Linux Professional
Institute Certification

Second Edition

Linux Professional
Institute Certification

Second Edition

Roderick W. Smith

WILEY
Wiley Publishing, Inc.

Acquisitions Editor: Jeff Kellum

Development Editor: Kim Wimpsett

Technical Editors: Emmett Dulaney and Evan Blomquist
Production Editor: Christine O’Connor

Copy Editor: Tiffany Taylor

Production Manager: Tim Tate

Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde

Assistant Project Manager: Jenny Swisher

Associate Producer: Kit Malone

Quality Assurance: Angie Denny

Book Designer: Judy Fung, Bill Gibson

Compositor: Craig Woods, Happenstance Type-O-Rama
Proofreader: Publication Services, Inc.

Indexer: Ted Laux

Project Coordinator, Cover: Lynsey Stanford

Cover Designer: Ryan Sneed

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
ISBN: 978-0-470-40483-6

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-

ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent profes-
sional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom.
The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of fur-
ther information does not mean that the author or the publisher endorses the information the organization or Web
site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed
in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data
Smith, Roderick W.
LPIC-1 : Linux Professional Institute Certification study guide / Roderick W. Smith. — 2nd ed.
p. cm.
ISBN 978-0-470-40483-6 (pbk. : CD-ROM)
1. Electronic data processing personnel—Certification. 2. Linux—Examinations—Study guides. I. Title.
QA76.3.54773 2009
005.4°32—dc22

2009042577

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

10987654321

Dear Reader,

Thank you for choosing LPIC-1: Linux Professional Institute Certification Study Guide,
Second Edition. This book is part of a family of premium-quality Sybex books, all of
which are written by outstanding authors who combine practical experience with a gift
for teaching.

Sybex was founded in 1976. More than thirty years later, we’re still committed to producing
consistently exceptional books. With each of our titles we’re working hard to set a new stan-
dard for the industry. From the paper we print on, to the authors we work with, our goal is
to bring you the best books available.

I hope you see all that reflected in these pages. I'd be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think about
this or any other Sybex book by sending me an email at nedde@wiley.com, or if you think
you’ve found a technical error in this book, please visit http://sybex.custhelp.com. Cus-
tomer feedback is critical to our efforts at Sybex.

Best regards,

[« _U /D
Nell Edde
liSIleI

Vice President and Pu
Sybex, an Imprint of Wiley

Acknowledgments

Although this book bears my name as author, many other people contributed to its creation.
Without their help, this book wouldn’t exist, or at best would exist in a lesser form. Jeff
Kellum was the Acquisitions Editor, and so helped get the book started. Kim Wimpsett, the
Development Editor, and Christine O’Connor, the Production Editor, oversaw the book as
it progressed through all its stages. Emmett Dulaney was the Technical Editor, who checked
the text for technical errors and omissions—but any mistakes that remain are my own.
Tiffany Taylor, the copy editor, helped keep the text grammatical and understandable. The
proofreader, Publications Services, Inc., checked the text for typos. I’d also like to thank
Neil Salkind and others at Studio B, who helped connect me with Wiley to write this book.

About the Author

Roderick W. Smith is a Linux consultant and author. He has written over a dozen
books on Linux, FreeBSD, and computer networking, including the Linux+ Study
Guide and Linux Administrator Street Smarts (both from Sybex). He can be reached
at rodsmith@rodsbooks . com.

Contents at a Glance

Introduction xxi
Assessment Test XXIX
Part 1 The LPI 101 Exam (60 Weights) 1
Chapter 1 Exploring Linux Command-Line Tools 3
Chapter 2 Managing Software 43
Chapter 3 Configuring Hardware 103
Chapter 4 Managing Files 171
Chapter 5 Booting Linux and Editing Files 219
Part Il The LPI 102 Exam (60 Weights) 259
Chapter 6 Configuring the X Window System, Localization,

and Printing 261
Chapter 7 Administering the System 323
Chapter 8 Configuring Basic Networking 377
Chapter 9 Writing Scripts, Configuring E-Mail, and Using Databases 421
Chapter 10 Securing Your System 469
Appendix A About the Companion CD 513
Glossary 517

Index 545

Contents

Introduction

Assessment Test

Part 1|
Chapter 1
Chapter 2

xxi

xX1X

The LPI 101 Exam (60 Weights) 1
Exploring Linux Command-Line Tools 3
Understanding Command-Line Basics 4
Exploring Your Linux Shell Options 4
Using a Shell S
Exploring Shell Configuration 11
Using Environment Variables 11
Getting Help 12
Using Streams, Redirection, and Pipes 13
Exploring Types of Streams 14
Redirecting Input and Output 14
Piping Data Between Programs 16
Generating Command Lines 17
Processing Text Using Filters 17
File-Combining Commands 18
File-Transforming Commands 20
File-Formatting Commands 23
File-Viewing Commands 26
File-Summarizing Commands 28
Using Regular Expressions 29
Understanding Regular Expressions 30
Using grep 31
Using sed 32
Summary 34
Exam Essentials 34
Review Questions 36
Answers to Review Questions 40
Managing Software 43
Package Concepts 44
Using RPM 46
RPM Distributions and Conventions 46
The rpm Command Set 48
Extracting Data from RPMs 52

Using Yum 53

Xii

Chapter

Contents

3

RPM and Yum Configuration Files
RPM Compared to Other Package Formats
Using Debian Packages
Debian Distributions and Conventions
The dpkg Command Set
Using apt-cache
Using apt-get
Using dselect, aptitude, and Synaptic
Reconfiguring Packages
Debian Packages Compared to Other Package Formats
Configuring Debian Package Tools
Converting Between Package Formats
Package Dependencies and Conflicts
Real and Imagined Package Dependency Problems
Workarounds to Package Dependency Problems
Startup Script Problems
Managing Shared Libraries
Library Principles
Locating Library Files
Library Management Commands
Managing Processes
Understanding the Kernel: The First Process
Examining Process Lists
Understanding Foreground and Background Processes
Managing Process Priorities
Killing Processes
Summary
Exam Essentials
Review Questions
Answers to Review Questions

Configuring Hardware

Configuring the BIOS and Core Hardware
Understanding the Role of the BIOS
IRQs
I/O Addresses
DMA Addresses
Boot Disks and Geometry Settings
Coldplug and Hotplug Devices

Configuring Expansion Cards
Configuring PCI Cards
Learning about Kernel Modules
Loading Kernel Modules
Removing Kernel Modules

57
58
59
59
60
63
63
67
69
69
70
71
72
73
74
76
76
77
78
81
83
83
83
89
90
91
92
93
95
99

103

104
104
107
109
111
111
113
114
115
116
118
119

Contents

Configuring USB Devices
USB Basics
Linux USB Drivers
USB Manager Applications
Configuring Hard Disks
Configuring PATA Disks
Configuring SATA Disks
Configuring SCSI Disks
Configuring External Disks
Designing a Hard Disk Layout
Why Partition?
Types of Disk Partitions
An Alternative to Partitions: LVM
Mount Points
Common Partitions and Filesystem Layouts
Creating Partitions and Filesystems
Partitioning a Disk
Preparing a Partition for Use
Maintaining Filesystem Health
Tuning Filesystems
Maintaining a Journal
Checking Filesystems
Monitoring Disk Use
Mounting and Unmounting Filesystems
Temporarily Mounting or Unmounting Filesystems
Permanently Mounting Filesystems
Summary
Exam Essentials
Review Questions
Answers to Review Questions

Managing Files

Managing Files
File Naming and Wildcard Expansion Rules
File Commands
File Archiving Commands
Managing Links
Directory Commands
Managing File Ownership
Assessing File Ownership
Changing a File’s Owner
Changing a File’s Group
Controlling Access to Files
Understanding Permissions
Changing a File’s Mode

xiii

120
120
121
122
123
123
124
124
126
126
126
127
130
130
131
132
133
137
143
143
147
148
150
153
153
159
162
162
164
168

171

172
172
174
179
185
186
187
188
188
189
189
189
194

xiv Contents

Setting the Default Mode and Group 197
Changing File Attributes 199
Managing Disk Quotas 200
Enabling Quota Support 200
Setting Quotas for Users 201
Locating Files 202
The FHS 202
Tools for Locating Files 206
Summary 210
Exam Essentials 210
Review Questions 212
Answers to Review Questions 216
Chapter 5 Booting Linux and Editing Files 219
Installing Boot Loaders 220
Boot Loader Principles 221
Using LILO as the Boot Loader 222
Using GRUB as the Boot Loader 227
Understanding the Boot Process 232
Extracting Information about the Boot Process 232
Locating and Interpreting Boot Messages 233
The Boot Process 234
Dealing with Runlevels and the Initialization Process 235
Runlevel Functions 235
Identifying the Services in a Runlevel 237
Managing Runlevel Services 239
Checking Your Runlevel 241
Changing Runlevels on a Running System 241
Editing Files with Vi 244
Understanding Vi Modes 245
Exploring Basic Text-Editing Procedures 245
Saving Changes 248
Summary 249
Exam Essentials 249
Review Questions 251
Answers to Review Questions 255
PART 1I The LPI 102 Exam (60 Weights) 259

Chapter 6 Configuring the X Window System, Localization, and
Printing 261
Configuring Basic X Features 262
X Server Options for Linux 262

Methods of Configuring X 263

Chapter

7

Contents

X Configuration Options
Obtaining X Display Information
Configuring X Fonts
Font Technologies and Formats
Configuring X Core Fonts
Configuring a Font Server
Configuring Xft Fonts
Managing GUI Logins
The X GUI Login System
Running an XDMCP Server
Configuring an XDMCP Server
Using X for Remote Access
X Client/Server Principles
Using Remote X Clients
X Accessibility
Keyboard and Mouse Accessibility Issues
Screen Display Settings
Using Additional Assistive Technologies
Configuring Localization and Internationalization
Setting Your Time Zone
Querying and Setting Your Locale
Configuring Printing
Conceptualizing the Linux Printing Architecture
Understanding PostScript and Ghostscript
Running a Printing System
Configuring CUPS
Monitoring and Controlling the Print Queue
Summary
Exam Essentials
Review Questions
Answers to Review Questions

Administering the System

Managing Users and Groups
Understanding Users and Groups
Configuring User Accounts
Configuring Groups

Tuning User and System Environments

Using System Log Files
Understanding syslogd
Setting Logging Options
Manually Logging Data
Rotating Log Files
Reviewing Log File Contents

Xv

267
275
276
276
277
279
280
281
282
283
284
285
286
286
289
289
291
293
293
294
295
299
299
300
302
303
309
312
312
314
319

323

324
324
327
338
342
343
343
344
346
347
350

XVi

Chapter

Contents

8

Maintaining the System Time
Linux Time Concepts
Manually Setting the Time
Using NTP

Running Jobs in the Future
Understanding the Role of cron
Creating System cron Jobs
Creating User cron Jobs
Using at

Summary

Exam Essentials

Review Questions

Answers to Review Questions

Configuring Basic Networking

Understanding TCP/IP Networking
Knowing the Basic Functions of Network Hardware
Investigating Types of Network Hardware
Understanding Network Packets
Understanding Network Protocol Stacks
Knowing TCP/IP Protocol Types

Understanding Network Addressing
Using Network Addresses
Resolving Hostnames
Network Ports

Configuring Linux for a Local Network
Network Hardware Configuration
Configuring with DHCP
Configuring with a Static IP Address
Configuring Routing
Using GUI Configuration Tools
Using the ifup and ifdown Commands
Configuring Hostnames

Diagnosing Network Connections
Testing Basic Connectivity
Tracing a Route
Checking Network Status
Examining Raw Network Traffic
Using Additional Tools

Summary

Exam Essentials

Review Questions

Answers to Review Questions

352
352
353
354
360
360
361
362
366
368
368
370
374

377

378
378
379
381
381
383
384
385
391
393
396
396
396
398
400
402
402
403
406
406
406
408
408
410
412
412
414
418

Contents

Writing Scripts, Configuring E-mail,
and Using Databases

Managing the Shell Environment
Reviewing Environment Variables
Understanding Common Environment Variables
Using Aliases
Modifying Shell Configuration Files

Writing Scripts
Beginning a Shell Script
Using Commands
Using Variables
Using Conditional Expressions
Using Loops
Using Functions

Managing E-mail
Understanding E-mail
Choosing E-mail Software
Managing E-mail
Securing Your E-mail Server

Managing Data with SQL
Picking a SQL Package
Understanding SQL Basics
Using MySQL

Summary

Exam Essentials

Review Questions

Answers to Review Questions

Securing Your System

Administering Network Security

Using Super Server Restrictions

Disabling Unused Servers
Administering Local Security

Securing Passwords

Limiting root Access

Setting Login, Process, and Memory Limits

Locating SUID/SGID Files
Configuring SSH

SSH Basics

Setting SSH Options for Your System

SSH Security Considerations

xvii

421

422
422
423
427
427
429
430
430
432
435
437
438
440
440
442
444
448
449
449
450
451
459
460
462
466

469

470
471
477
484
484
488
489
491
493
493
494
501

xviii Contents

Appendix A

Glossary

Index

Using GPG
Generating and Importing Keys
Encrypting and Decrypting Data
Signing Messages and Verifying Signatures
Summary
Exam Essentials
Review Questions
Answers to Review Questions

About the Companion CD

What Youw’ll Find on the CD
Sybex Test Engine
PDF of the Book
Adobe Reader
Electronic Flashcards
System Requirements
Using the CD
Troubleshooting
Customer Care

501
502
503
504
504
505
506
510

513

514
514
514
514
515
515
515
515
516

517

545

Table of Exercises

Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise
Exercise

Exercise

11
21
2.2
3.1
4.1
4.2
5.1
6.1
71
7.2
8.1
9.1
9.2
9.3
101

Editing Commandso e 10
Managing Packages Using RPM i 55
Managing Debian Packages. i i 66
Creating Filesystems 141
Modifying Ownership and Permissions. i, 196
Locating Files 209
Changing Runlevels e 243
Changing the X Resolution and ColorDepth....................... 274
Creating User ACCOUNTS oo ittt e et e 331
Creating User cron Jobs e 364
Configuring a Network Connection, 403
Changing Your bash Prompt i 426
Creatinga Simple Scripto 439
Creatinga SQL Database......... ..ot 455

Monitor Network PortUse. et 478

Introduction

Why should you learn about Linux? It’s a fast-growing operating system, and it is inexpen-
sive and flexible. Linux is also a major player in the small and mid-sized server field, and it’s
an increasingly viable platform for workstation and desktop use as well. By understanding
Linux, you’ll increase your standing in the job market. Even if you already know Windows
or Mac OS and your employer uses these systems exclusively, understanding Linux will give
you an edge when you’re looking for a new job or if you’re looking for a promotion. For
instance, this knowledge will help you to make an informed decision about if and when you
should deploy Linux.

The Linux Professional Institute (LPI) has developed its LPI-1 certification as an intro-
ductory certification for people who want to enter careers involving Linux. The exam is
meant to certify that an individual has the skills necessary to install, operate, and trouble-
shoot a Linux system and is familiar with Linux-specific concepts and basic hardware.

The purpose of this book is to help you pass both of the LPI-1 exams (101 and 102).
Because these exams cover basic Linux command-line tools, software management, hard-
ware configuration, filesystems, the X Window System, the boot process, scripts, security,
documentation, administration, and networking, those are the topics that are emphasized
in this book. You’ll learn enough to manage a Linux system and how to configure it for
many common tasks. Even after you’ve taken and passed the LPI 101 and 102 exams, this
book should remain a useful reference.

This book has undergone its own testing and certification by ProCert (http://www
.procertcom.com/Tabs_quicklinks/q1_Tlatm.htm1). This means that you can rest assured
that the book covers the LPI objectives.

What Is Linux?

Linux is a clone of the Unix operating system (OS) that has been popular in academia and
many business environments for years. Formerly used exclusively on large mainframes,
Unix and Linux can now run on small computers—which are actually far more powerful
than the mainframes of just a few years ago. Because of its mainframe heritage, Unix (and
hence also Linux) scales well to perform today’s demanding scientific, engineering, and net-
work server tasks.

Linux consists of a kernel, which is the core control software, and many libraries and
utilities that rely on the kernel to provide features with which users interact. The OS is
available in many different distributions, which are collections of a specific kernel with
specific support programs.

xxii Introduction

Why Become LPI Certified?

Several good reasons to get your LPI certification exist. The LPI Web site suggests four
major benefits:

Relevance LPI’s exam was designed with the needs of Linux professionals in mind. This
was done by performing surveys of Linux administrators to learn what they actually need
to know to do their jobs.

Quality The LPI exams have been extensively tested and validated using psychometric
standards. The result is an ability to discriminate between competent administrators and
those who must still learn more material.

Neutrality LPIis a nonprofit organization that does not itself market any Linux distribu-
tion. This fact removes the motivation to create an exam that’s designed as a way to market
a particular distribution.

Support The LPI exams are supported by major players in the Linux world. LPI serves the
Linux community.

How to Become LPI Certified

The LPI certification is available to anyone who passes the test. You don’t have to work for
a particular company. It’s not a secret society.

To take an LPI exam, you must first register with LPI to obtain an ID number. You can
do this online at https://www.1pi.org/caf/Xamman/register. Your ID number will be
e-mailed to you. With the ID number in hand, you can register for the exam with either of
the two firms that administer them: Thomson Prometric and Pearson VUE. The exams can
be taken at any Thomson Prometric or Pearson VUE testing center. If you pass, you will get
a certificate in the mail saying that you have passed. To find the Thomson Prometric testing
center nearest you, call (800) 294-3926. Contact (877) 619-2096 for Pearson VUE infor-
mation. Alternatively, register online at http://securereg3.prometric.com for Thomson
Prometric or http://www.vue.com/1pi/ for Pearson VUE. However you do it, you’ll be
asked for your name, mailing address, phone number, employer, when and where you want
to take the test (i.e., which testing center), and your credit card number (arrangement for
payment must be made at the time of registration).

Who Should Buy This Book

Anybody who wants to pass the LPI-1 exams may benefit from this book. If you’re new to
Linux, this book covers the material you will need to learn the OS from the beginning, and
it continues to provide the knowledge you need up to a proficiency level sufficient to pass
the LPI-1 101 and 102 exams. You can pick up this book and learn from it even if you've
never used Linux before, although you’ll find it an easier read if you’ve at least casually
used Linux for a few days. If you’re already familiar with Linux, this book can serve as a
review and as a refresher course for information with which you might not be completely
familiar. In either case, reading this book will help you to pass the LPI exam.

Introduction xxiii

This book is written with the assumption that you know at least a little bit about Linux
(what it is, and possibly a few Linux commands). I also assume that you know some basics
about computers in general, such as how to use a keyboard, how to insert a disc into a
CD-ROM drive, and so on. Chances are, you have used computers in a substantial way in
the past—perhaps even Linux, as an ordinary user, or maybe you have used Windows or
Mac OS. I do not assume that you have extensive knowledge of Linux system administra-
tion, but if you’ve done some system administration, you can still use this book to fill in
gaps in your knowledge.

As a practical matter, you’ll need a Linux system with which to practice and learn in a
hands-on way. Although LPI topic 102 is titled “Linux Installation and Package Manage-
ment,” neither the exam nor this book covers actually installing Linux on a computer from
scratch, although some of the prerequisites (such as disk partitioning) are covered. You may
need to refer to your distribution’s documentation to learn how to accomplish this task.
Alternatively, several vendors now sell computers with Linux pre-installed.

How This Book Is Organized

This book consists of 10 chapters plus supplementary information: a glossary, this introduc-
tion, and the assessment test after the introduction. The chapters are organized as follows:

= Chapter 1, “Exploring Linux Command-Line Tools,” covers the basic tools you need
to interact with Linux. These include shells, redirection, pipes, text filters, and regular
expressions.

= Chapter 2, “Managing Software,” describes the programs you’ll use to manage soft-
ware. Much of this task is centered around the RPM and Debian package management
systems. The chapter also covers handling shared libraries and managing processes
(that is, running programs).

= Chapter 3, “Configuring Hardware,” focuses on Linux’s interactions with the hard-
ware on which it runs. Specific hardware and procedures for using it include the BIOS,
expansion cards, USB devices, hard disks, and the partitions and filesystems used on
hard disks.

= Chapter 4, “Managing Files,” covers the tools used to manage files. This includes
commands to manage files, ownership, and permissions, as well as Linux’s standard
directory tree and tools for archiving files.

= Chapter 5, “Booting Linux and Editing Files,” explains how Linux boots up and how
you can edit files in Linux. Specific topics include the LILO and GRUB boot loaders,
boot diagnostics, runlevels, and the Vi editor.

= Chapter 6, “Configuring the X Window System, Localization, and Printing,” describes
the Linux GUI and printing subsystems. Topics include X configuration, managing
GUI logins, configuring location-specific features, enabling accessibility features, and
setting up Linux to use a printer.

= Chapter 7, “Administering the System,” describes miscellaneous administrative tasks.

These include user and group management, tuning user environments, managing log
files, setting the clock, and running jobs in the future.

XXiv Introduction

= Chapter 8, “Configuring Basic Networking,” focuses on basic network configuration.
Topics include TCP/IP basics, setting up Linux on a TCP/IP network, and network
diagnostics.

= Chapter 9, “Writing Scripts, Configuring E-Mail, and Using Databases,” covers these
miscellaneous topics. Scripts are small programs that administrators often use to help
automate common tasks. E-mail, of course, is an important topic for any computer
user, particularly on Linux, which often runs an e-mail server for local or remote use.
Linux can run databases that help you store and retrieve information, and these tools
can be very important ones on many Linux systems.

= Chapter 7, “Securing Your System,” covers security. Specific subjects include network
security, local security, and the use of encryption to improve security.

Chapters 1 through 5 cover the LPIC 101 exam, while chapters 6 through 10 cover the
LPIC 102 exam. These make up Part I and Part II of the book, respectively.

Each chapter begins with a list of the LPIC objectives that are covered in that chapter.
The book doesn’t cover the objectives in order. Thus, you shouldn’t be alarmed at some of
the odd ordering of the objectives within the book. At the end of each chapter, you’ll find a
couple of elements you can use to prepare for the exam:

Exam Essentials This section summarizes important information that was covered in
the chapter. You should be able to perform each of the tasks or convey the information
requested.

Review Questions Each chapter concludes with 20 review questions. You should answer
these questions and check your answers against the ones provided after the questions. If
you can’t answer at least 80 percent of these questions correctly, go back and review the
chapter, or at least those sections that seem to be giving you difficulty.

ING included in this book are not derived from the LPl exam questions, so don't
memorize the answers to these questions and assume that doing so will
enable you to pass the exam. You should learn the underlying topic, as
described in the text of the book. This will let you answer the questions
provided with this book and pass the exam. Learning the underlying topic
is also the approach that will serve you best in the workplace—the ultimate
goal of a certification like LPI’s.

ﬁll The review questions, assessment test, and other testing elements

To get the most out of this book, you should read each chapter from start to finish and
then check your memory and understanding with the chapter-end elements. Even if you’re
already familiar with a topic, you should skim the chapter; Linux is complex enough that
there are often multiple ways to accomplish a task, so you may learn something even if
you’re already competent in an area.

Introduction XXV

Bonus CD-ROM Contents

This book comes with a CD-ROM that contains several additional elements. Items available
on the CD-ROM include the following:

Book contents as a PDF file The entire book is available as a fully searchable PDF that
runs on all Windows platforms as well as on Linux.

Electronic “flashcards” The CD-ROM includes 150 questions in “flashcard” format
(a question followed by a single correct answer). You can use these to review your knowl-
edge of the LPIC exam objectives.

Sample tests All of the questions in this book appear on the CD-ROM—including the
30-question assessment test at the end of this introduction and the 200 questions that make
up the 20-question review question sections for each chapter. In addition, there are two
50-question bonus exams.

Conventions Used in This Book

This book uses certain typographic styles in order to help you quickly identify important
information and to avoid confusion over the meaning of words such as on-screen prompts.
In particular, look for the following styles:

= [talicized text indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

= A monospaced font indicates the contents of configuration files, messages displayed at
a text-mode Linux shell prompt, filenames, text-mode command names, and Internet

URLs.

= Ttalicized monospaced text indicates a variable—information that differs from one
system or command run to another, such as the name of a client computer or a process
ID number.

= Bold monospaced text is information that you’re to type into the computer, usually
at a Linux shell prompt. This text can also be italicized to indicate that you should
substitute an appropriate value for your system. (When isolated on their own lines,
commands are preceded by non-bold monospaced $ or # command prompts, denoting
regular user or system administrator use, respectively.)

In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text:

> 4 A note indicates information that’s useful or interesting but that’s somewhat
‘4315 peripheral to the main text. A note might be relevant to a small number of
networks, for instance, or it may refer to an outdated feature.

xxvi Introduction

A tip provides information that can save you time or frustration and that
P may not be entirely obvious. A tip might describe how to get around a limi-

tation or how to use a feature to perform an unusual task.

ING ing, you may end up spending a lot of time recovering from a bug, or you

ﬁll Warnings describe potential pitfalls or dangers. If you fail to heed a warn-
may even end up restoring your entire system from scratch.

Sidebars

A sidebar is like a note but longer. The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text.

@ Real World Scenario

Real World Scenario

A real world scenario is a type of sidebar that describes a task or example that’s par-
ticularly grounded in the real world. This may be a situation | or somebody | know has
encountered, or it may be advice on how to work around problems that are common in
real, working Linux environments.

Exercises

An exercise is a procedure you should try out on your own computer to help you learn
about the material in the chapter. Don’t limit yourself to the procedures described in the
exercises, though! Try other commands and procedures to really learn about Linux.

The Exam Objectives

Behind every computer industry exam you can be sure to find exam objectives—the broad
topics in which exam developers want to ensure your competency. The official LPI objec-
tives for the LPI 101 and 102 exams are listed here. (They’re also printed at the start of the
chapters in which they’re covered.)

Introduction xxvii

) Exam objectives are subject to change at any time without prior notice and at
Py OTE LPI's sole discretion. Please visit the LPIC Certification page of LPI's website
(https://group.l1pi.org/publicwiki/bin/view/Examdev/LPIC-10x) for the
most current listing of exam objectives.

Exam 101

Topic 101: System Architecture

101.1 Determine and configure hardware settings
101.2 Boot the system

101.3 Change runlevels and shutdown or reboot system

Topic 102: Linux Installation and Package Management

102.1 Design hard disk layout

102.2 Install a boot manager

102.3 Manage shared libraries

102.4 Use Debian package management

102.5 Use RPM and YUM package management

Topic 103: GNU and Unix Commands

103.1 Work on the command line

103.2 Process text streams using filters

103.3 Perform basic file management

103.4 Use streams, pipes and redirects

103.5 Create, monitor and kill processes

103.6 Modify process execution priorities
103.7 Search text files using regular expressions

103.8 Perform basic file editing operations using vi

Topic 104: Devices, Linux Filesystems, Filesystem Hierarchy Standard

104.1 Create partitions and filesystems

104.2 Maintain the integrity of filesystems

104.3 Control mounting and unmounting of filesystems
104.4 Manage disk quotas

104.5 Manage file permissions and ownership

104.6 Create and change hard and symbolic links

104.7 Find system files and place files in the correct location

xxviii Introduction

Exam 102

Topic 105: Shells, Scripting and Data Management

105.1 Customize and use the shell environment
105.2 Customize or write simple scripts

105.3 SQL data management

Topic 106: User Interfaces and Desktops

106.1 Install and configure X11
106.2 Setup a display manager
106.3 Accessibility

Topic 107: Administrative Tasks

107.1 Manage user and group accounts and related system files
107.2 Automate system administration tasks by scheduling jobs

107.3 Localisation and internationalisation

Topic 108: Essential System Services

108.1 Maintain system time

108.2 System logging

108.3 Mail Transfer Agent (MTA) basics
108.4 Manage printers and printing

Topic 109: Networking Fundamentals

109.1 Fundamentals of internet protocols
109.2 Basic network configuration

109.3 Basic network troubleshooting
109.4 Configure client side DNS

Topic 110: Security

110.1 Perform security administration tasks
110.2 Setup host security
110.3 Securing data with encryption

) The preceding objective list includes only the basic objective titles. You
P OTE should consult the complete LPI exam list to learn what commands, files,
and procedures you should be familiar with before taking the exam.

Assessment Test

1. The following line appears in your X server’s mouse configuration area. What can you

conclude?

Option "Protocol" "PS/2"

A. The mouse is connected to the PS/2 hardware mouse port.
B. The mouse uses the PS/2 software communication standard.
C. The computer is an ancient IBM PS/2 system.

D. The mouse was designed for use with IBM’s OS/2.

2. How can you tell whether your system is using inetd or xinetd as a super server? (Choose
all that apply.)

A.
B.
C.

D.

Type ps ax | grep inetd, and examine the output for signs of inetd or xinetd.
Type superserver to see a report on which super server is running.

Look for the /etc/inetd. conf file or /etc/xinetd.d subdirectory, which is a sign of
inetd or xinetd, respectively.

Examine the /etc/inittab file to see which super server is launched by init, which is
responsible for this task.

3. How does the Tpc utility for CUPS differ from its counterpart in BSD LPD and LPRng?

A.
B.
C.
D.

The Tpc utility is unique to CUPS; it doesn’t ship with BSD LPD or LPRng.
CUPS doesn’t ship with an Tpc command, but BSD LPD and LPRng do.

CUPS’s 1pc is much more complex than its counterpart in BSD LPD and LPRng.
CUPS’s 1pc is much simpler than its counterpart in BSD LPD and LPRng.

4. What file would you edit to restrict the number of simultaneous logins a user can employ?

A.
B.
C.
D.

/etc/pam.d/Togin-Timits
/etc/bashrc
/etc/security/limits.conf
/etc/inittab

5. Which of the following are required when configuring a computer to use a static IP
address? (Choose all that apply.)

A.

B.
C.
D.

The IP address of the DHCP server
The hostname of the NBNS server
The computer’s IP address

The network mask

XXX

10.

Assessment Test

What does the following command accomplish?
$ wc report.txt | tee wc

A.

It launches the wc editor on both the report.txt and wc. txt files; each file opens in
its own window.

It displays a count of the windows in which the report.txt file is displayed and shows
that information in a new window called wc.

It displays a count of newlines, words, and bytes in the report.txt file and copies that
output to the wc file.

It cleans up any memory leaks associated with the tee program’s use of the
report.txt file.

Which of the following lines, when entered in /etc/1i70.conf, begins a definition to boot
Linux using the /boot/bzImage-2.6.19 kernel when the /boot partition is /dev/hda2?

A.
B.
C.
D.

image=(hd0,1)/bzImage-2.6.19
kernel=/boot/bzImage-2.6.19
image=/boot/bzImage-2.6.19
kernel=(hd0,1)/boot/bzImage-2.6.19

What does the number 703 represent in the following /etc/passwd entry?
george:x:703:100:George Brown:/home/george:/bin/tcsh

A.
B.
C.
D.

The account’s human ID (HID) number
The account’s process ID (PID) number
The account’s group ID (GID) number
The account’s user ID (UID) number

What does the grep command accomplish?

A.
B.
C.
D.

It creates a pipeline between two programs.
It searches files’ contents for a pattern.
It concatenates two or more files.

It displays the last several lines of a file.

Which of the following are journaling filesystems for Linux? (Choose all that apply.)

A.

B.
C.
D

HPFS
JES
Ext2fs
Ext3fs

1.

12.

13.

14.

15.

Assessment Test XXXi

You’ve configured your computer to use SMTP and IMAP via a tunneled SSH connection
to your ISP’s e-mail server for improved security. Why might you still want to use GPG
encryption for your e-mails on top of the encryption provided by SSH?

A. The SSH tunnel only reaches as far as the first e-mail server; GPG encrypts data on all
the computers all the way to or from your e-mail correspondents.

B. SSH encryption is notoriously poor for e-mail, although it’s perfectly adequate for
login sessions; thus, adding GPG encryption improves security.

C. SSH only doesn’t encrypt the headers of the e-mail messages; GPG encrypts the headers
to keep snoopers from learning your correspondents’ identities.

D. Using GPG guarantees that your e-mail messages won’t contain unwanted viruses or
worms that might infect your correspondents’ computers.

Which of the following ports are commonly used to retrieve e-mail from a mail-server
computer? (Select all that apply.)

A. 110
B. 119
C. 139
D. 143

You’re experiencing sporadic problems with a Secure Shell (SSH) login server—sometimes
users can log in, and sometimes they can’t. What might you try immediately after a failure
to help diagnose this problem?

A. On the server computer, type http://localhost:631 into a Web browser to access the
SSH configuration page and check its error subpage for error messages.

B. Type diagnose sshd to run a diagnostic on the SSH server daemon (sshd).
C. Type tail /var/log/messages to look for error messages from the server.

D. Examine the /dev/ssh device file to look for error messages from the server.

What is the function of the 7/.profile file?

A. It’s the user configuration file for the ProFTP server.

B. It’s one of a user’s bash startup scripts.

C. It’s the user configuration file for the ProFile file manager.

D. Its presence tells tcsh to ignore file modes.

You want your computer to remind you to get your car inspected in two years. What is the
best way to do this, of the specified options?

A. Create a program that repeatedly checks the time and, when two years has passed,
displays a message to get your car inspected.

B. Type at date, where date is a date specification. You can then specify a command, such
as mail with appropriate options, to notify you of the need to get your car inspected.

C. Create a cron job that runs hourly. This job should check the date and, when the correct
date comes up, use mail to notify you of the need for a car inspection.

D. Use the NTP GUI calendar program to create an alarm for the specified date. The
program will then display the message you enter at the specified date and time.

XXXii

16.

17.

18.

19.

20.

21.

Assessment Test

How would you configure a computer to use the computer whose IP address is 172.24.21.1
as a gateway for all network traffic that’s not otherwise configured?

A. gateway default 172.24.21.1

B. gateway 172.24.21.1

C. route gateway 172.24.21.1

D. route add default gw 172.24.21.1

What software can you use to drive a Braille display device? (Select all that apply.)
A. Emacspeak

B. BRLTTY
C. A 2.6.26 or later kernel
D. GOK

Which is true of source RPM packages?

A. They consist of three files: an original source tarball, a patch file of changes, and a
PGP signature indicating the authenticity of the package.

B. They require programming knowledge to rebuild.

C. They can sometimes be used to work around dependency problems with a binary
package.

D. They are necessary to compile software for RPM-based distributions.

Which utility should you use to rename the file pumpkin.txt to Tantern.txt?
A. dd

B. rm
C. cp
D. mv

You want to run a lengthy scientific simulation program, called simbigbang, which doesn’t
require any user interaction; the program operates solely on disk files. If you don’t want to

tie up the shell from which you run the program, what should you type to run simbigbang
in the background?

A. start simbigbang

B. simbigbang &

C. bg simbigbang

D. background simbigbang

Which of the following commands will install an RPM package called
theprogram-1.2.3-4.1386.rpmon a computer? (Choose all that apply.)
A. rpm -Uvh theprogram-1.2.3-4.i386.rpm

B. rpm -i theprogram-1.2.3-4.i386.rpm

C. rpm -U theprogram

D. rpm -e theprogram-1.2.3-4.i386.rpm

Assessment Test XXXiii

22. What tool can diagnose and fix many common Linux filesystem problems?
A. mkfs
B. fsck
C. chkdsk
D. scandisk
23. You’ve just installed MySQL, and you intend to use it to store information about the animals

in a zoo, from the anteaters to the zebras. What command are you likely to use first, once
you start MySQL?

A. CREATE DATABASE animals;
B. USE animals;
C. CREATE TABLE animals;
D. INSERT INTO animals;
24. Which of the following commands displays help on topic, when typed in a Linux shell?
(Choose all that apply.)
A. manual topic
B. man topic
C. ? topic
D. 1info topic
25. A computer’s hardware clock keeps track of the time while the computer is powered off. In
what formats may this time be stored on an x86 Linux system? (Choose all that apply.)
A. Coordinated Universal Time (UTC)
B. Internet Time
C. Local time
D. 12-hour time

26. You want to know what kernel modules are currently loaded. What command would you
type to learn this information?

A. insmod

B. depmod
C. modprobe
D. 1smod

27. You want to enable all members of the music group to read the instruments.txt file, which
currently has 0640 (-rw-r-----) permissions, ownership by root, and group ownership by
root. How might you accomplish this goal? (Choose all that apply.)

A. Type chown music instruments.txt in the file’s directory.
B. Type chgrp music instruments.txt in the file’s directory.
C. Type chgroup music instruments.txt in the file’s directory.
D

Type chown .music instruments.txt in the file’s directory.

XXXiv Answers to Assessment Test

28. You want to create a link to the /usr/Tlocal/bin directory in another location. Which of
the following statements is true?

A. The link will probably have to be a symbolic link.
B. You must own /usr/Tocal/bin to create the link.

C. You can create the link only if the link’s location is on the same filesystem as the
original directory.

D. Only the system administrator can do this.

29. Which of the following, when typed in Vi’s command mode, saves a file and quits the

program?
A. :rq
B. :wq
C. :re
D. :we

30. A user’s home directory includes a file called ~/. forward that consists of one line:
| “/junkme. What is the effect of this configuration?

A. The user’s incoming mail is forwarded to the junkme user on the same system.
B. The user’s incoming mail is stored in the ~/junkme file.
The user’s incoming mail is sent through the ~/junkme program file.

c
D. The user’s incoming mail is flagged as spam and deleted.

Answers to Assessment Test XXXV

Answers to Assessment Test

1.

B. “PS/2” can refer to both a hardware interface and a software protocol, but used in the
context of the Protocol option, it unambiguously refers to the software protocol. Option A
might be correct, but the specified line is insufficient evidence of that; USB mice generally use
the PS/2 protocol or a variant of it, such as the Intellimouse PS/2 protocol. Although the PS/2
hardware port and protocol originated with the IBM PS/2 computer mentioned in option C,
many other computers now use them. Mice that use the PS/2 protocol may be used with just
about any OS, not just IBM’s OS/2. For more information, please see Chapter 6, “Configur-
ing the X Window System, Localization, and Printing.”

A, C. Examining a process listing (obtained from ps) for signs of the super server is the

most reliable way to determine which one is actually running. The presence of the super
server’s configuration file or files (as in option C) is also a good diagnostic, although some
older systems that have been upgraded may have both sets of configuration files. There is no
standard superserver utility to report on which one is used. Most distributions launch the
super server through a SysV startup script; the /etc/inittab file isn’t directly involved in this
process, so examining it would be pointless. For more information, please see Chapter 10,
“Securing Your System.”

D. The 1pc utility is used to start, stop, change the priority of, and otherwise control jobs
in a print queue. CUPS ships with an Tpc utility, but it’s quite rudimentary compared to the
Tpc utilities of BSD LPD and LPRng. Instead, CUPS relies on its Web-based interface to
provide the ability to control print jobs. For more information, please see Chapter 6, “Con-
figuring the X Window System, Localization, and Printing.”

C. The /etc/security/1limits.conf file defines various limits on user resources, including
the number of simultaneous logins individual users are permitted. Thus, option C is correct.
The /etc/pam.d/Togin-Timits file is fictitious, although login limits do rely on the pam_
Timits module to the Pluggable Authentication System (PAM). The /etc/bashrc file is a
global bash startup script file, but it’s not normally used to impose login limits. The /etc/
inittab file is a key Linux startup file, but it doesn’t have any direct bearing on imposing
login limits. For more information, please see Chapter 10, “Securing Your System.”

C, D. The computer’s IP address and network mask (a.k.a. subnet mask or netmask) are
the most critical components in TCIP/IP network configuration. (Additional information
you may need to provide on many networks includes the IP address of 1-3 DNS servers, the
hostname or IP address of a router, and the computer’s hostname.) You shouldn’t need the 1P
address of a Dynamic Host Configuration Protocol (DHCP) server—and if a DHCP server
is present, chances are you should be using DHCP rather than static IP address assignment.
A NetBIOS Name Service (NBNS) server converts between names and IP addresses on Net-
BIOS networks. The hostname of such a computer isn’t likely to be a critical configuration
element, although you may need to provide this information to Samba for some operations
to function correctly when sharing files. For more information, please see Chapter 8, “Con-
figuring Basic Networking.”

XXXVi Answers to Assessment Test

6.

10.

n.

C. The wc command displays a count of newlines, words, and bytes in the specified file
(report.txt). Piping this data through tee causes a copy of the output to be stored in
the new file (wc in this example—you shouldn’t run this command in the same directory
as the wc executable file!). Thus, option C is correct. Contrary to option A, wc isn’t an
editor, and the remaining syntax wouldn’t cause two files to open in separate windows
even if wc were an editor. Contrary to option B, wc doesn’t count windows or open a new
window. Contrary to option D, wc has nothing to do with cleaning up memory leaks, and
tee doesn’t directly use the report.txt file. For more information, please see Chapter 1,
“Exploring Linux Command-Line Tools.”

C. The image= line in /etc/Tilo.conf identifies a kernel image to be booted using normal
Linux filenames, so /boot/bzImage-2.6.19 is the correct notation. There is no kernel=
option in LILO’s configuration file. The (hd0, 1) notation in options A and D is a GRUB hard-
disk identifier; this notation isn’t used in LILO. Option D also uses both the GRUB disk identi-
fier notation and the /boot Linux filesystem specification. For more information, please see
Chapter 5, “Booting Linux and Editing Files.”

D. The third field of /etc/passwd entries holds the UID number for the account. Linux
doesn’t use any standard identifier called a human ID (HID), although the acronym HID
stands for human interface device, a class of USB devices. Accounts don’t have PID numbers;
those belong to running processes. The account’s GID number is stored in the fourth field of
/etc/passwd—100 in this example. For more information, please see Chapter 7, “Adminis-
tering the System.”

B. The grep command scans files to find those that contain a specified string or pattern.

In the case of text files, it displays the matching line or lines; for binary files, it reports that
the file matches the pattern. The method of creating a pipeline involves separating two com-
mands with a vertical bar (|). The grep command can be used in a pipeline, but it doesn’t
create one. The command that concatenates files is cat, and the command that displays the
last several lines of a file is tail. For more information, please see Chapter 1, “Exploring
Linux Command-Line Tools.”

B, D. The Journaled Filesystem (JFS) is a journaling filesystem written by IBM for AIX
and OS/2 and later ported to Linux. The Third Extended Filesystem (ext3fs) is a journal-
ing filesystem based on the older non-journaling Second Extended Filesystem (ext2fs). The
High-Performance Filesystem (HPES) is a non-journaling filesystem designed by Microsoft
for OS/2. For more information, please see Chapter 3, “Configuring Hardware.”

A. Option A correctly describes the features of SSH and GPG in this context. Option B

is incorrect because SSH should do a fine job of encrypting your e-mail so that it can’t be
decoded between your system and your ISP’s e-mail server. Option C has it backward; e-mail
transferred via SSH will be completely encrypted, including its headers. GPG doesn’t encrypt
headers, just message bodies. Option D is incorrect because GPG isn’t a virus scanner, just an
encryption tool. For more information, please see Chapter 10, “Securing Your System.”

12.

13.

14.

15.

16.

17.

18.

Answers to Assessment Test XXXvii

A, D. Port 110 is assigned to the Post Office Protocol (POP), and port 143 is assigned to
the Internet Message Access Protocol (IMAP), both of which may be used to retrieve e-mail
messages from an e-mail server system. Port 119 is assigned to the Network News Transfer
Protocol (NNTP), and port 139 is assigned to the Server Message Block/Common Internet
File System (SMB/CIFS) protocol, neither of which is commonly used for e-mail retrieval.
For more information, please see Chapter 8, “Configuring Basic Networking.”

C. Log files, such as /var/Tog/messages and sometimes others in /var/1og, often contain
useful information concerning server errors. The tail program displays the last few lines

of a file, so using it to examine log files immediately after a problem occurs can be a useful
diagnostic procedure. The http://TocaTlhost:631 URL accesses the Common Unix Printing
System (CUPS) configuration utility, which has nothing to do with SSH. There is no standard
diagnose utility to help diagnose server problems, and there is no standard /dev/ssh file. For
more information, please see Chapter 5, “Booting Linux and Editing Files.”

B. The 7/ .profile file is one of several bash startup scripts. It has nothing to do with the
ProFTP server or the tcsh shell. The ProFile file manager mentioned in option C is fictitious.
For more information, please see Chapter 9, “Writing Scripts, Configuring E-mail, and
Using Databases.”

B. The at utility was created to run programs at one specified point in the future. Thus,
option B will accomplish the stated goal. Options A and C might also work; but neither is
the best way to accomplish this goal. Option A will tie up CPU time, and if the program
crashes or the system is shut down during the intervening two years, the message will never
display. Option C would be more reliable, but it adds unnecessary complexity to your hourly
cron job schedule. A GUI calendar program, as specified in option D, might work; but NTP
is the Network Time Protocol, a protocol and like-named program for synchronizing clocks
across a network. Thus, NTP isn’t the tool for the job, and option D is incorrect. For more
information, please see Chapter 7, “Administering the System.”

D. Option D provides the correct command to add 172.24.21.1 as the default gateway.
Options A and B both use the fictitious gateway command, which doesn’t exist and therefore
won’t work unless you create a script of this name. Option C uses the correct route command,
but there is no gateway option to route; you must use add default gw, as in option D. For
more information, please see Chapter 8, “Configuring Basic Networking.”

B, C. The BRLTTY package is an add-on daemon for handling a Braille display device, and
some features for using these devices have been added to the 2.6.26 kernel, so options B and C
are correct. Emacspeak is speech-synthesis software; it can be used to “speak” a text display
to a user, but it doesn’t interface with Braille displays. GOK (http://www.gok.ca) is an on-
screen keyboard, not a Braille display tool. For more information, please see Chapter 6, “Con-
figuring the X Window System, Localization, and Printing.”

C. Some dependencies result from dynamically linking binaries to libraries at compile time
and so can be overcome by recompiling the software from a source RPM. Option A describes
Debian source packages, not RPM packages. Recompiling a source RPM requires only issuing
an appropriate command, although you must also have appropriate compilers and libraries
installed. Source tarballs can also be used to compile software for RPM systems, although this
results in none of RPM’s advantages. For more information, please see Chapter 2, “Managing
Software.”

XXXViii Answers to Assessment Test

19.

20.

21.

22.

23.

24.

25.

D. The mv utility can be used to rename files as well as move them from one location to
another. The dd utility is used to copy files to backups, whereas rm is used to remove (delete)
files and cp copies files. For more information, please see Chapter 4, “Managing Files.”

B. Appending an ampersand (&) to a command causes that command to execute in the back-
ground. The program so launched still consumes CPU time, but it won’t monopolize the shell
you used to launch it. The start and background commands are fictitious. Although bg does
place a job into the background, it doesn’t launch a program that ways; it places a process that’s
been suspended (by pressing Ctrl+Z) into the background. For more information, please see
Chapter 2, “Managing Software.”

A, B. The -Uvh parameter issues an upgrade command (which installs the program whether or
not an earlier version is installed) and creates a series of hash marks to display the command’s
progress. The -1 parameter installs the program if it’s not already installed but causes no prog-
ress display. Option C uses a package name, not a complete filename, and so it will fail to install
the package file. The -e option removes a package. For more information, please see Chapter 2,
“Managing Software.”

B. Option B, fsck, is Linux’s filesystem check utility. It’s similar in purpose to the DOS
and Windows CHKDSK and ScanDisk utilities, but these DOS and Windows utilities don’t
work on Linux filesystems like ext2fs or ReiserFS. Option A, mkfs, creates new filesystems;
it doesn’t diagnose or fix filesystem problems. For more information, please see Chapter 3,
“Configuring Hardware.”

