
James Turnbull

Pulling Strings with

Puppet
Configuration Management Made Easy

CHAPTER 1	 Introducing Puppet . 1
CHAPTER 2	 Installing and Running Puppet . 11
CHAPTER 3	 Speaking Puppet . 41
CHAPTER 4	 Using Puppet . 89
CHAPTER 5	 Reporting on Puppet . 121
CHAPTER 6	 Advanced Puppet . 131
CHAPTER 7	 Extending Puppet . 153

Books for professionals by professionals®

Pulling Strings with Puppet:
Configuration Management Made Easy
Dear Reader,

Configuration management and automation of technology have become increasingly
important in IT. Environments have become more complex and extensive, keeping
costs low has become critical, and operational errors have increasingly become the
cause of outages. New techniques, methodologies, and tools for managing infrastruc-
ture are needed. This book details one such tool, Puppet: a Ruby-based open source
configuration management and automation tool for Linux and Unix platforms.

With Puppet, a central master host securely manages and configures remote hosts.
Puppet uses an abstraction language to describe the configuration of your hosts. It
then takes care of implementing that configuration on your hosts. You can configure a
particular package to be installed, and Puppet will handle its installation on Linux and
Unix platforms like Debian, Red Hat, Solaris, AIX, OS X, and a number of other plat-
forms without your needing to know how to manage packages on those platforms.

This book introduces you to Puppet and how to install and configure it. It demonstrates
how Puppet can configure your environment with extensive examples. I’ll show you how
Puppet can manage packages, services, users and groups, files, and a wide variety
of other configuration components on your hosts.

The book also looks at Facter, Puppet’s system inventory tool, which interrogates
and makes use of data on your hosts to customize per host configuration. You’ll learn
how to report on your configuration with Puppet and how to extend it and Facter to
meet the requirements of your environment.

By the end of this book, you’ll discover how easy it is to build an efficient, cost-
effective, powerful, and automated configuration management system that will make
administrating your hosts simple and your life easier.

James Turnbull

Author of

Pro Nagios 2.0

Hardening Linux

Turnbull
Pulling Strings w

ith Puppet

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain
the information you could get based on intensive research yourself or if you were to attend a
conference every other week—if only you had the time. They cover the concepts and techniques
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your
choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can’t afford to be without them.

this print for content only—size & color not accurate spine = 0.408" 192 page count

User level:
Beginner–Intermediate

www.apress.com
SOURCE CODE ONLINE

192
pages

Available as a
PDF Electronic Book
or Print On Demand

Pulling Strings with Puppet
Configuration Management
Made Easy

JAMES TURNBULL

Pulling Strings with Puppet: Configuration Management Made Easy

Copyright © 2007 by James Turnbull

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-978-5

ISBN-10: 1-59059-978-0

eISBN-13: 978-1-4302-0622-4

Printed and bound in the United States of America (POD)

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trade-
marked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the United
States and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written with-
out endorsement from Sun Microsystems, Inc.

Lead Editors: Jason Gilmore, Joseph Ottinger

Technical Reviewer: Dennis Matotek

Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick, Jason Gilmore,
Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas

Copy Editor: Ami Knox

Associate Production Director: Kari Brooks-Copony

Compositor: Richard Ables

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley, CA
94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

This book is dedicated to Ruth Brown, who makes me laugh, and to my family for their continued
support.

About the Author . ix

About the Technical Reviewer . xi

Acknowledgments . xiii

Introduction . xv

■CHAPTER 1 Introducing Puppet . 1

What Is Puppet?. 3
What Makes Puppet Different?. 3
How Does Puppet work? . 4

A Declarative Language . 5
A Transactional Layer. 7
A Resource Abstraction Layer . 7

Puppet Performance and Hardware . 7
The Future for Puppet . 8
Resources . 8

Web. 9
Mailing Lists . 9
IRC . 9

■CHAPTER 2 Installing and Running Puppet . 11

Installation Prerequisites . 11
Installing Ruby. 12
Installing Ruby from Source . 12
Installing Ruby and Ruby Libraries from Packages 13
Installing Facter . 15
Installing Facter from Source . 15
Installing Facter from Package. 16
Installing RDoc. 17

Installing Puppet . 18
Installing from Source . 18
Installing Puppet by Package . 20
Installing Puppet from a Ruby Gem . 21

Getting Started with Puppet . 23
Starting the Puppet Master . 23
Starting the Puppet Client . 25

Contents

v

Signing Your Client Certificate . 26
Running the Puppet Daemons . 28
Configuring Puppet . 28

The [main] Configuration Namespace . 32
Configuring puppetmasterd . 33
Configuring puppetd . 35
Configuring puppetca . 38

Resources . 40
Web. 40
Mailing Lists . 40

■CHAPTER 3 Speaking Puppet . 41

Defining Configuration Resources . 42
Resource Titling. 42
Resource Attributes . 44
Resource Style. 45
Resource Defaults . 46
Collections of Resources . 47
Classes and Subclasses. 47
Classes Relationships . 48
Class Inheritance . 49
Definitions . 50
Qualifying Definitions. 53
Variables . 53
Variable Scoping . 54
Variables and Class Inheritance . 55
Qualified Variables . 56
Variables and Metaparameters . 57
Arrays . 58
Conditionals. 59

Creating Nodes . 62
Node Inheritance . 64
Node Inheritance and Variable Scope . 66
Default Nodes . 68
Node Conditionals . 69

Virtual Resources . 69
Realizing with a Collection . 69
Realizing with the realize Function. 70

Facts . 71
Resource Types . 74

Managing Cron Jobs . 75

■CONTENTSvi

Using a Filebucket . 76
Managing Host Files . 77
Managing SSH Host Keys. 78
Tidy Unwanted Files. 78

Functions. 79
Logging Functions . 81
Checking for Existence with defined . 81
Generating Errors with fail . 82
Adding External Data with file . 82
Using generate . 83
Qualifying Definitions Using search . 84
Using tag and tagged. 85
Using Templating . 86

Resources . 88
Web. 88

■CHAPTER 4 Using Puppet . 89

Our Example Environment . 89
Manifest Organization . 91

Importing Manifests. 91
Managing Manifests with Subversion. 93

Defining Nodes . 95
Our First Classes . 98
Managing Users and Groups . 101
Managing Users. 102
File Serving . 106
Modularizing Our Configuration . 109

MySQL Module . 112
Postfix Module . 113
Apache Module . 115

Resources . 119

■CHAPTER 5 Reporting on Puppet. 121

Getting Started. 121
Configuring Reporting . 124
Report Processors . 125

log. 125
tagmail . 126
rrdgraph . 127

Custom Reporting . 129
Resources . 130

■CONTENTS vii

■CHAPTER 6 Advanced Puppet . 131

External Node Classification . 131
Storing Node Configuration in LDAP . 136
Puppet Scalability . 142

Installing Mongrel . 144
Installing Apache . 145
Configuring Apache As a Proxy. 146
Configuring Puppet for Mongrel . 150
How Far Will Puppet Scale? . 151

Resources . 151

■CHAPTER 7 Extending Puppet . 153

Extending Facter . 153
Configuring Puppet for Custom Facts . 154
Writing Custom Facts. 155
Testing Your Facts . 157

Extending Puppet . 158
Creating the Type. 159
Properties . 161
Parameters . 161
Creating Our Provider . 162
Distributing Our New Type . 165

Resources . 168

■CONTENTSviii

■JAMES TURNBULL works for the National Australia Bank as a Security Architect. He is the author of
Hardening Linux, which focuses on hardening Linux hosts, and Pro Nagios 2.0, which focuses on enter-
prise management using the Nagios open source tool.

James has previously worked as an executive manager for IT security at the Commonwealth Bank
of Australia, the CIO of a medical research foundation, manager of the architecture group of an out-
sourcing company, and in a number of IT roles in gaming, telecommunications, and government. He is
an experienced infrastructure architect with a background in Linux/Unix, AS/400, Windows, and stor-
age systems. He has been involved in security consulting, infrastructure security design, SLA, and
service definition, and has an abiding interest in security metrics and measurement.

About the Author

ix

■DENNIS MATOTEK was born in a small town in Victoria, Australia
called Mildura. Like all small towns, the chronic lack of good strong
coffee drives the young to search further afield. Dennis moved to
Melbourne where good strong coffee flows through the city in a
river called the Yarra. However, it was in Scotland that Dennis was
introduced to Systems Administration.

Scotland, on the technological edge, had 486DX PCs and
a Vax. On arriving back in Melbourne, after staying awake
for 24 hours at an airport minding his bags, Dennis was
given a job interview—jobs in those days fell down like
snowflakes from the sky.

Since that time, Dennis has stayed predominately in
Melbourne working with IBM AS400s (iSeries) for 6 years and Linux for 7 years.

Dennis also wrote and directed some short films and plays. He has a lovely LP (life part-
ner) and a new little boy called Zigfryd whom he misses terribly when at work, which is most
of the time.

About the Technical Reviewer

xi

Acknowledgments

xiii

Luke Kanies––for writing Puppet and being kind enough to answer my numerous queries and ques-
tions.

The many members of the Puppet community who answered numerous questions and generally
let me bother them.

Dennis Matotek for his technical review.
The team at Apress-Jason Gilmore, Joseph Ottinger, Beth Christmas, Ami Knox, Tina Nielsen, and

Julie Miller-without all of you, none of this would be possible.
Jim Sumser for getting me started.

This book introduces the reader to Puppet––a Ruby-based configuration management and automation
tool for Linux and Unix platforms. The book is a beginning-to-intermediate guide to Puppet. It is aimed
at system administrators, operators, systems engineers, and anyone else who has to manage Linux and
Unix hosts.

This book requires a basic understanding of Linux/Unix systems administration including package
management, user management, using a text editor such as vi, and some basic network and service
management skills. If you wish to extend Puppet, you will need to have an understanding and some
aptitude with the Ruby programming language. But for simple expansion of Puppet, basic Ruby skills
are all that are needed. Additionally, as a programming language, Ruby is very approachable and easy
to pick up.

The book starts with explaining how Puppet works and then moves on to installation and configu-
ration. Each succeeding chapter introduces another facet of Puppet right up to demonstrating how you
can extend Puppet yourself.

Chapter 1: Introduction to Puppet

Chapter 2: Installing and configuring Puppet

Chapter 3: Puppet's configuration language

Chapter 4: Using Puppet, which you learn through practical examples

Chapter 5: Reporting with Puppet

Chapter 6: Advanced Puppet features including integration with LDAP, performance management,
and scalability

Chapter 7: Extending Puppet and Facter including adding your own Facter “facts” and Puppet
configuration types

All of the source code, associated scripts, and configuration examples can be downloaded from the
Apress web site. You can also submit any errata at the site.

If you have any questions and queries about the book, please do not hesitate to e-mail me at
james@hardening-linux.com.

Introduction

mailto:james@hardening-linux.com

CHAPTER 1

Introducing Puppet

The lives of system administrators and in general individuals employed in IT’s operational
sector often revolve around a series of repetitive tasks: configuring hosts, creating users,
and managing applications, daemons, and services. Often these tasks are repeated many
times in the life cycle of one host in order to add new configuration or remedy configuration
that has changed through error, entropy, or development. These tasks can be an ineffective
use of time and effort.

The usual first response to these tasks is to try to automate them. This leads to the
development of custom-built scripts and applications. In my first role as an administrator, I
remember creating a collection of Control Language (CL) and Rexx scripts that I
subsequently used to manage and operate a variety of infrastructure. Very little of the
scripts developed in this ad hoc manner are ever published, documented, or reused. Indeed,
copyright for most custom material rests with the operator or administrator’s organization
and is usually left behind when they move on. This leads to the same tool being developed
over and over again.

Custom scripts and applications rarely scale to suit large environments and often have
issues of stability, flexibility, and functionality. Such scripts also tend to suit only one target
platform, resulting in situations such as the need to create a user creation script for BSD,
one for Linux, and still another for Solaris. This increases the time and effort required to
develop and maintain the very tools you are hoping to use to reduce administrative efforts.

Other approaches include the purchase of configuration management applications like
Opsware, BMC’s CONTROL-M, and CA’s Unicenter products. But commercial tools
generally suffer from two key issues: price and flexibility. Cost can quickly become an
issue because the more types of platform and number of hosts that you are managing, the
greater the cost. Commercial tools are also usually closed source and are limited to the
features available to them, meaning that if you want to extend them, do something custom
or specific to your environment, you need to request a new feature, potentially with a
waiting period and associated cost.

Free and Open Source Software (FOSS) systems and configuration management tools
offer an alternative to both custom and commercial solutions, offering two key
opportunities for organizations:

2 Introducing Puppet

Turnbull

 • They are open and extensible.

 • They are free!

With FOSS products, the tool’s source code is at your fingertips, allowing you to
develop your own enhancements or adjustments. You are also part of a community of
developers who share the vision for the development of that tool. And you and your
organization can in turn contribute to that vision. This ability to shape the direction of the
tools you are using can certainly result in a more flexible outcome for your organization.

The price tag is also obviously an important consideration for the purchase of any tool.
While you sacrifice paid support for many tools, you do get the tool itself at no cost.
Additionally, the active Puppet community can and does provide support. With the price of
many commercial configuration management tools running into hundreds of thousands of
dollars, the potential cost savings from the use of an open source tool can be substantial.

In the configuration management space, a variety of open source tools are available, in
various stages of development and maturity. Some of the key products in this area are

 • Puppet (http://puppet.reductivelabs.com/):

 A configuration management tool written in Ruby with a client-server model that
uses a declarative language to configure clients.

 • cfengine (http://www.cfengine.org/):

 One of the first open source configuration management tools, released in 1993, it also
has a client-server model and is commonly used in educational institutions.

 • LCFG (http://www.lcfg.org/):

 A client-server configuration management tool that uses XML to define
configuration.

 • Bcfg2 (http://trac.mcs.anl.gov/projects/bcfg2):

 A client-server configuration management tool written in Python. It uses
specifications and the client responses to configure target hosts.

This book focuses on implementing and using one of these open source products,
Puppet, to manage the configuration of your hosts, applications, daemons, and services.

http://puppet.reductivelabs.com/):
http://puppet.reductivelabs.com/):
http://www.cfengine.org/):
http://www.cfengine.org/):
http://www.lcfg.org/):
http://www.lcfg.org/):
http://trac.mcs.anl.gov/projects/bcfg2):
http://trac.mcs.anl.gov/projects/bcfg2):

Introducing Puppet 3

Turnbull

What Is Puppet?

Puppet is an open source Ruby-based systems and configuration management tool relying
upon a client-server deployment model. It is licensed using the GPLv2 license and is
principally developed by Luke Kanies. Kanies has been involved in Unix and systems
administration since 1997, and Puppet has developed from that experience. Unsatisfied with
existing configuration management tools, Kanies began working in tool development in
2001 and in 2005 founded Reductive Labs, an open source development house focused on
automation tools. Shortly after this, Reductive released their flagship product, Puppet.

What Makes Puppet Different?

Many systems and configuration management products, for example, cfengine, work in a
similar manner. So what makes Puppet different? Puppet’s defining characteristic is that it
speaks the local language of your target hosts. This allows Puppet to define systems
administration and configuration tasks with generic instructions on the Puppet server. These
instructions are often called recipes.

Puppet’s recipe syntax allows you to create a single script that allows you to create a
user on all your target hosts. In turn, this recipe is interpreted and executed on each target
host using the correct local syntax for that host. For instance, if the recipe is executed on a
Red Hat Linux server, the user would be created with the useradd command. If the same
recipe is executed on a FreeBSD target, the adduser command would be executed. Because
Puppet recipes are so portable, community members and contributors share recipes for a
variety of activities on the Puppet website, mailing list, and IRC channel!

The next area Puppet excels in is flexibility. As a result of its open source nature, you
always have free access to Puppet’s source code, meaning if you have a problem and you
have the skills to do so, you can alter or enhance Puppet’s code to suit your environment.
Additionally, community developers and contributors regularly enhance and add to the
functionality of Puppet. A large community of developers and users also contribute to
providing documentation and support for Puppet.

Puppet is also readily extensible. Functions to support custom packages and
configuration unique to your environment can be quickly and easily added to your Puppet
installation. In addition, the Puppet community regularly adds code and packages that you
can modify or incorporate into your environment.

I’ll show you just how easy this is in Chapter 7. These additions can also be readily
made without changing the core Puppet code, allowing you a clear upgrade and support
path as Puppet develops.

4 Introducing Puppet

Turnbull

Finally, Puppet makes use of another Ruby-based tool, Facter
(http://reductivelabs.com/projects/facter/). Facter is a system analysis tool that allows
you to query and return information about hosts that you can use in your Puppet
configuration as variables. This means you can write generic configuration instructions and
use Facter-returned variables to ensure the right values are configured on the right host.
This precludes the need for external databases, configuration files, or directories. I’m going
to look at Facter in more detail in Chapter 3 and how to add your own “facts” in Chapter 7.

How Does Puppet work?

With Puppet, central servers, called Puppet masters, are installed and configured. Client
software is then installed on the target hosts, called puppets or nodes, that you wish to
manage. Configuration is defined on the Puppet master, compiled, and then pushed out to
the Puppet clients when they connect.

To provide the client-server connectivity, Puppet uses XML-RPC web services running
over HTTPS on TCP port 8140. To provide security, the sessions are encrypted and
authenticated with internally generated self-signed certificates. Each Puppet client generates
a self-signed certificate that is then validated and authorized on the Puppet master.

Note ➡ Puppet currently uses XML-RPC web services, but at the time of writing a significant update and

refactor of the code was taking place to migrate it to a REST-based web services model

(http://en.wikipedia.org/wiki/Representational_State_Transfer). This migration should provide

much more efficient and elegant web service functionality.

Thereafter each client contacts the server, by default every half hour, to confirm that its
configuration is up to date. If new configuration is available or the configuration has
changed, it is recompiled and then applied to the client. If required, a configuration update
can also be triggered from the server, forcing configuration down to the client. If any
existing configuration has varied on the client, it is corrected with the original configuration
from the server. The results of any activity are logged and transmitted to the server.

You can see Puppet’s client server model in Figure 1-1.

http://reductivelabs.com/projects/facter
http://reductivelabs.com/projects/facter
http://en.wikipedia.org/wiki/Representational_State_Transfer

Introducing Puppet 5

Turnbull

Figure 1-1. Puppet client-server model

Puppet, however, is more than just a client-server configuration management tool—it’s
a tripartite architecture combining a declarative language, transactional layer, and resource
abstraction layer. Let’s take a closer look at each.

A Declarative Language

At the heart of how Puppet works is a language that allows you to articulate and express
your configuration. Your configuration components are organized into entities called
resources, which in turn can be grouped together in collections. Resources are made up of a
type, title, and a series of attributes. You can see an example of a simple resource in Listing
1-1.

6 Introducing Puppet

Turnbull

Listing 1-1. A Puppet Resource

file { "/etc/passwd":
 owner => "root"
}

The resource in Listing 1-1 alters the configuration of the /etc/passwd file, changing its
ownership to the root user. Inside Listing 1-1 the type being used is the file type. The
resource type tells Puppet what type of resource you are managing, for example, the user
and file types that are used for managing user and file operations on your nodes,
respectively. Puppet comes with a number of resource types by default including types to
manage files, services, packages, cron jobs, and file systems, among others. Inside our type
we’ve specified the file to be managed, /etc/passwd; this becomes the title of our resource.
When referring to the resource in other parts of our configuration, we’d reference this title.
Lastly, we’ve specified a single attribute, owner, which tells Puppet to set the ownership of
the file to the root user.

Note ➡ As you’ll learn in Chapter 7, you can also extend Puppet to add your own resource types.

We can extend beyond these single resources with collections. Collections allow you to
group together many resources; for example, an application such as Apache is made up of a
package, a service, and a number of configuration files. Puppet calls these collections
classes. Each of these components would be represented as a resource (or resources) and
then collected together in a class and applied to a node.

The Puppet language also defines the nodes you wish to configure. After a client is
connected to Puppet, a node definition can be created that defines what resources and
collections of resources are applied to each node. This allows you to apply appropriate
configuration to all nodes running a particular platform or a particular service, for example,
specifying all resources required for Red Hat Enterprise Linux nodes or all configuration
required for a database or web server.

The Puppet language also allows the use of features you’ll find in many programming
languages, such as variables, arrays, and conditional statements and clauses. We’ll examine
Puppet’s language in detail in Chapter 3.

Introducing Puppet 7

Turnbull

A Transactional Layer

Puppet’s transactional layer provides the engine of the Puppet client-server deployment.
Configurations are created and can be executed repeatedly on the target hosts. The Puppet
application architecture describes this sort of configuration as idempotent, meaning multiple
applications of the same operation will yield the same results.

Puppet is not fully transactional; your transactions aren’t logged (other than informative
logging) and hence you can’t roll back transactions as you can with many databases. You
can, however, model transactions in a noop (no operation) mode that allows you to test the
execution of your changes without actually making any changes.

A Resource Abstraction Layer

Lastly, Puppet provides an abstraction layer between your platform and the description of
your configuration. The resources defined in Puppet to configure your nodes are
independent from the commands, formats, and syntax required to configure those resources
locally on your nodes. So it does not matter whether you want to create a user on one of
many platforms, Puppet considers the definition of that user to be identical.

Puppet does this abstraction using providers. Providers are implementations of resource
types. In the provider model, a resource is defined in Puppet. The resource is then set to be
applied on a node or nodes. Puppet then detects the platform of the node, and the
appropriate provider for that platform is then called and used to actually implement the
configuration on the node. For example, when creating a user, we define a user type
resource in Puppet. We then tell Puppet that we want to create that user on all Mac OS X
and OpenBSD nodes. Then when an OS X node connects, the OS X user provider is called
and the user created. When an OpenBSD node connects, the OpenBSD user provider is
called and the user created. Some platforms share providers, for example, managing files on
many platforms is similar, if not identical. Some other resource types, for example, the
package resource type, which installs and manages software packages, have numerous
providers, as package management is different on a variety of platforms.

Puppet Performance and Hardware

Understanding of Puppet’s scalability and performance is still immature at the time of
writing. There are two facets to performance management—the number of nodes connected

8 Introducing Puppet

Turnbull

and the amount of configuration defined on each node. There are no clear-cut guidelines
around how many nodes and how much configuration on each can be supported on a single
master server or around the scale and capacity of hardware required to run the master.
Anecdotal evidence suggests that 50 to 100 nodes with a moderate amount of configuration
can be managed on a single CPU master with 2GBs of RAM. More nodes will obviously
require scaled up hardware.

Internally Puppet uses the WEBrick web server to interface with clients. The WEBrick
server does have performance limitations and hence does not provide a fully scalable
solution. As an alternative, Puppet also has the capability of internally making use of the
more scalable Mongrel web server instead of WEBrick. A load balancer, such as Apache
with mod_proxy or Pound, is then placed in front of Puppet. This allows the use of multiple
load-balanced Puppet master instances, which should result in a more scalable solution.
Generally, the WEBrick web server no longer performs adequately if you are managing 50
or more nodes, and migration to Mongrel will probably be needed.

Note ➡ In Chapter 6, I’ll demonstrate how to replace WEBrick with Mongrel.

Sites have reported that when running Puppet with load balancing and Mongrel, node
volumes of 5000 or more are feasible with appropriate hardware.

The Future for Puppet

Lastly, it is very important to remember that Puppet is a young tool and is still in the midst
of development and change. The Puppet community is growing quickly, and many new
ideas, developments, patches, and recipes appear every day. But this does make it important
to keep an eye on the Puppet mailing lists and the IRC channel, #puppet on Freenode, as
new enhancements that could help you better manage your configurations appear
frequently.

Resources

There are a number of useful resources available to get you started with Puppet.

Introducing Puppet 9

Turnbull

Web

 • Puppet documentation:

 http://reductivelabs.com/trac/puppet/wiki/DocumentationStart

 • Puppet FAQ:

 http://reductivelabs.com/trac/puppet/wiki/FrequentlyAskedQuestions

 • About Puppet:

 http://reductivelabs.com/trac/puppet/wiki/AboutPuppet

 • Introduction to Puppet:

 http://reductivelabs.com/trac/puppet/wiki/PuppetIntroduction

 • Who is using Puppet:

 http://reductivelabs.com/trac/puppet/wiki/WhosUsingPuppet

Mailing Lists

 • Puppet mailing lists:

 http://reductivelabs.com/trac/puppet/wiki/GettingHelp

IRC

 • Puppet IRC channel:

 irc://irc.freenode.net/puppet

http://reductivelabs.com/trac/puppet/wiki/DocumentationStart
http://reductivelabs.com/trac/puppet/wiki/FrequentlyAskedQuestions
http://reductivelabs.com/trac/puppet/wiki/AboutPuppet
http://reductivelabs.com/trac/puppet/wiki/PuppetIntroduction
http://reductivelabs.com/trac/puppet/wiki/WhosUsingPuppet
http://reductivelabs.com/trac/puppet/wiki/GettingHelp
irc://irc.freenode.net/puppet

10 Introducing Puppet

Turnbull

CHAPTER 2

Installing and Running

Puppet

This chapter focuses on installing and running Puppet master servers and clients (also
known as nodes). There are a variety of methods you can use to install Puppet masters and
clients: from source, packages, or as a Ruby Gem. This chapter will take you through the
steps required for installation using each of these methods.

The Puppet server and clients are designed to run on Unix and Linux platforms;
currently there is no port for Windows (although it may be possible to run Puppet under
Cygwin). This book will only cover installation on Unix and Linux platforms. Both the
master server and the clients will run successfully on a variety of BSD flavors, Linux
distributions, Sun Solaris, Mac OS X, and indeed most Unix-like platforms that support
Ruby.

The chapter will also take you through configuring and running both the Puppet master
and client. By the end of this chapter, you should have an introduction to how both the
master and clients can be configured. You will also be able to start and stop the master and
clients on a variety of platforms.

Note ➡ When referring to the Puppet client, we’ll distinguish between the terms client and node. The term

client refers to the Puppet client daemon that connects to the Puppet master and retrieves the configuration.

The term node refers to the underlying host to which configuration is applied.

Installation Prerequisites

The process of installing Puppet’s master and client components is quick and easy, but you
will need to install some prerequisites first. The prerequisites are required for both hosts
that run the Puppet master or client (or both—your Puppet master can also be a Puppet
node). These prerequisites include the Ruby interpreter, select Ruby libraries, and Facter.

12 Installing and Running Puppet

Turnbull

Installing Ruby

As Puppet is a Ruby-based application, the first thing you need to ensure you have installed
is Ruby and a few key Ruby libraries. These days, many Linux and other Unix-like
platforms come with a Ruby package, and you can install this package and any required
library packages. If your distribution does not have a package, you can install Ruby from
source.

Installing Ruby from Source

You can download the latest Ruby source package from http://www.ruby-
lang.org/en/downloads/. To support Puppet, you will need at least Ruby version 1.8.1 or
higher. The current Ruby release, at the time of writing, is 1.8.6. Download the source
package and unpack it.

wget ftp://ftp.ruby-lang.org/pub/ruby/ruby-1.8.6.tar.gz
tar -zxf ruby-1.8.6.tar.gz

Change into the resulting directory and configure the package.

cd ruby-1.8.6
./configure

By default, on most systems the Ruby binary will be installed into /usr/local/bin. You
can override this with the --prefix configure option like so:
./configure --prefix=/usr

Here I’ve specified /usr as the target prefix directory. Next, we need to make and install the
Ruby files like so:

make
make install

You can now test that Ruby is installed by executing the following:

ruby --version
ruby 1.8.6 (2007-03-13 patchlevel 0) [i686-linux]

If your Ruby version is returned, installation has been successful. If it is not returned,
confirm the ruby binary is in your path or check any error messages from the make and/or
installation process. Installing Ruby in this manner will install all of the required libraries
that Puppet needs to function properly.

http://www.ruby-lang.org/en/downloads
http://www.ruby-lang.org/en/downloads
http://www.ruby-lang.org/en/downloads
http://www.ruby-lang.org/en/downloads
ftp://ftp.ruby-lang.org/pub/ruby/ruby-1.8.6.tar.gz

Installing and Running Puppet 13

Turnbull

Installing Ruby and Ruby Libraries from Packages

Many Linux distributions and Unix operating systems have Ruby packages available for
them. These include Red Hat Enterprise Linux and Fedora, Debian, Ubuntu, SuSE, and
Mandriva. Some distributions bundle all the required Ruby binaries and libraries in a single
package. Other distributions separate the core development environment and the libraries
into individual packages. In Table 2-1, I have detailed the package and/or port names for
the required packages for a variety of BSD and Linux distributions.

Table 2-1. Package Names for Ruby and Ruby Libraries

OS Ruby Ruby Libraries Additional Package

Debian ruby libruby libopenssl-ruby libxmlrpc-ruby

FreeBSD ruby

Gentoo ruby

Mandriva ruby

NetBSD ruby

OpenBSD ruby

Red Hat ruby ruby-libs

SuSE ruby

Ubuntu ruby libruby libopenssl-ruby libxmlrpc-ruby

So, if we’re installing Ruby and its libraries on a Red Hat Fedora host, we need to use
its package management system to install the ruby and ruby-libs packages like so:
yum install ruby ruby-libs

Installing the Ruby package and libraries may not always install all of the required
libraries. If the following base libraries are not installed as part of your base Ruby
installation, you may need to selectively install the missing libraries.

14 Installing and Running Puppet

Turnbull

 • base64

 • cgi

 • digest/md5

 • etc

 • fileutils

 • ipaddr

 • openssl

 • strscan

 • syslog

 • uri

 • webrick

 • webrick/https

 • xmlrpc

The two libraries that are often not packaged with distributions are the Ruby OpenSSL
Library and Ruby XMLRPC Library. You can confirm if both these libraries are installed
by running the following commands:

ruby -ropenssl -e "puts :installed"
ruby -rxmlrpc/client -e "puts :installed"

If both commands return installed, then both libraries are installed. If they return
ruby: no such file to load – packagename (LoadError)

where packagename is the name of the package, openssl for example, whose presence is
being tested, you will need to install the missing libraries.

Tip ➡ If you want to test for the presence of any library, simply specify the library name as the value of the -
r variable in the ruby command.

In Table 2-1, I’ve also listed, for some distributions, additional packages that are needed
to support a Puppet installation. For example, in the case of Debian and Ubuntu, you can

Installing and Running Puppet 15

Turnbull

install the libopenssl-ruby package to add the Ruby OpenSSL Library and the libxmlrpc-
ruby package to add the Ruby XMLRPC Library.

Caution ➡ Not all packages available are the most up-to-date versions of software. Always check that the

version installed is suitable to run any required software and functionality.

