATL as user linda on that host. This is how you would establish a secure session to
the insecure POP service on that host, for example. The localhost first establishes a connec-
tion to the SSH server running on ATL. This SSH server connects to port 110 at ATL, whereas
ssh binds to port 4444 on the localhost. Now an encrypted session is established between local
port 4444 and server port 110: everything sent to port 4444 on the localhost really goes to port
110 at the server. If, for example, you configured your POP mail client to get its mail from local
port 4444, it would really get it from port 110 at ATL.

Notice that a nonprivileged port is used in this example. Only user root can connect to a
privileged port with a port number lower than 1024. No matter what port you are connecting
to, you should always check in the /etc/services services configuration file, in which port
numbers are matched to names of services, what the port is normally used for (if anything),
and use netstat -platune | grep <your-intended-port> to make sure that the port is not
already in use.

CHAPTER 8 ■ MAKING A CONNECTION262

A little variation on local port forwarding, as just seen, is remote port forwarding. If you
want to try it, forward all connections on a remote port at a remote server to a local port on
your machine. To do this, use the -R option as in the following example:

linda@AMS:~> ssh -R 4444:AMS:110 linda@ATL

In this example, user linda connects to host ATL (see the last part of the command). On
this remote host, port 4444 is addressed by using the construction -R 4444. This remote port is
redirected to port 110 on the localhost. As a result, anything going to port 4444 on ATL is redi-
rected to port 110 on AMS. This example would be useful if ATL were the client and AMS were
the server running a POP mail server that user linda wants to connect to.

Another very useful instance is when the host you want to forward to cannot be reached
directly, perhaps because it is behind a firewall. In this case, you can establish a tunnel to
another host that is reachable with SSH. Imagine that in Figure 8-6, the host SLC is running a
POP mail server that our user linda wants to connect to. This user would use the following
command:

linda@AMS:~> ssh -L 4444:SLC:110 linda@ATL

In this example, linda forwards connections to port 4444 on her localhost to server ATL
that is running SSH. This server, in turn, forwards the connection to port 110 on server SLC.
Note that, in this scenario, the only requirement is that ATL has the SSH service activated; no
sshd is needed on SLC for this to work. Also note that there is no need for host AMS to get in
direct contact with SLC because that’s what ATL is used for.

In these examples, you learned how to use the ssh command to accomplish port forward-
ing, but this isn’t the only way of doing it. If a port-forwarding connection needs to be
available all the time, you can put it in the ssh configuration file at the client computer. Put it
in .ssh/config in your home directory if you want it to work for your user account only, or put
it in /etc/ssh/ssh_config if you want it to apply for all users on your machine. The parameter
that should be used as an alternative to ssh -L 4444:ATL:110 would be LocalForward 4444
ATL:110.

Summary
In this chapter you learned how to set up a network connection. First, we explored how an
IP address is assigned to a network interface card. We covered IPv4 addresses as well as IPv6
addresses. Following that, you read how to troubleshoot a network connection using basic
commands such as ping and traceroute, or advanced tools such as nmap and Wireshark. In the
last part of this section, you learned how to create a remote session with SSH. In the next
chapter, you’ll find out how to set up networking services such as NTP, DHCP, and DNS on
your server.

CHAPTER 8 ■ MAKING A CONNECTION 263

Configuring Network
Infrastructure Services
Using DNS, DHCP, and NTP

Linux servers are often used to configure services that help make networking happen. These
services include DNS for name resolution, DHCP for IP address configuration, and NTP for
time services. In this chapter, you’ll read how to configure them. You’ll also read how to enable
some common Linux services using xinetd.

Configuring DNS
As you would expect, IP (Internet protocol) is used for all communications on the Internet.
This protocol specifies unique IP addresses that computers use to talk to one another. To con-
tact a computer, you just need to know its IP address. One of the most important reasons why
the domain name system (DNS) was developed is because computers work better with num-
bers than humans do, and humans tend to prefer names. So, DNS translates IP addresses to
DNS names (and back from DNS names to IP addresses). In this chapter, you’ll learn how to
configure DNS on Ubuntu Server.

Methods of Name Resolution
Before going into detail about configuring DNS servers, you first need to learn exactly what
DNS is and how it works. In this section, you’ll read about the differences between DNS and
other methods of resolving names. You’ll also find out how the DNS hierarchy is structured
and what roles the different types of DNS servers play in this hierarchy.

DNS is not the only solution that you can use for name resolving. Let’s have a quick look
at two of the alternative methods: the /etc/hosts file and Sun’s Network Information System
(NIS).

Managing Host Name Information with the /etc/hosts File
Before centralized systems such as NIS and DNS were introduced, every host kept its own file
that mapped IP addresses to names. In the days when the Internet was called (D)ARPANet and
was still a very small network, this was a feasible solution, although the administrator had to 265

C H A P T E R 9

make sure that these files were updated properly. Such a mechanism still exists, but in the
form of the /etc/hosts file. In this file, you can keep a list of commonly used names and their
IP addresses. Ubuntu Server creates this file by default to make sure that the localhost can be
resolved. Listing 9-1 shows an example of the file. Note that you can still use this file as an
addition to DNS. Depending on the settings in /etc/nsswitch.conf, its contents will be
checked first before any DNS lookup.

Listing 9-1. Displaying the Contents of /etc/hosts

root@RNA:~# cat /etc/hosts
127.0.0.1 localhost
127.0.1.1 RNA.lan RNA

The following lines are desirable for IPv6 capable hosts
::1 ip6-localhost ip6-loopback
fe00::0 ip6-localnet
ff00::0 ip6-mcastprefix
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
ff02::3 ip6-allhosts

Using NIS to Manage Name Resolution
A more convenient method that you can use to keep mappings between host names and IP
addresses is Sun’s NIS, also known as the Yellow Pages. This system uses a database for impor-
tant configuration files on a server, such as the /etc/hosts file, the /etc/passwd file, and
/etc/shadow. As an administrator, you can determine for yourself what files to manage with
NIS. These files are converted to NIS maps, which are the indexed files that comprise the NIS
database. In NIS, one server is configured as the master server, which maintains the NIS data-
base. All nodes are configured as NIS clients and send their name resolution requests to the
NIS master. To provide redundancy, NIS can also use slave servers, which offer a read-only
copy of the NIS master database. However, the master server is the single point of administra-
tion.

Although NIS was a good solution to manage relevant information within a network, it
never became very popular as an Internet-level name service mainly because NIS does not
provide a hierarchical solution, only flat databases. All these flat databases are managed by
local administrators, and there’s no relation among the databases that are used in different
NIS domains.

The large amount of information on the Internet today makes it impossible to get quick
results from a structure like NIS. For this reason, most organizations that still use NIS are
phasing it out and configuring DNS to resolve host names to IP addresses and LDAP to man-
age user information (therefore, NIS is not covered in this book).

Managing Search Order with the /etc/nsswitch.conf File
Although DNS is the main system used for name resolution, it’s not the only one. You can set it
up in parallel with a NIS system and the /etc/hosts file. If you do this, the order in which the

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES266

different systems are searched is important. The search order is determined by the
/etc/nsswitch.conf file; see Listing 9-2 for an example.

Listing 9-2. Contents of the /etc/nsswitch.conf File

root@RNA:~# cat /etc/nsswitch.conf
/etc/nsswitch.conf
#
Example configuration of GNU Name Service Switch functionality.
If you have the 'glibc-doc-reference' and 'info' packages installed, try:
'info libc "Name Service Switch"' for information about this file.

passwd: compat
group: compat
shadow: compat

hosts: files dns
networks: files

protocols: db files
services: db files
ethers: db files
rpc: db files

netgroup: nis

For all the important information on your server, the nsswitch.conf file contains an indi-
cation of where it should be searched. In the case of hosts and network information, the
example file is pretty clear: it first checks local configuration files and only after that does it
check the DNS hierarchy. This means that you can use /etc/hosts to override information as
defined in DNS.

Structure of the DNS Hierarchy
The most important advantage offered by DNS is that it’s organized in a hierarchical manner.
This makes the system very scalable because it can be extended by simply adding another
branch to the tree-like hierarchy.

On top of the hierarchy are the root servers, which have one purpose only: to provide
information about the top-level domains (TLDs). Some fixed domain names are used for top-
level domains, including .com, .org, and .info. TLDs exist for all countries as well, such as
.nl, .uk, .fr, and so on. Within these TLDs, persons and organizations can create their own
domains, which can contain subdomains as well. For example, an organization could create a
domain called example.com and, within the structure of example.com, it could create some sub-
domains as well, such as east.example.com and west.example.com.

The number of subdomains is virtually unlimited, although it becomes hard to work
with more than four or five levels of domains. No one wants to type www.servers.east.nl.
sandervanvugt.com all the time, do they? Figure 9-1 provides an example of the partial DNS
hierarchy.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 267

Figure 9-1. Example of a part of the DNS hierarchy

Master and Slave Servers
Within the DNS hierarchy, different servers are responsible for the data in specific domains
(and sometimes subdomains as well). These are the so-called name servers and the part of
the hierarchy that they are responsible for is the zone. A zone can include more than just one
domain; for example, if one name server is responsible for everything in sandervanvugt.nl,
including the subdomain’s servers and workstations, the complete zone is sandervanvugt.nl.
If, however, there’s a subdomain called sales.sandervanvugt.com that has its own name server,
the subdomain would be a zone by itself that is not part of sandervanvugt.com. Speaking in a
very generic way, a zone is just a branch of the DNS hierarchy.

All zones should have at least two name servers. The first is the master name server, which
is ultimately responsible for the data in a zone. For fault tolerance and to make the informa-
tion more accessible, it’s a good idea to use one or more slave servers as well. These slave
servers will periodically get an update of all the data on the master server by means of a zone
transfer; this is the process the master server uses to update the database on the slave server.

Note that DNS uses a single-master model: updates are performed on the master server
and nowhere else, and the databases on the slave servers are read-only. You should also know
that the name servers do not need to be in the zone that they are responsible for. For example,
the name server of a given domain will often be hosted by the Internet provider that (of
course) has its own domain. You can maintain your own DNS server, and it’s useful to do so if
your organization is larger than average, but you don’t have to. You can also just purchase a
domain and have your Internet server do the name server maintenance work.

Connecting the Name Servers in the Hierarchy
Because DNS uses a hierarchy, the servers in DNS need to know about each other, and this is a
two-way process by its very nature. First, all servers in subordinate zones need to know where
to find the root servers of the DNS hierarchy. Equally, the servers of the upper-level zones need
to know how to find the servers of lower-level zones. You can very well create your own DNS
domain called mynicednsdomain.com and run your DNS server in it, but it doesn’t make sense if

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES268

the DNS server that’s responsible for the .com domain doesn’t know about it. This is because a
client trying to find your server will first ask the name server of the domain above your zone if
it knows where to find authoritative information for your domain.

This is why DNS domain names need to be registered. Only then can the manager of the
domain above yours configure your name server as the responsible name server for your
domain. This is the delegation of authority.

It also helps to understand what happens when a user tries to resolve a DNS name that it
doesn’t know about already. The next procedure describes what happens:

1. To resolve DNS names, you need to configure the DNS resolver on the user’s worksta-
tion or on the server that needs to be part of the DNS hierarchy. The DNS resolver is
the part of the workstation where the user has configured how to find a DNS server.
On a Linux system, this happens in the /etc/resolv.conf file.

2. Based on the information in the DNS resolver, the client contacts its preferred name
server and asks that server to resolve the DNS name, no matter what server it is and
where on Earth the server is running. So, if the client tries to resolve the name
www.sandervanvugt.nl, it first asks its preferred name server. The advantage is that
the client’s name server can consult its cache to find out whether it has recently
resolved that name for the client. If it knows the IP address of the requested server,
the DNS name server returns that information to the client immediately.

3. If the name server of the client doesn’t know the IP address of the requested server, it
sees whether a forwarder is configured. (A forwarder is just a server that a name server
contacts if it can’t resolve a name by itself.)

4. If no forwarder is configured, the DNS name server contacts a name server of the
root domain and asks that name server how to contact the name server of the
top-level domain it needs. In the example in which you want to reach the host
www.sandervanvugt.nl, this is the name server for the .nl domain.

5. Once the name server of the client finds the name server address of the top-level
domain, it contacts it and asks for the IP address of the authoritative name server
for the domain it’s looking for. In our example, this would be the name server for
sandervanvugt.nl.

6. Once the name server of the client finds out how to reach the authoritative name
server for the domain the client asks for, it contacts that name server and asks to
resolve its name. In return, the name server of the client receives the IP address it
needs.

7. Ultimately, the IP address of the desired server is returned to the client, and contact
can be established.

Resource Records
To answer all name resolution requests, your DNS server needs to maintain a database in
which it maintains the resource records, which contain different types of data to find specific
information for a domain. Table 9-1 presents some of the most important types of data that
can be maintained in that database. Later in this chapter you’ll learn how to add these

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 269

resource records to the DNS database. Listing 9-3 shows an example of the DNS database in
which different resource record types are used. You’ll find an explanation of the resource
record types in Table 9-1.

Listing 9-3. Contents of the example.com Zone File

RNA:/ # cat /etc/bind/db.example.com
$TTL 2D
@ IN SOA SFO.example.com. root.SFO.example.com. (

2006080700 ; serial
3H ; refresh
1H ; retry
1W ; expiry
1D) ; minimum

example.com. IN MX 10 mail.example.com.
example.com. IN NS lax.example.com.
sfo IN A 201.100.100.10
lax IN A 201.100.100.40
web IN CNAME sfo.example.com.

Table 9-1. Using the Important Resource Records

Resource Record Use

MX This resource record finds the mail servers for your domain. In the first
column, you’ll find the name of the domain they are used for, and the fourth
column reveals the primary mail server. The number 10 indicates the priority
of this mail server. If more than one mail server is present in the domain, the
mail server with the lowest priority number is used first. Following the priority
number is the DNS name of the mail server.

NS This resource record provides a list of name servers for this domain. Typically,
you must have this resource record for all master and slave name servers of
the domain. The first column reveals the name of the domain, and the fourth
column provides the name of the server itself. Notice the dot at the end of the
server name, which indicates it as an absolute name (a name that refers to the
root of the DNS hierarchy directly).

A The A resource record is used to define the relation between a host name and
an IP address. The first column mentions the name of the host as it occurs in
this domain, and the fourth column provides the IP address of this host.

CNAME The CNAME (“common name”) resource record is used to define an alias,
which is just a nickname that is used for a host. A CNAME should always refer
to the real name of the host. Aliases can be useful if one server hosts many
DNS names. In that case, use an A resource record for “myserver” and create
CNAMEs that refer to the A resource record for all services provided by your
server. This way, if you have to change the IP address of your server, you’ll
change it only once.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES270

Introducing Forward and Reverse DNS
Before I start talking about the actual configuration of DNS, you need to know about reverse
DNS. Translating names into IP addresses is one task of the DNS server, and its other task is
translating IP addresses to names. This translation from address to name is called reverse DNS,
and it’s necessary if you want to find the real name that is used by a given IP address. This fea-
ture is useful if you want names in your log files instead of IP addresses, but, if you want all IP
addresses translated to names, you should realize that this comes at a cost in performance.
For this reason, many services and commands allow you to specify whether to use reversed
name resolution. To make name resolution for your domain possible, you should always con-
figure it when setting up a DNS hierarchy.

To create a reverse DNS structure, you need to configure a zone in the in-addr.arpa
domain, under which a structure is created that contains the inverse IP addresses for your
network. If, for example, you’re using the class C network 201.10.19.0/24, you should create a
DNS domain with the name 19.10.201.in-addr.arpa. Within this zone, you next have to cre-
ate a pointer (PTR) resource record for all of the hosts that you want to include in the DNS
hierarchy.

When working with reverse DNS, you should be aware of one important limitation: it
doesn’t know how to handle non-default subnet masks. In other words, it works only if you
have the complete network, and it doesn’t work if you’ve registered a couple of IP addresses
only with your IP. If you have only one (or very few) IP addresses out of a complete range, you
should ask your IP to set up reverse DNS for you.

Configuring DNS
When setting up DNS, you have to configure a series of configuration files, and in this section
you’ll learn how these relate to each other. At this point, make sure that the DNS server is
installed by using apt-get install bind9 as root.

/etc/bind/named.conf

The /etc/bind/named.conf file is the master configuration file for your DNS server. Listing 9-4
provides an example. The named.conf file is a master configuration file that contains all you
need to get a working DNS set up. To set up your own additional zones, you have to use the
/etc/bind/named.conf.local file.

Listing 9-4. Default /etc/bind/named.conf File

root@RNA:~# cat /etc/bind/named.conf
// This is the primary configuration file for the BIND DNS server named.
//
// Please read /usr/share/doc/bind9/README.Debian.gz for information on the
// structure of BIND configuration files in Debian, *BEFORE* you customize
// this configuration file.
//
// If you are just adding zones, please do that in /etc/bind/named.conf.local

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 271

include "/etc/bind/named.conf.options";

// prime the server with knowledge of the root servers
zone "." {

type hint;
file "/etc/bind/db.root";

};

// be authoritative for the localhost forward and reverse zones, and for
// broadcast zones as per RFC 1912

zone "localhost" {
type master;
file "/etc/bind/db.local";

};

zone "127.in-addr.arpa" {
type master;
file "/etc/bind/db.127";

};

zone "0.in-addr.arpa" {
type master;
file "/etc/bind/db.0";

};

zone "255.in-addr.arpa" {
type master;
file "/etc/bind/db.255";

};

include "/etc/bind/named.conf.local";

Several other files are called from the main configuration file (/etc/bind/named.conf).
Before starting to configure your own DNS server, let’s look at how these files relate to each
other:

• /etc/bind/named.conf.local: This file contains the DNS zones that you set up on your
server.

• /etc/bind/named.conf.options: In this file you’d put generic options that define the
working of your DNS server.

• The db files: These are database files that store the information for specific zones.
Every zone has its own db file, so there should be many of these db files on a com-
pletely configured DNS server. For example, the following code lines that come from
/etc/bind/named.conf refer to the database for the localhost zone:

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES272

zone "localhost" {
type master;
file "/etc/bind/db.local";

};

When setting up your own DNS server, it can be quite hard to configure the right files in
the right way. So let’s do a setup for the example.com zone.

■Tip If you want to set up a working DNS environment, you should have your own DNS domain, which you
can get from your IP. If you don’t have your own DNS domain, you can use the example.com domain. This
domain is not used for real on the Internet and can therefore be used by anyone who wants to set up a local-
only DNS test environment.

1. Don’t touch the /etc/bind/named.conf file. It contains default settings, and you never
need to modify it on Ubuntu Server.

2. Open the /etc/bind/named.conf.local file with an editor and use the following code:

zone "example.com" in {
allow-transfer { any; };
file "/etc/bind/db.example.com";
type master;

};

3. In this example configuration, the zone "example.com" statement is used as a defini-
tion of the zone that you want to use. After the definition of the zone itself and
between brackets, specify the options for that zone. In this example, they are as
follows:

• allow-transfer { any; };: This option specifies what name servers are allowed to
synchronize their databases with the information in this database.

• file "/etc/bind/db.example.com";: This line indicates what file contains the spe-
cific configuration for this zone.

• type master;: This option indicates the definition of the master name server for
this zone.

4. You’ve now defined the file in which the DNS server can find the specific configuration
for example.com. Next, you need to set up reversed name resolution as well. If
example.com is using the IP network 201.100.100.0, you should open /etc/bind/
named.conf.local once more and enter the following code:

zone "100.100.201.in-addr.arpa" {
type master;
file "/etc/bind/db.100.100.201";

};

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 273

5. Now that you’ve set up the basic structure for DNS, you need to create the database
files in /etc/bind that contain the actual configuration of the DNS zones. I’ll explain
how to do this and all your available options in the next few sections.

Using named.conf Options
Before you create the database files that you refer to in the named.conf file and its related files,
let’s have a look at some of the options that you can use in the /etc/bind/named.conf file and
its related /etc/bind/named.conf.local and /etc/bind/named.conf.options files.

Ubuntu Server uses the /etc/bind/named.conf.options file to include options in the DNS
configuration. This file is included with the line include "/etc/bind/named.conf.options"; in
/etc/bind/named.conf. Listing 9-5 shows the file as it is by default.

Listing 9-5. The /etc/bind/named.conf.options File Contains Generic Options for Your bind
Name Server

root@RNA:~# cat /etc/bind/named.conf.options
options {

directory "/var/cache/bind";

// If there is a firewall between you and name servers you want
// to talk to, you might need to uncomment the query-source
// directive below. Previous versions of BIND always asked
// questions using port 53, but BIND 8.1 and later use an unprivileged
// port by default.

// query-source address * port 53;

// If your ISP provided one or more IP addresses for stable
// name servers, you probably want to use them as forwarders.
// Uncomment the following block, and insert the addresses replacing
// the all-0's placeholder.

// forwarders {
// 0.0.0.0;
// };

auth-nxdomain no; # conform to RFC1035
listen-on-v6 { any; };

// By default, name servers should only perform recursive domain
// lookups for their direct clients. If recursion is left open
// to the entire Internet, your name server could be used to
// perform distributed denial-of-service attacks against other
// innocent computers. For more information on DDoS recursion:
// http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0987

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES274

allow-recursion { localnets; };

// If you have DNS clients on other subnets outside of your
// server's "localnets", you can explicitly add their networks
// without opening up your server to the Internet at large:
// allow-recursion { localnets; 192.168.0.0/24; };

// If your name server is only listening on 127.0.0.1, consider:
// allow-recursion { 127.0.0.1; };

};

As you see in the example file in Listing 9-5, you have quite a few options. In the example
file, many options are disabled by default ,and others are just not available. Let’s have a look at
some of the more common options:

• options { };: Use this statement to indicate the start and the end of the section
that contains the options. All generic options need to be in this section, so notice the
structure used by this statement. It starts with a bracket, it ends with a bracket, and all
specific options are defined between the brackets. When putting this in manually, do
not forget the semicolon after the last bracket.

• directory "/var/cache/bind";: You can use this parameter to define the location in
which all DNS configuration files are stored. If an incomplete file name is used any-
where in one of the DNS configuration files, the DNS name server looks for it in this
directory. If, however, an absolute file name (a file with a complete directory reference)
is used, it just follows the absolute file name. Also note the semicolon at the end of the
line; this is an important syntax feature.

• notify no;: This option indicates that slave servers should not be notified of changes,
which leaves it completely to the slave server to make sure that it is up to date. If you
want an alert to be sent to a slave server when a change occurs, change this setting to
notify yes;.

• forwarders;: By default, if your DNS server gets a request to resolve a name for which
it is not responsible, it starts querying a root server of the DNS hierarchy to find the
required information. You can change this behavior by using a forwarder, which is
another DNS name server that typically has a large cache that it uses to resolve names
very quickly. You could, for example, use your IP’s DNS name server as a DNS forwarder.

Zone Definition in /etc/bind/named.conf.local
Among the most important DNS server options is the definition of zones. As you can see in the
example in Listing 9-4, the first zone that is defined is the zone “.”. This refers to the root of the
DNS domain. The definition is required to hook up your DNS server to the rest of the DNS
hierarchy. To do this, the zone definition in /etc/bind/named.conf indicates that a list of name
servers for the root domain can be found in the db.root file. Listing 9-6 is a portion of the con-
tents of that file.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 275

Listing 9-6. The db.root File Makes Sure That Your DNS Server Can Contact Other Servers in the
DNS Hierarchy

root@RNA:~# cat /etc/bind/db.root

; <<>> DiG 9.2.3 <<>> ns . @a.root-servers.net.
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18944
;; flags: qr aa rd; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13

;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:
. 518400 IN NS A.ROOT-SERVERS.NET.
. 518400 IN NS B.ROOT-SERVERS.NET.
...
. 518400 IN NS L.ROOT-SERVERS.NET.
. 518400 IN NS M.ROOT-SERVERS.NET.

;; ADDITIONAL SECTION:
A.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.4
B.ROOT-SERVERS.NET. 3600000 IN A 192.228.79.201
...
L.ROOT-SERVERS.NET. 3600000 IN A 198.32.64.12
M.ROOT-SERVERS.NET. 3600000 IN A 202.12.27.33

;; Query time: 81 msec
;; SERVER: 198.41.0.4#53(a.root-servers.net.)
;; WHEN: Sun Feb 1 11:27:14 2004
;; MSG SIZE rcvd: 436

The db Files
The zone files of your DNS server are stored in the /etc/bind directory, and the name of these
files typically starts with “db” (although nothing says that you have to name them this way).
The named.conf file specifies where to look for these database files. The next part you need to
understand is how this file is structured to define your DNS zone. In Listing 9-7 you can see
the example that I introduced in Listing 9-3.

Listing 9-7. Contents of the example.com Zone File

RNA:/ # cat /etc/bind/db.example.com
$TTL 2D
@ IN SOA SFO.example.com. root.SFO.example.com. (

2006080700 ; serial
3H ; refresh

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES276

1H ; retry
1W ; expiry
1D) ; minimum

example.com. IN MX 10 mail.example.com.
example.com. IN NS lax.example.com.
sfo IN A 201.100.100.10
lax IN A 201.100.100.40
web IN CNAME sfo.example.com.

As you can see, the zone file starts with generic settings. First, the TTL 2D parameter speci-
fies a validity of two days if your slave server cannot synchronize with the master. Next to be
defined are the SOA settings for your server, which are the settings for the authoritative name
server of this domain. Notice the mail address for the administrator of your DNS server:
root.SFO.example.com. After that, you see the following synchronization settings:

• serial: This number should be changed every time you change the database on the
master server. By changing it, a slave server that wants to synchronize with the master
server can see that an update has occurred and start the zone transfer. Notice that the
serial number typically consists of the current year, current month, and current day, fol-
lowed by two digits that indicate the event number. For example, after the third change
on December 12, 2007, the serial number would be 07121202.

• refresh: This indicates the interval used on a slave server between updates from the
zone information at the master server.

• retry: If the update fails the first time the slave server tries to synchronize, this interval
specifies how long it should wait before trying again.

• expiry: If a slave server fails to contact the master server for a longer period, this setting
indicates how long before the information at the slave server expires. After expiration,
the slave server no longer answers DNS queries.

• minimum: This is the length of time that a negative response is cached on this server.

Following the generic information, you can see the definition of the resource records. In
the previous example, only the four most common resource records are used. (A more com-
plete overview was provided in “Resource Records” earlier in this chapter.)

Configuring Reversed Lookup
Until this moment, we’ve looked at just normal name resolution in which a name is resolved
into an IP address. As I’ve mentioned, on a DNS server, you need reversed name resolution as
well. To configure reversed lookup, you first need to set up the /etc/bind/named.conf.local
file with the information about the zone you want to configure it for. As discussed earlier, this
part of the configuration should look like the following lines:

zone "100.100.201.in-addr.arpa" {
type master;
file "/etc/bind/db.100.100.201";

};

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 277

Next, you need to set up the zone file for reverse lookup as well. Listing 9-8 shows a typical
reverse lookup file. As instructed in the named.conf.local file, this definition comes from the
/etc/bind/db.100.100.201 file.

Listing 9-8. Example of a Reverse Lookup DNS Zone File

$TTL 2D
@ N SOA SFO.example.com. root.SFO.example.com. (

2006080700 ; serial
3H ; refresh
1H ; retry
1W ; expiry
1D) ; minimum

" IN NS lax.example.com.
10 IN PTR sfo.example.com.
40 IN PTR lax.example.com.

You can see that Listing 9-8 uses one resource records type that’s specific for a reverse
DNS zone: the PTR record. As shown in Table 9-1, this record is used to connect a partial IP
address (10 and 40 in Listing 9-8) to a complete DNS name.

Testing Your Name Server
After setting up the DNS name server, it’s time to (re)start and test it. First, use the /etc/
init.d/bind9 restart command (or start it if it wasn’t started yet). Next, use ps aux | grep
named to check whether the named process is really running. Then make sure that your local
named process on your server is used for name resolving. Next, use the ping command to any
host name to check if you can contact a server by its name. If this succeeds, your DNS server is
working properly. If it fails, make sure that all your configuration files are set up properly.

If the ping command fails, you can use the host command for detailed testing of your
DNS server. The general syntax of this command is host computer nameserver. For example,
use host myhost 193.79.237.39 to query the specific name server 193.79.237.39 about the
records it has for host myhost. Next, the host command reveals the IP address that’s related to
that host (according to the name server). The opposite is possible as well; for example, the
command host 82.211.81.158 provides the name of the host you’ve queried. You can use the
host command without referring to a specific DNS server, in which case the DNS servers as
mentioned in /etc/resolv.conf are used. Listing 9-9 shows three examples of the host com-
mand in action.

Listing 9-9. Using the host Command to Test a DNS Server

root@RNA:~# host www.ubuntu.com 193.79.237.39
Using domain server:
Name: 193.79.237.39
Address: 193.79.237.39#53
Aliases:

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES278

www.ubuntu.com has address 82.211.81.158
root@RNA:~# host 82.211.81.158
158.81.211.82.in-addr.arpa domain name pointer arctowski.ubuntu.com.
root@RNA:~# host www.ubuntu.com
www.ubuntu.com has address 82.211.81.158

Configuring DHCP
Your network probably has a lot of computers that need an IP address and other IP-related
information in their configuration. You can, of course, enter all this information by hand on
each individual workstation, but it’s much easier to automate this process with a dynamic
host configuration protocol (DHCP) server. Let’s see how to set this up on Ubuntu Server.

Understanding the DHCP Protocol
DHCP is a broadcast-based protocol. A client that’s configured to obtain an IP address via
DHCP sends a broadcast on startup to try to find one or more DHCP servers in the network.
The client uses the DHCPDISCOVER packet to do this. If a DHCP server sees the DHCPDIS-
COVER packet coming by, it answers with a DHCPOFFER packet, in which it offers an IP
address and related information.

If the client receives a DHCPOFFER from more than one DHCP server, it chooses only
one. It’s very difficult to determine beforehand what IP configuration information the client
will work with, which is one of the reasons why you should take care that no more than one
DHCP server is available per broadcast domain to offer a configuration to the DHCP clients.

To indicate that the client wants to use the IP address and related information offered by
a DHCP server, it returns a DHCPREQUEST, thus asking to work with that information. The
DHCP server then indicates that it’s okay by returning a DHCPACK (acknowledgment) to the
client. From this moment on, the client can use the IP address.

A lease time is associated with each offering from a DHCP server, and this lease time
determines how long the client can use an IP address and associated information. Before the
lease ends, the client has to send another DHCPREQUEST to renew its lease. In most cases,
the server answers such a request by extending the lease period and sending the client a DHC-
PACK. If it’s not possible to extend the lease for some reason, the client receives a DHCPNACK
(negative acknowledgment). This indicates that the client cannot continue its use of the IP
address and associated information. If this happens, the client has to start the process all over
again, beginning with the DHCPDISCOVER packet.

When the client machine is shut down, it informs the server that it no longer needs the IP
address by sending a DHCPRELEASE over the network. That IP address then becomes avail-
able for use by other clients.

One of the things that you should note in all this is that DHCP is a broadcast-based proto-
col, which means that if the DHCP server is on a different subnet than the DHCP client, the
client cannot reach it directly. If this is the case, a DHCP relay agent is needed that forwards
DHCP requests to a DHCP server. You’ll learn how to configure all this in the “The DHCP Relay
Agent” section.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 279

Creating the DHCP Server Configuration
To operate a DHCP server on your network, you need to configure two components: the
DHCP service itself and the /etc/dhcp3/dhcpd.conf configuration file. You’ll learn how to
operate these components in the next subsections.

The DHCP Process
The first part of the DHCP server is the DHCP process itself. Its name is dhcpd3 and it resides
in the /usr/sbin directory after you’ve installed it using the apt-get install dhcp3-common
dhcp3-server command as root. Of course, it has some startup scripts in /etc/init.d as well.
You can use /etc/init.d/dhcp4-server start to start it; and the options stop, restart, and
force-reload work as well.

The /etc/dhcp/dhcpd.conf Configuration File
The main configuration file for the DHCP server is /etc/dhcp3/dhcpd.conf. Everything is con-
figured in this file except startup parameters for the DHCP server. Listing 9-10 is an example
configuration file that contains some of the most important options from the example file
that’s copied to your server after installation of the DHCP server.

