
LPIC-1
Linux Professional

Institute Certification
Study Guide
Second Edition

04836book.indd 1 1/16/09 9:34:31 AM

04836book.indd 2 1/16/09 9:34:32 AM

LPIC-1
Linux Professional

Institute Certification
Study Guide
Second Edition

Roderick W. Smith

04836book.indd 3 1/16/09 9:34:32 AM

Acquisitions Editor: Jeff Kellum
Development Editor: Kim Wimpsett
Technical Editors: Emmett Dulaney and Evan Blomquist
Production Editor: Christine O’Connor
Copy Editor: Tiffany Taylor
Production Manager: Tim Tate
Vice President and Executive Group Publisher: Richard Swadley
Vice President and Publisher: Neil Edde
Assistant Project Manager: Jenny Swisher
Associate Producer: Kit Malone
Quality Assurance: Angie Denny
Book Designer: Judy Fung, Bill Gibson
Compositor: Craig Woods, Happenstance Type-O-Rama
Proofreader: Publication Services, Inc.
Indexer: Ted Laux
Project Coordinator, Cover: Lynsey Stanford
Cover Designer: Ryan Sneed

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-40483-6

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warran-
ties, including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent profes-
sional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom.
The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of fur-
ther information does not mean that the author or the publisher endorses the information the organization or Web
site may provide or recommendations it may make. Further, readers should be aware that Internet Web sites listed
in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data
Smith, Roderick W.
 LPIC-1 : Linux Professional Institute Certification study guide / Roderick W. Smith. — 2nd ed.
 p. cm.
 ISBN 978-0-470-40483-6 (pbk. : CD-ROM)
 1. Electronic data processing personnel—Certification. 2. Linux—Examinations—Study guides. I. Title.
 QA76.3.S4773 2009
 005.4’32—dc22

 2009042577

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John
Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used without
written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

04836book.indd 4 1/16/09 9:34:33 AM

Dear Reader,

Thank you for choosing LPIC-1: Linux Professional Institute Certification Study Guide,
Second Edition. This book is part of a family of premium-quality Sybex books, all of
which are written by outstanding authors who combine practical experience with a gift
for teaching.

Sybex was founded in 1976. More than thirty years later, we’re still committed to producing
consistently exceptional books. With each of our titles we’re working hard to set a new stan-
dard for the industry. From the paper we print on, to the authors we work with, our goal is
to bring you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your comments
and get your feedback on how we’re doing. Feel free to let me know what you think about
this or any other Sybex book by sending me an email at nedde@wiley.com, or if you think
you’ve found a technical error in this book, please visit http://sybex.custhelp.com. Cus-
tomer feedback is critical to our efforts at Sybex.

 Best regards,

 Neil Edde
 Vice President and Publisher
 Sybex, an Imprint of Wiley

04836book.indd 5 1/16/09 9:34:33 AM

04836book.indd 6 1/16/09 9:34:33 AM

Acknowledgments
Although this book bears my name as author, many other people contributed to its creation.
Without their help, this book wouldn’t exist, or at best would exist in a lesser form. Jeff
Kellum was the Acquisitions Editor, and so helped get the book started. Kim Wimpsett, the
Development Editor, and Christine O’Connor, the Production Editor, oversaw the book as
it progressed through all its stages. Emmett Dulaney was the Technical Editor, who checked
the text for technical errors and omissions—but any mistakes that remain are my own.
Tiffany Taylor, the copy editor, helped keep the text grammatical and understandable. The
proofreader, Publications Services, Inc., checked the text for typos. I’d also like to thank
Neil Salkind and others at Studio B, who helped connect me with Wiley to write this book.

About the Author
Roderick W. Smith is a Linux consultant and author. He has written over a dozen
books on Linux, FreeBSD, and computer networking, including the Linux+ Study
Guide and Linux Administrator Street Smarts (both from Sybex). He can be reached
at rodsmith@rodsbooks.com.

04836book.indd 7 1/16/09 9:34:33 AM

04836book.indd 8 1/16/09 9:34:33 AM

Contents at a Glance

Introduction xxi

Assessment Test xxix

Part I The LPI 101 Exam (60 Weights) 1

Chapter 1 Exploring Linux Command-Line Tools 3

Chapter 2 Managing Software 43

Chapter 3 Configuring Hardware 103

Chapter 4 Managing Files 171

Chapter 5 Booting Linux and Editing Files 219

Part II The LPI 102 Exam (60 Weights) 259

Chapter 6 Configuring the X Window System, Localization,
and Printing 261

Chapter 7 Administering the System 323

Chapter 8 Configuring Basic Networking 377

Chapter 9 Writing Scripts, Configuring E-Mail, and Using Databases 421

Chapter 10 Securing Your System 469

Appendix A About the Companion CD 513

Glossary 517

Index 545

04836book.indd 9 1/16/09 9:34:33 AM

04836book.indd 10 1/16/09 9:34:33 AM

Contents
Introduction xxi

Assessment Test xxix

Part I The LPI 101 Exam (60 Weights) 1

Chapter 1 Exploring Linux Command-Line Tools 3

Understanding Command-Line Basics 4
Exploring Your Linux Shell Options 4
Using a Shell 5
Exploring Shell Configuration 11
Using Environment Variables 11
Getting Help 12

Using Streams, Redirection, and Pipes 13
Exploring Types of Streams 14
Redirecting Input and Output 14
Piping Data Between Programs 16
Generating Command Lines 17

Processing Text Using Filters 17
File-Combining Commands 18
File-Transforming Commands 20
File-Formatting Commands 23
File-Viewing Commands 26
File-Summarizing Commands 28

Using Regular Expressions 29
Understanding Regular Expressions 30
Using grep 31
Using sed 32

Summary 34
Exam Essentials 34
Review Questions 36
Answers to Review Questions 40

Chapter 2 Managing Software 43

Package Concepts 44
Using RPM 46

RPM Distributions and Conventions 46
The rpm Command Set 48
Extracting Data from RPMs 52
Using Yum 53

04836book.indd 11 1/11/09 2:27:22 PM

xii Contents

RPM and Yum Configuration Files 57
RPM Compared to Other Package Formats 58

Using Debian Packages 59
Debian Distributions and Conventions 59
The dpkg Command Set 60
Using apt-cache 63
Using apt-get 63
Using dselect, aptitude, and Synaptic 67
Reconfiguring Packages 69
Debian Packages Compared to Other Package Formats 69
Configuring Debian Package Tools 70

Converting Between Package Formats 71
Package Dependencies and Conflicts 72

Real and Imagined Package Dependency Problems 73
Workarounds to Package Dependency Problems 74
Startup Script Problems 76

Managing Shared Libraries 76
Library Principles 77
Locating Library Files 78
Library Management Commands 81

Managing Processes 83
Understanding the Kernel: The First Process 83
Examining Process Lists 83
Understanding Foreground and Background Processes 89
Managing Process Priorities 90
Killing Processes 91

Summary 92
Exam Essentials 93
Review Questions 95
Answers to Review Questions 99

Chapter 3 Configuring Hardware 103

Configuring the BIOS and Core Hardware 104
Understanding the Role of the BIOS 104
IRQs 107
I/O Addresses 109
DMA Addresses 111
Boot Disks and Geometry Settings 111
Coldplug and Hotplug Devices 113

Configuring Expansion Cards 114
Configuring PCI Cards 115
Learning about Kernel Modules 116
Loading Kernel Modules 118
Removing Kernel Modules 119

04836book.indd 12 1/11/09 2:27:22 PM

Contents xiii

Configuring USB Devices 120
USB Basics 120
Linux USB Drivers 121
USB Manager Applications 122

Configuring Hard Disks 123
Configuring PATA Disks 123
Configuring SATA Disks 124
Configuring SCSI Disks 124
Configuring External Disks 126

Designing a Hard Disk Layout 126
Why Partition? 126
Types of Disk Partitions 127
An Alternative to Partitions: LVM 130
Mount Points 130
Common Partitions and Filesystem Layouts 131

Creating Partitions and Filesystems 132
Partitioning a Disk 133
Preparing a Partition for Use 137

Maintaining Filesystem Health 143
Tuning Filesystems 143
Maintaining a Journal 147
Checking Filesystems 148
Monitoring Disk Use 150

Mounting and Unmounting Filesystems 153
Temporarily Mounting or Unmounting Filesystems 153
Permanently Mounting Filesystems 159

Summary 162
Exam Essentials 162
Review Questions 164
Answers to Review Questions 168

Chapter 4 Managing Files 171

Managing Files 172
File Naming and Wildcard Expansion Rules 172
File Commands 174
File Archiving Commands 179
Managing Links 185
Directory Commands 186

Managing File Ownership 187
Assessing File Ownership 188
Changing a File’s Owner 188
Changing a File’s Group 189

Controlling Access to Files 189
Understanding Permissions 189
Changing a File’s Mode 194

04836book.indd 13 1/11/09 2:27:22 PM

xiv Contents

Setting the Default Mode and Group 197
Changing File Attributes 199

Managing Disk Quotas 200
Enabling Quota Support 200
Setting Quotas for Users 201

Locating Files 202
The FHS 202
Tools for Locating Files 206

Summary 210
Exam Essentials 210
Review Questions 212
Answers to Review Questions 216

Chapter 5 Booting Linux and Editing Files 219

Installing Boot Loaders 220
Boot Loader Principles 221
Using LILO as the Boot Loader 222
Using GRUB as the Boot Loader 227

Understanding the Boot Process 232
Extracting Information about the Boot Process 232
Locating and Interpreting Boot Messages 233
The Boot Process 234

Dealing with Runlevels and the Initialization Process 235
Runlevel Functions 235
Identifying the Services in a Runlevel 237
Managing Runlevel Services 239
Checking Your Runlevel 241
Changing Runlevels on a Running System 241

Editing Files with Vi 244
Understanding Vi Modes 245
Exploring Basic Text-Editing Procedures 245
Saving Changes 248

Summary 249
Exam Essentials 249
Review Questions 251
Answers to Review Questions 255

PART II The LPI 102 Exam (60 Weights) 259

Chapter 6 Configuring the X Window System, Localization, and
Printing 261

Configuring Basic X Features 262
X Server Options for Linux 262
Methods of Configuring X 263

04836book.indd 14 1/11/09 2:27:22 PM

Contents xv

X Configuration Options 267
Obtaining X Display Information 275

Configuring X Fonts 276
Font Technologies and Formats 276
Configuring X Core Fonts 277
Configuring a Font Server 279
Configuring Xft Fonts 280

Managing GUI Logins 281
The X GUI Login System 282
Running an XDMCP Server 283
Configuring an XDMCP Server 284

Using X for Remote Access 285
X Client/Server Principles 286
Using Remote X Clients 286

X Accessibility 289
Keyboard and Mouse Accessibility Issues 289
Screen Display Settings 291
Using Additional Assistive Technologies 293

Configuring Localization and Internationalization 293
Setting Your Time Zone 294
Querying and Setting Your Locale 295

Configuring Printing 299
Conceptualizing the Linux Printing Architecture 299
Understanding PostScript and Ghostscript 300
Running a Printing System 302
Configuring CUPS 303
Monitoring and Controlling the Print Queue 309

Summary 312
Exam Essentials 312
Review Questions 314
Answers to Review Questions 319

Chapter 7 Administering the System 323

Managing Users and Groups 324
Understanding Users and Groups 324
Configuring User Accounts 327
Configuring Groups 338

Tuning User and System Environments 342
Using System Log Files 343

Understanding syslogd 343
Setting Logging Options 344
Manually Logging Data 346
Rotating Log Files 347
Reviewing Log File Contents 350

04836book.indd 15 1/11/09 2:27:23 PM

xvi Contents

Maintaining the System Time 352
Linux Time Concepts 352
Manually Setting the Time 353
Using NTP 354

Running Jobs in the Future 360
Understanding the Role of cron 360
Creating System cron Jobs 361
Creating User cron Jobs 362
Using at 366

Summary 368
Exam Essentials 368
Review Questions 370
Answers to Review Questions 374

Chapter 8 Configuring Basic Networking 377

Understanding TCP/IP Networking 378
Knowing the Basic Functions of Network Hardware 378
Investigating Types of Network Hardware 379
Understanding Network Packets 381
Understanding Network Protocol Stacks 381
Knowing TCP/IP Protocol Types 383

Understanding Network Addressing 384
Using Network Addresses 385
Resolving Hostnames 391
Network Ports 393

Configuring Linux for a Local Network 396
Network Hardware Configuration 396
Configuring with DHCP 396
Configuring with a Static IP Address 398
Configuring Routing 400
Using GUI Configuration Tools 402
Using the ifup and ifdown Commands 402
Configuring Hostnames 403

Diagnosing Network Connections 406
Testing Basic Connectivity 406
Tracing a Route 406
Checking Network Status 408
Examining Raw Network Traffic 408
Using Additional Tools 410

Summary 412
Exam Essentials 412
Review Questions 414
Answers to Review Questions 418

04836book.indd 16 1/11/09 2:27:23 PM

Contents xvii

Chapter 9 Writing Scripts, Configuring E-mail,
and Using Databases 421

Managing the Shell Environment 422
Reviewing Environment Variables 422
Understanding Common Environment Variables 423
Using Aliases 427
Modifying Shell Configuration Files 427

Writing Scripts 429
Beginning a Shell Script 430
Using Commands 430
Using Variables 432
Using Conditional Expressions 435
Using Loops 437
Using Functions 438

Managing E-mail 440
Understanding E-mail 440
Choosing E-mail Software 442
Managing E-mail 444
Securing Your E-mail Server 448

Managing Data with SQL 449
Picking a SQL Package 449
Understanding SQL Basics 450
Using MySQL 451

Summary 459
Exam Essentials 460
Review Questions 462
Answers to Review Questions 466

Chapter 10 Securing Your System 469

Administering Network Security 470
Using Super Server Restrictions 471
Disabling Unused Servers 477

Administering Local Security 484
Securing Passwords 484
Limiting root Access 488
Setting Login, Process, and Memory Limits 489
Locating SUID/SGID Files 491

Configuring SSH 493
SSH Basics 493
Setting SSH Options for Your System 494
SSH Security Considerations 501

04836book.indd 17 1/11/09 2:27:23 PM

xviii Contents

Using GPG 501
Generating and Importing Keys 502
Encrypting and Decrypting Data 503
Signing Messages and Verifying Signatures 504

Summary 504
Exam Essentials 505
Review Questions 506
Answers to Review Questions 510

Appendix A About the Companion CD 513

What You’ll Find on the CD 514
Sybex Test Engine 514
PDF of the Book 514
Adobe Reader 514
Electronic Flashcards 515

System Requirements 515
Using the CD 515
Troubleshooting 515

Customer Care 516

Glossary 517

Index 545

04836book.indd 18 1/11/09 2:27:23 PM

Table of Exercises
Exercise 1.1 Editing Commands . 10

Exercise 2.1 Managing Packages Using RPM . 55

Exercise 2.2 Managing Debian Packages . 66

Exercise 3.1 Creating Filesystems . 141

Exercise 4.1 Modifying Ownership and Permissions . 196

Exercise 4.2 Locating Files . 209

Exercise 5.1 Changing Runlevels . 243

Exercise 6.1 Changing the X Resolution and Color Depth . 274

Exercise 7.1 Creating User Accounts . 331

Exercise 7.2 Creating User cron Jobs . 364

Exercise 8.1 Configuring a Network Connection . 403

Exercise 9.1 Changing Your bash Prompt . 426

Exercise 9.2 Creating a Simple Script . 439

Exercise 9.3 Creating a SQL Database . 455

Exercise 10.1 Monitor Network Port Use . 478

04836book.indd 19 1/16/09 9:35:01 AM

04836book.indd 20 1/16/09 9:35:01 AM

Introduction
Why should you learn about Linux? It’s a fast-growing operating system, and it is inexpen-
sive and flexible. Linux is also a major player in the small and mid-sized server field, and it’s
an increasingly viable platform for workstation and desktop use as well. By understanding
Linux, you’ll increase your standing in the job market. Even if you already know Windows
or Mac OS and your employer uses these systems exclusively, understanding Linux will give
you an edge when you’re looking for a new job or if you’re looking for a promotion. For
instance, this knowledge will help you to make an informed decision about if and when you
should deploy Linux.