Ruby is also available for Sun Solaris and ships with the Solaris 10 Community release
(http://www.sun.com/software/solaris/freeware/). For Mac OS X, you can use the
MacPorts or FinkCommander applications to install Ruby. Or if your Mac runs the Leopard
OS X release, Ruby should be bundled as part of the operating system. It is possible to
install Ruby on HP UX, and you can find a port at
http://hpux.connect.org.uk/hppd/hpux/Shells/ruby-1.8.4/. Lastly, you can compile Ruby
versions later than 1.8.5 on AIX.

Installing Facter

Puppet relies on the Facter tool to provide information about hosts. Facter is also developed
by Puppet’s developers, Luke Kanies and Reductive Labs, and is written in Ruby. It is a
cross-platform Ruby library for returning “facts” about the operating system of a host, for
example, IP addresses, operating system versions, and the like. It can be installed from
source, or some platforms have a Facter package available. I’ll demonstrate both options.

Installing Facter from Source

Facter is available as a source package from the Reductive Labs site at
http://www.reductivelabs.com/downloads/facter/. Download the latest package, release
1.3.8 at the time of writing, and unpack the archive.

wget http://www.reductivelabs.com/downloads/facter/facter-1.3.8.tgz
tar -zxf facter-1.3.8.tgz
cd facter-1.3.8

Now install the facter binary and libraries using the install.rb script.
ruby install.rb

You can confirm that Facter is installed and working like so:

http://www.sun.com/software/solaris/freeware
http://www.sun.com/software/solaris/freeware
http://hpux.connect.org.uk/hppd/hpux/Shells/ruby-1.8.4
http://hpux.connect.org.uk/hppd/hpux/Shells/ruby-1.8.4
http://www.reductivelabs.com/downloads/facter
http://www.reductivelabs.com/downloads/facter
http://www.reductivelabs.com/downloads/facter/facter-1.3.8.tgz

16 Installing and Running Puppet

Turnbull

facter --version
1.3.8

This should return the version of the currently installed Facter.
Running facter without any options will return a list of all the facts and their values

that are currently available on your host.

Installing Facter from Package

Not all platforms have a Facter package available, but some do. You can install this
package with your chosen platform’s package management system. Table 2-2 presents a list
of all of the platforms with Facter ports or packages available at the time of writing.

Table 2-2. Facter Packages

Platform Facter Package Name

Debian facter

Fedora facter

FreeBSD facter

Gentoo facter

OpenBSD ruby-facter

Ubuntu facter

Tip ➡ If you install Facter on Debian, you may also want the lsb-release package (if it is not already

installed). This package provides Facter with Linux Standard Base facts that help you identify specific Debian

and derived distributions. Most other Linux distributions install this package by default, for example, Ubuntu

and Red Hat (redhat-lsb).

For example, if you are using Gentoo, you can add the Facter package by merging it
like so:
emerge facter

Installing and Running Puppet 17

Turnbull

For RPM-based distributions, there are three sources of RPM files available: at
Reductive’s site (https://reductivelabs.com/downloads/rpm/), at Dag Wieers RPM
repository (http://dag.wieers.com/rpm/packages/facter/), and via Red Hat employee
David Lutterkort’s repository (http://people.redhat.com/dlutter/yum/).

There is also a Facter package available for OS X. The package combines both Facter
and Puppet and can be downloaded from
http://reductivelabs.com/downloads/packages/OSX/. Reductive reports that the build
appears to be stable, but the OS X version has not been extensively tested.

You can confirm Facter is installed by running it with the --version option to return the
release.

Installing RDoc

You may want to optionally install the RDoc package. RDoc is the Ruby Standard
Documentation System. It allows Ruby applications to return help text and documentation
when prompted. RDoc may come with Ruby versions later than 1.8.2, and many platforms
still have a separate package for RDoc. If you don’t have RDoc installed, your Facter or
Puppet binaries will not return any help text when prompted, for example:

facter --help
No help available unless you have RDoc::usage installed

You can confirm whether you have RDoc installed or not by checking for the presence
of the RDoc usage library like so:

ruby -rrdoc/usage -e "puts :installed"
installed

If the command returns installed, you already have RDoc. But if it returns
ruby: no such file to load -- rdoc/usage (LoadError)

you will need to install RDoc if you wish documentation to be returned by the Puppet
binaries.

In Table 2-3, I have listed those platforms that provide separate RDoc packages.

https://reductivelabs.com/downloads/rpm
https://reductivelabs.com/downloads/rpm
http://dag.wieers.com/rpm/packages/facter
http://dag.wieers.com/rpm/packages/facter
http://people.redhat.com/dlutter/yum
http://people.redhat.com/dlutter/yum
http://reductivelabs.com/downloads/packages/OSX
http://reductivelabs.com/downloads/packages/OSX

18 Installing and Running Puppet

Turnbull

Table 2-3. RDoc Packages

Platform RDoc Package Name

Debian rdoc

FreeBSD ruby-doc-stdlib

Gentoo rdoc

NetBSD ruby-doc-stdlib

Red Hat ruby-rdoc

Ubuntu rdoc

Your package management system may also prompt you to install some dependencies
when you install RDoc; for example, the irb package is also commonly required.

Installing Puppet

As I discussed in Chapter 1, the software elements of Puppet consist of a server and a client.
Now that you’ve installed the required prerequisites, I am going to demonstrate how to
install Puppet. You can install Puppet via source, from a package on some platforms, and
using a Ruby Gem. I’ll demonstrate how to use all methods.

Tip ➡ If you build your servers with tools like Jumpstart or Kickstart, you can also include the Puppet client

(and its prerequisites) as part of your default build. That’ll help you to quickly add nodes to your Puppet

environment.

Installing from Source

The latest source package for Puppet is available from the Reductive Labs site at
http://reductivelabs.com/trac/puppet/wiki/DownloadingPuppet. It is available in two

http://reductivelabs.com/trac/puppet/wiki/DownloadingPuppet
http://reductivelabs.com/trac/puppet/wiki/DownloadingPuppet

Installing and Running Puppet 19

Turnbull

packages—stable and latest. The stable source package is the current production version,
and the latest version represents the latest development release of Puppet. For your
production environments, I recommend that you install the stable package and reserve the
latest version for your test or development environment.

Tip ➡ Puppet is actively developed, and version upgrades are frequent. I recommend regularly checking

back for updates and changes. Puppet’s latest source code is also available via Reductive Lab’s Git site at

http://reductivelabs.com/git/puppet/. This is the latest code and may have issues with stability, but

it represents the cutting edge of development and features.

The source package contains both the Puppet server and client—so we only need to
download one file.

wget --no-check-certificate https://reductivelabs.com/downloads/puppet/ ➥
puppet-0.22.4.tgz

Note ➡ You might need to add the --no-check-certificate option to wget if your host can’t validate

Reductive Lab’s certificate.

At the time of writing, the latest stable Puppet version is 0.22.4, and the current
development release is 0.23.2. Unpack the downloaded file and change into the resulting
directory.

tar -zxf puppet-0.22.4.tgz
cd puppet-0.22.4

Puppet is installed by executing the install.rb script contained in the package by
running it with Ruby like so:
ruby install.rb

You can then confirm Puppet is installed by running

puppet --version
0.22.4

The Puppet server and client are now both installed, and you can refer to the sections
“Configuring puppetmasterd” or “Configuring puppetd” for configuration instructions.

http://reductivelabs.com/git/puppet
https://reductivelabs.com/downloads/puppet

20 Installing and Running Puppet

Turnbull

Installing Puppet by Package

Puppet is available as a package for a number of platforms, but not all. At the time of
writing, packages are available for Debian, FreeBSD and OpenBSD, Gentoo, Red Hat
Fedora, and Ubuntu as part of their port or package management systems. Some packages
contain both the server and the client, while others have separate packages for each. I’ve
listed all the package names for each platform in Table 2-4.

Table 2-4. Puppet Packages

Platform Puppet Server Puppet Client

Debian puppetmaster puppet

Fedora puppet-server puppet

FreeBSD puppet NA

Gentoo puppet NA

OpenBSD ruby-puppet NA

Ubuntu puppet NA

Caution ➡ Remember that packages available for platforms may not always be up to date! You should

confirm the exact version number of any package you install to ensure it is sufficiently up to date.

There are also packages available for other platforms that are not delivered with the
platform itself. You can find packages for SuSE at
http://download.opensuse.org/repositories/system:/management/. There are two packages,
puppet for the client and puppet-server for the server.

Packages for OS X are available from Reductive Labs at
http://reductivelabs.com/downloads/packages/OSX/. These packages contain both Puppet
and Facter. As I mentioned earlier, the package appears stable but has not been extensively
tested.

Reductive also runs an RPM repository that has RPMs, Source RPMs, and specification
files that you can use to install on any RPM-based platforms, for example, Red Hat

http://download.opensuse.org/repositories/system:/management
http://download.opensuse.org/repositories/system:/management
http://reductivelabs.com/downloads/packages/OSX
http://reductivelabs.com/downloads/packages/OSX

Installing and Running Puppet 21

Turnbull

Enterprise Linux, CentOS, and Mandriva. You can find the repository at
https://reductivelabs.com/downloads/rpm/. The Puppet client is installed with an RPM
called puppet and the server with an RPM called puppet-server.

An employee of Red Hat, David Lutterkort, also maintains a yum repository that has
RPMs available for Fedora Core 5, 6, and 7 and Red Hat Enterprise Linux 4 and 5. The
yum repository is at http://people.redhat.com/dlutter/yum/.

There are Puppet packages for Solaris available from
http://reductivelabs.com/downloads/packages/SunOS/ or from the Blastwave project at
http://www.blastwave.org/packages/puppet. There are packages available for both x86 and
sparc systems.

Lastly, though not supported, there is some documentation about installing Puppet on
AIX at https://reductivelabs.com/trac/puppet/wiki/PuppetAIX.

Caution ➡ Always remember that third-party repositories should be used at your own risk.

Installing Puppet from a Ruby Gem

You can also install Puppet from a Ruby Gem. RubyGems is a package manager for Ruby,
much like the Perl CPAN repository. Before you can use it, you may need to install it. You
can check whether you have it installed by the presence of the gem binary.

RubyGems is available as a package with many platforms’ package management
systems; you can see a full list of these platforms in Table 2-5.

Table 2-5. RubyGems Packages

Platform RubyGems Package Name

Debian rubygems

FreeBSD rubygems

Gentoo rubygems

NetBSD rubygems

(Continued)

https://reductivelabs.com/downloads/rpm
https://reductivelabs.com/downloads/rpm
http://people.redhat.com/dlutter/yum
http://people.redhat.com/dlutter/yum
http://reductivelabs.com/downloads/packages/SunOS
http://www.blastwave.org/packages/puppet
http://www.blastwave.org/packages/puppet
https://reductivelabs.com/trac/puppet/wiki/PuppetAIX
https://reductivelabs.com/trac/puppet/wiki/PuppetAIX

22 Installing and Running Puppet

Turnbull

Platform RubyGems Package Name

OpenBSD rubygems

Red Hat rubygems

SuSE rubygems

Ubuntu rubygems

If there is not a RubyGems package for your platform, you can also download a source
package and compile it yourself. You can find the RubyGems source package by clicking
the downloads link at http://rubygems.org/.

Download the latest version of RubyGems and unpack it.

wget http://rubyforge.org/frs/download.php/20989/rubygems-0.9.4.tgz
tar zxf rubygems-0.9.4.tgz
cd rubygems-0.9.4

We use the ruby binary to run the setup.rb script to install RubyGems like so:
ruby setup.rb

This will install the gem binary, which we can check is functioning like so:

gem --version
0.9.4

Once you have installed RubyGems, you can use the gem binary to install Gems such as
Puppet. The Puppet Gem is located on the Reductive Labs site, and you can install it like
so:
gem install --remote --source http://reductivelabs.com/downloads puppet

Note ➡ When installing Puppet from a Gem, the Facter Gem will also be installed as a dependency.

At the end of the installation process, both the Puppet server and client will be installed.

Note ➡ You can also install the very latest cutting-edge Puppet from its Subversion source repository using

the instructions you can find at http://www.reductivelabs.com/trac/puppet/wiki/PuppetSource.

http://rubygems.org
http://rubygems.org
http://rubyforge.org/frs/download.php/20989/rubygems-0.9.4.tgz
http://reductivelabs.com/downloads
http://www.reductivelabs.com/trac/puppet/wiki/PuppetSource

Installing and Running Puppet 23

Turnbull

Getting Started with Puppet

Now that we’ve installed Puppet, let’s get the Puppet master daemon up and running and
add our first node. One of the strengths of the Puppet infrastructure is that most of the
functionality will run with default configuration, without any changes required on your
behalf. The only two things we need to get Puppet running are a user and group to run it and
a very basic configuration to apply to our first node. In this section, we will create that user
and group and then look at starting the Puppet master daemon for the first time using our
basic configuration.

First, we need to ensure we have a user and group for the master daemon to run as. If
you’ve installed Puppet from a package, generally a user and group, usually both called
puppet, will already have been created for you. You can check for this user by using the id
command like so:

id puppet
uid=503(puppet) gid=503(puppet) groups=503(puppet)

You could also check the /etc/passwd and /etc/group files directly:

grep 'puppet' /etc/passwd
puppet:x:503:503:puppet user:/home/puppet:/bin/bash

If the puppet user and group does not exist, you need to create them. I recommend
naming both user and group puppet as this is the default Puppet expects. So on a Red Hat
host you would create them like so:

groupadd puppet
useradd –M –g puppet puppet

Starting the Puppet Master

If we’ve got a user and group to run the Puppet master server, we can start it using the
puppetmasterd binary.

puppetmasterd
Manifest /etc/puppet/manifests/site.pp must exist

You can see that trying to start puppetmasterd has resulted in an error message stating that
the manifest, /etc/puppet/manifests/site.pp, must exist. A manifest is Puppet’s term for a

24 Installing and Running Puppet

Turnbull

text document that defines a particular configuration or configurations. These manifests are
then compiled and applied to a Puppet node to set the desired configuration on the node.

Puppet requires a central manifest file, called the site manifest, before the master
daemon can be started. By default, this site manifest file is called site.pp and is located in
the /etc/puppet/manifests directory (you’ll learn how to reconfigure this location later in
this chapter). This central manifest will ultimately contain all the configuration information
required to configure all your nodes, either directly in the file or by including and importing
other files.

But we’ll discuss your manifest configuration and how to structure it in Chapter 4. For
now, we just want to create a simple site.pp file so we can get Puppet started. First, let’s
create the directory:
mkdir –p /etc/puppet/manifests

Now, in Listing 2-1 you can see an example site.pp file.

Listing 2-1. Your First site.pp File

file { "/etc/passwd":
 owner => "root",
 group => "bin",
 mode => 644,
}

This site.pp file is very simple: it sets the user and group ownership of the /etc/passwd
file as well as its permissions. Indeed, our first site.pp file could do anything, we just need
a syntactically correct file so we can start the daemon; we will add to it further and look at
its syntax in Chapter 3.

Now in Listing 2-2, with our newly created site manifest, let’s try to start the master
daemon again.

Listing 2-2. Starting the Master Daemon

puppetmasterd --verbose --no-daemonize
info: Starting server for Puppet version 0.23.0
info: Parsed manifest in 0.01 seconds
info: Listening on port 8140
notice: Starting Puppet server version 0.23.0

This time we’ve started puppetmasterd with the --verbose and --no-daemonize options.
The --verbose option turns on verbose logging, and the --no-daemonize option forces the
master daemon to run in the foreground. This mode is ideal for troubleshooting your master
daemon.

Installing and Running Puppet 25

Turnbull

Puppet expects to find each node defined in a manifest, either directly in the site.pp file
or in another file and imported into the site manifest. The node definitions tell Puppet about
each host to be configured and exactly what configuration applies to them; for example, you
might have configuration specific to Debian hosts, or to web servers or hosts in a specific
location. When you are using node definitions, only the configuration defined to a particular
node will be applied to that node.

Puppet detects if you have any nodes defined. If you don’t have any defined, as we have
here, Puppet turns off node designation. With node designation turned off, all configuration
resources (excluding configuration in classes and definitions, which we’ll talk about in
Chapter 3) defined will be applied to all nodes that connect to the master. As we don’t have
any nodes, nor any substantive configuration, it’s easiest to turn off nodes until we’re ready
to define our first node. We’ll look at node definition in Chapter 3.

From Listing 2-2, you can see the master daemon has started and is listening on TCP
port 8140. You’ll need to open this port in any firewall you have running on the local host.
If the port is open and the master daemon has started without any error messages, you’re
now ready to connect your first node.

Starting the Puppet Client

Unlike the Puppet master daemon, the Puppet client daemon runs as the root user, allowing
it to perform the required configuration actions on your Puppet node. The first time you
start a node, it will generate a local self-signed certificate, connect to a master server
(which, in addition to distributing configuration to nodes, also acts as a Certificate
Authority) you specify, and request that the certificate be signed.

Tip ➡ Puppet relies on SSL to talk between client and server. You need to ensure that the time on your

server and client is correct and appropriately synchronized to ensure SSL functions correctly.

Once the certificate is signed, the node will request whatever configuration is specified
for that node. The master server will then compile and deliver that configuration. The
configuration is then implemented on the node. The Puppet client will then periodically, by
default every 30 minutes, check the master to see whether the configuration defined there is
unchanged. If it has changed, the client will request a recompilation of the configuration,
and the new configuration will be implemented on the node.

26 Installing and Running Puppet

Turnbull

Tip ➡ If you’re running the Puppet client on the same host as the server, your certificate will be automatically

signed.

Now, let’s start the Puppet client, as demonstrated in Listing 2-3.

Listing 2-3. Starting the Puppet Client

puppetd --server puppetmaster.testing.com --verbose --waitforcert 60
notice: Did not receive certificate

We’ve started the Puppet client daemon with three options, --server, --verbose, and --
waitforcert. The --server option tells the client the name of the server to connect to. You
should specify the server in the form of a fully qualified domain name. The --verbose
option enables verbose output for the client and stops it going into the background and
daemonizing.

The last option, --waitforcert, tells the client to check every 60 seconds to see whether
a signed certificate is returned from the server. This option is generally only used when you
are connecting a new node and tells the client daemon to keep checking the server for a
signed certificate. You can see in Listing 2-3 a log message indicating that the client is still
waiting for the certificate from the server:
notice: Did not receive certificate

If you check on your master daemon, you can see a corresponding log message:
notice: Host node1.testing.com has a waiting certificate request

This message indicates that the client’s request to have a certificate signed has been
received, and now you need to act on it.

Signing Your Client Certificate

So how does our node get a signed certificate, our node authenticated, and the node
configuration delivered? Certificate signing is done on the master server by the puppetca
tool. The puppetca tool controls the Puppet Certificate Authority and allows certificate
requests to be signed or revoked.

Installing and Running Puppet 27

Turnbull

Note ➡ You can also configure Puppet to automatically sign all incoming certificate requests (known as

autosign), either from every node or using coarse-grained authentication to selectively sign node requests

based on hostname or domain. Using both forms of autosign poses a serious security risk as they bypass

Puppet's security controls. I don’t recommend using autosign. But if you do, you can see more details about

autosign and Puppet’s certificate management at

http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity.

You can list all of the waiting certificate signing requests like so:

puppetca --list
node1.testing.com

You can see the --list option has listed our node’s signing request. Now, if we want to
sign it, we can use the puppetca command again like so:

puppetca --sign node1.testing.com
Signed node1.testing.com

We specify the option --sign together with the hostname of the node whose certificate we
wish to sign, in this case node1.testing.com. On the next line, we can see the command has
returned a message indicating that the certificate is now signed. The node is now
authenticated to the server.

If we go back to the client daemon, we will see logging messages indicating that the
certificate has been returned and the client has been started.

notice: Got signed certificate
notice: Starting Puppet client version 0.23.0

Then server will now compile and deliver any configuration for that node to the client
daemon to be applied. In our example site.pp file in Listing 2-1, we’re configuring the
/etc/passwd file and have changed its group ownership, from the default of root to bin. You
should now see the /etc/passwd file has the updated group ownership.

ls -la /etc/passwd
-rw-r--r-- 1 root bin 1579 2007-08-01 19:05 /etc/passwd

Now you’ve got a simple Puppet master daemon running and have your first node
connected. If you want you can now jump ahead to Chapter 3 to look at how to use Puppet
to configure your hosts, or you can continue to read this chapter to learn more about how to
run and configure Puppet.

http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity

28 Installing and Running Puppet

Turnbull

Running the Puppet Daemons

Like most Unix and Linux applications, the Puppet daemons, puppetmasterd and puppetd,
can be started and stopped using your platform’s standard spawn process. Indeed, if you’ve
installed Puppet from a package, you’ll usually find that the package installation process
has added the appropriate links and scripts to start the daemons when your host boots.

If you have manually installed Puppet from source, or your package installation has not
provided a control script, you can find a variety of scripts you can use in the Puppet source
package in the conf directory. Currently, there are scripts and configuration files for
FreeBSD (which can be easily adjusted for other BSD platforms), Gentoo, Red Hat, Solaris,
and SuSE. You can easily modify the files available to suit most platforms capable of
running Puppet.

Tip ➡ The Puppet daemons also do some signal handling. The Puppet master and client daemons both

recognize the SIGHUP signal, which forces the daemons to restart themselves. The SIGINT signal will

terminate both the master and client daemons. The Puppet client also processes the SIGUSR1 signal, which

causes the daemon to initiate a new connection to the server and check for new configuration.

Configuring Puppet

Your Puppet installation comes with a number of binaries that run the various Puppet
functions and daemons. We’ve already touched on the puppetd, puppetmasterd, and puppetca
binaries, but we’ll go into more detail on them in the sections that follow. This is not a
definitive guide to every configuration option but rather focuses on the key options. For a
full reference to every command-line and configuration file option, you can find a guide at
http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference.

Each Puppet binary can be configured via the command line or via a configuration file
or files. In Table 2-6, you can see a list of all the Puppet binaries and their purposes.

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference

Installing and Running Puppet 29

Turnbull

Table 2-6. Puppet Binaries

Binary Description

puppet A local configuration script interpreter and executor

puppetd The Puppet client daemon that runs on the managed host

puppetmasterd The Puppet master daemon that manages the nodes

puppetca The Puppet Certificate Authority server used to authenticate nodes to the master
server

puppetrun A tool that can connect to clients and force them to run their configurations

filebucket A client to send files to a Puppet file bucket

ralsh An interactive Puppet shell for converting current state into Puppet configuration
code

pi Tool to output documentation about Puppet types and providers

puppetdoc Tool that prints Puppet reference documentation (generally only used within other
Puppet tools)

Each binary has a different set of command-line options you can use to run and
configure it. The easiest way to see the configuration options used for each binary is by
executing the binary with the --help option like so:
puppet --help

Note ➡ To get the --help text, you need to have the RDoc library installed as discussed earlier in this

chapter.

Puppet configuration can also be managed via configuration file. Puppet’s configuration
file model is in the style of INI files. Each file is divided into namespace sections, and each
section name is enclosed in parentheses and named for the Puppet function it configures; for
example, the namespace used to configure the Puppet client daemon is called [puppetd].
The use of namespaces means options can be used in multiple namespaces, if the option is

30 Installing and Running Puppet

Turnbull

relevant to the binary being configured. For example, you can specify the same option
twice, with different values, in the [puppetd] and [puppetmasterd] namespaces, and each
binary will use only the configuration option contained in its own namespace.

In Table 2-7, I’ve listed the key namespaces in the configuration file.

Table 2-7. Configuration File Namespaces

Section Description

main General configuration options for multiple elements of Puppet

puppetd Configuration options related to the Puppet client daemon

puppetmasterd Configuration options related to the Puppet master daemon

You can see an example of a Puppet configuration file in Listing 2-4.

Listing 2-4. Puppet Configuration File

[main]
vardir = /var/lib/puppet
logdir = /var/log/puppet

[puppetd]
localconfig = $vardir/localconfig

You can see we’ve defined two namespaces, [main] and [puppetd], in Listing 2-4 and
specified some configuration options in each. Configuration options are structured as
follows:
option = value

Boolean options are structured like so:
option = true

Or:
option = false

Each Boolean option is either defined as true or false.
When parsing a configuration file, all binaries will set options contained in the [main]

namespace and will then set any options specified in the section named for the binary being
executed; for example, the puppetd binary will set all options in the [puppetd] namespace.

Installing and Running Puppet 31

Turnbull

You can also see in Listing 2-4 that you can reuse previously defined options in other
configuration options by prefixing them with $. For example, we defined the vardir option
in the main section and then reused this value as part of the localconfig option in the
puppetd section.
$vardir/localconfig

You can also use any configuration option from the Puppet configuration file on the
command line by prefixing it with --. So to specify the vardir option on the command line,
we would specify --vardir as an argument. Boolean configuration options are specified on
the command line using an on/off model like so:

puppetd --trace
puppetd --no-trace

In the first line, the trace option is set on, and in the second line, it is disabled by prefixing
the option with no-.

By default, Puppet binaries will look for their configuration in a file located in the
/etc/puppet/ directory. From version 0.23.0 of Puppet, each binary looks for a
configuration file called puppet.conf in /etc/puppet. In previous versions, each Puppet
binary looked for separate files, i.e., the Puppet master daemon looks for the
puppetmasterd.conf file, the client for puppetd.conf, and the Puppet Certificate Authority
for puppetca.conf.

This transition to a single configuration file is aided by the use of the --genconfig
option. You can execute each of the Puppet binaries with this flag and a commented, default
configuration file will be outputted, and the binary will exit. You can pipe this output into a
file to create a configuration file like so:
puppetmasterd --genconfig > /etc/puppet/puppet.conf

The resulting output makes an excellent starting point for an initial Puppet configuration.
In this chapter, we’re going to focus on running and configuring three of the Puppet

binaries; their configuration file options, puppetmasterd, puppetd, and puppetca; and the
options contained in the general [main] section of the configuration file. We’ll touch on the
other binaries and configuration options in later chapters.

Tip ➡ You can see a full list of all configuration options and their functions at

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference.

2ca983ba3745582e6151dc1b079b2db0

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference

32 Installing and Running Puppet

Turnbull

The [main] Configuration Namespace

Every Puppet binary will check the configuration file and set any configuration options
found in the [main] namespace in your Puppet configuration file. These variables set the
high-level options that control Puppet’s environment, such as the location of the
configuration directory. In Table 2-8, I’ve listed some of the key options you can configure
in the [main] namespace.

Table 2-8. The [main] Configuration File Section

Option Description

confdir Location of the configuration directory. Calculated based on the user
running the binary and defaults to /etc/puppet.

vardir Location of dynamic data directory. Calculated based on the user running
the binary and defaults to /var/puppet.

logdir Log directory, defaults to $vardir/log.

rundir Location of Puppet PID files, defaults to $vardir/run.

statedir State directory, defaults to $vardir/state.

statefile State file, defaults to $statedir/state.yaml.

ssldir Location for Puppet’s SSL certificates, defaults to $confdir/ssl.

trace Whether to print stack traces on error, defaults to false.

filetimeout The frequency in seconds that configuration files are checked for changes.

syslogfacility Specifies the syslog facility to use, defaults to daemon.

The first options in Table 2-8 specify the location of a variety of Puppet resources. The
confdir options tells Puppet where to look for configuration files. The value of this option is
used as a default for other directory locations; for example, the default directory for SSL
certificates, specified using the ssldir option, is $confdir/ssl. The default value for this
option is dependent on the user that is executing Puppet. If the user is root or the user
specified in the user option (in the [puppetmasterd] namespace), it defaults to /etc/puppet;
otherwise, it defaults to ~.

Installing and Running Puppet 33

Turnbull

Other directories that can be specified include the vardir for dynamic Puppet data and
the logdir option that specifies the location of Puppet log files. Also configurable are the
Puppet state directory and state file using the statedir and statefile options, respectively.
The Puppet state directory and file hold the current state of running configuration, and the
state file stores the state in YAML (a recursive acronym for YAML Ain’t Markup
Language—http://yaml.org) format.

The trace option turns on stack tracing for some Puppet errors. It is a Boolean option
and defaults to false. The filetimeout option specifies how often in seconds Puppet will
check for updates in configuration files; it defaults to 15 seconds. The last option in Table
2-8 allows you to set the syslog facility that Puppet will use. It defaults to daemon.

Note ➡ Puppet also has support for multiple environments, for example, production, testing, and

development. There is some documentation available describing multiple environments at

http://reductivelabs.com/trac/puppet/wiki/UsingMultipleEnvironments.

Configuring puppetmasterd

The Puppet master daemon is initiated by the puppermasterd binary. This is the core of the
Puppet client-server model; the server compiles and provides the compiled configuration to
the nodes. In this section, we’ll look at some of the command-line flags and configuration
file options that can be used to configure the Puppet master daemon.

There are a number of command-line flags you can pass to the binary, and you can see a
list of the most useful flags in Table 2-9.

http://yaml.org
http://yaml.org
http://reductivelabs.com/trac/puppet/wiki/UsingMultipleEnvironments

34 Installing and Running Puppet

Turnbull

Table 2-9. puppetmasterd Flags

Flag Description

--daemonize | -D Daemonize the process (default).

--no-daemonize Do not daemonize the process.

--debug | -d Enable debugging (leaves process in the foreground).

--logdest | -l file | console | syslog Specify logging destination (defaults to syslog).

--mkusers Create the initial set of users and directories.

--verbose | -v Enable verbose output (leaves process in the foreground).

--help | -h Print help text.

--version | -v Print the version.

Let’s examine the flags in Table 2-9 in more detail. The --daemonize option tells the
Puppet master daemon to daemonize the process and is the default behavior of the
puppetmasterd binary when executed. The --no-daemonize option flag prevents the process
being daemonized and leaving it running in the foreground. The --debug option causes the
process to output debugging data. This is useful for troubleshooting. The --logdest flag lets
you tell the master daemon where to output logging data; you have the choice of specifying
a file name, syslog output, or the console. It defaults to syslog output.

The --mkusers flag only needs to be run once when you first install Puppet. It creates
the required puppet user and group for Puppet to run as (if they haven’t already been
created).

Lastly, the --verbose option outputs all logging messages to the command line. The --
help and --version options print the help text and version, respectively.

In the Puppet configuration file, there are also some useful options for the
[puppetmasterd] namespace that you can use to configure the Puppet master daemon. You
can see these options in Table 2-10.