Listing 9-10. The DHCP Server’s Main Configuration File is /etc/dhcp3/dhcpd.conf

root@RNA:~# cat /etc/dhcp3/dhcpd.conf
#
Sample configuration file for ISC dhcpd for Debian
#
$Id: dhcpd.conf,v 1.4.2.2 2002/07/10 03:50:33 peloy Exp $
#

option definitions common to all supported networks...
option domain-name "fugue.com";
option domain-name-servers toccata.fugue.com;

option subnet-mask 255.255.255.224;
default-lease-time 600;
max-lease-time 7200;

#subnet 204.254.239.0 netmask 255.255.255.224 {
range 204.254.239.10 204.254.239.20;
option broadcast-address 204.254.239.31;
option routers prelude.fugue.com;
#}

The other subnet that shares this physical network
#subnet 204.254.239.32 netmask 255.255.255.224 {
range dynamic-bootp 204.254.239.10 204.254.239.20;
option broadcast-address 204.254.239.31;

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES280

option routers snarg.fugue.com;
#}

#subnet 192.5.5.0 netmask 255.255.255.224 {
range 192.5.5.26 192.5.5.30;
option name-servers bb.home.vix.com, gw.home.vix.com;
option domain-name "vix.com";
option routers 192.5.5.1;
option subnet-mask 255.255.255.224;
option broadcast-address 192.5.5.31;
default-lease-time 600;
max-lease-time 7200;
#}

Hosts which require special configuration options can be listed in
host statements. If no address is specified, the address will be
allocated dynamically (if possible), but the host-specific information
will still come from the host declaration.

#host passacaglia {
hardware ethernet 0:0:c0:5d:bd:95;
filename "vmunix.passacaglia";
server-name "toccata.fugue.com";
#}

Fixed IP addresses can also be specified for hosts. These addresses
should not also be listed as being available for dynamic assignment.
Hosts for which fixed IP addresses have been specified can boot using
BOOTP or DHCP. Hosts for which no fixed address is specified can only
be booted with DHCP, unless there is an address range on the subnet
to which a BOOTP client is connected which has the dynamic-bootp flag
set.
#host fantasia {
hardware ethernet 08:00:07:26:c0:a5;
fixed-address fantasia.fugue.com;
#}

If a DHCP or BOOTP client is mobile and might be connected to a variety
of networks, more than one fixed address for that host can be specified.
Hosts can have fixed addresses on some networks, but receive dynamically
allocated addresses on other subnets; in order to support this, a host
declaration for that client must be given which does not have a fixed
address. If a client should get different parameters depending on
what subnet it boots on, host declarations for each such network should
be given. Finally, if a domain name is given for a host's fixed address
and that domain name evaluates to more than one address, the address
corresponding to the network to which the client is attached, if any,

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 281

will be assigned.
#host confusia {
hardware ethernet 02:03:04:05:06:07;
fixed-address confusia-1.fugue.com, confusia-2.fugue.com;
filename "vmunix.confusia";
server-name "toccata.fugue.com";
#}

#host confusia {
hardware ethernet 02:03:04:05:06:07;
fixed-address confusia-3.fugue.com;
filename "vmunix.confusia";
server-name "snarg.fugue.com";
#}

#host confusia {
hardware ethernet 02:03:04:05:06:07;
filename "vmunix.confusia";
server-name "bb.home.vix.com";
#}

The configuration file also starts with some generic options that aren’t included in a par-
ticular section of the configuration file and therefore apply to all sections that are defined. The
first of these is option domain-name "fudge.com";. This line sets the default domain name,
and you should usually change it. Then the names of DNS servers are referred to with option
domain-name-servers toccata.fudge.com;. Notice that there’s no need to use an IP address
here; assuming that the DNS resolver is set up as it should be, you can use names here.

When editing the DHCP configuration file by hand, make sure that each line is terminated
with a semicolon, or else your DHCP server will complain and refuse to start. Next, the follow-
ing three lines specify a non-default subnet mask and define the leases:

option subnet-mask 255.255.255.224;
default-lease-time 600;
max-lease-time 7200;

By default, a lease is specified in minutes, so the default lease time expires after 10 hours,
and the maximum lease time is 120 hours. Following the generic options, some example sub-
nets are specified. Let’s have a look at one of them:

#subnet 192.5.5.0 netmask 255.255.255.224 {
range 192.5.5.26 192.5.5.30;
option name-servers bb.home.vix.com, gw.home.vix.com;
option domain-name "vix.com";
option routers 192.5.5.1;
option subnet-mask 255.255.255.224;
option broadcast-address 192.5.5.31;
default-lease-time 600;
max-lease-time 7200;
#}

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES282

A range of five IP addresses is defined in this subnet, which is on the network with IP
address 192.5.5.0. Then the specific options for this subnet are defined. Some options were
already defined in the global part of the configuration file; if that’s the case for your options,
the subnet-specific option just overwrites the global option. One option in this example needs
some explanation, though: broadcast-address is needed here because a non-default address
class is used on the subnet. Every time that non-default address classes are used, you must
specify the broadcast address for that network as well.

Next are two host definitions that contain settings for specific hosts:

host passacaglia {
hardware ethernet 0:0:c0:5d:bd:95;
filename "vmunix.passacaglia";
server-name "toccata.fugue.com";

}

host fantasia {
hardware ethernet 08:00:07:26:c0:a5;
fixed-address fantasia.fugue.com;

}

To make sure that the setting is applied to the right host, the MAC address is referred to
for every host definition. This happens with the definition of the hardware ethernet address.
Then three other options are used. The option filename is used to refer to a boot file that is to
be loaded by a client. This file can be offered by a Trivial FTP (TFTP) server, which is just a very
simple FTP server that you can configure to hand out files in a convenient way to nodes on the
network.

Just enable the TFTP server as a part of your xinetd configuration (see “Starting Services
with xinetd” later in this chapter) and then put the file with the name mentioned here in the
/tftpboot directory (which you’ll have to create manually), and the host will be capable of
downloading this file. The filename option is useful for diskless workstations because it allows
them to download a boot image.

If a client is booting from a boot image file that has been delivered by a server, it can be
useful for the client to know what server it’s dealing with. To specify this, the server-name
option is used in the host definition for passacaglia. It should contain the name of your
DHCP server. The last new option that you see here is fixed-address, which is used to pass a
fixed IP address to the client. If DNS is set up correctly, a resolvable DNS name can be used
as well.

Advanced DHCP Configuration Options
Based on the information so far, you can set up a DHCP server that doesn’t use any compli-
cated options, but some advanced configuration options may be interesting as well. You’ll
read about three of them in this section. First, “Integrating DHCP and DNS” discusses how
to set up dynamic DNS (DDNS), so that the DHCP server tells the DNS server when it has
handed out a new configuration. Then the DHCP relay agent describes how you can let one
DHCP server serve all subnets in your network.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 283

Integrating DHCP and DNS
If you want clients to be accessible by their names, you need to tell the DNS server whenever
the DHCP server has handed out a new IP address to the client. To make this work, you need
to configure the configuration files for both DNS and DHCP. The first thing you need to do is
create a cryptographic key that can be used to authorize the update. You can generate this key
with the dnssec-keygen command (which is installed automatically when installing a DNS
server), as in the following example:

dnssec-keygen -a HMAC-MD5 -b 128 -n HOST ddns

This command generates two keys in the current directory. To make sure that they are
secure, it’s a good idea to create a dedicated directory for these files, such as in /var/lib/
named/keys. You should also make sure that the private key file is accessible by only root. A
part of the key name is a random number. The names could be the following, for example:

Kddns.+157+03212.key
Kddns.+157+03212.private

These two files contain the key that has to be used in clear text:

RNA:~ # cat Kddns.+157+03212.key
ddns. IN KEY 512 3 157 WVf7JaWqrfoIe4AtT9GGug==

Now first edit the DNS named.conf.local configuration file to include this key. The exam-
ple in Listing 9-11 shows how to use the key for the zone example.com and its associated
reverse DNS zone.

Listing 9-11. Securing named.conf.local with a Key for Dynamic DNS Updates

key ddns {
algorithm HMAC-MD5;
secret WVf7JaWqrfoIe4AtT9GGug==;

};

zone "example.com" in {
type master;
file "example.zone";
allow-update { key ddns ;};

};

zone "1.168.192.in-addr.arpa" in {
type master;
file "1.168.192.zone";
allow-update { key ddns ;};

};

As you can see in this example, a new section is created for the key, specifying its algo-
rithm as well as the key that’s used. (Make sure that the named.conf.local file is readable for
root only if you include a key in it!) Next, the allow-update (key ddns ;}; statement is used

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES284

for all zones that need this key for dynamic DNS updates. Note that ddns is just the name of
the key, and you can choose any name you like here.

Next, make sure that the appropriate DDNS code is added in the dhcpd.conf file. The
example in Listing 9-12 works with the example DNS configuration just shown, but feel free to
customize it to your own configuration.

Listing 9-12. Including DDNS code in the dhcpd.conf File

ddns-update-style interim;
ddns-updates on;

key ddns {
algorithm HMAC-MD5;
secret WVf7JaWqrfoIe4AtT9GGug==;

}

zone 100.100.201.in-addr.arpa. {
key ddns;

}

zone example.com. {
key ddns;

}

You should take note of a few things in this example. First, when referring to a DNS zone,
make sure that you put a dot after the name of the zone because it doesn’t work without one.
So example.com. is good, and example.com isn’t. The ddns-update-style parameter is then
used to specify how the updates need to take place. You have two options—interim and
ad-hoc—but ad-hoc is deprecated, so you should use only interim here. Then the parameter
ddns-updates on is used to activate DDNS. Last, as in the named.conf configuration file, the key
must be specified in this configuration file as well. Of course, it must be the same as the key
that’s specified in the named.conf file. Now start the DHCP server and the DNS server, and
DDNS is working.

■Note If the client gets its host name from the DHCP server, you have some more work to do. It’s impor-
tant that the client always gets the same host name, and you can ensure this by including the option
host-name in the definition of the specific host in the dhcpd.conf configuration file. In this same definition
of the client, you must specify the MAC address for each client equally by using the hardware parameter.
An example of this follows:

host somehost.example.com {
hardware ethernet 00:0C:29:E8:35:5A;
ddns-hostname "somehost";
ddns-domainname "example.com";
option host-name "somehost";

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 285

The DHCP Relay Agent
A DHCP broadcast is received only by clients on the local network because they cannot cross
routers. But it’s impractical to install a DHCP server on every single network. As an alternative,
you can of course install the DHCP server on a server that’s configured with more than one
network board (a multihomed server), so it can serve all the networks it’s connected to. An
alternative is to use a DHCP relay agent, which is a service that forwards packets to the DHCP
server. You can run it on any server on the network or on a router. Almost every hardware
router has embedded functionality that lets it act as a DHCP relay agent.

If you want to install a relay agent on a Linux server, you need the dhcp-relay package;
use apt-get install dhcp3-relay to install it. While installing this package, you are prompted
to enter the configuration you want to use. The following procedure summarizes the steps to
take:

1. After entering the command apt-get install dhcp3-relay, a screen pops up and asks
you to enter the names or IP addresses that your server should relay DHCP requests to.
Enter these names in a space-separated list and press Enter to continue.

2. Next, you need to enter the names of the interfaces that the DHCP relay process
should listen on. If you know that DHCP relay requests will come in through eth1 only,
for example, make sure to enter eth1 here and click OK to continue.

3. Enter a list of additional options that you want to pass to the DHCP relay daemon
(although it normally won’t be necessary to use any of these options). After selecting
OK, your settings will be written to the /etc/default/dhcp3-relay configuration file,
and the dhcprelay3 process is started.

■Tip Need to change any of the options used while installing the dhcp3-relay package? Open the
/etc/default/dhcp3-relay file, modify any of the parameters you see there, and restart the service
using the /etc/init.d/dhcp3-relay restart command.

After its installation, you can configure the relay agent from the /etc/default/dhcp3-
relay file in which you’ll find the INTERFACES parameter. Use it to specify on which network
cards the relay agents should listen for DHCP broadcasts. You can configure it to listen on eth0
and eth1 by adding INTERFACES="eth0 eth1" to the dhcp-relay file.

Next, you need to specify the IP address of the DHCP server. To do this, add it as a param-
eter to the DHCP_SERVERS parameter. After configuring these options, use /etc/init.d/
dhcrelay start to start the relay agent.

Configuring NTP
For many networked applications, knowing the correct time is essential for proper operation.
On the Internet, the network time protocol (NTP) is the de facto standard for time synchro-
nization. In this section, you’ll learn how to configure your server as an NTP time server as
well as an NTP client. I’ll cover the following subjects:

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES286

• Working with NTP

• Configuring a stand-alone NTP time server

• Configuring your server to fetch its time from a time reference source

• Tuning NTP operations

How NTP Works
The basic idea of NTP is that all servers on the Internet can synchronize time with one
another. In this way, a global time can be established so that only minimal differences exist in
the time setting on different servers. To reach this goal, all servers communicate the same
time, no matter what time zone they are in. This time is known as coordinated universal time
(UTC): a server receives its time in UTC and then calculates its local time from that by using its
time zone setting.

To specify what time your server is using, you have to edit the /etc/default/rcS configu-
ration file, where you’ll find the UTC= setting. To use UTC on your server, make sure its value is
set to yes; if you don’t want to use UTC, set it to UTC=no.

The local time zone setting is maintained in the /etc/localtime binary file, which is
created upon installation and contains information about your local time zone. To change it
afterward, you need to make a link of the configuration file that contains information on your
local time zone. You can find these files in /usr/share/zoneinfo. Next, link the appropriate
file to the /etc/localtime file, for example: sudo ln -sf /usr/share/zoneinfo/MET /etc/
localtime. This will change your local time zone setting to the MET time zone.

Synchronizing time with other servers in an NTP hierarchy uses the concept of stratum.
Every server in the NTP hierarchy has a stratum setting between 1 and 15, but with a stratum
of 16 being used to signify that a clock is not currently synchronized at all. The highest stratum
level that a clock can use is 1. Typically, this is a server that’s connected directly to an atomic
clock with a very high accuracy. The stratum level that is assigned to a server that’s directly
connected to an external clock depends on the type of clock that’s used. In general, though,
the more reliable the clock is, the higher the stratum level will be.

A server can get its time in two different ways: by synchronizing with another NTP time
server or by using a reference clock. If a server synchronizes with an NTP time server, the stra-
tum used on that server will be determined by the server it’s synchronizing with: if a server
synchronizes with a stratum 3 time server, it automatically becomes a stratum 4 time server.

If, on the other hand, a reference clock is used, a server does not get its time from a server
on the Internet, but instead determines its own time. Again, the default stratum used is deter-
mined by the type and brand of reference clock that’s used. If it’s a very reliable clock, such as
one synchronized via GPS, the default stratum setting will be high. If a less-reliable clock (such
as the local clock in a computer) is used, the default stratum will be lower.

If a server gets its time from the Internet, it makes sense to use Internet time and use a
very trustworthy time server. If no Internet connection is available, use an internal clock and
set the stratum accordingly (which means lower). If you’re using your computer’s internal
clock, for example, it makes sense to use a low stratum level, such as 5.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 287

Configuring a Stand-Alone NTP Time Server
Just two elements are needed to make your own NTP time server: the configuration file and
the daemon process. First, make sure that all required software is installed by running apt-get
install ntp-server as root. The name of the daemon process is ntpd, and you can start it by
using the /etc/init.d/ntpd startup script. After making all proper settings to its configuration
file /etc/ntp.conf, you can start the daemon process manually by using /etc/init.d/ntp
start.

The content of the /etc/ntp.conf NTP configuration file really doesn’t have to be very
complex. Basically, you just need three lines to create an NTP time server, as seen in
Listing 9-13.

Listing 9-13. Example ntp.conf Configuration

server 127.127.1.0
fudge 127.127.1.0 stratum 10
server ntp.yourprovider.somewhere

The first line in Listing 9-13 specifies what NTP should use if the connection with the NTP
time server is lost for a longer period: this line makes sure that the local clock in your server
will not drift too much by making a reference to a local clock. Every type of local clock has
its own IP address from the range of loopback IP addresses. The format of this address is
127.127.<t>.<i>; the third byte refers to the type of local clock that is used, and the fourth byte
refers to the instance of the clock your server is connected to. The default address to use to
refer to the local computer clock is 127.127.1.0. Notice that all clocks that can be used as an
external reference clock connected locally to your server have their own IP address. The docu-
mentation of your clock tells you what address to use.

■Tip Even if your server is connected to an NTP server that’s directly on the Internet, it makes sense to use
at least one local external reference clock on your network as well. This way you can ensure that time syn-
chronization continues if the Internet connection fails for a longer period.

The second line defines what should happen when the server falls back to the local exter-
nal reference clock mentioned on the first line. This line starts with the keyword fudge to
indicate an abnormal situation. Here, the local clock should be used, and the server sets its
stratum level to 10. By using this stratum, the server indicates that it’s not very trustworthy,
but ensures that it can be used as a time source if necessary.

The last line in Listing 9-13 shows what should happen under normal circumstances. This
line normally refers to an IP address or a server name on the network of the Internet provider.
This line will always be used if nothing strange is happening.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES288

Pulling or Pushing the Time
An NTP time server can perform its work in two different ways: by pushing (broadcasting)
time across the network, or by allowing other servers to pull the time from it. In the default
setting, the NTP server that gets its time from somewhere else regularly asks this server what
time is used. When both nodes have their times synchronized, this setting will be incremented
to a default value of 1,024 seconds. As an administrator, you can specify how often time needs
to be synchronized by using the minpoll and maxpoll arguments on the line in /etc/ntp.conf
where the NTP time server is referred to, as shown in Listing 9-14.

Listing 9-14. Configuring the Synchronization Interval

server 127.127.1.0
fudge 127.127.1.0 stratum 10
server ntp.provider.somewhere minpoll 4 maxpoll 15

The minpoll setting determines how often a client should try to synchronize its time if
time is not properly synchronized, and the maxpoll value indicates how often synchronization
should occur if time is properly synchronized. The values for the minpoll and maxpoll parame-
ters are kind of weird logarithmically: they refer to the power of 2 that should be used.
Therefore, minpoll 4 is actually 24 (which equals 16 seconds), and the default value of 1,024
seconds can be noted as 210. Any value that lies between the values of 4 and 17 can be used.

If you are configuring an NTP node as a server, you can use the broadcast mechanism as
well. This makes sense if your server is used as the NTP time server for local computers that
are on the same network (because broadcast is not forwarded by routers). If you want to do
this, make sure that the broadcast 192.168.0.255 line (use the broadcast address for your net-
work) is included in the ntp.conf file on your server and that the broadcastclient setting is
used on the client computer.

If you want to configure a secure NTP time server, you should think twice before configur-
ing broadcast. Typically, a broadcast client takes its time from any server in the network, as
long as it broadcasts NTP packets on the default NTP port 123. Therefore, someone could
introduce a bogus NTP time server with a very high stratum configured to change the time on
all computers in your network.

Configuring an NTP Client
The first thing to do when configuring a server to act as an NTP client is to make sure that the
time is more or less accurate. If the difference is greater than 1,024 seconds, NTP considers the
time source to be bogus and refuses to synchronize with it. Therefore, it’s recommended to
synchronize time on the NTP client manually before continuing. To manually synchronize the
time, the ntpdate command is very useful: use it to get time only once from another server
that offers NTP services. To use it, specify the name or IP address of the server you want to
synchronize with as its argument:

ntpdate ntp.yourprovider.somewhere

By using this command, you’ll make a once-only time adjustment on the client computer.
After that, you can set up ntpd for automatic synchronization on the client computer.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 289

■Caution Too often, ntpdate is used only for troubleshooting purposes when the administrator finds out
that ntpd isn’t synchronizing properly. In this case, the administrator is likely to see a “socket already in
use” error message. This happens because ntpd has already claimed port 123 for NTP time synchronization.
You can verify this with the natstat -platune | grep 123 command, which displays the application cur-
rently using port 123. Before ntpdate can be used successfully in this scenario, the administrator should
make sure that xntpd is shut down on the client by using /etc/init.d/ntp stop.

If the time difference between server and client is not greater than 1,000 seconds,
ntp.conf can be configured on the NTP client. A typical NTP client configuration is very sim-
ple: you just need to specify the server from which you want to get the time, as in the following
example:

server 192.168.0.10

You might also prefer to set a backup option by using the fudge option, as displayed in
Listing 9-14, but this is optional. Normally, I recommend that you don’t set this option on
every single server in the network that’s using NTP. As an administrator, you might prefer to
set this on one server in your network only and let all other NTP clients in your network get
the time from that server. So, to make an NTP hierarchy, I recommend letting one or two
servers in the network get their time from a reliable time source on the Internet, such as
pool.ntp.org. Next, to ensure that an NTP time source is still available when the Internet con-
nection goes down, use the fudge option on the same servers. Doing so ensures that they will
still be the servers with the highest stratum level in your network, and time services will not be
interrupted.

Checking NTP Synchronization Status
After you’ve started the NTP service on all computers in your network, you probably want to
know if it’s working correctly. The first tool to use is the ntptrace command, which provides an
overview of the current synchronization status. When using it, you should be aware that it will
always take some time to establish NTP synchronization. The delay occurs because an NTP
client normally synchronizes only every 16 seconds, and it might fail to establish correct syn-
chronization the first time it tries. It should normally take no longer than drinking a cup of
coffee to establish NTP time synchronization.

Another tool to tune the working of NTP is the ntpq command, which offers its own inter-
active interface from which the status of any NTP service can be requested. As when using the
FTP client, you can use a couple of commands to do “remote control” on the NTP server. In
this interface, you can use the help command to see a list of available commands.

As an alternative, you can run ntpq with some command-line options. For example, the
ntpq -p command gives an overview of current synchronization status. Listing 9-15 provides
an example of the result, in which several parameters are displayed:

• remote: The name of the other server

• refid: The IP address of the server you are synchronizing with

• st: The stratum used by the other server

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES290

• t: The type of clock used on the other server (L stands for local clock; u for an Internet
clock)

• when: The number of seconds since the last poll

• poll: The number of seconds used between two polls

• reach: The number of times the other server has been contacted successfully

• delay: Indicates the time between an NTP request and the answer

• offset: The difference in seconds between the time on your local computer and that on
the NTP server

• jitter: The error rate in your local clock, expressed in seconds

Listing 9-15. Use the ntpq -p Command to Slow the Current Synchronization Status on Your
Server

root@RNA:~# ntpq -p
remote refid st t when poll reach delay offset jitter

==
fiordland.ubunt 192.36.133.17 2 u 10 64 1 2.247 -357489 0.002

Customizing Your NTP Server
I have explained the basic NTP time configuration so far, but you can also conduct some fine-
tuning. First are the files that are created automatically by the NTP daemon, and then there
are some security settings that you can use in ntp.conf to limit what servers are allowed to get
time from your server. In this section, you’ll read about the NTP drift file, the NTP log file, and
NTP security.

NTP Drift File
No matter how secure the local clock on your computer, it will always be slightly off: either too
fast or too slow. For example, a clock may have a lag of two seconds every hour: this difference
is referred to as the clock’s drift factor, and it’s calculated by comparing the local clock with the
clock on the server that provides NTP time to the local machine. Because NTP is designed also
to synchronize time when the connection to the NTP time server is lost, it’s important that the
NTP process on your local computer knows what this drift factor is. So, to calculate the right
setting for the drift factor, it’s very important that an accurate time is used on the other server.

Once NTP time synchronization has been established, a drift file is created automatically.
On Ubuntu Server, this file is created in /var/lib/ntp/ntp.drift, and the local NTP process
uses it to calculate the exact drifting of your local clock, which thus allows it to compensate for
it. Because the drift file is created automatically, you don’t need to worry about it. However,
you can choose where the file is created by using the driftfile parameter in ntp.conf:

driftfile /var/lib/ntp/ntp.drift

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 291

■Note Remember that NTP is a daemon. Like most daemons, it reads its configuration file only when it’s
first started. So, after all modifications, use /etc/init.d/ntpd restart to make sure that the modifica-
tions are applied to your current configuration.

NTP Log File
The NTP log file is another file that’s created automatically for you. Like all other log files, this
is a very important file that allows you to see exactly what happens. If time is synchronized
properly, it’s not the most interesting log file on your system: it just tells you that synchroniza-
tion has been established and what server is used for synchronization. After installation,
Ubuntu Server is not set up to use its own log file, but you can change that using the logfile
statement in /etc/ntp.conf:

logfile /var/log/ntp

Applying NTP Security
If your server is connected to the Internet, it might be interesting to notice that restrictions
can be used. If no restrictions are applied, the entire world can access your NTP server. If you
don’t like that idea, add some lines to ntp.conf, as shown in Listing 9-16.

Listing 9-16. Applying Security Restrictions to Your NTP Time Server

restrict default noquery notrust nomodify
restrict 127.0.0.1
restrict 192.168.0.0 mask 255.255.255.0

■Note Some Linux distributions configure their NTP service so that no one can access it. Having problems
getting time from a server? Make sure that no restrictions have been applied.

The restrictions settings prevent inappropriate conduct of clients. In the first line of
Listing 9-16, you can see exactly what is considered inappropriate. In this line, first the default
settings for accessing the server are allowed. Then three types of packets are disallowed using
noquery, notrust, and nomodify. They make sure that no contact whatsoever is allowed for NTP
clients. Then an exception to these settings is created for the local NTP service and all com-
puters in the network 192.168.0.0. Add a restrictions line like the one in Listing 9-16 for every
IP address or range of IP addresses that has to be allowed to use the NTP server this way.

Starting Services with xinetd
There are two methods to start services. First, you can fire up the service when your system
boots, in which case the service occupies its port and waits for incoming connections all the

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES292

time. But if the service is needed only occasionally, starting it at system boot and keeping it
available all the time is a waste of system resources. This is exactly when the second method is
preferred; the xinetd process (and its predecessor inetd) were developed to listen on behalf of
other processes to see whether a connection comes in. If it does, xinetd starts the process,
thus making optimal use of system resources. You’ll learn how to configure it in this section.

■Note On Ubuntu Server, xinetd is not installed by default. Instead, the legacy inetd service is available.
Because xinetd offers the same capabilities—but with much more flexibility—I’m covering just xinetd in
this section. Make sure that you have it installed by using apt-get install xinetd.

Setting up xinetd by Hand
The xinetd service consists of three different parts:

• The xinetd daemon

• The default configuration file /etc/xinetd.conf

• The configuration files for individual services in the /etc/xinetd.d directory

Managing the xinetd Daemon
The xinetd service is implemented by the daemon process xinetd, which has a script in
/etc/init.d that allows you to start and stop this process automatically. Be aware that xinetd
is not activated by default, so start it first using /etc/init.d/xinetd start. This command
reads all service configuration files and makes sure that all services that have their enabled
status set to on are reachable from that moment on.

From time to time, you’ll have to restart the xinetd service because it doesn’t automati-
cally check its configuration files for changes. So, if you’ve made any modifications to the
services files, be sure to activate them by using the /etc/init.d/xinetd reload or /etc/
init.d/xinetd restart command.

Setting Default Behavior
The configuration of xinetd occurs in two locations. First, there’s the /etc/xinetd.conf file
that contains generic settings, and then there’s the /etc/xinetd.d subdirectory that can con-
tain files to configure individual xinetd services. It can contain service-specific settings as
well, but that’s not the default way to go on Ubuntu Server; every individual service has its
own configuration file in /etc/xinetd.d. On Ubuntu Server, xinetd.conf is just used to refer to
the individual configuration files in /etc/xinetd.d and to make sure that they are processed.

Tuning the Individual Services
Every service that works with xinetd has its own configuration file in /etc/xinetd.d. In these
configuration files, you’ll find options that specify how a service must be started. An example
of this is in the configuration file shown in Listing 9-17. The most important of the options is

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 293

disabled = yes, which is on by default. Because it’s on by default, the service won’t run until
you remove the option or change it to disabled = no. Listing 9-17 shows the configuration file
for the time service.

Listing 9-17. Default Configuration File for the time Service

root@RNA:~# cat /etc/xinetd.d/time
default: off
description: An RFC 868 time server. This protocol provides a
site-independent, machine-readable date and time. The Time service sends back
to the originating source the time in seconds since midnight on January first
1900.
This is the tcp version.
service time
{

disable = yes
type = INTERNAL
id = time-stream
socket_type = stream
protocol = tcp
user = root
wait = no

}

This is the udp version.
service time
{

disable = yes
type = INTERNAL
id = time-dgram
socket_type = dgram
protocol = udp
user = root
wait = yes

}

Of the options used in this configuration file, only two are really important because the
rest of them are set automatically. The first option that you have to tune is the disable option.
This option has the value yes by default, which means that the service is not active. To activate
the service, set it to disable = no. The second option is user, which specifies what user per-
missions the option should be started with. Many services are started as root by default. If you
can, change it to some other user with not so many permissions.

Tuning Access to Services with TCP Wrapper
If a service runs from xinetd, it can be secured with TCP Wrapper. To ensure that you can use
it, install TCP wrapper using apt-get install tcpd as root. Stated in a more general way, if a
service is using the libwrap.so library module, you can secure it with TCP Wrapper. Because

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES294

xinetd uses this module, you can secure it this way. Other services that aren’t started with
xinetd but do use this library can be secured with TCP Wrapper as well. To check whether a
service is capable of working with TCP Wrapper, use the ldd command followed by the com-
plete name of the service you want to check. If libwrap.so is listed, TCP Wrapper works for the
service. If it isn’t, use a generic firewall such as iptables. See Listing 9-18 for an example.

Listing 9-18. Checking Whether a Service Can Be Secured with TCP Wrapper

root@RNA:~# ldd /usr/sbin/xinetd
linux-gate.so.1 => (0xffffe000)
libwrap.so.0 => /lib/libwrap.so.0 (0xb7fd0000)
libnsl.so.1 => /lib/tls/i686/cmov/libnsl.so.1 (0xb7fb9000)
libm.so.6 => /lib/tls/i686/cmov/libm.so.6 (0xb7f91000)
libcrypt.so.1 => /lib/tls/i686/cmov/libcrypt.so.1 (0xb7f63000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7e22000)
/lib/ld-linux.so.2 (0xb7fe3000)

TCP Wrapper was developed before xinetd existed and when only its predecessor inetd
was available. This service didn’t include any way of regulating access to services, so inetd
could be used to start tcpd, TCP Wrapper, which in turn could be configured to start the neces-
sary service. The task of tcpd was to check whether a host trying to connect to the service was
allowed access or not. The nice thing about tcpd is that it sits between (x)inetd and the serv-
ice a client is connecting to. Therefore, from the outside it’s not possible to see whether tcpd is
blocking access to a service or whether the service simply isn’t there.

Working with the /etc/hosts.allow and /etc/hosts.deny Configuration Files
TCP Wrapper works with two configuration files to determine whether access is allowed or
not: /etc/hosts.allow and /etc/hosts.deny. The first has a list of all hosts that can access a
service, and the second contains a list of hosts for which access is denied. TCP Wrapper always
first reads the /etc/hosts.allow file. If the host that tries to connect is in there, access is
allowed. Only if the name of the hosts is not in /etc/hosts.allow does tcpd check /etc/hosts.
deny. If the host is in there, access is blocked; if it isn’t, access is allowed. Access is also allowed
if one of the two configuration files is empty or does not exist.

■Caution Test before you trust that TCP Wrapper is really protecting your services. A small error in the
configuration can have the result that TCP Wrapper doesn’t work.

The generic syntax of the lines that you can include in the /etc/hosts.allow and
/etc/hosts.deny files is not hard to understand:

daemon:host[:option : option ...]

Of these, daemon is the process involved, host is the list of hosts that you want to allow
or deny access to, and option is a list of options you want to include. Note that instead of

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 295

referring to a specific host or daemon, some generic keywords can be used as well. Table 9-2
summarizes these TCP Wrapper keywords.

Table 9-2. TCP Wrapper Keywords

Keyword Description

ALL Refers to all daemons or all hosts. Note that you can define an exception to ALL by
using the keyword EXCEPT.

LOCAL This option can be used for host names only and refers to all host names that do not
have a dot in their name.

UNKNOWN All host names for which tcpd cannot identify the name.

KNOWN All host names that could be identified by their name and matching IP address.

PARANOID All hosts for which the host name does not match the given IP address.

Let’s start with the example shown in Listing 9-19.

Listing 9-19. Simple Example of /etc/hosts.allow and /etc/hosts.deny

RNA: ~ # cat /etc/hosts.allow
ALL: LOCAL
RNA: ~ # cat /etc/hosts.deny
famd, netstatd, ps: ALL

In this example, incoming hosts are first matched against the /etc/hosts.allow file, in
which access to all services is granted for everything coming in from the localhost. Local
processes look no further. For connections coming in from remote hosts, now the /etc/hosts.
deny file is checked. In this file, you can see that access is denied to the famd, netstatd, and ps
services for all hosts. So, in this example, all other services that are controlled by tcpd can also
be accessed by all external hosts. As you notice, this example doesn’t show anything very
secure, but it’s possible to create a more secure configuration (see Listing 9-20).

Listing 9-20. More Complex Example of /etc/hosts.allow and /etc/hosts.deny

RNA: ~ # cat /etc/hosts.allow
ALL: SFO.sandervanvugt.com
in.telnetd: 192.168.1.1
ALL EXCEPT in.telnetd: 192.168.
RNA ~ # cat /etc/hosts.deny
ALL: ALL

In this example, you should first notice that a policy is set to specifically deny access for
all hosts to all services in /etc/hosts.deny. This is good because it creates a mechanism to
control access; if the host doesn’t have an entry in /etc/hosts.allow, it doesn’t get access to
the services that are controlled by tcpd.

