

Nagios

Wolfgang Barth

Nagios
System and Network Monitoring

Munich San Francisco

NAGIOS. Copyright c� 2006 Open Source Press GmbH

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Printed on recycled paper in the United States of America.

1 2 3 4 5 6 7 8 9 10 — 09 08 07 06

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Cover Design: Octopod Studios
U.S. edition published by No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

Original edition c� 2005 Open Source Press GmbH
Published by Open Source Press GmbH, Munich, Germany
Publisher: Dr. Markus Wirtz
Original ISBN 3-937514-09-0
For information on translations, please contact
Open Source Press GmbH, Amalienstr. 45 Rg, 80799 München, Germany
phone +49.89.28755562; fax +49.89.28755563; info@opensourcepress.de; http://www.opensourcepress.de

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor Open Source Press GmbH nor No Starch Press, Inc. shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Barth, Wolfgang

Nagios : system and network monitoring / Wolfgang Barth.-- 1st ed.

p. cm.

Includes index.

ISBN 1-59327-070-4

1. Computer networks--Management--Automation. I. Title. TK5105.5.B374 2005

004.6--dc22

2005026745

Contents

Introduction 15

From Source Code to a Running Installation 23

1 Installation 25

1.1 Compiling the Source Code . 26

1.2 Installing and Testing Plugins . 30

1.2.1 Installation . 30

1.2.2 Plugin test . 32

1.3 Configuration of the Web Interface 33

1.3.1 Setting Up Apache . 33

1.3.2 User Authentication . 34

2 Nagios Configuration 37

2.1 The Main Configuration File nagios.cfg 38

2.2 Objects—an Overview . 41

2.3 Defining the Machines to Be Monitored, with host 44

2.4 Grouping Computers Together with hostgroup 46

2.5 Defining Services to Be Monitored with service 47

2.6 Grouping Services Together with servicegroup 50

2.7 Defining Addressees for Error Messages: contact 50

2.8 The Message Recipient: contactgroup 52

2.9 When Nagios Needs to Do Something: the command Object . . . 53

2.10 Defining a Time Period with timeperiod 54

5

Contents

2.11 Templates . 54

2.12 Configuration Aids for Those Too Lazy to Type 56

2.12.1 Defining services for several computers 56

2.12.2 One host group for all computers 57

2.12.3 Other configuration aids 57

2.13 CGI Configuration in cgi.cfg . 57

2.14 The Resources File resource.cfg . 59

3 Startup 61

3.1 Checking the Configuration . 61

3.2 Getting Monitoring Started . 63

3.2.1 Manual start . 63

3.2.2 Automatic start . 64

3.2.3 Making configuration changes come into effect 64

3.3 Overview of the Web Interface . 64

In More Detail . . . 69

4 Nagios Basics 71

4.1 Taking into Account the Network Topology 72

4.2 Forced Host Checks vs. Periodic Reachability Tests 75

4.3 States of Hosts and Services . 75

5 Service Checks and How They Are Performed 79

5.1 Testing Network Services Directly 81

5.2 Running Plugins via Secure Shell on the Remote Computer 82

5.3 The Nagios Remote Plugin Executor 82

5.4 Monitoring via SNMP . 83

5.5 The Nagios Service Check Acceptor 84

6 Plugins for Network Services 85

6.1 Standard Options . 87

6.2 Reachability Test with Ping . 88

6.2.1 check_icmp as a service check 90

6

Contents

6.2.2 check_icmp as a host check 91

6.3 Monitoring Mail Servers . 92

6.3.1 Monitoring SMTP with check_smtp 92

6.3.2 POP and IMAP . 95

6.4 Monitoring FTP and Web Servers 97

6.4.1 FTP services . 97

6.4.2 Web server control via HTTP 98

6.4.3 Monitoring Web proxies 101

6.5 Domain Name Server under Control 105

6.5.1 DNS check with nslookup 106

6.5.2 Monitoring the name server with dig 107

6.6 Querying the Secure Shell Server 108

6.7 Generic Network Plugins . 110

6.7.1 Testing TCP ports . 110

6.7.2 Monitoring UDP ports . 112

6.8 Monitoring Databases . 114

6.8.1 PostgreSQL . 115

6.8.2 MySQL . 119

6.9 Monitoring LDAP Directory Services 121

6.10 Checking a DHCP Server . 124

6.11 Monitoring UPS with the Network UPS Tools 126

7 Testing Local Resources 133

7.1 Free Hard Drive Capacity . 134

7.2 Utilization of the Swap Space . 136

7.3 Testing the System Load . 137

7.4 Monitoring Processes . 138

7.5 Checking Log Files . 141

7.5.1 The standard plugin check_log 142

7.5.2 The modern variation: check_logs.pl 143

7.6 Keeping Tabs on the Number of Logged-in Users 144

7.7 Checking the System Time . 145

7.7.1 Checking the system time via NTP 145

7

Contents

7.7.2 Checking system time with the time protocol 146

7.8 Regularly Checking the Status of the Mail Queue 147

7.9 Keeping an Eye on the Modification Date of a File 148

7.10 Monitoring UPSs with apcupsd . 149

7.11 Nagios Monitors Itself . 150

7.11.1 Running the plugin manually with a script 151

7.11.2 check_nagios as a tool for CGI programs 152

7.12 Hardware Checks with LM Sensors 152

7.13 The Dummy Plugin for Tests . 154

8 Manipulating Plugin Output 155

8.1 Negating Plugin Results . 155

8.2 Inserting Hyperlinks with urlize 156

9 Executing Plugins via SSH 157

9.1 The check_by_ssh Plugin . 158

9.2 Configuring SSH . 160

9.2.1 Generating SSH key pairs on the Nagios server 160

9.2.2 Setting up the user nagios on the target host 161

9.2.3 Checking the SSH connection and check_by_ssh 161

9.3 Nagios Configuration . 162

10 The Nagios Remote Plugin Executor (NRPE) 165

10.1 Installation . 166

10.1.1 Distribution-specific packages 166

10.1.2 Installation from the source code 167

10.2 Starting via the inet Daemon . 168

10.2.1 xinetd configuration . 168

10.2.2 inetd configuration . 169

10.3 NRPE Configuration on the Computer to Be Monitored 170

10.3.1 Passing parameters on to local plugins 171

10.4 Nagios Configuration . 172

10.4.1 NRPE without passing parameters on 172

10.4.2 Passing parameters on in NRPE 173

8

Contents

10.4.3 Optimizing the configuration 173

10.5 Indirect Checks . 174

11 Collecting Information Relevant for Monitoring with SNMP 177

11.1 Introduction to SNMP . 178

11.1.1 The Management Information Base 179

11.1.2 SNMP protocol versions 183

11.2 NET-SNMP . 184

11.2.1 Tools for SNMP requests 184

11.2.2 The NET-SNMP daemon 187

11.3 Nagios’s Own SNMP Plugins . 196

11.3.1 The generic SNMP plugin check_snmp 196

11.3.2 Checking several interfaces simultaneously 201

11.3.3 Testing the operating status of individual interfaces 203

11.4 Other SNMP-based Plugins . 205

11.4.1 Monitoring hard drive space and processes with nagios-
snmp-plugins . 205

11.4.2 Observing the load on network interfaces with check-
iftraffic . 207

11.4.3 The manubulon.com plugins for special application pur-
poses . 209

12 The Nagios Notification System 215

12.1 Who Should be Informed of What, When? 216

12.2 When Does a Message Occur? . 217

12.3 The Message Filter . 217

12.3.1 Switching messages on and off systemwide 218

12.3.2 Enabling and suppressing computer and service-related
messages . 219

12.3.3 Person-related filter options 221

12.3.4 Case examples . 222

12.4 External Notification Programs . 224

12.4.1 Notification via e-mail . 225

12.4.2 Notification via SMS . 227

9

Contents

12.5 Escalation Management . 231

12.6 Dependences between Hosts and Services as a Filter Criterion . . . 234

12.6.1 The standard case: service dependencies 234

12.6.2 Only in exceptional cases: host dependencies 238

13 Passive Tests with the External Command File 239

13.1 The Interface for External Commands 240

13.2 Passive Service Checks . 241

13.3 Passive Host Checks . 242

13.4 Reacting to Out-of-Date Information of Passive Checks 243

14 The Nagios Service Check Acceptor (NSCA) 247

14.1 Installation . 248

14.2 Configuring the Nagios Server . 249

14.2.1 The configuration file nsca.cfg 249

14.2.2 Configurung the inet daemon 251

14.3 Client-side Configuration . 252

14.4 Sending Test Results to the Server 253

14.5 Application Example I: Integrating syslog and Nagios 254

14.5.1 Preparing syslog-ng for use with Nagios 255

14.5.2 Nagios configuration: volatile services 257

14.5.3 Resetting error states manually 258

14.6 Application Example II: Processing SNMP Traps 260

14.6.1 Receiving traps with snmptrapd 260

14.6.2 Passing on traps to NSCA 261

14.6.3 The matching service definition 263

15 Distributed Monitoring 265

15.1 Switching On the OCSP/OCHP Mechanism 266

15.2 Defining OCSP/OCHP Commands 267

15.3 Practical Scenarios . 269

10

Contents

15.3.1 Avoiding redundancy in configuration files 269

15.3.2 Defining templates . 270

16 The Web Interface 273

16.1 Recognizing and Acting On Problems 275

16.1.1 Comments on problematic hosts 276

16.1.2 Taking responsibility for problems: acknowledgements . . 278

16.2 An Overview of the Individual CGI Programs 279

16.2.1 Variations in status display: status.cgi 279

16.2.2 Additional information and control center: extinfo.cgi . . 284

16.2.3 Interface for external commands: cmd.cgi 288

16.2.4 The most important things at a glance: tac.cgi 290

16.2.5 Network plan: the topological map of the network (sta-
tusmap.cgi) . 291

16.2.6 Navigation in 3D: statuswrl.cgi 293

16.2.7 Querying the status with a cell phone: statuswml.cgi . . . 295

16.2.8 Analyzing disrupted partial networks: outages.cgi 295

16.2.9 Querying the object definition with config.cgi 295

16.2.10 Availability statistics: avail.cgi 296

16.2.11 What events occur, how often? histogram.cgi 298

16.2.12 Filtering log entries after specific states: history.cgi 299

16.2.13 Who was told what, when? notifications.cgi 300

16.2.14 Showing all logfile entries: showlog.cgi 301

16.2.15 Evaluating whatever you want: summary.cgi 301

16.2.16 Following states graphically over time: trends.cgi 303

16.3 Planning Downtimes . 304

16.3.1 Maintenance periods for hosts 305

16.3.2 Downtime for services . 306

16.4 Additional Information on Hosts and Services 307

16.4.1 Extended host information 307

16.4.2 Extended service information 310

16.5 Configuration Changes through the Web Interfaces: the Restart
Problem . 311

11

Contents

17 Graphic Display of Performance Data 313

17.1 Processing Plugin Performance Data with Nagios 314

17.1.1 The template mechanism 314

17.1.2 Using external commands to process performance data . . 317

17.2 Graphs for the Web with Nagiosgraph 317

17.2.1 Basic installation . 318

17.2.2 Configuration . 319

17.3 Preparing Performance Data for Evaluation with Perf2rrd 325

17.3.1 Installation . 326

17.3.2 Nagios configuration . 326

17.3.3 Perf2rrd in practice . 327

17.4 The Graphics Specialist drraw . 330

17.4.1 Installation . 330

17.4.2 Configuration . 331

17.4.3 Practical application . 332

17.5 Automated to a Large Extent: NagiosGrapher 336

17.5.1 Installation . 336

17.5.2 Configuration . 338

17.6 Other tools and the limits of graphic evaluation 349

Special Applications 351

18 Monitoring Windows Servers 353

18.1 NSClient and NC Net . 354

18.1.1 Installation . 354

18.1.2 The check_nt plugin . 355

18.1.3 Commands which can be run with NSClient and NC Net . 356

18.1.4 Advanced functions of NC Net 363

18.2 NRPE for Windows: NRPE NT . 371

18.2.1 Installation and configuration 372

18.2.2 Function test . 373

18.2.3 The Cygwin plugins . 373

18.2.4 Perl plugins in Windows 374

12

Contents

19 Monitoring Room Temperature and Humidity 377

19.1 Sensors and Software . 378

19.1.1 The PCMeasure software for Linux 378

19.1.2 The query protocol . 379

19.2 The Nagios Plugin check_pcmeasure 379

20 Monitoring SAP Systems 383

20.1 Checking without a Login: sapinfo 384

20.1.1 Installation . 384

20.1.2 First test . 384

20.1.3 The plugin check_sap.sh 386

20.2 Monitoring with SAP’s Own Monitoring System (CCMS) 388

20.2.1 CCMS—a short overview 388

20.2.2 Obtaining the necessary SAP usage permissions for Nagios 390

20.2.3 Monitors and templates 392

20.2.4 The CCMS plugins . 394

20.2.5 Performance optimization 398

Appendixes 399

A Rapidly Alternating States: Flapping 401

A.1 Flap Detection with Services . 402

A.1.1 Nagios configuration . 403

A.1.2 The history memory and the chronological progression of
the changes in state . 404

A.1.3 Representation in the Web interface 404

A.2 Flap Detection for Hosts . 406

B Event Handlers 409

B.1 Execution Times for the Event Handler 410

B.2 Defining the Event Handler in the Service Definition 411

B.3 The Handler Script . 411

B.4 Things to Note When Using Event Handlers 413

13

Contents

C Writing Your Own Plugins: Monitoring Oracle with the
Instant Client 415

C.1 Installing the Oracle Instant Client 416

C.2 Establishing a Connection to the Oracle Database 417

C.3 A Wrapper Plugin for sqlplus . 417

C.3.1 How the wrapper works 418

C.3.2 The Perl plugin in detail 419

D An Overview of the Nagios Configuration Parameters 423

D.1 The Main Configuration File nagios.cfg 424

D.2 CGI Configuration in cgi.cfg . 443

D.2.1 Authentication parameters 443

D.2.2 Other Parameters . 444

Index 447

14

Introduction

It’s ten o’clock on Monday morning. The boss of the branch office is in a rage.
He’s been waiting for hours for an important e-mail, and it still hasn’t arrived. It
can only be the fault of the mail server; it’s probably hung yet again. But a quick
check of the computer shows that no mails have got stuck in the queue there, and
there’s no mention either in the log file that a mail from the sender in question has
arrived. So where’s the problem?

The central mail server of the company doesn’t respond to a ping. That’s probably
the root of the problem. But the IT department at the company head office abso-
lutely insists that it is not to blame. It also cannot ping the mail node of the branch
office, but it maintains that the network at the head office is running smoothly,
so the problem must lie with the network at the branch office. The search for the
error continues. . .

The humiliating result: the VPN connection to head office was down, and although
the ISDN backup connection was working, no route to the head office (and thus
to the central mail server) was defined in the backup router. A globally operating
IT service provider was responsible for the network connections (VPN and ISDN)
between branch and head office, for whom something like this “just doesn’t hap-
pen”. The end result: many hours spent searching for the error, an irritated boss
(the meeting for which the e-mail was urgently required has long since finished),
and a sweating admin.

With a properly configured Nagios system, the adminstrator would already have
noticed the problem at eight in the morning and been able to isolate its cause
within a few minutes. Instead of losing valuable time, the IT service provider would
have been informed directly. The time then required to eliminate the error (in this
case, half an hour) would have been sufficient to deliver the e-mail in time.

A second example: somewhere in Germany, the hard drive on which the central
Oracle database for a hospital stores its log files reaches full capacity. Although
this does not cause the “lights to go out” in the operating room, the database
stops working and there is considerable disruption to work procedures: patients

15

Introduction

cannot be admitted, examination results cannot be saved, and reports cannot be
documented until the problem has been fixed.

If the critical hard drive had been monitored with Nagios, the IT department would
have been warned at an early stage. The problem would not even have occurred.

With personnel resources becoming more and more scarce, no IT department can
really afford to regularly check all systems manually. Networks that are growing
more and more complex especially demand the need to be informed early on of
disruptions that have occurred or of problems that are about to happen. Nagios,
the Open Source tool for system and network monitoring, helps the administrator
to detect problems before the phone rings off the hook.

The aim of the software is to inform administrators quickly about questionable
(WARNING) or critical conditions (CRITICAL). What is regarded as “questionable” or
“critical” is defined by the administrator in the configuration. A Web page sum-
mary then informs the administrator of normally working systems and services,
which Nagios displays in green, of questionable conditions (yellow), and of criti-
cal situations (red). There is also the possibility of informing the administrators in
charge—depending on specific services or systems—selectively by e-mail but also
by paging services such as SMS.

By concentrating on traffic light states (green, yellow, red), Nagios is distinct from
network tools that display elapsed time graphically (for example in the load of a
WAN interface or a CPU throughout an entire day) or that record and measure
network traffic (how high was the proportion of HTTP on a particular interface?).
Nagios is involved plainly and simply with the issue of whether everything is on
a green light. The software does an excellent job in looking after this, not just in
terms of the current status but also over long periods of time.

The tests

When checking critical hosts and services, Nagios distinguishes between host and
service checks. A host check tests a computer, called host in Nagios slang, for
reachability—as a rule, a simple ping is used. A service check selectively tests indi-
vidual network services such as HTTP, SMTP, DNS, etc., but also running processes,
CPU load, or log files. Host checks are performed by Nagios irregularly and only
where required, for example if none of the services to be monitored can be reached
on the host being monitored. As long as one service can be addressed there, then
this is basically valid for the entire computer, so that this test can be dropped.

The simplest test for network services consists of looking to see whether the rele-
vant target port is open, and whether a service is listening there. But this does not
necessarily mean that, for example, the SSH daemon really is running on TCP port
22. Nagios therefore uses tests for many services that go several steps further. For
SMTP, for example, the software tests whether the mail server also announces itself

16

Introduction

with a “220” output, the so-called SMTP greeting; and for a PostgreSQL database,
it checks whether this will accept an SQL query.

Nagios becomes especially interesting through the fact that it takes into account
dependencies in the network topology (if it is configured to do so). If the target
system can only be reached through a particular router that has just gone down,
then Nagios reports that the target system is “unreachable”, and does not bother to
bombard it with further host and service checks. The software puts administrators
in a position where they can more quickly detect the actual cause and rectify the
situation.

The suppliers of information

The great strength of Nagios—even in comparison with other network monitoring
tools—lies in its modular structure: the Nagios core does not contain one single
test. Instead it uses external programs for service and host checks, which are known
as plugins. The basic equipment already contains a number of standard plugins for
the most important application cases. Special requests that go beyond these are
answered—provided that you have basic programming knowledge—by plugins that
you can write yourself. Before you invest time developing these, however, it is
first worth taking a look in the Internet and browsing through the relevant mailing
lists,1 as there is lively activity in this area. Ready-to-use plugins are available,
especially in the Nagios exchange platform, http://www.nagiosexchange.org/.

A plugin is a simple program—often just a shell script (Bash, Perl etc.)—that gives
out one of the four possible conditions OK, WARNING, CRITICAL, or (with operating
errors, for example) UNKNOWN.

This means that in principle Nagios can test everything that can be measured
or counted electronically: the temperature and humidity in the server room, the
amount of rainfall, the presence of persons in a certain room at a time when no-
body should enter it. There are no limits to this, provided that you can find a way
of providing measurement data or events as information that can be evaluated by
computer (for example, with a temperature and humidity sensor, an infrared sen-
sor, etc.). Apart from the standard plugins, this book accordingly introduces further
freely available plugins, such as the use of a plugin to query a temperature and
humidity sensor in Chapter 19 from page 377.

Keeping admins up-to-date

Nagios possesses a sophisticated notification system. On the sender side (that is,
with the host or service check) you can configure when which group of persons—
the so-called contact groups—are informed about which conditions or events (fail-

1 http://www.nagios.org/support/mailinglists.php

17

Introduction

ure, recovery, warnings etc.). On the receiver side you can also define on multiple
levels what is to be done with a corresponding message—for example whether the
system should forward it, depending on the time of day, or discard the message.

If a specific service is to be monitored seven days a week round the clock, for exam-
ple, this does not mean that the administrator in charge will never be able to take
a break: instead, you can instruct Nagios to notify the person only from Mondays
to Fridays between 8am and 5pm, every two hours at the most. If the adminis-
trator in charge is not able to solve the problem within a specified period of time,
eight hours for example, then the head of department responsible should receive
a message. This is also known as escalation management. The corresponding
configuration is explained in Chapter 12.5 from page 231.

Nagios can also make use of freely configurable, external programs for notifica-
tions, so that you can integrate any system you like: from e-mail to SMS to a voice
server that the administrator calls up and receives a voice message concerning the
error.

With its Web interface (Chapter 16 from page 273, Nagios provides the adminis-
trator with a wide range of information, clearly arranged according to the issues
involved. Whether the admin needs a summary of the overall situation, a display
of problematic services and hosts and the causes of network outages, or the sta-
tus of entire groups of hosts or services, Nagios provides an individually structured
information page for nearly every purpose.

Through the Web front end, an administrator can inform colleagues upon accepting
a particular problem so that they can concentrate on other things that have not yet
been seen to. Information already obtained can be stored as comments on hosts
and services, just like scheduled downtimes: Nagios prevents false alarms going off
in these periods.

By reviewing past events, the Web interface can reveal what problems occurred in
a selected time interval, who was informed, what the situation was concerning the
availability of a host and/or services during a particular time period—all this also
taking account of downtimes, of course.

Taking in information from outside

For tests, notifications, etc., Nagios makes use of external programs, but the reverse
is also possible: through a separate interface (see 13.1 from page 240), independent
programs can send status information and commands to Nagios. The Web interface
makes widespread use of this possibility, which allows the administrator to send
interactive commands to Nagios. But a backup program unknown to Nagios can
also transmit a success or failure to Nagios, as well as a syslog daemon—there is no
limit to the possibilities here.

18

Introduction

Thanks to this interface, Nagios allows distributed monitoring. This involves several
decentralized Nagios installations sending their test results to a central instance,
which then helps to maintain an overview of the situation from a central location.

Other tools for network monitoring

Nagios is not the only tool for monitoring systems and networks. The most well-
known “competitor,” perhaps on an equal footing, is Big Brother (BB). Despite a
number of differences, its Web interface also serves the same purpose as that of
Nagios: displaying to the administrator what is in the “green area” and what is not.

The reason why the author uses Nagios instead of Big Brother lies in the license for
Big Brother, on the BB homepage2 called Better Than Free License: the product
continues to be commercially developed and distributed. If you use BB and earn
money with it, you must buy the software. The fact that the software, including the
source code, may not be passed on or modified except with the explicit permission
of the vendor means that it cannot be reconciled with the criteria for Open Source
licenses. This means that Linux distributors have their hands tied.

For the graphical display of certain measured values over a period of time, such
as the load on a network interface, CPU load, or the number of mails per minute,
there are other tools that perform this task better than Nagios. The original tool is
certainly the Multi Router Traffic Grapher MRTG,3 which, despite growing com-
petition, still enjoys great popularity. The relatively young, but very powerful al-
ternative is called Cacti4: this has a larger range of applications, can be configured
via Web interface, and avoids the restrictions in MRTG, which can only display two
measured values at the same time and cannot display any negative values.

Nagios itself can also display performance data graphically, using extensions (Chap-
ter 17 from page 313). In many cases this is sufficient, but for very dedicated re-
quirements, the use of Nagios in tandem with a graphic representation tool such
as MRTG or Cacti is recommended.

About This Book

This book is directed at network administrators who want to find out about the
condition of their systems and networks using an Open Source tool. It describes
Nagios version 2.0, which is somewhat different from its predecessors in its config-
uration. The plugins, on the other hand, lead their own lives, are to a great extent
independent of Nagios, and are therefore not restricted to a particular version.

2 http://www.bb4.org/
3 http://www.mrtg.org/
4 http://www.cacti.net/

19

Introduction

Even though this book is based on Linux as the operating system for the Nagios
computer, this is not a requirement. Most descriptions also apply to other Unix
systems,5 only system-specific details such as start scripts need to be adjusted
accordingly. Nagios currently does not work under Windows, however.

The first part of this book deals with getting Nagios up and running with a simple
configuration, but one that is sufficient for many uses, as quickly as possible. This
is why Chapters 1 through 3 do not have detailed descriptions and treatments of
all options and features. These are examined in the second part of the book.

Chapter 4 looks at the details of service and host checks, and in particular intro-
duces their dependency on network topologies.

The options available to Nagios for implementing service checks and obtaining their
results is described in Chapter 5.

This is followed by the presentation of individual standard plugins and a number
of additional, freely obtainable plugins: Chapter 6 takes a look at the plugins that
inspect the services of a network protocol directly from the Nagios host, while
Chapter 7 summarizes plugins that need to be installed on the machine that is
being monitored, and for which Nagios needs additional utilities to get them run-
ning. Several auxiliary plugins, which do not perform any tests themselves, but
manipulate already established results, are introduced in Chapter 8.

Two utilities that Nagios requires to run local plugins on remote hosts are intro-
duced in the two subsequent chapters: in Chapter 9 the SSH is described, while
Chapter 10 introduces a daemon developed specifically for Nagios.

Wherever networks are being monitored, SNMP also needs to be implemented.
Chapter 11 not only describes SNMP-capable plugins but also examines the pro-
tocol and the SNMP world itself in detail, providing the background knowledge
needed for this.

The Nagios notification system is introduced Chapter 12, which also deals with
notification using SMS, escalation management, and taking account of dependen-
cies.

The interface for external commands is discussed in Chapter 13; this forms the basis
of other Nagios mechanisms, such as the Nagios Service Check Acceptor (NSCA),
a client-server mechanism for transmitting passive test results, covered in Chapter
14. The use of this is shown in two concrete examples—integrating syslog-ng and
processing SNMP traps. NSCA is also a requirement for distributed monitoring,
discussed in Chapter 15.

Even though you may have already used the Web interface, you might still be
wondering about all the detailed options that this offers. Chapter 16 tries to answer
this question as completely as possible, supported by very helpful screenshots. It

5 For example, *BSD, HP-UX, AIX, and Solaris; the author does not know of any Nagios versions
running under MacOS X.

20

Introduction

also describes a series of parameters which until now have not been documented
anywhere, except in the source code.

Although in its operation, Nagios concentrates primarily on traffic light signals
(red-yellow-green), there are ways of evaluating and representing the performance
data provided by plugins, which are described in detail in Chapter 17.

Networks are rarely homogeneous, that is, equipped only with Linux and other
Unix-based operating systems. For this reason Chapter 18 demonstrates what util-
ities can be used to integrate and monitor Windows systems.

Chapter 19 uses the example of a low-cost hardware sensor to show how room
temperature and humidity can be monitored simply yet effectively.

Nagios can also monitor proprietary commercial software, as long as mechanisms
are available which can query states of the system integrated into a plugin. In
Chapter 20, this is described using an SAP-R/3 system.

The appendix Nagios Configuration introduces all the parameters of the two cen-
tral configuration files nagios.cfg and cgi.cfg, while Rapidly Changing States:
Flapping and EventHandler are devoted to some useful but somewhat exotic fea-
tures.

Further notes on the book

At the time of going to press, Nagios 2.0 is close to completion. When this book is
on the market, there could well be some modifications. Relevant notes, as well as
corrections, in case some errors have slipped into the book, can be found at
http://linux.swobspace.net/books/nagios/.

Note of Thanks

Many people have contributed to the success of this book. My thanks go first of
all to Dr. Markus Wirtz, who initiated this book with his comment, “Why don’t you
write a Nagios book, then?!”, when he refused to accept my Nagios activities as
an excuse for delays in writing another book. I would also like to thank the two
technical editors, Steffen Waitz and Jörg Linge, for their support. A very special
thanks goes to Patricia Jung, who, as the technical editor for the German language
version, overhauled the manuscript and pestered me with thousands of questions—
which was a good thing for the completeness of the book, and which has ultimately
made it easier for the reader to understand.

21

From Source Code to a Running
Installation

1 Ch
ap

te
r

Installation

The simplest method of installation is for you to install the Nagios packages that
are supplied with the distribution you are using. However, Nagios 2.0 is relatively
new, so you may have to make do with an older Nagios version using this method.
Configuring this is quite different from the version 2.0 described here, which is why
it is recommended that you take things into your own hands and compile Nagios
yourself if the distributor does not provide any Nagios 2.0 packages.

If you are compiling Nagios yourself, you also have an influence on directory struc-
tures and several other parameters. A Nagios system compiled in this way also pro-
vides an almost complete main configuration file, in which, initially, nothing has to
be changed. But it should be mentioned here that compiling Nagios yourself might
involve a laborious search for the necessary development packages, depending on
what is already installed on the computer.

25

1 Installation

For compiling Nagios itself you require gcc, make, autoconf and automake. Re-
quired libraries are libgd1 and openssl2. The development packages for these must
also be installed (depending on the distribution, with either the ending -dev or
-devel): libssl-dev, libgd-dev, libc6-dev.

For the plugins it is recommended that you also install the following packages at
the same time: ntpdate,3 snmp,4 smbclient,5 libldap2, and libldap2-dev,6 as well
as the client and developer packages for the database to be used (e.g., postgresql-
client and postgresql-dev).

1.1 Compiling the Source Code

The Nagios source code itself is available for download on the project page, http://
www.nagios.org/. The following installation description uses a beta version that
has been released,7 and that is provided by the developers as a tarball:

linux:˜ # mkdir /usr/local/src

linux:˜ # cd /usr/local/src

linux:local/src # tar xvzf Path/to/nagios-2.0b3.tar.gz

The three commands unpack the source code into the directory created for this
purpose, /usr/local/src. When this is done, a subdirectory with the name nagios-
2.0b3 is also created. Before the actual compilation and installation, the groups
required for operation, namely nagios and nagcmd, are set up with groupadd, and
the user nagios, who is assigned to these groups and with whose permissions the
Nagios server runs is set up with useradd:

linux:˜ # groupadd -g 9000 nagios

linux:˜ # groupadd -g 9001 nagcmd

linux:˜ # useradd -u 9000 -g nagios -G nagcmd -d /usr/local/nagios \
-c "Nagios Admin" nagios

Instead of the user (9000) and group IDs (9000 or 9001) used here, any other
(available) ID may be used. The primary group nagios of the user nagios should
remain reserved exclusively for this user.

1 http://www.boutell.com/gd/
2 http://www.openssl.org/ Depending on the distribution, the required RPM and Debian pack-

ages are sometimes named differently. Here you need to refer to the search help in the
corresponding distribution. For Debian, the homepage will be of help. If a configure
instruction complains, for example, of a missing gd.h file, you can search specifically at
http://www.debian.org/distrib/packages for the contents of packages. The search will then
come up with all packages that contain the file gd.h.

3 http://ntp.isc.org/bin/view/Main/SoftwareDownloads
4 http://net-snmp.sourceforge.net/
5 http://samba.org/samba/
6 http://www.openldap.org/
7 The final version of Nagios 2.0 was not yet available at the time of going to press.

26

1.1 Compiling the Source Code

The CGI scripts are run by Nagios under the user ID of the user with whose per-
missions the Apache Web server runs. In order that this user can access certain
protected areas of Nagios, an additional group is required, the so-called Nagios
Command Group nagcmd: only the Web user and the user nagios should belong
to this group. The Web user can be determined from the Apache configuration file:

linux:˜ # grep "ˆUser" /etc/httpd/httpd.conf

User www-data

linux:˜ # usermod -G nagcmd www-data

In the example, the Web user is called www-data. The command usermod (this
changes the data for an existing user account) also includes the Web user in the
nagcmd group thanks to the -G option, by manipulating the corresponding entry
in the file /etc/group.

The Apache configuration file is not always located in the directory /etc/httpd/;
depending on the distribution on the Apache version used, this could also be
called /etc/apache or /etc/apache2; the configuration file itself is sometimes called
apache.conf or apache2.conf.

In addition, the directory specified as the home directory of the user nagios, /usr/
local/nagios, the configuration directory /etc/nagios and the directory /var/nagios,
which records variable data while Nagios is running, are set up manually and are
assigned to the user nagios and to the group of the same name:

linux:˜ # mkdir /usr/local/nagios /etc/nagios /var/nagios

linux:˜ # chown nagios.nagios /usr/local/nagios /etc/nagios /var/nagios

You now change to the directory with the Nagios sources to prepare these for
compilation:

linux:˜ # cd /usr/local/src/nagios-2.0b3

linux:src/nagios-2.0b3 # ./configure \
--sysconfdir=/etc/nagios \
--localstatedir=/var/nagios \
--with-command-group=nagcmd

For the configure command, parameters are specified that differ from the standard;
Table 1.1 lists the most important of these. The values chosen here ensure that
the installation routine selects the directories used here in the book and that all
parameters are correctly set when the main configuration file is generated. This
considerably simplifies the fine-tuning of the configuration.

If --prefix is not specified, Nagios installs itself in the directory /usr/local/nagios.
We recommend that you stick to this directory.8

8 In accordance with the Filesystem Hierarchy Standard FHS, version 2.3, or local programs
loaded by the administrator should be installed in /usr/local.

27

1 Installation

Table 1.1:

Installation

parameters for

Nagios

Property Value configure Option

Root directory /usr/local/nagios --prefix
Configuration directory /etc/nagios --sysconfdir
Directory for variable data /var/nagios --localstatedir
Nagios user (UserID) nagios (9000) --with-nagios-user
Nagios group (GroupID) nagios (9000) --with-nagios-group
Nagios Command Group
(GroupID)

nagcmd (9001) --with-command-group

The system normally stores its configuration files in the directory etc beneath its
root directory. In general it is better to store these in the /etc hierarchy, however.
Here we use /etc/nagios.9

Variable data such as the log file and the status file are by default stored by Nagios
in the directory /usr/local/nagios/var. This is in the /usr hierarchy, which should
only contain programs and other read-only files, not writable ones. In order to
ensure that this is the case, we use /var/nagios.10

Irrespective of these changes, in most cases configure does not run through fault-
lessly the very first time, since one package or another is missing. For required
libraries such as libgd, Nagios almost always demands the relevant developer pack-
age with the header files (here, libgd-dev or libgd-devel). Depending on the dis-
tribution, their names end in -devel or -dev.

After all the tests have been run through, configure presents a summary of all the
important configuration parameters:

*** Configuration summary for nagios 2.0b3 04-03-2005 ***:

General Options:

Nagios executable: nagios

Nagios user/group: nagios,nagios

Command user/group: nagios,nagcmd

Embedded Perl: no

Event Broker: yes

Install $prefix: /usr/local/nagios

Lock file: /var/nagios/nagios.lock

Init directory: /etc/init.d

Host OS: linux-gnu

9 This is not entirely compatible with FHS 2.3, which would prefer to have the configuration files
in /etc/local/nagios.

10 This also does not quite match the requirements of the FHS 2.3. But since Nagios makes no
differentiation between spool, cache, and status information, an FHS-true reproduction is not
possible to achieve in a simple manner.

28

1.1 Compiling the Source Code

Web Interface Options:

HTML URL: http://localhost/nagios/

CGI URL: http://localhost/nagios/cgi-bin/

Traceroute (used by WAP): /usr/sbin/traceroute

If there was a yes after the item Embedded Perl, this would mean that Perl plugins
are not continually reloaded, but are kept in the memory. This saves time when run-
ning Perl scripts.11

that can be loaded as additional modules while the system is running.12

If you are satisfied with the result, make starts the actual compilation and then
installs the software:

linux:src/nagios-2.0b3 # make all

linux:src/nagios-2.0b3 # make install

linux:src/nagios-2.0b3 # make install-init

linux:src/nagios-2.0b3 # make install-commandmode

linux:src/nagios-2.0b3 # make install-config

make all compiles all the relevant programs, which are then copied to the ap-
propriate directories, together with CGI scripts and documentation, by make in-
stall. Apart from /etc/nagios and /var/nagios, further directories are created under
/usr/local/nagios, which are summarized in table 1.2.

Table 1.2:

Nagios directories

under

/usr/local/nagios

Directory Contents

./bin Executable Nagios main program

./libexec Plugins

./sbin CGI scripts

./share Documentation, HTML files for the Web interface

make install-init installs a suitable init script for the system start. Here make
automatically tries to detect the correct path, which for most Linux distributions
is /etc/init.d. Depending on your system, this may also go wrong, which is why
you should check it. In order for Nagios to start automatically when the system is
booted, the following symbolic links are created in the /etc/rc?.d directories:

linux:˜ # ln -s /etc/init.d/nagios /etc/init.d/rc2.d/S99nagios

linux:˜ # ln -s /etc/init.d/nagios /etc/init.d/rc2.d/K99nagios

11 At the time of going to press, however, the Embedded Perl interface had problems with memory
usage: Nagios occupied more and more main memory until the machine came to a standstill.

12 At the time of going to press there were not yet any external extensions, which is why the Event
Broker is currently only of interest to developers.

29

The Event Broker in turn provides an interface for extensions

1 Installation

Where necessary, this step is repeated for rc3.d and rc5.d. Finally make install-
commandmode generates the directory that is required for later usage of the
command file mechanism (see section 13.1 from page 240) onwards. This step
is optional, depending on the intended use, but since it is easy to forget later on, it
is better to take precautions now. The final make install-config creates the exam-
ple configuration, which will be used in the next chapter.

1.2 Installing and Testing Plugins

What is now still missing are the plugins. They must be downloaded separately from
http://www.nagios.org/ and installed. As independent programs, they are subject
to a different versioning system than Nagios. The current version at the time of
going to press was version 1.4, but you can, for example, also use plugins from
version 1.3.1 if you don’t mind doing without the most recent features. Although
the plugins are distributed in a common source distribution, they are independent
of one another, so that you can replace one version of an individual plugin with
another one at any time, or with one you have written yourself.

1.2.1 Installation

The installation of the plugin sources takes place, like the Nagios ones, in the di-
rectory /usr/local:

linux:˜ # cd /usr/local/src

linux:local/src # tar xvzf path /to/nagios-plugins-1.4.tar.gz

linux:src/nagios-plugins-1.4 # ./configure \
--sysconfdir=/etc/nagios \
--localstatedir=/var/nagios

When running the configure command you should specify the same deviating val-
ues as for the server, which here are the configuration directory (/etc/nagios) and
the directory for the data saved by Nagios (/var/nagios). Since the Nagios plugins
are not maintained by the same people as Nagios itself, you should always check in
advance, with ./configure --help, whether the configure options for Nagios and
the plugins really match or deviate from one another.

It is possible that a series of WARNINGs may appear in the output of the configure
command, something like this:

...

configure: WARNING: Skipping radius plugin

configure: WARNING: install radius libs to compile this plugin (see

REQUIREMENTS).

30

1.2 Installing and Testing Plugins

...

configure: WARNING: Tried /usr/bin/perl - install Net::SNMP perl

module if you want to use the perl snmp plugins

...

If you are not using Radius, you need have no qualms in ignoring the corresponding
error messages. Otherwise you should install the missing packages and repeat the
configure procedure. The quite frequently required SNMP functionality is missing
a Perl module in the example. This is installed either in the form of the distribution
package or online via the CPAN archive:13

linux:˜ # perl -MCPAN -e ’install Net::SNMP’

If you are running the CPAN procedure for the first time, it will guide you inter-
actively through a self-explanatory setup, and you can answer nearly all of the
questions with the default option.

Running make in the directory nagios-plugins-1.4 will compile all plugins. After-
wards you have the opportunity to perform tests, with make check. Because these
have not been particularly carefully programmed, you will often see many error
messages that have more to do with the test itself than with the plugin. if you still
want to try it, then the Cache Perl module must also be installed. Irrespective of
make check, the most important plugins should be tested manually anyway after
the installation.

make install finally anchors the plugins in the subdirectory libexec (which in our
case is /usr/local/nagios/libexec), but not all of them: the source directory contrib
contains a number of plugins that make install does not install automatically.

Most plugins in this directory are shell or Perl scripts. Where needed, these are sim-
ply copied to the plugin directory /usr/local/nagios/libexec. The few C programs
there are must first be compiled, which in some cases may be no laughing mat-
ter, since a corresponding makefile, and often even a description of the required
libraries, is missing. If a simple make is not sufficient, as in the case of

linux:nagios-plugins-1.4/contrib # make check_cluster214

cc check_cluster2.c -o check_cluster2

then it is best to look for help in the mailing list nagiosplug-help.15 The compiled
program must also be copied to the plugin directory.

13 The Comprehensive Perl Archive Network at http://www.cpan.org/.
14 With check_cluster, hosts and services of a cluster can be monitored. Here you usually want

to be notified if all nodes or redundant services provided fail at the same time. If one specific
service fails on the other hand, this is not critical, as long as other hosts in the cluster provide
this service.

15 http://lists.sourceforge.net/lists/listinfo/nagiosplug-help

31

1 Installation

1.2.2 Plugin test

Because plugins are independent programs, they can already be used manually for
test purposes right now—before the installation of Nagios has been completed. In
any case you should check the check_icmp plugin, which plays an essential role: it
checks whether another computer can be reached via ping and is the only plugin
to be used both as a service check and a host check. If it is not working correctly,
Nagios will also not work correctly, since the system cannot perform any service
checks as long as it categorizes a host as “down”. Section 6.2 from 88 describes
check_icmp in detail, which is why there is only short introduction here describing
its manual use.

In order for the plugin to function correctly it must, like the /bin/ping program, be
run as the user root. This is done by providing it with the SUID bit:

linux:˜ # chown root.nagios /usr/local/nagios/libexec/check_icmp

linux:˜ # chmod 4711 /usr/local/nagios/libexec/check_icmp

linux:˜ # ls -l /usr/local/nagios/libexec/check_icmp

-rwsr-x--x 1 root nagios 61326 2005-02-08 19:49 check_icmp

Brief instructions for the plugin are given with the -h option:16

nagios@linux:˜$ /usr/local/nagios/libexec/check_icmp -h

Usage: check_icmp [options] [-H] host1 host2 hostn

Where options are any combination of:

* -H | --host specify a target

* -w | --warn warning threshold (currently 200.000ms,40%)

* -c | --crit critical threshold (currently 500.000ms,80%)

* -n | --packets number of packets to send (currently 5)

* -i | --interval max packet interval (currently 80.000ms)

* -I | --hostint max target interval (currently 0.000ms)

* -l | --ttl TTL on outgoing packets (currently 0)

* -t | --timeout timeout value (seconds, currently 10)

* -b | --bytes icmp packet size (currenly ignored)

-v | --verbose verbosity++

-h | --help this cruft

The -H switch is optional. Naming a host (or several) to check is not.

For a simple test it is sufficient to specify an IP address (it is immaterial whether
you prefix the -H flag or not):

user@linux:˜$ cd /usr/local/nagios/libexec

user@linux:nagios/libexec$./check_icmp -H 192.168.1.13

OK - 192.168.1.13: rta 0.261ms, lost 0%|rta=0.261ms;200.000;500.000;0;

pl=0%;40;80;;

16 The listed options are explained in detail in Section 6.2 from page 88.

32

1.3 Configuration of the Web Interface

The output appears in a single line, which has been line-wrapped here for the
printed version: with zero percent package loss (lost 0%), the test has been passed.
Nagios uses only the first 300 bytes of the output line. If the plugin provides more
information, this is cut off.

If you would like to test other plugins, we refer you to Chapters 6 and 7, which
describe the most important plugins in detail. All (reasonably well-programmed)
plugins provide somewhat more detailed instructions with the --help option.

1.3 Configuration of the Web Interface

In order for the Web front end of Nagios to function, the Web server must know
the CGI directory and the basis Web directory. The following description, with a
slight deviation, applies to both Apache 1.3 and Apache 2.0.

1.3.1 Setting Up Apache

As long as you have not added a different address for the front end, through
the configure script with -with-cgiurl, it can be addressed under /nagios/cgi-bin.
Since the actual CGI scripts are located in the directory /usr/local/nagios/sbin, a
corresponding script alias is set in the Apache configuration:

ScriptAlias /nagios/cgi-bin /usr/local/nagios/sbin

<Directory "/usr/local/nagios/sbin">

AllowOverride AuthConfig

Options ExecCGI

Remove the comment sign (#) from the following lines for Apache 2.0:

SetHandler cgi-script

Order allow,deny

Allow from 192.168.0.0/24

</Directory>

The directive ScriptAlias ensures that Apache accesses the Nagios CGI directory
when calling an URL such as http://nagios-server/nagios/cgi-bin, irrespective of
where the Apache CGI directories may be located. Options ExcecCGI ensures that
the Web server accepts all the scripts located there as CGI. Apache 2.0 in addition
demands the directive SetHandler. The directives Order and Allow ensure that
only clients from the network 192.168.0.0/24 (/24 stands for the subnet mask
255.255.255.0) may obtain access to the specified directory.

To be able to address the Nagios document directory /usr/local/nagios/share under
http://nagios-server/nagios (independently of where the Apache DocumentRoot
is located), the following is added:

33

1 Installation

Alias /nagios /usr/local/nagios/share

<Directory "/usr/local/nagios/share">

Options None

AllowOverride AuthConfig

Order allow,deny

Allow from 192.168.0.0/24

</Directory>

Here the directives Order and Allow also allow access only from the specified net-
work.

It is recommended that you write the above details in your own configuration file,
called nagios.conf, so that this configuration is not lost during an Apache update,
and place it in the Apache directory for individual configurations. This is usually
to be found under /etc/apache/conf.d, but depending on the distribution and the
Apache version, this could also be under /etc/httpd/conf.d or /etc/apache2/conf.d.
In any case the Apache configuration file must integrate this directory with the di-
rective Include. More recent SuSE distributions only accept files in the subdirectory
conf.d that end in .conf. The command

linux:˜ # /etc/init.d/apache reload

loads the new configuration. If everything has worked out correctly, the Nagios
main page appears in the Web browser under http://nagios-server/nagios.

1.3.2 User Authentication

In the state in which it is delivered, Nagios allows only authenticated users access
to the CGI directory. This means that users not “logged in” have no way to see
anything other than the home page and the documentation. They are blocked off
from access to other functions.

There is a good reason for this: apart from status queries and other display func-
tions, Nagios has the ability to send commands via the Web interface. The interface
for external commands is used for this purpose (Section 13.1, page 240). If this is
active, checks can be switched on and off via the Web browser, for example, and
Nagios can even be restarted. Only authorized users should be in a position to do
this.

The easiest way to implement a corresponding authentication is via a .htaccess file
in the CGI directory /usr/local/nagios/sbin.17 The document directory, on the other
hand, requires no special protection. In addition, the parameter use_authentication
in the CGI configuration file cgi.cfg18 of Nagios must be set to 1:

17 The access rule described here, via .htaccess in the CGI directory, adheres to the official Nagios
documentation. Those more familiar with Apache will have other configuration possibilities
available, of course.

18 More on this in Section 2.13 from page 57.

34

1.3 Configuration of the Web Interface

use_authentication=1

This is the default during installation. In the CGI directory /usr/local/nagios/sbin a
.htaccess file is created with the following contents:

AuthName "Nagios-Monitoring"

AuthType Basic

AuthUserFile /etc/nagios/htpasswd

require valid-user

AuthName is just a comment that the browser displays if the Web server requests
authentication. AuthType Basic stands for simple authentication, in which the
password is transmitted without encryption, as long as no SSL connection is used.
It is best to save the password file—here htpasswd—in the Nagios configuration
directory /etc/nagios. The final parameter, require valid-user, means that all au-
thenticated users have access (there are no restrictions for specific groups; only the
user-password pair must be valid).

In combination with its own modules and those of third parties, Apache allows a
series of other authentication methods. These include authentication via an LDAP
directory, via Pluggable Authentication Modules (PAM),19 or using SMB via a Win-
dows server. Here we refer you to the relevant literature and the highly detailed
documentation on the Apache home page at http://httpd.apache.org/.

The (basically freely selectable) name of the password file will be specified here
so that it displays what type of password file is involved. It is generated with
the htpasswd2 program included in Apache (in Apache 1.3 the program is called
htpasswd). Running

linux:/etc/nagios # htpasswd2 -c htpasswd nagios

generates a new password file with a password for the user nagios. Its format is
relatively simple:

nagios:7NlyfpdI2UZEs

Each line contains a user-password pair, separated by a colon.20 If you want to add
other users, you should ensure that you omit the -c (“create”) option. Otherwise
htpasswd(2) will recreate the file and delete the old contents:

linux:/etc/nagios # htpasswd2 htpasswd another user

19 The “Pluggable Authentication Modules” now control authentication in all Linux distributions,
so that you can also use existing user accounts here.

20 To be precise, the second position does not contain the password itself, but rather its hash
value.

35

1 Installation

The user name cannot be chosen freely but must match the name of a contact
person (see Section 2.7, page 50). Only the Web user (www-data in our example)
needs to be able to read the generated htpasswd file, and it should be protected
from access by anyone else:

linux:/etc/nagios # chown www-data htpasswd

linux:/etc/nagios # chmod 600 htpasswd

Even though configuration of the Web interface is now finished, at the moment
only the documentation is properly displayed: Nagios itself must first be corre-
spondingly adjusted—as described in detail in the following chapter– before it can
make usable monitoring data available in this way.

36

2 Ch
ap

te
r

Nagios Configuration

Although the Nagios configuration can become quite large, you only need to han-
dle a small part of this to get a system up and running. Luckily many parameters in
Nagios are already set to sensible default settings. So this chapter will be primar-
ily concerned with the most basic and frequently used parameters, which is quite
sufficient for an initial configuration.

Further details on the configuration are provided by the chapters on individual
Nagios features: in Chapter 6 about network plugins (page 85) there are many ex-
amples on the configuration of services. All parameters of the Nagios messaging
system are explained in detail in Chapter 12, page 215, and the parameters for con-
trolling the Web interface are described in Chapter 16 from page 273. In addition
to this, Nagios includes its own extensive documentation, once it is installed, in the
directory /usr/local/nagios/share/docs, which can also be reached from the Web
interface. This can always be recommended as a useful source for further informa-
tion, which is why each of the sections below refer to the corresponding location
in the original documentation.

37

2 Nagios Configuration

The installation routine in make install-config (see Section 1.1 on page 26) stores
examples of individual configuration files in the directory /etc/nagios. They all
end in -sample, so that a possible update will not overwrite the files needed for
productive operation.

All subsequent work should be carried out as the user nagios. If you are edit-
ing files as the superuser, you must ensure yourself that the contents of directory
/etc/nagios afterwards belong to the user nagios again. With the exception of the
file resource.cfg—this may contain passwords, which is why only the owner nagios
should have the read permission set—all other files may be readable for all.

2.1 The Main Configuration File nagios.cfg

The central configuration takes place in nagios.cfg. Instead of storing all configu-
ration options there, it makes links to other configuration files (with the exception
of the CGI configuration). The easiest method is first to copy the example file:

nagios@linux:/etc/nagios$ cp nagios.cfg-sample nagios.cfg

Those who compile and install Nagios themselves have the advantage that at first
they do not even need to adjust nagios.cfg, since all paths are already correctly
set.1 And that’s as much as you need to do. Nevertheless one small modification is
recommended, which helps to maintain a clear picture and considerably simplifies
configuration where larger networks are involved.

The parameter concerned is cfg_file, which integrates files with object definitions
(see Sections 2.2 through 2.10). The file nagios.cfg-sample, included in the pack-
age, contains the following entries:

nagios@linux:/etc/nagios$ fgrep cfg_file nagios.cfg

...

cfg_file=/etc/nagios/checkcommands.cfg

cfg_file=/etc/nagios/misccommands.cfg

cfg_file=/etc/nagios/contactgroups.cfg

cfg_file=/etc/nagios/contacts.cfg

cfg_file=/etc/nagios/dependencies.cfg

cfg_file=/etc/nagios/escalations.cfg

cfg_file=/etc/nagios/hostgroups.cfg

cfg_file=/etc/nagios/hosts.cfg

cfg_file=/etc/nagios/services.cfg

cfg_file=/etc/nagios/timeperiods.cfg

#cfg_file=/etc/nagios/hostextinfo.cfg

#cfg_file=/etc/nagios/serviceextinfo.cfg

...

1 If Nagios is from a distribution package, it is worth checking at least the path details. In a
well-maintained distribution these will also be matched to the Nagios directories used there.

38

2.1 The Main Configuration File nagios.cfg

As an alternative to cfg_file, you can also use the parameter cfg_dir: this requests
you to specify the name of a directory from which Nagios should integrate all con-
figuration files ending in .cfg (files with other extensions are simply ignored). This
also works recursively; Nagios thus evaluates all *.cfg files from all subdirectories.
With the parameter cfg_dir you therefore only need to specify a signal directory,
instead of calling all configuration files, with cfg_file, individually. The only re-
striction: these must be configuration files that describe objects. The configuration
files cgi.cfg and resource.cfg are excluded from this, which is why, like the main
configuration file nagios.cfg, they remain in the main directory /etc/nagios.

For the object-specific configuration, it is best to create a directory called /etc/
nagios/mysite, then remove all cfg_file directives in nagios.cfg (or comment them
out with a # at the beginning of the line) and replace them with the following:

...

cfg_dir=/etc/nagios/mysite

...

The contents of the directory /etc/nagios will then look like this:

nagios@linux:/etc/nagios$ tree2

.

|-- nagios.cfg

|-- cgi.cfg

|-- resource.cfg

|-- htpasswd

|-- mysite

| |-- contactgroups.cfg

| |-- misccommands.cfg

| |-- contacts.cfg

| |-- timeperiods.cfg

| |-- checkcommands.cfg

| |-- hosts.cfg

| |-- services.cfg

| ‘-- hostgroups.cfg

|-- sample

| |-- ...

... ...

The main directory /etc/nagios contains only three configuration files and the pass-
word file for protected Web access. For the sake of clarity, the configuration exam-
ples *-sample should be moved to the directory sample.

In this book we will include all objects of a type in a file of its own, that is, all
host definitions in the file hosts.cfg, all services in services.cfg, and so on. But you
could just as well save each of the host definitions in a separate file for each host
and use a directory structure to reflect this:

2 http://mama.indstate.edu/users/ice/tree/

39

2 Nagios Configuration

...

|-- mysite

| |-- linux

| | |-- services

| | ‘-- hosts

| | |-- linux01.cfg

| | |-- linux02.cfg

| | ‘-- linux03.cfg

| |-- windows

| | |-- services

| | ‘-- hosts

| | |-- win03.cfg

| | ‘-- win09.cfg

| |-- router

| | |-- services

| | ‘-- hosts

| | |-- edge01.cfg

| | |-- edge02.cfg

| | ‘-- backbone.cfg

...

In doing this, only the top directory mysite needs to be integrated into nagios.cfg,
using cfg_dir. For the initial configuration, however, we will leave all the files in
the directory mysite.

The date specifications in Nagios appear by default in the American format MM-
DD-YYYY :

date_format=us

If you prefer something else, e. g. the European date format, it is recommended
that you change the parameter date_format in nagios.cfg right from the start.
The value iso8601 ensures that Nagios date specifications are displayed in the ISO
or DIN format YYYY-MM-DD HH:MM:SS. Table 2.1 lists the possible values for
date_format.

Table 2.1:

possible date format
Value Representation

us MM-DD-YYYY HH:MM:SS
euro DD-MM-YYYY HH:MM:SS
iso8601 YYYY -MM-DD HH:MM:SS
strict-iso8601 YYYY -MM-DDTHH:MM:SS

The other parameters in nagios.cfg are described in Appendix D.1 on page 424; in
the original documentation these can be found at http://localhost/nagios/docs/
configmain.html or /usr/local/nagios/share/docs/configmain.html.

40

2.2 Objects—an Overview

2.2 Objects—an Overview

A Nagios object describes a specific unit: a host, a service, a contact, but also the
groups to which it belongs. Even commands are defined as objects. This definition
has not come about by chance: Nagios is also able to inherit characteristics (Section
2.11 from page 54).

Object definitions follow the following pattern:

define object-type {
parameter value

parameter value

...

}

Nagios has the following values for the object-type:

host
The host object describes one of the network nodes that are to be monitored.
Nagios expects the IP address as a parameter here (or the Fully Qualified
Domain Name) and the command that should define whether the host is
alive (see Section 2.3 from page 44). The host definition is re-referenced in
the service definition.

hostgroup
Several hosts can be combined into a group (see Section 2.4 on page 46).
This simplifies configuration, since entire host groups instead of single hosts
can be specified when defining services (the service will then exist for each
member of the group). In addition, Nagios represents the hosts of a host
group together in a table in the Web front end, which also helps to increase
clarity.

service
The individual services to be monitored are defined as service objects (Chap-
ter 2.5 from page 47). A service never exists independently of a host. So it is
quite possible to have several services with the same name, as long as they
belong to different hosts. The following code,

define service {
name PING

host_name linux01

...

}
define service {

name PING

host_name linux03

}

41

2 Nagios Configuration

describes two services that both have the same service name but belong to
different hosts. So in the language of Nagios, a service is always a host-
service pair.

servicegroup
As it does with host groups, Nagios also combines several services, to repre-
sent these in the Web front end as a unit with its own table (see Section 2.6
on page 50). Service groups are not absolutely essential, but help to improve
clarity, and are also used in reporting.

contact
A person who is to be informed by Nagios of specific events (see Section 2.7
from page 50). Nagios also uses contact objects to show to a user via the
Web front end only those things for which the user is listed as a contact
person. In the basic setting users do not get to see hosts and services for
which they are not responsible.

contactgroup
Notification of events in hosts and services takes place via the contact group
(Section 2.8 from page 52). A direct link between the host/service and a
contact person is not possible.

timeperiod
Describes a time period within which Nagios should inform contact groups
(Section 2.10 from page 54). Outside such a time slot, the system will not
send any messages. The messaging chain can be fine-tuned via various time
periods, depending on the host/service and contact/contact groups. More
on this will be presented in Section 12.3 from page 217.

command
Nagios always calls external programs via command objects (Section 2.9
from page 53). Apart from plugins, messaging programs also include sending
e-mails or SMS messages.

servicedependency
This object type describes dependences between services. If, for example, an
application does not function without a database, a corresponding depen-
dency object will ensure that Nagios will represent the failed database as
the primary problem instead of just announcing the nonfunctioning of the
application (see Section 12.6 from page 234).

serviceescalation
Used to define proper escalation management: if a service is not available
after a specific time period, Nagios informs a further, or different circle of
people. This can also be configured on multiple levels, in any way you want
(see Section 12.5).

42

2.2 Objects—an Overview

hostdependency
Like servicedependency, but for hosts.

hostescalation
Like serviceescalation, but for hosts.

hostextinfo
“Extended Host Information” objects are optional and define a specific
graphic and/or URL, which Nagios additionally integrates into its graphic
output. The URL can refer to a Web page that provides additional informa-
tion on the host (see Section 16.4 from page 307).

serviceextinfo
Extended Service Information, like Extended Host Information.

Not all object types are absolutely essential; especially at the beginning, you can
easily do without the *dependency, *escalation, and *extinfo objects, as well as
the servicegroup. Chapter 12 looks at escalation and dependencies in detail. The
extended information objects are used to provide a “more colorful” graphical rep-
resentation, but they are not at all necessary for running Nagios. We refer here to
the original documentation.3

Notes on the object examples below

Although the following chapters describe individual object types in detail, only the
mandatory parameters are described there and those that are absolutely essential
for meaningful operation. Mandatory parameters here are always printed in bold
type. The first (comment) line in each example lists the file in which the recorded
object definition is to be stored.

When you first start using Nagios, it is recommended that you restrict yourself to a
minimal configuration with only one or two objects per object type, in order to keep
potential sources of error to a minimum and to obtain a running system as quickly
as possible. Afterwards extensions can be implemented very simply and quickly,
especially if you take on board the tips mentioned in Section 2.11 on templates
(page 54).

Time details in general refer to time units. A time unit consists of 60 seconds by
default. It can be set to a different value in the configuration file nagios.cfg, using
the parameter interval_length. You should really change this parameter only if
you know exactly what you are doing.

3 http://localhost/nagios/docs/xodtemplate.html#hostextinfo and #serviceextinfo; the file
can be found locally in /usr/local/nagios/share/docs/

43

2 Nagios Configuration

2.3 Defining the Machines to Be Monitored, with
host

The host object is the central command post on which all host and service checks
are based. It defines the machine to be monitored. The parameters printed in bold
must be specified in all cases:

-- /etc/nagios/mysite/hosts.cfg

define host{
host_name linux01

hostgroups linux-servers

alias Linux File Server

address 192.168.1.9

check_command check-host-alive

max_check_attempts 3

check_period 24x7

contact_groups localadmins

notification_interval 120

notification_period 24x7

notification_options d,u,r,f

parents router01

}

host_name
This parameter specifies the host name with which Nagios addresses the ma-
chine in services, host groups and other objects. Only the special characters
- and _ are allowed.

hostgroups
This parameter, new in version 2.x, allocates the host to a host group object,
which must already be defined (Section 2.4, page 46). A host group in the
Web interface combines several hosts into a group (see Figure on page 280).
The second possibility of assigning a host to a host group, compatible with
version 1.x, uses the members parameter in defining the host group itself.
The two methods can also be combined.

alias
This parameter contains a short description of the host, which Nagios dis-
plays at various locations as additional information. Ordinary text is allowed
here.

address
This specifies the IP address or the Fully Qualified Domain Name (FQDN)
of the computer. If it is possible (i.e., for static IP addresses), you should
use an IP address, since the resolution of a name to an IP address is always
dependent on DNS working, which is also not infallible.

44

2.3 Defining the Machines to Be Monitored, with host

check_command
This specifies the command with which Nagios checks, if necessary, to see
whether the host is reachable. The parameter is optional. If it is omitted,
Nagios will never carry out a host check! This can be useful for network
components that are frequently switched off (for example, print servers).

The command normally used for check_command is called check-host-
alive, which is already predefined in the supplied file, checkcommands.cfg
(see Section 2.9 on page 53). This makes use either of the plugin check_ping
or the more modern check_icmp. Both plugins check the reachability of the
host via the ICMP packets “ICMP Echo Request” and “Echo Reply”.

max_check_attempts
This parameter determines how often Nagios should try to reach the com-
puter if the first test has gone wrong. The value 3 in the example means that
the test is repeated up to three times if it returns anything other than “OK”
in the first test. As long as there are still repeat tests to be made, Nagios
refers to this as a soft state. If the final test has been made, the system
categorizes the state as hard. Nagios notifies the system administrator ex-
clusively of hard states and in the example sends messages only if the third
test also ends with an error or warning.

check_period
This specifies the time period in which the host should be monitored. Really,
only “round the clock” makes sense, that is, 24x7. A timeperiod object is
involved here, the definition of which is described in more detail in Section
2.10 on page 54. It only makes sense to use a specification other than 24x7
if you want to explicitly suppress the host check at certain times.

contact_groups
This specifies the receiver of messages which Nagios sends with respect to
the hosts defined here, that is localadmin. Section 2.8 explains this more
fully on page 52.

notification_interval
This specifies at what intervals Nagios should repeat notification of the con-
tinued existence of the state. 120 time units normally mean one message
every 120 minutes, provided the error state continues.

notification_period
This specifies at what time interval a message should be sent. A time period
different from 24x7 could certainly be useful here. It is important to under-
stand the difference here with check_period: if check_period excludes time
periods, Nagios cannot even determine whether there is an error or not. But
if the host is monitored round-the-clock and only the notification period
is restricted by the parameter notification_period, Nagios will certainly log

45

2 Nagios Configuration

errors and also display them in the Web front end and in log evaluations.
Outside the notification_period the system does not send any messages. A
more detailed description of the notification system is given in Section 12.3
from page 217.

notification_options
This parameter describes the states about which Nagios should provide noti-
fication when they occur. Nagios knows the following states for computers:

d down

u unreachable (host is not reachable because a network node between
Nagios and a host has failed and the actual state of the host cannot
be determined)

r recovery (OK state after an error)

f flapping (state changes very quickly; more on this in Appendix A from
page 401).

By specifying d,u, the system will send messages if the host is not on the
network or not reachable over the network, but not if it can be reached
again after an error state (recovery). If n (none) is used as the value, Nagios
will normally not give any notification.

The form in which Nagios sends out a message depends on how the contact
is defined. Irrespective of when you want to be notified, the Web interface
always shows the current state, even if Nagios does not send a message
because the time period does not match or the system is still repeating the
tests (the so-called soft state).

parents
This allows the physical topology of the network to be taken into account.
Here the router or the network component is given by which the host is
reachable if it is not in direct contact in the same network segment. This can
also be a switch between the Nagios server and the host. If Nagios does not
reach the host because all parents (separated by commas) are down, then
Nagios categorizes it as “unreachable”, but not as “down”.

Further information is provided by the online help under http://localhost/nagios/
docs/xodtemplate.html#host4 .

2.4 Grouping Computers Together with hostgroup

A host group contains one or more computers so that they can be represented in
the Web interface together (see Figure on page 280)—in addition, certain objects

4 can be found locally in /usr/local/nagios/share/docs/xodtemplate.html.

46

2.5 Defining Services to Be Monitored with service

(e.g., services) can be applied to an entire group of computers instead of having to
define them individually for each host.

The hostgroup_name parameter specifies a unique name for the group, alias ac-
cepts a short description. The members parameter lists all hosts names belonging
to the group, separated by commas:

-- /etc/nagios/mysite/hostgroups.cfg

define hostgroup{
hostgroup_name linux-servers

alias Linux Servers

members linux01,linux02

}

If you specify to which group they belong in the host definition for individual
member computers, with the parameter hostgroups (page 44), the members entry
may be omitted from version 2.0. This means that you no longer have two search
through all group definitions if you just want to delete a single host. The combined
use—of members in the hostgroup object and at the same time, of hostgroups in
the host object—is equally possible.

2.5 Defining Services to Be Monitored with service

A service in Nagios always consists of the combination of a host and a service
name. This combination must be unique. Service names, on the other hand, may
occur many times, as long as they are combined with different hosts.

The simplest service consists of a simple ping, which tests whether the relevant
host is reachable, and which registers the response time and any packet loss that
may occur:

-- /etc/nagios/mysite/services.cfg

define service{
host_name linux01

service_description PING

check_command check_ping!100.0,20%!500.0,60%

max_check_attempts 3

normal_check_interval 5

retry_check_interval 1

check_period 24x7

notification_interval 120

notification_period 24x7

notification_options w,u,c,r,f

contact_groups localadmins

}

47

2 Nagios Configuration

In contrast to a host check, which Nagios carries out only if it cannot reach any
other service of the host, a ping service is carried out at regular intervals. Problems
in the network can be detected relatively simply through response times and packet
loss rates. The host check is less suitable for this purpose.

host_name
This refers to the name defined in the host object. Nagios also obtains the
IP address of the computer via this. Instead of a single host name, you
can also enter a comma-separated list of multiple hosts. As an alternative
to host_name, it is also possible to use the parameter hostgroup_name to
specify an entire host group instead of individual hosts. The service is then
considered to be defined for each of the individual computers groups to-
gether in this way. Whether you make use of this optimization, or allocate
your own service definitions to each computer individually, makes no differ-
ence to Nagios.

service_description
This parameter defines the actual name of the service. Spaces, colons, and
dashes may be included in the name. Nagios always addresses a service as
a combination of host name (here: linux01) and service description (PING).
This must be unique.

check_command
This defines the command with which Nagios tests the service for function-
ality. Arguments are passed on to the actual command, check_ping, sep-
arated by exclamation marks. The definition of the check_ping command,
predefined in the example files, is explained in Section 2.9 on page 53.

In the example, the values for the warning limit (100 ms, 20%) and for the
CRITICAL status (500 ms, 60%) are determined. You could compare this to a
traffic light: the state OK (green) occurs if the response time remains under
the warning limit of 100 milliseconds, and if none or less than 20 percent of
packets have been lost. The WARNING state (yellow) occurs if the packet loss
or response time lies above the defined warning limit, but still beneath the
critical limit. Above the critical limit, Nagios issues a CRITICAL state (red). The
return value of the plugin is described at the beginning of Chapter 6 (page
6), the underlying plugin check_icmp is introduced in detail in Section 6.2
from page 88.

max_check_attempts
This specifies how often Nagios should repeat a test in order to verify and
definitively accept an error state which has been discovered (or also the
recovered functionality), that is, to recognize it as a hard state In the tran-
sitional phase (for example from OK to CRITICAL) we speak of a soft state.
Basic distinctions between soft and hard are only made by the Nagios no-
tification system, which is why the two states are described in more detail

48

2.5 Defining Services to Be Monitored with service

in the context of this (Chapter 12 from page 215). The difference has no
influence in the representation in the Web interface.

normal_check_interval
This specifies at what interval Nagios should test the service when the sy-
stem is in a stable condition—this can equally be an OK or an error state. In
the example this is five time units, which is normally five minutes.

retry_check_interval
This describes the time interval between two tests when the state is in the
process of changing (for example, from OK to WARNING), that is, when there
is a soft state

As soon as Nagios has performed the number of tests specified in max_check
_attempts, it checks the service again at intervals of normal_check_interval.

check_period
This describes the time period in which the service is to be monitored. The
entry represents a timeperiod object, the definition of which is described in
more detail in Section 2.10 from page 54. Here you should enter 24x7 for
“round the clock” unless you want to explicitly stop the test from running at
specific times (perhaps because of a scheduled maintenance slot). If only the
notification is to be prevented at specific time, it is better to use the option
notification_period or other filters of the Nagios notification system (see
Section 12 from page 215).

notification_interval
This determines at what regular intervals Nagios repeats reports on error
states. In the example, the system does this every 120 time units (normally
minutes), as long as the error state continues. A value of 0 causes Nagios to
announce the current state only once.

notification_period
This describes the time period within which a notification should take place.
This again involves a timeperiod object (see Section 2.10). Here in the ex-
ample, 24x7 is used, so notification is sent round the clock. A more detailed
discussion of the notification_period parameter can be found in Section
12.3 from page 217.

notification_options
This determines which error states Nagios should report. Possible values
which can be used here are the five states already described for host objects,
c (critical), w (warning), u (unknown), r (recovered) and f (flapping). speci-
fying c,r only informs the system is a service is in a CRITICAL state and if it
subsequently recovers (RECOVERY).

49

2 Nagios Configuration

If you use n (none) as the value, Nagios will normally not send any notifica-
tion. The Web interface nevertheless shows the current states.

contact_groups
Finally, this parameter defines the recipient group whose members should re-
ceive the notifications. Several groups can be entered as a comma-separated
list.

Further information can be found in the online help at http://localhost/nagios/
docs/xodtemplate.html#service.5

2.6 Grouping Services Together with servicegroup

Service groups, like host groups, combine several services into a group, so that
they can be represented together in the Web front end. This increases clarity and
simplifies certain evaluations, but it is optional, and is not recommended at the
beginning, because of the more simple configuration.

-- /etc/nagios/mysite/servicegroups.cfg

define servicegroup{
servicegroup_name all-ping

alias All Pings

members linux01,PING,linux02,PING

}

servicegroup_name and alias have the same meanings as for the host group. It
should be noted that the syntax is the same as for the members entry: since a
service in Nagios always consists of the combination of host and service names,
both must always be listed in pairs. The computer comes first, and then the service:

members host1,service1,host2,service2, ...

2.7 Defining Addressees for Error Messages:
contact

A contact is basically a person to whom a message addressed via a contact group
is sent:

5 The corresponding file is located after installation in the directory /usr/local/nagios/share/docs/

50

2.7 Defining Addressees for Error Messages: contact

-- /etc/nagios/nagios/mysite/contacts.cfg

define contact{
contact_name nagios

alias Nagios Admin

host_notification_period 24x7

service_notification_period 24x7

service_notification_options w,u,c,r

host_notification_options d,u,r

service_notification_commands notify-by-email

host_notification_commands host-notify-by-email

email nagios-admin@localhost

}

The contact also plays a role during authentication: a user who logs in at the Web
front end only gets to see the hosts and services for which that user is entered
as the contact. The user for logging in to the Web interface must therefore be
identical with the value of contact_name specified here. The first time it is used,
the user nagios is sufficient.

contact_name
This parameter defines the username. It must match the corresponding user-
name in the password file htpasswd.

alias
This parameter describes the contact briefly. Spaces are allowed here.

host_notification_period
This defines the time period during which messages on the reachability of
a computer can be sent. Section 12.3 (page 217) shows how the time pe-
riod details can be sensibly combined in the different object types. At the
beginning, the value 24x7 (that is: always) is certainly not a bad option.

service_notification_period
This defines the time period in which Nagios sends notifications to the rele-
vant user service. The entry takes effect as a filter: the generated message is
simply discarded here if it is sent outside the specified time period. If no fur-
ther message follows, the contact remains uninformed. You must therefore
think about combining individual time periods in various different defini-
tions. Dependencies are described extensively in Section 12.3.

host_notification_options
This defines what types of host messages the user should receive. The same
options are used here as for the host parameter notification_options (page
46).

51

2 Nagios Configuration

service_notification_options
This parameter describes what types of service messages are received by the
contact. The same five values are involved as for the notification_options
parameter for service and host objects.

service_notification_commands
This parameter defines which commands (one or more) take charge of no-
tification. They must be defined as the command object type (see Section
2.9); basically any external programs can be integrated.

host_notification_commands
This parameter specifies, like the service_notification_commands, which
commands are to be carried out to send the notification, although here it
concerns the reachability of computers.

email
This specifies one or more e-mail addresses (separated by commas) to which
a message should be sent. The notification command can evaluate this value
(one example of this is the command notify-by-email6).

Further information can be found in the online help at http://localhost/nagios/
docs/xodtemplate.html#contact.

2.8 The Message Recipient: contactgroup

The contactgroup serves as the interface between the notification system and the
individual contacts. Nagios never addresses individual contacts directly in various
object definitions, but always goes through the contact group.

Here Nagios also expects a name (contactgroup_name) and a comment (alias),
which reveals to visitors to the web site what the purpose of the group is. For
members (members) of the group, you can enter an individual contact or a comma-
separated list of several contacts:

-- /etc/nagios/mysite/contactgroups.cfg

define contactgroup{
contactgroup_name localadmins

alias Local Site Administrators

members nagios

}

6 see table 12.1 on page 226

52

2.9 When Nagios Needs to Do Something: the command Object

2.9 When Nagios Needs to Do Something: the
command Object

Everything that Nagios does is defined in command objects. In the example file
supplied, checkcommands.cfg-sample defines a broad range of commands which
only need to be included. To do this, you just copy file to the subdirectory mysite:

nagios@linux:/etc/nagios$ cp sample/checkcommands.cfg-sample \
mysite/checkcommands.cfg

The already existing command check_ping illustrates the definition of this object
type:

-- /etc/nagios/mysite/checkcommands.cfg

...

define command{
command_name check_ping

command_line $USER1$/check_icmp -H $HOSTADDRESS$ -w $ARG1$ \
-c $ARG2$ -p 5

}
...

check_ping is the name by which the command will later be called when defining
a service. command_line describes the command to be executed. Not only the
old plugin check_ping is used here, but also the more efficient check_icmp. The
differences between the two are explained in more detail in Section 6.2 from page
88, but they use the same parameters to a large extent.

The identifiers used here, surrounded by dollar signs, are macros. Nagios recognizes
three different types of macros: $USERx$ macros (x may take on values between
1 and 32) define the file resource.cfg. The macro $USER1$, which contains the
path to the plugin directory, belongs to this.

The second group of macros are arguments which can be passed on when a com-
mand is called. These include $ARG1$ and $ARG2$.

The third group defined by Nagios includes the macro $HOSTADDRESS$, which
references the IP address of the host in the host definition (that is, the parameter
address). This type of macro is documented in the online help at http://localhost/
nagios/docs/macros.html.

If you call the service defined on page 47, linux01,PING as a check_command

check_ping!100.0,20%!500.0,60%

then 100.0,20% will appear in $ARG1$, and 500.0,60% in $ARG2$. To separate
the command and the arguments to be passed on, the exclamation mark is used.

53

2 Nagios Configuration

In theory, any programs at all can be started via the command_line, but Nagios
expects a certain type of behavior here, particularly where the return value is con-
cerned. For this reason, only Nagios plugins should be used (see Chapter 6 up to
9).

2.10 Defining a Time Period with timeperiod

timeperiod objects describe time periods in which Nagios generates and/or sends
notifications. The included example files minimal.cfg-sample and bigger.cfg-
sample contain a number of definitions that can simply be copied to your own
timeperiods.cfg file.

In this, the definition of 24x7 is stated as “Sundays to Saturdays, from 0 to 24 hours
in each case”:

-- /etc/nagios/mysite/timeperiods.cfg

define timeperiod{
timeperiod_name 24x7

alias 24 Hours A Day, 7 Days A Week

sunday 00:00-24:00

monday 00:00-24:00

tuesday 00:00-24:00

wednesday 00:00-24:00

thursday 00:00-24:00

friday 00:00-24:00

saturday 00:00-24:00

}

The times of day on individual weekdays can also be “cobbled together” from time
periods, separated by a comma:

define timeperiod{
...

monday 00:00-09:00,12:00-13:00,17:00-24:00

...

}

if a day specification is omitted completely, the defined time period will not include
this day in its entirety.

2.11 Templates

Nagios categorizes definitions as objects for a very good reason: their features
can namely be inherited by other objects—a feature that can save a lot of time

54

2.11 Templates

otherwise spent typing. You can define a so-called template and pass this on to
other objects as a basis from which you only need to describe those details that are
different.

This is best illustrated by an example (the parameters that are required for the use
of templates are printed in bold):

-- /etc/nagios/mysite/hosts.cfg

define host{
name Generic-Host

register 0

check_command check-host-alive

max_check_attempts 3

check_period 24x7

contact_groups localadmins

notification_interval 120

notification_period 24x7

notification_options d,u,r,f

}

With name, the template is first given a name so that it can be referenced later on.
The following entry, register 0, prevents Nagios from trying to treat this template
as a real host. In the example, the entries for the genuine host object are not
sufficient; consequently Nagios would break off when reading the configuration
file, with the error message that parameters are missing that are obligatory for
such a definition, for example:

Error: Host name is NULL

All the other parameters involve settings that are to apply to all definitions depen-
dent on Generic-Host.

In the actual host definition—in the following example for linux03 und linux04—
the parameter use references the template and thus takes over the preset values:

-- /etc/nagios/mysite/hosts.cfg

define host{
host_name linux03

use Generic-Host

alias Linux File Server

address 192.168.0.1

}

define host{
host_name linux04

use Generic-Host

alias Linux Print Server

address 192.168.0.2

}

55

2 Nagios Configuration

In this way you only need to complete those entries that vary anyway between the
two hosts.

But parameters may also appear in host definitions that have already been defined
by the template. In this case the definition at the host has priority, it overwrites
the value from the template.

Templates created in this way can generally be used for all object types. Further in-
formation on their use can be found in the online help at http://localhost/nagios/
docs/templaterecursion.html.7

2.12 Configuration Aids for Those Too Lazy to
Type

2.12.1 Defining services for several computers

You can simplify things a lot in the service definition by defining a service for
several hosts, or even host groups, at the same time:

-- /etc/nagios/mysite/services.cfg

define service{
host_name linux01,linux02,linux04,...

service_description PING

...

}

Specifying several hosts, separated by commas, ensures that Nagios defines multi-
ple services in parallel. You can go one step further by specifying the ’*’ character
instead of individual computer aliases. This will assign this service to all hosts.

A third possibility is an allocation in parallel via host groups:

-- /etc/nagios/mysite/services.cfg

define service{
hostgroup_name linux-servers,windows-servers

service_description PING

...

}

In this case the parameter hostgroup_name is used instead of the host_name
parameter.

7 can be found locally in /usr/local/nagios/share/docs/templaterecursion.html.

56

2.13 CGI Configuration in cgi.cfg

2.12.2 One host group for all computers

The quickest way to describe a host group containing all defined computers is with
the wild card ’*’:

-- /etc/nagios/mysite/hostgroups.cfg

define hostgroup{
hostgroup_name all-hosts

members *

...

}

2.12.3 Other configuration aids

In practice, the definition of services covering multiple hosts, described on page
56, is by far the most important. But there are other configuration aids based on
the escalation and dependency objects, introduced on page 224 (see Sections 12.5
and 12.6). There you can also use hostgroup_name instead of host_name (a list
of host groups) or servicegroup_name instead of service_description. In addition
you may set the value * for host_name and service_description, which covers all
hosts or services.

2.13 CGI Configuration in cgi.cfg

In order for the Web front end to work correctly, Nagios needs the configuration
file cgi.cfg. The example included, called cgi.cfg-sample, can initially be taken over
one-to-one, since the paths contained in it were set correctly during installation:

nagios@linux:/etc/nagios$ cp sample/cgi.cfg-sample ./cgi.cfg

Important: the file cgi.cfg should be located in the same directory as nagios.cfg,
because the CGI programs have been compiled in this path permanently. If cgi.cfg
is located in a different directory, the Web server must also be given an environ-
ment variable with the correct path, called NAGIOS_CGI_CONFIG. How this is set
in the case of Apache is described in the corresponding online documentation at
http://httpd.apache.org/docs-2.0/env.html.

Out of the box, only a few parameters are enabled in the CGI configuration file.
What these are is revealed by the following egrep command, which excludes com-
ments and empty lines:

nagios@linux:/etc/nagios$ egrep -v ’ˆ$|ˆ#’ cgi.cfg-sample | less

main_config_file=/etc/nagios/nagios.cfg

57

2 Nagios Configuration

physical_html_path=/usr/local/nagios/share

url_html_path=/nagios

show_context_help=0

use_authentication=1

default_statusmap_layout=5

default_statuswrl_layout=4

refresh_rate=90

main_config_file
This parameter specifies the main configuration file.

physical_html_path
This specifies the absolute path in the file tree to the directory in which the
HTML documents—including online documentation, images and CSS style-
sheets—are located.

url_html_path
This also describes the path to the Nagios HTML documents, but from the
perspective of the Web server, not of the operating system.

show_context_help
This option provides—as long as it is switched on (value 1)—a context-de-
pendent help if you move the mouse in the Web interface over individual
links or buttons.

use_authentication
This option should always be switched on (value 1). Nagios will then only
allow access to authenticated users. The authentication itself is configured
in a .htaccess file in the CGI directory (see Section 1.3 on page 33). If this file
is missing, and if use_authentication=1, then the CGI programs will refuse
to work.

default_statusmap_layout and default_statuswrl_layout
These layout parameters describe forms of representation in the graphical
illustration of network dependencies. Possible values are described in Ap-
pendix D.2 on page 444.

refresh_rate
This specifies the timespan in seconds after which the browser is instructed
to reload data from the Web server. In this way the display in the browser is
always up-to-date.

authorized_for_all_services and authorized_for_all_hosts
In order for a specific user to be able to see all computers and services in
the Web interface right from the beginning, without taking account of the
allocation of hosts and services to the correct contact group, you should also
activate the following two parameters in the file cgi.cfg:

58

2.14 The Resources File resource.cfg

authorized_for_all_services=nagios

authorized_for_all_hosts=nagios

The Web user (and contact) nagios is now able to see all hosts and all services
in the Web interface, even if he is not entered as the contact responsible for
all hosts or services.

A complete list of all parameters can be found in Appendix D.2 on page 443.

2.14 The Resources File resource.cfg

Nagios expects to find the definition of macros, concerning how they are used
to create command objects (Chapter 2.9 from page 53), in the resources file re-
source.cfg. This can also be copied from the example supplied:

nagios@linux:/etc/nagios$ cp sample/resource.cfg-sample./resource.cfg

The location where Nagios should search for this file is defined by the resource.cfg
parameter in the main configuration file nagios.cfg. it makes sense here to use the
same directory in which nagios.cfg is also located.

In its “factory settings”, resource.cfg defines only the $USER1$ macro, which con-
tains the path to the plugins:

$USER1$=/usr/local/nagios/libexec

In total, Nagios has provisions for 32 freely definable $USERx$ macros, where x
can be from 1 to 32. These can be very useful in combination with passwords, for
example: a password is defined via such a macro in the file resource.cfg, which
may be read only by the user nagios. The defined macro is used in the actual
service definitions, thus hiding the password from view of curious onlookers.

59

3 Ch
ap

te
r

Startup

Once Nagios and the plugins are installed, and Apache is set up for the Web inter-
face, as well as the minimal configuration as described until now, operation of the
system can get under way. If you have not already done so, it is recommended that
you first spend a bit of time on the test for the check_icmp plugin, described in
Section 1.2 (page 30), to check the initial configuration.

3.1 Checking the Configuration

The nagios program, which normally runs as a daemon and continually collects
data, can also be used to test the configuration:

nagios@linux:˜$ /usr/local/nagios/bin/nagios -v /etc/nagios/nagios.cfg

[...]

Checking services...

61

3 Startup

Checked 1 services.

Checking hosts...

Warning: Host ’linux02’ has no services associated with it!

Checked 2 hosts.

Checking host groups...

Checked 1 host groups.

Checking service groups...

Checked 0 service groups.

Checking contacts...

Warning: Contact ’wob’ is not a member of any contact groups!

Checked 2 contacts.

Checking contact groups...

Checked 1 contact groups.

Checking service escalations...

Checked 0 service escalations.

Checking service dependencies...

Checked 0 service dependencies.

Checking host escalations...

Checked 0 host escalations.

Checking host dependencies...

Checked 0 host dependencies.

Checking commands...

Checked 22 commands.

Checking time periods...

Checked 4 time periods.

Checking extended host info definitions...

Checked 0 extended host info definitions.

Checking extended service info definitions...

Checked 0 extended service info definitions.

Checking for circular paths between hosts...

Checking for circular host and service dependencies...

Checking global event handlers...

Checking obsessive compulsive processor commands...

Checking misc settings...

Total Warnings: 2

Total Errors: 0

Things look okay - No serious problems were detected during the

pre-flight check

Although warnings displayed here can in principle be ignored, this is not always
what the inventor had in mind: perhaps you made a mistake in the configuration,
and Nagios is ignoring a specific object, which you would actually like to use.

The first warning in the example refers to a host called linux02, which has not been
allocated any services. Since Nagios works primarily with service checks, and uses
host checks only if it needs them, a computer should basically always be allocated
at least one service. Nagios issues a warning, as here, if no service at all has been
defined for a particular host.

62

3.2 Getting Monitoring Started

It is also recommended, however, to always define a “PING” service for every host,
although this is not absolutely essential. Even if the same plugin, check_icmp,
is used here as with the host check, this is not the same thing: the host check is
satisfied with a single response packet, after all, it only wants to find out if the host
“is alive”. As a service check, check_icmp registers packet run times and loss rates,
which can be used to draw conclusions, if necessary, concerning existing problems
with a network card.

The second warning refers to a contact named wob, who, although defined, is not
used, because he does not belong to any contact group.

In contrast to warnings, genuine errors must be eliminated, because Nagios will
usually not start if the parser finds an error, as in the following example:

Error: Could not find any host matching ’linux03’

Error: Could not expand hostgroups and/or hosts specified in service

(config file ’/etc/nagios/mysite/services.cfg’, starting on line 0)

***> One or more problems was encountered while processing the config

files...