Installing and Running Puppet 35

Turnbull

Table 2-10. puppetmasterd Namespace Options

Option Description

user The user who should run the Puppet master daemon

group The group who should run the Puppet master daemon

manifestdir The directory to store configuration manifests, defaults to $confdir/manifests

manifest The name of the site manifest file, defaults to $manifestdir/site.pp

bindaddress The interface to which to bind the daemon

masterport The port to run the Puppet master daemon on

The user and group options tell puppetmasterd what user and group to run as; this
defaults to puppet in both cases. The manifestdir and manifest options specify the directory
for storing manifests and the name of the site manifest file, which default to
/etc/puppet/manifests and /etc/puppet/manifests/site.pp, respectively. The bindaddress
and masterport options allow you to control what interface and port to bind the daemon to;
these default to binding to all interfaces and to port 8140.

Configuring puppetd

The command-line operation of the Puppet client daemon is very similar to the operation of
the master daemon. It can be configured both from the command line and via a
configuration file, and in this section we’ll look at the options that are typically specified for
the daemon. In Table 2-11, you can see some of the common command-line flags you can
use with puppetd.

36 Installing and Running Puppet

Turnbull

Table 2-11. puppetd Flags

Flag Description

--daemonize | -D Daemonize the process (default).

--no-daemonize Do not daemonize the process.

--server name Name of the Puppet master server to connect to.

--waitforcert | -w seconds Time in seconds between certificate signing requests.

--onetime | -o Connect and pull down the configuration once and then
exit.

--noop Run in NOOP or dry-run mode.

--disable Temporarily disable the Puppet client.

--enable If disabled, reenable the Puppet client.

--test | -t Enable some common testing options.

--debug | -d Enable debugging (leaves process in the foreground).

--verbose | -v Enable verbose output (leaves process in the foreground).

--logdest | -l file | console | syslog Specify logging destination (defaults to syslog).

--help | -h Print help text.

--version | -v Print the version.

The --daemonize option is the default action for the puppetd process; if executed without
options, it will run in the background as a daemon. The --no-daemonize option flag prevents
the process being daemonized and leaving it running in the foreground. The --server option
is used to specify the name of the Puppet master to connect to; it should be specified as a
fully qualified domain name. The --waitforcert option only applies, as discussed in the
“Starting the Puppet Client” section, for Puppet nodes without a certificate. It indicates the
time in seconds in between certificate signing requests to a Puppet master. Once the node
has a signed certificate, this option does nothing.

Installing and Running Puppet 37

Turnbull

The --onetime option connects the client to the master, requests the node configuration,
applies it, and then exits. The --noop option allows dry runs of configuration without
actually applying the configuration. This allows you to see what new configuration will do
without actually making any changes to the node. Using this with the --verbose option will
output logging messages with the proposed changes that you can verify for correctness. On
the following line, you can see an example of typical noop output:
notice: //File[/etc/group]/mode: is 644, should be 640 (noop)

You can see that the notice indicates that the /etc/group file’s permissions are 644, but the
configuration would change that to 640. The (noop) at the end of the message indicates that
no change has been made.

The --disable and --enable options allow you to turn on and off the Puppet client. The
--disable option sets a lock file that prevents the Puppet client from running. The same
lock file is set by the Puppet client when running as a daemon to prevent the client from
running twice. The --enable option removes the lock file and allows the client to run again
on its normal schedule, by default checking half-hourly.

The --test option applies a number of common testing options including verbose
logging, running in the foreground, and exits after running the configuration once (the --
onetime option). The --debug and --verbose options enable debug and verbose output from
the daemon, and the --logdest option allows you to specify where log data will be
outputted: console, file, or syslog. The option defaults to syslog output. The last two
options, --help and --version, print the help text and the version information, respectively.

There are also some options that you can specify in the configuration file to configure
the puppetd daemon. You can see some of the available options in Table 2-12.

Table 2-12. puppetd Namespace Option

Option Description

server puppet The Puppet master server to connect to, defaults to puppet

runinterval seconds The interval between Puppet applying configuration in seconds, defaults to
1800 seconds, or a half-hour

puppetdlockfile file The location of the Puppet lock file

puppetport port The port that the client daemon listens on, defaults to 8139

The server option is the configuration file equivalent of the command-line --server
option and allows you to specify the Puppet master server to connect to; it defaults to
puppet. The runinterval option controls how often configuration is applied to the Puppet

38 Installing and Running Puppet

Turnbull

node. It is from this option that Puppet gets the default half-hourly application of
configuration. The option is in seconds and defaults to 1800 seconds.

The puppetdlockfile option specifies the location of the lock file used by the --disable
option to control the running of the Puppet client. The option defaults to
$statedir/puppetdlock. The puppetdport option controls what port the client daemon binds
to; by default this is 8139.

Configuring puppetca

The puppetca binary’s primary purpose is to control and interact with the puppetmasterd’s
built-in Certificate Authority. Its principal purpose, if you don’t use the automatic signing
of certificates (which is turned off by default), is to sign incoming requests from Puppet
clients to authenticate new nodes.

Caution ➡ As discussed, autosigning of certificates is dangerous, as anyone can authenticate to your Puppet

master. If you want to autosign certificates, use per-host authentication to only authenticate those hosts you

identify. See http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity for

more details.

We’ve already seen puppetca’s primary function when we connected our first node to
Puppet, listing and signing the certificate requests of new nodes using the --list and --sign
options.
puppetca --sign node1.testing.com

You can specify more than one node on the command line, and you can also sign all
outstanding certificate requests by specifying the all keyword like so:
puppetca --sign all

You can also see some other useful command-line flags in Table 2-13.

http://www.reductivelabs.com/trac/puppet/wiki/CertificatesAndSecurity

Installing and Running Puppet 39

Turnbull

Table 2-13. puppetca Flags

Flag Description

--revoke | -r host Revoke a node’s certificate.

--clean | -c host Remove a node’s certificate from the master.

--generate | -g host Generate a client key/certificate pair.

--debug | -d Enable debugging (leaves process in the foreground).

--verbose | -v Enable verbose output (leaves process in the foreground).

--help | -h Print help text.

--version | -v Print the version.

The --revoke option revokes a client’s certificate. You can specify a decimal number,
the certificate’s hexadecimal code, or the hostname of the client node. The certificate is
added to Puppet’s Certificate Revocation List (CRL). You can specify the CRL using the
cacrl option in the puppetmasterd namespace. The master daemon needs to be restarted to
update the CRL with the revoked certificate.

The --clean option removes all files related to a particular node from the Puppet
Certificate Authority. The option is most useful for rebuilding nodes. It removes traces of
the old certificate and allows you to submit a new certificate signing request from the client.

The --generate option generates a certificate and key pair for the node or nodes
specified on the command line.

You can also control a variety of certificate and SSL-related configuration options such
as the key, the naming and location of certificates on both the master and the node, and a
variety of other options. You can see these options at
http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference.

Tip ➡ In the future, you may also be able to have multiple master servers use a single certificate authority. At

the moment this isn’t fully supported, but you can read about it at

http://reductivelabs.com/trac/puppet/wiki/MultipleCertificateAuthorities.

http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://www.reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://reductivelabs.com/trac/puppet/wiki/MultipleCertificateAuthorities

40 Installing and Running Puppet

Turnbull

Resources

We’ve looked at installing and configuration Puppet in this chapter, and there are a number
of useful resources and documentation online that can also help with this process.

You can also log tickets and bug reports at Puppet’s trac site by registering at
http://reductivelabs.com/trac/puppet/register.

Web

 • Puppet support:

 http://reductivelabs.com/trac/puppet/wiki/GettingHelp

 • Puppet installation guide:

 http://reductivelabs.com/trac/puppet/wiki/InstallationGuide

 • Puppet configuration reference:

 http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference

Mailing Lists

 • Puppet user mailing list:

 http://mail.madstop.com/mailman/listinfo/puppet-users

http://reductivelabs.com/trac/puppet/register
http://reductivelabs.com/trac/puppet/register
http://reductivelabs.com/trac/puppet/wiki/GettingHelp
http://reductivelabs.com/trac/puppet/wiki/InstallationGuide
http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://mail.madstop.com/mailman/listinfo/puppet-users

CHAPTER 3

Speaking Puppet

In Chapter 2, we installed the Puppet master daemon and a Puppet client, and connected our
first node to the master. In the process of connecting that first node, we also created a basic
site manifest in the site.pp file. Our first manifest was simple and set the user and group
ownership and the permissions of the /etc/passwd file. But Puppet is capable of much more
than simply setting the permissions of a single file. It can install packages, ensure services
are configured correctly and started (or stopped), configure applications, and perform
numerous other functions.

To carry out such tasks, Puppet uses a powerful declarative language that can describe
the required configuration in platform-independent terms. The language is then compiled by
the Puppet master and delivered to the client that in turn applies the configuration to the
target node.

In this chapter, we’re going to delve into Puppet’s language and demonstrate how to
configure a variety of items and make best use of it to manipulate your nodes. By the end of
the chapter, you should have a good understanding of how the Puppet language is
syntactically structured. We’ll also talk about some language conventions to make your
Puppet manifests easier to read and understand.

Throughout this chapter, I also will recommend a number of style guidelines for Puppet
syntax. These guidelines have developed in the Puppet community, and the use of them will
make it easier for others to understand your configurations. You can see a Puppet style
guide at http://www.reductivelabs.com/trac/puppet/wiki/StyleGuide.

Caution ➡ This chapter is correct at the time of writing and represents an explanation of the core of the

Puppet language. But Puppet is a growing and developing language. Syntax changes, new grammar is

introduced, and new functionality developed. I recommend you regularly check the Puppet web site and the

documentation for updates.

http://www.reductivelabs.com/trac/puppet/wiki/StyleGuide
http://www.reductivelabs.com/trac/puppet/wiki/StyleGuide

42 Speaking Puppet

Turnbull

Defining Configuration Resources

The basic configuration declaration in Puppet is called a resource. Let’s take another look
at the contents of the manifest file we created in Chapter 2. You can see it repeated in
Listing 3-1.

Listing 3-1. Our First Resource

file { "/etc/passwd":
 owner => "root",
 group => "root",
 mode => 644,
}

Listing 3-1 is a simple example of a Puppet configuration resource. Resources are
configuration items you want to manage on your nodes. Resources could include items like
files, services, cron jobs, users, and groups. Each resource is made up of a type, a title, and
attributes.

Let’s break Listing 3-1 down. The first statement, file, is the resource type. The
resource type indicates the type of configuration resource you want to manage on your
node, in this case files. Each type has its own set of attributes; for example, the mode
attribute is used by the file type to set file permissions. There are also some special
attributes, called metaparameters, which can be applied to all resource types.

After we’ve specified our resource type, we open a set of curly braces. These braces
will hold the resource title and attributes.

Resource Titling

The resource title is the field before the colon in our resource. In Listing 3-1, the title is
"/etc/passwd"; in this case, it is also the literal path to configuration item being managed.
The resource title is used by Puppet to refer to resources in other parts of your
configuration.

Tip ➡ I recommend enclosing all resource titles in double quotes to ensure they are correctly parsed.

Speaking Puppet 43

Turnbull

The type and title of a resource combine to uniquely identify that resource to Puppet.
This is very important because Puppet practices configuration normalization and hence only
allows you to manage a resource in one place. In Listing 3-1, we’ve defined a resource that
manages /etc/passwd. If we defined another resource that also managed /etc/passwd, the
Puppet client would return a parse error like so (the server also returns a similar error):

err: Could not retrieve configuration: Duplicate definition: File[/etc/passwd] ➥
 is already defined in file /etc/puppet/manifests/site.pp at line 6; cannot ➥
redefine at /etc/puppet/manifests/site.pp:12

This control ensures that your configuration does not overlap or duplicate anywhere.

Note ➡ But this seems to create a problem—how do you define a resource that needs to be different on

different platforms? What if a file needs different permissions on different platforms? Well, Puppet has an

answer to this, and you’ll see how that is achieved later in this chapter when we look at conditional

statements.

But this error message also reveals something interesting. In the error message the
resource is referred to as File[/etc/passwd]. What does this mean? In Puppet, the
combination of the capitalized resource type and the title of the resource is a unique
identifier for that resource. Let’s look at this in Listing 3-2.

Listing 3-2. Referring to a Resource in Another Resource

file { "/etc/group":
 require => File["/etc/passwd"],
}

In Listing 3-2, we’ve defined another file resource, /etc/group. We’ve also specified a
metaparameter, require. The require metaparameter allows you to specify objects that the
resource depends on. Here the resource File["/etc/passwd"] must exist in order to
configure /etc/group. Puppet knows we’re citing another resource because the resource
type has been capitalized, and the title of the resource has been specified in square brackets.
This unique identifier tells Puppet precisely which resource is being referenced.

At the start of this section I mentioned that the title in Listing 3-1, /etc/passwd,
represented the literal name of the configuration item being managed. You don’t always
have to use the literal name though. To make it easier to refer to resources, we can specify a
symbolic name for our resource as you can see on the following lines:

44 Speaking Puppet

Turnbull

file { "group":
 name => "/etc/group",
 owner => "root",
}

On the previous lines we’ve done two new things. First, we’ve not used the literal name as
the title but rather specified a symbolic name, group. Second, we’ve specified an attribute
called name. The name attribute is common to a number of resource types; for example, both
the file and service types can use it. It allows us to specify the literal name, path, or other
identifying information of a configuration item. We can then title the resource symbolically
to make it easier to reference.

It is important to remember that Puppet only knows what you tell it about resources. If
you define a symbolic name, you should always refer to resources by that symbolic name. If
you use both literal and symbolic names, Puppet may assume you are managing different
resources, for example:

file { "passwd":
 name => "/etc/passwd",
}

file { "/etc/passwd":
}

The title of the first resource is passwd and the second resource /etc/passwd, but they
both manage the file /etc/passwd. But from Puppet’s point of view, these are two different
resources as they have different titles.

Resource Attributes

After the title, the attributes of the resource are specified. The attributes tell Puppet how to
configure resources. We’ve already seen a few attributes, and each resource type has its
own set of attributes; for example, the owner, group, and mode attributes we saw in Listing 3-
1 all belong to the file resource type.

Earlier I also mentioned some special attributes, called metaparameters, which can be
applied to all types of resources. The require attribute we used in Listing 3-2 is such a
metaparameter: it allows you to specify a resource that the resource depends on. You can
see a full list of metaparameters at
http://reductivelabs.com/trac/puppet/wiki/TypeReference#metaparameters.

http://reductivelabs.com/trac/puppet/wiki/TypeReference#metaparameters
http://reductivelabs.com/trac/puppet/wiki/TypeReference#metaparameters

Speaking Puppet 45

Turnbull

Tip ➡ We’ll discuss other metaparameters through this chapter.

In Listing 3-3, you can see how attributes are structured, each attribute separated from
its value by the => symbols.

Listing 3-3. Attribute and Value Structure

attribute => value,
attribute2 => value,

Tip ➡ Each attribute and value pair should end with a comma. The last attribute should end in a comma or a

semicolon.

Puppet has some native attribute values, for example, setting an attribute to true or
false:
force => true,

Values can also be user-supplied; for example, the owner attribute would be set to the name
of the user who owns a file such as "root". User-supplied attribute values should always be
in double quotes.

Note ➡ Another reason to always quote resource titles and the values of user-supplied attributes is that

Puppet has a number of reserved words that are used as part of the syntax, such as true, false, class,

define, inherit, and so on. If you need to use one of these words in a title or attribute value, you must

quote them.

Resource Style

When a resource has only one attribute, it can be declared on a single line as you can see
here:
file { "/etc/group": owner => "root" }

46 Speaking Puppet

Turnbull

You can see that we’ve also dropped the trailing comma from the attribute. This style of
declaration can be a useful shorthand but sometimes makes it hard to read resource
definitions. For this reason, many people use the multiline structure for all resources.

Multiple resources can be configured using a single resource type as you can see in
Listing 3-4.

Listing 3-4. Multiple Declaration Resource Statements

file {
 "/etc/passwd":
 ensure => present;
 "/etc/group":
 owner => "root",
 group => "root";
}

In Listing 3-4, we’ve used the file resource type and specified two files. These are two
separate resources, and we would refer to them in other Puppet resources as follows:

File["/etc/passwd"]
File["/etc/group"]

Lastly, Puppet resources support the use of sh-style comments. Comments prefixed by
the # character can be placed on empty lines or at the end of lines.

This is a comment
ensure => running, # this is also a comment

Resource Defaults

You can also set default attribute values that will apply to all resources of that type. This
means that you don’t need to specify a particular attribute each time you use the resource.
Let’s look at an example of a default, using the exec resource type that allows you to
execute external scripts or programs, on the following line:
Exec { path => "/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin" }

In the exec resource type, the path attribute is used to specify the search path Puppet uses to
find these external scripts. It is an attribute that is frequently specified and is hence a good
candidate to be set as a default. We can see that it is a default because the resource type has
been capitalized. A resource title does not need to be specified as we’re not defining the
resource, only the attribute or attributes for which you wish to set a default.

Speaking Puppet 47

Turnbull

The default can be overridden in specific resources by specifying the attribute in the
resource, for example:
exec { "shell.rb --run": path => "/opt/bin:/opt/sbin" }

On the previous line, we would override the resource default for the path attribute for this
particular resource.

Collections of Resources

Resources can configure the characteristics of single configuration items on nodes, but most
services and applications are made up of multiple resources. For example, a web server
consists of the software package, users to run the software, and a variety of configuration,
logging, and other files.

Additionally, individual resources configured in Puppet are applied to all Puppet clients
that connect to the master. You can’t select particular resources and apply them to specific
nodes. So, how do we group together resources and apply resources to the appropriate
nodes?

Puppet does this by using resource collections. Resource collections allow you to gather
together resources, assign them to a collection, and then have that collection applied to one
or more nodes. There are two types of resource collections: classes and definitions.

Note ➡ Even inside collections, resources must be unique. You still can’t manage the same resource more

than once.

A class is a collection of resources that represents a single configuration item on your
node, for example, the SSH service or the NFS package. Classes are only evaluated once
per node because the configuration item being managed should only exist once.

A definition is similar but represents a collection of configuration items that have
multiple representations on your node, for example, configuring Xen instances or virtual
hosts on an Apache web server. Definitions can be evaluated multiple times on a single
node, each time with different input parameters.

Classes and Subclasses

Let’s start by looking at a class in Listing 3-5.

48 Speaking Puppet

Turnbull

Listing 3-5. Our First Class

class apache {
 package { httpd: ensure => installed }

 service { "httpd":
 ensure => running,
 require => Package["httpd"],
 }
}

A class is defined by specifying the class statement followed by the name of the class
being defined, which in Listing 3-5 is apache. We then enclose the class in curly braces.
Inside the class we can specify a number of resources. The class would then be included in
a node’s configuration and all resources applied to the target node.

Tip ➡ We’ll look at how to configure nodes in the “Creating Nodes” section later in this chapter.

Classes Relationships

Like resources, we can also specify relationships between classes and other resources (as of
release 0.23.1 of Puppet). We can see in Listing 3-5 that we’ve used the require
metaparameter to make the httpd service resource dependent on the httpd package resource
like so:

service { "httpd":
 ensure => running,
 require => Package["httpd"],
}

Here the httpd service resource requires that the resource Package["httpd"] exist. We can
also refer to classes in the same manner using a similar syntax:

service { "squid":
 ensure => running,
 require => Class["apache"],
}

This specifies the relationship between a class and a resource. In this instance, the squid
service requires that the apache class exist. You’ll notice that like resource relationships,

Speaking Puppet 49

Turnbull

we’ve capitalized the class statement to indicate we’re referring to another class and
encapsulated the name of the class in block brackets.

Class Inheritance

Classes also have a simple inherit-and-override model using parent classes and subclasses.
A subclass can inherit the values of a parent class and potentially override one or more of
the values contained in the parent. This allows you to specify a generic class and override
specific values in subclasses that are designed to suit some nodes; for example, you could
have a generic Red Hat Linux class and override certain values in subclasses for different
Red Hat versions. You can see an example of inheritance in Listing 3-6.

Listing 3-6. Class Inheritance

class redhat {
 service {
 "mdmdp":
 enable => true,
 ensure => stopped,
 }
}

class rhel5 inherits redhat {
 Service["mdmdp"] { ensure => running }
}

Here, class redhat is the parent class and defines a service that controls the mdmdp
service. It uses the service resource type to enable the mdmdp service at boot time and specify
the service must be stopped. We then specify a new class, a subclass called rhel5, that
inherits the redhat class but overrides the ensure attribute and specifies that the mdmdp
service must be running for all nodes with the rhel5 subclass included.

In addition to inheritance, we can also use the include function to include the contents
of a class in another class like so:

class proxy {
 include proxysquidguard
 ...
}

Here the proxy class would include the proxysquidguard class in addition to whatever other
configuration you wish to define.

50 Speaking Puppet

Turnbull

From Puppet version 0.23.1 a new feature is also available that allows you to add values
to attributes in subclasses like so:

class proxy {
 service { "squid": require => Package["squid"] }
}

class proxysquidguard inherits proxy {
 Service["squid"] { require +> Package["squidguard"] }
}

Here we have defined the proxy class containing the squid service, which in turn
requires that the squid package be installed. We have then created a subclass called
proxysquidguard that references the squid service but adds an additional package,
squidguard, to the require attribute. To do this, we use the +> operator. After this addition,
the squid service would now functionally look like this:

service { "squid":
 require => [Package["squid"], Package["squidguard"]]
}

We can also unset particular values in subclasses using the undef attribute value.

class proxy {
 service { "squid": require => Package["squid"] }
}

class proxysquidguard inherits proxy {
 Service["squid"] { require => undef }
}

Here we again have the proxy class with the squid service, which requires the squid
package. In the subclass, we have removed the require attribute using the undef attribute
value.

Definitions

The second type of Puppet resource collection is a definition. Definitions should be used for
configuration items that have multiple instances on a node, for example, virtual machines or
multiple instances of a web service. Definitions are created using the define keyword and
support arguments but not inheritance. The best way to think about a definition is as a
reusable snippet of configuration that you can call with arguments. As they are designed to

Speaking Puppet 51

Turnbull

be reused, they cannot contain any resources that will have only one instance on a node, like
a package or a service.

This reuse is also the key difference between classes and definitions. Classes contain
single instances of resources; for example, a class could contain a package resource that
defined the httpd package. This package will only exist once on a node and hence would be
installed, removed, or managed using a class. But some configuration exists multiple times
on your nodes, for example, the httpd server may have multiple virtual hosts defined. You
would then create a definition to configure virtual hosts and pass in appropriate arguments
to configure each. As long as each set of arguments was different, Puppet would configure
the new virtual host every time the definition was evaluated.

Tip ➡ Don’t underestimate the power of definitions! They are highly flexible, powerful, and effective and

often represent the best method for defining configuration on your nodes. I recommend examining the

Puppet recipes at http://reductivelabs.com/trac/puppet/wiki/PuppetRecipes and

http://reductivelabs.com/trac/puppet/wiki/CompleteConfiguration to see how definitions are

and can be used.

A definition is created by using the define keyword, specifying a title for the definition,
and then listing any arguments in brackets. The definition itself is specified next and is
enclosed in curly braces. In Listing 3-7, I’ve demonstrated a definition that runs a script to
configure a new virtual host.

Listing 3-7. Definition

define newip ($ip) {
 exec { "/sbin/ifconfig $title $ip":
 }
}

newip { eth0:
 ip => "11.11.11.11",
}

In Listing 3-7, we’ve created a definition called newip that has an argument of a variable
called $ip. Inside the definition we’ve used the exec resource type that executes an external
binary, in this case the ifconfig command. We’ve specified the variable $ip and used
another variable, $title, that contains the resource title.

http://reductivelabs.com/trac/puppet/wiki/PuppetRecipes
http://reductivelabs.com/trac/puppet/wiki/CompleteConfiguration

52 Speaking Puppet

Turnbull

Note ➡ The $title variable is available in all definitions and contains the title of the resource.

On the next lines we have actually called the newip definition. It is called much like we
define a resource type. We’ve specified the name of the definition being called, the title, in
this case eth0 (which is also the value of the $title variable). We then specify the
remaining variable in the same format as we would specify attributes in a resource.

If we then use this definition, we’ll see a log message on the client much like this one:

notice://newip[eth0]/Exec[/sbin/ifconfig eth0 11.11.11.11]/returns: executed ➥
successfully

We can see that the definition has executed the exec resource and the appropriate
arguments have been passed into the definition to reconfigure our interface with the new IP
address.

We can also specify defaults for each of the arguments passed to our definition like so:

define config_file(owner = root, group = root, mode = 0644, ➥
source, backup = false, recurse = false, ensure = file) {

 file{ $name:
 mode => $mode,
 owner => $owner,
 group => $group,
 backup => $backup,
 recurse => $recurse,
 ensure => $ensure,
 source => "puppet:///$source"
 }
}

config_file { "/etc/vnc.conf":
 source => "vnc/vnc.conf",
 mode => "0640"
}

Here we’ve created the config_file definition. We specify a series of default values for
some of the arguments we intend to pass to the definition. We then specify a file resource
that will accept the arguments. We then invoke the definition for a sample file,
/etc/vnc.conf. We specify the source attribute and then we override one of the default
arguments we specified, mode, for the definition.

notice://newip

Speaking Puppet 53

Turnbull

Qualifying Definitions

Qualified definitions allow you to perform a number of useful functions. First, you can refer
to definitions that are defined in classes:

class virtuals {
 define newip ($ip) {
 exec { "/sbin/ifconfig $title $ip":
 }
 }
}

virtuals::newip { eth0:
 ip => "11.11.11.11",
}

We’ve defined a class called virtuals and placed the definition we created in Listing 3-
7 into it. We’ve then used the newip definition and referenced it by qualifying its location.
The qualification is done by specifying the name of the class the definition is in and the
name of the definition, and separating each with two colons, ::. The definition is then used
normally.

We can also use this syntax to set defaults for a definition.
virtuals::newip { noop => true }

This would set the noop metaparameter for all resources contained in the virtuals::newip
definition. The noop metaparameter tells Puppet whether an operation should occur or not in
the same manner as the --noop command-line option.

Lastly, we can use definition qualification to specify dependencies.

file { "/etc/hosts.conf":
 notify => network::checkhosts[$hostname]
}

On the previous line, we’ve defined a file resource with the notify metaparameter. The
notify metaparameter is a trigger; if the file /etc/hosts.conf changes, the
network::checkhosts definition will be called, and the $hostname variable passed to it.

Variables

In some of the previous examples you encountered a new concept: variables. Variables are
prefixed with a $ and allow you to specify data that can then be used in resources, for

54 Speaking Puppet

Turnbull

example, as the content of a file. There are also some default variables, like $title, that
contain the title of the resource.
$variable = "string"

You should place your variable strings in double quotes, as single-quoted strings will
not do any variable interpolation. You can reference other variables in your strings, and
Puppet supports the use of brackets, {}, to help highlight variables in strings.
$variable = "string ${anothervariable} string ${thirdvariable}"

Variables are also used to pass in facts from the Facter application; for example, the
variable $operatingsystem is equivalent to the value of the operatingsystem fact returned by
Facter. We’ll discuss some of these in the “Facts” section later in this chapter.

Variable Scoping

There is some important information you need to know about variables. First, because
Puppet is a declarative rather than an imperative language, variables are scoped differently
than in some other languages. The principal result of this is that you cannot redefine a
variable inside the same scope it was defined in. So you couldn’t redefine the $packagelist
in the apache class as shown in Listing 3-8.

Listing 3-8. Redefining Variables

class apache {
 $packagelist = ["httpd", "openssl", "mod_ssl"]
 package { $packagelist: ensure => installed }

 $packagelist = "httpd"
 service { "httpd":
 ensure => running,
 require => Package[$packagelist],
 }
}

You can see in Listing 3-8 that we’ve tried to define the $packagelist variable twice. If
we were to try to compile and apply this configuration, the Puppet client would return the
following error:
err: Cannot reassign variable packagelist at /etc/puppet/manifests/classes.pp:6

The error also tells us the file and line number in the file where we’ve tried to redefine the
variable.

Speaking Puppet 55

Turnbull

So what’s a scope? Each class, definition, or node introduces a new scope, and there is
also a top scope for everything defined outside of those structures. Each structure represents
a nonoverlapping scope; for example, class A is one scope, class B is another scope, and
node C is yet another scope. You can see this in Listing 3-9.

Listing 3-9. Nonoverlapping Variable Scopes

class apache {
 $apachever = 1
}

class apache2 {
 $apachever = 2
}

The same variable can be used and defined in both the apache and apache2 classes
without generating an error. The same scoping is true of different nodes and definitions.

Variables and Class Inheritance

Variable scope is also important when inheriting classes. If we have a variable of the same
name in a class and a subclass, its behavior may not be what you expect. In Listing 3-10, we
define two classes with the same variable in them, and then have the second class inherit the
first.

Listing 3-10. Variables and Class Inheritance

class master {
 $server = "primary"

 file { "/etc/server.conf":
 content => "$server",
 ensure => present,
 }
}

class slave inherits master {
 $server = "secondary"
}

In the first class, master, we define the value of the $server as "primary". The second
class, slave, inherits the first class, and we try to redefine the value of the $server variable

56 Speaking Puppet

Turnbull

to "secondary". This redefinition will not work because the $server variable remains in the
scope that it was created in when the master class is inherited, and hence remains "primary".

There is a workaround for this that makes use of the include function we introduced
earlier in this chapter.

$server = "primary"

class master {
 file { "/etc/server.conf":
 content => "$server",
 ensure => present,
 }
}

class slave {
 $server = "secondary"
 include master
}

First, we define the $server variable in the top scope, outside the scope of both classes.
This is because the include function includes the entire stanza of the master class in the
slave class. If the variable was defined inside the master class, we’d get an error when the
slave class was evaluated because you can’t have two definitions of the same variable in a
single class.

Next, we define the master class and then the slave class. The slave class, which is a
new scope, changes the value of the $server variable and then uses the include function to
incorporate the content of the master class. Now when the slave class is evaluated, the value
of the $server variable will be "secondary".

Qualified Variables

We can also reference variables assigned in one class in another class. This allows us to use
a previously defined variable again by qualifying it as you can see on the following lines:

class master {
 $server = "primary"
}

class slave {
 $ms = $master::server
}

Speaking Puppet 57

Turnbull

You can see in the first class, master, we’ve defined the value of the variable $server as
"primary". In the second class, we’ve created a variable called $ms. The value of this
variable is $master::server. This combines the names of the class and variable being
referenced, separated by two colons, ::. The resulting value of the $ms variable in the slave
class would be "primary".

We can also refer to the top scope of our manifests (i.e., outside of any nodes, classes,
or definitions) by using the following syntax:
$ms = $::server

This syntax will result in the $ms variable being assigned the value of a variable called
$server that is set in the top scope.

Caution ➡ Qualified variables are dependent on the order in which Puppet evaluates your configuration. All

resources of the same type are evaluated in order of being parsed, in a top-down manner in your manifest

files. For example, each class is evaluated in order from top to bottom. This means you can only qualify a

variable that has been defined earlier in the manifest. If you try to evaluate a variable defined later in the

manifest, a null value will be set.