Three different lines are specified in the /etc/hosts.allow file in Listing 9-20. The first
line grants access to all services for the host SFO.sandervanvugt.com. Then 192.168.1.1 gets
access to only the telnet service, and in the third line all other hosts whose IP address starts
with 192.168 get access to all services except telnet. Note that order matters in this example:

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES296

the TCP Wrapper works on a “first match” basis. If line 2 and line 3 of /etc/hosts.allow had
been reversed, the host with IP address 192.168.1.1 would also see a match in the ALL EXCEPT
in.telnetd line and would look no further.

Why You Shouldn’t Use TCP Wrapper
If a service listens to tcpd, you can build an efficient protection for it. However, this protection
is far from perfect. The most important problem is that the service is used only for certain
kinds of services. The line ALL:ALL in /etc/hosts.deny could give you a false sense of security,
making you believe that everything is secure now. A much better way to implement protection
for your server is to use the iptables firewall. Check Chapter 5 for more information on its
configuration.

Summary
In this chapter, you learned how to set up some of the most common network infrastructure
services. You’ve seen how to configure name resolution using DNS, and you read about the
configuration of the DHCP server and the NTP time server. In the last part of this chapter, I
covered the configuration of xinetd as a generic way to start services on your Linux server.
In the next chapter, you’ll learn how to set up Ubuntu Server as a file server, using Samba
and NFS.

CHAPTER 9 ■ CONFIGURING NETWORK INFRASTRUCTURE SERVICES 297

Using Ubuntu Server As a File
and Print Server
Configuring CUPS, NFS,
and Samba

File servers allow users to store important files at a central location in the network from
which it’s easy to add security and to allow users to share files. In this chapter, you’ll learn how
to set up Ubuntu Server as a file server.

A file server also typically offers a print service, which provides an easy and convenient
way to share printers on the network. You’ll also learn how to set up print services as well.

When using any Linux distribution as a file server, you have to choose the type of file
server you want to use. Many options are available, but the Network File System (NFS) and
Samba are the two most popular. The type of file server you’ll use depends on the kind of
client that will use it. If in your network most people work from Windows clients, it makes
sense to configure a Samba file server because Samba emulates the Windows Server Message
Block (SMB) protocol. This means that the Windows user won’t see any difference between the
Samba server and a Windows server. If, on the other hand, your user is on a Linux workstation
and needs an easy-to-configure and very fast protocol to connect to your Samba server, NFS is
the way to go. In this chapter, you’ll learn how to set up both of these configurations.

Before discussing file servers, however, you’ll learn how to set up a CUPS print server.

Setting Up a CUPS Print Server
The Common UNIX Print System (CUPS) server is a service that you’ll really want to use a
graphical interface for. Although this server uses a set of configuration files that aren’t always
that easy to configure, it provides a web page that allows you to perform almost all the tasks
necessary to manage a print server.

Adding Printers
To configure your server as a print server, you must first add a printer. If your network doesn’t
have many printers, you can add the printers individually. For a larger number of printers, you 299

C H A P T E R 1 0

can organize them into groups (classes) to make it easier to manage them. Let’s go through the
steps to add a printer in CUPS:

1. Install CUPS using apt-get install cupsys. This command installs all required CUPS
components (including the web management interface) and starts the CUPS service.

■Note By default, you have administrative access from the server that runs the CUPS process only. If you
want to access the administrative interface from another computer in your network, read the next section,
“Sharing Printers,” for information on how to do that.

2. Open a browser and go to http://yourserver:631. By default, the CUPS print server
listens on port 631. When accessing it from a browser, you see the management inter-
face shown in Figure 10-1.

Figure 10-1. CUPS offers an easy-to-use web management interface on port 631 of your
server.

3. From this interface, click Add Printer. Enter the following information and click Con-
tinue when you finish:

• Name: This is the name you want to use to share the printer. You won’t be allowed
to use spaces in the printer name.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER300

• Location: Enter the physical location of your printer.

• Description: Provide a description of your printer. Although this field isn’t manda-
tory, the added information does make it easier for a user to connect to the right
printer.

4. Next, specify what device the printer is connected to. This is an important option
because it relates to the device that your print server has to address when communi-
cating to the printer. This does not have to be a local device, and you can use a remote
device over the network. If your printer is attached to your server with USB, you’ll see
the USB printer listed automatically. If there is a network-enabled printer on the net-
work, you’ll probably also see it listed. Apart from the USB interface, the following
devices are available by default:

• AppSocket/HP JetDirect: Use this device to communicate to an HP JetDirect or
AppSocket-compatible print server.

• Internet Printing Protocol (http): You can use the Internet printing protocol to
address a printer that’s shared over the Internet. Use this option to address such a
printer over HTTP.

• Internet Printing Protocol (ipp): Use this option to address an IPP printer using the
IPP protocol.

• LPD/LPR Host or Printer: LPD/LPR is the classic way to connect to printers shared
by a UNIX or Linux machine. Use this option to address such a printer.

• LPT#1: Choose this option to communicate to a printer that’s installed at the paral-
lel printer port LPT1.

• SCSI Printer: This is for printers that are connected to the print server using the
SCSI bus.

• Serial Port #1/#2: This is for printers that are connected via a serial interface. (You
probably won’t need it because serial printers are rarely used.)

5. After selecting the printer port your printer is attached to and clicking OK, you’ll see a
list of available printer drivers. If your printer is listed here, select it and click Continue.
Otherwise, you can specify which printer you want to use by referring to its PostScript
Printer Description (PPD) file, which describes how CUPS has to communicate with
the printer. You can compare the PPD file to a driver. A limited list of PPD files is
installed in /usr/share/ppd/cups-included. If your printer manufacturer supports
CUPS, you’ll find the PPD file on its web site or on the driver CD. If your printer is not
listed there, and your printer manufacturer doesn’t give any clue about Linux support
for your printer, check the printer page at www.openprinting.org to see what the cur-
rent support status is for your printer. If it’s supported, you’ll find a link to the best
driver for your printer. Click this link and make sure that the driver is installed in
/usr/share/ppd/custom. Next, from the Make/Manufacturer interface, click the Browse
button to add this driver (see Figure 10-2). Then click Add Printer to add the printer.
When asked for a user name and password, enter the credentials for the user root. Your
printer is now added.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 301

Figure 10-2. Click the Browse button to browse to the location where you have selected the
PPD file for your printer.

6. Once the printer has been added, you’ll see a page with the printer’s properties. Make
sure that you select the right printer features, such as paper size, resolution, and many
other details. After making changes to this page, click the Set Printer Options button to
apply the changes. This updates your printer configuration immediately.

Sharing Printers
Once you’ve added a printer, you’ll probably want to share it. By default, only the host
localhost has access to your printer. To change this, follow these steps:

1. As root, open the /etc/cups/cupsd.conf file with an editor.

2. Search the line Listen localhost:631 and add a listen line just after it. For example, to
add a line that opens the CUPS print server for all nodes at the network 192.168.1.0,
add Listen 192.168.1.0/24.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER302

3. From the same configuration file, search the section that starts with <Location />.
Here you’ll find some lines that start with Allow. These lines are also required to indi-
cate which remote hosts are allowed to use your CUPS print server. Make sure that you
include a line that allows access for all nodes that need it. For example, add Allow
192.168.1.* to make sure that all nodes in the specified network can print to your
server.

4. If you want to be able to administer your print server from other nodes as well, go
to the section that begins with <Location /admin> and add an Allow line that grants
access for the administrator from all required machines as well, such as Allow
192.168.1.65.

5. Restart the CUPS print server by issuing the /etc/init.d/cupsys restart command as
root.

Managing Printers
Once the CUPS printer is installed, you can manage it as well, and the easiest way to do this is
from the web interface. Clicking the Printers tab (see Figure 10-3) provides an overview of all
available printers, and you’ll also see different buttons to manage properties of the printer as
well as the jobs handled by that printer. I’ll list the most important options offered from this
page here:

• Print Test Page: Tests your printer.

• Start Printer: Activates a printer that has been deactivated by the Stop Printer button.
As you can see, only one of these buttons is available at any given moment.

• Reject Jobs: Tells the printer to temporarily stop accepting new jobs. This may be a use-
ful option when troubleshooting a printer.

• Move All Jobs: Moves all jobs to another printer that’s known at this server.

• Cancel All Jobs: Stops all jobs that are currently being served.

• Unpublish Printer: Removes the printer from the list of available printers.

• Modify Printer: Allows you to change the location and description properties of the
printer.

• Set Printer Options: Changes printer options such as paper size and DPI.

• Delete Printer: Removes the printer from the list of available printers.

• Set As Default: Makes the printer the default for this machine.

• Set Allowed Users: Controls user access to the printer.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 303

Figure 10-3. The Printers page provides you with all the management options for your printer.

Also available from the Printers page is the queue or job list for your printer. You can acti-
vate it from Jobs ➤ Show All Jobs, after which you can choose to reprint, hold, cancel, or move
individual print jobs.

Accessing CUPS Printers
You have probably set up a CUPS print server because you want to access it as well. In this sec-
tion, I’ll discuss three different ways to access printers:

• Accessing a local CUPS printer from Linux

• Accessing a remote CUPS printer from Windows

• Accessing a remote CUPS printer from Windows using Samba

The first two are covered in the next two sections, but we’ll wait until later in this chapter
to configure the Samba server to provide access to a CUPS print server (see “Integrating CUPS
with Samba”).

Accessing a Local CUPS Printer from Linux
Accessing a local CUPS printer from Linux is easy because all CUPS printers appear in your
applications automatically. The only minor disadvantage is that after setting up a CUPS
printer from the web interface, it doesn’t automatically become the default printer. That said,

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER304

though, it’s easy to make your CUPS printer the default printer: from the web management
interface that you find at port 631 on your server, select the Printers tab and click Set As
Default.

Another useful way of accessing CUPS printers is the command line. You can use the lpr
command to send a file to a CUPS printer, but you first have to make sure that the command
is available on your server (by default it isn’t) by typing apt-get install cupsys-bsd. Next, as a
test, use lpr -Pnameofyourprinter /etc/hosts to send the file /etc/hosts to the printer that is
referred to by using the -P option.

Accessing a Remote CUPS Printer from Windows
Because CUPS uses a standard that Windows understands as well, you’ll normally have no
problem accessing a CUPS printer from Windows. Again, you can access a CUPS printer in
two ways: you can add a new printer with the Add Printer wizard and refer to the name of the
printer directly, or you can use Samba to access a CUPS printer that’s shared by a Samba
server. In this section, you’ll read how to set it up using the Add Printer wizard in Windows.
Although I used Windows XP to set up the CUPS printer, the installation on other Windows
versions will be more or less the same.

1. In Windows, select Start ➤ Settings ➤ Printers and Faxes.

2. Click Add a Printer.

3. Specify that you want to create a remote printer and click Next.

4. Select Connect to a printer on the Internet or on a home or office network, and specify
the URL of your printer. This URL consists of three parts. First, there is http://
yourserver. Use the name or the IP address of your server. Next, /printers refers to
the location on your server where your printers are defined. Next, you should use the
printer queue name as it is defined in the CUPS web administration page and as you
see it on the Printers page. For example, the complete URL to enter here is something
like this: http://myserver/printers/BrotherHL1430.

5. After making contact with the printer, Windows displays an interface for you to select
the manufacturer and model of your printer. Now complete the wizard to install the
CUPS printer on Windows.

Sharing Files with NFS
If you’re looking for a service that can offer access to shared files in a fast way, NFS is an excel-
lent choice. NFS is a very convenient way to share files, especially in an environment in which
the clients are mainly Linux. It’s not uncommon to store the home directories of all users on
an NFS server. In this section, I’ll cover the following topics:

• Using the NFS server

• Understanding how the NFS server works

• Configuring an NFS server

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 305

• Configuring an NFS client

• Monitoring the NFS server

Using the NFS Server
You can use the NFS server to share files with UNIX/Linux servers and clients because every
version of UNIX and Linux has native NFS support in the kernel of the operating system. NFS
is particularly useful when certain directories must be stored on a central location in the net-
work. You can, for example, use it for access to shared home directories; just make sure that
the home directory is stored in a central location on a server and lets users access it when they
log in to their workstations. NFS is also very useful for sharing large data directories, such as
an installation repository, with other servers using NFS.

One of the most important things to remember about NFS is that its security is rather lim-
ited in version 3 of the protocol. Version 4 offers Kerberos to secure the NFS server, but setting
up this version is far more difficult. Because most people use NFS for its speed anyway, ver-
sion 4 hasn’t become very successful yet. For trusted file sharing, Samba is a much more
convenient solution. Therefore, I’ll focus here on version 3 only.

The security that can be applied in NFS version 3 is based on host names or IP addresses.
After another host has been granted access to your NFS server, all its users get access to the
shared directories as well. It’s possible to limit that by granting file permissions to only the
user and group owners of a file and by avoiding permissions for others, but that doesn’t make
for a decent security setting, does it?

To determine the permissions of a user from one machine at another machine, the NFS
server checks user IDs. For example, if you have user ID 611 at your client desktop and you
access your company’s server, you’ll automatically get the permission of the user who has UID
611 on the server. To prevent problems with this, you should use NFS in an environment in
which user management is centralized with a service such as an NIS or LDAP server. If you just
want to use NFS to set up a quick-and-dirty file share (which is the scope of this section), you
don’t need either one.

Understanding How the NFS Works
A couple of components are involved in offering NFS services. First, there’s the NFS server
itself, which is provided by the kernel of Ubuntu Server. NFS is one of the services that works
with the RPC port mapper, which uses its own port numbers.

Most modern services have their own TCP or UDP port numbers, but this isn’t the case
with NFS (at least by default). NFS was created a long time ago, when the TCP and UDP port
numbers as we know them now weren’t very common. Therefore, NFS uses its own kind of
port numbers, the remote procedure call (RPC) program numbers. On a modern system, these
numbers must be converted to an Internet port number, and this task belongs to the RPC port
map program, which is implemented by a process on its own.

When an RPC-based service such as NFS is started, it tells the port mapper what port
number it’s listening on and what RPC program numbers it serves. When a client wants to
communicate to the RPC-based service, it first contacts the port mapper on the server to find
out the port number it should use. Once it knows the port number, its requests can be tun-
neled over the Internet port to the correct RPC port. To find out which RPC program numbers

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER306

your server is currently listening on, use the rpcinfo -p command. Listing 10-1 shows the
results of this command. (Make sure to install the kernel NFS server first, using apt-get
install nfs-kernel-server.)

Listing 10-1. Displaying RPC Program Numbers with rpcinfo -p

SFO:~ # rpcinfo -p
program vers proto port
100000 2 tcp 111 portmapper
100000 2 udp 111 portmapper
100003 2 udp 2049 nfs
100003 3 udp 2049 nfs
100003 4 udp 2049 nfs
100003 2 tcp 2049 nfs
100003 3 tcp 2049 nfs
100003 4 tcp 2049 nfs
100024 1 udp 1147 status
100021 1 udp 1147 nlockmgr
100021 3 udp 1147 nlockmgr
100021 4 udp 1147 nlockmgr
100024 1 tcp 2357 status
100021 1 tcp 2357 nlockmgr
100021 3 tcp 2357 nlockmgr
100021 4 tcp 2357 nlockmgr
100005 1 udp 916 mountd
100005 1 tcp 917 mountd
100005 2 udp 916 mountd
100005 2 tcp 917 mountd
100005 3 udp 916 mountd
100005 3 tcp 917 mountd

As you can see in this output, NFS is listening to Internet port 2049 for NFS protocol
version 2, 3, and 4 calls. Internally it’s using RPC port 100003 as well. Before the NFS server is
started, you must make sure that the port mapper is started. (This happens automatically
when the NFS software is installed.) When the port mapper is started, two service scripts
are created. The first is /etc/init.d/nfs-common. Some of the common services are started
from this script, such as rpc.lockd, which takes care of proper NFS file locking. Next, the
nfs-kernel-server is started. From this service script, the file-sharing services are activated.
In total, the NFS server consists of the services in the following list (the names in parentheses
are the scripts in /etc/init.d that make sure that the service is started):

• rpc.statd (nfs-common): This helper process is used by rpc.lockd. It keeps track of all
file locks that are allocated by kernel lock process or rpc.lockd and makes sure that
they’re restored after a crash of the NFS server.

• rpc.lockd (nfs-common): This process isn’t normally needed any more. It was used to
make sure that files were locked properly, but now its function is implemented in the
Linux kernel. It doesn’t harm to start the process anyway, so you’ll find the rpc.lockd
process activated most of the time.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 307

• rpc.idmapd (nfs-common): The rpc.idmapd process is used in NFS version 4 only. It makes
sure that user IDs are not matched only at the UID level (a user has the same UID) but
also at the user name level. By using this process, the NFS version 4 server can map
users with the same name but different UIDs on the machines involved in the NFS
setup.

• rpc.gssd (nfs-common): This service and its helper process rpc.svcgssd make sure that a
secure connection is established between the NFS client and server before any infor-
mation is exchanged.

• rpc.nfsd (nfs-kernel-server): This is the core NFS process because it ensures that NFS
services are offered. You need it at all NFS servers. The service is implemented by load-
ing the nfsd.o kernel module.

• rpc.svcgssd (nfs-kernel-server): See rpc.gssd.

• rpc.mountd (nfs-kernel-server): This is the client process that’s required to create an
NFS mount.

The last part of the NFS server consists of its three configuration files:

• /etc/default/nfs-common: This file contains parameters that tune the working of the
services started from the /etc/init.d/nfs-common script when started.

• /etc/default/nfs-kernel-server: This file contains parameters required by the services
started from /etc/init.d/nfs-kernel-server when started.

• /etc/exports: This file specifies the NFS shares.

Configuring an NFS Server
The NFS shares are defined in /etc/exports. The generic structure of the lines where this hap-
pens is as follows:

directory allowed-hosts(options)

In this example, directory is the name of the directory you want to share (/share, for
example). Next, hosts refers to the hosts that you want to have access to that directory. The
following details can be used for the host specification:

• The name of an individual host, either its short name or its fully qualified domain name

• The IP address of an individual host

• A network referred to by its name, such as *.mydomain.com

• A network referred to by a combination of IP address and subnetmask, such as
192.168.10.0/255.255.255.0.

• All networks, referred to by an asterisk

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER308

After indicating which hosts are granted access to your server, you need to specify the
options with which you want to give access to the NFS share. Table 10-1 lists some of the more
popular options.

Table 10-1. Commonly Used NFS Options

Option Meaning

ro The file system is exported as a read-only file system. No matter what local
permissions the user has, writing to the file system is denied at all times, even
if the user who makes the connection is root.

rw The file system is exported as a read-write file system. Users can read and
write files to the directory if they have sufficient permissions on the local file
system.

root_squash The user ID of user root is mapped to the user ID 65534, which is mapped to
the user nobody by default. This default behavior ensures that a user who is
mounting an NFS mount as user root on the workstation does not have root
access to the directory on the server. Always use this to secure shares at a
server that are frequently accessed by clients.

no_root_squash With this option, there’s no limitation for the root user. He will just have root
permissions on the server as well.

all_squash Use this option if you want to limit the permissions of all users accessing the
NFS share. With these options, all users will have the permissions of user
nobody on the NFS share. Use this option if you want extra security on your
NFS share.

sync This option ensures that changes to files have been written to the file system
before others are granted access to the same file. Although this option doesn’t
offer the best performance, you should always use it to avoid losing any data.

■Tip After making changes to the /etc/exports file, you must restart the NFS server because NFS is one
of the many older UNIX services that reads its configuration only on startup. To restart the NFS server, use
/etc/init.d/nfs-kernel-server restart. You don’t need to restart the /etc/init.d/nfs-common
script after making modifications to /etc/exports.

Tuning the List of Exported File Systems with the exports Command
When the NFS server is activated, it keeps a list of exported file systems in the /var/lib/
nfs/xtab file. This file is initialized with the list of all directories exported in the /etc/exports
file by invoking the exportfs -a command when the NFS server initializes. With the exportfs
command, it’s possible to add a file system to this list without editing the /etc/exports file or
restarting the NFS server. For example, the following line exports the /srv directory to all
servers in the network 192.168.1.0:

exportfs 192.168.1.0/255.255.255.0:/srv

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 309

The exported file system will be created immediately, but it will be available only until the
next reboot of your NFS server. If you also want it to be available after a reboot, make sure to
include it in the /etc/exports file, too.

Configuring an NFS Client
Now that the NFS server is up and running, you can configure the clients that need to access
the NFS server, and you can mount the NFS share either by hand (with the mount command)
or automatically from fstab.

Mounting an NFS Share with the mount Command
The fastest way to get access to an NFS shared directory is to issue the mount command from
the command line. Just specify the file system type as an NFS file system, indicate what you
want to mount and where you want to mount it, and you have immediate access. The follow-
ing command shows how to get access to the shared directory /opt on server STN via the local
directory /mnt:

mount -t nfs STN:/opt /mnt

Notice the colon after the name of the server; this is a required element to separate the
name of the server from the name of the directory that you want to export. Although you can
access an NFS shared directory without using any options at all, some options are often used
to make it easier to access an NFS mounted share. Table 10-2 summarizes these options.

Table 10-2. Common NFS Mount Options

Option Meaning

soft Use this option to tell the mount command not to insist indefinitely on mounting the
remote share. If the directory could not be mounted after the default time-out value
(normally 60 seconds), the mount attempt is aborted. Use this option for all
noncritical mounts.

hard Use this option to tell the mount command that it should continue trying to access the
mount indefinitely. But be aware that if the mount is performed at boot time, this
option may cause the boot process to hang. Therefore, use this option only on
directories that are really needed.

fg This default option tells the mount command that all mounts must be activated as
foreground mounts. The result is that you can do nothing else on that screen as long
as the mount could not be completed.

bg This option performs the mount as a background mount. If the first attempt isn’t
successful, all other attempts are started in the background.

rsize=n This option specifies the number of bytes that the client reads from the server at the
same time. For compatibility reasons, this size is set to 1,024 bytes by default. NFS
version 3 and later can handle much more than this. To increase the performance of
your NFS server, set it to a higher value, such as 8,192 bytes.

wsize=n Use this option to set the maximum number of bytes that can be written
simultaneously. Again, the default is 1,024, but NFS 3 and later can handle much more,
so specify 8,192 to optimize the write speed for your NFS server.

retry=n This option specifies the number of minutes a mount attempt can take. The default
value is 10,000 (which is 6.94 days). Consider setting it lower to avoid waiting on a
mount that can’t be established.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER310

Option Meaning

nosuid This security option specifies that the SUID and SGID bits cannot be used on the
exported file system.

nodev This option specifies that no devices can be used from the imported file system. This
also is a security feature.

noexec Use this option to avoid starting executable files from the exported file system.

Mount an NFS Share Automatically from fstab
Mounting an NFS share with the mount command is fine for a mount that you need only occa-
sionally. If you need the mount all the time, you can automate it by using /etc/fstab. If you
know how to add entries to /etc/fstab, it isn’t difficult to add an entry that mounts an NFS
share as well. The only differences with normal mounts are that you have to specify the com-
plete name of the NFS share instead of a device, and that some NFS options must be specified.
When mounting from fstab, you should always include the netdev, rsize, wsize, and soft
options for optimal performance. To refer to the server, its name as well as its IP address can
be used. Next is an example of such a line:

myserver:/myshare /mylocalmount nfs
_netdec,rsize=8192,wsize=8192,soft 0 0

Monitoring the NFS Server
At the end of this section about NFS, it’s time for some information about monitoring the
NFS server. You can use two very useful commands: rpcinfo -p and showmount -e. First, the
rpcinfo -p command displays a list of all services that are currently registered at the port
mapper service on your NFS server. If you can’t connect to the NFS server for some reason,
this command provides a good check to see whether the server is running properly. Next, the
showmount -e command displays a list of all file systems that are exported by a remote server.
It typically is a utility that you would run from a workstation acting as an NFS client to check a
server to see whether the share you intend to connect to is really offered by that server.

Sharing Files with Samba
Sharing files with NFS is useful in a Linux/UNIX environment. If you have many Windows
users in your network, they probably won’t appreciate your NFS server much because it isn’t
supported natively by Windows. For those users, we’ll have to use the Samba server. Samba is
more than just an alternative for NFS; it’s an actual replacement for Windows servers. The per-
formance of a Samba server is as good as an average Windows server, and if you need only
file-sharing services, Samba provides an excellent alternative. In this section, you’ll learn how
to configure a Samba server.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 311

Samba Server Possibilities and Impossibilities
In the late 1990s, Microsoft published the specifications of its protocols for file and printer
sharing. Based on these specifications, the common Internet file system (CIFS) was defined,
and the Samba project team started its free service to provide file and print services to
Microsoft clients.

But many things have changed since then. First, Microsoft networking has changed a lot,
and Microsoft hasn’t published the specifications of its networking protocols since 1998. As a
result, the Samba team has had to reverse-engineer these protocols, which means that they
had to analyze all new functionality added by Microsoft networking components and then try
to build something like it. Sometimes the Samba team succeeded right away, and other times
it doesn’t work as fast. For example, the Samba developers needed a long time to implement
integration with Active Directory in Samba.

The Samba server offers many options that people commonly use in Windows networks,
and because it was developed from scratch, Samba is often even faster than the original
Microsoft protocols. Also, because it has been ported to many different operating systems, it’s
used in all environments. Ubuntu Server with a Samba server installed offers an excellent
replacement for a Windows server.

■Note Let’s be realistic. Samba offers excellent file and printer sharing, but lacks Active Directory func-
tionality. If you really need Active Directory, you need Microsoft. But if you need Active Directory functionality,
you can probably use Samba as well. Especially when integrated with OpenLDAP, Samba can offer some-
thing very similar.

Configuring the Samba Server
The most important role of Samba is as a file server that offers access to shared directories.
After installing the Samba server with apt-get install samba, you’ll need several elements to
configure it:

• A directory to share on the local file system.

• One or more local users who have local Linux permissions on that file system.

• A share that provides network access to the shared directory.

• A user database so Windows users can authenticate with their Windows credentials
(which aren’t compatible with Linux credentials).

• Services that give access to the shared directory. See whether you have a configuration
file with the name /etc/samba/smb.conf; if you don’t, run apt-get install samba to
install everything you need.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER312

Preparing the Local File System
The first element of a successful Samba file server is a local directory that contains files you
want to share. If the main function of your server is to be a file server, you should consider giv-
ing this directory its own partition or logical volume to separate it from the other files on your
server. I personally like putting Samba shared directories in /srv and creating a logical volume
for /srv.

Besides creating the directory, you shouldn’t forget about the right permissions. The secu-
rity for your shared directory is configured partly on the share, but even more so on the local
Linux file system. So to make it all work, just create a Linux group, grant permissions to that
group, create some users and make them members of the group, and make the group owner of
the shared directory. (You can return to Chapter 5 for a refresher on how this all works.) Here
are some hints on how to organize the permission part of your Samba:

• Use ACLs if you want to give read access to members of one group but read-write
access to members of another group.

• Set the SGID permission on the shared directory to make the group that is owner of the
directory the owner of everything created in that directory and its subdirectories.

• Use the sticky bit to prevent users from accidentally deleting each other’s files from the
shared directory.

It’s a good idea to configure access on the local Linux file system before you do anything
else on your Samba server. (Many people tend to forget about it otherwise.)

Creating the Share
The second step in the configuration of a Samba server is to configure the share. For this pur-
pose, Samba works with a configuration file with the name /etc/samba/smb.conf. This file
configures almost the complete Samba server: general options as well as shares. Listing 10-2
provides an example of a configuration file for the Samba server. I won’t discuss it line by line,
but you should review it to see how it’s organized.

Listing 10-2. Example of the smb.conf Configuration File

[global]
workgroup = Samba server
printing = cups
printcap name = cups
printcap cache time = 750
cups options = raw
map to guest = Bad User
include = /etc/samba/dhcp.conf
logon path = \\%L\profiles\.msprofile
logon home = \\%L\%U\.9xprofile
logon drive = P:

[homes]
comment = Home Directories
valid users = %S, %D%w%S

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 313

browsable = No
read only = No
inherit acls = Yes

[profiles]
comment = Network Profiles
path = %H
read only = No
store dos attributes = Yes
create mask = 0600
directory mask = 0700

[users]
comment = All users
path = /home
read only = No
inherit acls = Yes
veto files = /aquota.user/groups/shares/

[groups]
comment = All groups
path = /home/groups
read only = No
inherit acls = Yes

[printers]
comment = All Printers
path = /var/tmp
printable = Yes
create mask = 0600
browsable = No

[print$]
comment = Printer Drivers
path = /var/lib/samba/printers
write list = @ntadmin root
force group = ntadmin
create mask = 0664
directory mask = 0775

The smb.conf configuration file is always divided into different sections. First are the
global settings. In the old days you needed the [global] section to define them, but that’s no
longer the case. In this section, settings are configured that apply to the complete Samba
server. Some settings can be configured only here. For example, the definition of the work-
group in workgroup = Samba server is a setting that applies to everything that’s offered by your
Samba server.

Apart from the global section, some shares are defined as well. Of the shares from the
example configuration file, the homes share gives access to the home directories of users, the
profiles share allows you to work with Windows profiles, and the printers and print$ shares
are created to configure the printing environment. The shares in the example file look at the
CUPS printing environment and share it completely with the Samba server. The users and
groups shares offer nice examples of how a generic share can be configured.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER314

To add your own share, you need to define a new section in the Samba configuration file.
It doesn’t matter what name you use for this section, as long as it’s unique. Next, specify the
parameters that you want to use for the section. Listing 10-3 provides an example in which a
share is created for members of the sales group.

Listing 10-3. Example of a Share with Some Additional Security Features Configured

[sales]
comment = Share for the sales department
path = /srv/samba/sales
valid users = @ sales
force user = zeina
force group = sales
read only = no
inherit acls = yes
veto files = *.mp3
create mask = 660

You’ll probably recognize some parameters that are often used on shared directories.
Table 10-3 provides an overview of these parameters.

Table 10-3. Useful Parameters for Shared Folders

Parameter Meaning

comment The text that’s used as the value for this parameter is displayed to a user who
queries the server for available shares. Use it to explain what the share is
used for.

path This option indicates the path of the local shared Linux directory. In the
example, the path is in /srv/samba/. It’s a good idea to put all directories
shared by the Samba server under one main directory so you can keep a
better eye on what exactly is shared on your server. The /srv directory is
meant for just that, so use it!

valid users You read earlier in this chapter that Linux permissions must be configured for
the file system on which you keep your shared directory. This doesn’t mean
that you secure the share only by applying permissions. The valid users
parameter is an example of additional security: this parameter can specify a
comma-separated list of users who are allowed access to the share. This
parameter is empty by default, which allows anyone to connect. It’s a good
idea to use this parameter followed by the name of a group, as you can see in
the example. This allows access only to users who are members of the group
you’ve specified. If you work with group names, make sure to put the @
character before the name of the group to indicate that it is a group. If you
want to make sure that some users absolutely don’t have access as well, you
can use the (rather paranoid) option invalid users to make sure that the
specified users are excluded. You could use this option to create an exclusion
for a limited number of users who are members of the group that you’ve
granted access.

force user This parameter can be used to ensure that all files created in this directory get
the specified user (zeina in Listing 10-3) as its Linux owner. Don’t use this
option if you need to see what user created what file in the share.

Continued

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 315

Table 10-3. Continued

Parameter Meaning

force group This option is the equivalent of using the SGID Linux permission on the
directory that is shared: it ensures that the specified group becomes the
owner of all files that are created in the share. Using either this or the force
user option makes sharing files among users in a group really easy.

read only Without this option, users can’t write to the share. By specifying read only =
no, you’re actually meaning writeable = yes and thus allowing users to write
files to the share.

inherit acls If ACLs are used on the Linux file system, this option makes sure that they are
applied to everything created under the directory with the ACL as well. Using
this option is a very good idea because you can apply Windows ACLs from the
Windows management utilities, and these ACLs integrate perfectly with Linux
ACLs. Make sure that you’ve enabled Linux ACLs for your file system when
using this option.

veto files A veto file is a file that is always denied creation on the share. By using veto
files, you can ensure that certain files just cannot be created. As in the
example, you should use patterns to indicate exactly what files you don’t want
to be created. Alternatively, you can specify the names of the files you don’t
want to exist as well.

create mask This useful parameter specifies the default permission mode for files that are
created in this directory.

directory mask Use this parameter to set default permissions for new directories.

Configuring User Access
The next important step in the configuration of the Samba server is to specify how user
accounts should be handled. Basically, the issue here is that the user connecting to a Samba
share is normally a Windows user. Being a Windows user, he comes in with Windows creden-
tials, such as a password that is encrypted with the Windows NTLM password hash.
Unfortunately, this method of password encryption isn’t compatible with the Linux method,
so something must be done to allow Windows users to log in with their Windows password.
Basically, this means that some additional authentication service needs to be configured. The
following list provides an overview of the available options:

• Configure an additional file in which the names of the Windows users are stored.