The Linux Professional Institute (LPI) has developed its LPI-1 certification as an intro-
ductory certification for people who want to enter careers involving Linux. The exam is
meant to certify that an individual has the skills necessary to install, operate, and trouble-
shoot a Linux system and is familiar with Linux-specific concepts and basic hardware.

The purpose of this book is to help you pass both of the LPI-1 exams (101 and 102).
Because these exams cover basic Linux command-line tools, software management, hard-
ware configuration, filesystems, the X Window System, the boot process, scripts, security,
documentation, administration, and networking, those are the topics that are emphasized
in this book. You’ll learn enough to manage a Linux system and how to configure it for
many common tasks. Even after you’ve taken and passed the LPI 101 and 102 exams, this
book should remain a useful reference.

This book has undergone its own testing and certification by ProCert (http://www
.procertcom.com/labs_quicklinks/ql_latm.html). This means that you can rest assured
that the book covers the LPI objectives.

What Is Linux?
Linux is a clone of the Unix operating system (OS) that has been popular in academia and
many business environments for years. Formerly used exclusively on large mainframes,
Unix and Linux can now run on small computers—which are actually far more powerful
than the mainframes of just a few years ago. Because of its mainframe heritage, Unix (and
hence also Linux) scales well to perform today’s demanding scientific, engineering, and net-
work server tasks.

Linux consists of a kernel, which is the core control software, and many libraries and
utilities that rely on the kernel to provide features with which users interact. The OS is
available in many different distributions, which are collections of a specific kernel with
specific support programs.

04836book.indd 21 1/16/09 9:35:02 AM

xxii Introduction

Why Become LPI Certified?
Several good reasons to get your LPI certification exist. The LPI Web site suggests four
major benefits:

Relevance LPI’s exam was designed with the needs of Linux professionals in mind. This
was done by performing surveys of Linux administrators to learn what they actually need
to know to do their jobs.

Quality The LPI exams have been extensively tested and validated using psychometric
standards. The result is an ability to discriminate between competent administrators and
those who must still learn more material.

Neutrality LPI is a nonprofit organization that does not itself market any Linux distribu-
tion. This fact removes the motivation to create an exam that’s designed as a way to market
a particular distribution.

Support The LPI exams are supported by major players in the Linux world. LPI serves the
Linux community.

How to Become LPI Certified
The LPI certification is available to anyone who passes the test. You don’t have to work for
a particular company. It’s not a secret society.

To take an LPI exam, you must first register with LPI to obtain an ID number. You can
do this online at https://www.lpi.org/caf/Xamman/register. Your ID number will be
e-mailed to you. With the ID number in hand, you can register for the exam with either of
the two firms that administer them: Thomson Prometric and Pearson VUE. The exams can
be taken at any Thomson Prometric or Pearson VUE testing center. If you pass, you will get
a certificate in the mail saying that you have passed. To find the Thomson Prometric testing
center nearest you, call (800) 294-3926. Contact (877) 619-2096 for Pearson VUE infor-
mation. Alternatively, register online at http://securereg3.prometric.com for Thomson
Prometric or http://www.vue.com/lpi/ for Pearson VUE. However you do it, you’ll be
asked for your name, mailing address, phone number, employer, when and where you want
to take the test (i.e., which testing center), and your credit card number (arrangement for
payment must be made at the time of registration).

Who Should Buy This Book
Anybody who wants to pass the LPI-1 exams may benefit from this book. If you’re new to
Linux, this book covers the material you will need to learn the OS from the beginning, and
it continues to provide the knowledge you need up to a proficiency level sufficient to pass
the LPI-1 101 and 102 exams. You can pick up this book and learn from it even if you’ve
never used Linux before, although you’ll find it an easier read if you’ve at least casually
used Linux for a few days. If you’re already familiar with Linux, this book can serve as a
review and as a refresher course for information with which you might not be completely
familiar. In either case, reading this book will help you to pass the LPI exam.

04836book.indd 22 1/16/09 9:35:02 AM

Introduction xxiii

This book is written with the assumption that you know at least a little bit about Linux
(what it is, and possibly a few Linux commands). I also assume that you know some basics
about computers in general, such as how to use a keyboard, how to insert a disc into a
CD-ROM drive, and so on. Chances are, you have used computers in a substantial way in
the past—perhaps even Linux, as an ordinary user, or maybe you have used Windows or
Mac OS. I do not assume that you have extensive knowledge of Linux system administra-
tion, but if you’ve done some system administration, you can still use this book to fill in
gaps in your knowledge.

As a practical matter, you’ll need a Linux system with which to practice and learn in a
hands-on way. Although LPI topic 102 is titled “Linux Installation and Package Manage-
ment,” neither the exam nor this book covers actually installing Linux on a computer from
scratch, although some of the prerequisites (such as disk partitioning) are covered. You may
need to refer to your distribution’s documentation to learn how to accomplish this task.
Alternatively, several vendors now sell computers with Linux pre-installed.

How This Book Is Organized
This book consists of 10 chapters plus supplementary information: a glossary, this introduc-
tion, and the assessment test after the introduction. The chapters are organized as follows:

Chapter 1, “Exploring Linux Command-Line Tools,” covers the basic tools you need NN

to interact with Linux. These include shells, redirection, pipes, text filters, and regular
expressions.

Chapter 2, “Managing Software,” describes the programs you’ll use to manage soft-NN

ware. Much of this task is centered around the RPM and Debian package management
systems. The chapter also covers handling shared libraries and managing processes
(that is, running programs).

Chapter 3, “Configuring Hardware,” focuses on Linux’s interactions with the hard-NN

ware on which it runs. Specific hardware and procedures for using it include the BIOS,
expansion cards, USB devices, hard disks, and the partitions and filesystems used on
hard disks.

Chapter 4, “Managing Files,” covers the tools used to manage files. This includes NN

commands to manage files, ownership, and permissions, as well as Linux’s standard
directory tree and tools for archiving files.

Chapter 5, “Booting Linux and Editing Files,” explains how Linux boots up and how NN

you can edit files in Linux. Specific topics include the LILO and GRUB boot loaders,
boot diagnostics, runlevels, and the Vi editor.

Chapter 6, “Configuring the X Window System, Localization, and Printing,” describes NN

the Linux GUI and printing subsystems. Topics include X configuration, managing
GUI logins, configuring location-specific features, enabling accessibility features, and
setting up Linux to use a printer.

Chapter 7, “Administering the System,” describes miscellaneous administrative tasks. NN

These include user and group management, tuning user environments, managing log
files, setting the clock, and running jobs in the future.

04836book.indd 23 1/16/09 9:35:02 AM

xxiv Introduction

Chapter 8, “Configuring Basic Networking,” focuses on basic network configuration. NN

Topics include TCP/IP basics, setting up Linux on a TCP/IP network, and network
diagnostics.

Chapter 9, “Writing Scripts, Configuring E-Mail, and Using Databases,” covers these NN

miscellaneous topics. Scripts are small programs that administrators often use to help
automate common tasks. E-mail, of course, is an important topic for any computer
user, particularly on Linux, which often runs an e-mail server for local or remote use.
Linux can run databases that help you store and retrieve information, and these tools
can be very important ones on many Linux systems.

Chapter 7, “Securing Your System,” covers security. Specific subjects include network NN

security, local security, and the use of encryption to improve security.

Chapters 1 through 5 cover the LPIC 101 exam, while chapters 6 through 10 cover the
LPIC 102 exam. These make up Part I and Part II of the book, respectively.

Each chapter begins with a list of the LPIC objectives that are covered in that chapter.
The book doesn’t cover the objectives in order. Thus, you shouldn’t be alarmed at some of
the odd ordering of the objectives within the book. At the end of each chapter, you’ll find a
couple of elements you can use to prepare for the exam:

Exam Essentials This section summarizes important information that was covered in
the chapter. You should be able to perform each of the tasks or convey the information
requested.

Review Questions Each chapter concludes with 20 review questions. You should answer
these questions and check your answers against the ones provided after the questions. If
you can’t answer at least 80 percent of these questions correctly, go back and review the
chapter, or at least those sections that seem to be giving you difficulty.

The review questions, assessment test, and other testing elements
included in this book are not derived from the LPI exam questions, so don’t
memorize the answers to these questions and assume that doing so will
enable you to pass the exam . You should learn the underlying topic, as
described in the text of the book . This will let you answer the questions
provided with this book and pass the exam . Learning the underlying topic
is also the approach that will serve you best in the workplace—the ultimate
goal of a certification like LPI’s .

To get the most out of this book, you should read each chapter from start to finish and
then check your memory and understanding with the chapter-end elements. Even if you’re
already familiar with a topic, you should skim the chapter; Linux is complex enough that
there are often multiple ways to accomplish a task, so you may learn something even if
you’re already competent in an area.

04836book.indd 24 1/16/09 9:35:02 AM

Introduction xxv

Bonus CD-ROM Contents
This book comes with a CD-ROM that contains several additional elements. Items available
on the CD-ROM include the following:

Book contents as a PDF file The entire book is available as a fully searchable PDF that
runs on all Windows platforms as well as on Linux.

Electronic “flashcards” The CD-ROM includes 150 questions in “flashcard” format
(a question followed by a single correct answer). You can use these to review your knowl-
edge of the LPIC exam objectives.

Sample tests All of the questions in this book appear on the CD-ROM—including the
30-question assessment test at the end of this introduction and the 200 questions that make
up the 20-question review question sections for each chapter. In addition, there are two
50-question bonus exams.

Conventions Used in This Book
This book uses certain typographic styles in order to help you quickly identify important
information and to avoid confusion over the meaning of words such as on-screen prompts.
In particular, look for the following styles:

Italicized textNN indicates key terms that are described at length for the first time in a
chapter. (Italics are also used for emphasis.)

A monospaced fontNN indicates the contents of configuration files, messages displayed at
a text-mode Linux shell prompt, filenames, text-mode command names, and Internet
URLs.

Italicized monospaced textNN indicates a variable—information that differs from one
system or command run to another, such as the name of a client computer or a process
ID number.

Bold monospaced textNN is information that you’re to type into the computer, usually
at a Linux shell prompt. This text can also be italicized to indicate that you should
substitute an appropriate value for your system. (When isolated on their own lines,
commands are preceded by non-bold monospaced $ or # command prompts, denoting
regular user or system administrator use, respectively.)

In addition to these text conventions, which can apply to individual words or entire
paragraphs, a few conventions highlight segments of text:

A note indicates information that’s useful or interesting but that’s somewhat
peripheral to the main text . A note might be relevant to a small number of
networks, for instance, or it may refer to an outdated feature .

04836book.indd 25 1/16/09 9:35:03 AM

xxvi Introduction

A tip provides information that can save you time or frustration and that
may not be entirely obvious . A tip might describe how to get around a limi-
tation or how to use a feature to perform an unusual task .

Warnings describe potential pitfalls or dangers . If you fail to heed a warn-
ing, you may end up spending a lot of time recovering from a bug, or you
may even end up restoring your entire system from scratch .

Sidebars

A sidebar is like a note but longer . The information in a sidebar is useful, but it doesn’t fit
into the main flow of the text .

Real World Scenario

A real world scenario is a type of sidebar that describes a task or example that’s par-
ticularly grounded in the real world . This may be a situation I or somebody I know has
encountered, or it may be advice on how to work around problems that are common in
real, working Linux environments .

E x E R c i S E S

Exercises

An exercise is a procedure you should try out on your own computer to help you learn
about the material in the chapter . Don’t limit yourself to the procedures described in the
exercises, though! Try other commands and procedures to really learn about Linux .

The Exam Objectives
Behind every computer industry exam you can be sure to find exam objectives—the broad
topics in which exam developers want to ensure your competency. The official LPI objec-
tives for the LPI 101 and 102 exams are listed here. (They’re also printed at the start of the
chapters in which they’re covered.)

04836book.indd 26 1/16/09 9:35:04 AM

Introduction xxvii

Exam objectives are subject to change at any time without prior notice and at
LPI’s sole discretion . Please visit the LPIC Certification page of LPI’s website
(https://group.lpi.org/publicwiki/bin/view/Examdev/LPIC-10x) for the
most current listing of exam objectives .

Exam 101

Topic 101: System Architecture

101.1 Determine and configure hardware settings

101.2 Boot the system

101.3 Change runlevels and shutdown or reboot system

Topic 102: Linux Installation and Package Management

102.1 Design hard disk layout

102.2 Install a boot manager

102.3 Manage shared libraries

102.4 Use Debian package management

102.5 Use RPM and YUM package management

Topic 103: GNU and Unix Commands

103.1 Work on the command line

103.2 Process text streams using filters

103.3 Perform basic file management

103.4 Use streams, pipes and redirects

103.5 Create, monitor and kill processes

103.6 Modify process execution priorities

103.7 Search text files using regular expressions

103.8 Perform basic file editing operations using vi

Topic 104: Devices, Linux Filesystems, Filesystem Hierarchy Standard

104.1 Create partitions and filesystems

104.2 Maintain the integrity of filesystems

104.3 Control mounting and unmounting of filesystems

104.4 Manage disk quotas

104.5 Manage file permissions and ownership

104.6 Create and change hard and symbolic links

104.7 Find system files and place files in the correct location

04836book.indd 27 1/16/09 9:35:04 AM

xxviii Introduction

Exam 102

Topic 105: Shells, Scripting and Data Management

105.1 Customize and use the shell environment

105.2 Customize or write simple scripts

105.3 SQL data management

Topic 106: User Interfaces and Desktops

106.1 Install and configure X11

106.2 Setup a display manager

106.3 Accessibility

Topic 107: Administrative Tasks

107.1 Manage user and group accounts and related system files

107.2 Automate system administration tasks by scheduling jobs

107.3 Localisation and internationalisation

Topic 108: Essential System Services

108.1 Maintain system time

108.2 System logging

108.3 Mail Transfer Agent (MTA) basics

108.4 Manage printers and printing

Topic 109: Networking Fundamentals

109.1 Fundamentals of internet protocols

109.2 Basic network configuration

109.3 Basic network troubleshooting

109.4 Configure client side DNS

Topic 110: Security

110.1 Perform security administration tasks

110.2 Setup host security

110.3 Securing data with encryption

The preceding objective list includes only the basic objective titles . You
should consult the complete LPI exam list to learn what commands, files,
and procedures you should be familiar with before taking the exam .