Variables and Metaparameters

Using variable syntax, you can also set metaparameter defaults for all resources in a class,
for example:

class start_vhost {
 $noop = true
 exec { "/usr/sbin/start_ws": }
 exec { "/usr/sbin/start_vhost": }
}

In the start_vhost class, we’ve specified the noop metaparameter as a variable and set it
to true. In all the resources in the class, in this case the two exec resources, the noop
metaparameter will be added and set to true.

58 Speaking Puppet

Turnbull

Arrays

In addition to variables, Puppet also allows you to define arrays. In Listing 3-5, we defined
an array for the $packagelist variable that contained three packages name: httpd, openssl,
and mod_ssl; you can see a subset of that class here:

$packagelist = ["httpd", "openssl", "mod_ssl"]
package { $packagelist: ensure => installed }

Caution ➡ Don’t quote titles, in this case $packagelist, that contain arrays. The array will become

conflated.

When specified in the resource title of the package resource type (which manages
package installation and removal on nodes), the array is expanded. The package resource
attribute, ensure, then checks whether all three packages in the array are installed. Anyone
familiar with Ruby will recognize Puppet’s array syntax: each element in the array is
quoted, separated by commas, and enclosed in square brackets.

Arrays can be used in two principal ways: as the value of a variable as we’ve done in
Listing 3-5 or as the value for a number of resource attributes. For example, the user
resource type allows multiple groups to be assigned to a user using an array:

user { "mail":
 gid => "mail",
 groups => ["smtpd", "clamav", "spamassasin"],
 ensure => present,
}

Here you can see that the value of the groups attribute is an array containing three group
names.

We could also use an array to call a definition multiple times.

define ruby::libs() {
 package { "ruby-${name}": ensure => installed }
}

ruby::libs { ["ldap", "mysql", "postgres", "sqlite3", "shadow"]: }

Here we’ve created a definition called ruby::libs that has no arguments but will install
any package prefixed with ruby- and the value of the $name variable. We then call the

Speaking Puppet 59

Turnbull

definition and use an array as the value of the resource title. The array would be expanded
and each array element assigned to the variable $name. The definition would then install
each Ruby library package (e.g., ruby-ldap, ruby-mysql, ruby-postgres, etc.).

Conditionals

Puppet also supports conditionals in resources, classes, definitions, and nodes. They are
expressed in the form of a selector with a default option. In Listing 3-11, we can see a
conditional selector inside a resource.

Listing 3-11. Conditional Selectors

service { "apache":
 name => $operatingsystem ? {
 debian => "apache2",
 redhat => "httpd",
 default => "apache",
 },
 ensure => running,
}

The conditional selector is inside the apache service resource. It is constructed using the
? symbol and followed by a list of selectors and values, each separated by the => symbols
much like attributes. Finally, the conditional is enclosed in curly braces.

You can see we’ve also specified a value called default. This default value will be used
if none of the other conditions are met.

In Listing 3-11, we’ve also used the name attribute. In addition to allowing you to create
a symbolic name, as we discussed earlier in this chapter, the name attribute in combination
with a conditional also allows you to take into consideration that different target nodes
might name a resource differently. Here we are using the value of the $operatingsystem fact
to select what name to use for the service. For example, if the $operatingsystem fact on a
node returned a value of redhat, the service name would be set to httpd. When configuring
this resource on that node, this is the name Puppet would use for the service.

In Listing 3-12, we have set the value of a variable using a conditional selector.

60 Speaking Puppet

Turnbull

Listing 3-12. Conditional Selector

$environment = $domain ? {
 "testing.com" => "test",
 "uat.com" => "uat",
 "development.com" => "development",
 default => "production",
}

We’ve specified that the value of the $environment variable will depend on what is
returned using the domain fact, which returns the domain name of the node. In Listing 3-12,
if Facter returns testing.com as the value of the domain fact, it should set the $environment
variable to test and so on. The last value, default, is the default value to specify for the
$environment variable in the event the fact does not return one of the other values.

Tip ➡ Conditionals can be nested. You can put conditional structures inside other conditional structures.

If you don’t set a default value and no other value is matched, a parse error is returned
by Puppet.

Note ➡ Puppet selectors are case insensitive when matching. You’ll also notice that we’ve quoted the values

being tested and the result. This is good practice to ensure the values are interpreted and returned correctly.

There are also two other conditional statements we can use in our manifests: case and
if. The case statement allows you to conditionally select larger stanzas of configuration
such as resources or classes depending on a value. You can see a case statement in Listing
3-13.

Listing 3-13. Case Statements

case $operatingsystem {
 redhat: { service { "httpd": ensure => running }}
 debian: { service { "apache": ensure => running }}
 default: { service { "apache2": ensure => running }}
}

Speaking Puppet 61

Turnbull

The case statement in Listing 3-13 uses the operatingsystem fact we introduced earlier
in this chapter to return the operating system of the node the configuration is being
evaluated on. Each potential value is specified in curly braces and terminated with a colon,
for example, redhat:.

Tip ➡ You should enclose some values in double quotes to ensure they are parsed correctly.

For each value, we can then specify a resource that should be defined if that particular
operating system is returned. Lastly, we’ve specified a default value that tells the case
statement what resource to apply if the fact doesn’t return any of the previously specified
values. As with selectors, if you do not specify a default and no values are matched by the
statement, Puppet will return a parse error.

The case statement can also test for the presence of a variable, for example:

case $definedvariable {
 "true" => { include class }
 default => {}

Here if the $definedvariable is present, or true, a class is included. Otherwise, the
default action is to do nothing.

Note ➡ Like selectors, case statements perform case-insensitive matching.

The last conditional statement, if, is a very simple if/else statement. The statement
only supports Boolean operations (true or false) and Puppet is not currently capable of
using comparison operators (such as greater than, less than, not equal, etc.). You can see an
if statement in Listing 3-14.

Listing 3-14. If Statements

if $server {
 file { "/etc/server.conf": ensure => present }
} else {
 file { "/etc/client.conf": ensure => present }
}

62 Speaking Puppet

Turnbull

Listing 3-14 is a simple Boolean evaluation: If the variable $server is defined, evaluate
the first file resource and ensure that the /etc/server.conf file is present. If it is not
defined, evaluate the second file resource, which ensures that the /etc/client.conf file is
present.

Creating Nodes

We’ve looked at defining resources and collections of resources in the form of classes and
definitions. So how do we assign these resources and collections to particular clients?
Puppet does this by defining each client on the master as a node. Resources and resource
collections are then assigned to these nodes.

As mentioned in Chapter 2, when no nodes are defined, all resources not in a specific
class or definition are applied to the node; for example, if we had a file type resource
defined in our site.pp manifest, that would be applied to the node, but a class would not.
With nodes defined, you can define nodes on the master and assign classes and definitions
to those nodes.

Note ➡ Ultimately, as Puppet develops, node definitions inside your manifests will disappear, and all nodes

will be contained externally in a database or a directory like LDAP. We discuss the initial capability to do this

in Chapter 6 when we look at external nodes. This move reflects the growing push for centralized asset and

configuration management stores in many organizations.

When the Puppet client connects to the master, its hostname is used to try to match it to
a node definition. The hostname used is the client certificate we created, which in turn is
based on the fqdn fact returned by Facter. Let’s see what Facter returns:

facter | grep 'fqdn'
fqdn => node1.testing.com

Here we’ve executed the facter binary, which usually returns a full list of the facts
available about that node. We’ve grep’ed for the fact called fqdn (fully qualified domain
name) and discovered it is node1.testing.com. When Puppet created our certificate, it used
this value as the hostname used to identify the client to the master.

When connecting, the Puppet client presents this value to the master. The master checks
to see whether it matches a node definition. If the fully qualified domain name of the node
doesn’t match a node definition, it then tries the short name of the host. If the short name of

Speaking Puppet 63

Turnbull

the host doesn’t match any node definitions, it looks for a node called default. The default
node is a special definition you can create to hold configuration that should apply to all
nodes. Lastly, if no node definition matches and the default node isn’t defined, the master
will return an error indicating that no matching node has been found:

err: Could not retrieve configuration: Could not find node1.testing.com with ➥
names node1.testing.com, node1

In the error message, you can see the master has indicated that no node called
node1.testing.com or node1 is defined on the master.

So how is a node defined? You can see three nodes defined in Listing 3-15.

Listing 3-15. Sample Nodes

node 'webserver.testing.com' {
 include apache
}

node 'webserver2.testing.com' inherits 'webserver.testing.com' {
 include mysql, rails

 virtuals::new_vhost { vhost1:
 ip => "11.11.11.11",
 domainname => "vhost2.testing.com"
 }

}

node default {
 include $operatingsystem
 package { "perl": ensure => present }
}

In Listing 3-15, we’ve added some nodes. Each node is identified by the node keyword
followed by the name of the node and the configuration defined for that node, enclosed in
curly braces.

Tip ➡ As discussed, nodes can be identified by their short name or by their fully qualified domain name. If

you specify the fully qualified domain name, you should enclose your node name in single quotes to ensure it

is parsed correctly.

64 Speaking Puppet

Turnbull

Inside your node definition, you can add resources, classes, and definitions. Classes are
added using the include function. In webserver.testing.com in Listing 3-15, we’ve included
the apache class. When webserver.testing.com connects, the apache class will be applied to
the node to configure it. You can include multiple classes with a single include function by
separating them with commas.

In webserver2.testing.com, we’ve also added a definition, new_vhost, which is qualified
as being contained in the virtuals class. Rather than being added using the include
function, definitions are specified by name, together with any required parameters.

Node Inheritance

Nodes, like classes, can also inherit the contents of other nodes. In the second node,
webserver2.testing.com, in Listing 3-15, we’ve defined inheritance. In the example,
webserver2.testing.com would inherit the properties of webserver.testing.com, meaning
that the node would apply the mysql and rails classes as well as the apache class from
node1. Inheritance is cumulative; we could define a third node that inherits
webserver2.testing.com, and the apache, mysql, and rails classes would all be applied to it.

Nodes can only inherit one other node, rather than multiple nodes, using the inherit
statement. But you can build a node inheritance model that allows you to group your nodes
and apply appropriate configuration to them. This model allows you to assign configuration
to nodes via inheritance rather than having to assign it individually to every node.

Note ➡ Using the include function, you can also include the contents of other nodes in the current node.

This does allow you to inherit the contents of multiple nodes.

For example, node inheritance is often used to define a base node that contains your
default configuration for all nodes and have that node inherited by all others. But a more
complex model can also be created: a base node, inherited by a series of other nodes that are
in turn inherited by a succeeding layer of nodes, each layer becoming more granular than
the last. You can see this sort of inheritance model in Listing 3-16.

Speaking Puppet 65

Turnbull

Listing 3-16. Layered Node Inheritance

node basenode {
 include sudo, basepackages
}

node webserver inherits basenode {
 include webservices
}

node databaseserver,databaseserver2, databaseserver3 inherits basenode {
 include dbservices
}

node webmelb inherits webserver {
 include melbourne
}

node dbsyd inherits databaseserver {
 include sydney
}

Listing 3-16 shows the definition of a basenode, which includes two classes. We then
create four more nodes, webserver, databaseserver, databaseserver2, and databaseserver3,
which inherit the classes included in the basenode and add classes of their own. Finally, we
define two nodes, webmelb and dbsyd, which inherit the webserver and databaseserver node
definitions, respectively. They also include classes of their own. To make this a bit clearer,
I’ve shown the model from Listing 3-16 (with a few more nodes added) in Figure 3-1.

66 Speaking Puppet

Turnbull

Figure 3-1. Node inheritance

You can see how this sort of structure can allow you to quickly design a deployment
model for your nodes that selectively applies the right configuration to the right nodes and
is flexible enough to allow you to change the model without having to change the
definitions of all your nodes.

Node Inheritance and Variable Scope

Like class inheritance, however, there are issues with node inheritance and variable
scoping. Node inheritance is generally only practical for inheriting static classes, for
example, those without variables, as you can see in Listing 3-17.

Speaking Puppet 67

Turnbull

Listing 3-17. Node Inheritance and Variable Scope

class master {
 file { "$server":
 ensure => present,
 }
}

node webserver {
 $server = "primary.conf"
 include master
}

node webserver2 inherits node1 {
 $server = "secondary.conf"
}

In Listing 3-17, we’ve defined a class called master with a file resource entitled
$server. We’ve then included this class in the definition of webserver and then created
webserver2, which inherits webserver.

In webserver2, we’ve tried to change the value of the $server variable to "secondary".
But, like class inheritance, the value of the $server variable remains defined in the scope of
webserver and remains with a value of "primary".

As there is for classes, there is a workaround for this issue. The workaround is
somewhat clumsy, as you can see in Listing 3-18.

Listing 3-18. Node and Variable Scoping Workaround

class master {
 file { "$server":
 ensure => present,
 }
}

class basenode {
 include master
}

node webserver {
 $server = "primary"
 include basenode
}

68 Speaking Puppet

Turnbull

node webserver2 {
 $server = "secondary"
 include base_node
}

In Listing 3-18, we’ve defined a class called master, exactly as we did in Listing 3-15.
We’ve then created another class, called basenode, which includes the master class. We then
define two nodes: webserver and webserver2. Each of these nodes includes the basenode
class and a different definition of the $server variable. As each node is a separate scope, the
variable is applied appropriately in each.

Default Nodes

The last node in Listing 3-15 is the default node. If no node definition is matched, the
classes, resources, and definitions in this node are applied to the connecting node. In this
case, we’re including a class that matches the value of the $operatingsystem fact. For
example, if a node connects, the $operatingsystem fact will be evaluated and the result used
to include a class. If the fact returned a value of redhat, that class would be included.
Lastly, we’ve included a resource, which ensures that the perl package is installed.

Node Conditionals

Inside nodes we can also use conditionals, as you can see in Listing 3-19.

Listing 3-19. Node Conditionals

node 'fileserver.testing.com' {
 case $processorcount {
 1: { include single }
 2: { include smb }
 default: { include single }
 }
}

Listing 3-19 shows a node definition for fileserver.testing.com. Inside the definition,
we’ve specified a case statement. The query uses the value of the processorcount fact to
determine which of a series of classes to include. If the processorcount fact returns 1, the

Speaking Puppet 69

Turnbull

node will include the single class, if 2, the smb class will be included. We’ve also specified
a default value, which includes the single class, if neither 1 nor 2 is returned by the fact.

Note ➡ Node, class, and definition names must be unique. For example, if you specify a node and a class

with the same name, Puppet will return an error indicating that the class can’t be evaluated because the

node of the same name has already been evaluated.

Virtual Resources

There is another type of resource that we need to look at: virtual resources. Virtual
resources are resources that are defined but are not implemented on a client until you
specifically configure them to be.

So why is this useful? Well, as we’ve discovered in this chapter, resources are
normalized and can only be configured once. You can’t create the same resource in two
classes; for example, you can’t configure the user james in both the webserver and dbserver
classes. Most of the time this isn’t an issue—a resource is generally specific to a particular
class. But sometimes you have a resource that is needed in multiple unrelated classes. For
example, the user james could be both a web site author and a database administrator and
therefore needs to be defined in both classes. If we only define the user in one class, it
would only be implemented on nodes that included that class. The only way to get around
this would be to include both classes on a node, a far from practical solution.

Using virtual resources gets around this problem. A virtual resource is only configured
once but can be instantiated multiple times in our configuration.

We can identify virtual resources by the @ symbol prefixed to the resource type like so:
@user { james: ensure => present }

Puppet implements a virtual resource using a feature known as realization. Realization
offers two methods for marking a virtual resource so that it is implemented. The first is
called a collection, and the second uses a function called realize.

Realizing with a Collection

The collection method uses simple selection syntax to select the resources to be realized
like so:
User <| title == james |>

70 Speaking Puppet

Turnbull

The type of the resource being realized is specified and capitalized. The selection
syntax itself is encapsulated in angle brackets and vertical bars. We then specify the
selection syntax; here we’re realizing a user resource with a title equal to james. We can
also specify nonequality like so:
User <| title != james |>

The previous line would realize all users EXCEPT those with a title equal to james.
Selection syntax can also make use of parentheses as well as and/or statements like so:
Group <| (title == admin or title == mainframe) |>

The last line would realize all group resources with a title of admin or a title of mainframe.
You can also realize all resources of a type like so:

User <| |>

The last line would realize all User type virtual resources.

Realizing with the realize Function

In addition to the collection method, Puppet also has a simple function, realize, for
realizing virtual resources. The realize function uses the resource reference, for example,
User[james], to refer to a virtual resource that is to be realized, as you can see in Listing 3-
20.

Listing 3-20. Realizing Resources

realize User[james]
realize(Group[admin], Group[mainframe])

Here with the realize function we’ve realized the user resource james and the group
resources admin and mainframe. You can see we’ve specified multiple resources to be
realized by separating them with commas and enclosing them in brackets.

Note ➡ There is another variety of virtual resource called exported resources. Exported resources are virtual

resources but are also exported to other hosts on your network. Exported resources are identified by the

resource type prefixed by two @@ symbols rather than one. Exported resources are still experimental at this

stage, so I am not going to address them, but you can read about them at

http://www.reductivelabs.com/trac/puppet/wiki/VirtualResources.

http://www.reductivelabs.com/trac/puppet/wiki/VirtualResources

Speaking Puppet 71

Turnbull

Facts

Through this chapter, I’ve mentioned facts and Facter. Facter and Puppet are closely tied
together. Puppet allows you to define and specify configuration to be applied to your nodes.
Facter allows to you add information from your nodes to your Puppet configurations; for
example, knowing the operating system of the node being configured allows you to
customize a configuration resource for that platform (we used Facter in this manner in
Listing 3-13 to select the appropriate name for a service depending on the operating system
on the node).

Facts are available as variables defined in the top-level scope of your manifests. As
we’ve seen earlier in this chapter, the value of the fqdn fact would be available as variable
$fqdn. You can see the available facts about a particular system by executing the facter
binary on the command line. A full list of facts and their values will be returned. This list
will only contain the variables able to be returned on that particular platform. In Table 3-1,
I’ve listed some of the facts commonly returned on platforms.

Table 3-1. Common Facts

Fact Description

architecture The architecture of the node, x86_64, for example

domain The domain name of the node

facterversion The version of Facter running on the node

fqdn The fully qualified domain name of the node

hardwaremodel The model of the hardware, for example, x86_64

hostname The hostname of the node

id The user running Facter

ipaddress The IP address

kernel The kernel type on the node

(Continued)

72 Speaking Puppet

Turnbull

Fact Description

kernelrelease The kernel release of the kernel running on node

lsbdistcodename The LSB codename of the distribution running on the node

lsbdistdescription The LSB description of the distribution running on the node

lsbdistid The LSB release ID of the distribution running on the node

lsbdistrelease The LSB release number of the distribution running on node

macaddress The MAC address of the node

memoryfree The available memory

memorysize The total memory size

operatingsystem The node’s operating system, for example, Fedora

operatingsystemrelease The release of the node’s operating system

processorx The make of each processor, includes an entry for each processor,
incremented from 0

processorcount The total processor count

puppetversion The version of Puppet on the node

rubyversion The version of Ruby on the node

sshdsakey The node’s public DSA key

sshrsakey The node’s public RSA key

swapfree The available swap space

swapsize The total swap size

Tip ➡ On the Puppet master server, you also have access to other facts. The servername and serverip

facts are the most useful, and these return the fully qualified domain name and IP address of the server,

respectively.

Speaking Puppet 73

Turnbull

Facter can also return environmental variables as facts. Facter assumes any
environmental variable that is prefixed with FACTER_ is a fact that can be used by Puppet. So
to set up one of these facts, we would simply configure an environmental variable as you
can see in Listing 3-21.

Listing 3-21. Setting an Environmental Variable Fact

export FACTER_statevar="primary"

In a Puppet manifest, we could then refer to the value of this environmental value using
a variable just like any other Facter fact. In this case, the $statevar variable would contain a
value of primary.

So what happens when the value of a fact changes? Puppet doesn’t ignore this. As we
described in Chapter 2, by default the client wakes up every 30 minutes and checks the
currency of its configuration. When this check occurs, it does two things:

 • Checks that no facts have changed on the node

 • Checks that the modification time on the server-side configuration is earlier than the
compilation time

If facts have changed, or the configuration on the master has been edited after the last
compilation time, the client requests that the server recompile and redeliver the
configuration. The client then reimplements and applies the updated configuration locally.

This check for fact changes does not apply to all facts though. Some facts are dynamic,
such as memory and swap sizes, and the fact change check ignores these rather than
initiating a recompile. By default, the following facts are ignored by the Puppet client:

 • memorysize

 • memoryfree

 • swapsize

 • swapfree

The list of facts to be ignored is controlled from the Puppet configuration file in the
[puppetd] namespace and through the dynamicfacts configuration option.
dynamicfacts = memorysize,memoryfree,swapsize,swapfree

You can add further facts to be ignored by separating each fact with a comma.

74 Speaking Puppet

Turnbull

Tip ➡ In Chapter 7, you’ll see how to enhance Facter by adding your own facts for Puppet to use.

Resource Types

In this chapter, we’ve seen a few examples of the various resource types that can be used to
manage resources on our nodes. We saw the file type resource that can manage files and
directories, the service type that manages services and daemons, the group type that
manages groups, and the package type that provides package management for our nodes.
But these are not the only resource types available to us. There is a rich collection of
resource types that we can make use of to configure resources on our nodes. It is also a
collection that is growing rapidly as the developers and members of the community
contribute new types. You can see the full list of resource types, their attributes, and
examples of their functionality at http://reductivelabs.com/trac/puppet/wiki/
TypeReference.

Note ➡ In Chapter 7, I’ll also discuss how you can use Ruby to create your own resource types and further

enhance Puppet.

In Table 3-2, you can see a full list of the current resource types available at the time of
writing.

Table 3-2. Resource Types

Resource Type Description

cron Manages cron jobs

exec Executes external scripts

file Manages files

filebucket A repository for backing up files

(Continued)

http://reductivelabs.com/trac/puppet/wiki/TypeReference
http://reductivelabs.com/trac/puppet/wiki/TypeReference

Speaking Puppet 75

Turnbull

Resource Type Description

group Manages groups

host Manages host entries

interface Configures interfaces (currently only works on Red Hat and Solaris)

mailalias Manages mail aliases

maillist Manages mailing lists

mount Manages mount entries

notify Sends a message to the puppetd log file

package Manages packages

schedule Defines Puppet scheduling

service Manages services

sshkey Manages SSH host keys

tidy Removes unwanted files

user Manages users

yumrepo Manages YUM repositories

zones Manages Solaris zones

Let’s look at a selection of the resource types in Table 3-2 and how to make use of
them.

Managing Cron Jobs

The first item in the table is the cron resource type that manages cron jobs on your nodes.
You can see a cron resource in Listing 3-22.

76 Speaking Puppet

Turnbull

Listing 3-22. cron Resources

cron { "syscheck":
 command => "/usr/bin/syscheck",
 user => "root",
 hour => "18",
 minute => "0"
}

The cron resource type is very simple. The command attribute specifies the function,
command, or binary that the cron job will execute. The user attribute specifies the user to
run the cron job as, and the resource also supports the standard minutes, hours, days,
months attributes that cron jobs use for scheduling.

Using a Filebucket

The filebucket type provides a repository for file backups. At this stage, the filebucket
type allows you to specify a local or network repository to hold file backups for other
resource types, principally the file resource type.

Files are backed up to the filebucket when they are changed on a client. Each change is
assigned an MD5 checksum. This checksum can be used to later retrieve and restore files.
At the moment, this is a manual restore process, but future plans are to automate this
process so that the filebucket can aid in the transaction rollback process. Most sites define a
single filebucket as their default backup location.

Note ➡ Puppet creates a local filebucket (called the clientbucket) on the local client and automatically backs

up all files there. The filebucket resource is used to create a server-based version of this backup facility.

Defining a filebucket is easy as you can see on the following line:
filebucket { main: server => "puppetmaster.testing.com" }

The filebucket is created on the Puppet master server you specify with the server
attribute.

Speaking Puppet 77

Turnbull

Tip ➡ You can also create local filebuckets on clients by using the path attribute instead of the server

attribute.

You can then refer to the created filebucket in resource types that support file backups,
usually using the backup attribute. For example, you could specify a resource default that
uses this filebucket to ensure all file resources use the filebucket to back up files:
File { backup => main }

You can see we’ve specified the capitalized file resource type to indicate this is a
default and then the backup attribute. The backup attribute takes the name of a filebucket as a
value. From now on, when a file is changed on a client, a backup will be saved to the main
filebucket located on the Puppet master server.

Managing Host Files

The host resource manages the contents of host files on your nodes, usually /etc/hosts, but
the type also supports adding host entries on OS X using NetInfo. You can see the host type
in Listing 3-23.

Listing 3-23. The host Type

host { "router":
 ensure => present,
 ip => "10.0.0.1",
 alias => ["router.testing.com", "firewall"]
}

The type has a number of attributes, and we’ve shown some of them in Listing 3-23.
The ensure attribute specifies whether the host entry should be added or deleted. The setting
of present has Puppet add the host entry. A setting of absent would remove the entry. You
can then specify the IP address using the ip attribute; you can specify either IPv4 or IPv6
addresses here. Last, we have the alias attribute, which allows you to list all the potential
host aliases for the entry. Multiple entries must be specified with an array as shown in
Listing 3-23. So this host resource would create a line in your hosts file like so:
10.0.0.1 router router.testing.com firewall

78 Speaking Puppet

Turnbull

Managing SSH Host Keys

The sshkey resource type manages SSH host keys. The current resource type can be used to
install keys in the known hosts file for your SSH server, /etc/ssh/ssh_known_hosts. You
can see an sshkey resource type in Listing 3-24.

Listing 3-24. The sshkey Resource Type

sshkey { $hostname:
 type => dsa,
 key => $sshdsakey
}

In Listing 3-24, we’ve used the sshkey resource together with two facts. We specified
the title of the resource as the $hostname fact and the value of the key as the $sshdsakey fact.
So what will Listing 3-23’s resource do? For every node it is implemented on, it will place
that node’s DSA host key in the /etc/ssh/ssh_known_hosts file. We could also pass in a list
of known host keys (using either DSA or RSA keys) or use the ensure attribute to indicate
whether the key should be present or absent.

Tidy Unwanted Files

The tidy resource type is used to remove unwanted files based on certain criteria. You can
specify criteria like the size or age of a file. In Listing 3-25, you can see a tidy resource.

Listing 3-25. The tidy Resource Type

tidy { "outputs":
 path => "/tmp/dboutput.sql",
 age => '15m',
 before => Service[mysql]
}

Listing 3-25 shows a tidy resource that will tidy (delete) the file /tmp/dboutput.sql if it
is older than 15 minutes. We’ve given the resource the symbolic name of outputs and
specified the precise file to be deleted using the path attribute. This is tidy’s equivalent of
using the name attribute.

The age is specified using the age attribute that can measure age in terms of seconds,
minutes, hours, days, and weeks. The age is specified with a number and the first letter of

Speaking Puppet 79

Turnbull

the time period, for example, 1s for one second and 2d for two days. By default, the tidy
resource uses atime, access time, to determine the age of a file, but you can override this to
use ctime or mtime by specifying the type attribute like so:
type => "ctime"

In Listing 3-25, we have also used a new metaparameter, before. The before
metaparameter is the opposite of the require metaparameter. The require metaparameter
enforces dependency—another resource must be actioned prior to the current resource
being actioned. The before metaparameter ensures that the current resource is actioned
before the specified resource. In Listing 3-25, the outputs resource would have to be
actioned before the Service[mysql] resource.

With the tidy resource, you can also remove files larger than a certain size by using the
size attribute like so:
size => "10m"

You can specify size by bytes, kilobytes, or megabytes using b, k, and m, respectively, or
if you don’t specify a type, the resource will default to kilobytes.

If you specify both a size and an age, they are combined together as if with an OR
statement. So if you specify a file to be tidied if it is older than 15 minutes or bigger than 1
megabyte, and the file fits one or both criteria, it will be tidied.

You can also back up files before they are tidied and recurse through directories to
delete multiple files.

Tip ➡ You can see a full list of types and their attributes at

http://reductivelabs.com/trac/puppet/wiki/TypeReference.

Functions

Functions are the last part of Puppet’s language we’re going to examine. Functions come in
two forms: statements, which do not return values, and rvalues, which do return values.
You’ve already met two of these functions in this chapter: the include statement we used in
our node definitions to include classes, and the realize function we use to realize virtual
resources. Statements are used to perform jobs, like including classes or logging messages
to the server, from which we don’t expect a response. The rvalue functions return values
and can only be used when a resulting value is expected such as a conditional statement or a
variable assignment.

http://reductivelabs.com/trac/puppet/wiki/TypeReference

80 Speaking Puppet

Turnbull

Tip ➡ Functions only run on the Puppet master. They are executed when the configuration on the master is

parsed and compiled. So when you execute functions, you only have access to the resources on the master

plus any Facter facts gathered from your nodes.

You can see a list of the currently available functions in Table 3-3.

Table 3-3. List of Functions

Function Type Description

include Statement Evaluates one or more classes

realize Statement Makes a virtual object real

alert Statement Logs a message on the server at level alert

crit Statement Logs a message on the server at level crit

debug Statement Logs a message on the server at level debug

emerg Statement Logs a message on the server at level emerg

err Statement Logs a message on the server at level err

info Statement Logs a message on the server at level info

notice Statement Logs a message on the server at level notice

warning Statement Logs a message on the server at level warning

defined Rvalue Determines whether a resource or class is defined

fail Statement Fails with a parse error

file Rvalue Returns the contents of a file or files

generate Rvalue Calls an external command and returns the results of the command

(Continued)

Speaking Puppet 81

Turnbull

Function Type Description

search Statement Adds another namespace for this class to search

tag Statement Adds tags to a class, node, or definition

tagged Rvalue A Boolean function that tells you whether the current container is
tagged with the specified tags

template Rvalue Evaluates templates and returns their values

The first two functions in Table 3-3, include and realize, we’ve already looked at
earlier in this chapter.

Logging Functions

The functions alert, crit, debug, emerg, error, info, notice, and warning allow you to send
messages to the Puppet master server. Each log level is a separate function, so to send a
message to the server at the notice level, you would use the notice function like so:
notice("This is log message sent at notice log level")

Checking for Existence with defined

The next function, defined, ascertains whether a given resource or class is defined. You
could use this to determine whether a class exists before including it, as you can see in
Listing 3-26.

Listing 3-26. The defined Function

if defined(webservices) {
 include apache
} else {
 include lighttpd
}

In Listing 3-26, if the webservices class is defined, the apache class should be included.
If not, the lighttpd class is included.