Here the configuration mistakenly contains a host called linux03, for which there
is no definition. If you read through the error message carefully, you will quickly
realize that the error can be found in the file /etc/nagios/mysite/services.cfg.

In the definition of independencies (host and service dependencies, see Section
12.6 page 234) there is a fundamental risk that circular dependencies could be
specified by mistake. Because Nagios cannot automatically resolve such depen-
dencies, this is also checked before the start, and if necessary, an error is displayed.

When using the parents parameter, it is also possible that two hosts may inadver-
tently serve mutually as “parents”; Nagios also test this.

3.2 Getting Monitoring Started

3.2.1 Manual start

During the Nagios installation, the command

linux:src/nagios # make install-init

saves a startup script in the /etc/init.d directory. If the configuration test ran with-
out error, Nagios is first started manually with this script:

linux:˜ # /etc/init.d/nagios start

63

3 Startup

3.2.2 Automatic start

If all runs smoothly here—which can be checked by running the Web interface
(see Chapter 3.3)—you only need to ensure that the script is also started when the
system boots. Symbolic links exist in the directories /etc/init.d/rc[235].d for this
purpose:

linux:˜ # ln -s /etc/init.d/nagios /etc/init.d/rc2.d/S99nagios

linux:˜ # ln -s /etc/init.d/nagios /etc/init.d/rc2.d/K99nagios

Corresponding links are also set in the subdirectories responsible for runlevels 3
and 5 rc3.d and rc5.d.

3.2.3 Making configuration changes come into effect

If configuration changes are made, it is not required, and not even recommended,
that you restart Nagios each time. Instead, you just perform a reload:

linux:˜ # /etc/init.d/nagios reload

This causes Nagios to reread the configuration, end tests for hosts and services that
no longer exist, and integrate new computers and services into the test. However,
with each reload there is a renewed scheduling of checks, meaning that Nagios
plans to carry out all tests afresh.

To prevent all tests from being started simultaneously at bootup, Nagios performs
a so-called spreading. Here the server spreads the start times of the tests over a
configurable period.1 For a large number of services, it can therefore take a while
before Nagios continues the test for a specific service. For this reason you should
never run reloads at short intervals: in the worst case, Nagios will not manage to
perform some checks in the intervening period and will perform them only some
time after the most recent reload.

Before being reloaded, the configuration is tested to eliminate any existing errors,
as shown in Section 3.1.

3.3 Overview of the Web Interface

If you call the URL http://nagios-server/nagios in the browser when the Nagios
daemon is running, you will be taken to the welcome screen shown in Figure 3.1.

1 The relevant configuration parameters are called max_host_check_spread and max_
service_check_spread, see Appendix D.1, page 435.

64

3.3 Overview of the Web Interface

Figure 3.1:

The start screen

The so-called “tactical overview” (Tactical Overview), which can be reached via the
first monitoring link in the left menu bar, is shown in Figure 3.2. It summarizes the
status of all tested systems.

Figure 3.2:

“Tactical” overview of

all systems and

services to be

monitored

65

3 Startup

Considerably more interesting in practice, however, is the display of the menu item
Service Problems (Figure 3.3). It documents the services that are currently causing
problems, those that are not in the OK status, in the very sense for which Nagios
was conceived: to inform the administrator precisely of any problems.

Figure 3.3:

Nagios: summary of

all service problems

The first column names the host involved. If this has a gray background, Nagios
can reach the computer in principle. If the host is “down” this can be seen by the
red background. For services, red stands for CRITICAL and yellow for WARNING.

The second column provides the service name, the third column the staus again,
in plain text. Column four specifies the time of the last check. Column five is
interesting: it shows how long the current status has been going on.

The sixth column with the heading Attempt reveals how often Nagios has already
performed the test (unsuccessfully): 3/3 means that the error status has been con-
firmed for the third time in succession, but that the test is only performed three
times if there is an error (parameter max_check_attempts, see Section 2.3).

Figure 3.4:

A summary of all

hosts (extract)

66

3.3 Overview of the Web Interface

Finally, the last column passes on the information from the plugin to the adminis-
trator, to whom it describes the current status in more detail. The top line in Figure
3.3, for example, warns that only five percent of storage space is available in the
/usr file system of the host eli11.

The Host Detail (Figure 3.4) and Service Detail overviews provide an overview of all
hosts and services. In practice you will be looking more precisely for information,
either via a single host or on a host group or service group The name in question is
entered in the Show Host search field. Figure 3.5 shows this using the example of
the eli11 host.

Figure 3.5:

All services for the

host eli11

Figure 3.6:

the host group

eli-linux in the grid

view

67

3 Startup

Alternatively you can search for the names of host and service groups. An inter-
esting variation here is to have a status grid output shown via the link Hostgroup
Grid, which displays an overview of all hosts and their corresponding services,
together with the status of these (Figure 3.6). Through the color of the service
(green/yellow/red) you can quickly see at a glance whether there are problems in
the service group or host group that you are viewing.

68

In More Detail . . .

4 Ch
ap

te
r

Nagios Basics

The fact that a host can be reached, in itself, has little meaning if no service is
running on it on which somebody or something relies. Accordingly, everything in
Nagios revolves around service checks. After all, no service can run without a host.
If the host computer fails, it also cannot provide the desired service.

Things get slightly more complicated if a router, for example, is brought into play,
which lies between users and the system providing services. If this fails, the desired
service may still be running on the target host, but it is nevertheless no longer
reachable for the user.

Nagios is in a position to reproduce such dependencies and to precisely inform
the administrator of the failure of an important network component, instead of
flooding the administrator with irrelevant error messages concerning services that
cannot be reached. An understanding of such dependencies is essential for the
smooth operation of Nagios, which is why Section 4.1 will look in more detail at
these dependencies and the way Nagios works.

71

4 Nagios Basics

Another important item is the state of a host or service. On the one hand Na-
gios allows a much finer distinction than just “ok” or “not ok”; on the other hand
the distinction between e (e
does not have to deal with short-term disruptions that have long since disappeared
by the time the administrator has received the information. These states also influ-
ence the intensity of the service checks. How this functions in detail is described in
Section 4.3.

4.1 Taking into Account the Network Topology

How Nagios handles dependencies of hosts and services can be best illustrated
with an example. Figure 4.1 represents a small network in which the Domain Name
Service on proxy is to be monitored.

Figure 4.1:

Topology of an

example network

The service check always serves as the starting point for monitoring that is regularly
performed by the system. As long as the service can be reached, Nagios takes no
further steps; that is, it does not perform any host checks. For switch1, switch2,
and proxy, such a check would be pointless anyway, because if the DNS service
responds to proxy, then the hosts mentioned are automatically accessible.

If the name service fails, however, Nagios tests the computer involved with a host
check, to see whether the service or the host is causing the problem. If proxy
cannot be reached, Nagios might test the parent hosts entered in the configura-
tion (Figure 4.2). With the parents host parameter, the administrator has a means
available to provide Nagios with information on the network topology.

72

soft stat) and hard stat) means that the administrator

4.1 Taking into Account the Network Topology

Figure 4.2:

the order of tests

performed after a

service failure

When doing this, the administrator only enters the direct neighbor computer fo
each host on the path to the Nagios server as the parent.1 Hosts that are allocated
in the same network segment as the Nagios server itself are defined without a
parent. For the network topology from Figure 4.1, the corresponding configuration
(reduced to the host name and parent) appears as follows:

define host{
host_name proxy

...

parents switch2

}

define host{
host_name switch2

...

parents switch1

}

define host{
host_name switch1

...

}

switch1 is located in the same network segment as the Nagios server, so it is there-
fore not allocated a parent computer. What belongs to a network segment is a
matter of opinion: if you interpret the switches as the segment limit, as is the
case here, this has the advantage of being able to more closely isolate a disruption.
But you can also take a different view and interpret an IP subnetwork as a seg-
ment. Then a router would form the segment limit; in our example, proxy would

1 The parameter name parents can be explained by the fact that there are scenarios—such as in
high availability environments—in which a host has two upstream routers that guarantee the
Internet connection, for example.

73

4 Nagios Basics

then count in the same network as the Nagios server. However, it would no longer
be possible to distinguish between a failure of proxy and a failure of switch1 or
switch2.

Figure 4.3:

Classification of

individual network

nodes by Nagios

If switch1 in the example fails, Figure 4.3 shows the sequence in which Nagios
proceeds: first the system, when checking the DNS service on proxy, determines
that this service is no longer reachable (1). To differentiate, it now performs a host
check to see what the state of the proxy computer is (2). Since proxy cannot be
reached, but it has switch2 as a parent, Nagios also subjects switch2 to a host
check (3). If this switch also cannot be reached, the system checks its parent,
switch1 (4).

If Nagios can establish contact with switch1, the cause for the failure of the DNS
service on proxy can be isolated to switch2. The system accordingly specifies the
states of the host: switch1 is UP, switch2 DOWN; proxy, on the other hand, is UN-
REACHABLE. Through a suitable configuration of the Nagios messaging system (see
Section 12.3 on page 217) you can use this distinction to determine, for example,
that the administrator is informed only about the host that is in the DOWN state
and represents the actual problem, but not about the hosts that are dependent on
the down host.

In a further step, Nagios can determine other topology-specific failures in the net-
work (so-called network outages). proxy is the parent of gate, so gate is also
represented as UNREACHABLE (5). gate in turn also functions as a parent; the
Internet server dependent on this is also classified as “UNREACHABLE”.

74

4.2 Forced Host Checks vs. Periodic Reachability Tests

This “intelligence”, which distinguishes Nagios, helps the administrator all the more,
the more hosts and services are dependent on a failed component. For a router in
the backbone, on which hundreds of hosts and services are dependent, the system
informs administrators of the specific disruption, instead of sending them hundreds
of error messages that are not wrong in principle, but are not really of any help in
trying to eliminate the disruption.

4.2 Forced Host Checks vs. Periodic Reachability
Tests

Service checks are carried out regularly by Nagios, host checks only when needed.
Although the check_interval parameter provides a way of forcing regular host
checks, there is no real reason to do this. There is one reason not to do this,
however: continual host checks have a considerable influence on the performance
of Nagios.

If you nevertheless want to regularly check the reachability of a host, it is better to
use a ping-based service check (see Section 6.2 from page 88). At the same time
you will obtain further information such as the response times or possible packet
losses, which provides indirect clues about the network load or possible network
problems. A host check, on the other hand, also issues an OK even if many packets
go missing and the network performance is catastrophic. What is involved here—as
the name “host check” implies—is only reachability in principle and not the quality
of the connection.

4.3 States of Hosts and Services

Nagios uses plugins for the host and service checks. They provide four different
return values (cf. Table 6.1 on page 85): O (OK), 1 (WARNING), 2 (CRITICAL), and 3
(UNKNOWN).

The return value UNKNOWN means that the running of the plugin generally went
wrong, perhaps because of wrong parameters. You can normally specify the situa-
tions in which the plugin issues a warning or a critical state when it is started.

Nagios determines the states of services and hosts from the return values of the
plugin. The states for services are the same as the return values OK, WARNING,
CRITICAL and UNKNOWN. For the hosts the picture is slightly different: the UP
state describes a reachable host, DOWN means that the computer is down, and
UNREACHABLE refers to the state of nonreachability, where Nagios cannot test
whether the host is available or not, because a parent is down (see Section 4.1,
page 72).

75

4 Nagios Basics

In addition to this, Nagios makes a distinction between two types of state: soft
state and hard state. If a problem occurs for the first time (that is, if there was
nothing wrong with the state of a service until now) then the program categorizes
the new state initially as a soft state and repeats the test several times. It may
be the case that the error state was just a one-off event that was eliminated a
short while later. Only if the error continues to exist after multiple testing is it then
categorized by Nagios as a hard state. Administrators are informed only of hard
states, because messages involving short-term disruptions that disappear again
immediately afterwards only add to an unnecessary flood of information.

In our example the chronological sequence of states of a service can be illustrated
quite simply. A service with the following parameters is used for this purpose:

define service{
host_name proxy

service_description DNS

...

normal_check_interval 5

retry_check_interval 1

max_check_attempts 5

...

}

normal_check_interval specifies at what interval Nagios should check the corre-
sponding service as long as the state is OK or if a hard state exists—in this case,
every five minutes. retry_check_interval defines the interval between two service
checks during a soft state—one minute in the example. If a new error occurs, then
Nagios will take a closer look at the service at shorter intervals.

max_check_attempts determines how often the service check is to be repeated
after an error has first occurred. If max_check_attempts has been reached and if
the error state continues, Nagios inspects the service again at the intervals specified
in normal_check_interval.

Figure 4.4 represents the chronological progression in graphic form: the illustration
begins with an OK state (which is always a hard state). Normally Nagios will repeat
the service check at five-minute intervals. After ten minutes an error occurs; the
state changes to CRITICAL, but this is initially a soft state. At this point in time,
Nagios has not yet issued any message.

Now the system checks the service at intervals specified in retry_check_interval,
here this is every minute. After a total of five checks (max_check_attempts) with
the same result, the state changes from soft to hard. Only now does Nagios in-
form the relevant people. The tests are now repeated at the intervals specified in
normal_check_interval.

76

4.3 States of Hosts and Services

Figure 4.4:

Example of the

chronological

progression of states

in a monitored service

In the next test the service is again available; thus its state changes from CRITICAL
to OK. Since an OK state is always a hard state, this change is not subject to any
tests by Nagios at shorter intervals.

The transition of the service to the OK state after an error in the hard state is
referred to as a hard recovery. The system informs the administrators of this (if it is
configured to do so) as well as of the change between various error-connected hard
states (such as from WARNING to UNKNOWN). If the service recovers from an error
soft state to the normal state (OK)—also called a soft recovery—the administrators
will, however, not be notified.

Even if the messaging system leaves out soft states and switches back to soft states,
it will still record such states in the Web interface and in the log files. In the Web
front end, soft states can be identified by the fact that the value 2/5 is listed in
the column Attempts, for example. This means that max_check_attempts expects
five attempts, but only two have been carried out until now. With a hard state,
max_check_attempts is listed twice at the corresponding position, which in the
example is therefore 5/5.

More important for the administrator in the Web interface than the distinction of
whether the state is still “soft” or already “hard”, is the duration of the error state
in the column Duration. From this a better judgment can be made of how large
the overall problem may be.

For services that are not available because the host is down, the entry 1/5 in the
column Attempts would appear, since Nagios does not repeat service checks until
the entire host is reachable again. The failure of a computer can be more easily
recognized by its color in the Web interface: the service overview in Figure 4.3
(page 66) marks the failed host in red; if the computer is reachable, the background
remains gray.

77

5 Ch
ap

te
r

Service Checks and How They
Are Performed

To test services, Nagios makes use of external programs called plugins. In the
simplest case this involves testing an Internet service, for example, SMTP. Here
the service can be addressed directly over the network, so it is sufficient to call a
program locally on the Nagios server that tests the mail server on the remote host.

Not everything you might want to test can be reached so easily over the network,
however: there is no network protocol for checking free capacity on a hard drive,
for example. Then you must either start a plugin on the remote host via a remote
shell (but first this has to be installed on the remote computer), or you use other
methods, such as the Simple Network Management Protocol SNMP, to test the
hard drive capacity.

The fact that different methods are available here does not make it any easier in
getting started with Nagios. For this reason, this chapter provides an overview of

79

5 Service Checks and How They Are Performed

the common methods and attempts to bring an understanding of the underlying
concepts involved. Later chapters then provide detailed configuration examples.

Figure 5.1:

Nagios allows

different testing

methods

Figure 5.1 shows an overview of the various test methods supported by Nagios. The
upper box with a gray background marks all the components that run directly on
the Nagios server machine: this includes the server itself, as well as plugins and
other auxiliary tools. This unit is in contact with five clients, which are tested in
various different ways. The following sections will go into somewhat more detail
regarding the individual methods.

In order to monitor the network service on the first client marked as service (start-
ing from the left), the Nagios server runs its “own” plugin, check_xyz (Section 5.1,
page 81). For the second client it starts the “middle plugin” check_by_ssh, in order
to execute the plugin it really wants remotely on the client (Section 5.2, page 82).

In the third case the plugin is also executed directly on the client machine, but
now Nagios uses the NRPE service, created specifically for this purpose. The query
is made on the Nagios side with check_nrpe (Section 5.3, page 82).

The fourth method describes the query via SNMP. For this, the client must have an
SNMP agent available (Section 11.1, page 178). Various plugins are available for
querying data via SNMP (Section 5.4, page 83).

These four methods represent “active” checks, because Nagios takes the initiative
and triggers the test itself. The fifth method, in contrast, is passive. Here Nagios

80

5.1 Testing Network Services Directly

does nothing actively, but waits for incoming information that the client sends to
the Nagios server with the program send_nsca. On the Nagios server itself the
Nagios Service Check Acceptor, NSCA, is running as a daemon that accepts the
transmitted results and forwards them to the interface for external commands.
(Section 5.5, page 84).

There are other ways of performing checks in addition to these. Usually a separate
service is installed on the client, which is then queried by the Nagios server via a
specialized plugin. A typical example here is NSClient/NC Net, which can be used
to monitor Windows servers (Section 18.1, page 354).

5.1 Testing Network Services Directly

Mail or Web servers can be tested very simply over the network, since the underly-
ing protocols, SMTP and HTTP, are, by definition, network-capable (Figure 5.1, page
80, Client 1). Nagios can call here on a wide range of plugins, each specialized for
a particular service.

Such a specific program has advantages over a generic one: a generic plugin tests
only whether the corresponding TCP or UDP port is open and whether the service
is waiting there, but it does not determine whether the correct service is on the
port, or whether it is active.

Specific plugins adopt the network protocol and test whether the service on the
port in question behaves as it is expected to. A Mail server, for example, normally
responds with a so-called Greeting after a connection has been established:

220 swobspace.de ESMTP

The important thing here is the 220. A number in the 200 range means OK, 220
stands for the greeting. The check_smtp plugin evaluates this reply. It can also
simulate the initial dialog when sending mail (in addition to the greeting), as shown
in Section 6.3 from page 92.

It behaves in a similar way with other specific plugins, such as check_http, which
not only can handle a simple HTTP dialog, but also manipulates HTTP headers where
required, checks SSL capabilities and certificates of the Web server, and even sends
data to the server with the POST command (more on this in Section 6.4 from page
97).

The package with the Nagios plugins, which is installed separately (see Section 1.2
from page 30), includes specific plugins for the most important network services.
If one is missing for a specific service, it is worth taking a look at the Nagios home-
page1 or the Exchange for Nagios Add-ons.2

1 http://www.nagios.org/
2 http://www.nagiosexchange.org/

81

5 Service Checks and How They Are Performed

If no suitable plugin can be found there either, you can use the generic plugins
check_tcp or check_udp, which, apart from a pure port test, also send data to the
target port and evaluate the response (but this only makes sense in most cases if
an ASCII-based protocol is involved). More on generic plugins in Section 6.7.1 from
page 110.

5.2 Running Plugins via Secure Shell on the
Remote Computer

To test local resources such as hard drive capacity, the load on the swap area, the
current CPU load, or whether a specific process is running, various local plugins are
available. They are called local because they have to be installed on the computer
that is to be checked.

The Nagios server has no way to directly access such information over the network,
without taking further measures. But it can start local plugins on the remote host,
via a remote shell (Figure 5.1, page 80, Client 2). Only the Secure Shell, SSH, can
be considered for use here; the Remote Shell, RSH, simply has too many security
holes.

To do this, the Nagios server runs the program check_by_ssh, which is given the
command, as an argument, to run the local plugin on the target host. For this,
check_by_ssh needs a way of logging in to the target host without a password,
which can be set up with Public Key Authentication.

From the viewpoint of the Nagios server, check_by_ssh is the plugin whose results
are processed. It does not notice anything concerning the start of the secure shell
connection and of the remote plugin—the main thing is that the reply corresponds
to the Nagios standard and contains the status plus a line of comment text for the
administrator, see the introduction to Chapter 6 on page 85.

Further information on the Remote Execution of plugins via Secure Shell is pro-
vided in Chapter 9 from page 157.

5.3 The Nagios Remote Plugin Executor

An alternative method of running plugins installed on the target computer via the
secure shell is represented by the Nagios Remote Plugin Executor (NRPE). Figure
5.1 (page 80) illustrates this with the middle client.

The NRPE is installed on the target host and started via the inet daemon, which
must be configured accordingly. If NRPE receives a query from the Nagios server
via the (selectable) TCP port 5666, it will run the matching query for this. As with

82

5.4 Monitoring via SNMP

the method using the Secure Shell, the plugin that is to perform the test must be
installed on the target host.

So all this is somewhat more work than using the Secure Shell, especially as SSH
ought to be installed on almost every type of Unix machine and, when it is used,
enables monitoring to be configured centrally on the Nagios server. The Secure
Shell method requires an account with a local shell, however, thus enabling any
command to be run on the target host3; the Remote Plugin Executor, on the other
hand, is restricted to the commands configured.

If you don’t want the user nagios to be able to do anything more than run plugins
on the target host without a password, than you are better off sticking with NRPE.
The installation configuration for this is described in Chapter 10 from page 165.

5.4 Monitoring via SNMP

With the Simple Network Management Protocol, SNMP, local resources can also
Be queried over the network (see also Client 4 in Figure 5.1, page 80). If an SNMP
daemon is installed (NET-SNMPD is very extensively used, and is described in Sec-
tion 11.2.2 from page 187), Nagios can use it to query local resources such as
processes, hard drive and interface load.

The advantage of SNMP lies in the fact that it is widely used: there are correspond-
ing services for both UNIX and Windows systems, and almost all modern network
components such as routers and switches can be queried via SNMP. Even uninter-
ruptable power supplies (USPs) and other equipment sometimes have a network
connection and can provide current status information via SNMP.

Apart from the standard plugin check_snmp, a generic SNMP plugin, there are var-
ious specialized plugins that concentrate on specific SNMP queries but are some-
times more simple to use. So check_ifstatus and check_ifoperstatus, for example,
focus precisely on the status of network interfaces.

If you are grappling with SNMP for the first time, you will soon come to realize
that the term “readable for human beings” did not seem to be high up on the
list of priorities when the protocol was defined. SNMP queries are optimized for
machine processing, such as for a network monitoring tool.

If you use the tool available from the vendor for its network components, SNMP
will basically remain hidden to the user. But to use it with Nagios, you have to get
your hands dirty and get involved with the protocol and its underlying syntax. It
takes some getting used to, but it’s not really as difficult as it seems at first sight.

3 The Secure Shell does allow a single command to be executed without opening a separate shell.
Usually, however, you will want to test several resources, so you’ll need to run more than one
command.

83

5 Service Checks and How They Are Performed

The use of SNMP is the subject of Chapter 11 (page 177); you can also learn there
how to configure and use an SNMP daemon for Linux and other UNIX systems.

5.5 The Nagios Service Check Acceptor

The fifth method of processing the results of service checks leads to the use of
the Nagios Service Check Acceptor, NSCA. This runs as a daemon on the Nagios
server and waits for incoming test results (see Figure 5.1 on the right on page 80).
This method is also referred to as passive, because Nagios itself does not take the
initiative.

NSCA uses the interface for external commands used by CGI scripts, among others,
to send commands to Nagios. It consists of a named pipe4 from which Nagios
reads the external commands. With the command PROCESS_SERVICE_CHECK_
RESULT Nagios processes test results that were determined elsewhere. The inter-
face itself is described in more detail in Section 13.1 from page 240.

The main area of use for NSCA is Distributed Monitoring. By this we mean several
different Nagios installations that send their results to a central Nagios server. The
distributed Nagios servers, perhaps in different branches of a company, work as
autonomous and independent Nagios instances, except that they also send the
results to a head office. This does not check the decentralized networks actively,
but processes the information sent from the branches in a purely passive manner.

NSCA is not just restricted to distributed monitoring, however. With the program
send_nsca, test results can be sent which were not obtained from a Nagios in-
stance, but rather from a cron-job, for example, which executes the desired service
check.

Before you use NSCA, you should consider the security aspects. Because it can be
used by external programs to send information and commands to Nagios, there is
a danger that it could be misused. This should not stop you from using NSCA, but
rather should motivate you into paying attention to security aspects during the
NSCA configuration.

Further information on using NSCA, distributed monitoring and on security in gen-
eral is provided in Chapter 14 from page 247.

4 A named pipe is a buffer to which a process writes something and from which another process
reads out the data. This buffer is given a name in the file system so that it can be specifically
addressed, which is why it is called named pipe.

84

6 Ch
ap

te
r

Plugins for Network Services

Every plugin that is used for host and service checks is a separate and independent
program that can also be used independently of Nagios. The other way round, it is
not so easy: in order for Nagios to use an external program, it must stick to certain
rules. The most important of these concerns the return status that is returned by
the program. Using this, Nagios precisely evaluates the status. Table 6.1 displays
the possible values.

Table 6.1:

Return values for

Nagios plugins

Status Name Description

0 OK Everything in order

1 WARNING Warning limit has been exceeded, but critical limit
not yet reached

2 CRITICAL Critical limit exceeded or the plugin has broken
off the test after a timeout

85

6 Plugins for Network Services

continued

Status Name Description

3 UNKNOWN Error has occurred inside the plugin (the wrong
parameter has been used,for example)

A plugin therefore does not distinguish by using the pattern “OK—Not OK”, but is
more differentiated. In order for it to be able to categorize a status as WARNING,
it requires details of up to what measured value a certain event is regarded as OK,
when it is seen as a WARNING, and when it is CRITICAL.

An example: apart from the response time, a ping also returns the rate of packet
loss. For a slow network connection (ISDN, DSL), a response time of 1000 millisec-
onds could be seen as a warning limit and 5000 milliseconds as critical, because
that would mean that interactive working is no longer possible. If there is a high
load on the network connection, occasional packet loss could also occur,1 so that
20 percent packet loss can be specified as a warning limit, 60 percent as the critical
limit.

The following applies in all cases: the administrator decides what values shall serve
as warning signs or be regarded as critical. Since all services can be individually
configured, the values for each host may vary, even in the same plugin.

Plugins always have a timeout, which is usually ten seconds. This prevents the
program from waiting endlessly, thus stopping a large number of plugin processes
from accumulating at the Nagios host. In other ways too, a response time above 10
seconds makes little sense for many applications, since these interrupt connection
attempts themselves after a certain time span, which has the same effect as the
total failure of the corresponding service. Here the administrator can also step in
and explicitly specify a different timeout.

A further characteristic of all plugins is a text output, which Nagios shows in its
overview and which is principally intended for the administrator, so it needs to be
“human-readable”. Since Nagios shows only the first line, this text output should
not be too long. In addition, Nagios currently processes only a maximum of 300
characters of the text output; the rest is simply cut off. We recommend the fol-
lowing form for the text output:

TYPE_OF_CHECK STATUS - informational text

In practice, the text output looks like this:

SMTP OK - 0.186 sec. response time

DISK WARNING - free space: /net/eli02/a 3905 MB (7%);

1 ICMP packets are not re-sent, a lost packet remains lost.

86

6.1 Standard Options

The above example is from the plugin check_smtp, the second from check_disk.
In both cases, the type of check (here SMTP or DISK) is followed by the status in
text form and then the actual information. Not all plugins adhere to this recom-
mendation in their output. Sometimes the detail of the test type is missing, and
sometimes even the status is missing.

Various plugins also provide performance information, which can be evaluated and
graphically represented with external programs (see Chapter 17, page 313):

OK - 172.17.129.2: rta 97.751ms, lost 0%| rta=97.751ms;200.000;500.000;0;

pl=0%;40;80;;

As can be seen here from the example of the check_icmp plugin, the performance
data follows the text output, separated by the pipe character |. But this data does
not appear in the Web interface.

check_icmp here provides two values: the medium reply time, rta (Real Time An-
swer), in milliseconds and the packet loss rate, pl.2 For each variable, the plugin
first displays the measured value (97.751ms and 0%), followed by the warning
limit (200 milliseconds or 40 percent) and the critical limit (500 milliseconds or 80
percent).

To keep the installation (Section 1.2 from page 30) as simple as possible, there are
no manual pages for the plugins. Each of these programs must maintain an online
help which is displayed with the option -h or --help. Some plugins distinguish here
between a short help (-h) and a long one (--help); it is therefore recommended that
you always try out --help as well.

This chapter introduces the most important plugins from the basic distribution of
the nagios-plugins package (version 1.3.1 or 1.4.x), which test network services.
With their help, the Nagios server queries services on other servers. The description
is restricted to the functionality that is important for normal operation. If you are
interested in all the options, we refer you to the integrated online help.

6.1 Standard Options

Table 6.2 lists the options that are common to all plugins. The options in bold type
must be known to all plugins. The key words not in bold type can be omitted by the
programs, but if they are supported at all, they must be used in the sense specified.

If an option demands an argument, it is usually separated by spaces in the short
form, but by equals signs in the long form. But for Perl or shell scripts in particular,
not all authors adhere to these, so you have no option here but to take a look at
the corresponding description.

2 Short for packet loss.

87

6 Plugins for Network Services

Table 6.2:

Standard options of

plugins

Short form Long form Description

-h --help Output of the online help

-V --version Output of the plugin version

-v --verbose Output of additional information. This op-
tion may be given multiple times.3

-H --hostname Host name or IP address of the target

-t --timeout Timeout in seconds after which the plugin
will interrupt the operation and return the
CRITICAL status.

-w --warning Specificies the warning limit value

-c --critical Specifies the critical limit value

-4 --use-ipv4 Force IPv4 to be used

-6 --use-ipv6 Force IPv6 to be used

Thus it is not allowed to use -c, for example, for anything other than specifying
a critical limit. How exactly -c and -w are used may, on the other hand, vary
from plugin to plugin, because sometimes an individual value may be required, at
other times, multiple values (see also the explanations on the plugin check_icmp),
described below.

Not all plugins can handle the options -4 and -6, with which the user can choose
the version of the IP protocol to use, and if they can handle these, then usually
only from plugin version 1.4.

6.2 Reachability Test with Ping

The classic reachability test in UNIX systems has always been a ping, which sends
an “ICMP echo request” packet and waits for an “ICMP echo response” packet.
The Nagios plugin package includes two programs that carry out this ping check:
check_icmp and check_ping. Even though check_ping is used in the standard
configuration, you should replace it with the more efficient check_icmp, which
has been included since plugin version 1.4.

Whereas check_ping calls the UNIX program /bin/ping, which is why there are
always compatibility problems with the existing ping version, check_icmp sends
ICMP without any external help programs. check_icmp basically works more effi-
ciently, since it does not wait for one second between individual packets, as ping

3 Whether this leads to more information depends on the individual plugin . . .

88

6.2 Reachability Test with Ping

does. In addition it evaluates ICMP error messages such as ICMP host unreach-
able, while check_ping discards these. check_icmp is backwards-compatible to
check_ping; this makes it easy to do without check_ping entirely and to replace it
with check_icmp.

check_icmp measures the reply time of the ICMP packets and determines the pro-
portion of packets that have been lost. If an error message arrives instead of the
expected “ICMP echo reply”, this is evaluated immediately. Thus Nagios breaks off
the test if an “ICMP host unreachable” message arrives.

check_icmp has the following options:4

-H address
Without the host name or the IP address of the computer to be tested,
check_icmp cannot work. With -H, multiple host entries can be separated,
using spaces.

-w response time,packet loss percent%
This switch sets the warning limit for a warning. response time stands here
for the desired response time in milliseconds, packet loss percent stands for
the corresponding packet loss as a percentage. If you specify

-w 500.0,20%

the plugin will give a warning either if the response time is at least 500.0
milliseconds or if 20 percent or more of ICMP packets are lost.

-c response time,packet loss percent%
This switch specifies the critical limit in the same way as -w defines the
warning value. The critical limit should always be larger than the warning
limit.

-n packets
With packets you can set the number of packets that check_icmp should
use for each test. The default is 5 packets.

-t timeout
After timeout seconds have passed, the plugin interrupts the test and re-
turns the CRITICAL status. The default is 10 seconds.

Like the program /bin/ping, check_icmp must also run with root permissions,
which is why the SUID bit is set:

4 The online help check_icmp -h does state that it knows the options in the long form as well,
but these are neither implemented in version 1.5, included in the Nagios plugins 1.4, nor in
later versions up to 1.18.

89

6 Plugins for Network Services

linux:˜ # chown root.nagios /usr/local/nagios/libexec/check_icmp

linux:˜ # chmod 4711 /usr/local/nagios/libexec/check_icmp

linux:˜ # ls -l /usr/local/nagios/libexec/check_icmp

-rwsr-x--x 1 root nagios 61326 2005-02-08 19:49 check_icmp

For a test, you should execute the plugin on the command line as the user nagios,
since Nagios will later execute it under this account:

nagios@linux:˜$ cd /usr/local/nagios/libexec

nagios@linux:nagios/libexec$./check_icmp -H 192.168.1.13 \
-w 100.0,20% -c 200.0,40%

OK - 192.168.1.13: rta 0.253ms, lost 0%| rta=0.253ms;100.000;200.000;0;

pl=0%;20;40;;

check_icmp then sets the standard number of five ICMP packets on their way, and
instead of an OK, issues a WARNING as soon as the response time, averaged over all
the packets, is at least 100.0 milliseconds, or if 20 percent or more are lost—that is,
at least one packet in five. For a CRITICAL status, the average response time must
be at least 200.0 milliseconds, or at least two packets (40 percent of five) must
remain unanswered.

6.2.1 check_icmp as a service check

In order that check_icmp can be used as a service check, you need to have a
suitable command object. The file checkcommands.cfg, with check_ping, already
has one for the ping service. We will just replace the check_ping plugin in it with
check_icmp:

define command{
command_name check_ping

command_line $USER1$/check_icmp -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$

}

The macro $HOSTADDRESS$ provides the IP address of the parameter address
from the host definition, and with the two freely defined macros $ARG1$ and
$ARG2$, parameters can be taken over from the service definition, so that warning
and critical limits can be set with these.

In the service definition (an extract of it is shown here)5 for the PING service, the
check_command entry, in addition to the name of the command object to be
executed, now needs two arguments, which are entered after the command, both
separated by an exclamation mark:

5 Like any other object, service definitions can also be defined in a file of your choice, from which
Nagios loads object definitions. For the sake of clarity, it is best to choose a descriptive name
for the file, such as services.cfg, as in our example on page 39.

90

6.2 Reachability Test with Ping

define service{
service_description PING

host_name linux01

check_command check_ping!100.0,20%!500.0,60%

...

}

From the definition of the command object, you can see that the first parameter
(100.0,20%) defines the warning limit, and the second one (500.0,60%) defines
the critical value.

6.2.2 check_icmp as a host check

To be able to use the plugin under the name check_host for host checks, a corre-
sponding symbolic link to check_icmp is set:

linux:˜ # cd /usr/local/nagios/libexec

linux:nagios/libexec # ln -s check_icmp check_host

If it is called under its new name, check_host, the plugin modifies its behavior
somewhat: it interrupts the test after receiving the first ICMP echo reply, because
a single reply packet is enough to prove that the host “is alive”. The same applies
if the first response to be returned is an error message such as ICMP network
unreachable or host unreachable—the host is then considered to be unreachable.

Host checks are defined like every other check. The only difference is that this test
is specified during the definition of the host object (and not of a service object):

define host{
host_name linux01

alias Linux File Server

address 192.168.1.21

check_command check-host-alive

...

}

The name used here, check-host-alive, can be freely defined and can be specified
separately for each host. The definition of the command itself is made in check-
commands.cfg:

define command{
command_name check-host-alive

command_line $USER1$/check_host -H $HOSTADDRESS$

}

91

6 Plugins for Network Services

Host checks do not always need to be executed with check_icmp. You could just
as well measure the refrigerator temperature or test, with the generic plugins for
TCP or UDP (check_tcp and check_udp; see Section 6.7.1 from page 110), whether
a specific port is open or not. The port scanner nmap, for example, uses TCP port
80 (HTTP).

The disadvantage of such a method lies in the fact that, apart from the host itself,
another application also needs to run—that is, the Web server. In addition, the
test of a specific application by no means proves that the computer is no longer
reachable. A ping has the great advantage that the kernel replies to “ICMP echo
request” messages itself, so that no application needs to be running for this. You
should therefore change from ping to other host check methods only if there is a
good reason to do so. One example might be a firewall that filters ICMP messages,
and over which the administrator has no influence, but that does let through HTTP
queries on TCP port 80.

6.3 Monitoring Mail Servers

A number of plugins are also available to monitor mail servers: the mail server itself
(Mail Transport Agent (MTA)) is monitored by check_smtp, and in addition to this
the mail queue on the mail server can be checked with check_mailq. Since this
test takes place locally, the plugin is described in the next chapter in Section 7.8
(page 147).

To monitor the “Mail User Agent (MUA)” POP3 and IMAP protocols—including the
SSL variants, POP3S and IMAPS—the plugin check_tcp is used: check_pop and so
forth are symbolic links to check_tcp, which determines which protocol it should
test by means of the name by which it is called, and makes the relevant presettings.

6.3.1 Monitoring SMTP with check_smtp

The SMTP monitoring plugin check_smtp has the following options:

-H address / --host=address
This details the computer on which the SMTP service should be checked.

-p port / --port=port
port determines the ports, in case the mail service is not listening on the
standard port 25. In this way the mail virus scanner Amavis (usually port
10024) can be monitored, for example. But this can normally be reached
only from localhost.

92

6.3 Monitoring Mail Servers

-e string / --expect=string
string defines the text which the mail server must provide in the very first
reply line. The default setting for string is 220, with which the normal SMTP
greeting begins, but there may be servers that have different settings. A
wrong reply from the service monitored will generate a WARNING.

-f address / --from=address
With address you specify a mail address that check_smtp then sends to the
server with the “MAIL FROM:” command. This option is required to test a
Microsoft Exchange 2000 Server.

-C ”mail command” / --command=”mail command” (from version 1.4)
With -C you can send individual mail commands to the server, to extend the
test slightly (see example below).

-R ”string” / --response=”string” (from version 1.4)
If you send an SMTP command to the server with -C, you can specify the
expected reply here instead of string (for example, 250). A “wrong” reply
triggers a WARNING.

-4 / --use-ipv4 (from version 1.4)
The test is performed explicitly over an IPv4 connection.

-6 / --use-ipv6 (from version 1.4)
The test is performed explicitly over an IPv6 connection.

-S / --starttls (from version 1.4)
The connection setup during the test uses STARTTLS.

-w floating point decimal / --warning=floating point decimal
If the server takes longer than floating point decimal seconds for the an-
swer, check_smtp issues a WARNING.

-c floating point decimal / --critical=floating point decimal
Like -w, except that check_smtp issues a CRITICAL after floating point deci-
mal seconds.

In the simplest case, you just enter the name or the IP address of the mail server:

nagios@linux:nagios/libexec$./check_smtp -H smtp01

SMTP OK - 0,008 sec. response time|time=0,008157s;;;0,000000

The plugin check_smtp sends back a HELO hostname after receiving the SMTP
greeting, which should contain the reply 250.

The definition of the corresponding command object in this case appears as follows:

93

6 Plugins for Network Services

define command{
command_name check_smtp

command_line $USER1$/check_smtp -H $HOSTADDRESS$

}

To check the host object linux01 with this, it requires the following service defini-
tion:

define service{
service_description SMTP

host_name linux01

check_command check_smtp

...

}

Using the -C option, the SMTP dialog can be extended even further, roughly until
RCPT TO:

nagios@linux:nagios/libexec$./check_smtp -H localhost \
-C "MAIL FROM: <bla@gna.dot>" -R "250" \
-C "RCPT TO: <bla@gna.dot>" -R "554"

SMTP OK - 0,019 sec. response time|time=0,018553s;;;0,000000

Such a test could be used, for example, to check the configuration of the restric-
tions built into the mail server (invalid domains, spam defenses, and more). The
example checks whether the mail server refuses to accept a mail containing the in-
valid domain gna.dot (that is, in the RCPT TO:). The test runs successfully, therefore,
if the server rejects the mail with 554. What check_smtp does here corresponds
to the following mail dialog reproduced by telnet:

user@linux:˜$ telnet localhost 25

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’ˆ]’.

220 swobspace.de ESMTP

helo swobspace

250 swobspace.de

MAIL FROM: <bla@gna.dot>

250 Ok

RCPT TO: <bla@gna.dot>

554 <bla@gna.dot>: Recipient address rejected: test not \
existing top level domain

...

If the mail server did not reject the recipient domain because of the configura-
tion error, the reply would no longer contain 554 and the plugin would issue a
WARNING.

94

6.3 Monitoring Mail Servers

In general you should remember, when checking restrictions, that the server rejects
mails only after a RCPT TO:, depending on the configuration, even if the reason for
this (a certain client IP address, the server name in HELO or the sender address in
MAIL FROM:) has already occurred before this.

6.3.2 POP and IMAP

Four pseudo plugins are available for testing the POP and IMAP protocols: check_
pop, check_spop, check_imap, and check_simap. They are called pseudo plug-
ins because they are just symbolic links to the plugin check_tcp. By means of
the name with which the plugin is called, this determines its intended use and
correspondingly sets the required parameters, such as the standard port, whether
something should be sent to the server, the expected response and how the con-
nection should be terminated. The options are the same for all plugins, which is
why we shall introduce them all together:

-H address / --host=address
specifies the computer on which POP or IMAP is to be checked.

-p port / --port=port
port specifies an alternative port if the plugin is intended to monitor a dif-
ferent port from the standard one: 110 for check_pop, 995 for check_spop,
143 for check_imap, and 993 for check_simap (see also /etc/services).

-w floating point decimal / --warning=floating point decimal
The placeholder floating point decimal is replaced by the warning limit for
the response time in seconds, specified as a floating point decimal.

-c floating point decimal / --critical=floating point decimal
This sets the critical limit for the response time in seconds (see -w).

-s ”string” / --send=”string”
This string is to be sent to the server. In the default setting, none of the four
plugins uses this option.

-e ”string” / --expect=”string”
string specifies the reply that the server should give. The default is +OK for
(S)POP and * OK for (S)IMAP.

-q ”string” / --quit=”string”
This is the string with which the service is requested to end the connection.
For (S)POP this is QUIT\r\n, for (S)IMAP, a1 LOGOUT\r\n.

95

6 Plugins for Network Services

-S / --ssl (from version 1.4)
The connection set up during the test uses SSL/TLS for the connection. If you
call the plugins check_simap and check_spop, this option is set automat-
ically. In order for a connection to be established, the server must support
SSL/TLS directly on the addressed port.

STARTTLS6 on its own does not support the plugin. With

./check_imap -H computer -s "a1 CAPABILITY" -e "STARTTLS"

you can at least check whether the server provides this method: the plugin
returns OK if the reply string contains STARTTLS, or WARNING if it doesn’t.
But this is not really a genuine test of whether STARTTLS really does work
properly.

Of course, all the other options of the generic plugin check_tcp (described in Sec-
tion 6.7.1 from page 110) can be used with check_pop, check_spop, check_imap,
and check_simap.

In the simplest case you just need to give the name of the computer to be tested
(here: mailsrv) or the IP address:

nagios@linux:nagios/libexec$./check_pop -H mailsrv

POP OK - 0.064 second response time on port 110 [+OK eli11 Cyrus POP3

v2.1.16 server ready <1481963980.1118597146@eli11>]

|time=0.064228s;0.000000;0.000000;0.000000;10.000000

In each case the plugin provides just one line of output, which has been line-
wrapped here for layout reasons. The details after the pipe character | in turn
involve performance data not shown by the Web interface. The structure of per-
formance data and how they are processed are described in more detail in Section
17.1 from page 314.

Implemented as a command object, the above check_pop command looks like this:

define command{
command_name check_pop

command_line $USER1$/check_pop -H $HOSTADDRESS$

}

As a service for the machine linux01, it is integrated like this:

6 STARTTLS refers to the capacity of a service to set up an SSL/TLS-secured connection after
a normal connection has been established—for example, for POP3, via TCP port 110. Every
service that implements STARTTLS must have a suitable command available to do this. With
POP3 this is called STLS (see RFC 2595). STARTTLS is used with SMTP, LDAP, IMAP, and POP3,
among others, but not every server supports this method automatically.

96

6.4 Monitoring FTP and Web Servers

define service{
service_description POP

host_name linux01

check_command check_pop

...

}

6.4 Monitoring FTP and Web Servers

The Nagios plugin package provides two plugins to monitor the classic Internet
services FTP and HTTP (including HTTPS): check_ftp and check_http. When many
users from a network are using Web services, a proxy is usually used in addition. To
monitor this, you could also use check_http, but with the check_squid.pl plugin,
The Nagios Exchange has a better tool available.

6.4.1 FTP services

The plugin check_ftp is, like the plugins for POP and IMAP, a symbolic link to the
generic plugin check_tcp, so that it also has the same options. They are described
in detail in Section 6.7.1 on page 110.

The generic plugin sets the following parameters if it is called with the name
check_ftp:

--port=21 --expect="220" --quit="QUIT\r\n"

It does not send a string to the server, but it expects a reply containing the text
220, and it ends the connection to the standard port 21 cleanly with QUIT\r\n.

On the command line there is, as usual, a one-line reply (with line breaks for the
printed version) with performance data after the | character that is not shown by
the Web interface, (see Section 17.1 from page 314) for an explanation of this:

nagios@linux:nagios/libexec$./check_ftp -H ftp.gwdg.de

FTP OK - 0,130 second response time on port 21 [220-Gesellschaft fuer

wissenschaftliche Datenverarbeitung mbH Goettingen] |time=0,130300s;0,

000000;0,000000;0,000000;10,000000

As a command object, this call appears as follows:

define command{
command_name check_ftp

command_line $USER1$/check_ftp -H $HOSTADDRESS$

}

97

6 Plugins for Network Services

A corresponding service definition looks like this:

define service{
service_description FTP

host_name linux01

check_command check_ftp

...

}

6.4.2 Web server control via HTTP

The check_http plugin for HTTP and HTTPS checks contains a large number of very
useful options, depending on the intended use:

-H virtual host / --hostname=virtual host
This switch specifies the virtual host name that the plugin transmits in the
HTTP header in the host: field:

nagios@linux:nagios/libexec$./check_http -H www.swobspace.de

HTTP OK HTTP/1.1 200 OK - 2553 bytes in 0.154 seconds

If you don’t want check_http to send this, you can use -I instead.

-I ip-address / --IP-address=ip-address
Instead of ip, the host name or IP address of the target computer is given.
For systems with several virtual environments, you will land in the default
environment, and for most Web hosting providers you will then receive an
error message:

nagios@linux:nagios/libexec$./check_http -I www.swobspace.de

HTTP WARNING: HTTP/1.1 404 Not Found

-u url or path / --url=url or path
The argument is the URL to be sent to the Web server. If the design doc-
ument lies on the server to be tested, it is sufficient to enter the directory
path, starting from the document root of the server:

nagios@linux:nagios/libexec$./check_http -H linux.swobspace.net\
-u /mailinglisten/index.html

HTTP OK HTTP/1.1 200 OK - 5858 bytes in 3.461 seconds

If this option is not specified, the plugin asks for the document root /.

-p port / --port=port
This is an alternative port specification for HTTP.

98

6.4 Monitoring FTP and Web Servers

-w floating point decimal / --warning=floating point decimal
This is the warning limit for the response time of the Web server in seconds.

-c floating point decimal / --critical=floating point decimal
This is the critical limit for the response time of the Web server in seconds.

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin interrupts the test and re-
turns the CRITICAL status. The default is 10 seconds.

-L / --link-url
This option ensures that the virtual host in the text output appears on the
Web interface as a link.

nagios@linux:nagios/libexec$./check_http -H www.swobspace.de -L

 HTTP OK HTTP

/1.1 200 OK - 2553 bytes in 0.156 seconds

-a username:password / --authorization=username:password
If the Web server requires authentication, this option can be used to specify
a user-password pair. The plugin can only handle basic authentication,
however; digest authentication is currently not yet possible.

-f behavivor / --onredirect=behavior
If the Web server sends a redirect as a reply to the requested Web page, the
behavior parameter influences the behavior of the plugin. The values ok,
warning, critical and follow are allowed. The default is ok, so the plugin
will simply return an OK, without following the redirect. The plugin can be
made to follow the redirect with follow. warning and critical with a redirect
return the WARNING or CRITICAL status.

-e ”string” / --expect=”string”
This is the text that the server response should contain in its first status line.
If this option is not specified, the plugin expects HTTP/1. as a string.

-s ”string” / --string=”string”
This is the search text that the plugin looks for in the contents of the page
returned, not in the header.

-r ”regexp” / --regex=”regexp”
This is a regular expression7 for which the plugin should search in the page
returned.

-R ”regexp” / --eregi=”regexp”
This switch works like -r, except that the plugin now makes no distinction
between upper and lower case.

7 Posix regular expressions, see man 7 regex.

99

6 Plugins for Network Services

-l / --linespan
Normally the search for regular expressions is restricted to one line with -r
and -R. If -l precedes these options, the search pattern can refer to text
covering multiple lines.

-P string / --post=string
Use this switch for data that you would like to send via a POST command
to the Web server. The characters in string must be encoded in accordance
with RFC 1738:8 only the letters A to Z (upper and lower case), the special
characters $-_.+!*’(), and the numbers 0 to 9 are allowed.

To send the text Übung für Anfänger (“Exercise For Beginners” in German)
as a string, umlauts and spaces must be encoded before they are sent:
%DCbung%20f%FCr%20Anf%E4nger.

-m min bytes / --pagesize=min bytes

-m min bytes:max bytes / --pagesize=min bytes:max bytes (from version 1.4)

The page returned must be at least min bytes in size, otherwise the plug-
in will issue a WARNING. You can optionally use an upper limit as well—
separated by a colon—to specify the size of the Web page. Now check_http
will also give a warning if the page returned is larger than max bytes. In
the following example, everything is in order if the page returned is at least
500 bytes and at most 2000 bytes in size:

nagios@linux:nagios/libexec$./check_http -H www.swobspace.de \
-m 500:2000

HTTP WARNING: page size 2802 too large|size=2802B;500;0;0

-N / --no-body (from version 1.4)
With this option the plugin does not wait for the server to return the com-
plete page contents, but just reads in the header data. To do this it uses the
HTTP commands GET or POST, and not HEAD.

-M seconds / --max-age=seconds (from version 1.4)
If the returned document is older than the date specified in the header (HTTP
header field Date:), the plugin will generate a WARNING. Instead of seconds
(without additional details) you can also use explicit units such as 5m (five
minutes), 12h (twelve hours), or 3d (three days); combinations are not al-
lowed.

-A ”string” / --useragent=”string” (from version 1.4)
Explicitly specifies a user agent in the HTTP header, such as -A ”Lynx/1.12”
for Lynx version 1.12. Normally the plugin does not send this field.

8 http://www.faqs.org/rfcs/rfc1738.html, paragraph 2.2

100

6.4 Monitoring FTP and Web Servers

-k ”string” / --header=”string” (from version 1.4)
This specifies any HTTP header tags. If several tags are to be specified, they
must be separated by a semicolon, as in the following example:

-k "Accept-Charset: iso-8859-1; Accept-Encoding: compress, gzip;"

-S / --ssl
This forces an SSL connection to be used:

nagios@linux:nagios/libexec$./check_http --ssl -H \
www.verisign.com

HTTP OK HTTP/1.1 200 OK - 33836 bytes in 1.911 seconds

The host www.verisign.com allows an SSL connection. If this is not the case,
the server returns an error and the plugin returns the value CRITICAL:9

nagios@linux:nagios/libexec$./check_http --ssl -H www.swobspace.de

Connection refused

Unable to open TCP socket

-C days / --certificate=days
Tests whether the certificate is at least valid for the given number of days.
Otherwise a WARNING is issued.

-4 / --use-ipv4 (from version 1.4)
The test is made explicitly over an IPv4 connection.

-6 / --use-ipv6 (from version 1.4)
The test is made explicitly over an IPv6 connection.

The definition of a corresponding command object and its use as a service is no
different from that based on other plugins; page 102 shows an example.

6.4.3 Monitoring Web proxies

Proxy test with check_http

A proxy such as Squid can also be tested with check_http, but this assumes that
you have some knowledge of how a browser makes contact with the proxy. It does
this in the form of an HTTP header:

GET http://www.swobspace.de/ HTTP/1.1

Host: www.swobspace.de

User-Agent: Mozilla/5.0 (X11; U; Linux i686; de-DE; rv:1.7.5)

Gecko/20041108 Firefox/1.0

9 This can be checked in the shell with echo $?.

101

6 Plugins for Network Services

Accept: text/xml,application/xml,application/xhtml+xml,...

Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-15,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Pragma: no-cache

Cache-Control: no-cache

The decisive entries are printed in bold type. In contrast to normal Web server
queries, the browser requests the document from the server via a GET command,
not by specifying the directory path, but by using the complete URL, including the
protocol type. In the Host: field it specifies the host name of the Web server that it
actually wants to reach. With normal HTTP queries that go directly to a Web server
(and not via a proxy), the host name of the Web server would be written there. This
behavior can be reproduced with check_http:

nagios@linux:nagios/libexec$./check_http -H www.swobspace.de \
-I 192.168.1.13 -p 3128 -u http://www.swobspace.de

HTTP OK HTTP/1.0 200 OK - 2553 bytes in 0.002 seconds

In order to set the Host: field in the header, you specify the name of a Web server
with -H. The nonlocal URL is forced by a -u, and specifying -I at the same time
ensures that the proxy is addressed, and not the Web server itself. Finally you need
to select the proxy port, and the proxy test is then complete. Then check_http will
send the following HTTP header to the proxy:

GET http://www.swobspace.de HTTP/1.0

User-Agent: check_http/1.79 (nagios-plugins 1.4-beta1)

Host: www.swobspace.de

This test does not use any implementation-specific information of the proxy, so it
should work with every Web proxy.

The command object is defined as follows:

define command{
command_name check_proxy

command_line $USER1$/check_http -H www.google.de \
-u http://www.google.de -I $HOSTADDRESS$ -p $ARG1$

}

The proxy computer linux01 is then tested with the following service:

define service{
service_description Webproxy

host_name linux01

102

6.4 Monitoring FTP and Web Servers

check_command check_proxy!3128

...

}

The parameter 3128 ensures that the command object check_proxy can read out
the port from $ARG1$.

Proxy test with check_squid

The proxy check with check_http, introduced in the last section, works only if the
desired Web page is available or is already in the cache. If neither is the case, this
test will produce an error, even if the proxy is working in principle.

The plugin check_squid.pl uses a different method, but it is not part of the stan-
dard installation, and is to be found in the category Check Plugins → Network-
ing10 which can be found at http://www.nagiosexchange.com/.

It makes use of the cache manager of the Squid proxy, which is queried by a
pseudo protocol. A command is sent in the form

GET cache_object://ip address/command HTTP/1.1\n\n

to Squid and obtains the desired information. The plugin check_squid.pl uses the
info command, which queries a range of statistical usage information:

user@linux:˜$ echo "GET cache object://192.168.1.13/info HTTP/1.1\n\n" \
| netcat 192.168.1.13 3128

...

File descriptor usage for squid:

Maximum number of file descriptors: 1024

Largest file desc currently in use: 18

Number of file desc currently in use: 15

Files queued for open: 0

Available number of file descriptors: 1009

Reserved number of file descriptors: 100

Store Disk files open: 0

...

It is targeted at the number of still-free file descriptors (the third line from the end);
you can set a warning or critical limit for this value. The number of file descriptors
plays a role when access is made to objects in the Squid cache at the same time.
In environments with a high number of parallel accesses to the proxy, it is quite
possible that 1024 file descriptors are insufficient. In smaller networks with just a
few hundred users, not all of whom are surfing at the same time, the compiled-in
value of 1024 will be sufficient.

10 http://www.nagiosexchange.org/Networking.53.0.html

103

6 Plugins for Network Services

Squid configuration

Normally Squid allows access to the cache manager only from localhost. So that
Nagios can query it over the network, the proxy must be reconfigured accordingly:

...

acl manager proto cache_object

acl nagiosserver 192.168.1.9

http_access allow manager nagiosserver

http_access deny manager

cachemgr_passwd none info menu

...

The necessary changes to the configuration file squid.conf are printed in bold type,
and the other relevant lines are already contained in the default file. The first line to
be printed defines an access control list (Access Control List, acl) called manager
by means of the internal protocol cache_object, so it refers to everything that
accesses the proxy using the cache_object protocol. This is followed by an access
control list for the Nagios server, based on its IP address, here 192.168.1.9. The
list name nagiosserver may be freely chosen here (as can manager in the first
line). With http_access allow, nagiosserver obtains access to the cache manager
(manager), before the line

http_access deny manager

prohibits access to all others through the cache_object protocol. Finally, cachemgr
_passwd provides a password for the cache manager access. If you omit this, with
none, then only selected commands should be allowed that have no potential to
change things, such as info and menu, which shows all the things that the cache
manager can do. After the configuration file has been modified, Squid needs to
read it in again:

linux:˜ # /etc/init.d/squid reload

Applying the plugin

The test plugin check_squid.pl itself has the following options:

-H address / --hostname=address
This is the server on which Squid is to be tested, specified by IP address or
FQDN.

-P port / --port=port
This specifies the port on which Squid is listening. The default is the standard
port 3128.

104

6.5 Domain Name Server under Control

-p password / --password=password
This is the password for access to the cache manager.

-w free descriptors / --warning=free descriptors
This is the number of free file descriptors, where the plugin will issue a warn-
ing if the number drops below this. The default is 200.

-c free descriptors / --critical=free descriptors
This is the critical limit for free file descriptors. If the number falls below this,
check_squid returns CRITICAL. The default is 50.

When check_squid is run, it is usually very unspectacular:

nagios@linux:nagios/libexec$./check_squid.pl -H 192.168.1.13

Squid cache OK (1009 FreeFileDesc)

The matching command also presents no problems . . .

define command{
command_name check_squid.pl

command_line $USER1$/check_squid.pl -H $HOSTADDRESS$

. . . and the same goes for service definitions:

define service{
service_description Squid

host_name linux01

check_command check_squid.pl

...

}

6.5 Domain Name Server under Control

Two plugins are also available for testing the Domain Name Services DNS: check_
dns and check_dig. While check_dns tests whether a host name can be resolved,
using the external nslookup program, check_dig allows any records at all to be
queried. Both plugins are part of the standard distribution.

The situations in which they are used overlap somewhat. With check_dns, you can
also explicitly query a specific DNS server, although this plugin is really for checking
whether the name service is available generally.

105

6 Plugins for Network Services

6.5.1 DNS check with nslookup

The check_dns plugin checks whether a specified host name can be resolved to an
IP address. Used locally, the plugin tests the DNS configuration of the computer
on which it is run. For the name resolution, it uses the name server configured in
/etc/resolv.conf.

The possible options are just as unspectacular.

-H host / --hostname=host
This is the host name to be resolved to an IP address.

-s dns-server / --server=dns-server
This switch explicitly specifies the name server to be used. If this option is
missing, check_dns uses the name server from /etc/resolv.conf.

-a ip address / --expected-address=ip address
The ip address is the IP address that host should have. If the name service
returns a different address, the plugin will raise the alarm with CRITICAL. This
option makes sense only if it is necessary for the name server to provide a
fixed IP address. Without this option, the plugin will accept every IP address
as a reply.

-A / --expect-authority
The name server specified with -s should answer the given query authori-
tatively, so the corresponding domain must act as a primary or secondary
name server. If this is not the case, the plugin returns CRITICAL.

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin interrupts the test and re-
turns the CRITICAL state. The default is 10 seconds.

For the local test of the DNS configuration (not that for a name server) you just
require a host name that is highly unlikely to disappear from the DNS, such as
www.google.de:

nagios@linux:nagios/libexec$ /check_dns -H www.google.de

DNS OK: 0,009 seconds response time www.google.de returns 216.239.59.99

The corresponding command definition appears as follows in this case:

define command{
command_name check_dns

command_line $USER1$/check_dns -H www.google.de

}

106

6.5 Domain Name Server under Control

The following service tests whether the name server configuration for the com-
puter linux01 is functioning:

define service{
service_description DNS/nslookup

host_name linux01

check_command check_dns

...

}

6.5.2 Monitoring the name server with dig

The plugin check_dig provides more options for monitoring a name server than
check_dns. As the name implies, it is based on the external utility dig, intended for
precisely this purpose.

-H address / --hostname=address
The address is the IP address for the DNS server to be tested. It is also
possible to specify a host name (instead of an IP address), but in most cases
this makes little sense, because this would first have to be resolved before it
can reach the name server.

-l hostname / --lookup=hostname
The hostname is the host name to be tested. If no particular computer is
looked up, but only the functionality of the DNS server is to be tested, you
should specify an address here easily reachable from the Internet, such as
www.google.de.

-T record type / --record_type=record type (from version 1.4)
This switch specifies the record type to be queried. The default is A (IPv4
address), but often NS (relevant name server), MX (relevant Mail Exchange),
PTR (Pointer ; IP address for reverse lookup) or SOA (Source of Authority,
the administration details of the domain) are also used.

-w floating point decimal / --warning=floating point decimal (from version
1.4) This switch sets the warning limit for the response time of the name
server in seconds (floating point decimal).

-c floating point decimal / --critical=floating point decimal (from version 1.4)
This switch sets the critical response time of the name server in seconds
(floating point decimal).

-a address / --expected_address=address (from version 1.4)
This is the address that dig should return in the ANSWER SECTION. In con-
trast to check_dns, check_dig delivers a WARNING only if the IP address
does not match, but the reply itself has arrived within the given time limit.

107

6 Plugins for Network Services

-t timeout / --timeout=timeout]
After timeout seconds have expired, the plugin breaks off the test and re-
turns the CRITICAL state. The default is 10 seconds.

The following two examples check the name server 194.25.2.129, by requesting
it for the IP address of the computer www.swobspace.de. The second example
ends with a WARNING, since the reply of the name server for www.swobspace.de
returns a different IP address from 1.2.3.4 in the ANSWER SECTION:

nagios@linux:nagios/libexec$./check_dig -H 194.25.2.129 -l \
www.swobspace.de

DNS OK - 2,107 Sekunden Antwortzeit (www.swobspace.de. 1800 IN A

212.227.119.101)

nagios@linux:nagios/libexec$./check_dig -H 194.25.2.129 -l \
www.swobspace.de -a 1.2.3.4

DNS WARNING - 0,094 Sekunden Antwortzeit (Server nicht gefunden in

ANSWER SECTION)

Example 1 is implemented as a command object as follows:

define command{
command_name check_dig

command_line $USER1$/check_dig -H $HOSTADDRESS$ -l $ARG1$

}

In order to test the specific name server linux01 with Nagios, you look for an
address that Nagios should always be able to resolve, such as www.google.de:

define service{
service_description DNS/dig

host_name linux01

check_command check_dig!www.google.de

...

}

6.6 Querying the Secure Shell Server

Monitoring of Secure Shell servers (irrespective of whether they use protocol ver-
sion 1 or 2) is taken over by the plugin check_ssh (included in the standard dis-
tribution). It is quite a simple construction and just evaluates the SSH handshake.
Username and password are not required for the test.

Not to be confused with check_ssh is the plugin check_by_ssh (see Chapter 9 from
page 157), which starts plugins remotely on a different computer.

108

6.6 Querying the Secure Shell Server

-H address / --hostname=address
Host name or IP address of the computer to which the plugin should set up
an SSH connection.

-p port / --port=port
specifies an alternative port. The default is 22.

-r version / --remote-version=version (from version 1.4)
The version details for the tested Secure Shell must match the specified text
instead of version, otherwise a WARNING will be sent (see example below).
If the version details contain spaces, the string must be enclosed by double
quotes.

-4 / --use-ipv4 (from version 1.4) The test takes place explicitly over an IPv4
connection.

-6 / --use-ipv6 (from version 1.4) The test takes place explicitly over an IPv6
connection.

-t timeout / --timeout=timeout]
After timeout (by default, 10) seconds the plugin breaks off the test and
returns the CRITICAL state.

The following example in turn tests the Secure Shell daemons on the local com-
puter and on wobgate, to see whether the current SSH version from Debian Sarge
is being used:

nagios@linux:nagios/libexec$./check_ssh -H localhost \
-r ’OpenSSH_3.8.1p1 Debian-8.sarge.4’

SSH OK - OpenSSH_3.8.1p1 Debian-8.sarge.4 (protocol 2.0)

nagios@linux:nagios/libexec$./check_ssh -H wobgate -r \
’OpenSSH_3.8.1p1 Debian-8.sarge.4’

SSH WARNING - OpenSSH_3.8.1p1 Debian 1:3.8.1p1-8 (protocol 2.0) version

mismatch, expected ’OpenSSH_3.8.1p1 Debian-8.sarge.4’

The latest version of SSH is not in use on wobgate.

In heterogeneous environments with various Linux distributions, you will usually
use version checking “manually” only for plugin calls, and only rarely integrate them
into the Nagios configuration. Instead, it is normally sufficient to use command
and service definitions using the following simple pattern:

define command{
command_name check_ssh

command_line $USER1$/check_ssh -H $HOSTADDRESS$

}

109

6 Plugins for Network Services

define service{
service_description SSH

host_name linux01

check_command check_ssh

...

}

Otherwise you run the risk of having to adjust the version number in the command
object after every security update.

6.7 Generic Network Plugins

Sometimes no plugin can be found that is precisely geared to the service to be
monitored. For such cases, two generic plugins are available: check_tcp and
check_udp. Both of them test whether a service is active on the target port for the
protocol in question. Although this does not yet guarantee that the service running
on the port really is the one in question, in an environment that one adminstrator
looks after and configures, this can be sufficiently guaranteed in other ways.

Both plugins send a string to the server and evaluate the reply. This is at its most
simple for text-based protocols such as POP or IMAP: these two “specific” plugins,
which are tailor-made for these two mail services (see Section 6.3.2 from page 95),
use nothing more than symbolic links to check_tcp, which has already completed
the corresponding question-and-answer game with relevant default settings.

If you know the protocol to be tested and you configure a “quiz” that will fit this
(no easy task for binary protocols), a check becomes considerably more than just
a port scan. In this way the generic plugins can also be substituted for specific
missing plugins.

6.7.1 Testing TCP ports

check_tcp is concentrated on TCP-based services. In line with its generic nature, it
has a large number of options:

-H address / --hostname=address
This is the IP address or host name of the computer whose port should be
tested.

-p port / --port=port
This specifies the target port. In contrast to the plugins that are formed as a
symbolic link to check_tcp, this detail is always required.

-w floating point decimal / --warning=floating point decimal
This sets the warning limit for the response time in seconds.

110

6.7 Generic Network Plugins

-c floating point decimal / --critical=floating point decimal
This sets a time limit like -w but specifies the critical limit value.

-s ”string” / --send=”string”
This is the string that the plugin should send to the server.

-e” string”/ --expect=”string”
This is the string that the reply of the server should contain. The plugin does
not restrict its search here to the first line.

-q” string / --quit=”string”
This is the string that requests the service to end the connection.

-m bytes / --maxbytes=bytes
The plugin closes the connection if it has received more than bytes.

-d floating point decimal / --delay=floating point decimal
This is the time period in seconds between sending a string and checking the
response.

-t timeout / --timeout=timeout
After timeout (the default is 10) seconds the plugin stops the test and re-
turns the CRITICAL status.

-j / --jail
Setting this displays the TCP output. For text-based protocols such as POP
or IMAP, this is usually “human-readable”, but for binary protocols you gen-
erally cannot decipher the output, so that -j is appropriate.

-r return value / --refuse=return value (from version 1.4)
This switch specifies what value the plugin returns if the server rejects the
TCP connection. The default is crit (CRITICAL). With ok as the return value,
you can test whether a service is available that should not be accessible from
outside. The third possible value, warn, ensures that a WARNING is given.

-M return value / --mismatch=return value (from version 1.4)
How should the plugin react if a returned string does not match what is
specified with -e? The default is warn, which means that a WARNING is
given. With crit, a false return value could be categorized as CRITICAL, and
with ok, as OK.

-D days / --certificate=days (from version 1.4)
This is the time span in days for which a server certificate must at least be
valid for the test to run successfully. It is relevant only for SSL connections.
Note that there is a danger of confusion: in the check_http plugin this same
option is -C (see page 101). If the time span drops below the time period
specified for the server certificate, the plugin returns a WARNING.

111

6 Plugins for Network Services

-S / --ssl (from Version 1.4)
SSL/TLS should be used for the connection. The plugin cannot handle START-
TLS11 .

-4 / --use-ipv4 (from version 1.4)
The test takes place specifically over an IPv4 connection.

-6 / --use-ipv6 (from version 1.4)
The test takes place specifically over an IPv6 connection.

The following example checks on the command line whether a service on the target
host 192.168.1.89 is active on port 5631, the TCP port for the Windows remote-
control software, PC Anywhere:

nagios@linux:nagios/libexec$./check_tcp -H 192.168.1.89 -p 5631

TCP OK - 0,061 second response time on port 5631 | time=0,060744s;0,

000000;0,000000;0,000000;10,000000

For all services for which the computer name and port detail are sufficient as pa-
rameters for the test, the command object is as follows:

define command{
command_name check_tcp

command_line $USER1$/check_tcp -H $HOSTADDRESS$ -p $ARG1$

}

To monitor the said PCAnywhere on the machine Win01, the following service
definition would be used:

define service{
service_description pcAnywhere

host_name Win01

check_command check_tcp!5631

...

}

6.7.2 Monitoring UDP ports

It is not so simple to monitor UDP ports, since there is no standard connection
setup, such as the three-way-handshake for TCP, in the course of which a con-
nection is opened, but data is not yet transferred. For a stateless protocol such as
UDP there is no regulated sequence for sent and received packets. The server can

11 See footnote on page 96.

112

6.7 Generic Network Plugins

reply to a UDP packet sent by the client with a UDP packet, but it is not obliged to
do this.

If you find an unoccupied port, the requested host normally sends back an “ICMP
port unreachable” message, which evaluates the plugin. If there is no reply, there
are two possibilities: either the service on the target port is not reacting to the
request, or a firewall is filtering out network traffic (either the UDP traffic itself or
the ICMP message). This is why you can never be sure with UDP whether the server
behind a particular port really is offering a service or not.

In order to force a positive response where possible, you normally have to send data
to the server, with the option -s, containing some kind of meaningful message for
the underlying protocol. Most services will not respond to empty or meaningless
packets. This is why you cannot avoid getting to grips with the corresponding
protocol, since you will otherwise not be in a position to send meaningful data to
the server, to prompt it into giving a reply at all.

The plugin itself has the following options:

-H address / --hostname=address
This is the IP address or host name of the computer whose port should be
tested by the plugin.

-p port / --port=port
This switch specifies the target port.

-w floating point decimal / --warning=floating point decimal
This sets the warning limit for the response time in seconds.

-c time / --critical=time
This sets the critical limit in seconds (see -w).

-s ”string”/ --send=”string”
This is the string that the plugin sends to the server.

-e ” string ”/ --expect=”string”
This is the string that the first reply line of the server should contain.

-t timeout / --timeout=timeout
After timeout (default: 10) seconds have expired, the plugin stops the test
and returns the CRITICAL status.

The following example tests whether a service on the target host 192.168.1.13 is
active on the time server (NTP) Port 123. The NTP daemon only replies to packets
containing a meaningful request (e.g., to ones whose contents begin with w):

nagios@linux:nagios/libexec$./check_udp -H 192.168.1.13 -p 123 -s "w"

Connection accepted on port 123 - 0 second response time

113

6 Plugins for Network Services

It does not respond to packets with data not in the protocol form. Normally NTP
expects a relatively complex packet12 containing various information. The w used
here, reached by trial and error, does not contain really meaningful data, but it does
provoke the server into giving a response.

The command line command shown above is implemented as follows as a com-
mand object:

define command{
command_name check_udp

command_line $USER1$/check_udp -H $HOSTADDRESS$ -p $ARG1$ -s $ARG2$

}

In contrast to check_tcp, it is useful here to give services that are based on this
possibility of sending test data with -s. You therefore need two arguments.

Checking an NTP time server is then taken over by the following service definition:

define service{
service_description

host_name timesrv

check_command check_tcp!123!w

...

}

As in the command line example, Nagios sends the string w to the service to pro-
voke a positive response.

6.8 Monitoring Databases

Nagios provides three plugins for monitoring databases: check_pgsql for Post-
greSQL, check_mysql for MySQL, and check_oracle for Oracle. The last will not be
covered in this book.13 They all have in common the fact that they can be used both
locally and over the network. The latter has the advantage that the plugin in ques-
tion does not have to be installed on the database server. The disadvantage is that
you have to get more deeply involved with the subject of authentication, because
configuring a secure local access to the database is somewhat more simple.

For less critical systems, network access by the plugin can be done without a pass-
word. To do this, the user nagios is set up with its own database in the database
management system to be tested, which does not contain any (important) data.

12 The protocol version NTPv3 is described in RFC 1305: http://rfc.sunsite.dk/rfc/rfc1305.html.
13 The plugin check_oracle assumes the installation of an Oracle Full Client on the Nagios server;

it does not work together with the Instant Client and expects its users to have an extensive
knowledge of Oracle. To explain all this here is far beyond the scope of this book.

114

6.8 Monitoring Databases

Areas accessed by this user can be isolated from other data, stored in the DBMS,
through the database’s own permissions system.

Of course, there is nothing stopping you from setting up a password for the user
nagios. But if you cannot make use of SSL-encrypted connections, this will be
transmitted in plain text for most database connections. In addition, it is stored
unencrypted in the Nagios configuration files. In this respect the password does
offer some protection, but it is not really that secure.

As an additional measure, you should certainly restrict the IP address from which a
user nagios user can access the database on the Nagios server.

The plugins introduced here have only read access to the database. check_mysql
additionally allows a pure connection check, without read access. A write access to
the database is not available in any of the plugins mentioned. For Oracle there is a
plugin on The Nagios Exchange14 called check_oracle_writeaccess.sh, which also
tests the writeability of the database.

6.8.1 PostgreSQL

With the check_pgsql plugin you can establish both local and network connections
to the database. Local connections are handled by PostgreSQL via a Unix socket,
which is a purely local mechanism. An IP connection is set up by check_pgsql if a
target host is explicitly passed to it. The plugin performs a pure connection test to
a test database but does not read any data from it.

In order that PostgreSQL can be reached over the network, you must start the
postmaster program, either with -i, or by setting the parameter tcpip_socket in
the configuration file postgresql.conf to the value true.

Configuring a monitor-friendly DBMS

In order to separate the data that the user nagios (executing the plugin) gets to
see more clearly from other data, you first set up a database user with the same
name, and a database to which this user is given access:

postgres@linux:˜$ createuser --no-adduser --no-createdb nagios

postgres@linux:˜$ createdb --owner nagios nagdb

Of particular importance when creating a database user with the command create-
user is the option --no-adduser. To PostgreSQL, the ability to be allowed to create
users automatically means that you are the superuser, who can easily get round the

14 http://www.nagiosexchange.org/Databases.57.0.html

115

6 Plugins for Network Services

various permissions set.15 But nagios should not be given superuser permissions
under any circumstances.

createdb finally creates a new, empty database called nagdb, which belongs to
nagios.

Access to the database can be restricted in the file pg_hba.conf. Depending on the
distribution, this can be found either in /etc/postgresql or in the subdirectory ./data
of the database itself (for example, /var/lib/pgsql/data for SUSE). The following
extract restricts access by the database user nagios to a specific database and to
the IP address of the Nagios server (instead of the IP address to be completed by
ip-nagios):

#type db user ip-address ip-mask method options

local nagdb nagios ident sameuser

host nagdb nagios ip-nagios 255.255.255.255 ident sameuser

The first line is a comment describing the function of the columns. The second
line allows the database user nagios access to the database nagdb over a local
connection. Even though the authentication method here is called ident, you do
not need a local ident daemon for Linux and BSD variants (NetBSD, FreeBSD, etc.).

The last line describes the same restriction, but this time it is for a TCP/IP connection
to the Nagios server. But now PostgreSQL asks the ident daemon of the Nagios
server which user has set off the connection request. This means that an ident
daemon must be installed on ip-nagios. In this way the DBMS tests whether the
user initiating the connection from the Nagios server really is called nagios. It will
not permit another user (or a connection from different host).

Normally the ident protocol is only partially suited for user authentication. But in
the case of the Nagios server you can assume that a host is involved that is under
the control of the administrator who can ensure that an ident daemon really is
running on port 113.

There is a huge range of different ident daemons. pidentd16 is widely used and
is included in most Linux distributions. Normally it is already preconfigured and
just needs to be started. But how it is started depends on the distribution; usually
inetd or xinetd takes over this task. A glance at the documentation (should) put
you straight.

After modifying the configuration file pg_hba.conf you must stop the DBMS so
that it can reload the configuration files. This is best done with the command

linux:˜ # /etc/init.d/postgresql reload

(a restart is not necessary). If the configuration of the inetd/xinetd was modified,
this daemon is reinitialized in the same way.

15 Permissions in PostgreSQL are given by the database command GRANT.
16 http://www.lysator.liu.se/~pen/pidentd/.

116

6.8 Monitoring Databases

The test plugin check_pgsql

check_pgsql has the following options:

-H address / --hostname=address
If given this option, the plugin establishes a TCP/IP connection instead of
making contact with a local DBMS through a Unix socket.

-P port / --port=port
In contrast to the plugins discussed until now, check_pgsql uses a capital
P to specify the port on which PostgreSQL is running. In its default value
it is connected to port 5432. This option is only useful if PostgreSQL allows
TCP/IP connections.

-d database / --database=database
This is the name of the database to which the plugin should be connected.
If this detail is missing, it uses the standard database template1.

-w floating point decimal / --warning=floating point decimal
This is the warning time in seconds for the performance time for the test.

-c floating point decimal / --critical=floating point decimal
This is the critical limit for the performance time of the test in seconds.

-l user / --logname=user
This is the name of the user who should establish contact to the database.

-p passwd / --password=passwd
This switch sets the password for access to the database. Since this must
be stored in plain text in the service definition, a potential security problem
is involved. It is preferable to explicitly define a restricted, password-free
access to the database in the PostgreSQL configuration for the user nagios.

-t timeout / --timeout=timeout]
After 10 seconds have expired, the plugin stops the test and returns the
CRITICAL status. This option allows the default value to be changed.

-4 / --use-ipv4 (from version 1.4)
The test takes place explicitly across an IPv4 connection.

-6 / --use-ipv6 (from version 1.4)
The test takes place explicitly across an IPv6 connection.

To test the reachability across the network of the database nagdb set up specially
for this purpose, this is passed on as a parameter together with the target host
(here: linux01):

117

6 Plugins for Network Services

nagios@linux:nagios/libexec$./check_pgsql -H linux01 -d nagdb

CRITICAL - no connection to ’nagdb’ (FATAL: IDENT authentication failed

for user "nagios")

The fact that the check went wrong in the example is clearly due to the ident
authentication. This happens, for example, if you forget to reload the ident daemon
after the configuration has been modified. Once the error has been rectified, the
plugin—hopefully—will work better:

nagios@linux:nagios/libexec$./check_pgsql -H linux01 -d nagdb

OK - database nagdb (0 sec.)|time=0,000000s;2,000000;8,000000;0,000000

If the database parameter is omitted, check_pgsql will address the database tem-
plate1:

nagios@linux:nagios/libexec$./check_pgsql -H linux01

CRITICAL - no connection to ’template1’ (FATAL: no pg_hba.conf entry for

host "172.17.129.2", user "nagios", database "template1", SSL off)

A similar result is obtained if you run the test with the correct database, but with
the wrong user:

wob@linux:nagios/libexec$./check_pgsql -H linux01 -d nagdb

CRITICAL - no connection to ’nagdb’ (FATAL: no pg_hba.conf entry for

host "172.17.129.2", user "wob", database "nagdb", SSL off)

You should certainly run the last two tests, just to check that the PostgreSQL
database really does reject corresponding requests. Otherwise you will have a se-
curity leak, and we recommend that you remove settings in the configuration that
are too generous.

If you have created a separate database for the check, there is no reason why you
shouldn’t write this explicitly in the command definition, instead of using parame-
ters, with $ARG1$:

define command{
command_name check_pgsql

command_line $USER1$/check_pgsql -H $HOSTADDRESS$ -d nagdb

}

Then the service definition for linux01 is as simple as this:

define service{
service_description PostgreSQL

host_name linux01

check_command check_pgsql

...

}

118

6.8 Monitoring Databases

6.8.2 MySQL

With the check_mysql plugin, MySQL databases can be tested both locally and
across the network. For local connections, it makes contact via a Unix socket, and
not via a real network connection.

MySQL configuration

In order that the database can be reached across the network, the skip-networking
option in the configuration file my.cnf must be commented out. The database
should then be running on TCP port 3306, which can be tested with netstat -ant,
for example:

user@linux:˜$ netstat -ant | grep 3306

tcp 0 0 0.0.0.0:3306 0.0.0.0:* LISTEN

To set up the password-free access to the database relatively securely, a separate
nagdb database is also created here that does not contain any critical data, and for
which the user nagios is given restricted access from the Nagios server. To do this,
you connect yourself, as the database user root, to the database mysql, and there
you create the database nagdb:

user@linux:˜$ mysql --user=root mysql

mysql> CREATE DATABASE nagdb;

If the command mysql --user=root mysql functions without the need to enter a
root password, then you have a serious security problem. In that case, anyone—
at least from the database server—is able to obtain full access to the database.
If this is the case, it is essential that you read the security notes in the MySQL
documentation.17

Recreating a user and the access restrictions can be done in one and the same step:

mysql> GRANT select ON nagdb.* TO nagios@ip-nagios;

The command sets up the user nagios, if it does not exist. It may only accept con-
nections from the Nagios server with the IP address ip-nagios and obtains access
to all tables in the database nagdb, but may execute only the SELECT command
there (no INSERT, no UPDATE or DELETE); that is, user nagios only has read access.

17 To be found, for example, at http://dev.mysql.com/doc/mysql/de/Security.html.

119

6 Plugins for Network Services

The test plugin check_mysql

check_mysql has fewer options than its PostgreSQL equivalent—apart from -H, it
does not implement any standard flags and has neither a warning not a critical
limit for the performance time of the test. For the database-specific options, it
uses the same syntax as check_pgsql, except for the user entry:

-H address / --hostname=address
This sets the host name or IP address of the database server. If the option
-H is omitted, or if it is used in connection with the argument localhost,
check_mysql does not set up a network connection but uses a Unix socket.
If you want to establish an IP connection to localhost, you must explicitly
specify the IP address 127.0.0.1.

-P port / --port=port
This is the TCP port on which MySQL is installed. In the default, port 3306 is
used.

-d database / --database=database
This is the name of the database to which the plugin should set up a con-
nection. If this option is omitted, it only makes a connection to the database
process, without addressing a specific database.

-u user / --username=user
This is the user in whose name the plugin should log in to the DBMS.

-p passwd / --password=passwd
This switch is used to provide the password for logging in to the database.

To set up a connection to the database nagdb as the user nagios, both parameters
are passed on to the plugin:

nagios@linux:nagios/libexec$./check_mysql -H dbhost -u nagios -d nagdb

Uptime: 19031 Threads: 2 Questions: 80 Slow queries: 0 Opens: 12

Flush tables: 1 Open tables: 6 Queries per second avg: 0.004

In contrast to PostgreSQL, with MySQL you can also make contact without estab-
lishing a connection to a specific database:

nagios@linux:nagios/libexec$./check_mysql -H dbhost

Uptime: 19271 Threads: 1 Questions: 84 Slow queries: 0 Opens: 12

Flush tables: 1 Open tables: 6 Queries per second avg: 0.004

With a manual connection to the database, with mysql, you can then subsequently
change to the desired database, using the MySQL command use:

120

6.9 Monitoring LDAP Directory Services

user@linux:˜$ mysql -u nagios

mysql> use nagdb;

Database changed

mysql>

With this plugin, a subsequent database change is not possible. Here you must
decide from the beginning whether you want to contact a database or whether
you just want to establish a connection to the MySQL database system.

To test a nagdb database set up explicitly for this purpose, you can do without pa-
rameters when creating the corresponding command object, and explicitly specify
both user and database:

define command{
command_name check_mysql

command_line $USER1$/check_mysql -H $HOSTADDRESS$ -u nagios -d nagdb

}

This simplifies the service definition:

define service{
service_description MySQL

host_name linux01

check_command check_mysql

...

}

6.9 Monitoring LDAP Directory Services

For monitoring LDAP directory services, the check_ldap plugin is available. It runs
a search query that can be specified anonymously or with authentication. It has
the following parameters to do this:

-H address / --hostname=address
This is the host name or IP address of the LDAP server.

-b base dn / --base=base dn
This is the top element (Base Domain Name) of the LDAP directory, formed
for example from the components of the domain name: dc=swobspace,dc=
de.

-p port / --port=port
This is the port on which the LDAP server is running. The default is the
standard port 389.

121

6 Plugins for Network Services

-a ”ldap-attribute” / --attr=”ldap-attribute”
This switch enables a search according to specific attributes. Thus -a
”(objectclass=inetOrgPerson)” searches for all nodes in the directory tree
containing the object class inetOrgPerson (normally used for telephone and
e-mail directories, for example).

Specifying attributes in the check is less useful than it may seem. If you
search through an LDAP directory for nonexistent attributes, you will nor-
mally receive an answer with zero results, but no errors.

-D ldap bind dn / --bind=ldap bind dn
This specifies a bind DN18 for an authenticated connection, such as:

uid=wob,dc=swobspace,dc=de

Without this entry, the plugin establishes an anonymous connection.

-P ldap passwd / --pass=ldap passwd
This is the password for an authenticated connection. It only makes sense in
conjunction with the option -D.

-t timeout / --timeout=timeout
After timeout seconds have expired (10 seconds if this option is not given),
the plugin stops the test and returns the CRITICAL status.

-2 / --ver2 (from version 1.4)
Use LDAP version v2 (the default). If the server does not support this protocol
version, the connection will fail. In OpenLDAP from version 2.1, v3 is used by
default; to activate protocol version v2, the following line is entered in the
configuration file slapd.conf:

allow bind_v2

Many clients, such as Mozilla and the Thunderbird address book, are still
using LDAP version v2.

-3 / --ver3 (from version 1.4)
Use LDAP version v3. For many modern LDAP servers such as OpenLDAP, this
is now the standard, but they usually also have parallel support for the older
version v2, since various clients cannot yet implement v3.

-w floating point decimal / --warning=floating point decimal
If the performance time of the plugin exceeds floating point decimal sec-
onds, it issues a warning.

18 A bind DN serves to identify the user and refers to the user’s nodes in the directory tree, spec-
ifying all the overlying nodes. The bind DN in LDAP corresponds in its function more or less to
the username when logging in under Unix.

122

6.9 Monitoring LDAP Directory Services

-c floating point decimal / --critical=floating point decimal
If the performance time of the plugin exceeds floating point decimal sec-
onds, it returns CRITICAL.