• Don’t use user authentication at all; work with share-level security.

• Centralize management of Windows user credentials on one server in the network.

• Hook the Samba server up with a Windows domain to handle user authentication.

• Make the Samba server a Windows NT–style domain controller.

• Set up an LDAP directory service and put the local Linux users as well as the Samba
users in that.

I don’t discuss all of these options here because that would require a book on its own.
Instead, I’ll discuss in this section the easy method of creating a separate user database. Later

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER316

in this section, you’ll also read how to configure your Samba server as a Windows NT–style
domain controller.

To set up a local Samba user database, you’ll use the smbpasswd command to create a local
database containing Samba user names and passwords. You need to create an entry in this file
for every user who needs access to the Samba server. Before doing this, however, you must
make sure that the user already exists in the local Linux user database. If he doesn’t, smbpasswd
gives an error indicating that it’s impossible to create the user. After verifying that the user you
want to create as a Samba user already exists as a local user, use smbpasswd -a username to cre-
ate the Samba user as well. After creating the user with smbpasswd, he’ll be able to connect to
Samba shares.

Starting the Services
Three different main services are involved with the Samba software:

• smbd: This is the process that allows for the actual file sharing.

• nmbd: This service provides NetBIOS naming services, allowing Windows clients to work
with their own naming mechanism. For example, this service allows you to browse the
network neighborhood and find all Samba services as well.

• winbind: This service allows you to bind your Linux environment to a Windows environ-
ment that uses Active Directory. With it, you can log in to Active Directory as a Linux
user.

To make your Samba server fully operational, you have to make sure that these three
services are started when your machine is booted. After installation, a script with the name
/etc/init.d/samba is created. From this script, nmbd and smbd are started automatically when
rebooting your server. Because winbind is not installed automatically, you need to install it
separately using apt-get install winbind. This adds the winbind script to /etc/init.d to
ensure that the winbind service is started automatically after a reboot of your server.

Integrating CUPS with Samba
Printers can be shared in Samba as well, but you first need to set up your Linux printing envi-
ronment. You read earlier how to do this with CUPS. After setting up the CUPS environment,
you need the right parameters in the smb.conf file to make sure that your printers are shared.
Listing 10-4 provides an example of a configuration that shares your CUPS printers automati-
cally.

Listing 10-4. You Need Some Specific Parameters in smb.conf to Make Sure That Your Printers
Are Shared

[global]
printing = cups
printcap name = cups
printcap cache time = 750
cups options = raw

[printers]
comment = All Printers

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 317

path = /var/tmp
printable = Yes
create mask = 0600
browsable = No

[print$]
comment = Printer Drivers
path = /var/lib/samba/printers
write list = @ntadmin root
force group = ntadmin
create mask = 0664
directory mask = 0775

As you can see, the Samba printing environment consists of three different parts:
[global], [printers], and [print$].

First, the [global] section contains four parameters to determine how to handle printing:

• printing = cups: This option sets CUPS as the default printing system. Alternatively,
you could use the legacy LPD print system, but CUPS is so much more advanced that
modern Linux systems don’t use LPD anymore.

• printcap name = cups: This parameter indicates that the file containing printer defini-
tions is not the legacy /etc/printcap that was used by LPD printing: it’s the CUPS
subsystem.

• printcap cache time = 750: This option specifies the number of seconds before Samba
checks the CUPS configuration again to see if any new printers were defined.

• cups options = raw: This option specifies how print jobs offered to the CUPS server are
handled. Because CUPS can’t understand the data format generated by the Samba
server, you should set this option to raw.

After the generic options in the [global] section, you must define two shares for the
printers as well. The share [printers] sets up an environment in which all printers can store
their temporary print jobs, and the [print$] share is used to store printer drivers. In both
shares you refer to a directory in which the temporary files and printer drivers are stored.
Make sure that you refer to an existing directory here.

In the example in Listing 10-4, all printers on the server are shared, but it’s possible to
share just one printer as well, as shown in Listing 10-5.

Listing 10-5. Sharing Only One Printer

[laserprinter]
printable = yes
printer = hl1430
path = /var/tmp

Here, a share with the name laserprinter is defined, and this share needs just three
options. The first option is printable = yes, which indicates that this is a printer and not a
shared directory. The most important line is printer = hl1430, which refers to the queue as it
is defined in the CUPS subsystem. Make sure that a queue with this name exists in CUPS, or it

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER318

won’t work. Finally, the path = /var/tmp option indicates what directory CUPS should use for
the temporary spooling of printer jobs.

When sharing printers with your Samba server, you have to take care of the drivers as
well. You can install the drivers at the Windows workstation locally, but the disadvantage of
this approach is it forces you to maintain them on each individual workstation, which is not
an ideal situation for centralized network administration. Therefore, it’s easier to install
printer drivers on the Samba server. To do this, you need the share [print$], as shown in the
example in Listing 10-6.

Listing 10-6. The [print$] Share Allows for Storage of Printer Drivers at the Samba Server

[print$]
comment = Printer Drivers
path = /var/lib/samba/printers
write list = @ntadmin root
force group = ntadmin
create mask = 0664
directory mask = 0775

Some important options are used in this example. First, there’s the name of the directory
in which Samba stores the printer drivers. Next is the write list option that specifies which
users are allowed to write to this directory; it should be write-accessible for root and members
of the group ntadmin only. With these settings in place, you can set up the printer in your Win-
dows environment, as described in the following procedure:

1. On Windows, start the Add Printer wizard.

2. Indicate that you want to add a network printer and then browse to the shared printer.
When prompted, choose to install a new printer driver.

3. Select the printer model for which you want to install the drivers. This installs the
drivers automatically in the /var/lib/samba/printers directory.

■Tip Make sure that you’re installing the printer drivers from your Windows workstation as a user with suf-
ficient permissions to the printer. By default, only the user root and members of the Linux group ntadmin
have permissions to write new printer drivers to the /var/lib/samba/drivers directory.

Setting Up Samba As a Domain Controller
In a Windows environment, a domain is used to manage users for a group of computers. The
only option to do this in a centralized way in Windows NT4 is by using domains. Windows
2000 introduced Active Directory as a system that sits above that. Because Samba Active
Directory functionality still has some shortcomings, in this chapter I’ll focus on configuring
Samba as an NT4-style domain controller

Be aware that setting up a well-tuned scalable domain environment requires extensive
knowledge of Microsoft networks, which goes far beyond the scope of this book. In this

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 319

section, you’ll learn only about the basic requirements needed to set up a Samba domain.
Consider this section an introduction to the subject matter only; for more information, con-
sult the man pages or the documentation at www.samba.org.

Modifying the Samba Configuration File
The first step in setting up a domain environment is to modify the Samba configuration file
properly. Listing 10-7 reveals the settings required in the [global] section in /etc/samba/
smb.conf.

Listing 10-7. Samba Domain Controller Settings

[global]
netbios name = STN
workgroup = UK
security = user
passdb backend = ldapsam:ldap://HTR.mydomain.com
logon script = %U.bat
domain master = yes
os level = 50
local master = yes
preferred master = yes
domain logons = yes

[netlogon]
path = /netlogin

Let’s have a look at the different parameters that are used in this example. Table 10-4
summarizes all parameters that I didn’t cover earlier.

Table 10-4. Parameters Specifically for Domain Configuration

Parameter Meaning

netbios name This is the name your server will have in the Microsoft network.

security This option specifies how security should be handled. If you want to
configure your server as a domain controller, set it to security = user.

passdb backend Use this parameter to specify in what kind of database you want to store
user and group information. The most common values for this parameter
are smbpasswd, tdbsam, and ldapsam. The easiest way to configure your
server is to use the tdbsam option, which creates a local database on your
Samba server. The most flexible way to configure it is to use the ldapsam
option. However, this option requires the configuration of an LDAP server
as well and makes things more complicated. If you want to set up your
Samba environment with PDCs as well as BDCs, make sure to use the
ldapsam option and ensure that you have an LDAP server configured as a
backend.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER320

Parameter Meaning

logon script In a Windows environment, a user can have his own login script, which is
a batch file that’s executed automatically when the user logs in. In this
example, the Samba server sees whether there is a script for your user that
has the name of the user account, followed by .bat. You should put this
script in the directory specified with the path parameter in the [netlogon]
share.

domain master This option tells the nmbd process that’s responsible for name services
that this server must be responsible for maintaining browse lists in the
complete network. These browse lists allow others in the network to view a
complete list of all members of the Windows network. A domain controller
should always be the domain master for your network.

local master A domain master browser communicates with local master browsers. These
servers are responsible for maintaining browse lists on local network
segments. Apart from being the domain master, your Samba servers should
be local master browsers as well.

os level Even if you specify that your server should be a local master and domain
master, this doesn’t really guarantee that it also will be the master browser.
In a Windows network, the master browser is selected by election. To
increase chances that your server will be the master browser, make sure
that you use a value greater than 32 for the os level parameter. The
highest value in the network is the most likely to win the browser elections.

preferred master Normally, browser elections happen only occasionally. Use this option
to immediately force a new browser election when the Samba server
comes up.

domain logins Set this parameter to yes to make the server a domain controller.

Creating Workstation Accounts
Now that you have your domain environment, you should add workstations to it. You need a
workstation account on the Samba server for every workstation that is going to be a member
of a domain, and this account gives the required permissions to the workstation in the
domain. Setting up a workstation account is just like setting up a user account.

First, you add the account to the local user database on your server. Next, you add the
workstation account as a workstation to the Samba user database. Notice that the name of the
workstation should end with a dollar sign ($) to indicate that it is a workstation. To create a
workstation with the name ws10, first use useradd ws10$ to create it in /etc/passwd. Next, add
the workstation to the smbpasswd database by using the smbpasswd -a -m ws10 command.
Notice that in the smbpasswd command, there’s no need to use the $ to specify that it’s a work-
station; the -m option takes care of this.

Client Access to the Samba Server
Almost all operating systems can connect to your Samba server. In this subsection, you’ll learn
how to test your Samba server from a Linux workstation. Three different utilities can be used
to test whether the server is working properly:

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 321

• Use the mount command to make a connection to a Samba share.

• Use the nmblookup utility to resolve NetBIOS names into IP addresses.

• Use the multipurpose smbclient utility to test many aspects of the Samba server.

Mounting Shares with the mount Command
The mount command is a fast and easy way to test whether your server is providing the services
you expect it to. All you need to do is specify the cifs file system type and the options that are
required to authenticate against the Samba share. You can use the following command to test
access to a local share with the name share by connecting it to the /mnt directory temporarily:

mount -t cifs -o username=someone //localhost/share /mnt

Note that the only option that’s really required in this command is the username option,
which tells the Samba server what user you wish to be authenticated as. You can enter a pass-
word as well, but it’s not a very good idea to provide that at the command line because
everything entered at the command line is stored in your local history file.

As an alternative to the mount command followed by the -t cifs option, the smbmount
command can be used as well. Basically, this command offers the same options; check its man
page for more details.

Using nmblookup to Test Samba Naming
You can use the nmblookup command to test whether Samba name services are fully opera-
tional. For example, nmblookup lax searches the network for a host with the NetBIOS name
lax and returns its IP address. To return the IP address of the given host name, the utility first
uses a NetBIOS broadcast on the local network. If no WINS server is configured, it won’t go any
further. If NetBIOS nodes are present on other networks as well, a WINS server must be config-
ured to manage the names for these hosts as well. Because WINS configurations aren’t very
common any more, I don’t discuss them here.

Testing and Accessing the Samba Server with smbclient
The versatile smbclient utility can be used to test a Samba server. It can check availability of
shares on a server, but with its FTP-like interface it can also move files to and from the Samba
server. Probably the most useful check that you can perform with smbclient is listing the
shares offered by a given server. For example, use smbclient -L //localhost to see what
shares are offered by the localhost. Listing 10-8 is an example of this command’s output.

Listing 10-8. Example of smbclient Output

SFO:~ # smbclient -L //localhost
Password:
Domain=[SFO] OS=[Unix]

Sharename Type Comment
--------- ---- -------
profiles Disk Network Profiles Service

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER322

users Disk All users
share Disk my files
groups Disk All groups
print$ Disk Printer Drivers
IPC$ IPC IPC Service
ADMIN$ IPC IPC Service

Domain=[SFO] OS=[Unix]

Server Comment
--------- -------

Workgroup Master
--------- -------

As you can see, the smbclient command first prompts for a password, which is required
for privileged options only. Because only a list of available shares is requested in this example,
no password is needed, so you can just press Enter. Next, smbclient displays a list of all avail-
able shares. This list shows the type of share, as well as the comment that was added to it.

You can also use the smbclient utility to upload and download files from a share. To do
this, you’ll use the same commands that are offered from an FTP client interface. The most
important of these commands are ls (list files), cd (change directory), get (download files),
and put (upload files). However, it’s not the most practical way of working because the Samba
file system is not integrated in the local file system at all.

Summary
In this chapter, you learned how to configure file and printer sharing on your server. You first
read about the configuration of the CUPS print environment, which is used as the native way
to share printers, especially in an environment in which only Linux or UNIX clients are used.
Next, you read about the configuration of the NFS server, which is used to share files with
other computers that can handle the NFS protocol. They typically are Linux and UNIX clients
as well. In the last part of this chapter, you learned how to configure a Samba server to offer
Windows-native file and print services. In the next chapter, you’ll read how to configure Inter-
net services such as FTP and web services.

CHAPTER 10 ■ USING UBUNTU SERVER AS A F ILE AND PRINT SERVER 323

Setting Up Web Services
Configuring Apache, MySQL,
PHP, Squid, and FTP

The Internet is the environment in which Linux has its greatest popularity. Fortunately,
Ubuntu Server makes a very good Internet server. In this chapter, you’ll learn how to set up
your server as an Apache web server, including support for PHP and MySQL. You’ll also set
Ubuntu up as an FTP server and learn how to configure Ubuntu as a Squid proxy server.
Although the focus in this chapter is on Apache, you’ll also learn how to enable the MySQL
server so that the database administrator can create new databases in it and how Apache is
integrated with PHP. Creating MySQL databases is a rather specialized job, however, so I won’t
go into great detail about that here.

Setting Up Apache
From a technical perspective, you could say that a web server is just a special kind of file
server; all it does is offer files that are stored in a dedicated directory structure. The root of this
structure is called the document root, and the file format that offers the files is HTML, the
hypertext markup language. But a web server can provide more than just HTML files. In fact,
the web server can serve just about anything, as long as it is specified in the HTML file. There-
fore, a web server is a very good source for streaming audio and video, accessing databases,
displaying animations, showing photos, and much more.

Apart from the web server in which the content is stored, the client also has to use a spe-
cific protocol to access this content as well, and this protocol is HTTP (the Hypertext Transfer
Protocol). Typically, a client uses a web browser to generate HTTP commands that retrieve
content, in the form of HTML and other files, from a web server.

You’ll likely encounter two different versions of Apache web server. The most recent
version is 2.x, and this is the one installed by default on Ubuntu Server. You might, however,
encounter environments that still use the earlier version 1.3. This often happens if, for
instance, custom scripts have been developed for use with 1.3, and those scripts aren’t
compatible with 2.x. As the 1.3 version is becoming increasingly rare, I won’t cover it in
this chapter.

325

C H A P T E R 1 1

To manage an Apache web server, you need to know—at the very least—exactly which
Apache components are installed on your server. Therefore, in this section you’ll first read
about the Ubuntu Server components that contain Apache software. Next, you’ll learn how to
start, stop, and test the Apache web server. In the third part of this chapter, you’ll explore the
Apache configuration files to see what must be managed where. You’ll also learn how easy it is
to set up new virtual hosts in Apache.

Apache Components
Apache is a modular web server, which means that the core server (whose role is essentially
to serve up HTML documents) can be extended by using a variety of optional modules. For
example, the libapache2-mod-php5 module allows your Apache web server to work with scripts
written in PHP 5. Likewise, many other modules are available for Apache. To give you an initial
impression, I’ll list some of the most useful modules:

• libapache2-mod-auth-mysqld: This module tells Apache how to handle user authentica-
tion against a MySQL database.

• libapache2-mod-auth-pam: This module instructs Apache how to authenticate users,
using the Linux PAM mechanism.

• libapache-mod-frontpage: This module instructs Apache how to handle web pages
using Microsoft FrontPage extensions.

• libapache2-mod-mono: This module tells Apache how to interpret ASP.NET code.

This is a short and incomplete list of all the modules you can use on the Apache web
server; http://modules.apache.org currently lists more than 450 modules. It’s important that
you determine exactly which modules you need for your server so you can extend its function-
ality accordingly. Be careful when adding new modules, however. With every module you add,
you also add to the potential security problems that could disturb your server’s functionality.
Now, let’s move on to the configuration of the Apache web server itself.

Starting, Stopping, and Testing the Apache Web Server
Like almost all other services you can use on Ubuntu Server, the Apache web server is not
installed automatically. The two packages that are available to install Apache are the apache
package and the apache2 package. At present, apache2 is more common, and only in specific
situations does it make sense to use the older apache package. Use dpkg -l | grep apache to
check whether Apache has already been installed. If this command doesn’t show an Apache
server, install it using apt-get install apache2.

The most important part of the Apache web server is the Apache 2 daemon (apache2)
process. This process is started from the script /etc/init.d/apache2; to run it from the com-
mand line, use /etc/init.d/apache2 start. If this command finishes without any errors, your
web server is up and running, which you can check with the ps aux | grep apache command.
As shown in Listing 11-1, this command shows that different instances of the Apache web
server are ready and waiting for incoming connections.

CHAPTER 11 ■ SETTING UP WEB SERVICES326

Listing 11-1. By Default, Several Instances of the httpd Process Are Started Automatically

root@RNA:~# ps aux | grep apache
root 4535 0.0 1.1 20020 6012 ? Ss 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4581 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4582 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4583 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4584 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
www-data 4585 0.0 0.6 20020 3212 ? S 09:53 0:00 /usr/sbin/apache2 -k start
root 4824 0.0 0.1 2880 748 pts/1 R+ 09:58 0:00 grep apache

As you can see from the output of ps aux in Listing 11-1, the first Apache process started
(the one with PID 4535) has root as its owner. This process, under control of the mod_prefork
module, immediately forks five other processes that listen to incoming connections.

These child processes are automatically launched by the Apache parent process, as
needed, so the right number of processes is always available for incoming connections. Later,
in the section “Some Words on Apache Performance Tuning,” you’ll learn how to manage the
minimum number of child processes that are always ready and waiting for new connections,
as well as the maximum number of processes that can be started.

After starting the Apache web server, you can test its availability in several ways. The best
way, however, is to just try to connect because a default web server is listening for incoming
requests after being installed. So wait no longer; launch a browser and connect to HTTP port
80 on your local host. It should show you a page (see Figure 11-1). It doesn’t look very nice, but
that’s only because you haven’t configured anything yet.

Figure 11-1. To verify the working of the Apache server, just connect to it.

CHAPTER 11 ■ SETTING UP WEB SERVICES 327

Exploring the Configuration Files
On Ubuntu Server, the Apache server uses a few configuration files that define its operations
(these files are in the /etc/apache2 directory). Let’s start with a short overview:

• /etc/apache2/apache2.conf: This is the main configuration file for your Apache server.
It contains the generic configuration for your server, such as the specification of the
directory in which the server can find its configuration files (the so-called ServerRoot)
and much more. If you want to tune the performance of your Apache server, this is the
file that you should look in. From this file, Include directives are used to include all
other configuration files.

• /etc/apache2/httpd.conf: This file is empty by default. If you want to create additional
configuration parameters that by default are not in the apache2.conf file, put them
here.

• /etc/apache2/envvars: You can place the environment variables to tune the operation
of your Apache server in this file. It also contains some other important information
about the way your Apache server is started, such as the user and group accounts used
to run the Apache server.

• /etc/apache2/ports.conf: This file contains the port numbers that the Apache server
will listen on. By default, the server listens on port 80.

• /etc/apache2/conf.d/: You can put additional Apache configuration files in this direc-
tory. After a default installation, the directory contains only the charset file, which
specifies the character set to use. Additional files can be placed here as well. From
/etc/apache2/apache2.conf, all files that are in this directory are included in the
Apache configuration automatically.

• /etc/apache2/mods-available/: As stated before, you can extend the functionality of
your Apache web server by using modules. In this directory, you’ll find all the modules
that are installed for your server. These are just the available modules, and not all of
them are necessarily used by default.

• /etc/apache2/mods-enabled/: To enable a given module, you have to create a symbolic
link in this directory that refers to the module file in /etc/apache2/mods-available. So,
if you have a module by the name ldap.load in /etc/apache2/mods-available and you
want to include it in your Apache configuration, create a symbolic link by first using cd
/etc/apache2/mods-enabled and then ln -s ../mods-available/ldap.load ldap.load.
This loads the module automatically the next time you restart your Apache web server.

• /etc/apache2/sites-available/: This directory stores all the configuration files for the
web sites serviced by your Apache server. After a default installation, it contains just the
file default that’s used by the default web site. Configuration files for additional sites
serviced by your Apache server are stored here as well, but the files stored here are not
activated automatically.

CHAPTER 11 ■ SETTING UP WEB SERVICES328

• /etc/apache2/sites-enabled/: If you want to enable a web site for which you have cre-
ated a configuration file in /etc/apache2/sites-available/, create a symbolic link in
/etc/apache2/sites-enabled/ that refers to this configuration file:

1. cd /etc/apache/sites-enabled

2. ln ../sites-available/mysite mysite

• /etc/default/apache2: This file should contain the NO_START variable to manage auto-
matic startup of the Apache server. By default, Ubuntu Server doesn’t start the Apache
server automatically. If you want to start the Apache server automatically when booting
your server, use an editor to add this parameter and give it the value 1 (for instance,
NO_START=1).

The Structure of the Apache Configuration Files
To tune the Apache web server, it’s important that you understand the structure of its configu-
ration files. The basic element of the configuration files is the directive that is used to group a
set of options so they apply only to a specific item. As an example, Listing 11-2 includes the
directive that’s created to specify the options for the directory in which the web server starts
looking for its documents, the so-called document root. This document root is very important
because all other file names and directory names are relative to it. This configuration comes
from the /etc/apache2/sites-available/default configuration file.

■Note To increase readability, I removed all comment lines from the example file.

Listing 11-2. Specification of the Document Root in the Default Server Configuration File

DocumentRoot "/var/www"
<Directory "/var/www">

Options None
AllowOverride None
Order allow,deny
Allow from all

</Directory>

This example first starts with the specification of the DocumentRoot. As you can see, it’s in
/var/www/ by default. Next, a directive is started for this directory to specify its options. Note
that the directive starts with the line <Directory "/var/www/"> and ends with </Directory>.
This is a generic rule for creating directives; if it starts with <Something>, it is closed with
</Something>. When tuning directives by hand, don’t forget this closing statement! Between
the start and end of the directive are its options.

CHAPTER 11 ■ SETTING UP WEB SERVICES 329

■Tip By default, the /var directory contains files that your server creates automatically, such as the log
files. It’s a rather dynamic directory, so there’s always some risk of it being filled up very fast by some
process that’s gone crazy. To separate dynamic files such as log files from more static files such as the
Apache document root, I think it’s a good idea to use the /srv directory to store the Apache document root.
Under /srv you can create a subdirectory with the name www for all web-related stuff. And if you start using
an FTP server later, you can also put its configuration in /srv. If you want, you can keep it on a separate
partition to further reduce the risk of some process that goes wild in /var trashing your precious web data
in /srv.

The first option, Options None, indicates that no specific options are applied to this direc-
tory. Next, the AllowOverride None option makes sure that the settings made here can’t be
overwritten at a lower level in the directory structure. Without this option, a user can activate
settings by creating a file with the name .htaccess in any subdirectory of the document root.
If that file exists, and the AllowOverride None option doesn’t, the settings from .htaccess will
be applied.

Next, the Order allow,deny option indicates that allow statements must be evaluated
first, and only then should the server check to see whether anything is denied. This is what
you would typically want for an unsecured directory. The Allow from all statement confirms
that this server is open to anyone; it grants access to this directory to all, which in most
cases is reasonable for a document root. Directives for other directories do look very similar,
although some directories might have specific options. For example, there’s the cgi-bin direc-
tory, which is used to refer to the location of the CGI scripts that can be executed by your
server. Because it contains scripts, this directory might require some additional options to
make sure that no insecure scripts can be executed.

■Note Every instance of the Apache server has its own document root. If you want to run several virtual
Apache servers (discussed later in this chapter), make sure that every virtual server has its own and unique
document root.

Checking the Configuration
After tuning configuration files, you should make sure that they work. The first thing you need
to do is run the apache2ctl command, which helps you test your configuration. To do this, run
apache2ctl configtest. You’ll be told whether everything is okay or not.

After verifying that everything is working as it should, you need to activate the changes
by running the /etc/init.d/apache2 reload command. This command just activates the
changes that you’ve made. That is, it does not unload and reload the Apache web server.
Sometimes, however, this just isn’t enough, and you need to restart the Apache server anyway.
In this case, use /etc/init.d/apache2 restart.

CHAPTER 11 ■ SETTING UP WEB SERVICES330

Most scripts that run from /etc/init.d have a status option, but the apache2 script
doesn’t. To check the status of your Apache server, run the apache2ctl script with the status
option or (even better) with the fullstatus option. The latter option gives an overview of
all Apache processes by their PID and also mentions what the process is currently doing.
Listing 11-3 shows an example of its output. In this example there’s not much activity; the
Apache server has sent a reply on one of its threads, and nothing else is happening.

Listing 11-3. The Command Shows the Current Status of the Apache Server

root@mel:~# apache2ctl fullstatus
Apache Server Status for localhost

Server Version: Apache/2.2.8 (Ubuntu) mod_perl/2.0.3 Perl/v5.8.8
Server Built: Feb 2 2008 03:59:12

__

Current Time: Wednesday, 25-Jun-2008 09:57:24 EDT
Restart Time: Wednesday, 25-Jun-2008 09:51:36 EDT
Parent Server Generation: 0
Server uptime: 5 minutes 47 seconds
1 requests currently being processed, 49 idle workers

_W_______________________............................

Scoreboard Key:
"_" Waiting for Connection, "S" Starting up, "R" Reading Request,
"W" Sending Reply, "K" Keepalive (read), "D" DNS Lookup,
"C" Closing connection, "L" Logging, "G" Gracefully finishing,
"I" Idle cleanup of worker, "." Open slot with no current process

PID Key:

5733 in state: _ , 5733 in state: W , 5733 in state: _
5733 in state: _ , 5733 in state: _ , 5733 in state: _
5733 in state: _ , 5733 in state: _ , 5733 in state: _
5733 in state: _ , 5733 in state: _ , 5733 in state: _
5733 in state: _ , 5733 in state: _ , 5733 in state: _
5733 in state: _ , 5733 in state: _ , 5733 in state: _
5733 in state: _ , 5733 in state: _ , 5733 in state: _
5733 in state: _ , 5733 in state: _ , 5733 in state: _
5733 in state: _ , 5737 in state: _ , 5737 in state: _
5737 in state: _ , 5737 in state: _ , 5737 in state: _
5737 in state: _ , 5737 in state: _ , 5737 in state: _
5737 in state: _ , 5737 in state: _ , 5737 in state: _
5737 in state: _ , 5737 in state: _ , 5737 in state: _
5737 in state: _ , 5737 in state: _ , 5737 in state: _

CHAPTER 11 ■ SETTING UP WEB SERVICES 331

5737 in state: _ , 5737 in state: _ , 5737 in state: _
5737 in state: _ , 5737 in state: _ , 5737 in state: _
5737 in state: _ , 5737 in state: _ ,

__
To obtain a full report with current status information you\
need to use the
ExtendedStatus On directive.
__
Apache/2.2.8 (Ubuntu) mod_perl/2.0.3 Perl/v5.8.8 Server at localhost Port 80

Working with Virtual Hosts
If you’re installing the Apache web server to host several small web sites, the concept of the
virtual host is very useful. Virtual hosts allow you to serve several sites from one instance of
the Apache web server. For example, you could host www.mydomain.com, www.yourdomain.com,
and www.someoneelsesdomain.com on the same machine. To make this work, you need to set
up DNS, which we covered in Chapter 9.

When working with virtual hosts, the following process is what happens when a user
accesses the virtual host through her browser:

1. The user enters the URL in her browser.

2. The DNS server redirects the user to your web server, based on the IP address that’s
assigned by the name of the server at the requested URL.

3. The request arrives at your server, which analyzes the port address the request is
addressed to.

4. Based on the port information, the request is sent to the Apache server, which analyzes
the request.

5. Apache matches the name used in the URL and forwards the packet to the right virtual
server.

Configuring Virtual Hosts
To configure a virtual host, you need a configuration file for every virtual host in the /etc/
apache2/sites-available directory and a link in /etc/apache2/sites-enabled to activate
this configuration. To make it easier, I advise you to copy the default configuration file in
/etc/apache2/sites-available and modify this copy. Make sure to include at least a unique
document root for each virtual host; otherwise, all hosts will read the same HTML files.

If you know how to configure an Apache web server, you should be comfortable with con-
figuring virtual hosts as well. Most of the directives in the default file speak for themselves, so
all you need to do is give them the right value and restart Apache so that the virtual host can
be accessed. Table 11-1 provides an overview of the most important of these directives.

CHAPTER 11 ■ SETTING UP WEB SERVICES332

Table 11-1. Important Directives for Virtual Host Configuration

Directive Meaning

ServerAdmin The mail address of the administrator of your virtual host.

ServerName The host name of the virtual host. Make sure that it matches the host name as
used in DNS. This is a very important directive because it allows your Apache
process to find the right virtual server.

DocumentRoot Every virtual host needs its own document root, and this is not the same as
the document root used by your main Apache web server! It’s a good idea to
create a separate directory for every virtual server you’re running. Don’t create
these directories under the document root of your main web server; instead,
make a subdirectory for every virtual server that you want to run at the same
level. Make sure that all files in the directory you’re referring to are readable by
the user www-data.

ErrorLog The file where this virtual host logs its errors. Typically, this is a file in the
/var/log/apache2 directory. Make sure that this file is writeable by the user
www-data.

CustomLog The file that’s used for generic log messages.

HostnameLookups This parameter has a default value of Off, which makes sure that your server
does not try to resolve the host name for every IP address that comes in. This
is very useful because the reverse name lookup normally takes a lot of time.

ScriptAlias This sets the directory that contains the CGI script files. If your web server
doesn’t need to do any scripting, make sure that you disable this setting;
allowing scripts to be executed by your server always carries a certain risk.

Apart from these important directives used in the virtual host file, other directives specify
the options for the directories offered by your virtual hosts. These directives do not differ from
directives with the same purpose on “real” Apache web servers. Listing 11-4 provides an
example.

Listing 11-4. Example of a Directive in a Virtual Host File

<Directory "/var/www/vhosts/myvirtualhost/cgi-bin">
AllowOverride None
Options +ExecCGI -Includes
Order allow,deny
Allow from all

</Directory>

This example should be pretty clear; maybe the only new item is the Options +ExecCGI
-Includes line. Its purpose is to allow the user to activate any script that is in the /var/www/
vhosts/ myvirtualhost/cgi-bin directory.

Managing Access to the Web Server
In most situations, a web server is publicly available so everyone can access all of its offered
information. In some situations, though, you might need to add an extra layer of security and
protect some directories on your web server. Without using additional modules, Apache offers

CHAPTER 11 ■ SETTING UP WEB SERVICES 333

two methods to restrict access: user-based and host-based. In this section, you’ll learn how to
configure both of them.

If you think these methods are too limited, you have to include other modules that offer
more advanced user authentication (check http://modules.apache.org for a complete list
of modules). To include other modules, first make sure that the module you want to use is
installed. Make a symbolic link to activate the module, include it in the configuration of your
(virtual) Apache server, and tune the specific configuration for that module.

Configuring Host-Based Access Restrictions
Apache offers three directives to configure host-based access restrictions:

• allow: Hosts or networks listed after this directive are allowed access to the web server.

• deny: Hosts or networks listed after this directive are denied access to the web server.

• order: This directive determines how allow and deny are applied.

The example in Listing 11-5 shows you how allow and deny can be set to protect a direc-
tory on a server. Note that the document root will always have its own settings, which can be
overwritten at a lower level. Also note how the default access permissions for the document
root are set.

Listing 11-5. Default Access Restrictions for the Document Root

<Directory "/var/www/documents">
Order allow,deny
Allow from all

</Directory>

In this example, you can see that the order in which access restrictions are evaluated is set
first. In this case, it is set to allow,deny. With this setting, the allow directives are evaluated
before the deny directives. Access is denied by default, which means that all clients that do not
match either an allow directive or a deny directive are denied access. So in Listing 11-6, access
is allowed only for hosts whose IP address starts with 192.168.