82 Speaking Puppet

Turnbull

Note ➡ You’ll note we’ve just specified the name of the class, rather than prefixing it with its proper title,

Class[classname]. This is the behavior in version 0.23.2. Later versions refer to classes using the correct

title (i.e., if defined(Class[webservices]) { ... }).

You can also use the defined function to check whether a resource is defined:
if defined(Service[sshd]) { ... }

Here we would perform an action if the sshd service is defined.

Note ➡ Like qualified variables, the defined function relies on the order that your resources are evaluated.

If a resource hasn’t been evaluated yet, you can’t test its definition.

Generating Errors with fail

The fail function forces a parse error in your code and returns an error message to the
server. You can make use of it like so:
fail("This function will result in a parse error")

This will result in an error similar to the following line being generated on the server:

err: This function will result in a parse error at ➥
/etc/puppet/manifests/classes.pp:32

Adding External Data with file

The file function returns the contents of a specified file or files. You can use this function
to populate the contents of file type resources as you can see in Listing 3-27.

Speaking Puppet 83

Turnbull

Listing 3-27. The file Function

file { "resolv.conf":
 name => "/etc/resolv.conf",
 owner => "root",
 group => "root",
 content => file("/var/puppet/file/resolv.conf")
}

In Listing 3-27, we have created a new file resource and then set its owner and group.
We’ve used the content attribute of the file resource type to provide the contents of our
new file. Inside the content attribute, we’ve called the file function and populated the file
with the contents of the /var/puppet/file/resolv.conf file (which would have to be located
on the master server). We can also specify multiple files like so:
file(["/var/puppet/file/hosts", "/var/puppet/file/secondary_hosts"])

Using generate

The generate function calls an external command (optionally with arguments) and returns
the result to Puppet. You can see a generate function in Listing 3-28.

Listing 3-28. The generate Function

$interfaces = generate("/sbin/ifconfig", "eth0")

In Listing 3-28, we’ve defined a variable called $interfaces that calls the generate
function. All generate functions must have a command specified, and then any potential
arguments are specified after the command, each separated by commas. In Listing 3-28, the
result of running the command
/sbin/ifconfig eth0

would be returned to Puppet and used to populate the $interfaces variable. The command
that executes must exit with a return code of 0. Any other return code will result in a parse
error being generated.

Tip ➡ The generate function will only accept file separators, alphanumeric characters, dashes, and periods.

There is some limited protection against malicious calls, but you should be careful when crafting your

generate calls.

84 Speaking Puppet

Turnbull

Qualifying Definitions Using search

The search function allows you to reference definitions contained in other classes without
the need to qualify them. Remember how we discussed definition qualification? We
discovered that we could refer to a definition defined in another class by specifying the
class name and the definition name separated by two colons, ::. The search function allows
you to add a “search path” to a class that allows referencing of definitions without
qualification, for example:

class rails {
 define site { ... }
}

class webserver {
 search("rails")
 site { mysite: ... }
}

Here we’ve defined two classes, rails and webserver, and then created a definition
called site in the rails class. We want to refer to this definition in the second class, and so
we’ve added the search function and the name of the class that contains the definition we
want to reference, in this case rails. We’ve then called the site definition.

Tip ➡ If we didn’t use the search function, we could still refer to the site definition by using the syntax

rails::site.

Using tag and tagged

The next two functions, tag and tagged, can be added to nodes, classes, and definitions to
provide another method of classifying them.

Tip ➡ There is a metaparameter, also called tags, that can be used to tag individual resources.

Speaking Puppet 85

Turnbull

Tagging allows you to group resources together, for example, specifying resources as
belonging to a test or development environment. You can add as many tags as you wish.

Note ➡ Like other functions, tags are order dependent and set as resources are evaluated. You can’t make

use of a tag that has not been set yet.

node 'node.testing.com' {
 tag(devel)

 if tagged(devel) {
 include dev_test
 }
 include basics
}

On the previous lines, we’ve specified a node definition and used the tag function to
add the devel tag. We’ve then used a conditional if clause and the tagged function. If the
devel tag is applied to that node, the dev_test class will be included.

Some tags are automatically created; for example, all resources defined in a class, node,
or definition structure will be tagged with the name of that structure. For example, if we
define a file resource, /etc/passwd, in a class called basics, this resource would
automatically have the tag basics added to it. Another example occurs when a class is
included in a node; a tag with the same name as the class will then be set for that node. You
can see how this might be useful in Listing 3-29.

Listing 3-29. Automatic Tagging

node 'node1.testing.com' {
 include webserver
 include basics
}

node 'node2.testing.com' {
 include databaseserver
 include basics
}

class basics {
 if tagged(webserver) {
 notice("This is a web server")

86 Speaking Puppet

Turnbull

 }
 if tagged(databaseserver) {
 notice("This is a database server")
 }
}

In Listing 3-29, we create two nodes, node1, which includes the webserver and basics
classes, and node2, which includes the databaseserver and basics classes.

We then define the basics class. Inside this class we use a combination of the if
conditional and the tagged function. In this example, if the node including the basics class
is tagged as webserver (which node1 automatically is as a result of including the webserver
class), a notice is sent. If the node is tagged with databaseserver (as node2 is automatically),
an alternative notice is sent.

Tip ➡ We can obviously do more than send a notice here, like implement a particular resource or load a

particular package or packages.

We can also select which configuration is implemented based on tags. We do this in the
Puppet configuration file by setting the value of the tags configuration option like so:

[puppetd]
tags = devel

Or, we can do so when Puppet is executed:
puppetd --tags devel

The command on the previous line would execute Puppet and only implement
configuration that was tagged devel. Multiple tags can be specified, separated by commas.

Using Templating

The last function, template, is also one of the most useful and allows you to make use of
Ruby ERB templates. This allows us to create template files, like configuration files for
example, that can be populated with configuration data from Puppet.

Speaking Puppet 87

Turnbull

Tip ➡ With ERB, Ruby code is added to plain text to generate files. You can read about ERB templates in

more detail at http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/.

In Listing 3-30, we can see a simple template.

Listing 3-30. Simple Template

class resolv {

 $searchpath = "testing.com"
 $nameservers = ["192.168.0.1", "192.168.0.2"]

 file { "resolv.conf":
 name => "/etc/resolv.conf",
 content => template("resolv-template.erb")
 }
}

In Listing 3-30, we’ve created a class called resolv and specified two variables,
$searchpath and $nameservers (which is an array), and a file resource that configures the
/etc/resolv.conf file. We’ve specified the content attribute and called the template
function in it. We’ve specified a template file called resolv-template.erb.

Tip ➡ You can specify multiple templates by separating each with commas.

Template files need to be located on the master server, and by default, if you don’t
specify a full path, Puppet searches for them in the location specified in the templatedir
configuration value in your configuration file. This option is usually set to
/var/puppet/templates.

Inside a template you can reference any variable that is in the current scope; in Listing
3-30 you could use the $searchpath and $nameservers variables in the specified template.
Now let’s have a look at the template file.

search <%= searchpath %>
<% nameservers.each do |ns| %>nameserver <%= ns %>
<% end %>

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc

88 Speaking Puppet

Turnbull

You can see we’ve specified an ERB template that will receive the $searchpath and
$nameservers variables. We’ve also specified a little piece of Ruby code that will iterate
through the $nameservers array. Iteration can be used in conjunction with definitions to
create multiple files of a particular type, for example, creating Apache virtual hosts. If we
configure Listing 3-30 on a node, the end result would look like the following:

search testing.com
nameserver 192.168.0.1
nameserver 192.168.0.2

This is a very simple example of using the template function, and we’ll see others,
including using templates in definitions to create configuration and similar files in Chapter
4.

Resources

We’ve looked at how the Puppet language works in this chapter, and there are useful
resources and documentation online that can also help you learn more.

You can also log tickets and bug reports at Puppet’s trac site by registering at
http://reductivelabs.com/trac/puppet/register.

Web

 • Puppet language tutorial:

 http://reductivelabs.com/trac/puppet/wiki/LanguageTutorial

 • Puppet type reference (including metaparameters):

 http://reductivelabs.com/trac/puppet/wiki/TypeReference

 • Puppet function reference:

 http://reductivelabs.com/trac/puppet/wiki/FunctionReference

 • Puppet style guide:

 http://reductivelabs.com/trac/puppet/wiki/StyleGuide

http://reductivelabs.com/trac/puppet/register
http://reductivelabs.com/trac/puppet/register
http://reductivelabs.com/trac/puppet/wiki/LanguageTutorial
http://reductivelabs.com/trac/puppet/wiki/TypeReference
http://reductivelabs.com/trac/puppet/wiki/FunctionReference
http://reductivelabs.com/trac/puppet/wiki/StyleGuide

CHAPTER 4

Using Puppet

In Chapter 3, we talked about the syntax of the Puppet language and how to use that syntax
to express configuration. In this chapter, we’re going to look at Puppet’s capabilities and
how to make use of that language to articulate actual configurations on your nodes. We’re
going to do this by showing you how to configure a real environment using Puppet. Using
the examples in this chapter, you will make use of the syntax you learned in Chapter 3.

All of these examples represent one way of implementing Puppet in your environment.
The examples are designed to give you an idea of how a production Puppet implementation
could work. Some of the examples represent some best practice guidelines, but others are
simply ideas about how you might go about using Puppet to articulate your configuration.

We’ll also look at how to manage and store your Puppet configuration including using a
revision control system, file serving, and modules. By the end of this chapter, you should
have a strong understanding of what Puppet can do to manage your nodes and the best way
to articulate, store, and administer that configuration.

Note ➡ All the configuration examples in this chapter are available as a source code download from the

Apress site.

Our Example Environment

We’re going to configure an example environment with Puppet. You can see a visual
representation of this environment in Figure 4-1.

90 Using Puppet

Turnbull

Figure 4-1. The example environment

Using Puppet 91

Turnbull

The environment consists of four hosts running a variety of operating systems and with
a variety of purposes. While four hosts may not seem like a lot, you’ll see that the practices
and structure I am going to demonstrate in this chapter can easily be extended to cater to
larger numbers and types of hosts. You can see a full list of these hosts and their details in
Table 4-1.

Table 4-1. Example Hosts

Host Operating System Description

web Fedora An Apache-based web server

db Fedora A MySQL-based database server

mail Fedora A Postfix-based mail server

puppetmaster Debian The Puppet master server

We’ve installed the latest version of Puppet on the puppetmaster host and the Puppet
daemon on all the remote hosts. We’ve also connected our clients to the master and added
them to the master using the puppetca binary. Our clients and master are installed with the
default configuration.

Manifest Organization

Before we get started configuring our environment, we need to look at how Puppet manages
and stores our configuration. As you’ll remember, our resources, classes, and definitions are
stored in manifest files. A special manifest file, called the site manifest, is at the core of our
configuration. When starting the Puppet master daemon, the site manifest file, by default
located in /etc/puppet/manifests/site.pp, needs to be present and syntactically correct.

Importing Manifests

If we added all our configuration to the site.pp file, it’d quickly become complicated and
hard to manage. So instead, we store our configuration in multiple files. We think about the
site manifest file as the apex of a pyramid; in this file, all other manifests and the

92 Using Puppet

Turnbull

configuration defined in them must be referenced. This is done by importing files into your
site manifest file. We do this using the import function as you can see in Listing 4-1.

Listing 4-1. The import Function

import "templates.pp"
import "nodes.pp"
import "classes/*"
import "groups/*"
import "users/*"
import "os/*"

In Listing 4-1, we’ve used five import statements. First, we’ve imported the file
templates.pp and the file nodes.pp. You do not have to specify the .pp extension. By
default, Puppet will add the .pp extension to any file specified in the import statement that
doesn’t already have it. Next, we’ve used globbing to import the contents of three
subdirectories: groups, users, and os.1 By specifying the * symbol, Puppet will load all of
the files that have an extension of .pp in those directories.

We also might use our site.pp file to set up a default filebucket or some other defaults
for types as we have in Listing 4-2.

Listing 4-2. Other Items in the site.pp File

filebucket { main: server => puppet }
File { backup => main }

In Listing 4-2, we’ve defined a default filebucket and told the file type to always back
up files to that filebucket.

We can also apply a structure to the files we import into our site.pp file. In Table 4-2,
I’ve shown an example structure of files and directories to hold your configuration
resources.

1 http://www.faqs.org/docs/abs/HTML/globbingref.html

http://www.faqs.org/docs/abs/HTML/globbingref.html

Using Puppet 93

Turnbull

Table 4-2. Manifest Structure

Structure Description

/manifests/ The manifest root directory

/manifests/site.pp The primary manifest file

/manifests/templates.pp Contains template nodes

/manifests/nodes.pp Contains node definitions

/manifests/definitions/ Houses all definitions

/manifests/groups/ Contains manifests configuring groups

/manifests/os/ Contains classes designed to configure nodes with
particularoperating systems

/manifests/users/ Contains manifests configuring users

/manifest/files/ Contains file server modules for Puppet distributable files

/manifests/templates/classname ERB templates contained in subdirectories named after
the class that uses the template

We’ll discuss and expand on the structure in Table 4-2 further during this chapter. You
can locate this directory structure wherever it suits you. By default, Puppet looks for the
manifest files in /etc/puppet/manifests, controlled by the manifestdir configuration option.
manifestdir = $confdir/manifests

Other people locate their manifests under the /var/puppet directory. You should choose
the location that best suits your environment and standards. We can also override and
change the name of the site.pp file using the manifest configuration option:
manifest = $manifestdir/site.pp

The manifest option defaults to the value of $manifestdir/site.pp.

Managing Manifests with Subversion

One last manifest management tool we’re going to use is a version control system, which is
the best tool for managing a large number of manifests. We’re going to use a Subversion

94 Using Puppet

Turnbull

repository. Subversion is an open source version control system that can store and manage
your manifest files. Subversion manages files and directories and tracks changes made to
them over time. This allows you to revert changes or restore to a previous state. To use
Subversion, you will need to install it. Most Linux and Unix hosts will have a Subversion
package available; for example, on a Debian platform, you would need to install the
subversion package.

Note ➡ If you don’t like or use Subversion as a version control tool, you can use an alternative tool like Git,

Monotone, or CVS.

First, we create a Subversion repository.
$ svnadmin create /usr/local/svn/puppet

Next, in Listing 4-3, we add our Puppet directory structure and files to the repository.

Listing 4-3. Subversion Import

$ svn import puppet file:///usr/local/svn/puppet ➥
-m "Initial import of Puppet structure"
Adding puppet/site.pp
Adding puppet/template.pp
Adding puppet/nodes.pp
...
Committed revision 1.

In Listing 4-3, we’ve imported the contents of the puppet directory into the repository
we created. You can see each file being added and the final message indicating that the first
revision has been committed to the repository. If we now wish to check out these files into
what Subversion calls a “working copy” to use in Puppet, we can do this using the svn
checkout function.
$ svn checkout file:///usr/local/svn/puppet /etc/puppet/manifests

We then make any updates and changes to our working directory. Then each time we
update our Puppet manifests, we commit our changes using the svn commit command.

$ cd /etc/puppet/manifests
$ svn commit -m "Added firewall node"

We can now potentially revert back to a previous revision of our configuration if we
wish to reverse a change or changes.

file:///usr/local/svn/puppet
file:///usr/local/svn/puppet

Using Puppet 95

Turnbull

Tip ➡ If you’ve never used Subversion before, an excellent introduction is available at

http://svnbook.red-bean.com/. You can also see details of the various Subversion options by running

the svn command with the help option: svn help.

Defining Nodes

Let’s configure our nodes first. We’ll start with the node definitions themselves, and to
make it easier, we’re going to classify our nodes into types and build some templates.
We’re going to template our nodes on the assumption that we’re going to have multiple
mail, web, firewall, and database hosts in our environment. So we’re going to create a base
node and some template nodes for each.

Caution ➡ As I mentioned in Chapter 3, template nodes (and node inheritance) is generally only useful for

inheriting and templating nodes with static classes that do not include variables. Say we want to specify a

variable in our node that overrides a particular variable in a template node; unfortunately, due to variable

scope, we can’t. We discussed this limitation in Chapter 3. Later in this section, you’ll see another method

using the include function workaround we also discussed in Chapter 3.

We’re going to place these templates in a file called templates.pp, shown in Listing 4-4,
and we’ll need to update our site.pp file to import this file.

Listing 4-4. templates.pp

node basenode {
 case $operatingsystem {
 fedora: { include fedora }
 debian: { include debian }
 default: { include fedora}
 }
 include baseapps, sshd
}
node default inherits basenode {}
node webserver inherits basenode {
 include apache
}

http://svnbook.red-bean.com

96 Using Puppet

Turnbull

node dbserver inherits basenode {
 include mysql
}
node mailserver inherits basenode {
 include postfix
}

In Listing 4-4, we’ve created our template nodes. The first, basenode, is configuration
we’re going to apply to all nodes. In our basenode we’ve made use of a fact,
$operatingsystem, to include a class based on the operating system of the node; for
example, if Facter returned a value of fedora, the fedora class would be included.

We’ve then defined a default node, which inherits basenode. The default node is
applied to any nodes that do not have specific node definitions. We’ve then created three
templates, webserver, dbserver, and mailserver, which all inherit basenode and add classes
of their own. At this stage, we’ve just included a small number of classes into each
template.

There is an alternative method of inheriting classes between parent and child nodes that
uses the include function. This method is better suited to classes where variable scoping
and inheritance is an issue. You can see an example of that method next:

class baseclass {
 case $operatingsystem {
 fedora: { include fedora }
 debian: { include debian }
 default: { include fedora}
 }
 include baseapps, sshd
}
node default {
 include baseclass
}
class webserver {
 include baseclass
 include apache
}
class dbserver {
 include baseclass
 include mysql
}
class mailserver {
 include baseclass
 include postfix
}

Using Puppet 97

Turnbull

In this alternative method, we’ve defined a class called baseclass rather than a base
node. This class is then included in all subsequent classes including the default node.
Additional classes are created that contain the base class and classes required to template
other nodes much as we did in Listing 4-4.

Now let’s add node definitions for the actual nodes we’re going to manage. We’re
going to create a file called nodes.pp to store them and import that into our site.pp file (as
you can see in Listing 4-5).

Listing 4-5. nodes.pp

node 'puppetmaster.testing.com' inherits basenode {}
node 'web.testing.com' inherits webserver {}
node 'db.testing.com' inherits dbserver {}
node 'mail.testing.com' inherits mailserver {}

Note ➡ You can also store node definitions external to Puppet in an LDAP directory. You can read about that

at http://reductivelabs.com/trac/puppet/wiki/LdapNodes. We’ll discuss this further in Chapter 6.

In our nodes.pp file, we’ve created a node definition for each node we’re going to
manage. We’ve specified each node by its fully qualified domain name and enclosed the
name in single quotes. We haven’t added any specific classes to the node definitions and are
just inheriting the templates we created in Listing 4-4.

Note ➡ Remember, nodes can only inherit one node.

If we wanted to add multiple nodes of each template, we could add them in a list, each
separated by commas, like so:
node 'web.testing.com', 'web1.testing.com', 'web2.testing.com' inherits webserver
{}

If we used our alternative include method, we’d create our nodes like so:

node 'puppetmaster.testing.com' {
 include baseclass
}
node 'web.testing.com' {

http://reductivelabs.com/trac/puppet/wiki/LdapNodes

98 Using Puppet

Turnbull

 include webserver
}
node 'db.testing.com' {
 include dbserver
}
node 'mail.testing.com' {
 include mailserver
}

Again, if we wanted to apply our template classes to multiple nodes, we’d do it like so:

node 'web.testing.com', 'web1.testing.com', 'web2.testing.com' {
 include webserver
}

Our First Classes

As we defined our nodes, we also referenced our first classes. Let’s create those classes
now. We’re going to create all our classes in a directory called classes under our manifest
directory and import all of them into our configuration in our site.pp file (again, as we’ve
already seen in Listing 4-1). I generally create each class in a separate file and giving the
file the same name as the class itself, for example, baseapps.pp for the baseapps class. We
then specify in our site.pp that Puppet should import the files in the classes directory.
import "classes/*"

The previous import statement will import all files with an extension of .pp in the
classes directory.

In Listing 4-4, you can see that the basenode class includes two classes, baseapps and
sshd, in addition to including a class based on the operating system of the node we’re
managing, in this case the debian and fedora classes. In Listing 4-6, you can see our first
two classes: baseapps and sshd.

Listing 4-6. baseapps Class

class baseapps {

 $packagelist = ["joe", "perl", "rubygems"]

 package { $packagelist:
 ensure => installed }
}

Using Puppet 99

Turnbull

class sshd {

case $operatingsystem {
 fedora: { $ssh_packages = ["openssh", "openssh-server", "openssh-clients"] }
 debian: { $ssh_packages = ["openssh-server", "openssh-client"] }
 default: { $ssh_packages = ["openssh", "openssh-server"] }
}

 package { $ssh_packages: ensure => installed }

 service { sshd:
 name => $operatingsystem ? {
 fedora => "sshd",
 debian => "ssh",
 default => "sshd",
 },
 enable => true,
 ensure => running
 }

}

Tip ➡ To help with your manifest creation and editing, there is a VIM syntax validation file, puppet.vim,

available at http://reductivelabs.com/downloads/puppet/puppet.vim.

Our first two classes are simple. The baseapps class defines an array holding a number
of packages: the joe editor, which my system administrators prefer, perl for our system
administration scripts, and the rubygems Ruby package manager. This array is then added to
the package type that will then install each package. The providers associated with the
package type will then use each node’s package management system to install the packages,
for example, apt-get on Debian and yum on Fedora.

When we apply our class to each node, the packages will be installed if they are not
already present. If a package needs to be installed, you’ll see a log message indicating its
change in status:

notice: //basenode/baseapps/Package[joe]/ensure: ensure changed ➥
'purged' to 'present'

http://reductivelabs.com/downloads/puppet/puppet.vim

100 Using Puppet

Turnbull

The second class, sshd, sets up the SSH daemon on all our nodes. The first resource
ensures that, depending on the operating system on the node, the appropriate packages are
installed. The second resource, Service[sshd], ensures that the SSH daemon is started. It
uses the name attribute and a conditional statement to ensure the right service is started on
each operating system.

We also defined two other classes, debian and fedora, which are loaded for the
respective operating system. We’re going to put these classes into the os directory and also
import them into our site.pp file (again, we’ve already seen this in Listing 4-1).
import "os/*"

In Listing 4-7, you can see both these classes.

Listing 4-7. The Operating System Classes

class fedora {

 yumrepo { "testing.com-repo":
 baseurl => "http://repos.testing.com/fedora/$lsbdistrelease/",
 descr => "Testing.com's YUM repository",
 enabled => 1,
 gpgcheck => 0,
 }
}

class debian {

 $disableservices = ["hplip", "avahi-daemon", "rsync", "spamassassin"]

 service { $disableservices:
 enable => false,
 ensure => stopped,
 }
}

In Listing 4-7, we’ve created two classes; the first is fedora, which loads whenever a
node returns Fedora as the value of the $operatingsystem fact. It uses the yumrepo type to
setup a yum repository for our environment. We’ve also used another fact, $lsbdistrelease,
which returns the LSB release number to select the correct repository for the Fedora release
we have installed.

On the following line, you can see the log entry indicating that the repository has been
created:

http://repos.testing.com/fedora/$lsbdistrelease

Using Puppet 101

Turnbull

info: create new repo testing.com-repo in file ➥
/etc/yum.repos.d/testing.com-repo.repo

The resulting repository will be created on your node.

[testing.com-repo]
name=Testing.com's YUM repository
baseurl=http://repos.testing.com/fedora/7/
enabled=1
gpgcheck=0

The second class, debian, loads when Debian nodes connect, and it uses the service
type to disable an array of services that we don’t want running on our Debian hosts.

We could create and load classes for other operating systems and platforms or
additional types to the operating system classes we’ve already created.

Managing Users and Groups

Once we’ve created our nodes, we’re going to create some users and groups for our nodes.
Puppet recommends that all users and groups be created as virtual resources and realized.
We discussed virtual resources in Chapter 3 and why we use them. Virtual resources are not
automatically configured on your nodes, but rather require explicit application. You can
recognize virtual resources by the @ symbol preceding the type.

Virtual resources are useful for users and groups. This is because a resource can only be
managed once in Puppet. Hence we could not configure a user called sysadmin in both the
debian and fedora classes. With virtual resources, we can create the sysadmin user as a
virtual resource. We then realize the resource in both classes. We can do the same thing
with groups.

Caution ➡ Puppet is probably not ideal to populate large numbers of users and groups to provide user access

for nodes and applications. Puppet is best used to populate nodes with users for running applications and

services, systems administration, and management.

We’re going to define two types of users. The first are users associated with functions,
such as our sysadmin user, or users belonging to employees and administrators. These users
will be grouped into a single class called virt_users and contained in a file called
virt_users.pp. The second are those used by appliances, services, and daemons. Each of

http://repos.testing.com/fedora/7

102 Using Puppet

Turnbull

these users will be specified in their own classes, and each class will be prefixed with user_
and the name of the user being created, for example, user_apache. Each user class will be
specified in its own file.

We’ll divide groups into the same types and use the same model to manage them. All
groups associated with people will be contained in a class called virt_groups and in a file
called virt_groups.pp. Groups for applications, services, and daemons will be contained in
individual classes and prefixed with group_ and the name of the group being created, for
example, group_apache. Each group will be specified in its own file.

Then we need to import both the users and groups directories to our site.pp file to
ensure all our users and groups are loaded.

import "groups/*"
import "users/*"

Managing Users

In Listing 4-8, you can see part of our virt_users class, showing two of our users.

Listing 4-8. The virt_users Class

class virt_users {
 @user { "jsmith":
 ensure => "present",
 uid => "1001",
 gid => "1000",
 comment => "Jane Smith",
 home => "/nfs/IT/home/jsmith",
 shell => "/bin/bash",
 }

 @user { "mjones":
 ensure => "present",
 uid => "1002",
 gid => "1000",
 comment => "Mary Jones",
 home => "/nfs/IT/home/mjones",
 shell => "/bin/bash",

 }
}

Using Puppet 103

Turnbull

Note ➡ When creating users, any group or groups you specify must exist, or the user creation will fail. Here

we have used the group administration. This group must already exist on our target node, or a Puppet

resource must exist that will create this group on the node.

With groups, we follow the same model. In Listing 4-9, you can see a selection from
our virt_groups class that contains employee groups.

Listing 4-9. The virt_groups Class

class virt_groups {
 @group { "staff":
 gid => "1000",
 ensure => present
 }

 @group { "administration":
 gid => "1501",
 ensure => present
 }

 @group { "mail_team":
 gid => "1502",
 ensure => present
 }
}

So how do we realize these users and groups? Well, first we’re going to realize the
users and one of our groups in a class called staff, which we’ll store in our classes
directory with the file name staff.pp. We’ve also included the contents of our virt_users
and virt_groups classes to ensure Puppet knows where to find our users and groups.

class staff {
 include virt_users, virt_groups
 realize(
 Group["staff"],
 User["jsmith"],
 User["mjones"]
)
}

104 Using Puppet

Turnbull

We can then include this class in our basenode template to ensure this group and its
users are created on all nodes that inherit this template node.

node basenode {
 case $operatingsystem {
 fedora: { include fedora }
 debian: { include debian }
 default: { include fedora}
 }
 include baseapps, sshd, staff
}

But we also want our administration group to be included on all nodes. So in Listing 4-
10, we’re going to create a class called administrators to realize the administration group
and add one of our users to that group. We’ll store our class in a file called
administrators.pp in our classes directory. We’ll then include that class in our basenode
node in the nodes.pp file.

Listing 4-10. Realizing Our Users

class administrators inherits virt_users {
 realize(
 Group["administration"]
)
 User["jsmith"] { groups => "administration" }
}

node basenode {
 case $operatingsystem {
 fedora: { include fedora }
 debian: { include debian }
 default: { include fedora}
 }
 include baseapps, sshd, staff, administrators
}

You can see in Listing 4-10 that we’ve used an override to add the administration
group to the jsmith user. To achieve the override, the administrators class inherits the
virt_users class. Now, the administration group will be created on all templates and nodes
that inherit the basenode node template and the jsmith user added as a member of this group.

We could also realize these users in other classes; for example, if mjones was a mail
administrator, we could create a class for mail administrators, stored in
classes/mail_team.pp, and include it in our mailserver template node like so:

Using Puppet 105

Turnbull

class mail_team inherits virt_users {
 realize(
 Group["mail_team"]
)
 User["mjones"] { groups => "mail_team" }
}

node mailserver inherits basenode {
 include postfix
 include mail_team
}

Here the mail_team group would be realized and included in the mailserver node
template. We’ve again used an override to add the mjones user to the mail_team group. Now
every node that uses this node template, in our case the mail.testing.com node, will add the
mjones user to the mail_team group.

We can also create single users and groups for particular purposes, for example, a user
and group to run a daemon or application. You can see an example of this in Listing 4-11.

Listing 4-11. The mysql User and Group

class mysql_user {
 user { "mysql":
 ensure => "present",
 uid => "501",
 gid => "501",
 comment => "MySQL",
 home => "/var/lib/mysql",
 shell => "/sbin/nologin",
 }
}
class mysql_group {
 group { "mysql":
 gid => "501",
 ensure => present
 }
}

We can then include both the user and the group when we configure the appropriate
service. We don’t make this user and group virtual, as we’re only going to be using them in
one class.

106 Using Puppet

Turnbull

Tip ➡ There is a useful script available at the Reductive Labs site that can convert a passwd file into a class

containing all the users defined in the file. You can see the script at

http://reductivelabs.com/trac/puppet/wiki/PuppetBestPractice#conv-passwd.

File Serving

Before we configure the services on our nodes, we’re going to look at how Puppet does file
serving. Puppet can act as a file server to deliver files to your nodes when required. The
files Puppet serves out via file servers are called distributable files.

File serving with Puppet has both a server and client function. The server function is
configured and initiated by the Puppet master daemon. The client function is embedded into
the Puppet client daemon and retrieves files from the Puppet master file server. The file
retrieval is done in individual resource definitions. You can specify a Puppet file server for
the file type resource using the source attribute like so:

file { "httpd.conf":
 source => "puppet://puppetmaster/httpd/conf/httpd.conf"
}

Let’s start by configuring our file server. File server configuration is controlled by the
fileserver.conf file, by default located in the /etc/puppet directory. You can specify an
alternative location for the file by starting the Puppet master daemon with the --fsconfig
flag like so:
puppetmasterd --fsconfig /usr/local/etc/puppet/fileserver.conf

The fileserver.conf file defines paths to serve files from and the access controls
around those paths. In Listing 4-12, you can see an example of a typical configuration.