04836book.indd 28 1/16/09 9:35:04 AM

Assessment Test
1. The following line appears in your X server’s mouse configuration area. What can you

conclude?
Option “Protocol” “PS/2”

A. The mouse is connected to the PS/2 hardware mouse port.

B. The mouse uses the PS/2 software communication standard.

C. The computer is an ancient IBM PS/2 system.

D. The mouse was designed for use with IBM’s OS/2.

2. How can you tell whether your system is using inetd or xinetd as a super server? (Choose
all that apply.)

A. Type ps ax | grep inetd, and examine the output for signs of inetd or xinetd.

B. Type superserver to see a report on which super server is running.

C. Look for the /etc/inetd.conf file or /etc/xinetd.d subdirectory, which is a sign of
inetd or xinetd, respectively.

D. Examine the /etc/inittab file to see which super server is launched by init, which is
responsible for this task.

3. How does the lpc utility for CUPS differ from its counterpart in BSD LPD and LPRng?

A. The lpc utility is unique to CUPS; it doesn’t ship with BSD LPD or LPRng.

B. CUPS doesn’t ship with an lpc command, but BSD LPD and LPRng do.

C. CUPS’s lpc is much more complex than its counterpart in BSD LPD and LPRng.

D. CUPS’s lpc is much simpler than its counterpart in BSD LPD and LPRng.

4. What file would you edit to restrict the number of simultaneous logins a user can employ?

A. /etc/pam.d/login-limits

B. /etc/bashrc

C. /etc/security/limits.conf

D. /etc/inittab

5. Which of the following are required when configuring a computer to use a static IP
address? (Choose all that apply.)

A. The IP address of the DHCP server

B. The hostname of the NBNS server

C. The computer’s IP address

D. The network mask

04836book.indd 29 1/16/09 9:35:04 AM

xxx Assessment Test

6. What does the following command accomplish?
$ wc report.txt | tee wc

A. It launches the wc editor on both the report.txt and wc.txt files; each file opens in
its own window.

B. It displays a count of the windows in which the report.txt file is displayed and shows
that information in a new window called wc.

C. It displays a count of newlines, words, and bytes in the report.txt file and copies that
output to the wc file.

D. It cleans up any memory leaks associated with the tee program’s use of the
report.txt file.

7. Which of the following lines, when entered in /etc/lilo.conf, begins a definition to boot
Linux using the /boot/bzImage-2.6.19 kernel when the /boot partition is /dev/hda2?

A. image=(hd0,1)/bzImage-2.6.19

B. kernel=/boot/bzImage-2.6.19

C. image=/boot/bzImage-2.6.19

D. kernel=(hd0,1)/boot/bzImage-2.6.19

8. What does the number 703 represent in the following /etc/passwd entry?
george:x:703:100:George Brown:/home/george:/bin/tcsh

A. The account’s human ID (HID) number

B. The account’s process ID (PID) number

C. The account’s group ID (GID) number

D. The account’s user ID (UID) number

9. What does the grep command accomplish?

A. It creates a pipeline between two programs.

B. It searches files’ contents for a pattern.

C. It concatenates two or more files.

D. It displays the last several lines of a file.

10. Which of the following are journaling filesystems for Linux? (Choose all that apply.)

A. HPFS

B. JFS

C. Ext2fs

D. Ext3fs

04836book.indd 30 1/16/09 9:35:04 AM

Assessment Test xxxi

11. You’ve configured your computer to use SMTP and IMAP via a tunneled SSH connection
to your ISP’s e-mail server for improved security. Why might you still want to use GPG
encryption for your e-mails on top of the encryption provided by SSH?

A. The SSH tunnel only reaches as far as the first e-mail server; GPG encrypts data on all
the computers all the way to or from your e-mail correspondents.

B. SSH encryption is notoriously poor for e-mail, although it’s perfectly adequate for
login sessions; thus, adding GPG encryption improves security.

C. SSH only doesn’t encrypt the headers of the e-mail messages; GPG encrypts the headers
to keep snoopers from learning your correspondents’ identities.

D. Using GPG guarantees that your e-mail messages won’t contain unwanted viruses or
worms that might infect your correspondents’ computers.

12. Which of the following ports are commonly used to retrieve e-mail from a mail-server
computer? (Select all that apply.)

A. 110

B. 119

C. 139

D. 143

13. You’re experiencing sporadic problems with a Secure Shell (SSH) login server—sometimes
users can log in, and sometimes they can’t. What might you try immediately after a failure
to help diagnose this problem?

A. On the server computer, type http://localhost:631 into a Web browser to access the
SSH configuration page and check its error subpage for error messages.

B. Type diagnose sshd to run a diagnostic on the SSH server daemon (sshd).

C. Type tail /var/log/messages to look for error messages from the server.

D. Examine the /dev/ssh device file to look for error messages from the server.

14. What is the function of the ~/.profile file?

A. It’s the user configuration file for the ProFTP server.

B. It’s one of a user’s bash startup scripts.

C. It’s the user configuration file for the ProFile file manager.

D. Its presence tells tcsh to ignore file modes.

15. You want your computer to remind you to get your car inspected in two years. What is the
best way to do this, of the specified options?

A. Create a program that repeatedly checks the time and, when two years has passed,
displays a message to get your car inspected.

B. Type at date, where date is a date specification. You can then specify a command, such
as mail with appropriate options, to notify you of the need to get your car inspected.

C. Create a cron job that runs hourly. This job should check the date and, when the correct
date comes up, use mail to notify you of the need for a car inspection.

D. Use the NTP GUI calendar program to create an alarm for the specified date. The
program will then display the message you enter at the specified date and time.

04836book.indd 31 1/16/09 9:35:05 AM

xxxii Assessment Test

16. How would you configure a computer to use the computer whose IP address is 172.24.21.1
as a gateway for all network traffic that’s not otherwise configured?

A. gateway default 172.24.21.1

B. gateway 172.24.21.1

C. route gateway 172.24.21.1

D. route add default gw 172.24.21.1

17. What software can you use to drive a Braille display device? (Select all that apply.)

A. Emacspeak

B. BRLTTY

C. A 2.6.26 or later kernel

D. GOK

18. Which is true of source RPM packages?

A. They consist of three files: an original source tarball, a patch file of changes, and a
PGP signature indicating the authenticity of the package.

B. They require programming knowledge to rebuild.

C. They can sometimes be used to work around dependency problems with a binary
package.

D. They are necessary to compile software for RPM-based distributions.

19. Which utility should you use to rename the file pumpkin.txt to lantern.txt?

A. dd

B. rm

C. cp

D. mv

20. You want to run a lengthy scientific simulation program, called simbigbang, which doesn’t
require any user interaction; the program operates solely on disk files. If you don’t want to
tie up the shell from which you run the program, what should you type to run simbigbang
in the background?

A. start simbigbang

B. simbigbang &

C. bg simbigbang

D. background simbigbang

21. Which of the following commands will install an RPM package called
theprogram-1.2.3-4.i386.rpm on a computer? (Choose all that apply.)

A. rpm -Uvh theprogram-1.2.3-4.i386.rpm

B. rpm -i theprogram-1.2.3-4.i386.rpm

C. rpm -U theprogram

D. rpm -e theprogram-1.2.3-4.i386.rpm

04836book.indd 32 1/16/09 9:35:05 AM

Assessment Test xxxiii

22. What tool can diagnose and fix many common Linux filesystem problems?

A. mkfs

B. fsck

C. chkdsk

D. scandisk

23. You’ve just installed MySQL, and you intend to use it to store information about the animals
in a zoo, from the anteaters to the zebras. What command are you likely to use first, once
you start MySQL?

A. CREATE DATABASE animals;

B. USE animals;

C. CREATE TABLE animals;

D. INSERT INTO animals;

24. Which of the following commands displays help on topic, when typed in a Linux shell?
(Choose all that apply.)

A. manual topic

B. man topic

C. ? topic

D. info topic

25. A computer’s hardware clock keeps track of the time while the computer is powered off. In
what formats may this time be stored on an x86 Linux system? (Choose all that apply.)

A. Coordinated Universal Time (UTC)

B. Internet Time

C. Local time

D. 12-hour time

26. You want to know what kernel modules are currently loaded. What command would you
type to learn this information?

A. insmod

B. depmod

C. modprobe

D. lsmod

27. You want to enable all members of the music group to read the instruments.txt file, which
currently has 0640 (-rw-r-----) permissions, ownership by root, and group ownership by
root. How might you accomplish this goal? (Choose all that apply.)

A. Type chown music instruments.txt in the file’s directory.

B. Type chgrp music instruments.txt in the file’s directory.

C. Type chgroup music instruments.txt in the file’s directory.

D. Type chown .music instruments.txt in the file’s directory.

04836book.indd 33 1/16/09 9:35:05 AM

xxxiv Answers to Assessment Test

28. You want to create a link to the /usr/local/bin directory in another location. Which of
the following statements is true?

A. The link will probably have to be a symbolic link.

B. You must own /usr/local/bin to create the link.

C. You can create the link only if the link’s location is on the same filesystem as the
original directory.

D. Only the system administrator can do this.

29. Which of the following, when typed in Vi’s command mode, saves a file and quits the
program?

A. :rq

B. :wq

C. :re

D. :we

30. A user’s home directory includes a file called ~/.forward that consists of one line:
|~/junkme. What is the effect of this configuration?

A. The user’s incoming mail is forwarded to the junkme user on the same system.

B. The user’s incoming mail is stored in the ~/junkme file.

C. The user’s incoming mail is sent through the ~/junkme program file.

D. The user’s incoming mail is flagged as spam and deleted.

04836book.indd 34 1/16/09 9:35:05 AM

Answers to Assessment Test xxxv

Answers to Assessment Test
1. B. “PS/2” can refer to both a hardware interface and a software protocol, but used in the

context of the Protocol option, it unambiguously refers to the software protocol. Option A
might be correct, but the specified line is insufficient evidence of that; USB mice generally use
the PS/2 protocol or a variant of it, such as the Intellimouse PS/2 protocol. Although the PS/2
hardware port and protocol originated with the IBM PS/2 computer mentioned in option C,
many other computers now use them. Mice that use the PS/2 protocol may be used with just
about any OS, not just IBM’s OS/2. For more information, please see Chapter 6, “Configur-
ing the X Window System, Localization, and Printing.”

2. A, C. Examining a process listing (obtained from ps) for signs of the super server is the
most reliable way to determine which one is actually running. The presence of the super
server’s configuration file or files (as in option C) is also a good diagnostic, although some
older systems that have been upgraded may have both sets of configuration files. There is no
standard superserver utility to report on which one is used. Most distributions launch the
super server through a SysV startup script; the /etc/inittab file isn’t directly involved in this
process, so examining it would be pointless. For more information, please see Chapter 10,
“Securing Your System.”

3. D. The lpc utility is used to start, stop, change the priority of, and otherwise control jobs
in a print queue. CUPS ships with an lpc utility, but it’s quite rudimentary compared to the
lpc utilities of BSD LPD and LPRng. Instead, CUPS relies on its Web-based interface to
provide the ability to control print jobs. For more information, please see Chapter 6, “Con-
figuring the X Window System, Localization, and Printing.”

4. C. The /etc/security/limits.conf file defines various limits on user resources, including
the number of simultaneous logins individual users are permitted. Thus, option C is correct.
The /etc/pam.d/login-limits file is fictitious, although login limits do rely on the pam_
limits module to the Pluggable Authentication System (PAM). The /etc/bashrc file is a
global bash startup script file, but it’s not normally used to impose login limits. The /etc/
inittab file is a key Linux startup file, but it doesn’t have any direct bearing on imposing
login limits. For more information, please see Chapter 10, “Securing Your System.”

5. C, D. The computer’s IP address and network mask (a.k.a. subnet mask or netmask) are
the most critical components in TCIP/IP network configuration. (Additional information
you may need to provide on many networks includes the IP address of 1–3 DNS servers, the
hostname or IP address of a router, and the computer’s hostname.) You shouldn’t need the IP
address of a Dynamic Host Configuration Protocol (DHCP) server—and if a DHCP server
is present, chances are you should be using DHCP rather than static IP address assignment.
A NetBIOS Name Service (NBNS) server converts between names and IP addresses on Net-
BIOS networks. The hostname of such a computer isn’t likely to be a critical configuration
element, although you may need to provide this information to Samba for some operations
to function correctly when sharing files. For more information, please see Chapter 8, “Con-
figuring Basic Networking.”

04836book.indd 35 1/16/09 9:35:05 AM

xxxvi Answers to Assessment Test

6. C. The wc command displays a count of newlines, words, and bytes in the specified file
(report.txt). Piping this data through tee causes a copy of the output to be stored in
the new file (wc in this example—you shouldn’t run this command in the same directory
as the wc executable file!). Thus, option C is correct. Contrary to option A, wc isn’t an
editor, and the remaining syntax wouldn’t cause two files to open in separate windows
even if wc were an editor. Contrary to option B, wc doesn’t count windows or open a new
window. Contrary to option D, wc has nothing to do with cleaning up memory leaks, and
tee doesn’t directly use the report.txt file. For more information, please see Chapter 1,
“Exploring Linux Command-Line Tools.”

7. C. The image= line in /etc/lilo.conf identifies a kernel image to be booted using normal
Linux filenames, so /boot/bzImage-2.6.19 is the correct notation. There is no kernel=
option in LILO’s configuration file. The (hd0,1) notation in options A and D is a GRUB hard-
disk identifier; this notation isn’t used in LILO. Option D also uses both the GRUB disk identi-
fier notation and the /boot Linux filesystem specification. For more information, please see
Chapter 5, “Booting Linux and Editing Files.”

8. D. The third field of /etc/passwd entries holds the UID number for the account. Linux
doesn’t use any standard identifier called a human ID (HID), although the acronym HID
stands for human interface device, a class of USB devices. Accounts don’t have PID numbers;
those belong to running processes. The account’s GID number is stored in the fourth field of
/etc/passwd—100 in this example. For more information, please see Chapter 7, “Adminis-
tering the System.”

9. B. The grep command scans files to find those that contain a specified string or pattern.
In the case of text files, it displays the matching line or lines; for binary files, it reports that
the file matches the pattern. The method of creating a pipeline involves separating two com-
mands with a vertical bar (|). The grep command can be used in a pipeline, but it doesn’t
create one. The command that concatenates files is cat, and the command that displays the
last several lines of a file is tail. For more information, please see Chapter 1, “Exploring
Linux Command-Line Tools.”

10. B, D. The Journaled Filesystem (JFS) is a journaling filesystem written by IBM for AIX
and OS/2 and later ported to Linux. The Third Extended Filesystem (ext3fs) is a journal-
ing filesystem based on the older non-journaling Second Extended Filesystem (ext2fs). The
High-Performance Filesystem (HPFS) is a non-journaling filesystem designed by Microsoft
for OS/2. For more information, please see Chapter 3, “Configuring Hardware.”

11. A. Option A correctly describes the features of SSH and GPG in this context. Option B
is incorrect because SSH should do a fine job of encrypting your e-mail so that it can’t be
decoded between your system and your ISP’s e-mail server. Option C has it backward; e-mail
transferred via SSH will be completely encrypted, including its headers. GPG doesn’t encrypt
headers, just message bodies. Option D is incorrect because GPG isn’t a virus scanner, just an
encryption tool. For more information, please see Chapter 10, “Securing Your System.”

04836book.indd 36 1/16/09 9:35:06 AM

Answers to Assessment Test xxxvii

12. A, D. Port 110 is assigned to the Post Office Protocol (POP), and port 143 is assigned to
the Internet Message Access Protocol (IMAP), both of which may be used to retrieve e-mail
messages from an e-mail server system. Port 119 is assigned to the Network News Transfer
Protocol (NNTP), and port 139 is assigned to the Server Message Block/Common Internet
File System (SMB/CIFS) protocol, neither of which is commonly used for e-mail retrieval.
For more information, please see Chapter 8, “Configuring Basic Networking.”

13. C. Log files, such as /var/log/messages and sometimes others in /var/log, often contain
useful information concerning server errors. The tail program displays the last few lines
of a file, so using it to examine log files immediately after a problem occurs can be a useful
diagnostic procedure. The http://localhost:631 URL accesses the Common Unix Printing
System (CUPS) configuration utility, which has nothing to do with SSH. There is no standard
diagnose utility to help diagnose server problems, and there is no standard /dev/ssh file. For
more information, please see Chapter 5, “Booting Linux and Editing Files.”