A. A freshly installed MySQL database is unlikely to have a ready-made database of ani-
mals, so your first task is to create that database with the CREATE DATABASE command, as
shown in option A. (You could call the database something other than animals, of course.)
The USE command in option B will only be useful once the database has been created. Once
the database is created, you can use CREATE TABLE, as in option C, to create a table; but
you’ll need an existing database first, and this command also requires information about
the type of data to be stored, which option C doesn’t provide. Option D’s INSERT INTO
command stores data into a table once it’s been created, so it’s far from the first command
yowll use. It also requires additional specification of the data to be stored, so it’s incom-
plete. For more information, please see Chapter 9, “Writing Scripts, Configuring E-mail,
and Using Databases.”

B, D. The correct answers, man and info, are two common Linux help packages. Although
? is a common help command within certain interactive programs, it isn’t a help command
in bash or other common Linux shells. There is no common command called manual. For
more information, please see Chapter 1, “Exploring Linux Command-Line Tools.”

A, C. Unix systems traditionally store time in UTC (a.k.a. Greenwich Mean Time), and Linux
may do so as well. Most other x86 PC OSs traditionally store time as the local time however, so
Linux also supports this option. Internet Time is an alternative to the 24-hour clock in which the
day is broken into 1,000 “beats.” Standard PC BIOSs don’t support this time format. Likewise,
a 12-hour clock isn’t terribly useful to computers because it doesn’t differentiate a.m. from p.m.
For more information, please see Chapter 7, “Administering the System.”

26

27.

28.

29.

30.

Answers to Assessment Test XXXiX

D. Typing Ismod produces a list of the modules that are currently loaded. The insmod and
modprobe programs both load modules—either a single module or a single module and all
those on which it depends, respectively. The depmod command generates the modules.dep file
that contains module dependency information. For more information, please see Chapter 3,
“Configuring Hardware.”

B, D. The chgrp and chown commands can both change the group ownership of a file. The
chgrp command takes a group name and a filename as parameters, as in option B. The chown
command normally changes a file’s owner; but if you provide a group name preceded by a
dot (.), as in option D, it changes the group of a file. The chown command shown in option

A will change the primary ownership of the file to the music user, if such a user exists on the
system; it won’t change the group ownership. There is no standard chgroup command, as in
option C. For more information, please see Chapter 4, “Managing Files.”

A. Hard links to directories aren’t permitted by most filesystems, so you’ll probably have to
create a symbolic link, as noted in option A. Contrary to option B, anybody may create a link,
not just the original’s owner. Option C describes a restriction of hard links; but because this
link will probably have to be a symbolic link, this restriction is unimportant and option C is
incorrect. Option D describes a more severe restriction than option B, but it’s incorrect for the
same reasons. For more information, please see Chapter 4, “Managing Files.”

B. The colon (:) starts ex mode, from which you can enter commands. In ex mode, r includes
a file in an existing one, w writes a file, e loads an entirely new file, and g quits the program.
Thus, the desired combination is :wg. For more information, please see Chapter 5, “Booting
Linux and Editing Files.”

C. The 7/.forward file is a user e-mail forwarding file. The vertical bar character (|) at the

start of such a file is a code to send the e-mail through the specified program file, so option C is
correct. To do as option A describes, the file would need to read junkme or junkme@hostname,
where hostname is the computer’s hostname. To do as option B describes, the leading vertical bar
would have to be omitted. It’s conceivable that the ~/junkme script does as option D describes,
but there’s no way of knowing this for certain. For more information, please see Chapter 9,
“Writing Scripts, Configuring E-mail, and Using Databases.”

The LPI 101 Exam PART
(60 Weights) I

Chapter

Exploring Linux
Command-Line Tools

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

v" 1.103.1 Work on the command line (weight: 4)

v 1.103.2 Process text streams using filters (weight: 3)
v 1.103.4 Use streams, pipes, and redirects (weight: 4)

v' 1.103.7 Search text files using regular expressions
(weight: 2)

Linux borrows heavily from Unix, and Unix began as a text-

based operating system (OS). Unix and Linux retain much of

this heritage, which means that to understand how to use and,
especially, administer Linux, you must understand at least the basics of its command-line
tools. Thus, this book begins with an introduction to Linux shells (the programs that accept
and interpret text-mode commands) and many of the basic commands and procedures you
can use from a shell.

This chapter begins with basic shell information, including shell options and procedures
for using them. From there, this chapter covers streams, pipes, and redirects, which you
can use to shunt input and output between programs or between files and programs. These
techniques are frequently combined with text processing using filters—commands you can
use to manipulate text without the help of a conventional text editor. Sometimes you must
manipulate text in an abstract way, using codes to represent several different types of text.
This chapter therefore covers this topic.

Understanding Command-Line Basics

Before you do anything else with Linux, you should understand how to use a Linux shell.
Several shells are available, but most provide similar capabilities. Understanding a few
basics will take you a long way in your use of Linux, so I describe some of these techniques
and commands. You should also understand shell environment variables, which are place-
holders for data that may be useful to many programs. Finally, on the topic of command-
line basics, you should know how to get help with commands you’re trying to use.

Exploring Your Linux Shell Options

As with many key software components, Linux provides a range of options for shells. A
complete list would be quite long, but the more common choices include the following:

bash The GNU Bourne Again Shell (bash) is based on the earlier Bourne shell for Unix
but extends it in several ways. In Linux, bash is the most common default shell for user
accounts, and it’s the one emphasized in this book and on the Linux Professional Institute
(LPI) exam.

bsh The Bourne shell upon which bash is based also goes by the name bsh. It’s not often
used in Linux, although the bsh command is usually a symbolic link to bash.

Understanding Command-Line Basics 5

tesh This shell is based on the earlier C shell (csh). It’s a fairly popular shell in some circles,
but no major Linux distributions make it the default shell. Although it’s similar to bash in
many respects, some operational details differ. For instance, you don’t assign environment
variables in the same way in tcsh as in bash.

csh The original C shell isn’t much used on Linux, but if a user is familiar with csh, tcsh
makes a good substitute.

ksh The Korn shell (ksh) was designed to take the best features of the Bourne shell and the
C shell and extend them further. It has a small but dedicated following among Linux users.

zsh The Z shell (zsh) takes shell evolution further than the Korn Shell, incorporating fea-
tures from earlier shells and adding still more.

In addition to these shells, dozens more obscure ones are available. In Linux, most users
run bash because it’s the default. Some other OSs use csh or tcsh as the default, so if your
users have backgrounds on non-Linux Unix-like OSs, they may be more familiar with these
other shells. You can change a user’s default shell by editing the account, as described in
Chapter 7, “Administering the System.”

The file /bin/sh is a symbolic link to the system’s default shell—normally /bin/bash for
Linux. This practice enables you to point to a shell (say, at the start of a simple shell script,
as described in Chapter 9, “Writing Scripts, Configuring E-Mail, and Using Databases™)
and be assured that a shell will be called, even if the system’s available shells change. This
feature is particularly important when developing shell scripts that might be run on other
computers, as described in Chapter 9.

Using a Shell

Linux shell use is fairly straightforward for anybody who’s used a text-mode OS before:
You type a command, possibly including options to it, and the computer executes the com-
mand. For the most part, Linux commands are external—that is, they’re separate programs
from the shell. A few commands are internal to the shell, though, and knowing the distinc-
tion can be important. You should also know some of the tricks that can make using the
command shell easier—how to have the computer complete a long command or filename,
retrieve a command you’ve recently run, or edit a command you’ve recently used (or haven’t
yet fully entered).

) One class of commands—those for handling basic file management—is very
OTE important but isn't described here in great detail. For more information on
these commands, consult Chapter 4, “Managing Files.”

Starting a Shell

If you log into Linux using a text-mode login screen, chances are you’ll be dropped
directly into your default shell—it’s the shell that presents the prompt and accepts subse-
quent commands.

6 Chapter 1 - Exploring Linux Command-Line Tools

If you log into Linux using a graphical user interface (GUI) login screen, though, you’ll
have to start a shell manually. Some GUIs provide a menu option to start a program called
a terminal, xterm, Konsole, or something similar. These programs enable you to run text-
mode programs within Linux, and by default they come up running your shell. If you can’t
find such a menu option, look for one that enables you to run an arbitrary command. Select
it, and type xterm or konsole as the command name; this will launch an xterm-type pro-
gram that will run a shell.

Using Internal and External Commands

Internal commands are, as you might expect, built into the shell. Most shells offer a similar
set of internal commands, but shell-to-shell differences do exist; consult your shell’s man
page (as described later, in “Getting Help”) for details, particularly if you’re using an exotic
shell. Internal commands you’re likely to use enable you to perform some common tasks:

Change the working directory Whenever you’re running a shell, you’re working in a
specific directory. When you refer to a file without providing a complete path to the file,
the shell works on the file in the current working directory. (Similar rules apply to many
programs.) The cd command changes the current working directory. For instance, typing
cd /home/sally changes to the /home/sally directory. The tilde (7) character is a use-
ful shortcut; it stands for your home directory, so c¢d ~ will have the same effect as c¢d /
home/sally if your home directory is /home/sally.

Display the working directory The pwd command displays (“prints” to the screen) the
current working directory.

Display a line of text The echo command displays the text you enter; for instance, typing
echo Hello causes the system to display the string He1lo. This may seem pointless, but it’s use-
ful in scripts (described in Chapter 9), and it can also be a good way to review the contents of
environment variables (described later in this chapter, in “Using Environment Variables”).

Execute a program The exec command runs an external program that you specify, as in
exec myprog to run myprog. In most cases, this is better accomplished by typing the name
of the program you want to run. The exec command has one special feature, though:
Rather than create a new process that runs alongside the shell, the new process replaces the
shell. When the new process terminates, it’s as if you terminated the shell.

Time an operation The time command times how long subsequent commands take to
execute. For instance, typing time pwd tells you how long the system took to execute the
pwd command. The time is displayed after the full command terminates. Three times are
displayed: total execution time (a.k.a. real time), user CPU time, and system CPU time.
The final two values tell you about CPU time consumed, which is likely to be much less
than the total execution time.

Set options In its most basic form, set displays a wide variety of options relating to bash
operation. These options are formatted much like environment variables, but they aren’t
the same things. You can pass various options to set to have it affect a wide range of shell
operations.

Understanding Command-Line Basics 7

Terminate the shell The exit and Togout commands both terminate the shell. The exit
command terminates any shell, but the Togout command terminates only login shells—that
is, those that are launched automatically when you initiate a text-mode login as opposed to
those that run in xterm windows or the like.

)’ This list isn"t complete. Later sections of this chapter and later chapters
‘d’TE describe some additional internal commands. Consult your shell’s docu-
mentation for a complete list of its internal commands.

Some of these internal commands are duplicated by external commands that do the
same thing, but these external commands aren’t always installed on all systems. Even when
these external commands are installed, the internal command takes precedence unless you
provide the complete path to the external command on the command line, as in typing
/bin/pwd rather than pwd.

@ Real World Scenario

Confusion over Internal and External Commands

When duplicate internal and external commands exist, they sometimes produce subtly
different results or accept different options. These differences can occasionally cause
problems. For instance, consider the pwd command and symbolic links to directories.
(Symbolic links are described in more detail in Chapter 4. For now, know that they’re files
that point to other files or directories and for most intents and purposes act just like the
files or directories to which they point when they're accessed.) Suppose you create a sym-
bolic link to /bin within your home directory and then cd into that directory. You then want
to know where you are. The pwd command that'’s internal to bash will produce a different
result from the external pwd command:

$ pwd
/home/sally/binTink
$ /bin/pwd

/usr/bin

As you can see, bash’s internal pwd shows the path via the symbolic link, whereas the exter-
nal command shows the path to which the link points. Sometimes these differences can
cause confusion, such as if you read the man page or other documentation that describes
one version but you use the other and a difference is important. You may wonder why the
command isn’t operating as you expect. If in doubt, look up the documentation for, and type
the complete path to, the external command to be sure you use it.

8 Chapter 1 - Exploring Linux Command-Line Tools

When you type a command that’s not recognized by the shell as one of its internal com-
mands, the shell checks its path to find a program by that name to execute it. The path is a
list of directories in which commands can be found. It’s defined by the PATH environment
variable, as described shortly in “Using Environment Variables.” A typical user account has
about half a dozen or a dozen directories in its path. You can adjust the path by changing
the PATH environment variable in a shell configuration file, as described in “Exploring Shell
Configuration.”

You can run programs that aren’t on the path by providing a complete path on the com-
mand line. For instance, typing ./myprog runs the myprog program in the current directory,
and /home/arthur/thisprog runs the thisprog program in the /home/arthur directory.

ING accounts. Typically, you’ll omit directories that store GUI and other user-
oriented programs from root’s path in order to discourage use of the
root account for routine operations, thus minimizing the risk of security
breaches related to buggy or compromised binaries being run by root.
Most important, root’s path should neverinclude the current directory
(./). Placing this directory in root’s path makes it possible for a local mis-
creant to trick root into running replacements for common programs, such
as 1s, by having root change into a directory with such a program. Indeed,
omitting the current directory from ordinary user paths is also generally a
good idea. If this directory must be part of the ordinary user path, it should
appear at the end of the path so that the standard programs take prece-
dence over any replacement programs in the current directory.

@:ﬂ The root account should normally have a shorter path than ordinary user

In the case of both programs on the path and those whose complete paths you type as
part of the command, the program file must be marked as executable. This is done via the
execute bit that’s stored with the file. Standard programs are marked executable when they’re
installed, but if you need to adjust a program’s executable status, you can do so with the
chmod command, as described in Chapter 4.

Performing Some Shell Command Tricks

Many users find typing commands to be tedious and error prone. This is particularly true
of slow or sloppy typists. For this reason, Linux shells include various tools that can help
speed up operations. The first of these is command completion: Type part of a command
or (as an option to a command) a filename, and then press the Tab key. The shell tries to fill
in the rest of the command or the filename. If just one command or filename matches the
characters you’ve typed so far, the shell fills it in and places a space after it. If the characters
you’ve typed don’t uniquely identify a command or filename, the shell fills in what it can
and then stops. Depending on the shell and its configuration, it may beep. If you press the
Tab key again, the system responds by displaying the possible completions. You can then
type another character or two and, if you haven’t completed the command or filename,
press the Tab key again to have the process repeat.

Understanding Command-Line Basics 9

The most fundamental Linux commands have fairly short names—mv, 1s, set, and so on.
Some other commands are much longer, though, such as traceroute or sane-find-scanner.
Filenames can also be quite lengthy—up to 255 characters on many filesystems. Thus, com-
mand completion can save a lot of time when you’re typing. It can also help you avoid typos.

)’ The most popular Linux shells, including bash and tcsh, support command
‘d’TE and filename completion. Some older shells, though, don’t support this
helpful feature.

Another helpful shell shortcut is the history. The history keeps a record of every com-
mand you type (stored in ~/.bash_history in the case of bash). If you’ve typed a long
command recently and want to use it again, or use a minor variant of it, you can pull the
command out of the history. The simplest way to do this is to press the Up arrow key on
your keyboard; this brings up the previous command. Pressing the Up arrow key repeatedly
moves through multiple commands so you can find the one you want. If you overshoot,
press the Down arrow key to move down the history. The Ctrl+P and Ctrl+N keystrokes
double for the Up and Down arrow keys, respectively.

Another way to use the command history is to search through it. Press Ctrl+R to begin
a backward (reverse) search, which is what you probably want, and begin typing characters
that should be unique to the command you want to find. The characters you type need not be
the ones that begin the command; they can exist anywhere in the command. You can either
keep typing until you find the correct command or, after you've typed a few characters, press
Ctrl+R repeatedly until you find the one you want. The Ctrl+S keystroke works similarly but
searches forward in the command history, which might be handy if you've used a backward
search or the Up arrow key to look back and have overshot. In either event, if you can’t find
the command you want or change your mind and want to terminate the search, press Ctrl+G
to do so.

Frequently, after finding a command in the history, you want to edit it. The bash shell,
like many shells, provides editing features modeled after those of the Emacs editor:

Move within the line Press Ctrl+A or Ctrl+E to move the cursor to the start or end of the
line, respectively. The Left and Right arrow keys move within the line a character at a time.
Ctrl+B and Ctrl+F do the same, moving backward and forward within a line. Pressing Ctrl
plus the Left or Right arrow key moves backward or forward a word at a time, as does
pressing Esc and then B or F.

Delete text Pressing Ctrl+D or the Delete key deletes the character under the cursor,
whereas pressing the Backspace key deletes the character to the left of the cursor. Pressing
Ctrl+K deletes all text from the cursor to the end of the line. Pressing Ctrl+X and then Back-
space deletes all the text from the cursor to the beginning of the line.

Transpose text Pressing Ctrl+T transposes the character before the cursor with the charac-
ter under the cursor. Pressing Esc and then T transposes the two words immediately before
(or under) the cursor.

10 Chapter 1 - Exploring Linux Command-Line Tools

Change case Pressing Esc and then U converts text from the cursor to the end of the word
to uppercase. Pressing Esc and then L converts text from the cursor to the end of the word to
lowercase. Pressing Esc and then C converts the letter under the cursor (or the first letter of
the next word) to uppercase, leaving the rest of the word unaffected.

Invoke an editor You can launch a full-fledged editor to edit a command by pressing
Ctrl+X followed by Ctrl+E. The bash shell attempts to launch the editor defined by the
$FCEDIT or $EDITOR environment variable or Emacs as a last resort.

These editing commands are just the most useful ones supported by bash; consult its man
page to learn about many more obscure editing features. In practice, you're likely to make
heavy use of command and filename completion, the command history, and perhaps a few
editing features.

The history command provides an interface to view and manage the history. Typing
history alone displays all the commands in the history (typically the latest 500 com-
mands); adding a number causes only that number of the latest commands to appear. Typ-
ing history -c clears the history, which can be handy if you’ve recently typed commands
youwd rather not have discovered by others (such as commands that include passwords).

In Exercise 1.1, you’ll experiment with your shell’s completion and command-editing
tools.

Editing Commands

To experiment with your shell’s completion and command-editing tools, follow these steps:

1. Loginasan ordinary user.

2. Create atemporary directory by typing mkdir test. (Directory and file manipulation
commands are described in more detail in Chapter 4.)

3. Change into the test directory by typing cd test.

4. Create a few temporary files by typing touch one two three. This command creates
three empty files named one, two, and three.

5. Typels -1 t, and without pressing the Enter key, press the Tab key. The system may
beep at you or display two three. If it doesn’t display two three, press the Tab key
again, and it should do so. This reveals that either two or three is a valid completion
to your command, because these are the two files in the test directory whose file-
names begin with the letter t.

6. Type h, and again without pressing the Enter key, press the Tab key. The system
should complete the command (1s -1 three), at which point you can press the Enter
key to execute it. (You'll see information on the file.)

7. Pressthe Up arrow key. You should see the Ts -1 three command appear on the
command line.

Understanding Command-Line Basics "

EXERCISE 1.1 (continued)

8. Press Ctrl+A to move the cursor to the beginning of the line.

9. Pressthe Right arrow key once, and type es (without pressing the Enter key). The
command line should now read less -1 three.

10. Press the Right arrow key once, and press the Delete key three times. The command
should now read Tess three. Press the Enter key to execute the command. (Note
that you can do so even though the cursor isn’t at the end of the line.) This invokes
the less pager on the three file. (The Tess pager is described more fully later, in
“Getting Help.”) Because this file is empty, you’ll see a mostly empty screen.

11. Press the Q key to exit from the 1ess pager.

Exploring Shell Configuration

Shells, like many Linux programs, are configured through files that hold configuration options
in a plain-text format. The bash configuration files are actually bash shell scripts, which

are described more fully in Chapter 9. For now, you should know that the ~/.bashrc and
~/.profile files are the main user configuration files for bash, and /etc/bash.bashrc

and /etc/profile are the main global configuration files.

Even without knowing much about shell scripting, you can make simple changes to
these files. Edit them in your favorite text editor, and change whatever needs changing. For
instance, you can add directories to the $PATH environment variable, which takes a colon-
delimited list of directories.

ING global bash configuration files. Save a backup of the original file before
making changes, and test your changes immediately by logging in using
another virtual terminal. If you spot a problem, revert to your saved copy
until you can learn the cause and create a working file.

@:ﬁ Be careful when changing your bash configuration, and particularly the

Using Environment Variables

Environment variables are like variables in programming languages—they hold data to be
referred to by the variable name. Environment variables differ in that they’re part of the
environment of a program, and other programs, such as the shell, can modify this environ-
ment. Programs can rely on environment variables to set information that can apply to many
different programs. For instance, suppose a computer hosts several different Usenet news
readers. These programs all need to know what Usenet news server to use; if they all agree to
use an environment variable, such as SNNTPSERVER, to hold this information, you can set this

12 Chapter 1 - Exploring Linux Command-Line Tools

environment variable once as part of your shell startup script and then forget it. You needn’t
set this feature individually for all the news readers installed on the system.

Chapter 9 describes environment variables and their manipulation in more detail. For
the moment, you should know that you can set them in bash by using an assignment (=)
operator followed by the export command:

$ NNTPSERVER=news.abigisp.com
$ export NNTPSERVER

You can combine these two commands into a single form:
$ export NNTPSERVER=news.abigisp.com

Either method sets the $NNTPSERVER environment variable to news.abigisp.com. (When
setting an environment variable, you omit the dollar sign, but subsequent references include
a dollar sign to identify the environment variable as such.) Thereafter, programs that need
this information can refer to the environment variable. In fact, you can do so from the shell
yourself, using the echo command:

$ echo S$NNTPSERVER
news.abigisp.com

You can also view the entire environment by typing env. The result is likely to be several
dozen lines of environment variables and their values. Chapter 9 describes what many of
these variables are in more detail.

To delete an environment variable, use the unset command, which takes the name of
an environment variable (without the leading $ symbol) as an option. For instance, unset
NNTPSERVER removes the SNNTPSERVER environment variable.

Getting Help

Linux provides a text-based help system known as man. This command’s name is short for
manual, and its entries (its man pages) provide succinct summaries of what a command, file,
or other feature does. For instance, to learn about man itself, you can type man man. The
result is a description of the man command.

The man utility uses the Tess pager to display information. This program displays text a
page at a time. Press the spacebar to move forward a page, Esc followed by V to move back
a page, the arrow keys to move up or down a line at a time, the slash (/) key to search for
text, and so on. (Type man less to learn all the details, or consult the upcoming section
“Paging Through Files with 1ess.”) When you’re done, press Q to exit Tess and the man
page it’s displaying.

Linux man pages are categorized into several sections, which are summarized in Table 1.1.
Sometimes a single keyword has entries in multiple sections; for instance, passwd has entries
under both section 1 and section 5. In most cases, man returns the entry in the lowest-num-
bered section; but you can force the issue by preceding the keyword by the section number.
For instance, typing man 5 passwd returns information on the passwd file format rather than
the passwd command.

Using Streams, Redirection, and Pipes 13

TABLE 1.1 Manual Sections

Section Number Description

1 Executable programs and shell commands

2 System calls provided by the kernel

3 Library calls provided by program libraries

4 Device files (usually stored in /dev)

5 File formats

6 Games

7 Miscellaneous (macro packages, conventions, and so on)

8 System administration commands (programs run mostly or exclu-

sively by root)

9 Kernel routines

Some programs have moved away from man pages to info pages. The basic purpose of
info pages is the same as that for man pages, but info pages use a hypertext format so that
you can move from section to section of the documentation for a program. Type info info
to learn more about this system.

Both man pages and info pages are usually written in a terse style. They’re intended as
reference tools, not tutorials; they frequently assume basic familiarity with the command,
or at least with Linux generally. For more tutorial information, you must look elsewhere,
such as this book or the Web. The Linux Documentation Project (http://t1dp.org) is a
particularly relevant Web-based resource for learning about various Linux topics.

Using Streams, Redirection, and Pipes

Streams, redirection, and pipes are some of the more powerful command-line tools in
Linux. Linux treats the input to and output from programs as a stream, which is a data
entity that can be manipulated. Ordinarily, input comes from the keyboard and output
goes to the screen (which in this context can mean a full-screen text-mode login session,

an xterm or a similar window, or the screen of a remote computer via a remote login ses-
sion). You can redirect these input and output streams to come from or go to other sources,
though, such as files. Similarly, you can pipe the output of one program into another pro-
gram. These facilities can be great tools to tie together multiple programs.

14 Chapter 1 = Exploring Linux Command-Line Tools

) Part of the Unix philosophy to which Linux adheres is, whenever possible,
Py OTE to do complex things by combining multiple simple tools. Redirection
and pipes help in this task by enabling simple programs to be combined
together in chains, each link feeding off the output of the preceding link.

Exploring Types of Streams

To begin understanding redirection and pipes, you must first understand the different types
of input and output streams. Three are most important for this topic:

Standard input Programs accept keyboard input via standard input, or stdin. In most
cases, this is the data that comes into the computer from a keyboard.

Standard output Text-mode programs send most data to their users via standard output
(a.k.a. stdout), which is normally displayed on the screen, either in a full-screen text-mode
session or in a GUI window such as an xterm. (Fully GUI programs such as GUI word pro-
cessors don’t use standard output for their regular interactions, although they might use
standard output to display messages in the xterm from which they were launched. GUI out-
put isn’t handled via an output stream in the sense ’'m describing here.)

Standard error Linux provides a second type of output stream, known as standard error,
or stderr. This output stream is intended to carry high-priority information such as error
messages. Ordinarily, standard error is sent to the same output device as standard output,
so you can’t easily tell them apart. You can redirect one independently of the other, though,
which can be handy. For instance, you can redirect standard error to a file while leaving
standard output going to the screen so that you can interact with the program and then
study the error messages later.

Internally, programs treat these streams just like data files—they open them, read from
or write to the files, and close them when they’re done. Put another way, ordinary files are
streams from a program’s point of view. These streams just happen to be the ones used to
interact with users.

Redirecting Input and Output

To redirect input or output, you use symbols following the command, including any options
it takes. For instance, to redirect the output of the echo command, you would type some-
thing like this:

$ echo SNNTPSERVER > nntpserver.txt

The result is that the file nntpserver. txt contains the output of the command (in this
case, the value of the $NNTPSERVER environment variable). Redirection operators exist to
achieve several effects, as summarized in Table 1.2.

Using Streams, Redirection, and Pipes 15

TABLE 1.2 Common Redirection Operators

Redirection Operator Effect

> Creates a new file containing standard output. If the specified file
exists, it's overwritten.

>> Appends standard output to the existing file. If the specified file
doesn’t exist, it's created.

2> Creates a new file containing standard error. If the specified file
exists, it's overwritten.

2>> Appends standard error to the existing file. If the specified file
doesn't exist, it's created.

& Creates a new file containing both standard output and standard
error. If the specified file exists, it's overwritten.

< Sends the contents of the specified file to be used as standard
input.

L Accepts text on the following lines as standard input.

<> Causes the specified file to be used for both standard input and

standard output.

Most of these redirectors deal with output, both because there are two types of output
(standard output and standard error) and because you must be concerned with what to
do in case you specify a file that already exists. The most important input redirector is <,
which takes the specified file’s contents as standard input.

null. This file is a device that’s connected to nothing; it's used when you
want to get rid of data. For instance, if the whine program is generating too
many error messages, you can type whine 2> /dev/null to run it and dis-
card its error messages.

é/ A common trick is to redirect standard output or standard error to /dev/
P

One redirection operator that requires elaboration is <<. This operator implements a
here document, which takes text from the following lines as standard input. Chances are
you won’t use this redirector on the command line, though; the following lines are standard
input, so there’s no need to redirect them. Rather, you might use this command as part of
a script in order to pass data to a command. Unlike most redirection operators, the text
immediately following the << code isn’t a filename; instead, it’s a word that’s used to mark

16 Chapter 1 - Exploring Linux Command-Line Tools

the end of input. For instance, typing someprog << EOF causes someprog to accept input
until it sees a line that contains only the string EOF (without even a space following it).

)’ Some programs that take input from the command line expect you to ter-
,&TE minate input by pressing Ctrl+D. This keystroke corresponds to an end-of-
file marker using the American Standard Code for Information Interchange
(ASCII).

A final redirection tool is the tee command. This command splits standard input so that
it’s displayed on standard output and on as many files as you specify. Typically, tee is used
in conjunction with data pipes so that a program’s output can be both stored and viewed
immediately. For instance, to view and store the output of someprog, you might type this:

$ someprog | tee output.txt

? The vertical bar (|) is the pipe character. It implements a pipe, as described
ITE in the next section.

Ordinarily, tee overwrites any files whose names you specify. If you want to append
data to these files, pass the -a option to tee.

Piping Data Between Programs

Programs can frequently operate on other programs’ outputs. For instance, you might use
a text-filtering command (such as the ones described shortly, in “Processing Text Using Fil-
ters”) to manipulate text output by another program. You can do this with the help of redi-
rection operators; send the first program’s standard output to a file, and then redirect the
second program’s standard input to read from that file. This solution is awkward, though,
and it involves the creation of a file that you might easily overlook, leading to unnecessary
clutter on your system.

The solution is to use data pipes (a.k.a. pipelines). A pipe redirects the first program’s
standard output to the second program’s standard input and is denoted by a vertical bar (]):

§$ first | second

For instance, suppose that first generates some system statistics, such as system uptime,
CPU use, number of users logged in, and so on. This output might be lengthy, so you want
to trim it a bit. You might therefore use second, which could be a script or command that
echoes from its standard input only the information in which you’re interested. (The grep
command, described in “Using grep,” is often used in this role.)

Pipes can be used in sequences of arbitrary length:

§$ first | second | third | fourth | fifth | sixth [...]

Processing Text Using Filters 17

Generating Command Lines

Sometimes you’ll find yourself constructing a series of commands that are similar to each
other but not similar enough to enable you to use their normal options to substitute a single
command. For instance, suppose you want to remove every file in a directory tree with a
name that ends in a tilde (7). (This filename convention denotes backup files created by cer-
tain text editors.) With a large directory tree, this task can be daunting; the usual file-deletion
command (rm, described in more detail in Chapter 4) doesn’t provide an option to search for
and delete every file in a directory tree that matches such a specific criterion. One command
that can do the search part of the job, though, is find, which is also described in more detail
in Chapter 4. This command displays all the files that match criteria you provide. If you could
combine the output of find to create a series of command lines using rm, the task would be
solved. This is precisely the purpose of the xargs command.

The xargs command builds a command from its standard input. The basic syntax for
this command is as follows:

xargs [options] [command [initial-arguments]]

The command is the command you want to execute, and initial-arguments is a list of argu-
ments you want to pass to the command. The options are xargs options; they aren’t passed to
command. When you run xargs, it runs command once for every word passed to it on standard
input, adding that word to the argument list for command. If you want to pass multiple options
to the command, you can protect them by enclosing the group in quotation marks.

For instance, consider the task of deleting all those backup files, denoted by tilde characters.
You can do this by piping the output of find to xargs, which then calls rm:

$ find ./ -name "*7" | xargs rm

The first part of this command (find ./ -name "*~") finds all the files in the current
directory (./) or its subdirectories with a name that ends in a tilde (*7). This list is then
piped to xargs, which adds each one to its own rm command.

A tool that’s similar to xargs in many ways is the backtick ('), which is a character to
the left of the 1 key on most keyboards. The backtick is ot the same as the single quote
character ('), which is located to the right of the semicolon (;) on most keyboards.

Text within backticks is treated as a separate command whose results are substituted on the
command line. For instance, to delete those backup files, you can type the following command:

$ rm “find ./ -name "*~"°

Processing Text Using Filters

In keeping with Linux’s philosophy of providing small tools that can be tied together via
pipes and redirection to accomplish more complex tasks, many simple commands to manipu-
late text are available. These commands accomplish tasks of various types, such as combining
files, transforming the data in files, formatting text, displaying text, and summarizing data.

18 Chapter 1 - Exploring Linux Command-Line Tools

) Many of the following descriptions include input-file specifications. In
A ITE most cases, you can omit these input-file specifications, in which case the
utility reads from standard input instead.

File-Combining Commands

The first group of text-filtering commands are those used to combine two or more files
into one file. Three important commands in this category are cat, join, and paste, which
join files end to end, based on fields in the file, or by merging on a line-by-line basis,
respectively.

Combining Files with cat

The cat command’s name is short for concatenate, and this tool does just that: It links
together an arbitrary number of files end to end and sends the result to standard output.
By combining cat with output redirection, you can quickly combine two files into one:

$ cat first.txt second.txt > combined.txt

Although cat is officially a tool for combining files, it’s also commonly used to display
the contents of a short file. If you type only one filename as an option, cat displays that
file. This is a great way to review short files; but for long files, you’re better off using a full-
fledged pager command, such as more or less.

You can add options to have cat perform minor modifications to the files as it com-
bines them:

Display line ends If you want to see where lines end, add the -E or --show-ends option.
The result is a dollar sign ($) at the end of each line.

Number lines The -n or --number option adds line numbers to the beginning of every line.
The -b or --number-nonblank option is similar, but it numbers only lines that contain text.

Minimize blank lines The -s or --squeeze-blank option compresses groups of blank
lines down to a single blank line.

Display special characters The -T or --show-tabs option displays tab characters as ~I.
The -v or --show-nonprinting option displays most control and other special characters
using carat (*) and M- notations.

The tac command is similar to cat, but it reverses the order of lines in the output.

Joining Files by Field with join

The join command combines two files by matching the contents of specified fields within
the files. Fields are typically space-separated entries on a line, although you can specify
another character as the field separator with the -t char option, where char is the charac-
ter you want to use. You can cause join to ignore case when performing comparisons by
using the -i option.

Processing Text Using Filters 19

The effect of join may best be understood through a demonstration. Consider Listings 1.1
and 1.2, which contain data on telephone numbers—Listing 1.1 shows the names associated
with those numbers, and Listing 1.2 shows whether the numbers are listed or unlisted.

Listing 1.1: Demonstration File Containing Telephone Numbers and Names

555-2397 Beckett, Barry
555-5116 Carter, Gertrude
555-7929 Jones, Theresa
555-9871 Orwell, Samuel

Listing 1.2: Demonstration File Containing Telephone Number Listing Status

555-2397 unlisted
555-5116 Tisted
555-7929 Tisted
555-9871 unlisted

You can display the contents of both files using join:

$ join Tistingl.l.txt listingl.2.txt
555-2397 Beckett, Barry unlisted
555-5116 Carter, Gertrude listed
555-7929 Jones, Theresa listed
555-9871 Orwell, Samuel unlisted

By default, join uses the first field as the one to match across files. Because Listings 1.1 and
1.2 both place the phone number in this field, it’s the key field in the output. You can specify
another field by using the -1 or -2 option to specify the join field for the first or second file,
respectively, as in join -1 3 -2 2 cameras.txt lenses.txt to join using the third field in
cameras.txt and the second field in Tenses.txt. The -o FORMAT option enables more complex
specifications for the output file’s format; consult the man page for join for more details.

The join command can be used at the core of a set of simple customized database-
manipulation tools using Linux text-manipulation commands. It’s very limited by itself,
though; for instance, it requires its two files to have the same ordering of lines. (You can
use the sort command to ensure this is so.)

Merging Lines with paste

The paste command merges files line by line, separating the lines from each file with tabs,
as shown in the following example, using Listings 1.1 and 1.2 again:

§ paste listingl.l.txt listingl.2.txt

555-2397 Beckett, Barry 555-2397 unlisted
555-5116 Carter, Gertrude 555-5116 Tisted
555-7929 Jones, Theresa 555-7929 Tisted
555-9871 Orwell, Samuel 555-9871 unTisted

20 Chapter 1 = Exploring Linux Command-Line Tools

You can use paste to combine data from files that aren’t keyed with fields suitable for
use by join. Of course, to be meaningful, the files’ line numbers must be exactly equiva-
lent. Alternatively, you can use paste as a quick way to create a two-column output of
textual data; however, the alignment of the second column may not be exact if the first
column’s line lengths aren’t exactly even, as shown in the preceding example.

File-Transforming Commands

Many of Linux’s text-manipulation commands are aimed at transforming the contents of
files. These commands don’t actually change files’ contents, though; rather, they send the
changed file to standard output. You can then pipe this output to another command or
redirect it into a new file.

) An important file-transforming command is sed. This command is very
A OTE complex and is covered later in this chapter, in “Using sed.”

Converting Tabs to Spaces with expand

Sometimes text files contain tabs but programs that need to process the files don’t cope well
with tabs; or perhaps you want to edit a text file in an editor that uses a different amount
of horizontal space for the tab than the editor that created the file. In such cases, you may
want to convert tabs to spaces. The expand command does this.

By default, expand assumes a tab stop every eight characters. You can change this spac-
ing with the -t num or --tabs=num option, where num is the tab spacing value.

Displaying Files in Octal with od

Some files aren’t easily displayed in ASCII; most graphics files, audio files, and so on, use
non-ASCII characters that look like gibberish. Worse, these characters can do strange things
to your display if you try to view such a file with cat or a similar tool. For instance, your font
may change, or your console may begin beeping uncontrollably. Nonetheless, you may some-
times want to display such files, particularly if you want to investigate the structure of a data
file. You may also want to look at an ASCII file in a way that eliminates certain ambiguities,
such as whether a gap between words is a tab or several spaces. In such cases, od (whose
name stands for octal dump) can help. It displays a file in an unambiguous format—octal
(base 8) numbers by default. For instance, consider Listing 1.2 as parsed by od:

$ od Tistingl.2.txt

0000000 032465 026465 031462 033471 072440 066156 071551 062564
0000020 005144 032465 026465 030465 033061 066040 071551 062564
0000040 005144 032465 026465 034467 034462 066040 071551 062564
0000060 005144 032465 026465 034071 030467 072440 066156 071551
0000100 062564 005144

0000104

Processing Text Using Filters 21

The first field on each line is an index into the file in octal. For instance, the second line
begins at octal 20 (16 in base 10) bytes into the file. The remaining numbers on each line
represent the bytes in the file. This type of output can be difficult to interpret unless you’re
well versed in octal notation and perhaps in the ASCII code.

Although od is nominally a tool for generating octal output, it can generate many other out-
put formats, such as hexadecimal (base 16), decimal (base 10), and even ASCII with escaped
control characters. Consult the man page for od for details on creating these variants.

Sorting Files with sort

Sometimes you’ll create an output file that you want sorted. To do so, you can use a com-
mand that’s called, appropriately enough, sort. This command can sort in several ways,
including the following:

Ignore case Ordinarily, sort sorts by ASCII value, which differentiates between upper-
case and lowercase letters. The -f or --ignore-case option causes sort to ignore case.

Month sort The -M or --month-sort option causes the program to sort by three-letter
month abbreviation (JAN through DEC).

Numeric sort You can sort by number by using the -n or --numeric-sort option.
Reverse sort order The -r or --reverse option sorts in reverse order.

Sort field By default, sort uses the first field as its sort field. You can specify another field
with the -k field or --key=field option. (The field can be two numbered fields separated
by commas, to sort on multiple fields.)

As an example, suppose you wanted to sort Listing 1.1 by first name. You could do so

like this:

$ sort -k 3 Tistingl.l.txt
555-2397 Beckett, Barry
555-5116 Carter, Gertrude
555-9871 Orwell, Samuel
555-7929 Jones, Theresa

The sort command supports a large number of additional options, many of them quite
exotic. Consult sort’s man page for details.

Breaking a File into Pieces with split

The split command can split a file into two or more files. Unlike most of the text-manip-
ulation commands described in this chapter, this command requires you to enter an output
filename—or more precisely, an output filename prefix, to which is added an alphabetic
code. You must also normally specify how large you want the individual files to be:

Split by bytes The -b size or --bytes=size option breaks the input file into pieces of size
bytes. This option can have the usually undesirable consequence of splitting the file mid-line.

22 Chapter 1 = Exploring Linux Command-Line Tools

Split by bytes in line-sized chunks You can break a file into files of no more than a speci-
fied size without breaking lines across files by using the -C=size or --1ine-bytes=size
option. (Lines will still be broken across files if the line length is greater than size.)

Split by number of lines The -1 Tines or --1ines=Tines option splits the file into chunks
with no more than the specified number of lines.

As an example, consider breaking Listing 1.1 into two parts by number of lines:
$ split -1 2 Tistingl.l.txt numbers

The result is two files, numbersaa and numbersab, that together hold the original con-
tents of Tistingl.1.txt.

Translating Characters with tr

The tr command changes individual characters from standard input. Its syntax is as
follows:

tr [options] SET1 [SET2]

You specify the characters you want replaced in a group (SET1) and the characters with
which you want them to be replaced as a second group (SET2). Each character in SET1 is
replaced with the one at the equivalent position in SET2. Here’s an example using Listing 1.1:

$ tr BCJ bc < Tlistingl.l.txt
555-2397 beckett, barry
555-5116 carter, Gertrude
555-7929 cones, Theresa
555-9871 Orwell, Samuel

This example translates some, but not all, of the uppercase characters to lowercase. Note
that SET2 in this example was shorter than SET1. The result is that tr substitutes the last
available letter from SET2 for the missing letters. In this example, the J in Jones became a c.
The -t or --truncate-setl option causes tr to truncate SET1 to the size of SET2 instead.

Another tr option is -d, which causes the program to delete the characters from SET1.
When using -d, you can omit SET2 entirely.

The tr command also accepts a number of shortcuts, such as [:alnum:] (all numbers and
letters), [:upper:] (all uppercase letters), [:Tower:] (all lowercase letters), and [:digit:] (all
digits). You can specify a range of characters by separating them with dashes (-), as in A-M
for characters between A and M, inclusive. Consult tr’s man page for a complete list of these
shortcuts.

Converting Spaces to Tabs with unexpand

The unexpand command is the logical opposite of expand; it converts multiple spaces to
tabs. This can help compress the size of files that contain many spaces and can be helpful if
a file is to be processed by a utility that expects tabs in certain locations.

Processing Text Using Filters 23

Like expand, unexpand accepts the -t num or --tabs=num option, which sets the tab
spacing to once every num characters. If you omit this option, unexpand assumes a tab stop
every eight characters.

Deleting Duplicate Lines with uniq

The uniq command removes duplicate lines. It’s most likely to be useful if you’ve sorted a
file and don’t want duplicate items. For instance, suppose you want to summarize Shake-
speare’s vocabulary. You might create a file with all of the Bard’s works, one word per line.
You can then sort this file using sort and pass it through uniq. Using a shorter example file
containing the text to be or not to be, that is the question (one word per line), the
result looks like this:

$ sort shakespeare.txt | uniq
be

is

not

or

question

that

the

to

Note that the words to and be, which appeared in the original file twice, appear only
once in the unig-processed version.

File-Formatting Commands

The next three commands—fmt, n1, and pr—reformat the text in a file. The first of these is
designed to reformat text files, such as if a program’s README documentation file uses lines
that are too long for your display. The n1 command numbers the lines of a file, which can
be helpful in referring to lines in documentation or correspondence. Finally, pr is a print-
processing tool; it formats a document in pages suitable for printing.

Reformatting Paragraphs with fmt

Sometimes text files arrive with outrageously long line lengths, irregular line lengths, or other
problems. Depending on the problem, you may be able to cope simply by using an appropri-
ate text editor or viewer to read the file. If you want to clean up the file a bit, though, you can
do so with fmt. If called with no options (other than the input filename, if you’re not having it
work on standard input), the program attempts to clean up paragraphs, which it assumes are
delimited by two or more blank lines or by changes in indentation. The new paragraph for-
matting defaults to no more than 75 characters wide. You can change this with the -width,
-w width, or --width=width options, which set the line length to width characters.

24 Chapter 1 - Exploring Linux Command-Line Tools

Numbering Lines with n/

As described earlier, in “Combining Files with cat,” you can number the lines of a file with
that command. The cat line-numbering options are limited, though, so if you need to do
complex line numbering, n1 is the tool to use. In its simplest case, you can use n1 alone to
accomplish much the same goal as cat -b achieves: numbering all the non-blank lines in a
file. You can add many options to n1 to achieve various special effects:

Body numbering style You can set the numbering style for the bulk of the lines with the
-b style or --body-numbering=style option, where style is a style format code, described
shortly.

Header and footer numbering style If the text is formatted for printing and has headers or
footers, you can set the style for these elements with the -h styTe or --header-numbering=style
option for the header and -f style or --footer-numbering=style option for the footer.

Page separator Some numbering schemes reset the line numbers for each page. You can
tell nT how to identify a new page with the -d=code or --section-delimiter=code option,
where code is a code for the character that identifies the new page.

Line-number options for new pages Ordinarily, n1 begins numbering each new page with
line 1. If you pass the -p or --no-renumber option, though, it doesn’t reset the line number
with a new page.

Number format You can specify the numbering format with the -n format or --number-
format=format option, where format is 1n (left justified, no leading zeros), rn (right justi-
fied, no leading zeros), or rz (right justified with leading zeros).

The body, header, and footer options enable you to specify a numbering style for each of
these page elements:

Number only non-blank lines The default behavior is to number lines that aren’t empty.
This corresponds to a styTe of t.

Number all lines If you want empty lines to be numbered, specify a style of a.
Number no lines To omit line numbers (say, for headers or footers), specify a styTe of n.

Number lines matching a regular expression A style of pREGEXP numbers only those
lines that match the regular expression REGEXP. (Regular expressions are described later, in
“Using Regular Expressions.”)

As an example, suppose you’ve created a script, buggy, but you find that it’s not working
as you expect. When you run it, you get error messages that refer to line numbers, so you
want to create a version of the script with lines that are numbered for easy reference. You
can do so by calling n1 with the option to number blank lines (-b a):

$ n1 -b a buggy > numbered-buggy.txt

- Because the input file doesn’t have any explicit page delimiters, the output
‘dg-rz will be numbered in a single sequence; n1 doesn’t try to impose its own
page-length limits.

Processing Text Using Filters 25

The numbered-buggy . txt file created by this command isn’t useful as a script because of
the line numbers that begin each line. You can, however, load it into a text editor or display
it with a pager such as Tess to view the text and see the line numbers along with the com-
mands they contain.

Preparing a File for Printing with pr

If you want to print a plain-text file, you may want to prepare it with headers, footers, page
breaks, and so on. The pr command was designed to do this. In its most basic form, you
pass the command a file:

$ pr myfile.txt

The result is text formatted for printing on a line printer—that is, pr assumes an
80-character line length in a monospaced font. Of course, you can also use pr in a pipe,
either to accept input piped from another program or to pipe its output to another program.
(The recipient program might be 1pr, which is used to print files, as described in Chapter 6,
“Configuring the X Window System, Localization, and Printing.”)

By default, pr creates output that includes the original text with headers that include the
current date and time, the original filename, and the page number. You can tweak the out-
put format in a variety of ways, including the following:

Generate multi-column output Passing the -numcols or --columns=numcols option cre-
ates output with numcols columns. Note that pr doesn’t reformat text; if lines are too long,
they’re truncated or run over onto multiple columns.

Generate double-spaced output The -d or --doubTe-space option causes double-spaced
output from a single-spaced file.

Use form feeds Ordinarily, pr separates pages by using a fixed number of blank lines.
This works fine if your printer uses the same number of lines that pr expects. If you have
problems with this issue, you can pass the -F, -f, or --form-feed option, which causes pr
to output a form-feed character between pages. This works better with some printers.

Set page length The -1 Tines or --Tength=Tines option sets the length of the page in lines.

Set the header text The -h text or --header=text option sets the text to be displayed in
the header, replacing the filename. To specify a multi-word string, enclose it in quotes, as in
--header="My File". The -t or --omit-header option omits the header entirely.

Set left margin and page width The -0 chars or --indent=chars option sets the left margin
to chars characters. This margin size is added to the page width, which defaults to 72 charac-
ters and can be explicitly set with the -w chars or --width chars option.