Listing 4-12. fileserver.conf Configuration

[configuration]
path /etc/puppet/manifests/files/configuration
allow *.testing.com
deny *.production.com

Each path being served is called a module. Listing 4-12 shows a module called
configuration. The use of modules allows Puppet to abstract and simplify file system
configuration and paths. The path statement specifies the location on the Puppet master

http://reductivelabs.com/trac/puppet/wiki/PuppetBestPractice#conv-passwd
puppet://puppetmaster/httpd/conf/httpd.conf

Using Puppet 107

Turnbull

server where the files being served are located. The path can contain one or more %h, %d, and
%H dynamic variables. They are the client’s hostname, domain name, and fully qualified
domain name. All are based on the host and domain name used by the Puppet client’s SSL
certificate. This allows you to specify particular files to be downloaded based on these
names, for example:
path /etc/puppet/manifests/files/%h

In this path statement, the %h variable would be replaced with the hostname of the
connecting node and retrieve files from a directory named after that node like so:

/etc/puppet/manifests/files/web/filename
/etc/puppet/manifests/files/db/filename
/etc/puppet/manifests/files/mail/filename

There are also simple host- and IP-based access controls for file serving using an allow-
and-deny model. In Listing 4-12, we’ve specified both an allow and a deny statement. We’re
allowing access to all nodes in the testing.com domain and denying access to all nodes in
the production.com domain. In your Puppet master logs, when you start the daemon, you
should see an informational message for each mount module you define like so:
info: mount[configuration]: allowing *.testing.com access

If you do not specify any deny or allow statements, file serving is explicitly denied.
When working out whether a node has access, deny statements are processed and matched
before allow statements. If, after processing all statements, no allow statements provide
access to the module, the request is denied.

You can specify which nodes to allow or deny using a variety of formats: name, IP
address, or the * symbol. You can see a few example statements on the following lines:

deny 10.0.10.0/24
deny dev.testing.com
deny 10.0.20.*
allow *

On the previous lines, we have denied access to the 10.0.10.0 Class C subnet, the host
dev.testing.com, and all the hosts in the 10.0.20.x subnet. Lastly, we used the * symbol to
specify a global allow.

Tip ➡ The file server function can be performance intensive and can result in performance impacts on the

Puppet master server. This is particularly evident when you retrieve large numbers of files on multiple nodes.

At this stage, there are limited solutions to this issue, but some discussions on scalability can be seen at

http://www.reductivelabs.com/trac/puppet/wiki/PuppetScalability.

http://www.reductivelabs.com/trac/puppet/wiki/PuppetScalability

108 Using Puppet

Turnbull

If we want to retrieve a file in the configuration module, we would use the file resource
type as you can see in Listing 4-13.

Listing 4-13. Retrieving Served Files

file { "/etc/nsswitch.conf":
 source => "puppet://puppetmaster/configuration/nsswitch.conf"
}

In Listing 4-13, we’ve retrieved the nsswitch.conf file from our Puppet master server,
here puppetmaster. The source attribute of the file type allows us to specify the location of
the file to be retrieved. It takes the format of
puppet://server/module/file

In our listing, the server name is puppetmaster and the module is our previously defined
configuration. We then specify the source file to be retrieved. If you omit the server value,
for example, puppet:///module/file, Puppet will automatically try to fill in the value of the
server name based on the Puppet master server that you are connecting to.

We can also download the contents of whole directories recursively using the recurse
attribute like so:

file { "/etc/pam.d":
 source => "puppet://puppetmaster/configuration/pam.d",
 recurse => "true"
}

Instead of specifying a file in the file resource type, we specify a directory. The source
statement also specifies a directory located on our file server. The recurse attribute tells
Puppet that all files contained in the source directory should be retrieved and downloaded to
the target node.

Tip ➡ You can also copy from more than one source by specifying multiple entries in the source attribute.

You can see details of how to do this in the Type Reference at

http://reductivelabs.com/trac/puppet/wiki/TypeReference#file.

puppet://puppetmaster/configuration/nsswitch.conf
puppet://server/module/file
puppet://puppetmaster/configuration/pam.d
http://reductivelabs.com/trac/puppet/wiki/TypeReference#file

Using Puppet 109

Turnbull

Modularizing Our Configuration

Now that we’ve configured the basics of our nodes and introduced user management and
file serving, we need to add some services, like mail, databases, and web services, to our
nodes. We’re going to configure MySQL on our db.testing.com node, the Postfix mail
server on our mail.testing.com node, and finally Apache on our www.testing.com node.

To add these services, we’re going to use one of Puppet’s more powerful features:
modules. Modules are collections of configuration—manifests, templates, and files—that
can be reused and distributed. For example, instead of creating individual classes for
installing and managing MySQL, we’re going to create a MySQL module.

So why use modules? Well, if the application, daemon, or function you are configuring
contains multiple classes, files, and/or templates, the easiest way to package these resources
is to modularize them. Modules make management of configuration collections easier and
more structured.

Modules are structured very simply. They are stored under a directory specified in the
modulepath configuration variable in the puppet.conf configuration file or on the command
line using --modulepath. By default, these are the $confdir/modules (/etc/puppet/modules in
most installations) and /usr/share/puppet/modules directories. We can also specify multiple
module paths as colon-separated lists of directories like so:

modulepath $confdir/modules:/usr/share/puppet/modules: ➥
/usr/local/share/puppet/modules

Modules are then included into your configuration using the import function as you can
see in Listing 4-14.

Listing 4-14. Importing Modules

import "mysql"

Tip ➡ From version 0.23.1, Puppet tries to automatically load classes and definitions contained in your

module path. This means if you want to use a specific class or definition from your module in your

configuration, you can simply include the class or start using the definition without needing to explicitly

import the whole module.

http://www.testing.com

110 Using Puppet

Turnbull

So how does Puppet know what resources to load? Each module is defined using a
directory structure and an initialization file called the init.pp file. Each module should have
a minimum of the following directory structure:

module_path/
 module_name/
 module_name/manifests/
 module_name/manifests/init.pp

Tip ➡ It is often useful to put a README file in the root directory of the module that describes your module

and its structure, files, and any dependencies.

The init.pp file, which is automatically processed when you import a module, should
be located in the module_name/manifests directory. For example, if we had a module called
mysql located in the default modules directory, Puppet would expect to find the init.pp file
in the following location:
/etc/puppet/modules/mysql/manifests/init.pp

The init.pp file has a dual function. It can contain the core classes used in the module
or provide a location from which to import the classes or definitions that make up the
module. If you import additional classes or definitions, these should be located in
directories underneath the manifests directory. An example of an init.pp file can be seen in
Listing 4-15.

Listing 4-15. The init.pp File

class mysql {
 package { "mysql-server":
 ...
 }

 service { "mysqld":
 ...
 }
}

In Listing 4-15, we’ve defined a class called mysql in which we’ve configured sample
package and service resources.

Using Puppet 111

Turnbull

So when importing a module, for example, the mysql module, Puppet will look in all of
the module paths for a directory called mysql. It will then check the manifests directory in
the root of the mysql directory for the init.pp file and load the file and process its contents.

Puppet also allows some clever namespace manipulation to make using modules easier.
By creating a module, we also create a namespace; for example, the mysql module would
create a namespace called mysql. Using this namespace, we can easily define and refer to
additional classes in our module. For example, let’s say we want to add a new class to our
mysql module called server. To do this, we would define a class called mysql::server and
store it in a file called server.pp in the manifests directory of our mysql module. We can
then use this module by simply including it like so:
include mysql::server

Puppet will recognize this namespace and find and load the class in the correct module
directory and file.

This namespace magic also extends to templates and files. To make use of this, we can
create two additional directories underneath the module root, called templates and files.
These directories should contain any templates or files that are included in the module,
respectively. Your templates can then be referenced by specifying the name of the module
and the name of the template like so:
template("mysql/my.cnf.erb"}

Puppet will then automatically look in the correct module path for the templates directory
and load the required template.

Files contained in your module can also be served out using Puppet’s file server
functionality. Each module automatically creates its own file serving module and loads any
files stored in the files directory of your module. For example, in our mysql module, files
can be served using the source attribute by employing the following structure:
source => "puppet://puppetmaster/mysql/my.cnf"

This will retrieve a file called my.cnf from the files directory of the mysql module.
In your fileserver.conf configuration file, there is also special file module mount

called [modules] that can be defined. This mount allows you to control access to files
contained in modules. This file module is defined without a path statement and restricts
access to files contained in all modules. Currently, more granular controls, for example, on
a per module basis, are not available.

Caution ➡ Modules automatically create their own file server modules, so you don’t need to update your

fileserver.conf file. But in your fileserver.conf file, you cannot have another file server module

defined that has the same name as one of your configuration modules.

puppet://puppetmaster/mysql/my.cnf

112 Using Puppet

Turnbull

You can read more about modules and module organization at
http://www.reductivelabs.com/trac/puppet/wiki/PuppetModules and
http://reductivelabs.com/trac/puppet/wiki/ModuleOrganisation.

MySQL Module

Let’s look at an example of our first module, mysql. We’re going to locate it in the
/etc/puppet/modules directory and structure it like so:

/etc/puppet/modules/mysql
/etc/puppet/modules/mysql/manifests/init.pp
/etc/puppet/modules/mysql/files/my.cnf

We’ve included the required init.pp file and one other file, the my.cnf configuration
file, in our module. We’re going to put most of our module’s logic in the init.pp file, and
you can see that in Listing 4-16.

Listing 4-16. The mysql Module’s init.pp

class mysql {

$packagelist = ["mysql", "mysql-server", "mysql-libs"]

package { $packagelist:
 ensure => installed }

file { "/etc/my.cnf":
 owner => "root",
 group => "root",
 mode => "0644",
 replace => true,
 source => "puppet:///mysql/my.cnf",
 require => Package["mysql-libs"]
}

service { mysqld:
 enable => "true",
 ensure => "running",
 require => File["/etc/my.cnf"]
}
}

http://www.reductivelabs.com/trac/puppet/wiki/PuppetModules
http://reductivelabs.com/trac/puppet/wiki/ModuleOrganisation
http://reductivelabs.com/trac/puppet/wiki/ModuleOrganisation

Using Puppet 113

Turnbull

In Listing 4-16, you can see our mysql module. It contains three resources. The first is a
package resource that installs the three packages used for MySQL on our node. The second
resource is a file type resource that retrieves the my.cnf configuration file from the master
server. You’ll note we’ve excluded the name of the master server from the source attribute,
instead specifying puppet:///, which tells Puppet to insert the name of the server itself. The
file resource also uses the require attribute to tell Puppet that the mysql-libs package must
be loaded before the file is retrieved. The last resource is a service that starts the mysqld
service. It also has a require attribute that specifies that the File["/etc/my.cnf"] resource
must be processed prior to this resource.

In Listing 4-4, you’ll also see that we included the mysql module in our templates.pp
file as part of the dbserver template node.

Postfix Module

Our next module will install and manage a Postfix mail server. The structure of our Postfix
module can be seen here:

/etc/puppet/modules/postfix
/etc/puppet/modules/postfix/manifests/init.pp
/etc/puppet/modules/postfix/manifests/postfix_files.pp
/etc/puppet/modules/postfix/files/aliases.db
/etc/puppet/modules/postfix/files/main.cf
/etc/puppet/modules/postfix/files/master.cf

We’ve specified an init.pp file, a definition, and three configuration files in the postfix
module. Like the mysql module, we’ve included all required configuration in the init.pp
file, barring a single definition that we’ve placed in the postfix_files.pp file. You can see
the contents of the init.pp file in Listing 4-17.

Listing 4-17. The postfix Module’s init.pp File

class postfix {

$mailadmin = "postmaster@$domain"

$packagelist = ["postfix.$architecture", "postfix-pflogsumm.$architecture"]

package { $packagelist:
 ensure => "installed"
}

114 Using Puppet

Turnbull

postfix::postfix_files {

"/etc/aliases.db":
 mode => "0640",
 source => "aliases.db";

"/etc/postfix/main.cf":
 source => "main.cf";

"/etc/postfix/master.cf":
 source => "master.cf"
}

service { "postfix":
 enable => "true",
 ensure => "running",
 require => Package["postfix.$architecture"]
}

cron { pflogsumm:
 hour => 2,
 minute => 15,
 user => mail,
 command => "/usr/sbin/pflogsumm -d yesterday /var/log/maillog | ➥
mail -s 'pflogsumm from $fqdn' $mailadmin",
 require => Package["postfix-pflogsumm.$architecture"]
}
}

In Listing 4-17, we’ve defined a class called postfix. Inside the class, we’ve defined a
number of resources and two variables. The first variable, $mailadmin, defines the mail
administrator for our nodes; it makes use of the $domain fact to populate this attribute. The
second variable is an array of packages to be loaded. The package listing takes advantage of
another fact, $architecture, to ensure that the right package for each node is loaded.

Then we’ve defined some resources to manage our Postfix configuration. We first
install the postfix and postfix-pflogsumm packages. Next, we retrieve our three
configuration files from our file server. To do this, we use the definition we’ve created. The
definition is a shortcut that populates most of the required attributes for our file resource
type. The postfix::postfix_files definition can be seen in Listing 4-18.

Using Puppet 115

Turnbull

Listing 4-18. The postfix::postfix_files Definition

define postfix::postfix_files($owner = root, $group = root, $mode = 644, ➥
$source, $backup = false, $recurse = false, $ensure = file) {

 file { $name:
 mode => $mode,
 owner => $owner,
 group => $group,
 backup => $backup,
 recurse => $recurse,
 ensure => $ensure,
 require => Package["postfix.$architecture"],
 source => "puppet:///postfix/$source"
 }
}

The postfix::postfix_files definition is very simple. It specifies some defaults for
each file specified to the definition, uses the require attribute to ensure the postfix package
is installed prior to the file, and uses the value passed from the source attribute when the
definition is invoked to specify where to retrieve the file from.

Then we enable and ensure that the Postfix services are started. Lastly, we add a cron
job that enables pflogsumm reports to be generated and sent. We use the $fqdn fact and our
$mailadmin variable in our cron job.

Note ➡ Throughout the module, we’ve also made use of the require attribute to ensure that all our

resources are processed in a logical order.

Again, in Listing 4-4, you’ll see that we have included the postfix module in our
templates.pp file as part of the mailserver template node.

Apache Module

The last module we’re going to create is the apache module that will install and manage the
Apache web server. The structure of our Apache module can be seen here:

116 Using Puppet

Turnbull

/etc/puppet/modules/apache
/etc/puppet/modules/apache/manifests/init.pp
/etc/puppet/modules/apache/manifests/virtual_host.pp
/etc/puppet/modules/apache/manifests/apache_files.pp
/etc/puppet/modules/apache/files/httpd.conf
/etc/puppet/modules/apache/templates/virtual_host.erb

We’ve defined an init.pp file; a file called virtual_host.pp, which contains a definition
that will allow us to create virtual hosts; and the apache_files.pp file, which contains the
apache::apache_files class that provides some file management shortcuts, much like the
postfix::postfix_files class in the postfix module. We also create the httpd.conf
configuration file in the files directory and finally a template for our virtual hosts in a file
called virtual_host.erb in the templates directory.

Let’s start by looking at the init.pp file that contains the core configuration for the
module in Listing 4-19.

Listing 4-19. The apache Module’s init.pp

class apache {

$packagelist = ["httpd", "webalizer", "mod_ssl"]

package { $packagelist:
 ensure => "installed"
}

apache::apache_files {

"/etc/httpd/conf/httpd.conf":
 source => "puppet:///apache/httpd.conf"
}

service { "httpd":
 enable => "true",
 ensure => "running",
 hasrestart => "true",
 hasstatus => "true",
 require => Package["httpd"]
}
}

Using Puppet 117

Turnbull

Listing 4-19 defines the apache class that installs our required Apache packages, installs
the httpd.conf configuration file, and then ensures the httpd service is started and running.
You’ll also notice we’ve specified the hasrestart and hasstatus attributes on the service.
This tells Puppet that the init script for the service supports the restart and status
commands. This lets Puppet know that the init script has more functionality and makes
interacting with the script more flexible.

Next, in Listing 4-20, you’ll find the apache::apache_files definition, which provides
some shortcuts to manage our Apache-related files.

Listing 4-20. The apache::apache_files Definition

define appache::apache_files($owner = root, $group = root, $mode = 644, ➥
$source, $backup = false, $recurse = false, $ensure = file) {

 file { $name:
 mode => $mode,
 owner => $owner,
 group => $group,
 backup => $backup,
 recurse => $recurse,
 ensure => $ensure,
 require => Package["httpd"],
 source => "puppet:///httpd/$source"
 }
}

Lastly, in Listing 4-21 is the apache::virtual_host definition that allows us to create
new virtual hosts on our web servers.

Listing 4-21. The apache::virtual_host Definition

define apache::virtual_host($ip, $ensure = "enabled") {
 $file = "/etc/httpd/conf.d/$name.conf"
 $document_root = "/var/www/html/$name"

 file { $file:
 ensure => $ensure ? {
 enabled => present,
 disabled => absent },
 content => template("apache/virtual_host.erb"),
 notify => Service["httpd"]
 }

118 Using Puppet

Turnbull

 file { $document_root:
 ensure => $ensure ? {
 enabled => directory,
 disabled => absent },
 require => File["$file"]
 }
}

The apache::virtual_host definition is included in the apache module and allows us to
define one or more virtuals hosts. So how would we use this definition? Well, we’d invoke
it in each node and for each virtual host we’d like to create. You can see this in Listing 4-
22.

Listing 4-22. Using the apache::virtual_host Definition

node 'web.testing.com' inherits webserver {
 apache::virtual_host { "test1.testing.com":
 ip => "192.168.0.1"
 }
 apache::virtual_host { "test2.testing.com":
 ip => "192.168.0.2"
 }
}

Listing 4-22 shows the definition of the web.testing.com node. We invoke the
apache::virtual_host definition twice. Each time the definition creates a configuration file
in the /etc/httpd/conf.d/ directory that is based on the virtual_host.erb template. You can
see this template here:

<VirtualHost <%= ip %>>
DocumentRoot <%= document_root %>
ServerName <%= name %>
</VirtualHost>

The template is populated with the document root, the IP address, and the server name
variables from the definition. The resulting file for the first invokation of the
apache::virtual_host definition would look like this:

<VirtualHost 192.168.0.1>
DocumentRoot /var/www/html/test1.testing.com
ServerName test1.testing.com
</VirtualHost>

Using Puppet 119

Turnbull

Next, a directory is created for each virtual host to hold the site’s files. Lastly, the
definition triggers a reload of the httpd service with the use of the notify metaparameter.

If we wanted to remove a virtual host, we would set the ensure attribute to disabled in
the definition like so:

virtual_host { "test1.testing.com":
 ip => "192.168.0.1",
 ensure => disabled
 }

This would remove the test1.testing.com configuration files and the associated
directory. The httpd service would then be restarted to update Apache with the new
configuration.

And again in Listing 4-4, you’ll see that we have included the apache module in our
templates.pp file as part of the webserver template node.

Resources

There are a lot of examples of Puppet configurations, especially modules. Listed here are
some of these examples:

 • Reductive Labs Puppet module page, which includes modules for xen, git, and ntp,
among others:

 http://reductivelabs.com/trac/puppet/wiki/PuppetModules

 • Reductive Labs wiki page, which details module organization:

 http://reductivelabs.com/trac/puppet/wiki/ModuleOrganisation

 • Puppet Show—a Ruby on Rails tool for managing Puppet including nodes and
configuration:

 http://reductivelabs.com/trac/puppet/wiki/PuppetShow

 • A CPAN-like way of distributing Puppet modules:

 http://reductivelabs.com/trac/puppet/wiki/PuppetRecipeManager

 • A collection of Puppet recipes for configuring a variety of resources, applications,
and daemons:

 http://reductivelabs.com/trac/puppet/tags/puppet%2Crecipe

http://reductivelabs.com/trac/puppet/wiki/PuppetModules
http://reductivelabs.com/trac/puppet/wiki/ModuleOrganisation
http://reductivelabs.com/trac/puppet/wiki/PuppetShow
http://reductivelabs.com/trac/puppet/wiki/PuppetRecipeManager
http://reductivelabs.com/trac/puppet/tags/puppet%2Crecipe
http://modules.reductivelabs.com

120 Using Puppet

Turnbull

 • A Git repository containing a collection of modules:

 http://modules.reductivelabs.com/

 • David Schmitt’s collection of Puppet configuration and modules:

 http://git.black.co.at/?p=manifests.git;a=tree

 • Modules for managing daemontools and djbdns:

 http://svn.dpiddy.net/projects/puppet/modules/

 • Suggested template for documenting manifests:

 http://reductivelabs.com/trac/puppet/wiki/DocumentingManifests

 • David Lutter’s sample Puppet deployment:

 http://people.redhat.com/dlutter/puppet-app.html

http://git.black.co.at/?p=manifests.git
http://svn.dpiddy.net/projects/puppet/modules
http://reductivelabs.com/trac/puppet/wiki/DocumentingManifests
http://people.redhat.com/dlutter/puppet-app.html

CHAPTER 5

Reporting on Puppet

One of the key aspects of any configuration management system is reporting. Reporting on
a configuration management system can provide information on performance and
compliance to policy and standards, and provide graphical representations of the overall
state of your configuration. Puppet’s reporting engine is limited at this stage but still allows
some useful, albeit basic, reporting that can be graphed and displayed.

In this chapter, I’ll explain what reports are available and how to work with them, look
at graphing our reporting data, and briefly discuss how to build custom reports.

Getting Started

Puppet clients can be configured to return data at the end of each configuration run. Puppet
calls this data a transaction report. The transaction reports are sent to the master server,
where a number of report processors exist that can utilize this data and present it in a variety
of forms. You can also develop your own report processors to customize the reporting
output.

Each transaction report comes in the form of the YAML file. YAML, which is a
recursive acronym for “YAML Ain’t Markup Language,” is a human-readable data
serialization format that draws heavily from concepts in XML and the Python and C
programming languages.

The transaction reports contain all log messages generated by the transaction and some
additional metrics. The metrics fall into three general types: time, resource, and change
metrics. Within each of these metrics are one or more values. They include the following:

 • Transaction metric showing the time taken by the transaction

 • Resource metrics including

 • Total: Total number of resources being managed

 • Skipped: Total resources that were skipped

122 Reporting on Puppet

Turnbull

 • Scheduled: Total resources that were scheduled

 • Out of Sync: Total resources that were out of sync

 • Applied: Total resources that were applied

 • Failed: Total resources that were not successfully applied

 • Restarted: Total resources that were restarted through dependency changes

 • Failed Restarts: Total resources that failed to be restarted after dependency
changes

 • Change metric showing the total number of changes that occurred in the transaction

In Listing 5-1, you can see an example of a Puppet transaction report.

Listing 5-1. Puppet Transaction Report

--- !ruby/object:Puppet::Transaction::Report
host: puppetmaster.testing.org
logs: []

metrics:
 time: !ruby/object:Puppet::Util::Metric
 label: Time
 name: time
 values:
 - - :service
 - Service
 - 0.189609050750732
 - - :total
 - Total
 - 3.7974648475647
 - - :config_retrieval
 - Config retrieval
 - 3.6055018901825
 - - :package
 - Package
 - 0.00235390663146973
 resources: !ruby/object:Puppet::Util::Metric
 label: Resources
 name: resources

Reporting on Puppet 123

Turnbull

 values:
 - - :failed_restarts
 - Failed restarts
 - 0
 - - :out_of_sync
 - Out of sync
 - 0
 - - :failed
 - Failed
 - 0
 - - :total
 - Total
 - 12
 - - :applied
 - Applied
 - 0
 - - :skipped
 - Skipped
 - 0
 - - :scheduled
 - Scheduled
 - 6
 - - :restarted
 - Restarted
 - 0
 changes: !ruby/object:Puppet::Util::Metric
 label: Changes
 name: changes
 values:
 - - :total
 - Total
 - 0
records: {}

time: 2007-09-18 10:59:12.567042 +10:00

In Listing 5-1, you can see the YAML file is divided into sections. The first section
contains any log messages, and the following sections detail the value of each metric that
Puppet collects. Each metric has a label, name, and values that make it easy to parse the
data if you wish to make use of it for reporting or manipulation. The YAML format is very
well supported by Ruby and can be easily utilized in Ruby to make use of Puppet reporting
data.

124 Reporting on Puppet

Turnbull

Configuring Reporting

In order to get Puppet to output the reports we want, we need to configure it correctly. By
default, each client is configured not to report back to the master, and reporting needs to be
enabled. The first step to doing this is to ensure that the puppetd daemon on the client is
started with the --report option like so:
puppetd --report

This will cause the puppetd daemon to start creating and sending reports to the master. You
could also set the report option in the puppet.conf configuration file:

[puppetd]
report = true

Tip ➡ By default, the client will send the reports back to the master configuring it. You can set up a separate

Puppet master for reports only, if you like. You can then direct all reports to this server by using the

reportserver option on the client. We’ll discuss this in more detail in Chapter 6.

By default, the reports generated by the client will be sent to the master and stored as
YAML-formatted files in the report directory. These files are the output of the default
report processor, store. Reports are written into subdirectories under the report directory
and a directory created for each client that is reporting. Report file names are the date stamp
when the report was generated and are suffixed with .yaml, for example, 200710130604.yaml.

The report directory is $vardir/reports (usually /var/puppet/reports on most
distributions), but you can override this by configuring the reportdir option on the master
puppet.conf configuration file, like so:

[puppetmasterd]
reportdir = /etc/puppet/reports

Here we’ve set the new report directory to /etc/puppet/reports. You can specify
whichever directory suits your environment.

Reporting on Puppet 125

Turnbull

Report Processors

There a number of different report processors available on the master server. The default
report, store, simply stores the report file on the disk. There is also the log processor that
sends logs to the local log destination, for example, to syslog. Also available is the tagmail
report processor that sends e-mail messages based on particular tags in transaction reports.
Lastly, the rrdgraph report processor converts transaction reports into RRD-based graphs.

Selecting which report processors will run is done using the reports configuration
option in the puppet.conf configuration file.

[puppetmasterd]
reports = store,log,tagmail,rrdgraph

Each report processor you want to enable should be listed in the reports option with
multiple processors separated by commas. By default, only store is enabled. You can also
enable report processors on the command line.
puppetmasterd --reports log,tagmail

log

The log report processor sends the log entries from transaction reports to syslog. It is the
most simple of the report processors. The syslog destination facility is controlled by the
syslogfacility configuration option, which defaults to the daemon facility.

[puppetmasterd]
syslogfacility = user

On the previous line, we’ve directed all syslog output to the user facility.

Note ➡ The log report processor only logs entries if the Puppet master is running in daemon mode. If you

keep it running in the foreground, no syslog messages will be generated.

126 Reporting on Puppet

Turnbull

tagmail

The tagmail report sends log messages via e-mail based on the tags that are present in each
log message. Remember, as we discussed in Chapter 3, tags allow you to set context for
your resources; for example, you can tag all resources that belong to a particular operating
system, location, or any other characteristic. Tags can also be specified in your puppet.conf
configuration file to tell your clients to only apply configuration tagged with the specified
tags.

The tagmail report uses these same tags to generate e-mail reports. The tags assigned to
your resources are added to the log results, and then Puppet generates e-mails based on
matching particular tags with particular e-mail addresses. The tags are matched with
particular e-mail addresses in a configuration file called tagmail.conf. By default, the
tagmail.conf file is located in $confdir directory, usually /etc/puppet. This is controlled by
the tagmap configuration option in the puppet.conf file.

[puppetmasterd]
tagmap = $confdir/tagmail.conf

The tagmail.conf file contains a list of tags and e-mail addresses separated by colons.
Multiple tags and e-mail addresses can be specified by separating them with commas. You
can see an example of this file in Listing 5-2.

Listing 5-2. The tagmail.conf Configuration File

all: configuration@testing.org
melbourne, sydney: aust_config@testing.org
dbserver, !oracle: db_config@testing.org,mysql_config@testing.org

The first tag in Listing 5-2, all, is a special tag that tells Puppet to send all messages to
the specified e-mail address.

Tip ➡ There is another special tag, called err. Specifying this tag will send all error messages generated

during a configuration run to a particular e-mail address.

The next tags tell Puppet to send all log messages tagged with the tags melbourne and
sydney to the e-mail address aust_config@testing.org. The last tags tell Puppet to send
messages for all log entries with the dbserver tag but not the oracle tag to both the

mailto:configuration@testing.org
mailto:config@testing.org
mailto:config@testing.org
mailto:config@testing.org
mailto:config@testing.org
mailto:config@testing.org

Reporting on Puppet 127

Turnbull

db_config@testing.org and mysql_config@testing.org e-mail addresses. You can see that
the oracle tag has been negated using the ! symbol.

rrdgraph

One of the more useful built-in report processors is the rrdgraph type that takes advantage
of Tobias Oetiker’s RRD graphing libraries. The rrdgraph report processor generates RRD
files, graphs, and some HTML files to display those graphs. It is a very quick and easy way
to implement graphs of your Puppet configuration activities.

In order to make use of this report processor, we’ll first need to install the RRDTools
and the Ruby bindings for RRD. We can install RRDTools via package, and most platforms
and distributions have a package for RRDTools. The Ruby bindings, unfortunately, are less
well supported on a lot of platforms. They can be installed from source, or some
distributions have packages available. There are also suitable rrdtool-ruby RPMs that
should work on most RPM-based distributions like Red Hat, CentOS, and Mandriva
versions available at Dag Wieer’s repository at
http://dag.wieers.com/rpm/packages/rrdtool/. There is also a development package for
Gentoo called ruby-rrd that provides the required bindings that you should be able to install
via emerge.

You can see a list of the required packages for various platforms in Table 5-1.

Table 5-1. Package Names for RRDTools

OS Packages

Debian rrdtool
librrd2
librrd2-dev

FreeBSD rrdtool

Fedora rrdtool
rrdtool-ruby

Gentoo rrdtool
ruby-rrd

(Continued)

mailto:config@testing.org
mailto:config@testing.org
http://dag.wieers.com/rpm/packages/rrdtool
http://dag.wieers.com/rpm/packages/rrdtool

128 Reporting on Puppet

Turnbull

OS Packages

Mandriva rrdtool
rrdtool-ruby

NetBSD rrdtool

OpenBSD rrdtool

Red Hat rrdtool
rrdtool-ruby

SuSE rrdtool

Ubuntu rrdtool

Note ➡ Your package manager may also prompt you to install additional packages when installing RRDTool.