14. B. The ~/.profile file is one of several bash startup scripts. It has nothing to do with the
ProFTP server or the tcsh shell. The ProFile file manager mentioned in option C is fictitious.
For more information, please see Chapter 9, “Writing Scripts, Configuring E-mail, and
Using Databases.”

15. B. The at utility was created to run programs at one specified point in the future. Thus,
option B will accomplish the stated goal. Options A and C might also work; but neither is
the best way to accomplish this goal. Option A will tie up CPU time, and if the program
crashes or the system is shut down during the intervening two years, the message will never
display. Option C would be more reliable, but it adds unnecessary complexity to your hourly
cron job schedule. A GUI calendar program, as specified in option D, might work; but NTP
is the Network Time Protocol, a protocol and like-named program for synchronizing clocks
across a network. Thus, NTP isn’t the tool for the job, and option D is incorrect. For more
information, please see Chapter 7, “Administering the System.”

16. D. Option D provides the correct command to add 172.24.21.1 as the default gateway.
Options A and B both use the fictitious gateway command, which doesn’t exist and therefore
won’t work unless you create a script of this name. Option C uses the correct route command,
but there is no gateway option to route; you must use add default gw, as in option D. For
more information, please see Chapter 8, “Configuring Basic Networking.”

17. B, C. The BRLTTY package is an add-on daemon for handling a Braille display device, and
some features for using these devices have been added to the 2.6.26 kernel, so options B and C
are correct. Emacspeak is speech-synthesis software; it can be used to “speak” a text display
to a user, but it doesn’t interface with Braille displays. GOK (http://www.gok.ca) is an on-
screen keyboard, not a Braille display tool. For more information, please see Chapter 6, “Con-
figuring the X Window System, Localization, and Printing.”

18. C. Some dependencies result from dynamically linking binaries to libraries at compile time
and so can be overcome by recompiling the software from a source RPM. Option A describes
Debian source packages, not RPM packages. Recompiling a source RPM requires only issuing
an appropriate command, although you must also have appropriate compilers and libraries
installed. Source tarballs can also be used to compile software for RPM systems, although this
results in none of RPM’s advantages. For more information, please see Chapter 2, “Managing
Software.”

04836book.indd 37 1/16/09 9:35:06 AM

xxxviii Answers to Assessment Test

19. D. The mv utility can be used to rename files as well as move them from one location to
another. The dd utility is used to copy files to backups, whereas rm is used to remove (delete)
files and cp copies files. For more information, please see Chapter 4, “Managing Files.”

20. B. Appending an ampersand (&) to a command causes that command to execute in the back-
ground. The program so launched still consumes CPU time, but it won’t monopolize the shell
you used to launch it. The start and background commands are fictitious. Although bg does
place a job into the background, it doesn’t launch a program that way; it places a process that’s
been suspended (by pressing Ctrl+Z) into the background. For more information, please see
Chapter 2, “Managing Software.”

21. A, B. The -Uvh parameter issues an upgrade command (which installs the program whether or
not an earlier version is installed) and creates a series of hash marks to display the command’s
progress. The -i parameter installs the program if it’s not already installed but causes no prog-
ress display. Option C uses a package name, not a complete filename, and so it will fail to install
the package file. The -e option removes a package. For more information, please see Chapter 2,
“Managing Software.”

22. B. Option B, fsck, is Linux’s filesystem check utility. It’s similar in purpose to the DOS
and Windows CHKDSK and ScanDisk utilities, but these DOS and Windows utilities don’t
work on Linux filesystems like ext2fs or ReiserFS. Option A, mkfs, creates new filesystems;
it doesn’t diagnose or fix filesystem problems. For more information, please see Chapter 3,
“Configuring Hardware.”

23. A. A freshly installed MySQL database is unlikely to have a ready-made database of ani-
mals, so your first task is to create that database with the CREATE DATABASE command, as
shown in option A. (You could call the database something other than animals, of course.)
The USE command in option B will only be useful once the database has been created. Once
the database is created, you can use CREATE TABLE, as in option C, to create a table; but
you’ll need an existing database first, and this command also requires information about
the type of data to be stored, which option C doesn’t provide. Option D’s INSERT INTO
command stores data into a table once it’s been created, so it’s far from the first command
you’ll use. It also requires additional specification of the data to be stored, so it’s incom-
plete. For more information, please see Chapter 9, “Writing Scripts, Configuring E-mail,
and Using Databases.”

24. B, D. The correct answers, man and info, are two common Linux help packages. Although
? is a common help command within certain interactive programs, it isn’t a help command
in bash or other common Linux shells. There is no common command called manual. For
more information, please see Chapter 1, “Exploring Linux Command-Line Tools.”

25. A, C. Unix systems traditionally store time in UTC (a.k.a. Greenwich Mean Time), and Linux
may do so as well. Most other x86 PC OSs traditionally store time as the local time however, so
Linux also supports this option. Internet Time is an alternative to the 24-hour clock in which the
day is broken into 1,000 “beats.” Standard PC BIOSs don’t support this time format. Likewise,
a 12-hour clock isn’t terribly useful to computers because it doesn’t differentiate a.m. from p.m.
For more information, please see Chapter 7, “Administering the System.”

04836book.indd 38 1/16/09 9:35:06 AM

Answers to Assessment Test xxxix

26. D. Typing lsmod produces a list of the modules that are currently loaded. The insmod and
modprobe programs both load modules—either a single module or a single module and all
those on which it depends, respectively. The depmod command generates the modules.dep file
that contains module dependency information. For more information, please see Chapter 3,
“Configuring Hardware.”

27. B, D. The chgrp and chown commands can both change the group ownership of a file. The
chgrp command takes a group name and a filename as parameters, as in option B. The chown
command normally changes a file’s owner; but if you provide a group name preceded by a
dot (.), as in option D, it changes the group of a file. The chown command shown in option
A will change the primary ownership of the file to the music user, if such a user exists on the
system; it won’t change the group ownership. There is no standard chgroup command, as in
option C. For more information, please see Chapter 4, “Managing Files.”

28. A. Hard links to directories aren’t permitted by most filesystems, so you’ll probably have to
create a symbolic link, as noted in option A. Contrary to option B, anybody may create a link,
not just the original’s owner. Option C describes a restriction of hard links; but because this
link will probably have to be a symbolic link, this restriction is unimportant and option C is
incorrect. Option D describes a more severe restriction than option B, but it’s incorrect for the
same reasons. For more information, please see Chapter 4, “Managing Files.”

29. B. The colon (:) starts ex mode, from which you can enter commands. In ex mode, r includes
a file in an existing one, w writes a file, e loads an entirely new file, and q quits the program.
Thus, the desired combination is :wq. For more information, please see Chapter 5, “Booting
Linux and Editing Files.”

30. C. The ~/.forward file is a user e-mail forwarding file. The vertical bar character (|) at the
start of such a file is a code to send the e-mail through the specified program file, so option C is
correct. To do as option A describes, the file would need to read junkme or junkme@hostname,
where hostname is the computer’s hostname. To do as option B describes, the leading vertical bar
would have to be omitted. It’s conceivable that the ~/junkme script does as option D describes,
but there’s no way of knowing this for certain. For more information, please see Chapter 9,
“Writing Scripts, Configuring E-mail, and Using Databases.”

04836book.indd 39 1/16/09 9:35:06 AM

04836book.indd 40 1/16/09 9:35:06 AM

The LPI 101 Exam
(60 Weights)

Part

I

04836book.indd 1 1/16/09 9:35:33 AM

04836book.indd 2 1/16/09 9:35:33 AM

Chapter

1
Exploring Linux
Command-Line Tools

ThE foLLoWIng LInux ProfEssIonaL
InsTITuTE objECTIvEs arE CovErEd In
ThIs ChaPTEr:

1.103.1 Work on the command line (weight: 4)ÛÛ

1.103.2 Process text streams using filters (weight: 3)ÛÛ

1.103.4 Use streams, pipes, and redirects (weight: 4)ÛÛ

1.103.7 Search text files using regular expressions ÛÛ
(weight: 2)

04836book.indd 3 1/16/09 9:35:34 AM

Linux borrows heavily from Unix, and Unix began as a text-
based operating system (OS). Unix and Linux retain much of
this heritage, which means that to understand how to use and,

especially, administer Linux, you must understand at least the basics of its command-line
tools. Thus, this book begins with an introduction to Linux shells (the programs that accept
and interpret text-mode commands) and many of the basic commands and procedures you
can use from a shell.

This chapter begins with basic shell information, including shell options and procedures
for using them. From there, this chapter covers streams, pipes, and redirects, which you
can use to shunt input and output between programs or between files and programs. These
techniques are frequently combined with text processing using filters—commands you can
use to manipulate text without the help of a conventional text editor. Sometimes you must
manipulate text in an abstract way, using codes to represent several different types of text.
This chapter therefore covers this topic.

Understanding Command-Line Basics
Before you do anything else with Linux, you should understand how to use a Linux shell.
Several shells are available, but most provide similar capabilities. Understanding a few
basics will take you a long way in your use of Linux, so I describe some of these techniques
and commands. You should also understand shell environment variables, which are place-
holders for data that may be useful to many programs. Finally, on the topic of command-
line basics, you should know how to get help with commands you’re trying to use.

Exploring Your Linux Shell Options
As with many key software components, Linux provides a range of options for shells. A
complete list would be quite long, but the more common choices include the following:

bash    The GNU Bourne Again Shell (bash) is based on the earlier Bourne shell for Unix
but extends it in several ways. In Linux, bash is the most common default shell for user
accounts, and it’s the one emphasized in this book and on the Linux Professional Institute
(LPI) exam.

bsh   The Bourne shell upon which bash is based also goes by the name bsh. It’s not often
used in Linux, although the bsh command is usually a symbolic link to bash.

04836book.indd 4 1/16/09 9:35:34 AM

Understanding Command-Line Basics 5

tcsh   This shell is based on the earlier C shell (csh). It’s a fairly popular shell in some circles,
but no major Linux distributions make it the default shell. Although it’s similar to bash in
many respects, some operational details differ. For instance, you don’t assign environment
variables in the same way in tcsh as in bash.

csh   The original C shell isn’t much used on Linux, but if a user is familiar with csh, tcsh
makes a good substitute.

ksh   The Korn shell (ksh) was designed to take the best features of the Bourne shell and the
C shell and extend them further. It has a small but dedicated following among Linux users.

zsh   The Z shell (zsh) takes shell evolution further than the Korn Shell, incorporating fea-
tures from earlier shells and adding still more.

In addition to these shells, dozens more obscure ones are available. In Linux, most users
run bash because it’s the default. Some other OSs use csh or tcsh as the default, so if your
users have backgrounds on non-Linux Unix-like OSs, they may be more familiar with these
other shells. You can change a user’s default shell by editing the account, as described in
Chapter 7, “Administering the System.”

The file /bin/sh is a symbolic link to the system’s default shell—normally /bin/bash for
Linux. This practice enables you to point to a shell (say, at the start of a simple shell script,
as described in Chapter 9, “Writing Scripts, Configuring E-Mail, and Using Databases”)
and be assured that a shell will be called, even if the system’s available shells change. This
feature is particularly important when developing shell scripts that might be run on other
computers, as described in Chapter 9.

Using a Shell
Linux shell use is fairly straightforward for anybody who’s used a text-mode OS before:
You type a command, possibly including options to it, and the computer executes the com-
mand. For the most part, Linux commands are external—that is, they’re separate programs
from the shell. A few commands are internal to the shell, though, and knowing the distinc-
tion can be important. You should also know some of the tricks that can make using the
command shell easier—how to have the computer complete a long command or filename,
retrieve a command you’ve recently run, or edit a command you’ve recently used (or haven’t
yet fully entered).

One class of commands—those for handling basic file management—is very
important but isn’t described here in great detail. For more information on
these commands, consult Chapter 4, “Managing Files.”

Starting a Shell
If you log into Linux using a text-mode login screen, chances are you’ll be dropped
directly into your default shell—it’s the shell that presents the prompt and accepts subse-
quent commands.

04836book.indd 5 1/16/09 9:35:35 AM

6 Chapter 1 n Exploring Linux Command-Line Tools

If you log into Linux using a graphical user interface (GUI) login screen, though, you’ll
have to start a shell manually. Some GUIs provide a menu option to start a program called
a terminal, xterm, Konsole, or something similar. These programs enable you to run text-
mode programs within Linux, and by default they come up running your shell. If you can’t
find such a menu option, look for one that enables you to run an arbitrary command. Select
it, and type xterm or konsole as the command name; this will launch an xterm-type pro-
gram that will run a shell.

Using Internal and External Commands
Internal commands are, as you might expect, built into the shell. Most shells offer a similar
set of internal commands, but shell-to-shell differences do exist; consult your shell’s man
page (as described later, in “Getting Help”) for details, particularly if you’re using an exotic
shell. Internal commands you’re likely to use enable you to perform some common tasks:

Change the working directory Whenever you’re running a shell, you’re working in a
specific directory. When you refer to a file without providing a complete path to the file,
the shell works on the file in the current working directory. (Similar rules apply to many
programs.) The cd command changes the current working directory. For instance, typing
cd /home/sally changes to the /home/sally directory. The tilde (~) character is a use-
ful shortcut; it stands for your home directory, so cd ~ will have the same effect as cd /
home/sally if your home directory is /home/sally.

Display the working directory The pwd command displays (“prints” to the screen) the
current working directory.

Display a line of text The echo command displays the text you enter; for instance, typing
echo Hello causes the system to display the string Hello. This may seem pointless, but it’s use-
ful in scripts (described in Chapter 9), and it can also be a good way to review the contents of
environment variables (described later in this chapter, in “Using Environment Variables”).

Execute a program The exec command runs an external program that you specify, as in
exec myprog to run myprog. In most cases, this is better accomplished by typing the name
of the program you want to run. The exec command has one special feature, though:
Rather than create a new process that runs alongside the shell, the new process replaces the
shell. When the new process terminates, it’s as if you terminated the shell.

Time an operation The time command times how long subsequent commands take to
execute. For instance, typing time pwd tells you how long the system took to execute the
pwd command. The time is displayed after the full command terminates. Three times are
displayed: total execution time (a.k.a. real time), user CPU time, and system CPU time.
The final two values tell you about CPU time consumed, which is likely to be much less
than the total execution time.

Set options In its most basic form, set displays a wide variety of options relating to bash
operation. These options are formatted much like environment variables, but they aren’t
the same things. You can pass various options to set to have it affect a wide range of shell
operations.

04836book.indd 6 1/16/09 9:35:35 AM

Understanding Command-Line Basics 7

Terminate the shell The exit and logout commands both terminate the shell. The exit
command terminates any shell, but the logout command terminates only login shells—that
is, those that are launched automatically when you initiate a text-mode login as opposed to
those that run in xterm windows or the like.

This list isn’t complete. Later sections of this chapter and later chapters
describe some additional internal commands. Consult your shell’s docu-
mentation for a complete list of its internal commands.

Some of these internal commands are duplicated by external commands that do the
same thing, but these external commands aren’t always installed on all systems. Even when
these external commands are installed, the internal command takes precedence unless you
provide the complete path to the external command on the command line, as in typing
/bin/pwd rather than pwd.