-4 / --use-ipv4 (from version 1.4)
The test is done explicitly across an IPv4 connection.

-6 / --use-ipv6 (from version 1.4)
The test is done explicitly across an IPv6 connection.

In the simplest case it is sufficient to query whether the LDAP server really does
own the base DN specified with -b:

nagios@linux:nagios/libexec$./check_ldap -H ldap.swobspace.de \
-b "dc=swobspace,c=de"

LDAP OK - 0,002 seconds response time|time=0,002186s;;;0,000000

This query corresponds to the following command object:

define command{
command_name check_ldap

command_line $USER1$/check_ldap -H $HOSTADDRESS$ -b $ARG1$

}

Since an LDAP server can handle many LDAP directories with different base DNs, it
is recommended that you configure this with parameters:

define service{
service_description LDAP

host_name linux01

check_command check_ldap!dc=swobspace,dc=de

...

}

If authentication is involved, things get slightly more complicated. On the one hand
the plugin is given the bind-DN of the nagios user, with -D. On the other hand,
the following example protects the necessary password from curious onlookers by
storing this as the macro $USER3$ in the file resource.cfg, which may be readable
only for the user nagios (see Section 2.14, page 59):

define command{
command_name check_ldap_auth

command_line $USER1$/check_ldap -H $HOSTADDRESS$ -b $ARG1$ -D $ARG2$ \
-P $USER3$

}

123

6 Plugins for Network Services

Accordingly, the matching service definition contains the base DN and bind DN as
arguments, but not the password:

define service{
service_description LDAP

host_name linux01

check_command check_ldap_auth!dc=swobspace,dc=de!uid=nagios,\
dc=swobspace,dc=de

...

}

6.10 Checking a DHCP Server

To monitor DHCP services, the plugin check_dhcp is available. It sends a DHCP-
DISCOVER via UDP broadcast to the target port 67 and waits for an offer from a
DHCP server in the form of a DHCPOFFER, which offers an IP address and further
configuration information.

Because check_dhcp does not send a DHCPREQUEST after this, the server does
not need to reserve the sources and to confirm this reservation with DHCPACK,
nor does it need to reject the request with DHCPNACK.

Granting the plugin root permissions

There is a further restriction to the check_dhcp: it requires full access to the net-
work interface and must therefore run with root privileges.

It should, however, be executed—like all other plugins—by the user nagios. The
program is accordingly transferred to the user root, and the SUID bit is set with
chmod. Such s-bits are always a potential danger, since buffer overflows could be
used to obtain general root privileges if code has been written carelessly. For this
reason, the chmod command is chosen so that, apart from root, only the group
nagios is given the permission to execute the plugin:

linux:nagios/libexec # chown root.nagios check_dhcp

linux:nagios/libexec # chmod 4750 check_dhcp

linux:nagios/libexec # ls -l check_dhcp

-rwsr-x--- 1 root nagios 115095 Jan 8 12:15 check_dhcp

The chown command assigns the plugin to the user root and to the group nagios,
to whom nobody else should belong apart from the user nagios itself. (The user in
whose name the Web server is running should be a member of a different group,
such as nagcmd, as is described in Chapter 1 from page 25.)

In addition the chmod ensures that nobody apart from root may even read the
plugin file, let alone edit it.

124

6.10 Checking a DHCP Server

Applying the plugin

check_dhcp only has five options:

-s server ip / --serverip=server ip
This is the IP address of a DHCP server that the plugin should explicitly query.
Without this entry, it is sufficient to have a functioning DHCP server in the
network to pass the test satisfactorily. So you have to decide whether you
want to test the general availability of the DHCP service or the functionality
of a specific DHCP server.

-r requested ip / --requestedip=requested ip
With this option the plugin attempts to obtain the IP address requested ip
from the server. If this is not successful because it is already reserved or lies
outside the configured area, check_dhcp reacts with a warning.

-i interface / --interface=interface
This selects a specific network interface through which the DHCP request
should pass. Without this parameter, the plugin always uses the first network
card to be configured (in Linux, usually eth0).

-t timeout / --timeout=timeout
After 10 seconds have expired (the default), otherwise timeout seconds, the
plugin stops the test and returns the CRITICAL state.

With a configurable warning or critical limit for the performance time, the plugin
is of no use. Here you must, where necessary, explicitly set a timeout, which causes
the CRITICAL return value to be issued.

The following example shows that the DHCP service in the network is working:

nagios@linux:nagios/libexec$./check_dhcp -i eth0

DHCP ok: Received 1 DHCPOFFER(s), max lease time = 600 sec.

The plugin includes only the lease time as additional information, that is, the time
for which the client would be assigned an IP address. If you want to see all the
information contained in DHCPOFFER, you should use the option -v (“verbose”).

In the next example the plugin explicitly requests a specific IP address (192.168.1.
40), but this is not available:

nagios@linux:nagios/libexec$./check_dhcp -i eth0 -r 192.168.1.40

DHCP problem: Received 1 DHCPOFFER(s), requested address (192.168.1.40)

was not offered, max lease time = 600 sec.

nagios@linux:nagios/libexec$ echo $?

1

125

6 Plugins for Network Services

The result is a WARNING, as is shown by the output of the status, with $?.

If you want to test both the availability of the DHCP service overall and the servers
in question individually, you need two different commands:

define command{
command_name check_dhcp_service

command_line $USER1$/check_dhcp -i eth0

}

check_dhcp_service grills the DHCP service as a whole by sending a broadcast, to
which any DHCP server at all may respond.

define command{
command_name check_dhcp_server

command_line $USER1$/check_dhcp -i eth0 -s $HOSTADDRESS$

}

check_dhcp_server on the other hand explicitly tests the DHCP service on a spe-
cific server.

To match this, you can then define one service that monitors DHCP as a whole and
another one that tests DHCP for a specific host. Even if the first variation is in
principle not host-specific, it still needs to be assigned explicitly to a computer for
it to run in Nagios:

define service{
service_description DHCP Services

host_name linux01

check_command check_dhcp_service

...

}

define service{
service_description DHCP Server

host_name linux01

check_command check_dhcp_server

...

}

6.11 Monitoring UPS with the Network UPS Tools

There are two possibilities for monitoring uninterruptible power supplies (UPS):
the Network UPS Tools support nearly all standard devices. The apcupsd daemon
is specifically tailored to UPS’s from the company APC, described in Section 7.10

126

6.11 Monitoring UPS with the Network UPS Tools

from page 149. The plugin check_ups included in Nagios only supports the first
implementation.

The following rule generally applies: no plugin directly accesses the UPS interface.
Rather they rely on a corresponding daemon that monitors the UPS and provides
status information. This daemon primarily serves the purpose of shutting down the
connected servers in time in case of a power failure. But it also always provides
status information, which plugins can query and which can be processed by Nagios.

Both the solution with the Network UPS Tools and that with apcupsd are funda-
mentally network-capable, that is, the daemon is always queried via TCP/IP (through
a proprietary protocol, or alternatively SNMP). But you should be aware here that
a power failure may affect the transmission path, so that the corresponding infor-
mation might no longer even reach Nagios. Monitoring via the network therefore
makes sense only if the entire network path is safeguarded properly against power
failure. In the ideal scenario, the UPS is connected directly to the Nagios server.
Calling the check_ups plugin is no different in this case from that for the network
configuration, since even for local use it communicates via TCP/IP—but in this case,
with the host localhost).

The Network UPS Tools

The Network UPS Tools is a manufacturer-independent package containing tools
for monitoring uninterruptible power supplies. Different specific drivers take care
of hardware access, so that new power supplies can be easily supported, provided
their protocols are known.

The remaining functionality is also spread across various programs: while the dae-
mon upsd provides information, the program upsmon shuts down the computers
supplied by the UPS in a controlled manner. It takes care both of machines con-
nected via serial interface to the UPS and, in client/server mode, of computers
supplied via the network.

The homepage http://www.networkupstools.org/ lists the currently supported
models and provides further information on the topic of UPS. Standard distribu-
tions already contain the software, but not always with package names that are
very obvious: in SuSE and Debian they are known by the name of nut.

To query the information provided by the daemon upsd, there is the check_ups
plugin from the Nagios Plugin package. It queries the status of the UPS through
the network UPS Tools’ own network protocol. A subproject also allows it to query
the power supplies via SNMP.19 However, further development on it is not taking
place at the present time.

19 http://eu1.networkupstools.org/server-projects/

127

6 Plugins for Network Services

For purely monitoring purposes via Nagios (without shutting down the computer
automatically, depending on the test result), it is sufficient to configure and start
the upsd on the host to which the UPS is connected via serial cable. The relevant
configuration file in the directory /etc/nut is called ups.conf. If you perform the
query via the network, you must normally add an entry for the Nagios server in
the (IP-based) access permissions. Detailed information can be found directly in
the files themselves or in the documentation included, which in Debian is in the
directory /usr/share/doc/nut, and in SuSE, in /usr/share/doc/packages/nut.

Provided that the Network UPS Tools include a suitable driver for the uninterrupt-
able power supply used, the driver and communication interface are entered in the
file ups.conf:

-- /etc/nut/ups.conf

[upsfw]

driver = apcsmart

port = /dev/ttyS0

desc = "Firewalling/DMZ"

In the example, a UPS of the company APC is used. Communication takes place on
the serial interface /dev/ttyS0. A name for the UPS is given in square brackets, with
which it is addressed later on: desc can be used to describe the intended purpose
of the UPS in more detail, but Nagios ignores this.

Next you must ensure that the user with whose permissions the Network UPS
Tools are running (such as the user nut from the group nut) has full access to the
interface /dev/ttyS0:

user@linux:˜$ chown nut:nut /dev/ttyS0

user@linux:˜$ chmod 660 /dev/ttyS0

In order for Nagios to access information from the UPS via the upsd daemon,
corresponding data is entered in an Access Control List in the upsd configuration
file upsd.conf:

-- /etc/nut/upsd.conf

ACL aclname ipblock

ACL all 0.0.0.0/0

ACL localhost 127.0.0.1/32

ACL nagios 172.17.129.2/32

ACCESS action level aclname

ACCESS grant monitor localhost

ACCESS grant monitor nagios

ACCESS deny all all

128

6.11 Monitoring UPS with the Network UPS Tools

With the keyword ACL you first define hosts and network ranges with their IP
address. You must always specify a network block here: /32 means that all 32
bits of the netmask are set to 1 (this corresponds to 255.255.255.255), which is
therefore a single host address. It is not sufficient just to specify the IP address
here.

An ACCESS entry transfers the actual access permissions to the computers specified
in the ACL aclname. The computers defined in the ACLs localhost and nagios are
allowed to access the monitoring data thanks to the monitor permission (grant),
but nothing more. The last ACCESS finally denies (deny) any access to all others.

To conclude the configuration, you should make sure that the UPS daemon is
started with every system start. In SuSE this is done via YaST2; in Debian this is
taken care of during the installation.

The check_ups plugin

The monitoring plugin itself has the following options:

-H address / --host=address
This is the computer on which upsd is installed.

-u identifier / --ups=identifier
This is the name for the UPS in ups.conf, specified in square brackets.

-p port / --port=port
This is the number of the port on which the upsd is running. The default is
TCP port 3493.

-w whole number / --warning=whole number
This switch defines a warning limit as a whole number. If no variable is
given (see -v), whole number means a response time in seconds; otherwise
the value range of the variable (e.g., 80 for 80% in BATTPCT). Specifying
multiple warning limits is currently not possible: the plugin then only uses
the last variable and the last warning limit.

-c whole number / --critical=whole number
This option specifies a critical limit in connection with a variable (see -v).

-v variable / --variable=variable
With this option, specific values of the UPS can be queried. The limit val-
ues then referred to this parameter. check_ups currently supports only the
following variables:

LINE: input voltage of the UPS.

TEMP: Temperature of the USV.

129

6 Plugins for Network Services

BATTPCT: Remaining battery capacity in percent.

LOADPCT: Load on the UPS in percent.

If this option is missing, the plugin only checks the status of the UPS (online
or offline).

Since -v thus has another value, check_ups does not know the obligatory
option --verbose (see Table 6.2 on page 88), even in its long form.

-T / --temperature
This command issues temperature values in degrees Celsius.

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin stops the test and returns
the CRITICAL state. The default is 10 seconds.

The following example tests the above defined local UPS with the name upsfw.
The -T switch should ensure that the output of the temperature is given in degrees
Celsius, which only partially works here: the text displayed by Nagios before the
pipe sign | contains the correct details, but in the performance data after the |, the
plugin version 1.4 still shows the information in degrees Fahrenheit.

user@linux:nagios/libexec$./check_ups -H localhost -u upsfw -T

UPS OK - Status=Online Utility=227.5V Batt=100.0% Load=27.0% Temp=30.6C|

voltage=227500mV;;;0 battery=100%;;;0;100 load=27%;;;0;100 temp=30degF;;

;0

If a variable is not used, the plugin returns a CRITICAL if the UPS is switched off
(Status=Off) or has reached low battery capacity (Status=On Battery, Low Bat-
tery). check_ups issues a warning if at least one of the three states On Battery,
Low Battery or Replace Battery applies, but this is not sufficient for a CRITICAL
status (for example because of correspondingly set variables). With On Battery the
power supply is provided by the battery, with Low Battery the UPS is online with a
low battery state, and with Replace Battery, the battery must be replaced.

If none of these points apply, the plugin issues an OK for the following states:

In the normal online state

If the UPS is being calibrated (Calibrating)

If it is currently being bypassed and the power supply is provided directly from
the power supply grid (On Bypass)

If the UPS is overloaded (Overload)

If the voltage in the power grid is too high and the UPS restricts the voltage to
the normal value (Trimming)

130

6.11 Monitoring UPS with the Network UPS Tools

If the voltage in the power grid is too low and is supplemented by the UPS
(Boosting)

If the UPS is currently being charged (Charging)

If the UPS is currently being discharged (e.g., during a programmed maintenance
procedure) (Discharging).

Transformed into a command object, the above test for any host looks like this:

define command{
command_name check_ups

command_line $USER1$/check_ups -H $HOSTADDRESS$ -u $ARG1$ -T

}

The corresponding service definition for the computer linux01, to which the UPS
is connected, and for the above defined UPS upsfw, would then look like this:

define service{
service_description UPS

host_name linux01

check_command check_ups!upsfw

...

}

If check_ups is to determine the UPS status by means of the current load, the
relevant information is taken from the variable LOADPCT:

user@linux:nagios/libexec$./check_ups -H linux01 -u upsfw -T -v \
LOADPCT -w 60 -c 80

UPS WARNING - Status=Online Utility=227.5V Batt=100.0% Load=61.9%

Temp=30.6C|voltage=227500mV;;;0 battery=100%;;;0;100 load=61%;60000;

80000;0;100 temp=30degF;;;0

With 61 percent, the UPS has a heavier load than specified in the limit value -w, but
it does not yet reach the critical area above 80 percent, so there is just a warning.
If two error criteria occur, such as a warning limit for a queried variable being
exceeded and a critical state simultaneously, because the UPS is losing power (On
Battery and Low Battery simultaneously), the most critical state has priority for
the return value of the plug in, so here, check_ups would return CRITICAL, and not
the WARNING which results from the query of LOADPCT.

131

7 Ch
ap

te
r

Testing Local Resources

The plugins introduced in this chapter from the basis range of the nagios-plug-
ins package test local resources that do not have their own network protocol and
therefore cannot be easily queried over the network. They must therefore be locally
installed on the computer to be tested. Such plugins on the Nagios server can
test only the server itself—with command and service definitions as described in
Chapter 6.

To perform such local tests from a central Nagios server on remote hosts, you
require further utilities: the plugins are started via a secure shell, or you use the
Nagios Remote Plugin Executor (NRPE). Using the secure shell is described in
Chapter 9 from page 157, and Chapter 10 (page 165) is devoted to NRPE.

The definition of command and service depends on the choice of mechanism. If you
want to test for free hard drive capacity with the check_by_ssh plugin installed on
the Nagios server, which remotely calls check_disk on the target server (see Section
7, page 133), then a special command definition is required for this, which differs

133

7 Testing Local Resources

somewhat from the definitions given in Chapter 6 (page 85). What command and
service definitions for remotely executed local plugins look like is described in the
aforementioned chapters on NRPE and SSH.

For the remote query of some local resources you can also use SNMP (see Chapter
11 from page 177), but the checks are then restricted to the capabilities of the
SNMP daemon used. Local plugins are usually more flexible here and provide more
options for querying.

7.1 Free Hard Drive Capacity

The question of when the hard drive(s) of a computer may threaten to overflow
is answered by the check_disk plugin, which in version 1.4 includes considerably
more functions than its predecessor:

-w limit / --warning=limit
The plugin will give a warning if the free hard drive capacity drops below this
limit, expressed as a percentage or as an integer. If you specify percentage,
the percent sign % must also be included; floating-point decimals such as
12.5% are possible. Integer values in kBytes are demanded by version 1.3.x,
but by version 1.4 in MBytes (in each case without a unit abbreviation). The
unit can also be influenced with -k, -k, and -u.

-c limit / --critical=limit
If the free hard drive capacity level falls below this as a percentage or integer
(see -w), check_disk displays the CRITICAL status. The critical limit must be
smaller than the warning limit.

-p path or partition / --path=path or --partition=partition
This specifies the root directory in file systems or the physical device in par-
titions (e.g., /dev/sda5). From version 1.4 -p can be called multiple times. If
the path is not specified, the plugin tests all file systems (see also -x and -X).

-e / --errors-only
With this switch, the plugin shows only the file systems or partitions that
are in a WARNING or CRITICAL state.

-k / --kilobytes (from 1.4)
With this switch, limit values given as whole numbers with -c and -w are to
be interpreted as kBytes.

-m / --megabytes (from 1.4)
With this switch, whole number limit values with -c and -w are interpreted
by the plugin as MBytes (the default). Caution: in version 1.3.x, -m has a
completely different meaning!!

134

7.1 Free Hard Drive Capacity

-m / --mountpoint (1.3.x)
Normally check_disk in version 1.3.x will return the physical device (e.g.,
/dev/sda5). -m ensures that the file system path (e.g., /usr) is named instead.

-M / --mountpoint (from 1.4)
From version 1.4 on, check_disk by default displays the file system path (e.g.,
/usr). With -M you are told instead what physical device (e.g., /dev/sda5) is
involved.

-t timeout / --timeout=timeout
After timeout seconds have expired the plugin stops the test and returns
the CRITICAL status. The default is 10 seconds.

-u unit / --units=unit (from 1.4)
In what unit do you specify integer limit values? kB, MB, GB and TB are all
possible.

-x path / --exclude_device=path
This switch excludes the mount point specified as path from the test. This
option may be used several times in a plugin command.

-X fs typ / --exclude-type=fs typ (from 1.4)
This switch excludes a specific file system type from the test. It is given the
same abbreviation as in the -t option of the mount command. In this way
fs type can take the values ext3, reiserfs, or proc, for example (see also man
8 mount). This option can be used several times in a plugin command.

-C / --clear (from 1.4)
From version 1.4 on, -p can be used multiple times. If you want to test
several file systems at the same time, but using different limit values, -C can
be used to delete old limit values that have been set:

-w 10% -c 5% -p / -p /usr -C -w 500 -c 100 -p /var

The order is important here: the limit values are valid for the file system
details until they are reset with -C. Then new limits must be set with -w and
-c.

The plugin versions 1.3.1 (above example) and 1.4 differ not only in their options,
but also in their output. Performance data are missing from the latter (see Chapter
17 from page 313):

user@linux:nagios/libexec$./check_disk -w 10% -c 5% -p /usr

DISK CRITICAL [87000 kB (5%) free on /usr]

user@linux:nagios/libexec$./check_disk -w 10% -c 5% -p /

DISK OK - free space: / 710 MB (74%);| /=247MB;861;909;0;957

135

7 Testing Local Resources

These can be extracted from the Nagios log files and prepared in graphic form.

The following example functions only with version 1.4:

user@linux:nagios/libexec$./check_disk -w 10% -c 5% -p / -p /usr \
-p /var -C -w 5% -c 3% -p /net/emil1/a -p /net/emil1/c -e

DISK WARNING - free space: /net/emil1/c 915 MB (5%);| /=146MB;458;483;0;

509 /usr=1280MB;3633;3835;0;4037 /var=2452MB;3633;3835;0;4037 /net/emil1

/a=1211MB;21593;22048;0;22730 /net/emil1/c=17584MB;17574;17944;0;18499

Everything is in order on the file system /, /usr, and /var, since more space is avail-
able on them—as can be seen from the performance data—than the limit value of
10 percent (for a warning), and certainly more than 5 percent (for the critical sta-
tus). The file systems /net/emil1/a and /net/emil1/c encompass significantly larger
ranges of data, which is why the limit values are set lower, after the previous ones
have been deleted with -C.

-e ensures that Nagios shows only the file systems that really display an error
status. In fact the output of the plugin before the | sign, with /net/emil1/c, only
displays one single file system. The performance information after the pipe can
only be seen on the command line—it contains all file systems tested, as before.
This is slightly confusing, because a Nagios plugin restricts its output to a single
line, which has been line wrapped here for this printed version.

7.2 Utilization of the Swap Space

The check_swap plugin tests the locally available swap space. Here there are again
fundamental differences between versions 1.3.x and 1.4:

-w limit / --warning=limit
The warning limit can be specified as a percentage or as an integer, as with
check_disk, but the integer value is specified in bytes, not in kBytes!

In version 1.3.x the percentage specification refers to used, and not free,
swap space. If at least 10 percent should remain free, you must specify -c
10% in version 1.4, but -c 90% in version 1.3. The integer specification,
however, refers to the remaining free space for both versions.

-c limit / --critical=limit
Critical limit, similar to the warning limit. If a percentage is specified, ver-
sions 1.3.x and 1.4 differ, as in the -w option.

-a / --allswaps
Tests the threshold values for each swap partition individually.

136

7.3 Testing the System Load

The following example tests to see whether at least half of the swap space is avail-
able. If there is less than 20 percent free swap space, the plugin should return a
critical status. The output is from plugin version 1.4, and after the | sign the pro-
gram again provides performance data, which is logged by Nagios but not displayed
in the message on the Web interface:

user@linux:nagios/libexec$./check_swap -w 50% -c 20%

swap OK: 100% free (3906 MB out of 3906 MB) |swap=3906MB;1953;781;0;3906

7.3 Testing the System Load

The load on a system can be seen from the number of simultaneously running
processes, which is tested by the check_load plugin. With the help of the uptime
program, it determines the average value for the last minute, the last five minutes,
and the last 15 minutes. uptime displays these values in this sequence after the
keyword load average:

user@linux:˜$ uptime

16:33:35 up 7:05, 18 users, load average: 1.87, 1.38, 0.74

check_load has only two options (the two limit values), but these can be specified
in two different ways:

-w limit / --warning=limit
This option specifies the warning limit either as a simple floating-point dec-
imal (5.0) or as a comma-separated triplet containing three-floating point
decimals (10.0,8.0,5.0).

In the first case, the limit specified applies to all three average values. The
plugin issues a warning if (at least) one of these is exceeded. In the second
case the triplet allows the limit value to be specified separately for each
average value. Here as well, check_load issues a warning as soon as one of
the average values exceeds the limit defined for it.

-c limit / --critical=limit
This specifies the critical limit in the same way as -w specifies the warning
limit. These critical limit values should be higher than the values for -w.

In the following example Nagios would raise the alarm if more than 15 processes
were active on average in the last minute, if more than 10 were active on average
in the last five minutes, or if eight were active on average in the last 15 minutes.
There is a warning for average values of ten, eight, or five processes:

137

7 Testing Local Resources

user@linux:local/libexec$./check_load -w 10.0,8.0,5.0 -c 15.0,10.0,8.0

OK - load average: 1.93, 0.95, 0.50| load1=1.930000;10.000000;15.000000;

0.000000 load5=0.950000;8.000000;10.000000;0.000000 load15=0.500000;

5.000000;8.000000;0.000000

7.4 Monitoring Processes

The check_procs plugin monitors processes according to various criteria. Usually
it is used to monitor the running processes of just one single program. Here the
upper and lower limits can also be specified.

nmbd, for example, the name service of Samba, always runs as a daemon with two
processes. A larger number of nmbd entries in the process table is always a sure
sign of a problem; it is commonly encountered, especially in older Samba versions.

Services such as Nagios itself should only have one main process. This can be seen
by the fact that its parent process has the process ID 1, marking it is a child of the
init process. It was often the case, in the development phase of Nagios 2.0, that
several such processes were active in parallel after a failed restart or reload, which
led to undesirable side effects. You can test to see whether there really is just one
single Nagios main process active, as follows:

nagios@linux:nagios/libexec$./check_procs -c 1:1 -C nagios -p 1

PROCS OK: 1 process with command name ’nagios’, PPID = 1

The program to be monitored is called nagios (option -C), and its parent process
should have the ID 1 (option -p). Exactly one Nagios process must be running, no
more and no less; otherwise the plugin will issue a CRITICAL status. This is specified
as a range: -c 1:1.

Another example: between one and four simultaneous processes of the OpenLDAP
replication service slurpd should be active:

nagios@linux:nagios/libexec$./check_procs -w 1:4 -c 1:7 -C slurpd

PROCS OK: 1 process with command name ’slurpd’

If the actual process number lies between 1 and 4, the plugin returns OK, as is the
case here. If it finds between five and seven processes, however, a warning will be
given. Outside this range, check_procs categorizes the status as CRITICAL. This is
the case here if there are either no processes running at all, or more than seven
running.

Instead of the number of processes of the same program, you can also monitor
the CPU load caused by it, its use of memory, or even the CPU runtime used.
check_procs has the following options:

138

7.4 Monitoring Processes

-w start:end / --warning=start:end
The plugin issues a warning if the actual values lie outside the range spec-
ified by the start and end value. Without further details, it assumes that it
should count processes: -w 2:10 means that check_procs gives a warning
if it finds less than two or more than ten processes.

If you omit one of the two limit values, zero applies as the lower value, or
infinite as the upper limit. This means that the range :10 is identical to 0:10;
10: describes any number larger than or equal to 10. If you just enter a
single whole number instead of a range, this represents the maximum. The
entry 5 therefore stands for 0:5.

If you swap the maximum and minimum, the plugin will give a warning if
the actual value lies within the range, so for -w 10:5 this will be if the value
is 5, 6, 7, 8, 9 or 10. You may always specify only one interval.

-c start:end / --critical=start:end
This specifies the critical range, in the same way as for the warning limit.

-m type / --metric=type (from version 1.4)
This switch selects one of the following metrics for the test:

PROCS: number of processes (the default if no specific type is given)

VSZ: the virtual size of a process in the memory (virtual memory size),
consisting of the main memory space that the process uses exclusively,
plus that of the shared libraries used. These only take up memory
space once, even if they are used by several different processes. The
specification is given in bytes.

RSS: the proportion of main memory in bytes that the process actually uses
for itself (Resident Set Size), that is, VSZ minus the shared memory.

CPU: CPU usage in percent. The plugin here checks the CPU usage for each
individual process for morning and critical limits. If one of the pro-
cesses exceeds the warning limit, Nagios will issue a warning. In the
text output the plugin also shows how many processes have exceeded
the warning or critical limit.

ELAPSED: The overall time that has passed since the process was started.

-s flags / --state=flags
This restricts the test to processes with the specified status flag.1 The plugin
in the following example gives a warning if there is more than one zombie
process (status flag: Z):

1 The following states are possible in Linux: D (uninterruptible waiting, usually a Disk Wait), R
(running process), S (wait status), T (process halted), W (paging, only up to kernel 2.4), X (a
finished, killed process), and Z (zombie). Further information is provided by man ps.

139

7 Testing Local Resources

nagios/libexec@linux: $./check_procs -w 1 -c 5 -s Z

PROCS OK: 0 processes with STATE = Z

Things become critical here if more than five zombies “block up” the process
table. Several states can be queried at the same time by by adding individual
flags together, as in -s DSZ. Now Nagios cancels the processes that are in at
least one of the states mentioned.

-p ppid / --ppid=ppid
This switch restricts the test to processes whose parent processes have the
parent process ID (ppid). The only PPIDs that are known from the begin-
ning, and that do not change, are 0 (started by the kernel, and usually only
concerns the init process) and 1 (the init process itself).

-P pcpu / --pcpu=pcpu (from version 1.4)
This option filters processes according to the percentage of CPU they use:

nagios/libexec@linux: $./check_procs -w 1 -c 5 -P 10

PROCS OK: 1 process with PCPU >= 10,00

The plugin in this example takes into account only processes which have
at least a ten percent share of CPU usage. As long as there is just one
such process (-w 1), it returns OK. If there are between two and five such
processes, the return value is a WARNING. With at least six processes, each
with a CPU usage of at least ten percent, things get critical.

-r rss / --rss=rss (from version 1.4)
This option filters out processes that occupy at least rss bytes of main mem-
ory. It is used like -P.

-z vsz / --vsz=vsz (from version 1.4)
This option filters out processes whose VSZ (see above) is at least vsz bytes.
It is used like -P.

-u user / --user=user
This option filters out processes that belong to the specified user (see exam-
ple below).

-a ”string” / --argument-array=”string”
This option filters out commands whose argument list contains string. -a
.tex, for example, refers to all processes that work with *.tex files; -a -v to
all processess that are called with the -v flag.

-C command / --command=command
This causes the process list to be searched for the specified command name.
Command must exactly match the command specified, without a path (see
example below).

140

7.5 Checking Log Files

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin stops the test and returns
the CRITICAL status. The default is 10 seconds.

The following example checks to see whether exactly one process called master is
running on a mail server on which the Cyrus Imapd is installed. No process is just
as much an error as more than one process:

user@linux:nagios/libexec$./check_procs -w 1:1 -c 1:1 -C master

CRITICAL - 2 processes running with command name master

The first attempt returns two processes, although only a single Cyrus Master pro-
cess is running. The reason can be found if you run ps:

user@linux:˜$ ps -fC master

UID PID PPID C STIME TTY TIME CMD

cyrus 431 1 0 2004 ? 00:00:28 /usr/lib/cyrus/bin/master

root 1042 1 0 2004 ? 00:00:57 /usr/lib/postfix/master

The Postfix mail service also has a process with the same name. To keep an eye
just on the master process of the Imapd, the search is additionally restricted to
processes running with the permissions of the user cyrus:

user@linux:nagios/libexec$./check_procs -w 1:1 -c 1:1 -C master -u \
cyrus

OK - 1 processes running with command name master, UID = 96 (cyrus)

7.5 Checking Log Files

Monitoring log files is not really part of the concept of Nagios. On the one hand,
the syslog daemon notices critical events there immediately, so that an error status
can be correctly determined. But if the error status continues, this cannot be seen
in the log file in most cases.

Correspondingly the plugins described here can determine only whether other, new
entries on error events are added. In order to communicate information on a con-
tinuing error behavior to Nagios via a log file, the service monitored must log the
error status regularly—at least at the same intervals as Nagios reads the log file—
and repeatedly. Otherwise the plugin will alternate between returning an error
status, and then an OK status, depending on whether the (continuing) error has in
the meantime turned up in the log or not.

Under no circumstances may Nagios repeat its test. The parameter max_check_
e1. Otherwise Nagios would first assign

141

attempts (see page 45) must have the valu

7 Testing Local Resources

the error status as a soft state, would repeat the test, and would almost always
arrive at an OK, since it only takes into account new entries during repeat tests.
max_check_attempts = 1 ensures that Nagios diagnoses a hard state after the
first test.

For events that log an error just once, Nagios has volatile services, described in
Section 14.5.2 from page 257. For services defined in this way, the system treats
every error status as if it was occurring for the first time (causing a message to
be sent each time, for example). Such services must be reset manually to the OK
status. How this is done is described in Section 14.5.3 from page 258.

7.5.1 The standard plugin check_log

With check_log, Nagios provides a simple plugin for monitoring log files. It cre-
ates a copy of the tested log file each time it is run. If the log file has changed
since the previous call, check_log searches the newly added data for simple text
patterns. The plugin does not have any longer options and just has the states OK
and CRITICAL:

-F logfile
This is the name and path of the log file to be tested. It must be readable for
the user nagios.

-O oldlog
This is the name and path of the log file copy. The plugin just examines the
difference between oldlog and logfile when it is run. Afterwards it copies
the current log file to oldlog. oldlog must contain the absolute path and be
readable for the user nagios.

-q query
This is the pattern searched for in examining the log file. Not found means
OK; a match returns the CRITICAL status.

It is recommended that you generally do not use messages of the type recovery
notification (OK after an error state).

An OK in a repeated test just means that no new error in events have occurred
since the last test. The notification_options parameter (see page 46) in the service
definition should therefore not contain an r.

The following command examines the file /var/log/auth for failed logins:

nagios@linux:local/libexec$./check_log -F /var/log/auth \
-O /tmp/check_log.badlogin -q "authentication failure"

(1) < Jan 1 18:47:56 swobspace su[22893]: (pam_unix) authentication

failure; logname=wob uid=200 euid=0 tty=pts/8 ruser=wob rhost= user=root

142

7.5 Checking Log Files

This produces one hit. The plugin does not show its return value in the text, but
it can be displayed in the shell with echo $?. In the example, a 2 for CRITICAL is
returned.

If you examine the log file for several different events, you must specify a separate
oldlog for each log file:

./check_log -F /var/log/messages -O /tmp/check_log.pluto -q "pluto"

./check_log -F /var/log/messages -O /tmp/check_log.ntpd -q "ntpd"

Even if you are searching in the same original log file, you cannot avoid using two
different oldlogs: otherwise check_log would not work correctly.

7.5.2 The modern variation: check_logs.pl

As an alternative, The Nagios Exchange2 provides a completely new plugin for mon-
itoring log files. check_logs.pl represents a further development of the Perl plugin
check_log2.pl, which is included in the contrib directory for Nagios plugins but is
not installed automatically.

check_logs.pl can examine several log files simultaneously for events, in contrast
to check_log and check_log2.pl. It requires a configuration file to do this.

It does have a simple command line mode, but this functions only if you specify
a single log file and a single regular expression simultaneously. But the really in-
teresting feature of check_logs.pl is that you can perform several examinations in
one go. This is why we will not spend any more time describing the command line
mode.

Initially we create a configuration file with roughly the following contents, prefer-
ably in the directory /etc/nagios:

/etc/nagios/check_logs.cfg

$seek_file_template=’/var/nagios/$log_file.check_log.seek’;

@log_files = (

{’file_name’ => ’/var/log/messages’,

’reg_exp’ =>’ntpd’,

},
{’file_name’ => ’/var/log/warn’,

’reg_exp’ =>’(named|dhcpd)’,

},
);

1;

The Perl variable $seek_file_template contains the path to the file in which the
plugin saves the current position of the last search. check_logs.pl remembers here

2 http://www.nagiosexchange.org/Misc.54.0.html.

143

7 Testing Local Resources

at what point in the log file it should carry on searching the next time it is run. This
means that the plugin does not require a copy of the processed log file. Instead of
the variable $log_file, it uses the name of the log file to be examined in each case
and creates a separate position file for each log file.

What exactly check_logs.pl is to do is defined by the Perl array @log_files. The
entry file_name points to the log file to be tested (with the absolute path), and
reg_exp contains the regular expression3 , for which check_logs.pl should search
the log file. In the example above this is just a simple text called ntpd in the
case of the /var/log/messages log file, but there is an alternative in the case of
/var/log/warn: the regular expression (named|dhcpd) matches lines that contain
either the text named or the text dhcpd.

The only specification that the plugin itself requires when it is run is the configu-
ration file (option -c) :

nagios@linux:local/libexec$./check_logs.pl -c /etc/nagios/check_logs.cfg

messages => OK; warn => OK;

nagios@linux:local/libexec$./check_logs.pl -c /etc/nagios/check_logs.cfg

messages => OK; warn => (4): Jul 2 14:33:25 swobspace dhcpd:

Configuration file errors encountered -- exiting;

The first command shows the basic principle: in the text output the plugin for each
log file announces separately whether it has found a matching event or not. In the
above example it didn’t find anything, so it returns OK. In the second command the
plugin comes across four relevant entries in the warn log file, but it doesn’t find
any in /var/log/messages. Because of this, the plugin returns a WARNING; OK is
given only if no relevant events were found in any of the log files checked. In its
output line, after (4):, the plugin remembers the last of the four lines found.

7.6 Keeping Tabs on the Number of Logged-in
Users

The plugin check_users is used to monitor the number of logged-in users:

user@linux:nagios/libexec$./check_users -w 5 -c 10

USERS CRITICAL - 20 users currently logged in |users=20;5;10;0

3 In the form of Perl-compatible regular expressions (PCRE, see man perlre), since check_logs.pl
is a Perl script.

144

7.7 Checking the System Time

It has just two options:

-w number / --warning=number
This is the threshold for the number of logged-in users after which the plugin
should give a warning.

-c number / --critical=number
This is the threshold for a critical state, measured by the number of logged-in
users.

The performance data after the | is as usual visible only on the command line;
Nagios does not include it in the Web interface.

7.7 Checking the System Time

7.7.1 Checking the system time via NTP

The check_ntp plugin compares the clock time of the local computer with that
of an available NTP server in the network. If the Nagios server keeps time via NTP
accurately enough, so that it can serve as a reference itself, then it can also be used
as a network plugin, provided that the host to be checked in the network has an
NTP daemon installed.

The plugin requires the program ntpdate, which, if you compile Nagios yourself,
must already be available before the check_ntp installation. You should also install
the program ntpq, which determines the jitter. This is a measure of the runtime
deviations of incoming NTP packages. If the fluctuations are too large, the time
synchronization will be imprecise.

In the simplest case, check_ntp is called, specifying the computer (here: ntpserver)
whose time should be compared with that of the local computer:

nagios@linux:nagios/libexec$./check_ntp -H ntpserver

NTP OK: Offset -8.875159 secs, jitter 0.819 msec, peer is stratum 0

The deviation found here is over eight seconds. Whether this is tolerated or not
depends on the intended use. If you want to compare log file entries for many
computers, then they should all be NTP-synchronized. Then there is no problem
in using -w 1 -c 2, which would already categorize a deviation of two seconds as
critical.

check_ntp has the following options:

-H address / --host=address
This is the NTP server with which the plugin should compare the local system
time.

145

7 Testing Local Resources

-w floating point decimal / --warning=floating point decimal
This is the warning limit in seconds. The warning is given if the fluctuation
of the local system time is larger than the threshold specified. The default is
60 seconds.

-c floating point decimal / --critical=floating point decimal
If the local system time deviates more than floating point decimal seconds
(in the default setting 120 seconds) from that of the NTP server, the status
becomes CRITICAL.

-j milliseconds / --jwarn=milliseconds
This is the warning limit for the jitter in milliseconds. The default here is
5000.

-k milliseconds / --jcrit=milliseconds
The critical threshold for the jitter. The default is 10000 milliseconds.

7.7.2 Checking system time with the time protocol

Apart from the Network Time Protocol NTP there is another protocol, older and
more simple: the Time Protocol described in RFC 868, in which communication
takes place via TCP port 37. On many Unix systems the corresponding server is
integrated into the inet daemon, so you do not have to start a separate daemon.
With check_time, Nagios provides an appropriate test plugin.

check_time can also be used as a network plugin, in a similar way to check_ntp,
but this again assumes that the time service is available for every client. In most
cases it will therefore be used as a local plugin that compares its own clock time
with that of a central time server (here: timesrv):

nagios@linux:nagios/libexec$./check_time -H timesrv -w 10 -c 60

TIME CRITICAL - 1160 second time difference| time=0s;;;0 offset=1160s;10

;60;0

The performance data after the | sign, not shown in the Web interface, contains
the response time in seconds, with time (here: zero seconds); offset describes by
how much the clock time differs from that of the time server (here: 1160 seconds).
The other values, each separated by a semicolon, provide the warning limit, the
critical threshold, and the minimum (see also Section 17.1 from page 314). Since
we have not set any threshold values with the options -W or -C, the corresponding
entries for time are empty.

check_time has the following options:

-H address / --hostname=address
This is the host name or IP address of the time server.

146

7.8 Regularly Checking the Status of the Mail Queue

-p port / --port=port
This is the TCP port specification, if different from the default 37.

-u / --udp
Normally the time server is queried via TCP. With -u you can use UDP if the
server supports this.

-w integer / --warning-variance=integer
If the local time deviates more than integer seconds from that of the time
server, the plugin returns a WARNING. integer is always positive, and this
covers clocks that are running both slow and fast.

-c integer / --critical-variance=integer
If there is more than integer seconds difference between the local and the
time server time, the return value of the plugin is CRITICAL.

-W integer / --warning-connect=integer
If the time server needs more than integer seconds for the response, a
WARNING is returned.

-C integer / --critical-connect=integer
If the time server does not respond within integer seconds, the plugin reacts
with the return value CRITICAL.

7.8 Regularly Checking the Status of the Mail
Queue

The check_mailq plugin can be used to monitor the mail queue of a mail server
for e-mails that have not yet been delivered. check_mailq runs the program mailq
of the mail service installed. Unfortunately each MTA interprets the mail queue
differently, so the plugin can evaluate only mail queues from mail services that
the programmer has taken into account. These are, specifically: sendmail, qmail,
postfix, and exim. check_mailq has the following options:

-w number / --warning=number
If there are at least number mails in the mail queue, the plugin gives a
warning.

-c number / --critical=number
As soon as there are at least number of mails in the queue waiting to be
delivered, then the critical status has been reached.

147

7 Testing Local Resources

-W number of domains / --Warning=number of domains
This is the warning limit with respect to the number of recipient domains
of a message waiting in the mail queue. Thus -W 3 generates a warning if
there are any mails in the queue that are addressed to three or more different
recipient domains.

-C number of domains / --Critical=number of domains
This is the critical threshold with respect to the number of recipient domains
(like -W).

-M daemon / --mailserver=daemon (from version 1.4)
This specifies the mail service used. Possible values for daemon are sendmail
(the default), qmail, postfix, and exim.

-t timeout / --timeout=timeout
After timeout seconds, the plugin stops the test and returns the CRITICAL
status. The default here—as an exception—is 15 seconds (usually it is 10
seconds).

In the following example, Nagios should give a warning if there are at least five
mails in the queue; if the number reaches ten, the status of the MTAs Postfix used
here becomes CRITICAL:

user@linux:nagios/libexec$./check_mailq -w 5 -c 10 -M postfix

OK: mailq reports queue is empty|unsent=0;5;10;0

Since the queue is empty, check_mailq returns OK here.

7.9 Keeping an Eye on the Modification Date of a
File

With the check_file_age plugin you can monitor not only the last modification
date of a file, but also its size. From version 1.4 it is included in the default instal-
lation. In version 1.3.x the sources can be found in the subdirectory contrib; the
plugin created from this must be copied manually to the plugin directory.

In the simplest case it is just run with the name and path of the file to be monitored:

user@linux:nagios/libexec$./check_file_age /var/log/messages

WARNING - /var/log/syslog/messages is 376 seconds old and 7186250 bytes

Here the plugin gives a warning, since the warning limit set is 240 seconds and
the critical limit, 600 seconds. The last modification of the file was 376 seconds
ago—that is, inside the warning range.

148

7.10 Monitoring UPSs with apcupsd

The file size is taken into account by check_file_age only if a warning limit for the
file size (option -W) is explicitly specified. The plugin could then give a warning if
the file is smaller than the given limit (in bytes). The defaults for the warning and
critical limits here are both zero bytes.

check_file_age has the following options:

-w integer / --warning-age=integer
If the file is older than integer4 (the default is 240) seconds, the plugin
issues a warning.

-c integer / --critical-age=integer
A critical status occurs if the file is older than integer (default: 600) seconds.

-W size / --warning-size=size
If the file is smaller than size bytes, the plugin gives a warning. If the option
is omitted, 0 bytes is the limit. In this case check_file_age does not take the
file size into account.

-C size / --critical-size=size
A file size smaller than size bytes sets off a critical status. The default is 0
bytes, which means that the file size is ignored.

-f file / --file=file
The name of the file to be tested. The option may be omitted if you instead—
as in the above example—just give the file name itself as an argument.

7.10 Monitoring UPSs with apcupsd

To monitor uninterruptible power supplies (UPS) from the company APC there is the
possibility, apart from the Network UPS Tools described in Section 6.11 from page
126 of using the apcupsd daemon, optimized specifically for use with these UPSs.
The software can be obtained from http://www.apcupsd.com/ and is licensed un-
der the GPL, despite the fact that it is vendor-dependent.

The principal function here is the capacity to be able to shut down systems in the
event of power failure, rather than a mere monitoring function with Nagios. For
this latter purpose, it is easier to configure the Network UPS Tools.

Nearly all Linux distributions contain a working apcupsd package,5 so you don’t
have to worry about installing it. Nagios does not include an apcupsd plugin, but

4 Because check_file_age is a Perl script, it does not matter in this case whether an integer or a
floating-point decimal is specified. Fractions of a second do not play a role in the file system.

5 At least SuSE and Debian use this package name.

149

7 Testing Local Resources

there is a very simple and effective script available for download at http://www.
negative1.org/check_apc/: check_apc. It is also licensed under the GPL, but it has
no network capabilities. The plugin cannot be given a host when it is run, and it also
does not support any other types of options. Instead of this, internal commands
control its functionality, which are given as the first argument.

Executing check_apc status tests whether the UPS is online. If this is the case, the
plugin returns the OK status, in all other cases it returns CRITICAL:

user@linux:nagios/libexec$./check_apc status

UPS OK - ONLINE

check_apc load warn crit checks the load currently on the UPS and displays it as
a percentage of the maximum capacity. A warning is given if the load is greater
than the warning limits specified in warn (in the following example, 60 percent),
CRITICAL if the load is greater than crit (here 80 percent):

user@linux:nagios/libexec$./check_apc load 60 80

UPS OK - LOAD: 39%

The load status of the UPS is checked by the command check_apc bcharge warn
crit. Here the warning limit warn and the critical limit crit are also given in percent.
The value 100 means “fully loaded.” The plugin accordingly gives a warning if the
load is smaller than the warning limit, and a CRITICAL if the load is smaller than
the critical limit:

user@linux:nagios/libexec$./check_apc bcharge 50 30

UPS OK - Battery Charge: 100%

You can find out how long the saved energy will last with check_apc time warn
crit. Here check_apc gives a warning if the remaining time is less than warn
minutes, and a CRITICAL if the remaining time is less than crit minutes:

user@linux:nagios/libexec$./check_apc time 20 10

UPS OK - Time Left: 30 mins

7.11 Nagios Monitors Itself

If necessary, Nagios can even monitor itself: the included plugin, check_nagios,
tests, on the one hand, whether Nagios processes are running and, on the other
hand, the age of the log file nagios.log in the Nagios var directory, for example
/var/nagios/nagios.log.

150

7.11 Nagios Monitors Itself

Despite this, the question needs to be asked: if Nagios itself is not running, then
the system simply cannot perform the plugin, which in turn cannot deliver an error
message. The solution to this problem consists in having two Nagios servers, each
of which addresses the locally installed plugin on the opposite server, with the help
of NRPE (see Chapter 10 from page 165).

If you have just one Nagios server you can also run check_nagios alone via cron
and have the return value checked using a shell script. In this case, you take action
yourself, as shown in Section 7.11.1, so that you are suitably informed of this.

The plugin has the following options:

-C /path/to/nagios / --command=/path/to/nagios
This is the complete nagios command, including the path (e.g., -C /usr/local/
nagios/bin/nagios).

-F /path/to/logfile / --filename=/path/to/logfile
This is the path to where the Nagios log file nagios.log is saved. The file is
located in the Nagios var directory.

-e integer / --expires=integer
This is the maximum age of the log file. If there have been no changes to
the file for longer than integer minutes, check_nagios issues a warning.

You should make sure that this time specification is large enough: if no
errors are currently occurring, Nagios will not log anything in the log file.
The only reliable way to obtain a regular entry is with the parameter reten-
tion_update_interval in the configuration file nagios.cfg (see page 438).
The default value is 60 minutes.

In the following example the log file should not be older than 60 minutes (this
corresponds to the default retention update interval (see page 438):

user@linux:nagios/libexec$./check_nagios -e 60 \
-F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios

Nagios ok: located 5 processes, status log updated 303 seconds ago

With currently five running Nagios processes and a log file last changed 303 sec-
onds ago (a good five minutes), everything is in order here. If the -e parameter is
omitted, the plugin always gives a warning.

7.11.1 Running the plugin manually with a script

The following example script demonstrates how the plugin is called outside the
Nagios environment. It starts check_nagios initially as Nagios does and then eval-
uates the return value. If the status is not 0, it sends an e-mail to the administrator
nagios-admin@example.com, using the external mailx program:

151

7 Testing Local Resources

#!/bin/bash

NAGCHK="/usr/local/nagios/libexec/check_nagios"

PARAMS="-e 60 -F /var/nagios/nagios.log -C /usr/local/nagios/bin/nagios"

INFO=‘$NAGCHK $PARAMS‘

STATUS=$?

case $STATUS in

0) echo "OK : " $INFO

;;

*) echo "ERROR : " $INFO | \
/usr/bin/mailx -s "Nagios Error" nagios-admin@example.com

;;

esac

The script can be run at regular intervals via a cronjob—such as every 15 minutes.
But then it will also “irritate” the administrator every quarter of an hour with an
e-mail. There is certainly room for improvement in this respect—but that would go
beyond the scope of this book.

7.11.2 check_nagios as a tool for CGI programs

Using the nagios_check_command parameter (see page 445) you can also use the
plugin in the file cgi.cfg. If the parameter is set there, the CGI programs use the
specified command to see if Nagios is operational. The test integrated into the CGI
programs functions so well, however, that you do not need to go to the trouble of
defining nagios_check_command.

7.12 Hardware Checks with LM Sensors

Modern mainboards are equipped with sensors that allow you to check the “health”
of the system. In the lm-sensors6 project it is also possible in Linux to query this
data via I2C or SMBus (System Management Bus, a I2C special case).

To enable this, the kernel must have a suitable driver. Kernel 2.4.x normally requires
additional modules, which are included in the software.7 With a little luck, your
distribution may include precompiled modules (e.g. SuSE). Kernel 2.6, however,
already includes many drivers; here you just compile the entire branch below I2C
Hardware Sensors Chip support.

It would take too much space here to detail the installation of the necessary mod-
ules. We will therefore only go into detail for the check_sensors plugin, and assume

6 http://www.lm-sensors.nu/
7 http://secure.netroedge.com/~lm78/download.html

152

7.12 Hardware Checks with LM Sensors

that the corresponding kernel driver is already loaded as a module. Help is provided
during operation with the sensors-detect program from the lm-sensors package,
which does a number of tests and then tells you which modules need to be loaded.
If all requirements are fulfilled, running the sensors program will produce an out-
put similar to the following one, and shows that the onboard sensors are providing
data:

user@linux:˜$ sensors

fscher-i2c-0-73

Adapter: SMBus I801 adapter at 2400

Temp1/CPU: +41.00 C

Temp2/MB: +45.00 C

Temp3/AUX: failed

Fan1/PS: 1440 RPM

Fan2/CPU: 0 RPM

Fan3/AUX: 0 RPM

+12V: +11.86 V

+5V: +5.10 V

Battery: +3.07 V

The output depends on the hardware, so it will be slightly different for each com-
puter. Here you can see, for example, the CPU and motherboard temperatures (41
and 45 degrees Celsius), the rotation speed of the fans, and the voltages on the
12- and 5-volt circuits and on the battery. Depending on the board design and the
manufacturer, some details may be missing; in this example, only the fan for the
power supply FAN1/PS8 provides information; Fan3/AUX refers to an additional
fan inside the computer box that, although it is running, is not recorded by the
chipset.

Apart from the standard options -h (help function), -v (verbose), which displays
the response of the sensors, and -V, which shows the plugin version, the plugin
itself has no special options. Warning and critical limits must be set via the lm-
sensors configuration. check_sensors only returns the status given by the onboard
sensors:

user@linux:nagios/libexec$./check_sensors

sensor ok

If this is called with the -v option, you can see more clearly whether the test works:

user@linux:nagios/libexec$./check_sensors -v

fscher-i2c-0-73 Adapter: SMBus I801 adapter at 2400 Temp1/CPU: +40.00 C

Temp2/MB: +45.00 C Temp3/AUX: failed Fan1/PS: 1440 RPM Fan2/CPU: 0 RPM

Fan3/AUX: 0 RPM +12V: +11.86 V +5V: +5.10 V Battery: +3.07 V

sensor ok

8 PS stands for power supply ; but the names displayed can be edited in /etc/sensors.conf.

153

7 Testing Local Resources

The output line is only wrapped for printing purposes; the plugin displays verbose
information on a single line.

Alternatively you can use SNMP to access the sensor data: the NET-SNMP package
(see Chapter 11.2 from page 184) provides the data delivered by lm-sensors, and
with the SNMP plugin check_snmp, warning limits can also be set from Nagios.
This solution is described in Section 11.3.1 from page 196.

7.13 The Dummy Plugin for Tests

For tests expected to end with a defined response, the check_dummy plugin can
be used. it is given a return value and the desired response text as parameters, and
it provides exactly these two responses as a result:

nagios@linux:nagios/libexec$./check_dummy 1 "Debugging"

WARNING: Debugging

nagios@linux:nagios/libexec$ echo $?

1

The output line contains the defined response, preceded by the status in text form.
the return value can again be checked with echo $?: 1 stands for WARNING.

Alternatively you can give check_dummy a 0 (OK), an 2 (CRITICAL) or a 3 (UN-
KNOWN) as the first argument. The second argument, the response text, is optional.

154

8 Ch
ap

te
r

Manipulating Plugin Output

8.1 Negating Plugin Results

In some situations you may want to test the opposite of what the standard plugin
normally tests, such as an interface that should not be active, a Web page or a host
that should normally not be reached. In these cases the program negate, included
in the Nagios plugins, provides a way of negating the return value of the original
check.

Like plugins, negate has an option to specify a timeout in seconds, with -t, after
which it should abort the operation. The actual command line must always contain
the complete path to the plugin:

negate plugin command

negate -t timeout plugin command

155

8 Manipulating Plugin Output

negate changes the return value of 2 (CRITICAL) to 0 (OK) and vice versa. The
return codes 1 (WARNING) and 3 (UNKNOWN) remain unchanged.

The following example carries out check_icmp on the host 192.0.2.1, which in
normal cases should not be reachable:

nagios@linux:nagios/libexec$./negate \
/usr/local/nagios/libexec/check_icmp -H 192.0.2.1

CRITICAL - 192.0.2.1: rta nan, lost 100%| rta=0.000ms;200.000;500.000;0;

pl=100%;40;80;;

nagios@linux:nagios/libexec$ echo $?

0

The plugin itself returns a CRITICAL in this case with a corresponding text.
negate “inverts” the return value; 2 (CRITICAL) turns into 0 (OK). Since the text
originates from the plugin and is not changed, the information CRITICAL remains
here. For Nagios itself, however, nothing but the return value is of any interest.

8.2 Inserting Hyperlinks with urlize

The program urlize represents the text output of a plugin as a hyperlink, if required,
so that clicking in the Nagios Web interface on the test result takes you to another
Web page. Like negate, urlize functions as a wrapper around the normal plugin
command and is included with the other Nagios plugins.

As the first argument it expects a valid URL to which the hyperlink should point.
This is followed by the plugin command, including its path:

urlize url plugin command

To avoid problems with spaces in plugin arguments, you can set the complete
plugin command in double quotation marks.

The hyperlink around the normal plugin output can be easily recognized when
running the command manually:

nagios@linux:nagios/libexec$./urlize http://www.swobspace.de \
/usr/local/nagios/libexec/check_http -H www.swobspace.de

HTTP OK HTTP/1.1 200 OK - 2802 bytes

in 0.132 seconds |time=0.132491s;;;0.000000 size=2802B;;;0

In version 1.4 urlize also embeds the performance output in the link text, but Na-
gios cut this off before the representation in the Web interface, together with the
end tag. But most browsers do not have any problem with the missing .

156

9 Ch
ap

te
r

Executing Plugins via SSH

Local plugins, that is, programs that only run tests locally because there are no
network protocols available, must be installed on the target system and started
there. They check processes, CPU load, or how much free hard disk capacity is still
available, among other things.

But if you still want to execute these plugins from the Nagios server, it is rec-
ommended that you use the secure shell, especially if any kind of Unix system is
installed on the machine to be tested—a Secure Shell daemon will almost always be
running on such a target system, and you do not require any special permissions to
run most plugins. The Nagios administrator needs nothing more than an account,
which he can use from the Nagios server. On the server itself, the check_by_ssh
plugin must be installed.

In heterogeneous environments the Secure Shell itself often create conditions that
may cause problems: depending on the operating system, an SSH daemon may be

157

9 Executing Plugins via SSH

in use that returns a false return code1 or is so old that it cannot handle the SSH
protocol version 2.0. In this case it is better to install the current OpenSSH version
from http://www.openssh.org/. In pure Linux environments with up-to-date and
maintained installations, such problems generally do not occur.

9.1 The check_by_ssh Plugin

check_by_ssh is run on the Nagios server and establishes a Secure Shell connection
to a remote computer so that it can perform local tests on it. The programs run on
the remote machine are to a large extent local plugins (see Chapter 7 from page
133); the use of check_by_ssh is not just restricted to these, however.

The plugin sends a complete command line to the remote computer and then waits
for a plugin-compatible response: a response status between 0 (OK) and 3 (UN-
KNOWN), as well as a one-line text information for the administrator (page 85). If
you run network plugins via check_by_ssh in order to perform tests on other com-
puters, these are known as indirect checks, which will be explained in the context
of the Nagios Remote Plugin Executor in Section 10.5 from page 174.

The following example shows how check_by_ssh can be used to check the swap
partition on the target computer:

nagios@linux:nagios/libexec$./check_by_ssh -H target computer \
-i /etc/nagios/.ssh/id_dsa \

-C "/usr/local/nagios/libexec/check_swap -w 50% -c 10%"

SWAP OK: 100% free (972 MB out of 972 MB) |swap=972MB;486;97;0;972

The command is similar to that for a secure shell, in the form of

ssh -i private_key target computer "command"

The fact that a separate private key—not the default private key in the home
directory—is used, is optional and is described in detail in section 9.2 from page
160. The command to be run is specified in check_by_ssh—in contrast to the se-
cure shell ssh— with the option -C, the plugin is always specified with an absolute
path.

check_by_ssh has the following options:

-H address / --hostname=address
The host name or IP address of the computer to which the plugin should set
up an SSH connection.

1 In the nagios-users mailing list it was reported that Sun_SSH_1.0 returns a return code of 255
instead of 0, which makes it unsuitable for the deployment described here.

158

9.1 The check_by_ssh Plugin

-C command / --command=command
The command to be run on the remote computer, that is, the plugin with its
complete path and all the necessary parameters:

-C "/usr/local/nagios/libexec/check_disk -w 10% -c 5% -e -m"

-1 / --proto1 (from nagios-plugins-1.4)
Force version 1 of the secure shell protocol.

-2 / --proto2 (from Version 1.4)
Force version 2 of the secure shell protocol.

-4 / --use-ipv4 (from version 1.4)
The SSH connection is set up explicitly over an IPv4 connection.

-6 / --use-ipv6 (from version 1.4)
The SSH connection is set up explicitly over an IPv6 connection.

-i keyfile / --identity=keyfile
Which file should be used instead of the standard key file containing the
private key of the user nagios? For one option, which is recommended, see
Section 9.2.3, page 162.

-p port / --port=port
This specifies the port if the Secure Shell daemon on the target server is not
listening on the standard TCP port 22.

-l user / --logname=user
User name on the target host.

-w floating point decimal / --warning=floating point decimal
If the response to the command to be executed takes more than float-
ing point decimal seconds, the plugin will issue a warning.

-c floating point decimal / --critical=floating point decimal
The critical value in seconds concerning the response time of the command
to be executed.

-f2

Starts a background process without opening an interactive terminal (tty).

-t timeout / --timeout=timeout
After timeout seconds have expired, the plugin stops the test and returns
the CRITICAL status. The default is 10 seconds.

2 There is currently no long form for this option.

159

9 Executing Plugins via SSH

In addition to this, check_by_ssh has parameters available, -O, -s and -n, enabling
it to write the result in passive mode to the interface for external commands
(see section 13.1 from page 240). The mode is named this way because Nagios
does not receive the information itself but reads it indirectly from the interface.

This procedure has the advantage of being able to run several separate commands
simultaneously over a single SSH connection. This may cause the command defi-
nition to be rather complicated, however. Since the plugins themselves are called
and executed as programs on the target server, it hardly matters whether the SSH
connection is established once or three times. For this reason it is better to use a
simple command definition rather than the passive mode.

But if you still want to find more information about this, you can look in the online
help, which is called with check_by_ssh -h.

9.2 Configuring SSH

So that Nagios can run plugins over the secure shell remotely and automatically,
it—or, strictly speaking, the user nagios on the Nagios server—must not be dis-
tracted by any password queries. This is avoided with a login via a Public Key
mechanism.

9.2.1 Generating SSH key pairs on the Nagios server

The key pair required to do this is stored by the key generator ssh-keygen by default
in the subdirectory .ssh of the respective user’s home directory (for the user nagios,
this therefore corresponds to the installation guide in Chapter 1.1 from page 26,
that is, /usr/local/nagios). If it is also sent on its way with the -f private keyfile
option (without path specification), it will land in the current working directory,
which in the following example is /etc/nagios/.ssh:

nagios@linux:˜$ mkdir /etc/nagios/.ssh

nagios@linux:˜$ cd /etc/nagios/.ssh

nagios@linux:/etc/nagios/.ssh$ ssh-keygen -b 2048 -f id_dsa -t dsa -N ’’

Generating public/private dsa key pair.

Your identification has been saved in id_dsa.

Your public key has been saved in id_dsa.pub.

The key fingerprint is:

02:0b:5a:16:9c:b4:fe:54:24:9c:fd:c3:12:8f:69:5c nagios@nagserv

The length of the key here is 2048 bits, and DSA is used to encrypt the keys. -N ’ ’
ensures that the private key in id_dsa does not receive separate password protec-
tion: this option forces an empty password.

160

9.2 Configuring SSH

9.2.2 Setting up the user nagios on the target host

Similar to the configuration on the Nagios server, the group and the user nagios
are also set up on the computer to be monitored:

target computer:˜ # groupadd -g 9000 nagios

target computer:˜ # useradd -u 9000 -g nagios -d /home/nagios -m \
-c "Nagios Admin" nagios

target computer:˜ # mkdir /home/nagios/.ssh

The target computer is given the directory /home/nagios as the home directory,
where a subdirectory .ssh is created. In this the administrator (or another user3)
saves the public key generated on the Nagios server /etc/nagios/.ssh/id_dsa.pub,
in a file called authorized_keys:

linux:˜ # scp /etc/nagios/.ssh/id_dsa.pub \
target computer:/home/nagios/.ssh/authorized_keys

Now the user nagios does not require its own password on the target server. You
just need to make sure that on the target server the .ssh directory, together with
authorized_keys, belongs to the user nagios:

target computer:˜ # chown -R nagios.nagios /home/nagios/.ssh

target computer:˜ # chmod 700 /home/nagios/.ssh

9.2.3 Checking the SSH connection and check_by_ssh

With this configuration you should first check whether the secure shell connection
is working properly. The test is performed as the user nagios, since Nagios makes
use of this during the checks:

nagios@linux:˜$ ssh -i /etc/nagios/.ssh/id_dsa target computer w

18:02:09 up 128 days, 10:03, 8 users, load average: 0.01, 0.02, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

wob pts/1 linux01:S.1 08Sep04 1:27 4.27s 0.03s -bin/tcsh

...

The -i option explicitly specifies the path to the private key file. If the command w
to be run on the target computer does not provide any output or if the opposite
SSH daemon requests a password, then the login via public key is not working. In
this case you must first find and eliminate the error before you can move on to
testing check_by_ssh.

3 . . . but not the user nagios, because when an account is created, useradd first sets an invalid
password here, which we do not change into a valid one. This means that you cannot currently
log in to the target computer as nagios.

161

9 Executing Plugins via SSH

In this next step, you run the local plugin on the target computer, with check_by_
ssh, which later on is run automatically, from the command line of the Nagios
server. Make sure that the plugin paths are correct in each case. The path to the
private key file of the user nagios on the server is specified with -i:

nagios@linux:˜$ /usr/local/nagios/libexec/check_by_ssh \
-H target computer -i /etc/nagios/.ssh/id_dsa \
-C "/usr/local/nagios/libexec/check_disk -w 10% -c 5% -e -m"

DISK CRITICAL [2588840 kB (5%) free on /net/linux04/b] [937152 kB (5%)

free on /net/linux04/c]

In the example, check_by_ssh should start the /usr/local/nagios/libexec/check_
disk plugin on the target computer with the options -w 10% -c 5% -e -m. If
this does not work, then this is first run locally on the target host with the same
parameter. By doing this you can rule out that the problem lies in the plugin
command itself and not in the secure shell connection.

9.3 Nagios Configuration

The matching command object is again defined in the file checkcommands.cfg;
similar to check_local_disk, it should be named check_ssh_disk:

check_ssh_disk command definition

define command{
command_name check_ssh_disk

command_line $USER1$/check_by_ssh -H $HOSTADDRESS$ \
-i /etc/nagios/.ssh/id_dsa \
-C "$USER1$/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$"

}

The command line stored in command_line first runs check_by_ssh; $USER1$
contains the local plugin path on the Nagios server. Next come the arguments—
the IP address of the target host (parameter -H), the private key file (parameter
-i) and finally, with the -C parameter, the complete command that the target host
should carry out. If the plugin path on the target host and on the Nagios server
are identical, then you can also use the $USER1$ macro in it; otherwise the plugin
path on the target computer is given explicitly.

Setting up the command is no different here to the one in check_local_disk in
Section 7.1 on page 134. This means that apart from the warning and critical limits,
we explicitly specify a file system or a hard drive partition, with the -p parameter.

The command check_ssh_disk defined in this way is applied as follows, here on a
computer called linux02:

162

9.3 Nagios Configuration

define service{
host_name linux02

service_description FS_root

...

check_command check_ssh_disk!10%!5%!/

...

}

The service object defined in this way ensures that Nagios checks its / file system.
The warning limit lies at 10 percent, the critical limit at 5 percent.

If you use the check_by_ssh plugin with check_ssh_disk, as in the example here,
you must make sure that the plugin path is identical on all target hosts. This is also
worth doing for reasons of simplicity, though it is not always possible in practice.
The following service definition, for this reason, gives the plugin path to the target
computer as an additional argument:

define service{
host_name linux02

service_description FS_root

...

check_command check_ssh_disk!/usr/lib/nagios/plugins!10%!5%!/

...

}

In order for this to work, you must change the command line in the command
definition, passed on with -C, as follows:

-C "$ARG1$/check_disk -w $ARG2$ -c $ARG3$ -p $ARG4$"

Caution: this causes the numbers of each of the $ARGx macros for -w, -c, and -p
to be shifted by one.

163

10 Ch
ap

te
r

The Nagios Remote Plugin
Executor (NRPE)

The Nagios Remote Plugin Executor (or in short, NRPE) as the name suggests,
executes programs on a remote host. These are usually plugins that test the corre-
sponding computer locally and therefore must be installed on it. The use of NRPE
is not restricted to local plugins; any plugins at all can be executed, including those
intended to test network services—for example, to indirectly test computers that
are not reachable from the Nagios server (as shown in Section 10.5 from page 174).

While a genuine user account must be available on the remote computer when the
secure shell is used (see Chapter 9), which can also be used to do other things than
just start plugins, NRPE is restricted exclusively to explicitly configured tests. If you
want to, or are forced to, do without a login shell on the target host, it is better to
use NRPE, even if there is somewhat more configuration work involved than with
the secure shell. In addition to the Nagios configuration and the installation of the
required plugins on the target system:

165

10 The Nagios Remote Plugin Executor (NRPE)

The program nrpe must be installed on the target system.

The inet daemon there (inetd or xinetd) must be configured with administrator
privileges.

The check_nrpe plugin must be installed on the Nagios server.

10.1 Installation

NRPE and the plugins are installed from the sources, or you can fall back on
the packages provided by the distributor. You should use at least version 2.0 of
NRPE, since this is incompatible with its predecessors. As this was released back in
September 2003, there should now be corresponding packages for it.

Version 1.3.1 of the plugin collection is also from 2003; version 1.4 was only re-
leased at the beginning of 2005 and had not been integrated into all the standard
distributions at the time of going to press. Whether you need the most up-to-date
version depends on your expectations of the respective plugins.

10.1.1 Distribution-specific packages

SuSE Linux 9.3 includes the packages nagios-nrpe-2.0-111.i586.rpm, nagios-plug-
ins-1.4-3.i586.rpm, and nagios-plugins-extras-1.4-3.i586.rpm. nagios-nrpe con-
tains both the daemon and the plugin check_nrpe. nagios-plugins-extras installs
several additional plugins, such as database checks, FPing test or Radius test, which
can be omitted, depending on your specific monitoring needs.

For the sake of simplicity, the design packages are installed via YAST21 or rpm -ihv
package. the second method is also open to Fedora users.

For Fedora Core 3, the corresponding Nagios packages have been made available
by Dag Wieers at http://dag.wieers.com/home-made/apt/packages.php: nagios-
nrpe-2.0-3.1.fc3.rf.i386.rpm, nagios-plugins-nrpe-2.0-3.1.fc3.rf.i386.rpm, and
nagios-plugins-1.4-2.1.fc3.rf.i386.rpm.

Debian/Sarge distributes the NRPE daemon and the NRPE plugin check_nrpe in
two different packages called nagios-nrpe-server and nagios-nrpe-plugin, which
can be installed separately via apt-get install package. If you want to do without
local documentation, you can omit the package nagios-nrpe-doc and just add the
plugin package nagios-plugins to the target hosts.

The paths for the program nrpe, the configuration file nrpe.cfg, and the plugin
directory are listed in Table 10.1.

1 On the command line, using yast -i package.

166

10.1 Installation

Table 10.1:

Installation paths for

NRPE and plugins

Distribution NRPE program NRPE configuration
file

Plugins

Self-
compiled2

/usr/local/sbin/nrpe /etc/nagios/nrpe.cfg /usr/local/nagios/libexec

SuSE /usr/bin/nrpe /etc/nagios/nrpe.cfg /usr/lib/nagios/plugins

Debian /usr/sbin/nrpe /etc/nagios/nrpe.cfg /usr/lib/nagios/plugins

Fedora3 /usr/sbin/nrpe /etc/nagios/nrpe.cfg /usr/lib/nagios/plugins

10.1.2 Installation from the source code

The plugins are installed on the computers to be monitored exactly as described in
Section 1.2 from page 30 for the Nagios server.

The NRPE source code is obtained from The Nagios Exchange.4 The directory /usr
/local/src5 is ideal for unloading the sources.

linux:˜ # mkdir /usr/local/src

linux:˜ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/nrpe-2.0.tar.gz

In the new directory that has been created, you run the configure command:

linux:local/src # cd nrpe-2.0

linux:src/rnpe-2.0 # ./configure --sysconfdir=/etc/nagios --enable-ssl

The recommended path specifications are listed in Table 10.1. The only difference
from the default settings are for the directory in which the NRPE configuration file
is stored (configure option --sysconfdir).

Accordingly, we can leave out the entry for --with-nrpe-user and --with-nrpe-
group in the configure command. Both options are relevant only if the nrpe pro-
gram is running as a daemon, and they can be overwritten in the configuration
file. If the inet daemon is used, you should specify the user with whose permis-
sions nrpe should start in the configuration file for the inet daemon.

--enable-ssl ensures that NRPE communicates over an SSL-encrypted channel.
This will only work, of course, if both nrpe on the target host and check_nrpe
on the Nagios server have both been compiled accordingly.

2 Recommended.
3 From the packages provided by Dag Wieers.
4 http://www.nagiosexchange.org/NRPE.77.0.html.
5 The subdirectory src may need to be created first.

167

10 The Nagios Remote Plugin Executor (NRPE)

The command make all compiles the programs nrpe and check_nrpe, but it does
not copy them from the directory /usr/local/src/nrpe-2.0/src to the correspond-
ing system directories. Since there is no make install, you must do this yourself,
following the details in Table 10.1: you need to have nrpe on the computer to be
monitored and the check_nrpe plugin on the Nagios server.

If the Nagios server and the target host used the same platform, you can compile
both programs on one computer (e.g., the server) and then copy nrpe together
with its configuration file to the computer to be monitored, instead of separately
compiling check_nrpe on the Nagios server and nrpe on the target system.

10.2 Starting via the inet Daemon

It is best to start the program nrpe on the machine to be monitored via the inet
daemon rather than as a separate daemon, since the Nagios server only performs
the tests occasionally, and nrpe does not need to load any large resources.

If you have a choice, you should use the more modern xinetd. But to keep work to
a minimum, the inet daemon will normally be used, as it is already running on the
target system.

In order that NRPE can be started as a service via inetd or xinetd, the nrpe service
is defined in the file /etc/services:

nrpe 5666/tcp # Nagios Remote Plugin Executor NRPE

Even if this has been installed as a distribution package, you should still check to
see whether this entry exists. By default, NRPE uses TCP port 5666.

10.2.1 xinetd configuration

If xinetd is used, a separate file is stored in the directory /etc/xinetd.d for each
service to be started, so for nrpe it is best to create a file called nrpe or nagios-
nrpe:

/etc/xinetd.d/nrpe

description: NRPE

default: on

service nrpe

{
flags = REUSE

socket_type = stream

wait = no

user = nobody

group = nogroup

168

10.2 Starting via the inet Daemon

server = /usr/local/sbin/nrpe

server_args = -c /etc/nagios/nrpe.cfg --inetd

log_on_failure += USERID

disable = no

only_from = 127.0.0.1 ip of_the_nagios_server

}

The values printed in italics are passed on to your own environment; instead of the
placeholder ip of the nagios server you should enter, for example for only_from,
the IP address of your own Nagios server. The NRPE access from outside is then
restricted to this computer and to localhost (127.0.0.1). The latter address allows
local tests; multiple IP addresses are separated by a space. However, this restrictive
configuration functions only if xinetd has been compiled with support for the TCP
wrapper (this is normally the case).

Under no circumstances should NRPE run with the permissions of a privileged
user—nobody is therefore a sensible value. The server parameter specifies the com-
plete path to the program nrpe; for server_args you should enter the matching
path to the configuration file. After this modification, the configuration of xinetd
is reloaded, with

linux:˜ # /etc/init.d/xinetd reload

10.2.2 inetd configuration

In the standard inetd, the following line is added to the configuration file /etc/
inetd.conf:

nrpe stream tcp nowait nobody /usr/sbin/tcpd

/usr/local/sbin/nrpe

-c /etc/nagios/nrpe.cfg --inetd

The line has been split up for reasons of space, but in the configuration file this
must all be in a single line. Here the TCP wrapper tcpd is used. If this is not
intended, you simply leave out this entry.6 Here you should also explicitly enter the
user nobody, the complete path to the binary nrpe, and the configuration file, also
with its complete path. These strings, printed above in italics, should be adjusted
to your own system, where necessary. After the configuration change, inetd is
reloaded:

linux:˜ # /etc/init.d/inetd reload

6 inetd does not have a built-in method to allow access to services only from specific IP addresses.
This function is added in the TCP wrapper tcpd. The access configuration is then taken over
by the files /etc/hosts.allow and /etc/hosts.deny. More information on this is given by man
host_access.

169

10 The Nagios Remote Plugin Executor (NRPE)

10.3 NRPE Configuration on the Computer to Be
Monitored

When compiling NRPE, the file nrpe.cfg is created in the source directory, which
contains several parameters as well as the commands to run NRPE. These are copied
manually to the configuration directory, which normally first has to be created on
the target computer:

linux:src/rnpe-2.0 # mkdir /etc/nagios

linux:src/rnpe-2.0 # cp nrpe.cfg /etc/nagios/.

Distribution-specific packages are unpacked from the location specified in Table
10.1 on page 167.

nrpe is given the permissions of the user at runtime specified in the inet daemon
configuration, which in our case is that of nobody. Therefore nrpe.cfg needs to be
readable for this user. As long as the file does not contain any passwords (these
really should not be used) or other critical information, then read permissions for
all can be allowed.

The configuration file contains many comments; the following command displays
the active parameters:7

user@linux:˜$ egrep -v ’ˆ#|ˆ$’ nrpe.cfg | less

server_port=5666

allowed_hosts=127.0.0.1

nrpe_user=nobody

nrpe_group=nogroup

dont_blame_nrpe=0

debug=0

command_timeout=60

...

The parameters server_port, allowed_hosts, nrpe_user, and nrpe_group are only
relevant if nrpe is working as a daemon. When the inet daemon is used, the
program ignores these values since they have already been determined by the
(x)indetd configuration.

The entry dont_blame_nrpe=0 prevents nrpe from accepting parameters, thus
closing a potential security hole. debug=1 allows extensive logging, useful if you
are looking for errors (debug=0 switches off the output for debugging informa-
tion), and command_timeout specifies a timespan in seconds after which nrpe
abruptly interrupts a plugin that has hung. Comments in the configuration file
explain all these parameters as well.

7 The regular expression ^#|^$ matches all lines that either begin with a comment sign # or that
consist of an empty line. The option -v ensures that egrep shows all lines that are not matched
by this.

170

10.3 NRPE Configuration on the Computer to Be Monitored

After this, the commands are defined that are to be executed by NRPE. The configu-
ration file nrpe.cfg already contains some, but first they all have to be commented
out, and only those commands activated that really are intended for use.

The keyword command is followed in square brackets by the name with which
check_nrpe should call the command. After the equals sign (=), the corresponding
plugin command is specified, with its complete path:8

command[check_users]=/usr/local/nagios/libexec/check_users -w 5 -c 10

command[check_load]=/usr/lib/nagios/libexec/check_load -w 8,5,3

-c 15,10,7

command[check_zombies]=/usr/lib/nagios/libexec/check_procs -w :1 -c :2

-s Z

With the path, care must be taken that this really does point to the local plugin di-
rectory. In the directory specified here, /usr/local/nagios/libexec, the self-compiled
plugins are located9; and for installations from distribution packages the path is
usually /usr/lib/nagios/plugins.

From the Nagios server, the command just defined, check_users is now run on the
target computer via check_nrpe:

nagios@linux:nagios/libexec$./check_nrpe -H target host -c check_users

10.3.1 Passing parameters on to local plugins

The method described so far has one disadvantage: for each test on the target
system, a separately defined command is required for this. Here is the example of a
server on which the plugin check_disk (see Section 7.1 from page 134) is required
to monitor nine file systems:

command[check_disk_a]=path/to/check_disk -w 5% -c 2% -p /net/linux01/a

command[check_disk_b]=path/to/check_disk -w 4% -c 2% -p /net/linux01/b

command[check_disk_c]=path/to/check_disk -w 5% -c 2% -p /net/linux01/c

command[check_disk_d]=path/to/check_disk -w 5% -c 2% -p /net/linux01/d

command[check_disk_root]=path/to/check_disk -w 10% -c 5% -p /

command[check_disk_usr]=path/to/check_disk -w 10% -c 5% -p /usr

command[check_disk_var]=path/to/check_disk -w 10% -c 5% -p /var

command[check_disk_home]=path/to/check_disk -w 10% -c 5% -p /home

command[check_disk_tmp]=path/to/check_disk -w 10% -c 5% -p /tmp

To avoid all this work, NRPE can also be configured so that parameters may be
passed on to check_nrpe:

8 The check_users command is explained in Section 7.6 from page 144, check_load is explained
in Section 7.3 from page 137, and Section 7.4 from page 138 deals with check_procs.

9 . . . provided you have followed the instructions in the book.

171

10 The Nagios Remote Plugin Executor (NRPE)

dont_blame_nrpe=1

...

command[check_disk]=path/to/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$

In order for this to work, the NRPE configure script must be run with the option
--enable-command-args. The reason for this inconvenient procedure is that pass-
ing parameters on is a fundamental risk, since it cannot be ruled out that a certain
choice of parameters could cause an (as yet unknown) buffer overflow, allowing
the target system to be penetrated.

If you still decide on this, despite all the security risks, you should use a TCP wrapper
(see Section 10.2.2, page 169), to ensure that only the Nagios server itself is allowed
to send commands to NRPE.

If the plugin provides the corresponding options, there is sometimes a third method,
however: the above-mentioned problem can also be solved by getting check_disk,
if necessary, to test all file systems with one single command:

user@linux:nagios/libexec$./check_disk -w 10% -c 4% -e -m

DISK WARNING [2588840 kB (5%) free on /net/linux1/b] [937160 kB (5%) free

on /net/linux1/c]

The -e parameter persuades the plugin to display only those file systems that pro-
duced a warning or an error. One restriction remains: the warning and critical
limits are, by necessity, the same for all file systems.

10.4 Nagios Configuration

Commands that “trigger” local plugins on remote computers via check_nrpe are
defined as before in the file checkcommands.cfg on the Nagios server.

10.4.1 NRPE without passing parameters on

If no parameters are passed on to the target plugin, things will look like this:

define command{
command_name check_nrpe

command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$

}

As the only argument, Nagios passes the command here that NRPE is to execute.
If the check_nrpe plugin on the Nagios server is located in a different directory to
the other plugins, you must enter the correct path instead of $USER1$.

172

10.4 Nagios Configuration

A service to be tested via NRPE uses the command just defined, check_nrpe, as
check_command. As an argument, the command is specified that was defined in
nrpe.cfg on the target system (here: linux04):

define service{
host_name linux04

service_description FS_var

...

check_command check_nrpe!check_disk_var

...

}

10.4.2 Passing parameters on in NRPE

In order to address the command defined in Section 10.3.1 on page 171

command[check_disk]=path/to/check_disk -w $ARG1$ -c $ARG2$ -p $ARG3$

from the Nagios server, the check_nrpe is given the corresponding arguments
through the option -a:

define command{
command_name check_nrpe

command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c $ARG1$ -a $ARG2$

}

So that $ARG2$ can correctly transport the parameters for the remote plugin,
these are separated by spaces in the service definition. in addition, you should
ensure that the order is correct:

define service{
host_name linux04

service_description FS_var

...

check_command check_nrpe!check_disk!10% 5% /var

...

}

The locally installed check_disk on linux04 distributes the three strings 10%, 5%,
and /var to its own three macros $ARG1$, $ARG2$, and $ARG3$ for the command
defined in nrpe.cfg.

10.4.3 Optimizing the configuration

If the NRPE commands are given identical names on all target systems, then all
NRPE commands with the same name can be included in a single service definition.

173

10 The Nagios Remote Plugin Executor (NRPE)

When doing this you can make use of the possibility of specifying several hosts, or
even an entire group of hosts:

define service{
host_name linux04,linux02,linux11

service_description FS_var

...

check_command check_nrpe!check_disk_var

...

}

With the command check_disk_var, defined at the beginning of Section 10.3.1
on page 171, Nagios now checks the /var file systems on the computers linux04,
linux02, and linux11. If other file systems are to be included in the test, a sep-
arate service is created for each one, thus avoiding the security problem involved
in passing parameters on. If you use the option of testing all file systems at the
same time, with the check_disk plugin (see Section 7.1), then ultimately, one sin-
gle service definition is sufficient to monitor all file systems on all Linux servers—
provided you have a corresponding NRPE configuration on the target system:

define service{
hostgroup_name linux-servers

service_description Disks

...

check_command check_nrpe!check_disk

...

}

10.5 Indirect Checks

NRPE executes not just local plugins, but any plugins that are available. If you use
network plugins via NRPE, these are referred to as indirect checks, as illustrated
graphically in Figure 1.

If every network service was tested directly across the firewall, it would have to
open all the required ports. In the example, these would be the ports for SMTP,
HTTP, LDAP, PostgreSQL, and SSH. If the checks are performed indirectly from a
computer that is behind the firewall, on the other hand, then it is sufficient just
to have the port for NRPE (TCP port 5666) open on the firewall. As long as it is
configured via NRPE, the NRPE server behind the firewall can perform any tests it
wants.

174

10.5 Indirect Checks

Figure 10.1:

Indirect checks with

NRPE

Whether the effort involved in indirect checks is greater than that for direct ones
is dependent on the specific implementation: if this means that you would have
to “drill holes into your firewall,” then the additional work on the NRPE server may
be worthwhile. But if the ports involved are open anyway, then the direct test can
usually be recommended; this would make additional configuration work on an
NRPE host unnecessary.

175

11 Ch
ap

te
r

Collecting Information Relevant
for Monitoring with SNMP

SNMP stands for Simple Network Management Protocol, a protocol defined above
all to monitor and manage network devices. This means being able to have not only
read access, but also write access to network devices, so that you can turn a specific
port on a switch on or off, or intervene in other ways.

Nearly all network-capable devices that can also be addressed via TCP/IP can handle
SNMP, and not just switches and routers. For Unix systems there are SNMP dae-
mons; even Windows servers contain an SNMP implementation in their standard
distribution, although this must be explicitly installed. But even uninterruptible
power supplies (UPSs) or network-capable sensors are SNMP-capable.

If you are using Nagios, then at some point you can’t avoid coming into contact
with SNMP, because although you usually have a great choice of querying tech-
niques for Unix and Windows systems, when it comes to hardware-specific com-

177

11 Collecting Information Relevant for Monitoring with SNMP

ponents such as switches, without their own sophisticated operating system, then
SNMP is often the only way to obtain information from the network device. SNMP
certainly does not have a reputation of being easy to understand, which among
other things lies in the fact that it is intended for communication between pro-
grams, and machine processing is in the foreground. In addition, you generally do
not make direct contact with the protocol and with the original information, since
even modems or routers provide a simple-to-operate interface that disguises the
complexity of the underlying SNMP.

If you want to use SNMP with Nagios, you cannot avoid getting involved with
the information structure of the protocol. Section 11.1 therefore provides a short
introduction to SNMP. Section 11.2 from page 184 introduces NET-SNMP, probably
the most widely used implementation for SNMP on Unix systems. On the one hand
it shows how to obtain an overview of the information structure of a network
device with command-line tools, and on the other it describes the configuration of
the SNMP daemon in Linux. Finally, Section 11.3 from page 196 is devoted to the
concrete use of SNMP with Nagios.

11.1 Introduction to SNMP

Although SNMP contains the P for “protocol” in its name, this does not stand for a
protocol alone, but is used as a synonym for the Internet Standard Management
Framework. This consists of the following components:

Manageable network nodes that can be controlled remotely via SNMP. A spe-
cific implementation of an SNMP engine, whether by software or hardware, is
referred to as an agent.

At least one SNMP unit consisting of applications with which the agents can be
managed. This unit is referred to as a manager.

A protocol with which agent and manager can exchange information: the Sim-
ple Network Management Protocol (SNMP).