If there is not a Ruby bindings package for your platform, you can install the bindings
via source. First, download the latest bindings package from RubyForge (at the time of
writing, this was version 0.6.0), unpack it, and change into the resulting directory.

wget http://rubyforge.org/frs/download.php/13992/RubyRRDtool-0.6.0.tgz
tar -zxf RubyRRDtool-0.6.0.tgz
cd RubyRRDtool-0.6.0
ruby extconf.rb
make
make install

You will also need to configure three configuration options in the puppet.conf
configuration file.

[puppetmasterd]
rrddir = $vardir/rrd
rrdinternval = $runinterval
rrdgraph = true

The rrddir directory specifies the default location for the generated RRD files; it
defaults to $vardir/rrd, which is usually /var/puppet/rrd. The rrdinterval specifies how
often RRD should expect to receive data. This defaults to $runinterval so as to match how
often clients report back to the master. The last option, rrdgraph, turns on RRD graphing if
set to true.

http://rubyforge.org/frs/download.php/13992/RubyRRDtool-0.6.0.tgz

Reporting on Puppet 129

Turnbull

Underneath the $vardir/rrd directory, Puppet will create a directory for each node that
reports to the master. Graphs (and associated HTML files to display them) will be generated
in that directory. A graph will be generated for each metric that Puppet collects. You can
then serve this directory out using your web server and display the graphs.

Custom Reporting

You are not limited to the provided report processors either. Puppet also allows you to
create your own report processors. There are two methods for this. The first method is to
use the existing store reports, which are YAML files, and write an external report processor
to make use of this information, for example, graphing it or storing it in an external
database. These external report processors are usually written in Ruby to take advantage of
Ruby’s ability to deserialize YAML files and make use of the resulting objects.

The second method involves writing your own report processor and adding it to Puppet.
The report processors are stored in the lib/puppet/reports directory. On a Debian host,
we’d add our custom report processor to the /usr/local/lib/site_ruby/1.8/puppet/reports
directory with the existing report processors. We would then specify the new report in the
reports configuration option.

The existing report processors make excellent templates for new processors. In Listing
5-3, you can see the Ruby code for the log report processor.

Listing 5-3. The log Report Processor

require 'puppet'
Puppet::Network::Handler.report.newreport(:log) do
 desc "Send all received logs to the local log destinations. Usually
 the log destination is syslog."

 def process
 self.logs.each do |log|
 Puppet::Util::Log.newmessage(log)
 end
 end
end

It’s very easy to create your own based on this template. First, you need to require
Puppet by specifying require 'puppet'. Then you simply call the
Puppet::Network::Handler.report.newreport function and specify the name of the new
report processor you are creating, for example:

130 Reporting on Puppet

Turnbull

Puppet::Network::Handler.report.newreport(:mysql) do

Include a desc to describe the report processor and then specify the functionality of your
report processor.

Resources

 • Details of available reports and reporting functionality:

 http://reductivelabs.com/trac/puppet/wiki/ReportsAndReporting

 • Reference page detailing reports and their structure:

 http://reductivelabs.com/trac/puppet/wiki/ReportReference

http://reductivelabs.com/trac/puppet/wiki/ReportsAndReporting
http://reductivelabs.com/trac/puppet/wiki/ReportReference

CHAPTER 6

Advanced Puppet

In previous chapters, I have introduced you to Puppet and how to use it. In this chapter,
we’re going to look at some important advanced features available in Puppet. Specifically,
we’re going to look at three features: external nodes, LDAP nodes, and some methods for
enhancing Puppet’s scalability.

External nodes provide the capability to store our node definitions in a data source
external to Puppet, for example, generated by a script or drawn from a database. An
extension of this functionality, LDAP nodes, allows you to store your node configurations
in a LDAP server. This externalization of data provides a number of advantages when
managing our configuration information, especially in providing a single source of truth and
a centralized repository for asset and configuration information.

As discussed in Chapter 1, the Puppet client-server model is not yet fully scalable to
large installations, for example, the management of thousands of nodes. In this chapter, I’ll
examine using the Mongrel web server in combination with an Apache proxy running the
mod_ssl and mod_proxy_balancer modules to enhance Puppet’s scalability and allow you to
run multiple master daemons.

External Node Classification

External nodes are node definitions stored externally to Puppet. To use external nodes, you
need to construct a script that takes a hostname as an argument and returns information
about that host. These scripts are known as classifiers. The information returned should be
the classes that are to be included in the node and any variables we want to set.

Tip ➡ Puppet external nodes override node definitions in your manifest files. If you define external node

classification, you must define all nodes in your node classifier.

To function correctly, the script must return the data in the form of a YAML hash, and
the script must end with a zero exit code. A nonzero exit code will result in the

132 Advanced Puppet

Turnbull

configuration not being applied. The YAML hash can contain either classes or parameters
or both.

To use external nodes, we first need to tell Puppet to use a classifier script to configure
our nodes. To do this, we specify the script in the external_nodes configuration option in
the [main] section of our puppet.conf file as you can see in Listing 6-1.

Listing 6-1. external_nodes Configuration Option

[main]
external_nodes = /usr/bin/puppet_node_classifier

In Listing 6-1, we’ve specified a classifier script called puppet_node_classifier located
in the /usr/bin directory.

In the forthcoming 0.24 release of Puppet, you will also need to add an additional
configuration option, node_terminus, to your puppet.conf configuration file.

[main]
node_terminus = exec
external_nodes = /usr/bin/puppet_node_classifier

The node_terminus configuration option is used to configure Puppet for node sources
other than the default flat-file manifests. The exec option tells Puppet to use an external
node classifier script.

Our classifier scripts can be written in any language, for example, shell script, Ruby,
Perl, Python, or a variety of other languages. The only requirement is that the language
must be able to output the appropriate YAML data. For example, you could also easily add
a database back end to a classifier that queries a database for the relevant hostname and
returns the associated classes and any variables.

In Listing 6-2, you can see a very simple node classifier written in shell script.

Listing 6-2. Simple Node Classifier

#!/bin/sh
cat <<"END"

classes:
 - baseapps
parameters:
 puppet_server: puppet.testing.com
END
exit 0

Advanced Puppet 133

Turnbull

The script in Listing 6-2 will return the same classes and variables each time it is called
regardless of what hostname is passed to the script.

$ puppet_node_classifier webserver.testing.com

classes:
 - baseapps
parameters:
 puppet_server: puppet.testing.com

Puppet will use this data to construct a node definition like that you can see in Listing 6-
3.

Listing 6-3. Node Definition from Listing 6-2 Script

node webserver.testing.com {
 $puppet_server = 'puppet.testing.com'
 include baseapps
}

In Listing 6-3, webserver.testing.com would be replaced with the name of the host
passed to the classifier as a variable.

More complex variations of this script could return different results depending on the
particular hostname being passed to the classifier, in the same way different nodes would be
configured with different classes, definitions, and variables in your manifest files. In Listing
6-4, you can see a more sophisticated node classifier written in Perl.

Listing 6-4. More Complex Perl-Based Node Classifier

#!/usr/bin/perl -w
use strict;
use YAML qw(Dump);

my $hostname = shift || die "No hostname passed";

$hostname =~ /^(\w+)\.(\w+)\.(\w{3})$/
 or die "Invalid hostname: $hostname";

my ($host, $domain, $net) = ($1, $2, $3);

my @classes = ('baseapps', $domain);
my %parameters = (
 puppet_server => "puppet.$domain.$net"
);

134 Advanced Puppet

Turnbull

print Dump({
 classes => \@classes,
 parameters => \%parameters,
});

In Listing 6-4, we’ve created a Perl node classifier that makes use of the Perl YAML
module. The YAML module can be installed via CPAN or your distribution’s package
management system. For example, on Debian it is the libyaml-perl package, or on Fedora it
is the perl-YAML package. The classifier slices our hostname into sections; it assumes the
input will be a fully qualified domain name and will fail if no hostname or an
inappropriately structured hostname is passed. The classifier then uses those sections to
classify the nodes and set parameters. If we called this node classifier with the hostname
webserver.testing.com, it would return a node classification of

classes:
 - baseapps
 - testing
parameters:
 puppet_server: puppet.testing.com

This would result in a node definition in Puppet structured like

node 'webserver.testing.com' {
 include baseapps, testing

 $puppet_server = "puppet.testing.com"
}

Lastly, as discussed, we could also back-end our node classification script with a
database as you can see in Listing 6-5.

Listing 6-5. A Database Back-End Node Classifier

#!/usr/bin/perl -w
use strict;
use YAML qw(Dump);
use DBI;

my $hostname = shift || die "No hostname passed";

$hostname =~ /^(\w+)\.(\w+)\.(\w{3})$/
 or die "Invalid hostname: $hostname";

Advanced Puppet 135

Turnbull

my ($host, $domain, $net) = ($1, $2, $3);

MySQL Configuration
my $data_source = "dbi:mysql:database=puppet;host=localhost";
my $username = "puppet";
my $password = "password";

Connect to the server
my $dbh = DBI->connect($data_source, $username, $password)
 or die $DBI::errstr;

Build the query
my $sth = $dbh->prepare(qq{SELECT class FROM nodes WHERE node = '$hostname'})
 or die "Can't prepare statement: $DBI::errstr";

Execute the query
my $rc = $sth->execute
 or die "Can't execute statement: $DBI::errstr";

Set parameters
my %parameters = (
 puppet_server => "puppet.$domain.$net"
);

Set classes
my @class;
while (my @row=$sth->fetchrow_array)
 { push(@class,@row) }

Check for problems
die $sth->errstr if $sth->err;

Disconnect from database
$dbh->disconnect;

Print the YAML
print Dump({
 classes => \@class,
 parameters => \%parameters,
});

136 Advanced Puppet

Turnbull

The node classifier in Listing 6-5 would connect to a MySQL database called puppet
running on the local host. Using the hostname, the script receiving it would query the
database and return a list of classes to assign to the node. The nodes and classes would be
stored in a table. The next lines comprise a SQL statement to create a very simple table to
do this.

CREATE TABLE `nodes` (
`node` varchar(80) NOT NULL,
`class` varchar(80) NOT NULL) TYPE=MyISAM;

The classes, and whatever parameters we set (which you could also place in the
database in another table), are then returned and outputted as the required YAML data.

All of these external node classifiers are very simple and could easily be expanded upon
to provide more sophisticated functionality. It is important to remember that external nodes
override node configuration in your manifest files. If you enable an external node classifier,
any node definitions in your manifest files will not be processed and will in fact be ignored
by Puppet.

Note ➡ In Puppet versions earlier than 0.23, external node scripts were structured differently. I’m not going

to cover these earlier scripts, but you can read about them at

http://reductivelabs.com/trac/puppet/wiki/ExternalNodes.

Storing Node Configuration in LDAP

In addition to scripted external classification, Puppet also allows the storage of node
information in an LDAP directory. This allows organizations to leverage already existing
asset stores that are stored in LDAP directories or to decouple their configuration from
Puppet and centralize it. Additionally, it also allows LDAP-enabled applications to have
access to your configuration data.

Note ➡ Like external node classification, the use of LDAP nodes overrides node definitions in your manifest

files. If you use LDAP node definitions, you cannot define nodes in your manifest files.

http://reductivelabs.com/trac/puppet/wiki/ExternalNodes

Advanced Puppet 137

Turnbull

The first step in using LDAP for our node configuration is to ensure the Ruby LDAP
libraries are installed. First, check for the presence of the LDAP libraries.
ruby -rldap -e "puts :installed"

If this command does not return installed, the libraries are not installed. You can either
install them via your distribution’s package management system or download them from the
Ruby/LDAP site. In Table 6-1, you can see a list of the currently available Ruby/LDAP
packages for a variety of distributions.

Table 6-1. Package Names for Ruby LDAP Libraries

OS Package

Debian libldap-ruby1.8

FreeBSD ruby-ldap

Gentoo ruby-ldap

Mandriva ruby-ldap

NetBSD ruby-ldap

OpenBSD ruby-ldap

SuSE ruby-ldap

If there isn’t a package for your distribution, you can download the required libraries
either in the form of an RPM or a source package from the Ruby/LDAP site. The
Ruby/LDAP site is located at http://ruby-ldap.sourceforge.net/.

If you need to compile the libraries yourself, download the current version, 0.9.7 at the
time of writing, and unpack it.

$ wget http://optusnet.dl.sourceforge.net/sourceforge/ruby-ldap/ ➥
ruby-ldap-0.9.7.tar.gz
$ tar -zxf ruby-ldap-0.9.7.tar.gz
$ cd ruby-ldap-0.9.7

To compile Ruby/LDAP you will also need the Ruby development headers (usually
provided by your distribution’s ruby-devel package).

$ ruby extconf.rb
$ make
make install

http://ruby-ldap.sourceforge.net
http://ruby-ldap.sourceforge.net
http://optusnet.dl.sourceforge.net/sourceforge/ruby-ldap

138 Advanced Puppet

Turnbull

You can check for successful installation with the ruby -rldap -e "puts :installed"
command.

Next you need to set up your LDAP server. You can use OpenLDAP, Red Hat
Directory Server (or Fedora Directory Server), Sun’s Directory Server, or one of a variety
of other LDAP servers. We’re going to assume we are using OpenLDAP, and we’re also
going to assume we’ve already got it set up and running.

Tip ➡ For some quick start instructions on setting up OpenLDAP, you can refer to

http://www.openldap.org/doc/admin23/quickstart.html.

The first step we need to take for our LDAP configuration is to add the Puppet schema
to our LDAP directory’s configuration.

Caution ➡ You may need to tweak or translate the default LDAP schema for some directory servers, but it is

suitable for OpenLDAP.

The Puppet schema document is available in the Puppet source package in the
ext/ldap/puppet.schema file or can be taken from the project’s Git repository at
http://reductivelabs.com/git/puppet/. We need to add it to our schema directory and
slapd.conf configuration file. For example, on a Debian host, the schema directory is
/etc/ldap/schema, and the slapd.conf configuration is located in the /etc/ldap directory.
Copy the puppet.schema file into the appropriate directory.
$ cp puppet-0.23.2/ext/ldap/puppet.schema /etc/ldap/schema/

Now we add an include statement to our slapd.conf configuration file; there should be
a number of existing statements you can model.
include /etc/ldap/schema/puppet.schema

To update OpenLDAP, we now need to restart our server.
/etc/init.d/slapd restart

Once we’ve configured the LDAP server, we need to tell Puppet to use an LDAP server
as the source of its node configuration. We configure this in the [puppetmasterd] section of
the puppet.conf configuration file as you can see in Listing 6-6.

http://www.openldap.org/doc/admin23/quickstart.html
http://reductivelabs.com/git/puppet
http://reductivelabs.com/git/puppet

Advanced Puppet 139

Turnbull

Listing 6-5. Puppet LDAP Configuration

[puppetmasterd]
ldapnodes = true
ldapserver = ldapserver.testing.com
ldapbase = ou=Hosts,dc=testing,dc=com

LDAP configuration is very simple. First, we set the ldapnodes option to true. Next we
specify the hostname of our LDAP server, in our case ldapserver.testing.com, in the
ldapserver option. Lastly, in the ldapbase option, we specify the base search path. Puppet
recommends that hosts be stored in an OU called Hosts under our main directory structure,
but you can configure this to suit your environment.

As with external nodes, in the forthcoming 0.24 release of Puppet you will also need to
add the configuration option node_terminus to your puppet.conf configuration file. The
ldapnodes configuration option will then become deprecated and should be removed.

[main]
node_terminus = ldap

As discussed previously the node_terminus configuration option is used to configure
Puppet for node sources other than the default flat-file manifests. Here, using the ldap
option tells Puppet to seek node configurations in an LDAP directory. All other
configuration options remain the same.

If required, you can specify a user and password using the ldapuser and ldappassword
options and override the default LDAP port of 389 with the ldapport option. There is some
limited support for TLS or SSL, but only if your LDAP server does not require client-side
certificates. You can see a full list of the potential LDAP options at
http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference.

After configuring Puppet to use LDAP nodes, you should restart your Puppet master
daemon to ensure the new configuration is updated.

Now we need to add our node configuration to the LDAP server. Let’s take a quick look
at the Puppet LDAP schema in Listing 6-7.

Listing 6-7. The LDAP Schema

These OIDs are all fake. No guarantees there won't be conflicts.

$Id: puppet.schema 1260 2006-06-13 18:09:07Z luke $

attributetype (1.1.3.10 NAME 'puppetclass'
 DESC 'Puppet Node Class'
 EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference
http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference

140 Advanced Puppet

Turnbull

attributetype (1.1.3.9 NAME 'parentnode'
 DESC 'Puppet Parent Node'
 EQUALITY caseIgnoreIA5Match
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

objectclass (1.1.1.2 NAME 'puppetClient' SUP top AUXILIARY
 DESC 'Puppet Client objectclass'
 MAY (puppetclass $ parentnode))

Caution ➡ As the schema in Listing 6-7 indicates, the OIDs have been invented by Reductive. They could

potentially conflict with other OIDs.

The Puppet schema is made up of an object class, puppetClient, and two attributes,
puppetclass and parentnode. The object class puppetClient is assigned to each host that is a
Puppet node. The puppetclass attribute contains all of the classes defined for that node. At
this stage, you cannot add definitions, just classes. The parentnode attribute allows you to
specify node inheritance.

In addition, any attributes defined in your LDAP node entries are available as variables
to Puppet. This works much like Facter facts; for example, if the host entry has the ipHost
class, the ipHostNumber attribute of the class is available as the variable $ipHostNumber.
Attributes with multiple values are created as arrays.

You can also define default nodes in the same manner you can in your manifest node
definitions, by creating a host in your directory called default. The classes assigned to this
host will be applied to any node that does not match a node in the directory. If no default
node exists and no matching node definition is found, Puppet will return an error.

You can now add your hosts, or the relevant object class and attributes to existing
definitions for your hosts, in the LDAP directory. You can import your host definitions
using LDIF files or manipulate your directory using your choice of tools such as
phpldapadmin. In Listing 6-8 is an LDIF file containing examples of node definitions.

Listing 6-8. LDIF Nodes

LDIF Export for: ou=Hosts,dc=testing,dc=com
dn: ou=Hosts,dc=testing,dc=com
objectClass: organizationalUnit
objectClass: top
ou: Hosts

Advanced Puppet 141

Turnbull

dn: cn=default,ou=Hosts,dc=testing,dc=com
cn: default
description: Default
objectClass: device
objectClass: top
objectClass: puppetClient
puppetclass: defaultapps

dn: cn=basenode,ou=Hosts,dc=testing,dc=com
cn: basenode
description: Basenode
objectClass: device
objectClass: top
objectClass: puppetClient
puppetclass: baseapps

dn: cn=webserver,ou=Hosts,dc=testing,dc=com
cn: webserver
description: Webserver
objectClass: device
objectClass: top
objectClass: puppetClient
parentnode: basenode
puppetclass: apache
puppetclass: squid
puppetclass: named

dn: cn=www1.testing.com, ou=Hosts,dc=testing,dc=com
cn: www1
description: webserving host
objectclass: device
objectclass: top
objectclass: puppetClient
objectclass: ipHost
parentnode: webserver
ipHostNumber: 192.168.0.100

Listing 6-8 includes a default node, a node called basenode, and a template node called
webserver. Each node has particular classes assigned to it, and the webserver node has the
basenode defined as its parent node and thus inherits its classes also. Lastly, we define a
client node, called www1, which inherits the webserver node as a parent.

142 Advanced Puppet

Turnbull

Tip ➡ Also available to help manage nodes is the iClassify tool, which you can learn about at

http://oss.hjksolutions.com/iclassify/. You can download the code using Git from git clone

git://hjksolutions.com/iclassify.

Puppet Scalability

As discussed in Chapter 1, Puppet is not yet a fully scalable solution as it has no built-in
capability for high availability or load balancing between multiple masters. Additionally,
Puppet is not yet fully ready for an enterprise-wide deployment as the built-in WEBrick
web server, used to service the REST connections from Puppet clients, cannot yet scale to
large numbers of clients. When connected, large numbers of clients, especially those using
file serving, can cause performance issues and connection failures.

There are some workarounds for both high availability and load balancing. Solutions
like Heartbeat (http://www.linux-ha.org/), VRRP, or hardware load balancers can allow
multiple master servers to be represented by a single IP address. Configuration can be
shared between multiple masters using a distributed version control system like SVK (a
distributed enhancement to Subversion) or Git.

Another workaround uses the Mongrel web server in lieu of the built-in WEBrick web
server with a web proxy load balancing the client connections. This approach was
developed by Puppet author Luke Kanies, Debian developer Marcin Owsiany, and Jeff
McCune of the Ohio State University. In this section, I’m going to explain how to make use
of this method to allow your Puppet environment to service a larger number of clients.

Note ➡ Version 0.23.1 or later of Puppet is required to support this approach. Puppet masters and clients

using earlier versions do not correctly sign certificates.

The Puppet master daemon, puppetmasterd, normally uses the WEBrick web server
internally to connect clients, but Puppet also supports using Mongrel as an alternative web
server. Mongrel is commonly used as a web server by Ruby on Rails applications, and you
can learn more about it at http://mongrel.rubyforge.org/.

With Mongrel integrated with Puppet, multiple puppetmasterd daemons can be run, each
on a different port. A web server, in our case Apache, is placed in front of these instances,
and the mod_proxy and mod_proxy_balancer modules are used to load balance connections to
these instances.

http://oss.hjksolutions.com/iclassify
git://hjksolutions.com/iclassify
http://www.linux-ha.org
http://www.linux-ha.org
http://mongrel.rubyforge.org
http://mongrel.rubyforge.org

Advanced Puppet 143

Turnbull

Tip � Rather than Apache, you could also use other web servers. Other good choices include servers like
lighthttd or nginx or a load balancer such as Pound. You can find instructions for running Mongrel with Pound
at http://reductivelabs.com/trac/puppet/wiki/UsingMongrelPound and with nginx at
http://reductivelabs.com/trac/puppet/wiki/UsingMongrelNginx.

You can see a diagram that shows this architecture in Figure 6-1.

Figure 6-1. Puppet with Mongrel architecture

http://reductivelabs.com/trac/puppet/wiki/UsingMongrelPound
http://reductivelabs.com/trac/puppet/wiki/UsingMongrelNginx

144 Advanced Puppet

Turnbull

Installing Mongrel

The first step is to install Mongrel. There are three ways to install Mongrel—via package,
via a Ruby Gem, or via source. In Table 6-2, I’ve listed the operating systems that currently
have a package available for Mongrel. Also listed in Table 6-2 is the name of the relevant
package. Your package management system may also prompt you to install additional
packages.

Table 6-2. Mongrel Packages

OS Package

FreeBSD rubygem-mongrel

Gentoo mongrel

NetBSD mongrel

OpenBSD ruby-mongrel

SuSE rubygem-mongrel

You can also install Mongrel via a Ruby Gem if you have Ruby Gems installed.
gem install mongrel

Like packages, gem may prompt you to install additional packages.
Lastly, you can download and install Mongrel from source like so:

wget http://rubyforge.org/frs/download.php/27286/mongrel-1.1.tgz
tar -zxf mongrel-1.1.tgz
cd mongrel-1.1
ruby setup.rb

We don’t have to do anything to configure Mongrel. Puppet will do this for us when we
start the Puppet daemon.

http://rubyforge.org/frs/download.php/27286/mongrel-1.1.tgz

Advanced Puppet 145

Turnbull

Installing Apache

Next we need to install Apache. Many hosts already have Apache installed, and the
mod_proxy and mod_proxy_balancer modules we need are installed with it. But if you need to
install Apache, you can do it via package or source. These packages generally also include
all of the required modules we need to integrate Apache with Mongrel and Puppet, and you
can see the list in Table 6-3.

Table 6-3. Apache Packages

OS Package

Debian apache2

Fedora httpd

FreeBSD apache2

Gentoo apache

NetBSD apache2

OpenBSD apache-httpd

Red Hat httpd

SuSE apache2

Ubuntu apache2

Your package management system may also prompt you to install additional packages
as dependencies to Apache.

If you haven’t got a suitable package, you can also download and install the latest
version of Apache via source. I have chosen to download from a mirror in Australia, but
you can check the Apache download page at http://httpd.apache.org/download.cgi to find
an appropriate mirror. In Listing 6-9, we’ve downloaded, unpacked, and configured
Apache.

http://httpd.apache.org/download.cgi

146 Advanced Puppet

Turnbull

Listing 6-9. Installing Apache from Source

$ wget http://apache.planetmirror.com.au/dist/httpd/httpd-2.2.6.tar.gz
$ tar -zxf httpd-2.2.6.tar.gz
$ cd httpd-2.2.6
$ configure --prefix=/usr/local/apache2 --enable-so --enable-proxy=shared ➥
--enable-proxy-balancer=shared --enable-authz_host=shared --enable-ssl=shared ➥
--enable-headers=shared --enable-proxy-http=shared
$ make
make install

In Listing 6-9, we’ve configured (including enabled Apache modules), compiled, and
installed Apache into the directory /usr/local/apache2.

Configuring Apache As a Proxy

After you’ve installed Apache, you need to configure it. To do this we need to configure a
virtual host, proxy balancing, and SSL, which entails creating an SSL-enabled virtual host
that will be proxy balanced back to our puppetmasterd daemons running Mongrel. You can
see an example of a simple Apache configuration to do this in Listing 6-10.

Listing 6-10. Apache with Mongrel Configuration

Listen 8140
PidFile /var/www/puppet/run/balancer.pid
User puppet
Group puppet

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
LoadModule headers_module modules/mod_headers.so
LoadModule ssl_module modules/mod_ssl.so
LoadModule authz_host_module modules/mod_authz_host.so
LoadModule log_config_module modules/mod_log_config.so

<Directory />
 Options FollowSymLinks
 AllowOverride None
 Order deny,allow
 Deny from all

http://apache.planetmirror.com.au/dist/httpd/httpd-2.2.6.tar.gz

Advanced Puppet 147

Turnbull

</Directory>

<Proxy balancer://puppetmaster.testing.com>
 BalancerMember http://127.0.0.1:18140 keepalive=on max=2 retry=30

 BalancerMember http://127.0.0.1:18141 keepalive=on max=2 retry=30

</Proxy>

<VirtualHost *:8140>
 SSLEngine on
 SSLCipherSuite SSLv2:-LOW:-EXPORT:RC4+RSA
 SSLCertificateFile /var/www/puppet/ssl/certs/puppetmaster.testing.com.pem
 SSLCertificateKeyFile /var/www/puppet/ssl/private_keys/ ➥
puppetmaster.testing.com.pem
 SSLCertificateChainFile /var/www/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /var/www/puppet/ssl/ca/ca_crt.pem
 SSLCARevocationFile /var/www/puppet/ssl/ca/ca_crl.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars

 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 # Store the client DN in a header
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 # And store whether the cert verification was a success
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

<Location />
 SetHandler balancer-manager
 Order allow,deny
 Allow from all
 </Location>

 ProxyPass / balancer://puppetmaster.testing.com:8140/ timeout=180
 ProxyPassReverse / balancer://puppetmaster.testing.com:8140/
 ProxyPreserveHost on
 SetEnv force-proxy-request-1.0 1
 SetEnv proxy-nokeepalive 1

http://127.0.0.1:18140
http://127.0.0.1:18141

148 Advanced Puppet

Turnbull

ErrorLog /var/www/puppet/balancer_error.log
 CustomLog /var/www/puppet/balancer_access.log combined
 CustomLog /var/www/puppet/balancer_ssl_request.log \
 "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"
</VirtualHost>

Let’s examine the configuration we’ve specified in Listing 6-10. We start by running
Apache on port 8140 so that our clients don’t require any reconfiguration to connect to our
new proxy. Next, we specify a process ID file in a directory we’re going to create for our
server.
mkdir -p /var/www/puppet/run

We then specify the user and group name that we want Apache to run as. This should be
the same as the user and group that the puppetmasterd daemon runs as. In our case, this is
the user and group puppet.

Then in Listing 6-10, we’ve specified a number of LoadModule statements. These load
the required modules, such as the mod_proxy_balancer module, needed to run our Apache
proxy. The required modules are as follows:

 • mod_proxy

 • mod_proxy_http

 • mod_proxy_balancer

 • mod_headers

 • mod_ssl

 • mod_authz_host

 • mod_log_config

For Red Hat–style distributions, the Apache daemon tries to load all available modules,
and you can see the LoadModule statements in your Apache configuration file, for example,
/etc/httpd/conf/httpd.conf on a Red Hat platform, for the required modules. The
LoadModule statements in Listing 6-10 assume our modules are in a directory called modules
in the same directory as our configuration file is located.
LoadModule proxy_module modules/mod_proxy.so

For Debian-style distributions, including Ubuntu, you can use the a2enmod command to
enable modules. Some modules may already be enabled. You can see the a2enmod command
in Listing 6-11.

Advanced Puppet 149

Turnbull

Listing 6-11. The a2enmod Command

a2enmod headers authz_host proxy proxy_balancer proxy_http ssl log_config

After our modules, we define a Directory block for the root of our proxy and then a
Proxy block. Inside the Proxy block, we specify the hostname of our proxy, in our case
puppetmaster.testing.com. We also specify each load balanced member of the proxy.

BalancerMember http://127.0.0.1:18140 keepalive=on max=2 retry=30
BalancerMember http://127.0.0.1:18141 keepalive=on max=2 retry=30

Each of these members represents a puppetmasterd instance running Mongrel. In our
configuration, each instance is started on a separate port on the local host, in our case ports
18140 and 18141. We can add as many instances as required. It is good practice to create
instances by incrementing the port number, and we’ll see how to do this later when we
configure the Puppet master to support this configuration.

Then we configure our virtual host, again ensuring we specify the 8140 port. We turn
on SSL for the virtual host and configure the location of our certificate files. These
certificates are the Puppet certificates our master currently uses. The easiest way to do this
is to create a symbolic link from the Puppet SSL directory, usually /etc/puppet/ssl, to our
proxy directory, in our case /var/www/puppet.
ln -s /etc/puppet/ssl /var/www/puppet/ssl

We then specify our Puppet master’s certificate and key file, and then the associated
Certificate Authority (CA) certificate and certificate revocation list. Also inside our virtual
host definition we define our ProxyPass statement that enables the proxy; you would replace
puppetmaster.testing.com with the hostname of your proxy server.

Lastly, we specify the location, in our case /var/www/puppet, of a variety of logging
files.