Confusion over Internal and External Commands

When duplicate internal and external commands exist, they sometimes produce subtly
different results or accept different options. These differences can occasionally cause
problems. For instance, consider the pwd command and symbolic links to directories.
(Symbolic links are described in more detail in Chapter 4. For now, know that they’re files
that point to other files or directories and for most intents and purposes act just like the
files or directories to which they point when they’re accessed.) Suppose you create a sym-
bolic link to /bin within your home directory and then cd into that directory. You then want
to know where you are. The pwd command that’s internal to bash will produce a different
result from the external pwd command:

$ pwd

/home/sally/binlink

$ /bin/pwd

/usr/bin

As you can see, bash’s internal pwd shows the path via the symbolic link, whereas the exter-
nal command shows the path to which the link points. Sometimes these differences can
cause confusion, such as if you read the man page or other documentation that describes
one version but you use the other and a difference is important. You may wonder why the
command isn’t operating as you expect. If in doubt, look up the documentation for, and type
the complete path to, the external command to be sure you use it.

04836book.indd 7 1/16/09 9:35:35 AM

8 Chapter 1 n Exploring Linux Command-Line Tools

When you type a command that’s not recognized by the shell as one of its internal com-
mands, the shell checks its path to find a program by that name to execute it. The path is a
list of directories in which commands can be found. It’s defined by the PATH environment
variable, as described shortly in “Using Environment Variables.” A typical user account has
about half a dozen or a dozen directories in its path. You can adjust the path by changing
the PATH environment variable in a shell configuration file, as described in “Exploring Shell
Configuration.”

You can run programs that aren’t on the path by providing a complete path on the com-
mand line. For instance, typing ./myprog runs the myprog program in the current directory,
and /home/arthur/thisprog runs the thisprog program in the /home/arthur directory.

The root account should normally have a shorter path than ordinary user
accounts. Typically, you’ll omit directories that store GUI and other user-
oriented programs from root’s path in order to discourage use of the
root account for routine operations, thus minimizing the risk of security
breaches related to buggy or compromised binaries being run by root.
Most important, root’s path should never include the current directory
(./). Placing this directory in root’s path makes it possible for a local mis-
creant to trick root into running replacements for common programs, such
as ls, by having root change into a directory with such a program. Indeed,
omitting the current directory from ordinary user paths is also generally a
good idea. If this directory must be part of the ordinary user path, it should
appear at the end of the path so that the standard programs take prece-
dence over any replacement programs in the current directory.

In the case of both programs on the path and those whose complete paths you type as
part of the command, the program file must be marked as executable. This is done via the
execute bit that’s stored with the file. Standard programs are marked executable when they’re
installed, but if you need to adjust a program’s executable status, you can do so with the
chmod command, as described in Chapter 4.

Performing Some Shell Command Tricks
Many users find typing commands to be tedious and error prone. This is particularly true
of slow or sloppy typists. For this reason, Linux shells include various tools that can help
speed up operations. The first of these is command completion: Type part of a command
or (as an option to a command) a filename, and then press the Tab key. The shell tries to fill
in the rest of the command or the filename. If just one command or filename matches the
characters you’ve typed so far, the shell fills it in and places a space after it. If the characters
you’ve typed don’t uniquely identify a command or filename, the shell fills in what it can
and then stops. Depending on the shell and its configuration, it may beep. If you press the
Tab key again, the system responds by displaying the possible completions. You can then
type another character or two and, if you haven’t completed the command or filename,
press the Tab key again to have the process repeat.

04836book.indd 8 1/16/09 9:35:36 AM

Understanding Command-Line Basics 9

The most fundamental Linux commands have fairly short names—mv, ls, set, and so on.
Some other commands are much longer, though, such as traceroute or sane-find-scanner.
Filenames can also be quite lengthy—up to 255 characters on many filesystems. Thus, com-
mand completion can save a lot of time when you’re typing. It can also help you avoid typos.

The most popular Linux shells, including bash and tcsh, support command
and filename completion. Some older shells, though, don’t support this
helpful feature.

Another helpful shell shortcut is the history. The history keeps a record of every com-
mand you type (stored in ~/.bash_history in the case of bash). If you’ve typed a long
command recently and want to use it again, or use a minor variant of it, you can pull the
command out of the history. The simplest way to do this is to press the Up arrow key on
your keyboard; this brings up the previous command. Pressing the Up arrow key repeatedly
moves through multiple commands so you can find the one you want. If you overshoot,
press the Down arrow key to move down the history. The Ctrl+P and Ctrl+N keystrokes
double for the Up and Down arrow keys, respectively.

Another way to use the command history is to search through it. Press Ctrl+R to begin
a backward (reverse) search, which is what you probably want, and begin typing characters
that should be unique to the command you want to find. The characters you type need not be
the ones that begin the command; they can exist anywhere in the command. You can either
keep typing until you find the correct command or, after you’ve typed a few characters, press
Ctrl+R repeatedly until you find the one you want. The Ctrl+S keystroke works similarly but
searches forward in the command history, which might be handy if you’ve used a backward
search or the Up arrow key to look back and have overshot. In either event, if you can’t find
the command you want or change your mind and want to terminate the search, press Ctrl+G
to do so.

Frequently, after finding a command in the history, you want to edit it. The bash shell,
like many shells, provides editing features modeled after those of the Emacs editor:

Move within the line Press Ctrl+A or Ctrl+E to move the cursor to the start or end of the
line, respectively. The Left and Right arrow keys move within the line a character at a time.
Ctrl+B and Ctrl+F do the same, moving backward and forward within a line. Pressing Ctrl
plus the Left or Right arrow key moves backward or forward a word at a time, as does
pressing Esc and then B or F.

Delete text Pressing Ctrl+D or the Delete key deletes the character under the cursor,
whereas pressing the Backspace key deletes the character to the left of the cursor. Pressing
Ctrl+K deletes all text from the cursor to the end of the line. Pressing Ctrl+X and then Back-
space deletes all the text from the cursor to the beginning of the line.

Transpose text Pressing Ctrl+T transposes the character before the cursor with the charac-
ter under the cursor. Pressing Esc and then T transposes the two words immediately before
(or under) the cursor.

04836book.indd 9 1/16/09 9:35:36 AM

10 Chapter 1 n Exploring Linux Command-Line Tools

Change case Pressing Esc and then U converts text from the cursor to the end of the word
to uppercase. Pressing Esc and then L converts text from the cursor to the end of the word to
lowercase. Pressing Esc and then C converts the letter under the cursor (or the first letter of
the next word) to uppercase, leaving the rest of the word unaffected.

Invoke an editor You can launch a full-fledged editor to edit a command by pressing
Ctrl+X followed by Ctrl+E. The bash shell attempts to launch the editor defined by the
$FCEDIT or $EDITOR environment variable or Emacs as a last resort.

These editing commands are just the most useful ones supported by bash; consult its man
page to learn about many more obscure editing features. In practice, you’re likely to make
heavy use of command and filename completion, the command history, and perhaps a few
editing features.

The history command provides an interface to view and manage the history. Typing
history alone displays all the commands in the history (typically the latest 500 com-
mands); adding a number causes only that number of the latest commands to appear. Typ-
ing history -c clears the history, which can be handy if you’ve recently typed commands
you’d rather not have discovered by others (such as commands that include passwords).

In Exercise 1.1, you’ll experiment with your shell’s completion and command-editing
tools.

E x E r C I s E 1 .1

Editing Commands

To experiment with your shell’s completion and command-editing tools, follow these steps:

1. Log in as an ordinary user.

2. Create a temporary directory by typing mkdir test. (Directory and file manipulation
commands are described in more detail in Chapter 4.)

3. Change into the test directory by typing cd test.

4. Create a few temporary files by typing touch one two three. This command creates
three empty files named one, two, and three.

5. Type ls -l t, and without pressing the Enter key, press the Tab key. The system may
beep at you or display two three. If it doesn’t display two three, press the Tab key
again, and it should do so. This reveals that either two or three is a valid completion
to your command, because these are the two files in the test directory whose file-
names begin with the letter t.

6. Type h, and again without pressing the Enter key, press the Tab key. The system
should complete the command (ls -l three), at which point you can press the Enter
key to execute it. (You’ll see information on the file.)

7. Press the Up arrow key. You should see the ls -l three command appear on the
command line.

04836book.indd 10 1/16/09 9:35:36 AM

Understanding Command-Line Basics 11

E x E r C I s E 1 .1 (c ont inue d)

8. Press Ctrl+A to move the cursor to the beginning of the line.

9. Press the Right arrow key once, and type es (without pressing the Enter key). The
command line should now read less -l three.

10. Press the Right arrow key once, and press the Delete key three times. The command
should now read less three. Press the Enter key to execute the command. (Note
that you can do so even though the cursor isn’t at the end of the line.) This invokes
the less pager on the three file. (The less pager is described more fully later, in
“Getting Help.”) Because this file is empty, you’ll see a mostly empty screen.

11. Press the Q key to exit from the less pager.

Exploring Shell Configuration
Shells, like many Linux programs, are configured through files that hold configuration options
in a plain-text format. The bash configuration files are actually bash shell scripts, which
are described more fully in Chapter 9. For now, you should know that the ~/.bashrc and
~/.profile files are the main user configuration files for bash, and /etc/bash.bashrc
and /etc/profile are the main global configuration files.

Even without knowing much about shell scripting, you can make simple changes to
these files. Edit them in your favorite text editor, and change whatever needs changing. For
instance, you can add directories to the $PATH environment variable, which takes a colon-
delimited list of directories.

Be careful when changing your bash configuration, and particularly the
global bash configuration files. Save a backup of the original file before
making changes, and test your changes immediately by logging in using
another virtual terminal. If you spot a problem, revert to your saved copy
until you can learn the cause and create a working file.

Using Environment Variables
Environment variables are like variables in programming languages—they hold data to be
referred to by the variable name. Environment variables differ in that they’re part of the
environment of a program, and other programs, such as the shell, can modify this environ-
ment. Programs can rely on environment variables to set information that can apply to many
different programs. For instance, suppose a computer hosts several different Usenet news
readers. These programs all need to know what Usenet news server to use; if they all agree to
use an environment variable, such as $NNTPSERVER, to hold this information, you can set this

04836book.indd 11 1/16/09 9:35:37 AM

12 Chapter 1 n Exploring Linux Command-Line Tools

environment variable once as part of your shell startup script and then forget it. You needn’t
set this feature individually for all the news readers installed on the system.

Chapter 9 describes environment variables and their manipulation in more detail. For
the moment, you should know that you can set them in bash by using an assignment (=)
operator followed by the export command:

$ NNTPSERVER=news.abigisp.com

$ export NNTPSERVER

You can combine these two commands into a single form:

$ export NNTPSERVER=news.abigisp.com

Either method sets the $NNTPSERVER environment variable to news.abigisp.com. (When
setting an environment variable, you omit the dollar sign, but subsequent references include
a dollar sign to identify the environment variable as such.) Thereafter, programs that need
this information can refer to the environment variable. In fact, you can do so from the shell
yourself, using the echo command:

$ echo $NNTPSERVER

news.abigisp.com

You can also view the entire environment by typing env. The result is likely to be several
dozen lines of environment variables and their values. Chapter 9 describes what many of
these variables are in more detail.

To delete an environment variable, use the unset command, which takes the name of
an environment variable (without the leading $ symbol) as an option. For instance, unset
NNTPSERVER removes the $NNTPSERVER environment variable.

Getting Help
Linux provides a text-based help system known as man. This command’s name is short for
manual, and its entries (its man pages) provide succinct summaries of what a command, file,
or other feature does. For instance, to learn about man itself, you can type man man. The
result is a description of the man command.

The man utility uses the less pager to display information. This program displays text a
page at a time. Press the spacebar to move forward a page, Esc followed by V to move back
a page, the arrow keys to move up or down a line at a time, the slash (/) key to search for
text, and so on. (Type man less to learn all the details, or consult the upcoming section
“Paging Through Files with less.”) When you’re done, press Q to exit less and the man
page it’s displaying.

Linux man pages are categorized into several sections, which are summarized in Table 1.1.
Sometimes a single keyword has entries in multiple sections; for instance, passwd has entries
under both section 1 and section 5. In most cases, man returns the entry in the lowest-num-
bered section; but you can force the issue by preceding the keyword by the section number.
For instance, typing man 5 passwd returns information on the passwd file format rather than
the passwd command.

04836book.indd 12 1/16/09 9:35:37 AM

Using Streams, Redirection, and Pipes 13

Ta b LE 1.1 Manual Sections

Section Number Description

1 Executable programs and shell commands

2 System calls provided by the kernel

3 Library calls provided by program libraries

4 Device files (usually stored in /dev)

5 File formats

6 Games

7 Miscellaneous (macro packages, conventions, and so on)

8 System administration commands (programs run mostly or exclu-
sively by root)

9 Kernel routines

Some programs have moved away from man pages to info pages. The basic purpose of
info pages is the same as that for man pages, but info pages use a hypertext format so that
you can move from section to section of the documentation for a program. Type info info
to learn more about this system.

Both man pages and info pages are usually written in a terse style. They’re intended as
reference tools, not tutorials; they frequently assume basic familiarity with the command,
or at least with Linux generally. For more tutorial information, you must look elsewhere,
such as this book or the Web. The Linux Documentation Project (http://tldp.org) is a
particularly relevant Web-based resource for learning about various Linux topics.

Using Streams, Redirection, and Pipes
Streams, redirection, and pipes are some of the more powerful command-line tools in
Linux. Linux treats the input to and output from programs as a stream, which is a data
entity that can be manipulated. Ordinarily, input comes from the keyboard and output
goes to the screen (which in this context can mean a full-screen text-mode login session,
an xterm or a similar window, or the screen of a remote computer via a remote login ses-
sion). You can redirect these input and output streams to come from or go to other sources,
though, such as files. Similarly, you can pipe the output of one program into another pro-
gram. These facilities can be great tools to tie together multiple programs.

04836book.indd 13 1/16/09 9:35:37 AM

14 Chapter 1 n Exploring Linux Command-Line Tools

Part of the Unix philosophy to which Linux adheres is, whenever possible,
to do complex things by combining multiple simple tools. Redirection
and pipes help in this task by enabling simple programs to be combined
together in chains, each link feeding off the output of the preceding link.

Exploring Types of Streams
To begin understanding redirection and pipes, you must first understand the different types
of input and output streams. Three are most important for this topic:

Standard input Programs accept keyboard input via standard input, or stdin. In most
cases, this is the data that comes into the computer from a keyboard.

Standard output Text-mode programs send most data to their users via standard output
(a.k.a. stdout), which is normally displayed on the screen, either in a full-screen text-mode
session or in a GUI window such as an xterm. (Fully GUI programs such as GUI word pro-
cessors don’t use standard output for their regular interactions, although they might use
standard output to display messages in the xterm from which they were launched. GUI out-
put isn’t handled via an output stream in the sense I’m describing here.)

Standard error Linux provides a second type of output stream, known as standard error,
or stderr. This output stream is intended to carry high-priority information such as error
messages. Ordinarily, standard error is sent to the same output device as standard output,
so you can’t easily tell them apart. You can redirect one independently of the other, though,
which can be handy. For instance, you can redirect standard error to a file while leaving
standard output going to the screen so that you can interact with the program and then
study the error messages later.

Internally, programs treat these streams just like data files—they open them, read from
or write to the files, and close them when they’re done. Put another way, ordinary files are
streams from a program’s point of view. These streams just happen to be the ones used to
interact with users.

Redirecting Input and Output
To redirect input or output, you use symbols following the command, including any options
it takes. For instance, to redirect the output of the echo command, you would type some-
thing like this:

$ echo $NNTPSERVER > nntpserver.txt

The result is that the file nntpserver.txt contains the output of the command (in this
case, the value of the $NNTPSERVER environment variable). Redirection operators exist to
achieve several effects, as summarized in Table 1.2.