Listing 11-6. Allow Access to Only Some Hosts

<Directory "/var/www/documents">
Order allow,deny
Allow from 192.168.0.0/8

</Directory>

Instead of Order allow,deny, you can also use Order deny,allow. If you use this option,
access is allowed by default, and deny directives are evaluated before the allow directives. Any
client that doesn’t match a deny directive or does match an allow directive is therefore allowed
access. The example in Listing 11-6 can be rewritten using these directives as well, as shown in
Listing 11-7.

CHAPTER 11 ■ SETTING UP WEB SERVICES334

Listing 11-7. Allow Access to Only Some Hosts with Order deny,allow

<Directory "/var/www/documents">
Order deny,allow
Deny from all
Allow from 192.168.0.0/8

</Directory>

As you can see, the effect of the example in Listing 11-7 is the same as the result of the
example in Listing 11-6; it just uses one more line of code. Also the idea of allowing access by
default doesn’t please everyone. Therefore, to make your web server really secure, it’s better to
choose the Order allow,deny directive.

As an alternative to Order allow,deny, you might also encounter the Order Mutual-failure
option. This is an old option, and you shouldn’t use it. The alternative options—Order
allow,deny and Order deny,allow—do the same work, but better. You probably won’t see it
very often, but I mention it here in case you do.

Note that when allowing or denying access to directives, you have different options to
specify the hosts you want to limit access for:

• all: Use this to apply an option to all hosts.

• Complete IP addresses: This speaks for itself—use it to allow or deny access to one
specific host.

• Partial IP addresses: If this is used, the option applies to everything starting with the
given partial IP address. For example, 192.168.0.0/16 can be rewritten as 192.168
as well.

• A network in CIDR notation: CIDR notation specifies the number of bits that should be
used in the subnet mask. For example, 192.168.0.0/16 indicates that the setting applies
to everything that matches the first two bytes of the IP address. This can be rewritten as
192.168.0.0/255.255.0.0.

• A network address and a subnet mask. This is a network address with the full subnet
mask written out (for example 192.168.0.0 255.255.255.0).

Configuring User-Based Access Restrictions
Configuring access restrictions based on IP addresses might be useful if you want to grant
access to an internal network and deny access to everyone else (although a firewall is a much
better way to do this). For an access control mechanism that’s more flexible, it’s a good idea to
work with user-based access restrictions. In this chapter, you’ll learn how to configure simple
user-based authentication.

Working with Simple Authentication
Working with basic authentication is the easiest solution. To use this, a simple password file
needs to be created with the htpasswd command. Although this file can be located anywhere,
make sure that it’s not in a location where other users can read it. For example, storing the
password file in the document root (or anywhere beneath that) is a very bad idea. The default

CHAPTER 11 ■ SETTING UP WEB SERVICES 335

location on Ubuntu Server is the /etc/apache2 directory, and that’s a fine place for it. If you
want to put it somewhere else, make sure that it’s readable by the user www-data.

The first time you use the htpasswd command, make sure that you use the -c option with
it to make sure that a new password file is created. For example, the following command can
be used to do this:

htpasswd -c /etc/apache2/htpasswd linda

Next, the command prompts you to enter this user’s password twice and it then creates
an entry in the file you specified. Of course, a simple hashing algorithm is used to encrypt this
password. When you add more users to the Apache password file, you won’t have to use the -c
option again: the file exists and you can just add new users to it. The htpasswd command also
allows you to remove users from the password file; to do this, use it with the -D option. For
example, htpasswd -D /etc/apache2/htpasswd stacey removes user stacey from the file.

Just creating a user isn’t enough, however; you have to configure Apache to prompt for
a password when a user tries to access restricted data. To do this, some code needs to be
included in the directory that you want to protect, as shown in Listing 11-8.

Listing 11-8. Protecting a Directory with Basic Authentication

<Directory protected>
Authtype Basic
AuthName "Restricted directory"
AuthUserFile /etc/apache2/htpasswd
Require user linda

</Directory>

In this example, the directory protected is protected with a password. Because there’s no
absolute directory path, the directory is relative to the document root of this server. Also note
that the authentication type Basic is enabled. Next, a label is given to this directory with the
AuthName "Restricted directory" directive, after which the file containing the user informa-
tion is declared. In the final line, one specific user is granted access to this directory. As an
alternative, you can use the option Require user valid-user as well, which is useful if you
just want to grant access to any user listed in the password file that you’re using.

Enabling HTTPS
By default, Apache is insecure. This means that data sent from your Apache server to a client
can be intercepted by others. You probably want to avoid that, especially if you want to send
sensitive data from your Apache server to a user and back. To prevent unauthorized wire-
tapping, you can enable Apache to use SSL. In such a configuration, your Apache server is
configured with a public key and a private key.

When using public-private key encryption, the server hands out its public key to every
user who wants to establish a secure connection. (This is an automatic procedure that
end users aren’t aware of.) End users use the public key to encrypt all data they send to the
Apache server. This encrypted data can be decrypted only by using the private key used by
the Apache server. (As you can imagine, the private key is stored in a very secure place at the
Apache server.)

CHAPTER 11 ■ SETTING UP WEB SERVICES336

When using public-private key encryption, you normally also need a certificate authority
(CA), which is a piece of software that guarantees that the public key handed out by the server
is to be trusted. CAs are well known; for instance, VeriSign is a company that provides CA serv-
ices, and all browsers know about VeriSign. So if an Apache server hands out a public key
guaranteed by VeriSign, the end user knows that this certificate can be trusted.

The problem with commercial CA services such as the VeriSign service is that you have to
pay for them. That’s probably no problem if you want to mount a web shop, but if it’s just for
simple in-company use, you’ll probably prefer using a CA that is free. Fortunately, it’s not too
hard to set it up for yourself.

In the following procedure, you’ll learn how to create a self-signed certificate, which is a
certificate used by your Apache server that’s guaranteed by your server—and no one else.

■Caution Using self-signed certificates might give awkward security warnings at the client computer.
To avoid it, make sure that you don’t use self-signed certificates; go online and buy a real certificate.

Creating a Self-Signed Certificate
Creating a self-signed certificate is a three-step procedure. First, you need to generate a certifi-
cate signing request, which is a public key that hasn’t yet been guaranteed by anyone. Next,
you’ll sign this certificate; and in the third and final step, you’ll install it at the right location.
After you finish, you can configure your Apache server to use the self-signed certificate.

1. To generate the keys that you want to use, run the following command from a terminal
prompt: openssl genrsa -des3 -out server.key 1024.To put the resulting key file in
the right directory, run this command as root and make sure that you are in root’s
home directory. This command will generate a 1024-bit private key that is protected by
a passphrase. Although using a passphrase is inconvenient, it’s a very good idea to use
it anyway because it’s far more secure. Without a passphrase, anyone who steals your
private key can pretend to be your server. You have to enter the passphrase every time
you restart your server or Apache service manually, but how often do you really think
you need to restart the server? So use a passphrase and enter it manually every time
you restart your server.

2. Based on the private key that you just created, you now need to create the certificate
signing request. You’ll see a command that asks you to enter personal information
such as your mailing address, your country, and the name of your company. This infor-
mation makes it easier for users of the certificate to trace where the certificate comes
from and alert you if anything is wrong with it. Enter the following command as root
(make sure that you are in root’s home directory before issuing this command):

openssl req -new -key server.key -out server.csr

3. Now you can use the server.csr file that was generated in the preceding step as the
input file to create a self-signed certificate. To do this, run the following command as
root (make sure that you are in the home directory of user root before running it):

openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

CHAPTER 11 ■ SETTING UP WEB SERVICES 337

4. At this stage, you have created three different files:

• server.key: This file contains the private key of your server and must be kept
secret at all times.

• server.csr: This file is the signing request for the key that you just created. You
don’t need it any more.

• server.crt: This file is the public key certificate of your server. It is the server’s
public key, including the signing information that you added in step 3 of this pro-
cedure. You now need to make sure that this information is transferred to users
who want to establish an SSH connection with your server.

5. All files you have created so far are still in user root’s home directory. You now need to
copy them to the appropriate location. To do this, enter the following two commands
as root:

cp ~/server.crt /etc/ssl/certs
cp ~/server.key /etc/ssl/private

Configuring Apache to Use the Self-Signed Certificate
The certificate and your server’s private key are in place, and it’s time for Apache to use SSL.
After creating the certificate and the private key, this is not too difficult. Just follow these steps:

1. Install the SSL module. Ubuntu Server has a nice little utility to help you with that; run
a2enmod ssl to enable the SSL module for Apache. You can also link the SSL module
file from /etc/apache2/mods-available to /etc/apache2/mods-enabled, as described
earlier in this chapter.

2. You need to tell Apache that it has to use the certificates by including four lines in
the configuration file in /etc/apache2/sites-available for each server that you
want to use SSL. Make sure to put these lines n the VirtualHost section under the
DocumentRoot line:

SSLEngine on
SSLOptions +StrictRequire
SSLCertificateFile /etc/ssl/certs/server.crt
SSLCertificateKeyFile /etc/ssl/private/server.key

3. Restart your Apache server to enable the changes; use /etc/init.d/apache2 restart as
root.

■Tip Because your server is now configured to use a private key that is protected by a passphrase, you
probably don’t want to start it automatically when your server boots. To ensure that it doesn’t start automati-
cally, enter the line NO_START=0 in /etc/default/apache2.

CHAPTER 11 ■ SETTING UP WEB SERVICES338

Some Words on Apache Performance Tuning
If you’re running a very busy web server, it makes sense to do some performance tuning
because the default settings are really for web servers with only an average workload. If you’re
hosting a very busy web server, the performance parameters might require some adjustment.
You can find all performance-tuning parameters in the /etc/apache2/apache2.conf configura-
tion file.

To understand Apache performance tuning, you should know that Apache can run in
two different modes. One of them is the prefork mode, in which a process is started for
every incoming client. The alternative is the worker mode, which gives you a limited number
of Apache processes, each of which creates threads for incoming user connections. To deter-
mine what mode your server starts in, you have to activate the corresponding modules:
mpm_prefork_module for prefork mode and mpm_worker_module for worker mode. Listing 11-9
shows the code from /etc/apache2/apache2.conf that’s used to tune the performance for
either of these modes.

Listing 11-9. Performance Optimizing Parameters in apache2.conf

Server-Pool Size Regulation (MPM specific)
##

prefork MPM
StartServers: number of server processes to start
MinSpareServers: minimum number of server processes which are kept spare
MaxSpareServers: maximum number of server processes which are kept spare
MaxClients: maximum number of server processes allowed to start
MaxRequestsPerChild: maximum number of requests a server process serves
<IfModule mpm_prefork_module>

StartServers 5
MinSpareServers 5
MaxSpareServers 10
MaxClients 150
MaxRequestsPerChild 0

</IfModule>

worker MPM
StartServers: initial number of server processes to start
MaxClients: maximum number of simultaneous client connections
MinSpareThreads: minimum number of worker threads which are kept spare
MaxSpareThreads: maximum number of worker threads which are kept spare
ThreadsPerChild: constant number of worker threads in each server process
MaxRequestsPerChild: maximum number of requests a server process serves
<IfModule mpm_worker_module>

StartServers 2
MaxClients 150
MinSpareThreads 25

CHAPTER 11 ■ SETTING UP WEB SERVICES 339

MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0

</IfModule>

Let’s have a look at some of the most important parameters.

• StartServers: This setting specifies the number of Apache processes that should always
be started. The advantage of starting some processes in advance is that they are ready
and listening for incoming clients and can thus respond quickly to new connections.
Five servers are started by default. If you anticipate heavy use of your web server, it’s a
good idea to set this value higher.

• MinSpareServers: This is the minimum number of servers that should always be ready
and waiting for new incoming connections. By default, five servers are always listening
for new connections.

• MaxSpareServers: If too many server processes are waiting for new client connections
that don’t actually materialize, it might be reasonable to tune the MaxSpareServers set-
ting. Its default value of 10 means that if more than 10 servers are waiting for new
incoming connections, they should be closed down automatically.

• MaxClients: This is the maximum number of clients that Apache allows at the same
time. The default is set to 150, which is reasonable for many web servers.

• MaxRequestPerChild: Use this parameter to specify the limit for the maximum number
of requests that one instance (either a thread or a subprocess) of Apache can handle.
The value of 0 indicates that there’s no limit.

By now, you should know all that’s needed to get an Apache web server up and running.
The rest of its configuration is up to the web developers. Now let’s have a look at how MySQL
and PHP integrate with Apache.

Using PHP
PHP is one of the most popular programming languages used in a web environment. The lan-
guage’s most important advantage is that you can integrate it smoothly into an HTML page.
PHP works together easily with MySQL to get and put data in a database. The only thing you
have to do as an administrator to integrate PHP in your Apache web server is call the mod_php5
Apache module. Before you can do that, you need to install the module and make sure that
the module is included in the Apache configuration. To install the PHP5 module for Apache,
use the following command:

apt-get install php5 libapache2-mod-php5

In case you also want the PHP-MySQL integration, as well as the PHP5 command-line
interface that allows you to run PHP scripts from the command line, use the following com-
mand as well:

apt-get install php5-cli php5-mysql

CHAPTER 11 ■ SETTING UP WEB SERVICES340

To confirm that PHP is properly installed on your server, write a simple script that
includes the following line:

<?php phpinfo(); ?>

Write this text to a file with the name test.php and put the file in the document root of
your web server. Next, open a web browser to http://yourserver/test.php. This should dis-
play a window with information about the current status of your PHP installation. Make sure
that PHP is installed and responds properly to this page, as many current web pages include
PHP code.

The biggest advantage of PHP is that you can use it to make your web pages dynamic.
PHP is like Bash shell scripting; it can perform calculations based on certain conditions and
execute a command only if a certain condition is true. If you’re interested in learning how to
code in PHP, I recommend the excellent book Beginning PHP and MySQL 5: From Novice to
Professional, Third Edition by Jason Gilmore (Apress, 2008).

Setting Up MySQL
The combination of Apache, MySQL, and PHP is very popular with web developers. Apache
serves pages that read scripts written in PHP, which query databases written in MySQL.

Setting up MySQL involves more than just enabling a module. MySQL is a service process
on its own that you need to install and configure. If you already installed MySQL, your server
starts it automatically. You can check whether it’s there by using the command ps aux | grep
mysql. If you can’t see anything, use dpkg -l | grep mysql to check whether the MySQL pack-
ages are installed. If you don’t see the mysql-server package in the output (check Listing 11-10
to see what it looks like if it is installed), install it by using apt-get install mysql-server-5.0.

Listing 11-10. Use dpkg -l to See Whether MySQL Has Been Installed on Your Server

root@RNA:~# dpkg -l | grep mysql
ii libdbd-mysql-perl 3.0008-1build1 A Perl5\
database interface to the MySQL data
ii libmysqlclient15off 5.0.38-0ubuntu1 mysql\
database client library
ii mysql-client-5.0 5.0.38-0ubuntu1 mysql\
database client binaries
ii mysql-common 5.0.38-0ubuntu1 mysql\
database common files (e.g. /etc/mysql
ii mysql-server 5.0.38-0ubuntu1 mysql\
database server (meta package dependin
ii mysql-server-5.0 5.0.38-0ubuntu1 mysql\
database server binaries
ii php5-mysql 5.2.1-0ubuntu1 MySQL\
module for php5

CHAPTER 11 ■ SETTING UP WEB SERVICES 341

Setting the MySQL Root Password
Because a database such as MySQL is typically managed by a database administrator (Linux
admins generally don’t care about databases), MySQL has its own root user. Before you can do
anything with MySQL, however, you must set a password for this user, and you’ll do this with
the mysqladmin command:

mysqladmin -u root password secret

Now at least you can do something with your MySQL server. By the way, it’s not a very
secure idea to type the root password for your database server in clear text on the command
line like this. You can also use the option -p to have mysqladmin prompt for a password:

mysqladmin -u root -p password

Next, your server will ask for you to input a password twice.

Creating a MySQL Database
Another task that a Linux administrator has to occasionally perform is to create a database.
You will sometimes install applications that want to use a MySQL database, and you need to
create that database first to use such applications. To do this, use the mysqladmin command
again. In the following example, you’ll create a database with the name DBASE1:

mysqladmin -p create DBASE1sudo

Normally, this is where your responsibilities as a Linux administrator end. The rest of the
work on MySQL involves creating tables and populating the database with data, which is typi-
cal work for the database administrator, so it is not covered here.

Configuring a Squid Proxy Server
If your Internet connection is not so fast, you can benefit from using a proxy such as Squid.
How does it work? The end user connects to the proxy, and the proxy fetches the requested
information from the Internet. Using a proxy has two major benefits. First, it speeds things up.
After the information is in the cache of the proxy server, the next user doesn’t have to go fetch
it somewhere far from the Internet. So there’s a speed benefit.

There’s also a security advantage. If the proxy server is the only way to connect to the
Internet, you can set up authentication on the proxy, thus allowing only authorized users to
access the Internet. Another security benefit is that you can work with ACLs to define which
Internet sites are allowed and which are not. You’ll learn more about Squid ACLs later in this
chapter in the section “Configuring Squid Access Control List Policies.”

When using a proxy, there is something to be aware of, however. A proxy works for the
upper layers in the TCP/IP stack because typically it is application level–oriented. That means
that some protocols are supported, whereas others are not. The most important protocols that
are handled by Squid are HTTP and FTP. DNS requests can also be cached in the Squid proxy
cache.

CHAPTER 11 ■ SETTING UP WEB SERVICES342

Installing a Squid Proxy Cache
If you’re serious about running a proxy cache, you should use a dedicated machine with lots
of memory. If no more RAM is available for caching, Squid will save the cache information to
disk, which means that you have to pay a relatively high performance price for proxying. You
can run Squid with other processes on the same server if you need to, but it is better to use a
dedicated server. After all, you wouldn’t implement a Squid proxy server in order to get better
performance while wasting performance implementing it, would you?

Installing Squid is as easy as installing any other server on Ubuntu: run the following
command as root:

apt-get install squid

Using this command installs a script that starts the proxy server in /etc/init.d/squid. All
configuration is stored in the /etc/squid/squid.conf configuration file. As you will see when
you open it with your preferred editor, it is a huge file that contains lots of comment lines that
explain what certain options are used for. The next section discusses how to configure some of
the most useful options.

Configuring Squid Access Control Policies
When configuring the Squid proxy, you need to determine the port on which it listens. By
default, Squid uses port 3128, which also is the port address users have to configure in their
browsers. The http_port parameter is used to change it to anything you like; for example, port
8080 is a rather popular choice for a proxy server. Don’t forget to restart your Squid server
using /etc/init.d/squid restart; otherwise, the changes are not activated.

When setting up a proxy server, you probably also want to configure ACLs to determine
who can access what kind of information. The acl tag is used to specify a group to which
access can be denied or allowed in an http_access tag (so you always need both of these tags
to work together). The following shows a simple example of how these tags can be applied:

acl all src 0.0.0.0/0.0.0.0
acl allowed src 10.0.0.0/24
http_acccess allow allowed
http_access deny all

■Caution Before a Squid server can be used after installation, you need to modify the existing ACLs in the
default file. By default, one ACL exists that denies access to all.

In the preceding example, two categories are defined in the ACLs. First is the category all,
identified by the source address 0.0.0.0 with subnet mask 0.0.0.0. This notation refers to all IP
addresses that exist. Then a category allowed is referred to. All nodes that have an IP address
that starts with 10.0.0 belong to this category. Next, both categories are referred to in the
http_access tags. The first rule grants access to all nodes belonging to the group of allowed
hosts. For all these hosts, the procedure ends here because the first rule that matches will
always be applied. Then the policy is applied for all other nodes. It is set to deny all.

CHAPTER 11 ■ SETTING UP WEB SERVICES 343

■Caution When creating Squid access rules, you should never forget that when a rule applies, Squid exe-
cutes it for the user in question, and other rules are not looked at any more. Therefore, always write your
rules from very specific to more general rules.

In the previous example, the ACL was based on the source IP address. Many other criteria
can also be used in an ACL:

• src: This type refers to the source address of a node. An individual IP address can be
used, a range of IP addresses can be used, or a complete subnet mask can be used. An
example of a range specified as the source address is 192.168.1.10–192.168.1.20/32.
Note the 32-bit subnet mask, which is always needed if a range is specified.

• dst: This type refers to the destination IP address. It is not very useful to use this type to
refer to addresses on the Internet because they can change without notice. If access has
to be denied for users from the private network to a host in the DMZ, however, this type
can be useful. An example is provided in the following listing:

acl protected_host dst 10.0.0.10/32
acl private_network src 10.0.10.0/24
http_access deny proteted_host private_network

• srcdomain: Like source, but refers to a DNS domain as source.

• dstdomain: Like dst, but based on a DNS domain name.

• time: This type refers to the time of day and day of the week when a tag should be used.
(The day of the week can also be used, but it is not necessary.) The following are valid
examples of using the time ACL type:

acl toolate time 20:00-6:00
acl weekend time A-S 0:01-24:00
acl notonfriday time F 16:00-24:00

If referring to the days of the week, the following can be used:

• Monday: M

• Tuesday: T

• Wednesday: W

• Thursday: H

• Friday: F

• Saturday: A

• Sunday: S

CHAPTER 11 ■ SETTING UP WEB SERVICES344

• url_regexp: This type looks for a regular expression in an URL. For example, you can
use acl sex url_regex "sex" to deny access to all sites that have sex somewhere in the
URL. This ACL often has unexpected results because other sites can be blocked. (For
instance, it blocks access to www.essex.co.uk, which is a perfectly legitimate site.)

• port: This type blocks access on given ports.

• proto: This type blocks access to specified protocols only.

• reg_mime_type: This very useful type blocks access to specific file types. The type of file
is determined by looking at the mime type. For example, think of an ACL as acl mp3
reg_mime_type "audio/mpeg".

After specifying the ACLs, it’s time to define http_access tags that use the ACL. Although
you can refer to one ACL in an http_access tag, more than one ACL can be referred to as well.
(An example of this was shown in http_access deny protected_host private_network,
which denied traffic coming from the private network and going to a protected host.) It’s
also possible to use exclusion in an ACL—for example in http_access deny protected_host
!private_network—which denies access to the protected host to all hosts not coming from
private network access.

Remember that no matter how complex the applied ACLs can be, you should always
conclude the list of ACLs with a default policy. The policy defines what should happen if no
specific match is found for a given package. In general, it is useful to conclude the list of
http_access tags with http_access deny all to deny access to all packets that have not
matched a specific http_access tag earlier in the chain.

Configuring User Authentication
Besides analyzing the packet (where it comes from and where it goes to), you can also use user
authentication with Squid. The only thing necessary to make user authentication work is the
use of a browser that supports user authentication (all current browsers do.) In a Squid envi-
ronment, the browser and the proxy can exchange user name and password in three ways:

• Basic

• Digest

• NTLM

In the Basic method, the user name and password are sent in clear text to the proxy. The
Digest method does not send the password in clear text; it uses a digest derived from the pass-
word instead. The advantage is that the password cannot be read while being sent from the
browser of the user to the proxy. The NTLM method can also be used, but it is not a part of the
HTTP protocol specifications. Therefore, you might encounter browsers in which this method
is not supported.

■Note Unfortunately, the Digest method was not implemented in the current version of Squid, so this sec-
tion discusses only how the Basic authentication method is used.

CHAPTER 11 ■ SETTING UP WEB SERVICES 345

When authentication is used to connect to the Squid proxy, it is not the proxy itself that
handles authentication, but an external program. For example, the Linux PAM mechanism
(refer to Chapter 5) can be used for proper authentication. The advantage of using PAM is that
it can authenticate to any source you can think of. By default it will try to authenticate to the
local files /etc/passwd and /etc/shadow to see whether the user that authenticates exists.

The communication between Squid and the authentication program will be plain text,
which isn’t an issue if the proxy server and the authentication service are used on the same
server. If Squid needs to communicate to the authentication service over the network, you
should use digest_pw_auth. The disadvantage of this method is that you need to maintain a
text file on the Squid server that contains the user names and passwords unencrypted. There-
fore, it is not considered a well-secured method, either.

If you want to configure Squid to authenticate to the PAM module, three tags are needed:

• auth_param: This tag refers to the program used for authentication. Other options are
also used to specify how the authentication program should be used.

• acl: This tag defines groups of users.

• http_access: This tag specifies in what way users are granted access.

The following four lines specify how the PAM module can be used for Squid authentication:

auth_param basic program /usr/sbin/pam_auth
auth_param basic children 5
auth_param basic realm Squid proxy-caching web server
auth_param basic credentialsttl 4 hours

In the first line, the PAM module is specified as the program that should handle authenti-
cation requests. Next, there is a specification of the maximum number of authentication
processes that might be started at the same time. More than five simultaneous processes are
needed only on heavily used Squid servers; if users start to complain about the time it takes
to log on, consider increasing this value. On the third line, you specify what to protect with
authentication; this is the realm authentication. This parameter should always have the value
of the Squid proxy-caching web server.

Finally, there is a line that specifies how long the credentials must be remembered; the
default value is set to two hours, so users can connect to new resources without providing cre-
dentials for a period of two hours. After two hours, they have to provide a login name again.
Because many companies consider this duration too short, I set this parameter to four hours
in the example.

After you have specified that the PAM module should be used as the authentication
mechanism, a PAM file must be created. There is no default file, so you have to create a Basic
authentication file yourself. This file enables authentication to the local passwd-mechanism
with the following two lines:

auth required pam_unix2.so
account required pam_unix2.so

Now that the authentication mechanism is specified, you have to create an ACL in which
the user names you have defined are used. It might look like this:

acl allowed_users proxy_auth linda stephanie

CHAPTER 11 ■ SETTING UP WEB SERVICES346

In this example, only linda and stephanie are allowed users. There’s often no need to limit
access for a small number of users; you can just allow all authenticated users access to a
resource. This can be accomplished by using REQUIRED instead of the name of one or more
users, as shown in the following example:

acl all_users proxy_auth REQUIRED

Based on these two examples, you can create an environment in which only linda and
stephanie are given access, whereas all other users are denied access by using the http_access
tag:

http_access allow allowed_users
http_access deny all_users

While introducing user authentication, the entire list of access rules for your Squid proxy
can become rather complex, especially because the first match is always applied. Therefore,
the following does not work if you want to ensure that only allowed_users and users coming
from trusted_net are granted access; all others are denied access:

http_access allow allowed_users
http_access allow trusted_net
http_access deny all

The goal of these rules was to grant access only to allowed users coming from
trusted_net; in the previous rules, however, access is granted to a user who is not part of
allowed_users, but is on trusted_net. To solve this problem, you should make combinations
in the http_access rules, as in the following example:

http_access allow allowed_users trusted_net
http_access deny all

Setting Up FTP
FTP is another service that’s quite popular on the web. It’s popular because it makes sharing
files so easy, and you can use several FTP servers on Ubuntu Server. One of the easiest and
fastest of these is pure-ftpd. Let’s have a look at how to set it up, but (as usual!) first make sure
that it’s installed: use the apt-get install pure-ftpd command, which also automatically
starts the pure-ftpd server using its default settings.

Configuring the pure-ftpd Server
Running a pure-ftpd server is easy; it runs all by itself once you have installed it. By default, it
uses PAM authentication to give authenticated users FTP access to your server. It has a few
settings that you can change, though.

The first part of the pure-ftpd configuration is in the startup file in /etc/default/
pure-ftpd-common. In this script, you’ll find a few parameters, which are explained in
Table 11-2.

CHAPTER 11 ■ SETTING UP WEB SERVICES 347

Table 11-2. Configuration Parameters for pure-ftpd

Parameter Use

STANDALONE_OR_INETD This parameter determines how you want to run the pure-ftpd process.
It runs as a stand-alone process by default, but you can also run it from
(x)inetd. For fast response, it’s better to run it as a stand-alone process.

VIRTUALCHROOT To secure the pure-ftpd server, you can start the process in a chroot
jail, which means that the process is restricted to the contents of one
directory instead of the complete file system of your server. By default,
the pure-ftpd process runs without chroot restrictions. If you enable
chroot restrictions by setting this parameter to true, all users who access
the FTP process will see only their home directories.

UPLOADSCRIPT When uploading files, you can determine how the uploading should take
place by creating an upload script. For more information on how to
format such a script, consult the man page for pure-uploadscript(8).

UPLOADUID, UPLOADGID If you want to use an upload script, these parameters set the UID and
GID that are used when running this script.

You can set other options besides the startup parameters in /etc/default/
pure-ftpd-common. You’ll find them in /etc/pure-ftpd/conf. The configuration is stored by
default in six different configuration files, each of which sets one configuration parameter.
Table 11-3 provides an overview.

Table 11-3. Configuration Files for pure-ftpd

File Use

AltLog Contains a complete path to the directory in which pure-ftpd logs its
transfer data. The default value is set to /var/log/pure-ftpd/
transfer.log.

MinUID Indicates the minimal user ID used by pure-ftpd.

NoAnonymous Specifies whether anonymous users are accepted. By default, the file
contains the value yes, which means that anonymous users are not
allowed. Change to no if you want to allow anonymous users. Notice
that you can also enable anonymous user access via PAM.

PAMAuthentication This file has the contents yes or no to indicate whether PAM
authentication is used. If the value is set to yes (the default), the PAM
configuration file /etc/pam.d/pure-ftpd is read to determine how the
login procedure should proceed.

PureDB Names the file that’s used as the pure-ftpd authentication database.
The default file is /etc/pure-ftpd/pureftpd.pdb, which you can use to
authenticate users as an alternative to PAM-based authentication.
Because PAM is a more versatile means of authentication, I recommend
that you don’t use the pureftpd.pdb file.

UnixAuthentication Give this file the contents yes if you want to enable authentication based
on /etc/passwd and /etc/shadow without using PAM.

As you can see, pure-ftpd offers a few options to handle authentication. Of these options,
I recommend using the default value, which is set to PAM, because it gives you the most flexibil-
ity in setting up the way user authentication is handled. Listing 11-11 shows the default PAM
configuration file that’s used when PAM authentication is enabled.

CHAPTER 11 ■ SETTING UP WEB SERVICES348

Listing 11-11. The Default pure-ftpd PAM Configuration File

PAM config for pure-ftpd

allow anonymous users
auth sufficient pam_ftp.so
auth required pam_unix_auth.so shadow use_first_pass

/etc/ftpusers contain user list with DENIED access
auth required pam_listfile.so item=user sense=deny\
file=/etc/ftpusers onerr=succeed

Uncomment next line to allow non-anonymous ftp access ONLY for users,
listed in /etc/ftpallow
#auth required pam_listfile.so item=user\
#sense=allow file=/etc/ftpallow onerr=fail

standard
auth required pam_shells.so
account required pam_unix.so
session required pam_unix.so

As you can see, the first thing handled by the pure-ftpd PAM configuration file is anony-
mous user authentication: the line auth sufficient pam_ftp.so specifies that anonymous
users are welcome if the conditions defined in pam_ftp.so are met. This PAM module defines
that a user who’s mentioned in /etc/ftpusers will get access. So, you need to list the user
anonymous in this file to enable anonymous user access. Next, in the /home/ftp directory, create
a structure of all the files you want these users to have access to.

By using the sufficient statement in the PAM rule that allows users to come in via
pam_ftp.so, you give user anonymous access without further restrictions. For all other users, the
specifications in pam_unix_auth.so are used. This configuration file allows regular users to
authenticate using their user name as it exists in /etc/passwd and /etc/shadow. The other lines
in the PAM file are not as important for user authentication.

Summary
This chapter discussed how to create a basic web server environment on Ubuntu Server. You
first learned how the Apache web server can be installed and configured. You also saw how to
enhance Apache functionality by including modules that allow Apache to talk to MySQL and
PHP. Finally, you learned how to install a Squid proxy server and an FTP server on Ubuntu
Server.

Now that your server has some serious services to offer to the rest of the world, it’s time to
secure it. You certainly want to avoid unauthorized people coming in and doing nasty things
to your server, so you’ll learn how to configure the Netfilter firewall on Ubuntu Server in the
next chapter.

CHAPTER 11 ■ SETTING UP WEB SERVICES 349

Setting Up the Netfilter Firewall
with iptables and ufw

Most settings discussed so far involve security measures that make your server internally
secure. You must also consider, however, that something or someone from the outside world
will try to connect to your server, so you need some security at that level, too. The best way to
achieve this security is with a firewall. If your server is connected to the Internet directly, you
must have a firewall running on it. Netfilter, which is the default choice for all Linux distribu-
tions, is the firewall that is implemented in the Linux kernel. The iptables command gives
you complete freedom to manipulate the Netfilter firewall. In day-to-day use, both names get
confused frequently, but both refer to the same firewall. Ubuntu Server also offers a solution
to make Netfilter administration easy: the uncomplicated firewall (ufw). In the second part of
this chapter you’ll learn how to use ufw.

■Note Having a firewall is important, but let’s not exaggerate. If your server is on a network backbone with
no way for external users to reach it directly, you can probably do with just a company firewall that provides
security for the entire network. If the network firewall works well, it’s not always necessary to implement a
firewall on individual servers. If, however, you want to add an extra layer of protection, there’s no problem in
doing so.