After configuring Apache, we need to start our Apache daemon. You can do this by
running the Apache binary, for example, httpd on Red Hat–style hosts and apache2 on
Debian-style hosts, and specifying the name of our configuration file.
httpd -f /etc/httpd/puppet.conf

Or
apache2 -f /etc/apache2/puppet.conf

You could also integrate your Puppet proxy configuration into your existing Puppet
configuration. Many distributions have a conf.d directory, for example, on Red Hat it’s
/etc/httpd/conf.d/, in which you can locate configuration files. You would then restart
your Apache daemon to enable the new configuration.

http://127.0.0.1:18140
http://127.0.0.1:18141

150 Advanced Puppet

Turnbull

Configuring Puppet for Mongrel

Enabling the Mongrel integration for Puppet is very simple. We start the puppetmasterd
daemon with the --servertype mongrel option. To specify multiple puppetmasterd instances,
we start each puppetmasterd with a different master port and process ID file.

puppetmasterd --servertype mongrel --masterport 18140 ➥
--pid /var/www/puppet/run/puppetmasterd.18140.pid

We would then start the next instance with our port number incremented like so:

puppetmasterd --servertype mongrel --masterport 18141 ➥
--pid /var/www/puppet/run/puppetmasterd.18141.pid

In Listing 6-12, you can see a simple script that you could easily convert into an init
script, which allows you to start multiple puppetmasterd instances.

Listing 6-12. Puppet Master with Mongrel Initiation Script

#!/bin/bash
name: mongrel_puppetmasterd
Start a Puppet Master Server instance.

if ! [["$1" -gt 0]]; then
echo "ERROR: You must provide a port to run this puppet master on."
echo "Ensure your apache load balancer is configured to talk to these servers"
exit 1
fi

MASTERPORT="$1"
shift

puppetmasterd \
--pidfile=/var/www/puppet/run/puppetmasterd."${MASTERPORT}".pid \
--servertype=mongrel \
--masterport="${MASTERPORT}" \
$*

We would run the script in Listing 6-12 and pass in a variable for our master port like
so:
mongrel_puppetmasterd 18140

Advanced Puppet 151

Turnbull

We can now start as many Mongrel Puppet master instances as we like and our master
host can sustain.

How Far Will Puppet Scale?

At this stage of Puppet development, there are no clear performance statistics regarding
either the WEBrick or Mongrel web servers. Anecdotal evidence and some limited testing
(conducted by Jeff McCune) indicate that the Mongrel web server is approximately 50%
faster than the WEBrick web server. You can see the results of this indicative testing at
http://reductivelabs.com/trac/puppet/wiki/PuppetScalability#MasterCompileTimings. The
enhanced performance should extend Puppet’s ability to service nodes and allow the
connection of potentially thousands of nodes. At this stage, insufficient testing has been
performed to determine exactly how many nodes can be connected and what volume of file
serving and configuration supported for each node. The replacement of the XML-RPC
architecture with a REST-based architecture is also likely to improve the performance of
both the WEBrick and Mongrel web servers.

Resources

The following links will take you to Puppet documentation related to external nodes and
Puppet scalability:

 • Using external nodes in Puppet:

 http://reductivelabs.com/trac/puppet/wiki/ExternalNodes

 • LDAP nodes in Puppet:

 http://reductivelabs.com/trac/puppet/wiki/LdapNodes

 • Using Mongrel with Puppet:

 http://reductivelabs.com/trac/puppet/wiki/UsingMongrel

 • Using Mongrel with Pound:

 http://reductivelabs.com/trac/puppet/wiki/UsingMongrelPound

 • Using Mongrel with nginx:

 http://reductivelabs.com/trac/puppet/wiki/UsingMongrelNginx

http://reductivelabs.com/trac/puppet/wiki/PuppetScalability#MasterCompileTimings
http://reductivelabs.com/trac/puppet/wiki/PuppetScalability#MasterCompileTimings
http://reductivelabs.com/trac/puppet/wiki/ExternalNodes
http://reductivelabs.com/trac/puppet/wiki/LdapNodes
http://reductivelabs.com/trac/puppet/wiki/UsingMongrel
http://reductivelabs.com/trac/puppet/wiki/UsingMongrelPound
http://reductivelabs.com/trac/puppet/wiki/UsingMongrelNginx

152 Advanced Puppet

Turnbull

 • Puppet scalability documentation:

 http://reductivelabs.com/trac/puppet/wiki/PuppetScalability

http://reductivelabs.com/trac/puppet/wiki/PuppetScalability

CHAPTER 7

Extending Puppet

Among the most powerful features of both Puppet and Facter are their flexibility and
extensibility. In addition to the existing resource types and facts, you can quickly and easily
add custom types and facts specific to your environment or to meet a particular need. In this
chapter, we’re going to examine how to add your own custom facts to Facter, have Puppet
automatically distribute those facts, and then see how to make use of them. I’m also going
to demonstrate how to create a simple resource type (and associated provider) for Puppet
and how to integrate that new resource type into your Puppet installation. This chapter,
however, is just an introduction to extending Puppet. If you want to learn more, there is
extensive documentation available on the Puppet Wiki and on the Puppet Developer
mailing list.

When developing custom types and facts, it is important to remember that Puppet and
Facter are open source tools developed both by Reductive Labs and a wide community of
contributors. Sharing custom facts and resource types helps everyone in the community and
means you can also get input from the community on your work. Extending Puppet or
Facter is also an excellent way to give back to that community. You can share your custom
types and facts via the Puppet mailing list, on the Puppet Wiki, logging a Trac ticket, or
setting up your own source repository for Puppet or Facter code.

Tip ➡ We aren’t going to discuss it in this chapter, but you can also extend Puppet by creating your own

functions. You can see more details of this at

http://reductivelabs.com/trac/puppet/wiki/WritingYourOwnFunctions.

Extending Facter

Adding your own custom facts to Puppet is a very simple process that requires only a
limited understanding of Ruby. To add a new fact, we add a snippet of Ruby code to our
Puppet master. Puppet then distributes our custom facts to all our clients using a function

http://reductivelabs.com/trac/puppet/wiki/WritingYourOwnFunctions

154 Extending Puppet

Turnbull

called factsync. Each client that connects to the master gets all the facts available
synchronized down to it.

Configuring Puppet for Custom Facts

We start with telling Puppet to turn on fact synchronization using the factsync
configuration option. We then specify where Puppet will find our facts using the factpath
configuration option. You can see both these options in Listing 7-1.

Listing 7-1. Fact Synchronization

[puppetmasterd]
factsync = true
factpath = $vardir/facts

In Listing 7-1, we’ve turned on fact synchronize and specified the path, in our case
$vardir/facts, which on most installations would default to /var/puppet/facts, where our
facts will be located on our master. You can specify multiple paths by separating each with
colons.

By default, with factsync enabled, Puppet clients look for facts at
puppet://$server/facts much like file serving.

Tip ➡ Remember, $server is a fact with the hostname of our Puppet master that is only available on the

master.

Each fact is treated as a file resource and served out by the built-in Puppet file server.
As factsync uses the built-in file server, you can use any valid file source to deliver your
facts. To override the default file source for facts, use the factsource configuration option.

Tip ➡ File serving is described in Chapter 4.

Facts are downloaded to our clients and stored in a local directory, usually also
$vardir/facts on the client, but this can be overridden using the factdest configuration
option (though obviously only one destination path can be configured).

Extending Puppet 155

Turnbull

After restarting the master daemon, Puppet will now be ready to deliver facts to your
client nodes. These facts are then available to your configuration as variables in the same
way as the facts provided by Facter.

Tip ➡ There are other configuration options you can use to tweak your fact configuration that you can read

about at http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference.

Writing Custom Facts

After configuring Puppet to deliver our custom facts, we actually need to create some new
facts. As we mentioned, our custom facts are snippets of Ruby code that call the Facter.add
function to add new facts. In Listing 7-2, you can see a simple custom fact.

Listing 7-2. Our First Custom Fact

Facter.add("home") do
 setcode do
 ENV['HOME']
 end
end

In Listing 7-2, our custom fact returns the value of the HOME environmental value as a
fact called home, which in turn would be available in our manifests as the variable $home.

Let’s break down Listing 7-2. The Facter.add function allows us to specify the name of
our new fact. We then use the setcode block to specify the contents of our new fact, in our
case using Ruby’s built-in ENV variable to access an environmental variable. In Listing 7-3,
we can see a custom fact that reads a file to return the value of the fact.

Listing 7-3. Another Custom Fact

Facter.add("timezone") do
 confine :operatingsystem => :debian
 setcode do
 File.readlines("/etc/timezone").to_a.last
 end
end

http://reductivelabs.com/trac/puppet/wiki/ConfigurationReference

156 Extending Puppet

Turnbull

In Listing 7-3, we’re returning the timezone of a Debian host. In Listing 7-3, we’ve also
done two interesting things. First, we’ve specified a confine statement. This statement
restricts the execution of the fact if a particular criteria is not met. This restriction is
commonly implemented by taking advantage of the values of other facts. In this case, we’ve
specified that the value of the operatingsystem fact should be Debian for the fact to be
executed. We can also use the values of other facts, for example:
confine :kernel => :linux

The previous confine is commonly used to limit the use of a particular fact to nodes with
Linux-based kernels.

Second, we’ve used the readlines file method to read in the contents of the
/etc/timezone file. The contents are returned as the fact timezone, which in turn would be
available as the variable $timezone.
timezone => Australia/Melbourne

You can create more complex facts and even return more than one fact in your Ruby
snippets as you can see in Listing 7-4.

Listing 7-4. A More Complex Fact

 netname = nil
 netaddr = nil
 test = {}
 File.open("/etc/networks").each do |line|
 netname = $1 and netaddr = $2 if line ➥
=~ /^(\w+.?\w+)\s+([0-9]+\.[0-9]+\.[0-9]+\.[0-9]+)/
 if netname != nil && netaddr != nil
 test["network_" + netname] = netaddr
 netname = nil
 netaddr = nil
 end
 end
 test.each{|name,fact|
 Facter.add(name) do
 confine :operatingsystem => :debian
 setcode do
 fact
 end
 end
 }

Extending Puppet 157

Turnbull

In Listing 7-4, you can see a more complicated fact. This fact actually creates a series of
facts, each fact taken from information collected from the /etc/networks file. This file, used
on Debian hosts, associates network names with networks. Our snippet parses this file and
adds a series of facts, one per each network in the file. So that if our file looked like

default 0.0.0.0
loopback 127.0.0.0
link-local 169.254.0.0

then three facts would be returned:

default => 0.0.0.0
loopback => 127.0.0.0
link-local => 169.254.0.0

You can take a similar approach to commands, or files, or a variety of other sources.

Testing Your Facts

There is a simple process for testing your facts. We import our facts into Facter and use it to
test them before making use of them in Puppet. To do this, we need to set up a testing
environment. We create a directory structure to hold our test facts—we’ll call ours
lib/ruby/facter. We’ll situate this structure beneath the root user’s home directory. We
then create an environmental variable, $RUBYLIB, that references this directory and will allow
Facter to find our test facts.

mkdir -p ~/lib/ruby/facter
export RUBYLIB=~/lib/ruby

We then copy our fact snippets into this new directory.
cp /var/puppet/facts/home.rb $RUBYLIB/facter

After this we can call Facter with the name of the fact we’ve just created. If the required
output appears, your fact is working correctly. If your fact is not working correctly, an error
message you can debug will be generated.

facter home
/root

On the previous lines, we’ve tested our home fact and discovered it has returned the
correct value.

158 Extending Puppet

Turnbull

Extending Puppet

When configuring your nodes, you are not limited to the resource types provided with
Puppet. You can build your own resource types to manage additional configuration
components and items. Custom resource types are developed in Ruby and like custom facts
can be propagated by Puppet from your master to all of your clients.

Tip ➡ Your best source of information about how to build your own types and providers are the existing types

and providers that come with Puppet. Among them you can find examples of most types of configuration

management. I recommend reviewing them before embarking on creating a particular type or provider.

Each resource type should consist of the type definition and any required providers. The
type creates the model for what the type actually does. It specifies the attributes and features
available to configure your component, sets the valid parameters, and handles input
validation. The provider or providers implement the type on a variety of platforms; for
example, you might have a provider to implement your type on Linux platforms and
another provider to provide the same functionality on a Solaris host. The provider performs
the actions and implements the features defined in the type.

Tip ➡ Not all types need providers. Some simple types include all required functionality in the type definition.

An example of this is the exec type.

I’m going to demonstrate how to build a very simple resource type. The type will
manage the /etc/shells file. The /etc/shells file contains a list of the valid login shells on
your host. Applications use this file to determine what shells are valid. Each shell is listed
on a separate line and consists of the name of the shell and its path relative to the root
directory, /. You can see an example of an /etc/shells file in Listing 7-5.

Extending Puppet 159

Turnbull

Listing 7-5. The /etc/shells File

/bin/sh
/bin/bash
/sbin/nologin
/bin/tcsh
/bin/csh
/bin/zsh
/bin/ksh

Tip ➡ Puppet best practice for type development has evolved and changed over Puppet’s life. It will almost

certainly continue to evolve. This section demonstrates current best practice.

Creating the Type

To manage our /etc/shells file, we first need to create a resource type definition. In Listing
7-6, you can see the skeleton of our shells type.

Listing 7-6. The shells.rb Type Skeleton

module Puppet
 newtype(:shells) do
 @doc = "Manages shells in /etc/shells. For example::

 shells { \"/bin/bash\":
 ensure => present,
 }

 There is also an optional target attribute if your
 shells file is located elsewhere."

 end
end

In Listing 7-6, we load the Puppet module and specify a new resource type, in our case
shells. You should store your resource type in a file named for your type, in this case
shells.rb.

160 Extending Puppet

Turnbull

Tip ➡ In the default Puppet installation, our resource types are located in the puppet/lib/type directory;

for example, if we’ve installed from source on most Linux distributions, you’d find them at

/usr/local/lib/site_ruby/1.8/puppet/lib/type.

We use @doc to document our type. In @doc, the documentation should be created in the
form of reStructuredText (http://docutils.sourceforge.net/rst.html). It is always a good
idea to include, as we have in Listing 7-6, examples of how the resource type should be
used.

After creating our skeleton and documenting our type, we need to add the required
attributes and features. You can see our complete shells type in Listing 7-7.

Listing 7-7. The Complete shells.rb Type

module Puppet
 newtype(:shells) do

 @doc = "Manages shells in /etc/shells. For example::

 shells { \"/bin/bash\":
 ensure => present,
 }
 There is also an optional target attribute if your
 shells file is located elsewhere."

 ensurable

 newparam(:shell, :namevar => true) do
 desc "The shell to manage"
 isnamevar
 end

 newproperty(:target) do
 desc "Location of shells file"
 defaultto { if @resource.class.defaultprovider.ancestors.include? ➥
(Puppet::Provider::ParsedFile)
 @resource.class.defaultprovider.default_target
 else
 nil
 end
 }

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
mailto:@resource.class.defaultprovider.ancestors.include?
mailto:@resource.class.defaultprovider.default_target

Extending Puppet 161

Turnbull

 end
 end
end

Resource types are principally made up of properties and parameters. In Listing 7-7,
you can see a property and a parameter being defined and a method called ensurable being
called.

Properties

Properties are the configurable elements of the resource type; for example, in the file
resource type, the owner and mode attributes are both properties. They tell Puppet how to
configure the resource being managed. Properties can have defaults set, contain input
validation to ensure only specific values can be set, or perform munging on the value or
values being set. Properties are defined using the newproperty method.

Properties interact with your providers, and the values they contain are used by
providers to configure your resource on the target node. In our example of the file resource
type, the value of the owner property is used to define the owner of the object being
managed. The file resource provider then uses this value to set the owner of the object on
the target node.

In Listing 7-7, we’ve only defined one property, target. This property tells Puppet the
location of the /etc/shells file. It’s optional and probably will be infrequently used, as
almost all systems use the standard /etc/shells location for the shells file. For the value of
this property, we’ve set a default. This default uses a helper class called ParsedFile that is
used to parse files, and we’ll look at that when we look at creating our provider.

While it is not explicitly a property, calling the ensurable helper method provides the
functionality of the ensure property and adds the values present and absent to that property.
The ensure property is frequently used in resource types as it creates and destroys resources.
You will probably recognize it in the form of the ensure attribute.

ensure => present
ensure => absent

Parameters

Parameters are type definition variables that define how the resource will behave. An
example of a parameter is the recurse attribute of the file resource type. If specified, this
tells the resource whether to recurse through directories or not. In Listing 7-7, we’ve
defined a parameter using the newparam method called shell, which is used to configure the
exact shell we wish to install into the /etc/shells file.

162 Extending Puppet

Turnbull

In Listing 7-7, you can also see that we’ve added something to our shell parameter,
isnamevar, that tells Puppet that this parameter is the attribute that sets the title or name of
our type. Each type needs to have a parameter that is the name variable. In the Type
Reference Wiki page (http://reductivelabs.com/trac/puppet/wiki/TypeReference), you can
see that each type has a name variable defined.

Tip ➡ Both properties and parameters can have the desc method. This is used to document each property or

parameter. You should always use the desc method to document your resource type and assist others in

understanding what each property and parameter does.

Creating Our Provider

Once we’ve created our type, we are going to create a simple provider to perform the
changes defined in our type on the /etc/shells file. Providers that make use of the
ParsedFile class should be stored in a directory named after the type and stored in a file
called parsed.rb, for example, /var/puppet/lib/providers/shells/parsed.rb. You can see
that provider in Listing 7-8.

Listing 7-8 The /etc/shells Provider

require 'puppet/provider/parsedfile'

shells = "/etc/shells"

Puppet::Type.type(:shells).provide(:parsed,
 :parent => Puppet::Provider::ParsedFile,
 :default_target => shells,
 :filetype => :flat
) do

 desc "The shells provider that uses the ParsedFile class"

 confine :exists => shells
 text_line :comment, :match => /^#/;
 text_line :blank, :match => /^\s*$/;

 record_line :parsed, :fields => %w{name}
end

http://reductivelabs.com/trac/puppet/wiki/TypeReference
http://reductivelabs.com/trac/puppet/wiki/TypeReference

Extending Puppet 163

Turnbull

The first line in Listing 7-8 is a require for the ParsedFile class we discussed in the
type section. The ParsedFile is a helper class that can help you manage text-based
configuration files. It contains a number of simple functions to parse, edit, and update files.
For most of your configuration files, this simple class will probably provide most of the
required functionality to manage them.

Tip ➡ I recommend taking a close look at the class contained in the parsedfile.rb file located in your

puppet/provider directory. It has a number of useful features and examples.

Next in Listing 7-8 we’ve specified the default location of our /etc/shells file. We’re
going to make use of this variable later in our provider.

Then we define the framework for our provider itself. You can see that we’ve named it
shells.

We define the ParsedFile class as a parent of the provider to enable its functionality and
specify some values from the class: the default_target value and the file type of the
configuration file we’re going to manipulate, in our case a flat file. The default_target
value makes use of the variable we defined earlier with the default location of the
/etc/shells file. We could override this value by setting the target attribute in our
resource.
target => "/etc/default/shells"

We also call desc to document our provider.
Next, we specify a confine helper method, which tells Puppet to only use the provider if

the /etc/shells file exists. A number of these helper methods exist to assist in developing
and configuring your providers. The confine helper method, together with another related
helper method, commands, determines where the provider is suitable. You can test for a
particular file, or a command, using Facter facts or whether a given value is true or false.
For example, to make our provider suitable only for a particular operating system, we could
use
confine :operatingsystem => [:debian, :solaris]

The commands helper method is similar to a confine except that it tells Puppet that a
particular binary must be present for the provider to be suitable.
commands :yum => "/usr/bin/yum"

If you have multiple providers, it is also possible to define a default provider for a
particular fact or set of facts. This assists in hiding implementation details from users and
allows them to focus on configuring their resource. For example, to declare a provider as

164 Extending Puppet

Turnbull

the default provider for all Red Hat hosts, you would use the defaultfor helper method like
so:
defaultfor :operatingsystem => :redhat

After our helper method, we’ve defined some functions of the ParsedFile. First, we’ve
told Puppet how to identify blank and comment lines in our file using regular expressions.
These regular expressions allow ParsedFile to process these lines in our file.

Lastly, the record_line function is the line that actually adds or removes the shell from
the /etc/shell file.
record_line :parsed, :fields => %w{name}

The ParsedFile class, combined with the use of the ensurable helper method, tells
Puppet that, depending on the setting of the ensure property, a particular shell should be
present or absent.

The ensurable helper method also makes three methods available in your providers:
create, destroy, exists?. The latter, exists?, allows logic to be added that determines
whether the particular resource exists. The former methods, create and destroy, will
contain the logic required to either create or destroy the resource, respectively. We’re not
using these methods as the ParsedFile class already provides this functionality, but you
could also create a provider that utilized their functionality like so:

Puppet::Type.type(:file).provide(:posix) do
 desc "Normal Unix-like POSIX support for file management."

 def create
 File.open(@resource[:name], "w") { |f| f.puts "" } # Create an empty file
 end

 def destroy
 File.unlink(@resource[:name])
 end

 def exists?
 File.exists?(@resource[:name])
 end
end

Here we have a provider that makes uses of the three ensureable methods to create,
delete, and check for the existence of a file. Using these methods and some simple Ruby,
you can perform a variety of useful functions that should allow you to develop basic types.

Extending Puppet 165

Turnbull

Back to our shells provider; we can see the record_line function takes the name of the
shell from the name variable, in our case, the shell parameter in our resource type. In Listing
7-9, you can see an example of a resource that uses our shells resource type.

Listing 7-9. A shells Resource

shells { "/bin/bash":
 ensure => present,
}

The resource in Listing 7-9 would add the /bin/bash shell to the /etc/shells file, if it
wasn’t already present. By changing the ensure attribute to absent, the resource would
remove the shell from the file.

Tip ➡ This is a very simple introduction to constructing providers. To find more about developing providers,

refer to the documentation available on the Wiki at

http://reductivelabs.com/trac/puppet/wiki/ProviderDevelopment.

Distributing Our New Type

Once we’ve created our new type and provider, we need to deploy it onto our master
servers and clients. The master servers need it to be able to define resources in manifests,
and the clients need it to be able to actually implement the resources on the client. To do
this distribution, we could install our types and providers into the relevant type and provider
directories in the Puppet package. But an easier and more effective method exists that
makes use of a Puppet function called pluginsync.

The pluginsync function synchronizes the contents of a source, called pluginsource, to
the libdir directory. This works in same way factsync synchronizes custom facts. The
libdir directory is defined by default as $vardir/lib, usually /var/puppet/lib. The
pluginsource option is usually a file mount called plugins.

To configure pluginsync, we need to configure both our master and client. In Listing 7-
10, you can see the required master configuration.

http://reductivelabs.com/trac/puppet/wiki/ProviderDevelopment

166 Extending Puppet

Turnbull

Listing 7-10. The Master pluginsync Configuration

[main]
pluginsource = puppet://$server/plugins
vardir = /var/puppet
libdir = $vardir/lib

In Listing 7-10, we’ve enabled the pluginsource as the plugins file mount. We’ve
defined vardir to the default location of /var/puppet and finally specified the lib directory,
where we will place our custom types and providers on the master. You should place your
types in suitable directories. Usually this would be a type and a provider directory, and we
would copy our type and provider into the directories. In Listing 7-11, we have created
some directories and copied in the custom type and provider we have just created.

Listing 7-11. Creating Our Type and Provider Master Location

mkdir -p /var/puppet/lib/type
mkdir -p /var/puppet/lib/provider
mkdir -p /var/puppet/lib/provider/shells
cp shells.rb /var/puppet/lib/type/shells.rb
cp parsed.rb /var/puppet/lib/provider/shells/parsed.rb

Next, we need to enable this file mount in the fileserver.conf configuration file on our
master server as you can see in Listing 7-12.

Listing 7-12. The plugins Mount

[plugins]
path /var/puppet/lib
allow *.testing.com

In Listing 7-12, we’ve added a plugins mount and allowed access from all testing.com
nodes.

Now on our client, we also need to configure pluginsync as you can see in Listing 7-13.

Listing 7-13. Configuring pluginsync on the Puppet Client

[main]
pluginsync = true
vardir = /var/puppet
libdir = $vardir/lib
pluginsource = puppet://$server/plugins
plugindest = $libdir

Extending Puppet 167

Turnbull

We enable the pluginsync option by setting it to true. We then set the libdir directory
that will be the destination for our custom types and providers. Here we’ve defined the
location as /var/puppet/lib. Next, we’ve specified where Puppet will find custom types, in
our case on the plugins file mount on our Puppet master. Lastly, we set the plugindest
option to tell Puppet to place our types and providers in this directory.

After configuration, we restart both the master and the client. When the client next
connects to the master, pluginsync will be initiated, and our custom types and providers will
be downloaded from the file mount into the /var/lib/puppet/lib directory.

Tip ➡ You can also ignore some files located in your plug-in source directory; for example, by default any

.svn directories are ignored, using the pluginsignore configuration option.

DISTRIBUTING TYPES AND FACTS IN VERSION 0.24

In the forthcoming 0.24 release of Puppet, an additional distribution mechanism for custom facts and types

will also be available. To make use of this method, custom facts and types are now stored in one or more

modules. Types and facts associated with particular modules are stored in the associated module. They

are then gathered together and distributed via a file server mount called plugins. This method has also

been previously used in some patched Debian packages released by Matt Palmer.

If your custom facts and types are not specific to particular modules, you can create a catch-all

module to distribute them. I recommend calling this module custom. To enable the new pluginsync

functionality, we need to make some changes on both the master and our clients. First we need to

configure our plugins file mount in the fileserver.conf configuration file. If you already have a

plugins mount, all you need to do is remove the path statement from the mount definition. This turns

the existing user-defined plugins mount into the required system-defined mount. Your resulting mount

should look like this:

[plugins]

allow *.testing.com

Here we’ve defined the plugins mount and allowed clients from the testing.com domain to

connect and retrieve custom types and facts. Next, we need to create our required module and directory

structure. We’re going to create the custom module to hold our types and facts. We’re going to assume

our modules directory is /etc/puppet/modules (defined using the modulepath configuration option).

168 Extending Puppet

Turnbull

mkdir -p /etc/puppet/modules/custom/plugins/puppet/type

mkdir -p /etc/puppet/modules/custom/plugins/facter

You place your custom types in the type directory and your custom facts in the facter directory. If

a particular custom type or fact belongs to an already existing module, create the required

plugins/puppet and plugins/facter directories and install your types and facts in them.

Now, on your Puppet clients, you need to configure pluginsync and, if you have it enabled, turn

off factsync as it is no longer needed. You also need to configure the pluginsource option to point to

the plugins mount on the Puppet master server.

[main]

pluginsync = true

pluginsource = puppet://$server/plugins

You can find some more information on this distribution method at
http://reductivelabs.com/trac/puppet/wiki/PluginsInModules.

Resources

 • Instructions for adding custom facts:

 http://reductivelabs.com/trac/puppet/wiki/AddingFacts

 • Documentation on how to create custom types:

 http://reductivelabs.com/trac/puppet/wiki/CreatingCustomTypes

 • A complete example of resource type creation:

 http://reductivelabs.com/trac/puppet/wiki/CompleteResourceExample

 • Documentation on detailed provider development:

 http://reductivelabs.com/trac/puppet/wiki/ProviderDevelopment

 • Practical set of documentation covering type development:

 http://reductivelabs.com/trac/puppet/wiki/PracticalTypes

http://reductivelabs.com/trac/puppet/wiki/PluginsInModules
http://reductivelabs.com/trac/puppet/wiki/AddingFacts
http://reductivelabs.com/trac/puppet/wiki/CreatingCustomTypes
http://reductivelabs.com/trac/puppet/wiki/CompleteResourceExample
http://reductivelabs.com/trac/puppet/wiki/ProviderDevelopment
http://reductivelabs.com/trac/puppet/wiki/PracticalTypes

Extending Puppet 169

Turnbull

 • Writing your own functions:

 http://reductivelabs.com/trac/puppet/wiki/WritingYourOwnFunctions

http://reductivelabs.com/trac/puppet/wiki/WritingYourOwnFunctions

	Prelims
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Introducing Puppet
	What Is Puppet?
	What Makes Puppet Different?
	How Does Puppet work?
	A Declarative Language
	A Transactional Layer
	A Resource Abstraction Layer

	Puppet Performance and Hardware
	The Future for Puppet
	Resources
	Web
	Mailing Lists
	IRC

	Installing and RunningPuppet
	Installation Prerequisites
	Installing Ruby
	Installing Ruby from Source
	Installing Ruby and Ruby Libraries from Packages

	Installing Facter
	Installing Facter from Source
	Installing Facter from Package

	Installing RDoc

	Installing Puppet
	Installing from Source
	Installing Puppet by Package
	Installing Puppet from a Ruby Gem

	Getting Started with Puppet
	Starting the Puppet Master
	Starting the Puppet Client
	Signing Your Client Certificate

	Running the Puppet Daemons
	Configuring Puppet
	The [main] Configuration Namespace
	Configuring puppetmasterd
	Configuring puppetd
	Configuring puppetca

	Resources
	Web
	Mailing Lists

	Speaking Puppet
	Defining Configuration Resources
	Resource Titling
	Resource Attributes
	Resource Style
	Resource Defaults
	Collections of Resources
	Classes and Subclasses
	Classes Relationships
	Class Inheritance

	Definitions
	Qualifying Definitions

	Variables
	Variable Scoping
	Variables and Class Inheritance
	Qualified Variables
	Variables and Metaparameters

	Arrays
	Conditionals

	Creating Nodes
	Node Inheritance
	Node Inheritance and Variable Scope
	Default Nodes
	Node Conditionals

	Virtual Resources
	Realizing with a Collection
	Realizing with the realize Function

	Facts
	Resource Types
	Managing Cron Jobs
	Using a Filebucket
	Managing Host Files
	Managing SSH Host Keys
	Tidy Unwanted Files

	Functions
	Logging Functions
	Checking for Existence with defined
	Generating Errors with fail
	Adding External Data with file
	Using generate
	Qualifying Definitions Using search
	Using tag and tagged
	Using Templating

	Resources
	Web

	Using Puppet
	Our Example Environment
	Manifest Organization
	Importing Manifests
	Managing Manifests with Subversion

	Defining Nodes
	Our First Classes
	Managing Users and Groups
	Managing Users

	File Serving
	Modularizing Our Configuration
	MySQL Module
	Postfix Module
	Apache Module

	Resources

	Reporting on Puppet
	Getting Started
	Configuring Reporting
	Report Processors
	log
	tagmail
	rrdgraph

	Custom Reporting
	Resources

	Advanced Puppet
	External Node Classification
	Storing Node Configuration in LDAP
	Puppet Scalability
	Installing Mongrel
	Installing Apache
	Configuring Apache As a Proxy
	Configuring Puppet for Mongrel
	How Far Will Puppet Scale?

	Resources

	Extending Puppet
	Extending Facter
	Configuring Puppet for Custom Facts
	Writing Custom Facts
	Testing Your Facts

	Extending Puppet
	Creating the Type
	Properties
	Parameters

	Creating Our Provider
	Distributing Our New Type

	Resources