04836book.indd 14 1/16/09 9:35:37 AM

Using Streams, Redirection, and Pipes 15

Ta b LE 1. 2 Common Redirection Operators

Redirection Operator Effect

> Creates a new file containing standard output. If the specified file
exists, it’s overwritten.

>> Appends standard output to the existing file. If the specified file
doesn’t exist, it’s created.

2> Creates a new file containing standard error. If the specified file
exists, it’s overwritten.

2>> Appends standard error to the existing file. If the specified file
doesn’t exist, it’s created.

&> Creates a new file containing both standard output and standard
error. If the specified file exists, it’s overwritten.

< Sends the contents of the specified file to be used as standard
input.

<< Accepts text on the following lines as standard input.

<> Causes the specified file to be used for both standard input and
standard output.

Most of these redirectors deal with output, both because there are two types of output
(standard output and standard error) and because you must be concerned with what to
do in case you specify a file that already exists. The most important input redirector is <,
which takes the specified file’s contents as standard input.

A common trick is to redirect standard output or standard error to /dev/
null. This file is a device that’s connected to nothing; it’s used when you
want to get rid of data. For instance, if the whine program is generating too
many error messages, you can type whine 2> /dev/null to run it and dis-
card its error messages.

One redirection operator that requires elaboration is <<. This operator implements a
here document, which takes text from the following lines as standard input. Chances are
you won’t use this redirector on the command line, though; the following lines are standard
input, so there’s no need to redirect them. Rather, you might use this command as part of
a script in order to pass data to a command. Unlike most redirection operators, the text
immediately following the << code isn’t a filename; instead, it’s a word that’s used to mark

04836book.indd 15 1/16/09 9:35:38 AM

16 Chapter 1 n Exploring Linux Command-Line Tools

the end of input. For instance, typing someprog << EOF causes someprog to accept input
until it sees a line that contains only the string EOF (without even a space following it).

Some programs that take input from the command line expect you to ter-
minate input by pressing Ctrl+D. This keystroke corresponds to an end-of-
file marker using the American Standard Code for Information Interchange
(ASCII).

A final redirection tool is the tee command. This command splits standard input so that
it’s displayed on standard output and on as many files as you specify. Typically, tee is used
in conjunction with data pipes so that a program’s output can be both stored and viewed
immediately. For instance, to view and store the output of someprog, you might type this:

$ someprog | tee output.txt

The vertical bar (|) is the pipe character. It implements a pipe, as described
in the next section.

Ordinarily, tee overwrites any files whose names you specify. If you want to append
data to these files, pass the -a option to tee.

Piping Data Between Programs
Programs can frequently operate on other programs’ outputs. For instance, you might use
a text-filtering command (such as the ones described shortly, in “Processing Text Using Fil-
ters”) to manipulate text output by another program. You can do this with the help of redi-
rection operators; send the first program’s standard output to a file, and then redirect the
second program’s standard input to read from that file. This solution is awkward, though,
and it involves the creation of a file that you might easily overlook, leading to unnecessary
clutter on your system.

The solution is to use data pipes (a.k.a. pipelines). A pipe redirects the first program’s
standard output to the second program’s standard input and is denoted by a vertical bar (|):

$ first | second

For instance, suppose that first generates some system statistics, such as system uptime,
CPU use, number of users logged in, and so on. This output might be lengthy, so you want
to trim it a bit. You might therefore use second, which could be a script or command that
echoes from its standard input only the information in which you’re interested. (The grep
command, described in “Using grep,” is often used in this role.)

Pipes can be used in sequences of arbitrary length:

$ first | second | third | fourth | fifth | sixth [...]

04836book.indd 16 1/16/09 9:35:38 AM

Processing Text Using Filters 17

Generating Command Lines
Sometimes you’ll find yourself constructing a series of commands that are similar to each
other but not similar enough to enable you to use their normal options to substitute a single
command. For instance, suppose you want to remove every file in a directory tree with a
name that ends in a tilde (~). (This filename convention denotes backup files created by cer-
tain text editors.) With a large directory tree, this task can be daunting; the usual file-deletion
command (rm, described in more detail in Chapter 4) doesn’t provide an option to search for
and delete every file in a directory tree that matches such a specific criterion. One command
that can do the search part of the job, though, is find, which is also described in more detail
in Chapter 4. This command displays all the files that match criteria you provide. If you could
combine the output of find to create a series of command lines using rm, the task would be
solved. This is precisely the purpose of the xargs command.

The xargs command builds a command from its standard input. The basic syntax for
this command is as follows:

xargs [options] [command [initial-arguments]]

The command is the command you want to execute, and initial-arguments is a list of argu-
ments you want to pass to the command. The options are xargs options; they aren’t passed to
command. When you run xargs, it runs command once for every word passed to it on standard
input, adding that word to the argument list for command. If you want to pass multiple options
to the command, you can protect them by enclosing the group in quotation marks.

For instance, consider the task of deleting all those backup files, denoted by tilde characters.
You can do this by piping the output of find to xargs, which then calls rm:

$ find ./ -name “*~” | xargs rm

The first part of this command (find ./ -name “*~”) finds all the files in the current
directory (./) or its subdirectories with a name that ends in a tilde (*~). This list is then
piped to xargs, which adds each one to its own rm command.

A tool that’s similar to xargs in many ways is the backtick (̀), which is a character to
the left of the 1 key on most keyboards. The backtick is not the same as the single quote
character (‘), which is located to the right of the semicolon (;) on most keyboards.

Text within backticks is treated as a separate command whose results are substituted on the
command line. For instance, to delete those backup files, you can type the following command:

$ rm `find ./ -name “*~”`

Processing Text Using Filters
In keeping with Linux’s philosophy of providing small tools that can be tied together via
pipes and redirection to accomplish more complex tasks, many simple commands to manipu-
late text are available. These commands accomplish tasks of various types, such as combining
files, transforming the data in files, formatting text, displaying text, and summarizing data.

04836book.indd 17 1/16/09 9:35:39 AM

18 Chapter 1 n Exploring Linux Command-Line Tools

Many of the following descriptions include input-file specifications. In
most cases, you can omit these input-file specifications, in which case the
utility reads from standard input instead.

File-Combining Commands
The first group of text-filtering commands are those used to combine two or more files
into one file. Three important commands in this category are cat, join, and paste, which
join files end to end, based on fields in the file, or by merging on a line-by-line basis,
respectively.

Combining Files with cat
The cat command’s name is short for concatenate, and this tool does just that: It links
together an arbitrary number of files end to end and sends the result to standard output.
By combining cat with output redirection, you can quickly combine two files into one:

$ cat first.txt second.txt > combined.txt

Although cat is officially a tool for combining files, it’s also commonly used to display
the contents of a short file. If you type only one filename as an option, cat displays that
file. This is a great way to review short files; but for long files, you’re better off using a full-
fledged pager command, such as more or less.

You can add options to have cat perform minor modifications to the files as it com-
bines them:

Display line ends If you want to see where lines end, add the -E or --show-ends option.
The result is a dollar sign ($) at the end of each line.

Number lines The -n or --number option adds line numbers to the beginning of every line.
The -b or --number-nonblank option is similar, but it numbers only lines that contain text.

Minimize blank lines The -s or --squeeze-blank option compresses groups of blank
lines down to a single blank line.

Display special characters The -T or --show-tabs option displays tab characters as ^I.
The -v or --show-nonprinting option displays most control and other special characters
using carat (^) and M- notations.

The tac command is similar to cat, but it reverses the order of lines in the output.

Joining Files by Field with join
The join command combines two files by matching the contents of specified fields within
the files. Fields are typically space-separated entries on a line, although you can specify
another character as the field separator with the -t char option, where char is the charac-
ter you want to use. You can cause join to ignore case when performing comparisons by
using the -i option.

04836book.indd 18 1/16/09 9:35:39 AM

Processing Text Using Filters 19

The effect of join may best be understood through a demonstration. Consider Listings 1.1
and 1.2, which contain data on telephone numbers—Listing 1.1 shows the names associated
with those numbers, and Listing 1.2 shows whether the numbers are listed or unlisted.

Listing 1.1: Demonstration File Containing Telephone Numbers and Names

555-2397 Beckett, Barry

555-5116 Carter, Gertrude

555-7929 Jones, Theresa

555-9871 Orwell, Samuel

Listing 1.2: Demonstration File Containing Telephone Number Listing Status

555-2397 unlisted

555-5116 listed

555-7929 listed

555-9871 unlisted

You can display the contents of both files using join:

$ join listing1.1.txt listing1.2.txt

555-2397 Beckett, Barry unlisted

555-5116 Carter, Gertrude listed

555-7929 Jones, Theresa listed

555-9871 Orwell, Samuel unlisted

By default, join uses the first field as the one to match across files. Because Listings 1.1 and
1.2 both place the phone number in this field, it’s the key field in the output. You can specify
another field by using the -1 or -2 option to specify the join field for the first or second file,
respectively, as in join -1 3 -2 2 cameras.txt lenses.txt to join using the third field in
cameras.txt and the second field in lenses.txt. The -o FORMAT option enables more complex
specifications for the output file’s format; consult the man page for join for more details.

The join command can be used at the core of a set of simple customized database-
manipulation tools using Linux text-manipulation commands. It’s very limited by itself,
though; for instance, it requires its two files to have the same ordering of lines. (You can
use the sort command to ensure this is so.)

Merging Lines with paste
The paste command merges files line by line, separating the lines from each file with tabs,
as shown in the following example, using Listings 1.1 and 1.2 again:

$ paste listing1.1.txt listing1.2.txt

555-2397 Beckett, Barry 555-2397 unlisted

555-5116 Carter, Gertrude 555-5116 listed

555-7929 Jones, Theresa 555-7929 listed

555-9871 Orwell, Samuel 555-9871 unlisted

04836book.indd 19 1/16/09 9:35:39 AM

20 Chapter 1 n Exploring Linux Command-Line Tools

You can use paste to combine data from files that aren’t keyed with fields suitable for
use by join. Of course, to be meaningful, the files’ line numbers must be exactly equiva-
lent. Alternatively, you can use paste as a quick way to create a two-column output of
textual data; however, the alignment of the second column may not be exact if the first
column’s line lengths aren’t exactly even, as shown in the preceding example.

File-Transforming Commands
Many of Linux’s text-manipulation commands are aimed at transforming the contents of
files. These commands don’t actually change files’ contents, though; rather, they send the
changed file to standard output. You can then pipe this output to another command or
redirect it into a new file.

An important file-transforming command is sed. This command is very
complex and is covered later in this chapter, in “Using sed.”

Converting Tabs to Spaces with expand
Sometimes text files contain tabs but programs that need to process the files don’t cope well
with tabs; or perhaps you want to edit a text file in an editor that uses a different amount
of horizontal space for the tab than the editor that created the file. In such cases, you may
want to convert tabs to spaces. The expand command does this.

By default, expand assumes a tab stop every eight characters. You can change this spac-
ing with the -t num or --tabs=num option, where num is the tab spacing value.

Displaying Files in Octal with od
Some files aren’t easily displayed in ASCII; most graphics files, audio files, and so on, use
non-ASCII characters that look like gibberish. Worse, these characters can do strange things
to your display if you try to view such a file with cat or a similar tool. For instance, your font
may change, or your console may begin beeping uncontrollably. Nonetheless, you may some-
times want to display such files, particularly if you want to investigate the structure of a data
file. You may also want to look at an ASCII file in a way that eliminates certain ambiguities,
such as whether a gap between words is a tab or several spaces. In such cases, od (whose
name stands for octal dump) can help. It displays a file in an unambiguous format—octal
(base 8) numbers by default. For instance, consider Listing 1.2 as parsed by od:

$ od listing1.2.txt

0000000 032465 026465 031462 033471 072440 066156 071551 062564

0000020 005144 032465 026465 030465 033061 066040 071551 062564

0000040 005144 032465 026465 034467 034462 066040 071551 062564

0000060 005144 032465 026465 034071 030467 072440 066156 071551

0000100 062564 005144

0000104

04836book.indd 20 1/16/09 9:35:39 AM

Processing Text Using Filters 21

The first field on each line is an index into the file in octal. For instance, the second line
begins at octal 20 (16 in base 10) bytes into the file. The remaining numbers on each line
represent the bytes in the file. This type of output can be difficult to interpret unless you’re
well versed in octal notation and perhaps in the ASCII code.

Although od is nominally a tool for generating octal output, it can generate many other out-
put formats, such as hexadecimal (base 16), decimal (base 10), and even ASCII with escaped
control characters. Consult the man page for od for details on creating these variants.

Sorting Files with sort
Sometimes you’ll create an output file that you want sorted. To do so, you can use a com-
mand that’s called, appropriately enough, sort. This command can sort in several ways,
including the following:

Ignore case Ordinarily, sort sorts by ASCII value, which differentiates between upper-
case and lowercase letters. The -f or --ignore-case option causes sort to ignore case.

Month sort The -M or --month-sort option causes the program to sort by three-letter
month abbreviation (JAN through DEC).

Numeric sort You can sort by number by using the -n or --numeric-sort option.

Reverse sort order The -r or --reverse option sorts in reverse order.

Sort field By default, sort uses the first field as its sort field. You can specify another field
with the -k field or --key=field option. (The field can be two numbered fields separated
by commas, to sort on multiple fields.)

As an example, suppose you wanted to sort Listing 1.1 by first name. You could do so
like this:

$ sort -k 3 listing1.1.txt

555-2397 Beckett, Barry

555-5116 Carter, Gertrude

555-9871 Orwell, Samuel

555-7929 Jones, Theresa

The sort command supports a large number of additional options, many of them quite
exotic. Consult sort’s man page for details.

Breaking a File into Pieces with split
The split command can split a file into two or more files. Unlike most of the text-manip-
ulation commands described in this chapter, this command requires you to enter an output
filename—or more precisely, an output filename prefix, to which is added an alphabetic
code. You must also normally specify how large you want the individual files to be:

Split by bytes The -b size or --bytes=size option breaks the input file into pieces of size
bytes. This option can have the usually undesirable consequence of splitting the file mid-line.

04836book.indd 21 1/16/09 9:35:39 AM

22 Chapter 1 n Exploring Linux Command-Line Tools

Split by bytes in line-sized chunks You can break a file into files of no more than a speci-
fied size without breaking lines across files by using the -C=size or --line-bytes=size
option. (Lines will still be broken across files if the line length is greater than size.)

Split by number of lines The -l lines or --lines=lines option splits the file into chunks
with no more than the specified number of lines.

As an example, consider breaking Listing 1.1 into two parts by number of lines:

$ split -l 2 listing1.1.txt numbers

The result is two files, numbersaa and numbersab, that together hold the original con-
tents of listing1.1.txt.

Translating Characters with tr
The tr command changes individual characters from standard input. Its syntax is as
follows:

tr [options] SET1 [SET2]

You specify the characters you want replaced in a group (SET1) and the characters with
which you want them to be replaced as a second group (SET2). Each character in SET1 is
replaced with the one at the equivalent position in SET2. Here’s an example using Listing 1.1:

$ tr BCJ bc < listing1.1.txt

555-2397 beckett, barry

555-5116 carter, Gertrude

555-7929 cones, Theresa

555-9871 Orwell, Samuel

This example translates some, but not all, of the uppercase characters to lowercase. Note
that SET2 in this example was shorter than SET1. The result is that tr substitutes the last
available letter from SET2 for the missing letters. In this example, the J in Jones became a c.
The -t or --truncate-set1 option causes tr to truncate SET1 to the size of SET2 instead.

Another tr option is -d, which causes the program to delete the characters from SET1.
When using -d, you can omit SET2 entirely.