A well-defined information structure, so that any managers and agents can un-
derstand each other: the so-called Management Information Base, or in short,
MIB.

The framework assigns the manager the active role. The agent itself just waits pas-
sively for incoming commands. In addition, so-called traps extend the application
possibilities of SNMP: these are messages that the agent actively sends to a single
manager or a whole group of managers, for example if predefined limit values are
exceeded or if functions of the network device fail.

178

11.1 Introduction to SNMP

As agents, SNMP engines implemented by the manufacturer are used for hardware-
specific devices (switches, routers). For Linux and general Unix systems, the NET-
SNMP implementation is available (see Section 11.2), for Windows servers there is
equivalent software already included with the operating system.

In combination with Nagios, there are two possibilities. With respect to Nagios in
the active role, corresponding Nagios plugins, as the manager, ask the agents for
the desired information. The other way round, Nagios can also passively receive
incoming SNMP traps using utilities and process these. Section 14.6 from page
260 is devoted to this topic.

An understanding of the SNMP information structure, the so-called Management
Information Base (MIB), is critical if you want to use SNMP with Nagios success-
fully. For this reason this section will focus on this. The protocol itself is only
mentioned briefly to illustrate the differences between different protocol versions.

If you want to get involved more deeply with SNMP, we refer you to the numer-
ous Request for Comments (RFCs) describing SNMP. The best place to start would
be in RFC 3410, “Introduction and Applicability Statements for Internet Standard
Management Framework”, and RFC 3411: “An Architecture for Describing Sim-
ple Network Management Protocol (SNMP) Management Frameworks.” Apart from
an introduction and numerous cross-links, you will also find references there to
the original documents of the older versions, today referred to as SNMPv1 and
SNMPv2.

11.1.1 The Management Information Base

The SNMP information structure consists of a hierarchical namespace construction
of numbers. Figure 11.1 shows an extract from this. The tree structure is similar to
those of other hierarchical directory services, such as DNS or LDAP.

Its root is called 1 (iso) and stands for the International Organization for Stan-
dardization. The next level, 3 (org) shown in Figure 11.1 provides a space for
general, national and international organizations. Beneath this is 6 (dod) for the
U.S. Department of Defense. The general (IP-based) internet owes its assignment
as a subitem 1 (internet) of dod to its origin as a military project.

If you bring together the corresponding numbers from left to right and separate
them with the dot, then for the internet node in the tree, you arrive at the des-
ignation 1.3.6.1. Such nodes are referred to in general as object identifiers (OID).
Their syntax is used not only in SNMP but also in the definition of LDAP objects
and attributes, for example.

The OID 1.3.6.1 is not exactly easily readable for humans, which is why other no-
tation methods have gained acceptance: both iso.org.dod.internet and the com-
bination iso(1).org(3).dod(6).internet(1) y
make readable descriptions infinitely long if the tree were deep enough, another

179

is allowed. Because this would quickl

11 Collecting Information Relevant for Monitoring with SNMP

abbreviated notation method has become established: as long as the term remains
unique, you may simply write internet instead of 1.3.6.1.

The important thing here is that the communication between manager and agent
is exclusively of a numerical nature. Whether the manager also allows text input
or is capable of issuing information as text instead of as a numeric OID depends on
the implementation in each case. The information on individual nodes is provided
by the manufacturer of the SNMP agent as a Management Information Base (MIB)
in file form.

Figure 11.1:

SNMP namespace

using the example of

the MIB-II interfaces

The data stored in the MIB includes contact information (who designed the MIB;
usually the manufacturer of the device will be given here), the definition of individ-
ual subnodes and attributes, and the data types used. If an MIB file also describes
the individual subnodes and attributes, this puts the manager in a position to sup-
ply the user with additional information on the meaning and purpose of the entry
in question.

180

11.1 Introduction to SNMP

Below internet, the next level is divided into various namespaces. The management
node 1.3.6.1.2 is especially important for SNMP, that is, iso(1).org(3).dod(6).inter-
net(1).mgmt(2). The namespace here is described by RFC 1155, “Structure and
Identification of Management Information for TCP/IP-based Internets.”

In order for manager and agent to be able to understand each other, the manager
needs to know how the agent structures its data. This is where the Management
Information Base, Version II comes into play. SNMP requests information from
the agents on their implementation; with this, every manager can access the most
important parameters of the agent, without a previous exchange of MIB definitions.
The Management Information Base II, or MIB-II (or mib-2) for short, can be found
in the namespace at 1.3.6.1.2.1 or iso(1).org(3).dod(6).internet(1).mgmt(2).mib-
2(1). Since it is well-defined and unique, OIDs lying beneath that are usually de-
scribed in short, starting with MIB-II or mib-2.

Manufacturer-specific information can also be defined in your own Management
Information Base. Corresponding MIBs are located beneath internet.private.enter-
prise. Once an OID has been described in an MIB, the meaning of this entry may
never be changed. The description format for an MIB is standardized by RFC 1212,
which is the reason that special MIBs, included by a vendor for its agents, can be
integrated into almost any manager.

MIB-II

MIB-II, the Management Information Base , which is obligatory for all SNMP agents,
contains several information groups. The most important of these are summarized
in Table 11.1. The notation mib-2.x stands for 1.3.6.1.2.1.x.

Table 11.1:

MIB-II groups (a

selection)

Group OID Description

system mib-2.1 Information on the device, (e.g., the location, contact
partner, or uptime)

interfaces mib-2.2 Information on the network interfaces (Name, inter-
face type, status, statistics etc.)

at mib-2.3 Assignment of physical addresses (e.g., of MAC ad-
dresses) to the IP address (Address Translation Table)

ip mib-2.4 Routing tables and IP packet statistics

icmp mib-2.5 Statistics on individual ICMP packet types

tcp mib-2.6 Open ports and existing TCP connections

udp mib-2.7 ditto for UDP

host mib-2.25 Information on storage media, devices, running pro-
cesses and their use of resources

181

11 Collecting Information Relevant for Monitoring with SNMP

How you specifically handle information stored in the MIB-II can be explained using
the example of the interfaces group: Figure 11.1 shows how they are split up
into the two OIDs interfaces.ifNumber and interfaces.ifTable. This is because one
network node initially reveals an unknown number of interfaces. This number is
taken up by ifNumber. Before looking at these interfaces more closely, a manager
can get the information from ifNumber about how many there really are.

ifTable then contains the actual information on the different interfaces. To obtain
this information for a specific interface, the manager queries all the entries in
which the last number is the same, like this:

ifEntry.ifIndex.1 = INTEGER: 1

ifEntry.ifDescr.1 = STRING: eth0

ifEntry.ifType.1 = INTEGER: ethernetCsmacd(6)

ifEntry.ifMtu.1 = INTEGER: 1500

ifEntry.ifSpeed.1 = Gauge32: 100000000

ifEntry.ifPhysAddress.1 = STRING: 0:30:5:6b:70:70

ifEntry.ifAdminStatus.1 = INTEGER: up(1)

ifEntry.ifOperStatus.1 = INTEGER: up(1)

...

ifIndex describes the device-internal index—SNMP always starts counting from 1,
switches start counting here from 100. ifDescr contains the name of the interface,
here eth0—this is obviously a Linux machine. It can be assumed from the next
four entries that a normal 100-MBit Ethernet interface is involved. If ethernetC-
smacd is given as the interface typeifType,1 that is, Ethernet. ifMtu specifies the
Maximum Transfer Unit, which in local networks is always 1500 bytes for Ether-
net. The interface speed ifSpeed is 100,000,000 bits here, that is, 100 MBit. And
ifPhysAddress contains the physical network address, also called the MAC address.

ifAdminStatus reveals whether the admin has switched the interface on (up) or
off (down) via the configuration. ifOperStatus on the other hand specifies the ac-
tual status, since even interfaces activated by an administrator are not necessarily
connected to a device, or even switched on.

There is a similar picture for the second interface:

ifEntry.ifIndex.2 = INTEGER: 2

ifEntry.ifDescr.2 = STRING: lo

ifEntry.ifType.2 = INTEGER: softwareLoopback(24)

ifEntry.ifMtu.2 = INTEGER: 16436

ifEntry.ifSpeed.2 = Gauge32: 10000000

ifEntry.ifPhysAddress.2 = STRING:

ifEntry.ifAdminStatus.2 = INTEGER: up(1)

1 Carrier Sense (CS) means that each network interface checks to see whether the line is free,
based on the network signal (in contrast to Token Ring, for example, where the network card
may use the line only if it explicitly receives a token); Multiple Access (MA) means that several
network cards may access a common network medium simultaneously.

182

11.1 Introduction to SNMP

ifEntry.ifOperStatus.2 = INTEGER: up(1)

...

This is not an ethernet card here, however, but a local loopback device.

11.1.2 SNMP protocol versions

The first SNMP version and Internet Standard Management Framework were
described back in 1988 in RFCs 1065–1067; the current documentation on this
version, named SNMPv1, can be found in RFC 1155–1157. It is still used today,
since higher versions are fundamentally backward-compatible.

The big disadvantage of SNMPv1 is that this version allows only unsatisfactory
authentication in precisely three stages: no access, read access, and full access
for read and write operations. Two simple passwords, the so-called communities,
provide a little protection here: they divide users into one community with read
permissions, and the second one with read and write permissions. No further dif-
ferentiation is possible. If this was not enough, the community is transmitted in
plain text, making it an easy pray for sniffer tools.

Further development on the second version, SNMPv2, was intended to solve prob-
lems concerning the display of value ranges, error events, and the performance
if there are mass requests (RFC 1905). This RFC was never fully implemented,
however. The only relatively complete implementation that was used in practice
is known as the Community-based SNMPv2, or SNMPv2c for short (RFC 1901–
1908). The current version, SNMPv3 (RFC 3411–3418), has the status of an Internet
standard. Agents with SNMPv3 implementations always understand requests from
SNMPv1.

Apart from extended protocol operations, there are no fundamental differences
between SNMPv1 and SNMPv2c. This is probably also the reason why SNMPv2
could not really gain a foothold. The hoped-for increase in security was certainly
missing in this version. It is only the extensions of the framework in SNMPv3 which
allow more precise access control, but this is much more complicated than the two
community strings in SNMPv1. RFC 3414 describes the user-based security model
(USM), RFC 3415 the view-based access control model (VACM).

When accessing an SNMP agent, you must tell all tools, including plugins, which
protocol version is to be used. In Nagios you exclusively require read access. If
this is restricted to the required information and you only allow the access from
the Nagios server, you need have no qualms about doing without the extended
authentication of SNMPv3. It is only important that you configure the agent—
if possible—so that it completely prevents write accesses, or at least demands a
password. You should never use this: since it is transmitted in plain text, there is
always a danger that somebody may be listening, and misuse the password later
on.

183

11 Collecting Information Relevant for Monitoring with SNMP

In NET-SNMP, write accesses can be completely prevented, access can be restricted
to specific hosts, and information revealed can be limited. For other agents imple-
mented in hardware such as switches and routers, you must weigh up whether you
really need SNMPv3, assuming the manufacturer has made this available. SNMPv1,
however, is available for all SNMP devices.

We will therefore only explain access via SNMPv1 below, and assume that this is
generally read access only. If you still want to get involved with SNMPv3, we refer
you to the NET-SNMP documentation.2

11.2 NET-SNMP

Probably the most widely used SNMP implementation for Linux and other UNIX
systems is NET-SNMP3 and was originally conceived at Carnegie-Mellon Univer-
sity. Wes Hardacker, a system administrator at the University of California in Davis,
continued developing the code and first published it under the name UCD-SNMP
(Version 3.0).

With version 5.0 the project finally got the name NET-SNMP. But various distribu-
tions still call the package UCD-SNMP, in part because it contains version 4.2, in
part because the maintainer has simply not gotten around to renaming it.

NET-SNMP consists of a set of command line tools, a graphic browser (tkmib), an
agent (snmpd, see Section 11.2.2 on page 187) and a library, which now forms the
basis of nearly all SNMP implementations in the Open Source field.

All common distributions include corresponding packages. In SuSE this is called
net-snmp and contains all the components; Debian packs the tools in the package
snmp, and the daemon in the package snmpd. At the time of going to press, version
5.2.1 was the current version, but an older version (even 4.2) will do the job for our
purposes. Their outputs differ to some extent, but the exact options can be looked
up where necessary in the manpage.

11.2.1 Tools for SNMP requests

Command line tools snmpget, snmpgetnext and snmpwalk

For read access, the programs snmpget, snmpgetnext and snmpwalk are used. sn-
mpget specifically requests a single OID and returns a single value from it. sn-
mpgetnext displays the next variable existing in the Management Information
Base, including its value:

2 http://net-snmp.sourceforge.net/docs/FAQ.html#How_do_I_use_SNMPv__
3 http://net-snmp.sourceforge.net/

184

11.2 NET-SNMP

user@linux:˜$ snmpget -v1 -c public localhost ifDescr.1

IF-MIB::ifDescr.1 = STRING: eth0

user@linux:˜$ snmpgetnext -v1 -c public localhost ifDescr.1

IF-MIB::ifDescr.2 = STRING: lo

user@linux:˜$ snmpgetnext -v1 -c public localhost ifDescr.3

IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)

The option -v1 instructs snmpget to use SNMPv1 as the protocol. With -c you
specify the read community an; in this case then, the password is public. This is
followed by the computer to be queried, here localhost, and finally there is the OID
whose value we would like to find out.

The NET-SNMP tools are masters of OID abbreviation: without special instructions,
they always assume that an OID is involved which lies inside the MIB-II. For unique
entries such as ifDescr.1, this is sufficient. But whether the various SNMP plugins
for Nagios can also handle this depends on the specific implementation; it is best
to try out cases on an individual basis. To be on the safe side, it is better to use
complete OIDs, either numerical in readable form. The latter is obtained if you
instruct snmpget to display the full OID:

user@linux:˜$ snmpget -v1 -On -c public localhost ifDescr.1

.1.3.6.1.2.1.2.2.1.2.1 = STRING: eth0

user@linux:˜$ snmpget -v1 -Of -c public localhost ifDescr.1

.iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr.1 =

STRING: eth0

The -On option provides the numerical OID, -Of the text version. In this way you
can easily find out the complete OID, for plugins which cannot handle the abbre-
viation. It is important to remember here: each OID always starts with a period. If
you omit this, there will always be a plugin which doesn’t work properly.

In order to obtain the entire information stored in the MIB-II, it is better to use
snmpwalk. As the name suggests, the program takes a walk through the Manage-
ment Information Base, either in its entirety or in a specified part of the tree. If
you would like to find out about all the entries beneath the node mib-2.interfaces
(Figure 11.1 on page 180), you simply give snmpwalk the required OID:

user@linux:˜$ snmpwalk -v1 -c public localhost mib-2.interfaces

IF-MIB::ifNumber.0 = INTEGER: 3

IF-MIB::ifIndex.1 = INTEGER: 1

IF-MIB::ifIndex.2 = INTEGER: 2

IF-MIB::ifIndex.3 = INTEGER: 3

IF-MIB::ifDescr.1 = STRING: eth0

IF-MIB::ifDescr.2 = STRING: lo

IF-MIB::ifDescr.3 = STRING: eth1

IF-MIB::ifType.1 = INTEGER: ethernetCsmacd(6)

...

185

11 Collecting Information Relevant for Monitoring with SNMP

snmpwalk hides the exact structure slightly (links to ifTable and ifEntry are miss-
ing, for example, see Figure 11.1), so that it is better to use -Of:

user@linux:˜$ snmpwalk -v1 -Of -c public localhost mib-2.interfaces

...mib-2.interfaces.ifNumber.0 = INTEGER: 3

...mib-2.interfaces.ifTable.ifEntry.ifIndex.1 = INTEGER: 1

...mib-2.interfaces.ifTable.ifEntry.ifIndex.2 = INTEGER: 2

...mib-2.interfaces.ifTable.ifEntry.ifIndex.3 = INTEGER: 3

...mib-2.interfaces.ifTable.ifEntry.ifDescr.1 = STRING: eth0

...mib-2.interfaces.ifTable.ifEntry.ifDescr.2 = STRING: lo

...mib-2.interfaces.ifTable.ifEntry.ifDescr.3 = STRING: eth1

...mib-2.interfaces.ifTable.ifEntry.ifType.1 = INTEGER: ethernetCsmacd(6)

The three dots . . . in the version here abbreviated for print stand for .iso.org.dod.in-
ternet.mgmt.

As the next step, you could take a look around your own network and query the
Management Information Bases available there. Normally you will get quite far
with the read community public, since this is often the default setting. So you
should also try out the community string private, which is the default set by many
vendors. An extremely dubious practice, by the way: anyone who knows a bit
about SNMP and who has access to the network can use this to manipulate device
settings, such as switching off certain ports or the entire switch. But even with all
the other default passwords, you should take the trouble to change them. Entire
password lists can be found on the Internet, sorted by vendors and devices—easily
found through Google.

Whether you also change the preset read community (such as public) depends on
the information available on it and on your own security requirements. But the
read-write community should under no circumstances retain the default setting.
In addition it is recommended that you switch off SNMP completely for devices
that are neither queried nor administrated via SMNP, just to be on the safe side.

Taking a graphic walk with mbrowse

A graphic interface is often recommended for interactive research and for initial
explorations of the Management Information Base, such as the SNMP browser
mbrowse4 (see Figure 11.2). This is not a component of NET-SNMP, but most Linux
distributions provide an mbrowse package for installation.

4 http://www.kill-9.org/mbrowse/

186

11.2 NET-SNMP

Figure 11.2:

SNMP browser

mbrowse

If you highlight an entry and click on the Walk button, the lower window dis-
plays the same output as snmpwalk. The graphical display, however, allows better
orientation—it is easier to see in which partial tree you are currently located. It is
also interesting that mbrowse shows the numeric OID of each selected object, in
Object Identifier.

11.2.2 The NET-SNMP daemon

The NET-SNMP daemon snmpd works as an SNMP agent for Linux and other Unix
systems; that is, it answers requests from a manager and also provides a way of
making settings to the Linux system via write accesses, such as manipulating the
routing table.

187

11 Collecting Information Relevant for Monitoring with SNMP

Supported Mangement Information Bases

The agent initially provides information on the MIB-II described in RFC 1213 (Sec-
tion 11.1.1 from page 179), but also the host extensions belonging to this from RFC
2790 (host MIB). Table 11.2 summarizes the groups of the host MIB, and the most
important MIB-II groups are introduced in Table 11.1 (page 181).

If you are interested in a detailed description of the MIB-II, including the host MIB,
we refer you to the MIB browser of TU Braunschweig.5 In addition to the basic MIB-
II, the NET-SNMP implementation has its own extension at private.enterprises.uc-
davis (UCD-SNMP-MIB). The directives given in table 11.3 refer to instructions in
the configuration file snmpd.conf (see page 190). Some of the information here is
also given in the host resource MIB.

Table 11.2:

Components of the

Host Resources MIB

mib-2.host

(RFC 2790)

Group OID Description

hrSystem host.1 System time and uptime of the host, logged-in users,
and number of active processes

hrStorage host.2 Details on all storage media such as swap, hard drives,
removable media, and main memory

hrDevice host.3 List of available devices and their properties: apart
from details on the processor, network interfaces,
printer and DVD-/CD-ROM drives, there is also infor-
mation on hard drives, their partitioning, file systems,
mount points and file system types

hrSWRun host.4 All running processes including PID and command
line parameters

hrSWRunPerf host.5 CPU usage and memory usage for the processes from
hrSWRun

hrSWInstalled host.6 Installed software; the information originates from
the RPM database (unfortunately this does not work
in Debian).

Table 11.3:

Extract from the

UCD-SNMP-MIB

Group OID Directive description

prTable ucdavis.2 proc details of running processes

memory ucdavis.4 – Memory and Swap space load, as in
the program free

5 http://www.ibr.cs.tu-bs.de/cgi-bin/sbrowser.cgi

188

11.2 NET-SNMP

continued

Group OID Directive description

extTable ucdavis.8 exec Information on self-defined com-
mands in the configuration file6

dskTable ucdavis.9 disk Information on file systems, see ex-
ample in the text

laTable ucdavis.10 load System load

ucdExperi-
mental

ucdavis.13 – Experimental extension containing an
entry with lm-sensor information,
among other things

fileTable ucdavis.15 file Information on files to be explicitly
monitored

version ucdavis.100 – Details on the NET-SNMP version and
the parameters with which the dae-
mon was compiled

While mib-2.host only specifies absolute values, such as for file systems, UCD-
SNMP-MIB also allows threshold values to be set for agent pages, which then ex-
plicitly generate an error value (dskErrorFlag) with error text (dskErrorMsg):

user@linux:˜$ snmpwalk -v1 -c public localhost ucdavis.dskTable |\
grep ’.2 =’

UCD-SNMP-MIB::dskIndex.2 = INTEGER: 2

UCD-SNMP-MIB::dskPath.2 = STRING: /net/swobspace/b

UCD-SNMP-MIB::dskDevice.2 = STRING: /dev/md6

UCD-SNMP-MIB::dskMinimum.2 = INTEGER: -1

UCD-SNMP-MIB::dskMinPercent.2 = INTEGER: 10

UCD-SNMP-MIB::dskTotal.2 = INTEGER: 39373624

UCD-SNMP-MIB::dskAvail.2 = INTEGER: 1694904

UCD-SNMP-MIB::dskUsed.2 = INTEGER: 35678636

UCD-SNMP-MIB::dskPercent.2 = INTEGER: 95

UCD-SNMP-MIB::dskPercentNode.2 = INTEGER: 1

UCD-SNMP-MIB::dskErrorFlag.2 = INTEGER: 1

UCD-SNMP-MIB::dskErrorMsg.2 = STRING: /net/swobspace/b: less than 10%

free (= 95%)

The grep ’.2 =’ filters all entries on the second device from the snmpwalk output,
the Linux software-RAID /dev/md6. The entry dskPercent shows the current load
of this data medium. An error exists if dskErrorFlag contains the value 1 instead of
0; dskErrorMsg adds a readable message to the error message. It can be assumed
from this that the agent is being configured so that it will announce an error if free
capacity falls below 10 percent.

6 Any executable programs can be used here.

189

11 Collecting Information Relevant for Monitoring with SNMP

The configuration file snmpd.conf

Configuring the agent is done in the file snmpd.conf, which is either located in the
directory /etc directly (the case for SUSE) or in /etc/snmp (Debian), depending on
the distribution.

Authentication and security

As the first step towards a finely tuned access control, you first need to define who
should have access to which community:

(1) source addressesQuelladressen

com2sec localnet 192.168.1.0/24 public

com2sec localhost 127.0.0.1 public

com2sec nagiossrv 192.168.1.9 public

com2sec links the source IP addresses to a community string (the SNMP password).
This keyword is followed by an alias for the IP address range, the address range
itself, and then a freely selectable community string, for which we will use public
here, to keep things simple.7 192.168.1.0/24 refers to the local network; the Nagios
server itself has the IP address 192.168.1.9. If you set access permissions for the
alias localnet later on, they will apply to the entire local network 192.168.1.0/24,
but if you reference nagiossrv when doing this, they will only apply to the Nagios
server itself.

Then the defined computers and networks are assigned via their aliases to groups
which have different security models:

(2) assignment of group - security model - source-IP alias

group Local v1 localhost

group Nagios v1 nagiossrv

The keyword group is followed first by a freely selectable group name: here we
define the group Local with the security model v1, which belongs to the address
range defined as localhost, and the group Nagios with the same security model
contained in the Nagios server.

You can choose from v1 (SNMPv1), v2c (community-based SNMPv2), and usm (the
User Model from SNMPv3) as the security model. If you assign a computer or a
network several security models at the same time, then separate entries with the
same group name are required:

group Nagios v1 nagiossrv

group Nagios usm nagiossrv

7 See also page 186.

190

11.2 NET-SNMP

With the definition of views (keyword view) the view from the outside can be
restricted precisely to partial trees of the Management Information Base. Each
view here is also given a name for referencing:

#(3) View definition for partial trees of the SNMP namespace

view all included .1

view system included .iso.org.dod.internet.mgmt.mib-2.system

The reference included includes the following partial tree in the view. Thus the
view all covers the entire tree (.1). If you want to exclude certain partial trees in
this, then the keyword excluded is used:

view all included .1

view all excluded .iso.org.dod.internet.private

The partial tree beneath private in all is now blocked, such as the MIB ucdavis
(private.enterprises.ucdavis).

One interesting feature is the mask; it specifies in hexadecimal notation which
nodes correspond exactly to the subtree:

view all included .iso.org.dod.internet.mgmt F8

All places of the queried OID, for which the mask contains a 1 in binary no-
tation, must be identical in the queried partial tree to the OID specified here,
.iso.org.dod.internet.mgmt, otherwise the daemon will refuse access and not pro-
vide any information. .iso.org.dod.internet.mgmt is written numerically as .1.3.6.
1.2.

Thanks to the mask F8,8 binary 11111000, the first five places from the left in the
OID must always be .iso.org.dod.internet.mgmt. If somebody queried an OID (such
as the private tree .1.3.6.1.4), which deviates from this, the agent would remain
silent and not provide any information. If you leave out the mask detail, FF will be
used.

If you have defined the alias, community, security model, and view, you just need
to bring them together for the purpose of access control. This is done with the
access instruction:

(4) Definition of the access control

access Local any noauth exact all none none

access NagiosGrp any noauth exact all none none

The access restrictions are bound to the group. The context column remains empty
(””), since only SNMPv3 requires it.9 As the security model, you then normally

8 F= 1·23+1·22+1·21+1·20 = 1111, 8=1000
9 Corresponding descriptions on SNMPv3 would go beyond the bounds of this book.

191

11 Collecting Information Relevant for Monitoring with SNMP

choose any, but you may define a specific model with v1, v2c or usm, since several
different security models may be assigned to a group, as shown in the discussion
of “Authentication and Security” at the beginning of this Section. The fifth column
specifies the security level, which is also of interest only for SNMPv3. In the other
two security models (we are only using v1), noauth is given here. The fourth last
column also has just one meaning in SNMPv3. But since you must enter a valid
value forSNMPv1 and SNMPv2c as well, then exact is chosen here.

The last two columns specify which view should be used for which access (read or
write). In the example, the groups Local and NagiosGrp obtain read access for the
view all, but no write access. The final column defines whether the agent should
send SNMP traps—that is, active messages, to the manager—for events that occur
within the range of validity of the view. Section 14.6 from page 260 goes into more
detail about SNMP traps.

With the configuration described here, you can now exclusively access the Nagios
server and localhost via SNMPv1 for information. The server access can be re-
stricted further by defining a view that makes only parts of the MIB visible. But
you should only try this once the configuration described is working, to avoid log-
ical errors and time-consuming debugging.

System and local information

The partial tree mib-2.system provides information on the system itself and on the
available (that is, implemented) MIBs. With syslocation you can specify where a
system is located in the company or on the campus, and after the keyword syscon-
tact you enter the e-mail address of the administrator responsible:

(5) mib-2.system

syslocation Server room Martinstr., 2nd rack from the left

syscontact root <wob@swobspace.de>

As long as you do not redefine the parameters sysname and sysdescr at this point,
the corresponding MIBs in the default will reveal the host name and/or the system
and kernel specification, corresponding to uname -a:

user@linux:˜$ snmpwalk -v1 -c public localhost system

system.sysDescr.0 = STRING: Linux swobspace 2.6.10 #20 SMP Mon Dec 27

11:55:25 CET 2004 i686

system.sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10

system.sysUpTime.0 = Timeticks: (1393474) 3:52:14.74

system.sysContact.0 = STRING: root <wob@swobspace.de>

system.sysName.0 = STRING: swobspace

system.sysLocation.0 = STRING: Serverraum Martinstr., 2. Rack von links

...

192

11.2 NET-SNMP

Defining processes to be monitored

Processes that you want to monitor using SNMP are specified with the proc di-
rective, and if required you can specify the minimum or maximum number of pro-
cesses:

(6) Processes: enterprises.ucdavis.procTable

proc process maximum minimum

proc process maximum

proc process

proc sshd

proc nmbd 2 1

proc smbd

proc slapd

If the entry for maximum and minimum is missing, at least one process must be
running. If only the minimum is omitted, NET-SNMP will define this with zero
processes. The corresponding entries end up in the MIB ucdavis.prTable; in case of
error you will receive an error flag (prErrorFlag and an error description (prErrMes-
sage) (which unfortunately you cannot define yourself):

user@linux:˜$ snmpwalk -v1 -c public localhost prTable

...

prTable.prIndex.4 = INTEGER: 4

prTable.prNames.4 = STRING: slapd

prTable.prMin.4 = INTEGER: 0

prTable.prMax.4 = INTEGER: 0

prTable.prCount.4 = INTEGER: 0

prTable.prErrorFlag.4 = INTEGER: 1

prTable.prErrMessage.4 = STRING: No slapd process running.

...

ucdavis.prTable only reveals the configured processes; on the other hand it allows
mib-2.host.hrSWRun and mib-2.host.hrSWRunPerf in general to query all run-
ning processes. If you want to prevent this, the view must exclude the area you do
not want.

Your own commands

With the exec directive you can specify commands in the extension ucdavis.ext-
Table, which the agent will execute in the corresponding queries. The result then
appears in the relevant entries. In the following example the agent calls /bin/echo
if it is asked for ucdavis.extTable:

(7) your own commands: enterprises.ucdavis.extTable

exec name command arguments

exec echotest /bin/echo hello world

193

11 Collecting Information Relevant for Monitoring with SNMP

The program to be executed must appear with its absolute path in the configura-
tion. Running snmpwalk provides only the following:

user@linux:˜$ snmpwalk -v1 -c public localhost extTable

extTable.extEntry.extIndex.1 = INTEGER: 1

extTable.extEntry.extNames.1 = STRING: echotest

extTable.extEntry.extCommand.1 = STRING: /bin/echo hello world

extTable.extEntry.extResult.1 = INTEGER: 0

extTable.extEntry.extOutput.1 = STRING: hello world

...

extTable.extEntry.extResult contains the return value of the command executed,
and extTable.extEntry.extOutput contains the text output.

With the exec directive you can thus query everything that a local script or program
can find out. This could be a security problem, however: if the programs used are
susceptible to buffer overflows, this feature could be misused as a starting point
for a denial-of-service attack.

Monitoring hard drive capacity

The disk directive is suitable for monitoring file systems. The keyword disk is fol-
lowed by the path for a mount point, and then the minimum hard drive space in
kBytes or in percent that should be available. If you omit the capacity entry, at
least 100 MBytes must be available; otherwise an error message will be given.

In the following example the free capacity in the / file system should not drop
below 10%, and on /usr, at least 800 MBytes10 should remain free:

#(8) File systems: enterprises.ucdavis.dskTable

#disk mount point

#disk mount point minimum_capacity_in_kbytes

#disk mountpoint minimum_capacity_in_percent%

disk / 10%

disk /usr 819200

disk /data 50%

As far as the data partition /data is concerned, the alarm should be raised if free
capacity falls below 50%. dskErrorFlag in this case contains the value 1 instead of
0, and dskErrorMsg contains an error text:

...

UCD-SNMP-MIB::dskPercent.3 = INTEGER: 65

UCD-SNMP-MIB::dskErrorFlag.3 = INTEGER: 1

UCD-SNMP-MIB::dskErrorMsg.3 = STRING: /data: less than 50% free (= 65%)

...

10 1024kBytes ∗ 800

194

11.2 NET-SNMP

dskPercent reveals a current load of 65%. Instead of the partial tree configured
here, ucdavis.dskTable, mib-2.host.hrStorage also provides an overview of all file
systems, even those not explicitly defined. These are missing percentage details,
however, and you do not receive an error status or error message, as supplied by
ucdavis.dskTable.

You should think hard about whether you set the warning limit in the NET-SNMP or
in the Nagios configuration. In the first case you must configure the values on each
individual host. If you query the percentage load, however, with the check_snmp
plugin (see section 11.3.1 from page 196), then you set warning and critical limits
centrally on the Nagios server, saving yourself a lot of work if you make changes
later on.

The includeAllDisks directive adds all existing file systems to the dskTable table:

includeAllDisks 10%

It requires a minimum limit to be specified in percent, and also returns error values.
An absolute specification in kBytes is not possible here. If you set warning and
error limits centrally for check_snmp; (see Section 11.3.1 from page 196) the error
attributes dskErrorFlag and dskErrorMsg are not queried, so that the value set here
as the minimum limit can be ignored.

System load

The load directive queries the CPU load. As the limit values, you specify the average
values for one minute, and optionally for five and 15 minutes:

(9) System Load: enterprises.ucdavis.laTable

load max1

load max1 max5

load max1 max5 max15

load 5 3 2

If the values are overstepped, laErrorFlag will contain the status 1 (otherwise: 0)
and laErrMessage will have the text of the error message.

In a system that exceeds one of the specified limits, snmpwalk returns the follow-
ing:

user@linux:˜$ snmpwalk -v1 -c public localhost laTable

...

UCD-SNMP-MIB::laNames.1 = STRING: Load-1

UCD-SNMP-MIB::laNames.2 = STRING: Load-5

UCD-SNMP-MIB::laNames.3 = STRING: Load-15

UCD-SNMP-MIB::laLoad.1 = STRING: 5.31

UCD-SNMP-MIB::laLoad.2 = STRING: 2.11

195

11 Collecting Information Relevant for Monitoring with SNMP

UCD-SNMP-MIB::laLoad.3 = STRING: 0.77

...

UCD-SNMP-MIB::laLoadInt.1 = INTEGER: 530

UCD-SNMP-MIB::laLoadInt.2 = INTEGER: 210

UCD-SNMP-MIB::laLoadInt.3 = INTEGER: 77

UCD-SNMP-MIB::laLoadFloat.1 = Opaque: Float: 5.310000

UCD-SNMP-MIB::laLoadFloat.2 = Opaque: Float: 2.110000

UCD-SNMP-MIB::laLoadFloat.3 = Opaque: Float: 0.770000

UCD-SNMP-MIB::laErrorFlag.1 = INTEGER: 1

UCD-SNMP-MIB::laErrorFlag.2 = INTEGER: 0

UCD-SNMP-MIB::laErrorFlag.3 = INTEGER: 0

UCD-SNMP-MIB::laErrMessage.1 = STRING: 1 min Load Average too high (=

5.31)

UCD-SNMP-MIB::laErrMessage.2 = STRING:

UCD-SNMP-MIB::laErrMessage.3 = STRING:

From laLoadInt.1 we are told the one-minute average value for the system load as
an integer, from laLoad.1 as a string, and from laLoadFloat.1 as a floating-point
decimal. laErrorFlag.1 contains the corresponding error status, laErrMessage.1 the
corresponding error message. The same applies for the other two averages.

You can also use the check_snmp plugin here to query the floating-point decimal
values just as accurately, and specify limit values centrally.

11.3 Nagios’s Own SNMP Plugins

Among the standard Nagios plugins there are three programs with which data can
be obtained via SNMP: a generic plugin that queries any OIDs you want, and two
Perl scripts that are specialized in interface data of network cards and the ports of
switches, routers and so forth. In addition to this, the directory contrib contains the
source code of other SNMP plugins that are not automatically installed. Apparently
these are no longer maintained and cannot run without major adjustments to the
code.

http://www.nagiosexchange.org/ also provides some useful specialized plugins,
some of which are introduced in Section 11.4 from page 205. The following de-
scriptions are limited, for reasons of space, to SNMPv1/2 queries; for SNMPv3-
specific options, we refer you to the online help for the corresponding plugin.

11.3.1 The generic SNMP plugin check_snmp

With check_snmp a generic plugin is available that queries all available informa-
tion via SNMP, according to your requirements. However, its operation does require
a degree of care, since as a generic plugin, it has no idea of specifically what data
it is querying.

196

11.3 Nagios’s Own SNMP Plugins

For this reason as well, its output looks quite meager; specialized plugins provide
more convenience here. But since these don’t exist for every purpose, check_snmp
is then quite justified. It calls the program snmpget auf, which means that the
NET-SNMP tools must be installed.

It provides the following options:

-H address / --host=address
This is the host name or IP address of the SNMP agent to be queried.

-o OID / --oid=OID
This is the object identifier to be queried, either as a complete numerical OID
or as a string, which is interpreted by snmpget (e.g., system.sysName.0).

Attention: in contrast to snmpwalk, you must always specify the end nodes
containing the information.

-p port / --port=port
This is the alternative port on which the SNMP agent is running. The default
is UDP port 161.

-C password / --community=password
This is the community string for read access. The default value is public.

-w start:end / --warning=start:end
If the queried value lies within the range specified by start and end, check_
snmp does not give out a warning. For -w 0:90 it must therefore be larger
than 0 and smaller than 90.

-c start:end / --critical=start:end
If the query value lies outside the range, the plugin gives out CRITICAL. If

the warning and critical limits overlap, the critical limit always has priority.

-s string / --string=string
The contents of the queried OID must correspond exactly to the specified
string, otherwise check_snmp will give out an error.

-r regexp / --ereg=regexp
This option checks the contents of the queried OID to see whether the regu-
lar expression regexp11 is matched. If this is the case, the plugin returns OK,
otherwise CRITICAL.

-R regexp / --erexi=regexp
As -r, except that there is no case distinction.

-l prefix / --label=prefix
A string that is placed in front of the plugin response. The default is SNMP.

11 POSIX regular expression, see man 7 regex.

197

11 Collecting Information Relevant for Monitoring with SNMP

-u string / --units=string
SNMP only has simple values, not units. A string that is specified instead of
string is extended by the plugin in the text output so that it serves the value
as a unit. Because only text is involved here, you can also specify apples or
pears, for example, as “units”.

-d delimiter / --delimiter=delimiter
This character separates the OID in the snmpget output from the value. The
default is =.

-D delimiter / --output-delimiter=delimiter
The plugin is able to query several OIDs simultaneously. The result values are
separated with delimiter, which in the default is a space.

-m mibs / --miblist=mibs
This specifies the MIBs that should be loaded for snmpget. The default is ALL.
-m +UCD-DEMO-MIB12 loads in addition, -m UCD-DEMO-MIB (without
the + sign) only loads the specified MIB.13

-P version / --protocol=version
Defines the SNMP protocol version. The values for version are 1 or 3. With-
out this option, SNMPv1 is used.

SNMP provides almost unlimited possibilities, so the following examples can merely
convey a feeling for other plugins used.

Testing hard drive capacity via SNMP

The following command queries the load of a file system and to do this accesses
the partial tree ucdavis.dskTable of a locally running NET-SNMP agent:

nagios@linux:local/libexec$./check_snmp -H swobspace -C public \
-o dskTable.dskEntry.dskPercent.2 -w 0:90 -c 0:95 -u percent

SNMP WARNING - *95* percent

The query applies to the percentage load of the file system with the index number
2. As long as no more than 90 percent of the hard drive space is then occupied,
the test should return OK; here a warning will be returned if it is between 91 and
95 percent, and critical status if it goes beyond this. Thanks to the -u option,
check_snmp adds the description percent to the output of the figure determined.

Nevertheless, the plugin does not tell the whole truth: a test check with df shows
a 96 percent load, which comes from the fact that this program correctly rounded

12 UCD-DEMO-MIB is an MIB included for demonstration purposes.
13 See also the online help, with man snmpcmd.

198

11.3 Nagios’s Own SNMP Plugins

up the actual 95.8 percent load, while integer values in SNMP are seldom rounded
up, but simply cut off. So you just have to live with slight inaccuracies as long as
the MIB does not provide any floating-point decimals.

If you would like things to be more detailed, you can use the option -l: -l ’SNMP-
DISK: /net/swobspace/b’ causes other, self-defined information to be added to the
output of the above command:

SNMP-DISK: /net/swobspace/b WARNING - *95* percent

The above query can be more generally run through a command object such as the
following:

define command{
command_name check_snmp

command_line $USER1$/check_snmp -H $HOSTADDRESS$ -C $USER3$ \
-P 1 -o $ARG1$ -w $ARG2$ -c $ARG3$ -l $ARG4$

}

This definition assumes that the value being queried is numerical, and not Boolean
(see page 201), otherwise specifying a warning and critical value simultaneously
would make no sense. We store the community here in the macro $USER3$.14 this
is followed by the protocol version (-P 1 stands for SNMPv1), the OID, the warning
and critical limits, and a prefix.

The call for this command in service definitions is then made in the form

check_snmp!oid!warn!critical!prefix

If you want to specifically monitor the load of the file system with the index num-
ber 2 on the computer swobspace through dskTable, then the following definition
would be used:

define service{
service_description SNMP-DISK-a

host_name swobspace

check_command check_snmp!dskTable.dskEntry.dskPercent.2!\
0:90!0:95!DISK: /net/swobspace/a

...

}

Even though the check_command line is wrapped here, in practice all parameters
must be on a single line, separated by an exclamation point ! (without spaces
before or after the delimiter).

14 The $USERx$ macros are defined in the resource file resource.cfg.

199

11 Collecting Information Relevant for Monitoring with SNMP

Measuring temperature via lm-sensors

The next test checks the CPU temperature of the host. For the sensor, the package
lm-sensors15 is used here, which accesses corresponding chips on modern main-
boards. As soon as lm-sensors is active, it allows the NET-SNMP agents to read
out the corresponding information from the partial tree ucdavis.ucdExperimental.
lmSensors:

nagios@linux:local/libexec$./check_snmp -H localhost -C public \
-o lmTempSensorsValue.1 -w 25000:45000 -c 20000:48000 \
-u ’degrees Celsius (* 1000)’ -l ’Temp1/CPU’

Temp1/CPU OK - 41000 degrees Celsius (* 1000)

The output depends on the chipset: here you must multiply the query values by the
factor 1000. Accordingly, you have no other alternative but to adjust the warning
and critical limits to the main board you are using. In the example, the CPU temper-
ature, 41 degrees Celsius, is “on a green light”: if it were to drop below 25 degrees
or rise above 45 degrees, it would cause a warning, while below 20 or above 48
degrees, this would be critical.

Regular expressions and comparing fixed strings

You can check whether the text swobspace occurs in the system name as follows:

nagios@linux:local/libexec$./check_snmp -H localhost -C public \
-o system.sysName.0 -r swobspace

SNMP OK - "swobspace"

Instead of defining the string being searched for, with -r as the regular expression,
you could also use the -s option. Then the text must match exactly, however,
which may be quite tricky, since everything counts that snmpget outputs after the
delimiter, =.

Monitoring network interfaces

The final example queries whether the first network interface of a Cisco router is in
operation:

nagios@linux:local/libexec$./check_snmp -H cisco1 -C public \
-o ifOperStatus.1 -w 1:1 -l ’SNNP: Port Status for Port 1 is: ’

SNNP: Port Status for Port 1 is: OK - 1

15 http://www.lm-sensors.nu/

200

11.3 Nagios’s Own SNMP Plugins

The information sought can be found in ifOperStatus. Here we are querying port 1.
While ifOperStatus gives out the operating status, ifAdminStatus reveals whether
the interface is administratively switched on or off.

When specifying the warning limit here, we use the range 1:1, so that the plugin
gives out a warning if the interface is physically switched off, and the return value
is thus 0. We will do without the definition of a critical status here, since there are
only two states, “on” or “off.” If the plugin returns a CRITICAL when the interface is
switched off, you should use -c 1:1 and omit -w entirely.

If you just want to query the status of network interfaces, you should certainly
take a look at the plugins check_ifstatus and check_ifoperstatus, described below,
which provide slightly more operating convenience.

If MIB-II or MIB ucdavis do not provide the desired information, you could also
take a look at the MIB provided by the manufacturer. You can find out from mib-
2.system in which partial tree the overall MIB is hidden:

user@linux:˜$ snmpwalk -v1 -c public konica01 system

system.sysDescr.0 = Konica IP Controller

system.sysObjectID.0 = OID: enterprises.2364

...

The example involves a network-capable Konica photocopying machine called
konica01. system.sysObjectID.0 reveals that enterprises.2364 serves as the en-
try point for device specific details. With snmpwalk you can then obtain further
information:

user@linux:˜$ snmpwalk -v1 -c public konica01 enterprises.2364

...

enterprises.2364.1.2.6.1.1.5.1.1 = "Ready to Print"

...

In the concrete case of this photocopier, you can query the current device status
through enterprises.2364.1.2.6.1.1.5.1.1. Manufacturers usually store information
on the implemented MIBs, so that you are not restricted to just guessing.

11.3.2 Checking several interfaces simultaneously

Active network components such as switches usually have quite a large number
of ports, and it would be very time-consuming to check every single one of them.
Here the check_ifstatus plugin is very useful, since it tests all ports simultaneously.
It retrieves the information necessary for this via SNMP, and has the following
options:

-H address / --host=address
This is the host name or IP address of the SNMP agent to be queried.

201

11 Collecting Information Relevant for Monitoring with SNMP

-C password / --community=password
This sets the community string for read access.

-p port / --port=port
This parameter is the alternative port on which the SNMP agent is running.
The default is UDP port 161.

-v version / --snmp_version=version
This parameter specifies the SNMP version (1, 2, or 3) for the query.

-x list / --exclude=list
Use this to specify a comma-separated list of interface types that should not
be queried (see example below).

-u list / --unused_ports=list
Use this to specify a comma-separated list of all ports that should be ex-
cluded from the test. Like -x, the list consists of the indices of the interfaces
which are determined from ifIndex: -u 13,14,15,16.

-M bytes / --maxmsgsize=bytes
This is the maximum size of the SNMP data packets; the default is 1472
bytes.

With exclusion lists it is possible to exclude certain interface types or port numbers
from the test, perhaps because these are not occupied, or are connected to PCs or
other devices that are not always running.

With the following query we can find out, for example, which interface types are
gathered together on the Cisco switch here named cisco01:

user@linux:˜$ snmpwalk -v1 -c public cisco01 ifType

...

interfaces.ifTable.ifEntry.ifType.12 = ethernetCsmacd(6)

interfaces.ifTable.ifEntry.ifType.13 = other(1)

interfaces.ifTable.ifEntry.ifType.14 = propVirtual(53)

...

If the interface types other(1) and propVirtual(53) should now be excluded, the
plugin is sent off with the two figures, separated by a comma, as the exclusion list
-x 1,53:

nagios@linux:local/libexec$./check_ifstatus -C public -H cisco01 \
-x 1,53

CRITICAL: host ’cisco01’, interfaces up: 2, down: 10, dormant: 0,

excluded: 4, unused: 0
GigabitEthernet0/2: down

GigabitEthernet0/3: down
GigabitEthernet0/4: down

GigabitEthernet0/10: down
GigabitEthernet0/5: down

GigabitEthernet0/11: down
GigabitEthernet0/6: down

202

11.3 Nagios’s Own SNMP Plugins

GigabitEthernet0/7: down
GigabitEthernet0/8: down

GigabitEthernet0/9: down
 |up=2,down=10,dormant=0,excluded=4,

unused=0

In reality, this plugin also does not display its output over several lines, as the line
wrap here may suggest. The fact that this information appears on the Nagios Web
interface in a relatively clear form is because the HMTL formatting element

is thrown in. This causes the output for each port to be displayed on a separate
line. The | character defines the beginning of the performance data, which does
not appear at all in the Web interface.

A query of this type is implemented as a command object as follows:

define command{
command_name check_ifstatus

command_line $USER1$/check_ifstatus -H $HOSTADDRESS$ \
-C $USER3$ -x $ARG1$

}

Here the macro $USER3$ is also used to define the community string in the file
resource.cfg. Altogether, 32 $USERx$ macros are available, of which the first two
usually contain path details, and the others can be used in any way you want.

If you would prefer to exclude ports rather than interface types, you can use the
-u option instead of -x in the definition.

If Nagios is to monitor the switch cisco01, as shown above, excluding the two
interface types 1 and 53, the corresponding service definition begins as follows:

define service{
service_description Interfaces

host_name cisco01

check_command check_ifstatus!1,53

...

}

11.3.3 Testing the operating status of individual interfaces

To test an individual interface, you can use either the generic plugin check_snmp
or check_ifoperstatus, which specifically tests the operating status (ifOperStatus)
of the network card. The advantage of this over the generic plugin consists above
all in its ease of use: instead of an index for the port, you can also specify its
description here—for example, eth0.

check_ifoperstatus has the following options:

-H address / --host=address
This is the host name or IP address of the SNP agent to be queried.

203

11 Collecting Information Relevant for Monitoring with SNMP

-C password / --community=password
This parameter gives the community string for read access.

-p port / --port=port
As long as the SNMP agent is not running on UDP port 161, the port is
specified with this option.

-k ifIndex / --key=ifIndex
ifIndex is the number of the network interface to be queried (such as the
network card of a computer or the port of a switch).

-d ifDescr / --descr=ifDescr
Instead of the index key, the plugin processes the name of the interface from
ifDescr (see below).

-v version / --snmp_version=version
This specifies the SNMP version (1, 2, or 3) for the query.

-w return value / --warn=return value
This option selects the return value if the interface is dormant. The re-
turn value can be i (ignore the dormant status and return OK!), w (WARN-
ING) or c (CRITICAL, the default).

-D return value / --admin-down=return value
What value (i, w or c) should the plugin return if the interface has been shut
down administratively? The default, w, issues a warning, c returns CRITICAL,
and i returns OK.

-M bytes / --maxmsgsize=bytes
This is the maximum size of the SNMP data packets; the default is 1472
bytes.

On a system called igate, on which snmpwalk finds the following interfaces . . .

...

interfaces.ifTable.ifEntry.ifDescr.3 = ipsec0

interfaces.ifTable.ifEntry.ifDescr.4 = ipsec1

...

interfaces.ifTable.ifEntry.ifDescr.7 = eth0

interfaces.ifTable.ifEntry.ifDescr.8 = eth1

interfaces.ifTable.ifEntry.ifDescr.9 = eth2

interfaces.ifTable.ifEntry.ifDescr.10 = ppp0

the first Ethernet card is tested either with -k 7 or with -d eth0. Since the plugin
in the second case has to query all ifDescr entries to determine the index itself, this
variation generates a somewhat higher network load. It can be especially useful if
not all network interfaces are active on a host, causing its index to change.

204

11.4 Other SNMP-based Plugins

The plugin itself reveals which index this port currently has:

nagios@linux:local/libexec$./check_ifoperstatus -H igate -c public \
-d eth0

OK: Interface eth0 (index 7) is up.

As the command object in the Nagios configuration, the call looks like this:

define command{
command_name check_ifoperstatus

command_line $USER1$/check_ifoperstatus -H $HOSTADDRESS$ \
-C $USER3$ -d $ARG1$

}

The $USER3$ macro again contains the community string, defined in the file
resource.cfg. The service definition for igate specifies the name of the interface to
be tested as a plugin argument:

define service{
service_description Interface eth0

host_name igate

check_command check_ifoperstatus!eth0

...

}

11.4 Other SNMP-based Plugins

Apart form the SNMP plugins from the Nagios Plugin package, the Nagios com-
munity provides a large variety of other plugins for special purposes. Most of them
can be found at http://www.nagiosexchange.org/ in the category Check Plugins
→ SNMP.16

11.4.1 Monitoring hard drive space and processes with
nagios-snmp-plugins

One of these is the package nagios-snmp-plugins,17 which exists not only as
source code but also as an RPM package (for Red Hat and Fedora). It contains
two very easy-to-use plugins: check_snmp_disk and check_snmp_proc.

Both absolutely require the NET-SNMP agent as the partner on the other side (see
Section 11.2.2 from page 187) and use ucdavis.dskTable and ucdavis.prTable to

16 http://www.nagiosexchange.org/SNMP.51.0.html
17 ftp://ftp.hometree.net/pub/nagios-snmp-plugins/

205

11 Collecting Information Relevant for Monitoring with SNMP

test the processes and file systems specified in the configuration file snmpd.conf.
Its options are restricted to specifying the host and the community string:

-H address / --host=address
This is the host name or IP address of the NET-SNMP agent to be queried.

-C password / --community=password
This is the community string for read access.

The next example tests the available capacity of the /data file system; public is
again used as the community string:

nagios@linux:local/libexec$./check_snmp_disk -H swobspace -C public

/data: less than 50% free (= 95%) (/dev/md6)

The configuration of the NET-SNMP agent specifies, with the disk directive (page
194), 50% as the threshold for this file system. In this case the plugin accordingly
returns a CRITICAL. It can only distinguish between an error and OK; it does not
have a WARNING status.

Using check_snmp_proc is just as easy:

nagios@linux:local/libexec$./check_snmp_proc -H localhost -C public

No slapd process running.

The plugin again tests the processes defined in the configuration of the NET-SNMP
agent with the proc directive (page 193). The process slapd is missing here, which
is why a CRITICAL is returned. The return value is revealed by echo $?.

The corresponding command objects are defined in a similar unspectacular way:

define command{
command_name check_snmp_proc

command_line $USER1$/check_snmp_proc -H $HOSTADDRESS$ -C $USER3$

}

define command{
command_name check_snmp_disk

command_line $USER1$/check_snmp_disk -H $HOSTADDRESS$ -C $USER3$

}

This definition also assumes that the community string is stored in the $USER3$
macro in the file
resource.cfg. In order to query the NET-SMTPD on the computer linux01 for its
hard drive load, the following service object is defined:

206

11.4 Other SNMP-based Plugins

define service{
service_description DISK

host_name linux01

check_command check_snmp_disk

...

}

11.4.2 Observing the load on network interfaces with
check-iftraffic

The MIB-II contains only numbers that provide information on the load on net-
work interfaces, but no average values for the used bandwidth, for example. If the
vendor has not specifically made such an entry available in his MIB, then you will
always have to make a note of the last counter status and the timestamp, so that
you can work out the relative usage yourself.

http://www.nagiosexchange.org/ introduces two plugins that take over this task.
The Perl-based plugin check_traffic18 writes the query values into a round-robin
database (RRD, see page 317), which makes it somewhat more complex to handle.

The same purpose is achieved, but with more simple means, by the check_iftraffic.pl
plugin.19 It has the following options:

-H address / --host=address
address is the host name or IP address of the NET-SNMP agent that is to be
queried.

-C password / --community=password
password is the community string for read access. The default is public.

-i ifDescr / --interface=ifDescr
From the interface name ifDescr the plugin determines the index so that it
can access other values (e.g., the counter states).

-b integer / --bandwith=integer
This is the maximum bandwidth of the interface in bits (see -u).

-u unit / --units=unit
This is the unit for bandwidth specification with -b. Possible values are g
(Gbit), m (Mbit), k (kbit) and the default b (bit): -b 100 -u m corresponds to
100 Megabits (Fast Ethernet).

18 http://nagios.sourceforge.net/download/contrib/misc/check_traffic/
19 http://www.nagiosexchange.org/SNMP.51.0.html?&tx_netnagext_pi1[p_view]=37

207

11 Collecting Information Relevant for Monitoring with SNMP

-w integer / --warning=integer
If traffic exceeds this warning limit in percent (default: 85 percent), the
plugin issues a WARNING.

-c integer / --critical=integer
This is the critical threshold in percent (default: 92 percent).

The plugin saves the timestamp and counter status of the interface queried in files
in /tmp, to which it adds the prefix traffic. So if you are using a different user
ID than nagios for the manual test on the command line, you should delete the
files /tmp/traffic_interface_computer before activating the appropriate Nagios
service.

The following command line example queries the Fast Ethernet network interface
eth0 on the computer linux01, which in theory has a bandwidth of 100 MBit:

nagios@linux:local/libexec$./check_iftraffic.pl -H linux01 -i eth0 \
-b 100 -u m

Total RX Bytes: 60.32 MB, Total TX Bytes: 26.59 MB
 Average Traffic:

1.14 kB/s (0.0%) in, 777.93 B/s (0.0%) out | inUsage=0.0,85,98 outUsage

=0.0,85,98

The amount of data transmitted here is reported separately by the plugin, depend-
ing on the direction, and here it announces 60.32 (RX, “received”) and 26.59 MBytes
(TX, “transmitted”). The text contains the HTML element
 (line break), to dis-
play the output in the Nagios Web interface on two lines. This is followed by the
average transmission rate, again separated for incoming and outgoing data traffic.
The performance data (see Section 17.1, page 314 pp.) after the | sign contain only
the average load as a percentage, each separated by incoming and outgoing values.
The numbers 85 and 98 are the default values for the warning and critical limits.

The corresponding command object is implemented as follows:

define command{
command_name check_iftraffic

command_line $USER1$/check_iftraffic.pl -H $HOSTADDRESS$ \
-C $USER3$ -i $ARG1$ -b $ARG2$ -u m

}

If the definition is taken over literally, you must define the community string in the
$USER3$ macro. If you only generally use public as the password, it is better to
write -C public instead of -C $USER3$.

To simplify the call of the command within the following service definition, we set
the unit to MBit/second (-u m).

208

11.4 Other SNMP-based Plugins

define service{
service_description Traffic load eth0

host_name linux01

check_command check_iftraffic!eth0!100

...

max_check_attempts 1

normal_check_interval 5

retry_check_interval 5

...

}

check_iftraffic calculates the bandwidth used by comparing two counter states
at different times. Because Nagios does not test exactly down to the second, the
check interval you choose should not be too small. The Multi Router Traffic Gra-
pher, 20 which displays the bandwidth used in graphic form, normally works at
five-minute intervals.

If you select max_check_attempts other than 1, you should make sure that the
retry interval (retry_check_interval) is the same as the normal check interval. For
max_check_attempts 1 this makes no difference, but you have to define a retry_
check_interval at some time or other.

11.4.3 The manubulon.com plugins for special application
purposes

The Nagios Exchange, with the SNMP plugins to be found under http://www.manu
bulon.com/nagios/ (see Table 11.4), also includes some that are customized to a
specific application, such as querying hard drive space. They are relatively simple
to use.

Two of the plugins—check_snmp_storage.pl and check_snmp_load.pl—are intro-
duced here in detail.

Table 11.4:

The manubulon.com-

SNMP plugins

Plugin Description

check_snmp_storage.pl Query of storage devices (hard drives, swap space,
main memory, etc.)

check_snmp_int.pl Interface status and load

check_snmp_process.pl processes: status, CPU and memory usage

check_snmp_load.pl System load

check_snmp_mem.pl main memory and swap usage

check_snmp_vrrp.pl querying a Nokia-VRRP cluster21

20 http://www.mrtg.org/
21 The abbreviation VRRP stands for Virtual Router Redundancy Protocol.

209

11 Collecting Information Relevant for Monitoring with SNMP

continued

Plugin Description

check_snmp_cpfw.pl querying a Checkpoint firewall-122

Keeping checks on storage media with check_snmp_storage

While the check_snmp_disk plugin, introduced in Section 11.4.1 from page 205,
only checks the file systems entered in the NET-SNMP configuration, check_snmp_
storage.pl is capable of querying any storage media—even swap space or main
memory—without previous configuration on the target host. check_snmp_stor-
age.pl tests the partial tree mib-2.host here, while check_snmp_mem.pl uses uc-
davis.memory, so that it remains restricted to NET-SNMP.

The fact that you do not have to battle with OIDs, but instead can work with
descriptions of the swap space type to specify the type of the storage medium,
provides a certain level of convenience. These can be queried with snmpwalk as
follows:

user@linux:˜$ snmpwalk -v1 -c public swobspace hrStorageDescr

hrStorageDescr.2 = STRING: Real Memory

hrStorageDescr.3 = STRING: Swap Space

hrStorageDescr.4 = STRING: /

...

hrStorageDescr.11 = STRING: /net/swobspace/b

When the plugin is called, the text specified after the STRING: is sufficient or—if
unique—a part of this:

nagios@linux:local/libexec$./check_snmp_storage.pl -H swobspace \
-C public -m /net/swobspace/b -w 90 -c 95

/net/swobspace/b : 91 %used (34842MB/38451MB) (< 90) : WARNING

nagios@linux:local/libexec$./check_snmp_storage.pl -H swobspace\
-C public -m "Swap" -w 50 -c 75 -f

Swap Space : 0 %used (0MB/3906MB) (< 50) : OK | ’Swap Space’=0MB;1953;

2930;0;3906

In the second example, it is sufficient to specify Swap, in order to query the
data for Swap Space, since the pattern is unique. The -f option ensures that
check_snmp_storage.pl will include performance data in its output.

-w and -c specify in normal fashion the warning or critical limits in percent of the
available memory space. The following overview lists all the options:

22 http://www.checkpoint.com/products/firewall-1/

210

11.4 Other SNMP-based Plugins

-H address / --host=address
This is the host name or IP address of the NET-SNMP agent that is to be
queried.

-C string / --community=string
This is the community string for read access.

-p port / --port=port
port specifies an alternative port if the SNMP agent is not running on the
default UDP port 161.

-m string / --name=string
string contains a description of the device to be queried, corresponding to
its description in hrStorageDescr (see above), such as -m ”Swap Space” for
swap devices, -m ”Real Memory” for the main memory, or -m ”/usr” for the
partition mounted under /usr in the file tree.

-w percent / --warn=percent
A warning is given in the default if the proportion of used memory is larger
than the specified threshold. Other warning limits can be defined with the
-T parameter.

-c crit / --critical=crit
In the default, the status is categorized as critical if the proportion of used
memory is larger than the specified critical limit. Other critical limits can
also be specified with the -T parameter.

-T option / --type=option
Selection options for specifying the critical and warning limits:

pu (percent used): used capacity in percent

pl (percent left): free capacity in percent

bu (bytes used): used capacity in megabytes

bl (bytes left): free capacity in megabytes

The default is -T pu.

-r / --noregexp
Normally the description in the -m parameter is treated as a regular expres-
sion. For example, /var here stands for all file systems containing /var, for
example /var and /var/spool/imap, provided that these are really two in-
dependent file systems. The -r option switches off the regular expression
capability, so that specifying /var will then match this file system exactly,
but not /var/spool/imap, for example.

211

11 Collecting Information Relevant for Monitoring with SNMP

-s / --sum
Instead of individual tests for several named memories, these are first added
together (user space and overall capacity), and only then is the test per-
formed on the limit values.

-i / --index
With -m, a text is normally specified, which turns up again in the description
hrStorageDescr. With the -i option, the index table is used instead of the
description. Here the Regexp capability also applies: -m 2 matches all the
entries containing the number 2 in the index (that is, 2, 12, 20, etc.). It then
makes sense to use the -r option at the same time.

-e / --exclude
Now all the memories that are matched by the -m specification are excluded
from the test, the remaining ones are included in the test.

-f / --perfparse
This option provides an additional output of performance data that is not
shown in the Web interface but can be evaluated by additonal tools (see
Chapter 17).

Testing system load with check_snmp_load

The plugin checks either the average system loaded against the usual specification
of three averages of 1 min, 5 min, and 15 min, or the CPU loaded in percent.

-H address / --host=address
This is the host name or IP address of the NET-SNMP agent to be queried.

-C string / --community=string
This is the community string for read access.

-p port / --port=port
port is the alternative UDP port on which the SNMP agent is running. The
default is UDP port 161.

-w warning limit / --warn=warning limit
The warning limit is given either as a simple integer value in percent (e.g. 90)
or as an integer triplet separated by commas, which defines the thresholds
for the system load average for one, five, and 15 minutes (e.g. 8,5,5). The
percentage load, on the other hand, always refers to the CPU load of the last
minute.

If the plugin queries a NET-SNMP agent, you must additionally specify the
-L option in the second variation, for the percentage, -N.

212

11.4 Other SNMP-based Plugins

-c critical limit / --crit=critical limit
This specifies a critical limit; the syntax is the same as that for -w.

-L / --linux
This option specifies that the plugin queries the system mode of a Linux
system via NET-SNMP.

-A / --as400
This option specifies that the CPU loaded on an AS/400 machine is queried.

-I / --cisco
This option specifies that the CPU load of a Cisco network component is
involved.

-N / --netsnmp
If the plugin queries the percentage CPU load of a Linux system via NET-
SNMP, the -N option must be specified.

-f / --perfparse
This option ensures the output of performance data that is not displayed in
the Web interface, but can be evaluated by additional tools (see Chapter 17).

The following example queries the system load on the computer swobspace via
NET-SNMP and specifies threshold values for the one-, five-, and fifteen-minute
averages:

nagios@linux:local/libexec$./check_snmp_load.pl -H swobspace \
-C public -w 1,2,3 -c 3,5,6 -L

Load : 0.05 0.07 0.06 : OK

nagios@linux:local/libexec$./check_snmp_load.pl -H swobspace \
-C public -N -w 80 -c 90 -f

CPU used 3.0 : < 80 : OK | cpu_prct_used=3%;80;90

The second example involves the percentage CPU load on the same machine. Here
we additionally request performance data, which as usual repeats not only the
measured value but also the thresholds.

213

12 Ch
ap

te
r

The Nagios Notification System

What would be the point of system and network monitoring if it did not inform
the right contact partner when things went wrong? Hardly any system or network
administrator can afford to keep an eye on the Nagios Web interface continually
and wait for changes in status to occur. A practical working system must inform
the admin actively (push information), so that the admin has time to devote to
other things and needs to intervene only when Nagios raises the alarm.

Whether a notification system does its job in practice or not is ultimately decided
by how well it can be adjusted to the requirements of a specific situation. What
may already be a critical error for one person may, for another, not be normal but
still tolerable, and nothing is worse than being bombarded with supposed error
messages that are not even seen as errors in a certain environment. An excess of
wrong information can make the administrator careless, and at some point the real
problems get lost in a flood of false messages.

215

12 The Nagios Notification System

Nagios provides a sophisticated notification system allowing your own environ-
ment to be fine-tuned to your own requirements. The wide range of settings at
first seem confusing, but once you have understood the basic principle, everything
becomes much clearer.

The efforts to keep Nagios small and modular also apply to the notification system:
sending a message is again left by the system to external programs: from a simple
e-mail through SMS, down to hardware solutions—such as a real traffic light on
the server cabinet—anything is possible.

12.1 Who Should be Informed of What, When?

In order for Nagios to send meaningful messages, the administrator must answer
four questions:

When should the system generate a message?

When should it be delivered?

Whom should the system inform?

How should the message be sent?

Figure 12.1:

An overview of the

notification system

Figure 12.1 gives a rough outline of the concept. The service and host check gen-
erate the message, which then runs through various filters,1 which usually refer
to the time. The contact refers to the person whom Nagios should inform. If the
message has passed all tests, the system hands it to an external program, which
informs the respective contact.

1 Strictly speaking, filters defined in the host or service prevent a message from being created,
instead of filtering already generated messages. To keep things simple, however, we pretend
that Nagios has created a message that is then discarded by a corresponding filter.

216

12.2 When Does a Message Occur?

12.2 When Does a Message Occur?

Each message is preceded by a host or service check, which determines the current
status. In the following two cases it generates a message:

One hard state changes to another hard state.

One computer or service remains in a hard error state. (The test therefore con-
firms a problem that already exists.)

To remind you: the max_check_attempts parameter (see Sections 2.3 and 2.5)
defines in host and service objects how often a test should be repeated before
Nagios categorizes a new status as “hard.” If it is set to 1, this is immediately the
case and is followed by the corresponding message. With a value greater than 1,
the system repeats the test that number of times, and only if they all come to the
same new result—such as determining the CRITICAL error status—does the status
finally change to the new hard state, thus triggering a new notification.

As long as Nagios has not exhausted the specified number of repeats, a soft state
exists. If the old status reoccurs before these have finished, the administrator re-
mains uninformed unless he looks at the Web interface or in the log file. Ultimately
the administrator is only interested in genuine unsolved problems. On the other
hand, to assess availability as such, it normally does matter if a service is not avail-
able for minutes on end, which is why the soft states are also taken into account
in the evaluation.

12.3 The Message Filter

Even if you define on a systemwide basis that Nagios may bring attention to errors
not just through the Web interface and log files but also via e-mail and/or SMS,
filter parameters in the host and service definition may in individual cases cancel
out these basic decisions. In all cases the final word is had by the filters defined for
the relevant contact. Which parameters play a role on each of these three levels
(systemwide, host/service, contact), is described in Figure 12.2.

If a filter stops a notification, the filter chain ends “in a vacuum,” so to speak—filter
options further down in the hierarchy remain unaccounted for—and Nagios does
not generate any message.

217

12 The Nagios Notification System

Figure 12.2:

Sequence of filters in

the Nagios

notification system

12.3.1 Switching messages on and off systemwide

With the enable_notifications parameter in the central configuration file nagios.
cfg, you can in principal define whether Nagios should send messages at all. Only
if it is set to 1 will the notification system work:

enable_notifications=1

218

12.3 The Message Filter

12.3.2 Enabling and suppressing computer and service-related
messages

When defining a host or service, various parameters can influence the messaging
system. Here you can define, for example, at what time Nagios should send mes-
sages, whether the contact person is regularly informed of error states, and about
which states or changes in state he should be informed (just CRITICAL, or WARNING
as well, etc.).

The switch notifications_enabled determines whether this specific computer or
service is important enough for the admin to be informed of errors not just through
the Web interface, but also in other ways as well. If this is so, the parameter must
be set to 1:

notifications_enabled=1

This is also the case in the default, so that you have to set the value explicitly to 0
at this point to stop separate notifications.

Taking downtimes into account

At times when a specific service or host is intentionally not available, Nagios should
certainly not send any error messages through the network. The configuration
of corresponding maintenance periods (downtime scheduling) is only possible
through the Web interface and is described in Section 16.3 from page 304.

What states and changes of state are worth a notification?

If a regular test shows that service or computer is changing its data continu-
ously, this is called flapping in Nagios (see also Appendix A from page 401). If
the flap_detection_enabled parameter is set to 1, the system tries to detect this
situation.

Whether Nagios sends a message in this case depends on the notification_options
filter. This decides on which states or changes of state Nagios will inform the
contact involved. In host definitions it can have the following combinations of
values, separated by commas: d (switched off or crashed, down), u (unreachable),
r (computer again reachable, recovered), and f (quickly alternating state, flapping).

For service objects, notification_options recognizes the following states: c (CRITI-
CAL), w (WARNING), u (UNKNOWN, unknown problem), r (service again reachable,
recovered), and f (flapping). Nagios correspondingly informs the admin of the
state of the service whose definition is contained in the line

notification_options=c,r

219

12 The Nagios Notification System

only if this is critical or was recreated after an error state. Messages involving a
WARNING or flapping are discarded by the system.

If notification_options is set to n (none), Nagios will generally not send a message
concerning this computer or service.

When should Nagios send messages?

At what time should a message be sent? This can be defined with the notifica-
tion_period parameter:

notification_period=24x7h

notification_period expects a time object (see Section 2.10 from page 54) as the
value; 24x7h is such a value and stands for “round the clock.”

Outside the specified time period, Nagios suppresses possible messages, but does
not simply discard them, in contrast to the other filters. Instead of this, the system
places the message in a kind of queue and sends it as soon as the notification
period begins (rescheduling). This means that the relevant contact will certainly
get to hear about the problem. Nagios also ensures that the admin receives the
message only once, even if multiple messages on the same event were generated
outside the time period.

notification_period is the only time-controlled filter in which a message is not
lost, despite filtering. With all the other time filters, the message never reaches its
destination outside the specified period of time.

With an interval check, Nagios can be instructed to report at regular intervals on
problems that persist for a longer time:

notification_interval=120

If a state persists that Nagios should normally report, corresponding to the no-
tification_option parameter—CRITICAL, for example—for a long time, the system
would grant this wish, in the example, every 120 time units (normally, minutes).
In other words it suppresses the notification that is generated anyway with ev-
ery check, after a corresponding notification until the specified time has elapsed.
If nothing has changed in the state until then, it then sends the corresponding
notification.

If you set notification_interval to 0, Nagios will send a notification of this only
once. You should be careful when doing this, however: filters defined for the
contact can also reject messages. If you normally generate just one single message,
which might arrive at the relevant admin outside the admin’s chosen contact time
period, then the admin will never be told anything about the problem, even if it
persists into working hours.

220

12.3 The Message Filter

Whose concern is the message?

The contact group defined in the host or service object does not itself belong to
the message filters, but it still decides on who is informed and who is not:

contact_group=admins

What contacts belong to the specified group (here: admins) is defined by the cor-
responding contact_group object in its definition object (see also Section 2.8 from
page 52):

-- /etc/nagios/global/contactgroups.cfg

define contactgroup{
contactgroup_name admins

alias administrators

members nagios,wob,mwi

}

The specified contact group, though, merely makes a rough preselection: which
of the contacts specified in it actually receive the message depends on the filter
functions in the definition of the individual contact. In this way you can ensure
that one employee is only notified during normal office hours, another one round-
the-clock, and that one of them is kept up to date about all changes in status, and
the other one is informed only of a selection (for example, only CRITICAL but not
WARNING).

12.3.3 Person-related filter options

When defining the contact objects, the method is also specified in which Nagios
delivers the notification in specific cases (see Section 12.4 from page 224). It can
be described separately for host and service problems. Several parallel methods are
also possible, such as via e-mail and SMS.

Since the contact-related filters are specifically for the corresponding contact ob-
ject, it can certainly be useful to define several contacts for one and the same
recipient that differ in individual parameters, such as a contact object that keeps
the person informed via e-mail of all problems during normal working hours, and
a second one for SMS messages concerning critical events outside working hours.

What should Nagios inform you about?

The events for which somebody should be informed can be specified not only by
host or service, but also by contact. Host and service-related states are defined
separately here:

221

12 The Nagios Notification System

host_notification_options=d,u,r

service_notification_options=c,r,u

The possible values are the same as those for the host-service parameter notifica-
tion_options (page 219).

When do messages reach the recipient?

The final filter in the filter chain again refers to time periods. If a message is
produced in the time period specified here, Nagios notifies the contact; otherwise
it discards the message. The notification window can again be set separately for
hosts and services, and as a value it expects a timeperiod object defined elsewhere:

host_notification_period=24x7

service_notification_period=workhours

12.3.4 Case examples

Letting you know once, but doing this reliably

What should you do if only a single message should be sent for each change in
status of the service, but this message must always reach the relevant recipient
during working hours? We can illustrate the solution to this problem through the
example of the admins contact group to which the contact wob is assigned, . . .

define contactgroup{
contactgroup_name admins

alias Local Site Administrators

members wob

}

. . . and to the PING service for the computer linux01:

define service{
host_name linux01

service_description PING

check_command check_ping!100.0,20%!500.0,60%

max_check_attempts 3

normal_check_interval 2

retry_check_interval 1

check_period 24x7

notification_interval 0

notification_period workhours

notification_options w,u,c,r,f

contact_groups admins

}

222

12.3 The Message Filter

notification_interval 0 normally forces Nagios not to produce any repeat mes-
sages. The notification_period ensures the desired time period through the time-
period object workhours: if Nagios raises the alarm at other times, the inbuilt
rescheduling is used, that is, the notification is sent on its way only if the specified
time period again applies. It is definitely not discarded.

In order for Nagios to be active in all changes of state, the notification_options
must always cover all possible events for services.

To guarantee that the contact wob always receives the messages, it is essential that
the service_notification_period in the corresponding contact object is 24x7:

define contact{
contact_name wob

alias Wolfgang

host_notification_period 24x7

host_notification_options d,u,r

service_notification_period 24x7

service_notification_options w,u,c,r,f

...

}

A restricted time filter at this position could, under certain circumstances, lead to
the loss of each of the individual messages. The same applies for the values of
service_notification_options: only if all are entered here as well will no message
be lost.

Informing different admins at different times

If you want to inform different persons at different times about different events,
you may not restrict either the notification_period or the notification_options of
a host or service:

define service{
...

notification_interval 120

notification_period 24x7

notification_options w,u,c,r,f

...

}

Filtering takes place exclusively for individual contacts. For this to work on a time
level you must ensure that Nagios generates a message regularly (here every 120
time units, normally minutes) if error states persist.

If admin A is to be informed only during his working hours, and then only of
changes to critical or OK states, A’s contact object will be sent with the follow-
ing parameters:

223

12 The Nagios Notification System

define contact{
...

service_notification_period workhours

service_notification_options c,r

...

}

There is also a second and not quite so obvious difference to the first example:
let us assume that the service reports the CRITICAL status at 7.30 in the morning,
which will persist for several hours. The workhours object is defined so that it
describes the time from Monday to Friday between 8.00 and 18.00. In the above
example, Nagios holds back the message (rescheduling), until the time period de-
fined in it has been reached. The administrator therefore receives a corresponding
message at 8.00.

In the case described here, no rescheduling takes place, Nagios generates a corre-
sponding message every two hours, which is filtered out if the contact is currently
taking a “break.” The system correspondingly discards the message at 7:30, but
allows the next message two hours later to pass through. The administrator there-
fore does not receive the corresponding information until 9:30, provided that the
problem still exists at this point in time.

Which of the two solutions is more suitable depends on specific requirements. For
an e-mail notification, for example, it makes little difference if the administrator
receives mails round-the-clock but reads them only when sitting in his office. A
filter for Nagios messages in the mail client, sorting them in reverse chronological
order (the most current mail first) makes sense in this case. Sitting in front of the
screen, the administrator can also take a quick look at the Web interface when
problems are announced, to check whether anything has changed.

If the methods of differentiation described so far are not sufficient, then escalation
management, described in Section 12.5, may be of further help.

12.4 External Notification Programs

Which external programs deliver the messages is defined by thecontact definition.

Here there are again two parameters to define the commands to be used, one for
services and one for hosts:

define contact{
...

service_notification_commands notify-by-email,notify-by-sms

host_notification_commands host-notify-by-email,host-notify-by-sms

email nagios-admin@localhost

pager +49-1234-56789

address1 root@example.com

224

12.4 External Notification Programs

address2 123-456789

...

}

Both *_notification_commands allow comma-separated lists, so it is permitted
to specify more than one command at the same time. The message is then sent
simultaneously to the recipient in all the ways defined. The names of the command
objects describe these ways: via e-mail and via SMS.

To achieve a better overview, the corresponding commands are not defined to-
gether with the plugin commands in the file checkcommands.cfg, but in a sep-
arate object file, misccommands.cfg. Nagios loads these like any other file with
object definitions, which is why any name can be chosen for them.

The other parameters, email, pager, address1, and address2, can be regarded as
variables. The delivery commands access the values set in these through macros.
Whether pager contains a telephone number for SMS delivery or an e-mail address
pointing to an e-mail SMS gateway is immaterial for the contact definition. The
decisive factor is that the value matches the corresponding command that refer-
ences this variable.

12.4.1 Notification via e-mail

In defining the notify-by-email command, a name and the command line to be
executed is specified, as with every other command object. Only its length is un-
usual, which is why it has had to be line-wrapped several times for this printed
version:

define command{
command_name notify-by-email

command_line /usr/bin/printf "%b" "***** Nagios *****\n\n
Notification Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\nHost:
$HOSTALIAS$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\n\nDate/Time:
$LONGDATETIME$\n\nAdditional Info:\n\n$SERVICEOUTPUT$" | /usr/bin/mail

-s "** $NOTIFICATIONTYPE$ alert - $HOSTALIAS$/$SERVICEDESC$ is

$SERVICESTATE$ **" $CONTACTEMAIL$

}

The printed-out command object comes from the included example file
misccommands.cfg-sample. The command line defined in it can be reduced in
principle to the following pattern:

printf text | mail -s "subject" e-mail address

With the help of the macro, printf generates the message text, which is passed
on to the mail program through a pipe. What is caused by the macros specifically

225

12 The Nagios Notification System

used is revealed in Table 12.1.2 Using this, the jumbo line shown above produces
messages that look something like this:

To: wob@swobspace.de

Subject: ** PROBLEM alert - mail-WOB/SMTP is CRITICAL **

Date: Fri, 14 Jan 2005 16:22:47 +0100 (CET)

From: Nagios Admin <nagios@swobspace.de>

***** Nagios *****

Notification Type: PROBLEM

Service: SMTP

Host: mail-WOB

Address: 172.17.168.2

State: CRITICAL

Date/Time: Fri Jan 14 16:22:47 CET 2005

Additional Info:

CRITICAL - Socket timeout after 10 seconds

Table 12.1:

Macros used in

notify-by-email and

host-notify-by-email

Macro Description

$CONTACTEMAIL$ Value of the email parameter from the contact defi-
nition

$LONGDATETIME$ Long form of data specification, e.g., Fri Jan 14
16:22:47 CET 2005

$HOSTALIAS$ Value of the alias parameter from the host definition

$HOSTADDRESS$ Value of the address parameter from the host defini-
tion

$HOSTNAME$ Value of the host_name parameter from the host
definition

$HOSTOUTPUT$ Text output of the last host check

$HOSTSTATE$ State of the host: UP, DOWN, or UNREACHABLE
$NOTIFICATIONTYPE$ Type of notification: PROBLEM (CRITICAL, WARN-

ING, or UNKNOWN), RECOVERY (OK after error state),
ACKNOWLEDGEMENT (an admin has confirmed the
error state; see Section 16.1.2, page 278), FLAP-
PINGSTART or FLAPPINGSTOP

2 A complete list of all macros is contained in the original documentation at
http://localhost/nagios/docs/macros.html (normally to be found in the file system un-
der /usr/local/nagios/share/docs/macros.html).

226

12.4 External Notification Programs

continued

Macro Description

$SERVICEDESC$ Value of the description parameter in the service def-
inition

$SERVICEOUTPUT$ Text output of the last service check

$SERVICESTATE$ State of the service: OK, WARNING, CRITICAL, UN-
KNOWN

For the command host-notify-by-email, the command line looks similar, except
that now host-related macros are used:

/usr/bin/printf "%b" "***** Nagios *****\n\nNotification Type:

$NOTIFICATIONTYPE$\nHost: $HOSTNAME$\nState: $HOSTSTATE$\nAddress:
$HOSTADDRESS$\nInfo: $HOSTOUTPUT$\n\nDate/Time: $LONGDATETIME$\n" |

/usr/bin/mail -s "Host $HOSTSTATE$ alert for $HOSTNAME$!" $CONTACTEMAIL$

It generates e-mails with the following content:

To: wob@swobspace.de

Subject: Host UP alert for wob-proxy!

Date: Fri, 14 Jan 2005 17:50:21 +0100 (CET)

From: Nagios Admin <nagios@swobspace.de>

***** Nagios *****

Notification Type: RECOVERY

Host: wob-proxy

State: UP

Address: 172.17.168.19

Info: PING OK - Packet loss = 0%, RTA = 69.10 ms

Date/Time: Fri Jan 14 17:50:21 CET 2005

12.4.2 Notification via SMS

While the infrastructure necessary for sending e-mails3 is usually available anyway,
programs for sending SMS messages such as yaps,4 smssend,5 or smsclient6 usually
have to be additionally installed. yaps and smsclient require a local modem or ISDN
card and “telephone” directly with the cell phone provider (e.g., T-Mobile), smssend
establishes a connection to the Internet servers of the cellphone provider and sends

3 Apart from the /usr/bin/mail client, a local mail server is required.
4 http://www.sta.to/ftp/yaps/
5 http://zekiller.skytech.org/smssend_menu_en.html
6 http://www.smsclient.org/

227

12 The Nagios Notification System

the SMS message on this route. With yaps und smsclient you can also use a mail
gateway that generates and sends an SMS message from an e-mail.

Whichever method you choose, you should be aware of possible interference in
sending messages: a connection between the Nagios server and the Internet passes
through many hosts, routers, and firewalls. Especially if Nagios is itself monitoring
one of the computers involved, things get interesting: if this machine is down, then
a message sent via smssend will no longer work either. The same thing applies for
e-mail-SMS gateways. Whether a self-made construction is involved, with yaps or
smsclient, each of which represents its own SMS gateway, or a telecom installation
with a sophisticated unified messaging solution, if the actual sender of the SMS is
many nodes removed from the Nagios server (because you have a networked tele-
phone installation with several locations, for example), the chances increase that
the message will not reach its destination because of an interrupted connection.

For this reason the best solution is an smsclient or yaps installation on the Nagios
server itself with a direct telephone access. In larger, networked telephone systems
you can also consider giving the telephone access a dedicated, direct line from the
telephone system. Whether this is ISDN or analog is just a question here of the
technology used.

To represent the programs mentioned here, we will take a closer look at smsclient,
which can be configured very simply, and has an active community. On its home-
page you can also find a link to a mailing list whose members will be pleased to
help in case you have questions.

Setting up smsclient

While Debian has its own precompiled smsclient package, for SuSE and other dis-
tributions you have to compile the software yourself. For historical reasons the pro-
gram itself is called sms_client; a short subtext is provided with man sms_client.

The installation from the source code follows the usual procedure:

linux:˜ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/sms_client-2.x.y

linux:local/src # cd ./sms_client-2.x.y

linux:src/sms_client-2.x.y # ./configure

linux:src/sms_client-2.x.y # make && make install

The only point worth mentioning here is that the “homemade” configure procedure
manages without autoconf and automake.

The configuration files listed in Table 12.2 are now located in the directory /etc/sms;
the Debian package installs it to /etc/smsclient.

228

12.4 External Notification Programs

Table 12.2:

smsclients

configuration files

File Description

sms_addressbook Definition of aliases and groups

sms_config Main configuration file

sms_daemons Configuration file for the daemon mode of smsclient, in
which this can be reached via a proprietary protocol. Is not
required.

sms_modem Modem configuration

sms_services Supported provider

The file sms_services lists the supported providers and at the same time assigns
them to the protocol used. The precise telephone number dialed is specified by
the corresponding service file in the directory services (if you have compiled this
yourself) or /usr/lib/smsclient/services (for Debian). In case of doubt, you should
request the telephone number of your own mobile cell provider. The mailing list
can also be of assistance here.

In the file sms_config you set a default provider, which the program uses for calls
when the provider is not specifically given:

SMS_default_service = "d1"

Only the configuration of the modem is now missing in the file sms_modem. In
principle, however, any modem that functions under Linux can be used. In the
following example we address an ISDN card with the Isdn4Linux-HiSax driver:

MDM_lock_dir = "/var/lock" # directory for the lock files

MDM_device = "ttyI0" # device name of the modem

...

MDM_command_prefix = "AT"

MDM_init_command = "Z&E<MSN>"

MDM_dial_command = "D"

MDM_number_prefix = "0" # outside line, if required

...

/dev/ttyI0 is used as the device here; for MDM_init_command, your own MSN
is used. This applies particularly to private branch exchanges, which allow a con-
nection only if your own MSN has been correctly specified. Since Isdn4Linux does
not recognize tone or pulse dialing, we use only D instead of the usual DT as the
MDM_dial_command. If the ISDN connection requires an outside line as part of a
phone exchange, you should enter the corresponding prefix; otherwise this string
remains empty.

smsclient requires write permissions both for the device used and for the log file
/var/log/smsclient.log:

229

12 The Nagios Notification System

linux:˜ # touch /var/log/smsclient.log

linux:˜ # chgrp dialout /usr/bin/sms client

linux:˜ # chgrp dialout /dev/ttyI0 /var/log/smsclient.log

linux:˜ # chmod 2755 /usr/bin/sms client

linux:˜ # chmod 664 /dev/ttyI0 /var/log/smsclient.log

To test this, you should now send—preferably as the user nagios, who will later
use smsclient—an SMS message to your own cellphone (here to be reached at the
number 01604711):

nagios@linux:˜$ sms_client 01604711 "Text"

Dialing SMSC 01712521002...