These options are just the beginning; pr supports many more, which are described in its
man page. As an example of pr in action, consider printing a double-spaced and numbered ver-
sion of a configuration file (say, /etc/profile) for your reference. You can do this by piping
together cat and its -n option to generate a numbered output, pr and its -d option to double-
space the result, and 1pr to print the file:

$ cat -n /etc/profile | pr -d | Tpr

26 Chapter 1 = Exploring Linux Command-Line Tools

The result should be a printout that might be handy for taking notes on the configura-
tion file. One caveat, though: If the file contains lines that approach or exceed 80 characters
in length, the result can be single lines that spill across two lines. The result will be dis-
rupted page boundaries. As a workaround, you can set a somewhat short page length with
-1 and use -f to ensure that the printer receives form feeds after each page:

$ cat -n /etc/profile | pr -df1 50 | 1pr

The pr command is built around assumptions about printer capabilities

P that were reasonable in the early 1980s. It’s still useful today, but you
might prefer to look into GNU Enscript (http://www.codento.com/people/
mtr/genscript/). This program has many of the same features as pr, but
it generates PostScript output that can take better advantage of modern
printer features.

File-Viewing Commands

Sometimes you just want to view a file or part of a file. A few commands can help you
accomplish this goal without loading the file into a full-fledged editor.

) As described earlier, the cat command is also handy for viewing short files.
A 9TE

Viewing the Starts of Files with head

Sometimes all you need to do is see the first few lines of a file. This may be enough to iden-
tify what a mystery file is, for instance; or you may want to see the first few entries of a log
file to determine when that file was started. You can accomplish this goal with the head
command, which echoes the first 10 lines of one or more files to standard output. (If you
specify multiple filenames, each one’s output is preceded by a header to identify it.) You can
modify the amount of information displayed by head in two ways:

Specify the number of bytes The -c num or --bytes=num option tells head to display num
bytes from the file rather than the default 10 lines.

Specify the number of lines You can change the number of lines displayed with the -n
num or --1ines=num option.

Viewing the Ends of Files with tail

The tail command works just like head, except that tail displays the last 10 lines of a
file. (You can use the -c/--bytes and -n/--Tines options to change the amount of data dis-
played, just as with head.) This command is useful for examining recent activity in log files
or other files to which data may be appended.

Processing Text Using Filters 27

The tail command supports several options that aren’t present in head and that enable
the program to handle additional duties, including the following:

Track a file The -f or --follow option tells tail to keep the file open and to display new
lines as they’re added. This feature is helpful for tracking log files because it enables you to
see changes as they’re added to the file.

Stop tracking on program termination The --pid=pid option tells tail to terminate
tracking (as initiated by -f or --fo17ow) once the process with a process ID (PID) of pid
terminates. (PIDs are described in more detail in Chapter 2, “Managing Software.”)

Some additional options provide more obscure capabilities. Consult tail’s man page
for details.

Paging Through Files with less

The Tess command’s name is a joke; it’s a reference to the more command, which was an early
file pager. The idea was to create a better version of more, so the developers called it Tess.

The idea behind Tess (and more, for that matter) is to enable you to read a file a screen at
a time. When you type less filename, the program displays the first few lines of filename.
You can then page back and forth through the file:

= Pressing the spacebar moves forward through the file a screen at a time.
= Pressing Esc followed by V moves backward through the file a screen at a time.
= The Up and Down arrow keys move up or down through the file a line at a time.

= You can search the file’s contents by pressing the slash (/) key followed by the search
term. For instance, typing /portable finds the first occurrence of the string portable
after the current position. Typing a slash followed by the Enter key moves to the next
occurrence of the search term. Typing n alone repeats the search forward, while typing
N alone repeats the search backward.

* You can search backward in the file by using the question mark (?) key rather than the
slash key.

= You can move to a specific line by typing g followed by the line number, as in g50 to go
to line 50.

= When you’re done, type q to exit from the program.

Unlike most of the programs described here, Tess can’t be readily used in a pipe, except
as the final command in the pipe. In that role, though, Tess is very useful because it enables
you to readily examine lengthy output.

> 4 Although Tess is quite common on Linux systems and is typically con-
‘dg-rz figured as the default text pager, some Unix-like systems use more in this
role. Many of less’s features, such as the ability to page backward in a file,
don’t work in more.

28 Chapter 1 - Exploring Linux Command-Line Tools

One additional Tess feature can be handy: Typing h displays Tess’s internal help system.
This display summarizes the commands you may use, but it’s long enough that you must
use the usual Tess paging features to view it all! When you’re done with the help screens,
type g, just as if you were exiting from viewing a help document with less. This action will
return you to your original document.

File-Summarizing Commands

The final text-filtering commands I describe are used to summarize text in one way or
another. The cut command takes segments of an input file and sends them to standard out-
put, while the wc command displays some basic statistics on the file.

Extracting Text with cut

The cut command extracts portions of input lines and displays them on standard output.
You can specify what to cut from input lines in several ways:

By byte The -b Tist or --bytes=Tist option cuts the specified list of bytes from the input
file. (The format of a Tist is described shortly.)

By character The -c Tist or --characters=7ist option cuts the specified list of charac-
ters from the input file. In practice, this method and the by-byte method usually produce
identical results. (If the input file uses a multi-byte encoding system, though, the results
won’t be identical.)

By field The -f Tist or --fields=Tist option cuts the specified list of fields from the input
file. By default, a field is a tab-delimited section of a line, but you can change the delimiting
character with the -d char, --de1lim=char, or --delimiter=char option option, where char
is the character you want to use to delimit fields. Ordinarily, cut echoes lines that don’t con-
tain delimiters. Including the -s or --onTy-delimited option changes this behavior so that
the program doesn’t echo lines that don’t contain the delimiter character.

Many of these options take a Tist, which is a way to specify multiple bytes, characters,
or fields. You make this specification by number; it can be a single number (such as 4), a
closed range of numbers (such as 2-4), or an open range of numbers (such as -4 or 4-). In
this final case, all bytes, characters, or fields from the beginning of the line to the specified
number or from the specified number to the end of the line are included in the list.

The cut command is frequently used in scripts to extract data from some other command’s
output. For instance, suppose you’re writing a script and the script needs to know the hard-
ware address of your Ethernet adapter. This information can be obtained from the ifconfig
command (described in more detail in Chapter 8, “Configuring Basic Networking”):

$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:76:96:A3:73
inet addr:192.168.1.3 Bcast:192.168.1.255 Mask:255.255.255.0
inet6 addr: fe80::20c:76ff:fe96:a373/64 Scope:Link
UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1

Using Regular Expressions 29

RX packets:7127424 errors:0 dropped:0 overruns:0 frame:0

TX packets:5273519 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000

RX bytes:6272843708 (5982.2 Mb) TX bytes:1082453585 (1032.3 Mb)
Interrupt:10 Base address:0xde00

Unfortunately, most of this information is extraneous for the desired purpose. The hard-
ware address is the 6-byte hexadecimal number following HWaddr. To extract that data, you
can combine grep (described shortly, in “Using grep”) with cut in a pipe:

$ ifconfig eth0 | grep HWaddr | cut -d " " -f 11
00:0C:76:96:A3:73

Of course, in a script you would probably assign this value to a variable or otherwise
process it through additional pipes. Chapter 9 describes scripts in more detail.

Obtaining a Word Count with we

The wc command produces a word count (that’s where it gets its name), as well as line and
byte counts, for a file:

$ wc file.txt
308 2343 15534 file.txt

This file contains 308 lines (or, more precisely, 308 newline characters); 2,343 words;
and 15,534 bytes. You can limit the output to the newline count, the word count, the byte
count, or a character count with the --Tines (-1), --words (-w), --bytes (-c), or --chars
(-m) option, respectively. You can also learn the maximum line length with the --max-Tine-
Tength (-L) option.

)/ For an ordinary ASCII file, the character and byte counts will be identical.
‘djTE These values may diverge for files that use multi-byte character encodings.

Using Regular Expressions

Many Linux programs employ regular expressions, which are tools for expressing patterns
in text. Regular expressions are similar in principle to the wildcards that can be used to
specify multiple filenames. At their simplest, regular expressions can be plain text without
adornment. Certain characters are used to denote patterns, though. Because of their impor-
tance, I describe regular expressions here. I also cover two programs that make heavy use
of regular expressions: grep and sed. These programs search for text within files and per-
mit editing of files from the command line, respectively.

30 Chapter 1 - Exploring Linux Command-Line Tools

Understanding Regular Expressions

Two forms of regular expression are common: basic and extended. Which form you must
use depends on the program; some accept one form or the other, but others can use either
type, depending on the options passed to the program. (Some programs use their own
minor or major variants on either of these classes of regular expression.) The differences
between basic and extended regular expressions are complex and subtle, but the fundamen-
tal principles of both are similar.

The simplest type of regular expression is an alphabetic string, such as Linux or HWaddr.
These regular expressions match any string of the same size or longer that contains the reg-
ular expression. For instance, the HWaddr regular expression matches HWaddr, This is the
HWaddr, and The HWaddr is unknown. The real strength of regular expressions comes in the
use of non-alphabetic characters, which activate advanced matching rules:

Bracket expressions Characters enclosed in square brackets ([]) constitute bracket expres-
sions, which match any one character within the brackets. For instance, the regular expres-
sion b[aeiou]g matches the words bag, beg, big, bog, and bug.

Range expressions A range expression is a variant on a bracket expression. Instead of list-
ing every character that matches, range expressions list the start and end points separated
by a dash (-), as in a[2-4]z. This regular expression matches a2z, a3z, and a4z.

Any single character The dot (.) represents any single character except a newline. For
instance, a.z matches a2z, abz, aQz, or any other three-character string that begins with a
and ends with z.

Start and end of line The carat () represents the start of a line, and the dollar sign ($)
denotes the end of a line.

Repetition operators A full or partial regular expression may be followed by a special
symbol to denote how many times a matching item must exist. Specifically, an asterisk (*)
denotes zero or more occurrences, a plus sign (+) matches one or more occurrences, and

a question mark (?) specifies zero or one match. The asterisk is often combined with the
dot (as in .*) to specify a match with any substring. For instance, A.*Lincoln matches any
string that contains A and Lincoln, in that order—Abe Lincoln and Abraham Lincoln are
just two possible matches.

Multiple possible strings The vertical bar (|) separates two possible matches; for instance,
car|truck matches either car or truck.

Parentheses Ordinary parentheses (()) surround subexpressions. Parentheses are often
used to specify how operators are to be applied; for example, you can put parentheses
around a group of words that are concatenated with the vertical bar, to ensure that the
words are treated as a group, any one of which may match, without involving surrounding
parts of the regular expression.

Escaping If you want to match one of the special characters, such as a dot, you must
escape it—that is, precede it with a backslash (\). For instance, to match a computer host-
name (say, twain.example.com), you must escape the dots, as in twain\.example\.com.

Using Regular Expressions 31

The preceding descriptions apply to extended regular expressions. Some details are dif-
ferent for basic regular expressions. In particular, the 7, +, |, (, and) symbols lose their
special meanings. To perform the tasks handled by these characters, some programs, such
as grep, enable you to recover the functions of these characters by escaping them (say, using
\| instead of |). Whether you use basic or extended regular expressions depends on which
form the program supports. For programs, such as grep, that support both, you can use
either; which you choose is mostly a matter of personal preference.

Regular expression rules can be confusing, particularly when you’re first introduced to
them. Some examples of their use, in the context of the programs that use them, will help.
The next couple of sections provide such examples.

Using grep

The grep command is extremely useful. It searches for files that contain a specified string
and returns the name of the file and (if it’s a text file) a line of context for that string. The
basic grep syntax is as follows:

grep [options] regexp [files]

The regexp is a regular expression, as just described. The grep command supports a
large number of options. Some of the more common options enable you to modify the way
the program searches files:

Count matching lines Instead of displaying context lines, grep displays the number of
lines that match the specified pattern if you use the -c or --count option.

Specify a pattern input file The -f file or --file=file option takes pattern input from
the specified file rather than from the command line.

Ignore case You can perform a case-insensitive search, rather than the default case-sensi-
tive search, by using the -1 or --ignore-case option.

Search recursively The -r or --recursive option searches in the specified directory and
all subdirectories rather than simply the specified directory. You can use rgrep rather than
specify this option.

Use an extended regular expression The grep command interprets regexp as a basic regu-
lar expression by default. To use an extended regular expression, you can pass the -E or
--extended-regexp option. Alternatively, you can call egrep rather than grep; this variant
command uses extended regular expressions by default.

A simple example of grep uses a regular expression with no special components:
$ grep -r eth0 /etc/*

This example finds all the files in /etc that contain the string ethO (the identifier for the
first Ethernet device). Because the example includes the -r option, it searches recursively, so
files in subdirectories of /etc are examined as well as those in /etc itself. For each match-
ing text file, the line that contains the string is printed.

32 Chapter 1 - Exploring Linux Command-Line Tools

) Some files in /etc can’t be read by ordinary users. Thus, if you type this
Py OTE command as a non-root user, you’'ll see some error messages relating to
grep’s inability to open files.

Ramping up a bit, suppose you want to locate all the files in /etc that contain the string
ethO or ethl. You can enter the following command, which uses a bracket expression to
specify both variant devices:

$ grep eth[01] /etc/*

A still more complex example searches all files in /etc that contain the hostname twain.
example.com or bronto.pangaea.edu and, later on the same line, the number 127. This task
requires using several of the regular expression features. Expressed using extended regular
expression notation, the command looks like this:

$ grep -E "(twain\.example\.com|bronto\.pangaea\.edu).*127" /etc/*

This command illustrates another feature you may need to use: shell quoting. Because
the shell uses certain characters, such as the vertical bar and the asterisk, for its own pur-
poses, you must enclose certain regular expressions in quotes lest the shell attempt to parse
the regular expression as shell commands.

You can use grep in conjunction with commands that produce a lot of output in order
to sift through that output for the material that’s important to you. (Several examples
throughout this book use this technique.) For example, suppose you want to find the pro-
cess ID (PID) of a running xterm. You can use a pipe to send the result of a ps command
(described in Chapter 2) through grep:

ps ax | grep xterm

The result is a list of all running processes called xterm, along with their PIDs. You can
even do this in series, using grep to further restrict the output on some other criterion,
which can be useful if the initial pass still produces too much output.

Using sed

The sed command directly modifies the contents of files, sending the changed file to stan-
dard output. Its syntax can take one of two forms:

sed [options] -f script-file [input-file]
sed [options] script-text [input-file]

In either case, input-file is the name of the file you want to modify. (Modifications
are temporary unless you save them in some way, as illustrated shortly.) The script
(script-text or the contents of script-file) is the set of commands you want sed to per-
form. When you pass a script directly on the command line, the script-text is typically
enclosed in single quote marks. Table 1.3 summarizes a few sed commands that you can
use in its scripts.

Using Regular Expressions 33

TABLE 1.3 Common sed Commands

Command Addresses Meaning

= Oor1 Display the current line number.

a\text Oor1 Append text to the file.

i\text Oor1 Insert text into the file.

r filename Oor1 Append text from filename into the file.
c\text Range Replace the selected range of lines with the

provided text.

s/regexp/replacement Range Replace text that matches the regular expres-
sion (regexp) with replacement.

w filename Range Write the current pattern space to the
specified file.
q Oor1 Immediately quit the script, but print the current

pattern space.

Q Oor1 Immediately quit the script.

)/ Table 1.3 is incomplete; sed is quite complex, and this section merely intro-
‘dg'rz duces this tool.

The Addresses column of Table 1.3 requires elaboration: sed commands operate on
addresses, which are line numbers. Commands may take no addresses, in which case they
operate on the entire file; one address, in which case they operate on the specified line; or
two addresses (a range), in which case they operate on that range of lines, inclusive.

In operation, sed looks something like this:

$ sed 's/2008/2009/' cal-2008.txt > cal-2009.txt

This command processes the input file, ca1-2008. txt, using sed’s s command to replace
the first occurrence of 2008 on each line with 2009. (If a single line may have more than one
instance of the search string, you must perform a global search by appending g to the com-
mand string, as in s/2008/2009/9.) By default, sed sends the modified file to standard out-
put, so this example uses redirection to send the output to ca1-2009.txt. The idea in this
example is to quickly convert a file created for the year 2008 so that it can be used in 2009.
If you don’t specify an input filename, sed works from standard input, so it can accept the
output of another command as its input.

34 Chapter 1 - Exploring Linux Command-Line Tools

Although it’s conceptually simple, sed is a very complex tool; even a modest summary
of its capabilities would fill a chapter. You can consult its man page for basic information;
but to fully understand sed, you may want to consult a book on the subject, such as Dale
Dougherty and Arnold Robbins’s sed & awk, 2nd Edition (O’Reilly, 1997).

)’ Certain sed commands, including the substitution command, are also used
A&TE in Vi, which is described more fully in Chapter 5, “Booting Linux and Edit-
ing Files.”

Summary

The command line is the key to Linux. Even if you prefer GUI tools to text-mode tools,
understanding text-mode commands is necessary to fully manage Linux. This task begins
with the shell, which accepts commands you type and displays the results of those com-
mands. In addition, shells support linking programs together via pipes and redirecting pro-
grams’ input and output. These features enable you to perform complex tasks using simple
tools by having each program perform its own small part of the task. This technique is fre-
quently used with Linux text filters, which manipulate text files in various ways—sorting
text by fields, merging multiple files, and so on.

Exam Essentials

Summarize features that Linux shells offer to speed up command entry. The command
history often enables you to retrieve an earlier command that’s similar or identical to the
one you want to enter. Tab completion reduces typing effort by letting the shell finish long
command names or filenames. Command-line editing lets you edit a retrieved command or
change a typo before committing the command.

Describe the purpose of the man command. The man command displays the manual page
for the keyword (command, filename, system call, or other feature) that you type. This
documentation provides succinct summary information that’s useful as a reference to learn
about exact command options or features.

Explain the purpose of environment variables. Environment variables store small pieces
of data—program options, information about the computer, and so on. This information
can be read by programs and used to modify program behavior in a way that’s appropriate
for the current environment.

Describe the difference between standard output and standard error. Standard output
carries normal program output, whereas standard error carries high-priority output, such
as error messages. The two can be redirected independently of one another.

Exam Essentials 35

Explain the purpose of pipes. Pipes tie programs together by feeding the standard output
from the first program into the second program’s standard input. They can be used to link
together a series of simple programs to perform more complex tasks than any one of the
programs could manage.

Summarize the structure of regular expressions. Regular expressions are strings that
describe other strings. They can contain normal alphanumeric characters, which match the
exact same characters, as well as several special symbols and symbol sets that match multiple
different characters. The combination is a powerful pattern-matching tool used by many
Linux programs.

36 Chapter 1 = Exploring Linux Command-Line Tools

Review Questions

1. You type a command into bash and pass a long filename to it, but after you enter the com-
mand, you receive a File not found error message because of a typo in the filename. How
might you proceed?

A. Retype the command, and be sure you type the filename correctly, letter by letter.

B. Retype the command, but press the Tab key after typing a few letters of the long file-
name to ensure that the filename is entered correctly.

C. Press the Up arrow key, and use bash’s editing features to correct the typo.
D. Any of the above.

2. Which of the following commands is implemented as an internal command in bash?

A. cat
B. echo
C. tee
D. sed

3. You type echo $PROC, and the computer replies Go away. What does this mean?

A. No currently running processes are associated with your shell, so you may log out
without terminating them.

B. The remote computer PROC isn’t accepting connections; you should contact its adminis-
trator to correct the problem.

C. Your computer is handling too many processes; you must kill some of them to regain
control of the computer.

D. You, one of your configuration files, or a program you’ve run has set the $PROC envi-
ronment variable to Go away.
4. What does the pwd command accomplish?
A. It prints the name of the working directory.
B. It changes the current working directory.
C. It prints wide displays on narrow paper.
D. It parses Web page URLs for display.
5. Inan xterm window launched from your window manager, you type exec gedit. What
will happen when you exit from the gedit program?
A. Your shell will be a root shell.
B. The gedit program will terminate, but nothing else unusual will happen.
C. Your X session will terminate.
D

The xterm window will close.

10.

n.

Review Questions 37

What is the surest way to run a program (say, myprog) that’s located in the current working

directory?

A. Type ./ followed by the program name: ./myprog.

B. Type the program name alone: myprog.

C. Type run followed by the program name: run myprog.

D. Type /. followed by the program name: /.myprog.

How does man display information by default on most Linux systems?
A. Using a custom X-based application

B. Using the Firefox Web browser

C. Using the Tess pager

D. Using the Vi editor

You want to store the standard output of the ifconfig command in a text file (file.txt) for
future reference, and you want to wipe out any existing data in the file. How can you do so?

A.
B.
C.
D.

ifconfig < file.txt
ifconfig >> file.txt
ifconfig > file.txt
ifconfig | file.txt

What is the effect of the following command?

$ myprog & dinput.txt

A.
B.
C.
D.

Standard error to myprog is taken from input.txt.

Standard input to myprog is taken from input.txt.

Standard output and standard error from myprog are written to input. txt.
All of the above.

How many commands can you pipe together at once?

A.
B.
C.
D.

2
3
4

An arbitrary number

You want to run an interactive script, gabby, which produces a lot of output in response to
the user’s inputs. To facilitate future study of this script, you want to copy its output to a
file. How might you do this?

A.

B.
C.
D

gabby > gabby-out.txt
gabby | tee gabby-out.txt
gabby < gabby-out.txt
gabby &> gabby-out.txt

38

12.

13.

14.

15.

16.

17.

Chapter 1 = Exploring Linux Command-Line Tools

A text-mode program, verbose, prints a lot of spurious “error” messages to standard error.
How might you get rid of those messages while still interacting with the program?

A.
B.
C.
D.

verbose | quiet
verbose &> /dev/null
verbose 2> /dev/null

verbose > junk.txt

How do the > and >> redirection operators differ?

A.

C.
D.

The > operator creates a new file or overwrites an existing one; the >> operator creates
a new file or appends to an existing one.

The > operator creates a new file or overwrites an existing one; the >> operator
appends to an existing file or issues an error message if the specified file doesn’t exist.

The > operator redirects standard output; the >> operator redirects standard error.

The > operator redirects standard output; the >> operator redirects standard input.

What program would you use to display the end of a configuration file?

A.
B.
C.
D.

uniq
cut
tail

wcC

What is the effect of the following command?
$ pr report.txt | lpr

A.
B.

C.
D.

The file report.txt is formatted for printing and sent to the 1pr program.

The files report.txt and 1pr are combined together into one file and sent to standard
output.

Tabs are converted to spaces in report.txt, and the result is saved in Tpr.

None of the above.

Which of the following commands will number the lines in aleph.txt? (Select all that apply.)

A.
B.
C.
D.

fmt aleph.txt

n1 aleph.txt

cat -b aleph.txt
cat -n aleph.txt

Which of the following commands will change all occurrences of dog in the file animals. txt
to mutt in the screen display?

A.

B.
C.
D

sed —s "dog" "mutt" animals.txt
grep -s "dog| |mutt" animals.txt
sed 's/dog/mutt/g' animals.txt

cat animals.txt | grep —c "dog" "mutt"

18.

19.

20.

Review Questions 39

You’ve received an ASCII text file (TongTlines.txt) that uses no carriage returns within
paragraphs but two carriage returns between paragraphs. The result is that your preferred
text editor displays each paragraph as a very long line. How can you reformat this file so
that you can more easily edit it (or a copy)?

A. sed 's/Ctr1-M/NL/' Tonglines.txt

B. fmt Tonglines.txt > longlines2.txt

C. cat Tlonglines.txt > longlines2.txt

D. pr Tlonglines.txt > longlines2.txt

Which of the following commands will print lines from the file wor1d. txt that contain
matches to changes and changed?

A. grep change[ds] world.txt

B. sed change[d-s] world. txt

C. od "change'd|s'" world.txt

D. cat world.txt changes changed

Which of the following regular expressions will match the strings dig and dug but not dog?
A. d.g

B. d[iulg

C. d[i-ulg

D. di*g

40

Chapter 1 = Exploring Linux Command-Line Tools

Answers to Review Questions

1.

D. Any of these approaches will work, or at least might work. (You might err when per-
forming any of them.) Option B or C is likely to be the most efficient approach; with a long
filename to type, option A is likely to be tedious.

B. The echo command is implemented internally to bash, although an external version is
also available on most systems. The cat, tee, and sed commands are not implemented
internally to bash, although they can be called from bash as external commands.

D. The echo command echoes what follows to standard output, and $PROC is an environment
variable. Thus, echo $PROC displays the value of the $PROC environment variable, meaning
that it must have been set to the specified value by you, one of your configuration files, or a
program you’ve run. Although many environment variables are set to particular values to con-
vey information, $PROC isn’t a standard environment variable that might be associated with
information described in options A, B, or C.

A. The pwd command prints (to standard output) the name of the current working directory.
The remaining options are simply incorrect, although option B describes the cd command
and various tools can be used to reformat wide text for display or printing in fewer columns,
as in option C.

D. The exec command causes the rest of the command to replace the current shell. Thus,
when you exit from gedit in this scenario, the result will be the same as if you’d terminated
the shell, namely, the xterm window will close. The exec command doesn’t raise the execu-
tion privilege, so option A is incorrect. (The su and sudo commands can raise execution
privilege, though.) Because the xterm window closes, option B is incorrect. X won’t ordi-
narily terminate when a single xterm does, and definitely not if that xterm was launched
from a window manager, so option C is incorrect.

A. The dot (.) character refers to the current working directory, and the slash (/) is a directory
separator. Thus, preceding a program name by ./ unambiguously identifies the intention to
run the program that’s stored in the current directory. Option B will run the first instance of
the program that’s found on the current path. Because paths often omit the current directory
for security reasons, this option is likely to fail. The run command isn’t a standard Linux com-
mand, so option C is unlikely to do anything, much less what the question specifies. Option D
would be correct except that it reverses the order of the two characters. The effect is to attempt
to run the .myprog file in the root (/) directory. This file probably doesn’t exist, and even if it
did, it’s not the file the question specifies should be run.

C. By default, man uses the less pager to display information on most Linux systems.
Although an X-based version of man does exist (xman), the basic man doesn’t use a custom
X-based application, nor does it use Firefox or the Vi editor.

8.

10.

n.

12.

13.

14.

15.

Answers to Review Questions Lyl

C. The > redirection operator stores a command’s standard output in a file, overwriting
the contents of any existing file by the specified name. Option A specifies the standard
input redirection so that ifconfig will take the contents of file.txt as input. Option B
is almost correct; the >> redirection operator redirects standard output, as requested, but
it appends data to the specified file rather than overwriting it. Option D specifies a pipe;
the output of ifconfig is sent through the file.txt program, if it exists. (Chances are it
doesn’t, so you’d get a command not found error message.)

C. The &> redirection operator sends both standard output and standard error to the speci-
fied file, as option C states. (The name of the file, input. txt, is intentionally deceptive, but
the usage is still valid.) Option A mentions standard error but describes it as if it were an
input stream, which it’s not; it’s an output stream. Option B mentions standard input, but
the &> operator doesn’t affect standard input.

D. In principle, you can pipe together as many commands as you like. (In practice, of
course, there will be limits based on input buffer size, memory, and so on, but these limits
are far higher than the 2, 3, or 4 commands specified in options A, B, and C.)

B. The tee command sends its output both to standard output and to a named file. Thus,
placing the tee command (with an output filename) after another command and a pipe will
achieve the desired effect. Options A and D redirect gabby’s output to a file, which means
you won’t be able to see the output and interact with it. Option C sends the contents of
gabby-out.txt to gabby as input, which isn’t what’s desired, either.

C. The 2> redirection operator redirects standard error only, leaving standard output unaf-
fected. Sending standard error to /dev/nul1 gets rid of it. Option A pipes the standard
output of verbose through the quiet program, which isn’t a standard Linux program.
Option B sends both standard output and standard error to /dev/null, so you won’t be
able to interact with the program, as the question specifies you must be able to do. Option
D redirects standard output only to the junk.txt file, so once again, interaction will be
impossible—and you’ll see the unwanted error messages on the screen.

A. Option A correctly describes the difference between these two redirection operators.
Option B is almost correct, but the >> operator will create a new file if one doesn’t already
exist. The >> operator does not redirect standard error (as stated in option C) or standard
input (as stated in option D).

C. The tail command displays the final 10 lines of a file. (You can change the number of
lines displayed with the -n option.) The uniq command removes duplicate lines from a list.
The cut command echoes the specified characters or fields from an input text file. The wc
command displays counts of the number of characters, words, and lines in a file.

A. The pr program takes a text file as input and adds formatting features intended for
printing, such as a header and blank lines to separate pages. The command also pipes the
output through Tpr (which is a Linux printing command).

42

16.

17.

18.

19.

20.

Chapter 1 - Exploring Linux Command-Line Tools

B, C, D. The nT command numbers lines, so it does this task without any special options.
(Its options can fine-tune the way it numbers lines, though.) The cat command can also
number lines via its -b and -n options; -b numbers non-blank lines, whereas -n numbers
all lines (including blank lines). The fmt command is the only one described here that will
not number the lines of the input file.

C. The sed utility can be used to “stream” text and change one value to another. In this
case, the s option is used to replace dog with mutt. The syntax in option A is incorrect,
and choices B and D are incorrect because grep doesn’t include the functionality needed to
make the changes.

B. The fmt command performs the desired task of shortening long lines by inserting car-
riage returns. It sends its results to standard output, so option B uses output redirection to
save the results in a new file. The sed command of option A won’t accomplish anything
useful; it only replaces the string Ctr1-M with the string NL. Although these strings are both
sometimes used as abbreviations for carriage returns or new lines, the replacement of these
literal strings isn’t what’s required. Option C creates an exact copy of the original file, with
the long single-line paragraphs intact. Although option D’s pr command is a formatting
tool, it won’t reformat individual paragraphs. It will also add headers that you probably
don’t want.

A. The grep utility is used to find matching text within a file and print those lines. It
accepts regular expressions, which means you can place in brackets the two characters that
differ in the words for which you’re looking. The syntax for sed, od, and cat wouldn’t per-
form the specified task.

B. The bracket expression within the d[iu]g regular expression means that either i or u
may be the middle character; hence, this regular expression matches both dig and dug but
not dog. Option A’s dot matches any single character, so d.g matches all three words. The
range expression [1-u] matches any single character between i and u, inclusive. Because
o falls between these two letters, option C matches all three words. Finally, di*g matches
dig, diig, diiig, or any other word that begins with d, ends with g, and contains any
number of i letters in-between. Thus, option D matches dig but not dug as required.

Chapter Managing Software

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

v 1.102.3 Manage shared libraries (weight: 1)

v 1.102.4 Use Debian package management (weight: 3)

v 1102.5 Use RPM and Yum package management (weight: 3)
v 1.103.5 Create, monitor, and kill processes (weight: 4)

v' 1.103.6 Modify process execution priorities (weight: 2)

A Linux system is defined largely by the collection of software it

contains. The Linux kernel, the libraries used by many packages,

the shells used to interpret commands, the X Window System
GUI, the servers, and more all make up the system’s software environment. Many of the chap-
ters of this book are devoted to configuring specific software components, but they all have
something in common: tools used to install, uninstall, upgrade, and otherwise manipulate the
software. Ironically, this commonality is a major source of differences between Linux systems.
Two major Linux package management tools exist: RPM and Debian packages. (Several less-
common package management systems also exist.) With few exceptions, each individual Linux
computer uses precisely one package management system, so you’ll need to know only one
to administer a single system. To be truly fluent in all things Linux, though, you should be at
least somewhat familiar with both of them. Thus, this chapter describes both.

This chapter also covers libraries—software components that can be used by many dif-
ferent programs. Libraries help reduce the disk space and memory requirements of complex
programs, but they also require some attention; if that attention isn’t given to them, they
can cause problems by their absence or because of incompatibilities between their and their
dependent software’s versions.

Package management, and in some sense library management, relates to programs as files
on your hard disk. Once run, though, programs are dynamic entities. Linux provides tools
to help you manage running programs (known as processes)—you can learn what processes
are running, change their priorities, and terminate processes you don’t want running.

Package Concepts

Before proceeding, you should understand some of the principles that underlie Linux pack-
age management tools. Any computer’s software is like a house of cards: One program may
rely on five other programs or libraries, each of which relies on several more, and so on.
The foundation on which all these programs rely is the Linux kernel. Any of these packages
can theoretically be replaced by an equivalent one; however, doing so sometimes causes
problems. Worse, removing one card from the stack could cause the whole house of cards
to come tumbling down.

Linux package management tools are intended to minimize such problems by tracking
what software is installed. The information that the system maintains helps avoid problems
in several ways:

Packages The most basic information that package systems maintain is information about
software packages—that is, collections of files that are installed on the computer. Packages

Package Concepts 45

are usually distributed as single files that are similar to tarballs (archives created with the
tar utility and usually compressed with gzip or bzip2) or zip files. Once installed, most
packages consist of dozens or hundreds of files, and the package system tracks them all.
Packages include additional information that aids in the subsequent duties of package man-
agement systems.

Installed file database Package systems maintain a database of installed files. The data-
base includes information about every file installed via the package system, the name of the
package to which it belongs, and associated additional information.

Dependencies One of the most important types of information maintained by the pack-
age system is dependency information—that is, the requirements of packages for one
another. For instance, if SuperProg relies on UltraLib to do its work, the package data-
base records this information. If you attempt to install SuperProg when UltraLib isn’t
installed, the package system won’t let you do so. Similarly, if you try to uninstall Ultra-
Lib when SuperProg is installed, the package system won’t let you. (You can override
these prohibitions, as described later in “Forcing the Installation.” Doing so is usually
inadvisable, though.)

Checksums The package system maintains checksums and assorted ancillary infor-
mation about files. This information can be used to verify the validity of the installed
software. This feature has its limits, though; it’s intended to help you spot disk errors,
accidental overwriting of files, or other non-sinister problems. It’s of limited use in
detecting intrusions, because an intruder could use the package system to install altered
system software.

Upgrades and uninstallation By tracking files and dependencies, package systems permit easy
upgrades and uninstallation: Tell the package system to upgrade or remove a package, and it
will replace or remove every file in the package. Of course, this assumes that the upgrade or
uninstallation doesn’t cause dependency problems; if it does, the package system will block the
operation unless you override it.

Binary package creation Both the RPM and Debian package systems provide tools to help
create binary packages (those that are installed directly) from source code. This feature is
particularly helpful if you’re running Linux on a peculiar CPU; you can download source
code and create a binary package even if the developers didn’t provide explicit support for
your CPU. Creating a binary package from source has advantages over compiling software
from source in more conventional ways, because you can then use the package management
system to track dependencies, attend to individual files, and so on.

Both the RPM and Debian package systems provide all of these basic features, although
the details of their operation differ. These two package systems are incompatible with one
another in the sense that their package files and their installed file databases are different;
you can’t directly install an RPM package on a Debian-based system or vice versa. (Tools to
convert between formats do exist, and developers are working on ways to better integrate
the two package formats.)

46 Chapter 2 - Managing Software

ING more than one, though, and some programs (such as alien) require both
for full functionality. Actually using both systems to install software is inad-
visable because their databases are separate. If you install a library using a
Debian package and then try to install an RPM that relies on that library, RPM
won't realize that the library is already installed and will return an error.

ﬁll Most distributions install just one package system. It's possible to install

Using RPM

The most popular package manager in the Linux world is the RPM Package Manager (RPM).
RPM is also available on non-Linux platforms, although it sees less use outside the Linux
world. The RPM system provides all the basic tools described in the preceding section, “Pack-
age Concepts,” such as a package database that allows for checking conflicts and ownership
of particular files.

RPM Distributions and Conventions

Red Hat developed RPM for its own distribution. Red Hat released the software under the
General Public License (GPL), however, so others have been free to use it in their own dis-
tributions—and this is precisely what has happened. Some distributions, such as Mandriva
(formerly Mandrake) and Yellow Dog, are based on Red Hat, so they use RPMs as well as
many other parts of the Red Hat distribution. Others, such as SUSE, borrow less from the
Red Hat template, but they do use RPMs. Of course, all Linux distributions share many
common components, so even those that weren’t originally based on Red Hat are very simi-
lar to it in many ways other than their use of RPM packages. On the other hand, distribu-
tions that were originally based on Red Hat have diverged from it over time. As a result,
the group of RPM-using distributions shows substantial variability, but all of them are still
Linux distributions that provide the same basic tools, such as the Linux kernel, common
shells, an X server, and so on.

)r Red Hat has splintered into two distributions: Fedora is the downloadable
TE

A version favored by home users, students, and businesses on a tight budget.
The Red Hat name is now reserved for the for-pay version of the distribution,
known more formally as Red Hat Enterprise Linux (RHEL).

RPM is a cross-platform tool. As noted earlier, some non-Linux Unix systems can use
RPM, although most don’t use it as their primary package-distribution system. RPM supports
any CPU architecture. Red Hat Linux is or has been available for at least five CPUs: x86,
x86-64 (a.k.a. AMD64 and EM64T), IA-64, Alpha, and SPARC. Among the distributions

Using RPM 47

mentioned earlier, Yellow Dog is a PowerPC distribution (it runs on Apple PowerPC-based
Macs and some non-Apple systems), and SuSE is available on x86, x86-64, and PowerPC sys-
tems. For the most part, source RPMs are transportable across architectures—you can use the
same source RPM to build packages for x86, AMD64, PowerPC, Alpha, SPARC, or any other
platform you like. Some programs are composed of architecture-independent scripts and so
need no recompilation. There are also documentation and configuration packages that work
on any CPU.

The convention for naming RPM packages is as follows:

packagename-a.b.c-x.arch.rpm

Each of the filename components has a specific meaning;:

Package name The first component (packagename) is the name of the package, such as
samba or samba-server for the Samba file and print server. Note that the same program
may be given different package names by different distribution maintainers.

Version number The second component (a.b.c) is the package version number, such as
3.0.25b. The version number doesn’t have to be three period-separated numbers, but that’s
the most common form. The program author assigns the version number.

Build number The number following the version number (x) is the build number (also
known as the release number). This number represents minor changes made by the package
maintainer, not by the program author. These changes may represent altered startup scripts
or configuration files, changed file locations, added documentation, or patches appended to
the original program to fix bugs or to make the program more compatible with the target
Linux distribution. Many distribution maintainers add a letter code to the build number to
distinguish their packages from those of others. Note that these numbers are 7ot compa-
rable across package maintainers—George’s build number 5 of a package is 70t necessarily
an improvement on Susan’s build number 4 of the same package.

Architecture The final component preceding the . rpm extension (arch) is a code for the
package’s architecture. The 1386 architecture code is the most commony; it represents a file
compiled for any x86 CPU from the 80386 onward. Some packages include optimizations for
Pentiums or above (1586 or 1686), and non-x86 binary packages use codes for their CPUs,
such as ppc for PowerPC CPUs or x86_64 for the x86-64 platform. Scripts, documentation,
and other CPU-independent packages generally use the noarch architecture code. The main
exception to this rule is source RPMs, which use the src architecture code.

As an example of RPM version numbering, the Mandriva 2008.0 distribution for x86-64
ships with a Samba package called samba-server-3.0.25b-4.5mdv2008.0.x86_64. rpm, indi-
cating that this is build 4.5mdv2008.0 of Samba 3.0.25b, compiled with x86-64 optimiza-
tions. These naming conventions are just that, though—conventions. It’s possible to rename a
package however you like, and it will still install and work. The information in the filename
is retained within the package. This fact can be useful if you’re ever forced to transfer RPMs
using a medium that doesn’t allow for long filenames. In fact, early versions of SUSE eschewed
long filenames, preferring short filenames such as samba. rpm.

48 Chapter 2 - Managing Software

In an ideal world, any RPM package will install and run on any RPM-based distribution
that uses an appropriate CPU type. Unfortunately, compatibility issues can crop up from
time to time, including the following:

= Distributions may use different versions of the RPM utilities. This problem can completely
prevent an RPM from one distribution from being used on another.

= An RPM package designed for one distribution may have dependencies that are unmet in
another distribution. A package may require a newer version of a library than is present
on the distribution you’re using, for instance. This problem can usually be overcome by
installing or upgrading the depended-on package, but sometimes doing so causes problems
because the upgrade may break other packages. By rebuilding the package you want to
install from a source RPM, you can often work around these problems, but sometimes the
underlying source code also needs the upgraded libraries.

= An RPM package may be built to depend on a package of a particular name, such
as samba-client depending on samba-common; but if the distribution you’re using
has named the package differently, the rpm utility will object. You can override this
objection by using the --nodeps switch, but sometimes the package won’t work once
installed. Rebuilding from a source RPM may or may not fix this problem.

= Even when a dependency appears to be met, different distributions may include slightly
different files in their packages. For this reason, a package meant for one distribution
may not run correctly when installed on another distribution. Sometimes installing an
additional package will fix this problem.

= Some programs include distribution-specific scripts or configuration files. This problem
is particularly acute for servers, which may include startup scripts that go in /etc/rc.d/
init.d or elsewhere. Overcoming this problem usually requires that you remove the
offending script after installing the RPM and either start the server in some other way or
write a new startup script, perhaps modeled after one that came with some other server
for your distribution.

In most cases, it’s best to use the RPMs intended for your distribution. RPM meta-pack-
agers, such as the Yellow Dog Updater Modified (Yum), can simplify locating and installing
packages designed for your distribution. If you’re forced to go outside of your distribution’s
officially supported list of packages, mixing and matching RPMs from different distribu-
tions usually works reasonably well for most programs. This is particularly true if the dis-
tributions are closely related or you rebuild from a source RPM. If you have trouble with
an RPM, though, you may do well to try to find an equivalent package that was built with
your distribution in mind.

The rom Command Set

The main RPM utility program is known as rpm. Use this program to install or upgrade a
package at the shell prompt. The rpm command has the following syntax:

rpm [operation] [options] [package-files|package-names]

Using RPM 49

Table 2.1 summarizes the most common rpm operations, and Table 2.2 summarizes the
most important options. Be aware, however, that rpmis a complex tool, so this listing is nec-
essarily incomplete. For information about operations and options more obscure than those
listed in Tables 2.1 and 2.2, see the man pages for rpm. Many of rpm’s less-used features are
devoted to the creation of RPM packages by software developers.

TABLE 2.1 Common rpm Operations

Operation Description

-1 Installs a package; system must not contain a package of the same
name

-U Installs a new package or upgrades an existing one

-F or --freshen Upgrades a package only if an earlier version already exists

-q Queries a package—finds if a package is installed, what files it

contains, and so on

-Vor --verify Verifies a package—checks that its files are present and unchanged
since installation

-e Uninstalls a package

-b Builds a binary package, given source code and configuration files;
moved to the rpmbuild program with RPM version 4.2

--rebuild Builds a binary package, given a source RPM file; moved to the
rpmbuild program with RPM version 4.2

--rebuilddb Rebuilds the RPM database to fix errors

TABLE 2.2 Common rpm Options

Option Used with Operations Description

--root dir Any Modifies the Linux system having a root
directory located at dir. This option can
be used to maintain one Linux installation
discrete from another one (say, during OS
installation or emergency maintenance).

--force -i,-U, -F Forces installation of a package even
when it means overwriting existing files
or packages.

50 Chapter 2 - Managing Software

TABLE 2.2 Common rpmOptions (continued)

Option Used with Operations Description

-h or --hash -i,-U, -F

-v -i,-U, -F
--nodeps -i,-U, -F, -e
--test -i,-U, -F
--prefix path -i,-U, -F
-aor--all -q, -V

-f fileor --file file -q,-V

-p package-file -q
-4 -q
-Ror --requires -q
-Tor--list -q

Displays a series of hash marks (#) to
indicate the progress of the operation.

Used in conjunction with the -h option to
produce a uniform number of hash marks
for each package.

Specifies that no dependency checks
be performed. Installs or removes the
package even if it relies on a package or
file that’s not present or is required by a
package that’s not being uninstalled.

Checks for dependencies, conflicts, and
other problems without actually installing
the package.

Sets the installation directory to path
(works only for some packages).

Queries or verifies all packages.

Queries or verifies the package that
owns file.

Queries the uninstalled RPM package-file.

Displays package information, including
the package maintainer, a short descrip-
tion, and so on.

Displays the packages and files on which
this one depends.

Displays the files contained in the package.

To use rpm, you combine one operation with one or more options. In most cases, you
include one or more package names or package filenames as well. (A package filename is a
complete filename, but a package name is a shortened version. For instance, a package file-
name might be samba-server-3.0.25b-4.5mdv2008.0.x86_64.rpm, whereas the matching
package name is samba-server.) You can issue the rpm command once for each package,
or you can list multiple packages, separated by spaces, on the command line. The latter

Using RPM 51

is often preferable when you’re installing or removing several packages, some of which
depend on others in the group. Issuing separate commands in this situation requires that
you install the depended-on package first or remove it last, whereas issuing a single com-
mand allows you to list the packages on the command line in any order.

Some operations require that you give a package filename, and others require a package
name. In particular, -1, -U, -F, and the rebuild operations require package filenames; -q,
-V, and -e normally take a package name, although the -p option can modify a query (-q)
operation to work on a package filename.

When you’re installing or upgrading a package, the -U operation is generally the most
useful because it allows you to install the package without manually uninstalling the old
one. This one-step operation is particularly helpful when packages contain many dependen-
cies because rpm detects these and can perform the operation should the new package fulfill
the dependencies provided by the old one.

To use rpm to install or upgrade a package, issue a command similar to the following:

rpm -Uvh samba-server-3.0.25b-4.5mdv2008.0.x86_64.rpm

You can also use rpm -ivh in place of rpm -Uvh if you don’t already have a samba-
server package installed.

ING this situation, upgrading may fail, or it may produce a duplicate installa-
tion, which can yield bizarre program-specific malfunctions. Red Hat has
described a formal system for package naming to avoid such problems,
but they still occur occasionally. Therefore, it’s best to upgrade a package
using a subsequent release provided by the same individual or organiza-
tion that provided the original.

ﬁll It's possible to distribute the same program under different names. In

Verify that the package is installed with the rpm -qi command, which displays informa-
tion such as when and on what computer the binary package was built. Listing 2.1 demon-
strates this command. (rpm -qi also displays an extended plain-English summary of what
the package is, which has been omitted from Listing 2.1.)

Listing 2.1: RPM Query Output

$ rpm -qi samba-server

Name : samba-server Relocations: (not relocatable)
Version : 3.0.25b Vendor: Mandriva

Release : 4.5mdv2008.0 Build Date: Tue 27 May 2008=
08:39:24 PM EDT

Install Date: Sat 31 May 2008 12:15:20 PM EDT Build Host:=
Tinsec.homelinux.org

Group : Networking/Other Source RPM:=

samba-3.0.25b-4.5mdv2008.0.src.rpm

52 Chapter 2 - Managing Software

Size : 13524400 License: GPL
Signature : DSA/SHA1l, Tue 27 May 2008 09:38:42 PM EDT,=

Key ID 9aa8d0d022458a98

Packager : Mandriva Linux Security Team <security@mandriva.com>
URL : http://www.samba.org

Summary : Samba (SMB) server programs

Extracting Data from RPMs

Occasionally you may want to extract data from RPMs without installing the package. For
instance, this can be a good way to retrieve the original source code from a source RPM for
compiling the software without the help of the RPM tools or to retrieve fonts or other non-
program data for use on a non-RPM system.

RPM files are actually modified cpio archives. Thus, converting the files into cpio files
is relatively straightforward, whereupon you can use cpio to retrieve the individual files. To
do this job, you need to use the rpm2cpio program, which ships with most Linux distribu-
tions. (You can use this tool even on distributions that don’t use RPM.) This program takes
a single argument—the name of the RPM file—and outputs the cpio archive on standard
output. So, if you want to create a cpio archive file, you must redirect the output:

$ rpm2cpio samba-server-3.0.25b-4.5mdv2008.0.src.rpm=
> samba-server-3.0.25b-4.5mdv2008.0.cpio

)/ The redirection operator (>) is described in more detail in Chapter 1,
,&TE “Exploring Linux Command-Line Tools,” as is the pipe operator (|), which
is mentioned shortly.