The tr command also accepts a number of shortcuts, such as [:alnum:] (all numbers and
letters), [:upper:] (all uppercase letters), [:lower:] (all lowercase letters), and [:digit:] (all
digits). You can specify a range of characters by separating them with dashes (-), as in A-M
for characters between A and M, inclusive. Consult tr’s man page for a complete list of these
shortcuts.

Converting Spaces to Tabs with unexpand
The unexpand command is the logical opposite of expand; it converts multiple spaces to
tabs. This can help compress the size of files that contain many spaces and can be helpful if
a file is to be processed by a utility that expects tabs in certain locations.

04836book.indd 22 1/16/09 9:35:40 AM

Processing Text Using Filters 23

Like expand, unexpand accepts the -t num or --tabs=num option, which sets the tab
spacing to once every num characters. If you omit this option, unexpand assumes a tab stop
every eight characters.

Deleting Duplicate Lines with uniq
The uniq command removes duplicate lines. It’s most likely to be useful if you’ve sorted a
file and don’t want duplicate items. For instance, suppose you want to summarize Shake-
speare’s vocabulary. You might create a file with all of the Bard’s works, one word per line.
You can then sort this file using sort and pass it through uniq. Using a shorter example file
containing the text to be or not to be, that is the question (one word per line), the
result looks like this:

$ sort shakespeare.txt | uniq

be

is

not

or

question

that

the

to

Note that the words to and be, which appeared in the original file twice, appear only
once in the uniq-processed version.

File-Formatting Commands
The next three commands—fmt, nl, and pr—reformat the text in a file. The first of these is
designed to reformat text files, such as if a program’s README documentation file uses lines
that are too long for your display. The nl command numbers the lines of a file, which can
be helpful in referring to lines in documentation or correspondence. Finally, pr is a print-
processing tool; it formats a document in pages suitable for printing.

Reformatting Paragraphs with fmt
Sometimes text files arrive with outrageously long line lengths, irregular line lengths, or other
problems. Depending on the problem, you may be able to cope simply by using an appropri-
ate text editor or viewer to read the file. If you want to clean up the file a bit, though, you can
do so with fmt. If called with no options (other than the input filename, if you’re not having it
work on standard input), the program attempts to clean up paragraphs, which it assumes are
delimited by two or more blank lines or by changes in indentation. The new paragraph for-
matting defaults to no more than 75 characters wide. You can change this with the -width,
-w width, or --width=width options, which set the line length to width characters.

04836book.indd 23 1/16/09 9:35:40 AM

24 Chapter 1 n Exploring Linux Command-Line Tools

Numbering Lines with nl
As described earlier, in “Combining Files with cat,” you can number the lines of a file with
that command. The cat line-numbering options are limited, though, so if you need to do
complex line numbering, nl is the tool to use. In its simplest case, you can use nl alone to
accomplish much the same goal as cat -b achieves: numbering all the non-blank lines in a
file. You can add many options to nl to achieve various special effects:

Body numbering style You can set the numbering style for the bulk of the lines with the
-b style or --body-numbering=style option, where style is a style format code, described
shortly.

Header and footer numbering style If the text is formatted for printing and has headers or
footers, you can set the style for these elements with the -h style or --header-numbering=style
option for the header and -f style or --footer-numbering=style option for the footer.

Page separator Some numbering schemes reset the line numbers for each page. You can
tell nl how to identify a new page with the -d=code or --section-delimiter=code option,
where code is a code for the character that identifies the new page.

Line-number options for new pages Ordinarily, nl begins numbering each new page with
line 1. If you pass the -p or --no-renumber option, though, it doesn’t reset the line number
with a new page.

Number format You can specify the numbering format with the -n format or --number-
format=format option, where format is ln (left justified, no leading zeros), rn (right justi-
fied, no leading zeros), or rz (right justified with leading zeros).

The body, header, and footer options enable you to specify a numbering style for each of
these page elements:

Number only non-blank lines The default behavior is to number lines that aren’t empty.
This corresponds to a style of t.

Number all lines If you want empty lines to be numbered, specify a style of a.

Number no lines To omit line numbers (say, for headers or footers), specify a style of n.

Number lines matching a regular expression A style of pREGEXP numbers only those
lines that match the regular expression REGEXP. (Regular expressions are described later, in
“Using Regular Expressions.”)

As an example, suppose you’ve created a script, buggy, but you find that it’s not working
as you expect. When you run it, you get error messages that refer to line numbers, so you
want to create a version of the script with lines that are numbered for easy reference. You
can do so by calling nl with the option to number blank lines (-b a):

$ nl -b a buggy > numbered-buggy.txt

Because the input file doesn’t have any explicit page delimiters, the output
will be numbered in a single sequence; nl doesn’t try to impose its own
page-length limits.

04836book.indd 24 1/16/09 9:35:40 AM

Processing Text Using Filters 25

The numbered-buggy.txt file created by this command isn’t useful as a script because of
the line numbers that begin each line. You can, however, load it into a text editor or display
it with a pager such as less to view the text and see the line numbers along with the com-
mands they contain.

Preparing a File for Printing with pr
If you want to print a plain-text file, you may want to prepare it with headers, footers, page
breaks, and so on. The pr command was designed to do this. In its most basic form, you
pass the command a file:

$ pr myfile.txt

The result is text formatted for printing on a line printer—that is, pr assumes an
80-character line length in a monospaced font. Of course, you can also use pr in a pipe,
either to accept input piped from another program or to pipe its output to another program.
(The recipient program might be lpr, which is used to print files, as described in Chapter 6,
“Configuring the X Window System, Localization, and Printing.”)

By default, pr creates output that includes the original text with headers that include the
current date and time, the original filename, and the page number. You can tweak the out-
put format in a variety of ways, including the following:

Generate multi-column output Passing the -numcols or --columns=numcols option cre-
ates output with numcols columns. Note that pr doesn’t reformat text; if lines are too long,
they’re truncated or run over onto multiple columns.

Generate double-spaced output The -d or --double-space option causes double-spaced
output from a single-spaced file.

Use form feeds Ordinarily, pr separates pages by using a fixed number of blank lines.
This works fine if your printer uses the same number of lines that pr expects. If you have
problems with this issue, you can pass the -F, -f, or --form-feed option, which causes pr
to output a form-feed character between pages. This works better with some printers.

Set page length The -l lines or --length=lines option sets the length of the page in lines.

Set the header text The -h text or --header=text option sets the text to be displayed in
the header, replacing the filename. To specify a multi-word string, enclose it in quotes, as in
--header=”My File”. The -t or --omit-header option omits the header entirely.

Set left margin and page width The -o chars or --indent=chars option sets the left margin
to chars characters. This margin size is added to the page width, which defaults to 72 charac-
ters and can be explicitly set with the -w chars or --width chars option.

These options are just the beginning; pr supports many more, which are described in its
man page. As an example of pr in action, consider printing a double-spaced and numbered ver-
sion of a configuration file (say, /etc/profile) for your reference. You can do this by piping
together cat and its -n option to generate a numbered output, pr and its -d option to double-
space the result, and lpr to print the file:

$ cat -n /etc/profile | pr -d | lpr

04836book.indd 25 1/16/09 9:35:41 AM

26 Chapter 1 n Exploring Linux Command-Line Tools

The result should be a printout that might be handy for taking notes on the configura-
tion file. One caveat, though: If the file contains lines that approach or exceed 80 characters
in length, the result can be single lines that spill across two lines. The result will be dis-
rupted page boundaries. As a workaround, you can set a somewhat short page length with
-l and use -f to ensure that the printer receives form feeds after each page:

$ cat -n /etc/profile | pr -dfl 50 | lpr

The pr command is built around assumptions about printer capabilities
that were reasonable in the early 1980s. It’s still useful today, but you
might prefer to look into GNU Enscript (http://www.codento.com/people/
mtr/genscript/). This program has many of the same features as pr, but
it generates PostScript output that can take better advantage of modern
printer features.

File-Viewing Commands
Sometimes you just want to view a file or part of a file. A few commands can help you
accomplish this goal without loading the file into a full-fledged editor.

As described earlier, the cat command is also handy for viewing short files.

Viewing the Starts of Files with head
Sometimes all you need to do is see the first few lines of a file. This may be enough to iden-
tify what a mystery file is, for instance; or you may want to see the first few entries of a log
file to determine when that file was started. You can accomplish this goal with the head
command, which echoes the first 10 lines of one or more files to standard output. (If you
specify multiple filenames, each one’s output is preceded by a header to identify it.) You can
modify the amount of information displayed by head in two ways:

Specify the number of bytes The -c num or --bytes=num option tells head to display num
bytes from the file rather than the default 10 lines.

Specify the number of lines You can change the number of lines displayed with the -n
num or --lines=num option.

Viewing the Ends of Files with tail
The tail command works just like head, except that tail displays the last 10 lines of a
file. (You can use the -c/--bytes and -n/--lines options to change the amount of data dis-
played, just as with head.) This command is useful for examining recent activity in log files
or other files to which data may be appended.

04836book.indd 26 1/16/09 9:35:41 AM

Processing Text Using Filters 27

The tail command supports several options that aren’t present in head and that enable
the program to handle additional duties, including the following:

Track a file The -f or --follow option tells tail to keep the file open and to display new
lines as they’re added. This feature is helpful for tracking log files because it enables you to
see changes as they’re added to the file.

Stop tracking on program termination The --pid=pid option tells tail to terminate
tracking (as initiated by -f or --follow) once the process with a process ID (PID) of pid
terminates. (PIDs are described in more detail in Chapter 2, “Managing Software.”)

Some additional options provide more obscure capabilities. Consult tail’s man page
for details.

Paging Through Files with less
The less command’s name is a joke; it’s a reference to the more command, which was an early
file pager. The idea was to create a better version of more, so the developers called it less.

The idea behind less (and more, for that matter) is to enable you to read a file a screen at
a time. When you type less filename, the program displays the first few lines of filename.
You can then page back and forth through the file:

Pressing the spacebar moves forward through the file a screen at a time.Ûn

Pressing Esc followed by V moves backward through the file a screen at a time.Ûn

The Up and Down arrow keys move up or down through the file a line at a time.Ûn

You can search the file’s contents by pressing the slash (/) key followed by the search Ûn

term. For instance, typing /portable finds the first occurrence of the string portable
after the current position. Typing a slash followed by the Enter key moves to the next
occurrence of the search term. Typing n alone repeats the search forward, while typing
N alone repeats the search backward.

You can search backward in the file by using the question mark (?) key rather than the Ûn

slash key.

You can move to a specific line by typing Ûn g followed by the line number, as in g50 to go
to line 50.

When you’re done, type Ûn q to exit from the program.

Unlike most of the programs described here, less can’t be readily used in a pipe, except
as the final command in the pipe. In that role, though, less is very useful because it enables
you to readily examine lengthy output.

Although less is quite common on Linux systems and is typically con-
figured as the default text pager, some Unix-like systems use more in this
role. Many of less’s features, such as the ability to page backward in a file,
don’t work in more.

04836book.indd 27 1/16/09 9:35:41 AM

28 Chapter 1 n Exploring Linux Command-Line Tools

One additional less feature can be handy: Typing h displays less’s internal help system.
This display summarizes the commands you may use, but it’s long enough that you must
use the usual less paging features to view it all! When you’re done with the help screens,
type q, just as if you were exiting from viewing a help document with less. This action will
return you to your original document.

File-Summarizing Commands
The final text-filtering commands I describe are used to summarize text in one way or
another. The cut command takes segments of an input file and sends them to standard out-
put, while the wc command displays some basic statistics on the file.

Extracting Text with cut
The cut command extracts portions of input lines and displays them on standard output.
You can specify what to cut from input lines in several ways:

By byte The -b list or --bytes=list option cuts the specified list of bytes from the input
file. (The format of a list is described shortly.)

By character The -c list or --characters=list option cuts the specified list of charac-
ters from the input file. In practice, this method and the by-byte method usually produce
identical results. (If the input file uses a multi-byte encoding system, though, the results
won’t be identical.)

By field The -f list or --fields=list option cuts the specified list of fields from the input
file. By default, a field is a tab-delimited section of a line, but you can change the delimiting
character with the -d char, --delim=char, or --delimiter=char option option, where char
is the character you want to use to delimit fields. Ordinarily, cut echoes lines that don’t con-
tain delimiters. Including the -s or --only-delimited option changes this behavior so that
the program doesn’t echo lines that don’t contain the delimiter character.

Many of these options take a list, which is a way to specify multiple bytes, characters,
or fields. You make this specification by number; it can be a single number (such as 4), a
closed range of numbers (such as 2-4), or an open range of numbers (such as -4 or 4-). In
this final case, all bytes, characters, or fields from the beginning of the line to the specified
number or from the specified number to the end of the line are included in the list.

The cut command is frequently used in scripts to extract data from some other command’s
output. For instance, suppose you’re writing a script and the script needs to know the hard-
ware address of your Ethernet adapter. This information can be obtained from the ifconfig
command (described in more detail in Chapter 8, “Configuring Basic Networking”):

$ ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:0C:76:96:A3:73

 inet addr:192.168.1.3 Bcast:192.168.1.255 Mask:255.255.255.0

 inet6 addr: fe80::20c:76ff:fe96:a373/64 Scope:Link

 UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1500 Metric:1

04836book.indd 28 1/16/09 9:35:41 AM

Using Regular Expressions 29

 RX packets:7127424 errors:0 dropped:0 overruns:0 frame:0

 TX packets:5273519 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:6272843708 (5982.2 Mb) TX bytes:1082453585 (1032.3 Mb)

 Interrupt:10 Base address:0xde00

Unfortunately, most of this information is extraneous for the desired purpose. The hard-
ware address is the 6-byte hexadecimal number following HWaddr. To extract that data, you
can combine grep (described shortly, in “Using grep”) with cut in a pipe:

$ ifconfig eth0 | grep HWaddr | cut -d “ “ -f 11

00:0C:76:96:A3:73

Of course, in a script you would probably assign this value to a variable or otherwise
process it through additional pipes. Chapter 9 describes scripts in more detail.

Obtaining a Word Count with wc
The wc command produces a word count (that’s where it gets its name), as well as line and
byte counts, for a file:

$ wc file.txt

 308 2343 15534 file.txt

This file contains 308 lines (or, more precisely, 308 newline characters); 2,343 words;
and 15,534 bytes. You can limit the output to the newline count, the word count, the byte
count, or a character count with the --lines (-l), --words (-w), --bytes (-c), or --chars
(-m) option, respectively. You can also learn the maximum line length with the --max-line-
length (-L) option.

For an ordinary ASCII file, the character and byte counts will be identical.
These values may diverge for files that use multi-byte character encodings.

Using Regular Expressions
Many Linux programs employ regular expressions, which are tools for expressing patterns
in text. Regular expressions are similar in principle to the wildcards that can be used to
specify multiple filenames. At their simplest, regular expressions can be plain text without
adornment. Certain characters are used to denote patterns, though. Because of their impor-
tance, I describe regular expressions here. I also cover two programs that make heavy use
of regular expressions: grep and sed. These programs search for text within files and per-
mit editing of files from the command line, respectively.

04836book.indd 29 1/16/09 9:35:42 AM

30 Chapter 1 n Exploring Linux Command-Line Tools

Understanding Regular Expressions
Two forms of regular expression are common: basic and extended. Which form you must
use depends on the program; some accept one form or the other, but others can use either
type, depending on the options passed to the program. (Some programs use their own
minor or major variants on either of these classes of regular expression.) The differences
between basic and extended regular expressions are complex and subtle, but the fundamen-
tal principles of both are similar.