WARNING: read() Timeout

Connection Established.

Login...

SMSC Acknowledgment received

Login successful

Ready to receive message

Received Message Response: Message 3003123223 send successful - message

submitted for processing<CR>

Successful message submission

Disconnect...

Disconnected from SMSC

Hangup...

d1 Service Time: 17 Seconds

[000] d1:01604711 "Text"

Total Elapsed Time: 17 Seconds

Getting Nagios to work together with smsclient

If the second argument is missing in smsclient, which contains the message text,
the program will read it from STDIN:

nagios@linux:˜$ /bin/printf "%b" message | sms_client number

Based on the command notify-by-email, described from page 225, we will use the
second variation here for defining the notify-by-sms command:

’notify-by-sms’ command definition

define command{
command_name notify-by-sms

command_line /usr/bin/printf "%.150s"

"$NOTIFICATIONTYPE$ $HOSTNAME$[$HOSTADDRESS$]/$SERVICEDESC$

is $SERVICESTATE$ /$SHORTDATETIME$/ $SERVICEOUTPUT$" |

/usr/bin/smsclient $CONTACTPAGER$

}

230

12.5 Escalation Management

As usual, the entire command_line is written on a single line. Nagios obtains the
telephone number (or alias) through the macro $CONTACTPAGER$, which reads
out the value of the pager parameter from the contact definition. Since an SMS
here may not be longer than 150 characters, we will considerably abbreviate the
information, compared to the e-mail message. To be on the safe side (you never
know how long the plugin output ($SERVICEOUTPUT$) really is), the printf format
specification .150 (instead of %b) cuts off the text after 150 characters. Although
we then do without the line breaks in the message, by means of \n, an SMS is
never formatted cleanly, due to its limited display. Thus notify-by-sms generates a
one-line message of the following type:

PROBLEM elimail[172.17.130.1]/UPS is CRITICAL /2005-03-30 17:00:53/

Connection refused

12.5 Escalation Management

Whenever the administrators responsible cannot find a solution in the specified
time when important components fail, although Service Level Agreements or other
contracts commit the IT department to do this,7 Nagios’s ability to escalate noti-
fications makes allowances for conflicts, at least on an organizational level. It can
be used to provide multilevel support. For example, Nagios first informs the First
Level Support (usually the Help Desk). If the problem still persists after one day,
then the Second Level Support is notified, and so on.

Nagios also makes a distinction here between host- and service-related escalation
stages. In essence, both function identically.

In the escalation, Nagios does not count in time units, but in how many messages
it has already sent out. In the following example the system should report on error
states of the Database service on linux01 every 120 minutes,8 and this, round-the-
clock:

define service{
host_name linux01

service_description Database

notification_period 24x7

notification_interval 120

...

contact_groups admins

}

The corresponding messages always go to a contact group, so without escalation,
that is to admins.

7 These can also be internal specialist departments.
8 To be precise, every 120 time units, whereby the default time unit is 60 seconds.

231

12 The Nagios Notification System

Figure 12.3:

Nagios escalates,

depending on the

number of messages

already sent

After the fourth notification, Nagios should switch on the first stage of escalation
(as illustrated in Figure 12.3) and, in addition to admins, should notify the second-
level contact group. The eighth message triggers the second level, at which Nagios
informs the contact_group third-level.

As shown in Figure 12.3, escalations may certainly overlap. It can also be seen from
the graphics that the contact group defined in the service object only applies as
long as Nagios does not escalate. As soon as an escalation stage is switched on,
the system puts the default contact group out of action.

If the original contact group—here admins—should also receive a message in the
first escalation level, then this must be additionally specified in the escalation def-
inition. If several levels overlap, Nagios informs all the groups involved. In Fig-
ure 12.3 the eighth to the tenth messages accordingly go both to admins and to
second-level and third-level, while only the latter receives message numbers 11
and 12. From message number 13, Nagios keeps only the contact group admins
informed, since escalation is no longer defined here.

The latter takes place via separate serviceescalation (for services) and hostescala-
tion objects (for computers). For a service escalation object, Nagios requires the
beginning and the end of exceptional circumstances to be defined, apart from
service details (consisting of the service_description and host_name) parameters
and the name of the contact groups responsible:

define serviceescalation{
host_name linux01

service_description Database

first_notification 4

last_notification 10

notification_interval 60

contact_groups admins,second-level

}

The escalation level defined here starts, as desired, with message No 4 and ends
with message No 10. If last_notification is given the value 0, the escalation only
ends if the service changes back to the OK state.

232

12.5 Escalation Management

In addition you must specify the notification_interval parameter for service es-
calations: this changes the notification interval (previously 120 according to the
service definition) to 60 time units. This parameter is also mandatory for a host
escalation. The only difference in the definition of a hostescalation object is that
instead of the host name, you can also specify one or more host groups (in addition
the service_description parameter is dropped, of course).

The second escalation step is defined in the same way:

define serviceescalation{
host_name linux01

service_description Database

first_notification 8

last_notification 12

notification_interval 90

contact_groups third-level

}

If there are overlapping escalations with different notification_intervals, Nagios
chooses the smallest defined time unit in each case. Nagios therefore sends mes-
sages 8 to 10 at intervals of 60 minutes, numbers 11 and 12 at intervals of 90
minutes, and then the original interval of 120 minutes again applies.

With escalation_period and escalation_options there are two more setting pa-
rameters specially for escalations. Both have the same function as notification_
period and notification_options in the host or service definition, but they refer
only to the escalation case.

In contrast to notification_interval, escalation_period does not replace the noti-
fication_period, but acts in addition to this. From the intersection of notification_
period and escalation_period, the actual time period is deduced. Suppose that
notification_period refers to the time between 7:00 A:M and 5:00 P.M., and esca-
lation_period to the period from 8:00 A.M. to 8:00 P.M.. Then Nagios will only send
out messages in the escalation level between 8:00 A.M. and 5:00 P.M.. You must
always remember here that it is only the number of messages that have already
been sent that decides whether an escalation level exists. escalation_period and
escalation_options only have an effect as additional filters.

Before these two parameters are used, you should carefully consider what it is you
want to achieve with them. To restrict the escalation to a specific time period could
under certain circumstances result in it being omitted entirely. If you restrict them
to weekdays, for example, this would mean that if the Database service failed dur-
ing the weekend, Nagios would inform the contact group admins only on Monday
morning: over the weekend the system has already sent more than 12 messages,
so it no longer even uses its escalation mechanism. If there is a time restriction
via escalation_period, you should set last_notification to 0 to ensure that the
escalation really does take place.

233

12 The Nagios Notification System

Every case of error is followed at some point in time by a recovery. An intelligent
mechanism ensures that Nagios only notifies those contacts of the corresponding
recovery who have previously been informed of an error state.

12.6 Dependences between Hosts and Services as a
Filter Criterion

If you test services with local plugins (see Chapter 7) via NRPE (see Chapter 10), all
these tests will come to nothing the moment the Plugin Executor fails. With service
dependencies you can prevent Nagios from flooding the appropriate administrator
with messages on the dependent services. Instead of this, the system informs him
specifically of the NRPE failure.

Aa with such service dependencies, Nagios also has host dependencies, which
suppress messages, depending on individual hosts. Both variations can also be
used to specifically ”switch off” tests.

12.6.1 The standard case: service dependencies

Let us take as an example the host linux01, illustrated in Figure 12.4, on which
locally installed plugins, controlled via NRPE, monitor hard drive space (Disks ser-
vice, see page 174), the number of logged-in users (Users service), and the system
load (Load service). If NRPE were now to fail, Nagios would announce the CRITICAL
state for all three services, although their actual state is unknown, and the real
problem is the “NRPE daemon.”

In order to solve this contradiction, NRPE is defined and monitored as a separate
service and describes the dependencies in a servicedependency object.

Figure 12.4:

The three

above-mentioned

services depend on

NRPE

To define the additional service check for NRPE, we make use of the possibility of
calling the check_nrpe plugin (see page 166) (almost) without any parameters at
all. It then simply returns the version of the NRPE daemons being used:

234

12.6 Dependences between Hosts and Services as a Filter Criterion

nagios@linux:˜$ /usr/local/nagios/libexec/check nrpe -H linux01

NRPE v2.0

The command defined in Section 10.4 on page 172, check_nrpe, requires further
arguments and therefore cannot be used for our purposes. For this reason we set
up a new command object, test_nrpe, which exclusively tests NRPE:

define command{
command_name test_nrpe

command_line $USER1$/check_nrpe -H $HOSTADDRESS$

}

With this, an NRPE service can now be defined:

define service{
host_name linux01

service_description NRPE

check_command test_nrpe

...

}

The dependencies of the three local services of NRPE are described by the following
servicedependency object.

define servicedependency{
host_name linux01

service_description NRPE

dependent_host_name linux01

dependent_service_description Disks,Users,Load

notification_failure_criteria c,u

execution_failure_criteria n

}

host_name and service_description define the master service, the failure of which
leads to the failure of the services named in dependent_service_description on
the computer specified in dependent_host_name. Multiple entries, separated by
commas, are possible for all four parameters mentioned. You should bear in mind,
however, that each dependent service is dependent on every possible master ser-
vice.

The remaining parameters influence service checks and notifications: notifica-
tion_failure_criteria specifies for which states of the master service notifications
involving an error of the dependent services (e.g., Disks) should not appear. Possible
values are u (UNKNOWN), w (WARNING), c (CRITICAL), p (PENDING, i.e., an initial
check is planned but was so far not yet carried out), o (OK), and n (None).

u,c in the example above means that Nagios does not inform the administrators
responsible of “errors” in the services Disks, Users, and Load on linux01 if the mas-
ter service is in the CRITICAL or UNKNOWN state. With an o for OK, the logic can

235

12 The Nagios Notification System

be reversed: here there is no message if there is an error in the dependent service,
as long as the master service is in an OK state. Accordingly, n means that Nagios
provides a notification irrespective of the status of the master service.

The execution_failure_criteria parameter controls tests, depending on the state
of the master service. The details u (UNKNOWN), w (WARNING), c (CRITICAL), p
(PENDING), o (OK), and n (None), as with notification_failure_criteria, refer to
states of the master service for which there should be no check. In the example, n
is specified, so that Nagios tests Disks, Users, and Load even if NRPE fails.

Nagios therefore suppresses messages, but since it still carries out the service
checks on the dependent services, the Web interface always shows the current
status of these.

The details for notification_failure_criteria interact with the Freshness mecha-
nism of passive tests (see Section 13.4 from page 243). If check_freshness is used
in the service definition, and if Nagios considers the most recently determined sta-
tus to be out of date, it will carry out active tests even if it ought to suppress them,
according to the service dependency.

Inheritance

Nagios does not automatically inherit dependencies. An example of this is shown
in Figure 12.5: on the internal side of a firewall, the system should query various
resources via SNMP. For security reasons, the test is performed indirectly via NRPE,
that is, the Nagios server runs the SNMP plugins, which are installed on a host
inside the file, indirectly via NRPE.

Figure 12.5:

Multilevel

dependencies for

services

The following two servicedependency objects describe a dependency between the
SNMP (Master) service and the Disks service (dependent service) on the host
linux04, as well as between the NRPE service on linux01 and the SNMP service
on linux04:

236

12.6 Dependences between Hosts and Services as a Filter Criterion

define servicedependency{
host_name linux04

service_description SNMP

dependent_host_name linux04

dependent_service_description Disks

notification_failure_criteria c,u

execution_failure_criteria c,u

}

define servicedependency{
host_name linux01

service_description NRPE

dependent_host_name linux04

dependent_service_description SNMP

notification_failure_criteria c,u

execution_failure_criteria c,u

}

If the NRPE daemon on linux01 fails, Nagios would only recognize the defined
dependencies between NRPE and SNMP, but not the implicit dependency between
NRPE and Disks. To take these into account as well, the parameter inherits_parent
is inserted in the definition of the service dependency between Disks and SNMP:

inherits_parent 1

With this, Nagios tests whether the master service itself (here SNMP) is dependent
on another service, thanks to a corresponding servicedependency. If the NRPE
service on linux01 fails (CRITICAL state), Nagios leaves out the check of Disks on
linux04, thanks to execution_failure_criteria c,u, and also does not send any no-
tification of the most recently detected status of Disks.

Other application cases

Dependency definitions between services are particularly useful if a great deal de-
pends on a single service, so that the actual problem is in danger of disappearing
under a flood of error messages. Apart from the already described use in combi-
nation with NRPE, this applies for all services that the Nagios server cannot test
directly and for which it must use tools instead (NRPE, SNMP, or even NSCLIENT
for Windows, see Section 18.1). If a simple connection to the utility cannot be es-
tablished and a constant value (version number, system name) cannot be queried,
you can still use a generic plugin to address the corresponding port.

Another example of using service dependencies are the applications that depend
on a database: a Web application with dynamic Web pages fails if the underlying
database (which may be located somewhere in the network on another host) is
not working. A precisely defined dependency between the database service and

237

12 The Nagios Notification System

dynamic Web application also ensures here that the administrator is notified of the
actual cause.

12.6.2 Only in exceptional cases: host dependencies

Host dependencies function in principle exactly like service dependencies; the host-
dependency object is also capable of suppressing messages.

There are a number of subtle differences in the detail, however. Only explicitly
configured regular host checks can be suppressed in which checked intervals are
defined as for services. This type of host check should be used only in exceptional
circumstances, however, since it can have a significant influence on the perfor-
mance of Nagios. Normally Nagios decides for itself when it will perform a host
check (see Section 4.1 from page 72).

In nearly all cases the parents parameter in the host definition is better at de-
scribing the dependencies between hosts. As long as Nagios can test individual
hosts directly, the system can distinguish much better between DOWN and UN-
REACHABLE (see Section 4.1 from page 72). If you do not want any notification for
particular hosts, dependent on the network topology, then you should be informed
only for DOWN, but not for UNREACHABLE.

Host dependencies should be used only when Nagios can no longer distinguish be-

238

tween DOWN and UNREACHABLE. This is usually the case when the host check is
is performed indirectly (e.g., in Figure 12.1 on page 175).

13 Ch
ap

te
r

Passive Tests with the External
Command File

Apart from active service and host checks, Nagios also makes use of passive tests
(and combinations of both types of test). While the system itself defines the time
for active checks when they are performed, and then initiates them, Nagios in
passive mode only processes incoming results.

For this to work, an interface is required that allows test results from the outside
to be passed on to Nagios, as well as commands that perform checks and feed in
the results through the interface. Normally remote hosts send their test results,
determined by shell scripts, via the Nagios Service Check Acceptor (NSCA), which
is introduced in the next chapter (page 247), to the Nagios server.

Passive checks are used in particular with distributed monitoring, in which noncen-
tral Nagios servers send all their results to a central Nagios instance. This subject is
discussed in Chapter 15. Another field in which they are used is in the processing

239

13 Passive Tests with the External Command File

of asynchronous events, the time of which Nagios cannot define itself. One exam-
ple of this is a backup script that sends a result to Nagios (OK or CRITICAL) when it
has completed a data backup, and another example is processing SNMP traps (see
Section 14.6).

13.1 The Interface for External Commands

The interface for external commands, known in Nagios jargon as External Com-
mand Files, consists of a named pipe (FIFO)1 in the subdirectory rw of the Nagios
var directory:

user@linux:˜$ ls -lF /var/nagios/rw

prw-rw---- 1 nagios nagcmd 0 Dec 19 10:56 nagios.cmd|

The pipe, marked in the ls output with p, correctly sets up the make install-
commandmode command during installation. For reasons of security it is essential
that you ensure that only the group nagcmd can read from and write to the pipe.
Anyone who has access here can control Nagios remotely via commands, and can,
if they want, shut it down entirely.

Commands that Nagios accepts from the External Command File have the follow-
ing form:

[timestamp] command;arguments

As the timestamp in square brackets, Nagios expects the current time in epoch
seconds, that is the number of seconds which have elapsed in the UTC time zone
since January 1, 1970. This is followed by a space, then a command followed by a
matching number of arguments, separated by a semicolon.

The interface makes extensive use of this mechanism, allowing its users to make
various settings via mouse click.2 In this chapter we will limit ourselves to the two
processing commands with which computers deliver the results of passive checks
to the Nagios server, PROCESS_SERVICE_CHECK_RESULT and PROCESS_HOST_
CHECK_RESULT.

For reasons of security, the processing of external commands must be explicitly
switched on in the main configuration file nagios.cfg with the directive check_
external_commands=1:

1 A named pipe is a buffer to which a process can write something, which can then be read by
another process. Whatever is written first is also read first: First In, First Out (FIFO). Since this
involves space in the main memory, a named pipe does not need any space on the hard drive.

2 A detailed description of all possible commands is provided by the online documen-
tation at http://localhost/nagios/docs/extcommands.html or file:/usr/local/nagios/share/
docs/extcommands.html.

240

13.2 Passive Service Checks

/etc/nagios/nagios.cfg

...

check_external_commands=1

command_check_interval=-1

command_file=/var/nagios/rw/nagios.cmd

...

The command_check_interval determines that Nagios checks the interface for
existing commands every so many seconds. -1 means “as often as possible.” com-
mand_file specifies the path to the named pipe.

13.2 Passive Service Checks

In order for Nagios to be able to accept passive service checks via the interface,
this must be explicitly allowed in the global configuration and in the corresponding
service definition. The corresponding entry in nagios.cfg is

/etc/nagios/nagios.cfg

...

accept_passive_service_checks=1

...

In the service definition you can select whether you want to perform active checks
in parallel to the passive ones. Active checks are only possible, of course, if Nagios
can query the information itself. The following example allows passive checks and
stops all active ones:

define service{
host_name linux01

service_description Disks

passive_checks_enabled 1

active_checks_enabled 0

check_command check_dummy

check_period none

...

}

An exception is normally made for freshness checks (see Section 13.4 from page
243)—here Nagios makes use of the command defined in check_command. To
ban active checks entirely, the check_period parameter is set to none. The check
command does not play a role in this case, so you can just enter a dummy check
here, for example (which like all other commands has to be defined, of course).

On the computer to be tested passively (in this example, linux01) you must ensure,
via NSCA (see Chapter 14), that it contacts the Nagios server through the interface

241

13 Passive Tests with the External Command File

for external commands. There it writes the command for passive service checks in
the following one-line form:

[timestamp] PROCESS_SERVICE_CHECK_RESULT;host-name;service;

return value;plugin output

The timestamp can be created in a shell script, for example with date:

user@linux:˜$ date +%s

1112435763

A simple script that passes on the result of a passive service check on the Nagios
server itself to the Nagios installed there, could look like this:

#!/bin/bash

EXTCMDFILE="/var/nagios/rw/nagios.cmd"

TIME=‘date +%s‘

HOST=$1

SRV=$2

RESULT=$3

OUTPUT=$4

CMD="[$TIME] PROCESS_SERVICE_CHECK_RESULT;$HOST;$SRV;$RESULT;$OUTPUT"

/bin/echo $CMD >> $EXTCMDFILE

When it is run it expects the parameters in the correct sequence:

name_of_script linux01 Disks 0 ’Disks ok: everything in order :-)’

After the host and service names, the test status follows as a digit, and finally
the output text. If the service name contains spaces, then it should also be set in
quotation marks.

13.3 Passive Host Checks

Passive host checks follow the same principle as passive service checks, except
that they involve computers and not services. To allow them globally, the ac-
cept_passive_host_checks parameter is set in nagios.cfg to 1:

/etc/nagios/nagios.cfg

...

accept_passive_host_checks=1

...

242

13.4 Reacting to Out-of-Date Information of Passive Checks

In addition, the host definition for the computer to be monitored passively must
allow this kind of host check:

define host{
host_name linux01

passive_checks_enabled 1

active_checks_enabled 0

check_period none

check_command check_dummy

...

}

In this example it simultaneously forbids active checks.

The command to be sent through the external interface with which the computer
delivers its test results differs here only marginally from the syntax used in the
service check command already introduced:

[timestamp] PROCESS_HOST_CHECK_RESULT;hostname;return value;

plugin output

Active and passive host checks differ in one important respect: with passive checks,
Nagios is no longer in a position to distinguish between DOWN and UNREACHABLE
(see Section 4.1 from page 72). If you still want to take account of network topol-
ogy dependencies when making notifications and to give specific information on
the actual host that is down, you must make use of host dependencies in this case
(see Section 12.6.2 from page 238).

13.4 Reacting to Out-of-Date Information of
Passive Checks

It lies in the nature of passive checks that Nagios is content with the information
delivered. Nagios has no influence over when and at what intervals the remote
host delivers them. It may even be the case that the information does not arrive at
all.

In order to classify the “knowledge state” of the server as out of date, Nagios has
the ability to become active itself, with a freshness check. Like passive checks,
freshness checking must be enabled both globally and in the relevant serviceable
host object. To do this, you need to set the following global parameters in the file
nagios.cfg:

/etc/nagios/nagios.cfg

...

check_service_freshness=1

243

13 Passive Tests with the External Command File

service_freshness_check_interval=60

check_host_freshness=0

host_freshness_check_interval=60

...

The value 0 in check_host_freshness and the value 1 in check_service_freshness
ensure that Nagios carries out freshness checks only for services, and not for hosts.
The check interval defines the intervals at which the server updates its information,
in this case, every 60 seconds. When Nagios really becomes active in the case of a
specific service or host depends on the threshold value, which you can set in the
appropriate service or host definition with the freshness_threshold parameter:3

define service{
host_name linux01

service_description Disks

passive_checks_enabled 1

active_checks_enabled 0

check_freshness 1

freshness_threshold 3600

check_command service_is_stale

...

}

So in this example Nagios performs the freshness check for this service only if the
last transmitted value is older than 3600 seconds (one hour). Then Nagios starts the
command defined in check_command, even if active checks have been switched
off in the corresponding host or service definition, or even globally.

If you define the command named here in the example, service_is_stale, so that
Nagios really does check the service or host, then Nagios will perform active tests
even if active checking is switched off, but always only if passive results are overdue
for longer than the threshold value set.

If active checks are not possible or not wanted, you can ensure, using a pseudo-
test, that Nagios will explicitly signal an error status, so that the administrator’s
attention is drawn to it. Otherwise Nagios will always display the last status to be
received. If this was OK, then it will not necessarily be noticed that current results
have not been arriving for some time. The following pseudo-test script delivers an
appropriate error message with echo, and with exit 2 delivers the return value for
CRITICAL, so that the administrator can react accordingly:

#!/bin/bash

/bin/echo "CRITICAL: no current results of the service"

exit 2

3 If you do not explicitly specify freshness_threshold, the value set for normal_check_interval
will be used in the hard state, and if there is a soft state, the value retry_check_interval will
serve as the default.

244

13.4 Reacting to Out-of-Date Information of Passive Checks

If you start the script from the plugin directory as service_is_stale.sh, the Nagios
command service_is_stale will be defined as follows:

define command{
command_name service_is_stale

command_line $USER1$/service_is_stale.sh

}

If the results for the service Disks on linux01 fail to appear for longer than one
hour, Nagios will run the script service_is_stale.sh, which always returns CRITICAL,
irrespective of what data linux01 last sent. This CRITICAL status is only ended when
the host passes on new and more positive results to the server through a passive
check.

245

14 Ch
ap

te
r

The Nagios Service Check
Acceptor (NSCA)

In order to send service and host checks across the network to the central Na-
gios server, a transmission mechanism is required. This is provided by the Nagios
Service Check Acceptor (NSCA). It consists of two components: a client program
send_nsca, which accepts the results of a service or host check on the remote host
and sends them to the Nagios server, and the NSCA daemon nsca, which runs on
the server, receives data from the client, processes this for the External Command
File interface (see Section 13.1), and passes this data on to it (Figure 14.1).

The Nagios Service Check Acceptor was originally developed to enable distributed
monitoring in which decentralized Nagios servers can send their results to a central
Nagios server (see Chapter 15 from page 265). In principle, the data that send_nsca
sends to the Nagios server can come from any applications you like.

247

14 The Nagios Service Check Acceptor (NSCA)

Sending commands across the network to the central Nagios instance is not in-
significant, from a security point of view, since Nagios could be completely switched
off using the External Command File. This is why NSCA sends the data in encrypted
form, and clients must have the correct key to obtain access to the interface. This
prevents an arbitrary network participant from being able to run any commands at
all on the Nagios server.

Figure 14.1:

How the NSCA

functions

14.1 Installation

NSCA version 2.4, current at the time of going to press, was published in the sum-
mer of 2003; the chances are therefore quite high that the distribution you are
using contains a current package. The source code1 is quite easy to compile your-
self, however. As a prerequisite, you need to have the library libmcrypt installed,
together with the relevant header files,2 or else the integrated encryption cannot
be used.

In the unpacked source directory, you should run the included configure script,
specifying the Nagios configuration and var directories:

linux:local/src # tar xvzf /path/to/nsca-2.4.tar.gz

...

linux:local/src # cd nsca-2.4

linux:src/nsca-2.4 # ./configure --sysconfdir=/etc/nagios \
--localstatedir=/var/nagios

...

*** Configuration summary for nsca 2.4 07-23-2003 ***:

1 http://www.nagiosexchange.org/Communication.41.0.html
2 The corresponding binary package usually contains -dev or -devel in its name.

248

14.2 Configuring the Nagios Server

General Options:

NSCA port: 5667

NSCA user: nagios

NSCA group: nagios

...

At the end it displays output, showing the permissions with which the NSCA user
starts by default, if not otherwise specified in the configuration. Normally the
NSCA daemon waits on TCP port 5667.

A final make all compiles the two programs nsca and send_nsca. They are now
located in the subdirectory src and need to be copied manually to a suitable direc-
tory:

linux:src/nsca-2.4 # cp src/nsca /usr/local/sbin/.

linux:src/nsca-2.4 # scp src/send_nsca remote host:/usr/local/bin/.

nsca is copied to the Nagios server, preferably to the directory /usr/local/sbin.
send_nsca belongs on the remote host that is to send its test results to the Nagios
server. If this computer has a different operating system version or platform, it is
possible that the client to run there will need to be recompiled.

Both programs each require their own configuration file, which is best stored in the
directory /etc/nagios:

linux:src/nsca-2.4 # cp nsca.cfg /etc/nagios/.

linux:src/nsca-2.4 # scp send_nsca.cfg remote_host:/etc/nagios/.

14.2 Configuring the Nagios Server

14.2.1 The configuration file nsca.cfg

For NSCA to work, the External Command File interface on the Nagios server must
be activated in the configuration file /etc/nagios/nagios.cfg (Section 13.1, page
240) and the corresponding data entered in the NSCA configuration file nsca.cfg:

/etc/nagios/nsca.cfg

server_port=5667

server_address=192.168.1.1

allowed_hosts=127.0.0.1

nsca_user=nagios

nsca_group=nagios

debug=0

command_file=/var/nagios/rw/nagios.cmd

249

14 The Nagios Service Check Acceptor (NSCA)

alternate_dump_file=/var/nagios/rw/nsca.dump

aggregate_writes=0

append_to_file=0

max_packet_age=30

password=verysecret

decryption_method=10

The parameters server_port, server_address, allowed_hosts, nsca_user, and nsca_
group take effect only if nsca is started as a daemon. If it is started as an inet
daemon, the values set in its configuration apply to the NSCA server address and
the port on which the NSCA is listening, the IP addresses of the hosts that are
allowed to access the interface,3 and the users and group with whose permissions
the Service Check Acceptor runs.

The debug parameter makes it easier to search for errors, but it should normally be
switched off (value 0). If it is set to 1, NSCA writes debugging information in the
syslog.

The named pipe is defined by the entry command_file. If you specify an alternative
output file, with alternate_dump_file, this serves as a fallback in case the named
pipe given does not exist. Before version 2.0, Nagios removed the pipe each time it
was shut down, but this should not happen anymore.

If it is set to 1, aggregate_writes ensures that NSCA collects all the incoming com-
mands just once and then passes these on to the interface as a block. If the value
at this position is 0, then NSCA sends on each incoming command immediately to
the External Command File.

append_to_file can have the values 0 (opens the External Command File in write
mode) or 1 (opens it in the append mode), and it should always be set to 0.4

Client messages older than max_packet_age seconds are discarded by NSCA, to
avoid replay attacks. This value may not be larger than 900 seconds (15 minutes)
and should be as small as possible.

The last two parameters refer to the encryption of the communication. password
contains the actual key, which is identical for clients, and which must be entered in
the configuration for the clients (cf. Section 14.3 on page 252). Because the key is
written in the file in plain text, nsca.cfg should be readable only for the user with
whose permissions the NSCA is running, which in our case is nagios:

linux:/etc/nagios # chown nagios.nagios nsca.cfg

linux:/etc/nagios # chmod 400 nsca.cfg

3 If you want to define more than one IP address for allowed_hosts, they are separated by a
comma.

4 The append mode only makes sense if the External Command File is replaced for debugging
purposes with a simple file.

250

14.2 Configuring the Nagios Server

Finally, decryption_method defines the encryption algorithm. The default is 1
(XOR), which is almost as insecure as 0 (no encryption). 10 stands for LOKI97,
which is regarded as secure.5 The list of all possible algorithms is contained in the
supplied configuration file, which contains many old algorithms and some newer
ones, such as DES (2), Triple-DES (3), Blowfish (8), and Rijndael (AES).6

14.2.2 Configurung the inet daemon

If you want to start nsca with the inet daemon, the following entry is added in the
file /etc/services:

nsca 5667/tcp # Nagios Service Check Acceptor (NSCA)

xinetd configuration

If the newer xinetd is used, the file nagios-nsca is created in the directory /etc/
xinetd.d with the following contents:

/etc/xinetd.d/nrpe

description: NRPE

default: on

service nrpe

{
flags = REUSE

socket_type = stream

wait = no

user = nagios

group = nagios

server = /usr/local/sbin/nsca

server_args = -c /etc/nagios/nsca.cfg --inetd

log_on_failure += USERID

disable = no

only_from = 127.0.0.1 ip1 ip2 ... ipn

}

The values printed in bold type for the user and group with whose permissions
the NSCA should run, and the path to the NSCA daemon nsca (parameter ser-
ver) and the corresponding configuration file, are adjusted if necessary to your
own environment. The line only_from, as an equivalent to the nsca.cfg parame-
ter allowed_hosts, takes in all the IP addresses, separated by spaces, from which
the NSCA may be addressed. Distributions that include NSCA as a finished pack-
age and install xinetd by default, include a ready-to-use xinetd configuration file,
where you only need to adjust this last parameter.

5 http://en.wikipedia.org/wiki/LOKI97
6 Rijndael-128: 14; Rijndael-192: 15; Rijndael-256: 16

251

14 The Nagios Service Check Acceptor (NSCA)

In order for the new configuration to become effective, the xinetd init script is run
with the reload argument:

linux:˜ # /etc/init.d/xinetd reload

inetd configuration

If the standard inetd command is run, the following line is added (line-wrapped
for the printed version) in the configuration file /etc/inetd.conf:

nsca stream tcp nowait nagios /usr/sbin/tcpd

/usr/local/sbin/nsca -c /etc/nagios/nsca.cfg --inetd

If you want to leave out the TCP wrapper tcpd, you just omit the string /usr/sbin/
tcpd. In this case you must also explicitly specify the user (nagios) with whose
permissions the NSCA starts, the complete path to the binary nsca, and the config-
uration file with its absolute path. So that the Internet daemon can take account
of the modification, its configuration must be reloaded:

linux:˜ # /etc/init.d/inetd reload

14.3 Client-side Configuration

The configuration file send_nsca.cfg on the client side must contain the same
encryption parameters as the file on the Nagios server:

password=verysecret

decryption_method=10

Since the key is also written here in plain text, it should not be readable for just
any user. For this reason it is best to create a user nagios and a group nagios on
the client side:

linux:˜ # groupadd -g 9000 nagios

linux:˜ # useradd -u 9000 -g nagios -d /usr/local/nagios \
-c "Nagios Admin" nagios

You should now protect the file send_nsca.cfg so that only the user nagios can
read it, and ensure, using the SUID mechanism, that the program send_nsca always
runs under the user ID of this user. If you now grant execute permission to the
group nagios, only its members may execute the NSCA client program:

252

14.4 Sending Test Results to the Server

linux:˜ # chown nagios.nagios /etc/nagios/send_nsca.cfg

linux:˜ # chown nagios.nagios /usr/bin/send_nsca

linux:˜ # chmod 400 /etc/nagios/send_nsca.cfg

linux:˜ # chmod 4710 /usr/bin/send_nsca

linux:˜ # ls -l /usr/bin/send_nsca

-rws--x--- 1 nagios nagios 83187 Apr 2 17:56 /usr/local/bin/send_nsca

14.4 Sending Test Results to the Server

The client program send_nsca reads the details of a host or service check from the
standard input, which the administrator must format as follows:7

host-name\tservice\treturn value\toutput
host-name\treturn value\toutput

send_nsca sends this to the Nagios server. The first line describes the format for
service checks and the second line, that for host checks. The placeholder return
value is replaced by the status determined, that is, 0 for OK, 1 for WARNING, 2 for
CRITICAL, and 3 for UNKNOWN. By output, a one-line text is meant, of the type
that plugins provide as a support for the administrator. As the separator, a tabu
sign is used (\t).

In order to make a complete command from this that can be understood by the ex-
ternal command, the NSCA daemon first prefixes the timestamp and the matching
command (PROCESS_SERVICE_CHECK_RESULT or PROCESS_HOST_CHECK_RE-
SULT). This is why only these two commands can be sent using NSCA.

send_nsca itself has the following options:

-H address
This is the host name or IP address of the Nagios server to be addressed by
NSCA.

-d delimiter
This is the delimiter for the input; the default is a tab sign. The following
example page uses the semicolon as a delimiter.

-c path/to the/configuration file
This parameter specifies the path to the configuration file send_nsca.cfg.
Since no path has been compiled into the client, send_nsca expects by de-
fault to find the file in the current directory. For this reason it makes sense
to specify the absolute path with this option.

7 Normally you have to ensure that test scripts you have written yourself produce the correct
output; if you use Nagios plugins, you must reformat their output accordingly. Since the latter
can be run much better directly with NRPE, this should be the exception to the rule.

253

14 The Nagios Service Check Acceptor (NSCA)

-p port
This defines an alternative port if the default, the TCP port 5667, is not used.

-to timeout
After timeout seconds (by default, 10) send_nsca aborts the connection
attempt to the NSCA daemon, if no connection is established.

With simple test scripts such as the following one, the functionality of the NSCA
can be tested. A service is chosen as the test object, which is in a state other than
UNKNOWN (e.g., OK), in this case, nmbd on the host linux01:

#!/bin/bash

CFG="/etc/nagios/send_nsca.cfg"

CMD="linux01;nmbd;3;UNKNOWN - just one NSCA test"

/bin/echo $CMD | /usr/local/bin/send_nsca -H nagios -d ’;’ -c $CFG

The script puts it, from Nagios’s point of view, into the UNKNOWN status. After it
is run, you should discover if the transfer was successful:

nagios@linux:˜$ bash ./test_nsca

1 data packet(s) sent to host successfully.

As soon as Nagios processes the command and you have reloaded the page in your
browser, the Web interface displays the UNKNOWN status for the selected service.
With the next active check, the previous status will be recovered.

Because it is so simple to send Nagios check results with send_nsca, it is essential
that you protect the NSCA from misuse, as already demonstrated. On the client,
you should restrict access to the client program send_nsca and to its configuration
file and you should make sure that you have secure encryption, and on the server
explicitly define the sender and IP addresses that are to be allowed.

14.5 Application Example I: Integrating syslog and
Nagios

Linux and Unix systems as a rule log system-relevant events through syslog. Sooner
or later you will probably want Nagios to also inform the administrator of impor-
tant syslog events. To do this, you require passive service checks, NSCA for trans-
mitting the results to the Nagios server, and a method of filtering individual block
entries.

If you are using syslog-ng8 instead of the standard BSD syslog, you can make use
of its ability to set filters and to format the output using templates. The use of

8 The “ng” stands here for next generation.

254

14.5 Application Example I: Integrating syslog and Nagios

NSCA compensates for the fact that the program cannot itself transmit data in
encrypted form.

This connection to Nagios is supplemented by programs to evaluate log files, such
as logcheck,9 which is contained in almost every Linux distribution, but it does not
replace them. This is because Nagios can send individual e-mails for each event,
but not for a summary of events, as logcheck does (usually once per hour). In
addition to this, the Web interface always displays the last event in each case.

14.5.1 Preparing syslog-ng for use with Nagios

Apart from the source code, the syslog-ng homepage10 also provides a detailed
manual, which is why we shall only discuss the basic principle at this point. The
software differentiates between the source, filter, and destination. All three ob-
jects can be combined in any form; they are defined in the configuration file
/etc/syslog-ng/syslog-ng.conf:

/etc/syslog-ng/syslog-ng.conf

source local {
unix-stream("/dev/log");

internal();

file("/proc/kmsg" log_prefix("kernel: "));

};

destination console_10 {
file("/dev/tty10");

};

filter f_messages {
not facility(auth, authpriv) and

level(info .. alert);

};

log {
source(local);

filter(f_messages);

destination(console_10);

};

This example defines three sources at the same time: unix-stream reads from the
socket /dev/log, through which most programs send their messages to the sys-
log. internal is the name of the source syslog-ng feeds with internal messages,
and from the file /proc/kmsg syslog receives kernel messages. These are given the
kernel: prefix, so that they can be be distinguished from normal log entries.

9 http://sourceforge.net/projects/logcheck/
10 http://www.balabit.com/products/syslog_ng/

255

14 The Nagios Service Check Acceptor (NSCA)

The destination definition ensures that all syslog output appears on the console
tty10 (this can be displayed with

✞✝ ☎✆Alt -
✞✝ ☎✆F10).

filter defines what messages should reach this destination, if any. In the case of
the f_messages filter, this is all messages matching the category (the level) info
and that syslog does not provide with the stamp (the facility; see man syslog.conf
and man 3 syslog) auth or authpriv. Alternatively syslog-ng filters according to
a search pattern, with the instruction match(”pattern”), according to the program
doing the logging (program(”program name”)) and according to the source host
(host(”hostname”)).

Finally the keyword log links the source, filter, and destination. Multiple specifi-
cations are possible here, so several sources and destinations can be specified in a
single statement:

log {
source1); source2; ...

filter1; filter2; ...

destination1; destination2; ...

}

If you specify several filters in a log statement, syslog-ng only allows data through
that matches all filter criteria (AND link).

To integrate this into Nagios, use is made of the option of defining a program as a
target, which is called for every event:

destination d_nagios_warn {
program("/usr/local/nagios/misc/send_syslog.sh"

template("$HOST;syslog-ng;1;WARNING: $MSG\n") template_escape(no));

};

destination d_nagios_crit {
program("/usr/local/nagios/misc/send_syslog.sh"

template("$HOST;syslog-ng;2;CRITICAL: $MSG\n") template_escape(no));

};

The template directive formats the output so that it is suitable for send_nsca, using
a semicolon as the delimiter: host and service names (syslog-ng) are followed by
the state (1 = WARNING; 2 = CRITICAL), and then the actual output text is given.
Apart from $HOST and $MSG, syslog-ng has a series of further macros, which
are described individually in the documentation on the homepage. The parameter
template_escape protects quotation marks in the text and is intended principally
for SQL commands, so in this case it can be set to no.

The following script send_syslog.sh uses the bash function read to read from the
standard input line by line, and for each line read it calls up send_nsca, which
sends on the data—as described in this chapter—as a passive test result to Nagios:

256

14.5 Application Example I: Integrating syslog and Nagios

#!/bin/bash

while read -r line; do

echo $line | /usr/bin/send_nsca -H nagsrv -d ’;’ \
-c /etc/nagios/send_nsca.cfg \
1>/usr/local/nagios/var/send_syslog.log 2>&1

done

Because a semicolon is used as a delimiter, we specify this explicitly with the option
-d. The status report that each send_nsca command displays on the standard out-
put is diverted by the script into a separate log file (/usr/local/nagios/var/send_sys-
log.log).

Thanks to the program instruction in the syslog configuration, syslog-ng starts the
script automatically. This is also the reason that the send_nsca command is in an
endless loop: this means that syslog-ng does not run an external program every
time there is a relevant event.

14.5.2 Nagios configuration: volatile services

In Nagios slang, “volatile” refers to services that show an error state only once. This
refers to devices, for example, that automatically reset the state when an error is
queried—which means that the error cannot be reproduced. The same applies for
syslog entries: if a check following an error state returns an error, this will always
be a second event. So we don’t have a continuing error state here, but a problem
that has again occurred.

For continuing error states, Nagios normally does not send any further messages
for the time being. With the is_volatile parameter, however, it treats every error as
if it had just occurred. Nagios logs the state, sends a notification, and implements
the event handler—provided it is defined—(see Appendix B from page 409).

For syslog-ng, this means that each entry is seen as an independent event. In order
that Nagios sees things in this way as well, the corresponding service definition
contains the is_volatile parameter:

define service{
host_name linux01

service_description syslog-ng

active_checks_enabled 0

passive_checks_enabled 1

check_freshness 0

is_volatile 1

max_check_attempts 1

normal_check_interval 1

retry_check_interval 1

check_command check_dummy!3!active check

check_period none

contact_groups localadmins

257

14 The Nagios Service Check Acceptor (NSCA)

notification_options w,c,u

notification_interval 480

notification_period 24x7

}

Since the Nagios server should not test anything on its own, active_checks_en-
abled 0 switches off active service checks. However, freshness checking (see Sec-
tion 13.4 from page 243) can always cause Nagios to perform active tests. To
prevent this, we set the check_freshness parameter in this case explicitly to 0.

This service definition does not really require the parameters check_command and
check_period, but since these are mandatory parameters, they must still be spec-
ified: as check_command, the plugin check_dummy (see Section 7.13 on page
154) is used.

It is also important that max_check_attempts is set to 1, so that a transmitted
error state immediately triggers a hard state. With a value larger than 1, Nagios
would wait for further error results here before categorizing the problem state as
a hard state.

The notification_options parameter ensures that the system informs the speci-
fied contact group of all error states (WARNING, CRITICAL, and UNKNOWN). The
notification_interval, which defines the interval between two notifications for a
continuing error state, is actually superfluous, since Nagios, thanks to is_volatile 1,
provides notification of every event immediately, irrespective of what the previous
state looked like. But since it is a mandatory parameter, notification_interval still
has to be specified.

14.5.3 Resetting error states manually

Events that are taken into account by the syslog filter always inform you of only
one current state, which is why the syslog service in Nagios never displays an OK
state on its own (Figure 14.2). This problem can be solved with the Web interface,
which allows a passive check result to be generated manually.

Figure 14.2:

The syslog-ng service

in an error state

If you click on the service name in Figure 14.2, the extended status information
will be shown (Figure 14.3). There you will find the entry Submit passive check
result for this service, with which a test result can be sent manually (Figure 14.4).
In this way the syslog-ng service can be reset to its normal state. Since the Web

258

14.5 Application Example I: Integrating syslog and Nagios

interface always shows only the most recent error state, but not individual error
messages, you must look through the e-mail messages to see whether other errors
have occurred apart from those errors displayed by Nagios in the Web interface.

Figure 14.3:

The arrow points to

the possibility of

“generating” a

passive test result for

the syslog-ng service

You can also define your own service for each syslog event, of course. This may
sometimes be quite time-consuming, but it does allow you to separate various
messages and their processing states in the Web interface. If the filter in syslog-ng
is restricted so that a syslog service object always refers to just one resource to be
monitored, you can also leave out the is_volatile parameter.

Figure 14.4:

Creating a passive

check result

syslog-ng

259

14 The Nagios Service Check Acceptor (NSCA)

14.6 Application Example II: Processing SNMP
Traps

Asynchronous messages that are sent by an SNMP agent (see Section 11.1 from
page 178) to a central management unit, called traps in SNMP jargon, can be
processed by Nagios in a way similar to the Nagios Service Check Acceptor (NSCA).
In addition, it allows SNMP traps to be accepted on a host other than the Nagios
server itself.

Processing SNMP traps with Nagios is particularly worthwhile if the system moni-
tors the network almost completely, and only a few devices or services restrict their
communication just to SNMP and SNMP traps. Nagios, or the Open Source tool
OpenNMS,11 are no substitutes for real commercial SNMP management systems.

In many cases, SNMP traps are vendor-specific, so that you cannot avoid getting
to grips with the appropriate documentation and the vendor-specific MIB (Man-
agement Information Base; see Section 11.1.1 from page 179).

14.6.1 Receiving traps with snmptrapd

In order to receive SNMP traps, you require a special Unix/Linux daemon that gen-
erates messages for Nagios from them. The software package NET-SNMP, described
in Section 11.2.2 from page 187, includes the daemon snmptrapd.

In the following scenario, snmptrapd is installed on a third host (neither the com-
puter generating the trap, nor the Nagios server). It evaluates the information
received by means of a script and forwards it with NSCA to the Nagios server.12

In the snmptrapd configuration file /etc/snmp/snmptrapd.conf, each trap type is
given a separate entry, the syntax of which corresponds to one of the following
lines:

traphandle oid program

traphandle oid program arguments

traphandle default program

traphandle default program arguments

The keyword traphandle is followed either by the object identifier of the desired
trap, or by the keyword default. In the second case the entry applies to all traps
that do not have their own configuration entry. Finally the program that should
run if a relevant trap arrives is specified.

11 http://www.opennms.org/
12 If you install the snmptrapd on the Nagios server itself, you do not need NSCA and you can send

a correspondingly formatted command, as described in Section 13.2 from page 241 directly to
the interface for external commands.

260

14.6 Application Example II: Processing SNMP Traps

In addition you can also include arguments used with this program. But you must
be a bit careful when doing this. Quotation marks are passed on by snmptrapd as
characters and spaces are always used as delimiters. This means that you cannot
pass on any arguments containing spaces, which you should bear in mind when
assigning name services in Nagios.

snmpdtrapd gives this program information via the standard output in the follow-
ing format:

hostname

ip-address

oid value

...

The first line contains the fully qualified domain name of the host that sends
the message and the second, its IP address. Then one or more OID-value pairs are
given, each on a separate line. A particular event is very often linked to a unique
OID-value pair, so that the program can often omit the evaluation of the OID-value
pair entirely.

In the following snmptrapd.conf example, the lines are wrapped for readability.
Each traphandle instruction must be entered on a single line:

snmptrapd.conf

traphandle SNMPv2-MIB::coldStart /usr/local/nagios/libexec/eventhandler/

handle-trap SNMP cold-start

traphandle NET-SNMP-AGENT-MIB::nsNotifyRestart /usr/local/nagios/libexec

/eventhandler/handle-trap SNMP restart

traphandle NET-SNMP-AGENT-MIB::nsNotifyShutdown /usr/local/nagios/libexe

c/eventhandler/handle-trap SNMP shutdown

traphandle default /usr/local/nagios/libexec/eventhandler/handle-trap SN

MP unknown

The traps used here are sent by the SNMP agent snmpd from the NET-SNMP pack-
age by default, as long as a destination was specified in snmpd.conf:

snmpd.conf

trapsink name_or_ip_of_the_nagios-server

If a trap arrives with the OID SNMPv2-MIB::coldStart, for example, snmptrapd
starts the script handle-trap with the argument cold-start. In this way it does
not have to search first for the necessary information from the OID-value pairs.
However, this shortcut only works with trap OID names that describe their function.

14.6.2 Passing on traps to NSCA

The script handle-trap, which is run by snmptrapd, breaks down the information
passed on and hands it over, correctly formatted, to send_nsca:

261

14 The Nagios Service Check Acceptor (NSCA)

#!/bin/bash

NAGIOS="nagsrv"

LOGFILE="/usr/local/nagios/var/handle-trap.log"

read HOST && echo "host: $HOST" >> $LOGFILE

read IPADDR && echo "ip: $IPADDR" >> $LOGFILE

case $IPADDR in

192.168.201.4)

HOSTNAME="irouter"

;;

*)

silent discard from unknown hosts

exit 0

;;

esac

if [-z "$1"]; then

echo "usage: $0 <service> <key>"

echo "usage: $0 <service> <key>" >> $LOGFILE

exit 1

else

SERVICE="$1"

fi

if [! -z "$2"]; then

SWITCH="$2"

fi

case $SWITCH in

"cold-start")

OUTPUT="snmpd: Cold Start"

STATE=0

;;

restart)

OUTPUT="snmpd: Restart"

STATE=1

;;

shutdown)

OUTPUT="snmpd: Shutdown"

STATE=2

;;

*)

OUTPUT="Unknown Trap"

STATE=1

;;

esac

CMD="$HOSTNAME;$SERVICE;$STATE;$OUTPUT"

262

14.6 Application Example II: Processing SNMP Traps

echo "$CMD" >> $LOGFILE

echo "$CMD" | /usr/bin/send_nsca -H $NAGIOS -d ’;’ \
-c /etc/nagios/send_nsca.cfg >> $LOGFILE 2>&1

First it saves the log file and the name of the Nagios server nagsrv, each in a
separate variable. The first case statement specifies the host name used by Nagios
for the IP address passed on (and temporarily stored in IPADDR). HOST normally
contains the fully qualified domain name, which also cannot be used directly, and
sometimes also just contains one IP address, so that it is better to use the latter
here. The explicit test also allows it to discard traps from undesired hosts. Finally,
matching traps land without further authentication on the Nagios server.13

The following if statement determines whether a service name was also given to
the script. If this is the case, then it is saved in the SERVICE variable. If there was a
second argument, the procedure is similar. Depending on the value, the next “case
$SWITCH” instruction defines the output text and the desired status for Nagios.

The command for NSCA is finally assembled and the CMD variable is passed on
by the script to send_nsca. As in previous examples, a semicolon is used as the
delimiter, which must be specified in send_nsca with the option -d.

14.6.3 The matching service definition

As in the syslog-ng example (page 257), we again define the service on the Nagios
server as a purely passive one:

define service{
host_name irouter

service_description SNMP

active_checks_enabled 0

passive_checks_enabled 1

check_freshness 0

max_check_attempts 1

is_volatile 1

...

}

Since soft states do not make any sense in a single trap message, we should set
max_check_attempts back to 1. Whether the parameter is_volatile is used or not
depends on the purpose to which the service is put. As long as you define a separate
service for each error category, there is no problem in omitting is_volatile. But if
you form different error categories using a single service, you should set is_volatile
1, because in this case the previous error will seldom have anything to do with the
new one. Section 14.5.2 on page 257 is devoted to the subject of volatile services.

13 Although SNMPv3 does provide authentication for SNMP traps, this would go beyond the scope
of this book.

263

15 Ch
ap

te
r

Distributed Monitoring

Passive service and host checks can be used to create a scenario in which several
noncentral Nagios instances send their results to a central server. In general they
transfer their results using the Nagios Service Check Acceptor (see Chapter 14); the
central Nagios instance receives them through the External Command File interface
and continues processing them as passive checks (see Chapter 13).

What is now missing is the mechanism that prepares each test result of a non-
central Nagios instance to be sent with NSCA. For such cases, Nagios provides
the “obsessive” commands, OCSP (“Obsessive Compulsive Service Processor”) and
OCHP (“Obsessive Compulsive Host Processor”), two commands designed specif-
ically for distributed monitoring. In contrast to event handler (see Appendix B
from page 409), which shows changes in status and only passes on check results if
the status has changed, these two commands obsessively pass on every test result
(Figure15.1).

265

15 Distributed Monitoring

Figure 15.1:

Distributed

monitoring with

Nagios

15.1 Switching On the OCSP/OCHP Mechanism

In order to use OCSP/OCHP, several steps are necessary. The mechanism is initially
switched on (only) on the noncentral Nagios servers in the global configuration
file /etc/nagios/nagios.cfg, where a global command for hosts (OCHP) and services
(OCSP) is defined. This causes the noncentral Nagios instance to send every result
to the central server.

In the service and host definitions you can additionally set whether the correspond-
ing service or host should use the mechanism or not. For the central Nagios server
to be able to use the results transferred, each service or host on it must finally be
defined once again.

You should only switch on the two parameters obsess_over_services and obsess_
over_hosts in nagios.cfg if you really do want distributed monitoring:

/etc/nagios/nagios.cfg

...

obsess_over_services=1

ocsp_command=submit_service_check

ocsp_timeout=5

obsess_over_hosts=1

ochp_command=submit_host_check

ochp_timeout=5

266

15.2 Defining OCSP/OCHP Commands

Every time a new test result arrives on the Nagios server, it calls the command
object defined with ocsp_command or ochp_command. This causes an additional
load on resources.

The two timeouts prevent Nagios from spending too much time on one command.
If processing does not terminate (because the command itself does not receive a
timeout and the central Nagios server does not react), then the process table of the
noncentral Nagios instance would fill very quickly, and might overflow.

If you want to selectively exclude test results for specific services and hosts from
transmission to the central Nagios server, the following parameters are used:

define host{
...

obsess_over_host=0

...

}

define service{
...

obsess_over_service=0

...

}

With a value of 1 the local Nagios instance sends the results of the host or service
check to the central server, but with a value of 0, this does not happen. The 1
is the default for both obsess_over_host and obsess_over_service; if results are
not to be transferred, then you have to specify the two parameters. This is always
recommended if the central location is only responsible for particular things, and
the remaining administration is carried out on site.

15.2 Defining OCSP/OCHP Commands

Defining the two commands with which the noncentral instances send their re-
sults to the Nagios main server in most cases involves scripts that are based on
send_nsca (see also the example on page 254). For services, such a script would
look like the following one, in this case called submit_service_check:

#!/bin/bash

Script submit_service_check

PRINTF="/usr/bin/printf"

CMD="/usr/local/bin/send_nsca"

CFG="/etc/nagios/send_nsca.cfg"

HOST=$1

SRV=$2

267

15 Distributed Monitoring

RESULT=$3

OUTPUT=$4

$PRINTF "%b" "$HOST\t$SRV\t$RESULT\t$OUTPUT" | $CMD -H nagios -c $CFG

When run, the command expects four parameters on the command line in the
correct order: the host monitored, the service name, the return value for the plugin
opened (0 for OK, 1 for WARNING, etc.), and the one-line info text that is issued by
the plugin. To format the data we use the printf function (man printf). The newly
formatted string is finally passed on to send_nsca.

The equivalent script for OCHP (stored here in the file submit_host_check) looks
something like this:

#!/bin/bash

Script submit_host_check

PRINTF="/usr/bin/printf"

CMD="/usr/local/bin/send_nsca"

CFG="/etc/nagios/send_nsca.cfg"

HOST=$1

RESULT=$2

OUTPUT=$3

$PRINTF "%b" "$HOST\t$RESULT\t$OUTPUT" | $CMD -H nagios -c $CFG

The only thing missing is the specification of the service description.

It is best to store the two scripts, in conformity with the Nagios documentation, in
a subdirectory eventhandlers (which normally needs to be created) in the plugin
directory (usually /usr/local/nagios/libexec, but for some distributions this will be
/usr/lib/nagios/plugins). You can retrieve this from the definition of the matching
command object using the macro $USER1$. This is best defined in the misccom-
mands.cfg file:

define command{
command_name submit_service_check

command_line $USER1$/eventhandlers/submit_check_result \
$HOSTNAME$ ’$SERVICEDESC$’ $SERVICESTATEID$ ’$SERVICEOUTPUT$’

define command{
command_name submit_host_check

command_line $USER1$/eventhandlers/submit_host_result \
$HOSTNAME$ $HOSTSTATEID$ ’$HOSTOUTPUT$’

If you use a separate file for this, you must make sure that Nagios will load this file
by adding an entry to /etc/nagios/nagios.cfg. The single quotes surrounding the
$SERVICEDESC$ macro and the two output macros in the command_line line are
important. Their values sometimes contain empty spaces, which the command line
would interpret as delimiters without the quotes.

268

15.3 Practical Scenarios

15.3 Practical Scenarios

One application for distributed monitoring is the monitoring of branches or exter-
nal offices in which a noncentral Nagios installation is limited to running service
and host checks and sending the results to the central instance. The noncentral
instances do not need further Nagios functions, such as the notification system or
the Web interface.

On the other hand, if administrators look after the networks at the distributed
locations, while the central IT department only looks after special services, then
the noncentral Nagios server is set up as a normal, full-fledged installation and
selectively forwards only those check results over the OCSP/OCHP mechanism to
the central office for which the specialists there are responsible.

Whatever the case, you must ensure that the host and service definition is available
both noncentrally and centrally. This can be done quite simply using templates
(Section 2.11 on page 54) and the cfg_dir directive (Section 2.1, page 38): you set
up the definition so that the configuration files can be copied 1:1.

15.3.1 Avoiding redundancy in configuration files

In the following example we assume that the noncentral servers only perform host
and service checks and send the results to the central server, and do not provide
any other Nagios functions. The following directories are set up on the central
host:

/etc/nagios/global

/etc/nagios/local

/etc/nagios/sites

/etc/nagios/sites/bonn

/etc/nagios/sites/frankfurt

/etc/nagios/sites/berlin

...

Each of the configurations used for a location lands in the directory /etc/nagios/
sites/location. After global, all the definitions follow that can be used identically at
all locations (e.g., the command definitions in checkcommands.cfg). The directory
local takes in specific definitions for the central server definitions. These include
the templates for services and hosts, where distinction must be made between
central and noncentral.

This directory is also created separately on the noncentral servers: only the fold-
ers global and sites/location are copied from the central instance to the branch
offices.

269

15 Distributed Monitoring

The three directories are read in with the cfg_dir directive in /etc/nagios/nagios.cfg:

-- /etc/nagios/nagios.cfg

...

cfg_dir=/etc/nagios/global

cfg_dir=/etc/nagios/local

cfg_dir=/etc/nagios/sites

...

Only settings that are identical for the noncentral and central page are used in the
service definition:

-- /etc/nagios/sites/bonn/services.cfg

define service{
host_name bonn01

service_description HTTP

use bonn-svc-template

...

check_command check_http

...

}

The location-dependent parameters are dealt with by the templates.

15.3.2 Defining templates

In order that service definitions are identical on both the central and noncentral
servers, the local templates must have the same names as the central ones. In
addition you should ensure that the obligatory parameters (see Chapter 2 from
page 37) are also all entered, even if they are not even required at one of the
locations, because together, the template and service definitions must cover all
obligatory parameters.

The following example shows a service template for one of the noncentral loca-
tions:

-- On-Site configuration for the Bonn location

define service{
name bonn-svc-template

register 0

max_check_attempts 3

normal_check_interval 5

retry_check_interval 1

active_checks_enabled 1

passive_checks_enabled 1

check_period 24x7

270

15.3 Practical Scenarios

obsess_over_service 1

notification_interval 0

notification_period none

notification_options n

notifications_enabled 0

contact_groups dummy

}

The parameters that are important for the noncentral page are printed in bold type.
Besides the parameters that refer to the test itself, the parameter obsess_over_
service must also not be left out. This ensures that the check results are sent to the
central server.

notifications_enabled switches off notification in this case, since the local admins
do not need to worry about error messages from services that are centrally moni-
tored. Alternatively this can be done globally in the noncentral /etc/nagios/nagios.
cfg.

register 0 ensures that the template is used exclusively as a template, so that
Nagios does not interpret it as a separate service definition.

The counterpart with the same name on the central server looks something like
this:

-- Service template for the central Nagios server

define service{
name bonn-svc-template

register 0

max_check_attempts 3

normal_check_interval 5

retry_check_interval 1

active_checks_enabled 0

passive_checks_enabled 1

check_period none

check_freshness 0

obsess_over_service 0

notification_interval 480

notification_period 24x7

notification_options u,c,r

notifications_enabled 1

contact_groups admins

}

The parameter passive_checks_enabled is of importance here, as well as the con-
figuration of the notification system. On the central side, the parameters involving
the test itself come into play only if freshness checking is used (see Section 13.4
from page 243). This works only if the central Nagios server is itself in a position
to actively test all services if there is any doubt. Since the check_command in
this simple template solution is given in the location-dependent service definition,

271

15 Distributed Monitoring

which is identical on the noncentral and central servers, this will work only if the
same command object can be used both centrally and noncentrally—if the object
definitions in global/checkcommands.cfg match on both sides.

In the example, however, we completely switch off active tests of services at the
Bonn location, with check_period none and check_freshness set to 0. The system
described so far can also be applied to host checks, of course.

272

16 Ch
ap

te
r

The Web Interface

On the right is the navigation area with the unmistakable black background, and
the remaining area is for displaying the CGI scripts called (Figure 16.1)—the Na-
gios Web interface is that simple. The start screen provides access to the program
documentation—extremely useful if you just want to look up something quickly.

Provided you have the correct access rights, the Web interface allows much more
than just looking up information. You can run a series of commands and control
Nagios actively: from setting a single command, to switching messages on and off,
to restarting the server.

A separate book would be needed to describe all the features completely. This is
why we will just describe the concept here on which the CGI programs are based,1

in this way giving you a picture of the extensive range of options available.

1 There is a good reason that we refer here to CGI programs and not to CGI scripts: all CGI
programs for Nagios 2.0 are C programs.

273

16 The Web Interface

Many functions use the very same CGI program. If you move the mouse up and
down in the navigation area shown in Figure 16.1 and observe the status display
of the browser when doing this, which reveals the URLs to be called, you will see
that in the Monitoring section up to the Show Hosts: entry field, the CGI pro-
gram status.cgi is always called, with just four exceptions. Only the parameters
are different. Things are similar for the CGI program cmd.cgi, with which general
commands can be run. The parameters passed specify whether a comment is to be
read, or a message enabled or disabled, or if Nagios is to be restarted.

Figure 16.1:

Start page of the

Nagios Web interface

Table 16.1:

overview of CGI

programs

CGI program Description

status.cgi Status display in various forms; by far the most important
CGI program (Figures 16.10 to 16.14, page 280.)

statusmap.cgi Topological representation of the monitored host (see Figure
16.26, page 292)

statuswrl.cgi Topological representation in 3D format; requires a VRML-
capable browser and allows interactive navigation in a vir-
tual space (Figure 28, page 294)

statuswml.cgi Simple status page for WAP devices (cellphone)

extinfo.cgi Additional information on a host or service, with the possi-
bility of running commands (Figure 16.4, page 277)

cmd.cgi Running commands (Figure 16.22, page 288)

tac.cgi Overview of all services and hosts to be monitored, the Tac-
tical Overview (see Figure 16.25 on page 291)

274

16.1 Recognizing and Acting On Problems

continued

CGI program Description

outages.cgi Network nodes that cause the failure of partial networks
(Figure 16.29, page 295)

config.cgi Display of Nagios object definitions (Figure 16.30, page 296)

avail.cgi Availability report (e.g., “98 percent of all systems OK, 2 per-
cent WARNING”, see Figure 16.31, page 296)

histogram.cgi Histogram of the number of events occurring (Figure 16.33,
page 298)

history.cgi Display of all events that have ever occurred (Figure 16.34,
page 300)

notifications.cgi Overview of all sent notifications (Figure 16.35, page 300)

showlog.cgi Display of all logfile entries (Figure 16.36, page 301)

summary.cgi Report of events, which can be compiled by host, service,
error category and time period (Figure 16.38, page 303)

trends.cgi Time axis recording the states that have occurred (Figure
16.39, page 304)

Table 16.1 shows an overview of all the CGI programs included in the package. They
all check to see whether the person running the requested action is allowed to do
so. Normally a user can only access the hosts and services for which he is entered
as the contact. In addition there is the possibility of assigning specific users more
comprehensive rights, so that they are basically allowed to display all hosts and
services, for example, or to request system information. Settings for other users
are made in the cgi.cfg configuration file, and the authentication parameters are
described in Appendix D.2, page 443.

16.1 Recognizing and Acting On Problems

A suitable starting point for the administrator is the Service Problems page, which
can be reached through the menu item, shown in Figure 16.2. You can see all
problems at a glance. If there is just a service-related problem, but not a host-
related one, the host name in the Host column has a gray background, but a red
background means the host itself is the source of the trouble.

275

16 The Web Interface

Figure 16.2:

The menu item

Service Problems

brings current

problems to attention

The hosts sls-mail and sls-proxy, which have failed in Figure 16.2, can be seen
again in the Host Problems menu item (Figure 16.3): sls-mail cannot be reached
(UNREACHABLE), so the real problem therefore exists in the failure of the host sls-
proxy. This dependency is illustrated in the Outages menu item (Figure 16.29, page
295) or the Status Map (Figure 16.26, page 292). In Figure 16.26 the two failed
hosts are shown with a red background, and you can also clearly see which host is
dependent on the other (always from the point of view of the central Nagios host).

Figure 16.3:

The Host Problems

menu item reveals

this display

16.1.1 Comments on problematic hosts

The administrator clarifies the problem with the external office by telephone: the
DSL connection has failed. He announces this failure to the provider responsible.
To stop his colleagues from going to the same trouble again, the admin enters a
corresponding comment on the failed host. To do this he clicks in the status display
on the host name, which takes him to an information page for this specific host
(Figure 16.4), the options of which are described in more detail in Section 16.2.2,
page 284.

276

16.1 Recognizing and Acting On Problems

Figure 16.4:

extinfo.cgi provides

additional

information on the

selected host

Using the Add a new comment link at the bottom of the page, the CGI program
cmd.cgi (Section 16.2.3, page 288.), which by passing on a corresponding param-
eter is already prepared for this task,2 allows a comment to be recorded (Figure
16.5). The host name is already shown, the checkmark in the Persistent box en-
sures that the comments will also “survive” a Nagios restart. The username filled
out in the Author (Your Name): field can be edited, as can the actual comment in
the Comment field.

Figure 16.5:

Entering a comment

for a host

2 cmd_type=1&host=sls-proxy. More on the parameters in Section 16.2.3 following, page 288.

277

16 The Web Interface

The administrator confirms the entry with the Commit button. Returning to the
status overview, for example with the Service Problems menu item, the adminis-
trator will see a speech bubble next to the host name, indicating that a comment
exists for this host (Figure 16.6). Clicking on the icon opens the corresponding in-
formation page and takes the admin directly to the comment entries (Figure 16.7).
Clicking on the icon of the trash can in the Actions column deletes these individ-
ually, if required.

Figure 16.6:

A speech bubble

displays the existence

of comments

Figure 16.7:

A click on Delete all

comments deletes all

comments at once

16.1.2 Taking responsibility for problems: acknowledgements

Acknowledgements (so spelled on the Web interface) are oriented more closely
to the workflow than simple comments. An acknowledgement signals to other
administrators that somebody is already working on a problem, so nobody else
needs to get involved with it for the time being. In the status overview, a small
laborer icon symbolizes this form of taking responsibility (Figure 16.9), and Nagios
additionally notifies the relevant contacts.3

To issue such a statement, the link Acknowledge this Host Problem is used on the
extended info page for the host in question. As well as the fields used for entering a
normal comment, there are two checkboxes in this case, Sticky Acknowledgement
(Figure 16.8)—if checked, this option prevents period notification if the error status
persists—and Send Notification. If the latter is also checked, Nagios notifies the
other administrators.

3 Sending a notification to the contact addresses in charge did not work up to and including
version 2.0b3, however.

278

16.2 An Overview of the Individual CGI Programs

Figure 16.8:

Entry dialog for a

host acknowlegement

What we are demonstrating here, using a faulty host state, can also be applied
to faulty services. The CGI programs are the same, and through the passing of
parameters they receive information on whether a host or service is involved, and
react accordingly; only the host field receives company in the form of a service
entry.

Figure 16.9:

A laborer icon shows

that an admin has

already taken on

responsibility for the

problem

(acknowledgement)16.2 An Overview of the Individual CGI Programs

At the time of going to press, this chapter was the most extensive documentation
on the Nagios Web interface, especially for the individual CGI scripts. But for rea-
sons of space, we shall not go into every detail. If you want to know more, you
must take a look at the source code of the scripts or look at the nagios-users4

mailing list. Some of these are also read by the Nagios developers, and many a
question is answered there for which there is currently no documentation.

16.2.1 Variations in status display: status.cgi

By far the most important CGI program, status.cgi is responsible for the status
display. What it shows is determined by three parameter groups. The first one
defines whether the Web page generated displays all hosts, a specific host, or a
service group:

4 http://lists.sourceforge.net/mailman/listinfo/nagios-users

279

16 The Web Interface

http://nagiosserver/nagios/cgi-bin/status.cgi?host=all

http://nagiosserver/nagios/cgi-bin/status.cgi?hostgroup=all

http://nagiosserver/nagios/cgi-bin/status.cgi?servicegroup=all

With host you can select individual hosts, and all in this case stands for all hosts.
hostgroup enables a specific host group to be displayed, and again you can use all
to stand for all host groups. Finally, servicegroup tells the CGI program to display
either the individual service group given as a value, or all service groups, given
with all.

The outputs of host=all and hostgroup=all are only different in their style, which
is defined by the second parameter group. For host=all, style=detail is the default
setting, and for hostgroup=all, it is style=overview. status.cgi?host=all&style=
overview therefore delivers the same result as status.cgi?hostgroup=all.

Hosts that do not belong to a host group only appear in the detail view host=all&
style=detail or hostgroup=all&style=hostdetail. All other display styles always
show entire host groups from which individual hosts may be missing.

Figure 16.10:

The overview output

style

status.cgi provides five possible output styles: overview represents the hosts in a
table, but summarizes the services according to states (Figure 16.10). For the host
group SAP, you would call the corresponding display with the URL

http://nagiosserver/nagios/cgi-bin/status.cgi?hostgroup=SAP&style=overview

The style value summary compresses the output of overview: status.cgi only dis-
plays one host group for each line (Figure 16.11).

Figure 16.11:

The summaryoutput

style

The grid style provides an extremely attractive summary in which you can see the
status of each individual service by means of the color with which it is highlighted

280

16.2 An Overview of the Individual CGI Programs

(Figure 16.12). detail shows each service in detail on a separate line. The hostdetail
output style is limited just to host information, providing detailed information with
one line for each host (Figure 16.14).

Figure 16.12:

The gridoutput style

Figure 16.13:

The detail output

style

Figure 16.14:

The hostdetail output

style

The third and final parameter group allows you to influence, through selectors,
what states and what properties are shown by status.cgi, such as all services in an
error state for which no acknowledgement has yet been set by an administrator
(see Section 16.1.2, page 278). States are passed on with the hoststatustypes or
servicestatustypes parameter, properties with hostprops and serviceprops. All four
parameters demand numerical values after the equals sign, and these are summa-
rized in Tables 16.2, 16.3, and 16.4.

281

16 The Web Interface

Table 16.2:

Possible values for

hoststatustypes

Value Description

1 PENDING (a result of the very first test planned for this host is not
yet available)

2 UP

4 DOWN

8 UNREACHABLE

Table 16.3:

Possible values for

servicestatustypes

Value Description

1 PENDING (Service was originally planned for a check, but so far no
result is available)

2 OK

4 WARNING

8 UNKNOWN

16 CRITICAL

Table 16.4:

Possible values for

host and serviceprops

Value Description

1 Scheduled downtime (downtime planned)

2 No Scheduled downtime (no downtime planned)

4 Acknowledgement (status confirmed by the admin)

8 No acknowledgement

16 Host/Service check disabled

32 Host/Service check enabled

64 Event Handler disabled

128 Event Handler enabled

256 Flap Detection disabled

512 Flap Detection enabled

1024 Host/Service oscillates (flapping)

2048 Host/Service does not oscillate

4096 Hosts or services currently excluded from a notification

8192 Notification enabled

16384 Passive host/service checks disabled (Chapter 13, page 239.)

32768 Passive host/service checks enabled

282

16.2 An Overview of the Individual CGI Programs

continued

Value Description

65536 Hosts/services for which there is at least one result determined for
each passive test

131072 Hosts/services for which there is at least one active check result

If you want to query several states or properties simultaneously, you just add
the specified values together: status.cgi?host=all&servicestatustypes=28 shows
all services with an error status: WARNING, UNKNOWN, and CRITICAL, that is,
4 + 8 + 16 = 28. This query is identical to the Service Problems menu item in the
navigation area.

status.cgi?hostgroup=all&hoststatustypes=12&style=hostdetail corresponds to
the Host Problems menu item in the navigation area. It queries all hosts which
are either DOWN or UNREACHABLE (here 4 + 8 = 12). Since only host information
should be shown, but no service information, the output style is in the form of
hostdetail.

status.cgi?host=all&servicestatustypes=24&serviceprops=10 is the variation of
the first example: only the states UNKNOWN and CRITICAL (8 + 16 = 24) are shown,
and only those that neither show a planned downtime, nor have already been
confirmed (2 + 8 = 10).

The CGI program specifies the filter parameter each time in a separate checkbox.
Figure 16.15 shows this for the third example.

Figure 16.15:

This information box

shows what states

and properties

status.cgi should

display

If you want, you can define your own navigation area to your own requirements or
just use the existing one. The main page consists of one frame, and the navigation
area itself is defined by a normal HTML file: /usr/local/nagios/share/side.html.5 An
example of a changed side.html is provided on the Nagios Demo page6 at Net-
ways.7

5 If you have kept to the installation in this book.
6 http://nagios-demo.netways.de/
7 http://www.netways.de/

283

16 The Web Interface

16.2.2 Additional information and control center: extinfo.cgi

If called with the host or service parameter, extinfo.cgi not only provides detailed
information on a specific host (Figure 16.4, page 277) or service, it also serves as a
control center for hosts and services (parameter hostgroup) and for service groups
(servicegroup). Depending on the object class for which it is called, you can run
various commands from here.

In the area on the left, the status of the host is extensively documented and in
the box on the right—overwritten with host commands—there is a selection of
commands that can be run. The latter commands call cmd.cgi (Section 16.2.3,
page 288) and only function if the interface for external commands (Section 13.1,
page 240) is active. The lower area of the page allows you to enter object-specific
comments, read them, and delete them again. The Web page that extinfo.cgi
generates for services also follows this pattern.

Corresponding pages for service and host groups (Figure 16.16), on the other hand,
allow only group-specific commands to be run and do not show any additional
information. Each command applies to the entire group, sparing you from a lot
of mouse clicking. Disabling notifications for all hosts in this hostgroup, for
example, ensures that Nagios does not send any more messages for hosts in this
host group.

Figure 16.16:

Command center for

the SAP host group:

extinfo.cgi?type=

5&hostgroup=SAP

Apart from hosts, services, and corresponding groups, the CGI program has other
display functions, enabled by the CGI parameter type:

http://nagsrv/nagios/cgi-bin/extinfo.cgi?type=value

Depending on the value specified, further parameters are required, so to display
the service you also have to include the host name and service designation:

284

16.2 An Overview of the Individual CGI Programs

extinfo.cgi?type=0
Shows information (such as starting time and process ID) for the Nagios
process itself and all global parameters (normally notifications are sent, per-
formance data processed, etc.; see Figure 16.17). In the Process Commands
box the global parameters can be changed, and Nagios can also be stopped
and restarted.

Figure 16.17:

Information on the

Nagios process and

global settings:

extinfo.cgi?type=0

extinfo.cgi?type=1&host=host
Shows commands and information on the host (see Figure 16.4, page 277).

extinfo.cgi?type=2&service=service
The same for the service.

extinfo.cgi?type=3
Shows all available host and service comments on a single page (Figure
16.18).

Figure 16.18:

Overview of all

existing comments:

extinfo.cgi?type=3

285

16 The Web Interface

extinfo.cgi?type=4
Provides information on the performance of Nagios, separated according to
host and service, as well as active and passive checks (Figure 16.19).

Figure 16.19:

Information on the

performance:

extinfo.cgi?type=4

The middle column reveals how many of the planned tests Nagios has al-
ready performed in the last 1, 5, 15, and 60 minutes. As long as there are
checks for which normal_check_interval is more than five minutes, the first
two values can never reach 100 percent.

The right-hand columns define the actual value for this page: Check Execu-
tion Time specifies the minimum, maximum, and average time which Nagios
requires to perform active host and service checks. Check Latency measures
the distance between the planned start and the actual running time of a
test. If this delay is considerably larger than one or two seconds, Nagios
probably has a performance problem. One possible cause is that the system
is processing performance data too slowly, but low-performance hardware
may also play a role here. Searching for the cause can sometimes turn out
to be very difficult, and the original documentation8 provides a number of
tips on the subject.

extinfo.cgi?type=5&hostgroup=hostgroup
Shows command center for a host group (Figure 16.16).

extinfo.cgi?type=6
Shows all planned maintenance periods for hosts and services (Figure 16.20).

8 /usr/local/nagios/share/docs/tuning.html

286

16.2 An Overview of the Individual CGI Programs

Figure 16.20:

Overview of all

planned maintenance

periods:

extinfo.cgi?type=6

extinfo.cgi?type=7
Shows an overview of all planned tests, sorted by the next implementation
time (see Figure 16.21). Next to this, extinfo.cgi also lists the time of the last
check. The Active Checks column shows if the respective tests are active or
not, and in the Actions column the planned check can be deleted or moved
to a different time.

extinfo.cgi?type=8&servicegroup=servicegroup
Shows the command centre for a service group, identical in structure to the
command center of a host group.

Figure 16.21:

All planned tests,

sorted by their

planned

implementation time:

extinfo.cgi?type=7

287

16 The Web Interface

16.2.3 Interface for external commands: cmd.cgi

As a real all-rounder, cgi.cmd, with some 100 functions, covers nearly all the possi-
bilities that the interface provides for external commands. The cmd_typ parameter
defines which of these the CGI program should run. The command

http://nagsrv/nagios/cgi-bin/cmd.cgi?cmd_typ=6

switches off active service checks for a specific service (Figure 16.22). In order
to describe the desired service uniquely, you must specify the host and service
description. If you run the CGI program manually, the Web form shown queries
these values, and if cmd.cgi is started by another CGI program, the required data is
passed through CGI parameters. Possible parameters here are host, service, host-
group, and servicegroup, which are followed by an equals (=) sign and then the
appropriate Nagios object.

Figure 16.22:

Disabling a service

check with

cmd.cgi?cmd_typ=6

Figure 16.23 lists the commands which refer to a host or service, and Figure 16.24
shows those that refer to the control of global parameters (corresponding to the
values in the main configuration file nagios.cfg). The source code file include/
common.h contains a complete list of all possible values, including ones that are
planned but not yet implemented.

The first column in Figures 16.23 and 16.24 describes the function of the command:
ADD_HOST_COMMENT adds a comment to a host, and DISABLE_ACTIVE_SVC_
CHECK switches off active checks for a service (in abbreviated form: SVC).

The columns after this specify the object type to which the respective function
refers. To add a comment with ADD_HOST_COMMENT, you must specify the host
in question. For this reason the function code 1 is shown in the Host column. A
specific active service check can only be switched off if the matching service is
named, so the function code 6 is to be found in the Service column. With 16
you switch off all active service checks on a host to be specified; there are also
corresponding codes for all active service checks for a host or service group.

With ACKNOWLEDGE_PROBLEM, an administrator confirms that he is taking care
of a specific problem. 33 (Host column) refers to a host problem, and 34 (Service

288

16.2 An Overview of the Individual CGI Programs

column) to a service problem. The gray fields mean that there is no corresponding
function for host and service groups. The Web form that opens with cmd_typ=33
(Figure 16.8, page 279) then allows a comment to be entered.

Figure 16.23:

Host / Service-related

codes for

cmd.cgi?cmd_typ=

Functions that refer to global parameters (Figure 16.24) can normally only be
switched on or off. So the value 11 in the Start column for NOTIFICATIONS means
that this command code switches on all notifications globally, while 12 switches
them off globally.

If you are not quite certain whether the determined function does what you really
wanted, it is best to run cmd.cgi manually with the corresponding function code,
such as shown here:

http://nagsrv/nagios/cgi-bin/cmd.cgi?cmd_typ=12

289

16 The Web Interface

The Web page generated in this way always has a small gray box available next to
the required entry fields that explains the corresponding command (Figure 16.22,
on the right side of the page).

Figure 16.24:

cmd.cgi command

codes for global

parameters

16.2.4 The most important things at a glance: tac.cgi

As a “tactical overview,” tac.cgi provides a wealth of information on a single Web
page, displayed in a summary (Figure 16.25). On the left-hand side of the page you
can see, in order of priority, first the failure of entire network ranges (Network Out-
ages), followed by the status of hosts and services, and at the bottom tac.cgi lists
whether individual monitoring features such as notifications and event handlers
are active.

Up to this final section, everything is concentrated on displaying problems. Pro-
vided everything is OK, the CGI merely shows the number of unproblematic services
or hosts, highlighted in light gray (and announces 47 Up, for example, in the Hosts
box). In problem cases it distinguishes between open problems, which nobody has
looked at yet (highlighted in red, e.g., 2 Unhandled Problems for Services → Crit-
ical), and those for which an adminstrator has already taken responsibility through
an acknowledgement (pink background, like 1 Acknowledged for Services → Un-
known). If host or service checks are disabled, these are also shown with a pink
background, since they are problems that do not require the immediate attention
of the admin (e.g., 2 Disabled for Services → Ok).

Enabled features in the lower parts are marked by tac.cgi in green, and disabled
ones, in red. The vertically written green Enabled in Notifications means that
notifications are enabled globally, whereas the red background on the other hand,
2 Services Disabled, means that they were explicitly switched off for two individual
services.

For all the problems displayed you are taken to a single overview specifically show-
ing the hosts and services in question.

290

16.2 An Overview of the Individual CGI Programs

Figure 16.25:

Tactical overview

with tac.cgi

On the right-hand side of the page the upper box summarizes the extinfo.cgi?
type=4 (see page 285) Nagios performance data, which can be shown in detail.
The bar graph beneath it shows the health of the entire network monitored as a
percentage. If you move the mouse over one of the bars, you will also see the
percentage as a number.

16.2.5 Network plan: the topological map of the network
(statusmap.cgi)

statusmap.cgi (Figure 16.26) provides a view of the dependencies between the
monitored hosts. Starting from the central Nagios server in the middle, lines con-
nect all hosts that the server reaches directly—and whose host definitions do not
need the parents parameter to be specified (see Section 2.3, page 44.).

The graphics also reveal the hosts to which Nagios has only indirect access through
other hosts. So between sls-mail and the Nagios server in Figure 16.26 lie the hosts
sls-proxy, hspvip, and pfint. sls-proxy, as the comment Down and the red (instead
of green) background suggest, has failed. Since sls-mail depends on this, it is in an
UNREACHABLE state, which statusmap.cgi also marks with a red background.

291

16 The Web Interface

Figure 16.26:

Dependencies of

monitored hosts

shown graphically

How Nagios arranges the hosts in the graphics is defined by the parameter de-
fault_statusmap_layout (page 444) in the configuration file cgi.cfg. The layout
can also be changed with a selection window in the Web interface (at the top right
in Figure 16.27). The figure shows the demo system of Netways,9 whose appearance
depends on user-specific coordinates, which in this case you have to specify indi-
vidually for each host (see page 310). The question mark icon supplied by Nagios
has been replaced with nicer pictures by the operator of the site. Coordinates and
icons are defined with the hostextinfo object, described in more detail in Section
16.4.1, page 307.

9 http://netways.de/Demosystem.1621.0.html

292

16.2 An Overview of the Individual CGI Programs

Figure 16.27:

Statusmap with

self-defined

coordinates and icons

If you move the mouse onto a particular host, Nagios opens a yellow window at the
top left with status information, which includes the IP address, current status in-
formation, and the time of the last check. At the bottom of this box, statusmap.cgi
summarizes the states of the services running on this host.

If you double-click on a particular host, Nagios branches off to the usual status
overview, which apart from data on the host selected, also displays all the services
belonging to this host (Figure 16.13 on page 281 gives an example).

16.2.6 Navigation in 3D: statuswrl.cgi

statuswrl.cgi allows Nagios to move through a 3D representation of the network
plan (Figure 16.28). In this you can zoom on to hosts, move the overall view, rotate
it, etc.

A VRML-capable browser is necessary for the display.10 Although the original doc-
umentation11 provides links to the corresponding plug-ins, two of them are out

10 The Virtual Reality Markup Language (VRML), version 2.0/1997, is used to describe the virtual
“space.”

11 /usr/local/nagios/share/docs/cgis.html#statuswrl_cgi

293

16 The Web Interface

of date, and only Cortona12 could be reached at the time of going to press. This
plugin does not work under Linux, however; in Windows it works with Internet
Explorer, and also with Netscape, Mozilla, and Firefox.13

Of the VRML plugins for Linux (three well-known projects are OpenVRML,14

freeWRL,15 and vrwave16) the standard Linux distributions usually do not include
a finished package, so you are dependent on external packages. There are binary
RPM packages for OpenVRML, but the current (at the time of going to press) ver-
sion 0.15.9 needs the very newest libc and cannot therefore even be installed in
SuSE Linux 9.3. You should not try compiling the software yourself unless you are
an experienced system administrator or software developer: there are a large num-
ber of pitfalls. If you have never worked with the Java compiler before and have
not compiled complex software packages such as Mozilla or Firefox yourself, then
you should leave it alone.

Figure 16.28:

This picture marks the

beginning of the tour

through your own

network

But all of this is no reason to despair, since the use of 3D navigation is question-
able anyway, especially as the 2D view of the normal status map displays all the
information required, and displaying simple flat graphics in the browser takes up
considerably less time than CPU-intensive 3D rendering. Before you rush into the
adventure of compiling software yourself, we recommend that you decide for your-
self, using the Cortona plugin, whether it is worth the effort of compiling a project
like OpenVRML.

12 http://www.parallelgrafics.com/products/cortona/
13 For Mozilla and Firefox you have to install it manually, select Custom instead of Typical in the

installation routine, and in unsupported browsers specify the plug-in directory of the browser.
14 http://www.openvrml.org/
15 http://freewrl.sourceforge.net/
16 http://www.iicm.edu/vrwave/

294

16.2 An Overview of the Individual CGI Programs

16.2.7 Querying the status with a cell phone: statuswml.cgi

In order to make the information provided by Nagios accessible for WAP17-capable
devices without a fully functional browser, statuswml.cgi generates a Web page
in the WML format,18 which can be displayed with a cellphone—provided that the
Nagios server is reachable in the Internet. Apart from the status query for hosts
and services, it also allows the CGI program to switch off tests and notifications
and to confirm existing problems with acknowledgements.

You should think carefully before you make Nagios accessible over the Internet:
Nagios makes available much sensitive data that can be misused by hackers. In
case of doubt, you’re better off doing without it. Without direct Internet access,
statuswml.cgi is useless, since a cellphone cannot use protected access methods
such as a VPN tunnel. This is why we shall not introduce statuswml.cgi in great
detail at this point.

16.2.8 Analyzing disrupted partial networks: outages.cgi

The CGI program outages.cgi only shows those network nodes in a host overview
that are responsible for the failure of a partial network: In contrast to a status
overview, as in Figure 16.14, page 281, outages.cgi specifies in the # Hosts Af-
fected column how many services and hosts this affects in each case (Figure 16.29).