You can then extract the data using cpio, which takes the -1 option to extract an
archive and --make-directories to create directories:

$ cpio -i --make-directories < samba-server-3.0.25b-4.5mdv2008.0.cpio

Alternatively, you can use a pipe to link these two commands together without creating
an intermediary file:

$ rpm2cpio samba-server-3.0.25b-4.5mdv2008.0.src.rpm | =
cpio -i --make-directories

In either case, the result is an extraction of the files in the archive in the current direc-
tory. In the case of binary packages, this is likely to be a series of subdirectories that mimic
the layout of the Linux root directory—that is, usr, 1ib, etc, and so on, although precisely
which directories are included depends on the package. For a source package, the result of
the extraction process is likely to be a source code tarball, a . spec file (which holds infor-
mation RPM uses to build the package), and perhaps some patch files.

Using RPM 53

When you're extracting data from an RPM file using rpm2cpio and cpio,

P create a holding subdirectory and then extract the data into this subdirectory.
This practice will ensure that you can find all the files. If you extract files in
your home directory, some of them may get lost amidst your other files. If
you extract files as root in the root (/) directory, they could conceivably over-
write files that you want to keep.

Another option for extracting data from RPMs is to use alien, which is described later,
in “Converting Between Package Formats.” This program can convert an RPM into a
Debian package or a tarball.

Using Yum

Yum (http://1inux.duke.edu/projects/yum/), mentioned earlier, is one of several
meta-packagers—it enables you to easily install a package and all its dependencies using
a single command line. When using Yum, you don’t even need to locate and download
the package files, because Yum does this for you by searching in one or more repositories
(Internet sites that host RPM files for a particular distribution).

Yum originated with the fairly obscure Yellow Dog Linux distribution, but it’s since
been adopted by Red Hat, Fedora, and some other RPM-based distributions. Yum isn’t
used by all RPM-based distributions, though; SUSE and Mandriva, to name just two, each
use their own meta-packagers. Debian-based distributions generally employ the Advanced
Package Tools (APT), as described later, in “Using apz-get.” Nonetheless, because of the
popularity of Red Hat and Fedora, knowing Yum can be valuable.

The most basic way to use Yum is with the yum command, which has the following
syntax:

yum [options] [command] [package...]

Which options are available depend on the command you use. Table 2.3 describes com-
mon yum commands.

TABLE 2.3 Common yum Commands

Command Description

install Installs one or more packages by package name. Also
installs dependencies of the specified package or packages.

update Updates the specified package or packages to the latest
available version. If no packages are specified, yum updates
every installed package.

check-update Checks to see whether updates are available. If they are, yum
displays their names, versions, and repository area (updates
or extras, for instance).

54 Chapter 2 - Managing Software

TABLE 2.3 Common yum Commands (continued)

Command

Description

upgrade

remove or erase

Tist

provides or whatprovides

search

info

clean

shell

resolvedep

Jocalinstall

Tocalupdate

deplist

Works like update with the --obsoTletes flag set, which
handles obsolete packages in a way that’s superior when
performing a distribution version upgrade.

Deletes a package from the system; similar to rpm -e, but
yum also removes depended-on packages.

Displays information about a package, such as the installed
version and whether an update is available.

Displays information about packages that provide a speci-
fied program or feature. For instance, typing yum provides
samba lists all the Samba-related packages, including every
available update. Note that the output can be copious.

Searches package names, summaries, packagers, and
descriptions for a specified keyword. This is useful if you
don’t know a package’s name but can think of a word that’s
likely to appear in one of these fields but not in these fields
for other packages.

Displays information about a package, similar to the rpm -qi
command.

Cleans up the Yum cache directory. Running this command
from time to time is advisable, lest downloaded packages
chew up too much disk space.

Enters the Yum shell mode, in which you can enter multiple
Yum commands one after another.

Displays packages matching the specified dependency.

Installs the specified local RPM files, using your Yum reposi-
tories to resolve dependencies.

Updates the system using the specified local RPM files,
using your Yum repositories to resolve dependencies. Pack-
ages other than those updated by local files and their depen-
dencies are not updated.

Displays dependencies of the specified package.

Using RPM 55

In most cases, using Yum is easier than using RPM directly to manage packages, because
Yum finds the latest available package, downloads it, and installs any required dependen-
cies. Yum has its limits, though; it’s only as good as its repositories, so it can’t install soft-
ware that’s not stored in those repositories.

/L If you use Yum to automatically upgrade all packages on your system,
ING you're effectively giving control of your system to the distribution main-

tainer. Although Red Hat or other distribution maintainers are unlikely to try
to break into your computer in this way, an automatic update with minimal
supervision on your part could easily break something on your system, par-
ticularly if you’'ve obtained packages from unusual sources in the past.

If you don’t want to install the package, but merely want to obtain it, you can use
yumdownloader. Type this command followed by the name of a package, and the latest
version of the package will be downloaded to the current directory. This can be handy
if you need to update a system that’s not connected to the Internet; you can use another
system that runs the same distribution to obtain the packages and then transfer them to
the target system.

If you prefer to use GUI tools rather than command-line tools, you should be aware that
GUI front-ends to yum exist. Examples include yumex and kyum. You can use the text-mode
yum to install these front-ends, as in yum install kyum.

Exercise 2.1 runs you through the process of managing packages using the rpm utility.

Managing Packages Using RPM

To manage packages using the rpm utility, follow these steps:

1. Loginto the Linux system as a normal user.

2. Acquire a package to use for testing purposes. You can try using a package from
your distribution that you know you haven’t installed; but if you try a random pack-
age, you may find it’s already installed or has unmet dependencies. This lab uses as
an example the installation of zsh-4.3.4-4mdv2008.0.x86_64.rpm, a shell that’s not
installed by default on most systems, from the Mandriva 2008.0 DVD onto a Man-
driva 2008.0 system. You must adjust the commands as necessary if you use another
RPM file in your tests.

3. Launch an xterm from the desktop environment’s menu system if you used a GUI login.

4. Acquire root privileges. You can do this by typing su in an xterm, by selecting Ses-
sion » New Root Console from a Konsole window, or by using sudo (if it's config-
ured) to run the commands in the following steps.

5. Type rpm -q zsh to verify that the package isn’t currently installed. The system
should respond with the message package zsh is not installed.

56

Chapter 2 - Managing Software

EXERCISE 2.1 (continued)

6.

10.

1.

12.
13.

14.

15.

16.

Type rpm -gpi zsh-4.3.4-4mdv2008.0.x86_64.rpm. (You'll need to add a com-
plete path to the package file if it's not in your current directory.) The system should
respond by displaying information about the package, such as the version num-
ber, the vendor, the hostname of the machine on which it was built, and a package
description.

Type rpm -ivh zsh-4.3.4-4mdv2008.0.x86_64.rpm. The system should install the
package and display a series of hash marks (#) as it does so.

Type rpm -q zsh. The system should respond with the complete package name, includ-
ing the version and build numbers. This response verifies that the package is installed.

Type zsh. This launches a Z shell, which functions much like the more common bash
and tcsh shells. You're likely to see your command prompt change slightly, but you
can issue most of the same commands you can use with bash or tcsh.

Type rpm -V zsh. The system shouldn’t produce any output—just a new command
prompt. The verify (-V or --verify) command checks the package files against data
stored in the database. Immediately after installation, most packages should show
no deviations. (A handful of packages will be modified during installation, but zsh
isn't one of them.)

Type rpm -e zsh. The system shouldn’t produce any output—just a new command
prompt. This command removes the package from the system. Note that you're
removing the zsh package while running the zsh program. Linux continues to run
the zsh program you're using, but you’ll be unable to launch new instances of the
program. Some programs may misbehave if you do this because files will be missing
after you remove the package.

Type exit to exit zsh and return to your normal shell.

Type rpm -q zsh. The system should respond with a package zsh is not
installed error because you've just uninstalled the package.

Type yum install zsh. The system should check your repositories, download zsh,
and install it. It will ask for confirmation before beginning the download.

Type rpm -q zsh. The results should be similar to those in step 8, although the ver-
sion number may differ.

Type rpm -e zsh. This step removes zsh from the system but produces no output,
just as in step 11.

The final three steps will work only if your distribution uses Yum.

Using RPM 57

RPM and Yum Configuration Files

Ordinarily, you needn’t explicitly configure RPM or Yum; distributions that use RPM con-
figure it in reasonable ways by default. Sometimes, though, you may want to tweak a few
details, particularly if you routinely build source RPM packages and want to optimize the
output for your system. You may also want to add a Yum repository for some unusual soft-
ware you run. To do so, you typically edit an RPM or Yum configuration file.

The main RPM configuration file is /usr/1ib/rpm/rpmrc. This file sets a variety of
options, mostly related to the CPU optimizations used when compiling source packages.
You shouldn’t edit this file, though; instead, you should create and edit /etc/rpmrc (to
make global changes) or ~/.rpmrc (to make changes on a per-user basis). The main reason
to create such a file is to implement architecture optimizations—for instance, to optimize
your code for your CPU model by passing appropriate compiler options when you build a
source RPM into a binary RPM. This is done with the optflags line:

optflags: athlon -02 -g -march=1686

This line tells RPM to pass the -02 -g -march-1686 options to the compiler whenever
building for the athlon platform. Although RPM can determine your system’s architecture,
the optflags line by itself isn’t likely to be enough to set the correct flags. Most default rpmrc
files include a series of buildarchtranslate lines that cause rpmbuild (or rpm for older ver-
sions of RPM) to use one set of optimizations for a whole family of CPUs. For x86 systems,
these lines typically look like this:

buildarchtranslate: athlon: 1386
buildarchtranslate: i1686: 1386
buildarchtranslate: i1586: 1386
buildarchtranslate: i1486: 1386
buildarchtranslate: i386: 1386

These lines tell RPM to translate the athlon, 1686, 1586, 1486, and 1386 CPU codes to
use the 1386 optimizations. This effectively defeats the purpose of any CPU-specific opti-
mizations you create on the optflags line for your architecture, but it guarantees that the
RPMs you build will be maximally portable. To change matters, you must alter the line for
your CPU type, as returned when you type uname -p. For instance, on an Athlon-based sys-
tem, you might enter the following line:

buildarchtranslate: athlon: athlon

Thereafter, when you rebuild a source RPM, the system will use the appropriate
Athlon optimizations. The result can be a slight performance boost on your own sys-
tem, but reduced portability—depending on the precise optimizations you choose, such
packages may not run on non-Athlon CPUs. (Indeed, you may not even be able to install
them on non-Athlon CPUs!)

58 Chapter 2 - Managing Software

Yum is configured via the /etc/yum.conf file, with additional configuration files in the
/etc/yum.repos.d/ directory. The yum.conf file holds basic options, such as the directory
to which Yum downloads RPMs and where Yum logs its activities. Chances are you won’t
need to modify this file. The /etc/yum.repos.d/ directory, on the other hand, potentially
holds several files, each of which describes a Yum repository—that is, a site that holds
RPMs that may be installed via Yum. You probably shouldn’t directly edit these files;
instead, if you want to add a repository, manually download the RPM that includes the
repository configuration and install it using rpm. The next time you use Yum, it will access
your new repository along with the old ones. Several Yum repositories exist, mostly for Red
Hat and Fedora, such as the following:

Livna This repository (http://rpm.livna.org/rlowiki/) hosts multimedia tools, such as
additional codecs and video drivers.

KDE Red Hat Red Hat and Fedora favor the GNU Network Object Model Environment
(GNOME) desktop environment, although they ship with the K Desktop Environment
(KDE). The repository at http://kde-redhat.sourceforge.net provides improved KDE
RPMs for those who favor KDE.

Fresh RPMs This repository (http://freshrpms.net) provides additional RPMs, mostly
focusing on multimedia applications and drivers.

Many additional repositories exist. Try a Web search on terms such as yum repository, or
check the Web page of any site that hosts unusual software you want to run to see whether it
provides a Yum repository. If so, it should provide an RPM or other instructions on adding
its site to your Yum repository list.

RPM Compared to Other Package Formats

RPM is a very flexible package management system. In most respects, it’s comparable to
Debian’s package manager, and it offers many more features than tarballs do. When com-
pared to Debian packages, the greatest strength of RPMs is probably their ubiquity. Many
software packages are available in RPM form from their developers and/or from distribu-
tion maintainers.

) Distribution packagers frequently modify the original programs in order to

OTE make them integrate more smoothly into the distribution as a whole. For
instance, distribution-specific startup scripts may be added, program bina-
ries may be relocated from default /usr/local subdirectories, and pro-
gram source code may be patched to fix bugs or add features. Although
these changes can be useful, you may not want them, particularly if you're
using a program on a distribution other than the one for which the package
was intended.

The fact that there are so many RPM-based distributions can be a boon. You may be
able to use an RPM intended for one distribution on another, although as noted earlier, this
isn’t certain. In fact, this advantage can turn into a drawback if you try to mix and match

Using Debian Packages 59

too much—you can wind up with a mishmash of conflicting packages that can be difficult
to disentangle.

The RPMFind Web site, http://rpmfind.net, is an extremely useful
P resource when you want to find an RPM of a specific program. Another site

with similar characteristics is Fresh RPMs, http://freshrpms.net. These
sites include links to RPMs built by programs’ authors, specific distribu-
tions’ RPMs, and those built by third parties. Adding such sites as Yum
repositories can make it even easier to use them.

Compared to tarballs, RPMs offer much more sophisticated package management tools.
This can be important when you’re upgrading or removing packages and also for verifying
the integrity of installed packages. On the other hand, although RPMs are common in the
Linux world, they’re less common on other platforms. Therefore, you’re more likely to find
tarballs of generic Unix source code, and tarballs are preferred if you’ve written a program
that you intend to distribute for other platforms.

Using Debian Packages

In their overall features, Debian packages are similar to RPMs; but the details of operation
for each differ, and Debian packages are used on different distributions than are RPMs.
Because each system uses its own database format, RPMs and Debian packages aren’t inter-
changeable without converting formats. Using Debian packages requires knowing how to
use the dpkg, dselect, and apt-get commands. A few other commands can also be helpful.

Debian Distributions and Conventions

As the name implies, Debian packages originated with the Debian distribution. Since that
time, the format has been adopted by several other distributions, including Libranet, Ubuntu,
and Xandros. Such distributions are derived from the original Debian, which means that
packages from the original Debian are likely to work well on other Debian-based systems.
Although Debian doesn’t emphasize flashy GUI installation or configuration tools, its deriva-
tives add GUI configuration tools to the base Debian system, which makes these distributions
more appealing to Linux novices. The original Debian favors a system that’s as bug free as
possible, and it tries to adhere strictly to open-source software principles rather than invest
effort in GUI configuration tools. The original Debian is unusual in that it’s maintained by
volunteers who are motivated by the desire to build a product they want to use rather than by
a company that is motivated by profit.

Like RPM, the Debian package format is neutral with respect to both OS and CPU type.
Debian packages are extremely rare outside Linux, although efforts are under way to create
a Debian distribution that uses the GNU Hurd kernel rather than the Linux kernel. Such a
distribution wouldn’t be Linux but would closely resemble Debian GNU/Linux in opera-
tion and configuration.

60 Chapter 2 - Managing Software

The original Debian distribution has been ported to many different CPUs, including
x86, x86-64, IA-64, PowerPC, Alpha, 680x0, MIPS, and SPARC. The original architecture
was x86, and subsequent ports exist at varying levels of maturity. Derivative distributions
generally work only on x86 systems, but this could change in the future.

Debian packages follow a naming convention similar to those for RPMs; but Debian pack-
ages sometimes omit codes in the filename to specify a package’s architecture, particularly
on x86 packages. When these codes are present, they may differ from RPM conventions. For
instance, a filename ending in 1386.deb indicates an x86 binary, powerpc.deb is a PowerPC
binary, and a11.deb indicates a CPU-independent package, such as documentation or scripts.
As with RPM files, this file-naming convention is only that—a convention. You can rename
a file as you see fit, to either include or omit the processor code. There is no code for Debian
source packages because, as described in the upcoming section “Debian Packages Compared
to Other Package Formats,” Debian source packages consist of several separate files.

The dpkg Command Set

Debian packages are incompatible with RPM packages, but the basic principles of opera-
tion are the same across both package types. Like RPMs, Debian packages include depen-
dency information, and the Debian package utilities maintain a database of installed
packages, files, and so on. You use the dpkg command to install a Debian package. This
command’s syntax is similar to that of rpm:

dpkg [options][action] [package-files|package-name]

The action is the action to be taken; common actions are summarized in Table 2.4. The
options (Table 2.5) modify the behavior of the action, much like the options to rpm.

TABLE 2.4 dpkgPrimary Actions

Action Description
-ior--install Installs a package
--configure Reconfigures an installed package: runs the post-instal-

lation script to set site-specific options

-r or --remove Removes a package, but leaves configuration files intact
-P or --purge Removes a package, including configuration files

-p or --print-avail Displays information about an installed package
-Ior--info Displays information about an uninstalled package file

-1 patternor --1ist pattern Lists all installed packages whose names match pattern

Using Debian Packages 61

TABLE 2.4 dpkgPrimary Actions (continued)

Action Description

-Lor--1istfiles Lists the installed files associated with a package

-S pattern or --search pattern Locates the package(s) that own the file(s) specified
by pattern

-Cor --audit Searches for partially installed packages and suggests
what to do with them

TABLE 2.5 Options for Fine-Tuning dpkg Actions

Option Used with Actions Description

--root=dir All Modifies the Linux system using a root
directory located at dir. Can be used to
maintain one Linux installation discrete
from another one, say during OS instal-
lation or emergency maintenance.

-B or --auto-deconfigure -r Disables packages that rely on one that
is being removed.

--force-things Assorted Forces specific actions to be taken.
Consult the dpkg man page for details
of things this option does.

--ignore-depends=package -i, -r Ignores dependency information for
the specified package.

--no-act -i,-r Checks for dependencies, conflicts,
and other problems without actually
installing or removing the package.

--recursive -1 Installs all packages that match the
package name wildcard in the speci-
fied directory and all subdirectories.

-G -1 Doesn’t install the package if a newer
version of the same package is already
installed.

-E or --skip-same-version -i Doesn’'t install the package if the

same version of the package is
already installed.

62 Chapter 2 - Managing Software

As with rpm, dpkg expects a package name in some cases and a package filename in others.
Specifically, --install (-i) and --info (-I) both require the package filename, but the other
commands take the shorter package name.

As an example, consider the following command, which installs the samba_3.0.26a-
lubuntu?.3_amd64.deb package:

dpkg -1 samba_3.0.26a-lubuntu2.3_amd64.deb

If you’re upgrading a package, you may need to remove an old package before installing
the new one. To do this, use the -r option to dpkg, as in the following:

dpkg -r samba

To find information about an installed package, use the -p parameter to dpkg, as shown
in Listing 2.2. This listing omits an extended English description of what the package does.

Listing 2.2: dpkg Package Information Query Output

$ dpkg -p samba

Package: samba

Priority: optional

Section: net

Installed-Size: 9792

Maintainer: Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Architecture: amd64

Version: 3.0.26a-lubuntu2.3

Replaces: samba-common (<= 2.0.5a-2)

Depends: samba-common (= 3.0.26a-lubuntu2.3), logrotate, Tibacll (>= 2.2.11-1),
Tibattrl (>= 2.4.4-1), libc6 (>= 2.6-1), libcomerr2 (>= 1.33-3), Tibcupsys2
(>= 1.3.0), Tibgnutlsl3 (>= 1.6.3-0), 1libkrb53 (>= 1.6.dfsg.1l), libldap2
(>=2.1.17-1), Tibpam0g (>= 0.99.7.1), Tibpopt0 (>= 1.10), zliblg

(>= 1:1.2.3.3.dfsg-1), debconf (>= 0.5) | debconf-2.0, Tibpam-runtime

(>= 0.76-13.1), libpam-modules, 1sb-base (>= 3.0-6), procps, update-inetd
Recommends: smbldap-tools

Suggests: openbsd-inetd | inet-superserver

Size: 4180134

Debian-based systems often use a pair of somewhat higher-level utilities, apt-get and
dselect, to handle package installation and removal. These utilities are described in the
next couple of sections. Their interfaces can be very useful when you want to install sev-
eral packages, but dpkg is often more convenient when you’re manipulating just one or two
packages. Because dpkg can take package filenames as input, it’s also the preferred method
of installing a package that you download from an unusual source or create yourself.

Using Debian Packages 63

Using apt-cache

The APT suite of tools includes a program, apt-cache, that’s intended solely to provide
information about the Debian package database (known in Debian terminology as the
package cache). You may be interested in using several features of this tool:

Display package information Using the showpkg subcommand, as in apt-cache showpkg
samba, displays information about the package. The information displayed is different from
that returned by dpkg’s informational actions.

Display package statistics You can learn how many packages you’ve installed, how many
dependencies are recorded, and various other statistics about the package database, by
passing the stats subcommand, as in apt-cache stats.

Find unmet dependencies If a program is reporting missing libraries or files, typing apt-
cache unmet may help; this function of apt-cache returns information about unmet depen-
dencies, which may help you track down the source of missing-file problems.

Display dependencies Using the depends subcommand, as in apt-cache depends samba,
shows all of the specified package’s dependencies. This information can be helpful in tracking
down dependency-related problems. The rdepends subcommand finds reverse dependencies—
packages that depend on the one you specify.

Locate all packages The pkgnames subcommand displays the names of all the packages
installed on the system. If you include a second parameter, as in apt-cache pkgnames sa,
the program returns only those packages that begin with the specified string.

Several more subcommands and options exist, but these are the ones you’re most likely
to use. Several apt-cache subcommands are intended for package maintainers and debug-
ging serious package database problems rather than day-to-day system administration.
Consult the man page for apt-cache for more information.

Using apt-get

APT, and its apt-get utility, is Debian’s equivalent to Yum on certain RPM-based distribu-
tions. This meta-packaging tool enables you to perform easy upgrades of packages, especially
if you have a fast Internet connection. Debian-based systems include a file, /etc/apt/sources.
Tist, that specifies locations from which important packages can be obtained. If you installed
the OS from a CD-ROM drive, this file will initially list directories on the installation CD-
ROM in which packages can be found. There are also likely to be a few lines near the top,
commented out with hash marks (#), indicating directories on an FTP site or a Web site from
which you can obtain updated packages. (These lines may be uncommented if you did a net-
work install initially.)

RPM-based systems is also available. Check http://apt4rpm.sourceforge

é/ Although APT is most strongly associated with Debian systems, a port to
P
.net for information about this port.

64 Chapter 2 - Managing Software

ING trusted. The apt-get utility does automatic and semiautomatic upgrades,
so if you add a network source to sources. Tist and that source contains
unreliable programs or programs with security holes, your system will
become vulnerable after upgrading via apt-get.

ﬁll Don’t add a site to /etc/apt/sources.list unless you're sure it can be

The apt-get utility works by obtaining information about available packages from the
sources listed in /etc/apt/sources.1ist and then using that information to upgrade or
install packages. The syntax is similar to that of dpkg:

apt-get [options][command] [package-names]

Table 2.6 lists the apt-get commands, and Table 2.7 lists the most commonly used options.
In most cases, you won’t use any options with apt-get—ijust a single command and possibly
one or more package names. One particularly common use of this utility is to keep your sys-
tem up to date with any new packages. The following two commands will accomplish this
goal if /etc/apt/sources. Tist includes pointers to up-to-date file archive sites:

apt-get update
apt-get dist-upgrade

TABLE 2.6 apt-get Commands

Command Description

update Obtains updated information about packages available from the
installation sources listed in /etc/apt/sources.1ist.

upgrade Upgrades all installed packages to the newest versions available,
based on locally stored information about available packages.

dselect-upgrade Performs any changes in package status (installation, removal, and so
on) left undone after running dselect.

dist-upgrade Similar to upgrade, but performs “smart” conflict resolution to avoid
upgrading a package if doing so would break a dependency.

install Installs a package by package name (not by package filename),
obtaining the package from the source that contains the most up-to-
date version.

remove Removes a specified package by package name.

source Retrieves the newest available source package file by package file-
name using information about available packages and installation
archives listed in /etc/apt/sources.1ist.

Using Debian Packages

TABLE 2.6 apt-get Commands (continued)

Command Description

check Checks the package database for consistency and broken package
installations.

clean Performs housekeeping to help clear out information about
retrieved files from the Debian package database. If you don’t use
dselect for package management, run this from time to time in
order to save disk space.

autoclean Similar to cTean, but removes information only about packages that
can no longer be downloaded.

TABLE 2.7 Most Useful apt-get Options

Option Used with Commands Description

-d or --download-only

-f or --fix-broken

-m, --ignore-missing, or
--fix-missing

-qor--quiet

-s, --simulate, --just-print,
--dry-run, --recon, or
--no-act

-y, --yes, or --assume-yes

upgrade, dselect-upgrade,
install, source

install, remove

upgrade, dselect-upgrade,
install, remove, source

All

All

All

Downloads package files but
doesn’t install them.

Attempts to fix a system
on which dependencies are
unsatisfied.

Ignores all package files that
can’t be retrieved (because
of network errors, missing
files, or the like).

Omits some progress indi-
cator information. May be
doubled (for instance, -qq)
to produce still less progress
information.

Performs a simulation of
the action without actually
modifying, installing, or
removing files.

Produces a “yes” response
to any yes/no promptin
installation scripts.

66 Chapter 2 - Managing Software

TABLE 2.7 Most Useful apt-get Options (continued)

Option Used with Commands Description

-b, --compile, or --build source Compiles a source package
after retrieving it.

--no-upgrade install Causes apt-get to not
upgrade a package if an
older version is already

installed.
L If you use APT to automatically upgrade all packages on your system,
ING you're effectively giving control of your system to the distribution main-

tainer. Although Debian or other distribution maintainers are unlikely to try
to break into your computer in this way, an automatic update with minimal
supervision on your part could easily break something on your system,
particularly if you've obtained packages from unusual sources in the past.

In Exercise 2.2, you’ll familiarize yourself with the Debian package system.

Managing Debian Packages

To manage Debian packages, follow these steps:

1. Loginto the Linux system as a normal user.

2. Acquire a package to use for testing purposes. You can try using a package from
your distribution that you know you haven’t installed; but if you try a random pack-
age, you may find it’s already installed or has unmet dependencies. This lab uses as
an example the installation of zsh_4.3.4-24ubuntul_amd64.deb, a shell that’s not
installed by default on most systems, obtained using the -d option to apt-get on an
Ubuntu 8.04 system. You must adjust the commands as necessary if you use another
package, distribution, or architecture in your tests.

3. Launch an xterm from the desktop environment’s menu system if you used a GUI login.

4. Acquire root privileges. You can do this by typing su in an xterm, by selecting Ses-
sion » New Root Console from a Konsole window, or by using sudo (if it's config-
ured) to run the commands in the following steps.

5. Typedpkg -L zsh to verify that the package isn’t currently installed. This command
responds with a list of files associated with the package if it's installed or with an
error that reads Package “zsh' 1is not installed ifit’s not.

Using Debian Packages 67

EXERCISE 2.2 (continued)

6. Typedpkg -I zsh_4.3.4-24ubuntul_amd64.deb. (You'll need to add a complete
path to the package file if it’s not in your current directory.) The system should
respond by displaying information about the package, such as the version number,
dependencies, the name of the package maintainer, and a package description.

7. Typedpkg -i zsh_4.3.4-24ubuntul_amd64.deb. The system should install the pack-
age and display a series of lines summarizing its actions as it does so.

8. Typedpkg -p zsh. The system should respond with information about the package
similar to that displayed in step 6.

9. Type zsh. This launches a Z shell, which functions much like the more common bash
and tcsh shells. You're likely to see your command prompt change slightly, but you
can issue most of the same commands you can use with bash or tcsh.

10. Type dpkg -P zsh. This command removes the package from the system, including
configuration files. It may produce a series of warnings about non-empty directories
that it couldn’t remove. Note that you're removing the zsh package while running
the zsh program. Linux continues to run the zsh program you're using, but you'll be
unable to launch new instances of the program. Some programs may misbehave
because files will be missing after you remove the package.

11. Type exit to exit from zsh and return to your normal shell.

12. Type dpkg -L zsh. The system should respond with a Package “zsh' 1is not
installed error because you've just uninstalled it.

13. Type apt-get install zsh to install zsh using the APT system. Depending on your
configuration, the system may download the package from an Internet site or ask you
to insert a CD-ROM. If it asks for a CD-ROM, insert it and press the Enter key. The sys-
tem should install the package.

14. Type dpkg -p zsh. The system should respond with information about the package
similar to that displayed in step 6 or 8.

15. Type dpkg -P zsh. This command removes the package from the system, as
described in step 10.

Using dselect, aptitude, and Synaptic

The dselect program is a high-level package browser. Using it, you can select packages to
install on your system from the APT archives defined in /etc/apt/sources.Tist, review the
packages that are already installed on your system, uninstall packages, and upgrade packages.
Overall, dselect is a powerful tool, but it can be intimidating to the uninitiated because it
presents a lot of options that aren’t obvious, using a text-mode interactive user interface.

68 Chapter 2 - Managing Software

Although dselect supports a few command-line options, they’re mostly obscure or
minor (such as options to set the color scheme). Consult dselect’s man page for details. To
use the program, type dselect. The result is the dselect main menu, as shown running in
a KDE Konsole window in Figure 2.1.

FIGURE 2.1 Thedselect utility provides access to APT features using a menu system.

Another text-based Debian package manager is aptitude. In interactive mode, aptitude is
similar to dselect in a rough way, but aptitude adds menus accessed by pressing Ctrl+T and
rearranges some features. You can also pass various commands to aptitude on the command
line, as in aptitude search samba, which searches for packages related to Samba. Features
accessible from the command line (or the interactive interface) include the following;:

Update package lists You can update package lists from the APT repositories by typing
aptitude update.

Install software The install command-line option installs a named package. This com-
mand has several variant names and syntaxes that modify its action. For instance, typing

aptitude install zsh installs the zsh package, but typing aptitude install zsh- and

aptitude remove zsh both uninstall zsh.

Upgrade software The full-upgrade and safe-upgrade options both upgrade all
installed packages. The safe-upgrade option is conservative about removing packages or
installing new ones and so may fail; full-upgrade is less conservative about these actions
and so is more likely to complete its tasks, but it may break software in the process.

Search for packages The search option, noted earlier, searches the database for packages
matching the specified name. The result is a list of packages, one per line, with summary
codes for each package’s install status, its name, and a brief description.

Using Debian Packages 69

Clean up the database The autoclean option removes already downloaded packages that
are no longer available, and clean removes all downloaded packages.

Obtain help Typing aptitude help results in a complete list of options.

Broadly speaking, aptitude combines the interactive features of dselect with the com-
mand-line options of apt-get. All three programs provide similar functionality, so you can
use whichever one you prefer.

A tool that’s similar to dselect and aptitude in some ways is Synaptic, but Synaptic
is a fully GUI X-based program and as such is easier to use. Overall, dselect, aptitude,
and Synaptic are useful tools, particularly if you need to locate software but don’t know its
exact name—the ability to browse and search the available packages can be a great boon.
Unfortunately, the huge package list can be intimidating.

Reconfiguring Packages

Debian packages often provide more extensive initial setup options than do their RPM
counterparts. Frequently, the install script included in the package asks a handful of ques-
tions, such as asking for the name of an outgoing mail-relay system for a mail server
program. These questions help the system set up a standardized configuration that’s none-
theless been customized for your system.

In the course of your system administration, you may alter the configuration files for a
package. If you do this and find you’ve made a mess of things, you may want to revert to
the initial standard configuration. To do so, you can use the dpkg-reconfigure program,
which runs the initial configuration script for the package you specify:

dpkg-reconfigure samba

This command reconfigures the samba package, asking the package’s initial installation
questions and restarting the Samba daemons. Once this is done, the package should be in
something closer to its initial state.

Debian Packages Compared to Other Package Formats

The overall functionality of Debian packages is similar to that of RPMs, although there are
differences. Debian source packages aren’t single files; they’re groups of files—the original
source tarball, a patch file that’s used to modify the source code (including a file that con-
trols the building of a Debian package), and a .dsc file that contains a digital “signature”
to help verify the authenticity of the collection. The Debian package tools can combine
these and compile the package to create a Debian binary package. This structure makes
Debian source packages slightly less convenient to transport because you must move at least
two files (the tarball and patch file; the .dsc file is optional) rather than just one. Debian
source packages also support just one patch file, whereas RPM source packages may con-
tain multiple patch files. Although you can certainly combine multiple patch files into one,
doing so makes it less clear where a patch comes from, thus making it harder to back out of
any given change.

70 Chapter 2 - Managing Software

These source package differences are mostly of interest to software developers. As a sys-
tem administrator or end user, you need not normally be concerned with them unless you
must recompile a package from a source form—and even then, the differences between the
formats need not be overwhelming. The exact commands and features used by each system
differ, but they accomplish similar overall goals.

Because all distributions that use Debian packages are derived from Debian, they tend
to be more compatible with one another (in terms of their packages) than RPM-based dis-
tributions are. In particular, Debian has defined details of its system startup scripts and
many other features to help Debian packages install and run on any Debian-based system.
This helps Debian-based systems avoid the sorts of incompatibilities in startup scripts that
can cause problems using one distribution’s RPMs on another distribution. Of course, some
future distribution could violate Debian’s guidelines for these matters, so this advantage
isn’t guaranteed to hold over time.

As a practical matter, it can be harder to locate Debian packages than RPM packages
for some exotic programs. Debian maintains a good collection at http://www.debian.org/
distrib/packages, and some program authors make Debian packages available as well. If
you can find an RPM but not a Debian package, you may be able to convert the RPM to
Debian format using a program called alien, as described shortly in “Converting Between
Package Formats.” If all else fails, you can use a tarball, but you’ll lose the advantages of
the Debian package database.

Configuring Debian Package Tools

With the exception of the APT sources list mentioned earlier, Debian package tools don’t
usually require configuration. Debian installs reasonable defaults (as do its derivative distri-
butions). On rare occasions, though, you may want to adjust some of these defaults. Doing
so requires that you know where to look for them.

The main configuration file for dpkg is /etc/dpkg/dpkg.cfg or ~/.dpkg.cfg. This file
contains dpkg options, as summarized in Table 2.5, but without the leading dashes. For
instance, to have dpkg always perform a test run rather than actually install a package,
you’d create a dpkg. cfg file that contains one line:

no-act

For APT, the main configuration file you’re likely to modify is /etc/apt/sources.
1ist, which is described earlier, in “Using apt-get.” Beyond this file is /etc/apt/apt.conf,
which controls APT and dselect options. As with dpkg.cfg, chances are you won’t need to
modify apt.conf. If you do need to make changes, the format is more complex and is mod-
eled after those of the Internet Software Consortium’s (ISC’s) Dynamic Host Configuration
Protocol (DHCP) and Berkeley Internet Name Domain (BIND) servers’ configuration files.
Options are grouped together by open and close curly braces ({}):

APT
{

Converting Between Package Formats n

Get
{

Download-Only "true";
s
}s

These lines are equivalent to permanently setting the --download-only option described
in Table 2.7. You can, of course, set many more options. For details, consult apt.conf’s man
page. You may also want to review the sample configuration file, /usr/share/doc/apt/
examples/apt.conf. (The working /etc/apt/apt.conf file is typically extremely simple
and therefore not very helpful as an example.)

You should be aware that Debian’s package tools rely on various files in the /var/1ib/
dpkg directory tree. These files maintain lists of available packages, lists of installed pack-
ages, and so on. In other words, this directory tree is effectively the Debian installed file
database. As such, you should be sure to back up this directory when you perform system
backups and be careful about modifying its contents.

Converting Between Package Formats

Sometimes you’re presented with a package file in one format, but you want to use another
format. This is particularly common when you use a Debian-based distribution and can only
find tarballs or RPM files of a package. When this happens, you can keep looking for a pack-
age file in the appropriate format, install the tools for the foreign format, create a package
from a source tarball using the standard RPM or Debian tools, or convert between package
formats with a utility like alien.

This section focuses on this last option. The alien program comes with Debian and a few
other distributions but may not be installed by default. If it’s not installed on your system,
install it by typing apt-get install alien on a system that uses APT, or use the RPM Find
or Debian package Web site to locate it. This program can convert between RPM packages,
Debian packages, Stampede packages (used by Stampede Linux), and tarballs.

You need to be aware of some caveats. For one thing, alien requires that you have
appropriate package manager software installed—for instance, both RPM and Debian to
convert between these formats. The alien utility doesn’t always convert all dependency
information completely correctly. When converting from a tarball, alien copies the files
directly as they had been in the tarball, so alien works only if the original tarball has files
that should be installed off the root (/) directory of the system.

? Although alien requires both RPM and Debian package systems to be

OTE installed to convert between these formats, alien doesn’t use the data-
base features of these packages unless you use the --install option.
The presence of a foreign package manager isn’t a problem as long as you
don't use it to install software that might duplicate or conflict with soft-
ware installed with your primary package manager.

72 Chapter 2 - Managing Software

The basic syntax of alien is as follows:
alien [options] file[...]

The most important options are --to-deb, --to-rpm, --to-s1p, and --to-tgz, which convert
to Debian, RPM, Stampede, and tarball format, respectively. (If you omit the destination format,
alien assumes you want a Debian package.) The --install option installs the converted pack-
age and removes the converted file. Consult the alien man page for additional options.

For instance, suppose you have a Debian package called someprogram-1.2.3-4_7386.
deb, and you want to create an RPM from it. You can issue the following command to
create an RPM called someprogram-1.2.3-5.7386. rpm:

alien --to-rpm someprogram-1.2.3-4_1386.deb

If you use a Debian-based system and want to install a tarball but keep a record of the files
it contains in your Debian package database, you can do so with the following command:

alien --install binary-tarball.tar.gz

It’s important to remember that converting a tarball converts the files in the directory
structure of the original tarball using the system’s root directory as the base. Therefore, you
may need to unpack the tarball, juggle files around, and repack it to get the desired results
prior to installing the tarball with alien. For instance, suppose you’ve got a binary tarball
that creates a directory called program-files, with bin, man, and 1ib directories under this.
The intent may have been to unpack the tarball in /usr or /usr/local and create links for
critical files. To convert this tarball to an RPM, you can issue the following commands:

tar xvfz program.tar.gz

mv program-files usr

tar cvfz program.tgz usr
rm -r usr

alien --to-rpm program.tgz

By renaming the program-files directory to usr and creating a new tarball, you’ve
created a tarball that, when converted to RPM format, will have files in the locations you
want—/usr/bin, /usr/man, and /usr/1ib. You might need to perform more extensive
modifications, depending on the contents of the original tarball.

Package Dependencies and Conflicts

Although package installation often proceeds smoothly, sometimes it doesn’t. The usual
sources of problems relate to unsatisfied dependencies or conflicts between packages. The
RPM and Debian package management systems are intended to help you locate and resolve
such problems, but on occasion (particularly when mixing packages from different vendors),
they can actually cause problems. In either event, it pays to recognize these errors and know
how to resolve them.

Package Dependencies and Conflicts 73

) If you use a meta-packager, such as Yum or APT, for all your package man-
Py OTE agement, you're much less likely to run into problems with package depen-
dencies and conflicts. These problems are most likely to arise when you
install lone packages, especially those from unusual sources.

Real and Imagined Package Dependency Problems

Package dependencies and conflicts can arise for a variety of reasons, including the
following;:

Missing libraries or support programs One of the most common dependency problems is
caused by a missing support package. For instance, all KDE programs rely on Qt, a widget
set that provides assorted GUI tools. If Qt isn’t installed, you won’t be able to install any
KDE packages using RPMs or Debian packages. Libraries—support code that can be used
by many different programs as if it were part of the program itself—are particularly com-
mon sources of problems in this respect.

Incompatible libraries or support programs Even if a library or support program is
installed on your system, it may be the wrong version. For instance, if a program requires
Qt 3.3, the presence of Qt 2.2 won’t do much good. Fortunately, Linux library-naming
conventions enable you to install multiple versions of a library in case you have programs
with competing requirements.

Duplicate files or features Conflicts arise when one package includes files that are already
installed and that belong to another package. Occasionally, broad features can conflict as
well, as in two Web server packages. Feature conflicts are usually accompanied by name
conflicts. Conflicts are most common when mixing packages intended for different distri-
butions, because distributions may split files across packages in different ways.

Mismatched names RPM and Debian package management systems give names to
their packages. These names don’t always match across distributions. For this reason,
if one package checks for another package by name, the first package may not install
on another distribution, even if the appropriate package is installed, because that target
package has a different name.

Some of these problems are very real and serious. Missing libraries, for instance, must
be installed. (Sometimes, though, a missing library isn’t quite as missing as it seems, as
described in the upcoming section “Forcing the Installation.”) Others, like mismatched
package names, are artifacts of the packaging system. Unfortunately, it’s not always easy
to tell into which category a conflict fits. When using a package management system, you
may be able to use the error message returned by the package system, along with your own
experience with and knowledge of specific packages, to make a judgment. For instance, if
RPM reports that you’re missing a slew of libraries with which you’re unfamiliar, you’ll
probably have to track down at least one package—unless you know you’ve installed the
libraries in some other way, in which case you may want to force the installation.

74 Chapter 2 - Managing Software

Workarounds to Package Dependency Problems

When you encounter an unmet package dependency or conflict, what can you do about it?
There are several approaches to these problems. Some of these approaches work well in some
situations but not others, so you should review the possibilities carefully. The options include
forcing the installation, modifying your system to meet the dependency, rebuilding the prob-
lem package from source code, and finding another version of the problem package.

Forcing the Installation

One approach is to ignore the issue. Although this sounds risky, it’s appropriate in some
cases involving failed RPM or Debian dependencies. For instance, if the dependency is on
a package that you installed by compiling the source code yourself, you can safely ignore
the dependency. When using rpm, you can tell the program to ignore failed dependencies by
using the --nodeps parameter:

rpm -i apackage.rpm --nodeps

You can force installation over some other errors, such as conflicts with existing pack-
ages, by using the --force parameter:
rpm -i apackage.rpm --force

ING dency checks can lead you into trouble, so you should use these options
only when you need to do so. In the case of conflicts, the error messages
you get when you first try to install without --force will tell you which
packages’ files you'll be replacing, so be sure you back them up or are pre-
pared to reinstall the package in case of trouble.

@:ﬂ Do not use --nodeps or --force as a matter of course. Ignoring the depen-

If you’re using dpkg, you can use the --ignore-depends=package, --force-depends, and
--force-confTlicts parameters to overcome dependency and conflict problems in Debian-
based systems. Because there’s less deviation in package names and requirements among
Debian-based systems, these options are less often needed on such systems.

Upgrading or Replacing the Depended-On Package

Officially, the proper way to overcome a package dependency problem is to install, upgrade,
or replace the depended-upon package. If a program requires, say, Qt 3.3 or greater, you
should upgrade an older version (such as 3.2) to 3.3. To perform such an upgrade, you’ll need
to track down and install the appropriate package. This usually isn’t too difficult if the new
package you want comes from a Linux distribution, and especially if you use a meta-packager
such as Yum or APT; the appropriate depended-on package should come with the same
distribution.

One problem with this approach is that packages intended for different distributions
sometimes have differing requirements. If you run Distribution A and install a package that

Package Dependencies and Conflicts 75

was built for Distribution B, the package will express dependencies in terms of Distribu-
tion B’s files and versions. The appropriate versions may not be available in a form intended
for Distribution A; and by installing Distribution B’s versions, you can sometimes cause
conflicts with other Distribution A packages. Even if you install the upgraded package and
it works, you may run into problems in the future when it comes time to install some other
program or upgrade the distribution as a whole—the upgrade installer may not recognize
Distribution B’s package or may not be able to upgrade to its own newer version.

Rebuilding the Problem Package

Some dependencies result from the libraries and other support utilities installed on the
computer that compiled the package, not from requirements in the underlying source code.
If the software is recompiled on a system that has different packages, the dependencies
will change. Therefore, rebuilding a package from source code can overcome at least some
dependencies.

If you use an RPM-based system, the command to rebuild a package is straightforward:
You call rpmbuild (or rpm with old versions of RPM) with the name of the source package
and use --rebuild, as follows:

rpmbuild --rebuild packagename-version.src.rpm

Of course, to do this you must have the source RPM for the package. This can usually
be obtained from the same location as the binary RPM. When you execute this command,
rpmbuild extracts the source code and executes whatever commands are required to build
a new package—or sometimes several new packages. (One source RPM can build multiple
binary RPMs.) The compilation process can take anywhere from a few seconds to several
hours, depending on the size of the package and the speed of your computer. The result
should be one or more new binary RPMs in /usr/src/distname/RPMS/arch, where dist-
name is a distribution-specific name (such as redhat on Red Hat or packages on SuSE) and
arch is your CPU architecture (such as 1386 or 1586 for x86 or ppc for PowerPC). You can
move these RPMs to any convenient location and install them just as you would any others.

)r Source packages are also available for Debian systems, but aside from
TE

Py sites devoted to Debian and related distributions, Debian source packages
are rare. The sites that do have these packages provide them in forms that
typically install easily on appropriate Debian or related systems. For this
reason, it's less likely that you'll rebuild a Debian package from source.

Locating Another Version of the Problem Package

Frequently, the simplest way to fix a dependency problem or package conflict is to use a differ-
ent version of the package you want to install. This could be a newer or older official version
(4.2.3 rather than 4.4.7, say), or it might be the same official version but built for your distri-
bution rather than for another distribution. Sites like RPM Find (http://www. rpmfind.net)

76 Chapter 2 - Managing Software

and Debian’s package listing (http://www.debian.org/distrib/packages) can be very useful
in tracking down alternative versions of a package. Your own distribution’s Web site or FTP
site can also be a good place to locate packages.

got and you don’t want to upgrade those libraries, an older version of the
package may work with your existing libraries. Before doing so, though, you
should check to be sure that the newer version of the program doesn't fix
security bugs. If it does, you should find another way to install the package.

g/ If the package you're trying to install requires newer libraries than you’ve
P

The main problem with locating another version of the package is that sometimes you
really need the version that’s not installing correctly. It may have features you need, or it
may fix important bugs. On occasion, other versions may not be available, or you may be
unable to locate another version of the package in your preferred package format.

Startup Script Problems

One particularly common problem when trying to install servers from one distribution in
another is getting SysV startup scripts working. Although most major Linux distributions
use SysV startup scripts, these scripts aren’t always transportable across distributions. Dif-
ferent distributions frequently implement support routines in unique ways, so these scripts
may be incompatible. The result is that the server you installed may not start up, even if the
links to the startup scripts are correct. Possible workarounds include modifying the startup
script that came with the server, building a new script based on another one from your dis-
tribution, and starting the server through a local startup script like /etc/rc.d/rc.local or
/etc/rc.d/boot.local. Chapter 5, “Booting Linux and Editing Files,” describes startup
scripts in more detail.

Startup script problems affect only servers and other programs that are
Py TE started automatically when the computer boots; they don't affect typical

user applications or libraries.

Managing Shared Libraries

Most Linux software relies heavily on shared libraries. The preceding sections have described
some of the problems that can arise in managing shared library packages—for example, if a
library isn’t installed or is the wrong version, you may have problems installing a package.
Library management goes beyond merely configuring them, though. To understand this, you
must first understand a few library principles. You can then move on to setting the library path
and using commands that manage libraries.