All Linux distributions come with the Netfilter firewall available by default. As we men-
tioned, this firewall is implemented in the Linux kernel, which makes it very fast, and you
manipulate the firewall with the iptables command. In this subsection I’ll give you a short
introduction to the inner workings of iptables.

Configuring a firewall without the proper preparation is a very bad idea. Before you start
configuring, you should be very clear what exactly it is that you want and need your firewall
to do. For a server that has a public as well as a private network card, you could make a table
like the example in Table 12-1. You should mention on what network interface the service is
offered and in what direction you want to allow this service (inbound or outbound).

351

C H A P T E R 1 2

Table 12-1. Overview of Required Services for Your Firewall

Interface Service Inbound/Outbound

private SSH outbound, inbound

public HTTP inbound

public, private ping outbound

public, private DNS outbound, inbound

Once you have a simple setup matrix like this, you can start configuring the firewall. But,
before you start, you should know something about the way a Netfilter firewall is organized.

Netfilter Building Blocks
The most elementary building blocks for a Netfilter firewall are the chains, which are basically
sets of rules that are applied to a certain traffic flow on your server. When setting up a Netfilter
firewall, you start with three chains that by default are empty. To use these chains, you must
add rules to them. Table 12-2 provides a short description of the three default chains.

Table 12-2. Chains Are the Basic Building Blocks for a Netfilter Firewall

Chain Description

INPUT This chain applies to all incoming traffic that is destined for the server itself. It does
not apply to traffic that needs to be routed.

OUTPUT This chain applies to all traffic that comes from a process on the server. It does not
apply to traffic that comes from the routing process.

FORWARD This chain applies to all traffic that comes in from a network interface, but is not
destined for the local machine and has to be routed. You’ll never use this chain on a
server that doesn’t provide routing functionality.

Figure 12-1 is a schematic that provides an overview of the place where the three default
chains are functioning. The NIC positions in the figure indicate that the network interface
card is involved. As you can see in the figure, the INPUT chain applies to incoming traffic
before it encounters server processes, the OUTPUT chain involves outgoing traffic after it
leaves the server processes, and the FORWARD chain involves traffic that goes from one net-
work card directly to another.

The next requirement in a Netfilter configuration is a set of rules. In these rules, different
packet types are defined, and a default action is defined for each of them as well. Three things
may happen when a packet matches a rule: it can be accepted (ACCEPT), it can be dropped
(DROP), and it can be logged (LOG). Note that, instead of DROP, which silently discards a
packet, you can also use REJECT. In this case, a message is sent to the source of the packet.
The rules are evaluated from top to bottom, and as soon as a rule matches a packet, the rule is
applied and no other rules are evaluated. The one exception to this is if the packet matches a
LOG rule, in which case it is logged and continues to go on to the next rule.

At the end of all rule sets, a policy must be defined. You must make sure that the default
policy is always set to DROP so you can make sure that only packets that specifically match a
rule are allowed and that everything else is dropped.

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW352

Figure 12-1. Overview of the Use of Netfilter Chains

To define the rules, you’ll use the iptables command. Be aware that nothing you config-
ure with iptables is stored automatically, so you need to store the rules that you create in a
bash shell script so that they are executed automatically the next time your server boots. You
can, for example, put them in /etc/init.d/boot.local to ensure that they are activated at the
earliest possible stage in the boot process.

Using iptables to Create a Firewall
When creating your own firewall with iptables, the first thing you need to do is to set some
default policies. Do note, however, that the policy will become effective immediately, so if you
are configuring your firewall from an external connection, you will be locked out immediately.
In this section, I’ll assume that you are configuring iptables from the machine itself. (After all,
you wouldn’t connect an unsecured server to the network, would you?) So start by creating
some policies, entering the following commands:

iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT DROP

Your server is now completely secure; in fact, it is so secure that even your graphical envi-
ronment won’t come up anymore if it is installed, so don’t save this configuration and reboot
your server yet. Let’s first do some additional tuning to allow for some minimal functionality.

Now that the default policy for every chain has been specified, you need to define the
rules themselves. All rules must involve certain elements: the matching parts, the target, and
the position in the chain. Basically, every iptables command uses the following generic
structure:

iptables <position in the chain> <chain> <matching> <target>

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW 353

The elements used in this example command are described as follows:

• position in the chain: This element indicates where in the chain the rule must be
inserted. Netfilter uses an “exit on match” strategy, so if a rule is found that applies to a
packet, it is applied, and the rest of the chain is not processed for that packet. So order
does matter when writing iptables rules.

• chain: This element refers to the chain where the rule must be applied.

• matching: This element describes exactly what to look for. It refers to the packets you
want to allow or disallow.

• target: This element determines what should happen when there is a match. For
instance, you could decide to either drop or allow the packet.

The next subsections describe how these elements are used.

Defining Matching Rules
An important part of every rule is the matching part, and the following list comprises the
most popular elements that can be used for matching. Note that you don’t have to use them
all in a rule: if one of these elements isn’t specified, the rule is simply applied to all. For exam-
ple, if you don’t specify a source IP address, but you do specify a source port number, the rule
applies to the source port number, regardless of the source IP address. The following elements
can be used for matching in a rule:

• Interface: Use this element to specify the network interface to which the rule applies.
The -o option is used to refer to an output interface, and -i is used for the input inter-
face. It may not surprise you that -o isn’t used in the INPUT chain (because it refers to
incoming packets only), and -i isn’t used in the OUTPUT chain (which refers to out-
going packets only).

• Source/destination IP address: You can use -s (source) or -d (destination) to refer to
an IP address. Both IP addresses for individual hosts and IP addresses for complete
networks can be used. For example, use -s 192.168.0.1 to refer to one host only, or
-s 192.168.0.0/16 for all hosts that have a network address starting with 192.168.

• Protocol: Use this element to refer to protocols as defined in the file /etc/protocols.
Protocol numbers as well as protocol names as used in this file can be used here. For
example, -p TCP refers to all packets in which TCP is used.

• Ports: Another very popular method to filter, this one is based on TCP or UDP port
numbers. You can use --sport to refer to a source port or --dport to refer to a destina-
tion port. Any port number can be used, so check /etc/services for a complete list of
services and their default ports if you need more details. For example, use --sport
1024:65535 if you want to refer to all ports above port 1024, or use --dport 25 to refer to
the SMTP port. Note that when using a port specification, you should always use a pro-
tocol specification as well. So don’t just use --dport 25; use -p TCP --dport 25.

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW354

Specifying the Target
After specifying the matching criterion, a second part of all rules is the so-called target: the
action that has to be performed when a rule matches a packet. All rules have a target, and the
following targets are available:

• ACCEPT: The packet is accepted.

• REJECT: The packet is rejected, and a message is sent to its sender.

• DROP: The packet is discarded, and no message is sent to the sender.

• LOG: The packet is logged. Note that this is the only target that doesn’t stop the packet
from further evaluation.

Specifying the Position in the Chain
The very first thing you need to do is to specify where exactly in the chain you need to add a
rule. Imagine, for example, that you want to disallow all traffic that has destination port 80,
but you do want to allow all traffic coming from IP address 1.2.3.4. If you first create the rule
that specifies the destination port and then create the rule for IP address 1.2.3.4, packets from
1.2.3.4 that have destination port 80 would be rejected as well. Order does matter. When creat-
ing a rule, the following options can be used to specify where in the chain you want the rule to
appear:

• -A: Add the rule to the end of the chain.

• -D: Delete the rule from the chain.

• -R: Replace a rule.

• -I: Insert the rule at a specific position. For example, use iptables -I INPUT 2 to place
the rule on the second position in the INPUT chain.

Stateful Rules
When creating a rule to match packets that always use the same port numbers, everything is
easy. Of course, this isn’t always the case. For example, a user who connects to a web server
will always connect to that web server on port 80, but the packets sent back from the web
server use a randomly chosen port number above 1024. You could create a rule in which out-
going packets on all ports above 1024 are opened, but that’s not ideal for security reasons.

A smart way of dealing with this problem is by using stateful packet filters. A stateful
packet filter analyzes whether a packet that goes out is part of an already established connec-
tion; if it is, it allows the answer to go out. Stateful packet filters are useful for replies that are
sent by web servers and for FTP servers as well because in the case of an FTP server, the con-
nection is established on port 21, and once the session is established, data is sent over port 20
to the client.

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW 355

By using the --state option you can indicate what state a rule should look at. This func-
tionality, however, is not a part of the core Netfilter modules, and an additional module has to
be loaded to allow for state checking. (This will happen automatically with the -m option.)
Therefore, in every rule that wants to look at the state that a packet is in, the -m state option is
used first, followed by the exact state the rule is looking at. For example, -m state --state
RELATED,ESTABLISHED would look at packets that are part of related packets that are already
allowed or packets that are a part of an established session.

The state module isn’t the only module that can be used, and many other modules are
available for more advanced configurations. For example, the nth module allows you to have a
look at every nth packet (such as every tenth packet, for example). Using this module can be
useful if you want to log information about (for example) every tenth HTTP packet that comes
in to your web server. Further discussion of modules is out of the scope of this book, so check
the documentation page of the Netfilter web site at www.netfilter.org/documentation for
more in-depth information.

Creating the Rules
Based on this information, you should be able to create some basic rules. Let’s assume that
you have a server that has only one NIC. On this network card, you want to allow requests to
the web server to come in and replies from it to go out. Also, you want to allow SSH traffic. For
the rest, no other services are needed.

Like any other Netfilter configuration, you would start this configuration by creating some
policies. Every chain needs its own policy. The following commands make sure that no packet
comes in or out of your server by setting the policy for each chain to DROP:

iptables -P FORWARD DROP
iptables -P INPUT DROP
iptables -P OUTPUT DROP

Now that everything is blocked, you can start by allowing some packets to go in and out.
First and foremost, you have to enable the loopback interface because the policies that you’ve
just defined also disable all traffic on the loopback interface, and that’s not good (because
many services rely on the loopback interface). Without a loopback interface, for example, you
have no way to start the graphical environment on your machine, and many other services
will fail as well. Imagine that the login process queries an LDAP server that runs on the local-
host. Now open the loopback interface using the following two rules:

iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT

In these two rules, the -A option is used to refer to the chain the rules have to be added to.
You are using -A, so the rule is just appended to the INPUT and the OUTPUT chains. This
would make the rule the last rule that is added to the chain, just before the policy that is
always the last rule in a chain that is evaluated. Next, -i lo and -o lo are used to indicate that
this rule matches to everything that happens on the loopback interface. As the third and last
part of these two rules, the target is specified by using the -j option (which is short for “jump
to target”). In this case, the target is to accept all matching packets. So now you have a server
that allows nothing on the external network interfaces, but the loopback interface is com-
pletely open.

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW356

Next, it’s time to do what you want to do on your server: allow incoming SSH and HTTP
traffic and allow replies to the allowed incoming traffic to be returned. Note that these two
requirements consist of two parts: a part that is configured in the INPUT chain and a part that
is configured in the OUTPUT chain. Let’s start with some nice rules that define the input
chain:

iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A INPUT -p tcp --dport 22 -m state --state NEW -j ACCEPT
iptables -A INPUT -p tcp --dport 80 -m state --state NEW -j ACCEPT
iptables -A INPUT -j LOG --log-prefix "Dropped illegal incoming packet: "

The first rule in this INPUT chain tells Netfilter that all packets that are part of an already
established or related session are allowed in. Next, for packets coming in on SSH port 22 that
have a state NEW, the second rule indicates that they are allowed as well. Third, packets that
are sent to TCP destination port 80 (notice the combination between -p tcp and --dport 80 in
this rule) and have a state NEW are accepted as well. The last rule finally makes sure that all
packets that didn’t match any of the earlier rules are logged before they are dropped by the
policy at the end of the rule. Note that logging all dropped packets as a default may cause big
problems.

■Caution Use logging only if you need to troubleshoot your firewall. It’s generally a bad idea to switch on
logging by default because if not done properly, it can cause huge amounts of information to be written to
your log files.

Now that you have defined the INPUT chain, let’s do the OUTPUT chain as well. No spe-
cific services have to be allowed out, with the exception of the replies to incoming packets that
were allowed, so creating the OUTPUT chain is rather simple and consists of just two rules:

iptables -A OUTPUT -m state RELATED,ESTABLISHED -j ACCEPT
iptables -A OUTPUT -j LOG --log-prefix "Dropped illegal outgoing packet: "

The use of these two rules should be clear from the explanation earlier in this section.
Note that it is a good idea to turn on logging for the OUTPUT rule (unlike for the INPUT rule)
because if an illegal packet should leave your server, that would indicate that some rogue serv-
ice is active on your server, and you would absolutely need to know about it.

To make it a little easier to create your own Netfilter rules, Table 12-3 lists some of the port
numbers that are commonly configured in a Netfilter firewall. For a complete list of all port
numbers and the names of related services, check the contents of the /etc/services file,
which lists all known services with their default ports.

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW 357

Table 12-3. Frequently Used Port Numbers

Port Service

20 FTP data

21 FTP commands

22 SSH

25 SMTP

53 DNS

80 WWW

88 Kerberos authentication

110 POP3

111 RPC (used by NFS)

118 SQL databases

123 NTP Time

137–139 NetBIOS ports (used by the Samba server)

143 IMAP

161 SNMP (network management)

389 Unsecure LDAP

443 HTTPS

524 NCP (used by some native Novell services like eDirectory)

636 Secure LDAP

Using Advanced Matches
You’ve just read about the option to use matches to add advanced criteria to check packets.
The state match is without doubt the most important of all matches, but there are some others
as well. Three of them are particularly useful:

• Multiport match

• Limit match

• Recent match

You can create rules for single ports or port ranges using the default firewall syntax, but
it doesn’t allow you to specify a list of ports such as 25, 80, and 110. Without the multiport
match, you would have to create a different rule for each port. The multiport match allows
you to create random lists. To specify a list of ports, use --dports for destination ports and
--sports for source ports. The following example shows you how ports 25, 80, and 110 are
allowed in one rule using the multiport match:

iptables -A INPUT -i eth0 -p tcp -m multiport --dports 25,80,110 -j ACCEPT

The limit match is also very useful. Using this match, you can define a threshold in a rule.
The limit match is very useful for logging or preventing a port from being overloaded with

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW358

packets. The following example shows how you would configure a limit of 5 packets to be
logged per hour for packets coming in on any of the ports 135:137. Notice that it consists of
two rules: the log rule that makes sure that ten packets per hour are logged and the rule that
denies access to these ports:

iptables -A INPUT -p TCP --dport 135:137 -m limit --limit 5/hour\
-j LOG --log-prefix "DROP-TCP"

iptables -A INPUT -p TCP --dport 135:137 -j REJECT --reject-with tcp-reset

The last match is the recent match, which you can enable to allow no more than a certain
amount of packets coming from a certain host in a given period of time. Consider the follow-
ing example lines:

iptables -A INPUT -p tcp --dport 22 -i eth0 -m state --state NEW -m recent\
--update --seconds 60 --hitcount 2 -j DROP

iptables -A INPUT -p tcp --dport 22 -i eth0 -m state --state NEW -m recent --set

Now imagine the first SSH packet coming in. This packet does not give a match on the
first rule because it is the first packet coming in. However, it does give a match on the second
rule, which increases the counter related to recent matches in /proc/net/ipt_recent/DEFAULT.
Because there is no target defined in this rule using the -j option, the packet travels further
down the chain. When the second SSH packet comes in, the hit count is increased to 2, and
the packet still can get through. When the third packet comes in within a minute, however, the
first rule gives a match, so the packet will be denied. Using these two rules does allow a legiti-
mate user to mistype his password twice per minute. At the same time, this rule would stop
script kiddies who try a brute force password attack on your SSH process.

Working with User-Defined Chains
The last useful item in the advanced Netfilter options is the user-defined chain, which can
reduce the number of rules to go through before a match occurs. A user-defined chain is used
as a target instead of the default DROP, REJECT, or ACCEPT targets. So if a packet matches a
certain condition, you’ll send it down through the user-defined chain for further inspection. If
the packet doesn’t match that condition, it can just travel down the default INPUT, OUTPUT,
or FORWARD chains.

When working with user-defined chains, the chain must exist before you can use it as a
target in one of the default chains. For that reason, if you put all firewall rules in a script, you
should first write all user-defined chains. At the end of the script, write only those default
chains in which the user-defined chains are used as a target. To create a user-defined chain,
you’ll need the -N option. To add rules to that chain, you need -A. Following is an example in
which user-defined chains are used:

iptables -N log_drop
iptables -A log_drop -p TCP --syn -j LOG --log-prefix "DROPPED-TCP-SYN"
iptables -A log_drop -p TCP --syn -m limit --limit 5/s -j\
REJECT --reject-with tcp-reset

In this example, a user-defined chain with the name log_drop is created. I put just two
example rules in this chain that handle TCP packets that have the SYN flag set. To make sure
that this user-defined chain is used, you should specify it as a target in one of the normal

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW 359

chains. For example, the INPUT chain could redirect all nonmatching packets to this user-
defined chain by using a rule like the following:

iptables -A INPUT -j log_drop

User-defined chains are important elements of complex iptables setups. You’ll like them
because using them allows you to get keep things organized and well-structured, which allows
you to do easier troubleshooting if something goes wrong.

Let’s stop talking about Netfilter. On a server that uses Netfilter as a kind of personal fire-
wall, this is probably all you need to know. Notice, however, that much more can be done
with iptables. But a discussion of all that goes beyond the scope of this book, so check www.
netfilter.org/documentation for very complete and overwhelmingly in-depth information.

■Tip Were you looking for information on how to configure your server as a NAT firewall? Although that’s
also outside the scope of this book (most people use dedicated routers for this purpose), I’d like to share the
rule to do that, anyway. Use iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source

yourserverspublicIPaddress to make your server a NAT router. Have a lot of fun with it!

Firewall Management Made Easy: Uncomplicated Firewall
Configuring your firewall with iptables (as described previously) works well, but it is rather
complicated. Making a small error can have big results, such as no packet coming through at
all. To make firewall management easier, you can also use the ufw solution, with the purpose
of making firewall management as easy as possible. Like iptables, ufw also writes its configu-
ration to the Netfilter firewall.

Before you start to work with ufw, you should know that it is not meant to be a replace-
ment for iptables. It is not intended to provide a complete firewall solution, but you can use
it to easily add and remove rules to your firewall configuration. Use ufw to configure a host-
based firewall. That is, if you have a server and you want to protect that server by creating its
own firewall, ufw is good. But if you want to configure a firewall on a server that is connected
to multiple networks simultaneously, ufw is not the best solution you can use. In that case, use
iptables.

Before being able to use it, you should enable the ufw packet. To do this, run the following
command as root:

ufw enable

After enabling ufw, you’ll automatically get a complete firewall configuration in which
even SSH is disabled. So before being able to view your firewall configuration over an SSH
session, you need to enable SSH. To do this, use the following command:

ufw allow 22

In this rule you haven’t specified any information, such as which network card to allow
SSH traffic to come in on; ufw opens port 22 on all interfaces. If you don’t like it, use iptables
instead.

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW360

You can use ufw to create rules and also to delete them. To delete the rule that allows SSH
traffic to come in, use the following:

ufw delete allow 22

Notice that this rule didn’t deny access to port 22; it just deleted the rule that allowed
access to port 22, which is not the same thing. For example, if after the rule that specifically
allows access to port 22, there had been a rule that allows traffic on all ports, deleting the rule
that grants access to port 22 wouldn’t automatically have disallowed access to port 22. To
specifically deny access to port 22, use this:

ufw deny 22

Also very useful is the option to provide access to your server for complete networks. Let’s
say you want to allow all hosts that have an IP address that starts with 192.168 to any service
offered by your host. You can accomplish it by using the following command:

ufw allow from 192.168.0.0/16

You can create more complex rules using ufw as well. But remember that the rules will
never be as complex as when you are using iptables. Consider the following example:

ufw allow tcp from 192.168.1.100 to any

Using this rule, you would allow access to all IP addresses (hence any offered by this
server for host 192.168.1.100) as long as it is using the TCP protocol. I advise you not to use ufw
to create rules like this because the syntax tends to be more confusing if the complexity of the
rules increases. In situations like these, use iptables instead.

Summary
In this chapter, you learned how to set up a firewall. Two different methods have been consid-
ered. First, you learned about the iptables command, which offers a complex interface that
allows you to do anything with your firewall. Because it’s versatile, it’s also very complex. To
make firewall management easier, Ubuntu Server also offers the ufw interface. Using this com-
mand, you can create firewall rules using a really simple and intuitive interface. Using ufw is
great if you want to set up a firewall quickly and easily, but if you need to set up a complex and
advanced firewall, it’s not the best choice. In that case, use iptables because it has much more
to offer.

In the 13th (and last) chapter of this book, you’ll learn what Ubuntu Server has to offer
with regard to virtualization.

CHAPTER 12 ■ SETTING UP THE NETFILTER F IREWALL WITH IPTABLES AND UFW 361

Multiplying Your Server
Ubuntu Server and
Virtualization

One of the hottest technologies for servers is virtualization, which allows you to install multi-
ple instances of one or more operating systems on one machine. This is ideal especially for
servers with a low average load because instead of configuring a separate physical box for
every single instance of an operating system, you just run multiple instances of one or more
operating systems on one machine. Unfortunately, it’s a jungle out there: there are many dif-
ferent and competing virtualization options. This chapter will provide an overview of the
possibilities that virtualization offers. You’ll also learn how to set up Ubuntu Server for virtual-
ization.

Understanding Virtualization
In this section you’ll read about the different solutions that offer virtualization, and you’ll
explore its two main approaches: full virtualization and paravirtualization.

Virtualization Solutions
Many solutions are currently available to work with virtualization, but three of them are par-
ticularly important:

• VMware

• Xen

• KVM (Kernel-based Virtual Machine)

As for the other solutions, you won’t often find them in a data center because of their con-
siderable limitations, which include a lack of support, a limited selection of operating systems
that can be installed as virtual machines, and a severe performance penalty when using them.
For these reasons, I’ll ignore them here, except for one. If you are interested in running
Ubuntu Server in a virtualized environment from a desktop, you should consider installing

363

C H A P T E R 1 3

VirtualBox, which offers an excellent virtualization solution that runs from a graphical
desktop.

Of the three important technologies, VMware is the current market leader. It offers a com-
mercial solution to virtualize many different operating systems and is a well-established
virtualization technology that has been available for more than 10 years. The most important
VMware version in the data center is VMware ESX. You can use ESX as a virtualization host,
on which you will install virtualized machines. ESX is made of a tuned Linux kernel that inte-
grates the virtual machine manager, which is the process responsible for virtualization.
However, if you want to use VMware ESX as a virtualization platform, you’ll have to do it by
running Ubuntu Server as a virtualized “guest” operating system within the VMware environ-
ment. There’s currently no way to combine VMware ESX and Ubuntu Server as a virtualization
“host” platform (and there will never be such a method). VMware ESX is a proprietary, well-
tuned operating system environment that has virtualization as its only purpose. There is no
need to replace it with anything open source.

■Note In the Xen community, the words host and guest are avoided when discussing operating systems.
I’ll explain why in “Installing Virtual Machines Using Xen,” later in this chapter. However, for clarity’s sake, I’ll
use these words anyway, but with the following definitions. In this chapter, the host is the physical machine
that offers virtualization services. In some environments, the host takes care of handling all instructions that
are generated by the virtualized operating system; in other environments, the host takes care of access to
the drivers. The host may or may not run a specialized operating system to offer these services. A guest is a
virtual machine without any management responsibilities with regard to virtualization.

The other important player in the field of virtualization is KVM, which offers virtualiza-
tion support in the Linux kernel itself. KVM is currently the default virtualization technology
used in Ubuntu Server. Other Linux vendors such as Red Hat also embrace it as their default.
To use it, you’ll need the kvm.ko kernel module for Linux, a CPU that has built-in virtualization
support, and of course a kernel that supports KVM virtualization. (The 2.6.20 kernel is the first
Linux kernel to do this.) To create virtual machines with KVM, you’ll use the /dev/kvm inter-
face, and this functionality requires a modified version of the QEMU program.

QEMU was originally developed as an open-source emulation product, but it never
became very successful in the data center. And even though it was developed to be used as a
virtualization solution, it never really made it. QEMU tools are still very useful, however, and
QEMU tools and solutions are used in both KVM and Xen environments. Currently, most
operating systems are supported on a KVM virtual host, provided that the operating system
runs on the same processor architecture.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER364

■Note Emulation means that software is used to simulate a hardware platform. An example is when you
run a Sega Megadrive/Genesis emulator on your PC to run old games; the software runs all CPU instructions
like the hardware does. The emulator behaves just like a software processor, a pure software virtual
machine. You can run an i386 operating system on an i386-based CPU in two ways. First, you can use an
i386 software emulator running on i386 (examples are Bochs and QEMU). In such a solution, the software
behaves like a PC reproducing the complete hardware platform. Second, you can use a virtualization solution
such as VMware Workstation. The virtualization solution does not provide a virtual CPU or any virtual base
component of the basic PC hardware (IRQs controllers, hardware clock, and so on); it just puts the program
to be virtualized on the real CPU and lets it execute the code. That solution needs complete hardware con-
trol, which is why it needs to run on privileged mode of the CPU and provides kernel modules for Linux to run
in the kernel. Virtualization is not a next generation of emulation; it’s a different way of executing an operat-
ing system.

The other major player in the Linux virtualization market is Xen, which began as a
research project at the University of Cambridge (see http://www.cl.cam.ac.uk/research/
srg/netos/xen). Its core component is its hypervisor, the layer that makes it possible to create
virtual machines and to handle instructions generated by those virtual machines. When used
on a virtual machine host, the hypervisor replaces the normal Linux kernel, which is loaded
only after the Xen hypervisor. Xen is currently one of the best virtualization platforms avail-
able on Linux, mainly because of its strong developer community, which includes hardware
vendors such as Intel, HP, and AMD; and software vendors such as Novell and Red Hat. You
can use Xen on Ubuntu Server as well, but the default virtualization stack is KVM.

Approaches to Virtualization
Both Xen and KVM offer two approaches to virtualization: full virtualization and paravirtual-
ization. Before starting to build a virtualization solution, you should understand the
differences between the two.

Paravirtualization
Paravirtualization requires a modified version of the guest operating system, and this modi-
fied version generates instructions that are easier to handle for the hypervisor, which is the
component that interprets virtualized instructions and passes them to the physical hardware.
In paravirtualization, the operating system knows it is virtualized, so it can generate instruc-
tions that are optimized for use in a virtualized environment and don’t have to be translated
first. These modified instructions mean that the virtual machine manager doesn’t need to
change the normal instructions coming from the virtual machine to a format that works in a
virtualized environment. Also, although paravirtualization doesn’t require any specialized
hardware, its big disadvantage is that it does require a specially modified version of the guest
operating system. Some operating systems (such as Windows) just don’t offer such a tuned
version.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 365

Full Virtualization
The alternative to paravirtualization is full virtualization, which lets you use an ordinary,
unmodified, straight-out-of-the-box operating system as a guest. The downside is that it
requires special hardware support, which is offered as a special feature in recent CPUs from
both AMD and Intel. Because of this built-in support within the server’s CPU, fully virtualized
machines can work as efficiently as possible, despite the fact that the instructions coming
from the virtualized operating system need to be translated by the virtual machine manager.
Because the guest operating system has no idea that it is virtualized, it generates normal
instructions. However, this can cause difficulties when there’s a virtualization layer between
the guest operating system and the hardware. Instructions addressed to the CPU are hard to
virtualize, especially with the i386 architecture, so the CPU’s hardware virtualization support
makes sure that the performance penalty isn’t too great.

Which Is Best for You?
After reading this, you may wonder which of the two approaches is best for your situation.
Unfortunately, you can’t always choose the ideal solution. If your operating system doesn’t
offer paravirtualization support, full virtualization is the only way to go. But if both your CPU
and your operating system have virtualization support, it’s always better to use paravirtualiza-
tion because the virtualized operating system generates instructions that are optimized for a
virtualized environment. In this way, the performance loss due to virtualization is kept to a
bare minimum.

If you can’t use paravirtualization because your operating system doesn’t support it, you
can see if paravirtualized drivers are available. Such drivers are supplied in some cases, and
they can help increase the performance of particular devices such as your network interface
card, hard drive, and other I/O devices. In other situations, however, you’ll find that full virtu-
alization is the only solution because the operating system you want to virtualize doesn’t give
you a choice or—as with KVM virtualization—paravirtualization for complete operating sys-
tems is not yet supported. Therefore, the hands-on parts of this chapter assume that you have
a CPU with virtualization support.

■Tip Most modern Pentium IV and Xeon processors offer support for virtualization. If you’re not sure about
your CPU, just check the system’s BIOS. If virtualization is supported, the BIOS will include a virtualization
option. As an alternative, you can also check the /proc/cpuinfo file for the VMX flag for your CPU. If it’s
there, your CPU supports full virtualization.

Installing Virtual Machines with KVM
If your CPU supports virtualization, KVM-based virtualization is the easiest to use (although
this is a very recent development). In this section, you’ll read how to prepare your machine as
a KVM virtualization host, and then you’ll learn how to install Windows and Ubuntu as virtual-
ized operating systems in the KVM-virtualized environment.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER366

■Caution When using virtualization, it’s a very good idea to differentiate between the host operating sys-
tem and the others. The host operating system is the first operating system that your server boots. It also
has some very specific responsibilities for the other operating systems, such as managing access to drivers
and managing the virtual machines themselves. To make sure that it can perform these tasks in the most
efficient way, don’t run any services (other than virtualization services) in the host operating system!

Preparing Your Server for KVM Virtualization: Networking
On a server in which virtualization is used, you can have more virtual machines than you have
network cards. Therefore, a solution needs to be implemented for the virtual machines to
share network boards in your server.

To make this possible, you need to create a virtual network bridge by redefining the con-
tents of the /etc/network/interface file (as shown in the example in Listing 13-1). This code is
meant to replace all contents that you currently have in this file.

Listing 13-1. A Network Bridge Provides Network Access for All Virtual Machines

auto lo
iface lo inet loopback

auto br0
iface br0 inet static

address 192.168.1.99
network 192.168.1.0
netmask 255.255.255.0
broadcast 192.168.1.255
gateway 192.168.1.254
bridge_ports eth0
bridge_fd 0
bridge_hello 2
bridge_maxage 12
bridge_stop off

This configuration file makes sure that a device with the name br0 is created to replace
the eth0 device when you reboot your server or restart your network. However, this device is
meant to use eth0 as its physical back end, as specified by the line bridge ports eth0. After
creating the configuration file in this way, use sudo /etc/init.d/networking restart to restart
the network. Your network is now ready to handle KVM virtual machines.

Setting Up KVM on Ubuntu Server
Perform the following steps to set up your server for virtualization (the procedure described
here is supported on Ubuntu Server version 8.04 and later):

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 367

1. Install all software necessary (the KVM and QEMU packages) for KVM virtualization.
As root, use the command apt-get install kvm qemu libvirt-bin.

2. After installing these software packages, make sure that the kvm kernel module is
loaded. Use lsmod to determine whether this is the case (lsmod | grep kvm). If the
module is not loaded, install it using modprobe kvm.

■Tip Are you getting the “Operation is not supported” message while loading the kernel module? If so, this
means that you have the wrong CPU. Either upgrade your CPU to one that offers virtualization support, or use
Xen as your virtualization solution with an operating system that supports paravirtualization.

You have to do some additional preparation, which involves preparing the libvirt tools
that you will use to create virtual machines. First, add the user account you want to use for
KVM management purposes to the libvirtd group by using the sudo adduser <username>
libvirtd command (replace <username> with the name of the user whose account you want
to use).

■Note This command might appear strange because Linux has a useradd command that creates new
user accounts. There is also the adduser account, which is used here (it adds an existing user to a group).

And that’s it! Your Ubuntu Server is now ready for the installation and operation of guest
operating systems. The next section describes how to install Windows as a guest operating
system.

Installing Windows As a Guest Operating System on KVM
Before installing Windows as your first guest operating system, you should ask yourself exactly
what you want to do with the virtualized machines. Is your server running in a data center,
and are you accomplishing all tasks (including installation of the virtual machines) remotely?
If so, you can run it without a graphical user interface (GUI), but, if you want to be able to
manage the virtual machine(s) from the physical server itself, you’ll need a GUI. (Refer to
Chapter 3 to find out how to set up a GUI on your server.) I recommend not installing a
GUI on your server, but instead use a graphical workstation to create and manage virtual
machines. From the graphical workstation, establish an SSH session to your server; for exam-
ple, ssh -X myserver. Don’t forget the –X because it tells SSH to forward graphical screens.
Next, from the SSH terminal you can launch any graphical management utility that is installed
on your server.