Figure 16.29:

As long as sls-proxy

fails, Nagios cannot

reach any hosts lying

behind itWith the icons in the Actions column you call other CGI programs that selectively
filter out information on the host shown here. From left to right, they show the
status display in the detail view (traffic light), the topological network view (net-
work tree), the 3D view (3-D), the trend display (graph), the log file entries for the
host (spreadsheet), and the display of notifications which have been made (mega-
phone).

16.2.9 Querying the object definition with config.cgi

config.cgi shows a tabular overview of the definition of all objects for a type that
can be specified (Figure 16.30)—the type of object involved can be defined in the
selection field in the top right corner. Where the consideration itself contains Na-
gios objects (in the host view Host Check Command, Default Contact Group,

17 Wireless Access Protocol.
18 The Wireless Markup Language contains a part of HTML, heavily reduced in its functionality.

295

16 The Web Interface

and—not visible in the picture—Notification Period), a link takes you directly to
the configuration view of this object type.

Figure 16.30:

config.cgi displays

the current

configuration of the

selected object

class—here

hosts—(extract)

The CGI program does not provide any way of changing anything in the settings. In
addition, only users who are entered in the parameter authorized_for_configur-
ation_information (configuration file cgi.cfg, page 444) have access to this view.

16.2.10 Availability statistics: avail.cgi

If you are monitoring systems, then you also take an interest in their availability.
avail.cgi first asks if you are interested in Hosts, Services, Hostgroups, and Ser-
vicegroups. After you have selected a time period, you will see an overview, as
in Figure 16.31. For Services and Hosts you can also have the availability data
presented through All Hosts or All Services as a CSV file.

Figure 16.31:

An availability report

using the example of

the SAP-Services

service group

296

16.2 An Overview of the Individual CGI Programs

avail.cgi shows the hosts involved separately from the services. How long a service
or host remained in a particular state can be seen from the corresponding colored
column—green for OK, yellow for WARNING, red for CRITICAL (service), DOWN and
UNREACHABLE (host)—in percent. The column that shows how much time the
status of a service was UNKNOWN is shown in orange. Incomplete logfiles are
shown in the Undetermined column. If there is a value larger than zero, then
there are periods for which Nagios cannot make a statement concerning the state.

Below each table, the Average line specifies the average of the individual values.
In Figure 16.31 the hosts involved were available 99.965 percent of the time.

avail.cgi shows the availability twice in each case: first as an absolute value for
the evaluation period, and then (in brackets) with respect to the time during which
data actually was available. As long as the Time Undetermined column displays
0.000%, the two availability values match.

If you click on one of the hosts or services displayed, a detailed view will appear.
Figure 16.32 shows such a view for the host sap-12.

Figure 16.32:

The availability of the

host sap-12

explained in detail

On a bar diagram that shows the states over the selected period in color, there
is detailed information on the host itself, followed by statistics on the availability
of the service that is monitored on this host. This includes an extract from the
logfile, which only shows the relevant entries for the availability of the host; that
is, HOST UP, HOST DOWN, or HOST UNREACHABLE. The logfile entries are cut off
by avail.cgi to save space.

297

16 The Web Interface

16.2.11 What events occur, how often? histogram.cgi

If the state of a host or service changes, this is called an event. The CGI program
histogram.cgi shows the frequency of this in different views. If you select Day of
the Month as the Breakdown type, it illustrates what event took place on which
day of the month, and how often (Figure 16.33). The red graph in services stands
for CRITICAL, the orange one for UNKNOWN, yellow for WARNING, and green for
OK. The curve for hosts in the DOWN state is marked by histogram.cgi in red, that
for UNREACHABLE hosts in wine-red, and the green line stands, as usual, for OK.

Figure 16.33:

How many events of

what type were there

on which day?

If you choose the variation Day of Week, the Web page shows on which day of the
week most events occur, so you can find out whether Monday really is always the
worst day. In addition to this you can have the frequency presented by day (Hour
of Day) or by the month of a year (Month). With Report Period you can adjust the
report period. With Assume state retention you can adjust whether the previously
existing states are retained and included in the evaluation (yes) or not (no).

If you have configured Nagios so that it explicitly logs the states of the monitored
hosts and services for a restart or when the log file is changed,19 and if you set
Initial states logged to yes, the script includes this explicitly in the evaluation. A
no ignores the entry; histogram.cgi then assumes that the state after a system
start is identical to that which existed directly before the restart.20

19 Parameter log_initial_state in nagios.cfg; see page 433.
20 The subtle difference here lies in retain_state_information (see page 438). If this parameter is

set to 0, Nagios forgets the previous state. Without log_initial_state = yes, Nagios accepts an
OK after the restart.

298

16.2 An Overview of the Individual CGI Programs

Ignore repeated states makes allowances if a state persists for a long time and
therefore delivers the same result again and again. If you set yes here, the script
evaluates it once instead of many times.

If you select the item Hard and soft states in State types to graph:, histogram.cgi
also counts soft states. If a service changes from OK to CRITICAL, for example,
while retry_check_interval is set to 4,21 then histogram.cgi counts a total of four
results, three soft and one hard. If you only evaluate hard states, the statistics
evaluate the value 1. If an error is rectified, there are no soft states; therefore
the value for CRITICAL is usually larger that that for RECOVERY if you include soft
states in the evaluation.

16.2.12 Filtering log entries after specific states: history.cgi

The history.cgi script allows the states of a type (soft or hard) to be extracted
selectively from the logfile using the selection field State type options (at the top
right in Figure 16.34), and specific events to be extracted (all, all related to hosts,
all service events, only host-recovery, only host-down, etc.) using History detail
level for all hosts. The entries to be shown can be restricted through parameters
to individual hosts, services, or host or service groups when the CGI program is
called. So the command

histogram.cgi?host=sap-12

only displays logfile entries for the host sap-12.

If the output should be restricted to a specific host, then the service description
needs to be specified as well:

histogram.cgi?host=sap-12&service=PING

Selecting a host and service group is done in the same way:

histogram.cgi?hostgroup=SAP

histogram.cgi?servicegroup=SAP-Services

The period that history.cgi views depends on the archiving interval of the logfile.
The script always refers to the contents of an archive file. If you set the parameter
log_rotation_method (page 434) in the configuration file nagios.cfg to d for daily
archiving, the Web page presents the entries for one day. Using the arrows (at the
top in Figure 16.34) you can then scroll up and down through the days.

21 Nagios thus repeats the test four times before it categorizes the state as “hard.”

299

16 The Web Interface

Figure 16.34:

history.cgi filters the

information from the

logfile

16.2.13 Who was told what, when? notifications.cgi

Another filtered view of the logfile is offered by notifications.cgi: It shows all sent
messages. Here the view can aso be restricted to a specific message group, through
the selection field at the top right in Figure 16.35: to all notifications involving
hosts, to all which are about services in a critical state, and so on.

Figure 16.35:

notifications.cgi

answers the question

of who gets messages

when, about what

If you just want to see messages here concerning particular hosts and services, you
must again specify this with parameters when running the CGI program:

notifications.cgi?host=host

notifications.cgi?host=host&service=service name

notifications.cgi?contact=contact

300

16.2 An Overview of the Individual CGI Programs

Apart from host and service, you can also select a particular contact, but selecting
host or service groups is not possible.

16.2.14 Showing all logfile entries: showlog.cgi

The CGI program showlog.cgi shows the logfile as it is, with the few colored icons
added to help you find your way: a red button marks critical service states or
DOWN/UNREACHABLE hosts, a yellow button marks WARNINGs, and a green one,
OK. Other buttons refer to information entries or Nagios restarts (Figure 16.36).

You only have a single option here: the chronological order. Normally showlog.cgi
shows the newest entries first. If you enable the checkmark in Older Entries First:
(top right), the oldest entries will be shown first.

The period represented here also depends on the archiving method: if you archive
once a day, you will obtain just one day for each Web page. To reach the entries
for other days you must make your way through the individual archive files of the
logfile using the arrows at the top of the picture.

Figure 16.36:

A blue button marks

information entries,

the graph changing

from red to green

stands for Nagios

restarts, and the icon

marked GO with a

green checked

background

represents restarts of

the monitoring

system

16.2.15 Evaluating whatever you want: summary.cgi

If the display and selection options are introduced so far are not sufficient for you,
you can create your own report with summary.cgi, which generates the selection
dialog shown in Figure 16.37. The upper section, Standard Reports:, provides a
quick summary in which just one fixed report type can be selected. Clicking on the
button directly below this generates the report.

301

16 The Web Interface

The second section is more sophisticated. The field Report Type: with the report
type Most Recent Alerts provides an individual listing of the last n of individual
events. The number n is defined further down in the selection dialog in Max List
Items:.22 Report Type: can also be used to show all events individually on a sep-
arate line, with Most Recent Alerts, or you can have statistics displayed, for the
number of events that have occurred overall, for each host group, etc., with Alert
Totals, Alert Totals by Hostgroups, etc..

One particularly interesting report type is Top Alert Producer: such reports show
in a hit list of who has caused most trouble during the report period.

In Report Period: you can either choose the desired report period from predefined
intervals (this week, the past seven days, this month, last week, last month, etc.),
or you can specify CUSTOM REPORT PERIOD and define any period you choose. If
you forget to specify CUSTOM REPORT PERIOD explicitly, the CGI program ignores
the dates you have set and selects what is currently entered in Report Period.

Figure 16.37:

Selection template

for parameters in

summary.cgi

The details that follow the report period filter according to host, services or their
groups, state types, and/or individual states (e.g., only services in a CRITICAL state).

22 If the number of events in the report period is less than specified in Max List Items:, the report
covers all the events that have happened during this period.

302

16.2 An Overview of the Individual CGI Programs

It is important to specify Max List Items at the end: summary.cgi always shows
only as many entries as are specified here. The default is a little small; if you want
all the entries in the selected period to be shown, you should enter 0 as the value.
The largest value that can be given explicitly here is 999. The Create Summary
Report! button then generates the requested report (Figure 16.38).

The header of the report contains details of the report period and the selection
made. The detail directly above the table is interesting: Displaying most recent 25
of 3721 total matching alerts shows that the selection criteria matched a total of
3721 entries, but that the CGI script restricted the output to the 25 most current
entries, thanks to Max List Items:.

Figure 16.38:

An individual report,

as generated by

summary.cgi

16.2.16 Following states graphically over time: trends.cgi

A rapid overview of what state occurred when for a particular host or service is
provided by the graphic output of trends.cgi (Figure 16.39). After selecting a spe-
cific host or service, you can define a period, as with summary.cgi. The states are
color-coded by trends.cgi, which makes the overview easier to follow.

The zoom function of the CGI program is an interesting detail. If you click in the
colored area on a particular section, the selected area is enlarged or reduced in size
by the zoom factor specified at the top right. Negative entries (-1, -2, -3, and -4
are possible) expand the report period instead of reducing it.

303

16 The Web Interface

Figure 16.39:

trends.cgi represents

the chronological

sequence of

states—here using the

example of a service

16.3 Planning Downtimes

In every system environment maintenance work accumulates from time to time
that the administrator can normally plan, so that users can be informed accordingly
beforehand. Nagios refers to such maintenance windows as Scheduled Downtime;
the adminisntrator enters these either in the information page for the host or
service generated by extinfo.cgi (Figure 16.4, page 277) or for the corresponding
host or service group (Figure 16.16, page 284). In doing this, extinfo.cgi makes use
of cmd.cgi (Section 16.2.3, page 288), which can also be called selectively:

http://nagsrv/nagios/cgi-bin/cmd.cgi?cmd_typ=55

opens the import template for maintenance times for a single host. The values for
cmd_typ are summarized by Figure 16.23 on page 289.

A further method of recording maintenance periods is provided by addons, which,
like the CGI programs, use the external command interface, but which can be auto-
mated, in contrast to the interactive Web interface. Such addons can also be found
on the Nagios Exchange.23

For scheduled downtimes, Nagios prevents notifications from being sent. This en-
sures that the administrator is not flooded with false alarms. When checks are
made to see whether messages should be sent, a downtime is the third item in the

23 http://www.nagiosexchange.org/Downtimes.38.0.html.

304

16.3 Planning Downtimes

list (Figure 16.2, page 218). In addition, avail.cgi (Section 16.2.10, page 296.) takes
account of the downtime when evaluating the availability of individual hosts and
services, and assigns error states that occur during these times not as error states,
but as OK.

Maintenance periods can overlap. If one maintenance window lasts from 8:00 A.M.
till 12:00 P.M., and a second one involving the same host or service, from 10:00 A.M.
to 2:00 P.M., then Nagios does not send any error messages between 8:00 A.M. and
2:00 P.M., and the whole period is also ignored in the availability statistics.

16.3.1 Maintenance periods for hosts

What data is required to record the maintenance window can be explained quite
clearly using the Web interface. Figure 16.40 shows the input template for the
downtime of a host (cmd.cgi?cmd_typ=55).

Figure 16.40:

The downtime for a

host in the Web

interface is recorded

using this dialog

The first line defies the host, and in the second line Nagios automatically enters the
login with which you have logged in to the Web interface. In the input field after
the Comment: keyword, you can describe the reason for the planned downtime.
Specifying the trigger shows whether it was generated indirectly through another
entry. When recording a new downtime, you should leave the value N/A (not
available, that is, no trigger) as it is.

In the next four lines you have the option of entering two different downtime
types: fixed ones (Type: Fixed) or variable periods (Flexible). The first has a fixed
start and a fixed end. In this case Nagios ignores the period entry in hours and
minutes in the Flexible Duration: fields completely.

305

16 The Web Interface

A flexible downtime starts when the first-ever event occurs in the period specified.
From this point in time Nagios plans the downtime for the length of time that
was specified here in hours and minutes. This may certainly exceed the end point
specified in End Time:.

If further hosts are dependent on the computer specified in Host Name: (perhaps
because a router is involved, which other host objects have entered as parents),
you have the possibility of extending the downtime to all dependent hosts with the
last item, Child Hosts:. Schedule triggered downtime for all child hosts passes on
flexible downtimes to all “child hosts,” Schedule non-triggered downtime for all
child hosts does the same for fixed downtimes, and Do nothing with child hosts
ignores dependencies, so that Nagios does not plan for any downtime for any hosts
other than the one specified here.

How this hereditary behavior takes effect in Figure 16.40 is shown by the overview
of all scheduled downtimes in Figure 16.20 on page 287. The first line contains the
downtime just described for the host eli-saprouter with the Downtime ID number
1. Entries that are caused by inheriting this timeout contain the Downtime ID of
the downtime causing them in the Trigger ID column: for sap-12 this is 1, since
the maintenance of eli-saprouter also affects this host.

Nagios simultaneously generates a comment entry when planning a downtime,
which is automatically removed when this period has passed. This is why a speech
bubble appears in the status display. During the downtime Nagios supplements
this with a “snoring sign,” which is meant to represent a sleep state (Figure 16.41).

Figure 16.41:

The snoring sign zzzzz

shows that the

downtime for the

host has begun 16.3.2 Downtime for services

Downtimes for services differ from those for hosts in two small details. Apart
from host name, the service description must be included, and the possibility of
inheritance is excluded, since there are no corresponding dependencies for services.

A downtime for a host does not automatically apply to the services running on it.
But since they are also not available if the host is down, it is recommended that
you plan the same downtime for all dependent services. It can be quite strenuous
to enter all the services individually. It is much easier to do this using a host group
(cmd_typ=85), as shown in Figure 16.42. With this you can define the downtime
for services in a specific host group with a single command, and much more as
well: a checkmark in Schedule Downtime For Hosts Too at the same time defines
the same downtime for all hosts belonging to this group.24

24 In the Nagios-2.0 beta versions the checkmark had no effect, however; there you have to enter
the downtime of the hosts separately by running cmd.cgi?cmd_typ=84 again.

306

16.4 Additional Information on Hosts and Services

Figure 16.42:

One downtime for all

services of a host

group

16.4 Additional Information on Hosts and Services

With the objects hostextinfo and serviceextinfo you can take in additional infor-
mation in the Web interface and also brighten this up somewhat, using suitable
icons. Both objects only have an effect in the Web interface, and they do not
influence the capabilities of Nagios.

16.4.1 Extended host information

hostextinfo objects allow you to enhance the display of hosts in the Web interface
through additional functions in the form of links and enhancement features in the
form of icons and coordinates:

-- /etc/nagios/mysite/hostextinfo.cfg

define hostextinfo{
host_name linux01

notes Samba Primary Domaincontroller

notes_url /hosts/linux01.html

action_url /hosts/actions/linux01.html

icon_image base/linux40.png

icon_image_alt Linux Host

vrml_image base/linux40.png

statusmap_image base/linux40.gd2

2d_coords 120,80

3d_coords 70.0,30.0,40.0

}

The only obligatory parameter when these are defined is the specification of the
host, with host_name; everything else is optional:

307

16 The Web Interface

host_name
This is the name of the host object whose Web pages are to be expanded by
the following properties.

notes
Use this for additional information that extinfo.cgi takes into account in
its information pages. (The entry specified in the above example, Samba
Primary Domaincontroller, can be found in Figure 16.43 below the Linux
icon.)

Figure 16.43:

Next to the three

icons for Extra Host

Actions, Extra Host

Notes and the Linux

penguin, extinfo.cgi

also shows an

alternative text here

for the Linux icon

(beneath the Tux in

brackets) and the

additional

information from the

parameter notes

(beneath the

alternative text)

notes_url
This is the URL of a (HTML) file with additional information on the host in
question, to which you are linked by an icon in the form of a red, slightly
opened manual, both in the status overview (Figure 16.44) and in the info
page generated by extinfo.cgi (Figure 16.43). If the documentation on the
host involved is stored in the Intranet, then maintenance contracts, hotline
numbers, system configuration, etc. are then just a mouse click away.

The parameter may contain an absolute path (from the view of the Web
server) or a complete URL (http://. . .).

Figure 16.44:

This status detail

view additionally

shows an icon each

for notes_url (open,

read booklet),

action_url (pink star),

and icon_image (here,

Linux penguin)

action_url
This is a link pointing to an action to be run for the host, which executes a
CGI program such as cmd.cgi, for example, with just a mouse click. Since a
link in the browser is always just a link, this does not have to be a command,
and you can just as easily link another web page. Both in the status overview

308

16.4 Additional Information on Hosts and Services

(Figure 16.44), and on the extinfo.cgi info page (Figure 16.43) it is hidden
behind the pink star.

As a value, absolute paths from the view of the Web server or complete URLs
can be used.

icon_image
This is an icon to enhance the Web interface, but also to provide help: if you
systematically use pictures here that represent the operating system (e.g.,
the Tux for Linux, the Windows window for Microsoft operating systems,
the Sun logo for Solaris computers, etc.), this helps you to keep an overview
of the operating systems in the status view—especially if you have a large
number of hosts (Figure 16.44). extinfo.cgi also uses this icon (Figure 16.43).

Icons should be approximately 40x40 pixels large and be available as a GIF,
JPEG, or PNG file. If you specify a relative path (or none at all), then this
begins with the directory /usr/local/nagios/share/images/logos/.25

icon_image_alt
This alternative text for the icon appears if the browser does not show a
picture (for example for reading devices or output devices for Braille). From
the icon and the icon text details, Nagios generates the following HTML
code:

vrml_image
This is an image symbolizing the host in the 3D representation of statuswrl.
cgi. Permissible formats are again GIF, JPEG, or PNG. You should avoid slides,
since the image is placed on a cube, and the transparent parts in the 3D
interface may lead to unexpected results.

statusmap_image
This is the image with which statusmap.cgi (see Section 16.2.5, page 291)
symbolizes the host in its topological map. The Nagios demo page of Net-
ways,26 (Figure 16.27 on page 293) shows a nice example.

Although GIFs, JPEGs, and PNGs are allowed, it is better to use the GD2
format, because then Nagios requires less computer time to generate the
status map. Using the program pngtogd2, which ought to be available as
a component of the utilities for Thomas Boutells GD library in most Linux
distributions, PNG files can be easily converted. Again the image size of
40x40 pixels is recommended.

25 If you have kept to the paths suggested in this book.
26 http://netways.de/Demosystem.1621.0.html

309

16 The Web Interface

2d_coords
This parameter specifies coordinates for a user-defined layout of the topo-
logical map. Details are given in pixels, with the origin, (0,0), at the top left,
and values must be positive: a positive x value counts the number of pixels
from the origin to the right, a positive y value from the origin downwards.

Figure 16.27 works with fixed coordinates for individual hosts. Nagios ig-
nores 2d_coords details if the status maps a different layout to the user-
defined one.

3d_coords
These are the coordinates for the 3D representation. Positive and negative
floating-point numbers are allowed. (0.0,0.0,0.0) is used as the origin. In the
start view, statuswrl.cgi scales the 3D image so that all existing hosts appear
on the screen. Where the starting point lies on the screen can therefore not
be predicted.

On The Nagios Exchange there is a wide range of finished icons in the category
Logos and Images.27 It is best to unpack these into separate subdirectories, and
then the individual packages will not get in each other’s way:

linux:˜ # cd /usr/local/nagios/share/images/logos

linux:images/logos # tar xvzf imagepak-base.tar.gz

base/aix.gd2

base/aix.gif

base/aix.jpg

base/aix.png

base/amiga.gd2

...

imagepak-base.tar.gz contains a basic selection of icons, which can be supple-
mented as you please with other packages. The base subdirectory created, as with
the object definition at the beginning of this chapter, must also be included.

16.4.2 Extended service information

serviceextinfo objects are more or less identical to their host equivalents, so that
we will only mention the differences. In addition to the host name, the service
description in service_description is obligatory, but the details on the 2D (status
map) and 3D views are omitted:

27 http://www.nagiosexchange.org/Image_Packs.75.0.html

310

16.5 Configuration Changes through the Web Interfaces: the Restart Problem

-- /etc/nagios/mysite/hostextinfo.cfg

define serviceextinfo{
host_name linux01

service_description LPD

notes Linux Print Services

notes_url /hosts/linux01-lpd.html

action_url /hosts/linux01-lpd-action.html

icon_image base/hp-printer40.png

icon_image_alt Linux Print Server

}

In contrast to hostextinfo, the status overview for this example only shows the
printer icon specified in icon_image, but not the two icons defined in notes_url
and action_url for the two links notes_url and action_url. They only appear in
the page generated by extinfo.cgi with the same icons as for the extended host
information (Figure 16.43, page 308).

16.5 Configuration Changes through the Web
Interfaces: the Restart Problem

The CGI program cmd.cgi (Section 16.2.3, page 288) enables a series of changes
to be made to the current configuration through the Web interface.28 In this way
notifications or active checks can be switched on and off, for example.

Nagios does not save such changes in the accompanying configuration file, but
notes the the current status in a separately defined file, with the parameter state_
retention_file in nagios.cfg (see page 441). But what happens if you restart Nagios
after many changes using the Web interface?

Whether Nagios retains the interactive changes made after a restart or forgets
them is dependent on the parameter retain_state_information in the configura-
tion file nagios.cfg (page 438). The default 0 tells the system to forget interactive
changes. For Nagios to remember this, you have to set

/etc/nagios/nagios.cfg

...

retain_state_information=1

...

But this causes a new problem: settings made in the Web interface do not have pri-
ority over the details in the configuration files. If you change the active_checks_
enabled parameter there for a service, a direction of the parameter in the configu-
ration file is ignored, since the current, temporarily stored setting in the file defined

28 The CGI program makes use of the External Command File interface when doing this.

311

16 The Web Interface

with state_retention_file will always “win out.” This behavior affects all parame-
ters for external commands that can be changed in the interface, and therefore
also via the CGI program cmd.cgi. The original documentation of Nagios29 labels
these with a red star.

Two approaches provide a remedy in this case: on the one hand you can set the
parameter retain_state_information to 0 shortly before a restart. Then Nagios
forgets all the changes when it restarts and reads the configuration files in from
scratch. This procedure is recommended only in exceptional cases, as in large envi-
ronments it will hardly be possible to go through all the interactive changes in the
configuration files. Alternatively you can get into the habit, whenever you make
changes in the configuration file, of making them a second time in the Web inter-
face. Although this means slightly more work, there is never a danger that current,
and perhaps very important settings, will be lost.

Two additional parameters in the host and service definitions provide opportunities
for fine-tuning:

define host{
...

retain_status_information 1

retain_nonstatus_information 1

...

}
define service{

...

retain_status_information 1

retain_nonstatus_information 1

...

}

retain_status_information specifies whether the current state of a host or service
should survive the Nagios restart: 1 means that the system temporarily stores the
state, and 0, that it forgets it. 1 is certainly the more sensible value for states, and
you should depart from this only in cases that can be justified.

retain_nonstatus_information, on the other hand, refers to all information that
describes no status. This includes, for example, whether active checks are switched
on or off, whether passive checks are allowed or not, or whether admins are to be
informed of status changes for this object. With a value of 1, the system stores this
information temporarily and uses it again after a restart, whereas with a value of 0,
Nagios forgets the current settings and reads the settings from the configuration
file when it restarts.

29 usr/local/nagios/share/docs/xodtemplate.html

312

17 Ch
ap

te
r

Graphic Display of
Performance Data

When Nagios reports to the administrator quickly and selectively on problems that
have occurred, it can basically only distinguish between OK states and error states,
sparing the admin a flood of information on problematic services and hosts. The
graphic display of measured values over a time period cannot be integrated into
this “traffic light approach,” but it is available through third-party software. Nagios
supports external processing of values with an interface created specifically for
this. The data processed through it is referred to in Nagios jargon as performance
data.

Nagios has two different classes of performance data. The first is Nagios-internal
performance data, statistics on the performance times of tests and on the differ-
ence between the actual test time and the planned time (the latency). The second
class includes performance data that the plugin passes on with the test result. This
involves everything that the plugin can measure: response times, hard drive us-
age, system load, and so on. These are the very things that are of interest to an
administrator, which is why the book concentrates on how they are processed.

313

17 Graphic Display of Performance Data

Nagios extracts this data and either writes it to a file where it can be processed by
other programs, or passes it on directly to the external software that is run after
every service or host check.

17.1 Processing Plugin Performance Data with
Nagios

Performance data provided by service and host checks can be processed only if
the corresponding plugin delivers it in a predefined format. As shown here using
the check_icmp plugin (Section 6.2, page 88), it is preceded by a | sign and is not
shown in the Web interface:

nagios@linux:libexec/nagios$./check_icmp -H vpn01

OK - eli02: rta 96.387ms, lost 0%| rta=96.387ms;200.000;500.000;0; pl=0%;

40;80;;

This standardized form is provided by most plugins only after version 1.4.1 The
performance data itself consists of one or more variables in the following form:

name=value;warn;crit;min;max

The variable name may contain spaces, but then it must be surrounded by single
quotation marks. After the equals sign comes first the measured value as an integer
or floating-point decimal, with or without a unit. Possible units are % (percentage),
s (time in seconds), B (data size in bytes), or c (counter, an incremental counter).

This is followed, separated by a semicolon, by the warning and critical limits, and
then the minimum and maximum value. Percentage values can be left out by the
plugin. You can also specify 0 for minimum/maximum, as well as for the warning or
critical limit, if there is no such threshold value. If there are several variables, these
are separated with spaces, as in the check_icmp example. However, in contrast
to this, the final specification should not end with a semicolon, according to the
Developer Guidelines.

17.1.1 The template mechanism

Nagios has two methods of processing performance data: either the system saves
the data to a file using a template, or it executes an external command. If you just

1 Some tools such as Nagiosgraph and NagiosGrapher make use of the fact that the remaining
text normally contains performance data as well. If they are correspondingly configured, they
are able to extract the performance data contained there. In this way they can further process
data that does not conform to the standard format.

314

17.1 Processing Plugin Performance Data with Nagios

want to write data consistently to a log file, the template procedure is somewhat
easier to configure.

In order that Nagios can process performance data at all, the parameter

/etc/nagios/nagios.cfg

...

process_performance_data=1

...

must be set to 1. The file to which Nagios writes the host or service performance
data is specified by the *_perfdata_file parameters:

/etc/nagios/nagios.cfg

...

host_perfdata_file=/varr/nagios/host-perfdata.dat

service_perfdata_file=/var/nagios/service-perfdata.dat

host_perfdata_file_template=[HOSTPERFDATA]\t$TIMET$\t$HOSTNAME$\t\
$HOSTEXECUTIONTIME$\t$HOSTOUTPUT$\t$HOSTPERFDATA$

service_perfdata_file_template=[SERVICEPERFDATA]\t$TIMET$\t\
$HOSTNAME$\t$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t\
$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$

...

If host_perfdata_file is commented out, as in this example, Nagios does not save
any performance data of host checks. But since they are only used if all service
checks fail, it lies in the nature of host checks that they only provide data sporadi-
cally and at irregular intervals. This is why it is not worth evaluating them in most
cases.

The *_perfdata_file_template parameters define the output format. The definition
shown above, service_perfdata_file_template, delivers (one-line) log file entries in
the following pattern:

[SERVICEPERFDATA] 1114353266 linux01 PING 0.483 0.104

OK - 10.128.254.12: rta 100.436ms, lost 0%

rta=100.436ms;3000.000;6000.000;0; pl=0%;40;80;;

Each line begins with a [SERVICEPERFDATA] “stamp,” followed by the test time in
epoch seconds ($TIMET$), the host name and service description ($HOSTNAME$
and $SERVICEDESC$), the time Nagios requires for the test ($SERVICEEXECUTION-
TIME$), and the latency between the planned and actual time of performance
($SERVICELATENCY$), each separated by a tab. Then Nagios writes the output for
the Web interface to the log file ($SERVICEOUTPUT$) and finally the actual per-
formance data ($SERVICEPERFDATA$). \t in the parameter definition ensures that
a tab separates the individual details from each other in the log.

With the *_perfdata_file_mode parameters you can define whether Nagios ap-
pends the data to an existing file (a) or overwrites the existing file (w):

315

17 Graphic Display of Performance Data

/etc/nagios/nagios.cfg

...

host_perfdata_file_mode=a

service_perfdata_file_mode=a

...

This is suitable for external programs that can read the data from a (previously set
up) named pipe. This method provides better performance and does not require
any space on the hard drive. If the processing software is not running, however,
the data may be lost: Nagios does try for a time to continue writing to the pipe,
but aborts this process after a timeout if the data cannot be read out.

Programs that read from a log file generally delete it afterwards, to prevent the
file system from overflowing. If the program does not retrieve any data, the file
will grow quickly, but nothing will be lost as long as there is still space on the file
system.

It is best to run external evaluation software as a permanent service. But you can
also configure Nagios so that it regularly triggers a program for further processing:

/etc/nagios/nagios.cfg

...

host_perfdata_file_processing_interval=0

service_perfdata_file_processing_interval=0

host_perfdata_file_processing_command=process-host-perfdata-file

service_perfdata_file_processing_command=process-service-perfdata-file

...

With the *_perfdata_file_processing_interval parameters you set an interval in
seconds after which Nagios will carry on running the corresponding *_perfdata_
file_processing_command at specific intervals. This command is defined as a nor-
mal Nagios command object:

misccommands.cfg

...

define command{
command_name process-service-perfdata-file

command_line /path/to_the/evaluation_program

}
...

As long as the external software itself looks after the further processing of the file
with the performance data, you do need to use the *_perfdata_file_processing_*
parameters.

316

17.2 Graphs for the Web with Nagiosgraph

17.1.2 Using external commands to process performance data

As an alternative to the template method, Nagios can also directly call a command
that takes over further processing of data. This is done directly after each test
result; so after each individual check, an external program is started. If you have
a large number of services to be checked, this can, depending on the software,
considerably degrade performance.

The command itself is defined with the process_perfdata_command parameter
instead of the perfdata_file parameter:

/etc/nagios/nagios.cfg

...

process_performance_data=1

service_perfdata_command=process-service-perfdata

...

In the same way as with service performance data, you can also process the results
of host checks, using the host_perfdata_command parameter. process-service-
perfdata itself again refers to a normal Nagios command object:

misccommands.cfg

...

define command{
command_name process-service-perfdata

command_line /path/to/program "$LASTSERVICECHECK$||$HOSTNAME$||\
$SERVICEDESC$||$SERVICEOUTPUT$||$SERVICEPERFDATA$"

}
...

This opens the external program, which is given the necessary information as ar-
guments. This should include at least the timestamp of the last service check
($LASTSERVICECHECK$), the host name ($HOSTNAME$), and the service descrip-
tion ($SERVICEDESC$), as well as the actual service performance data ($SERVICE-
PERFDATA$). The delimiter depends on the program used: this example uses ||, as
is used by the Nagiosgraph program.

17.2 Graphs for the Web with Nagiosgraph

With the program Nagiosgraph from http://nagiosgraph.sf.net/, performance data
supplied by plugins can be displayed graphically in a Web interface in chronological
form. The software consists of two Perl scripts. The script insert.pl writes the
Nagios performance data to a round-robin database, a ring buffer in which the

317

17 Graphic Display of Performance Data

newest data overwrites the oldest.2 The advantage of this is the small amount of
space required, which can be defined beforehand.

The trick consists of saving data in various resolutions, depending on its age: older
data with a lower resolution (e.g., one measurement value per day), current data
with a high resolution (e.g., one measurement every five minutes). When setting
up the database, you also define how long the data is retained. This defines space
requirements right from the beginning.

Provided that Nagiosgraph detects the performance data, the program creates a
separate round-robin database for each new service, when it appears for the first
time. The map configuration file included describes just a few services, so that
usually some manual work—and a basic knowledge of Perl—is required.

The second Nagiosgraph script show.cgi, a CGI script, represents the information
from the database in a dynamic HTML page. To do this, it is run (after configuration
is completed) in the form

http://nagsrv/path/to/show.cgi?host=host&service=service_description

Nagiosgraph then displays four graphs (a daily, a weekly, a monthly, and a yearly
summary) for the desired service.

17.2.1 Basic installation

An installed RRDtool package, which is contained in most Linux distributions, is a
prerequisite for Nagiosgraph. Alternatively you can obtain the current source code
from http://www.rrdtool.org/.3 For reasons of performance, it is recommended
here that you also install the included Perl module RRDs.

The Nagiosgraph tar file itself is preferably unpacked in the directory /usr/local/
nagios:

nagios@linux:local/nagios$ tar xvzf nagiosgraph-0.5.tar.gz

nagiosgraph/INSTALL

nagiosgraph/README

nagiosgraph/README.map

nagiosgraph/insert.pl

nagiosgraph/insert_fast.pl

nagiosgraph/map

nagiosgraph/nagiosgraph.conf

nagiosgraph/show.cgi

nagiosgraph/testcolor.cgi

nagiosgraph/testentry.pl

2 Further information on this topic can be found at http://www.rrdtool.org/.
3 To install, see page 330.

318

17.2 Graphs for the Web with Nagiosgraph

insert.pl extracts the data transferred by Nagios and inserts this into the RRD
database. If this does not exist, however, the script will create it. Alternatively
insert_fast.pl can take on this task. This script uses the Perl module RRDs, which
is considerably more efficient than calling up rrdtool as an external program each
time, which is what insert.pl does.

Another Perl script called testentry.pl helps if you are testing your own map entries.
But since you have to write these directly into this file, you can also change the
map file itself (as shown below)—provided you have made a backup copy first. The
CGI script testcolor.cgi looks more like a developer’s utility left over in the package,
rather than a tool that is of any use for users.

Apart from the already mentioned map configuration file, there is a second one,
nagiosgraph.conf, and its path must be defined correctly in both insert.pl (or in-
sert_fast.pl) and show.cgi, so it is recommended that you check this:

my $configfile = ’/usr/local/nagios/nagiosgraph/nagiosgraph.conf’;

17.2.2 Configuration

The configuration file nagiosgraph.conf

All other relevant paths—such as those to the map file and to the rrdtool—are
adjusted in nagiosgraph.conf:

rrdtool = /usr/bin/rrdtool

rrddir = /var/lib/rrd/nagiosgraph

logfile = /var/nagios/nagiosgraph.log

mapfile = /usr/local/nagios/nagiosgraph/map

debug = 2

colorscheme = 4

Nagiosgraph creates the RRD databases in the rrddir directory. Here the user na-
gios must have write access and the user with whose rights the Web server is
running must have read access:

linux:˜ # mkdir -p /var/lib/rrd/nagiosgraph

linux:˜ # chown nagios.nagcmd /var/lib/rrd/nagiosgraph

linux:˜ # chmod 755 /var/lib/rrd/nagiosgraph

The log file, for which both users need write access (the Web user because the CGI
script also records information to the log file), is also critical:

linux:˜ # touch /var/nagios/nagiosgraph.log

linux:˜ # chown nagios.nagcmd /var/nagios/nagiosgraph.log

linux:˜ # chmod 775 /var/nagios/nagiosgraph.log

319

17 Graphic Display of Performance Data

How verbose Nagiosgraph is can be adjusted with debug. The possible debug levels
are documented in the configuration file included: 2 means “errors,” 4 “informa-
tion”—here Nagiosgraph is already so verbose that you must watch out that the file
system does not overflow. Except for debugging purposes (such as when setting
up the system), it is better to choose 2.

With colorscheme, which can accept values from 1 to 8, you can influence the
amount of color in the graphs—it is best to try out the options to see which color
scheme matches your personal taste best.

Nagios configuration

Nagiosgraph grabs the performance data directly from Nagios. For this reason
nagios.cfg does not require any *_perfdata_file_* parameters.

/etc/nagios/nagios.cfg

...

process_performance_data=1

service_perfdata_command=process-service-perfdata

...

process_performance_data switches on processing of performance data in gen-
eral; service_perfdata_command refers to the Nagios command object that con-
tains the external command:

misccommands.cfg

...

define command{
command_name process-service-perfdata

command_line /usr/local/nagios/nagiosgraph/insert_fast.pl \
"$LASTSERVICECHECK$||$HOSTNAME$||\
$SERVICEDESC$||$SERVICEOUTPUT$||$SERVICEPERFDATA$"

}
...

The definition of the parameter command_line must be written on one line (with-
out the backslashes \), as usual.

So that the CGI script can run directly from the Nagios Web interface, a serviceex-
tinfo object is defined:

define serviceextinfo{
service_description PING

host_name *

notes_url /nagiosgraph/show.cgi?host=$HOSTNAME$&service=PING

icon_image graph.gif

icon_image_alt show graphics

}

320

17.2 Graphs for the Web with Nagiosgraph

If the graphic defined in icon_image is in the directory /usr/local/nagios/share/
images/logos, the Web interface marks the PING services for all hosts in the status
display with this.4 Here the strength of show.cgi can be seen: only because this
script is called explicitly with host and service names is a definition like the one
above possible. Instead of an individual host name, you can also specify a host
group, or, as in this example, a *. A requirement for this is that PING really is
defined as a service for every host.

The $HOSTNAME$ macro then automatically inserts the appropriate host. The
additional information for a specific service type (which must have the same service
description in all hosts) can therefore be catered for with just one single definition.

Apache configuration

So that the Apache Web server can accept the CGI script as it is, a ScriptAlias is
created, for example:

ScriptAlias /nagiosgraph/ /usr/local/nagios/nagiosgraph/

This entry is best placed in the configuration file discussed in Section 1.3 (page 33),
nagios.conf. Only after Apache is reloaded can the CGI script be run from the URL
specified on page 318.

Adjustments to the map

Depending on the service, the round-robin database may also save several series of
measurements, which can be requested individually through the CGI script:

http://nagsrv/path/to/show.cgi?host=host&service=service_description&db=

database,entry1,entry2&db=database,entry3

The database used here contains at least three different series of measurements,
the first two of which are shown together in one graphic, while the third is shown
in a separate graphic. What is shown together and what is separate depends on the
standardization. It makes little sense to display the percentage load of a hard drive
and the absolute value in bytes in the same graphic, since the Y axis can only have
one scale. It is better here to display percentage values in one graphic and absolute
byte values in a second one. On the other hand you can display the various average
values of the system load (for one, five, and 15 minutes) in a single graphic. If you

4 A more detailed description of the serviceextinfo object is contained in Section 16.4.2, page
310.

321

17 Graphic Display of Performance Data

leave out all db= specifications, Nagiosgraph always displays all measured values
for a service in a single graphic.

What individual databases and measured values display is defined by the map file.
To understand how the instructions contained there influence the extraction of
data, you just need to switch the debugging level to 4 and take a look at the output
in the log file nagiosgraph.log. Each time the insert function is run, Nagiosgraph
rereads the configuration files, so that this does not cause any kind of reset.

In the following extract from the log file the three dots mark sections which we
will not print, for the sake of clarity:

... INSERT info:... servicedescr:PING

... INSERT info:... hostname:linux01

... INSERT info:... perfdata:rta=99.278ms;3000.000;7000.000;0; pl=0%;60;

80;;

... INSERT info:... lastcheck:1114853435

... INSERT info:... output:OK - 172.17.4.11: rta 99.278ms, lost 0%

The output is from the check_icmp plugin. The host name, service description,
performance data, (perfdata:) and the standard output line (output:) each have
their own line. In the performance data the plugin announces the round trip
average with the variable rta, and the number of packets that have gone missing
with pl (packet loss).

The map file contains Perl instructions that filter these outputs and extracts the
corresponding data if there are hits. Each of them starts with a search instruction:

/perfdata:rta=([.\d]+)ms.+pl=(\d+)%/

The classic Perl search function consists of the two forward slashes / with a search
pattern in the form of a regular expression in between. Round pairs of brackets
enclose partial patterns with which the text found in this way can later be accessed
using the variables $1, $2, etc.

The pattern in the first bracket thus matches a single digit (\d) or a dot,5 and the
next + states that there can be several of them (or none at all). In the second round
brackets, though, one or more digits are allowed, but no period. In concrete terms
$1 delivers the numerical value of the response time, $2 provides the packet loss
in percent.

The full instruction in the map file links two Perl statements with the and operator:

-- check_icmp

perfdata:rta=100.424ms;5000.000;9000 .000;0; pl=0%;40;80;;

/perfdata:rta=([.\d]+)ms.+pl=(\d+)%/
and push @s, [’ping’,

5 A pair of square brackets contains alternatives.

322

17.2 Graphs for the Web with Nagiosgraph

[’rta’, ’GAUGE’, $1],

[’losspct’, ’GAUGE’, $2],

];

If the first one—the search function—is successful, then it is the turn of the push
statement. It adds the expression in square brackets following to the array @s.
The instruction ends with a semicolon. If the search function provides no result,
the map instruction will not save any entry in the @s array. The expression to be
included in the array has the following format:

[db-name,

[name_of_data_source, type, value],

[name_of_data_source, type, value],

...

]

The file name for a Nagiosgraph database file consists of the host name, service
description, and the database name together, for example, linux01_PING_ping.rrd.
The desired string for the database name is entered instead of the placeholder db-
name into the map file (in this case, ping).

The name of the data source can be chosen freely, but should contain an indication
of the data that is stored here, such as rta for the response time or losspct for
percentage of packets that have been lost.

What type you specify is determined by the RRD tools. GAUGE stands for simple
measured values that are displayed simply as they are. DERIVE is recommended by
Nagiosgraph author Soren Dossing for processing counters, such as in querying a
packet counter on the network interface. Counters grow incrementally and, when
they run over, start again at zero. What is of interest here is the difference between
two points in time. The RRD database determines these automatically if the data
source type DERIVE is specified.

The database name, data source, and type should always be placed in single quo-
tation marks in the map file, so that no name conflicts can occur with keywords
reserved in Perl.

The measured value itself is determined using Perl methods, and the placeholder
value is substituted with the corresponding instructions. In the simplest case, you
take over the values found with the search pattern in the performance data with
$1, $2, etc. (see example above), or calculate new values from these by multiplying6

by 1024 or by calculating the percentage:

-- check_nt -v USEDDISKSPACE

perfdata:C:\ Used Space=1.71Gb;6.40;7.20;0.00;8.00

/perfdata:.*Used Space=([.\d]+)Gb;([.\d]+);([.\d]+);([.\d]+);([.\d]+)/
6 This turns kilobytes into bytes.

323

17 Graphic Display of Performance Data

and push @s, [’disk’,

[’used’, ’GAUGE’, $1*1024],

[’usepct’, ’GAUGE’, ($1/$5)*100],

[’freepct’, ’GAUGE’, (($5-$1)/$5)*100],

];

-- check_disk (unix)

perfdata:/=498MB;1090;1175;0;1212

m@perfdata:.*/([ˆ =]+)=([.\d]+)MB;([.\d]+);([.\d]+);([.\d]+);([.\d]+)@
and push @s, [$1,

[’used’, ’GAUGE’, $2*1024**2],

[’warn’, ’GAUGE’, $3*1024**2],

[’crit’, ’GAUGE’, $4*1024**2],

];

The first entry evaluates the query of hard drive space on a Windows server with
check_nt (see Section 18.1, page 359). The performance data also contains, apart
from the occupied space in $1, the size of the data carrier in $5. This can be used
to calculate the percentage that is available (freepct) and the percentage used
(usepct).

Figure 17.1:

Used space and limit

values for the file

system /net/linux01/a

on the host linux01,

as Nagiosgraph

represents them

The second example evaluates data obtained on a Unix host, with check_disk, by
multiplying the free hard drive space specified in MB by 10242 to convert it to bytes.

324

17.3 Preparing Performance Data for Evaluation with Perf2rrd

The critical and warning limits always remain constant, which leads to horizontal
lines, as seen in Figure 17.1: the lower line at 12.1 GB represents the warning limit,
the middle line the current load, and the top line at 18.1 GB, the critical limit.
The keys for the individual graphs each list minimum, maximum, and average as
a numerical value. This differentiation for the two limit values is not of any use,
but it cannot be avoided, since Nagiosgraph does not know that these are constant
values: it treats warning and critical limits just like any other measured values.

If a plugin does not provide any performance data, but values that are used in nor-
mal output, the search function can be applied to the output (/output:.../) instead
of to the performance data. Help is provided, for example, by the Nagiosgraph
Forum at http://sourceforge.net/forum/forum.php?forum_id=394748.

Changes to the map are critical. It is therefore recommended that you copy the file
first and edit the copy, and then perform a syntax check, using perl -c:

nagios@linux:libexec/nagios$ cp map map.new

nagios@linux:libexec/nagios$ vi map.new

nagios@linux:libexec/nagios$ perl -c map.new

nagios@linux:libexec/nagios$ mv map.new map

If the syntax check is in order, you can install the new file as map.

17.3 Preparing Performance Data for Evaluation
with Perf2rrd

Another tool which transfers Nagios performance data to an RRD database is the
Java application Perf2rrd. This requires an installed Java Runtime Environment
(1.4.2, or preferably 1.5). Since the virtual machine generates a noticeable load on
less powerful computers, and also requires a large amount of memory, the require-
ments made of the Nagios server by Perf2rrd are significantly higher than those
made by Nagiosgraph.

On the other hand there is no more work after the installation as far as generating
the RRD databases is concerned, because Perf2rrd uses the template mechanism of
Nagios (see Section 17.1, page 314). For each service and each variable contained in
the template, the tool creates a separate RRD database using the following naming
pattern:

host+service_description+variable_name.rrd

So to evaluate the check_icmp variables rta (round trip average) and pl (packet
loss), the file names are linux01+PING+pl.rrd and linux01+PING+rta.rrd.

325

17 Graphic Display of Performance Data

Perf2rrd only looks after the storage of data in an RRD database and does not
provide any tools to graphically display the data saved there. The Perf2rrd author
Marc DeTrano refers here to the drraw tool (see Section 17.4, page 330). It can be
advantageous to use this, because on the one hand drraw allows far more than
just the one display provided by Nagiosgraph, and on the other hand you do not
have to struggle with regular expressions in Perl.

17.3.1 Installation

For the installation you should get hold of the archive in tar format from http://
perf2rrd.sf.net/, and copy it, preferably to the /usr/local hierarchy:

linux:˜ # cd /usr/local

linux:usr/local # tar xvzf /path/to/perf2rrd-1.0.tar.gz

...

perf2rrd/run

...

The executable program that is later run is a script called run, which in turn calls the
Java bytecode interpreter, java. Besides this the directory contains the Java class
files and other utilities, with which you can recompile the included shared library
librrdj.so, if required. This is normally not necessary for the newer distributions.

In order for run to be able to find the java program, it must be located in /usr/bin. If
this is not the case (because you have installed the Java archive from http://www.
sun.com/, for example), then you should set a link:

linux:˜ # ln -s /usr/local/jre1.5.0_02/bin/java /usr/bin/java

A short test shows whether or not Perf2rrd starts correctly:

nagios@linux:local/perf2rrd$./run

perf2rrd starting

Using Nagios Config: /etc/nagios/nagios.cfg

Using RRD Repository: /var/log/nagios/rrd

Unable to create RRD Repository

The error message issued in the last line is not a problem at the moment, since we
have saved the RRD databases in a different directory anyway (page 329).

17.3.2 Nagios configuration

Perf2rrd searches in the Nagios configuration for all the data it requires: to what
file Nagios should write the performance data, the write mode used for this,7 and
the format of the template:

7 With a, Nagios appends the data to a normal log file; with w it makes it accessible through a
named pipe. See Section 17.1, page 314.

326

17.3 Preparing Performance Data for Evaluation with Perf2rrd

/etc/nagios/nagios.cfg

...

process_performance_data=1

...

service_perfdata_file=/var/nagios/service-perfdata.dat

service_perfdata_file_template=$TIMET$\t$HOSTNAME$\t\
$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t\
$SERVICEOUTPUT$\t$SERVICEPERFDATA$

service_perfdata_file_mode=w

...

The named pipe used here, thanks to service_perfdata_file_mode=w, must be
created manually—Perf2rrd 1.0 in Nagios 2.0 has problems with the normal file
interface (service_perfdata_file_mode=a):

linux:˜ # mknod /var/nagios/service-perfdata.dat p

linux:˜ # ls -l /var/nagios/service-perfdata.dat

prw-r--r-- 1 nagios nagios 0 May 1 10:49 /var/nagios/service-perfdata.dat

In the template the introductory [SERVICEPERFDATA] stamp is missing (see Sec-
tion 17.1), since Perf2rrd 1.0 does not parse this correctly. Changes to the Nagios
configuration require a reload:

linux:˜ # /etc/init.d/nagios reload

Finally you create the directory for the RRD databases:

linux:˜ # mkdir /var/lib/rrd/perf2rrd

linux:˜ # chown nagios.nagios /var/lib/rrd/perf2rrd

17.3.3 Perf2rrd in practice

Program start

Loading the Java Virtual Machine each time Perf2rrd is started requires considerable
resources. For this reason you should not use the method of starting Perf2rrd with
the parameter service_perfdata_file_processing_command at specific intervals
of Nagios, and also should not use the one-shot mode, with ./run -o, in which the
software processes one file at a time. In theory this would make it possible to run
Perf2rrd regularly with a cron job. Instead, it is recommended that you keep the
program running permanently.

When using this for the first time, we recommend that you switch on the debug-
ging mode, which will show any problems that occur. The option -d specifies the
directory in which the tools should create and update the RRD databases:

327

17 Graphic Display of Performance Data

nagios@linux:local/perf2rrd$./run -d /var/lib/rrd/perf2rrd -x

perf2rrd starting

Using Nagios Config: /etc/nagios/nagios.cfg

Using RRD Repository: /var/lib/rrd/perf2rrd

Debug Mode is on

Reading perfdata from named pipe.

Perf Data File is : /var/nagios/service-perfdata.dat

I believe we are using Nagios ver. 2

Object Cache File is : /var/nagios/objects.cache

Nagios interval_length 60

called update with: .../eli02+PING+rta.rrd 1114938329:0.079

called update with: .../eli02+PING+pl.rrd 1114938329:0.0

/var/lib/rrd/perf2rrd/sap-14+SAP-3202+time.rrd created.

called update with: .../sap-14+SAP-3202+time.rrd 1114938688:0.030775

...

The output of the Nagios configuration file, the RRD repository, and the data trans-
fer mode (named pipe) is followed by the time unit used by Nagios (and set with
the interval_length parameter). Normally this is 60 seconds, that is, a check in-
terval of 5 is five minutes long. It is extremely important that this parameter
is correctly recognized, since Perf2rrd determines the step interval of the RRD
database by multiplying the normal_check_interval and interval_length param-
eters together.

All measured values that occur during a step interval are averaged by the database.
If this time period is too small, it is possible that the database will never issue any
values, since it expects considerably more data than it obtains for saving.

While Nagiosgraph works with a fixed five-minute interval, Perf2rrd adjusts itself to
the Nagios configuration. The software only takes into account the interval when
creating the RRD database, however; changing the Nagios configuration later on
has no further consequences. The only thing you can do here to alter this is delete
the RRD database and set it up again.

Perf2rrd in permanent operation

Operating Perf2rrd on a named pipe has one disadvantage: if Nagios restarts,
it closes the pipe before opening it again. Unfortunately when the pipe closes,
Perf2rrd closes as well.

This can be prevented by the use of the Daemon Tools by Daniel J. Bernstein. They
monitor programs and restart them, if these programs should ever stop. They
are themselves started through an /etc/inittab entry by the init process, and are
restarted if they were to shut themselves down at some point.

The Daemon Tools tar file can be obtained from http://cr.yp.to/daemontools/
install.html and it is unpacked in the directory /usr/local/src:

328

17.3 Preparing Performance Data for Evaluation with Perf2rrd

linux:˜ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/daemontools-0.76.tar.gz

admin

admin/daemontools-0.76

admin/daemontools-0.76/package

admin/daemontools-0.76/package/README

...

admin/daemontools-0.76/src

This creates the directory admin/daemontools-0.76, with the subdirectories pack-
age and src. From there you should run the install script, which compiles and
installs the program:

linux:local/src # cd admin/daemontools-0.76

linux:admin/daemontools-0.76 # package/install

The binaries land in the newly created directory daemontools-0.76/command and
remain there. The installation routine also sets up symbolic links pointing to them
from the—also newly created—folder /command.

The install script also includes the following line in the file /etc/inittab, which
ensures that the Daemon Tools run permanently:

SV:123456:respawn:/command/svscanboot

The program svscanboot searches regularly for new or crashed daemons. For this
purpose it scans the /service directory, which is also created during the installation.
Just one symbolic link is required to have Perf2rrd monitored:

linux:˜ # ln -s /usr/local/perf2rrd /service/perf2rrd

The Daemon Tools search in this directory for a script called run and start it. In order
for run to be able to find the path to the RRD repository, an actual command-line
option is entered in the script file instead of $*:

exec java -cp $classpath perf2rrd $*

exec java -cp $classpath perf2rrd -d /var/lib/rrd/perf2rrd

Starting and ending Perf2rrd is now taken over by the program svc:

linux:˜ # /command/svc -d /service/perf2rrd

linux:˜ # /command/svc -u /service/perf2rrd

The -d option (for down) stops the service specified, and -u (up) starts it again. It
is not necessary to run it at the beginning, since the Daemon Tools regularly scan
the /service directory for new services and automatically start them.

329

17 Graphic Display of Performance Data

This is important insofar as the Nagios-2.0 beta versions, on which this book is
based, had problems if the configured named pipe was not read. Then it might not
deliver any more data at all until a reload or restart. Whether this problem has been
fixed in the final version 2.0 of Nagios could not be clarified at the time of going
to press.

17.4 The Graphics Specialist drraw

From the RRD databases, generated for example by Perf2rrd or Nagiosgraph, the
CGI script drraw creates interactive graphics—simple ones relatively quicky, whereas
for more complex ones you need to know a bit more about the RRDtools.8

17.4.1 Installation

For the drraw installation, you need to obtain the current tar file from http://www.
taranis.org/drraw/ and unpack it to its own subdirectory in the CGI hierarchy 9 on
the Web server:

linux:˜ # cd /usr/lib/cgi-bin

linux:lib/cgi-bin # tar xvzf /path/to/drraw-2.1.1.tar.gz

drraw-2.1.1/

...

drraw-2.1.1/drraw.cgi

drraw-2.1.1/drraw.conf

drraw-2.1.1/icons/

...

The version-dependent directory created by this is then renamed to drraw:10

linux:lib/cgi-bin # mv drraw-2.1.1 drraw

drraw.cgi itself requires, apart from Perl, the Perl CGI module (CGI.pm), and the
RRDtools, from at least version 1.0.47; nothing will work below version 1.0.36. If
your distribution does not include a current version, you should obtain the sources
from http://www.rrdtool.org/ and compile them yourself:

linux:˜ # cd /usr/local/src

linux:local/src # tar xvzf /path/to/rrdtool-1.0.49.tar.gz

8 Apart from the documentation on the homepage http://www.rrdtool.org/, the tutorial in-
cluded (man rrdtutorial) is a useful starting point, as well as the manpage man rrdgraph.

9 Which directory this is depends on the distribution or Apache configuration you are using.
10 A symbolic link would also be possible, but then Apache must be configured so that it follows

symbolic links, which is normally not automatically the case.

330

17.4 The Graphics Specialist drraw

linux:local/src # cd rrdtool-1.0.49

linux:src/rrdtool-1.0..49 # ./configure

linux:src/rrdtool-1.0..49 # make

linux:src/rrdtool-1.0..49 # make install

linux:src/rrdtool-1.0..49 # make site-perl-install

The CGI script drraw.cgi uses the Perl module RRDs, which after the installation
with make site-perl-install, is found automatically.

17.4.2 Configuration

The drraw configuration is contained in the file drraw.conf:

linux:cgi-bin/drraw # egrep -v ’ˆ#|ˆ$’ drraw.conf

...

%datadirs = (’/var/lib/rrd’ => ’[RRDbase]’,

);

$vrefresh = ’120’;

@dv_def = (’end - 6 hours’, ’end - 28 hours’, ’end - 1 week’, ’end - 1

month’, ’end - 1 year’);

@dv_name = (’Past 6 Hours’, ’Past 28 Hours’, ’Past Week’, ’Past Month’,

’Past Year’);

@dv_secs = (21600, 100800, 604800, 2419200, 31536000);

$saved_dir = ’/var/lib/drraw/saved’;

$tmp_dir = ’/var/lib/drraw/tmp’;

...

The extract shown specifies the RRD repository (here: /var/lib/rrd) as the most
important detail, but several directories can also be specified:

%datadirs = (’/var/lib/rrd’ => ’[RRDbase]’,

’/data/rrd’ => ’[RRDdata]’,

);

The text in square brackets (e.g., [RRDbase]) appears later on the Web interface,
which allows a distinction to be made between various different repositories. The
variables @dv_def, @dv_name, and @dv_secs influence the layout and number
of graphics.

The configuration shown above generates one graphic more than the standard
configuration. This represents the past six hours: the extended statement ’end—6
hours’ in @dv_def describes the time period for rrdtool (see man rrdgraph), in
@dv_name the representation is given a suitable title with ’Past 6 Hours’, and
@dv_secs contains the six hours, converted into (21600) seconds, displayed by
drraw as a time period in a separate graphic.

The repository must be readable for the user with whose rights the Web server is
running, and the directories specified in $saved_dir and $tmp_dir must also be

331

17 Graphic Display of Performance Data

readable. If a user other than www-data runs this, the following command must
be adapted accordingly:

linux:˜ # mkdir -p /var/lib/drraw/{saved,tmp}
linux:˜ # chown -R www-data.www-data /var/lib/drraw

Data arrives in the temporary directory $temp_dir, whose contents can be deleted
at any time, whereas in $saved_dir drraw stores configuration data which the
program needs in order to access already created graphics later on. This data must
not be lost.

drraw implements a simple access protection in three stages: read-only (0), re-
stricted editing (1), and full access (2). Users logged in to the Web server automat-
ically obtain level 2. Nonauthorized users are treated as guests and assigned level
0. To avoid the hassle with authentication at the beginning, you can grant the user
guest full access via the following directive in the configuration file:

%users = (’guest’ => 2);

17.4.3 Practical application

The CGI script in the CGI directory of the Web server can be addressed through the
following URL:

http://nagsrv/cgi-bin/drraw/drraw.cgi

Figure 17.2:

332

The drraw start menu

17.4 The Graphics Specialist drraw

New graphics are generated in the menu item Create a new graph in the start
picture, which is shown in Figure 17.2. The dialog shown in Figure 17.3 allows the
appropriate RRD database to be selected. Using a regular expression11 in the Data
Source filter regexp field, the data sources available can be further restricted; this
expression can also be a simple literal text, such as sap-12.

Once you have chosen an RRD database, you just need to specify the round-robin
archive (RRA) to be used. Each of these archives saves data in a particular form,
processed with a consolidation function: the AVERAGE function averages all mea-
surement data that accumulates in a measurement period, MIN saves only the
minimum value of the data in an interval, and MAX saves only the maximum.
Since the original data is lost, the archives must be specified when the round-robin
database is created; maximum values can only be recalled later if this was taken
into account at the time.

Figure 17.3:

Selecting the data

source

If you cannot remember what archives exist, you can display them using the button
RRD Info for selected DB. Clicking on the Add DB(s) to Data Sources button takes
you to a dialog where you first have to scroll down a bit to reach the item Data
Source Configuration (Figure 17.4). There you can fine-tune the desired graph—
now or later. You can define your own colors, and whether a line or a surface will
be shown. You should only make use of the other possibilities if you are familiar
with the concepts of the RRDtools and the way they work.12

The Update button provides a preview of the finished graphic, which at the same
time reveals the rrdtool options used (Figure 17.5). When you save, with Save
Graph, you obtain a link in the form

11 POSIX regular expression; see man 7 regex.
12 There are a number of tutorials on the homepage of the RRDtools author, Tobias Oetiker, at

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/tut/index.en.html.

333

17 Graphic Display of Performance Data

http://nagsrv/cgi-bin/drraw/drraw.cgi?Mode=view;Graph=11149589.4932

with which the graphic can be accessed at any time. Alternatively you can now
find the graphic in the drraw starting menu under All Graphs.

Figure 17.4:

Fine-tuning the

graphic configuration

Figure 17.5:

Preview and

specifying the rrdtool

options

334

17.4 The Graphics Specialist drraw

Figure 17.6:

The finished graphic

represents different

time periods

The link mentioned when you save a graphic can be recorded in a serviceextinfo
object, making it directly accessible through the Nagios interface:

define serviceextinfo{
service_description PING

host sap-12

notes_url /nagiosgraph/drraw/drraw.cgi?Mode=view;Graph=11149589.4932

icon_image graph.gif

icon_image_alt View graphics

}

With templates and dashboards, drraw includes other features, which cannot be
discussed in detail here, for reasons of space. Templates allow several sources of
the same type to be shown in the same graphic. What these are can be specified
in Create a new Graph (see Figure 17.3). Since you can only add one source at a
time there, you must click the Add button for each separate source, before moving
on to the next one.

A dashboard presents a display containing several preview graphics. If you click
on one of the graphics, you are shown the detailed representation. The interactive
menu Create a Dashboard contains brief instructions where you can obtain help
on the two features.

335

17 Graphic Display of Performance Data

17.5 Automated to a Large Extent: NagiosGrapher

NagiosGrapher from Netways, the host of The Nagios Exchange Platform http://
www.nagiosexchange.org/, is a brand-new representation tool for performance
data, but already a very powerful one. This also saves data in round-robin databases
and uses the RRDtools for processing and representation.

It claims to be easy to install and to work automatically to a large extent in contrast
to the “competition.” The latter promise has so far not been kept; as in Nagiosgraph,
you have to configure search patterns in order to interpret the plugin output or
performance data correspondingly. The RRD databases are generated by Nagios-
Grapher automatically; in addition to this, the tool serviceextinfo also generates
entries.

As soon as it once recognizes the performance data, you don’t have to worry
any more about integrating it into Nagios. A reload is sufficient to make the
serviceextinfo entries generated in the meantime usable in Nagios. The entries
are created “intelligently,” so that if you click on the corresponding icon in the ser-
vice summary (see Figure 17.7 on page 340), you are taken directly to the graphic
display of the performance data.

As far as functionality and installation efforts are concerned, NagiosGrapher lies
somewhere between Nagiosgraph and Perf2rrd: the initial configuration needed is
somewhat more than for Nagiosgraph, but the possibilities of variations in the
graphic output are considerably larger, and you do not have to generate each
graphic individually, as is the case with Perf2rrd/drraw.

17.5.1 Installation

NagiosGrapher requires the Perl modules GD, CGI, RRDs, XML::SIMPLE, XML::Parser,
and Data::Dumper.13 From version 1.3-dev, Data::Dumper replaces the XML mod-
ules, but they are still necessary here to convert data from previous versions, if
required.

Normally all the standard Linux distributions will include corresponding packages.
These can also be downloaded and installed in the modules provided by CPAN,
following the pattern:

linux:˜ # perl -MCPAN -e ’install CGI’

The NagiosGrapher sources can be obtained from The Nagios Exchange14 and they
are unpacked to the directory /usr/local/nagios:

13 Data::Dumper is a component of the Perl base distribution, the module RRDs belongs to the
RRDtools package and is not available through the Comprehensive Perl Archive Network (CPAN).

14 http://www.nagiosexchange.org/Charts.42.0.html., entry nagios_grapher

336

17.5 Automated to a Large Extent: NagiosGrapher

linux:˜ # cd /usr/local/nagios

linux:local/nagios # tar xvjf /path/to/NagiosGrapher_1.3-dev.tar.bz2

linux:local/nagios # ln -s NagiosGrapher_1.3-dev nagiosgrapher

So that you can later on use paths which are not version-specific, you should create
a symbolic link, nagiosgrapher, to the current directory NagiosGrapher_1.3-dev.
Change to this directory and copy the CGI scripts to the Nagios CGI directory, or to
/usr/local/nagios/sbin/ if you have installed this yourself:

linux:local/nagios # cd nagiosgrapher

linux:nagios/nagiosgrapher # cp *.cgi /usr/local/nagios/sbin/.

linux:nagios/nagiosgrapher # chown nagios.nagcmd \
/usr/local/nagios/sbin/{graphs,rrd2-graph}.cgi

linux:nagios/nagiosgrapher # ln -s \
/usr/local/nagios/nagiosgrapher/NagiosGrapher.pm \
/usr/local/nagios/sbin/.

In order for Debian Sarge to be able to find NagiosGrapher.pm, the symbolic link
mentioned must be located in /etc/perl:

ln -s /usr/local/nagios/nagiosgrapher/NagiosGrapher.pm /etc/perl/.

The example configuration file ngraph.ncfg15 is copied to the directory /etc/nagios,
and two icons to the logos directory of the Nagios installation:

linux:nagios/nagiosgrapher # cp cfg/ngraph.ncfg /etc/nagios/.

linux:nagios/nagiosgrapher # cp graph.png dot.png \
/usr/local/nagios/share/images/logos

Before the start script nagios_grapher is stored in /etc/init.d, the path to col-
lect2.pl contained in it is adjusted (this script reprocesses the data passed on by
Nagios and writes it to the RRD databases):

nagios_grapher start script

...

DAEMON=/usr/local/nagios/nagiosgrapher/collect2.pl

...

So that the script also runs in the individual runlevels, corresponding symbolic links
are set in the rc?.d directories.16 Here is an example for Debian:

15 In versions up to 1.2 the file extension was .cfg!
16 Depending on the distribution, these are directly in /etc (Debian) or in /etc/init.d (SuSE, Red

Hat).

337

17 Graphic Display of Performance Data

linux:nagios/nagiosgrapher # cp nagios_grapher /etc/init.d/

linux:nagios/nagiosgrapher # cd /etc/init.d

linux:etc/init.d # ln -s nagios_grapher /etc/rc2.d/S99nagios_grapher

linux:etc/init.d # ln -s nagios_grapher /etc/rc3.d/S99nagios_grapher

linux:etc/init.d # ln -s nagios_grapher /etc/rc4.d/S99nagios_grapher

linux:etc/init.d # ln -s nagios_grapher /etc/rc5.d/S99nagios_grapher

17.5.2 Configuration

The configuration file ngraph.ncfg

The configuration file ngraph.ncfg contains a global config section with paths and
general settings. This is followed by as many ngraph definitions as you want, each
of which describes a graphic.

Even from the global details, it is not difficult to see that the syntax sticks close to
the concept used by Nagios:

/etc/nagios/ngraph.ncfg

define config {
pipe /var/nagios/ngraph.pipe

step 60

heartbeat 600

rrdpath /var/lib/rrd/nagiosgrapher

tmppath /tmp/nagiosgrapher/

serviceext_type MULTIPLE

serviceextinfo /etc/nagios/serviceextinfo.cfg

serviceext_path /etc/nagios/serviceext

url /nagios/cgi-bin/graphs.cgi

nagios_config /etc/nagios/nagios.cfg

cgi_config /etc/nagios/cgi.cfg

icon_image_tag dot.png’ border="0"><A TARGET="_blank" \
HREF="graphs.cgi?###URL###" BORDER="0"> \
<img src="/nagios/images/logos/graph.png" border="0"

log_file /var/nagios/ngraph.log

log_level 1

-- rrd display options

rrd_color_background fcfcfc

rrd_color_font 333333

rrd_color_arrow ff0000

rrd_color_frame 333333

rrd_color_grid

rrd_color_canvas ffffff

-- browser

fe_use_browser_all 1

fe_use_browser_for nagios

fe_use_browser_url 0

}

338

17.5 Automated to a Large Extent: NagiosGrapher

It contains the following parameters:

pipe
This defines a named pipe to which Nagios writes the data with the script
write_fifo.pl and from which the collection script collect2.pl reads it out
again. It must be set up manually, and needs to be readable and writable for
the user nagios:

linux:˜ # mknod /var/nagios/ngraph.pipe p

linux:˜ # chown nagios.nagios /var/nagios/ngraph.pipe

step
This defines the step size in seconds for the RRD database. All values recorded
during this period are summarized by the RRDtools in a single value. step
therefore also describes the smallest time resolution of data in the RRD
database. The value only has an effect on newly created RRD databases,
and a modification made later on has no effect on existing databases.

heartbeat
The heartbeat defines a time period in seconds, during which the RRD data-
base always expects data. If no measured value at all arrives during this
period, NagiosGrapher generates an invalid entry (nan, not a number).

In order for valid entries to materialize in the above example, at least one
measured value must arrive every 600 seconds. Since the resolution is 60
seconds, the database contains ten entries for the period of the “heartbeat.”
If one of these values is missing, NagiosGrapher simply replaces it with the
last valid one. If just one measured value arrives in ten minutes, it will be
recorded ten times in the database.

rrdpath
This specifies the directory for the RRD databases. It must be writable for the
user nagios and (along with the database files) readable for the Web server
user:

linux:˜ # mkdir /var/lib/rrd/nagiosgrapher

linux:˜ # chown nagios.nagcmd /var/lib/rrd/nagiosgrapher

linux:˜ # chmod 755 /var/lib/rrd/nagiosgrapher

tmppath
This defines where NagiosGrapher temporarily saves internal XML files.

serviceext_type
This describes how the serviceextinfo objects are created. With the SINGLE
type, NagiosGrapher writes everything to the file specified in serviceextinfo.
Nagios 2.0 can also read directories recursively, and in this case it is better to
use the MULTIPLE type. Then NagiosGrapher creates a separate file for each

339

17 Graphic Display of Performance Data

host with the corresponding serviceextinfo object. The directory is specified
with the serviceext_path parameter. This must be made known to Nagios
through the cfg_dir directive.

url
This contains the path to the CGI script graphs.cgi from the point of view of
the Web server (a path starting from the server root) or of the browser (that
is, the complete URL).

nagios_config
This reveals to NagiosGrapher where the standard configuration file of Na-
gios is located.

cgi_config
This specifies the Nagios CGI configuration file. NagiosGrapher uses this to
find out who, apart from the contact groups, has the right to query infor-
mation on all hosts.

icon_image_tag
This parameter corresponds to the entry that is later to be found in the ser-
viceextinfo object as the icon_image parameter. In the serviceextinfo ob-
ject, NagiosGrapher replaces the text ###URL### with the host and service
names.

Here the program outwits Nagios with a trick: dot.png is a graphic that is
one pixel in size, which is invisible on the screen. To create a second, visible
icon, graph.png, around it, a hyperlink is set to the CGI script graphs.cgi.

Normally if you click on an image specified in icon_image, Nagios will take
you to the Extended info page, and the graphic can be reached at url (Na-
gios: notes_url) only with another mouse click. With the trick used here,
you can do this directly.

The specification following icon_image_tag must be written on a single line
(without the \ sign used here). Figure 17.7 shows the icon graph.png, which
is visible on the Nagios interface, thanks to the automatically generated
serviceextinfo objects.

Figure 17.7:

The NagiosGrapher

icon (arrow) in the

Nagios Web interface

indicates a

time-related

evaluation for this

service

340

17.5 Automated to a Large Extent: NagiosGrapher

log_file
This defines the log file to which the NagiosGrapher writes information. If
you want log rotation, you have to set it up yourself, as NagiosGrapher
does not clean up automatically. Because Nagios requries write permis-
sions for the file, it is better stored in the Nagios var directory (in this case:
/var/nagios).

log_level
This parameter specifies what information the log file should contain. Possi-
ble values are 1 (detected services and values), 2 (performance data delivered
by Nagios which has not been recognized by NagiosGrapher), 4 (program
states), 8 (information on the serviceextinfo object), 16 (RRD actions), and
32 (input which is read from the pipe). If you want to log several of these
information types, you just add the relevant values together, so the most
extensive output is obtained with 63; page 349 shows an example of this. It
is recommended that you only use these log levels for debugging purposes,
and you should normally use 0 or 4.

rrd_color_*
The rrd_color options bring color to the Web interface (Figure 17.8): rrd_
color_background defines the background color for the entire image, rrd_
color_font the font color, rrd_color_arrow the color of the arrow tips,
rrd_color_frame the frame color for the keys, rrd_color_grid the grid color,
and rrd_color_canvas the background of the diagram itself. Colors are spec-
ified as RGB values in hexadecimal notation, with a preceding #, as is the
norm for Web pages.

Changes to these options take effect immediately the next time the Web
page is reloaded.

Figure 17.8:

The influence of the

rrd_color_* color

options

fe_use_browser_all
From version 1.2, NagiosGrapher provides a method of switching from the
display of a specific service to that of other services for any host at all. To do

341

17 Graphic Display of Performance Data

this it integrates a selection window into the graphs.cgi display (see Figure
17.9).

The value 1 activates the pulldown menus host and service, 0 hides them.

Figure 17.9:

Whether

NagiosGrapher shows

the host and services

fields is determined

by the

fe_use_browser

parameters

fe_use_browser_for
This option allows particular users to use the host/service selection. Several
users can be specified, separated by commas. So that only the users specified
here can see the selection fields for host and service, fe_use_browser_all
must also be set to 0 at the same time.

fe_use_browser_url
This option allows the selection fields for host and service to be inserted
through the URL graphs.cgi?browser=1, provided the value is 1. This is not
possible if the value is 0.

Since version 1.3-dev, NagiosGrapher has two other configuration parameters:
cfg_dir and cfg_file. cfg_file allows configuration details in a file specified as
an argument to be taken into account as well, and with cfg_dir you can specify a
directory that contains additional configuration files:

cfg_dir=/etc/nagios/ngraph.d

NagiosGrapher examines it recursively for configuration files of any name; they
just need to end in .ncfg.

Both parameters must stand outside the config{} block and all ngraph{} blocks;
there has to be an = sign between the parameter and the value.

Configuring the graphics—the basic principle

ngraph objects are used to define what data is to be extracted and written to an
RRD database, but the objects also contain information on the display form. While

342

17.5 Automated to a Large Extent: NagiosGrapher

the data collection script collect2.pl only reads the configuration file ngraph.ncfg
when it starts or after a reload, the CGI script graphs.cgi accesses it constantly. So
changes to the graphic display take effect immediately the next time the Web page
is loaded, but other corrections only appear after a reload with /etc/init.d/nagios_
grapher reload.

So that NagiosGrapher can graphically display the average response time rta (round
trip average) and the pl (packet loss) from the performance data of the check_icmp
plugin,

nagios@linux:libexec/nagios$./check_icmp -H linux01

OK - eli02: rta 96.387ms, lost 0%| rta=96.387ms;200.000;500.000;0; pl=0%;

40;80;;

the following ngraph objects are used:

ngraph.ncfg

...

Ping Packet loss

define ngraph{
service_name PING

graph_perf_regex pl=([0-9]*)%

graph_value Loss

graph_units %

graph_legend Packet Loss

page Packet Loss

rrd_plottype LINE2

rrd_color ff0000

}
Ping RTA

define ngraph{
service_name PING

graph_perf_regex rta=([0-9]*_[0-9]*)

graph_value RTA

graph_units ms

graph_legend Time to answer

page RTA

rrd_plottype AREA

rrd_color 00a000

}

service_name
This consists of a regular expression,17 with which the NagiosGrapher iden-
tifies the service to be displayed in the data passed on. If the service de-
scription in service objects that use the same plugin is provided with the
same prefix, one ngraph definition is enough for all: Disk_ matches both
Disk_usr, as well as Disk_var or Disk_tmp. In order for this to work, the

17 Since we have a Perl script on our hands, this is, of course, a Perl regexp.

343

17 Graphic Display of Performance Data

performance data must be structured identically, which is always the case if
the same plugin is used.

graph_perf_regex
With this regular expression, NagiosGrapher finds the value being searched
for in the performance data. The pattern in the round brackets must match
the value itself.

If a plugin does not provide any performance data, you can use graph_log_
regex instead. The search pattern specified there is applied by NagiosGrapher
to the normal text output of the plugin.

graph_value
The name of the variable in the RRD database must be unique for each
service and may not contain empty spaces or special characters (exception:
_ is allowed).

graph_units
This parameter defines the unit of the y axis.

graph_legend
This contains the key for the variables.

page
This optional parameter ensures that NagiosGrapher displays the variables in
different diagrams if the standardization does not match. All values which
are to be used in a single graphic are given the same page entry. For the
selection of the “page” to be displayed, the CGI script contains its own page
entry field (see Figure 17.10).

Figure 17.10:

The average response

time to pings,

represented by

NagiosGrapher

344

17.5 Automated to a Large Extent: NagiosGrapher

For the two check_icmp outputs, it is recommended that the percentage
of Loss, which is in the value range from 0 to 100, be separated from RTA,
which can be several thousand milliseconds.

If you leave out the page parameter, both graphs—the one for Packet Loss
and that for RTA—are displayed in one graphic.

rrd_plottype
This parameter defines which drawing function the RRDtools should use:

LINE1: simple line,

LINE2: double line,

LINE3: extra-fat line,

AREA: filled out surface,

STACK: adds the current value to the previous one. In this case the display
(line or surface) depends on the previous value.

rrd_color
This is the color of the graph in RGB hexadecimal notation (rrggbb).

Figure 17.10 shows how NagiosGrapher displays the average response time RTA
for the PING service on the host sap-13. The respective output page page can be
selected at the top of the Web form. In addition you can adjust the width: and
height: of an individual graphic, as well as the refresh rate.

Advanced options of graphic reprocessing

You may not always want the measured values to be displayed directly. With the
CDEF feature of the RRDtools you can add new values that are calculated from the
ones recorded.

As an example, we will use the output of the check_disk plugin (section 7.1, page
134), which determines amount of a file system occupied:

DISK OK - free space: /usr 287 MB (19%);| /usr=1225MB;1359;1465;0;1511

The used space is shown as an orange area, the free capacity as a green one. The
performance data provides the current used space (1225MB) and uncritical warn-
ing limits, as well as the minimum and maximum (the size of the file system). The
capacity that is still free is determined as the difference between the maximum and
the current occupied space. In addition, the unit of MB is somewhat unfortunate:
the graphic would show 10 GB as 10k MB.

For this reason you first determine the value that the plugin returns, so that you
can then scale it as you wish:

345

17 Graphic Display of Performance Data

(1) readout current occupancy of hard drive space,

but do not show it as a graphic

define ngraph{
service_name fs_

graph_perf_regex =([.].+)MB;[.].+;[.].+;[.].+;[.].+

graph_value disk_used

graph_units Bytes

graph_legend used space

rrd_plottype AREA

rrd_color 00a000

hide yes

}

The regular expression specified after service_name matches all service descrip-
tions that start with fs_ (short for file system), that is, fs_root, fs_usr, fs_var,
fs_tmp, etc. The parameter hide ensures that the CGI script does not show the
graphs. Instead, NagiosGrapher just stores the data in a database.

In the second step, the values determined are standardized with the RRD feature
CDEF:

(2) display used hard drive space in scaled form

define ngraph{
service_name fs_

type CDEF

graph_value DISK_USED

graph_legend used space

graph_calc disk_used,1024,1024,*,*

rrd_plottype AREA

rrd_color FFaa00

hide no

}

type identifies the entry as a CDEF definition, which calculates new values from
already existing ones. graph_value must be unique, which is why the entry here is
given its own name.

graph_calc finally processes the data. This parameter expects the instructions in
reverse Polish notation (RPN).18 In this, the values to be processed are pushed, in
turn, onto a stack, to be removed and operated on later.

Adding 2 + 3 is noted in RPN accordingly as 2,3,+. In the example we multiply the
variable defined on page 345, disk_used, by 10242 so that the result is in bytes.
hide no now ensures that this value is displayed.

To display available space according to the same pattern, we first determine the
entire space available (disk_max), which NagiosGrapher should not display, calcu-
late the difference between disk_max and the above disk_used value, and convert
the result to bytes:

18 An introduction to RPN can be found at http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/
tut/rpntutorial.en.html.

346

17.5 Automated to a Large Extent: NagiosGrapher

(3) defining the space available,

but not displaying it in the graphic

define ngraph{
service_name fs_

graph_perf_regex =[.].+MB;[.].+;[.].+;[.].+;([.].+)

graph_value disk_max

graph_legend max space

rrd_plottype LINE2

rrd_color 0000a0

hide yes

}
(4) calculate and display free space

define ngraph{
service_name fs_

type CDEF

graph_value DISK_MAX

graph_legend free space

rrd_plottype STACK

rrd_color 44FF44

graph_calc disk_max,disk_used,-,1024,1024,*,*

hide no

}

The corresponding formula is (disk_max – disk_used)×10242. The plot type STACK
ensures that the value determined from the previous disk_used value is placed on
top of this. Figure 17.11 shows a corresponding output.

Figure 17.11:

The lower part of the

screen represents the

current used space on

the file system for the

past week, month,and

year, and the top part

shows the remaining

free hard drive space

347

17 Graphic Display of Performance Data

At this point it should again be emphasized that with this definition, NagiosGra-
pher automatically records all services that begin with fs_ and are matched by the
search pattern, writes the data to an RRD database, and generates a correspond-
ing serviceextinfo entry, which appears automatically in the Web interface after a
Nagios reload (see Figure 17.7 on page 340).

After changes have been made to the configuration file ngraph.ncfg, the file col-
lector collect2.pl must also be restarted:

linux:˜ # /etc/init.d/nagios_grapher restart

Nagios configuration

Nagios passes on data for NagiosGrapher through the command interface, that is,
each individual result leads to an external command being started. Correspond-
ingly, the Nagios main configuration file contains the following parameter:

/etc/nagios/nagios.cfg

...

process_performance_data=1

service_perfdata_command=process-service-perfdata

...

The definition of the command object process-service-perfdata in the file misc-
commands.cfg is as follows:

misccommands.cfg

...

define command{
command_name process-service-perfdata

command_line /usr/local/nagios/nagiosgrapher/fifo_write.pl \
/var/nagios/ngraph.pipe \
’$HOSTNAME$\t$SERVICEDESC$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$\n’ 3

}
...

process-service-perfdata calls the script fifo_write.pl, which is given three argu-
ments as parameters: the named pipe, a string with the performance details, and a
timeout in seconds. The latter ensures that the script aborts the action if the data
cannot be written within three seconds. The command_line must, as usual here,
be writen on one line (without the \ used here, as in the rest of the book, as a line
continuer).

If changes are made to the Nagios configuration, it needs to be reloaded:

linux:˜ # /etc/init.d/nagios reload

348

17.6 Other tools and the limits of graphic evaluation

The success of this can be easily seen in the log file if you set the log level to 63:19

PRG: Restarting collect2.pl ...

PIPE: eli02 fs_root DISK OK - free space: / 378 MB (80%): /=92MB;423;446

;0;470

VALUES: [eli02][fs_root]: disk_used=92 disk_max=470

RRD: rrdtool update /var/lib/rrd/nagiosgrapher/eli02/959ca0df9516ad1f52c

05490202f1a6d.rrd --template=disk_used:disk_max N:92:470

PIPE: eli02 Room Temperature S1 OK: Value lpt1.1: /22.67/

VALUES: [eli02][Room Temperature S1]:No Action taken...

The label PRG identifies program states, such as the restart here. PIPE reproduces
in full all the data taken from the named pipe (host name, service description,
plugin output, and performance data, each separated by a tab). RRD reveals the
commands performed with rrdtool and VALUES shows the recognized (fs_root) or
unrecognized values (room temperature S1).20

17.6 Other tools and the limits of graphic
evaluation

Apart from the tools introduced here, http://www.nagiosexchange.org/ provides
further tools for the graphic evaluation of performance data. Many of these are
also based on the RRDtools and round-robin databases, the consequence of which
is that they are not much use for exact evaluations over several years, just like the
ones described here.

Several tools, such as the current APAN21 version, save their data in an SQL database,
thus enabling long-term statistics without data loss.

PerfParse (http://perfparse.sf.net/) is relatively new, but very extensive, and it stores
data in a MySQL or PostgreSQL database and also includes its own wide range of
evaluation tools. Because it uses various current libraries which are not included in
every distribution, the installation hurdles are quite high. In Debian Woody, Perf-
Parse cannot even be compiled from the source code without the installation of
several additional libraries, and even in Debian Sarge there are still problems with
the PostgreSQL database. For this reason, this book will not go into a detailed
description of the program.

For all the options it offers, the graphical display of Nagios performance data also
has its limits. If you check WAN connections with a ping to a remote host and
measure the average response time, all the pretty graphics don’t mean much if
the check interval is only every five minutes. You will receive only a momentary

19 To keep the output clearer, we have omitted the timestamp at the beginning of the line.
20 For this last item we have not created an ngraph entry.
21 http://apan.sf.net/.

349

17 Graphic Display of Performance Data

snapshot every five minutes, which does not provide any serious clues to the traffic
load of the connection over a period of time.

To be able to sensibly assess the load of a Unix computer reported by a plugin ev-
ery one, five, and 15 minutes, the check interval should be one minute. Less critical
data are such things as used hard drive space or temperature. Equally noncritical is
the display of network traffic, for which the plugin displays the values as a counter.
RRD-based tools can automatically detect the difference between two measure-
ments and display them; it makes no difference here whether the check interval is
one, two, or five minutes; no data is lost.

If the measuring precision of Nagios leaves something to be desired, you can deploy
other tools in parallel, such as Cricket22 or Cacti.23 If the external tool works with
RRD databases, you can check these for critical values, so that they are included
in the sophisticated Nagios notification system. Alternatively the external tool can
provide an interface with which recorded data can be further processed. These
can be passed on as a passive test result to Nagios, for example using NSCA (see
Chapter 14).