Managing Shared Libraries 71

Library Principles

The idea behind a library is to simplify programmers’ lives by providing commonly used
program fragments. For instance, one of the most important libraries is the C library (libc),
which provides many of the higher-level features associated with the C programming lan-
guage. Another common type of library is associated with GUIs. These libraries are often
called widget sets because they provide the on-screen widgets used by programs—buttons,
scroll bars, menu bars, and so on. The GIMP Tool Kit (GTK+) and Qt are the most popular
Linux widget sets, and both ship largely as libraries. Libraries are chosen by programmers,
not by users; you usually can’t easily substitute one library for another. (The main excep-
tions are minor version upgrades.)

) Linux uses the GNU C library (glibc) version of the C library. Package-

A OTE manager dependencies and other library references are to glibc specifi-
cally. As of glibc 2.3.4, for historical reasons the main glibc file is usually
called /Tib/1ibc.so.6, but this file is sometimes a symbolic link to a file of
another name, such as /1ib/1ibc-2.3.4.so.

In principle, the routines in a library can be linked into a program’s main file, just
like all the object code files created by the compiler. This approach, however, has certain
problems:

= The resulting program file is huge. This means it takes up a lot of disk space, and it
consumes a lot of RAM when loaded.

= If multiple programs use the library, as is common, the program-size issue is multiplied
several times.

= The program can’t take advantage of improvements in the library without recompiling
(or at least relinking) the program.

For these reasons, most programs use their libraries as shared libraries (a.k.a. dynamic
libraries). In this form, the main program executable omits most of the library routines.
Instead, the executable includes references to shared library files, which can then be loaded
along with the main program file. This approach helps keep program file size down, enables
sharing of the memory consumed by libraries across programs, and enables programs to
take advantage of improvements in libraries by upgrading the library.

> 4 Linux shared libraries are similar to the dynamic link libraries (DLLs) of
‘dg-rz Windows. Windows DLLs are usually identified by .DLL filename exten-
sions; but in Linux, shared libraries usually have a .so or .so.version
extension, where version is a version number. (.so stands for shared
object.) Linux static libraries (used by linkers for inclusion in programs
when dynamic libraries aren’t to be used) have .a filename extensions.

78 Chapter 2 - Managing Software

On the downside, shared libraries can degrade program load time slightly if the library isn’t
already in use by another program, and they can create software management complications:

= Shared library changes can be incompatible with some or all programs that use the
library. Linux uses library numbering schemes to enable you to keep multiple versions of
a library installed at once. Upgrades that shouldn’t cause problems can overwrite older
versions, whereas major upgrades get installed side-by-side with their older counterparts.
This approach minimizes the chance of problems, but sometimes changes that shouldn’t
cause problems do cause them.

= Programs must be able to locate shared libraries. This task requires adjusting configu-
ration files and environment variables. If it’s done wrong, or if a program overrides the
defaults and looks in the wrong place, the result is usually that the program won’t run
at all.

= The number of libraries for Linux has risen dramatically over time. When they’re used
in shared form, the result can be a tangled mess of package dependencies, particularly
if you use programs that rely on many or obscure libraries. In most cases, this issue
boils down to a package problem that can be handled by your package management
tools.

= If an important shared library becomes inaccessible because it was accidentally over-
written, due to a disk error or for any other reason, the result can be severe system
problems. In a worst-case scenario, the system might not even boot.

In most cases, these drawbacks are manageable and are much less important than the
problems associated with using static libraries. Thus, dynamic libraries are very popular.

)/ Static libraries are sometimes used by developers who create programs
‘dnz using particularly odd, outdated, or otherwise exotic libraries. This enables
them to distribute their binary packages without requiring users to obtain
and install their oddball libraries. Likewise, static libraries are sometimes
used on small emergency systems, which don’t have enough programs
installed to make the advantages of shared libraries worth pursuing.

Locating Library Files

The major administrative challenge of handling shared libraries involves enabling programs
to locate those shared libraries. Binary program files can point to libraries either by name
alone (as in Tibc.so.6) or by providing a complete path (as in /1ib/1ibc.s0.6). In the

first case, you must configure a library path—a set of directories in which programs should
search for libraries. This can be done both through a global configuration file and through
an environment variable. If a static path to a library is wrong, you must find a way to cor-
rect the problem. In all of these cases, after making a change, you may need to use a special
command to get the system to recognize the change, as described later in “Library Manage-
ment Commands.”

Managing Shared Libraries 79

Setting the Path Systemwide

The first way to set the library path is to edit the /etc/1d.so.conf file. This file consists
of a series of lines, each of which lists one directory in which shared library files may be
found. Typically, this file lists between half a dozen and a couple dozen directories. Some
distributions have an additional type of line in this file. These lines begin with the include
directive; they list files that are to be included as if they were part of the main file. For
instance, Ubuntu 8.04’s 1d.so. conf begins with this line:

include /etc/l1d.so.conf.d/*.conf

This line tells the system to load all the files in /etc/1d.so.conf.d whose names end in
.conf as if they were part of the main /etc/1d.so.conf file. This mechanism enables pack-
age maintainers to add their unique library directories to the search list by placing a .conf
file in the appropriate directory.

Some distributions, such as Gentoo, use a mechanism with a similar goal but different
details. With these distributions, the env-update utility reads files in /etc/env.d to create
the final form of several /etc configuration files, including /etc/1d.so.conf. In particular,
the LDPATH variables in these files are read, and their values make up the lines in 1d. so.
conf. Thus, to change 1d.so.conf in Gentoo or other distributions that use this mecha-
nism, you should add or edit files in /etc/env.d and then type env-update to do the job.

Generally speaking, there’s seldom a need to change the library path system-wide. Library
package files usually install themselves in directories that are already on the path or add their
paths automatically. The main reason to make such changes would be if you installed a library
package, or a program that creates its own libraries, in an unusual location via a mechanism
other than your distribution’s main package utility. For instance, you might compile a library
from source code and then need to update your library path in this way.

After you change your library path, you must use 1dconfig to have your programs use
the new path, as described later in “Library Management Commands.”

In addition to the directories specified in /etc/1d.so.conf, Linux refers to
A TE the trusted library directories, /1ib and /usr/T1ib. These directories are

always on the library path, even if they aren’t listed in 1d.so. conf.

Temporarily Changing the Path

Sometimes, changing the path permanently and globally is unnecessary and even inappro-
priate. For instance, you might want to test the effect of a new library before using it for all
your programs. To do so, you could install the shared libraries in an unusual location and
then set the LD_LIBRARY_PATH environment variable. This environment variable specifies
additional directories the system is to search for libraries.

"/ Chapter 9, “Writing Scripts, Configuring E-Mail, and Using Databases,”
,&TE describes environment variables in more detail.

80 Chapter 2 - Managing Software

To set the LD_LIBRARY_PATH environment variable using the bash shell, you can type a
command like this:

$ export LD_LIBRARY_PATH=/usr/local/testlib:/opt/newlib

This line adds two directories, /usr/local/test1ib and /opt/newlib, to the search
path. You can specify as few or as many directories as you like, separated by colons. These
directories are added to the start of the search path, which means they take precedence over
other directories. This fact is handy when you’re testing replacement libraries, but it can
cause problems if users manage to set this environment variable inappropriately.

You can set this environment variable permanently in a user’s shell startup script files, as
described in Chapter 9. Doing so means the user will always use the specified library paths
in addition to the normal system paths. In principle, you could set the LD_LIBRARY_PATH
globally; however, using /etc/1d.so. conf is the preferred method of effecting global
changes to the library path.

Unlike other library path changes, this one doesn’t require that you run 1dconfig for it
to take effect.

Correcting Problems

Library path problems usually manifest as a program’s inability to locate a library. If you
launch the program from a shell, you’ll see an error message like this:

$ gimp
gimp: error while loading shared Tlibraries: TibXinerama.so.l: cannot=
open shared object file: No such file or directory

This message indicates that the system couldn’t find the TibXinerama.so.1 library file.
The usual cause of such problems is that the library isn’t installed, so you should look for
it using commands such as find (described in Chapter 4, “Managing Files”). If the file isn’t
installed, try to track down the package to which it should belong (a Web search can work
wonders in this task) and install it.

If, on the other hand, the library file is available, you may need to add its directory globally
or to LD_LIBRARY_PATH. Sometimes the library’s path is hard-coded in the program’s binary
file. (You can discover this using 1dd, as described shortly in “Library Management Com-
mands.”) When this happens, you may need to create a symbolic link from the location of the
library on your system to the location the program expects. A similar problem can occur when
the program expects a library to have one name but the library has another name on your sys-
tem. For instance, the program may link to biglib.so.5, but your system has biglib.so0.5.2
installed. Minor version-number changes like this are usually inconsequential, so creating a
symbolic link will correct the problem:

In -s biglib.so.5.2 biglib.so.5

You must type this command as root in the directory in which the library resides. You
must then run 1dconfig, as described in the next section.

Managing Shared Libraries 81

Library Management Commands

Linux provides a pair of commands that you’re likely to use for library management. The
1dd program displays a program’s shared library dependencies—that is, the shared libraries
that a program uses. The 1dconfig program updates caches and links used by the system
for locating libraries—that is, it reads /etc/1d.so.conf and implements any changes in
that file or in the directories to which it refers. Both of these tools are invaluable in manag-
ing libraries.

Displaying Shared Library Dependencies

If you run into programs that won’t launch because of missing libraries, the first step is to
check which libraries the program file uses. You can do this with the 1dd command:

$ 1dd /bin/1s
Tibrt.so.1 => /1ib/Tibrt.so.1 (0x0000002a9566c000)
Tibncurses.so.5 => /Tib/Tibncurses.so.5 (0x0000002a95784000)
Tibacl.so.1 => /1ib/Tibacl.so.1 (0x0000002a958ea000)
Tibc.so.6 => /1ib/Tibc.so.6 (0x0000002a959f1000)
Tibpthread.so.0 => /Tib/Tibpthread.so.0 (0x0000002a95c17000)
/1ib64/1d-Tinux-x86-64.s0.2 (0x0000002a95556000)
Tibattr.so.1l => /Tib/Tibattr.so.1 (0x0000002a95dad000)

Each line of output begins with a library name, such as Tibrt.so.1 or Tibncurses.
so.5. If the library name doesn’t contain a complete path, 1dd attempts to find the true
library and displays the complete path following the => symbol, as in /Tib/1ibrt.so.1
or /1ib/1libncurses.so.5. You needn’t be concerned about the long hexadecimal number
following the complete path to the library file. The preceding example shows one library
(/11b64/1d-Tinux-x86-64.s0.2) that’s referred to with a complete path in the executable
file. It lacks the initial directory-less library name and => symbol.

The 1dd command accepts a few options. The most notable of these is probably -v, which
displays a long list of version information following the main entry. This information may
be helpful in tracking down which version of a library a program is using, in case you have
multiple versions installed.

Keep in mind that libraries can themselves depend on other libraries. Thus, you can
use 1dd to discover what libraries are used by a library. Because of this potential for a
dependency chain, it’s possible that a program will fail to run even though all its libraries
are present. When using 1dd to track down problems, be sure to check the needs of all the
libraries of the program, and all the libraries used by the first tier of libraries, and so on,
until you’ve exhausted the chain.

The 1dd utility can be run by ordinary users, as well as by root. You must run it as root
if you can’t read the program file as an ordinary user.

82 Chapter 2 - Managing Software

Reloading the Library Cache

Linux (or, more precisely, the 1d.so and 1d-Tinux.so programs, which manage the loading
of libraries) doesn’t read /etc/1d.so.conf every time a program runs. Instead, the system
relies on a cached list of directories and the files they contain, stored in binary format in
/etc/1d.so.cache. This list is maintained in a format that’s much more efficient than a
plain-text list of files and directories. The drawback is that you must reload that cache
every time you add or remove libraries. These additions and removals include both chang-
ing the contents of the library directories and adding or removing library directories.

The tool to do this job is called Tdconfig. Ordinarily, it’s called without any options:

Tdconfig

This program does, though, take options to modify its behavior:

Display verbose information Ordinarily, 1dconfig doesn’t display any information as it
works. The -v option causes the program to summarize the directories and files it’s regis-
tering as it goes about its business.

Don’t rebuild the cache The -N option causes Tdconfig to not perform its primary duty
of updating the library cache. It will, though, update symbolic links to libraries, which is a
secondary duty of this program.

Process only specified directories The -n option causes Tdconfig to update the links
contained in the directories specified on the command line. The system won’t examine the
directories specified in /etc/1d.so.conf or the trusted directories (/1ib and /usr/11ib).

Don’t update links The -X option is the opposite of -N; it causes Tdconfig to update the
cache but not manage links.

Use a new configuration file You can change the configuration file from /etc/1d.so.conf
by using the -f conffile option, where conffile is the file you want to use.

Use a new cache file You can change the cache file that 1dconfig creates by passing the -C
cachefile option, where cachefile is the file you want to use.

Use anew root The -r dir option tells 1dconfig to treat dir as if it were the root (/)
directory. This option is helpful when you’re recovering a badly corrupted system or install-
ing a new OS.

Display current information The -p option causes 1dconfig to display the current
cache—all the library directories and the libraries they contain.

Both RPM and Debian library packages typically run Tdconfig automatically after
installing or removing the package. The same thing happens as part of the installation pro-
cess for many packages compiled from source. Thus, you may well be running Tdconfig
more than you realize in the process of software management. You may need to run the
program yourself if you manually modify your library configuration in any way.

Managing Processes 83

Managing Processes

When you type a command name, that program is run, and a process is created for it.
Knowing how to manage these processes is critical to using Linux. Key details in this task
include identifying processes, manipulating foreground and background processes, killing
processes, and adjusting process priorities.

Understanding the Kernel: The First Process

The Linux kernel is at the heart of every Linux system. Although you can’t manage the kernel
process in quite the way you can manage other processes, short of rebooting the computer, you
can learn about it. To do so, you can use the uname command, which takes several options to
display information:

Node name The -n or --nodename option displays the system’s node name—that is, its
network hostname.

Kernel name The -s or --kernel-name option displays the kernel name, which is normally
Linux on a Linux system.

Kernel version You can find the kernel version with the -v or --kernel-version option.
Ordinarily, this holds the kernel build date and time, not an actual version number.

Kernel release The actual kernel version number can be found via the -r or --kernel-
release option.

Machine The -m or --machine option returns information about your machine. This is
likely to be a CPU code, such as 1686 or x86_64.

Processor Using the -p or --processor option may return information about your CPU,
such as the manufacturer, model, and clock speed; in practice, it returns unknown on many
systems.

Hardware platform Hardware platform information is theoretically returned by the -i or
--hardware-platform option, but this option often returns unknown.

OS name The -0 or --operating-system option returns the OS name—normally GNU/
Linux for a Linux system.

Print all information The -a or --al1 option returns all available information.

In practice, you’re most likely to use uname -a at the command line to learn some of the
basics about your kernel and system. The other options are most useful in multi-platform
scripts, which can use these options to quickly obtain critical information to help them
adjust their actions for the system on which they’re running.

Examining Process Lists

One of the most important tools in process management is ps. This program displays
processes’ status (hence the name, ps). It sports many helpful options, and it’s useful in

84 Chapter 2 - Managing Software

monitoring what’s happening on a system. This can be particularly critical when the com-
puter isn’t working as it should be—for instance, if it’s unusually slow. The ps program
supports an unusual number of options, but just a few of them will take you a long way.
Likewise, interpreting ps output can be tricky because so many options modify the pro-
gram’s output. Some ps-like programs, most notably top, also deserve attention.

Using Useful ps Options

The official syntax for ps is fairly simple:
ps [options]

This simplicity of form hides considerable complexity because ps supports three differ-
ent types of options, as well as many options within each type. The three types of options
are as follows:

Unix98 options These single-character options may be grouped together and are preceded
by a single dash (-).

BSD options These single-character options may be grouped together and must not be
preceded by a dash.

GNU long options These multi-character options are never grouped together. They’re
preceded by two dashes (--).

Options that may be grouped together may be clustered without spaces between them.
For instance, rather than typing ps -a -f, you can type ps -af. The reason for so much
complexity is that the ps utility has historically varied a lot from one Unix OS to another.
The version of ps that ships with major Linux distributions attempts to implement most
features from all these different ps versions, so it supports many different personalities. In
fact, you can change some of its default behaviors by setting the PS_PERSONALITY environ-
ment variable to posix, o1d, Tinux, bsd, sun, digital, or various others. The rest of this
section describes the default ps behavior on most Linux systems.

Some of the more useful ps features include the following:

Display help The --help option presents a summary of some of the more common ps
options.

Display all processes By default, ps displays only processes that were run from its own
terminal (xterm, text-mode login, or remote login). The -A and -e options cause it to dis-
play all the processes on the system, and x displays all processes owned by the user who
gives the command. The x option also increases the amount of information that’s displayed
about each process.

Display one user’s processes You can display processes owned by a given user with the -u
user, U user, and --User user options. The user variable may be a username or a user ID.

Display extra information The -f, -1, j, 1, u, and v options all expand the information
provided in the ps output. Most ps output formats include one line per process, but ps can
display enough information that it’s impossible to fit it all on one 80-character line. There-
fore, these options provide various mixes of information.

Managing Processes 85

Display process hierarchy The -H, -f, and --forest options group processes and use
indentation to show the hierarchy of relationships between processes. These options are
useful if you’re trying to trace the parentage of a process.

Display wide output The ps command output can be more than 80 columns wide. Normally,
ps truncates its output so that it will fit on your screen or xterm. The -w and w options tell ps
not to do this, which can be useful if you direct the output to a file, as in ps w > ps.txt. You
can then examine the output file in a text editor that supports wide lines.

You can combine these ps options in many ways to produce the output you want. You’ll
probably need to experiment to learn which options produce the desired results because
each option modifies the output in some way. Even those that would seem to influence just
the selection of processes to list sometimes modify the information that’s provided about
each process.

Interpreting ps Output

Listings 2.3 and 2.4 show a couple of examples of ps in action. Listing 2.3 shows ps -u
rodsmith --forest, and Listing 2.4 shows ps u U rodsmith.

Listing 2.4: Output of ps -u rodsmith --forest

$ ps -u rodsmith --forest
PID TTY TIME CMD
2451 pts/3 00:00:00 bash
2551 pts/3 00:00:00 ps
2496 ? 00:00:00 kvt
2498 pts/1 00:00:00 bash
2505 pts/1 00:00:00 _ nedit

2506 ? 00:00:00 _ csh
2544 7 00:00:00 _ xeyes
19221 ? 00:00:01 dfm

Listing 2.5: Output of ps u U rodsmith

$ ps u U rodsmith
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

rodsmith 19221 0.0 1.5 4484 1984 ? S May07 0:01 dfm
rodsmith 2451 0.0 0.8 1856 1048 pts/3 S 16:13 0:00 -bash
rodsmith 2496 0.2 3.2 6232 4124 7 S 16:17 0:00 /opt/kd
rodsmith 2498 0.0 0.8 1860 1044 pts/1 S 16:17 0:00 bash
rodsmith 2505 0.1 2.6 4784 3332 pts/1 S 16:17 0:00 nedit
rodsmith 2506 0.0 0.7 2124 1012 ? S 16:17 0:00 /bin/cs
rodsmith 2544 0.0 1.0 2576 1360 ? S 16:17 0:00 xeyes
rodsmith 2556 0.0 0.7 2588 916 pts/3 R 16:18 0:00 ps u U

86 Chapter 2 - Managing Software

The output produced by ps normally begins with a heading line, which displays the
meaning of each column. Important information that may be displayed (and labeled)
includes the following:

Username This is the name of the user who runs the programs. Listings 1.4 and 1.5
restricted this output to one user to limit the size of the listings.

Process ID The process ID (PID) is a number that’s associated with the process. This item
is particularly important because you need it to modify or kill the process, as described
later in this chapter.

Parent process ID The parent process ID (PPID) identifies the process’s parent. (Neither
Listing 2.4 nor Listing 2.5 shows the PPID.)

TTY The teletype (TTY) is a code used to identify a terminal. As illustrated by Listings
1.4 and 1.5, not all processes have TTY numbers—X programs and daemons, for instance,
don’t. Text-mode programs do have these numbers, which point to a console, xterm, or
remote login session.

CPU time The TIME and %CPU headings are two measures of CPU time used. The first
indicates the total amount of CPU time consumed, and the second represents the percent-
age of CPU time the process is using when ps executes. Both can help you spot runaway
processes—those that are consuming too much CPU time. Unfortunately, what constitutes
“too much” varies from one program to another, so it’s impossible to give a simple rule to
help you spot a runaway process.

CPU priority As described shortly, in “Managing Process Priorities,” it’s possible to give
different processes different priorities for CPU time. The NI column, if present (it’s not in
the preceding examples) lists these priority codes. The default value is 0. Positive values rep-
resent reduced priority, whereas negative values represent increased priority.

Memory use Various headings indicate memory use—for instance, RSS is resident set size (the
memory used by the program and its data) and %MEM is the percentage of memory the program
is using. Some output formats also include a SHARE column, which is memory that’s shared
with other processes (such as shared libraries). As with CPU-use measures, these columns can
help point you to the sources of difficulties; but because legitimate memory needs of programs
vary so much, it’s impossible to give a simple criterion for when a problem exists.

Command The final column in most listings is the command used to launch the process.
This is truncated in Listing 2.5 because this format lists the complete command, but so
much other information appears that the complete command won’t usually fit on one line.
(This is where the wide-column options can come in handy.)

As you can see, a lot of information can be gleaned from a ps listing—or perhaps that
should be the plural listings, because no single format includes all of the available informa-
tion. For the most part, the PID, username, and command are the most important pieces of
information. In some cases, though, you may need specific other components. If your sys-
tem’s memory or CPU use has skyrocketed, for instance, you’ll want to pay attention to the
memory or CPU use column.

Managing Processes 87

It's often necessary to find specific processes. You might want to find the
P PID associated with a particular command in order to kill it, for instance.

This information can be gleaned by piping the ps output through grep, as
inps ax | grep bash to find all the instances of bash.

Although you may need a wide screen or xterm to view the output, you may find ps -A
--forest to be a helpful command in learning about your system. Processes that aren’t
linked to others were either started directly by init or have had their parents killed, and
so they have been “adopted” by init. (Chapter 5 describes init and the boot procedure in
more detail.) Most of these processes are fairly important—they’re servers, login tools, and
so on. Processes that hang off several others in this tree view, such as xeyes and nedit in
Listing 2.4, are mostly user programs launched from shells.

top: A Dynamic ps Variant

If you want to know how much CPU time various processes are consuming relative to one
another, or if you want to quickly discover which processes are consuming the most CPU
time, a tool called top is the one for the job. The top tool is a text-mode program, but of
course it can be run in an xterm or similar window, as shown in Figure 2.2; there are also
GUI variants, like kpm and gnome-system-monitor. By default, top sorts its entries by CPU
use, and it updates its display every few seconds. This makes it a very good tool for spotting
runaway processes on an otherwise lightly loaded system—those processes almost always
appear in the first position or two, and they consume an inordinate amount of CPU time.
Looking at Figure 2.2, you might think that FahCore_65.exe is such a process, but in fact,
it’s legitimately consuming a lot of CPU time. You’ll need to be familiar with the purposes
and normal habits of programs running on your system in order to make such determina-
tions; the legitimate needs of different programs vary so much that it’s impossible to give a
simple rule for judging when a process is consuming too much CPU time.

FIGURE 2.2 The top command shows system summary information and information
about the most CPU-intensive processes on a computer.

88 Chapter 2 - Managing Software

Like many Linux commands, top accepts several options. The most useful are listed here:
-d delay This option specifies the delay between updates, which is normally 5 seconds.

-p pid If you want to monitor specific processes, you can list them using this option.
You’ll need the PIDs, which you can obtain with ps, as described earlier. You can specify
up to 20 PIDs by using this option multiple times, once for each PID.

-n iter You can tell top to display a certain number of updates (iter) and then quit.
(Normally, top continues updating until you terminate the program.)

-b This option specifies batch mode, in which top doesn’t use the normal screen-update
commands. You might use this to log CPU use of targeted programs to a file, for instance.

You can do more with top than watch it update its display. When it’s running, you can
enter any of several single-letter commands, some of which prompt you for additional
information. These commands include the following:

hand ? These keystrokes display help information

k You can kill a process with this command. The top program will ask for a PID number,
and if it’s able to kill the process, it will do so. (The upcoming section “Killing Processes”
describes other ways to kill processes.)

q This option quits from top.

r You can change a process’s priority with this command. You’ll have to enter the PID
number and a new priority value—a positive value will decrease its priority, and a negative
value will increase its priority, assuming it has the default 0 priority to begin with. Only
root may increase a process’s priority. The renice command (described shortly, in “Man-
aging Process Priorities”) is another way to accomplish this task.

s This command changes the display’s update rate, which you’ll be asked to enter (in seconds).
P This command sets the display to sort by CPU usage, which is the default.

M You can change the display to sort by memory usage with this command.

More commands are available in top (both command-line options and interactive com-
mands) than can be summarized here; consult top’s man page for more information.

One of the pieces of information provided by top is the load average, which is a measure of
the demand for CPU time by applications. In Figure 2.2, you can see three load-average esti-
mates on the top line; these correspond to the current load average and two previous measures.
A system on which no programs are demanding CPU time has a load average of 0. A system
with one program running CPU-intensive tasks has a load average of 1. Higher load averages
reflect programs competing for available CPU time. You can also find the current load aver-
age via the uptime command, which displays the load average along with information on how
long the computer has been running. The load average can be useful in detecting runaway pro-
cesses. For instance, if a system normally has a load average of 0.5 but it suddenly gets stuck
at a load average of 2.5, a couple of CPU-hogging processes may have hung—that is, become
unresponsive. Hung processes sometimes needlessly consume a lot of CPU time. You can use
top to locate these processes and, if necessary, kill them.

Managing Processes 89

jobs: Processes Associated with Your Session

The jobs command displays minimal information about the processes associated with the
current session. In practice, jobs is usually of limited value, but it does have a few uses.
One of these is to provide job ID numbers. These numbers are conceptually similar to PID
numbers, but they’re not the same. Jobs are numbered starting from 1 for each session, and
in most cases, a single shell has only a few associated jobs. The job ID numbers are used by
a handful of utilities in place of PIDs, so you may need this information.

A second use of jobs is to ensure that all your programs have terminated prior to log-
ging out. Under some circumstances, logging out of a remote login session can cause the
client program to freeze up if you’ve left programs running. A quick check with jobs will
inform you of any forgotten processes and enable you to shut them down.

Understanding Foreground and Background Processes

One of the most basic process-management tasks is to control whether a process is running
in the foreground or the background—that is, whether it’s monopolizing the use of the ter-
minal from which it was launched. Normally, when you launch a program, it takes over the
terminal, preventing you from doing other work in that terminal. (Some programs, though,
release the terminal. This is most common for servers and some GUI programs.)

If a program is running but you decide you want to use that terminal for something
else, pressing Ctrl+Z normally pauses the program and gives you control of the terminal.
(An important point is that this procedure suspends the program, so if it’s performing real
work, that work stops!) This can be handy if, say, you’re running a text editor in a text-
mode login, and you want to check a filename so you can mention it in the file you're edit-
ing. You press Ctrl+Z and type 1s to get the file listing. To get back to the text editor, you
then type fg, which restores the text editor to the foreground of your terminal. If you’ve
suspended several processes, you add a job number, as in fg 2 to restore job 2. You can
obtain a list of jobs associated with a terminal by typing jobs, which displays the jobs and
their job numbers.

A variant on fg is bg. Whereas fg restores a job to the foreground, bg restores a job to run-
ning status, but in the background. You can use this command if the process you’re running
is performing a CPU-intensive task that requires no human interaction but you want to use
the terminal in the meantime. Another use of bg is in a GUI environment—after launching a
GUI program from an xterm or similar window, that shell is tied up servicing the GUI pro-
gram, which probably doesn’t really need the shell. Pressing Ctrl+Z in the xterm window will
enable you to type shell commands again, but the GUI program will be frozen. To unfreeze
the GUI program, type bg in the shell, which enables the GUI program to run in the back-
ground while the shell continues to process your commands.

As an alternative to launching a program, using Ctrl+Z, and typing bg to run a program in
the background, you can append an ampersand (&) to the command when launching the pro-
gram. For instance, rather than edit a file with the NEdit GUI editor by typing nedit myfile.
txt, you can type nedit myfile.txt & This command launches the nedit program in the
background from the start, leaving you able to control your xterm window for other tasks.

90 Chapter 2 - Managing Software

Managing Process Priorities

Sometimes, you may want to prioritize your programs’ CPU use. For instance, you may
be running a program that’s very CPU-intensive but that will take a long time to finish its
work, and you don’t want that program to interfere with others that are of a more interac-
tive nature. Alternatively, on a heavily loaded computer, you may have a job that’s more
important than others that are running, so you may want to give it a priority boost. In
either case, the usual method of accomplishing this goal is through the nice and renice
commands. You can use nice to launch a program with a specified priority or use renice
to alter the priority of a running program.

You can assign a priority to nice in any of three ways: by specifying the priority pre-
ceded by a dash (this works well for positive priorities but makes them look like negative
priorities), by specifying the priority after a -n parameter, or by specifying the priority after
an --adjustment= parameter. In all cases, these parameters are followed by the name of the
program you want to run:

nice [argument] [command [command-arguments]]
For instance, the following three commands are all equivalent:

$ nice -12 number-crunch data.txt
$ nice -n 12 number-crunch data.txt
$ nice --adjustment=12 number-crunch data.txt

All three of these commands run the number-crunch program at priority 12 and pass
it the data. txt file. If you omit the adjustment value, nice uses 10 as a default. The range
of possible values is =20 to 19, with negative values having the highest priority. Only root
may launch a program with increased priority (that is, give a negative priority value), but
any user may use hice to launch a program with low priority. The default priority for a
program run without nice is 0.

If you’ve found that a running process is consuming too much CPU time or is being
swamped by other programs and so should be given more CPU time, you can use the
renice program to alter its priority without disrupting the program’s operation. The syn-
tax for renice is as follows:

renice priority [[-p] pids] [[-g] pgrps] [[-u] users]

You must specify the priority, which takes the same values this variable takes with
nice. In addition, you must specify one or more PIDs (pids), one or more group IDs
(pgrps), or one or more usernames (users). In the latter two cases, renice changes the
priority of all programs that match the specified criterion—but only root may use renice
in this way. Also, only root may increase a process’s priority. If you give a numeric value
without a -p, -g, or -u option, renice assumes the value is a PID. You may mix and match
these methods of specification. For instance, you might enter the following command:

renice 7 16580 -u pdavison tbaker

This command sets the priority to 7 for PID 16580 and for all processes owned by
pdavison and tbaker.

Managing Processes 91

Killing Processes

Sometimes, reducing a process’s priority isn’t a strong enough action. A program may have
become totally unresponsive, or you may want to terminate a process that shouldn’t be run-
ning. In these cases, the ki11 command is the tool to use. This program sends a signal (a
method that Linux uses to communicate with processes) to a process. The signal is usually
sent by the kernel, the user, or the program itself to terminate the process. Linux supports
many numbered signals, each of which is associated with a specific name. You can see them
all by typing ki11 -1. If you don’t use -1, the syntax for ki11 is as follows:

ki1l -s signal pid

Although Linux includes a ki1l program, many shells, including bash and

Py TE csh, include built-in ki11 equivalents that work in much the same way as
the external program. If you want to be sure you're using the external pro-
gram, type its complete path, asin /bin/kilT.

The -s signal parameter sends the specified signal to the process. You can specify the
signal using either a number (such as 9) or a name (such as SIGKILL). The signals you’re
most likely to use are 1 (SIGHUP, which terminates interactive programs and causes many
daemons to reread their configuration files), 9 (SIGKILL, which causes the process to exit
without performing routine shutdown tasks), and 15 (SIGTERM, which causes the process to
exit but allows it to close open files and so on). If you don’t specify a signal, the default is
15 (SIGTERM). You can also use the shortened form -signal. If you do this and use a signal
name, you should omit the SIG portion of the name—for instance, use KILL rather than
SIGKILL. The pid option is, of course, the PID for the process you want to kill. You can
obtain this number from ps or top.

The ki11 program will kill only those processes owned by the user who
A TE runs kil1. The exception is if that user is root; the superuser may kill any

user’s processes.

@ Real World Scenario

Running Programs Persistently

Signals can be passed to programs by the kernel even if you don’t use the ki1l command.
For instance, when you log out of a session, the programs you started from that session are
sent the SIGHUP signal, which causes them to terminate. If you want to run a program that
will continue running even when you log out, you can launch it with the nohup program:

$ nohup program options

This command causes the program to ignore the SIGHUP signal. It can be handy if you
want to launch certain small servers that may legitimately be run as ordinary users.

92 Chapter 2 - Managing Software

A variant on ki17 is ki11a11, which has the following form:
killall [options] [--]1 name [...]

This command kills a process based on its name rather than its PID number. For
instance, ki1l1al1 vi kills all the running processes called vi. You may specify a signal in
the shortened form (-signal) or by preceding the signal number with -s or --signal. As
with ki11, the default is 15 (SIGTERM). One potentially important option to kil1all is -1,
which causes it to ask for confirmation before sending the signal to each process. You might
use it like this:

$ killall -1 vi
Kill vi(13211) ? (y/n) y
Kill vi(13217) ? (y/n) n

In this example, two instances of the Vi editor were running, but only one should have
been killed. As a general rule, if you run ki11al1 as root, you should use the -1 parameter;
if you don’t, it’s all too likely that you’ll kill processes that you shouldn’t, particularly if the
computer is being used by many people at once.

sl Some versions of Unix provide a killall command that works very differ-

ING ently from Linux’s ki1T1al1. This alternate kil1aTl1 kills all the processes
started by the user who runs the command. This is a potentially much
more destructive command, so if you ever find yourself on a non-Linux
system, do not use kilTlall until you've discovered what that system’s
ki11al1 does (say, by reading the ki11a11l man page).

Summary

Linux provides numerous tools to help you manage software. Most distributions are built
around the RPM or Debian package systems, both of which enable installation, upgrade,
and removal of software using a centralized package database to avoid conflicts and other
problems that are common when no central package database exists. You can perform
basic operations on individual files or, with the help of extra tools such as Yum and APT,
keep your system synchronized with the outside world, automatically or semi-automatically
updating all your software to the latest versions.

No matter how you install your software, you may need to manage shared libraries.
These software components are necessary building blocks of large modern programs, and
in the best of all possible worlds they operate entirely transparently. Sometimes, though,
shared libraries need to be upgraded or the system configuration changed so that programs

Exam Essentials 93

can find the libraries. When this happens, knowing about critical configuration files and
commands can help you work around any difficulties.

Beyond managing packages and libraries, Linux software management involves manipulat-
ing processes. Knowing how to manipulate foreground and background processes, adjust pro-
cess priorities, and kill stray processes can help you keep your Linux system working well.

Exam Essentials

Identify critical features of RPM and Debian package formats. RPM and Debian pack-
ages store all files for a given package in a single file that also includes information about
what other packages the software depends on. These systems maintain a database of
installed packages and their associated files and dependencies.

Describe the tools used for managing RPMs. The rpm program is the main tool for install-
ing, upgrading, and uninstalling RPMs. This program accepts operations and options that
tell it precisely what to do. The Yum utility, and particularly its yum command, enables
installation of a package and all its dependencies via the Internet, rather than from local
package files.

Describe the tools used for managing Debian packages. The dpkg program installs or
uninstalls a single package or a group of packages you specify. The apt-get utility retrieves
programs from installation media or from the Internet for installation and can automati-
cally upgrade your entire system. The dselect program serves as a menu-driven interface
to apt-get, enabling you to select programs you want to install from a text-mode menu.

Summarize tools for extracting files and converting between package formats. The
rpm2cpio program can convert an RPM file to a cpio archive, enabling users of non-RPM
systems to access files in an RPM. The alien utility can convert in any direction between
Debian packages, RPMs, Stampede packages, and tarballs. This enables the use of pack-
ages intended for one system on another.

Summarize the reasons for using shared libraries. Shared libraries keep disk space and
memory requirements manageable by placing code that’s needed by many programs in
separate files from the programs that use it, enabling one copy to be used multiple times.
More generally, libraries enable programmers to use basic “building blocks” that others
have written without having to constantly reinvent code.

Describe methods available to change the library path. The library path can be
changed system-wide by editing the /etc/1d.so.conf file and then typing 1dconfig. For
temporary or per-user changes, directories may be added to the path by placing them in
the LD_LIBRARY_PATH environment variable.

9 Chapter 2 - Managing Software

Explain the difference between foreground and background processes. Foreground pro-
cesses have control of the current terminal or text-mode window (such as an xterm). Back-
ground processes don’t have exclusive control of a terminal or text-mode window but are
still running.

Describe how to limit the CPU time used by a process. You can launch a program with
nice or use renice to alter its priority in obtaining CPU time. If a process is truly out of
control, you can terminate it with the ki11 command.

Review Questions 95

Review Questions

1. Which of the following is 7ot an advantage of a source package over a binary package?
A. A single source package can be used on multiple CPU architectures.
B. By recompiling a source package, you can sometimes work around library incompat-
ibilities.
C. You can modify the code in a source package, altering the behavior of a program.

D. Source packages can be installed more quickly than binary packages can.

2. Which is true of using both RPM and Debian package management systems on one computer?

A. It’s generally inadvisable because the two systems don’t share installed-file database
information.

B. It’s impossible because their installed-file databases conflict with one another.
C. It causes no problems if you install important libraries once in each format.
D. It’s a common practice on Red Hat and Debian systems.
3. Which of the following statements is true about binary RPM packages that are built for a
particular distribution?

A. They can often be used on another RPM-based distribution for the same CPU architec-
ture, but this isn’t guaranteed.

B. They may be used in another RPM-based distribution only when you set the
--convert-distrib parameter to rpm.

C. They may be used in another RPM-based distribution only after you convert the pack-
age with alien.

D. They can be recompiled for an RPM-based distribution running on another type of
CPU.

4. An administrator types the following command on an RPM-based Linux distribution:
rpm -ivh megaprog.rpm

What is the effect of this command?

A. The megaprog package, if it’s installed, is uninstalled from the computer.

B. The megaprog.rpm package, if it exists, is valid, and isn’t already installed, is installed
on the system.

C. The megaprog. rpmsource RPM package is compiled into a binary RPM for the com-
puter.

D. Nothing; megaprog.rpmisn’t a valid RPM filename, so rpm will refuse to operate on
this file.

96

10.

Chapter 2 - Managing Software

Which of the following commands will extract the contents of the myfonts. rpm file into
the current directory?

A. rpm2cpio myfonts.rpm | cpio -i --make-directories

B. rpm2cpio myfonts.rpm > make-directories

C. rpm -e myfonts.rpm

D. alien --to-extract myfonts.rpm

To use dpkg to remove a package called theprogram, including its configuration files,
which of the following commands would you issue?

A. dpkg -P theprogram

B. dpkg -p theprogram

C. dpkg -r theprogram

D. dpkg -r theprogram-1.2.3-4.deb

Which of the following describes a difference between apt-get and dpkg?

A. apt-get provides a GUI interface to Debian package management; dpkg doesn’t.

B. apt-get can install tarballs in addition to Debian packages; dpkg can’t.

C. apt-get can automatically retrieve and update programs from Internet sites; dpkg can’t.

D. apt-get is provided only with the original Debian distribution, but dpkg comes with
Debian and its derivatives.

What command would you type to obtain a list of all installed packages on a Debian system?

A. apt-cache pkgnames

B. apt-cache showpkg

C. dpkg -r allpkgs

D. dpkg -i

As root, you type apt-get update on a Debian system. What should be the effect of this

command?

A. None; update is an invalid option to apt-get.

B. The APT utilities deliver information about the latest updates you’ve made to the APT
Internet repositories, enabling you to share your changes with others.

C. The APT utilities download all available upgrades for your installed programs and
install them on your system.

D. The APT utilities retrieve information about the latest packages available so that you
may install them with subsequent apt-get commands.

Which of the following commands would you type to update the unzip program on a

Fedora system to the latest version? (Select all that apply.)

A. yum update unzip

B. yum upgrade unzip

C. yum -u unzip

D

yum -U unzip

1.

12.

13.

14.

15.

Review Questions 97

How should you configure a system that uses Yum to access an additional Yum software

repository?

A. Edit the /etc/apt/sources. Tist file to include the repository site’s URL, as detailed
on the repository’s Web site.

B. Download a package from the repository site and install it with RPM, or place a con-
figuration file from the repository site in the /etc/yum. repos.d directory.

C. Use the add-repository subcommand to yum or the Add Repository option in the File
menu in yumex, passing it the URL of the repository.

D. Edit the /etc/yum. conf file, locate the [repos] section, and add the URL to the
repository after the existing repository URLs.

What is the preferred method of adding a directory to the library path for all users?

A. Modify the LD_LIBRARY_PATH environment variable in a global shell script.

B. Add the directory to the /etc/1d.so.conf file, and then type 1dconfig.

C. Type ldconfig /new/dir, where /new/dir is the directory you want to add.

D. Create a symbolic link from that directory to one that’s already on the library path.

You prefer the look of GTK+ widgets to Qt widgets, so you want to substitute the GTK+

libraries for the Qt libraries on your system. How would you do this?

A. You must type Tdconfig --makesubs=qt,gtk. This command substitutes the GTK+
libraries for the Qt libraries at load time.

B. You must uninstall the Qt library packages and re-install the GTK+ packages with the
--substitute=qt option to rpm or the --replace=qt option to dpkg.

C. You must note the filenames of the Qt libraries, uninstall the packages, and create
symbolic links from the Qt libraries to the GTK+ libraries.

D. You can’t easily do this; libraries can’t be arbitrarily exchanged for one another. You
would need to rewrite all the Qt-using programs to use GTK+.

A user types ki1l -9 11287 at a bash prompt. What is the probable intent, assuming the

user typed the correct command?

A. To cut off a network connection using TCP port 11287

B. To display the number of processes that have been killed with signal 11287 in the last
nine days

C. To cause a server with process ID 11287 to reload its configuration file

D. To terminate a misbehaving or hung program with process ID 11287

What programs might you use to learn what your system’s load average is? (Select all that
apply.)

A. 1d

B. Toad
C. top

D. uptime

98

16.

17.

18.

19.

20.

Chapter 2 - Managing Software

Which of the following commands creates a display of processes, showing the parent/child
relationships through links between their names?

A. ps --forest
B. ps aux

C. ps -e

D. All of the above

You use top to examine the CPU time being consumed by various processes on your sys-
tem. You discover that one process, dfcomp, is consuming more than 90 percent of your
system’s CPU time. What can you conclude?

A. Very little; dfcomp could be legitimately consuming that much CPU time or it could be
an unauthorized or malfunctioning program.

B. No program should consume 90 percent of available CPU time; dfcomp is clearly mal-
functioning and should be terminated.

C. This is normal; dfcomp is the kernel’s main scheduling process, and it consumes any
unused CPU time.

D. This behavior is normal if your CPU is less powerful than a 2.5GHz EM64T Pentium;
but on newer systems, no program should consume 90 percent of CPU time.

You type jobs at a bash command prompt and receive a new command prompt with no

intervening output. What can you conclude?

A. The total CPU time used by your processes is negligible (below 0.1).

B. No processes are running under your username except the shell you’re using.

C. The jobs shell is installed and working correctly on the system.

D. No background processes are running that were launched from the shell you’re using.

Which two of the following commands are equivalent to one another? (Select two.)

A. nice --value 10 crunch

B. nice -n -10 crunch

C. nice -10 crunch

D. nice crunch

Which of the following are restrictions on ordinary users’ abilities to run renice? (Select
all that apply.)

A. Users may not modify the priorities of processes that are already running.

B. Users may not modify the priorities of other users’ processes.

C. Users may not decrease the priority (that is, increase the priority value) of their own
processes.

D. Users may not increase the priority (that is, decrease the priority value) of their own
processes.

Answers to Review Questions 99

Answers to Review Questions

1.

D. Because they must be compiled prior to installation, source packages require more time
to install than binary packages do, contrary to option D’s assertion. The other options all
describe advantages of source packages over binary packages.

A. Package management systems don’t share information, but neither do their databases
actively conflict. Installing the same libraries using both systems would almost guarantee
that the files served by both systems would conflict with one another. Actively using both
RPM and Debian packages isn’t common on any distribution, although it’s possible with all
of them.

A. RPMs are usually portable across distributions, but occasionally they contain incompat-
ibilities. There is no --convert-distrib parameter to rpm, nor is alien used to convert
from RPM format to RPM format. Binary packages can’t be rebuilt for another CPU archi-
tecture, but source packages may be rebuilt for any supported architecture provided the
source code doesn’t rely on any CPU-specific features.

B. The -1 operation installs software, so option B is correct. (The -v and -h options cause

a status display of the progress of the operation, which wasn’t mentioned in the option.)
Uninstallation is performed by the -e operation, and rebuilding source RPMs is done by the
--rebuild operation (to either rpm or rpmbuild, depending on the RPM version). Although
the filename megaprog. rpm is missing several conventional RPM filename components, the
rpm utility doesn’t use the filename as a package validity check, so option D is incorrect.

A. The rpm2cpio program extracts data from an RPM file and converts it into a cpio
archive that’s sent to standard output. Piping the results through cpio and using the -i and
--make-directories options, as in option A, will extract those files to the current direc-
tory. Option B creates a cpio file called make-directories that contains the files from

the RPM package. Option C will uninstall the package called myfonts. rpm (but not the
myfonts package). The alien utility has no --to-extract target, so option D is invalid.

A. An uppercase -P invokes the purge operation, which completely removes a package and
its configuration files. The lowercase -p causes dpkg to print information about the pack-
age’s contents. The -r parameter removes a package but leaves configuration files behind.
The final variant (option D) also specifies a complete filename, which isn’t used for removing
a package—you should specify only the shorter package name.

C. You can specify Debian package archive sites in /etc/apt/sources.1ist, and then you
can type apt-get update and apt-get upgrade to quickly update a Debian system to the
latest packages. GUI package management tools for Debian and related distributions exist, but
they aren’t apt-get. The alien program can convert an RPM file and install the converted
package on a Debian system; dpkg and apt-get both come with all Debian-based distribu-
tions.

100

8.

10.

n.

12.

13.

14.

Chapter 2 - Managing Software

A. The apt-cache subcommand pkgnames displays the names of all installed packages

or, if a further string is used, of all installed packages whose names begin with that string,
making option A correct. The showpkg subcommand to apt-cache displays information
about a named package; when used without a package name, as in option B, it displays no
data. The dpkg -r action removes a package, so option C would remove the package called
allpkgs if it were installed. The dpkg -1 action installs a package, so option D is incor-
rect—and that option doesn’t list a package name, which the -1 action requires.

D. The update option to apt-get causes retrieval of new information, as described in
option D. This option is perfectly valid, contrary to option A’s assertion. The apt-get pro-
gram doesn’t permit you to upload information to the Internet repositories, so option B is
incorrect. Option C describes the effect of the upgrade or dist-upgrade options, not the
update option.

A, B. The yum utility’s update and upgrade options are nearly identical in effect, and either
can be used to upgrade an individual package, such as unzip. The primary command
options to yum don’t use dashes, so -u and -U are both incorrect.

B. Yum uses files in the /etc/yum.repos.d directory to locate its repositories, so you can
add to the repository list by adding files to this subdirectory, as option B specifies, typically
either by installing an RPM or by adding a file manually. Option A describes a method of
adding a repository to a computer that uses APT, not Yum. Option C’s add-repository
subcommand is fictitious. Although the /etc/yum. conf file described in option D is real, it
doesn’t store repository data.

B. The /etc/1d.so.conf file holds the global library path, so editing it is the preferred
approach. You must then type Tdconfig to have the system update its library path cache.
Although you can add a directory to the library path by altering the LD_LIBRARY_PATH
environment variable globally, this approach isn’t the preferred one. Option C simply won’t
work. Option D also won’t work, although linking individual library files would work. This
method isn’t the preferred one for adding a whole directory, though.