The following procedure assumes that you have a graphical interface that can be used to
display the Windows installation interface:

CHAPTER 13 ■ MULTIPLYING YOUR SERVER368

1. To install Windows as a virtualized operating system, you first need to set up storage.
The simplest way of trying out virtualization is by using a disk image file. You can cre-
ate it by using dd or qemu-img, as in the following command that creates an 8 GB disk
image file with the name windows.img in the directory /var/lib/virt (make sure to
create this directory before creating the image file):

dd if=/dev/zero of=/var/lib/virt/windows.img bs=1M count=8192

2. Now that you’ve created the disk image file, you can use the kvm command to install
Windows. Make sure that the Windows installation CD is in the drive (or use an ISO
file) and run the following command to start the installation, creating a Windows vir-
tual machine with a total of 512 MB of RAM. This command uses the windows.img disk
file that you just created. Want to use an ISO file instead of a physical CD-ROM? Just
replace /dev/cdrom by a complete path to the ISO file. The -no-acpi option used in this
example isn’t really required, but it might be useful if you have problems using ACPI:

kvm -m 512 -cdrom /dev/cdrom -boot d windows.img

■Tip Is the kvm command complaining about the lack of support for virtualization on your CPU? You proba-
bly haven’t switched virtualization support on in your system BIOS yet. Restart your machine, enter the
system BIOS, and make sure that virtualization support is on (you typically find this in the Advanced section
of your BIOS configuration). The option you’re looking for has a name like vm, vt, or virtualization.

3. A QEMU window opens, in which you’ll see the Windows installer loading (see
Figure 13-1). Complete the Windows installation from this interface.

Figure 13-1. With the required CPU support, KVM allows you to run virtual Windows
machines.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 369

4. Once the installation of virtualized Windows is finished, you can run it in the same way
you installed it. Use the kvm command again, but omit the -boot d option that ensures
that you’re booting from CD-ROM first. So the following command runs an installed
instance of Windows that is on the windows.img file:

kvm -m 512 -cdrom /dev/cdrom windows.img

You now have your virtualized Windows machine. That was easy, wasn’t it? Next, you’ll
have a look at how to install Ubuntu as a guest on top of your Ubuntu Server virtualization
host.

Installing Ubuntu Server As a Guest Operating System on KVM
After reading the previous section about installing Windows as a guest operating system in
KVM, you probably can already guess how to install an instance of virtualized Ubuntu. Funda-
mentally there are no differences between installing Windows or Ubuntu: you create a virtual
disk and install Ubuntu Server on it. Assuming that the installation CD is in an ISO image with
the name ubuntu.iso, you can use the following procedure:

1. Create the disk file:

dd if=/dev/zero of=/var/lib/virt/ubuntu.img bs=1M count=4096

2. Use the kvm command to start the installation from the Ubuntu ISO file:

kvm -m 256 -cdrom /isos/ubuntu.iso -boot d /var/lib/virt/ubuntu.img

■Tip Are you having problems installing Ubuntu or another Linux distribution as a guest operating system?
The graphical menu that most boot loaders display before starting the installation might be the reason. Try a
nongraphical installation program such as the Ubuntu netboot mini.iso file instead. This will help you
install any Linux distribution without problems.

3. Install Ubuntu Server as if it were a “normal” server.

4. Boot the virtual Ubuntu Server you just installed with the following command and
you’re done:

kvm -m 256 ubuntu.img

Managing Virtual Machines with Virtual Manager
If you don’t like starting and installing your virtual machines using the kvm command (or even
with an enhancement to this command such as virt-install), virt-manager might be the
solution for you. This graphical utility provides an easy solution to creating and managing
virtual machines. It does have a disadvantage however: it needs an X server to run. You don’t
have to install the graphical environment locally on your server; you can run virt-manager

CHAPTER 13 ■ MULTIPLYING YOUR SERVER370

from a workstation as well. For instance, establish an SSH session with your server from a
workstation and start virt-manager that way. This procedure gives you all the benefits of the
graphical virtual machine management tools without the hassle of installing a GUI on your
server.

As an alternative, you can also use a boot parameter to tell virt-manager it has to get its
information from another machine. For instance, the following command would connect to
somenode.example.com and allow you to manage virtual machines on that node:

virt-manager -c qemu+ssh://somenode.example.com/system

In case you want to start virt-manager to create virtual machines on the local host, use
the following:

virt-manager -c qemu:///system

The following procedure creates a virtual machine using virt-manager:

1. Start virt-manager. In this example, I’ll assume you have established an SSH session
with a remote server, so you can type virt-manager -c qemu:///system to start the
virt-manager session. You’ll see an interface like that in Figure 13-2.

Figure 13-2. Virtual Manager helps you easily create virtual machines.

2. Select the localhost line and click New to start creating a new virtual machine. This
brings you to the first step of a wizard interface; click Forward.

3. Enter the name of the system that you want to create. For instance, if you want to
install a Windows XP test machine, WinXP might be a good idea. Click Forward to
proceed.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 371

4. The utility asks you what kind of virtualization you want to use (see Figure 13-3).
Depending on the operating system that you want to install, Fully Virtualized might
be the only option available.

Figure 13-3. Depending on the operating system that you want to virtualize, full virtual-
ization might be the only option available.

5. You need to specify how to start the installation (see Figure 13-4). For example, if you
have an ISO image to install from, browse to the path where the installer can find the
ISO image. Make sure to select the OS Type and OS Variant you want to install.

Figure 13-4. To allow for an easy installation, install from an ISO image.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER372

6. Indicate what you want to install to (see Figure 13-5). For best performance, it is a good
idea to give every virtual machine a dedicated partition or LVM logical volume. If you
can’t do that, you can install to a file instead. The installation interface creates this vir-
tual disk file automatically for you.

Figure 13-5. For best performance, use a partition or LVM logical volume as the storage
backend.

7. Select the networking method that you want to use. The most flexible way is to create
a virtual network. In this configuration, a network bridge is created in the network. If
your server has a fixed IP address, you can also choose to assign a second IP address
to the network interface by selecting the Shared physical device option. After making
your choice, click Forward to proceed.

8. Enter the amount of RAM and CPUs you want to give to your virtual machine (see
Figure 13-6); click Forward. Notice the difference that the utility makes between a logi-
cal CPU and a virtual CPU. A logical CPU is present on your physical hardware, either
as a real CPU or as a CPU core on a multicore processor. A virtual CPU is present in the
virtual machine. It can use any type of logical CPU.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 373

Figure 13-6. Each virtual machine gets its own amount of RAM and virtual CPUs.

9. In the last screen of the wizard, you see an overview of the installation settings that will
be used. Are you happy with them? Click Forward to start the installation and complete
the installation of the virtual operating system. Once completed, you’ll see that the
new virtual machine is added to the virt-manager interface; you’ll be able to manage it
from there.

Managing Virtual Machines with libvirt Tools
Even if virt-manager provides an easy way to set up and manage virtual machines, it is not the
only way. The libvirt tools allow you to create and manage virtual machines without the
need to run any graphical tools. It offers VNC access, so after you set up the virtual machine,
you can make a VNC connection to it.

Creating Virtual Machines with virt-install
To create virtual machines, you can use the virt-install command. By default it is not pres-
ent on your server, so first make sure to run the apt-get install python-virtinst command
as root. Next, you can create a virtual machine from the command line, with a command such
as the following:

virt-install -n testserver -r 512 -f /dev/system/testserver -s 10\
-c jeos.iso --accelerate --vnc --noautoconsole

In this command, a number of options are being used to define the virtual machine:

CHAPTER 13 ■ MULTIPLYING YOUR SERVER374

• -n testserver: This option sets the name of the virtual machine to testserver. You’ll
need this name to start the virtual server again later.

• -r 512: This option grants 512 MB of RAM to the virtual server.

• -f /dev/system/testserver: This option specifies what to use as the virtual hard disk
for your virtual machine. I like creating an LVM logical volume for each of my virtual
machines, but you don’t have to do that. Instead, you can refer to a disk image file that
you have created earlier. Make sure that the device or disk file that you are referring to
exists before copying over the virtual machine!

• -s 10: This option specifies the size in gigabytes for the virtual disk.

• -c jeos.iso: This option tells the installer from which device to start the installation.

• --accelerate: This option uses the kernel acceleration features to make it faster.

• --vnc: This option enables VNC access.

• --noautoconsole: Use this option to not attach automatically to the console of the vir-
tual machine. It makes sense if you are using virt-install on a server that doesn’t have
a GUI. If you use it in a graphical environment, however, omit this option, which will
automatically give you access to the console of the virtual machine.

After launching virt-install this way, you can connect to the console of the virtual
machine locally if you have a GUI on your server, or you can connect remotely using the
virt-viewer utility.

Using virt-viewer to Access the Virtual Machine Console
After starting the installation, you can use virt-viewer to access the console of your virtual
machines. Make sure to install it first using apt-get install virt-viewer as root. After
installing it, there are two ways to access it: locally or remotely. To access a virtual machine
console locally, run the following command:

virt-viewer qemu:///system testserver

To access the console of a virtual machine that is running somewhere else, you need to
set up SSH key–based authentication (see Chapter 8 for information on how to do that).
Assuming that you set it up, the following command gives access to the console of a virtual
machine that is running on the host with the IP address 192.168.1.200:

virt-viewer -c qemu+ssh:///192.168.1.200 testserver

Cloning Virtual Machines using virt-clone
Another useful command that comes from the libvirt package is virt-clone, which you
can use to clone virtual machines. This command doesn’t just copy the files of your virtual
machine over; it also makes sure that the database that contains all information about your
virtual machines is updated (which doesn’t happen if you use dd to copy a disk image to some-
where else). The following line shows how to clone the virtual machine testserver created
earlier to a new machine with the name newserver:

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 375

virt-clone -o testserver -n newserver -f /dev/system/newserver\
--connect=qemu:///system

In this command, the -o testserver option is used to refer to the name of the original
server. Next, -n newserver tells the KVM environment that the name of the new machine
should be newserver. You need to specify what is used as the storage back end for the new
machine. In this case, it will be an LVM logical volume with the name /dev/system/newserver.
(Make sure that you use lvcreate to create this logical volume before entering this command!)

Instead of using an LVM logical volume, you can also copy the virtual machine to an
image file. Finally, the --connect=qemu:///system option tells virt-clone where it can find the
hypervisor that it should use for the copying.

Managing Virtual Machines with virsh
To manage virtual machines, libvirt offers virsh, which is a command-line utility that takes
all-important management commands as its argument. The following list gives an overview of
the most important management actions you can perform using virsh:

• virsh -c qemu:///system list: Provides an overview of all known virtual machines on
the local system.

• virsh -c qemu:///system start testserver: Starts the virtual machine testserver.

• virsh -c qemu:///system autostart testserver: Sets testserver to autostart. It will
automatically be started when the host server starts.

• visrh -c qemu:///system reboot testserver: Restarts testserver.

• virsh -c qemu:///system shutdown testserver: Shuts down testserver.

• virsh -c qemu:///system save testserver testserver-080208.state: Saves the cur-
rent state of testserver to a file with the name testserver-080208.state.

• virsh -c qemu:///system restore testserver-080208.state: Restores the state of
testserver as saved in testserver-080208.state to the current testserver.

• virsh -c qemu:///system attach-disk testserver /dev/cdrom /media/cdrom: Mounts
the physical CD-ROM device to the /media/cdrom directory in testserver.

Installing Virtual Machines Using Xen
A second way of using Ubuntu Server as a virtualization host is to configure Xen. Since version
7.10, Ubuntu Server has drastically improved support for Xen, but Canonical made the deci-
sion to go with KVM as the default solution for virtualization in version 8.04. In this section,
you’ll see how to set up Ubuntu Server as a host for Xen virtualization. You’ll also learn how to
install Windows and another instance of Ubuntu Server as guests in a Xen environment.

Before starting the hands-on part of this section, you should know a bit about Xen termi-
nology. In Xen, there’s no difference between a host and a guest operating system. This is
because the words host and guest suggest a hierarchical relation that doesn’t exist. Instead,
Xen talks about the domain 0 operating system and the other operating systems. These other

CHAPTER 13 ■ MULTIPLYING YOUR SERVER376

operating systems are referred to as domain U machines. The domain 0 (or just dom0) is the
first operating system that loads on a physical machine, and it has some specific responsibili-
ties in the Xen environment, including driver management. In other environments, the dom0
machine would be referred to as the host operating system.

The domain U (or just domU) machines are virtualized machines that do not have a
special responsibility with regard to virtualization. In other virtualized environments, these
machines would be referred to as guest operating systems.

Setting Up Xen on Ubuntu Server
You need to install a few packages to configure Ubuntu Server as a Xen host. All are installed
automatically when using the ubuntu-xen-server package, so simply issue the following com-
mand to start using Xen:

apt-get install ubuntu-xen-server

Because Xen uses a special kernel that’s loaded before the normal Linux kernel, you
have to check the /boot/grub/menu.lst file to make sure that the Grub boot configuration is
changed to boot the Xen kernel as its default. To make sure that you’re running a Xen kernel,
use the uname –r command. Its result gives a kernel name such as 2.6.22-12-xen, indicating
that you’re using a Xen kernel. Now reboot your server to load this specific Xen kernel.

After booting this kernel, the normal Linux kernel is booted; then your Ubuntu Server
installation loads. By installing Xen, the Ubuntu Server instance technically becomes a virtual
machine—but it’s a special virtual machine that has specific management tasks in the Xen
environment. To make sure that it can perform all of them in the most optimal way, make sure
that no regular services (such as web or file servers) are started from your Ubuntu installation.

After installing the Xen packages, you need to configure Xen networking, and you’ll do
this by editing the generic Xen configuration file /etc/xen/xend-config.sxp. Xen offers differ-
ent methods to create the virtualized network, but the network bridge is currently the most
stable. To enable the network bridge, you need to change three lines in /etc/xen/xend-config.
sxp so that they look like the lines in Listing 13-2.

Listing 13-2. Enabling Networking in /etc/xen/xend-config.sxp

...
(network-script network-bridge)
(vif-script vif-bridge)
#(network-script network-dummy)

These lines ensure that the dummy network device (which is on by default) is disabled,
and it enables the network-bridge script. This script creates a device br0 and several other net-
work devices as well, as you can see in Listing 13-3.

Listing 13-3. Networking in a Xen Environment

root@lor:~# ifconfig
eth0 Link encap:Ethernet HWaddr 00:14:22:FA:6F:22

inet addr:192.168.1.82 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::214:22ff:fefa:6f22/64 Scope:Link

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 377

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:310 errors:0 dropped:0 overruns:0 frame:0
TX packets:59 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:27634 (26.9 KB) TX bytes:7812 (7.6 KB)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

peth0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF
inet6 addr: fe80::fcff:ffff:feff:ffff/64 Scope:Link
UP BROADCAST RUNNING NOARP MTU:1500 Metric:1
RX packets:308 errors:0 dropped:0 overruns:0 frame:0
TX packets:61 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:28822 (28.1 KB) TX bytes:8298 (8.1 KB)
Interrupt:18

vif0.0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF
inet6 addr: fe80::fcff:ffff:feff:ffff/64 Scope:Link
UP BROADCAST RUNNING NOARP MTU:1500 Metric:1
RX packets:59 errors:0 dropped:0 overruns:0 frame:0
TX packets:311 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:7812 (7.6 KB) TX bytes:27704 (27.0 KB)

xenbr0 Link encap:Ethernet HWaddr FE:FF:FF:FF:FF:FF
UP BROADCAST RUNNING NOARP MTU:1500 Metric:1
RX packets:266 errors:0 dropped:0 overruns:0 frame:0
TX packets:1 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:19042 (18.5 KB) TX bytes:70 (70.0 b)

After modifying this script, use the following command as root to restart the xend process,
which is responsible for management of the virtual network infrastructure:

/etc/init.d/xend restart

If after restarting the xend process, the ifconfig command doesn’t show you all the net-
work interfaces that you see in Listing 13-3, you should restart the entire machine.

In the Xen network environment, all virtualized operating systems (including the domain
0 virtualization host) use a virtualized driver to address the network card. This driver can be

CHAPTER 13 ■ MULTIPLYING YOUR SERVER378

recognized as eth0 in the virtualized operating system. This eth0 is represented in the domain
0 operating system by an interface with the name vifx.y. In this name, x represents the ID of
the virtualized operating system, and y represents the number of the virtualized network
board. For example, the eth0 network card in domain 0 (which has ID 0) is represented as
vif0.0; likewise, if a virtualized Windows server that has ID 4 (use the xm list command to
learn the ID of a virtualized operating system) has four virtualized network cards, the second
of them would be represented by vif4.1 in domain 0.

Now in the domain 0 system, all vif interfaces are attached to the virtual bridge, which is
thus behaving like a real bridge or switch. This bridge in turn communicates with the repre-
sentation of the physical network card, which is peth0 and talks directly to the network board
in your server. Check Figure 13-7 for a graphical representation of how all this is organized.

Figure 13-7. The virtual bridge in a Xen environment

After creating the virtual network, you have a bit more preparation work: edit the
/etc/modules file and add the line loop max_loop=64. This is necessary to ensure that you can
create enough virtual disks for your virtual machines. To confirm that this new setting works,
reboot your machine before starting to create virtual machines.

Installing Windows as a Guest Operating System on Xen
To install Windows as a guest operating system in a Xen environment, you need a CPU that
supports virtualization because Windows itself doesn’t exist in a version that understands par-
avirtualization. So the only way to virtualize it is to use a CPU that has hardware virtualization

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 379

support. To check your CPU, use the xm dmesg command to see an overview of all features that
are relevant for Xen virtualization:

root@lor:~# xm dmesg | grep VMX
(XEN) HVM: VMX enabled
(XEN) VMX: MSR intercept bitmap enabled

If you see a result such as this one, you can continue creating your instance of virtualized
Windows. If you don’t get a result, your CPU doesn’t support virtualization, which means that
you can’t virtualize Windows. Sorry!

So, if your processor has VMX, let’s start virtualizing Windows.

1. To install Windows or any other virtualized operating system, it’s a good idea to enable
a VNC server. This lets you connect to the console of the virtualized machine while
installing it. Without this VNC server, your only option is headless installation, which
isn’t easy at all. So make sure that the /etc/xen/xend-config.sxp configuration file
includes the following line. After changing it, restart the xend process:

(vnc-listen '0.0.0.0')

2. Now you need to make sure that the guest system has a hard disk to use, and the easi-
est way to create such a disk is to use disk image files. The /var/lib/xend/storage
directory is a convenient place to put such a file. Use the following line to create a 4 GB
disk image file in this directory:

dd if=/dev/zero of=/var/lib/xend/storage/windows.img bs=1024 count=4000000

3. Next, you need to create a configuration file for the guest system. This file will contain
all the settings used by the guest system, such as the amount of RAM it can use, the
hard disk, and so on. The configuration shown in Listing 13-4 can be used to create a
Windows XP virtual machine that uses 512 MB of RAM and a 4 GB hard disk, and
accesses the optical disk in /dev/cdrom as the optical drive. Create this file with the
name /etc/xen/windowsxp.

Listing 13-4. Example Configuration File to Create a Windows XP Virtual Machine

kernel = '/usr/lib/xen-ioemu-3.0/boot/hvmloader'
device_mode1 = '/usr/lib/xen-ioemu-3.0/bin/qemu-0dm'
builder = 'hvm'
memory = '512'
disk = ['file:/var/lib/xend/storage/windows.img,ioemu:hda,w'\
, 'phy:/dev/cdrom,ioemu:hdc,r']

name = 'winxp'
vif = ['type=ioemu, bridge=xenbr0']
boot='d' # use boot='c' to boot from harddisk
vnc=1
vncviewer=1
sd1=0

CHAPTER 13 ■ MULTIPLYING YOUR SERVER380

4. Now it’s time to run the virtual machine and start its installation process. To do that,
use the following command:

xm create -c /etc/xen/windowsxp

Installing Ubuntu Server As a Guest Operating System on Xen
A different way of creating Xen images is to use the Xen-tools option. This solution consists of
two elements: the xen-create-image command and the xen-tools.conf configuration file. You
can use xen-create-imag with lots of command-line options, but an easier solution is to tell it
to read the configuration file /etc/xen-tools/xen-tools.conf. Your result is a Xen virtual
machine configuration file, just like the one you created manually based on the information
from the preceding section.

In this section, you’ll read how to install a Xen virtual machine using Xen tools. Before
you start building this solution, think carefully about where you want to manage settings. The
xen-tools.conf file functions as a template file that contains default settings, but these set-
tings can also be specified as command-line options using xen-create-image. In this section,
I’ll show you how to apply both solutions.

1. Open the /etc/xen-tools/xen-tools.conf file with an editor and include the following
settings:

dir = /home/xen # directory where the virtual disk files are created
install-method = debootstrap # specifies how to boot the virtual machine
dist = etch # specifies what distribution to install, check the
configuration file for information about supported distributions.
dhcp = 1 # use this to set up networking via DHCP
passwd = 1 # you need this to set the root password interactively
kernel = /boot/vmlinuz-`uname -r` # the kernel to use
initrd = /boot/initrd.img-`uname -r` # the initrd to use
boot = 1 # this allows the new virtual machine to boot after installation
mirror = http://de.archive.ubuntu.com/ubuntu/ # the mirror site
to perform the installation

2. Now that some of the basic settings for installing the virtual machine are in place, use
the xen-create-image command to create the virtual machine. Because many options
are already in the /etc/xen-tools/xen-tools.conf file, the xen-create-image com-
mand needs relatively few options:

xen-create-image --hostname=ubuntu.example.com --size=4Gb --swap=256Mb\
--ide --memory=128Mb --debootstrap

3. The installation procedure now starts. Go have a cup of coffee; it takes some time to
copy all the files to the virtual machine to perform the installation.

Because you told the installer to prompt for a password, after copying all files to the
virtual machines, the installer asks for one. Once you’ve entered it, you’ll see the “All done”
message, indicating that the virtual machine is now installed. You’ll also see that the installer
created a log file with details about this virtual machine. This file is in the /var/log/xen-tools
directory. The installer also created the configuration file that’s used by the virtual machine.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 381

This configuration file performs the same function as the virtual machine configuration file
that you created manually for the Windows virtual machine in the previous section.

Now that the installation is finished, it’s time to launch the virtual machine. To do this, use
the following command:

xm create /etc/xen/ubuntu.example.com.cfg

Once the virtual machine has launched successfully, you can attach to its console using
the following:

xm console ubuntu.example.com

This command brings you to the console of the virtual machine. Want to go back to the
console of the host machine? Use the Ctrl+] shortcut. From the console of the host machine,
you can use the xm command to perform virtual machine management tasks. The next section
provides an overview of the important management commands.

Using Xen Management Commands
After starting the installation of your virtual machines, you also need some minimal knowl-
edge of how to manage these machines. You can use the xm command, which is a very versatile
command that uses subcommands to specify exactly what you want to do. Table 13-1 is an
overview of some of the most useful xm commands.

Table 13-1. Overview of the Most Important Xen Management Commands

Command Explanation

xm create -c /path/to/configfile Runs a virtual machine. To run it, you need a
configuration file like those created in the two
subsections dealing with installation of Windows
and Ubuntu virtual machines.

xm list Gives a list of all virtual machines.

xm console <name> Starts a console for the virtual machine <name>. Use
xm list to find out what name to use. Without this
command, you can’t view information about your
virtual machine.

xm shutdown <name> Shuts down a virtual machine in a clean way.

xm destroy <name> Kills a virtual machine instantaneously without shutting
it down properly. This can lead to destruction of virtual
machine configuration files.

xm top Gives an overview that allows you to monitor
performance of virtual machines.

xm help Gives an overview of all xm subcommands that you
can use.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER382

Ubuntu Server in a VMware Environment
VMware offers several virtualization products that you can use with Ubuntu Server. The most
important of these, from the point of view of a data center, is VMware ESX. Although para-
virtualization can also be used in VMware ESX, to benefit from this solution, the virtualized
operating system must be aware that it’s being used in a paravirtualized environment. This is
realized by the VMI support that Ubuntu Server has offered since version 7.04.

The VMI support ensures that the Linux kernel knows that it’s being used in a paravirtual-
ized environment. So Ubuntu Server generates instructions that are easier to handle in a
virtualized environment. The good news is that this support comes out of the box. Immedi-
ately upon installation of Ubuntu Server, the installer detects that it’s installed in a virtualized
environment, and VMI support is activated automatically.

Ubuntu JeOS
Ubuntu offers a specific version of the server operating system that was made and tuned to be
used in a virtualized environment: Ubuntu Server JeOS (pronounced as juice and stands for
Just Enough Operating System). Ubuntu Server JeOS is specifically developed to make it easy
for you to create virtual appliances. That means its kernel is stripped down to contain only
those options that you need for your virtual appliance. Because of this, Ubuntu Server JeOS
runs far more efficiently than any normal instance of Ubuntu Server.

To install a virtual machine using JeOS, start by downloading it from http://cdimage.
ubuntu.com/jeos/releases/8.04/release/.

Browse to this Ubuntu download page and get the most current release of Ubuntu Server
JeOS. Next, install it in VMware ESX, VMware Server, or in a KVM environment. Other virtual-
ization platforms might work, but are not supported. The installation itself is straightforward:
just install JeOS in the way you would install a normal instance of Ubuntu Server. You can then
set up your appliance in it, which provides you with a perfectly optimized Ubuntu Server vir-
tual machine.

The interesting part of configuring JeOS as an appliance comes after the installation is
complete and the application is installed. Again just follow the standard procedure. When you
hand out your JeOS virtual appliance, you probably want to start a setup program that allows
users to configure the appliance according to their own needs.

Listing 13-5 shows how you can do that to perform an initial configuration of the SSH
server. The example provides a blueprint of how to do this for any application:

1. To start the initial configuration, it’s a good idea to create a script in /etc/bash.bashrc.
The following code checks whether a check file is already present. This check file is cre-
ated after successful configuration of the appliance. If the check file is present, no work
has to be done. If it’s not, this script makes sure that a configuration script is launched.

Listing 13-5. Launch the Initial Configuration by Adding Some Code

if [! -e /etc/opt/sshserver/config_done]; then
/opt/sshserver/bin/config
sudo touch /etc/opt/sshserver/config_done

fi

CHAPTER 13 ■ MULTIPLYING YOUR SERVER 383

2. The script from Listing 13-5 calls a configuration script with the name /opt/
sshserrver/bin/config. Change the name of this script and its directory to match the
application that you want to configure. Listing 13-6 gives an example of the contents of
this configuration script. This is a very simple script, ensuring that the SSH server is
reconfigured; change it to match the requirements of your application.

Listing 13-6. Create a Configuration Script that Performs the Initial Configuration of Your
Application

#Perform the reinstall of openssh so that the key is regenerated
echo "Removing the openssh-server and installing it again."
echo "This makes sure that your SSH-keys are generated for your server."
sudo apt-get --purge -y remove openssh-server
sudo apt-get install -y openssh-server
Add any other configuration lines that you need

3. This completes the example application configuration. Your JeOS virtual appliance is
now ready for use.

Summary
Virtualization is one of the most dynamic areas of interest in the modern data center. In this
chapter, you learned how virtualization is used in current versions of Ubuntu Server. But be
aware that the available options may change fast. New versions of Ubuntu Server can be
expected to offer enhanced support for virtualization, with more-advanced and user-friendly
management tools, too.

CHAPTER 13 ■ MULTIPLYING YOUR SERVER384

■Numbers
2> construction, 42

symbols
$ indicating end of line, 218
$@ operator, 217
<. construction, 42
> single redirector sign, 42
>> double redirector sign, 42
& ampersand, 155
&& separator, 211
‘ ’ single quotes, 40
^ indicating beginning of line, 218
` ` backquotes, 200
|| separators, 211
~ tilde, 37, 129
. dot, 71

■A
A resource record, 270
absolute mode, chmod command and, 135
ACCEPT rule, 352, 356, 359
ACL masks, 138
ACLs (access control lists), 136–140

default, 139
limitations of, 140
Samba file sharing and, 313

adduser account, 368
administrator tasks, configuring, 150
aggregatable global unicast addresses, 232
allow file, 164, 166
ampersand (&), indicating background

processes, 155
AMS node, 262
anchors, 40
anycast addresses, 232
Apache 2 daemon (apache2), 326

Apache web server, 325–341
configuring, 328–332
logging and, 78, 80
managing access to, 333–336
performance tuning for, 339
self-signed certificates, configuring for,

338
starting, 326, 328
stopping, 326
testing, 327
versions of, 325

apache2 (Apache 2 daemon), 326
apache2 file, 329
apache2 reload command, for activating

Apache server changes, 330
apache2.conf file, 328, 339
apache2ctl command, for Apache web

server testing, 330
apt (Advanced Packaging Tools), 55
apt-get update command, for most recent

version of software packages, 60
apt-get utility, 54–63

adding/removing software with, 60
GNOME desktop manager, installing

via, 65
openbox windows manager, installing

via, 66
package management commands

for, 56
Samba server software, installing via, 60
Ubuntu Desktop, installing via, 67

aptitude search samba command, 58
aptitude show samba command, 59
aptitude utility, 55, 58
archive files, 69
arguments, shell scripts and, 197
asymmetric encryption, 257

Index

385

at command, for running commands just
once, 164, 166

atd service, 166
ATL node, 262
atq command, for displaying scheduled

commands, 166
atrm command, for deleting jobs from the

at execution queue, 166
auth.log log file, 78
authentication

PAM and, 144–150
Squid and, 345–347

automatic command completion, 31
automatic processes, 153

■B
background processes, 154
backports category, of software

repository, 54
backquotes (` `) for command

substitution, 200
backups

creating, 69–73
dump command and, 92
master boot record, 114
user ID and, 119

Bash shell, 30–34
Bash scripts and, 192
history command and, 32

bashrc configuration file, 129
basic authentication, 335
/bin/ksh (Korn shell), 192
/bin/pdksh (Public Domain Korn Shell),

192
/bin/sh (Bourne shell), 30, 120, 192
/bin/tcsh (C shell), 192
boot directory, 11, 178
boot procedure, 166–176, 178
Bourne shell (/bin/sh), 30, 120, 192
broadcast addresses, 232
buffer memory, 158

■C
C programming language

gcc compiler and, 63
scripts and, 192

C shell, 192
CA module (eBox-all package), 68
cache memory, 158
calculations, performing from scripts,

205–209
CAs (certificate authorities), 337
case statement, 209, 213
cat command, 156

for displaying contents of text files,
31, 38

jobs command and, 155
cc command, 73
cd command, for changing current

directory, 34
CD-ROMs, backing up, 73
certificate authorities (CAs), 337
certificates, self-signed, 337
chains, Netfilter firewall and, 352
changes, undoing via u command, 46
chattr command, for applying attributes,

141
chgrp command, for changing group

ownership, 131
child processes, 154
chmod command, for setting permissions,

134
chown command, for changing file

ownership, 130
chroot command, mount command

and, 87
CIFS (common Internet file system), 312
cifs file system, 86, 332
CNAME resource record, 270
command line, 29–51

basic file system management tasks
and, 34–41

users, adding from, 117
command mode, for Vi text editor, 46
command substitution, 200, 212

■INDEX386

commands
at, 164
atq, 166
atrm, 205–209
automatic completion via Tab key, 31
for basic file system management tasks,

34–41
calculations and, 205–209
cat, 156
chown, 130
chroot, 87
command substitution and, 200, 212
crontab, 164
depmod, 181
df, 213
echo, 194
exit 0, 194, 216
expr, 207
finding via which command, 120, 196
flow control and, 209–217
gpasswd, 128
for group management, 127
insmod, 180
internal/external, 193
jobs, 155
key sequences for, 33
kill, 160
killall, 161
let, 208
logger, 213, 215
lsattr, 141
lsmod, 179
lspci, 181, 188
make-kpkg kernel-image, 186
mkinitramfs, 177
modinfo, 180
modprobe, 180
newgrp, 128
nice, 163
pkill, 161
ps aux, 215
pstree, 154
read, 196
renice, 163

rmmod, 180
rsync, 212
separators for, 211
shell scripts and, 191, 193
sleep, 215
source, 194
test, 196, 209
time, 159
top, 161
uname –r, 177
for user management, 117
which, 120, 196
who, 216
Xen management and, 382

comments, for shell scripts, 193
common Internet file system (CIFS), 312
common UNIX printing system (CUPS),

setting up, 299–305
compressing archive files, 70
conf.d file, 328
configuration files, 118, 122

Apache web server and, 328
cron facility and, 164
default server configuration file and,

329
DHCP and, 285
DNS and, 271–285
NTP and, 288
PAM modules and, 145
Samba server and, 313, 317, 320
xinetd and, 293

./configure command, 64
configuring

access restrictions, for Apache web
server, 334

administrator tasks, 150
boot procedure, 166–176
cron facility, 164
CUPS, 299–305
DHCP, 279–286
DNS, 265–279
domain controllers (Samba), 319
IPv6 protocol, 233
the kernel, 185