But an additional tool always has the disadvantage of adding to the configuration
effort. Whether this is justified, or whether Nagios performance monitoring is
sufficient, depends on the information required in a particular situation.

22 http://cricket.sourceforge.net/
23 http://www.cacti.net/

350

Special Applications

18 Ch
ap

te
r

Monitoring Windows Servers

You don’t always deal with a homogeneous server landscape consisting of just
Linux or Linux/Unix computers. As long as you are just monitoring pure network
services, operating systems make no difference. But if you want to query local,
non-network-capable resources, that is a different matter altogether.

With Unix-based systems such as Mac OS X, you can normally use the tools de-
scribed so far (local plugins, NRPE, NSCA). In Windows you have to find other solu-
tions. To some extent, local plugins can be run and/or compiled in an environment
emulating Unix (for example, Cygwin1). Because of the different philosophies of
the operating system families, there are peculiarities as well, features in one oper-
ating system that are not comparable with anything in the other operating system.
So although the Windows Eventlog fulfils much the same purpose as syslog in Unix,
it is queried in a completely different way, seen from a technical point of view. Here
you cannot simply compile the Unix plugin in Windows and then use it.

1 http://www.cygwin.com/

353

18 Monitoring Windows Servers

One monitoring approach for Windows servers is to use SNMP, for which Microsoft
includes a native implementation that just needs to be installed. Since the SNMP
query of a Windows agent does not differ in principle from that of other SNMP
agents, we refer you to Chapter 11, page 177. The Microsoft implementation,
however, does not always work reliably where the display of figures—particularly
CPU load and hard drive space—is concerned.

But local Windows resources can also be queried if you install a service on the Win-
dows server that can be addressed over the network. The services include NSClient
and NC Net. Alternatively, NRPE NT, NRPE can be used. This opens up the entire
world of Windows scripting: every Windows script that queries local resources can
be extended so that it provides a return value and a one-line text output, just as a
Nagios plugin does.

18.1 NSClient and NC Net

The packages NSClient and NC Net install services in Windows that can be queried
with the plugin check_nt. NSClient is older, more widely tested, and in widespread
use, but it is no longer being actively developed. The last current version is from
October 2003; the package can be downloaded from the Nagios Exchange.2 It also
runs in Windows NT, Windows 2000, Windows XP and Windows 2003.

NSClient’s successor, NC Net by Tony Montibello,3 can replace NSClient on the
Windows server without the need to change anything in the Nagios configura-
tion. This package is currently being developed very actively, and it is based on the
.NET framework, so it requires at least Windows 2000.

With NSClient++4 by Michel Medin there is yet another development branch that
is intended to replace NSClient, and ultimately NRPE NT as well. But it does have
the disadvantage that it is not run-compatible with NSClient or NC Net. The
project is still in a very early stage of development. Even its author does not cur-
rently recommended it being used in a production environment, which is why we
shall not discuss it further here.

18.1.1 Installation

NSClient

For the NSClient installation, you unpack the archive nsclient_201.zip. This creates
subdirectories named according to the architecture: Win_NT4_Bin for Windows

2 http://www.nagiosexchange.org/Windows.49.0.html
3 http://www.shatterit.com/NC_Net
4 http://nscplus.sourceforge.net/

354

18.1 NSClient and NC Net

NT and Win_2k_XP_Bin for Windows 2000 and higher. Copy the contents of the
appropriate folder to the directory C:\Programs\NSClient and install NSClient from
there as a service:

C:\Programs\NSClient> pNSClient.exe /install

C:\Programs\NSClient> net start nsclient

Running pNSClient.exe /install installs the service, and the switch /uninstall re-
moves the service again. Using the services management you should make sure
that the operating system starts automatically.

NSClient has two parameters: port and password, with the defaults port 1248
and password none. The values can only be changed (with regedit) in the registry
under HKEY_LOCAL_MACHINE\SOFTWARE\NSClient\Parms.

NC Net

Before you install the most current version from http://www.shatterit.com/NC_
Net, it is essential that any previous version installed is first uninstalled. Since
NC Net uses the Microsoft Installer, you do this through the software administra-
tion utility. Even an NSClient that might exist should be removed first.

Double clicking on the file NC_Net_setup.msi installs the service, but you should
check in the service management that it really is running, and whether or not
automatic is entered as the starting type.

NC Net has the same parameters as NSClient, with password and port, but these
can also be specified in the services management under properties in the Start
parameters line:

port 4711 password password

18.1.2 The check_nt plugin

When installing the standard Nagios plugins, the check_nt plugin is automatically
loaded to the hard drive. It only has the same range of functions as NSClient,
however. To make use of the extensions of NC Net, you must download the ex-
tended source code (the file check_nt.c) from http://www.shatterit.com/NC_Net
and compile it yourself.

The actual effect that the check_nt parameters have, described below, depends on
the command that is specified with the -v option, and which you can read about
in more detail in Section 18.1.3 on page 356:

355

18 Monitoring Windows Servers

-H address / --host=address
IP address or host name of the host on which the NSClient/NC Net is in-
stalled.

-v command / --variable=command
The command to be executed.

-p port / --port=port
This defines an alternative port for NSClient/NC Net. The default is TCP port
1248.

-w integer / --warning=integer
This defines a warning limit. This option is not available for all commands.

-c integer / --critical=integer
The critical limit option is also not available for all commands.

-l parameter
This is used for passing parameters along, such as the drive for the hard drive
check or the process name when checking processes.

-d option
When checking services or processes, you can specify several services or
processes simultaneously. Normally check_nt then only shows the defec-
tive ones (-d SHOWFAIL). To have all of them displayed you must specify
SHOWALL as the option.

-s password
A password for authentication is only required if NC Net or NSClient starts
the corresponding service with the password parameter.

-t timeout / --timeout=timeout
After timeout seconds have elapsed, the plugin aborts the test and returns
the CRITICAL state. The default is 10 seconds.

18.1.3 Commands which can be run with NSClient and
NC Net

For the commands introduced here, it makes no difference whether NSClient and
NC Net is installed; they can be run with the unpatched check_nt.

Querying the client version

The version of the installed NSClient or NC Net service is returned by running the
command

356

18.1 NSClient and NC Net

check_nt -H address -v CLIENTVERSION

All other arguments are ignored:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v CLIENTVERSION

NC_Net 2.21 03/13/05

Command and service definitions are not very spectacular, but the latter is ex-
tremely useful in describing dependencies:

define command{
command_name check_nt_nsclient

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v CLIENTVERSION

}

define service{
host_name winsrv

service_description NSClient

check_command check_nt_nsclient

...

}

If NSClient/NC Net fails on the Windows server, Nagios normally informs the ad-
ministrator of all services which have presumably failed. This problem is similar to
one with NRPE, which in that case was solved through the definition of dependen-
cies (see Section 12.6, page 234). This is also the case when using NSClient/NC Net:

define servicedependency{
host_name winsrv

service_description NSClient

dependent_host_name winsrv

dependent_service_description Disks,Load,Memory

notification_failure_criteria c,u

execution_failure_criteria n

}

With NSClient as a master service on which the other services are dependent,
Nagios does not trouble the admins with messages from these other services, as
long as NSClient is in a CRITICAL or UNKNOWN state.

CPU load

How heavy the load is on the processor is revealed by the command CPULOAD:

check_nt -H address -v CPULOAD -l interval,warning limit,critical_limit

357

18 Monitoring Windows Servers

It expects a triplet of parameters, separated by commas, consisting of the length
of the time interval that is to be averaged, in minutes, and the two thresholds for
the warning and critical limits in percent. So CPULOAD, with 5,80,90, forms the
average over five minutes and issues a warning if the value determined exceeds 80
percent. If there is over 90% CPU load, the command returns CRITICAL:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v CPULOAD -l 5,50,90

CPU Load 10% (5 min average) | ’5 min avg Load’=10%;50;90;0;100

The output here also contains additional performance data after the | sign, which
Nagios ignores in the Web interface. If you are interested in average values over
several intervals, you just add further triplet values following to the first one:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v CPULOAD \
-l 5,80,90,15,70,80

CPU Load 10% (5 min average) 10% (15 min average) | ’5 min avg Load’=10

%;80;90;0;100 ’15 min avg Load’=10%;70;80;0;100

In this example CPULOAD checks two intervals: the past five minutes and the past
15 minutes. In the second case there are deviating limit values. The plugin always
returns the more critical value; for example, it returns CRITICAL if one interval
issues CRITICAL and the other just a WARNING.

The command and service definitions therefore look like this:

define command{
command_name check_nt_cpuload

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v CPULOAD -l $ARG1$

}

define service{
host_name winsrv

service_description CPU Load

check_command check_nt_cpuload!5,80,90,15,70,80

...

}

Main memory usage

When specifying the limit values, the command for monitoring the amount of main
memory used—in contrast to CPULOAD—is based on the syntax of “normal” Nagios
plugins:

check_nt -H address -v MEMUSE -w integer -c integer

358

18.1 NSClient and NC Net

MEMUSE returns the memory usage in percent. It should be remembered that Win-
dows refers here to the sum of memory and swap files, that is, the entire available
virtual memory. The command expects the warning and critical limits as percent-
ages, given without a percent sign:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v MEMUSE \
-w 70 -c 90

Memory usage: total:4331.31Mb - used: 257.04Mb (6%) - free: 4074.27Mb (9

4%) | ’Memory usage’=257.04Mb;3031.91;3898.18;0.00;4331.31

On the example host, winsrv, only six percent of the virtual memory is used. The
fact that the physical size of the main memory itself (here: 256 MBytes) is already
exceeded is not shown in the output.

It does not necessarily make sense, however, to request the memory usage as in
Unix: Windows regularly swaps program and data code from the main memory,
even when it still has spare reserves. In Unix, programs and data land in the swap
partition only if more space is required than is currently free. In this respect the
load of the entire virtual memory in Windows is the more important parameter.

The command mentioned above is again packed into a command and a service
object:

define command{
command_name check_nt_memuse

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v MEMUSE \
-w $ARG1$ -c $ARG2$

}

define service{
host_name winsrv

service_description MEM Usage

check_command check_nt_memuse!70!90

...

}

Hard drive capacity

The load on a file system is tested by USEDDISKSPACE:

check_nt -H address -v USEDDISKSPACE -l drive letter -w integer -c integer

in Windows fashion, the file system is specified as drive letters, the limit values in
percent:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v USEDDISKSPACE\
-l C -w 70 -c 80

359

18 Monitoring Windows Servers

C: - total: 4.00 Gb - used: 2.06 Gb (52%) - free 1.94 Gb (48%) | ’C: Use

d Space’=2.06Gb;2.80;3.20;0.00;4.00

nagios@linux:nagios/libexec$ echo $?

0

In the example, check_nt should issue a Warning if drive C is more than 70 percent
full, and a CRITICAL if the load exceeds 80%. The current value lies at 52 percent,
so check_nt therefore returns an OK, which you can check with echo $?.

The corresponding command and service objects would look something like this:

define command{
command_name check_nt_disk

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v USEDDISKSPACE \
-l $ARG1$ -w $ARG2$ -c $ARG3$

}

define service{
host_name winsrv

service_description Disk_C

check_command check_nt_disk!C!70!80

...

}

Uptime

How long ago the last reboot was performed is revealed by the command UPTIME:

check_nt -H address -v UPTIME

Defining a warning or critical limit is not possible, which is why such a query is
only for information purposes (the plugin returns either OK, or UNKNOWN if it is
used wrongly):

nagios@linux:nagios/libexec$./check_nt -H winsrv -v UPTIME

System Uptime - 17 day(s) 9 hour(s) 54 minute(s)

so the host winsrv has already been running for 17 days. The definition of the
corresponding command and service objects is trivial:

define command{
command_name check_nt_uptime

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v UPTIME

}

360

18.1 NSClient and NC Net

define service{
host_name winsrv

service_description UPTIME

check_command check_nt_uptime

...

}

Status of services

The current status of Windows services can be checked with SERVICESTATE:

check_nt -H address -v SERVICESTATE -d SHOWALL -l service1,service2,...

The optional -d SHOWALL ensures that the output text lists all services. If you
leave this option out, the plugin provides information only on those services that
are not running.

To find the name of the service description to be specified for NSClient after the -l
option is quite a challenge. It is not the display name which is displayed by the
services management (e.g., Routing and RAS), that is being sought, but the registry
entry that corresponds to this. Accordingly you search with the Registry editor
regedit in the partial tree HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services for the node with the corresponding display name. It contains the service
description being sought, which in the case of Routing and RAS is something like
RemoteAccess.

If you use NC Net, you have an easier task: the software accepts both the service
description and the display name, in which no distinction is made between upper
and lower case. The following two examples use the display name:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v SERVICESTATE \
-l "Routing and RAS"

Routing and RAS: Stopped

nagios@linux:nagios/libexec$./check_nt -H winsrv -v SERVICESTATE \
-l "VNC Server"

All services are running

The service Routing and RAS is currently not running, and check_nt returns the
return value 2 (CRITICAL). The fact that the VNC server is performing its services
correctly is only revealed indirectly without -d SHOWALL, on the other hand. The
plugin here returns 0 (OK) as the return value. Several services can be included
in a single command, separated by a comma. The corresponding return value is
dictated by the “worst case.”

The matching command and service objects look something like this:

361

18 Monitoring Windows Servers

define command{
command_name check_nt_service

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v SERVICESTATE \
-l $ARG1$

}

define service{
host_name winsrv

service_description Routing and RAS

check_command check_nt_service!"Routing and RAS"

...

}

Status of processes

As with the services, PROCSTATE monitors running processes:

check_nt -H address -v PROCSTATE -d SHOWALL -l process1,process2,...

The process name, which almost always ends in .exe, is best determined in the
process list of the task manager; upper and lower case are also ignored here:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v PROCSTATE \
WinVNC.exe,winlogon.exe,notexist.exe

notexist.exe: not running

As with the services, you can also specify a list of several processes, separated by
commas. Without -d SHOWALL, PROCSTATE shows only those processes that are
not running, in this example, notexist.exe.

The corresponding command and service definitions look like this:

define command{
command_name check_nt_process

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v PROCSTATE \
-d SHOWALL -l $ARG1$

}

define service{
host_name winsrv

service_description WinVNC

check_command check_nt_process!winvnc.exe

...

}

362

18.1 NSClient and NC Net

Age of files

It is worth monitoring the time since the last modification of critical files with
FILEAGE, particularly for log files and other files that change regularly:

check_nt -H address -v FILEAGE -l path -w integer -c

integer

The command needs the filename together with its complete path, and backslashes
must be doubled, as in C:\\xyz.log. The units for threshold values are minutes, and
if they are exceeded, FILEAGE will issue a WARNING or CRITICAL. The time since the
last modification is given by the command, by default, in epoch seconds (seconds
since January 1, 1970):

nagios@linux:nagios/libexec$./check_nt -H winsrv -v FILEAGE \
-l "C:\\test.log" -w 1 -c 20

1113158517

nagios@linux:nagios/libexec$ echo $?

1

The status can again be checked with echo $?. Here as well, the command and
service definitions do not hold any secrets:

define command{
command_name check_nt_fileage

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v FILEAGE \
-l $ARG1$ -w $ARG2$ -c $ARG3$

}

define service{
host_name winsrv

service_description Log file

check_command check_nt_fileage!C: xyz.log!60!1440

...

}

18.1.4 Advanced functions of NC Net

NC Net’s range of functions is expanding constantly; this chapter describes the
possibilities that go beyond NSClient for version 2.21. Many of them, especially the
ENUM* functions, are only suitable for direct use in Nagios in exceptional cases.
But they are very useful if you need to find out the precise name of a service, a
process, or a Windows Performance Counter.

363

18 Monitoring Windows Servers

The extensions require an up-to-date check_nt plugin, whose source code consists
of a single file, check_nt.c. It is copied to the hard drive during the installation of
NC Net, but it can also be downloaded separately from http://www.shatterit.com/
nc_net.

The source can currently be compiled without problems only in combination with
the entire Nagios plugin package (see Section 1.2, page 30). To do this, you over-
write the existing file check_nt.c in the subdirectory plugins with the extended
version. The old check_nt binary must be deleted; then you run make check_nt to
recompile the source file. Afterwards you copy the binary to the libexec directory
of Nagios, along with the other plugins:

linux:˜ # cp check_nt.c /usr/local/src/nagios-plugins-1.4/plugins

linux:˜ # cd /usr/local/src/nagios-plugins-1.4/plugins

linux:nagios-plugins-1.4/plugins # rm check_nt

linux:nagios-plugins-1.4/plugins # make check_nt

linux:nagios-plugins-1.4/plugins # cp check_nt /usr/local/nagios/libexec/.

Windows Performance Counter

Through so-called Performance Counters, Windows provides values for everything
in the system that can be expressed in numbers: hard drive usage, CPU usage,
number of logins, number of terminal server sessions, the load on the network
interface, and many more things.

check_nt -H address -v ENUMCOUNTER -l category1,category2

If you omit the -l parameter, ENUMCOUNTER will display a list of all performance
counter categories:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v ENUMCOUNTER

... Processor; ... Terminal services; .NET CLR loading procedure; tot

al RAS services; Process; ...

Otherwise, it shows all counters in the category specified with -l. Several categories
are separated with commas. The Terminal services category contains three counter
objects in all:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v ENUMCOUNTER \
-l Terminal services

Terminal Services: Total Sessions; Active Sessions; Inactive Sessions

nagios@linux:nagios/libexec$./check_nt -H winsrv -v ENUMCOUNTER \
-l "Terminal Services","Process"

Terminal Services: Total Sessions; Active Sessions; Inactive Sessions -

Process: % Processor Time; % User Time; % Privileged Time; Virtual Bytes

Peak; Virtual Bytes; Page Faults/sec; Working Set Peak; Working Set; ...

364

18.1 NSClient and NC Net

The precise object name is important for later use, in which the % sign (as, for
example, in % Processor Time) is part of the name. If the counter or category
name contains spaces, you must remember to place it within quotation marks when
formulating the the request.

The description stored in the Windows Performance Counter objects are shown, by
the way, with the command ENUMCOUNTERDESC.

Several counter categories contain instances, which you must specify when query-
ing a counter object. For this reason you should always check first, using the IN-
STANCES function, whether the category you want works with instances:

check_nt -H address -v INSTANCES -l category1,category2

For the terminal services, this is not the case:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v INSTANCES \
-l "Terminal Services"

Terminal Services:

Typical categories with instances are Processor or Process:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v INSTANCES \
-l "Process"

Process: svchost#6,svchost,Idle,explorer,services,...

Here it becomes apparent what is meant by instances: Windows views every run-
ning process as an instance in the Process Performance Counter category. As can
be seen on page 364, the counter object (% Processor Time), which contains the
percentage use of processor time), is in this category. It can be queried only for in-
dividual instances, such as for the explorer process, or for all processes together—
then you specify _Total instead of an instance.

In order to access a Windows Performance Counter, therefore, you always need to
give the following details:

\category\counter object

\category(instance)\counter object

The instance is specified only if the category has instances available. There must
be no space between the category name and the first bracket. The correspond-
ing query command is called COUNTER; the placeholder name is replaced by the
combination just described:

check_nt -H address -v COUNTER -l name,format description -w integer -c integer

365

18 Monitoring Windows Servers

This function asks after the Windows Performance Counter object that is specified
after the -l option with its exact name. The warning and critical limits given as
integer values refer to the size measured: if an object is involved that has a per-
centage figure (e.g., the processor load), just imagine a percent sign added to it; the
numbers of processes, sessions, etc., are just values that are not specified in units.

The number of active sessions is checked with the Active Sessions object, for which
there are no instances:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v COUNTER \
-l "\Terminal Services\Active Sessions"

1

nagios@linux:nagios/libexec$./check_nt -H winsrv -v COUNTER \
-l "\Process(Idle)\% Processor Time"

98

Because the Idle instance always looks at the difference between used and spare
processor load, so that the sum of the two is always 100 percent, querying the
_Total pseudo-instance in the second example does not make much sense.

Normally COUNTER does not format its output. This can be changed by following
the object name with a description in the printf format,5 separated from it with a
comma:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v COUNTER \
-l "\Process(Idle)\% Processor Time","Idle Process: %.2f %%"

Idle Process Usage is: 54.00 % | ’Idle Process Usage is: %.2f %%’=54.000

000%;0.000000;0.000000;

Not only does this cause the output to be clearer, it also returns additional perfor-
mance data.

The Nagios command and the corresponding service definition then look like this:

define command{
command_name check_nt_counter

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v COUNTER \
-l$ARGV1

}

define service{
host_name winsrv

service_description Idle Time

check_command check_nt_counter!"\Process(Idle)\% Processor Time","Idle \
3 Process: %.2f %%"

...

}

5 man 3 printf

366

18.1 NSClient and NC Net

The two functions COUNTER and INSTANCES also belong to the NSClient range of
functions, but they are extremely difficult to handle there. If you want to use them,
you are well advised to switch to NC Net.

Listing processes and services

To find out the names of processes, you can work your way through the Task
Manager—or have a list of all running processes displayed with ENUMPROCESS:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v ENUMPROCESS

System Idle Process; System; smss.exe; csrss.exe; winlogon.exe;

services.exe; lsass.exe; svchost.exe; svchost.exe; svchost.exe;

...

The equivalent command for listing all installed services is ENUMSERVICE:

check_nt -H host -v ENUMSERVICE -l typ,short

The optional -l restricts the output to specific categories (see Table 18.1):

nagios@linux:nagios/libexec$./check_nt -H winsrv -v ENUMSERVICE

\ -l manual,short

ALG; AppMgmt; BITS; COMSysApp; dmadmin; EventSystem; HTTPFilter;

LPDSVC; MSIServer; Netman; Nla; NtFrs; NtLmSsp; NtmsSvc; RasAuto;

...

With the short option, ENUMSERVICE displays the service names as they are en-
tered in the registry; if you leave out the keyword, it shows the display names.

Table 18.1:

Limiting options for

ENUMSERVICE

Type Description

all all services

running all currently active services

stopped all services which have been stopped

automatic services starting automatically

manual services which must be started manually

disabled disabled services

367

18 Monitoring Windows Servers

Querying the Windows event log

With the EVENTLOG command, the Windows Event Log can be queried:

check_nt -H address -v EVENTLOG -w integer -c integer

-l eventlog,event type,interval,source filter,description filter,

id-filter

Using it does take some getting used to, however:6 the first three parameters to
follow -l select the events to be taken into account by type and by time. The place-
holder eventlog is replaced with one of the three log areas application, security,
or system that you want to look at. If EVENTLOG is to include all three, you just
specify any; but you cannot choose only two of the three areas.

For the event type you can choose from error, Warning, Information, or any for
all three.

In place of interval you specify a time interval in minutes: 5 limits the selection
to events which occurred in the last five minutes, for example; 1440 stands for a
whole day.

The last three parameters in effect work as filters with which specific results can
be determined from the preselection that all originate from a particular source
(the source filter placeholder), that contain a specific pattern in their descriptions
(description filter), or that have a specific event ID (id-filter).

Each of these filters consists of two parts: in the first an integer reveals how many
search patterns are to follow (formulated as regular expressions in accordance with
the .NET-Regexp class), and then the actual filter entries are specified, separated
by commas. If one of the filters is not used, its placeholder is replaced with a 0,
which searches for exactly zero search patterns. A source filter which only looks for
NC_Net events would be called 1,NC_Net; if you want to search for NC_Net and
Perflib events, it would be called 2,NC_Net,Perflib.

-l any,any,5,0,0,0 evaluates all entries from all event ranges from the last five min-
utes. -l application,error,1440,0,0,0 determines all events of the type error, which
occurred in the event range application within the last 24 hours. With -l ap-
plication,error,60,1,NC_Net,0,0, the time window is set to 60 minutes and filters
the event source using the string NC_Net. Finally -l application,any,60,0,2,start,
stop,0 searches the event description for two keywords: start and stop.

With the warning and critical limits you can specify how many matching entries are
needed before the plugin returns a WARNING or CRITICAL value. If you leave out
these two parameters, Nagios shows OK as long as no events occurred; otherwise,
it shows CRITICAL.

6 According to his own comments, author Tony Montibello wanted to change the syntax for
defining services in version 2.25. But up to and including version 2.28, this resolution has not
yet been implemented.

368

18.1 NSClient and NC Net

The following example asks how many messages there were within the last 24
hours in the applications area:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v EVENTLOG \
-l "Application,any,1440,0,0,0"

9 Errors with ID: 13001;2003;1010;6013;1111;262194;26;262194;26 LAST -

ID 262194;Not all data for the file "\Device\LanmanRedirector" were

saved. Possible causes are computer hardware or the network

connection. Please specify a different file path.

The error message displayed here LAST - IDD 262194;Not all data. . . belongs to
the last entry found.

A command definition that omits details of warning and critical limits could look
like this:

define command{
command_name check_nt_eventlog

command_line $USER1$/check_nt -H $HOSTADDRESS$ -v EVENTLOG \
-l $ARG1$

}

On this basis a service could be defined that, for example, searches for errors in
all classes in the System area which occurred in the past five minutes. (When
specifying the time period you should generally ensure that it correlates with the
time period in normal_check_interval.) The service examines the descriptions of
the entries found for the text data loss. The source and ID filters are not used here:

define service{
host_name winsrv

service_description Eventlog data loss

check_command check_nt_eventlog!System,any,5,0,1,data loss,0

is_volatile 1

normal_check_interval 5

max_check_attempts 1

...

}

Log files have the characteristic of pointing out a problem only once under certain
circumstances, even if the problem continues. You must therefore ensure that
Nagios immediately makes a notification the first time the event occurs, and leaves
out repeated tests and soft states. This can be achieved with max_check_attempts
1: this immediately sets off a hard state, and notification is given right away.

But if the hard state remains, this would mean in practice that new errors might
occur in the meantime (the next test after five minutes no longer records the old
states), while the state has not changed; the admin would only be informed again

369

18 Monitoring Windows Servers

after the notification_interval has expired. For such cases, Nagios has available
the is_volatile parameter (see Section 14.5.2, page 257), with which the system
provides notification on every single error.

Displaying and manipulating the NC Net configuration

The ENUMCONFIG function displays the current settings of NC Net in a readable
form:

nagios@linux:nagios/libexec$./check_nt -H winsrv -v ENUMCONFIG

Date: 16.04.2005 18:15:10;

Version: NC_Net 2.21 03/13/05;

NC_Net Config Path: c:\Programs\shatter it\nc_net\config\;
Startup Config: c:\Programs\shatter it\nc_net\config\startup.cfg;
Debug Log: c:\Programs\shatter it\nc_net\config\deb.log;
...

Port: 1248;

Pass: None;

...

Date shows the current query date, Version the NC Net version used. NC_Net
Config Path describes the path to the configuration directory, Startup Config the
configuration file used. Debug Log specifies the log file containing the debugging
output, but only if the MYDEBUG true parameter is set in the configuration file.
Port reveals the port on which NC Net is listening, and Pass shows whether a
password has been used for the connection (None: no password).

There is also the command CONFIG to manipulate the configuration of the NC Net
installation over the network. For reasons of security you should use this for test
purposes only, and otherwise keep the function switched off. Accordingly you
should keep the following default set in the configuration filestartup.cfg:

lock_passive_config true

lock_active_config true

This means that the configuration cannot be changed from the outside.

Other functions

NC Net’s range of functions is growing all the time, and to describe all the func-
tions in detail would need a separate book. We’ll just mention a few quite useful
commands:

FREEDISKSPACE
The equivalent of USEDDISKSPACE (page 359) expects the free hard drive
capacity (instead of the used space) in percent for warning and critical limits

370

18.2 NRPE for Windows: NRPE NT

WMIQUERY
This function enables the SQL-capable WMI7 database to be queried, which
contains the .NET configuration data.

WMICOUNTER
Objects comparable to the Windows performance counters also exist in the
WMI area (only .NET); they can be queried with this.

Passive Checks
From version 2.0, NC Net also supports passive checks based on the NSCA
mechanism (see Chapter 14, page 247). A short documentation can be found
in the included passive.cfg file.

More information can be found in the file readme.html, included in the installation,
but it can also be viewed directly at http://www.shatterit.com/nc_net/files/read-
me.html.

18.2 NRPE for Windows: NRPE NT

With NRPE NT there is a version of the Nagios Remote Plugin Executor, introduced
in Chapter 10, ported for Windows. Its task is to execute plugins on the target
system if a particular test is only possible locally and no suitable network protocol
exists to query the resource concerned. As with the Unix version, the desired plug-
ins must be installed locally on the target system, apart from the daemon (in this
case: NRPE NT) and the tests must be entered in a local configuration file.

NRPE NT is based on NRPE version 2.0. This means that the same check_nrpe
plugin can be used for querying as the one for the Unix NRPE.

On the Internet a series of plugins executable in Windows can be found which
work together with NRPE NT. The first place to look is again The Nagios Exchange,
which has a separate subcategory.8 On the one hand these programs are based
on the same source code as their Unix equivalents, and were just compiled for
Windows. The ported programs also include some Perl scripts, which require an
installed version of Perl—in most cases the script language will first have to be
installed.

NRPE NT can also be used for other purposes: once installed on the Windows
server, you can use the mechanism to run other scripts remotely, apart from Nagios
plugins. If you want Nagios to restart a service remotely through the Eventhandler,
this can be done just as easily with NRPE NT.9

7 Short for Windows Management Instrumentation.
8 http://www.nagiosexchange.org/NRPE_Plugins.66.0.html
9 To execute scripts remotely on a Windows server, you can also use the Windows version of the

Secure Shell, a topic that is too large to go into in this book.

371

18 Monitoring Windows Servers

18.2.1 Installation and configuration

The current zip archive from The Nagios Exchange or http://www.miwi-dv.com/
nrpent is unpacked to a suitable directory, such as D:\Programs\Nagios\nrpe_nt:

D:\Programs\Nagios\nrpe_nt> unzip nrpe_nt.0.8-bin.zip

It contains a subdirectory bin, in which are found the daemon NRPE_NT.exe, two
DLLs for using SSL (libeay32.dll and ssleay32.dll), an example of a simple plugin
script (test.cmd), and the configuration file nrpe.cfg.

The service is installed from this directory with the command nrpe_nt -i, after
which it just needs to be started, either in the Windows services manager or from
the command line:

D:\Programs\Nagios\nrpe_nt\bin> nrpe_nt -i

D:\Programs\Nagios\nrpe_nt\bin> net start nrpe_nt

The configuration file nrpe.cfg is only slightly different from the Unix version of
NRPE 2.0 (see Section 10.3, page 170): only the directive include_dir does not
function in NRPE NT.

The file in Windows also has the classical Unix text format, so either you require a
suitable editor (notepad.exe is not sufficient) or you must edit it in Linux and copy
it afterwards to the test system.

Since there is no inet daemon in Windows, you must specify the port (standard:
server_port=5666) and the hosts from which NRPE should be addressed (you
should only enter the Nagios server here; for example: allowed_hosts=172.17.
129.2)10 in nrpe.cfg. The parameters nrpe_user and nrpe_group have no meaning
in Windows, and the other parameters correspond to those discussed in Section
10.3.

In the definition of executable commands (here for the included test plugin) you
must remember the Windows-typical syntax with hard drive letters and back-
slashes:

command[check_cmd]=D:\Programs\nagios\nrpe_nt\plugins\test.cmd

In this example the plugins are in a separate subdirectory called plugins. After
changes to the configuration file you should always restart NRPE NT:

D:\Programs\Nagios\nrpe_nt\bin> net stop nrpe_nt

D:\Programs\Nagios\nrpe_nt\bin> net start nrpe_nt

10 This security measure, however, is restricted to a simple comparison of IP addresses.

372

18.2 NRPE for Windows: NRPE NT

18.2.2 Function test

Before putting NRPE NT into service, you should check whether it is functioning
correctly. To do this, run the plugin check_nt on the Nagios server as the user
nagios, with just one host specification and no other parameters:

nagios@linux:nagios/libexec$./check_nrpe -H winsrv

NRPE_NT v0.8/2.0

If the service has been correctly installed and configured, it will reply with a version
number. Another simple test is performed by the included test.cmd plugin. It
provides a short text and ends with the return value 1:

@echo off

echo hallo from cmd

exit 1

The command to be executed (defined in the previous section) is passed to the
plugin check_nt with the -c option:

nagios@linux:nagios/libexec$./check_nrpe -H winsrv -c check_cmd

hallo from cmd

nagios@linux:nagios/libexec$ echo $?

1

The return value, determined with echo $?, must be 1 in this case, since the script
exits with an exit 1.

18.2.3 The Cygwin plugins

In the Check Plugins → Windows11 category, Nagios Exchange includes the Cyg-
winPlugins package for downloading. It consists of Nagios standard plugins, which
have been compiled for Windows with the help of the Cygwin Tools.12 Apart from
the executable plugins (*.exe) the package also contains all the necessary DLLs. It
is therefore sufficient to unpack the zip archive into a directory:

D:\Tmp> unzip CygwinPlugins1-3-1.zip

D:\Tmp> dir NagPlug

check_dummy.exe check_ssh.exe check_udp.exe cygwin1.dll

check_http.exe check_tcp.exe cygcrypto-0.9.7.dll negate.exe

check_smtp.exe check_time.exe cygssl-0.9.7.dll urlize.exe

11 http://www.nagiosexchange.org/Windows.49.0.html.
12 These are ported versions of a large number of GNU tools, including compilers, libraries, and

shells. Thanks to their open license (a GPL derivative) they have become an unofficial standard
for those who wish to port Open Source programs from the Unix world to Windows.

373

18 Monitoring Windows Servers

For the sake of simplicity, just copy the contents of the directory that is created,
NagPlug, to the plugin directory of NRPE NT:

D:\Tmp\NagPlug> copy * D:\Programs\Nagios\nrpe_nt\plugins

The plugin functions in the same way as in Linux. Table 18.2 refers to the corre-
sponding sections in this book.

Table 18.2:

Cygwin Plugins for

NRPE NT

Plugin Page Description

check_dummy.exe 154 Test plugin

check_http.exe 98 Reachability of a Web site

check_smtp.exe 92 Testing a mail server

check_ssh.exe 108 SSH availability

check_tcp.exe 110 Generic plugin

check_time.exe 146 Clock time comparison of two hosts

check_udp.exe 112 Generic plugin

negate.exe 155 Negates the return value of a plugin

urlize.exe 156 creates a link to the plugin output in the
Nagios Web interface

As in Unix, each of the corresponding command definitions in the configuration
file nrpe.cfg must be written on a single line:

command[check_web]=D:\Programs\nagios\nrpe_nt\plugins\check_http \
-H www.swobspace.de

command[check_identd]=D:\Programs\nagios\nrpe_nt\plugins\check_tcp \
-H linux01 -p 113

The first line checks whether a Web server is running on the HTTP standard port 80
of the host www.swobspace.de. The second line tests whether an identd daemon
(TCP port 113) is active on the host linux01.

18.2.4 Perl plugins in Windows

Unfortunately the Cygwin plugins do not contain a check_ping or check_icmp.
You can use the Perl script check_ping.pl instead, which is available for download
on The Nagios Exchange in the Networking category.13 It uses the Perl module
Net::Ping for the network connection. In contrast to check_tcp, check_ping.pl

13 http://www.nagiosexchange.org/Networking.53.0.html

374

18.2 NRPE for Windows: NRPE NT

sends several packets, so it can make a more precise assessment of response times
and packet losses.

An up-to-date and simple to install Perl for Windows can be obtained from ActiveS-
tate14. To download the Active Perl Free Distribution, no registration is required,
even if the download procedure would suggest otherwise. Of the versions offered,
you should use the latest Perl version (currently 5.8.7), and only fall back on the
older version 5.6.1 if this should cause problems.

The plugin script itself contains a BEGIN statement, which you must comment out
for use in Windows:

BEGIN{
push @INC, "/usr/lib/perl5/site_perl/...

}

It sends a TCP echo request to port 7, alternatively you can also explicitly set a
different port by adding the following line after the Net::Ping->new statement:

$p->port = 80;

This would cause a TCP ping to port 80 (HTTP). So that NRPE NT can execute the
script, you must explicitly start the Perl executable:

command[check_ping_eli02]=C:\Perl\bin\perl.exe \
D:\Programs\nagios\nrpe_nt\plugins\check_ping.pl \
--host 172.17.129.2 --loss 10,20 --rta 50,250

The command has been line-wrapped for the printed version, but in the configu-
ration file the whole command must be written on a single line. With the --host
parameter you specify a host name which can be resolved or an IP address, --loss
is followed by a pair of values for the warning and critical limits for packet loss in
percent, separated by a comma, (so values between 0 and 100 are possible here).
The --rta option also demands a threshold value pair as an argument, for the av-
erage response time in milliseconds. Since this is a Perl script, it does not matter if
these are specified as integers or floating comma decimals.

14 http://www.activestate.com/store/languages/register.plex?id=ActivePerl

375

19 Ch
ap

te
r

Monitoring Room Temperature
and Humidity

There are a number of sensors for monitoring room temperature and humidity.
Most of them are integrated into the network as independent network devices,
and are normally addressed via SNMP. But you have to spend at least three hun-
dred dollars on your first sensor. Searching for a cheaper and modular system, the
author finally came across http://www.pcmeasure.com/; it has met all his require-
ments until now. The fact that this chapter is restricted to this sensor is not meant
to detract from other systems, but is down to the fact that this topic alone would
be enough for a separate book.

377

19 Monitoring Room Temperature and Humidity

19.1 Sensors and Software

A complete monitoring system for physical data normally consists of three compo-
nents: a sensor (for temperature or humidity, for example), an adapter to connect
to the serial or parallel port of a PC, and software to query the sensor.1

There are adapters for the PCMeasure system in variations from one to four sensors,
which can be operated simultaneously. For the power supply the adapters need an
available USB interface; alternatively a separate “USB power supply” is available.
Instead of the adapter solution, there is also an optionally available Ethernet box
with four sensor connections, which is somewhat more expensive, that can be
expanded to accept 12 sensors.

The measurement querying software PCMeasure is available for both Linux and
Windows.2 Some features are exclusive to the Windows version, which is why it is
slightly more expensive. For use with Nagios, the Linux version is totally sufficient,
since only the measurement values are transmitted over a simple network protocol.

The sensors themselves are interesting: as well as those for temperature and hu-
midity (as well as combinations of the two) there is also a contact sensor, a smoke
and water alarm, a movement detector, and voltage detectors. These are normally
connected with a twisted-pair cable (RJ45 connector); according to the FAQ,3 they
can be used up to 100 meters from the adapter or Ethernet box, provided you have
good cables, that is, throughout a building.

19.1.1 The PCMeasure software for Linux

The tar archive pcmeasure.tar.gz with the Linux software is unpacked in its own di-
rectory, such as /usr/local/pcmeasure. The configuration file pcmeasure4linux.cfg
is also installed here. The port entries in this file need to be adjusted so that only
those ports are listed to which a sensor is actually connected:

[ports]

com1.1=01

com1 stands for the first serial port; if you are using the first parallel port instead,
the entry before the period is lpt1. The digit following the port refers to the adapter
slot used by the sensor, so depending on how many adapters you have, this is a
number from 1 to 4. The = sign is followed by the sensor type: 01 stands for a

1 The PCMeasure Web site showed the following prices as of March 2006: simple temperature
sensor 30101, $ 27; serial single-port adapter 30201 $ 39; Linux software, $ 29 (Windows:
$ 39).

2 The access data for the download comes with the invoice.
3 http://www.pcmeasure.com/faq.php

378

19.2 The Nagios Plugin check_pcmeasure

temperature sensor, 03 for a humidity sensor. An additional humidity sensor on
the second slot of the same adapter would then be addressed as com1.2=03.

The query program pcmeasure requires the configuration file to be specified as an
argument:

linux:local/pcmeasure # ./pcmeasure ./pcmeasure4linux.cfg

It runs as a daemon in the background and only ends if it is terminated with kill.
In principle, any user can start it who has read permissions for the corresponding
interface.

19.1.2 The query protocol

The software opens TCP port 4000 by default and accepts requests from the net-
work. The protocol used is quite simple: you send a text in the format

pcmeasure.interface.slot<CR><LF>

(that is, with a DOS line ending) and you receive a response in the format

port;valid=validity;value=value;...

The validity placeholder is replaced by a 1 for a valid value or 0 for an invalid
one. The port specification complies with the internal numbering system: lpt1.1
corresponds to port1, com1.1 to port13. Whether everything functions correctly
or not can be tested with telnet:

user@linux:˜$ telnet localhost 4000

Trying 127.0.0.1...

Connected to localhost.

Escape character is ’ˆ]’.

pcmeasure.com1.1

port13;valid=1;value=22.59;counter0=10627;counter1=14373;

Connection closed by foreign host.

The current temperature in this example is 22.59 ◦C, and the value is valid.

19.2 The Nagios Plugin check_pcmeasure

The plugin check_pcmeasure.pl4 enables a single sensor to be queried over the
network. It enters the values received into a round-robin database in the following
form:

4 http://linux.swobspace.net/projects/nagios.

379

19 Monitoring Room Temperature and Humidity

timestamp:value

A script called create-rrd.sh to create this database and a CGI script to display the
graphics generated (temp.cgi) can also be found at the link specified.

To be able to work with a round-robin database (see page 317) you require the
RRDtools,5) which contain the Perl module RRDs used by the plugin. If you do not
use this, you should comment out the line

use RRDs;

in the Perl code of the plugin by placing a # at the beginning of the line. The plugin
has the following options:

-H address / --host=address
This is the host name or IP address of the measuring computer on which the
software is running and to which the sensors are connected.

-S sensor port / --sensor=sensor port
This switch defines the sensor port, such as com1.1 or lpt1.2 (see above).

-p port / --port=port
This sets alternative port specifications for the TCP port of the software. The
default is port 4000.

-w floating point decimal / --warn-min=floating point decimal
If the measured value falls below the given threshold value, check_
pcmeasure sets off a warning.

-W floating point decimal / --warn-max=floating point decimal
If the measured value lies above this warning limit, the plugin gives a warn-
ing. Upper and lower thresholds can be combined.

-c floating point decimal / --crit-min=floating point decimal
The plugin issues CRITICAL if the value drops below this limit.

-C floating point decimal / --crit-max=floating point decimal
The plugin issues CRITICAL if the value goes above this threshold. It can be
combined with -c.

-R file / --rrd-database=file
This option specifies the round-robin database. If this option is missing, the
RRD Perl module can be commented out.

5 http://www.rrdtool.org/

380

19.2 The Nagios Plugin check_pcmeasure

-V / --version
This is the output of the plugin version and a short help. The plugin does not
query any sensor in doing this.

In the following example the plugin asks for the temperature of the sensor con-
nected to the host with the IP address 172.17.193.6:

nagios@linux:nagios/libexec$./check_pcmeasure.pl -H 172.17.193.6 \
-S com1.1 -W 22.0 -C 25.0

WARNING: Value com1.1: /22.6/ > 22.0

Since the measured value lies above the warning limit of 22 ◦C, but below the
critical limit of 25 ◦C, there is a WARNING.

The corresponding Nagios command can be specified with or without a round-
robin database:

define command{
command_name check_temp_max

command_line $USER1$/check_pcmeasure.pl -H $HOSTADDRESS$ \
-S $ARG1$ -W $ARG2$ -C $ARG3$

}
define command{

command_name check_temp_max_rrd

command_line $USER1$/check_pcmeasure.pl -H $HOSTADDRESS$ \
-S $ARG1$ -W $ARG2$ -C $ARG3$ -R $ARG4$

}

If it is without, you only need the maximum and critical warning limits, apart from
the sensor details. In the second variation the RRD file predefined in $ARG4$
additionally saves the measured data. The file must be created beforehand and
must be writable for the user nagios.

The following service uses the file /var/lib/rrd/temperatur-serverraum1.rrd for this
purpose:

define service{
host_name linux01

service_description Room temperature

max_check_attempts 1

normal_check_interval 2

check_command check_temp_max_rrd!com1.1!23.0!27.0!\
/var/lib/rrd/temperatur-serverraum1.rrd

...

}

With max_check_attempts set to 1, Nagios does not repeat the query in case of
an error at intervals of retry_check_interval. Instead the temperature is measured
constantly every two minutes.

381

19 Monitoring Room Temperature and Humidity

Since room temperatures normally change very slowly, you could use a normal_
check_interval of five minutes. If you choose larger measuring intervals you can
set max_check_attempts to more than 1 and repeat the measurement at shorter
intervals in case of errors (e.g., retry_check_interval 1).

382

20 Ch
ap

te
r

Monitoring SAP Systems

There are several ways of monitoring an SAP system. The simplest is just to check
the ports on which the corresponding SAP services are running. Normally these
are TCP ports 3200/3300 for system number 00, 3201/3301 for system number 01
etc. This can be done with the generic plugin described in Section 6.7.1, page 110.
But it is possible that no user is able to log in, even though the port is reachable,
because SAP-internal services fail, making it impossible to work with the system.

To really test the complex interaction of various SAP components, you require a
program that communicates on an application layer with the SAP system. There
are two alternatives here: the more simple one uses the program sapinfo, which
queries the available information without a direct login—like the SAP-GUI at the
start. With somewhat more effort you can communicate with the SAP system
over an SAP standard interface. This is no use, however, unless you have an SAP
login with corresponding permissions. With the Computing Center Management
System (CCMS), SAP provides its own internal monitoring system, which can also

383

20 Monitoring SAP Systems

be queried with the RFC1 interface, and which can be put to excellent use in Nagios,
with the right plugins.

20.1 Checking without a Login: sapinfo

The program sapinfo is part of an optional software package for the development
of client-side RFC interfaces. The Linux version which you require, RFC_OPT_46C.
SAR, can be obtained either at ftp://ftp.sap.com/pub/linuxlab/contrib/ or you can
log in to the SAP Service Marketplace at http://service.sap.com/ (a password is
required for this) and use the search help there to look for the keyword “RFC-SDK”.

20.1.1 Installation

SAP has its own archiving format in which the precompiled software is stored. To
unpack programs you require the program SAPCAR, which can also be obtained
through the FTP link mentioned or through the SAP Service Marketplace. It is
operated in a way similar to tar:

linux:˜ # mkdir /usr/local/sap

linux:˜ # cd /usr/local/sap

linux:local/sap # /path/to/SAPCAR -xvf RFC_OPT_46C.SAR

SAPCAR: processing archive RFC_OPT_46C.SAR

x rfcsdk

x rfcsdk/bin

x rfcsdk/bin/sapinfo

...

The data contained in the archive lands in its own subdirectory, rfcsdk. If you run
SAPCAR without any parameters, a short operating manual is displayed.

20.1.2 First test

The program sapinfo can be tested now without further configuration. To do this
you require the so-called connect string; if the connection is running through an
SAP gateway, this is a string such as /H/ip_of_the_sap-gateway/S/3297/H/ip_of_
the_sap_system; without a gateway you simply specify an IP address or a host
name that can be resolved, instead of this complex expression. In case of doubt, the
administrator responsible for the SAP system will reveal the exact connect string.
In addition you must specify the system number,2 in this example, 01:

1 Remote Function Call.
2 The SAP administrator will also know this.

384

20.1 Checking without a Login: sapinfo

nagios@linux:˜$ cd /usr/local/sap/rfcsdk/bin

nagios@linux:rfcsdk/bin$./sapinfo ashost=10.128.254.13 sysnr=01

SAP System Information

Destination p10ap013_P10_01

Host p10ap013

System ID P10

Database P10

DB host P10DB012

DB system ORACLE

SAP release 620

SAP kernel release 620

RFC Protokoll 011

Characters 1100

Integers LIT

Floating P. IE3

SAP machine id 560

Timezone 3600

The output provides various information on the SAP installation, including the SAP
release (620), the SAP system ID (P10), the host on which the database is located,
and the database system used, which in this case is Oracle.

With the ashost parameter you query a specific application server. For a message
server, sapinfo requires the following details:

nagios@linux:rfcsdk/bin$./sapinfo r3name=P10 mshost=10.128.254.12 \
group=ISH

The r3name parameter specifies the SAP system ID, mshost defines the IP address
of the server, and group describes the logon group. As long as the PUBLIC group
exists, you can leave this parameter out, and then the default, PUBLIC, will be used.

If the query ends with an error message such as

ERROR service ’sapmsP10’ unknown

then the definition of the sapmsP10 service is missing for the Nagios server3 in
/etc/services:

sapmsP10 3600/tcp

3 Instead of P10, the appropriate system ID will always be shown here.

385

20 Monitoring SAP Systems

For the port you define the TCP port on which the message server is running. Which
one this is depends on the particular SAP installation; the standard port is 3600.

20.1.3 The plugin check_sap.sh

The plugin check_sap.sh, a shell script based on sapinfo, is included in the standard
Nagios Plugins package, but it is in the contrib directory and is not automatically
installed. You can copy it manually to the plugin directory:

linux:˜ # cp /usr/local/src/nagios-plugins-1.4/contrib/check_sap.sh \
/usr/local/nagios/libexec/.

Then you look in the plugin for the variable sapinfocmd and adjust the path for
sapinfo:

sapinfocmd=’/usr/local/sap/rfcsdk/bin/sapinfo’

Like sapinfo, the plugin can be run in two ways: with the argument as it queries
an application server, and with ms, a message server. The second argument in each
case is the connect string, and if no SAP gateway is used, then it is the IP address
or the host name of the host to be queried:

check_sap.sh as connect string system number

check_sap.sh ms connect string SID logon group

The first variation demands the two-digit system number of the application server
as the third parameter, the counting of which starts at 00:

nagios@linux:nagios/libexec$./check_sap.sh as 10.128.254.13 01

OK - SAP server p10ap013_P10_01 available.

This means that the application server running on the host 10.128.254.13 is avail-
able.

When the message server is queried, the plugin displays the application server
belonging to the specified login group (given as the fourth argument). If this in-
formation is missing, it determines the application server for the PUBLIC group.

For a message server, you specify the SAP system ID (SID), for example, P10,4 in-
stead of the system number:

nagios@linux:nagios/libexec$./check_sap.sh ms 10.128.254.12 P10 ISH

OK - SAP server p10ap014_P10_02 available.

4 The first instance of this has the system number 00, the second one, 01, etc.

386

20.1 Checking without a Login: sapinfo

In this example the message server running on 10.128.254.12 detects p10ap014_
P10_02 as the application server for the logon group ISH and also reveals that this
is reachable.

The following two command definitions assume that it is sufficient to use the IP
address, and that no SAP connect string is required:

define command{
command_name check_sap_as

command_line $USER1$/check_sap.sh as $HOSTADDRESS$ $ARG1$

}
define command{

command_name check_sap_ms

command_line $USER1$/check_sap.sh ms $HOSTADDRESS$ $ARG1$ $ARG2$

}

If this is not the case, the command_line for querying an application server could
look like this:

$USER1$/check_sap.sh as /H/sapgw/S/3297/H/$HOSTADDRESS$ $ARG1$

The following service definition can be used for all application servers:

define service{
service_description SAP_AS

host_name sap01

check_command check_sap_as!00

...

}

Since there is only a single message server in an SAP system, it makes more sense
to define a separate service for each logon group. The following example shows
this for the group ISH:

define service{
service_description SAP_MS_ISH

host_name sap09

check_command check_sap_ms!P10!ISH

...

}

In this way you can test whether a user may log in without actually logging in. If
there are interruptions between the database and the application server that make
it impossible to log in, sapinfo provides a corresponding error message after a time-
out. The author was able to observe several times that sapinfo and check_sap.sh
reported an error in such a situation, while the TCP port-only test of the applica-
tion server, check_tcp, returned an OK, although no user could log in any longer.
So check_sap.sh, even without a login, provides more reliable information than a
port-only check.

387

20 Monitoring SAP Systems

20.2 Monitoring with SAP’s Own Monitoring
System (CCMS)

With SAP’s own Computing Center Management System framework (CCMS), not
only SAP systems, but also external applications can be monitored. Here local
agents collect data from each of the hosts, which, since Release R/3 4.6C,5 can
be queried from a central component. The data examined includes not only SAP-
specific features such as SAP buffers or batch jobs, but also operating system data
such as memory and CPU usage, or disk IO and swapping. Even information on the
database used or the average response times of applications can be queried.

The data of the CCMS can also be queried externally through RFC (Remote Func-
tion Calls, a standard SAP interface). Corresponding libraries for Unix and Windows
platforms, with which a Linux program, for example, can query information from
the CCMS over the network, are provided by SAP.

20.2.1 CCMS—a short overview

Within the SAP world you gain access to this data through the CCMS Alert Monitor
(transaction RZ20) (Figure 20.1). The illustration shows so-called monitor connec-
tions that categorize various information in groups.

Figure 20.1:

The SAP CCMS Alert

Monitor

5 Central evaluation was not possible in earlier releases.

388

20.2 Monitoring with SAP’s Own Monitoring System (CCMS)

SAP provides several monitor collections with preconfigured values in its distribu-
tion. A trained SAP administrator can create and operate monitors at any time. We
shall restrict ourselves here to the monitor collection SAP CCMS Monitor Tem-
plates and focus on the Dialog Overview monitor (Figure 20.2).

The dialog response times specified there (accessible through the monitor at-
tribute Dialog Response Time) provide a measurable equivalent for performance
problems corresponding to what the user feels is a “slow system.” This value spec-
ifies the average processing time of a transaction (without network transmission
time and without the time needed to render the information in the GUI of the
client).

Figure 20.2:

The SAP CCMS

monitor Dialog

Overview

The monitor attribute Network Time reveals how much time the system needs to
send data during a dialog stage from the client (the SAP GUI) to the SAP system
and back again.

For each of the attributes, the monitor shows which context defined in the SAP
system—normally, which SAP instance—is involved in the measured values spec-
ified. Most measurement parameters have a warning and a critical limit. If the
value lies beneath the warning limit, the monitor displays the line in green; for
monochrome devices the color is listed as text. If the warning limit is exceeded,
yellow is shown, and if the critical limit is exceeded, red. If an entry of a partial
tree lies outside the green limit, the monitor also sets the overlying nodes to yellow
or red, so that the administrator can see that something is not right, even when
the menus are not open.

389

20 Monitoring SAP Systems

You do not normally need to worry about the thresholds. The settings configured
by SAP are sensible and should only be changed if there is a sound reason to do so.

The Nagios plugins for the CCMS query, described in Section 20.2.4 (page 394),
return the status defined in the CCMS: OK if the traffic light is on green, WARNING
for yellow, and CRITICAL for red. The thresholds are therefore set by the SAP system,
and not by Nagios.

If you want to find out more about CCMS, we refer you to the documentation at
http://service.sap.com/monitoring (password required). There SAP provides de-
tailed information on the installation and operation of CCMS. The SAP online help
also has an extensive range of information available. If you just want a short sum-
mary of the subject and are more interested in the way the Nagios plugins work,
you can find two informative PDF documents at http://www.nagiosexchange.org/
Misc.54.0.html under the keyword SAP CCMS.

20.2.2 Obtaining the necessary SAP usage permissions for
Nagios6

Retrieving information from the CCMS is done through RFC (Remote Function
Calls), which requires a login on the SAP side. Luckily the user only needs a minimal
set of permissions.

A new role is set up in the role generator (transaction PFCG) with a name that
conforms to the company-internal conventions. It is not given any transaction
assignment in the menu.

Figure 20.3:

For access from

Nagios you require

these SAP

authorization objects

6 This section is intended for SAP authorization administrators. If you do not maintain SAP
authorizations yourself, you can skip this section.

390

20.2 Monitoring with SAP’s Own Monitoring System (CCMS)

When maintaining permissions, the following permission objects are added manu-
ally: S_RFC, S_XMI_LOG, and S_XMI_LOG (see also Figure 20.3).

Whether these permissions are sufficient or not can be tested with the plugin
check_sap_cons described in Section 20.2.4, page 394 check_sap_cons. If a func-
tion group (such as SALG) is missing from the permission object S_RFC, the plugin
shows name of this in plain text in the error message.

The login data is stored on the Nagios server in the file /etc/sapmon/login.cfg.
When doing this, various target hosts (called RFC destinations in SAP) can be
configured simultaneously. Such a login configuration for a target system is called
an RFC template in the language of the CCMS plugins (Section 20.2.4, page 394).
It has the following form:

[LOGIN_template]

LOGIN=-d target -u user -p password -c client-id -h address

-s system number

The complete LOGIN definition must be written on a single line, and it is essential
that it contain the following details:

-d target
This is the name of the SAP system, also referred to as SID or system ID.

-u user -p password
These parameters state the SAP user and corresponding password. Remem-
ber that a newly created dialog user has to change his or her password on
first logon.

-c client-id
This is the three digit client ID, also called client.

-h address
The host name of the host on which the named user should log in. This must
resolve to an IP address.

-s system_number
The SAP system number. The first SAP instance is normally 00, then increased
incrementally.

Below, the user with the password secret should login from the client with the ID
020 to the host p10ap013 whose SAP installation has the system number 01:

[LOGIN_P10]

LOGIN=-d P10 -u user -p secret -c 020 -h p10ap013 -s 01

The RFC template name in square brackets consists of the text LOGIN_ and the SAP
system ID (SID). The RFC template defined here belongs to the SAP system P10.

391

20 Monitoring SAP Systems

20.2.3 Monitors and templates

The interface provided by SAP that is used by the plugins does not have a simple
and extendable variant. Only additional functions enable all information from the
CCMS to be retrieved, which is why we are omitting the description of the simple
interface.7

For the extended interface, templates define the monitor data to be used. These
are stored on the Nagios server in the file /etc/sapmon/agent.cfg and have the
following format:

[TEMPLATE_name]

DESCRIPTION=description

MONI_SET_NAME=monitor collection

MONI_NAME=name of the monitor

PATTERN_0=SID\context\monitor object\attribute

The placeholders written in italics are replaced as follows:

name
This is the name with which the plugins later address the template. When
this book was written, only template names that began with two digits
worked, so 00_sap13 worked, for example, but not TEST.

description
This consists of a freely selectable, simple text.

monitor collection
This is the name of the monitor, set exactly as it is in the CCMS (including
upper/lower case and spaces).

name of the monitor
The name of the monitor must also match the SAP name exactly.

context
This pattern filters out the desired values from those contained in the mon-
itor. In most cases you specify the identifier for the SAP instance, such as
p10ap013_P10_01 (p10ap013 is the host name, P10 the SID of the SAP
system, and 01 is the system number).

monitor object
This is the name of the desired monitor object, for example Dialog. Unfortu-
nately the term demanded here rarely corresponds to the one shown in the
SAP GUI. It is best to determine it using PATTERN_0=*, as described below.

7 Information on this is provided by the PDF documents mentioned on page 390.

392

20.2 Monitoring with SAP’s Own Monitoring System (CCMS)

attribute
This is the variable to be queried. Each monitor object may contain severable
variables. Dialog, for example, has, apart from the ResponseTime variable,
the FrontendNetTime variable, which reveals the average processing time
of a transaction, restricted to the network transmission time and processing
time on the client.

The challenge here is in specifying the filter in PATTERN_0. It must exactly match
the SAP-internal names, and these are not identical to the terms that are displayed
in the CCMS Alert Monitor (Transaction RZ20).

It is best to start with PATTERN_0=*, which ensures that the entire tree appears.
We shall call the template for this simply 00:

[TEMPLATE_00]

DESCRIPTION=Dialog response time

MONI_SET_NAME=SAP CCMS Monitor Templates

MONI_NAME=Dialog Overview

PATTERN_0=*

With this entry in /etc/sapmon/agent.cfg you query the complete list of all moni-
tor entries, in this case those of the system with the ID P10, using the check_sap_
cons plugin:

nagios@linux:nagios/libexec$./check_sap_cons 00 P10

...

P10 p10ap013_P10_01 Dialog ResponseTime 262 msec

P10 p10ap014_P10_02 Dialog ResponseTime 61 msec

P10 p10db012_P10_00 Dialog ResponseTime 11 msec

...

The entries contain the following information—with items separated by spaces:

SID context monitor object attribute value

The information for the P10 system queried above first gives the SAP instance,
such as p10ap013_P10_01, then the monitor object (Dialog) and the attribute
(ResponseTime) together with values. In the SAP GUI (Figure 20.2) this latter is
called Dialog Response Time, and since each empty space is significant, this is a
completely different name.

In a template that is only interested in the response time of the instance p10ap014
_P10_02, the PATTERN_0 is defined as follows:

PATTERN_0=P10\p10ap014_P10_02\Dialog\ResponseTime

393

20 Monitoring SAP Systems

If you want to query all the entries of a query level, you must use the wildcard *.
The following example defines templates for the dialog response time, the network
response time, and the average CPU load for all instances of the system P10:

[TEMPLATE_00]

DESCRIPTION=Dialog response time

MONI_SET_NAME=SAP CCMS Monitor Templates

MONI_NAME=Dialog Overview

PATTERN_0=P10*\Dialog\ResponseTime

[TEMPLATE_01]

DESCRIPTION=network response time

MONI_SET_NAME=SAP CCMS Monitor Templates

MONI_NAME=Dialog Overview

PATTERN_0=P10*\Dialog\FrontEndNetTime

[TEMPLATE_10]

DESCRIPTION=System load in five-minute average

MONI_SET_NAME=SAP CCMS Monitor Templates

MONI_NAME=Operating System

PATTERN_0="P10*\CPU\5minLoadAverage"

20.2.4 The CCMS plugins

SAP demonstrates the use of the RFC interface to the CCMS with the CCMS plugins
for SuSE. In Debian you can convert the RPM package nagios-plugins-sap-ccms-
0.7.28 to a tar file with alien, or alternatively you can obtain the source RPM from
a SuSE FTP mirror9 and compile the source code yourself. This will give you the
plugins listed in Table 20.1.

Table 20.1:

The SAP-CCMS

plugins

Plugin Description

check_sap Output of the monitor data in HTML format

check_sap_cons Ditto, but without HTML formatting and without
hyperlinks for the output on the command line

check_sap_instance Dialog response time and number of logged-in
users on a particular application server (requires
CCMS Ping10)

8 It can be found at http://www.rpmseek.com/, for example, if you search there for nagios-
plugins-sap-ccms.

9 e.g., ftp://ftp.gwdg.de/pub/linux/suse/ftp.suse.com/suse/i386/9.3/suse/src/nagios-plugins-
sap-ccms-0.7.2-45.src.rpm.

10 As components of the CCMS monitoring system, CCMS Ping monitors the availability of the
application server belonging to the SAP system.

394

20.2 Monitoring with SAP’s Own Monitoring System (CCMS)

continued

Plugin Description

check_sap_instance_cons Ditto, as text output without HTML markup

check_sap_multiple HTML-formatted output of data of a monitor
template, which returns more than one value

check_sap_mult_no_thr Output of multiple values with simple HTML
formatting, without hyperlinks, in contrast to
check_sap_multiple

check_sap_system Shows the application servers of the SAP system
and their states (requires CCMS Ping)

check_sap_system_cons Like check_sap_system, only without HTML for-
matting

The plugins that end in cons are especially suitable for test purposes: they simply
pass the data on to the command line, without further formatting. The output of
the others contains HTML formatting for a Nagios version modified by SAP; with
Nagios 2.0 they usually lead to an incorrect view and are therefore useless.

Individual values are best retrieved with check_sap_cons, but then the monitor
definition must really only return a single value. The remaining ones would be
returned on additional lines, ignored by Nagios.

If Nagios is to display several return values, it is best to use check_sap_mult_no_thr,
which provides these values with some HTML formatting elements which also work
with Nagios 2.0.

All plugins demand two arguments: check_sap, check_sap_cons, check_sap_mul-
tiple, and check_sap_mult_no_thr first require the name of the monitor tem-
plate from the file /etc/sapmon/agent.cfg, such as 00, 00_sap13, 01, or 10 (see
page 392), followed by the name of the RFC templates, as defined in /etc/sapmon/
login.cfg (in the examples in this book we use the system ID P10).

For check_sap_system/check_sap_system_cons and check_sap_instance/check_
sap_system_cons, the first argument changes: instead of the monitor template,
check_sap_system demands the system ID (here, P10), and check_sap_instance
demands the SAP instance, consisting of the host name, the SID, and the system
number (for example, p10ap13_P10_01).

First steps with check_sap_cons

The plugin check_sap_cons is probably best suited to your first attempts. Only
after this has worked for you properly on the command line should you move on
to the actual Nagios configuration. The example on page 393 already showed how
you determine the dialog response time with the monitor template 00, and the

395

20 Monitoring SAP Systems

following example queries the network time which the SAP GUI requires till the
result of the transaction appears in the SAP GUI, using the monitor template 01:

nagios@linux:nagios/libexec$./check_sap_cons 01 P10

P10 p10ap013_P10_01 Dialog FrontEndNetTime 383 msec

P10 p10ap014_P10_02 Dialog FrontEndNetTime 673 msec

P10 p10db012_P10_00 Dialog FrontEndNetTime 1491 msec

The definitions in the two templates can be found in Section 20.2.3 on page 392.
In both examples, check_sap_cons returns multiple values, only the first line of
which would be noticed by Nagios in the Web interface and in notifications. If the
instance p10ap014_P10_02 displayed a critical status, but p10ap013_P10_01 did
not, the plugin would return a CRITICAL, but the Web interface would only present
the first line (like the notification), which would not give any reason to worry. This
means that the admin would not see the very thing that has set off the critical
state.

If check_sap_cons only returns error messages instead of the data you want, there
could be several reasons for this. In the following example the login fails:

nagios@linux:nagios/libexec$./check_sap_cons 00 P10

<== RfcLastError

FUNCTION: SXMI_LOGON

RFC operation/code SYSTEM_FAILURE

ERROR/EXCEPTION

key :

status :

message : User account not in validity date

internal:

<== RfcClose

The reason is given in the message: field: the user currently does not have a valid
account. If the following message were to be found there

message : User 910WOB has no RFC authorization for function group SXMI .

this would mean that the user 910WOB does not have the necessary permission in
the authorization object S_RFC. In order to grant it, that user should be assigned
to the function group SXMI.

The plugins record such RFC error messages in the file dev_rfc in the current work-
ing directory. If Nagios runs the plugin, then it will generate this file in the Nagios
home directory (/usr/local/nagios, if you have followed the installation description
in this book).

In the next case the login works perfectly, but the plugin does not return any values:

nagios@linux:nagios/libexec$./check_sap_cons 01 P10

No information gathered! System up?

396

20.2 Monitoring with SAP’s Own Monitoring System (CCMS)

The error here lies in the monitor definition: often the name of the monitor set or
the monitor is written wrongly, or the pattern does not match the monitor used.
The intersection of monitor and pattern is then empty, and SAP also does not warn
explicitly if the monitor or monitor set do not even exist.

Checking multiple values with check_sap_mult_no_thr

If Nagios is to represent multiple queried values in the Web interface, you should
use check_sap_mult_no_thr:

nagios@linux:nagios/libexec$./check_sap_mult_no_thr 00 P10

<table>

<tr><td CLASS=’statusOK’>P10 p10ap013_P10_01

Dialog ResponseTime 785 msec</td></tr>

<tr><td CLASS=’statusOK’>P10 p10ap014_P10_02

Dialog ResponseTime 352 msec</td></tr>

<tr><td CLASS=’statusOK’>P10 p10db012_P10_00

Dialog ResponseTime 22 msec</td></tr>

</table>

The output is given in a single line, which we have reformatted manually here so
that it can be more easily read. With the HTML code, the plugin ensures that each
value (thanks to the CLASS specifications) is shown on a separate line in the color
matching its status. The status of the Nagios service changes to CRITICAL if at least
one measured value is critical. Such a case is shown in Figure 20.4.

Figure 20.4:

check_sap_mult_no_thr

uses HTML markups

which Nagios 2.0 also

understands

In this case as well you should remember that Nagios altogether processes no more
than 300 bytes of the plugin output, and cuts off the rest. For HTML-formatted
output, not only is information then missing, there are also side effects in the table
layout in the Web interface. In case of doubt, you must share the test among
several service checks.

In the definition of the Nagios command objects, the host name, exceptionally,
does not play a role for the CCMS plugins. This means that the $HOSTADDRESS$
macro is not used:

define command{
command_name check_sap_ccms

command_line $USER1$/check_sap_mult_no_thr $ARG1$ $ARG2$

}

397

20 Monitoring SAP Systems

If you request several values simultaneously, they will normally belong to different
hosts. This means that services can only be assigned to a host in one-to-one single
value queries. Nevertheless, Nagios expects a specific host in the service definition:

define service{
service_description SAP Dialog Response Time

host_name sap01

check_command check_sap_ccms!00!P10

...

}

20.2.5 Performance optimization

Since the monitor always transmits all the data it has available over the RFC in-
terface, filtering always takes place on the client side through the plugin. For this
reason it is not recommended that you query single values from a large monitor
one after another: this consumes considerable resources.

You should either have a single service provide all the values,11 or you should define
a separate monitor yourself containing precisely those values you would like to test.
This latter method is recommended by SAP.

If you want to check several monitors, or even single values of the monitor one af-
ter the other, you should keep an eye on the necessary network bandwidth. Within
a local network this is normally not a problem, but it can place a considerable bur-
den on narrow-bandwidth long-distance connections (ISDN, simple VPNs). In such
cases you should measure the network traffic when starting operation, so that you
can increase the check intervals accordingly in case of problems.

11 Using a plugin predestined for the output of multiple values.

398

Appendixes

A A
pp

en
di

x
Rapidly Alternating States:

Flapping

If the state of a host or service keeps on changing over and over, Nagios inundates
the administrator with a flood of problem and recovery messages, which can not
only be very irritating but also distract the administrator’s attention from other,
perhaps more urgent problems.

With a special mechanism, Nagios quickly recognizes alternating states and can
inform the administrator of these selectively. The Nagios documentation refers to
such alternating states as state flapping and to their detection as flap detection.

Whether these alternating states involve hosts or services has no influence on the
detection mechanism itself. The differences are more to be found in the nature of

401

A Rapidly Alternating States: Flapping

host and service checks: Nagios carries out service checks periodically, and there-
fore regularly. In this way the system continuously receives new information on
the current status. Host checks, on the other hand, normally only take place if they
are necessary, so Nagios has to obtain the appropriate information in other ways.

A.1 Flap Detection with Services

To detect alternating states you need a complete list of all states that occurred
during the last service checks. For this purpose Nagios stores the last 21 test results
for each service and then overwrites the oldest value in each case in the memory.
In these 21 states, a maximum of 20 changes can occur.

Figure A.1 shows an example. The x-axis numbers the possible alternating states in
each case from 1 to 20, and the heads of the arrow indicate alternating states that
have actually occurred.

Figure A.1:

Nagios saves the last

21 states to detect

frequently alternating

states. This service

changed its state

twelve times

In the period specified, the state of the system shown changed 12 times out of a
possible 20, which as a percentage is 60 percent. At 0 percent, not one alternation
state has taken place, and 100% means that the service really was in a different
state every time it was recorded.

When determining the percentage value, Nagios assigns less significance to older
changes of state than to more recent ones. Accordingly it weights the oldest
change in state at 1 in Figure A.1 with 0.8, and the most recent at 20 with 1.2.
From left to right, the factor increases each time by approx. 0.02,1 resulting in a
linear progression.

This weighting does not have any major effects on the end result in this example:
for Figure A.1, this results in 62.21 percent (instead of 60), a slight shift, since the
state in the second half changed more often. If there was only a single change of
state at 20, the weighting would have the most effect: instead of 5% (that is, one
change out of a possible 20) this would result in 5 * 1.2 = 6 percent.

Using threshold values which can be defined—two for services, two for hosts—
Nagios defines whether a service or host is “flapping”. Both the upper and lower

1 (1.2-0.8)/19 = 0.0211

402

A.1 Flap Detection with Services

limits are specified as percentages. If the detected change state exceeds the upper
threshold, Nagios categorizes the service as flapping. This has consequences: Na-
gios logs the event in the log file, adds a nonpermanent comment,2 and stops any
notifications concerning this from being sent.

If the percentage value falls below the lower limit, the system undoes this step;
that is, the comment disappears, notifications are sent again, and the result also
appears in the log file.

A.1.1 Nagios configuration

Flap detection is configured at two locations: in the central configuration file and
in the definition of the service object. In nagios.cfg the feature is switched on
generally with the parameter enable_flap_detection, and global limit values are
also defined here, which will always apply if nothing else is defined for the service
in question:

/etc/nagios/nagios.cfg

...

enable_flap_detection=1

low_service_flap_threshold=5.0

high_service_flap_threshold=20.0

...

The value 1 set here for enable_flap_detection enables flap detection, and 0
switches it off.

The lower limit low_service_flap_threshold lies at 5 percent in this case, the upper
high_service_flap_threshold limit at 20. This means that Nagios categorizes a
service as flapping if the history saved detects at least five changes in state (more
than four out of a possible 20).3 The lower five percent limit corresponds to one
change in state. To drop below this, all 21 states must be identical.4

In the definition of a service object, you have another chance to decide whether
flap detection is desired in this case. You also have an option to specify threshold
values for this service that differ from the global settings:

define service{
host_name linux01

service_description NTP

...

2 Nonpermanent comments disappear after the monitoring system is restarted, but permanent
ones remain.

3 If the changes in state took place recently, the weighting would ensure that four changes in
state would already be enough to exceed the 20 percent limit.

4 If a single change of state takes place in the first half, the weighting results in a value of less
than 5 percent.

403

A Rapidly Alternating States: Flapping

flap_detection_enabled 1

low_flap_threshold 5.0

high_flap_threshold 20.0

...

}

The value 1 in flap_detection_enabled switches on the feature for this service,
and 0 (the default) switches it off. The two limit values low_flap_threshold and
high_flap_threshold define the limit values that override the globally defined val-
ues. If they are set to 0, or are omitted, the global thresholds will apply.

A.1.2 The history memory and the chronological progression
of the changes in state

Since the history only saves hard states and soft recovery, the sections on the x-
axis cannot be allocated so easily on a chronological basis, because the intervals
between possible changes of state are not equal. Assuming that the service object
has the following definitions:

max_check_attempts 3

normal_check_interval 5

retry_check_interval 1

Nagios checks the service two more times after a change in state from OK to
WARNING has taken place, before the service changes to the hard state WARN-
ING (state 1 in Figure A.1 on page 402). Since the last check, which returned OK,
a total of seven minutes5 has elapsed, since the two soft states after five and six
minutes are not included in the history.

If the next service check, as in Figure A.1, again detects a WARNING (i.e., the state
does not change this time), then only five minutes elapse this time between states
1 and 2. The x-axis therefore only illustrates time in a linear form in exceptional
circumstances—if no change of state occurs, for example.

A.1.3 Representation in the Web interface

Services that Nagios categorizes as flapping are visible in the Web interface at
three points: in the summaries generated by tac.cgi (Section 16.2.4, page 290) and
status.cgi (Section 16.2.1, page 279), as well as on the information page created
by extinfo.cgi (Section 16.2.2, page 284).

The quickest way to get there is through tac.cgi (Figure A.2): a link in the Mon-
itoring Features section marked by x Services Flapping takes you to the status
overview of services which continually change their state. The status overview

5 5 + 2 * 1 = 7

404

A.1 Flap Detection with Services

shown in Figure A.3 can also be opened directly with status.cgi?host=all&style=
detail&serviceprops=1024.

serviceprops=1024 describes all services that Nagios categorizes as flapping. style
=detail provides a detailed view (in contrast to overview, as can be seen in Figure
A.10 on page 280), and host=all includes all hosts.

Figure A.2:

tac.cgi notes

changing states in

section Monitoring

Features

In the status view in Figure A.3, a white field with several horizontal gray bars
moving to and fro reveal that a flapping service is involved. At the same time
a white speech bubble denotes the existence of a comment on this (generated
automatically by Nagios).

Figure A.3:

Animated horizontal

bars in the status

display denote

flapping states

If you click in the status view on the flapping icon next to the service in question,
extinfo.cgi generates additional information on the service (Figure A.4), showing
the changes in state in percent next to the flapping category, depicted by a red bar
labeled with YES.

Figure A.4:

Percent State Change:

reveals how often the

hard state changed,

as a percentage

405

A Rapidly Alternating States: Flapping

The page also contains the nonpermanent comment generated by Nagios (Figure
A.5), which points out that the sending of messages has been stopped until the
status of the service becomes stable again. It disappears, therefore, when Nagios is
restarted.

Figure A.5:

With this comment,

Nagios categorizes a

service as flapping

A.2 Flap Detection for Hosts

Nagios only performs host checks if all available services are in an error state—
that is, extremely irregularly. The system therefore cannot rely exclusively on these
reachability tests when detecting changes in state for hosts. As long as at least
one service check returns OK, Nagios deduces from this that the host itself is also
reachable, and is therefore in an OK state. The software therefore checks for flap-
ping states for each host and each service check.

The result of each host check that returns a hard state or soft recovery is saved by
Nagios. During the period in which the reachability test is not available, the system
assumes, after a time period which it defines itself, that the state has not changed,
and stores the current state again in the history. The time period corresponds to
the average of all service check intervals.

On the basis of this history, the same flap detection mechanism is used for hosts as
for services. So the difference is only in how Nagios determines the corresponding
data basis.

Whether flap detection is desired for hosts is revealed by the central configuration
file nagios.cfg and the definition of the host objects. The global parameter en-
able_flap_detection, which applies equally to hosts and services, must be set to
1:

/etc/nagios/nagios.cfg

enable_flap_detection=1

low_host_flap_threshold=5.0

high_host_flap_threshold=20.0

The threshold parameters for hosts include host in their names, but they have the
same effect as their service equivalents.6

6 Cf. page 403.

406

A.2 Flap Detection for Hosts

For the host object itself, detection is switched on with flap_detection_enabled 1
and off with 0:

define host{
host_name linux01

...

flap_detection_enabled 1

low_flap_threshold 5.0

high_flap_threshold 20.0

}

The two optional parameters low_flap_threshold and high_flap_threshold allow
for host-specific thresholds. If these are omitted, the global threshold values are
used.

407

B A
pp

en
di

x
Event Handlers

If the state of a host or service alternates between OK and error states, you can
use an event handler to run any programs you want. You can make use of this
if a service fails, for example, and Nagios should attempt to restart it. This pro-
vides an opportunity to solve minor problems without the administrator needing
to intervene.

Use of the event handlers is not just restricted to self-healing, however: with an
appropriate script you can just as easily log current values or the event itself in a
database. But there are more suitable methods for doing this, described in Section
17.1, page 314.

A failed printer service serves as an example here of using an event handler for
self-healing. In this example the printer service lpd is used, but this method can be
applied in general to any service for which a start-stop script is available.

409

B Event Handlers

B.1 Execution Times for the Event Handler

The following parameters in the service definition ensure that Nagios tests the
service under normal circumstances every five minutes, but in cases of error, every
two minutes:

normal_check_interval 5

retry_check_interval 2

max_check_attempts 4

An error state becomes hard after four tests leading to the same result.

Figure B.1:

When does Nagios

run the event

handler?

Figure B.1 shows an example of the change of the lpd service from an OK state
to CRITICAL, and back again. After 10 minutes test No. 2 detects that the service
is no longer available. The soft state that results causes Nagios to examine lpd
more closely at two-minute intervals (checks No. 3, 4, and 5). Test No. 5 returns a
CRITICAL for the fourth time, causing Nagios to categorize this as a hard state and
to go back to the normal, five-minute test interval. In check No. 7 the service is
functioning again, and the state changes from CRITICAL to OK (for hard state, see
Section 4.3, page 75.).

Event handlers are carried out by Nagios for soft error states (in checks No. 2, 3, 4),
the first time a hard error state occurs (in check No. 5), and in the resetting of the
OK state after an error (irrespective of whether this is a hard or soft recovery).

Since hard error states lead to the administrator being notified, it is recommended
that the repair attempt is moved to the time of the soft error states. If it succeeds
at this point in time, the administrator is spared these minor details. Ideally the
service will be running again before a user even notices that it has failed.

The fact that Nagios only executes the event handler when a hard error state first
occurs prevents periodic attempts at repair that do not lead to the desired result
after all (if the attempt had succeeded, no further hard error states would have
occurred).

410

B.2 Defining the Event Handler in the Service Definition

B.2 Defining the Event Handler in the Service
Definition

Although Nagios executes the event handler for every event, it does not have to
carry out an action each time. In our example the handler should attempt to reset
the printer service on the third soft error state (check No. 4) and on the first hard
error state (check No. 5), and do nothing at all the other execution times.

For this purpose, the service definition is modified as follows:

define service{
host_name printserver

service_description LPD

...

event_handler restart-lpd

...

}

The event_handler parameter expects a Nagios command object that will run the
handler script:

define command{
command_name restart-lpd

command_line $USER1$/eventhandler/restart-lpd.sh \
$SERVICESTATE$ $SERVICESTATETYPE$ $SERVICEATTEMPT$

}

In this example it is called restart-lpd.sh and is not located directly in the Nagios
plugin directory /usr/local/nagios/libexec, but in a subdirectory called /usr/local/
nagios/libexec/eventhandler, as suggested in the Nagios documentation. The
script receives three macros as parameters: the current state $SERVICESTATE$ (OK,
WARNING, CRITICAL, or UNKNOWN), the state type $SERVICESTATETYPE$ (SOFT,
or HARD), and the number of the current (possibly repeated) attempt $SERVICEAT-
TEMPT$ (e.g., 3 if the test is being performed for the third time). If the event
handler is to be used for host checks, then the macros $HOSTSTATE$, $HOST-
STATETYPE$, and $HOSTATTEMPT$ are used instead.

B.3 The Handler Script

The actual treatment of the error—depending on the current event—is dealt with
by the script defined in the command definition. So that we can concentrate on
the essential aspects in this context, we shall assume that lpd is installed on the
Nagios server itself. This enables the service to be restarted locally, without the
need for a remote shell such as the Secure Shell.

411

B Event Handlers

The script restart-lpd.sh checks to see exactly what event is involved, using the
macros passed on to it, and either does nothing at all or tries to restart lpd:

#!/bin/bash

/usr/local/nagios/libexec/eventhandlers/restart-lpd.sh

$1 = Status, $2 = status type, $3 = attempt

case $1 in

OK)

;;

WARNING)

;;

CRITICAL)

if [$2 == "HARD"] || [[$2 == "SOFT" && $3 -eq 3]]; then

echo "Restarting lpd service"

/usr/bin/sudo /etc/init.d/lpd restart

fi

;;

UNKNOWN)

;;

esac

exit 0

The case statement first checks to see what state exists. Only if it is CRITICAL will
the script do anything; it does not carry out any action for other states. If the ser-
vice is in a critical state, either the state type must be HARD or (||) a corresponding
soft state must occur for the third time in succession, so that restart-lpd.sh can
execute the lpd init script with the argument restart.1

The script is executed with the permissions of the user nagios, who may neither
stop nor restart system services. This is why sudo is used, which provides temporary
root permissions exclusively for the start-up script /etc/init.d/lpd, just for this user.
The corresponding configuration can be found in the file /etc/sudoers, but if it is
edited then you must use the program visudo rather than a standard editor (this
checks the configuration file for syntax errors when it is saved):

linux:˜ # visudo

Then you add the following line to the configuration file:

nagios nagsrv=(root) NOPASSWD: /etc/init.d/lpd

In plain language this means: the user nagios may run the command /etc/init.d/lpd
on the host nagsrv. The command is run as the user root, but no password is re-
quired for this.

1 If you want to get to know Bash programming more closely, we can recommend the excellent
Advanced Bash-Scripting Guide (http://www.tldp.org/LDP/abs/html) by Mendel Cooper.

412

B.4 Things to Note When Using Event Handlers

B.4 Things to Note When Using Event Handlers

If you restart a service that is already in a soft error state as described here, the
administrator will not receive any notification as long as the action was successful.
Although the log file records the restart, it will scarcely be noticed unless you search
the log file explicitly for such events. This means that the administrator will seldom
investigate the cause of the service failure.

You should therefore bear in mind that eliminating the problem is the best solu-
tion, and that a restart is only second best. Like air bags in automobiles, the event
handler should just be regarded as an additional security measure, and should cer-
tainly not represent the primary method of handling errors. If you carry out the
restart only when a hard error state occurs, the administrator is confronted with
the problem through the notification mechanism.

In addition, not every service is suitable for an automatic restart. With OpenLDAP
in versions before 2.1.17, a problem occurred sporadically in the replication through
slurpd, which left behind a corrupted replication file. Although the replication ser-
vice could be restarted, it died again after a short time. To really get the replication
up and running again, you would have to repair the replication file manually.

You should always remember this example and never have complete faith in self-
healing. In the worst case, restarting a service repeatedly and without thought
could lead to loss of data, which might be rectified only by retrieving data from the
backups.

413

C A
pp

en
di

x
Writing Your Own Plugins:
Monitoring Oracle with the

Instant Client

The following chapter will not introduce any finished plugins, but illustrate how
you can build your own Oracle plugin, using an example that monitors Oracle.
Some plugins do already exist for this DBMS, such as check_oracle, one of the
standard Nagios plugins, or check_oracle_writeaccess1 by Mathias Kettner. But
both of them require the normal Oracle client, and most non-Oracle administrators
will be out of their depth attempting to install it.

1 http://mathias-kettner.de/nagios_plugins.html.

415

C Writing Your Own Plugins: Monitoring Oracle with theInstant Client

Luckily there is an easier solution: For some time now, Oracle has been offering an
instant client, which drastically reduces the installation work: unpack the zip files,
set the variables, and the installation is finished—the command-line tool sqlplus
can be used immediately. The latter can be used in a plugin—just like the Perl script
introduced in this chapter does, which sends a request to the Oracle database using
sqlplus and evaluates the response.

C.1 Installing the Oracle Instant Client

Even though the instant client has been available only since Oracle version 10g, it
can be used just as well with older Oracle databases such as 8i or 9i. The software
is available in the form of zip files at the Oracle homepage,2 provided you have
previously registered on the Web site of the company. When downloading, you are
asked some additional questions on export conditions.

Although the software costs nothing, you must observe Oracle’s license terms. If
your Oracle database is licensed on a CPU basis, you do not need to worry about
additional access by another user (Nagios).

For sqlplus you require two zip files,3 instantclient-basic-linux32-10.1.0.3.zip and
instantclient-sqlplus-linux32-10.1.0.3.zip.