D. Libraries are selected by programmers, not by users or system administrators. If you
don’t like the widgets provided by one library, you have few options. (Many widget sets
do provide a great deal of configurability, though, so you may be able to work around the
problem in other ways.) Options A and B describe fictitious options to 1dconfig, rpm, and
dpkg. Option C wouldn’t work; Qt-using programs would crash when they found GTK+
libraries in place of the Qt libraries they were expecting.

D. The ki1 program accepts various signals in numeric or named form (9 in this example)
along with a process ID number (11287 in this example). Signal 9 corresponds to SIGKILL,

which is an extreme way to kill processes that have run out of control. Although you might
use kil1 to kill network processes, you can’t pass ki1l a TCP port number and expect it to
work. The program also won’t display information about the number of processes that have
been killed. To do as option C suggests, you'd need to tell ki1 to pass SIGHUP (signal 1), so
the command would be ki1l -1 11287.

15.

16.

17.

18.

19.

20.

Answers to Review Questions 101

C, D. The top utility displays a dynamic list of processes ordered according to their CPU
use along with additional system information, including load averages. If you want only the
load average at a specific moment, uptime may be better because it presents less extraneous
information—it shows the current time, the time since the system was booted, the number
of active users, and the load averages. The 1d command has nothing to do with displaying
load averages (it’s a programming tool that links together program modules into an execut-
able program). There is no standard Linux program called Toad.

A. The --forest option to ps shows parent/child relationships by creating visual links
between process names in the ps output. (Listing 2.4 shows this effect.) Options B and C
are both valid ps commands, but neither creates the specified effect.

A. CPU-intensive programs routinely consume 90 percent or more of available CPU time,
but not all systems run such programs. Furthermore, some types of program bugs can cre-
ate such CPU loads. Thus, you must investigate the matter more. What is dfcomp? Is it
designed as a CPU-intensive program? Is it consuming this much CPU time consistently, or
was this a brief burst of activity?

D. The jobs command summarizes processes that were launched from your current shell.
When no such processes are running, jobs returns nothing, so option D is correct. The
jobs command doesn’t check or summarize CPU load, so option A is incorrect. The jobs
command also doesn’t check for processes run from shells other than the current one, so
option B is incorrect (processes running under your username could have been launched
from another shell or from a GUI environment). There is no standard jobs shell in Linux,
so option C is incorrect.

C, D. The nice command launches a program (crunch in this example) with increased

or decreased priority. The default priority when none is specified is 10, and the nice -10
crunch command also sets the priority to 10, so options C and D are equivalent. Option A
isn’t a valid nice command because nice has no --value option. Option B is a valid nice
command, but it sets the priority to =10 rather than 10.

B, D. Linux insulates users’ actions from one another, and this rule applies to renice; only
root may modify the priority of other users’ processes. Similarly, only root may increase
the priority of a process, in order to prevent users from setting their processes to maximum
priority, thus stealing CPU time from others. Option A correctly describes nice, but not
renice; the whole point of renice is to be able to change the priorities of existing pro-
cesses. Option C also describes an action that renice permits.

Chapter

Configuring Hardware

THE FOLLOWING LINUX PROFESSIONAL
INSTITUTE OBJECTIVES ARE COVERED IN
THIS CHAPTER:

v' 1.101.1 Determine and configure hardware settings
(weight: 2)

v' 1.102.1 Design hard disk layout (weight: 2)
v' 1.104.1 Create partitions and filesystems (weight: 2)
v' 1.104.2 Maintain the integrity of filesystems (weight: 2)

v' 1.104.3 Control mounting and unmounting of filesystems
(weight: 3)

All OSs run atop hardware, and this hardware influences how

the OSs run. Most obviously, hardware can be fast or slow,

reliable or unreliable. Somewhat more subtly, OSs provide
various means of configuring and accessing the hardware—partitioning hard disks and
reading data from Universal Serial Bus (USB) devices, for instance. You must understand at
least the basics of how Linux interacts with its hardware environment in order to effectively
administer a Linux system, so this chapter presents this information.

This chapter begins with a look at the BIOS, which is the lowest-level software that runs
on a computer. The BIOS starts the boot process and configures certain hardware devices.
This chapter then moves on to expansion cards and USB devices.

This chapter concludes with an examination of disk hardware and the filesystems it
contains—disk interface standards, disk partitioning, how to track disk usage, how to tune
filesystems for optimal performance, how to check filesystems’ internal consistency, and
how to repair simple filesystem defects. Assuming a filesystem is in good shape, you must
be able to mount it to be able to use it, so that topic is also covered here. (One disk topic,
boot managers, is covered in Chapter 5, “Booting Linux and Editing Files.”)

Configuring the BIOS and Core Hardware

All computers ship with a set of core hardware—most obviously, a central processing

unit (CPU), which does the bulk of the computational work, and random access memory
(RAM), which holds data. Many additional basic features help glue everything together,
and some of these can be configured both inside and outside of Linux. At the heart of much
of this hardware is the Basic Input/Output System (BIOS), which provides configuration
tools and initiates the OS booting process. You can use the BIOS to enable and disable key
hardware components, but once Linux is booted, you may need to manage this hardware
using Linux utilities. Key components managed by the BIOS (and, once it’s booted, Linux)
include interrupts, I/O addresses, DM A addresses, the real-time clock, and Advanced Tech-
nology Attachment (ATA) hard disk interfaces.

Understanding the Role of the BIOS

The BIOS is the firmware that initiates the process of booting an operating system on a
computer. It resides on the motherboard in ROM, typically in an electronically erasable
programmable read-only memory (EEPROM), a.k.a. flash memory. When you turn on a
computer, the BIOS performs a power-on self-test (POST), initializes hardware to a known

Configuring the BIOS and Core Hardware 105

operational state, loads the boot loader from the boot device (typically the first hard disk),
and passes control to the boot loader, which in turn loads the OS.

Historically, a further purpose of the BIOS was to provide fundamental input/output
(I/O) services to the operating system and application programs, insulating them from
hardware changes. Although the Linux kernel uses the BIOS to collect information about
the hardware, once Linux is running, it doesn’t use BIOS services for I/O. Having said that,
Linux system administrators require a basic understanding of the BIOS because of the key
role it plays in configuring hardware and in booting.

The BIOS as described here is used on most x86 and x86-64 computers;

T however, some computers use radically different software in place of the PC
BIOS. Apple computers, for instance, use either OpenFirmware (for PowerPC
systems) or the Extensible Firmware Interface (EFI; for Intel-based Macs).

A few other computers use EFl, as well. Although OpenFirmware, EFI, and
other firmware programs differ from the traditional (some now say “legacy”)
x86 BIOS, these systems all perform similar tasks. If you must administer a
non-BIOS system, you should take some time to research the details of how
its low-level firmware operates; however, this won’t greatly affect how Linux
treats the hardware at the level of day-to-day system administration.

%‘I

Although BIOS implementations vary from manufacturer to manufacturer, most provide
an interactive facility to configure them. Typically, you enter this setup tool by pressing the
Delete, F1, or F2 key early in the boot sequence. (Consult your motherboard manual or look
for on-screen prompts for details.) Figure 3.1 shows a typical BIOS setup main screen. You
can use the arrow keys, the Enter key, and so on to move around the BIOS options and adjust
them. Computers usually come delivered with reasonable BIOS defaults, but you may need to
adjust them if you add new hardware or if a standard piece of hardware is causing problems.

FIGURE 3.1 The BIOS setup screen provides features related to low-level hardware
configuration.

System Time:

,/{
Enter

106 Chapter 3 - Configuring Hardware

One key ability of the BIOS is enabling or disabling on-board hardware. Modern moth-
erboards provide a wide range of hardware devices, including hard disk controllers, RS-232
serial ports, parallel ports, USB ports, Ethernet ports, audio hardware, and even video
hardware. Usually, having this hardware available is beneficial, but sometimes it’s not. The
hardware may be inadequate, so you’ll want to replace it with a more capable plug-in card;
or you may not need it. In such cases, you can disable the device in the BIOS. Doing so
keeps the device from consuming the hardware resources that are described shortly, reduc-
ing the odds of an unused device interfering with the hardware you do use.

Precisely how to disable hardware in the BIOS varies from one computer to another.

You should peruse the available menus to find mention of the hardware you want to dis-
able. Menus entitled Integrated Peripherals or Advanced are particularly likely to hold these
features. Once you’ve spotted the options, follow the on-screen prompts for hints at how

to proceed; for instance, Figure 3.1 shows an Item Specific Help area on the right side of
the screen. Information about keys to press to perform various actions appears here. Once
you’re finished, follow the on-screen menus and prompts to save your changes and exit.
When you do so, the computer will reboot.

Once Linux boots, it uses its own drivers to access the computer’s hardware. Under-
standing the hardware resources that Linux uses will help you determine when you may
want to shut down, boot into the BIOS, and disable particular hardware devices at such a
low level.

@ Real World Scenario

Booting Without a Keyboard

Most PCs have keyboards attached to them; however, many Linux computers function as
servers, which don’t require keyboards for day-to-day operation. In such cases, you may
want to detach the keyboard to reduce clutter and eliminate the risk of accidental key-
presses causing problems.

Unfortunately, many computers complain and refuse to boot if you unplug the keyboard
and attempt to boot the computer. To disable this warning, look for a BIOS option called
Halt On or something similar. This option tells the BIOS under what circumstances it
should refuse to boot. You should find an option to disable the keyboard check. Once
you select this option, you should be able to shut down, detach the keyboard, and boot
normally. Of course, you'll need to be able to access the computer via a network con-
nection or in some other way to administer it, so be sure this is configured before you
remove the keyboard!

Configuring the BIOS and Core Hardware 107

IRQs

An interrupt request (IRQ), or interrupt, is a signal sent to the CPU instructing it to sus-
pend its current activity and to handle some external event such as keyboard input. On the
x86 platform, IRQs are numbered from 0 to 15. More modern computers, including x86-
64 systems, provide more than these 16 interrupts. Some interrupts are reserved for specific
purposes, such as the keyboard and the real-time clock; others have common uses (and are
sometimes overused) but may be reassigned; and some are left available for extra devices
that may be added to the system. Table 3.1 lists the IRQs and their common purposes in
the x86 system. (On x86-64 systems, IRQs are typically assigned as in Table 3.1, but addi-
tional hardware may be assigned to higher IRQs.)

TABLE 3.1 IRQs and Their Common Uses

IRQ Typical Use Notes

0 System timer Reserved for internal use.

1 Keyboard Reserved for keyboard use only.

2 Cascade for IRQs 8-15 The original x86 IRQ-handling circuit can manage

just 8 IRQs; 2 are tied together to handle 16 IRQs,
but IRQ 2 must be used to handle IRQs 8-15.

3 Second RS-232 serial port May also be shared by a fourth RS-232 serial port.
(COM2: in Windows)

4 First RS-232 serial port May also be shared by a third RS-232 serial port.
(COM1: in Windows)

5 Sound card or second paral-
lel port (LPT2: in Windows)

6 Floppy disk controller Reserved for the first floppy disk controller.
7 First parallel port (LPT1: in
Windows)
8 Real-time clock Reserved for system clock use only.
9 Open interrupt
10 Open interrupt

1 Open interrupt

108 Chapter 3 - Configuring Hardware

TABLE 3.1 IRQs and Their Common Uses (continued)

IRQ Typical Use Notes

12 PS/2 mouse

13 Math coprocessor Reserved for internal use.

14 Primary ATA controller The controller for ATA devices such as hard drives;

typically /dev/hda and /dev/hdb under Linux.

15 Secondary ATA controller The controller for more ATA devices; typically
/dev/hdc and /dev/hdd under Linux.

The original Industry Standard Architecture (ISA) bus design makes sharing an inter-
rupt between two devices tricky. Ideally, every ISA device should have its own IRQ. The
more recent Peripheral Component Interconnect (PCI) bus makes sharing interrupts a bit
easier, so PCI devices frequently end up sharing an IRQ. The ISA bus has become rare on
computers made since 2001 or so, but it’s common on older computers. Even some com-
puters that lack physical ISA slots may use ISA internally to manage some devices, such as
RS-232 serial ports and parallel ports.

L IRQ 5 is a common source of interrupt conflicts because it’s the default
ING value for sound cards as well as for second parallel ports.

Once a Linux system is running, you can explore what IRQs are being used for various
purposes by examining the contents of the /proc/interrupts file. A common way to do
this is with the use of the cat command:

§ cat /proc/interrupts

CPUO

0: 42 I0-APIC-edge timer
1: 444882 I0-APIC-edge 18042
4: 12 IO-APIC-edge

6: 69 IO-APIC-edge floppy
8: 0 IO-APIC-edge rtc

9: 0 IO-APIC-fasteoi acpi
14: 3010291 IO-APIC-edge ide0
15: 11156960 IO-APIC-edge idel
16: 125264892 IO-APIC-fasteoi ethO
17: 0 I0-APIC-fasteoi cx88[0], cx88[0]

20: 3598946 I0-APIC-fasteoi sata_via

Configuring the BIOS and Core Hardware 109

21: 4566307 I0-APIC-fasteoi uhci_hcd:usbl, uhci_hcd:usb2, ehci_hcd:usb3
22: 430444 I0-APIC-fasteoi VIA8237
NMI : 0 Non-maskable interrupts
LOC: 168759611 Local timer interrupts
TRM: 0 Thermal event interrupts
THR: 0 Threshold APIC interrupts
SPU: 0 Spurious interrupts
ERR: 0
)/ The /proc filesystem is a virtual filesystem—it doesn’t refer to actual files
‘d’TE on a hard disk, but to kernel data that’s convenient to represent using a

filesystem. The files in /proc provide information about the hardware,
running processes, and so on. Many Linux utilities use /proc behind the
scenes; or you can directly access these files using utilities like cat, which
copies the data to the screen when given just one argument.

This output shows the names of the drivers that are using each IRQ. Some of these
driver names are easy to interpret, such as floppy. Others are more puzzling, such as cx88
(it’s a driver for a video capture card). If the purpose of a driver isn’t obvious, try doing a
Web search on it; chances are you’ll find a relevant hit fairly easily. Note that the preceding
output shows interrupts numbered up to 22; this system supports more than the 16 base
x86 interrupts.

ING doesn’t begin using an IRQ until the relevant driver is loaded. This may
not happen until you try to use the hardware. Thus, the /proc/interrupts
list may not show all the interrupts that are configured on your system.
For instance, the preceding example shows nothing for IRQ 7, which is
reserved for the parallel port, because the port hadn’t been used prior
to viewing the file. If the parallel port were used and /proc/interrupts
viewed again, an entry for IRQ 7 and the parport0 driver would appear.

@:ﬂ The /proc/interrupts file lists IRQs that are in use by Linux, but Linux

If your system suffers from IRQ conflicts, you must reconfigure one or more devices to
use different IRQs. This topic is described shortly, in “Configuring Expansion Cards.”

1/0 Addresses

I/0O addresses (also referred to as I/O ports) are unique locations in memory that are reserved
for communications between the CPU and specific physical hardware devices. Like IRQs, 1/0
addresses are commonly associated with specific devices and should not ordinarily be shared.
Table 3.2 lists some Linux device filenames along with the equivalent names in Windows, as
well as the common IRQ and I/O address settings.

110 Chapter 3 - Configuring Hardware

TABLE 3.2 Common Linux Devices

Linux Device Windows Name Typical IRQ 1/0 Address
/dev/ttyS0O comi 4 0x03f8
/dev/ttyS1 com2 3 0x02f8
/dev/ttyS2 Ccom3 4 0x03e8
/dev/ttyS3 com4 3 0x02e8
/dev/1p0 LPT1 7 0x0378-0x037f
/dev/1pl LPT2 5 0x0278-0x027f
/dev/fd0 A: 6 0x03f0-0x03f7
/dev/fdl B: 6 0x0370-0x0377

<

Although the use is deprecated, older systems sometimes use /dev/cuax
(where x is a number from 0 and up) to indicate an RS-232 serial device.
Thus, /dev/ttyS0 and /dev/cua0 refer to the same physical device.

Once a Linux system is running, you can explore what I/O addresses are being used by
examining the contents of the /proc/ioports file. A common way to do this is with the use
of the cat command:

$ cat /proc/ioports

0000-001f :
0020-0021 :
0040-0043 :
0050-0053 :
0060-006f :
0070-0077 :
0080-008f
00a0-00al
00c0-00df
00f0-00ff :

dmal
picl
timer0
timerl
keyboard
rtc

: dma page reg
T pic2
1 dma2

fpu

This example truncates the output, which goes on for quite a way on the test system. As
with IRQs, if your system suffers from I/O port conflicts, you must reconfigure one or more

Configuring the BIOS and Core Hardware m

devices, as described in “Configuring Expansion Cards.” In practice, such conflicts are
rarer than IRQ conflicts.

DMA Addresses

Direct memory addressing (DMA) is an alternative method of communication to I/O
ports. Rather than have the CPU mediate the transfer of data between a device and mem-
ory, DMA permits the device to transfer data directly, without the CPU’s attention. The
result can be lower CPU requirements for I/O activity, which can improve overall system
performance.

To support DMA, the x86 architecture implements several DM A channels, each of
which can be used by a particular device. To learn what DM A channels are in use on your
system, examine the /proc/dma file:

$ cat /proc/dma
2: floppy
4: cascade

This output indicates that DMA channels 2 and 4 are in use. As with IRQs and I/O
ports, DMA addresses should not normally be shared. In practice, DM A address conflicts
are rarer than IRQ conflicts, so chances are you won’t run into problems. If you do, consult
the upcoming section “Configuring Expansion Cards.”

Boot Disks and Geometry Settings

Most BIOSs allow you to choose the order of the devices from which to boot, falling back
to the second entry if the first fails, the third entry if the second fails, and so on. A common
order is the first floppy (known as A: in DOS and Windows), followed by the CD-ROM,
followed by the first hard disk. With this configuration, the system attempts to boot from
each device in turn until one works. If all the devices fail to boot, the BIOS displays an
error message.

Although this is a common boot sequence, it has its problems. Specifically, if somebody
accidentally leaves a floppy disk in the drive, this can prevent the system from booting. Worse,
some (mostly old) viruses are transmitted by floppy disks’ boot sectors, so this method can
result in viral infection. Using removable disks as the default boot media also opens the door
to intruders who have physical access to the computer; they need only reboot with a bootable
floppy disk or CD-ROM to gain complete control of your system. For these reasons, it’s better
to make the first hard disk the only boot device. (You must change this configuration when
installing Linux or using an emergency boot disk for maintenance.) Some BIOSs (most com-
monly on notebooks) make temporary changes easier by providing a special key to allow a
one-time change to the boot sequence. On most other computers, to change the boot sequence,
you must locate the appropriate BIOS option, change it, and reboot the computer. It’s usually
located in an Advanced menu, so look there.

112 Chapter 3 - Configuring Hardware

Another disk option is the one for detecting disk devices. Figure 3.1 shows three disk
devices: the A: floppy disk (/dev/fd0 under Linux), a 1048MB primary master hard disk,
and a CD-ROM drive as the secondary master. In most cases, the BIOS detects and config-
ures hard disks and CD-ROM drives correctly. You may need to tell it what sort of floppy
disk you’ve got, though. Also, in rare circumstances, you must tell the BIOS about the hard
disk’s cylinder/bead/sector (CHS) geometry.

The CHS geometry is a holdover from the early days of the x86 architecture. Figure 3.2
shows the traditional hard disk layout, which consists of a fixed number of read/write heads
that can move across the disk surfaces (or platters). As the disk spins, each head marks out a
circular track on its platter; these tracks collectively make up a cylinder. Each track is broken
down into a series of sectors. Thus, any sector on a hard disk can be uniquely identified by
three numbers: a cylinder number, a head number, and a sector number. The x86 BIOS was
designed to use this three-number CHS identification code. One consequence of this con-
figuration is that the BIOS must know how many cylinders, heads, and sectors the disk has.
Modern hard disks relay this information to the BIOS automatically; but for compatibility
with the earliest hard disks, BIOSs still enable you to set these values manually.

FIGURE 3.2 Hard disks are built from platters, each of which is broken into tracks,
which are broken into sectors.

} Platters

Pivoting arms with
read/write heads \

)/ The BIOS will detect only certain types of disks. Of particular importance,
‘d-rz SCSI disks and (on some computers) serial ATA disks won't appear in the
main BIOS disk-detection screen. These disks are handled by supplemen-
tary BIOSs associated with the controllers for these devices. Some BIOSs
do provide explicit options to add SCSI devices into the boot sequence, so
you can give priority to either ATA or SCSI devices. For those without these
options, SCSI disks generally take second seat to ATA disks.

CHS geometry, unfortunately, has its problems. For one thing, all but the earliest hard
disks use variable numbers of sectors per cylinder—modern disks squeeze more sectors
onto outer tracks than inner ones, fitting more data on each disk. Thus, the CHS geometry
presented to the BIOS by the hard disk is a convenient lie. Worse, because of limits on the
numbers in the BIOS and in the ATA hard disk interface, plain CHS geometry tops out
at 540MB, which is puny by today’s standards. Various patches, such as CHS geometry

Configuring the BIOS and Core Hardware 113

translation, can be used to expand the limit to about 8 GB. Today, though, the preference is
to use logical block addressing (LBA) mode. (Some sources use the expansion linear block
addressing for this acronym.) In this mode, a single unique number is assigned to each sec-
tor on the disk, and the disk’s firmware is smart enough to read from the correct head and
cylinder when given this sector number. Modern BIOSs typically provide an option to use
LBA mode, CHS translation mode, or possibly some other modes with large disks. In most
cases, LBA mode is the best choice. If you must retrieve data from very old disks, though,
you may need to change this option.

ING ing disks between computers can result in problems because of mismatched
CHS geometries claimed in disk structures and by the BIOS. Linux is usually
smart enough to work around such problems, but you may see some odd
error messages in disk utilities like fdisk. If you see messages about incon-
sistent CHS geometries, proceed with caution when using low-level disk
utilities lest you create an inconsistent partition table that could cause prob-
lems, particularly in OSs that are less robust than Linux on this score.

@:ﬂ Because of variability in how different BIOSs handle CHS translation, mov-

Coldplug and Hotplug Devices

Whenever you deal with hardware, you should keep in mind a distinction between two
device types: coldplug and hotplug. These device types differ depending on whether they
can be physically attached and detached when the computer is turned on (that is, “hot”),
versus only when it’s turned off (“cold”).

ING only when the computer is turned off. Attempting to attach or detach such
devices when the computer is running can damage the device or the com-
puter, so do not attempt to do so.

@:ﬁ Coldplug devices are designed to be physically connected and disconnected

Traditionally, components that are internal to the computer, such as the CPU, memory,
PCI cards, and hard disks, have been coldplug devices. A hotplug variant of PCI, however,
has been developed and is used on some systems—mainly on servers and other systems that
can’t afford the downtime required to install or remove a device.

Modern external devices, such as Ethernet, USB, and IEEE-1394 devices, are hotplug; you
can attach and detach such devices as you see fit. These devices rely on specialized Linux soft-
ware to detect the changes to the system as they’re attached and detached. Several utilities help
in managing hotplug devices:

Sysfs The sysfs virtual filesystem, mounted at /sys, exports information about devices so
that user space utilities can access the information.

114 Chapter 3 - Configuring Hardware

) A user space program is one that runs as an ordinary program, whether it

Py OTE runs as an ordinary user or as root. This contrasts with kernel space code,
which runs as part of the kernel. Typically, only the kernel (and hence ker-
nel space code) can communicate directly with hardware. User space pro-
grams are the ultimate users of hardware, though. Traditionally, the /dev
filesystem has provided the main means of interface between user space
programs and hardware; however, the tools described here help expand on
this access, particularly in ways that are useful for hotplug devices.

HAL Daemon The Hardware Abstraction Layer (HAL) Daemon, or hald, is a user space
program that runs at all times (that is, as a daemon) that provides other user space pro-
grams with information about available hardware.

D-Bus The Desktop Bus (D-Bus) provides a further abstraction of hardware information
access. Like hald, D-Bus runs as a daemon. D-Bus enables processes to communicate with
each other as well as to register to be notified of events, both by other processes and by
hardware (such as the availability of a new USB device).

udev Traditionally, Linux has created device nodes as conventional files in the /dev direc-
tory tree. The existence of hotplug devices and various other issues, however, have motivated
the creation of udev: a virtual filesystem, mounted at /dev, which creates dynamic device
files as drivers are loaded and unloaded. You can configure udev through files in /etc/udev,
but the standard configuration is usually sufficient for common hardware.

These tools all help programs work seamlessly in a world of hotplug devices by enabling
the programs to learn about hardware, including receiving notification when the hardware
configuration changes.

Older external devices, such as parallel and RS-232 ports, are officially coldplug in
nature. In practice, many people treat these devices as if they were hotplug, and they can
usually get away with it; but there is a risk of damage, so it’s safest to power down a com-
puter before connecting or disconnecting such a device. When RS-232 or parallel port
devices are hotplugged, they typically aren’t registered by tools such as udev and hald.
Only the ports to which these devices connect are handled by the OS; it’s up to user space
programs, such as terminal programs or the printing system, to know how to communicate
with the external devices.

Configuring Expansion Cards

Many hardware devices require configuration—you must set the IRQ, I/O port, and DMA
addresses used by the device. (Not all devices use all three resources.) Through the mid-1990s,
this process involved tedious changes to jumpers on the hardware. Today, though, you can
configure most options through software.

Configuring Expansion Cards 115

) Even devices that are built into the motherboard are configured through
A ITE the same means used to configure PCI cards.

Configuring PCI Cards

The PCI bus, which is the standard expansion bus for most internal devices, was designed
with Plug-and-Play (PnP)-style configuration in mind; thus, automatic configuration of PCI
devices is the rule rather than the exception. For the most part, PCI devices configure them-
selves automatically, and there’s no need to make any changes. You can, though, tweak
how PCI devices are detected in several ways:

= The Linux kernel has an option that affects how it detects PCI devices: Bus Options »
PCI Access Mode. This option has four values: BIOS, which uses the BIOS to do the job;
MMConfig, which uses a protocol of that name to detect PCI devices; Direct, which uses
a Linux-specific direct-detection system; and Any, which tries MMConfig followed by
Direct followed by BIOS detection. In most cases, Any is the most appropriate option;
however, if your devices aren’t being detected correctly or are being assigned resources
that are causing conflicts, you may want to try experimenting with this option.

= Most BIOSs have PCI options that change the way PCI resources are allocated.
Adjusting these options may help if you run into strange hardware problems with PCI
devices. These options affect only the BIOS detection system, though, and so may work
only if you select BIOS as the PCI-detection method in the kernel.

= Some Linux drivers support options that cause them to configure the relevant hard-
ware to use particular resources. You should consult the drivers’ documentation files
for details of the options they support. You must then pass these options to the kernel
using a boot loader (as described in Chapter 5) or as kernel module options.

= You can use the setpci utility to directly query and adjust PCI devices’ configurations.
This tool is most likely to be useful if you know enough about the hardware to fine-
tune its low-level configuration; it’s not often used to tweak the hardware’s basic IRQ,
I/0 port, or DMA options.

In addition to the configuration options, you may want to check how PCI devices are
currently configured. The 1spci command is used for this purpose; it displays all informa-
tion about the PCI busses on your system and all devices connected to those busses. This
command takes several options that fine-tune its behavior. The most common of these are
listed in Table 3.3.

TABLE 3.3 Optionsfor 1spci

Option Effect

-V Increases verbosity of output. This option may be doubled (-vv)
or tripled (-vvv) to produce yet more output.

116 Chapter 3 - Configuring Hardware

TABLE 3.3 Optionsfor Ispci (continued)

Option Effect

-n Displays information in numeric codes rather than translating
the codes to manufacturer and device names.

-nn Displays both the manufacturer and device names and their
associated numeric codes.

-X Displays the PCI configuration space for each device as a hexa-
decimal dump. This is an extremely advanced option. Tripling
(-xxx) or quadrupling (-xxxx) this option displays information
about more devices

-b Shows IRQ numbers and other data as seen by devices rather
than as seen by the kernel.

-t Displays a tree view depicting the relationship between devices.

-s [[[[domain]:]
bus]:][slot] [. [func]]

-d [vendor]: [device]

-i file

--version

Displays only devices that match the listed specification. This
can be used to trim the results of the output.

Shows data on the specified device.

Uses the specified file to map vendor and device IDs to names.
(The default is /usr/share/misc/pci.ids.)

Dumps data in a machine-readable form, intended for use
by scripts. A single -m uses a backward-compatible format,
whereas doubling (-mm) uses a newer format.

Displays PCl domain numbers. These numbers normally aren’t
displayed.

Performs a scan in bus-mapping mode, which can reveal
devices hidden behind a misconfigured PCI bridge. This is an
advanced option that can be used only by root.

Displays version information.

Learning about Kernel Modules

Hardware in Linux is handled by kernel drivers, many of which come in the form of kernel
modules. These are stand-alone driver files, typically stored in the /1ib/modules directory
tree, that can be loaded and unloaded to provide access to hardware. Typically, Linux loads
the modules it needs when it boots, but you may need to load additional modules yourself.

Configuring Expansion Cards 117

You can learn about the modules that are currently loaded on your system by using
1smod, which takes no options and produces output like this:

$ Tsmod

Module Size Used by
isofs 35820 0
zlib_inflate 21888 1 1isofs
floppy 65200 0
nls_iso8859_1 5568 1
nls_cp437 7296 1

vfat 15680 1

fat 49536 1 vfat
sr_mod 19236 0
ide_cd 42848 0

cdrom 39080 2 sr_mod,ide_cd

)r This output has been edited for brevity. Although outputs this short are
P TE possible with certain configurations, they’re rare.

The most important column in this output is the first one, labeled Module; this column
specifies the names of all the modules that are currently loaded. You can learn more about
these modules with modinfo, as described shortly, but sometimes their purpose is fairly
obvious. For instance, the floppy module provides access to the floppy disk drive.

The Used by column of the Tsmod output describes what’s using the module. All the
entries have a number, which indicates the number of other modules or processes that are
using the module. For instance, in the preceding example, the isofs module (used to access
CD-ROM filesystems) isn’t currently in use, as revealed by its 0 value; but the vfat module
(used to read VFAT hard disk partitions and floppies) is being used, as shown by its value of
1. If one of the modules is being used by another module, the using module’s name appears
in the Used by column. For instance, the isofs module relies on the z1ib_inflate module,
so the latter module’s Used by column includes the isofs module name. This information
can be useful when you’re managing modules. For instance, if your system produced the
preceding output, you couldn’t directly remove the z1ib_inflate module because it’s being
used by the isofs module; but you could remove the isofs module, and after doing so you
could remove the z1ib_inflate module. (Both modules would need to be added back to
read most CD-ROMs, though.)

> 4 The Tsmod command displays information only about kernel modules, not
‘dg-rz about drivers that are compiled directly into the Linux kernel. For this rea-
son, a module may need to be loaded on one system but not on another to
use the same hardware because the second system may compile the rel-
evant driver directly into the kernel.

118 Chapter 3 - Configuring Hardware

Loading Kernel Modules

Linux enables you to load kernel modules with two programs: insmod and modprobe. The
insmod program inserts a single module into the kernel. This process requires you to have
already loaded any modules on which the module you’re loading relies. The modprobe pro-
gram, by contrast, automatically loads any depended-on modules and so is generally the
preferred way to do the job.

) In practice, you may not need to use insmod or modprobe to load modules
A OTE because Linux can load them automatically. This ability relies on the kernel’s
module auto-loader feature, which must be compiled into the kernel, and on
various configuration files, which are also required for modprobe and some
other tools. Using insmod and modprobe can be useful for testing new mod-
ules or for working around problems with the auto-loader, though.

In practice, insmod is a fairly straightforward program to use; you type it followed by
the module filename:

insmod /1ib/modules/2.6.26/kernel/drivers/block/floppy.ko

This command loads the floppy . ko module, which you must specify by filename. Modules
have module names, too, which are usually the same as the filename but without the exten-
sion, as in floppy for the floppy.ko file. Unfortunately, insmod requires the full module name.

You can pass additional module options to the module by adding them to the command
line. Module options are highly module-specific, so you must consult the documentation
for the module to learn what to pass. Examples include options to tell an RS-232 serial
port driver what interrupt to use to access the hardware or to tell a video card framebuffer
driver what screen resolution to use.

Some modules depend on other modules. In these cases, if you attempt to load a module
that depends on others and those other modules aren’t loaded, insmod will fail. When this
happens, you must either track down and manually load the depended-on modules or use
modprobe. In the simplest case, you can use modprobe much as you use insmod, by passing it
a module name:

modprobe floppy

As with insmod, you can add kernel options to the end of the command line. Unlike
insmod, you specify a module by its module name rather than its module filename when
you use modprobe. Generally speaking, this helps make modprobe easier to use, as does
the fact that modprobe automatically loads dependencies. This greater convenience means
that modprobe relies on configuration files. It also means that you can use options (placed
between the command name and the module name) to modify modprobe’s behavior:

Be verbose The -v or --verbose option tells modprobe to display extra information about
its operations. Typically, this includes a summary of every insmod operation it performs.

Configuring Expansion Cards 119

Change configuration files The modprobe program uses a configuration file called /etc/
modprobe.conf. You can change the file by passing a new file with the -C filename option,
as in modprobe -C /etc/mymodprobe.conf floppy.

Perform a dry run The -n or --dry-run option causes modprobe to perform checks and
all other operations except the actual module insertions. You might use this option in con-
junction with -v to see what modprobe would do without loading the module. This may be
helpful in debugging, particularly if inserting the module is having some detrimental effect,
such as disabling disk access.

Remove modules The -r or --remove option reverses modprobe’s usual effect; it causes the
program to remove the specified module and any on which it depends. (Depended-on mod-
ules are not removed if they’re in use.)

Force loading The -f or --force option tells modprobe to force the module loading even
if the kernel version doesn’t match what the module expects. This action is potentially dan-
gerous, but it’s occasionally required when using third-party binary-only modules.

Show dependencies The --show-depends option shows all the modules on which the spec-
ified module depends. This option doesn’t install any of the modules; it’s purely informative
in nature.

Show available modules The -1 or --11ist option displays a list of available options whose
names match the wildcard you specify. For instance, typing modprobe -1 v* displays all
modules whose names begin with v. If you provide no wildcard, modprobe displays all avail-
able modules. Like --show-depends, this option doesn’t cause any modules to be loaded.

)r This list of options is incomplete. The others are relatively obscure, so
TE

P you're not likely to need them often. Consult the modprobe man page for
more information.

Removing Kernel Modules

In most cases, you can leave modules loaded indefinitely; the only harm that a module
does when it’s loaded but not used is to consume a small amount of memory. (The 1smod
program shows how much memory each module consumes.) Sometimes, though, you may
want to remove a loaded module. Reasons include reclaiming that tiny amount of memory,
unloading an old module so you can load an updated replacement module, and removing a
module that you suspect is unreliable.

The work of unloading a kernel module is done by the rmmod command, which is some-
thing of the opposite of insmod. The rmmod command takes a module name as an option,
though, rather than a module filename:

rmmod floppy

120 Chapter 3 - Configuring Hardware

This example command unloads the floppy module. You can modify the behavior of
rmmod in various ways:

Be verbose Passing the -v or --verbose option causes rmmod to display some extra infor-
mation about what it’s doing. This may be helpful if you’re troubleshooting a problem.

Force removal The -f or --force option forces module removal even if the module is
marked as being in use. Naturally, this is a very dangerous option, but it’s sometimes help-
ful if a module is misbehaving in some way that’s even more dangerous. This option has no
effect unless the CONFIG_MODULE_FORCE_UNLOAD kernel option is enabled.

Wait until unused The -w or --wait option causes rmmod to wait for the module to
become unused, rather than return an error message, if the module is in use. Once the mod-
ule is no longer being used (say, after a floppy disk is unmounted if you try to remove the
floppy module), rmmod unloads the module and returns. Until then, rmmod doesn’t return,
making it look like it’s not doing anything.

A few more rmmod options exist; consult the rmmod man page for details.

Like insmod, rmmod operates on a single module. If you try to unload a module that’s
depended on by other modules or is in use, rmmod will return an error message. (The -w option
modifies this behavior, as just described.) If the module is depended on by other modules,
those modules are listed, so you can decide whether to unload them. If you want to unload an
entire module stack—that is, a module and all those upon which it depends—you can use the
modprobe command and its -r option, as described earlier in “Loading Kernel Modules.”

Configuring USB Devices

Modern computers invariably ship with USB ports, and USB is now an extremely popular
(perhaps the most popular) external interface form. This fact means you must understand
something about USB, including USB itself, Linux’s USB drivers, and Linux’s USB manage-
ment tools.

USB Basics

USB is a protocol and hardware port for transferring data to and from devices. It allows for
many more (and varied) devices per interface port than either ATA or SCSI and gives better
speed than RS-232 serial and parallel ports. The USB 1.0 and 1.1 specifications allow for
up to 127 devices and 12Mbps of data transfer. USB 2.0 allows for much higher transfer
rates—480Mbps, to be precise.

Data transfer speeds may be expressed in bits per second (bps) or multiples
P TE thereof, such as megabits per second (Mbps); or in bytes per second (B/s) or
multiples thereof, such as megabytes per second (MB/s). In most cases, there

are 8 bits per byte, so multiplying or dividing by eight may be necessary if
you're trying to compare speeds of devices that use different measures.

Configuring USB Devices 121

USB is the preferred interface method for many external devices, including printers,
scanners, mice, digital cameras, and music players. USB keyboards, Ethernet adapters,
modems, speakers, hard drives, and other devices are also available, although USB has yet
to dominate these areas as it has some others.

Most computers ship with four to eight USB ports. (A few years ago, two USB ports were
more common.) Each port can handle one device by itself, but you can use a USB hub to con-
nect several devices to each port. Thus, you can theoretically connect huge numbers of USB
devices to a computer. In practice, you may run into speed problems, particularly if you’re
using USB 1.x for devices that tend to transfer a lot of data, such as scanners, printers, or
hard drives.

to connect a high-speed USB 2.0 device, buy a separate USB 2.0 board.
You can use this board for the USB 2.0 device and either disable the
onboard USB 1.x ports or use them for slower devices.

g/ If you've got an older computer that only supports USB 1.x, and you want
P

Linux USB Drivers

Several different USB controllers are available, with names such as UHCI, OHCI, EHCI,
and R8A66597. Modern Linux distributions ship with the drivers for the common USB
controllers enabled, so your USB port should be activated automatically when you boot the
computer. The UHCI and OHCI controllers handle USB 1.x devices, but most other con-
trollers can handle USB 2.0 devices. Note that these controllers merely provide a means to
access the actual USB devices (mice, printers, and so on). Chances are you’ll be most inter-
ested in the tools and utilities that enable you to use these devices.

You can learn a great deal about your devices by using the Tsusb utility. A simple use of
this program with no options reveals basic information about your USB devices:

$ 1susb

Bus 003 Device 008: ID 0686:400e Minolta Co., Ltd

Bus 003 Device 001: ID 0000:0000

Bus 002 Device 002: ID 046d:c401 Logitech, Inc. TrackMan Marble Wheel
Bus 002 Device 001: ID 0000:0000

Bus 001 Device 001: ID 0000:0000

In this example, three USB busses are detected (001, 002, and 003). The first bus has
no devices attached, but the second and third each have one device—a Logitech TrackMan
Marble Wheel trackball and a Minolta DIMAGE Scan Elite 5400 scanner, respectively. (The
scanner’s name isn’t fully identified by this output, except insofar as the ID number encodes
this information.) You can gather additional information by using various options to Tsusb:

Be verbose The -v option produces extended information about each product.

Restrict bus and device number Using the -s [[bus] :][devnum] option restricts output to
the specified bus and device number.

122 Chapter 3 - Configuring Hardware

Restrict vendor and product You can limit output to a particular vendor and product by
using the -d [vendor]: [product] option. The vendor and product are the codes just after
ID on each line of the basic 1susb output.

Display device by filename Using -D filename displays information about the device
that’s accessible via filename, which should be a file in the /proc/bus/usb directory tree.
This directory provides a low-level interface to USB devices, as described shortly.

Tree view The -t option displays the device list as a tree, so that you can more easily see
what devices are connected to specific controllers.

Version The --version option displays the version of the Tsusb utility and exits.

Early Linux USB implementations required a separate driver for every USB device. Many
of these drivers remain in the kernel, and some software relies on them. For instance, USB
disk storage devices use USB storage drivers that interface with Linux’s SCSI support, making
USB hard disks, removable disks, and so on look like SCSI devices.

Linux is migrating toward a model in which a USB filesystem provides access to USB
devices. This filesystem appears as part of the /proc virtual filesystem. In particular,
USB device information is accessible from /proc/bus/usb. Subdirectories of /proc/bus
/usb are given numbered names based on the USB controllers installed on the computer,
as in /proc/bus/usb/001 for the first USB controller. Software can access files in these
directories to control USB devices rather than use device files in /dev as with most hard-
ware devices.

USB Manager Applications

USB can be challenging for OSs because it was designed as a hot-pluggable technology. The
Linux kernel wasn’t originally designed with this sort of activity in mind, so the kernel relies
on external utilities to help manage matters. Two tools in particular are used for managing
USB devices: usbmgr and hotplug.

The usbmgr package (located at http://www.dotaster.com/~shuu/Tinux/usbmgr/) is
a program that runs in the background to detect changes on the USB bus. When it detects
changes, it loads or unloads the kernel modules that are required to handle the devices. For
instance, if you plug in a USB Zip drive, usbmgr will load the necessary USB and SCSI disk
modules. This package uses configuration files in /etc/usbmgr to handle specific devices
and /etc/usbmgr/usbmgr. conf to control the overall configuration.

With the shift from in-kernel device-specific USB drivers to the USB device filesystem
(/proc/bus/usb), usbmgr has been declining in importance. In fact, it may not be installed
on your system. Instead, most distributions rely on the Hotplug package (http://Tinux-
hotplug.sourceforge.net), which relies on kernel support added with the 2.4.x kernel
series. This system uses files stored in /etc/hotplug to control the configuration of specific
USB devices. In particular, /etc/hotpTlug/usb.usermap contains a database of USB device
IDs and pointers to scripts in /etc/hotplug/usb that are run when devices are plugged in
or unplugged. These scripts might change permissions on USB device files so that ordinary
users can access USB hardware, run commands to detect new USB disk devices, or other-
wise prepare the system for a new (or newly removed) USB device.

Configuring Hard Disks 123

Configuring Hard Disks

Hard disks are among the most important components in your system. Three different hard
disk interfaces are common on modern computers: Parallel Advanced Technology Attach-
ment (PATA), a.k.a. ATA; Serial Advanced Technology Attachment (SATA); and Small
Computer System Interface (SCSI). In addition, external USB and IEEE-1394 drives are
available, as well as external variants of SATA and SCSI drives. Each has its own method of
low-level configuration.

Configuring PATA Disks

PATA disks once ruled the roost in the x86 PC world, but today they’re fast giving way to
SATA disks. Thus, you’re most likely to encounter PATA disks on slightly older computers—
say, from 2005 or earlier. PATA disks are still readily available, though, and PATA is still
used even in some new computers, particularly for CD-ROM and DVD-ROM drives.

As the full name implies, PATA disks use a parallel interface, meaning that several bits
of data are transferred over the cable at once. Thus, PATA cables are wide, supporting a
total of either 40 or 80 lines, depending on the variety of PATA. You can connect up to two
devices to each PATA connector on a motherboard or plug-in PATA controller, meaning that
PATA cables typically have three connectors—one for the motherboard and two for disks.

PATA disks must be configured as masters or as slaves. This can be done via jumpers on the
disks themselves. Typically, the master device sits at the end of the cable and the slave device
resides on the middle connector. In recent years, a new configuration option has appeared on
PATA disks: cable select. When set to this option, the drive attempts to configure itself auto-
matically based on its position on the PATA cable. Thus, your easiest configuration is usually
to set all PATA devices to use the cable-select option; you can then attach them to whatever
position is convenient, and the drives should configure themselves.

For best performance, disks should be placed on separate controllers rather than config-
ured as master and slave on a single controller, because each PATA controller has a limited
throughput that may be exceeded by two drives. Until recently, most motherboards have
included at least two controllers, so putting each drive on its own controller isn’t a problem
until you install more than two drives in a single computer.

All but the most ancient BIOSs auto-detect PATA devices and provide information about
their capacities and model numbers in the BIOS setup utilities. Until recently, most mother-
boards would boot PATA drives in preference to other drives, although BIOSs have also often
provided options to change this preference in favor of SCSI drives. Thus, in a mixed-drive
setup, you may have to place your boot loader on a PATA drive.

In Linux, PATA disks have traditionally been identified as /dev/hda, /dev/hdb, and so
on, with /dev/hda being the master drive on the first controller, /dev/hdb being the slave
drive on the first controller, and so on. Thus, gaps can occur in the numbering scheme—if
you’ve got master disks on the first and second controllers but no slave disks, your system
will contain /dev/hda and /dev/hdc, but no /dev/hdb. Partitions are identified by numbers
after the main device name, as in /dev/hdal, /dev/hdb2, and so on.

124 Chapter 3 = Configuring Hardware

The naming rules for disks also apply to optical media, except that these media aren’t
typically partitioned. Most Linux distributions also create a link to your optical drive under
the name /dev/cdrom or /dev/dvd. Removable PATA disks, such as Zip disks, are given
identifiers as if they were fixed PATA disks, optionally including partition identifiers.

Recently, Linux drivers have appeared that treat PATA disks as if they were SCSI disks.
Thus, you may find that your device filenames follow the SCSI rules rather than the PATA
rules even if you have PATA disks.

Configuring SATA Disks

SATA is a newer interface than PATA, but SATA is rapidly displacing PATA as the interface
of choice. New motherboards typically host four or more SATA interfaces, often at the
expense of PATA interfaces.

SATA disks connect to their motherboards or controllers on a one-to-one basis—unlike
PATA, you can’t connect more than one disk to a single cable. This fact simplifies configu-
ration; there typically aren’t jumpers to set, and you needn’t be concerned with the position
of the disk on the cable.

As the word serial in the expansion of SATA implies, SATA is a serial bus—only one bit
of data can be transferred at a time. SATA transfers more bits per unit time on its data line,
though, so SATA is faster than PATA (187-375 MB/s for SATA vs. 16-133 MB/s for PATA;
but these are theoretical maximums that are unlikely to be achieved in real-world situa-
tions). Because of SATA’s serial nature, SATA cables are much thinner than PATA cables.

Modern BIOSs detect SATA disks and provide information about them just as they do
for PATA disks. The BIOS may provide boot order options, too. Older BIOSs are likely to be
more limited. This is particularly true if your motherboard doesn’t provide SATA support but
you use a separate SATA controller card. You may be able to boot from an SATA disk in such
cases if your controller card supports this option, or you may need to use a PATA boot disk.

Most Linux SATA drivers treat SATA disks as if they were SCSI disks, so you should
read the next section, “Configuring SCSI Disks,” for information about device naming.
Some older drivers treat SATA disks like PATA disks, so you may need to use PATA names.

Configuring SCSI Disks

There are many types of SCSI definitions, which use a variety of different cables and operate
at various speeds. SCSI is traditionally a parallel bus, like PATA, although the latest variant,
Serial Attached SCSI (SAS), is a serial bus like SATA. SCSI has traditionally been considered a
superior bus to PATA; however, the cost difference has risen dramatically over the past decade,
so few people today use SCSI. You may find it on older systems or on very high-end systems.