■INDEX 387

NFS, 308–311
NTP, 286–292
permissions, 129–132, 134
quotas, for users/groups, 143
Samba file server, 312–317
services, 265–292
Squid proxy server, 343–345
storage, 96–113
Ubuntu Server, 3–26, 117–152
user accounts, 117–126
user authentication, for Squid, 345–347
virtual hosts, 332

control-alt-delete job, 172
copying data, 113
counters, shell script calculations and, 205
country selection, 3
cp command, for copying data, 37, 113,

254
CPU activity, 157, 159

waiting (wa) and, 158
Xen virtualization and, 379

creating
file systems, 105
groups, 126
hard links, 96
logical volumes, 109
partitions, 105
rules, for Netfilter firewall, 356
self-signed certificates, 337
snapshots, 113
virtual machines, 363–384
XFS file systems, 104
your own kernel, 183–186

cron facility, 153, 163
crond daemon, 163
crontab command, for cron jobs, 164
crontab file, 166
cryptographic keys, 284
cryptography, 257
Ctrl+Alt+F1 key sequence, 173
Ctrl+Alt+F6 key sequence, 173
Ctrl+C key sequence, 33, 156
Ctrl+D key sequence, 33
Ctrl+R key sequence, 34

Ctrl+Z key sequence, 34, 155
CUPS (common UNIX printing system)

configuring, 299–305
integrating with Samba, 317

customizing Ubuntu Server, 153–190
cutting text, 47

■D
d command, for cutting text, 47
daemon processes, 153, 154
data section (XFS file system), 103
datagrams, 242
db files, 272, 276
db.root file, 275
dd command, 72

copying data and, 113
creating disk image files and, 369

dd option, for deleting complete lines, 47
DDNS (dynamic DNS), 284
debugfs utility

Ext2 file system and, 100
inodes and, 94
superblock contents and, 115

debugreiserfs utility, 103
defaults

access control lists, 139
environment, 147
gateway, 235
permissions, 136
route, 234
runlevel, 174

delayed allocation, XFS file system and,
104

Delete key, 47
deleting

text, 47
user accounts, 122

deny file, 164, 166
dependencies, software installations

and, 53
depmod command, for generating

modules.dep file, 181
desktop environments, 65
destination, logging and, 77

■INDEX388

/dev/… files, 43
/dev/sda, 34
device attributes, displaying, 230
device backups, 72
device files, 34, 41

list of, 43
redirection and, 44

device names, 189
devices. See hardware
df command, for checking available disk

space, 213
DHCP

configuring, 279–286
dynamic DNS and, 284

DHCP relay agents, 279, 286
DHCPACK message, 279
dhcpd process, 280
dhcpd.conf configuration file, 280–285
DHCPDISCOVER message, 279
DHCPNACK message, 279
DHCPOFFER message, 279
DHCPRELEASE message, 279
DHCPREQUEST message, 279
directories, 34. See also files

moving contents of, 71
ownership and, 130
Ubuntu Server installation and, 11

disk space, limiting amount occupied by
users, 142–144

displaying
inodes, 94
login messages to users, 129

dmesg log file, 78
DNS, 265–279

configuration files and, 271–276
configuring, 265–279
dynamic, 284
forward/reverse, 271
hierarchy of, 267–270
methods of name resolution and, 265
server installation and, 26
testing, 278

DNS resolver, configuring, 235, 269

dnssec-keygen command, for generating
cryptographic keys, 284

do loop, 206, 216
document root, 325, 329, 332–336
domain controllers, Samba as, 319
domains, 267
done loop, 206, 216
dot (.) at end of the command line, tar

utility and, 71
downloading Ubuntu Server, 2
dpkg -l command, for displaying installed

software packages, 56
dpkg -l | grep gcc command, to check for

gcc compiler, 63
dpkg database package, 55
drift factor, NTP and, 291
drivers, 176
DROP rule, 352, 356, 359
dual-boot configurations, 1
dump command, 92
dumpe2fs utility, 98
duplex mode, configuring for network

cards, 237
dw option, for deleting remainder of

words, 47
dynamic DNS (DDNS), 284

■E
e2fsck utility, 98
eBox-all package, 68
eBox utility, 67
echo $PATH command, for displaying

content of current search path, 31
echo command, for displaying text to

user’s screen, 194
edquota command, for setting/editing

quotas, 45, 143
EFS (Extended File System), 97
eject command, for optical media, 89
emulation, 365
encryption, 13, 257
Enterprise Volume Manager System

(EVMS), 109
env command, for displaying variables, 31

■INDEX 389

environment, default, 147
envvars file, 328
error output, 42
/etc/profile script, 32
/etc/profile.d directory, 32
ethtool command, for configuring network

card properties, 237–240
event.d directory, 172
EVMS (Enterprise Volume Manager

System), 109
execute (x) permission, 129
executing shell scripts, 194
exit 0 command, 194, 216
exit statuses, for scripts, 194
exportfs command, for list of exported file

systems, 309
expr command, 207
Ext2 file system, 12, 86, 97–100
Ext3 file system, 12, 83, 86, 100
Ext4 file system, 12, 86
Extended File System (EFS), 97
extended partitions, 9, 107
external commands, 193
extracting

archive files, 71
tarballs, 63

■F
facilities, logging and, 75
faillog log file, 78
failsafe option, 171
FAT file system, 12
fdisk utility, 105
FHS (Filesystem Hierarchy Standard), 93
file handlers, 154
file server, Ubuntu as, 305–323

NFS and, 305–311
Samba and, 311–323

file systems, 12
checking integrity of, 92
compared, 96–116
management tasks for, 34–41
mounting on remote computer, 261
NFS, 305–311

obtaining overview of, 87
preparing for ACLs, 137–139
specifying type, 85
sys, 188
sysfs, 177, 181, 186
user quotas and, 142–144

files
creating empty, 41
finding, 44
links and, 93–96
ownership and, 130
permissions and, 129–141
setting attributes for, 140
text strings in, finding, 39
user quotas and, 142–144

Filesystem Hierarchy Standard (FHS), 93
find command, for files, 44, 122
firewall module (eBox-all package), 68
firewalls, 351–361
floppy disks, mounting, 84
flow control, 209–217
for loop, 209, 216
foreground processes, 154
FORWARD chain, for Netfilter firewall, 352,

359
forward DNS, 271
free utility, 158, 160
fsck command, for checking file system

integrity, 92
fstab command, for mounting NFS shares

automatically, 311
fstab configuration file, 83, 89, 137
FTP

configuring, 347
Squid proxy server and, 342

functions, shell scripts and, 218
fuser command, for listing/killing

processes, 88

■G
gcc compiler, 63
getfacl command, for an overview of ACLs,

138
getty program, 129

■INDEX390

GNOME desktop manager, 65
gpasswd command, for changing group

passwords, 128
graphical adapter configuration, 5
graphical user interface. See GUI
grep utility

ps utility and, 161
vs. sed, 217
text string searches and, 39

group entity, 130
group file, 127
group passwords, 128
groupadd command, 127, 132
groups

creating, 126
ownership and, 131
setting quotas for, 143
user membership in, 119

groups command, for an overview of
groups, 132

GRUB, 167–172
gshadow file, 127
guests, 364, 376
GUI (graphical user interface)

advantages/disadvantages of, 65
configuring, 64
eBox utility and, 67
Ubuntu Server and, 3, 27

guided hard drive partitioning, 13
guided LVM-based hard drive

partitioning, 15
gzip utility, 63

■H
HAL (hardware abstraction layer), 186
hard drives

configuring, 8–26
mounting, 84
partitioning options for, 13–26
zero generator for, 43

hard links, 93, 96, 95
hardware

checking integrity of, 92
device backups and, 72

managing, 176–189
mounting, 83–92
requirements for, 1
sysfs file system and, 181
unmounting, 88

hardware abstraction layer (HAL), 186
hardware interrupt (hi), 158
head command, for displaying top lines of

text files, 38
help command, 47
help functionality, 47–50
-help option, 47, 50
here document, 197
hi (hardware interrupt), 158
hidden files, cp command and, 37
home directory, 11, 148
/home/username, 37
host command, for DNS server testing, 278
host name, 8
host operating system, 367
hosts, 364, 376
hosts file, 236, 265, 295
hosts.allow configuration file, 295
hosts.deny configuration file, 295
htpasswd command, basic authentication

and, 335
HTTP protocol, 325

incoming/outgoing traffic and, 357
Squid proxy server and, 342

HTTP proxies, 26
httpd.conf file, 328
HTTPS, enabling, 336–338
hypervisor, 158, 365

■I
id (idle loop), 158
if loop, 209
if…then…else loop, 210–213
ifconfig command

assigning IPv6 addresses and, 233
managing network cards via, 225–228
network configuration information,

displaying, 224, 378

■INDEX 391

ifdown command, for bringing network
cards down, 225, 227

ifplugstatus command, for displaying
status of network cards, 225

iftop command, for bandwidth usage
monitoring, 249

ifup command, for bringing network cards
up, 225, 227

incremental backups, 72
inetd service, 293
inheritance, 130
init process, 154, 172
init.d directory, 174
initramfs (initial RAM file system), 177
initramfs.conf file, 178
inittab configuration file, 172
inodes, 94–96, 98
INPUT chain, for Netfilter firewall, 352, 35,

3596
insert mode, for Vi text editor, 46
insmod command, 180
install command (apt-get utility), 56
installing

DNS, 26
eBox-all package, 68
eBox utility, 67
GNOME desktop manager, 65
GRUB boot loader, 170
kernel modules, 177
lvm-binaries package, 109
Squid proxy server, 343
Synaptic package manager, 61
Ubuntu Server, 1–27
virtual machines, 366–382

interactive shell scripts, 196
interactive processes, 153
interfaces configuration file, 223, 227, 235
internal commands, 193
Internet server, 325–349
ip address add command, for setting IP

addresses, 230
IP address configuration, 6
ip address show command, 229

IP addresses, 227–233
assigning, 230
DNS and, 265–279
IPv6 protocol and, 231
neighbor discovery protocol and, 232

ip command, 228
assigning IPv6 addresses and, 233
routes and, 234

ip link show command, 230
IP protocol attributes, displaying, 230
iptables command, 351

creating your own firewall via, 353–360
vs. TCP wrappers, 297
vs. ufw command, 360

IPv6 protocol, 231–233
iso9660 file system, 86
issue file, 129

■J
JeOS(Just Enough Operating System),

383–384
jobs command, for an overview of current

background processes, 155
journaling, 97, 100

■K
kernel

configuring, 185
creating your own, 183–186
managing, 177

kernel modules, 170, 177–188
key-based authentication, 257–261
key fingerprints, 259
key pairs, 253
key sequences

Bash shell and, 33
interrupting processes and, 155
terminating cat command and, 156
virtual terminals and, 173

keyboard configuration, 4
keywords, 58
kill command, for terminating a process,

160

■INDEX392

killall command, for terminating all
processes, 161

Knoppix CD-ROMs, 73
Korn shell (/bin/ksh), 192
KVM (Kernel-based Virtual Machine), 364,

366–376
kvm command, for guest operation

installations, 369
kvm.ko kernel module, 364

■L
labels, file systems and, 90
LAMP server, installing, 26
language selection, 3
less command, for browsing text files,

38, 45
let command, for calculations, 208
libvirt tools, for managing virtual

machines, 374–376, 368
lightweight graphical environment, 66
limit match, 358
limits

on system resources, 147
on user quotas, 142, 144

link local addresses, 232
link speed, configuring for network cards,

237
links, 93–96

symbolic, 174, 184
udev service and, 189

ln command, for links, 94, 96
load average, 157
local forwarding, 262
localtime binary file, 287
log files, NTP and, 292
LOG rule, 352
log section (XFS file system), 103
logd job, 172
logger command

disk space and, 213
processes and, 215
shell script logging and, 79

logging
configuring, 73–81
firewall troubleshooting and, 357
pam_warn module and, 150
rotating log files and, 79

logical partitions, 107
Logical Volume Manager (LVM), 109
logical volumes, 9, 108–113

advanced features and, 111
creating, 109

login messages, 129
login.defs configuration file, 126
logrotate service, 79
logrotate.conf configuration file, 79
logrotate.d configuration file, 80
Long Term Support (LTS), for Ubuntu

Server, 1
loop kernel module, 87
ls command

ACLs and, 138
for displaying files, 30, 35
file ownership and, 130

ls -il command, for finding inode number
of files, 94

lsattr command, 141
lsmod command, for displaying list of

currently loaded modules, 179
lsof command, for displaying list of

processes, 88
lspci command, for revealing PCI IDs, 181,

188
LTS (Long Term Support), for Ubuntu

Server, 1
lv command prefix, 109
lvm-binaries package, 109
LVM Logical (Volume Manager), 109
LVM partitions, 9

advantages/disadvantages of, 10
encrypted, 13
guided LVM-based hard drive

portioning and, 13
manual hard drive partitioning and, 20

■INDEX 393

■M
MAC addresses, 231
mail command, for messages, 42
mail server, installing, 26
mail, pam_mail module and, 148
mail.* log file, 78
main category, of software repository, 54
maintenance, pam_nologin module and,

148
make install command, to check software

package installation, 64
make-kpkg kernel-image command, 186
make utility, 64
man command, for command

information, 48–50
managing

hardware, 176–189
processes, 153–163

manual hard drive partitioning, 17–24
master boot record (MBR), backing up, 114
master name server, 268
matching part, of server rule, 354
/media directory, 83
memory, 158–160
menu.lst file, 167–172, 178
messages, to users at login, 129
messages log file, 77
metadata, 94, 101
Minix file system, 86
mkdir command, for creating

directories, 35
mkfs command, for creating file systems,

105
mkfs.xfs command, for creating XFS file

systems, 104
mkinitramfs command, for tuning

initramfs, 177
/mnt directory, 83
modinfo command, for obtaining module

information, 180
modprobe command, for loading modules

manually, 180

modules
Apache web server and, 326, 328, 334,

339
configuration file for, 178
kernel, 170, 177–188

monitoring, 247–252
NFS file server, 311
processes, 153–163

more command, for browsing/searching
text files, 38

motd file, 129
mount command, 83–88

for mounting NFS shares, 310
for Samba server testing, 322
shortened, 89

mount points, 83
mounting disks, 83–92
msdos file system, 12, 86
mtab configuration file, 87
mtu (maximum transmission unit), 230
multicast addresses, 232
multiport match, 358
multiverse category, of software repository,

54
mv command, for moving/renaming files,

37
MX resource record, 270
MySQL, 341, 342
mysqladmin command

for creating MySQL databases, 342
for setting MySQL root password, 342

■N
name resolution. See DNS
name servers, installing, 26
named command, to check for named

process, 278
named.conf file, 271–276

db files and, 276
zone definitions and, 275

named.conf.local file, 271, 274
dynamic DNS and, 284
reverse DNS and, 277

named.conf.options file, 272, 274

■INDEX394

naming
shell scripts, 196
your server, 8

nano text editor, 45, 151, 165
NAT firewall, 360
neighbor discovery protocol, 232
Netfilter firewall, 351–360
netstat command, for testing availability of

services, 243
network cards, 180, 183, 188

bandwidth usage monitoring and, 249
configuring, 5
default route and, 235
managing, 223–240
starting/stopping, 227
status of, 225
testing, 240

network connections, 240–263
configuration information, displaying,

224
neighbor discovery protocol and, 232
network card configuration and,

223–240
SSH and, 252–255
troubleshooting, 240–252

network file system. See NFS
Network Information Service (NIS), 236,

266
network module (eBox-all package), 68
network services. See services
network shares, mounting, 84
Network Time Protocol. See NTP
network traffic, monitoring, 250
newgrp command, for setting groups, 119,

128
NFS file sharing, 305–311

how it works, 306
monitoring and, 311
services and, 307

nfs file system, 86
NFS Shares, mounting, 85
NI (nice value), 159
nice command, for processes, 163
nice value (NI), 159

NIS (Network Information Service), 236,
266

nmap command, for testing availability of
services, 243, 245

nmblookup command, for Samba name
services testing, 322

nomodify setting, NTP security and, 292
noquery setting, NTP security and, 292
notrust setting, NTP security and, 292
NS resource record, 270
nsswitch.conf file, 145, 236, 266
NTFS file system, 86
nth module, 356
NTP

checking synchronization status and,
290

configuring, 286–292
customizing servers and, 291
drift factor and, 291
log file and, 292
pushing/pulling time and, 289
security for, 292

ntp.conf file, 288
ntpd daemon, 288
ntpdate command, for synchronizing

time, 289
ntpq command, for checking status of

NTP services, 290
ntptrace command, for checking

synchronization status, 290

■O
openbox windows manager, 66
OpenSSH server, installing, 26
Operation is not supported error message,

368
optical drives

eject command and, 89
mounting, 84

optimizing Ubuntu Server, 153–190
others entity, 130
OUTPUT chain, for Netfilter firewall, 352,

356, 359
ownership, 130, 131

■INDEX 395

■P
p command, for pasting text, 47
package databases, 55
package management utilities, 55–63
packages

adding/removing, 55
installed, displaying list of, 56
installing, 53–64
management utilities for, 55–63
unmanaged software and, 63

packets, analyzing, 251
PAMs (pluggable authentication modules),

144–150
PAM authentication, 347
pam_deny module, 147
pam_env module, 147
pam_limits module, 147
pam_mail module, 148
pam_mkhomedir module, 148
pam_nologin module, 148
pam_permit module, 149
pam_rootok module, 149
pam_securetty module, 149
pam_tally module, 149
pam_time module, 149
pam_unix module, 150
pam_warn module, 147, 150
paravirtualization, 363, 365
parent process, 154
parted utility, 108
Partition Magic, 108
partitions, 9

creating, 105
extended, 107
logical, 107
traditional, 105

passphrases, 253, 259
passwd command, 118, 120, 121
passwd configuration file, 118, 123
passwords

basic authentication and, 335
eBox utility and, 67
group, 128

managing, 120–122
root, MySQL and, 342
Samba file sharing and, 317

PATH variable, 31, 196
pattern-matching operators, 203
permissions

ACLs and, 136–140
advanced, 132–141
basic, 129
changing, 134
concept of ownership and, 130
configuring, 129–132, 134
default, 136
NFS file sharing and, 306
Samba file sharing and, 313

pgrep command, pkill command and, 161
PHP, 340
PHP5 module, 326, 340
PID (unique process ID), 159
ping command, for testing network

connectivity, 240, 278
disabling, 246
DNS and, 241

ping6 utility, 233
piping, 41
pkill command, for terminating processes

based on specific information, 161
pluggable authentication modules (PAMs),

144–150
pointer record, 271, 278
policies, for chains, 352
port forwarding, 262
port numbers, Netfilter firewall and, 357
port scans, 246
ports.conf file, 328
position, of server rule, 355
POSIX file system, 97
PostgreSQL server, installing, 26
preallocation, XFS file system and, 104
prefork mode, Apache web server and, 339
PRI (priority indication), 159
primary groups, 119
primary partitions, 9

■INDEX396

print server
installing, 26
Ubuntu as, 299–305
Samba as, 317

priorities, logging and, 76
priority indication (PRI), 159
private groups, 119
process queue, 157, 163
processes

automating, 163
background, 154
displaying list of, utility for, 160
foreground, 154
interrupting, 155
monitoring/managing, 153–163
real-time, 159
resetting priority for, 163
terminating, 160
types of, 153

profile configuration file, 128
protocol activity, monitoring, 247
ps aux command, 215

for checking Apache web server, 326
for checking MySQL process, 341

ps utility, 160
pstree command, for showing parent and

child process relationships, 154
PTR record, 271, 278
Public Domain Korn Shell, 192
public keys, 252
pure-ftpd servers, 347
pv command prefix, 109
pwd command, for printing working

directory, 34

■Q
:q command, for stopping, 46
:q! command, for quitting, 46
QEMU, 364, 369
qemu-img command, for creating disk

image files, 369
queue, processes in, 157
quotacheck command, 143
quotes, single (‘ ’), 40

■R
RAM, 158
rc-default script, 172
rc0-rc6 scripts, 172
rc2.d directory, 174
rcS script, 173
rcS-sulogin service, 173
rcS.d directory, 174
read (r) permission, 129
read command, 196
real-time process (RT), 159
real-time section (XFS file system), 103
recent match, 359
redirection, 42
regular expressions, 39
Reiser, Hans, 102
ReiserFS file system, 12, 86, 102
reiserfsck utility, 102
REJECT rule, 352, 359
relative mode, chmod command and, 134
remote port forwarding, 262
remote procedure call (RPC) program

numbers, 306
remove command, for packages, 56
renaming files/directories, 37
renice command, for processes, 163
repquota command, for monitoring

current quota settings, 144
RES (resident memory size), 159
resize_reiserfs utility, 103
resizing logical volumes, 111
resolv.conf file, 235, 278
resource records, 269, 277
resources for further reading

Apache modules, 326
logical volumes, 10
neighbor discovery protocol, 232
Netfilter firewall, 356
PHP, 341
Samba, as domain controller, 320
test command, 209

restart command, for DNS servers, 278

■INDEX 397

restricted category, of software
repository, 54

reverse DNS, 271, 277
rm command, for removing files

extreme caution with, 37
file system cleanup and, 36

rmdir command, for deleting
directories, 35

rmmod command, for deleting modules,
180

root directory, 11, 37
root file system, troubleshooting, 85
root privileges, 29
root user, user ID and, 119
route command, for setting default route,

234
routers, testing, 242
routes, 234
RPC program numbers, 306
rpcinfo command

for displaying RPC program numbers,
307

for NFS file server monitoring, 311
rsync command, for synchronizing

directory content, 212
RT (real-time process), 159
rules, for Netfilter firewall, 352–360
runlevels, 172, 174, 238
running processes, 157

S
S (status of process), 159
Samba File server, installing, 27
Samba file sharing, 311–323

configuring, 312–317
domain controller configuration and,

319
testing and, 321

Samba server software, installing via apt-
get utility, 60

SANs (storage area networks), 9
sash shell, 30
saving work, with Vi, 46

scp command, for copying files securely,
254, 260

scripts
service, 174
shell. See shell scripts

scripts directory, 178
search order, managing with nsswitch.conf

file, 266
Secure Shell

configuring, 255
key-based authentication for, 258–261

security
Apache web server and, 326
enabling HTTPS and, 336–338
NFS and, 306
NTP and, 292
PAM configuration and, 146
Squid proxy server and, 342
Ubuntu Server configuration and,

117–152
sed (stream editor), 217
self-signed certificates, creating, 337
separators (||), for commands, 211
service scripts, 174
services, 153, 170–176

configuring, 265–292
facilitating management of, 175
NFS file sharing and, 307
Samba and, 317
starting, 292–297

services file, 357
setfacl command, for setting ACLs, 137
sftp command, for secured FTP sessions,

255
SGID permission, 133, 135

caution for, 134
Samba file sharing and, 313

shadow configuration file, 118, 124
shared directories, Samba and, 312
shared memory (SHR), 159
shebangs, 192
shell scripts, 191–221

basic elements of, 193
complex, example of, 219

■INDEX398

executing, 194
flow control and, 209–217
functions and, 218
interactive, 196
logging and, 79
naming, 196
performing calculations from, 205–209
reasons for using/not using, 191
running as executable, 195
stream editor and, 217

shells, 30–34, 120
shortcuts. See links
showmount command, for NFS file server

monitoring, 311
SHR (shared memory), 159
SIGHUP signal, 160
SIGKILL signal, 160
SIGTERM signal, 160
site local addresses, 232
sites-available file, 328
sites-enabled file, 329
slave servers, 268
SLC node, 262
sleep command, while command and, 215
sleeping processes, 157
smb.conf file, 313, 317, 320
smbclient command, for Samba server

testing, 322
smbmount command, for Samba server

testing, 322
smbpasswd command

for Samba passwords/user names, 317
for workstations, 321

snapshot files, 72
snapshots, 10, 112
software

documentation for, in /usr/share/doc/
directory and, 50

installing, 26
management tasks for, 53–66

software packages. See packages
software repositories, 54
source command, 194

sources.list configuration file, 54
Squid proxy server

configuring, 343–345
installing, 343
Ubuntu as, 342–345

squid.conf file, 343
srv directory, 12
SSH

configuring, 255
key-based authentication for, 258–261

ssh-agent program, 260
ssh command, 254, 260
ssh-keygen command, for SSH key-based

authentication, 259
SSH traffic, 356
sshd daemon, 254
sshd_config file, 255
ssh_config file, 255
st (stolen time), 158
standard error (STDERR) process, 154
standard file handlers, 154
standard input (STDIN) process, 43, 154
standard output (STDOUT) process, 42,

154
starting services, 292–297
startx command, for starting the GUI, 66
state module, 356
stateful packet filters, 355
status of process (S), 159
sticky bit permission, 133, 313
stolen time (st), 158
stopped processes, 157
storage, configuring, 96–113
stream editor (sed), 217
subdomains, 267
substitution operators, 201
sudo mechanism, 29

administrator tasks and, 150–152
apt-get commands and, 56, 61
sudo passwd root command and, 30
sudo su command and, 29

sudoers file, 150
sufficient statement, 349

■INDEX 399

SUID permission, 132
caution for, 133
setting, 135

sulogin script, 173
superblocks, 85, 102, 114
support, for Ubuntu Server, 1
swap files, 114
swap space, 158
sy (system space), 157
symbolic links, 174, 184

creating, 93
vs. hard links, 95

symmetric encryption, 257
Synaptic package manager, 56, 61
sys file system, 188
sysfs file system, 177, 181, 186
syslog.conf configuration file, 74
syslogd process, 74–78
system administration, essential tasks for,

53–81
system maintenance, displaying messages

about, 129
system space (sy), 157
system time, 157
System V service management, 175
sysv-rc-conf utility, 175

■T
Tab key, for automatic command

completion, 31
tail command, for displaying last 10 lines

of text files, 38
tape drives, mounting, 85
tar utility

backups via, 69
dot (.) at end of the command line

and, 71
tarballs, 53, 63
target, of server rule, 355
tasks, on server, 157
tcpd (TCP wrappers), 294
tcpdump command, for network

monitoring, 250
tcsh shell, 30

test command
for testing files, 209
vs. which command, 196

testing
Apache web server, 327, 330
DNS servers, 278
files, 196, 209
IPv6 protocol configuration, 233
network cards, 240
network connectivity, 240, 278
routers, 242
Samba server, 322
services, availability of, 243, 245

text-based login prompt, 27
text editors, 45–47, 150
text files, viewing contents of, 37
tilde (~), 37, 129
time

pam_time module and, 149
system time and, 157

time command, for CPU time used by a
process, 159

time synchronization, 286–292
checking, 290
pulling/pushing time and, 289

time zone configuration, 8, 287
TIME+ (total CPU time used by a process),

159
TLDs (top-level domains), 267
tools. See utilities
top-level domains (TLDs), 267
top utility, 156–160

for killing processes, 161
vs. ps utility, 161
renicing processes and, 163

touch command, for creating files, 41, 132,
138

tracepath6 tool, 233
traceroute command, for testing

routability, 242
traceroute6 tool, 233
troubleshooting, boot procedure and,

166–176
tty1-tty6 files, 173

■INDEX400

TTYs, pam_securetty module and, 149
tune2fs utility, 98, 137
tuning Ubuntu Server, 153–190
tunneling traffic with SSH, 261

■U
u command, for undoing changes, 46
Ubuntu Desktop, 65, 67
Ubuntu Server

boot procedure and, 166–172
configuring, 3–26, 117–152
customizing/optimizing, 153–190
domain name for, 8
as file server, 305–323
full-scale graphical desktop for, 67
installing, 1–27
JeOS and, 383–384
KVM virtualization on, 367
monitoring activity of via top utility, 156
as print server, 299–305
remote installation and, 67
securing, 117
as Squid proxy server, 342–345
support for, 1
Xen virtualization on, 377

udev log file, 78
udev service, 186, 226
udevmonitor utility, 186
ufw command, for the uncomplicated

firewall, 351, 360
UID (user ID), 119, 159
uncomplicated firewall (ufw), 351, 360
umask setting, 136, 139
umount command, for unmounting

devices, 88
uname –r command, for obtaining version

of current kernel, 177, 200
uname command, for checking Xen

kernel, 377
undoing changes, via u command, 46
unique names, for devices, 189
unique process ID (PID), 159
Universal Time Coordinated (UTC), 287

universe category, of software
repository, 54

UNIX
Bourne shell and, 192
pam_unix module and, 150
ps command and, 162

unmanaged software, tarballs and, 63
unmounting devices, 88
until loop, 209, 215
up time, 157, 160
update command, for packages, 56
update-rc.d command, for runlevels, 238
upgrade command, for packages, 56
Upstart, 172
upstart process, 153
uptime utility, 160
us (user space), 157
USB drives, mounting, 84
user accounts

configuring, 117–126
creating, 26
deleting, 122
managing, 121
Samba server and, 316

user authentication, configuring for Squid,
345–347

user-based access restrictions, Apache
web server and, 335

user-defined chains, 359
user entity, 130
user ID (UID), 119, 159
user quotas, 142–144
user root, 149, 159
user space (us), 157
useradd command, 117–119, 126, 368
userdel command, 118, 122
usermod command, 118, 122
users

cron jobs and, 164
group passwords and, 128
membership in groups, 119
setting quotas for, 143
sudo commands and, 150
who command and, 216

■INDEX 401

/usr/share/doc/ directory, software
documentation and, 48, 50

UTC (Universal Time Coordinated), 287
utilities

Advanced Packaging Tools (apt), 55
apt-get. See apt-get utility
aptitude utility, 55, 58
debugfs, 94, 100, 115
debugreiserfs, 103
dumpe2fs, 98
e2fsck, 98
eBox, 67
for Ext2/Ext3 file systems, 97
fdisk, 105
free, 158, 160
getty program, 129
grep, 217
iputils, 233
libvirt, 374–376, 368
make, 64
parted, 108
for package management, 55–63
Partition Magic, 108
ping6, 233
ps, 160
reiserfsck, 102
resize_reiserfs, 103
stream editor, 217
sysv-rc-conf, 175
top, 156–160
tune2fs, 98
udevmonitor, 186
uptime, 160
for XFS file systems, 104
xfs_admin, 104
xfs_bmap, 104
xfs_check, 104
xfs_copy, 104
xfs_db, 104
xfs_growfs, 104
xfs_info, 104
xfs_io, 104
xfs_logprint, 104
xfs_mkfile, 105

xfs_ncheck, 105
xfs_quota, 104
xfs_repair, 104
xfs_rtcp, 104

UUIDs, 137

■V
v command, for entering visual mode, 47
var directory, 11
/var/log directory, logging and, 77
variables

env command for displaying, 31
for scripts, 194, 200–205

VeriSign, 337
vfat file system, 86
vg command prefix, 109
Vi text editor, 45, 151
Vim text editor, 45, 165
virsh command, for managing virtual

machines, 376
VIRT (total amount of memory), 159
virt-clone command, for virtual machines,

375
virt-install command, for virtual

machines, 374
virt-manager command, for virtual

machines, 370–374
virt-viewer command, for virtual

machines, 375
virtual hosts, 332
virtual machines

cloning, 375
JeOS for, 383–384
KVM virtualization for, 366–376
managing via libvirt tools, 374–376, 368
Xen virtualization for, 376–382

virtual network bridges, 367
virtual terminals, 173
VirtualBox, 364
virtualization, 15, 363–3848
visudo command, 45
visudo text editor, 150
VMware, 364, 383
VMware ESX, 364, 383

■INDEX402

■W
w3m utility, 50
wa (waiting), 158
which command, for finding commands,

120, 196
while loop, 206, 209, 214
who command, for displaying logged-in

users, 216
Window Shares, mounting, 85
windows managers, 65, 66
Windows, installing as guest operating

system, 368, 379
wireshark command, for analyzing

network packets, 250
Wireshark, packets analysis via, 251
worker mode, Apache web server and, 339
workstations, Samba domain environment

and, 321
:wq! command, for saving and quitting,

36, 46
write (w) permission, 129

■X
X forwarding, 261
x option, for deleting single characters, 47
Xen, 364, 376–382
xen-create-image command, 381
xen-tools.conf configuration file, 381
XEN virtualization, 171
XFS file system, 12, 83, 86, 103

benefits of, 105
delayed allocation and, 104
preallocation and, 104
rmmod module and, 180

xfs_admin utility, 104
xfs_bmap utility, 104
xfs_check utility, 104
xfs_copy utility, 104
xfs_db utility, 104
xfs_growfs utility, 104
xfs_info utility, 104
xfs_io utility, 104
xfs_logprint utility, 104
xfs_mkfile utility, 105
xfs_ncheck utility, 105
xfs_quota utility, 104
xfs_repair utility, 104
xfs_rtcp utility, 104
xinetd daemon, 283
xinetd service, 292–295
xinetd.conf file, 293
xm commands, for Xen management, 382
xm dmesg command, for displaying

Xen-related features, 380

■Y
y command, for copying text, 47
Yellow Pages, 236

■Z
zero generator, 43
zombie processes, 154, 157
zone definitions, 275
zsh shell, 30

■INDEX 403

	cover.jpg
	front-matter.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	back-matter.pdf