The instantclient-basic package, some 31 MB in size, contains all the necessary
libraries, and the instantclient-sqlplus included, only 320 kB in size, contains a
short documentation (READFROM_IC.htm) as well as the client itself with a further
library. It does not matter for the installation where the files are unpacked; in this
case we will use /usr/local/oracle:

linux:˜ # mkdir /usr/local/oracle

linux:˜ # cd /usr/local/oracle

linux:local/oracle # unzip instantclient-basic-linux32-10.1.0.3.zip

Archive: instantclient-basic-linux32-10.1.0.3.zip

inflating: instantclient10_1/classes12.jar

...

linux:local/oracle # unzip instantclient-sqlplus-linux32-10.1.0.3.zip

Archive: instantclient-sqlplus-linux32-10.1.0.3.zip

inflating: instantclient10_1/READFROM_IC.htm

inflating: instantclient10_1/glogin.sql

inflating: instantclient10_1/libsqlplus.so

inflating: instantclient10_1/sqlplus

2 http://www.oracle.com/technology/software/tech/oci/instantclient/
3 Apart from the Linux version introduced here on Intel x86-32 systems, the client is also available

for Linux x86-64, Linux Itanium, MAC OS-X, HP-UX (32- and 64-bit, for both PA-RISC and
Itanium), Solaris SPARC (32- and 64-bit), Solaris x86-32, AIX 5L (32- and 64-bit), and HP Tru64
UNIX.

416

C.2 Establishing a Connection to the Oracle Database

This creates a subdirectory instantclient10_1, containing all the required files. Af-
ter setting two environment variables, the instant client is ready for use:

LD_LIBRARY_PATH=/usr/local/oracle/instantclient10_1

SQLPATH=/usr/local/oracle/instantclient10_1

LD_LIBRARY_PATH ensures first that all shared libraries from the instant client di-
rectory are taken into account when programs are run, before the libraries installed
system-wide are loaded. SQLPATH reveals to sqlplus where it needs to look for the
file glogin.sql. This file makes a number of default settings for accessing the Oracle
database, and no adjustments are necessary for our purposes.

C.2 Establishing a Connection to the Oracle
Database

sqlplus requires the following details to make contact with the database:

sqlplus user/password@//host/database

The placeholder user is replaced by a user who exists in the database, and the
password is followed by a forward slash. After the @// sign comes the host name
or IP address, followed by the name of the database to which sqlplus should make
a connection. In the following example we will use the database DEMO:

user@linux:˜$ sqlplus wob/password@//192.168.1.9/DEMO

SQL*Plus: Release 10.1.0.3.0 - Production on Sat Aug 13 14:12:52 2005

...

SQL> quit

Disconnected from Oracle8i Release 8.1.7.0.0 - Production

JServer Release 8.1.7.0.0 - Production

On the connect you are shown the version of the instant client used (here: 10.1.0.
3.0) as well as a note on the version of the Oracle database used, in this case
8.1.7.0.0. The quit command terminates the connection. If the password is wrong,
or if the user does not exist, Oracle explicitly requests the user to enter both again.

C.3 A Wrapper Plugin for sqlplus

To query an Oracle database, sqlplus is given the appropriate SQL statement via
standard input and receives a reply via the standard output:

417

C Writing Your Own Plugins: Monitoring Oracle with theInstant Client

user@linux:˜$ echo "select trash from nothing" |\
sqlplus -i wob/password@//192.168.1.9/DEMO

select trash from nothing

*

ERROR at line 1:

ORA-00942: table or view does not exist

The switch -s (silent) prevents the output of things like version and copyright, and
restricts the reply to the really interesting part. If the query fails, as above, the text
merely points out the error that has occurred. sqlplus itself only returns an error
status as a return value if the error occurred when using the client itself, other-
wise it just returns OK (command executed). This is why sqlplus cannot be used
directly by Nagios. Instead, a wrapper must be written around the actual query
which evaluates the reply of the database, which in the above example generates
a CRITICAL return value appropriate for Nagios from the ERROR reply, and adds a
short one-line reply.

sqlplus can in principle be run with any scripting language that enables the text
response to be interpreted. Since this is one of the strengths of Perl, we shall use
this language for the wrapper plugin—but it could also be written in a shell like
Bash; the basic principle is always the same.

C.3.1 How the wrapper works

The wrapper plugin is constructed on the following lines:

sql-statement | sqplus arguments | output processing

sqlplus receives an SQL statement on the standard input, and the plugin retrieves
the result from the standard output. Wrappers can be built around (almost) any
program which does not provide sensible return values, but “hides” the result in
text.

Perl itself does not provide a direct way of checking standard input and output
at the same time. But Perl would not be Perl if there were not a module created
specifically for this purpose. ICP::Open24 fullfils exactly this purpose:

use IPC::Open2;

open2(*READFROM, *WRITETO, program, list_of_arguments);

print WRITETO "instruction_via_standard_input\n";

4 The module is included in the standard package of Perl 5.8.

418

C.3 A Wrapper Plugin for sqlplus

while (<READFROM>) {
processed_standard_output;

}

close(READFROM);

close(WRITETO);

The routine open2 requires two file handles. Their names, WRITETO and READ-
FROM, describe the interaction from the point of view of the wrapper, and seen
from open2 its behavior is exactly the opposite: open2 reads from its standard in-
put (WRITETO) and writes to its output (READFROM), where no distinction is made
between standard output and error output. The third argument is a program with
its complete path, followed by any number of arguments for the program, each
separated from the next by a comma.

With the WRITETO file handle, the desired commands are sent with print. Each line
for sqlplus should end here with a correct end-of-line (Perl: ’\n’). With the while
(<READFROM>) construction, Perl reads line by line from the standard (or error)
output until there are no more lines. Then close() closes the two file handles.

Using IPC::Open2 can cause problems, however: it is conceivable that the program
used (in our case, sqlplus) gets blocked, because it continues processing a part
of the input only after it has written something. If the plugin only processes the
output once all the input is completed, you have the classic situation of a deadlock.
For this reason you must make sure there are no blocks when reading and writing.
Luckily the danger of this happening in our simple application is minimal.

C.3.2 The Perl plugin in detail

A good Perl script starts with the instructions use strict and use warnings. Then all
variables must be declared, and in other ways Perl is very particular with syntax.5

#!/usr/bin/perl -w

use strict;

use warnings;

use IPC::Open2;

my $ipath = "/usr/local/oracle/instantclient10_1";

my $sqlplus = "$ipath/sqlplus";

my $connectstring = "wob/password@//192.168.1.9/DEMO";

5 Some programmers get very irritated, especially at the start, because Perl reacts very pettily
with use strict. Without this instruction, variables do not need to be declared. One single
typing error in a variable name is sometimes sufficient to keep you searching for hours to find
out why the value at a certain position is always 0.

419

C Writing Your Own Plugins: Monitoring Oracle with theInstant Client

-- Set environment variables

$ENV{’LD_LIBRARY_PATH’} = $ipath;

$ENV{’SQLPATH’} = $ipath;

$ipath contains the path to the directory in which the instant client is located,
and $sqlplus has the absolute path to the program sqlplus. The connect string was
already explained above. With the hash %ENV, the script sets the two required
environment variables. Hash entries are referenced by Perl with $ENV{’variable
name’}.

The database query statement is defined for this example in a variable:

-- SQL-Statement

my $select = "SELECT table_name FROM all_tables ";

$select .= " where table_name = ’VERSION’;";

The instruction .= appends the following text to that already existing in $select.
The SQL statement therefore selects, from the Oracle system table all_tables, which
contains all the names of existing tables, the column table_name, in this case with
an additional restriction to the table name VERSION.

In the next step the plugin opens the standard input and output with the routine
open2:

-- open2 with error processing

eval {
open2(*READFROM, *WRITETO, $sqlplus, "-s", $connectstring);

};
if ($@) {

die "Error in open2: $!\n$@\n";
}

The sqlplus switch -s prevents unnecessary connect output. For adequate error
processing, we embed the open2 command in an eval environment: since open2
aborts directly if there is an error, the programmer would otherwise have no chance
to display a sensible error message. If it is needed, the error output is obtained in
the eval environment through $@. die outputs this and aborts the execution of
the Perl script.

The only thing remaining now is to send the SQL statement, with print WRITETO,
to sqlplus (afterwards we close down the standard input WRITETO, to be on the
safe side) and evaluate the output:

-- Write instruction

print WRITETO $select;

close(WRITETO);

420

C.3 A Wrapper Plugin for sqlplus

-- Process reply

while (<READFROM>) {
print $_;

}

while <READFROM> reads the output line by line. The contents of the current
line are contained in $_. With your first attempts, we recommend that you have
the output of all lines displayed with print $_; so that you can determine whether
everything is working.

If this is the case, the actual logic can be expanded: if the table name sought
exists in the database, Oracle first displays the column header, then (separated by
hyphens) the actual contents, that is, the name of the table being sought:

TABLE_NAME

VERSION

If such a table does not exist in the database, the response is:

no rows selected

If an error occurs in the query, perhaps because the column sought, table_name, is
missing or the table all_tables does not exist, sqlplus returns a message containing
the keyword ERROR, as in the initial example on page 418.

The while loop now looks like this:

-- Process response

while (<READFROM>) {
if (/ˆVERSION/i) {

print "OK - Table VERSION found\n";
exit 0;

} elsif (/no rows selected/i) {
print "WARNING - Table VERSION not found\n";
exit 1;

} elsif (/ERROR/i) {
print "CRITICAL - SQL-Statement failed\n";
exit 2;

}
}
close(READFROM);

print "UNKNOWN - unknown response\n";
exit 3;

The search instruction /^VERSION/i contains two special features: the i at the end
ensures that the comparison ignores upper or lower case. The ^ at the beginning

421

C Writing Your Own Plugins: Monitoring Oracle with theInstant Client

ensures that the text VERSION must stand at the beginning of the line. If the SQL
statement sent by Oracle was incorrect, the error message repeats this first—but
then the text VERSION is not at the beginning of the line.

If the plugin finds the sought table name VERSION in the response sent, an OK text
message is displayed and it terminates with the return value 0.

If the database issues no rows selected or even an ERROR, however, the script
feeds Nagios a corresponding reply and terminates with exit and the corresponding
return value. If none of the three search patterns match, a return value must also
be accounted for; otherwise the script will end with the status 0, and Nagios will
announce: “Everything in order.” Here we take advantage of the UNKNOWN status,
which is actually reserved for error processing for the plugin.

Armed with this background knowledge, it should not be too difficult to write
your own Oracle plugin. Its use here is not restricted to read access: provided you
have write permissions for the user in question, you can just as well formulate SQL
statements with UPDATE, INSERT, or DELETE, and evaluate the answer.

422

D A
pp

en
di

x
An Overview of the Nagios
Configuration Parameters

Nagios contains two independent main configuration files: nagios.cfg controls
operation of the Nagios daemon, cgi.cfg configures the Web interface. Both files
should be located in the Nagios configuration directory, which is normally /etc/
nagios.

nagios.cfg specifies a series of further configuration database and log files, and
their functions for the respective parameter will be briefly described in the follow-
ing reference. The notation ⇒parameter refers to the description of the parame-
ter in the configuration file currently being discussed.

Unless specified otherwise, parameters may have either the value 0 (disabled) or 1

423

D An Overview of the Nagios Configuration Parameters

(enabled). If a parameter has a default value, this is specified accordingly. For some
path details, the standard value is defined by options during compiling. The values
listed in this case correspond to the paths used in the book (see Table 1.1, page 28).

For some parameters there are no defaults. If these are missing from the configura-
tion, Nagios does not provide the corresponding function (so, for example, without
the cfg_dir parameter, Nagios ignores the object definitions stored in separate di-
rectories).

D.1 The Main Configuration File nagios.cfg

accept_passive_host_checks

Global switch for passive host checks; the value 0 suppresses them. Even though
passive host checks are allowed according to nagios.cfg, this feature must be ex-
plicitly enabled when defining the host object. Default value:

accept_passive_host_checks=1

accept_passive_service_checks

Global switch for passive service checks. Even though the value 1 allows corre-
sponding tests, this feature must be explicitly enabled when defining the service
object. Default value:

accept_passive_service_checks=1

admin_email

The e-mail address of the administrator responsible for the Nagios server, to which
you have access through the macro $ADMINEMAIL$. If there is no explicit config-
uration of a contact object, Nagios will not send an e-mail to this address. Example
(no default value):

admin_email=nagios

admin_pager

Pager number, SMS number, or e-mail address for a pager gateway/SMS gateway
through which the administrator of the Nagios server can be reached. Accessible
through the macro $ADMINPAGER$. Example (no default value):

admin_pager=pagenagios

424

D.1 The Main Configuration File nagios.cfg

aggregate_status_updates

Specifies whether Nagios writes status information from hosts, services, and its
own programs for the time interval ⇒status_update_interval in a block to the
⇒status_file. The value 0 means Nagios updates this file immediately after every
event. Default value:

aggregate_status_updates=1

auto_reschedule_checks

With this experimental feature, Nagios spreads tests equally over the time period,
to avoid peaks. This can considerably reduce performance and in particular is of
no use if Nagios is already struggling to keep on schedule because of poor perfor-
mance. Normally this option should be switched off. Default value:

auto_reschedule_checks=0

auto_rescheduling_interval

Every so many seconds, specified here, Nagios distributes tests which are to be
executed in the next auto_rescheduling_window seconds, so that there is an equal
load. Experimental feature! Default value:

auto_rescheduling_interval=30

auto_rescheduling_window

All tests that are to take place in the next number of seconds specified here are
rescheduled by Nagios so that they are spread equally over this time period. Checks
specified for a future time that lie outside this interval are not (yet) taken into
account. Experimental feature; use only in exceptional cases! Default value:

auto_rescheduling_window=180

cfg_dir

The directory in which the configuration files containing object definitions are lo-
cated. Nagios searches through it recursively for configuration files with the ex-
tension .cfg. Files with other names are ignored, so that you can place help files in
this directory, such as a CSV file from which host definitions are generated auto-
matically by a script. To integrate individual files ⇒cfg_file. The directive may be
specified as often as you want (see also Section 2.1, page 38). Example (no default
value set):

cfg_dir=/etc/nagios/servers

425

D An Overview of the Nagios Configuration Parameters

cfg_file

Integrates a single file with object definitions. More on this in Section 2.1, page 38.
The directive can be specified as often as you want. Example (no default value set):

cfg_file=/etc/nagios/checkcommands.cfg

check_external_commands

Enables the interface for external commands. Necessary for passive checks or if
commands are to be executed through the Web interface. More on this in Section
13.1, page 240. Default value:

check_external_commands=0

check_for_orphaned_services

If the results of a service check are not received after a certain time, this is re-
ferred to as an orphaned service. Since Nagios only reschedules service checks if
a result exists, it could be the case under certain conditions that a service is never
again tested. Normally this only happens if a running service check is terminated
manually from outside.

If there is a suspicion that such orphaned services have occurred, you should set
check_for_orphaned_services to 1 for debugging purposes. This is then confirmed
if Nagios writes a corresponding error entry to the logfile. Whether this is justified
or not can easily be seen in the Web interface: you can have all services displayed
independently of their status, and sorted by the last test time, in ascending order.
Normally the execution of an active check should not be longer ago than specified
in normal_check_interval. Default value:

check_for_orphaned_services=0

check_host_freshness

Allows a passive host check to be tested actively if no check result has arrived for
a long time. If Nagios considers the test result to be too old, ⇒host_freshness_
check_interval steps in. More on freshness checking in Section 13.4, page 243.
Default value:

check_host_freshness=1

426

D.1 The Main Configuration File nagios.cfg

check_service_freshness

The service equivalent to check_host_freshness. The time after which Nagios con-
siders the test result to be too old is defined by the parameter ⇒service_fresh-
ness_check_interval. Default value:

check_service_freshness=1

command_check_interval

Defines the time interval in which Nagios tests the External Command File (see Sec-
tion 13.1, page 240) for new entries. For this to happen at all, ⇒check_external_
commands must be enabled.

A simple number as the value refers to the time unit specified by ⇒interval_length
(normally 60 seconds, so that 1 stands for one minute). The value -1 means that
Nagios tests the interface as often as possible. If the number is supplemented
(without a space) with the unit s, seconds can also be explicitly specified.

The interval dependent on passive checks may not be too large, since the operating
system in the External Command File, a named pipe, can normally only save 4 KB.
Default value:

command_check_interval=-1

command_file

The named pipe that serves as an External Command File. It should only be writable
for the user nagios and the group nagcmd (see also Section 13.1, page 240). De-
fault value:

command_file=/var/nagios/rw/nagios.cmd

comment_file

File in which Nagios stores the comments, which can be specified through the Web
interface. Default value:

comment_file=/var/nagios/comments.dat

427

D An Overview of the Nagios Configuration Parameters

date_format

The date format that Nagios displays in the Web interface or uses in the date and
time macro. Possible values are us (mm/dd/yyyy hh:mm:ss), euro (dd/mm/yyyy
hh:mm:ss), iso8601 (yyyy-mm-dd hh:mm:ss), and strict-iso8601 (yyyy-mm-
ddThh:mm:ss). Default value:

date_format=us

downtime_file

File in which the downtime details are saved, which can be specified through the
Nagios Web interface for hosts and/or services (see Section 16.3, page 304). Default
value:

downtime_file=/var/nagios/downtime.dat

enable_event_handlers

Globally switches the option on (or off) to work with event handlers for service and
host checks. More on this in Appendix B, page 409. Default value:

enable_event_handlers=1

enable_flap_detection

Defines whether Nagios is generally able to detect continually changing states (flap
detection, more on this in Appendix A, page 401). Default value:

enable_flap_detection=0

enable_notifications

Defines whether Nagios can send notifications. Switching off this feature normally
only makes sense on the central hosts of a distributed installation, which them-
selves cannot generate notifications, and instead forward their test results to a
central Nagios instance (see Chapter 15 from page 265). Default value:

enable_notifications=1

428

D.1 The Main Configuration File nagios.cfg

event_broker_options

The event broker as a new interface in Nagios 2.0 allows third parties to add some
features to Nagios in the form of loadable modules, for example to save test results
to a database instead of to a file. At the time of going to press there were not
yet any functional modules. Possible values are 0 (switched off) and -1 (accept all
broker modules). Default value:

event_broker_options=0

event_handler_timeout

The time after which Nagios terminates the event handlers which have not yet
finished. Default value:

event_handler_timeout=30

execute_host_checks

Enables/disables active host checks globally. This is only worth switching off in
distributed environments with a central Nagios instance that only accepts passive
results from other Nagios servers (see Chapter 15, page 265). Default value:

execute_host_checks=1

execute_service_checks

Like execute_host_checks, but for service checks. Default value:

execute_service_checks=1

global_host_event_handler

Defines a global host event handler, in addition to the host-specific event han-
dlers defined with event_handler. For this, both the global parameter ⇒enable_
event_handlers as well as the parameter event_handler_enabled must be en-
abled in the host definition. Nagios executes the global event handler, a normal
command object, before the host-specific one. Example (no default value set):

global_host_event_handler=name_of_the_command-object

429

D An Overview of the Nagios Configuration Parameters

global_service_event_handler

The service-specific equivalent to global_host_event_handler. Apart from
⇒enable_event_handlers, the parameter event_handler_enabled in the service
definition must also be enabled. Example (no default value set):

global_service_event_handler=name_of_the_command_object

high_host_flap_threshold

Upper limit of flap detection for host checks. Details are given in Appendix A, page
401. Default value:

high_host_flap_threshold=30.0

high_service_flap_threshold

Upper limit of flap detection for service checks (see Appendix A). Default value:

high_service_flap_threshold=30.0

host_check_timeout

Time in seconds after which Nagios aborts a host check if this has not yet returned
a result. Default value:

host_check_timeout=30

host_freshness_check_interval

Interval between two freshness checks in seconds. Default value:

host_freshness_check_interval=60

host_inter_check_delay_method

Controls how Nagios processes host checks after a restart. A sophisticated pro-
cedure aims to prevent Nagios in this situation from executing all tests simulta-
neously, and thus overloading the server. Possible values are: s (smart, intelligent,
automatic distribution of the host checks), n (no, all checks start simultaneously), d
(dumb, Nagios processes the tests at intervals of seconds), and an interval specified
in seconds, in the format x .xx. Default value:

host_inter_check_delay_method=s

430

D.1 The Main Configuration File nagios.cfg

host_perfdata_command

A Nagios command object that should check the performance data after every host
check. Requires the ⇒process_performance_data parameter to be set.

This parameter only makes sense in a few cases, since Nagios executes host checks
only if necessary, and therefore at very irregular intervals. It is used if performance
data are to be processed without a template (Section 17.1, page 314). Example (no
default value set):

host_perfdata_command=process-host-perfdata

host_perfdata_file

Specifies a file or named pipe through which Nagios forwards performance data
from host checks via a template mechanism to an external program (see Chapter
17, page 313). ⇒process_performance_data must be set. Example (no default
value set):

host_perfdata_file=/tmp/host-perfdata

host_perfdata_file_mode

Defines how data is passed on to the file ⇒service_perfdata_file. Possible val-
ues are a (append, append to a normal file) or w (write, write to a named pipe).
Example (no default value set):

host_perfdata_file_mode=a

host_perfdata_file_processing_command

Nagios command object that is called after host performance data is passed on to
the ⇒host_perfdata_file interface. The parameter is only used with the template
mechanism and is optional. Programs such as perf2rrd (Section 17.3, page 325)
have their own tool that permanently reads data from the interface as a daemon.
Example (no default value set):

host_perfdata_file_processing_command=process-host-perfdata-file

host_perfdata_file_processing_interval

If this interval—specified in seconds—is larger than 0, the command belonging to it
(⇒host_perfdata_file_processing_command) is run periodically at these inter-
vals. 0 ensures that it is not used. Example (no default value set):

host_perfdata_file_processing_interval=0

431

D An Overview of the Nagios Configuration Parameters

host_perfdata_file_template

Describes the output format of the performance data. The Nagios macros and
format details in it, such as \t (tabulator) or \n (linefeed) are replaced in the output.
More on the use of templates in Section 17.1, page 314. Example (no default value
set):

host_perfdata_file_template=$TIMET$\t$HOSTNAME$\t$HOSTEXECUTIONTIME$\t\
$HOSTOUTPUT$\t$HOSTPERFDATA$

illegal_macro_output_chars

Lists characters that are discarded when macros are substituted for notifications, to
avoid problems such as interpretation by the shell. The parameter has no influence
on the substitution of macros in host or service definitions. Example (no default
value set):

illegal_macro_output_chars=‘˜$&|’"<>

illegal_object_name_chars

Specifies impermissible characters in the names of Nagios objects. It is recom-
mended that at least the characters listed in the following example be specified
(no default value set):

illegal_object_name_chars=‘˜!$%ˆ&*|’"<>?,()=

interval_length

Defines the time unit in seconds to which time details in object definitions (such
as with normal_check_interval or retry_check_interval) refer. If interval_length
is 60 seconds, the time specification is 5 five minutes. You should only change
the default of 60 seconds if there is good reason to do so. interval_length has no
influence on time parameters in nagios.cfg, however. Default value:

interval_length=60

lock_file

Specifies a lock file for the Nagios daemon containing the process ID (PID) of the
daemon running. Is required for start/stop purposes. Default value:

lock_file=/var/nagios/nagios.lock

432

D.1 The Main Configuration File nagios.cfg

log_archive_path

The archive directory for rotating Nagios log files. Evaluations are based on the
archive files copied there. If one of the files is deleted, the information contained
in it is lost. Nagios uses the directory only if log rotation is enabled with the
⇒log_rotation_method parameter. Default value:

log_archive_path=/var/nagios/archives

log_event_handlers

Should event handler actions appear in the log file? The parameter is used primarily
to search for errors. Default value:

log_event_handlers=1

log_external_commands

Should Nagios log external commands (see Section 13.1, page 240) in the log file?
Default value:

log_external_commands=1

log_file

The central log file. Apart from errors and problems, it also retains all events. All
history evaluations use this file. For log rotation, Nagios provides a separate mech-
anism, with ⇒log_rotation_method, and you should not use external programs
here. Default value:

log_file=/var/nagios/nagios.log

log_host_retries

Specifies whether Nagios should log host check repeats because of an error state.
This is absolutely essential if event handlers (see Appendix B, page 409) are used
which are to react to soft states. Default value:

log_host_retries=0

433

D An Overview of the Nagios Configuration Parameters

log_initial_states

Specifies whether the start state of services and hosts should appear in the log file
when the Nagios system is started. Default value:

log_initial_states=0

log_notifications

Defines whether Nagios should also log notifications in the log file. Default value:

log_notifications=1

log_passive_checks

Specifies whether Nagios should log passive checks in the log file. Default value:

log_passive_checks=1

log_rotation_method

Defines whether the log file ⇒log_file should be saved periodically to the archive
⇒log_archive_path. Log rotating should always be left to Nagios itself, rather
than any external programs, or otherwise the software will have difficulties in
evaluating history data. Possible values are n (none, no archiving), h (hourly, at
the beginning of each hour), d (daily, each day at 00:00 hours), w (weekly, at mid-
night from Saturday to Sunday), and m (monthly, the first day of each month at
00:00 hours). Default:

log_rotation_method=n

log_service_retries

Should Nagios log the repeat of a service check because of a soft state error? This
is useful for debugging when developing event handlers, but otherwise it is best to
leave this out. Default value:

log_service_retries=0

434

D.1 The Main Configuration File nagios.cfg

low_host_flap_threshold

Lower limit for flap detection for hosts checks. Details are described in Appendix A,
page 401. Default value:

low_host_flap_threshold=20.0

low_service_flap_threshold

Like low_host_flap_threshold, but for service checks. Default value:

low_service_flap_threshold=20.0

max_concurrent_checks

Specifies how many checks Nagios may execute simultaneously. The value 0 allows
an unlimited number. A restriction through a value larger than zero may, under
unfavorable circumstances, lead to the test not being executed in time. Default
value:

max_concurrent_checks=0

max_host_check_spread

At what time interval (in minutes) should Nagios have started all host checks after
a restart? Prevents all tests from being executed simultaneously, which would
overload the Nagios server. Default value:

max_host_check_spread=30

max_service_check_spread

Like max_host_check_spread, but for service checks. Default value:

max_service_check_spread=30

nagios_group

The group with whose permissions the Nagios daemon runs. Default value (is de-
fined during compilation):

nagios_group=nagios

435

D An Overview of the Nagios Configuration Parameters

nagios_user

The user with whose permissions the Nagios daemon runs. Default value (is defined
during compilation):

nagios_user=nagios

notification_timeout

After how many seconds should Nagios abort the attempt to deliver a notification?
Some actions, such as sending an SMS message, require a certain amount of time,
since the system first waits for confirmation from the recipient. The value should
therefore not be too low. Default value:

notification_timeout=30

object_cache_file

The file in which Nagios stores all objects after it starts. Since the Web inter-
face uses this file, the normal configuration files with the object definitions can be
edited while Nagios is running, without jeopardizing the functionality of the Web
interface. Default value:

object_cache_file=/var/nagios/objects.cache

obsess_over_host

Defines in general whether host check results are forwarded to a central Nagios
instance. If the parameter is enabled, the command defined in ⇒ocsp_command
is run. This is used in distributed environments; a description can be found in
Chapter 15, page 265. Default value:

obsess_over_host=0

obsess_over_services

Defines in general whether service check results should be forwarded to a central
Nagios instance. If the parameter is enabled, the command defined in ⇒ohcp_
command is used. This feature is used in distributed environments (see Chapter
15, page 265). Default value:

obsess_over_services=0

436

D.1 The Main Configuration File nagios.cfg

ochp_command

Defines the obsessive compulsive host processor, a Nagios command object that
forwards all host check results in a distributed environment to a central instance
(see Chapter 15, page 265). Example (no default value set):

ochp_command=name_of_the_command_object

ochp_timeout

Defines the timeout for the ⇒ochp_command. After this time has expired, Nagios
aborts the execution of the command. Default value:

ochp_timeout=15

ocsp_command

Specifies the command object that, as the obsessive compulsive service proces-
sor, should forward all service check results in a distributed environment to a cen-
tral instance (see Chapter 15, page 265). Example (no default value set):

ocsp_command=name_of_the_command_object

ocsp_timeout

The timeout for the ⇒ocsp_command. After the time specified here has expired,
Nagios aborts the execution of the command. Default value:

ocsp_timeout=15

perfdata_timeout

Defines after how many seconds a performance command (⇒host_perfdata_
command, ⇒service_perfdata_command, ⇒host_perfdata_file_processing_
command or ⇒service_perfdata_file_processing_command) should be aborted.
Default value:

perfdata_timeout=5

437

D An Overview of the Nagios Configuration Parameters

process_performance_data

Switches on processing of performance data. This parameter should be enabled
only if performance data really is evaluated. Otherwise it only uses up resources on
the Nagios server. Default value:

process_performance_data=0

resource_file

The configuration file containing the definitions of the (maximum of 32) $USERx$
macros. $USER1$ normally specifies the path to the Nagios plugins. Otherwise
you could save passwords here, for example, which should not be readable in the
normal Nagios configuration files. The file must then be protected from all external
access, and only the user nagios should be able to read it. Example (no default
value set):

resource_file=/etc/nagios/resource.cfg

retain_state_information

Determines whether Nagios will save current states to a file on shutdown (⇒state_
retention_file) and read these again when it starts. Default value:

retain_state_information=0

retention_update_interval

Every how many minutes should Nagios store current state information in the
⇒state_retention_file? With a value of 0, the system only saves information if
Nagios is shut down. The parameter ⇒retain_state_information must be enabled
for this. Default value:

retention_update_interval=60

service_check_timeout

Number of seconds after which Nagios aborts a service check if this has not re-
turned a result by then. Default value:

service_check_timeout=60

438

D.1 The Main Configuration File nagios.cfg

service_freshness_check_interval

Interval between two freshness checks in seconds. Default value:

service_freshness_check_interval=60

service_inter_check_delay_method

Controls how Nagios processes service checks after a restart. An “intelligent” pro-
cedure should prevent them from all starting at the same time, to avoid putting an
unnecessary load on the server. Possible values are s (smart, automatic distribu-
tion), n (no, start all tests simultaneously!), d (dumb, one second interval between
checks), as well as an explicitly specified interval in seconds, in the form x .xx. De-
fault value:

service_inter_check_delay_method=s

service_interleave_factor

Prevents the checks accumulating for a specific host from being executed at the
same time (⇒max_concurrent_checks, 435), through Nagios distributing the
planned checks for all hosts “intelligently” over a period of time. Possible values
are s (smart, automatic distribution) or an integer larger than 0. With a value of 1,
Nagios does not carry out any distribution, with a value of 4, Nagios initially plans
every fourth service check (that is, from the amount of intended checks, the 1st,
5th, 9th, etc.), then the following number (that is, the 2nd, 6th, 10th, etc.), and so
on. The test sequence is shown by the Service Detail item in the Web interface. In
case of doubt, the default value can be left as it is:

service_interleave_factor=s

service_perfdata_command

The Nagios command object that is run after each service check to process perfor-
mance data. A requirement for this is that ⇒process_performance_data must be
set.

The parameter is used if the performance data is to be processed without a tem-
plate (Section 17.1, page 314). Example (no default value set):

service_perfdata_command=process-service-perfdata

439

D An Overview of the Nagios Configuration Parameters

service_perfdata_file

Path to the file or named pipe through which Nagios forwards performance data
from service checks via a template mechanism to an external program. This only
works if ⇒process_performance_data is set. More on processing performance
data in Chapter 17, page 313. Example (no default value set):

service_perfdata_file=/tmp/service-perfdata

service_perfdata_file_mode

Defines the mode in which data is passed on to ⇒service_perfdata_file. Possible
values are a (append, append to a normal file) or w (write, write to a named pipe).
Example (no default value):

service_perfdata_file_mode=a

service_perfdata_file_processing_command

A command object that is executed after Nagios has passed on service performance
data to the ⇒service_perfdata_file. The parameter is optional and is only used
together with the template mechanism. As long as programs that further pro-
cess the data, such as perf2rrd (Section 17.3, page 325), include their own service
that permanently reads out the service_perfdata_file, you can manage without
defining a command for reading out. See also Chapter 17, page 313. Example (no
default value set):

service_perfdata_file_processing_command=process-service-perfdata-file

service_perfdata_file_processing_interval

Interval in seconds in which the command defined in ⇒service_perfdata_file_
processing_command is periodically run. Setting the value 0 ensures that it is
never used. Example (no default value set):

service_perfdata_file_processing_interval=0

service_perfdata_file_template

The output format for performance data; Nagios macros and format details such
as \t (tabulator) or \n (linefeed) are substituted in the output. See also Section 17.1,
page 314. Example (no default value set):

service_perfdata_file_template=$TIMET$\t$HOSTNAME$\t$SERVICEDESC$\t\
$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t\
$SERVICEPERFDATA$

440

D.1 The Main Configuration File nagios.cfg

service_reaper_frequency

Every how many seconds should Nagios process accumulated service test results?
Default value:

service_reaper_frequency=10

sleep_time

Pause in seconds for which Nagios waits before searching again in the scheduling
queue for checks to be performed. Default value:

sleep_time=0.5

state_retention_file

The file in which Nagios stores status information on shutdown, and from which
the information is read in again when Nagios is started. This is used only if the
⇒retain_state_information parameter is set. Default value:

state_retention_file=/var/nagios/retention.dat

status_file

Path to the file in which Nagios saves all current status values and from which the
Web interface retrieves them. Default value:

status_file=/var/nagios/status.dat

status_update_interval

At what interval should Nagios store status values in the file ⇒status_file? If
⇒aggregate_status_updates is not set, the system ignores this parameter and
immediately writes the status values to this file (not recommended). Default value:

status_update_interval=60

temp_file

Path to a temporary file that Nagios uses if necessary, and deletes each time when
it no longer requires it. Default value:

temp_file=/var/nagios/tempfile

441

D An Overview of the Nagios Configuration Parameters

use_regexp_matching

Defines whether the wildcards * (any character) and ? (a single character) are
allowed in object definitions. If you want to work with regular expressions, ⇒use_
true_regexp_matching must be used. Default value:

use_regexp_matching=0

use_retained_program_state

Should changes to the parameters ⇒enable_notifications, ⇒enable_flap_
detection, ⇒enable_event_handlers,⇒execute_service_checks and ⇒accept_
passive_service_checks on the Web interface survive a Nagios restart? Only works
if ⇒retain_status_information is enabled. Default value:

use_retained_program_state=1

use_retained_scheduling_info

Should Nagios save current scheduling information on shutdown so it can read it
in again when it restarts? You can temporarily disable the parameter if you are
adding a large number of tests; otherwise it is sensible to keep it enabled. Default
value:

use_retained_scheduling_info=1

use_syslog

Ensures logging of all Nagios activities in the syslog. Default value:

use_syslog=1

use_true_regexp_matching

In contrast to ⇒use_regexp_matching, allows the use of real regular expressions
in accordance with the POSIX standard.1 Default value:

use_true_regexp_matching=0

1 See man 7 regex.

442

D.2 CGI Configuration in cgi.cfg

D.2 CGI Configuration in cgi.cfg

D.2.1 Authentication parameters

Through the contact and the contact group, Nagios allocates responsibilities to
users from which permissions for the Web interface can likewise be inferred: each
contact may normally only see those hosts and services for which he is also re-
sponsible. This is why the name of the Web login must match the contact name.

The parameters listed below work around this concept to some extent. They are not
intended to solve problems, however, caused by contact and Web user names not
matching.

cmduse authentication

Determines whether you normally need to log in to the Web interface. Like the
username, the contact name is always used; how you store passwords is described
in Section 1.3, page 33.

In general you should never permit this authentication, but if you do, you should
make sure that the interface for external commands (Section 13.1, page 240) is
switched off completely. Default:

use_authentication=1

authorized_for_all_host_commands

Allows the users specified here to run commands through the Web interface for
all hosts, without them belonging to the appropriate contact group. Example (no
default value set):

authorized_for_all_host_commands=nagiosadmin

authorized_for_all_hosts

Allows the users specified here to look at all host information, irrespective of their
actual responsibility. Example (no default value set):

authorized_for_all_hosts=nagiosadmin,guest

443

D An Overview of the Nagios Configuration Parameters

authorized_for_all_service_commands

Allows the users defined here to run commands for all services via the Web inter-
face, independently of membership of contact groups. Example (no default value
set):

authorized_for_all_service_commands=nagiosadmin

authorized_for_all_services

Allows the users specified to view all service information, irrespective of their own
permissions. Example (no default value set):

authorized_for_all_services=nagiosadmin,guest

authorized_for_configuration_information

Enables the users specified to view all configuration data via the Web interface.
This should be reserved for the Nagios administrators. Example (no default value
set):

authorized_for_configuration_information=nagiosadmin,jdoe

authorized_for_system_commands

Allows the specified users to shut down or restart Nagios via the Web interface.
Normally, nobody has this authorization. Example (no default value set):

authorized_for_system_commands=nagiosadmin

authorized_for_system_information

Allows the specified users to view Nagios process information. Normally, nobody
may do this. Example (no default value set):

authorized_for_system_information=nagiosadmin,theboss,jdoe

D.2.2 Other Parameters

default_statusmap_layout

Defines the layout for the status map. Possible values are 0 (coordinates defined
through a hostextinfo object), 1 (the user must move by mouse click from one

444

D.2 CGI Configuration in cgi.cfg

layer to the next one), 2 (compressed tree—somewhat confusing, because branches
cut across each other in the picture), 3 (balanced tree, the branches are displayed
so that there are no crossovers in the graphic—clearer, but requires much space),
4 (circular representation, with Nagios at the center: hosts that can be reached
directly2 are shown in the inner circle, while on other circles are located those
hosts that can be reached from hosts already entered in the graphic), 5 (circular,
like 4; the area around the host is marked in color—gray for OK, red for DOWN or
UNREACHABLE; Figure D.26 on page 291 shows an example), and 6 (circular; the
hosts are shown as balloons). The settings can also be changed in the Web interface
without the need to adjust the configuration file each time, which makes it easier
to try things out. Example:

default_statusmap_layout=5

default_statuswrl_layout

Determines the layout for the VRML representation of the status page through sta-
tuswrl.cgi. Possible values are 0, 2, 3, and 4; the corresponding appearance is based
on the values of the same name for ⇒default_statusmap_layout. Example:

default_statuswrl_layout=4

default_user_name

Name of a guest user who may use the Web pages without authentication. You
should only use this parameter if the Web server is protected from unauthorized ac-
cess, and you should look closely at what permissions this user is allocated through
the contact groups. Example (no default value set):

default_user_name=guest

main_config_file

The Nagios main configuration file. Default value:

main_config_file=/etc/nagios/nagios.cfg

2 That is, without the “diversion” via parents.

445

D An Overview of the Nagios Configuration Parameters

nagios_check_command

A command that checks the status of the Nagios daemons. You can omit this
parameter, since the CGI programs already contain an equivalent built-in function.
If Nagios is not running, they issue a corresponding error message. If you still want
to define a separate command here, you can use the plugin check_nagios (Section
7.11, page 150):

nagios_check_command=/usr/local/nagios/libexec/check_nagios

-F /var/nagios/nagios.log -e 60 -C /usr/local/nagios/bin/nagios

physical_html_path

Path in the file system that leads to the Nagios directory for documentation and
images. See also ⇒url_html_path. Default value:

physical_html_path=/usr/local/nagios/share

refresh_rate

Specifies at what intervals the Web page is automatically updated. Default value:

refresh_rate=60

statusmap_background_image

The background image for the status map display. Example (no default value set):

statusmap_background_image=smbackground.gd2

statuswrl_include

A file with its own VRML objects used in the VRML representation. The path is
specified relative to ⇒html_physical_path. Example (no default value set):

statuswrl_include=myworld.wrl

url_html_path

The logical path to the Nagios documents and images from the point of view of
the browser, starting from the document root of the Web server. If you use this
path in an URL, you will be taken to the Nagios start page. Default value:

url_html_path=/nagios

446

Index

Symbols
.NET

querying configuration data
371

$ARG1$ 53
$ARG2$ 53
$HOSTADDRESS$ 53, 90
$USER1$ 53, 59
$USERx$ macros 59, 438
24x7 45, 49, 54, 220
2d coords 310
3D display

monitored computer see sta-
tuswrl.cgi

3d coords 310

A
accept passive host checks 424
accept passive service checks 424,

442
access control see authentication
accounts

creating 161
acknowledgement 278, 288

as a display criterion for sta-
tus.cgi 282
displaying in the Web interface
290
via cellphone 295
via WAP 295

action url 308
additional information

adding to Nagios Web page 43
address 44, 226
admin email 424

admin pager 424
age monitoring

of a file see check file age
of a Windows file 363

agent (SNMP) 178
aggregate status updates 424
alias 44, 47, 50–52, 226
Alias (Apache) 33
alternating states see flapping
Amavis

monitoring 92
Apache

configuration 33–34
configuration file 27
home page 35
setting the environment vari-
able 57

Apache 1.3
and Nagios 33

Apache 2.0
and Nagios 33

APAN 349
APC-UPSs

monitoring 126, 149–150
APC-USVs

monitoring 128
apcupsd 126, 149–150
arguments

for check commands 53
AS/400

querying system load 213
ash programming 412
asynchronous events

processing 240
authentication

configuring the NET-SNMP sn-
mpd 190–192
in SNMP 183–184, 190–192
switching on/off at the Web in-
terface 58

authorized for all host commands
443

authorized for all hosts 58, 443
authorized for all service commands

443
authorized for all services 58, 444
authorized for configuration infor-

mation 296, 444
authorized for system commands

444
authorized for system information

444
auto reschedule checks 425
auto rescheduling interval 425
auto rescheduling window 425
avail.cgi 275, 296–297, 305
availability report see avail.cgi
availability states 75

B
backup

monitoring 240
BB see Big Brother
Big Brother 19
booting see system start
browser refresh

configuring 58

C
Cacti 19, 350

447

Index

CCMS 388–398
CCMS plugins 394–398
CDEF 346
cell phone

as a display device for Nagios
295
number for SMS see pager

certificate
testing the lifespan 101
testing the time span 111
Web server testing 81

cfg dir 39, 269, 425
cfg file 38, 425
CGI configuration 57–59
CGI programs

avail.cgi see avail.cgi
calling your own ˜ see ac-
tion url
cmd.cgi see cmd.cgi
config.cgi see config.cgi
extinfo.cgi see extinfo.cgi
histogram.cgi see his-
togram.cgi
history.cgi see history.cgi
interaction with Nagios 273
notifications.cgi see notifica-
tions.cgi
outages.cgi see outages.cgi
showlog.cgi see showlog.cgi
status.cgi see status.cgi
statusmap.cgi see sta-
tusmap.cgi
statuswml.cgi see sta-
tuswml.cgi
statuswrl.cgi see statuswrl.cgi
summary.cgi see summary.cgi
tac.cgi see tac.cgi
trends.cgi see trends.cgi
working with Nagios 84

CGI scripts see CGI programs
cgi.cfg 39, 57–59, 152, 275, 292,

296, 443–446
change of state

continual see flapping
check-host-alive 45
check-iftraffic 207–209
check apc 150

check by ssh 82, 108, 157–160
passive mode 160

check cluster
installation 31

check command 44, 48
check dhcp 124–126
check dig 107–108
check disk 134–136, 171–172

evaluating performance data
graphically 324
evaluating performance data
with NagiosGrapher 345–348

check dns 106–107
check dummy 154, 241, 258

for Windows 374
check external commands 240,

426
check file age 148–149
check for orphaned services 426
check freshness 244

and notification failure criteria
236

check ftp 97
check host 91
check host freshness 426
check http 81, 98–103

critical limit value 99
for Windows 374
reaction to a Web server redirect
99
regular expressions in queries
99
specifying user and password
for the test 99
testing SSL connection 101
testing the lifespan of a certifi-
cate 101
warning limit 99

check icmp 88–91
and Windows 374
as a host check 91
as a service check 90–91
critical limit 89
evaluating performance data
with Nagiosgraph 322
evaluating performance data
with NagiosGrapher 343–345

host entry 89
options 89
test 32–33, 90
use with negate 156
vs. check ping 88
warning limit 89

check ifoperstatus 83, 203–205
check ifstatus 83, 201–203
check imap 95
check ldap 121–124
check load 137–138
check log 141–144
check log2 143
check mailq 147–148
check mysql 120–121
check nagios 150–152
check nrpe

for monitoring NRPE 234
monitoring Windows systems
371
running plugins on third-party
computers 171–173

check nt 354–370
installation 363–364

check ntp 145–146
check oracle 114, 415
check oracle writeaccess 115, 415
check pcmeasure 379–382
check period 45, 49

vs. notification period 45
check pgsql 115, 117–118
check ping

vs. check icmp 88
check pop 95
check procs 138–141
check sap 386–387, 394
check sap cons 393–397
check sap instance 394
check sap instance cons 395
check sap mult no thr 395, 397–

398
check sap multiple 395
check sap system 395
check sap system cons 395
check sensors 152–154
check service freshness 426
check simap 95

448

Index

check smtp 81, 92–95
critical limit 93
for Windows 374
warning limit 93

check snmp 83, 196–201
check snmp cpfw 210
check snmp disk 205–207
check snmp int 209
check snmp load 209, 212–213
check snmp mem 209
check snmp proc 205–207
check snmp process 209
check snmp storage 209–212
check snmp vrrp 209
check spop 95
check squid 103–105
check ssh 108–110

for Windows 374
check swap 136–137
check tcp 82, 110–112

stipulating IPv4 or IPv6 112
critical limit value 95
for FTP monitoring 97–98
for monitoring POP3 and IMAP
92
for POP and IMAP monitoring
95–97
for Windows 374
to check SAP 383
to monitor SAP 387
using SSL 112
warning limit 95, 110

check time 146–147
for Windows 374

check traffic 207
check udp 82, 112–114

for Windows 374
check ups 127, 129–131
check users 144
checkcommands.cfg 90, 91, 225
Checkpoint firewall

monitoring 210
chmod 161
chown 161
Cisco components

querying system load 213
CLIENTVERSION (NSClient/NC Net

command) 356–357
clock times

restricting actions 54
cluster

monitoring 31
cmd.cgi 274, 288–290, 304, 311
collect2.pl 337
comma-separated list see CSV
command (object 54
command (object) 42, 53
command object

for e-mail notification see
notify-by-email
for evaluating performance
data 316, 317

command check interval 427
command file 427
commands

defining to be run in SNMP
queries 193
for notification see notifica-
tion command

comment file 427
comments

deleting on problem hosts 278
in configuration files 39
looking at for hosts 285
looking at for services 285
maintaining on problem hosts
277, 288
nonpermanent 403, 406

community (SNMP) 183
configuring for snmpd 190
default values 186
specifying in check snmp 197

compilation 29
computer

defining see host (object)
defining dependencies see
hostdependency (object)
excluding from notification
220
grouping see hostgroup (ob-
ject)
monitor all of a user 58
monitoring in different network
segments see network topol-

ogy
overview of all 67
overview of individual 67
recommended configuration
file 39
shutdown during power failure
149
states 46

computer address
defining see address

computer name
defining see host name

CONFIG (NC Net command) 370
config.cgi 275, 295–296
configuration 37–59

checking 61
for using Nagiosgraph 320–
321
for using Perf2rrd 326–327
overview of all objects 275
testing 63

configuration changes
applying 64

configuration directory 27
configuration file

for computer 39
for services 39
for snmpd see snmpd.conf

configuration files
cgi.cfg see cgi.cfg
checkcommands.cfg see
checkcommands.cfg, misccom-
mands.cfg
for check logs.pl 143
for Nagiosgraph see map and
nagiosgraph.conf
for NSCA see nsca.cfg
for NSCA clients see
send nsca.cfg
for PCMeasure query software
see pcmeasure4linux.cfg
for snmptrapd see sn-
mptrapd.conf
nagios.cfg see nagios.cfg
NagiosGrapher see
ngraph.ncfg
nrpe.cfg see nrpe.cfg, dr-

449

Index

raw.conf
object-related 39
resource.cfg see resource.cfg
syslog-ng see syslog-ng.conf

configurations files
main configuration file 445

configure command
for Nagios 27, 33
for NRPE 167, 172
for NSCA 248

contact (object) 42, 50–52, 223
defining external notification
programs 224
defining notification states 221
defining notification times 222

contact groups 17
contact persons see contact (ob-

ject)
and usernames for the Web in-
terface 36

contact sensor 378
contact groups 45, 50
contact name 51
contactgroup (object) 42, 52, 221
Cortona 294
counter 314
COUNTER (NC Net command) 365–

367
CPU load

caused by a program 138
checking 138, 139
in the UCD-SNMP-MIB 189
monitoring in Windows 366
of an SAP instance 394
on Windows computers 357–
358
testing 82, 137
testing via SNMP 195–196,
209, 212–213

CPU runtime
of program monitoring 138

CPU temperature
testing via SNMP 200

CPULOAD (NSClient/NC Net com-
mand) 357–358

crashed computer see DOWN
(state)

Cricket 350
CRITICAL (state) 16, 17, 48, 75, 85,

88
as a display criterion for sta-
tus.cgi 282
force/suppress notification 219
macro 227
marking in the Web interface
66
negating return value 155
resetting manually see error
states
return value 143, 154, 244

critical limit see threshold
check apc 150
check by ssh 157, 159
check dig 107
check disk 134
check file age 148
check http 98, 99
check icmp 88, 89
check iftraffic 207
check ldap 121, 123
check load 137
check mailq 147
check nt 355
check ntp 145
check pgsql 115
check procs 138, 139
check smtp 92
check snmp 196
check snmp load 212
check squid 103, 105
check swap 136
check tcp 95
check udp 113
check ups 129
check users 145
CPULOAD 358
in performance data 146
specifying 88

critical threshold
check apc 150
check file age 149
check iftraffic 208
check load 137
check mailq 147, 148

check nt 356
check ntp 146
check pgsql 117
check snmp 197, 201
check snmp in lm-sensors 200
check snmp load 213
check tcp 111
check time 146, 147
check udp 113
check users 145
CPULOAD 358
detail of performance data 146

cron
for Nagios self-monitoring
151, 152
used to run service checks 84

CSMA/CD 182
CSV

availability data as ˜ 296
Cygwin 353, 373

˜ plugins 373–374

D
Daemon Tools 328
data backup see backup
database

testing 17
databases

and service dependencies 237
monitoring 114–121, 415–422

date format 40, 427
ddraw 330–335
Debian

NET-SNMP 184
NRPE installation 166
smsclient installation 228

default statusmap layout 58, 444
default statuswrl layout 58, 292,

445
default user name 445
delivery number

for SMS see pager
Department of Defense 179
dependencies

between computers see host-
dependency (object)
between NSClient/NC Net and

450

Index

monitored services 357
between services see ser-
vicedependency (object)
circular 63
implied 237

development packages 26
DHCP

monitoring see check dhcp
dig

to monitor name servers see
check dig

distributed monitoring 84, 239,
247, 265–272

DNS
monitoring 105–108
monitoring nameservers see
check dig

documentation 37
linking on hosts in Nagios 308

DOWN (state) 46, 74, 75, 219
as display criterion for status.cgi
282
macro 226
marking in the Web interface
66

downtime
flexible length 305
for hosts 306
for services 306–307
planned see maintenance pe-
riod
planning 307
scheduling 304
taking into account for mes-
sages 219

downtime file 428
drive capacity see hard drive ca-

pacity
drraw.conf 331–332
DSL connection

warning limit for ping 86
dummy plugin see check dummy

E
e-mail address

for notifications see email
specifying of the admin in NET-

SNMP 192
e-mail delivery command see

notify-by-email
e-mail server testing see SMTP
egrep

excluding comments and empty
lines 57

email 52, 225, 226
embedded Perl 29
enable event handlers 428, 442
enable flap detection 403, 406,

428, 442
enable notifications 218, 428, 442
encryption

NSCA 251
ENUMCONFIG (NC Net command)

370
ENUMCOUNTER (NC Net command)

364–365
ENUMCOUNTERDESC (NC Net com-

mand) 365
ENUMPROCESS (NC Net command)

367
ENUMSERVICE (NC Net command)

367
error messages 63

interval see notifica-
tion interval
restricting number of 75

error states
resetting manually 258–259

escalation management 18, 231–
234
for computers see hostescala-
tion (object)
for services see serviceescala-
tion (object)

Ethernet 182
event broker 29, 429
event handler 409–413

vs. OCSP and OCHP 265
event broker options 428
event handler timeout 429
eventlog see Windows eventlog
EVENTLOG (NC Net command)

368–370
events

as histogram 298
showing graphically see his-
togram.cgi

Exchange for Nagios addons 81
addons for managing mainte-
nance times 304
logos and icons 310
NagiosGrapher 336
network plugins 103
NRPE plugins for Windows
371, 373
NRPE source code 167
NSClient 354
Oracle plugin 115
ping plugin for Windows 374
proxy test 103
SNMP plugins 205
Squid test 103

Exchange Server
monitoring 93

execute host checks 429
execute service checks 429, 442
Exim

monitoring mail queue 147
monitoring the mail queue 148

External Command File 240
extinfo.cgi 274, 277, 284–287, 304,

404–406
adding additional information
308

F
failed logins

monitoring on 142
failure

of network ranges detecting
290
of partial networks 275

Fast Ethernet interface
monitoring traffic 208

Fedora
NRPE installation 166

FHS 27
FIFO 240
file

changing owner see chown
changing permissions see

451

Index

chmod
monitoring modification date
see check file age
monitoring via SNMP 189
size monitoring see
check file age

FILEAGE (NSClient/NC Net com-
mand) 363

Filesystem Hierarchy Standard see
FHS

firewall
environments indirect tests in
174, 236

First Level Support
informing of problems 231

flap detection see flapping
flap detection enabled 404, 407
flapping 219, 226

as a display criterion for sta-
tus.cgi 282

flapping (state) 46, 401–407
for services 406
host 406–407
with services 402

flapping services see flapping
FREEDISKSPACE (NC Net command)

370
freeWRL 294
frequency

of a state representing graphi-
cally see histogram.cgi

frequency of state
showing graphically see his-
togram.cgi

freshness checks see freshness
mechanism

freshness mechanism 236, 243–
245

FTP
monitoring 97–98

G
global host event handler 429
global service event handler 429
graphics

adding to Nagios Web page 43
green (state) 16

groupadd 161
groups

creating 161

H
hard disk capacity

testing 136
hard drive capacity

checking 134
checking with SNMP 198
displaying graphically 324
monitoring with SNMP 210
of Windows hosts displaying
graphically 324
testing 82
testing on Windows computers
359–360, 370
testing with SNMP 194–195,
209, 212

hard drive capactiy
testing with SNMP 205

hard recovery 77
hard state 45, 48, 72, 75, 217, 404
header files see development pack-

ages
health check see lm-sensors
help

in the Web interface 58
Help Desk

informing of problems 231
high flap threshold 407
high host flap threshold 406, 430
high service flap threshold 403,

430
histogram.cgi 275, 298–299
history see history.cgi
history.cgi 275, 299
hitlist

problematic hosts 302
host 16
host (object) 41, 44–46
host check 16, 32, 44, 74

active 239
beyond reachability tests 91
passive 239–243, 258, 371
resetting error state manually
see error states

role in flap detection 406
vs. ping service 47, 63, 75
with check icmp 91

host dependencies 234
host dependency (object) 238
host group (object) 57
host MIB 188
host name

defining (plugin option) 88
host-notify-by-email 224, 226–

227
host-notify-by-sms 224
host check timeout 430
host freshness check interval 430
host inter check delay method

430
host name 44, 48, 56, 226, 308
host notification commands 52
host notification options 51
host notification period 51
host perfdata command 317, 430
host perfdata file 431
host perfdata file mode 431
host perfdata file processing command

431
host perfdata file processing interval

431
host perfdata file template 431
hostdependency (object) 43
hostescalation (object) 43, 232, 233
hostextinfo (object) 43, 292, 307–

310
hostgroup

downtime for all services of
306
showing in the status display
279

hostgroup (object) 41, 46–47
applying with NRPE 174
selecting for status display 280

hostgroup name 47, 48, 56
hostgroups 44
hostname

defining see host name
hosts

availability statistics see
avail.cgi

452

Index

extensive information on indi-
vidual 284

htpasswd 35, 51
HTTP

monitoring 97–103
testing 81

HTTP header
manipulating 81

humidity
monitoring 377–382

I
I2C 152
icon

adding your own in the Web in-
terface see icon image

icon image 309
icon image alt 309
ident daemon 116
identd

monitoring 374
illegal macro output chars 432
illegal object name chars 432
IMAP

monitoring 92, 95–97
monitoring via SSL/TLS 95–97

IMAP3S see IMAP via SSL/TLS
imprecision

in SNMP see rounding up
indirect checks 158, 174–175, 236
inetd

configuration for NRPE 169,
252

inheritance
of dependencies 236

installation 25–31, 240
check nt 363–364
drraw 330
isapinfo 384
Nagiosgraph 318
NC Net 355, 363–364
NRPE 166–168
NRPE NT 372
NSCA 248–249
NSClient 354–355
Perf2rrd 326
RRDtools 330

INSTANCES (NC Net command)
365, 367

instant client (Oracle) see Oracle
interface

for external commands 18, 34,
81, 84, 160, 240–241, 247, 288–
290

Internet services
testing 81–82

Internet Standard Management
Framework 178

interval
between error messages see
notification interval
between error notifications see
notification interval
between service checks 49

interval check 220, 223
interval length 432
IP address

defining see address
defining (plugin option) 88

IPv4 stipulating 88
check by ssh 159
check http 101
check ldap 123
check pgsql 117
check smtp 93
check ssh 109
check tcp 112

IPv6 stipulating 88
check by ssh 159
check http 101
check ldap 123
check pgsql 117
check smtp 93
check ssh 109
check tcp 112

is volatile 257, 259, 263, 370
ISDN

sending SMS via 229
ISDN connection

warning limit for ping 86
ISO (organization) 179

J
jitter 145, 146

L
LDAP see OpenLDAP

monitoring see check ldap
libraries

required for compiling 26
limit see critical limit, warning limit
limit value

critical 88
critical (check by ssh) 159

lm-sensors 152–154
information in the UCD-SNMP-
MIB 189
reading out information via
SNMP 200
specifying thresholds 200
temperature query via SNMP
200

load
of a network interface see
check-iftraffic

load status
of a UPS 150

lock file 432
log file entries

for NSCA 250
generating 314–316
graphical overview of see
showlog.cgi
incomplete 297

log files
evaluating see syslog
evaluating the Windows event-
log 368
evaluating Windows Eventlog
370
filtering after states see his-
tory.cgi
for NagiosGrapher 341, 349
monitoring see check log
monitoring the Nagios log file
see check nagios

log archive path 432
log event handlers 433
log external commands 433
log file 433
log host retries 433
log initial state 298

453

Index

log initial states 433
log notifications 434
log passive checks 434
log rotation method 299, 434
log service retries 434
logcheck 255
logins

failed see failed logins
low flap threshold 404, 407
low host flap threshold 406, 434
low service flap threshold 403,

435
lpd

restart automatically if it fails
409
restarting automatically on fail-
ure 413

M
Mac OS X

monitoring 353
macros 53, 59, 225–227

$ADMINEMAIL$ 424
$ADMINPAGER$ 424
$HOSTATTEMPT$ 411
$HOSTSTATETYPE$ 411
$HOSTSTATE$ 411
$SERVICEATTEMPT$ 411
$SERVICESTATETYPE$ 411
$SERVICESTATE$ 411
$USERx$ see $USERx$ macros
used in e-mail delivery 226

mail queue
monitoring see check mailq,
see check mailq

mail server testing see SMTP
mailing lists

nagiosplug-help 31
main configuration file see na-

gios.cfg
main memory

consumption monitoring 138
in the host MIB 188
monitoring with SNMP 209–
212
testing on Windows computers
358–359

main config file 58, 445
maintenance window

addons for maintenance 304
display in the Web interface
282, 286
for hosts 305

make options 29, 38
Management Information Base see

MIB
management nodes (SNMP) see

nodes
manager (SNMP) 178
manufacturer MIB 201
map 318, 322–325
max check attempts 45, 48, 49, 76,

217, 404, 410
in connection with log file mon-
itoring 141
representation Web interface
66

max concurrent checks 435
max host check spread 64, 435
max service check spread 64, 435
mbrowse 186–187
measured values

displaying over time 19
measuring temperature

as a host check 92
members 47, 50, 57
memory

monitoring 139
MEMUSE (NSClient/NC Net com-

mand) 358–359
messages 45

stopping see notifica-
tions enabled

MIB 178
of the manufacturer 201

MIB-II 181–183, 188
Microsoft Exchange Server 93
Microsoft Windows see Windows
misccommands.cfg 225, 268
modification date

of a file monitoring see
check file age

movement detector 378
MRTG 19, 209

MTA
monitoring see check smtp

MySQL
creating a database 119
monitoring 119–121
starting in network mode 119

N
nagcmd (group) 26
Nagios

monitoring see self-
monitoring
reload 327
restarting see restart
stopping 285

nagios (group) 26
nagios (program) 61–63

start via start script 63
nagios (user) 26

read permissions when using
check log 142

Nagios Exchange see Exchange for
Nagios addons

Nagios Remote Plugin Executor see
NRPE

Nagios Service Check Acceptor see
NSCA

nagios-snmp-plugins 205–207
nagios.cfg 38–43, 218, 311, 424–

442
activating freshness checking
243
allowing passive host checks
242
configuration for Nagiosgraph
320
defining time unit 43
flap detection 403, 406
log rotation 299
passive service checks 241
processing performance data
315–317
switching on OCSP/OCHP 266
switching on processing of ex-
ternal commands 240

NAGIOS CGI CONFIG (environment
variable) 57

454

Index

nagios check command 152, 445
nagios group 435
nagios user 435
Nagiosgraph 314, 317–325

debug level 320
delimiter 317

nagiosgraph.conf 319–320
NagiosGrapher 314, 336–349

configuration 338–349
installation 336–338

Name server see DNS
named pipe 84, 240, 427

creating a 327
for NagiosGrapher 339
for NSCA 250
problems with Nagios 2.0 beta
330

navigation area 274
customizing 283

NC Net 81, 354–371
changing configuration 370
defining the Performance
Counter 364–365
installation 355, 363–364
listing services 367
monitoring processes 362
monitoring processor load 366
monitoring the age of a file
363
monitoring uptime 360–361
monitoring Windows services
361–362
querying configuration 370
querying eventlog 368–370
querying process list 367
querying the client version
356–357
querying the configuration 370
querying the Performance
Counter 365–367
querying WMI database 371
testing CPU load 357–358
testing hard drive capacity
359–360, 370
testing main memory 358–359

negate 155–156
for Windows 374

NET-SNMP 184–196, 260
configuration see snmpd.conf
defining system and local infor-
mation 192
plugins specialized in ˜ 205
special features in the
check snmp load call 212

NET-SNMPD 83
network

detecting outages 74
network connection

slow warning limits 86
network interfaces

monitoring via SNMP 83, 200
testing load see check-iftraffic

network outages 74
network segments 73
network services

testing 81–82
network topology

accounting for 46
taking into account 72

network traffic
observing see check-iftraffic

Network UPS Tools 126–131
networktopology

taking into account 17–75
ngraph.ncfg 337–345
nmbd

monitoring 138
nodes 181
nodes (SNMP) 179
Nokia-VRRP cluster

monitoring 209
normal check attempts 49
normal check interval 49, 76, 286,

404
notes 308
notes url 308
notification

commands 52
preventing 46

notification command 52
defining 224–231

notification interval 45, 49, 220,
223, 231
for escalation 233

notification options 46, 49
in case of escalation 233
in connection with check log
142

notification period 45, 49, 220,
223, 231
in case of escalation 233

notification timeout 436
notifications 17–18, 215–238

as a display criterion for sta-
tus.cgi 282
commands 52, 224
globally switching on and off
289
graphic overview see notifica-
tions.cgi
looking at sent see notifica-
tions.cgi
periodic see interval check
preventing 285
stopping in general see en-
able notifications
switching off for hosts of a
group 284
time interval see notifica-
tion interval

notifications.cgi 275, 300–301
notifications enabled 219
notify-by-email 224–227
notify-by-sms 224, 230–231
NRPE 82–83, 165–175

example of service dependen-
cies 234
for Windows see NRPE NT
monitoring 234

nrpe.cfg 167, 170–172
for Windows 372, 374

NRPE NT 371–375
configuration 372
installation 372

NSCA 84, 239, 247–265
client configuration 252–253
configuring the Nagios server
249–252
daemon 247
encryption 251
installation 248–249

455

Index

processing SNMP traps 260
testing functionality 254

nsca.cfg 249–251
NSClient 81, 354–363

and service dependencies 237
installation 354–355
monitoring processes 362
monitoring the age of a file
363
monitoring uptime 360–361
monitoring Windows services
361–362
querying Performance Counters
367
querying the client version
356–357
testing CPU load 357–358
testing hard drive capacity
359–360
testing main memory 358–359

NSClient+ 354
nslookup

to check name services see
check dns

NTP
for monitoring system time see
check ntp

ntpdate 145
ntpq 145
nut 127

O
object 41–43
object definitions

displaying see config.cgi
object identifier see OID
object types 41–43
object cache file 436
obsess over host 267, 436
obsess over hosts 266
obsess over service 267, 271
obsess over services 266, 436
obsessive commands 265
OCHP 265–268
ochp command 266, 436
ochp timeout 266, 437
OCSP 265–268

ocsp command 266, 437
ocsp timeout 266, 437
OID 179

querying 184–187
OK (state) 17, 48, 75, 85

macro 227
negating return value 155
return value 154

OpenLDAP
monitoring 138
restart by event handler 413

OpenNMS 260
OpenSSH 158
OpenVRML 294
operating status

of a network interface testing
203

Oracle
instant client 416–417
monitoring 114, 115, 415–422

orphaned service 426
outages

detecting in network 74
outages.cgi 275, 295

P
pager 225
parents 46, 63, 72–73, 238, 306
passive mode

check by ssh 160
password

in SNMP 183
password file

for logging in to the Web front
end see htpasswd

PCAnywhere
monitoring 112

PCmeasure (sensor query program)
379

PCmeasure4linux.cfg 378
PENDING (state)

as a display criterion for sta-
tus.cgi 282
as criterion for service depen-
dencies 235
as display criterion for status.cgi
282

Perf2rrd 325–330
perfdata timeout 437
Performance Counter 364

defining 364–365
querying 365–367

Performance Counter instances
365

performance data 87, 96, 313–350
for overall system 291
format 314
processing through an external
command 317
processing via template 314–
316

performance problems
of Nagios revealing 286

periodic notification see interval
check

Perl
embedded see embedded Perl
for Windows 375
ICP::Open2 module 418
plugins for Windows 374–375
searching in ˜ 322

Perl modules
installing 31, 336

Perl script
as a plugin 17

permissions
changing on file see chmod

PerParse 349
physical html path 58, 446
ping 32, 45, 47, 62, 88

check for Windows 374–375
warning limits 86

plugin 79, 81–83, 87
differences between versions
1.3.1 and 1.4 166
executing via SSH 82
generic 82, 110–114
local 82
Oracle 417–422
running via NRPE see NRPE
running via SSH 82, 157–163
service-specific vs. generic 81–
82
wrapper 417–422

456

Index

plugin directory 53
plugins 17

check icmp see check icmp
documentation 87
downwards compatibility 19
echo, getting return value 143,
154, 206, 360, 363, 373
for network services 88–131
for Windows 354
help 87
installation 30–31
manipulating output 155–156
negating output see negate
path to 59
performance data 87
return status 85
return value 75, 154
running through SSH 371
specifying host name 88
specifying IP address 88
standard options 87–88, 153
states 17, 75
testing 32–33
timeout 86, 88
version information 88
writing your own 415–422

POP3
monitoring 92, 95–97

POP3 via SSL/TLS
monitoring 95–97

POP3S see POP3 via SSL/TLS
port scan

as a host check 92
Postfix

monitoring mail queue 147,
148

PostgreSQL
creating a database 115
creating a database user 115
monitoring 115–118
starting in network mode 115
testing database 17

postponing
tests 287

power failure
shutdown computer 149

printer service

restarting automatically on fail-
ure 409–413

problem
taking on 278

PROCESS HOST CHECK RESULT
240, 243, 253

process perfdata command 317
process performance data 315,

317, 320, 437
PROCESS SERVICE CHECK RESULT

84, 240, 242, 253
processes

information in the host MIB
188
listing in Windows 367
monitoring see check procs
monitoring in Windows 362
monitoring via SNMP 205, 209
specifying, to be monitored via
SNMP 193

processor load see CPU load
PROCSTATE (NSClient/NC Net com-

mand) 362
proxy

monitoring see Squid
pseudo tests

for freshness checks 244
public-key login 160

Q
QMail

monitoring mail queue 147,
148

questionable status see WARNING
(state)

queues
on mail server see mail queue

R
ranking list see hitlist
reboot see restart
recovery

after error 77
recovery (state) 46, 219
recovery notification 142
red (state) 16
redirect

reaction of the check http plu-
gin 99

refresh rate 58, 446
regexps see regular expressions
regular expressions

allowing + in nagios.cfg 442
in check http 99
in check logs.pl 144
in check snmp 197, 200
in eventlog 368
in Nagiosgraph 322
in NagiosGrapher 343, 344,
346
in Perl 322
with egrep 170

reload
of the system 64

repeat see test repeat
replay attacks

on NSCA 250
rescheduling

automatic 220, 223, 224
resource.cfg 38, 39, 53, 59, 199
resource file 438
responsible person see contact (ob-

ject)
restart

failed services 409
of Nagios server 285, 311

retain nonstatus information 312
retain state information 298, 311,

438
retain status information 312
retention 311–312
retention update interval 151, 438
retry check interval 49, 76, 404,

410
return status

of plugins 85
return value

forcing the defined see
check dummy
of plugins determining with
echo 143, 154, 206, 360, 363

reverse Polish notation see RPN
RFCs

1065–1067 (SNMP) 183

457

Index

1155 (Internet namespace) 181
1155–1157 (SNMP) 183
1212 (format of an MIB) 181
1213 (MIB-II) 188
1901–1908 (SNMPv2c) 183
1905 (SNMPv2) 183
2790 (Host-MIB) 188
3410 (SNMP) 179
3411 (SNMP) 179
3411–3418 (SNMPv3) 183
3414 (USM) 183
3415 (VACM) 183

round-robin archive 333
round-robin database 317

creating with Perf2rrd see
Perf2rrd
evaluating graphically see
ddraw
for sensor data 380
to assess network traffic 207

rounding up
in SNMP 198

router
monitoring network interfaces
200

RPN 346
RRA see round-robin archive
RRD see round-robin database
RRDtools 330

CDEF see CDEF
installation 330

RSH 82

S
Samba

monitoring 138
SAP

CCMS plugins see CCMS plug-
ins
detecting application server
386–387, 395
interface for Nagios plugins
392–394
monitoring 383–398
monitoring system see CCMS
querying application server
384, 386

querying message server 385–
387

SAP instance 392, 395
SAPCAR 384
sapinfo 383–387
scheduling 64
ScriptAlias (Apache) 33
scripting

in Windows 354
search

in the Web interface 67
Second Level Support

informing of problems 231
Secure Shell see SSH, see SSH
segment limits

of a network, defining 73
self-healing

through event handlers 409
self-monitoring 138, 150
send nsca 84, 247, 252–254, 267

using with syslog-ng 256
send nsca.cfg 252–253
Sendmail

monitoring mail queue 147,
148

sensors
monitoring see lm-sensors

service (object) 41, 47–50, 56
service check 16, 79–84

active 239
active preventing 241
active switching 288
command used 48
direct 81–82
passive 239–242, 258, 371
passive as a display criterion for
status.cgi 282
reachability 90–91
resetting error state manually
see error states
via NRPE see NRPE
via SSH 82
vs. host check 402

service checks
active 80
passive 80, 84
via cronjobs 84

via NSCA 84
via SMTP 83–84

service dependencies 234–238
service dependency (object) 234–

237
service group

showing, in the status display
279

service check timeout 438
service description 48
service freshness check interval

438
service inter check delay method

439
service interleave factor 439
service notification commands 52
service notification options 52
service notification period 51
service perfdata command 320,

439
service perfdata file 439
service perfdata file mode 440
service perfdata file processing command

327, 440
service perfdata file processing interval

440
service perfdata file template 440
service reaper frequency 440
servicedependency (object) 42

in NSClient/NC Net 357
serviceescalation (object) 42, 232–

234
serviceextinfo (object) 43, 307,

310–311
for Nagiosgraph 320
generating with NagiosGrapher
336, 339
integrating ddraw graphics into
Nagios 335

servicegroup (object) 42, 50
selecting for status display 280

servicegroup name 50
services

availability statistics see
avail.cgi
defining dependences see ser-
vicedependency (object)

458

Index

defining NRPE in /etc/˜ 168
detailed information on individ-
ual 284
excluding from notification
220
grouping see servicegroup (ob-
ject)
listing in Windows 367
monitor all of a user 58
overview of all 67
overview of defective 67
overview of faulty 66
password definitions in 59
recommended configuration
file 39
test commands see service
check
test interval 49
to be monitored see service
(object)
volatile see volatile services
Windows see Windows ser-
vices

SERVICESTATE (NSClient/NC Net
command) 361–362

shell script
as a plugin 17

shell scripting see bash program-
ming

show context help 58
showlog.cgi 275, 301
size

of a file monitoring see
check file age

sleep time 441
slurpd

monitoring 138
SMBus 152
smoke alarm 378
SMS

as a notification medium 227–
231
delivery address see pager
notification program 227

smsclient 227–231
installation 228

smssend 227

SMTP 16, 83–84, 92–95
test of mail server restrictions
94
testing 81

SNMP 177–213
and precision see rounding up
and service dependencies 237
authentication see authentica-
tion
defining protocol version for
check snmp 198
generic Nagios plugin see
check snmp
in Windows 354
Nagios plugins 196–213
querying OIDs 184, 187
RFCs 179, 181, 183, 188
testing several network inter-
faces simultaneously 201

SNMP management systems
in comparison to Nagios 260

SNMP traps 178
processing 240
processing with Nagios 260–
263

snmpd 187–196
configuration see snmpd.conf
traps sent by default 261

snmpd.conf 190–196, 261
snmpget 184–185

as a utility for check snmp 197
snmpgetnext 184–185
snmptrapd 260–261
snmptrapd.conf 260
SNMPv1 183

as security model in the snmpd
configuration 190

SNMPv2c 183
as security model in the snmpd
configuration 190

SNMPv3 183
security model in the snmpd
configuration 190

snmpwalk 184–186, 189
soft recovery 77
soft state 45, 48, 72, 75, 217

accounting for, in frequency

statistics 299
after RECOVERY 299

source code
downloading 26

spreading 64
sqlplus (Oracle) 416–417
Squid

cache manager 103, 104
configuring to use check squid
104
monitoring 101–105

SSH
compatibility problems in het-
erogeneous environments 157
generating key pairs 160
monitoring see check ssh
running plugins through 82,
157–163
running plugins through 371
using in event handler scripts
411

SSL
using for the test (check tcp)
112
via STARTTLS see STARTTLS

SSL (check pop, check imap) 96
SSL capabilities

Web server testing 81
SSL connection

Web server testing 101
start script 63
STARTTLS 96

and check tcp 112
testing, in POP And IMAP con-
nections 96

STARTTLS (check smtp) 93
state

confirm see acknowledgement
state flapping see flapping
state type 411
state retention file 311, 441
states

hard and soft 72
of hosts and services 75–77

statistics
availability of hosts and services
see avail.cgi

459

Index

status
oscillating see flapping

status display
in the Web interface see sta-
tus.cgi

status flags
monitoring processes with spe-
cific 139

status macros 411
status.cgi 274, 279–283, 404, 405

output style 280
status file 441
status update interval 441
statusmap.cgi 274, 291–293

user defined map layout 310
using individual icons 309

statusmap background image 446
statusmap image 309
statuswml.cgi 274, 295
statuswrl.cgi 274, 293–294, 309,

310, 445
statuswrl include 446
storage space see hard drive capac-

ity
sudo 412
summary.cgi 275, 301–303
SuSE

NET-SNMP 184
NRPE installation 166
smsclient installation 228
special features of the Apache
configuration 34

swap area
usage in Unix vs. Windows 359

swap partition
testing 158

swap space
in the host MIB 188
in the UCD-SNMP-MIB 188
monitoring with SNMP 209–
212
testing 82, 136–137

switched-off computer see down
(state)

switches
monitoring 177

symbolic links

for the start script 64
syslog

integrating into Nagios 254–
259
logging of NSCA 250

syslog-ng see syslog
documentation 255

syslog-ng.conf 255
system information

storing in SNMP 192
system load see CPU load
system start 64
system time

checking with NTP see
check ntp
checking with the time protocol
see check time
monitoring 145–147

T
tac.cgi 274, 290–291, 404, 405
TCP wrapper

using with NRPE 169, 172
telephone number

for SMS see pager
temp file 441
temperature

monitoring 377–382
testing via SNMP 200

templates 54–56
for distributed monitoring
269–272
for drraw 335
for processing performance
data 314–316
to retrieve SAP monitoring data
392–394

test
of the NSCA 254

test plugin see check dummy
test repeat

defining number see
max check attempts

tests
postponing 287

time
system see system time

time axis
of states that have occurred
see trends.cgi

time details 43
time object see timeperiod (object)
time period

defining 54
for messages 220
for monitoring see
check period
for notification 42, 45, 51,
222–223

time protocol
for monitoring system time see
check time

time unit 43
timeout

plugin 86, 88
timeperiod (object) 42, 45, 54
TLS see SSL
Token Ring

vs. CSMA/CD (Ethernet) 182
topology see network topology
traffic see network traffic
traffic light states 16, 48
traps see SNMP traps
trends.cgi 275, 303–304

U
UCD-SNMP 184
UCD-SNMP-MIB 188
UDP services

monitoring see check udp
uninterruptible power supply see

UPS
UNKNOWN (state) 17, 75, 86

as a display criterion for sta-
tus.cgi 282
color in the Web interface 297
displaying in the Web interface
291
force/suppress notification 219
macro 227
return value 154, 155

UNREACHABLE (state) 17, 46, 74,
219
as display criterion for status.cgi

460

Index

282
macro 226

UP (state) 74, 75
as a display criterion for sta-
tus.cgi 282
as display criterion for status.cgi
282
macro 226

UPS 126
check load 150
checking load status 150
monitoring 126–131, 149–150
SNMP capability 177

upsd 127
upsmon 127
uptime 137

testing on Windows computers
360–361

UPTIME (NSClient/NC Net com-
mand) 360–361

URL
adding to Nagios Web page 43

url html path 58, 446
urlize 156

for Windows 374
use authentication 58, 443
use regexp matching 441
use retained program state 442
use retained scheduling info 442
use syslog 442
use true regexp matching 442
USEDDISKSPACE (NSClient/NC Net

command) 359–360
user

creating 161
user account

creating see creating user
user permissions

changing on file see chmod
useradd 161
users

logged in, monitoring number
of 144

V
volatile services 142, 257–258
voltage detector 378

VRML display
monitored computer see sta-
tuswrl.cgi

VRML-capable browser 293
vrml image 309
VRRP 209
vrwave 294

W
WAP

Nagios via 295
WAP access

to Nagios see statuswml.cgi
WARNING (state) 16, 17, 75, 85

as a display criterion for sta-
tus.cgi 282
force/suppress notification 219
macro 227
marking in the Web interface
66
resetting manually see error
states
return value 154, 155

warning limit
check apc 150
check by ssh 159
check dig 107
check disk 134
check file age 149
check http 99
check icmp 89
check iftraffic 208
check ldap 122
check load 137
check mailq 147, 148
check nt 356
check ntp 146
check pcmeasure 380
check pgsql 117
check procs 139
check smtp 93
check snmp 197, 201
check snmp in lm-sensors
query 200
check snmp load 212
check squid 105
check swap 136

check tcp 95, 110
check time 146, 147
check udp 113
check ups 129
check users 145
CPULOAD 358
for slow network connections
86
in performance data 146
in plugin output 87
specifying 88

water alarm 378
Web front end see Web interface
Web interface 18, 64–68, 273–312

configuration 33–36
context-dependent help 58
displaying host groups 41
general overview 65, 274
granting a user access to every-
thing 58
overview of all hosts and ser-
vices 67
overview of defective services
67
overview of faulty services 66
representation of flapping ser-
vices 404–406
representing service groups 42
search options 67
showing a single host 67
showing virtual hosts as links
99
starting 34
switching authentication on/off
58
welcome screen 64

Web proxy
monitoring see Squid

Web server
specifying user and password
for the test 99
testing see HTTP
testing the lifespan of a certifi-
cate 101

weekdays
restricting actions 54

Windows

461

Index

listing processes 367
listing services 367
monitoring 353–375
NRPE see NRPE NT, see
NRPE NT
Performance Counter see Per-
formance Counter
querying eventlog 368–370
querying WMI database 371
scripting 354
SNMP 354

Windows eventlog 353

Windows server
monitoring 81

Windows services
monitoring 361–362

WMI database
querying 371

WMICOUNTER (NC Net command)
371

WMIQUERY (NC Net command)
371

WML see statuswml.cgi

X
xinetd

configuration for NRPE 168
configuration for NSCA 251

Y
yaps 227
yellow (state) 16

Z
zombies

checking system for 139

462

	Cover
	Contents
	Introduction
	About This Book
	Note of Thanks

	1 Installation
	1.1 Compiling the Source Code
	1.2 Installing and Testing Plugins
	1.3 Configuration of the Web Interface

	2 Nagios Configuration
	2.1 The Main Configuration File nagios.cfg
	2.2 Objects—an Overview
	2.3 Defining the Machines to Be Monitored, with
	2.4 Grouping Computers Together with hostgroup
	2.5 Defining Services to Be Monitored with service
	2.6 Grouping Services Together with servicegroup
	2.7 Defining Addressees for Error Messages:
	2.8 The Message Recipient: contactgroup
	2.9 When Nagios Needs to Do Something: the
	2.10 Defining a Time Period with timeperiod
	2.11 Templates
	2.12 Configuration Aids for Those Too Lazy to Type
	2.13 CGI Configuration in cgi.cfg
	2.14 The Resources File resource.cfg

	3 Startup
	3.1 Checking the Configuration
	3.2 Getting Monitoring Started
	3.3 Overview of the Web Interface

	4 Nagios Basics
	4.1 Taking into Account the Network Topology
	4.2 Forced Host Checks vs. Periodic Reachability Tests
	4.3 States of Hosts and Services

	5 Service Checks and How They Are Performed
	5.1 Testing Network Services Directly
	5.2 Running Plugins via Secure Shell on the Remote Computer
	5.3 The Nagios Remote Plugin Executor
	5.4 Monitoring via SNMP
	5.5 The Nagios Service Check Acceptor

	6 Plugins for Network Services
	6.1 Standard Options
	6.2 Reachability Test with Ping
	6.3 Monitoring Mail Servers
	6.4 Monitoring FTP and Web Servers
	6.5 Domain Name Server under Control
	6.6 Querying the Secure Shell Server
	6.7 Generic Network Plugins
	6.8 Monitoring Databases
	6.9 Monitoring LDAP Directory Services
	6.10 Checking a DHCP Server
	6.11 Monitoring UPS with the Network UPS Tools

	7 Testing Local Resources
	7.1 Free Hard Drive Capacity
	7.2 Utilization of the Swap Space
	7.3 Testing the System Load
	7.4 Monitoring Processes
	7.5 Checking Log Files
	7.6 Keeping Tabs on the Number of Logged-in Users
	7.7 Checking the System Time
	7.8 Regularly Checking the Status of the Mail Queue
	7.9 Keeping an Eye on the Modification Date of a File
	7.10 Monitoring UPSs with apcupsd
	7.11 Nagios Monitors Itself
	7.12 Hardware Checks with LM Sensors
	7.13 The Dummy Plugin for Tests

	8 Manipulating Plugin Output
	8.1 Negating Plugin Results
	8.2 Inserting Hyperlinks with urlize

	9 Executing Plugins via SSH
	9.1 The check_by_ssh Plugin
	9.2 Configuring SSH
	9.3 Nagios Configuration

	10 The Nagios Remote Plugin Executor (NRPE)
	10.1 Installation
	10.2 Starting via the inet Daemon
	10.3 NRPE Configuration on the Computer to Be Monitored
	10.4 Nagios Configuration
	10.5 Indirect Checks

	11 Collecting Information Relevant for Monitoring with SNMP
	11.1 Introduction to SNMP
	11.2 NET-SNMP
	11.3 Nagios’s Own SNMP Plugins
	11.4 Other SNMP-based Plugins

	12 The Nagios Notification System
	12.1 Who Should be Informed of What, When?
	12.2 When Does a Message Occur?
	12.3 The Message Filter
	12.4 External Notification Programs
	12.5 Escalation Management
	12.6 Dependences between Hosts and Services as a Filter Criterion

	13 Passive Tests with the External Command File
	13.1 The Interface for External Commands
	13.2 Passive Service Checks
	13.3 Passive Host Checks
	13.4 Reacting to Out-of-Date Information of Passive Checks

	14 The Nagios Service Check Acceptor (NSCA)
	14.1 Installation
	14.2 Configuring the Nagios Server
	14.3 Client-side Configuration
	14.4 Sending Test Results to the Server
	14.5 Application Example I: Integrating syslog and Nagios
	14.6 Application Example II: Processing SNMP Traps

	15 Distributed Monitoring
	15.1 Switching On the OCSP/OCHP Mechanism
	15.2 Defining OCSP/OCHP Commands
	15.3 Practical Scenarios

	16 The Web Interface
	16.1 Recognizing and Acting On Problems
	16.3 Planning Downtimes
	16.4 Additional Information on Hosts and Services
	16.5 Configuration Changes through the Web Interfaces: the Restart Problem

	17 Graphic Display of Performance Data
	17.1 Processing Plugin Performance Data with Nagios
	17.2 Graphs for the Web with Nagiosgraph
	17.3 Preparing Performance Data for Evaluation with Perf2rrd
	17.4 The Graphics Specialist drraw
	17.5 Automated to a Large Extent: NagiosGrapher
	17.6 Other tools and the limits of graphic evaluation

	18 Monitoring Windows Servers
	18.1 NSClient and NC Net
	18.2 NRPE for Windows: NRPE NT

	19 Monitoring Room Temperature and Humidity
	19.1 Sensors and Software
	19.2 The Nagios Plugin check_pcmeasure

	20 Monitoring SAP Systems
	20.1 Checking without a Login: sapinfo
	20.2 Monitoring with SAP’s Own Monitoring System (CCMS)

	Appendix A Rapidly Alternating States: Flapping
	A.1 Flap Detection with Services
	A.2 Flap Detection for Hosts

	Appendix B Event Handlers
	B.1 Execution Times for the Event Handler
	B.2 Defining the Event Handler in the Service Definition
	B.3 The Handler Script
	B.4 Things to Note When Using Event Handlers

	Appendix C Writing Your Own Plugins: Monitoring Oracle with the Instant Client
	C.1 Installing the Oracle Instant Client
	C.2 Establishing a Connection to the Oracle Database
	C.3 A Wrapper Plugin for sqlplus

	Appendix D An Overview of the Nagios Configuration Parameters
	D.1 The Main Configuration File nagios.cfg
	D.2 CGI Configuration in cgi.cfg

	Index