SCSI supports up to 8 or 16 devices per bus, depending on the variety. One of these
devices is the SCSI host adapter, which either is built into the motherboard or comes as a
plug-in card. In practice, the number of devices you can attach to a SCSI bus is more limited
because of cable-length limits, which vary from one SCSI variety to another. Each device has
its own ID number, typically assigned via a jumper on the device. You must ensure that each
device’s ID is unique. Consult its documentation to learn how to set the ID.

Configuring Hard Disks 125

SCSI hard disks aren’t detected by the standard x86 BIOS. You can still boot from a
SCSI hard disk if your SCSI host adapter has its own BIOS that supports booting. Most
high-end SCSI host adapters have this support, but low-end SCSI host adapters don’t have
BIOSs. If you use such a host adapter, you can still attach SCSI hard disks to the adapter,
and Linux can use them, but you’ll need to boot from a PATA or SATA hard disk.

SCSI IDs aren’t used to identify the corresponding device file on a Linux system. Hard
drives follow the naming system /dev/sdx (where x is a letter from a up), SCSI tapes are
named /dev/stx and /dev/nstx (where x is a number from 0 up), and SCSI CD-ROM:s and
DVD-ROMs are named /dev/scdx (where x is a number from 0 up).

SCSI device numbering (or lettering) is usually assigned in increasing order based on the
SCSIID. If you have one hard disk with a SCSI ID of 2 and another hard disk with a SCSI ID
of 4, they will be assigned to /dev/sda and /dev/sdb, respectively. The real danger is if you
add a third SCSI drive and give it an ID of 0, 1, or 3. This new disk will become /dev/sda (for
an ID of 0 or 1) or /dev/sdb (for ID 3), bumping up one or both of the existing disks’ Linux
device identifiers. For this reason, it’s usually best to give hard disks the lowest possible SCSI
IDs so that you can add future disks using higher IDs.

)’ The mapping of Linux device identifiers to SCSI devices depends in part on
,&TE the design of the SCSI host adapter. Some host adapters result in assignment

starting from SCSI ID 7 and working down to 0 rather than the reverse, with

Wide SCSI device numbering continuing on from there to IDs 14 through 8.

Another complication is when you have multiple SCSI host adapters. In this case, Linux
assigns device filenames to all of the disks on the first adapter followed by all those on the
second adapter. Depending on where the drivers for the SCSI host adapters are found (com-
piled directly into the kernel or loaded as modules) and how they’re loaded (for modular
drivers), you may not be able to control which adapter takes precedence.

ING SATA disks, are mapped onto the Linux SCSI subsystem. This can cause a
true SCSI hard disk to be assigned a higher value than you’d expect if you
use such “pseudo-SCSI” devices.

@:ﬂ Remember that some non-SCSI devices, such as USB disk devices and

The SCSI bus is logically one-dimensional—that is, every device on the bus falls along a
single line. This bus must not fork or branch in any way. Each end of the SCSI bus must be
terminated. This refers to the presence of a special resistor pack that prevents signals from
bouncing back and forth along the SCSI chain. Consult your SCSI host adapter and SCSI
devices’ manuals to learn how to terminate them. Remember that both ends of the SCSI
chain must be terminated, but devices mid-chain must not be terminated. The SCSI host
adapter qualifies as a device, so if it’s at the end of the chain, it must be terminated.

Modern SCSI devices usually include a jumper or other setting to enable or disable termina-
tion. Older internal devices use comb-shaped resister packs that you insert or remove to termi-
nate the device, and older external devices use external terminators that attach to one of the

126 Chapter 3 - Configuring Hardware

device’s two SCSI connectors. (A few external SCSI devices are permanently terminated and
have just one SCSI connector.)

Incorrect termination often results in bizarre SCSI problems, such as an inability to
detect SCSI devices, poor performance, or unreliable operation. Similar symptoms can
result from the use of poor-quality SCSI cables or cables that are too long.

Configuring External Disks

External disks come in several varieties, the most common of which are USB, IEEE-1394,
and SCSI. SCSI has long supported external disks directly, and many SCSI host adapters
have both internal and external connectors. You configure external SCSI disks just like
internal disks, although the physical details of setting the SCSI ID number and termination
may differ; consult your devices” manuals for details.

Linux treats external USB and IEEE-1394 disks just like SCSI devices, from a software
point of view. Typically, you can plug the device in, see a /dev/sdx device node appear,
and use it as you would a SCSI disk. This is the case for both true external hard disks and
media such as solid state USB pen drives.

Y/ External drives are easily removed, and this can be a great convenience;

ING however, you should never unplug an external drive until you’ve unmounted
the disk in Linux using the umount command, as described in Chapter 5. Fail-
ure to unmount a disk is likely to result in damage to the filesystem, including
lost files. In addition, although USB and IEEE-1394 busses are hot-pluggable,
most SCSI busses aren’t, so connecting or disconnecting a SCSI device while
the computer is running is dangerous. (Inserting or ejecting a removable
SCSI disk, such as a Zip disk, is safe, however.)

Designing a Hard Disk Layout

Whether your system uses PATA, SATA, or SCSI disks, you must design a disk layout for
Linux. If you’re using a system with Linux preinstalled, you may not need to deal with this
task immediately; however, sooner or later you’ll have to install Linux on a new computer
or one with an existing OS or upgrade your hard disk. The next few pages describe the x86
partitioning scheme, Linux mount points, and common choices for a Linux partitioning
scheme. The upcoming section “Creating Partitions and Filesystems” covers the mechanics
of creating partitions.

Why Partition?

The first issue with partitioning is the question of why you should do it. The answer is that
partitioning provides a variety of advantages, including the following:

Multi-OS support Partitioning enables you to keep the data for different OSs separate.
In fact, many OSs can’t easily co-exist on the same partition because they don’t support

Designing a Hard Disk Layout 127

each other’s primary filesystems. This feature is obviously important only if you want the
computer to boot multiple OSs. It can still be handy to help maintain an emergency system,
though—ryou can install a single OS twice, using the second installation as an emergency
maintenance tool for the first in case problems develop.

Filesystem choice By partitioning your disk, you can use different filesystems—data struc-
tures designed to hold all the files on a partition—on each partition. Perhaps one filesystem
is faster than another and so is important for time-critical or frequently accessed files, but
another may provide accounting or backup features you want to use for users’ data files.

Disk space management By partitioning your disk, you can lock certain sets of files into a
fixed space. For instance, if you restrict users to storing files on one or two partitions, they
can fill those partitions without causing problems on other partitions, such as system parti-
tions. This feature can help keep your system from crashing if space runs out. On the other
hand, if you get the partition sizes wrong, it can cause lesser problems much sooner than
would be the case if you’d used fewer partitions.

Disk error protection Disks sometimes develop problems. These problems can be the
result of bad hardware or of errors that creep into the filesystems. In either case, splitting a
disk into partitions provides some protection against such problems. If data structures on
one partition become corrupted, these errors affect only the files on that disk. This separa-
tion can therefore protect data on other partitions and simplify data recovery.

Security You can use different security-related mount options on different partitions. For
instance, you might mount a partition that holds critical system files read-only, preventing
users from writing to that partition. Linux’s file security options should provide similar
protection, but taking advantage of Linux filesystem mount options provides redundancy
that can be helpful in case of an error in setting up file or directory permissions.

Backup Some backup tools work best on whole partitions. By keeping partitions small,
you may be able to back up more easily than you could if your partitions were large.

In practice, most Linux computers use several partitions, although precisely how the
system is partitioned varies from one system to another. (The upcoming section “Common
Partitions and Filesystem Layouts” describes some possibilities.)

Types of Disk Partitions

The x86 architecture dates back to the 1980s, when a big hard disk was about 10MB in
size. In such an environment, creating lots of partitions on the disk seemed pointless, so the
original x86 partitioning scheme supported just four partitions. Today, these four parti-
tions are known as primary partitions. Some OSs, such as DOS and Windows, must boot
from a primary partition. Linux isn’t so limited, but using one or more primary partitions
for some (or even all) of Linux’s partition needs is common.

As hard disks grew larger and OSs more plentiful, the four-partition limit of the origi-
nal x86 partitioning scheme became a problem. To work around the issue while maintain-
ing backward compatibility, the x86 partitioning scheme was extended by using a single

128 Chapter 3 - Configuring Hardware

primary partition as a placeholder for an arbitrary number of additional partitions. The
placeholder partition is known as an extended partition, and the partitions it contains

are called logical partitions. The x86 partitioning system supports an arbitrary number of
logical partitions, but because they’re all contained within a single extended partition, the
logical partitions must all be contiguous with one another. Figure 3.3 depicts this scheme,
although the specific partition sizes, locations, and number of partitions are arbitrary.

FIGURE 3.3 The x86 partitioning system uses up to four primary partitions, one of
which can be a placeholder extended partition that contains logical partitions.

Second primary partition/extended partition

First primary))) Third primary
partition First logical Second logical partition

partition partition

Under Linux, primary and extended partitions are assigned numbers from 1 to 4, as in
/dev/hdal or /dev/sdb3 for the first primary partition on the first PATA disk or the third
primary partition on the second SCSI disk, respectively. These numbers are fixed, and num-
bers can be skipped. For instance, a disk might have /dev/hdal and /dev/hda3, but not
/dev/hda2 or /dev/hda4.

Logical partitions are assigned numbers from 5 up, as in /dev/hda5 or /dev/sdb5. These
numbers are assigned sequentially, and numbers aren’t ordinarily skipped; if a disk has
/dev/hda6, then /dev/hda5 also exists.

For the most part, Linux doesn’t care whether a partition is primary or logical; you can
use either partition type for just about any partition function in Linux. For booting the OS,
you can use either type of partition, but if you put certain Linux files on a logical partition,
you’ll limit your boot loader options. (This topic is described in more detail in Chapter 5.)

In addition to the distinction between primary, extended, and logical partitions, another
class of partition types is important: The x86 partition table supports partition type codes,
which are two-digit hexadecimal numbers that are assigned to specific functions. For
instance, 0x06 is reserved for a certain type of File Allocation Table (FAT) partition, 0x82
denotes a Linux swap partition, and 0x83 indicates a Linux filesystem partition. Some
OSs, such as DOS and Windows, rely on these type codes to determine which partitions
they should try to access. DOS and Windows ignore Linux partitions because of their type
codes, for instance. For the most part, though, Linux ignores partition type codes; you can
try to mount any type of partition. A couple of partial exceptions to this rule exist, though:

= During installation, most Linux distributions pay attention to the partition type codes
to help them guess how the system is configured. Installers and Linux disk utilities also
create partitions with appropriate type codes set.

= Linux relies on the extended partition type codes (0x05 and 0x0f) to identify extended
partitions. You can try to act directly on the extended partition using various utilities,
but for the most part doing so would be a mistake.

Designing a Hard Disk Layout 129

The x86 partition table stores partition information in both CHS and LBA forms. The par-
tition table also records the CHS geometry for the disk. If you use a disk on just one computer,
no problems will result; but if you move a disk from one computer to another, the CHS geom-
etry might change, which can result in confusion. Linux is usually pretty flexible about this
and can generally cope well with such changes. Other OSs aren’t always so flexible.

Although partitioning is usually considered a hard disk tool, some other disk devices
can be partitioned. This practice is most common with certain types of removable disks.
Because most removable disks are treated just like hard disks in Linux, you can partition
them as you see fit; this practice is common with certain types of removable disks, such as
Zip disks and USB pen drives. Other removable disks, such as CD-ROMs and magneto-
optical (MO) disks, aren’t commonly partitioned. Linux doesn’t support partitioning for
some types of disks, such as floppy disks. If you’re in doubt about whether to partition a
particular type of removable disk, try examining a working disk. As root, type fdisk -1
/dev/hdb (change hdb to an appropriate device identifier) to examine the partition table on
a disk. If this command returns partition table information, other disks of this type should
probably be partitioned. The upcoming section “Partitioning a Disk” describes how to use
fdisk in more detail.

@ Real World Scenario

Non-x86 Partitioning Systems

Most non-x86 platforms have their own partitioning systems. Most of these systems are
simpler than the x86 system in that there’s no distinction between primary, extended,
and logical partitions. The basic principles of partitioning are the same across these plat-
forms: The disk is split into multiple partitions for the same reasons x86 systems are par-
titioned, and Linux identifies the partitions in the same way (as /dev/hda2, for instance).
Thus, at a system level, non-x86 partitions work just like x86 partitions.

To manipulate non-x86 partitions, though, you may use different tools. Sometimes
these tools have the same names as the x86 tools, but their operational details may dif-
fer. One tool that’s common across several platforms is GNU Parted (http://www.gnu
.org/software/parted/), which supports x86, Macintosh, and several other types of
partition tables.

Linux can handle about a dozen different partitioning schemes, although x86 distribu-
tions may not have the necessary support compiled by default. The File Systems > Parti-
tion Types kernel configuration area lists the available options, should you need to read
disks created on an unusual platform.

Most computers with an x86-64 CPU use the x86 partitioning scheme; however, some
x86-64 systems, including most Intel-based Macintoshes, use the Globally Unique Identifier
(GUID) Partition Table (GPT) system. Linux can handle GPT partitions just fine, but if you
need to manipulate GPT partition tables, you should use GNU Parted rather than fd1isk.

130 Chapter 3 - Configuring Hardware

An Alternative to Partitions: LVM

An alternative to partitions for some functions is logical volume management (LVM). To
use LVM, you set aside one or more partitions and assign them partition type codes of
0x8e. You then use a series of utilities, such as pvcreate, vgcreate, Tvcreate, and Tvscan,
to manage the partitions (known as physical volumes in this scheme), to merge them into
volume groups, and to create and manage logical volumes within the volume groups. Ulti-
mately, you then access the logical volumes using names you assigned to them in the /dev/
mapper directory, such as /dev/mapper/myvol-home.

LVM sounds complicated, and it is. Why would you want to use it? The biggest advantage
to LVM is that it enables you to easily resize your logical volumes without worrying about the
positions or sizes of surrounding partitions. In a sense, the logical volumes are like files in a
regular filesystem; the filesystem (or volume group, in the case of LVM) manages the alloca-
tion of space when you resize files (or logical volumes). This can be a great boon if you’re not
sure of the optimum starting sizes of your partitions. You can also easily add disk space, in
the form of a new physical disk, to expand the size of an existing volume group.

On the down side, LVM adds complexity, and not all Linux distributions support it out
of the box. LVM can complicate disaster recovery, and if your LVM configuration spans
multiple disks, a failure of one disk will put all files in your volume group at risk. It’s easiest
to configure a system with at least one filesystem (dedicated to /boot, or perhaps the root
filesystem containing /boot) in its own conventional partition, reserving LVM for /home,
/usr, and other filesystems.

Despite these drawbacks, and the fact that LVM isn’t included in the LPIC objectives,
you might consider investigating LVM further in some situations. It’s most likely to be use-
ful if you want to create a system with many specialized filesystems and you want to retain
the option of resizing those filesystems in the future. A second situation where LVM is

handy is if you need to create very large filesystems that are too large for a single physical
disk to handle.

Mount Points

Once a disk is partitioned, an OS must have some way to access the data on the parti-
tions. In DOS and Windows, this is done by assigning a drive letter, such as C: or D:, to
each partition. (DOS and Windows use partition type codes to decide which partitions get
drive letters and which to ignore.) Linux, though, doesn’t use drive letters; instead, Linux
uses a unified directory tree. Each partition is mounted at a mount point in that tree. A
mount point is a directory that’s used as a way to access the filesystem on the partition, and
mounting the filesystem is the process of linking the filesystem to the mount point.

For instance, suppose that a Linux system has three partitions: the root (/) partition,
/home, and /usr. The root partition holds the basic system files, and all other partitions are
accessed via directories on that filesystem. If /home contains users’ home directories, such
as sally and sam, those directories will be accessible as /home/sally and /home/sam once
this partition is mounted at /home. If this partition were unmounted and remounted at
/users, the same directories would become accessible as /users/sally and /users/sam.

Designing a Hard Disk Layout 131

Partitions can be mounted just about anywhere in the Linux directory tree, including on
directories on the root partition as well as directories on mounted partitions. For instance,
if /home is a separate partition, you can have a /home/morehomes directory that serves as a
mount point for another partition.

The upcoming section “Mounting and Unmounting Filesystems” describes the com-
mands and configuration files that are used for mounting partitions. For now, you should
only be concerned with what constitutes a good filesystem layout (that is, what directories
you should split off into their own partitions) and how to create these partitions.

Common Partitions and Filesystem Layouts

So, what directories are commonly split off into separate partitions? Table 3.4 summarizes
some popular choices. Note that typical sizes for many of these partitions vary greatly
depending on how the system is used. Therefore, it’s impossible to make recommendations
on partition size that will be universally acceptable.

TABLE 3.4 Common Partitions and Their Uses

Partition (Mount Point) Typical Size Use
Swap (not mounted) 1.5-2 times sys- Serves as an adjunct to system RAM; is
tem RAM size slow, but enables the computer to run more

or larger programs.

/home 200MB-1000GB Holds users’ data files. Isolating it on a sepa-
(or more) rate partition preserves user data during a
system upgrade. Size depends on the num-
ber of users and their data storage needs.

/boot 20-200MB Holds critical boot files. Creating it as a sepa-
rate partition lets you circumvent limitations
of older BIOSs and boot loaders on hard
disks over 8GB.

/usr 500MB-10GB Holds most Linux program and data files;
this is sometimes the largest partition,
although /home is larger on systems with
many users or if users store large data files.

/usr/Tocal 100MB-3GB Holds Linux program and data files that are
unique to this installation, particularly those
that you compile yourself.

/opt 100MB-5GB Holds Linux program and data files that are
associated with third-party packages, espe-
cially commercial ones.

132 Chapter 3 - Configuring Hardware

TABLE 3.4 Common Partitions and Their Uses (continued)

Partition (Mount Point) Typical Size Use

/var 100MB-500GB Holds miscellaneous files associated with
the day-to-day functioning of a computer.
These files are often transient in nature.
Most often split off as a separate partition
when the system functions as a server that
uses the /var directory for server-related
files like mail queues.

/tmp 100MB-20GB Holds temporary files created by ordinary
users.
/mnt N/A Not a separate partition; rather, it or its

subdirectories are used as mount points for
removable media like floppies or CD-ROMs.

/media N/A Holds subdirectories that may be used as
mount points for removable media, much
like /mnt or its subdirectories.

Some directories—/etc, /bin, /sbin, /1ib, and /dev—should never be placed on sepa-
rate partitions. These directories host critical system configuration files or files without
which a Linux system can’t function. For instance, /etc contains /etc/fstab, the file that
specifies what partitions correspond to what directories, and /bin contains the mount util-
ity that’s used to mount partitions on directories.

)/ The 2.4.x and later kernels include support for a dedicated /dev filesystem,
‘d’TE which obviates the need for files in a disk-based /dev directory; so, in some
sense, /dev can reside on a separate filesystem, although not a separate
partition. The udev utility controls the /dev filesystem in recent versions
of Linux.

Creating Partitions and Filesystems

If you’re installing Linux on a computer, chances are it will present you with a tool to help
guide you through the partitioning process. These installation tools will create the parti-
tions you tell them to create or create partitions sized as the distribution’s maintainers
believe appropriate. If you need to partition a new disk you’re adding, though, or if you

Creating Partitions and Filesystems 133

want to create partitions using standard Linux tools rather than rely on your distribution’s
installation tools, you must know something about the Linux programs that accomplish
this task. Partitioning involves two tasks: creating the partitions and preparing the parti-
tions to be used. In Linux, these two tasks are usually accomplished using separate tools,
although some tools can handle both tasks simultaneously.

@ Real World Scenario

When to Create Multiple Partitions

One problem with splitting off lots of separate partitions, particularly for new administra-
tors, is that it can be difficult to settle on appropriate partition sizes. As noted in Table 3.4,
the appropriate size of various partitions can vary substantially from one system to another.
For instance, a workstation is likely to need a fairly small /var partition (say, 100MB), but a
mail or news server may need a /var partition that’s gigabytes in size. Guessing wrong isn't
fatal, but it is annoying. You'll need to resize your partitions (which is tedious and danger-
ous) or set up symbolic links between partitions so that subdirectories on one partition can
be stored on other partitions. LVM can simplify such after-the-fact changes, but as noted
earlier, LVM adds its own complexity.

For this reason, | generally recommend that new Linux administrators try simple partition
layouts first. The root (/) partition is required, and swap is a very good idea. Beyond this,
/boot can be helpful on hard disks of more than 8GB with older distributions or BIOSs but
is seldom needed with computers or distributions sold since 2000. An appropriate size for
/home is often relatively easy for new administrators to guess, so splitting it off generally
makes sense. Beyond this, | recommend that new administrators proceed with caution.

As you gain more experience with Linux, you may want to break off other directories into
their own partitions on subsequent installations or when upgrading disk hardware. You can
use the du command to learn how much space is used by files within any given directory.

Partitioning a Disk

The traditional Linux tool for disk partitioning is called fdisk. This tool’s name is short
for fixed disk, and the name is the same as a DOS and Windows tool that accomplishes the
same task. (When I mean to refer to the DOS/Windows tool, I capitalize its name, as in
FDISK. The Linux tool’s name is always entirely lowercase.) Both DOS’s FDISK and Linux’s
fdisk are text-mode tools to accomplish similar goals, but the two are very different in
operational details.

Although fdisk is the traditional tool, several others exist. One of these that’s gaining in
popularity is GNU Parted, which can both partition a disk and prepare the partitions for use

134 Chapter 3 - Configuring Hardware

in a single operation. GNU Parted can also resize several partition types without losing data.
Although this operation is risky, dynamic partition resizing can save a lot of time and effort.

Using fdisk

To use Linux’s fdisk, type the command name followed by the name of the disk device you
want to partition, as in fdisk /dev/hda to partition the primary master PATA disk. The
result is an fdisk prompt. On most modern disks, you’ll also see a note telling you that the
number of cylinders is greater than 1024:

fdisk /dev/hda

The number of cylinders for this disk is set to 7297.
There 1is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other 0Ss

(e.g., DOS FDISK, 0S/2 FDISK)

Command (m for help):

At the Command (m for help): prompt, you can type commands to accomplish vari-
ous goals:

Display the current partition table You may want to begin by displaying the current partition
table. To do so, type p. If you only want to display the current partition table, you can type
fdisk -1 /dev/hda (or whatever the device identifier is) at a command prompt rather than
enter fdisk’s interactive mode. This command displays the partition table and then exits.

Create a partition To create a partition, type n. The result is a series of prompts asking for
information about the partition—whether it should be a primary, extended, or logical parti-
tion; the partition’s starting cylinder; the partition’s ending cylinder or size; and so on. The
details of what you’re asked depend in part on what’s already defined. For instance, fdisk
won’t ask you if you want to create an extended partition if one already exists. One fdisk fea-
ture you may find odd is that it measures partition start and end points in cylinders, not mega-
bytes. This is a holdover from the CHS measurements used by the x86 partition table. In most
cases it’s not a problem; you can pick the default start point and then specify the partition size
in megabytes or gigabytes, and fdisk will compute the correct end cylinder.

Delete a partition To delete a partition, type d. The program will ask for the partition
number, which you must enter.

Change a partition’s type When you create a partition, fdisk assigns it a type code of
0x83, which corresponds to a Linux filesystem. If you want to create a Linux swap parti-
tion or a partition for another OS, you can type t to change a partition type code. The pro-
gram then prompts you for a partition number and a type code.

Creating Partitions and Filesystems 135

List partition types Several dozen partition type codes exist, so it’s easy to forget what
they are. Type 1 (that’s a lowercase L) at the main fdisk prompt to see a list of the most
common ones. You can also get this list by typing L when you’re prompted for the partition
type when you change a partition’s type code.

Mark a partition bootable Some OSs, such as DOS and Windows, rely on their partitions
having special bootable flags in order to boot. You can set this flag by typing a, whereupon
fdisk asks for the partition number.

Get help Type m or ? to see a summary of the main fdisk commands.

Exit Linux’s fdisk supports two exit modes. First, you can type q to exit the program
without saving any changes; anything you do with the program is lost. This option is par-
ticularly helpful if you’ve made a terrible mistake. Second, typing w writes your changes to
the disk and exits the program.

As an example, consider deleting a primary, an extended, and a logical partition on a
Zip disk and creating a single new one in their place:

fdisk /dev/sda
Command (m for help): p
Disk /dev/sda: 100 MB, 100663296 bytes

4 heads, 48 sectors/track, 1024 cylinders
Units = cylinders of 192 * 512 = 98304 bytes

Device Boot Start End Blocks Id System
/dev/sdal 1 510 48936 83 Linux
/dev/sda2 511 1024 49344 5 Extended
/dev/sda5 511 1024 49320 83 Linux

Command (m for help): d
Partition number (1-5): 5

Command (m for help): d
Partition number (1-5): 2

Command (m for help): d
Selected partition 1

Command (m for help): n
Command action

e extended

p primary partition (1-4)

136 Chapter 3 - Configuring Hardware

p
Partition number (1-4): 4

First cylinder (1-1024, default 1): 1

Last cylinder or +size or +sizeM or +sizeK (1-1024, default 1024): 1024

Command (m for help): w
The partition table has been altered!

Calling ioct1() to re-read partition table.
Syncing disks.

This process begins with a p command to verify that the program is operating on the
correct disk. With this information in hand, the three existing partitions are deleted. Note
that the first two deletions ask for a partition number, but the third doesn’t, because only
one partition is left. Once this is done, n is used to create a new primary partition. This
example creates a partition numbered 4 because this is the standard for Zip disks. Once
the task is complete, the w command is used to write the changes to disk and exit the pro-
gram. The result of this sequence is a Zip disk with a single primary partition (/dev/sda4)
marked as holding a Linux filesystem.

Using GNU Parted

GNU Parted (http://www.gnu.org/software/parted/) is a cross-platform partitioning
tool—you can use it with non-x86 partition tables as well as x86 partition tables. It also
supports more features than fdisk and is easier to use in some ways. For instance, it mea-
sures disk space in megabytes rather than cylinders. GNU Parted also supports dynamic
partition resizing for several filesystem types, which can be a great convenience. On the
other hand, GNU Parted uses its own way of referring to partitions, which can be confus-
ing. It’s also more finicky about mismatched CHS geometries than is fdisk. Although GNU
Parted isn’t covered on the LPI exam, knowing a bit about it can be handy.

You start GNU Parted much as you start fdisk, by typing its name followed by the
device you want to modify, as in parted /dev/hda to partition /dev/hda. The result is
some brief introductory text followed by a (parted) prompt at which you type commands.
Type ? to see a list of commands, which are multi-character commands similar to Linux
shell commands. For instance, print displays the current partition table, mkpart creates
(makes) a partition, rm removes a partition, move moves a partition, and resize changes a
partition’s size. Some of the more advanced options work on only some filesystem types,
such as Linux’s native ext2fs and ext3fs and the DOS/Windows standby of FAT. (The next
section describes filesystem types in more detail.)

/L Resizing or moving a filesystem can be dangerous. If the resizing code con-
ING tains a bug or if there’s a power failure during the operation, data can be
lost. Thus, | strongly recommend you back up any important data before
resizing or moving a partition. Also, resizing or moving your boot partition
can render the system unbootable until you re-install your boot loader.

Creating Partitions and Filesystems 137

Preparing a Partition for Use

Once a partition is created, you must prepare it for use. This process is often called “making
a filesystem” or “formatting a partition.” It involves writing low-level data structures to disk.
Linux can then read and modify these data structures to access and store files in the parti-
tion. You should know something about the common Linux filesystems and know how to use
filesystem-creation tools to create them.

) The word formatting is somewhat ambiguous. It can refer to either low-/level
Py OTE formatting, which creates a structure of sectors and tracks on the disk media,
or high-level formatting, which creates a filesystem. Hard disks are low-level
formatted at the factory and should never need to be low-level formatted
again. Floppy disks, though, can be both low- and high-level formatted. The
tools described here can high-level format a floppy disk as well as a hard
disk. To low-level format a floppy disk, you must use the fdformat command,
as in fdformat /dev/fd0. This command cannot be used on a hard disk.

Common Filesystem Types

Linux supports quite a few different filesystems, both Linux native and those intended for
other OSs. Some of the latter barely work under Linux, and even when they do work reli-
ably, they usually don’t support all the features that Linux expects in its native filesystems.
Thus, when preparing a Linux system, you’ll use one or more of its native filesystems for
most or all partitions:

Ext2fs The Second Extended File System (ext2fs or ext2) is the traditional Linux native
filesystem. It was created for Linux and was the dominant Linux filesystem throughout the
late 1990s. Ext2fs has a reputation as a reliable filesystem. It has since been eclipsed by other
filesystems, but it still has its uses. In particular, ext2fs can be a good choice for a small
/boot partition, if you choose to use one, and for small (sub-gigabyte) removable disks. On
such small partitions, the size of the journal used by more advanced filesystems can be a real
problem, so the non-journaling ext2fs is a better choice. (Journaling is described in more
detail shortly.) The ext2 filesystem type code is ext2.

Ext3fs The Third Extended File System (ext3fs or ext3) is basically ext2fs with a journal
added. The result is a filesystem that’s as reliable as ext2fs but that recovers from power
outages and system crashes much more quickly. The ext3 filesystem type code is ext3.

Ext4fs The Fourth Extended File System (ext4fs or ext4) is the next-generation version of
this filesystem family. It adds the ability to work with very large disks (those over 32 terabytes)
or very large files (those over 2 terabytes), as well as extensions intended to improve perfor-
mance. As of late 2008, ext4fs is considered experimental, but this will of course change. Its
filesystem type code is ext4dev, but this will change to ext4 when the filesystem is finalized.

ReiserFS This filesystem was designed from scratch as a journaling filesystem for Linux
and is a popular choice in this role. It’s particularly good at handling filesystems with large

138 Chapter 3 - Configuring Hardware

numbers of small files (say, smaller than about 32KB) because ReiserFS uses various tricks to
squeeze the ends of files into each other’s unused spaces. This small savings can add up to a
large percentage of file sizes when files are small. You can use reiserfs as the type code for
this filesystem.

)’ As of Linux kernel version 2.6.26, ReiserFS version 3.x is current. A from-
‘d’TE scratch rewrite of ReiserFS, known as Reiser4, is being developed but has
not yet been integrated into the mainstream kernel.

JES IBM developed the Journaled File System (JES) for its AIX OS and later re-implemented
it on OS/2. The OS/2 version was subsequently donated to Linux. JFS is a technically sophis-
ticated journaling filesystem that may be of particular interest if you’re familiar with AIX or
OS/2 or want an advanced filesystem to use on a dual-boot system with one of these OSs. As
you might expect, this filesystem’s type code is jfs.

XFS Silicon Graphics (SGI) created its Extents File System (XFS) for its IRIX OS and,
like IBM, later donated the code to Linux. Like JFS, XFS is a very technically sophisticated
filesystem. XFS has gained a reputation for robustness, speed, and flexibility on IRIX,

but some of the XFS features that make it so flexible on IRIX aren’t supported well under
Linux. Use xfs as the type code for this filesystem.

In practice, most administrators choose ext3fs or ReiserFS as their primary filesystems;
however, JFS and XFS also work well, and some administrators prefer them, particularly
on large disks that store large files. Hard data on the merits and problems with each filesys-
tem are difficult to come by, and even when they do exist, they’re suspect because filesystem
performance interacts with so many other factors. For instance, as just noted, ReiserFS can
cram more small files into a small space than can other filesystems, but this advantage isn’t
very important if you’ll be storing mostly larger files.

? If you're using a non-x86 platform, be sure to check filesystem develop-
ITE ment on that platform. A filesystem may be speedy and reliable on one
CPU but sluggish and unreliable on another.

In addition to these Linux-native filesystems, you may need to deal with some others
from time to time, including the following:

FAT The File Allocation Table (FAT) filesystem is old and primitive—but ubiquitous.

It’s the only hard disk filesystem supported by DOS and Windows 9x/Me. For this reason,
every major OS understands FAT, making it an excellent filesystem for exchanging data on
removable disks. Two major orthogonal variants of FAT exist: It varies in the size of the
FAT data structure after which the filesystem is named (12-, 16-, or 32-bit pointers), and it
has variants that support long filenames. Linux automatically detects the FAT size, so you
shouldn’t need to worry about this. To use the original FAT filenames, which are limited to
eight characters with an optional three-character extension (the so-called 8.3 filenames),

Creating Partitions and Filesystems 139

use the Linux filesystem type code of msdos. To use Windows-style long filenames, use the
filesystem type code of vfat. A Linux-only long filename system, known as umsdos, sup-
ports additional Linux features—enough that you can install Linux on a FAT partition,
although this practice isn’t recommended except for certain types of emergency disks or to
try Linux on a Windows system.

NTFS The New Technology File System (NTES) is the preferred filesystem for Windows
NT/200x/XP/Vista. Unfortunately, Linux’s NTFS support is rather rudimentary. As of

the 2.6.x kernel series, Linux can reliably read NTFS and can overwrite existing files, but the
Linux kernel can’t write new files to an NTFS partition.

' If you must have good NTFS read/write support for a dual-boot system,
P look into NTFS-3G (http://www.ntfs-3g.org/). This is a read/write NTFS
driver that resides in user space rather than in kernel space. It’s used as the
default NTFS driver by some Linux distributions.

HFS and HFS+ Apple has long used the Hierarchical File System (HFS) with its Mac OS,
and Linux provides full read/write HES support. This support isn’t as reliable as Linux’s
read/write FAT support, though, so you may want to use FAT when exchanging files with
Mac users. Apple has extended HFS to better support large hard disks and many Unix-like
features with its HFS+ (a.k.a. Extended HFS). Linux 2.6.x adds limited HFS+ support; but
this filesystem is still fairly new in the 2.6.x kernels, and write support for it is risky.

ISO-9660 The standard filesystem for CD-ROMs has long been ISO-9660. This filesys-
tem comes in several levels. Level 1 is similar to the original FAT in that it supports only
8.3 filenames. Levels 2 and 3 add support for longer 32-character filenames. Linux sup-
ports ISO-9660 using its 1509660 filesystem type code. Linux’s [ISO-9660 support also
works with the Rock Ridge extensions, which are a series of extensions to ISO-9660 to
enable it to support Unix-style long filenames, permissions, symbolic links, and so on. If a
disc includes Rock Ridge extensions, Linux will automatically detect and use them.

Joliet This filesystem is used much like Rock Ridge, as an extension to ISO-9660, but it’s
technically a separate filesystem. Joliet was created by Microsoft for use by Windows, so it
emphasizes Windows filesystem features rather than Unix/Linux filesystem features. Linux
supports Joliet as part of its 1509660 driver; if a disc contains Joliet but not Rock Ridge,
Linux uses the Joliet filesystem.

UDF The Universal Disc Format (UDF) is the next-generation filesystem for optical discs.
It’s commonly used on DVD-ROMs and recordable optical discs. Linux supports it, but
read/write UDF support is still in its infancy.

As a practical matter, if you’re preparing a hard disk for use with Linux, you should
probably use Linux filesystems only. If you’re preparing a disk that will be used for a dual-
boot configuration, you may want to set aside some partitions for other filesystem types.
For removable disks, you’ll have to be the judge of what’s most appropriate. You might use
ext2fs for a Linux-only removable disk, FAT for a cross-platform disk, or ISO-9660 (per-
haps with Rock Ridge and Joliet) for a CD-R or recordable DVD.

140 Chapter 3 - Configuring Hardware

) ISO-9660 and other optical disc filesystems are created with special tools
P OTE intended for this purpose. Specifically, mkisofs creates an 1ISO-9660 file-
system (optionally with Rock Ridge, Joliet, HFS, and UDF components
added), while cdrecord writes this image to a blank CD-R.

Creating a Filesystem

Most filesystems, including all Linux-native filesystems, have Linux tools that can create
the filesystem on a partition. Typically, these tools have filenames of the form mkfs. fstype,
where fstype is the filesystem type code. These tools can also be called from a front-end
tool called mkfs; you pass the filesystem type code to mkfs using its -t option:

mkfs -t ext3 /dev/hda6b

? For ext2 and ext3 filesystems, the mke2fs program is often used instead of
ITE mkfs. The mke2fs program is just another name for mkfs.ext2.

This command creates an ext3 filesystem on /dev/hda6. Depending on the filesystem,
the speed of the disk, and the size of the partition, this process can take anywhere from
a fraction of a second to a few seconds. Most filesystem-build tools support additional
options, some of which can greatly increase the time required to build a filesystem. In par-
ticular, the -c option is supported by several filesystems. This option causes the tool to per-
form a bad-block check—every sector in the partition is checked to be sure it can reliably
hold data. If it can’t, the sector is marked as bad and isn’t used.

ING chances are the entire hard disk doesn’t have long to live. Sometimes this
sort of problem can result from other issues, though, such as bad cables or
SCSI termination problems.

@:ﬁ If you perform a bad-block check and find that some sectors are bad,

Of the common Linux filesystems, ext2fs and ext3fs provide the most options in their
mkfs tools. (In fact, these tools are one and the same; the program simply creates a filesys-
tem with a journal when it’s called as mkfs.ext3 or when mkfs is called with -t ext3.) You
can type man mkfs.ext2 to learn about these options, most of which deal with obscure and
unimportant features. One obscure option that does deserve mention is -m percent, which
sets the reserved-space percentage. The idea is that you don’t want the disk to completely
fill up with user files; if the disk starts getting close to full, Linux should report that the
disk is full before it really is, at least for ordinary users. This gives the root user the ability
to log in and create new files, if necessary, to help recover the system.

The ext2fs/ext3fs reserved-space percentage defaults to 5 percent, which translates to
quite a lot of space on large disks. You may want to reduce this value (say, by passing -m 2
to reduce it to 2 percent) on your root (/) filesystem and perhaps even lower (1 percent or
0 percent) on some, such as /home. Setting -m 0 also makes sense on removable disks,

Creating Partitions and Filesystems 1M

which aren’t likely to be critical for system recovery and are probably a bit cramped to
begin with.

In addition to providing filesystem-creation tools for Linux-native filesystems, Linux
distributions usually provide such tools for various non-Linux filesystems. The most impor-
tant of these may be for FAT. The main tool for this task is called mkdosfs, but it’s often
linked to the mkfs.msdos and mkfs.vfat names, as well. This program can automatically
adjust the size of the FAT data structure to 12 or 16 bits depending on the device size. You
can override this option with the -F fat-size option, where fat-size is the FAT size in
bits—12, 16, or 32. In fact, this option is required if you want to create a FAT-32 partition,
which is a practical necessity for any partition over 2GB in size and is usually desirable for
partitions over 512MB in size. No special options are required to create a FAT filesystem
that can handle Windows-style (VFAT) long filenames; these are created by the OS.

In Exercise 3.1, you’ll practice creating filesystems using mkfs and related utilities.

Creating Filesystems

Try creating some filesystems on a spare partition or a removable disk. Even a floppy disk
will do, although you won't be able to create journaling filesystems on a floppy disk. The
following steps assume you're using a Zip disk, /dev/sda4; change the device specifica-
tion as necessary. Be sure to use an empty partition! Accidentally entering the wrong
device filename could wipe out your entire system!

This exercise uses a few commands that are described in more detail later in this chapter.
To create some filesystems, follow these steps:

1. Login as root.

2. Use fdisk to verify the partitions on your target disk by typing fdisk -1 /dev/sda.
You should see a list of partitions, including the one you'll use for your tests.

3. Verify that your test partition is not currently mounted. Type df to see the currently
mounted partitions and verify that /dev/sda4 is not among them.

4. Typemkfs -t ext2 /dev/sda4. You should see several lines of status information
appear.

5. Typemount /dev/sda4 /mntto mountthe new filesystem to /mnt. (You may use
another mount point, if you like.)

6. Type df /mnt to see basic accounting information for the filesystem. On a 100MB Zip
disk, you should see that 95,171 blocks are present, 13 blocks are used, and 90,244
blocks are available. The difference between the present and available blocks is
caused by the 5 percent reserved space.

7. Typeumount /mntto unmount the filesystem.

8. Typemkfs -t ext2 -m 0 to create a new ext2 filesystem on the device, but without
any reserved space.

142 Chapter 3 - Configuring Hardware

EXERCISE 3.1 (continued)

9. Repeat steps 5-7. Note that the available space has increased (to 95,158 blocks on a
Zip disk). The available space plus the used space should now equal the total blocks.

10. Repeat steps 4-7, but use a filesystem type code of ext3 to create a journaling file-
system. (This won’t be possible if you use a floppy disk.) Note how much space is
consumed by the journal.

11. Repeat steps 4-7, but use another filesystem, such as JFS or ReiserFS. Note how the
filesystem-creation tools differ in the information they present and in their stated
amounts of available space.

Be aware that, because of differences in how filesystems store files and allocate space,
a greater amount of available space when a filesystem is created may not translate into a
greater capacity to store files.

Creating Swap Space

Some partitions don’t hold files. Most notably, Linux can use a swap partition, which is

a partition that Linux treats as an extension of memory. (Linux can also use a swap file,
which is a file that works in the same way. Both are examples of swap space.) Linux uses
the partition type code of 0x82 to identify swap space, but as with other partitions, this
code is mostly a convenience to keep other OSs from trying to access Linux swap parti-
tions; Linux uses /etc/fstab to define which partitions to use as swap space, as described
in Chapter 4, “Managing Files.”

ING this code refers to a Solaris partition. If you dual-boot between Solaris
and Linux, this double meaning of the 0x82 partition type code can
cause confusion. This is particularly true when installing the OSs. You
may need to use Linux’'s fdisk to temporarily change the partition type
codes to keep Linux from trying to use a Solaris partition as swap space
or to keep Solaris from trying to interpret Linux swap space as a data
partition.

ﬁl‘ Solaris for x86 also uses a partition type code of 0x82, but in Solaris,

Although swap space doesn’t hold a filesystem per se and isn’t mounted in the way that
filesystem partitions are mounted, swap space does require preparation similar to that for
creation of a filesystem. This task is accomplished with the mkswap command, which you
can generally use by passing it nothing but the device identifier:

mkswap /dev/hda7

Maintaining Filesystem Health 143

This example turns /dev/hda7 into swap space. To use the swap space, you must activate
it with the swapon command:

swapon /dev/hda7

To permanently activate swap space, you must create an entry for it in /etc/fstab, as
described in Chapter 4.

Maintaining Filesystem Health

Filesystems can become “sick” in a variety of ways. They can become overloaded with too
much data, they can be tuned inappropriately for your system, or they can become corrupted
because of buggy drivers, buggy utilities, or hardware errors. Fortunately, Linux provides a
variety of utilities that can help you keep an eye on the status of your filesystems, tune their
performance, and fix them.

/4 Many of Linux’s filesystem maintenance tools should be run when the file-
ING system is not mounted. Changes made by maintenance utilities while the
filesystem is mounted can confuse the kernel’s filesystem drivers, result-
ing in data corruption. In the following pages, | mention when utilities can
and can’t be used with mounted filesystems.

Tuning Filesystems

Filesystems are basically just big data structures—they’re a means of storing data on disk in
an indexed method that makes it easy to locate the data at a later time. Like all data struc-
tures, filesystems include design compromises. For instance, a design feature may enable
you to store more small files on disk but might chew up disk space, thus reducing the total
capacity available for storage of larger files. In many cases, you have no choice concern-

ing these compromises, but some filesystems include tools that enable you to set filesystem
options that affect performance. This is particularly true of ext2fs and the related ext3fs
and ext4fs. Three tools are particularly important for tuning these filesystems: dumpe2fs,
tune2fs, and debugfs. The first of these tools provides information about the filesystem,
and the other two enable you to change tuning options.

Obtaining Filesystem Information

You can learn a lot about your ext2 or ext3 filesystem with the dumpe2fs command. This
command’s syntax is fairly straightforward:

dumpe2fs [options] device

The device is the filesystem device file, such as /dev/hda2 or /dev/sdb7. This command
accepts several options, most of which are rather obscure. The most important option is

144 Chapter 3 - Configuring Hardware

probably -h, which causes the utility to omit information about group descriptors. (This
information is helpful in very advanced filesystem debugging but not for basic filesystem
tuning.) For information about additional options, consult the man page for dumpe2fs.

Unless you’re a filesystem expert and need to debug a corrupted filesystem, you’re most
likely to want to use dumpe2fs with the -h option. The result is about three dozen lines of
output, each specifying a particular filesystem option, like these:

Last mounted on: <not available>

Filesystem features: has_journal filetype sparse_super
Filesystem state: clean

Inode count: 657312

Block count: 1313305

Last checked: Thu Jul 3 12:32:23 2008

Check interval: 15552000 (6 months)

Some of these options’ meanings are fairly self-explanatory; for instance, the filesystem
was last checked (with fsck, described in “Checking Filesystems™”) on July 3. Other options
aren’t so obvious; for instance, the Inode count line may be puzzling. (It’s a count of the
number of inodes supported by the filesystem. Each inode contains information for one file,
so the number of inodes effectively limits the number of files you can store.)

The next two sections describe some of the options you may want to change. For now,
you should know that you can retrieve information about how your filesystems are cur-
rently configured using dumpe2fs. You can then use this information when modifying the
configuration; if your current settings seem reasonable, you can leave them alone, but if
they seem ill adapted to your configuration, you can change them.

Unlike many low-level disk utilities, you can safely run dumpe2fs on a filesystem that’s
currently mounted. This can be handy when you’re studying your configuration to decide
what to modify.

Most other filesystems lack an equivalent to dumpe2fs, but XFS provides something with
at least some surface similarities: xfs_info. To invoke it, pass the command the name of
the partition that holds the filesystem you want to check:

xfs_info /dev/sda7
meta-data=/dev/sda7 isize=256 agcount=88, agsize=1032192 blks
= sectsz=512 attr=0

data = bsize=4096 blocks=89915392, imaxpct=25
= sunit=0 swidth=0 blks, unwritten=1

naming =version 2 bsize=4096

Tog =internal bsize=4096 bTocks=8064, version=1

= sectsz=512 sunit=0 blks
realtime =none extsz=65536 blocks=0, rtextents=0

Maintaining Filesystem Health 145

Instead of the partition name, you can pass the mount point, such as /home or /usr/
Tocal. Unlike most filesystem tools, xfs_info requires that the filesystem be mounted. The
information returned by xfs_info is fairly technical, mostly related to block sizes, sector
sizes, and so on.

Another XFS tool is xfs_metadump. This program copies the filesystem’s metadata (file-
names, file sizes, and so on) to a file. For instance, xfs_metadump /dev/sda7 ~/dump-file
copies the metadata to ~/dump-file. This command doesn’t copy actual file contents and
so isn’t useful as a backup tool. Instead, it’s intended as a debugging tool; if the filesystem is
behaving strangely, you can use this command and send the resulting file to XFS developers
for study.

Adjusting Tunable Filesystem Parameters

The tune2fs program enables you to change many of the filesystem parameters that are
reported by dumpe2fs. This program’s syntax is fairly simple, but it hides a great deal of
complexity:

tune2fs [options] device

The complexity arises because of the large number of options that the program accepts.
Each feature that tune2fs enables you to adjust requires its own option:

Adjust the maximum mount count Ext2fs and ext3fs require a periodic disk check with
fsck. This check is designed to prevent errors from creeping onto the disk undetected. You
can adjust the maximum number of times the disk may be mounted without a check with
the -c mounts option, where mounts is the number of mounts. You can trick the system into
thinking the filesystem has been mounted a certain number of times with the -C mounts
option; this sets the mount counter to mounts.

Adjust the time between checks Periodic disk checks are required based on time as well as
the number of mounts. You can set the time between checks with the -i interval option,
where interval is the maximum time between checks. Normally, interval is a number with
the character d, w, or m appended, to specify days, weeks, or months, respectively.

Add ajournal The -j option adds a journal to the filesystem, effectively converting an
ext2 filesystem into an ext3 filesystem. Journal management is described in more detail
shortly, in “Maintaining a Journal.”

Set the reserved blocks The -m percent option sets the percentage of disk space that’s
reserved for use by root. The default value is 5, but this is excessive on multi-gigabyte
hard disks, so you may want to reduce it. You may want to set it to 0 on removable disks
intended to store user files. You can also set the reserved space in blocks, rather than as a
percentage of disk space, with the -r blocks option.

The options described here are the ones that are most likely to be useful. Several other
options are available; consult tune2fs’s man page for details.

As with most low-level disk utilities, you shouldn’t use tune2fs to adjust a mounted
filesystem. If you want to adjust a key mounted filesystem, such as your root (/) filesystem,

146 Chapter 3 - Configuring Hardware

you may need to boot up an emergency disk system, such as the CD-ROM-based Knoppix
(http://www.knoppix.org). Many distributions’ install discs can be used in this capacity,
as well.

If you use XFS, the xfs_admin command is the rough equivalent of tune2fs. Some
options you may want to adjust include the following:

Use version 2 journal format The -j option enables version 2 log (journal) format, which
can improve performance in some situations.

Obtain the filesystem label and UUID You can use the -1 and -u options to obtain the
filesystem’s label (name) and universally unique identifier (UUID), respectively. The name
is seldom used in Linux but can be used in some cases. The UUID is a long code that is
increasingly used by distributions to specify a filesystem to be mounted, as described later,
in “Permanently Mounting Filesystems.”

Set the filesystem label and UUID You can change the filesystem’s label or UUID by using
the -L Tabel or -U wuid option, respectively. The label is at most 12 characters in length.
You’ll normally use the -U option to set the UUID to a known value (such as the UUID the
partition used prior to it being reformatted); or you can use generate as the uuid value to
have xfs_admin create a new UUID. You should 7ot set the UUID to a value that’s in use
on another partition!

In use, xfs_admin might look something like this:

xfs_admin -L av_data /dev/sda7
writing all SBs
new label = "av_data"

This example sets the name of the filesystem on /dev/sda7 to av_data. As with tune2fs,
xfs_admin should only be used on unmounted filesystems.

Interactively Debugging a Filesystem

In addition to reviewing and changing filesystem flags with dumpe2fs and tune2fs, you can
interactively modify a filesystem’s features using debugfs. This program provides the abili-
ties of dumpe2fs, tune2fs, and many of Linux’s normal file-manipulation tools all rolled
into one. To use the program, type its name followed by the device filename corresponding
to the filesystem you want to manipulate. You’ll then see the debugfs prompt:

debugfs /dev/hdall
debugfs:

You can type commands at this prompt to achieve specific goals:

Display filesystem superblock information The show_super_stats or stats command
produces superblock information, similar to what dumpe2fs displays.

Display inode information You can display the inode data on a file or directory by typing
stat filename, where filename is the name of the file.

Maintaining Filesystem Health 147

Undelete a file You can use debugfs to undelete a file by typing undelete inode name,
where inode is the inode number of the deleted file and name is the filename you want to
give to it. (You can use undel in place of undelete if you like.) This facility is of limited
utility because you must know the inode number associated with the deleted file. You can
obtain a list of deleted inodes by typing 1sdel or 1ist_deleted_inodes, but the list may
not provide enough clues to let you zero in on the file you want to recover.

Extract a file You can extract a file from the filesystem by typing write internal-

file external-file, where internal-file is the name of a file in the filesystem you’re
manipulating and external-file is a filename on your main Linux system. This facility can
be handy if a filesystem is badly damaged and you want to extract a critical file without
mounting the filesystem.

Manipulate files Most of the commands described in Chapter 4 work within debugfs. You
can change your directory with cd, create links with 1n, remove a file with rm, and so on.

Obtain help Typing Tist_requests, Tr, help, or ? produces a summary of available
commands.

Exit Typing quit exits from the program.

This summary just scratches the surface of debugfs’s capabilities. In the hands of an
expert, this program can help rescue a badly damaged filesystem or at least extract critical
data from it. To learn more, consult the program’s man page.

ING it on a mounted filesystem, don’t use it unless you have to, and be very
careful when using it. If in doubt, leave the adjustments to the experts. Be
aware that the LPl exam does cover debugfs, though.

ﬁ:ﬁ Although debugfs is a useful tool, it's potentially dangerous. Don’t use

The closest XFS equivalent to debugfs is called xfs_db. Like debugfs, xfs_db provides
an interactive tool to access and manipulate a filesystem; but xfs_db provides fewer tools
that are amenable to novice or intermediate use. Instead, xfs_db is a tool for XFS experts.

Maintaining a Journal

Ext2fs is a traditional filesystem. Although it’s a good performer, it suffers from a major
limitation: After a power failure, a system crash, or another uncontrolled shutdown, the
filesystem could be in an inconsistent state. The only way to safely mount the filesystem
so that you’re sure its data structures are valid is to perform a full disk check on it, as
described in “Checking Filesystems.” This task is usually handled automatically when the
system boots, but it takes time—probably several minutes, or perhaps more than an hour
on a large filesystem or if the computer has many smaller filesystems.

The solution to this problem is to change to a journaling filesystem. Such a filesystem
maintains a journal, which is a data structure that describes pending operations. Prior to
writing data to the disk’s main data structures, Linux describes what it’s about to do in

148 Chapter 3 - Configuring Hardware

the journal. When the operations are complete, their entries are removed from the journal.
Thus, at any given moment the journal should contain a list of disk structures that might
be undergoing modification. The result is that, in the event of a crash or power failure, the
system can examine the journal and check only those data structures described in it. If
inconsistencies are found, the system can roll back the changes, returning the disk to a con-
sistent state without checking every data structure in the filesystem. This greatly speeds the
disk-check process after power failures and system crashes. Today, journaling filesystems
are the standard for most Linux disk partitions. Very small partitions (such as a separate
/boot partition, if you use one) and small removable disks (such as Zip disks) often lack
journals, though.

Four journaling filesystems are common on Linux: ext3fs, ReiserFS, XFS, and JES. Of
these, the last three require little in the way of journal configuration. Ext3fs is a bit differ-
ent; it’s basically just ext2fs with a journal added. This fact means you can add a journal
to an ext2 filesystem, converting it into an ext3 filesystem. This is what the -j option to
tune2fs does, as described earlier in “Adjusting Tunable Filesystem Parameters.”

)’ Although using tune2fs on a mounted filesystem is generally inadvis-
‘d’TE able, it's safe to use its -j option on a mounted filesystem. The result
is a file called . journal that holds the journal. If you add a journal to an
unmounted filesystem, the journal file will be invisible.

Adding a journal alone won’t do much good, though. In order to use a journal, you must
mount the filesystem with the correct filesystem type code—ext3 rather than ext2. (The
upcoming section “Mounting and Unmounting Filesystems” describes how to do this.)

The journal, like other filesystem features, has its own set of parameters. You can
set these with the -J option to tune2fs. In particular, the size=journal-size and
device=external-journal sub-options enable you to set the journal’s size and the device on
which it’s stored. By default, the system creates a journal that’s the right size for the filesys-
tem and stores it on the filesystem itself.

Checking Filesystems

Tuning a filesystem is a task you’re likely to perform every once in a while—say, when
making major changes to an installation. Another task is much more common: checking a
filesystem for errors. Bugs, power failures, and mechanical problems can all cause the data
structures on a filesystem to become corrupted. The results are sometimes subtle, but if
they’re left unchecked, they can cause severe data loss. For this reason, Linux includes tools
for verifying a filesystem’s integrity and for correcting any problems that may exist. The
main tool you’ll use for this purpose is called fsck. This program is actually a front end

to other tools, such as e2fsck (a.k.a. fsck.ext2 and fsck.ext3) or XFS’s xfs_check and
xfs_repair. The syntax for fsck is as follows:

fsck [-sACVRTNP] [-t fstype] [--]1 [fsck-options] filesystems

Maintaining Filesystem Health 149

) The LPI objectives emphasize e2fsck rather than fsck, but because fsck
Py OTE is the more general tool that’s useful on more filesystems, it’'s the form
described in more detail in this book.

The more common parameters to fsck enable you to perform useful actions:

Check all files The -A option causes fsck to check all the filesystems marked to be
checked in /etc/fstab. This option is normally used in system startup scripts.

Indicate progress The -C option displays a text-mode progress indicator of the check pro-
cess. Most filesystem check programs don’t support this feature, but e2fsck does.

Show verbose output The -V option produces verbose output of the check process.

No action The -N option tells fsck to display what it would normally do without actually
doing it.

Set the filesystem type Normally, fsck determines the filesystem type automatically.
You can force the type with the -t fstype flag, though. Used in conjunction with -A,
this causes the program to check only the specified filesystem types, even if others are
marked to be checked. If fstype is prefixed with no, then all filesystems except the
specified type are checked.

Filesystem-specific options Filesystem check programs for specific filesystems often have
their own options. The fsck command passes options it doesn’t understand, or those that
follow a double dash (--), to the underlying check program. Common options include -a
or -p (perform an automatic check), -r (perform an interactive check), and -f (force a full
filesystem check even if the filesystem initially appears to be clean).

Filesystem list The final parameter is usually the name of the filesystem or filesystems
being checked, such as /dev/sda6.

Normally, you run fsck with only the filesystem device name, as in fsck /dev/sda6.
You can add options as needed, however. Check fsck’s man page for less common options.

s Run fsck only on filesystems that are not currently mounted or that are
@;NG mounted in read-only mode. Changes written to disk during normal read/
write operations can confuse fsck and result in filesystem corruption.
Linux runs fsck automatically at startup on partitions that are marked for this in /etc/
fstab, as described later in “Permanently Mounting Filesystems.” The normal behavior
of e2fsck causes it to perform just a quick cursory examination of a partition if it’s been
unmounted cleanly. The result is that the Linux boot process isn’t delayed because of a file-
system check unless the system wasn’t shut down properly. This rule has a couple of excep-
tions, though: e2fsck forces a check if the disk has gone longer than a certain amount of
time without checks (normally six months) or if the filesystem has been mounted more than
a certain number of times since the last check (normally 20). You can change these options

150 Chapter 3 - Configuring Hardware

using tune2fs, as described earlier in “Adjusting Tunable Filesystem Parameters.” There-
fore, you’ll occasionally see automatic filesystem checks of ext2fs and ext3fs partitions even
if the system was shut down correctly.

Journaling filesystems do away with filesystem checks at system startup even if the sys-
tem wasn’t shut down correctly. Nonetheless, these filesystems still require check programs
to correct problems introduced by undetected write failures, bugs, hardware problems, and
the like. If you encounter odd behavior with a journaling filesystem, you might consider
unmounting it and performing a filesystem check—but be sure to read the documentation
first. Some Linux distributions do odd things with some journaling filesystem check pro-
grams. For instance, Mandriva uses a symbolic link from /sbin/fsck.reiserfs to /bin/
true. This configuration speeds system boot times should ReiserFS partitions be marked
for automatic checks, but it can be confusing if you need to manually check the filesystem.
If this is the case, run /sbin/reiserfsck to do the job. Similarly, /sbin/fsck.xfs is usu-
ally nothing but a script that advises the user to run xfs_check or xfs_repair.

Monitoring Disk Use

One common problem with disks is that they can fill up. To avoid this problem, you need
tools to tell you how much space your files are consuming. This is the task of the df and du
programs, which summarize disk use on a partition-by-partition and directory-by-directory
basis, respectively.

Monitoring Disk Use by Partition

The df command’s syntax is as follows:
df [options] [files]

In the simplest case, you can type the command name to see a summary of disk space
used on all of a system’s partitions:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sdb10 5859784 4449900 1409884 76% /
/dev/sdb12 2086264 991468 1094796 48% /opt
/dev/hdal3 2541468 320928 2220540 13% /usr/local
/dev/hda9 15361340 10174596 5186744 67% /home
/dev/hdal0 22699288 13663408 7882820 64% /other/emu

/dev/hda6 101089 22613 74301 24% /boot
/dev/sdb5 1953216 1018752 934464 53% /other/shared
none 256528 0 256528 0% /dev/shm

speaker:/home 6297248 3845900 2451348 62% /speaker/home
//win/music 17156608 8100864 9055744 48% /win/mp3s

Maintaining Filesystem Health 151

This output shows the device file associated with the filesystem, the total amount of space
on the filesystem, the used space on the filesystem, the free space on the filesystem, the percent-
age of space that’s used, and the mount point. Typically, when used space climbs above about
80 percent, you should consider cleaning up the partition. The appropriate ceiling varies from
one system and partition to another, though. The risk is greatest on partitions that hold files
that change frequently—particularly if large files are likely to be created on a partition, even if
only temporarily.

You can fine-tune the effects of df by passing it several options. Each option modifies
the df output in a specific way:

Include all filesystems The -a or --al11 option includes pseudo filesystems with a size of 0
in the output. These filesystems may include /proc, /sys, /proc/bus/usb, and others.

Use scaled units The -h or --human-readable option causes df to scale and label its units;
for instance, instead of reporting a partition as having 5859784 blocks, it reports the size as
5.6G (for 5.6GB). The -H and --s1i options have a similar effect, but they use power-of-10
(1,000, 1,000,000, and so on) units rather than power-of-2 (1,024, 1,048,576, and so on)
units. The -k (--kilobytes) and -m (--megabytes) options force output in their respective
units.

Summarize inodes By default, df summarizes available and used disk space. You can
instead receive a report on available and used inodes by passing the -1 or --inodes option.
This information can be helpful if a partition has very many small files, which can deplete
available inodes sooner than they deplete available disk space.

) The -1 option works well for ext2, ext3, XFS, and some other filesystems

OTE that create a fixed number of inodes when the filesystem is created. Other
filesystems, such as ReiserFS, create inodes dynamically, rendering the
-1 option meaningless.

Local filesystems only The -1 or --Tocal option causes df to omit network filesystems.
This can speed up operation.

Display filesystem type The -T or --print-type option adds the filesystem type to the
information df displays.

Limit by filesystem type The -t fstype or --type=fstype option displays only informa-
tion about filesystems of the specified type. The -x fstype or --exclude-type=fstype
option has the opposite effect; it excludes filesystems of the specified type from the report.

This list is incomplete; consult df’s man page for details about more options. In addition
to these options, you can specify one or more files to df. When you do this, the program
restricts its report to the filesystem on which the specified file or directory exists. For instance,
to learn about the disk space used on the /home partition, you could type df /home. Alterna-
tively, you can give a device filename, as in df /dev/hda9.

152 Chapter 3 - Configuring Hardware

Monitoring Disk Use by Directory

The df command is helpful for finding out which partitions are in danger of becoming
overloaded; but once you’ve obtained this information, you may need to fine-tune the diag-
nosis and track down the directories and files that are chewing up disk space. The tool for
this task is du, which has a syntax similar to that of df:

du [options] [directories]

This command searches directories you specify and reports how much disk space each
is consuming. This search is recursive, so you can learn how much space the directory and
all its subdirectories consume. The result can be a very long listing if you specify directories
with many files, but several options can reduce the size of this output. Others can perform
helpful tasks as well:

Summarize files as well as directories Ordinarily, du reports on the space used by the
files in directories but not the space used by individual files. Passing the -a or --al11 option
causes du to report on individual files as well.

Compute a grand total Adding the -c or --total option causes du to add a grand total to
the end of its output.

Use scaled units The -h or --human-readable option causes du to scale and label its units;
for instance, instead of reporting the total disk space used as 5859784 blocks, it reports the
size as 5.6G (for 5.6GB). The -H and --s1i options have a similar effect, but they use power-
of-10 (1,000, 1,000,000, and so on) units rather than power-of-2 (1,024, 1,048,576, and so
on) units. The -k (--kiTobytes) and -m (--megabytes) options force output in their respec-
tive units.

Count hard links Ordinarily, du counts files that appear multiple times as hard links only
once. This reflects true disk space used, but sometimes you may want to count each link
independently (for instance, if you’re creating a CD-R and the file will be stored once for
each link). To do so, include the -1 (that’s a lowercase L) or --count-Tinks option. (Links
are described in more detail in Chapter 4.)

Limit depth The --max-depth=n option limits the report to n levels. (The subdirectories’
contents are counted even if they aren’t reported.)

Summarize If you don’t want a line of output for each subdirectory in the tree, pass the -s
or --summarize option, which limits the report to those files and directories you specify on
the command line. This option is equivalent to --max=depth=0.

Limit to one filesystem The -x or --one-file-system option limits the report to the cur-

rent filesystem. If another filesystem is mounted within the tree you want summarized, its
contents aren’t included in the report.

This list is incomplete; you should consult du’s man page for information about addi-
tional options.

Mounting and Unmounting Filesystems 153

As an example of du in action, consider using it to discover which of your users is con-
suming the most disk space in /home. Chances are you’re not concerned with the details of
which subdirectories within each home directory are using the space, so you’ll pass the -s
option to the program:

du -s /home/*

12 /home/ellen
35304 /home/freddie
1760 /home/jennie
12078 /home/jjones

0 /home/Tost+found

10110324 /home/mspiggy

In this example, the wildcard character (*) stands for all the directories in /home, thus
producing summaries for all these subdirectories. (For more on this topic, consult Chap-
ter 4.) Clearly, mspiggy (or whoever owns the /home/mspiggy directory) is the biggest
disk space user—or at least, that directory’s contents are consuming the most space. You
could investigate further, say by typing du -s /home/mspiggy/* to learn where the disk
space is being used within the /home/mspiggy directory. In the case of user files, if this
space consumption is a problem, you may want to contact this user instead of trying to
clean it up yourself.

ING gram files should be removed via the system’s package management
system, if you decide to remove them. (This topic is covered in Chapter 2,
“Managing Software.”) If you're not sure what a file is or how it should be
removed, don’t delete it—try a Web search, type man f1ilename, or other-
wise research it to figure out what it is.

ﬁll Many types of files shouldn’t simply be deleted. For instance, most pro-

Mounting and Unmounting Filesystems

Maintaining filesystems is necessary, but the whole reason filesystems exist is to store
files—in other words, to be useful. Under Linux, filesystems are most often used by being
mounted—that is, associated with a directory. This task can be accomplished on a one-
time basis by using tools such as mount (and then unmounted with umount) or persistently
across reboots by editing the /etc/fstab file.

Temporarily Mounting or Unmounting Filesystems

Linux provides the mount command to mount a filesystem to a mount point. The umount
command reverses this process. (Yes, umount is spelled correctly; it’s missing the first n.) In

154 Chapter 3 - Configuring Hardware

practice, using these commands isn’t usually too difficult, but they support a large number
of options.

Syntax and Parameters for mount

The syntax for mount is as follows:
mount [-alrsvw] [-t fstype] [-o options] [device] [mountpoint]

Common parameters for mount support a number of features:

Mount all filesystems The -a parameter causes mount to mount all the filesystems listed
in the /etc/fstab file, which specifies the most-used partitions and devices. The upcoming
section “Permanently Mounting Filesystems” describes this file’s format.

Mount read-only The -r parameter causes Linux to mount the filesystem read-only, even
if it’s normally a read/write filesystem.

Show verbose output As with many commands, -v produces verbose output—the pro-
gram provides comments on operations as they occur.

Mount read/write The -w parameter causes Linux to attempt to mount the filesystem for
both read and write operations. This is the default for most filesystems, but some experi-
mental drivers default to read-only operation. The -0 rw option has the same effect.

Specify the filesystem type Use the -t fstype parameter to specify the filesystem type.
Common filesystem types are ext2 (for ext2fs), ext3 (for ext3fs), ext4dev (for ext4fs devel-
opment code; this will change to ext4 once ext4fs is finalized), reiserfs (for ReiserFS), jfs
(for JFS), xfs (for XFS), vfat (for FAT with VFAT long filenames), msdos (for FAT using only
short DOS filenames), 1509660 (for CD-ROM filesystems), udf (for DVD and some CD-ROM
filesystems), nfs (for NFS network mounts), smbfs (for SMB/CIFS network shares), and cifs
(a newer driver for SMB/CIFS network shares). Linux supports many others. If this param-
eter is omitted, Linux will attempt to auto-detect the filesystem type.

) Linux requires support in the kernel or as a kernel module to mount a
A OTE filesystem of a given type. If this support is missing, Linux will refuse to
mount the filesystem in question.

Mount by label or UUID The -L Tabel and -U uuid options tell mount to mount the file-
system with the specified label or UUID, respectively.

Additional options You can add many options using the -0 parameter. Many of these are
filesystem specific.

Device The device is the device filename associated with the partition or disk device, such
as /dev/hda4, /dev/fdO0, or /dev/cdrom. This parameter is usually required, but it may be
omitted under some circumstances, as described shortly.

Mounting and Unmounting Filesystems 155

Mount point The mountpoint is the directory to which the device’s contents should
be attached. As with device, it’s usually required, but it may be omitted under some
circumstances.

The preceding list of mount parameters isn’t comprehensive; consult the mount man page
for some of the more obscure options. The most common applications of mount use few
parameters because Linux generally does a good job of detecting the filesystem type and the
default parameters work reasonably well. For instance, consider this example:

mount /dev/sdb7 /mnt/shared

This command mounts the contents of /dev/sdb7 on /mnt/shared, auto-detecting the
filesystem type and using the default options. Ordinarily, only root may issue a mount com-
mand; however, if /etc/fstab specifies the user, users, or owner option, an ordinary user
may mount a filesystem using a simplified syntax in which only the device or mount point
is specified, but not both. For instance, a user may type mount /mnt/cdrom to mount a CD-
ROM if /etc/fstab specifies /mnt/cdrom as its mount point and uses the user, users, or
owner option.

) Most Linux distributions ship with auto-mounter support, which causes the
dTE

OS to automatically mount removable media when they're inserted. In GUI
environments, a file browser may also open on the inserted disk. In order to
eject the disk, the user will need to unmount the filesystem by using umount,
as described shortly, or by selecting an option in the desktop environment.

When Linux mounts a filesystem, it ordinarily records this fact in /etc/mtab. This file
has a format similar to that of /etc/fstab and is stored in /etc, but it’s not a configura-
tion file that you should edit. You might examine this file to determine what filesystems are
mounted, though. (The df command, described in more detail in “Monitoring Disk Use by
Partition,” is another way to learn what filesystems are mounted.)

Options for mount

When you do need to use special parameters (via -0 or in /etc/fstab), it’s usually to add
filesystem-specific options. Table 3.5 summarizes the most important filesystem options.
Some of these are meaningful only in the /etc/fstab file.

TABLE 3.5 Important Filesystem Options for the mount Command

Option Supported Filesystems Description

defaults All Causes the default options for this filesystem
to be used. It's used primarily in the /etc/
fstab file to ensure that the file includes an
options column.

156 Chapter 3 - Configuring Hardware

TABLE 3.5

Important Filesystem Options for the mount Command (continued)

Option

Supported Filesystems

Description

Toop

auto or noauto

user or nouser

users

owner

remount

ro

All

All

All

All

All

All

All

Causes the loopback device for this mount
to be used. Allows you to mount a file as if
it were a disk partition. For instance, mount
-t vfat -o loop image.img /mnt/image
mounts the file image.img as if it were a disk.

Mounts or doesn’t mount the filesystem at
boot time or when root issues the mount -a
command. The default is auto, but noauto is
appropriate for removable media. Used in
/etc/fstab.

Allows or disallows ordinary users to mount
the filesystem. The default is nouser, but user
is often appropriate for removable media.
Used in /etc/fstab. When included in this
file, user allows users to type mount /mount-
point (where /mountpoint is the assigned
mount point) to mount a disk. Only the user
who mounted the filesystem may unmount it.

Similar to user, except that any user may
unmount a filesystem once it's been mounted.

Similar to user, except that the user must own
the device file. Some distributions, such as
Red Hat, assign ownership of some device files
(such as /dev/fd0 for the floppy disk) to the
console user, so this can be a helpful option.

Changes one or more mount options without
explicitly unmounting a partition. To use this
option, you issue a mount command on an
already-mounted filesystem but with remount
along with any options you want to change.
This feature can be used to enable or disable
write access to a partition, for example.

Specifies a read-only mount of the filesystem.
This is the default for filesystems that include

no write access and for some with particularly
unreliable write support.

Mounting and Unmounting Filesystems 157

TABLE 3.5 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

rw All read/write Specifies a read/write mount of the filesys-
filesystems tem. This is the default for most read/write

filesystems.

uid=value Most filesystems that Sets the owner of all files. For instance,
don’t support Unix- uid=500 sets the owner to whoever has
style permissions, such Linux user ID 500. (Check Linux user IDs in
as vfat, hpfs, ntfs, the /etc/passwd file.)
and hfs

gid=value Most filesystems that Works like uid=value, but sets the group of all

umask=value

dmask=value

fmask=value

conv=code

don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Most filesystems that
don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Most filesystems that
don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Most filesystems that
don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Most filesystems used
on Microsoft and Apple
0OSs: msdos, umsdos,
vfat, hpfs, and hfs

files on the filesystem. You can find group IDs
in the /etc/group file.

Sets the umask for the permissions on files.
value is interpreted in binary as bits to be
removed from permissions on files. For
instance, umask=027 yields permissions of
750, or —rwxr-x---. Used in conjunction with
uid=value and gid=value, this option lets you
control who can access files on FAT, HPFS,
and many other foreign filesystems.

Similar to umask, but sets the umask for direc-
tories only, not for files.

Similar to umask, but sets the umask for files
only, not for directories.

If code is b or binary, Linux doesn’t modify
the files’ contents. If code is t or text, Linux
auto-converts files between Linux-style and
DOS- or Macintosh-style end-of-line char-
acters. If code is a or auto, Linux applies the
conversion unless the file is a known binary
file format. It's usually best to leave this at its
default value of binary because file conver-
sions can cause serious problems for some
applications and file types.

158 Chapter 3 - Configuring Hardware

TABLE 3.5 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

norock 1509660 Disables Rock Ridge extensions for ISO-9660
CD-ROMs.

nojoliet 1509660 Disables Joliet extensions for ISO-9660
CD-ROMs.

Some filesystems support additional options that aren’t described here. The man page for
mount covers some of these, but you may need to look at the filesystem’s documentation for
some filesystems and options. This documentation may appear in /usr/src/1inux/Docu-
mentation/filesystems or /usr/src/linux/fs/fsname, where fsname is the name of the
filesystem.

Using umount

The umount command is simpler than mount. The basic umount syntax is as follows:
umount [-afnrv] [-t fstype] [device | mountpoint]

Most of these parameters have meanings similar to their meanings in mount, but some
differences deserve mention:

Unmount all Rather than unmount partitions listed in /etc/fstab, the -a option causes
the system to attempt to unmount all the partitions listed in /etc/mtab, the file that holds
information about mounted filesystems. On a normally running system, this operation is
likely to succeed only partly because it won’t be able to unmount some key filesystems, such
as the root partition.

Force unmount You can use the -f option to tell Linux to force an unmount operation
that might otherwise fail. This feature is sometimes helpful when unmounting NFS mounts
shared by servers that have become unreachable.

Fall back to read-only The -r option tells umount that if it can’t unmount a filesystem, it
should attempt to remount it in read-only mode.

Unmount partitions of a specific filesystem type The -t fstype option tells the system
to unmount only partitions of the specified type. You can list multiple filesystem types by
separating them with commas.

The device and mount point You need to specify only the device or only the mountpoint,
not both.

As with mount, normal users can’t ordinarily use umount. The exception is if the partition
or device is listed in /etc/fstab and specifies the user, users, or owner option, in which
case normal users can unmount the device. (In the case of user, only the user who mounted

Mounting and Unmounting Filesystems 159

the partition may unmount it; in the case of owner, the user issuing the command must also
own the device file, as with mount.) These options are most useful for removable-media
devices.

ING (USB “pen drives” or external hard disks). Linux caches accesses to most
filesystems, which means that data may not be written to the disk until some
time after a write command. Because of this, it's possible to corrupt a disk by
ejecting or unplugging it, even when the drive isn’t active. You must always
issue a umount command before ejecting a mounted disk. (GUl unmount
tools do this behind the scenes, so using a desktop’s unmount or eject option
is equivalent to using umount.) After issuing the umount command, wait for
the command to return, and if the disk has activity indicators, wait for them
to stop blinking to be sure Linux has finished using the device. This isn't
an issue for most internal removable media, such as DVD and Zip drives,
because Linux can lock their eject mechanisms, preventing this sort of prob-
lem. Another way to write the cache to disk is to use the sync command; but
because this command does not fully unmount a filesystem, it's not a substi-
tute for umount.

@:ﬂ Be cautious when removing floppy disks or unplugging USB disk-like devices

Permanently Mounting Filesystems

The /etc/fstab file controls how Linux provides access to disk partitions and removable
media devices. Linux supports a unified directory structure in which every disk device (parti-
tion or removable disk) is mounted at a particular point in the directory tree. For instance,
you might access a USB pen drive at /media/pen. The root of this tree is accessed from /.
Directories off this root may be other partitions or disks, or they may be ordinary directories.
For instance, /etc should be on the same partition as /, but many other directories, such as
/home, may correspond to separate partitions. The /etc/fstab file describes how these file-
systems are laid out. (The filename fstab is an abbreviation for filesystem table.)

The /etc/fstab file consists of a series of lines that contain six fields each; the fields are
separated by one or more spaces or tabs. A line that begins with a hash mark (#) is a comment
and is ignored. Listing 3.1 shows a sample /etc/fstab file.

Listing 3.1: Sample /etc/fstab File

#device mount point filesystem options dump fsck
/dev/hdal / ext3 defaults 11
UUID=3631a288-673e-40f5-9e€96-6539fec468e9 \

/jusr reiserfs defaults 00
LABEL=/home /home reiserfs defaults 00
/dev/hdb5 /windows vfat uid=500,umask=0 0 0

/dev/hdc /media/cdrom is09660 users,noauto 00

160 Chapter 3 - Configuring Hardware

/dev/sdal /media/pen auto users,noauto 00
server:/home /other/home nfs users,exec 00
//winsrv/shr /other/win cifs users,credentials=/etc/creds 0 0
/dev/hda4 swap swap defaults 00

The meaning of each field in this file is as follows:

Device The first column specifies the mount device. These are usually device filenames
that reference hard disks, floppy drives, and so on. Most distributions now specify parti-
tions by their labels or UUIDs, as in the LABEL=/home and UUID=3631a288-673e-40f5-
9e96-6539fec468e9 entries in Listing 3.1. When Linux encounters such an entry, it tries
to find the partition whose filesystem has the specified name or UUID and mount it. This
practice can help reduce problems if partition numbers change, but some filesystems lack
these labels. It’s also possible to list a network drive, as in server: /home, which is the
/home export on the computer called server; or //winsrv/shr, which is the shr share on
the Windows or Samba server called winsrv.

Mount point The second column specifies the mount point; in the unified Linux filesys-
tem, this is where the partition or disk will be mounted. This should usually be an empty
directory in another filesystem. The root (/) filesystem is an exception. So is swap space,
which is indicated by an entry of swap.

Filesystem type The filesystem type code is the same as the type code used to mount a file-
system with the mount command. You can use any filesystem type code you can use directly
with the mount command. A filesystem type code of auto lets the kernel auto-detect the file-
system type, which can be a convenient option for removable media devices. Auto-detection
doesn’t work with all filesystems, though.

Mount options Most filesystems support several mount options, which modify how the
kernel treats the filesystem. You may specify multiple mount options, separated by com-
mas. For instance, uid=500,umask=0 for /windows in Listing 3.1 sets the user ID (owner) of
all files to 500 and sets the umask to 0. (User IDs and umasks are covered in more detail
in Chapter 4.) Table 3.3 summarizes the most common mount options. Type man mount or
consult filesystem-specific documentation to learn more.

Backup operation The next-to-last field contains a 1 if the dump utility should back up

a partition or a 0 if it shouldn’t. If you never use the dump backup program, this option is
essentially meaningless. (The dump program was once a common backup tool, but its use is
discouraged today.)

Filesystem check order At boot time, Linux uses the fsck program to check filesystem
integrity. The final column specifies the order in which this check occurs. A 0 means that
fsck should not check a filesystem. Higher numbers represent the check order. The root
partition should have a value of 1, and all others that should be checked should have a
value of 2. Some filesystems, such as ReiserFS, shouldn’t be automatically checked and so
should have values of 0.

Mounting and Unmounting Filesystems 161

If you add a new hard disk or have to repartition the one you’ve got, you’ll probably
need to modify /etc/fstab. You may also need to edit it to alter some of its options. For
instance, setting the user ID or umask on Windows partitions mounted in Linux may be
necessary to let ordinary users write to the partition.

@ Real World Scenario

Managing User-Mountable Media

You may want to give ordinary users the ability to mount certain partitions or removable
media, such as floppies, CD-ROMs, and USB pen drives. To do so, create an ordinary
/etc/fstab entry for the filesystem, but be sure to add the user, users, or owner option
to the options column. Table 3.5 describes the differences between these three options.
Listing 3.1 shows some examples of user-mountable media: /media/cdrom, /media/pen,
/other/home, and /other/win. The first two of these are designed for removable media
and include the noauto option, which prevents Linux from wasting time trying to mount
them when the OS first boots. The second pair of mount points are network file shares
that are mounted automatically at boot time; the users option on these lines enables
ordinary users to unmount and then remount the filesystem, which might be handy if,
say, ordinary users have the ability to shut down the server.

As with any filesystems you want to mount, you must provide mount points—that is, create
empty directories—for user-mountable media. Removable media are usually mounted in
subdirectories of /mnt or /med1a.

The credentials option for the /other/win mount point in Listing 3.1 deserves greater
elaboration. Ordinarily, most SMB/CIFES shares require a username and password as a
means of access control. Although you can use the username=name and password=pass
options to smbfs or cifs, these options are undesirable, particularly in /etc/fstab,
because they leave the password vulnerable to discovery—anybody who can read /etc/
fstab can read the password. The credentials=file option provides an alternative—
you can use it to point Linux at a file that holds the username and password. This file has
labeled lines:

username=hschmidt
password=yiW7t9Td

Of course, the file you specify (/etc/creds in Listing 3.1) must be well protected—it
must be readable only to root and perhaps to the user whose share it describes.

162 Chapter 3 - Configuring Hardware

Summary

Most Linux tools and procedures provide a layer around the hardware, insulating you from
a need to know too many details. Nonetheless, sometimes you’ve got to dig in and config-
ure hardware directly. BIOS settings can control onboard devices such as hard disk control-
lers and USB ports. USB and SCSI devices have their own quirks, and USB in particular is
quickly evolving.

Hard disks are one class of hardware that’s likely to require more attention than most.
Specifically, you must know how to create partitions and prepare filesystems on those
partitions. These tasks are necessary when you install Linux (although most distributions
provide GUI tools to help guide you through this task during installation), when you add
a hard disk, or when you reconfigure an existing system. You should also know something
about boot managers. These programs help get Linux up and running when you turn on a
computer’s power, so they’re unusually critical to Linux operation.

Filesystem management is basic to being able to administer or use a Linux system. The
most basic of these basic tasks are filesystem tasks—the ability to mount filesystems, check
their health, and repair ailing filesystems. Once a filesystem is mounted, you may want to
periodically check to see how full it is, lest you run out of disk space.

Exam Essentials

Summarize BIOS essentials. The BIOS provides two important functions: First, it configures
hardware—both hardware that’s built into the motherboard and hardware on many types of

plug-in cards. Second, the BIOS begins the computer’s boot process, passing control on to the
boot loader in the MBR.

Describe what files contain important hardware information. There are many files under
the /proc filesystem. Many of these files have been mentioned throughout this chapter.
Familiarize yourself with these files, such as /proc/ioports, /proc/interrupts, /proc/
dma, /proc/bus/usb, and others.

Explain Linux’s model for managing USB hardware. Linux uses drivers for USB control-
lers. These drivers in turn are used by some device-specific drivers (for USB disk devices,
for instance) and by programs that access USB hardware via entries in the /proc/bus/usb
directory tree.

Summarize how to obtain information about PCI and USB devices. The Tspci and Tsusb
programs return information about PCI and USB devices, respectively. You can learn man-
ufacturers’ names and various configuration options by using these commands.

Identify common disk types and their features. PATA disks were the most common type
on PCs until about 2005. Since then, SATA disks, which are more easily configured, have
gained substantially in popularity. SCSI disks have long been considered the top-tier disks,
but their high price has kept them out of inexpensive commodity PCs.

Exam Essentials 163

Describe the purpose of disk partitions. Disk partitions break the disk into a handful of

distinct parts. Each partition can be used by a different OS, can contain a different filesys-
tem, and is isolated from other partitions. These features improve security and safety and

can greatly simplify running a multi-OS system.

Summarize important Linux disk partitions. The most important Linux disk partition is
the root (/) partition, which is at the base of the Linux directory tree. Other possible parti-
tions include a swap partition, /home for home directories, /usr for program files, /var for
transient system files, /tmp for temporary user files, /boot for the kernel and other critical

boot files, and more.

Describe commands that help you monitor disk use. The df command provides a one-
line summary of each mounted filesystem’s size, available space, free space, and percentage
of space used. The du command adds up the disk space used by all the files in a specified
directory tree and presents a summary by directory and subdirectory.

Summarize the tools that can help keep a filesystem healthy. The fsck program is a front-
end to filesystem-specific tools such as e2fsck and fsck.jfs. By whatever name, these pro-
grams examine a filesystem’s major data structures for internal consistency and can correct
minor errors.

Explain how filesystems are mounted in Linux. The mount command ties a filesystem
to a Linux directory; once the filesystem is mounted, its files can be accessed as part of
the mount directory. The /etc/fstab file describes permanent mappings of filesystems to
mount points; when the system boots, it automatically mounts the described filesystems
unless they use the noauto option (which is common for removable disks).

164 Chapter 3 - Configuring Hardware

Review Questions

1. What are common IRQs for serial ports? (Select all that apply.)

A 1
B. 3
C. 4
D. 16
2. What tool would you use to disable a motherboard’s sound hardware if you don’t want to
use it?
A. The BIOS

B. The alsact] utility
C. The Tsmod command

D. None of the above; onboard sound devices can’t be disabled

3. What is the purpose of udev?
A. To aid in the development of software
B. To manage the /dev directory tree
C. To load Linux device drivers
D. To store devices’ BIOS configurations in files

4. You’ve just installed Linux on a new computer with a single SATA hard disk. What device
identifier will refer to the disk?

A. /dev/sda

B. /dev/sda or /dev/hda
C. /dev/hda

D. C:

5. Which files contain essential system information such as IRQs, DMA channels, and I/O
addresses? (Select all that apply.)

A. /proc/ioports

B. /proc/ioaddresses
C. /proc/dma

D. /proc/interrupts

10.

Review Questions 165

Typing fdisk -1 /dev/hda on an x86 Linux computer produces a listing of four parti-
tions: /dev/hdal, /dev/hda2, /dev/hda5, and /dev/hda6. Which of the following is true?

A. The disk contains two primary partitions and two extended partitions.
B. Either /dev/hdal or /dev/hda2 is an extended partition.

C. The partition table is corrupted; there should be a /dev/hda3 and a /dev/hda4 before
/dev/hda5s.

D. Ifyouadd a /dev/hda3 with fdisk, /dev/hda5 will become /dev/hda6 and /dev/
hda6 will become /dev/hda7.

A new Linux administrator plans to create a system with separate /home, /usr/Tlocal, and
/etc partitions. Which of the following best describes this configuration?

A. The system won’t boot because /etc contains configuration files necessary to mount
non-root partitions.

B. The system will boot, but /usr/Tocal won’t be available because mounted partitions
must be mounted directly off their parent partition, not in a subdirectory.

C. The system will boot only if the /home partition is on a separate physical disk from the
/usr/local partition.

D. The system will boot and operate correctly, provided each partition is large enough for

its intended use.

Which of the following directories is most likely to be placed on its own hard disk partition?
A. /bin

B. /sbin
C. /mnt
D. /home

You discover that an x86 hard disk has partitions with type codes of 0x0f, 0x82, and 0x83.
Assuming these type codes are accurate, what can you conclude about the disk?

A. The disk holds a partial or complete Linux system.

B. The disk holds DOS or Windows 9x/Me and Windows N'T/200x/XP installations.

C. The disk holds a FreeBSD installation.

D. The disk is corrupt; those partition type codes are incompatible.

You run Linux’s fdisk and modify your partition layout. Before exiting the program, you
realize that you’ve been working on the wrong disk. What can you do to correct this problem?
A. Nothing; the damage is done, so you’ll have to recover data from a backup.

B. Type w to exit fdisk without saving changes to disk.

C. Type q to exit fdisk without saving changes to disk.
D

Type u repeatedly to undo the operations you’ve made in error.

166

1.

12.

13.

14.

15.

Chapter 3 - Configuring Hardware

What does the following command accomplish?
mkfs -t ext2 /dev/sda4

A.
B.

C.

D.

It sets the partition table type code for /dev/sda4 to ext2.

It converts a FAT partition into an ext2fs partition without damaging the partition’s
existing files.

It creates a new ext2 filesystem on /dev/sda4, overwriting any existing filesystem
and data.

Nothing; the -t option isn’t valid, and so it causes mkfs to abort its operation.

Which of the following best summarizes the differences between DOS’s FDISK and
Linux’s fdisk?

A.

Linux’s fdisk is a simple clone of DOS’s FDISK but written to work from Linux rather
than from DOS or Windows.

The two are completely independent programs that accomplish similar goals, although
Linux’s fdisk is more flexible.

DOS’s FDISK uses GUI controls, whereas Linux’s fdisk uses a command-line interface,
but they have similar functionality.

Despite their similar names, they’re completely different tools—DOS’s FDISK handles
disk partitioning, whereas Linux’s fdisk formats floppy disks.

What mount point should you associate with swap partitions?

A.
B.
C.
D.

/
/swap
/boot

None

Which of the following options is used with fsck to force it to use a particular
filesystem type?

A.
B.
C.
D.

Which of the following pieces of information can df not report?

A.

B.
C.
D

How long the filesystem has been mounted
The number of inodes used on an ext3fs partition
The filesystem type of a partition

The percentage of available disk space used on a partition

16.

17.

18.

19.

20.

Review Questions 167

What is an advantage of a journaling filesystem over a conventional (non-journaling)
filesystem?

A. Journaling filesystems are older and better tested than non-journaling filesystems.
B. Journaling filesystems never need to have their filesystems checked with fsck.

C. Journaling filesystems support Linux ownership and permissions; non-journaling file-
systems don’t.

D. Journaling filesystems require shorter disk checks after a power failure or system crash.

To access files on a USB pen drive, you type mount /dev/sdcl /media/pen as root.
Which types of filesystems will this command mount?

A. Ext2fs
B. FAT
C. HFS

D. All of the above

Which of the following /etc/fstab entries will mount /dev/sdb2 as the /home directory
at boot time?

A. /dev/sdb2 reiserfs /home defaults 0 O

B. /dev/sdb2 /home reiserfs defaults 0 O

C. /home reiserfs /dev/sdb2 noauto 0 0

D. /home /dev/sdb2 reiserfs noauto 0 0

What filesystem options might you specify in /etc/fstab to make a removable disk (USB
pen drive, Zip disk, floppy disk, and so on) user-mountable? (Select all that apply.)

A. user
B. users
C. owner
D. owners

What is the minimum safe procedure for removing a USB pen drive, mounted from
/dev/sdbl at /media/pen, from a Linux computer?

A. Type umount /media/pen, wait for the command to return and disk activity lights to
stop, and then unplug the drive.

B. Unplug the drive, and then type umount /media/pen to ensure that Linux registers the
drive’s removal from the system.

C. Unplug the drive, and then type sync /dev/sdbl to flush the caches to ensure prob-
lems don’t develop.

D. Type pendrive-remove, and then quickly remove the disk before its activity light stops
blinking.

168 Chapter 3 - Configuring Hardware

Answers to Review Questions

1. B, C.IRQs 3 and 4 are common defaults for RS-232 serial ports. IRQ 1 is reserved for the
keyboard. Although IRQ 16 exists on modern systems, it didn’t exist on early x86 systems,
and its purpose isn’t standardized.

2. A. Modern BIOSs provide the means to disable many onboard devices, including sound
hardware, in case you don’t want to use them. Although the alsact1 utility mentioned in
option B is real, it’s used to load or store sound card mixer settings, not to disable the sound
hardware. The 1smod command mentioned in option C displays information about loaded
kernel modules, but it doesn’t remove them or disable the hardware they use. Contrary to
option D, on-board sound hardware can usually be disabled.

3. B. The udev software creates and manages a dynamic /dev directory tree, adding entries
to that directory for devices that exist on the target system. The udev software has nothing
to do with software development (option A). It doesn’t load drivers (option C), although
it does respond to the loading of drivers by creating appropriate entries in /dev. It also
doesn’t store BIOS configuration options in a file (option D).

4. B. SATA disks are usually handled by Linux’s SCSI subsystem and so are referred to as /dev
/sdx; however, some drivers handle these disks as if they were PATA disks, and so refer to
them as /dev/hdx. Thus, option B is correct. Option D (C:) is how Windows would likely
refer to the first partition on the disk, but Linux doesn’t use this style of disk identifier.

5. A, C,D. Thereisno /proc/ioaddresses file. All the other files listed contain useful infor-
mation; /proc/ioports holds information about I/O ports, /proc/dma holds information
about DMA port usage, and /proc/interrupts holds information about IRQs.

6. B. Logical partitions are numbered 5 and up, and they reside in an extended partition with
a number between 1 and 4. Therefore, one of the first two partitions must be an extended
partition that houses partitions 5 and 6. Because logical partitions are numbered starting
at 5, their numbers won’t change if /dev/hda3 is subsequently added. The disk holds one
primary, one extended, and two logical partitions.

7. A.The /etc/fstab file contains the mapping of partitions to mount points, so /etc must
be an ordinary directory on the root partition, not on a separate partition. Options B and C
describe restrictions that don’t exist. Option D would be correct if /etc were not a separate
partition.

8. D. The /home directory is frequently placed on its own partition in order to isolate it from
the rest of the system and sometimes to enable use of a particular filesystem or filesystem
mount options. The /bin and /sbin directories should never be split off from the root (/)
filesystem because they contain critical executable files that must be accessible in order to
do the most basic work, including mounting filesystems. The /mnt directory often contains
subdirectories used for mounting floppy disks, CD-ROM:s, and other removable media or
may be used for this purpose itself. It’s seldom used to directly access hard disk partitions,
although it can be used for this purpose.

9.

10.

n.

12.

13.

14.

15.

16.

17.

Answers to Review Questions 169

A. The 0x0f partition type code is one of two valid partition type codes for an extended
partition. (The other is 0x05.) The 0x82 code refers to a Linux swap partition, whereas
0x83 denotes a Linux filesystem partition. Thus, it appears that this disk holds Linux parti-
tions. Windows 9x/Me, Windows N'T/200x/XP, and FreeBSD all use other partition type
codes for their partitions. Partitions exist, in part, to enable different OSs to store their data
side-by-side on the same disk, so mixing several partition types (even for different OSs) on
one disk doesn’t indicate disk corruption.

C. Linux’s fdisk doesn’t write changes to disk until you exit the program by typing w.
Typing q exits without writing those changes, so typing q in this situation will avert disas-
ter. Typing w would be precisely the wrong thing to do. Typing u would do nothing useful
because it’s not an undo command.

C. The mkfs command creates a new filesystem, overwriting any existing data and therefore
making existing files inaccessible. This command doesn’t set the partition type code in the
partition table. The -t ext2 option tells mkfs to create an ext2 filesystem; it’s a perfectly
valid option.

B. Although they have similar names and purposes, Linux’s fdisk isn’t modeled after
DOS’s FDISK. DOS’s FDISK does 7ot have GUI controls. Linux’s fdisk does not format
floppy disks.

D. Swap partitions aren’t mounted in the way filesystems are, so they have no ass