The simplest type of regular expression is an alphabetic string, such as Linux or HWaddr.
These regular expressions match any string of the same size or longer that contains the reg-
ular expression. For instance, the HWaddr regular expression matches HWaddr, This is the
HWaddr, and The HWaddr is unknown. The real strength of regular expressions comes in the
use of non-alphabetic characters, which activate advanced matching rules:

Bracket expressions Characters enclosed in square brackets ([]) constitute bracket expres-
sions, which match any one character within the brackets. For instance, the regular expres-
sion b[aeiou]g matches the words bag, beg, big, bog, and bug.

Range expressions A range expression is a variant on a bracket expression. Instead of list-
ing every character that matches, range expressions list the start and end points separated
by a dash (-), as in a[2-4]z. This regular expression matches a2z, a3z, and a4z.

Any single character The dot (.) represents any single character except a newline. For
instance, a.z matches a2z, abz, aQz, or any other three-character string that begins with a
and ends with z.

Start and end of line The carat (^) represents the start of a line, and the dollar sign ($)
denotes the end of a line.

Repetition operators A full or partial regular expression may be followed by a special
symbol to denote how many times a matching item must exist. Specifically, an asterisk (*)
denotes zero or more occurrences, a plus sign (+) matches one or more occurrences, and
a question mark (?) specifies zero or one match. The asterisk is often combined with the
dot (as in .*) to specify a match with any substring. For instance, A.*Lincoln matches any
string that contains A and Lincoln, in that order—Abe Lincoln and Abraham Lincoln are
just two possible matches.

Multiple possible strings The vertical bar (|) separates two possible matches; for instance,
car|truck matches either car or truck.

Parentheses Ordinary parentheses (()) surround subexpressions. Parentheses are often
used to specify how operators are to be applied; for example, you can put parentheses
around a group of words that are concatenated with the vertical bar, to ensure that the
words are treated as a group, any one of which may match, without involving surrounding
parts of the regular expression.

Escaping If you want to match one of the special characters, such as a dot, you must
escape it—that is, precede it with a backslash (\). For instance, to match a computer host-
name (say, twain.example.com), you must escape the dots, as in twain\.example\.com.

04836book.indd 30 1/16/09 9:35:42 AM

Using Regular Expressions 31

The preceding descriptions apply to extended regular expressions. Some details are dif-
ferent for basic regular expressions. In particular, the ?, +, |, (, and) symbols lose their
special meanings. To perform the tasks handled by these characters, some programs, such
as grep, enable you to recover the functions of these characters by escaping them (say, using
\| instead of |). Whether you use basic or extended regular expressions depends on which
form the program supports. For programs, such as grep, that support both, you can use
either; which you choose is mostly a matter of personal preference.

Regular expression rules can be confusing, particularly when you’re first introduced to
them. Some examples of their use, in the context of the programs that use them, will help.
The next couple of sections provide such examples.

Using grep
The grep command is extremely useful. It searches for files that contain a specified string
and returns the name of the file and (if it’s a text file) a line of context for that string. The
basic grep syntax is as follows:

grep [options] regexp [files]

The regexp is a regular expression, as just described. The grep command supports a
large number of options. Some of the more common options enable you to modify the way
the program searches files:

Count matching lines Instead of displaying context lines, grep displays the number of
lines that match the specified pattern if you use the -c or --count option.

Specify a pattern input file The -f file or --file=file option takes pattern input from
the specified file rather than from the command line.

Ignore case You can perform a case-insensitive search, rather than the default case-sensi-
tive search, by using the -i or --ignore-case option.

Search recursively The -r or --recursive option searches in the specified directory and
all subdirectories rather than simply the specified directory. You can use rgrep rather than
specify this option.

Use an extended regular expression The grep command interprets regexp as a basic regu-
lar expression by default. To use an extended regular expression, you can pass the -E or
--extended-regexp option. Alternatively, you can call egrep rather than grep; this variant
command uses extended regular expressions by default.

A simple example of grep uses a regular expression with no special components:

$ grep -r eth0 /etc/*

This example finds all the files in /etc that contain the string eth0 (the identifier for the
first Ethernet device). Because the example includes the -r option, it searches recursively, so
files in subdirectories of /etc are examined as well as those in /etc itself. For each match-
ing text file, the line that contains the string is printed.

04836book.indd 31 1/16/09 9:35:42 AM

32 Chapter 1 n Exploring Linux Command-Line Tools

Some files in /etc can’t be read by ordinary users. Thus, if you type this
command as a non-root user, you’ll see some error messages relating to
grep’s inability to open files.

Ramping up a bit, suppose you want to locate all the files in /etc that contain the string
eth0 or eth1. You can enter the following command, which uses a bracket expression to
specify both variant devices:

$ grep eth[01] /etc/*

A still more complex example searches all files in /etc that contain the hostname twain.
example.com or bronto.pangaea.edu and, later on the same line, the number 127. This task
requires using several of the regular expression features. Expressed using extended regular
expression notation, the command looks like this:

$ grep -E “(twain\.example\.com|bronto\.pangaea\.edu).*127” /etc/*

This command illustrates another feature you may need to use: shell quoting. Because
the shell uses certain characters, such as the vertical bar and the asterisk, for its own pur-
poses, you must enclose certain regular expressions in quotes lest the shell attempt to parse
the regular expression as shell commands.

You can use grep in conjunction with commands that produce a lot of output in order
to sift through that output for the material that’s important to you. (Several examples
throughout this book use this technique.) For example, suppose you want to find the pro-
cess ID (PID) of a running xterm. You can use a pipe to send the result of a ps command
(described in Chapter 2) through grep:

ps ax | grep xterm

The result is a list of all running processes called xterm, along with their PIDs. You can
even do this in series, using grep to further restrict the output on some other criterion,
which can be useful if the initial pass still produces too much output.

Using sed
The sed command directly modifies the contents of files, sending the changed file to stan-
dard output. Its syntax can take one of two forms:

sed [options] -f script-file [input-file]

sed [options] script-text [input-file]

In either case, input-file is the name of the file you want to modify. (Modifications
are temporary unless you save them in some way, as illustrated shortly.) The script
(script-text or the contents of script-file) is the set of commands you want sed to per-
form. When you pass a script directly on the command line, the script-text is typically
enclosed in single quote marks. Table 1.3 summarizes a few sed commands that you can
use in its scripts.

04836book.indd 32 1/16/09 9:35:42 AM

Using Regular Expressions 33

Ta b LE 1. 3 Common sed Commands

Command Addresses Meaning

= 0 or 1 Display the current line number.

a\text 0 or 1 Append text to the file.

i\text 0 or 1 Insert text into the file.

r filename 0 or 1 Append text from filename into the file.

c\text Range Replace the selected range of lines with the
provided text.

s/regexp/replacement Range Replace text that matches the regular expres-
sion (regexp) with replacement.

w filename Range Write the current pattern space to the
specified file.

q 0 or 1 Immediately quit the script, but print the current
pattern space.

Q 0 or 1 Immediately quit the script.

Table 1.3 is incomplete; sed is quite complex, and this section merely intro-
duces this tool.

The Addresses column of Table 1.3 requires elaboration: sed commands operate on
addresses, which are line numbers. Commands may take no addresses, in which case they
operate on the entire file; one address, in which case they operate on the specified line; or
two addresses (a range), in which case they operate on that range of lines, inclusive.

In operation, sed looks something like this:

$ sed ‘s/2008/2009/‘ cal-2008.txt > cal-2009.txt

This command processes the input file, cal-2008.txt, using sed’s s command to replace
the first occurrence of 2008 on each line with 2009. (If a single line may have more than one
instance of the search string, you must perform a global search by appending g to the com-
mand string, as in s/2008/2009/g.) By default, sed sends the modified file to standard out-
put, so this example uses redirection to send the output to cal-2009.txt. The idea in this
example is to quickly convert a file created for the year 2008 so that it can be used in 2009.
If you don’t specify an input filename, sed works from standard input, so it can accept the
output of another command as its input.

04836book.indd 33 1/16/09 9:35:43 AM

34 Chapter 1 n Exploring Linux Command-Line Tools

Although it’s conceptually simple, sed is a very complex tool; even a modest summary
of its capabilities would fill a chapter. You can consult its man page for basic information;
but to fully understand sed, you may want to consult a book on the subject, such as Dale
Dougherty and Arnold Robbins’s sed & awk, 2nd Edition (O’Reilly, 1997).

Certain sed commands, including the substitution command, are also used
in Vi, which is described more fully in Chapter 5, “Booting Linux and Edit-
ing Files.”

Summary
The command line is the key to Linux. Even if you prefer GUI tools to text-mode tools,
understanding text-mode commands is necessary to fully manage Linux. This task begins
with the shell, which accepts commands you type and displays the results of those com-
mands. In addition, shells support linking programs together via pipes and redirecting pro-
grams’ input and output. These features enable you to perform complex tasks using simple
tools by having each program perform its own small part of the task. This technique is fre-
quently used with Linux text filters, which manipulate text files in various ways—sorting
text by fields, merging multiple files, and so on.

Exam Essentials

Summarize features that Linux shells offer to speed up command entry. The command
history often enables you to retrieve an earlier command that’s similar or identical to the
one you want to enter. Tab completion reduces typing effort by letting the shell finish long
command names or filenames. Command-line editing lets you edit a retrieved command or
change a typo before committing the command.

Describe the purpose of the man command. The man command displays the manual page
for the keyword (command, filename, system call, or other feature) that you type. This
documentation provides succinct summary information that’s useful as a reference to learn
about exact command options or features.

Explain the purpose of environment variables. Environment variables store small pieces
of data—program options, information about the computer, and so on. This information
can be read by programs and used to modify program behavior in a way that’s appropriate
for the current environment.

Describe the difference between standard output and standard error. Standard output
carries normal program output, whereas standard error carries high-priority output, such
as error messages. The two can be redirected independently of one another.

04836book.indd 34 1/16/09 9:35:43 AM

Exam Essentials 35

Explain the purpose of pipes. Pipes tie programs together by feeding the standard output
from the first program into the second program’s standard input. They can be used to link
together a series of simple programs to perform more complex tasks than any one of the
programs could manage.

Summarize the structure of regular expressions. Regular expressions are strings that
describe other strings. They can contain normal alphanumeric characters, which match the
exact same characters, as well as several special symbols and symbol sets that match multiple
different characters. The combination is a powerful pattern-matching tool used by many
Linux programs.

04836book.indd 35 1/16/09 9:35:43 AM

36 Chapter 1 n Exploring Linux Command-Line Tools

Review Questions

1. You type a command into bash and pass a long filename to it, but after you enter the com-
mand, you receive a File not found error message because of a typo in the filename. How
might you proceed?

A. Retype the command, and be sure you type the filename correctly, letter by letter.

B. Retype the command, but press the Tab key after typing a few letters of the long file-
name to ensure that the filename is entered correctly.

C. Press the Up arrow key, and use bash’s editing features to correct the typo.

D. Any of the above.

2. Which of the following commands is implemented as an internal command in bash?

A. cat

B. echo

C. tee

D. sed

3. You type echo $PROC, and the computer replies Go away. What does this mean?

A. No currently running processes are associated with your shell, so you may log out
without terminating them.

B. The remote computer PROC isn’t accepting connections; you should contact its adminis-
trator to correct the problem.

C. Your computer is handling too many processes; you must kill some of them to regain
control of the computer.

D. You, one of your configuration files, or a program you’ve run has set the $PROC envi-
ronment variable to Go away.

4. What does the pwd command accomplish?

A. It prints the name of the working directory.

B. It changes the current working directory.

C. It prints wide displays on narrow paper.

D. It parses Web page URLs for display.

5. In an xterm window launched from your window manager, you type exec gedit. What
will happen when you exit from the gedit program?

A. Your shell will be a root shell.

B. The gedit program will terminate, but nothing else unusual will happen.

C. Your X session will terminate.

D. The xterm window will close.

04836book.indd 36 1/16/09 9:35:43 AM

Review Questions 37

6. What is the surest way to run a program (say, myprog) that’s located in the current working
directory?

A. Type ./ followed by the program name: ./myprog.

B. Type the program name alone: myprog.

C. Type run followed by the program name: run myprog.

D. Type /. followed by the program name: /.myprog.

7. How does man display information by default on most Linux systems?

A. Using a custom X-based application

B. Using the Firefox Web browser

C. Using the less pager

D. Using the Vi editor

8. You want to store the standard output of the ifconfig command in a text file (file.txt) for
future reference, and you want to wipe out any existing data in the file. How can you do so?

A. ifconfig < file.txt

B. ifconfig >> file.txt

C. ifconfig > file.txt

D. ifconfig | file.txt

9. What is the effect of the following command?
$ myprog &> input.txt

A. Standard error to myprog is taken from input.txt.

B. Standard input to myprog is taken from input.txt.

C. Standard output and standard error from myprog are written to input.txt.

D. All of the above.

10. How many commands can you pipe together at once?

A. 2

B. 3

C. 4

D. An arbitrary number

11. You want to run an interactive script, gabby, which produces a lot of output in response to
the user’s inputs. To facilitate future study of this script, you want to copy its output to a
file. How might you do this?

A. gabby > gabby-out.txt

B. gabby | tee gabby-out.txt

C. gabby < gabby-out.txt

D. gabby &> gabby-out.txt

04836book.indd 37 1/16/09 9:35:43 AM

38 Chapter 1 n Exploring Linux Command-Line Tools

12. A text-mode program, verbose, prints a lot of spurious “error” messages to standard error.
How might you get rid of those messages while still interacting with the program?

A. verbose | quiet

B. verbose &> /dev/null

C. verbose 2> /dev/null

D. verbose > junk.txt

13. How do the > and >> redirection operators differ?

A. The > operator creates a new file or overwrites an existing one; the >> operator creates
a new file or appends to an existing one.

B. The > operator creates a new file or overwrites an existing one; the >> operator
appends to an existing file or issues an error message if the specified file doesn’t exist.

C. The > operator redirects standard output; the >> operator redirects standard error.

D. The > operator redirects standard output; the >> operator redirects standard input.

14. What program would you use to display the end of a configuration file?

A. uniq

B. cut

C. tail

D. wc

15. What is the effect of the following command?
$ pr report.txt | lpr

A. The file report.txt is formatted for printing and sent to the lpr program.

B. The files report.txt and lpr are combined together into one file and sent to standard
output.

C. Tabs are converted to spaces in report.txt, and the result is saved in lpr.

D. None of the above.

16. Which of the following commands will number the lines in aleph.txt? (Select all that apply.)

A. fmt aleph.txt

B. nl aleph.txt

C. cat -b aleph.txt

D. cat -n aleph.txt

17. Which of the following commands will change all occurrences of dog in the file animals.txt
to mutt in the screen display?

A. sed –s “dog” “mutt” animals.txt

B. grep –s “dog||mutt” animals.txt

C. sed ‘s/dog/mutt/g’ animals.txt

D. cat animals.txt | grep –c “dog” “mutt”

04836book.indd 38 1/16/09 9:35:44 AM

Review Questions 39

18. You’ve received an ASCII text file (longlines.txt) that uses no carriage returns within
paragraphs but two carriage returns between paragraphs. The result is that your preferred
text editor displays each paragraph as a very long line. How can you reformat this file so
that you can more easily edit it (or a copy)?

A. sed ‘s/Ctrl-M/NL/‘ longlines.txt

B. fmt longlines.txt > longlines2.txt

C. cat longlines.txt > longlines2.txt

D. pr longlines.txt > longlines2.txt

19. Which of the following commands will print lines from the file world.txt that contain
matches to changes and changed?

A. grep change[ds] world.txt

B. sed change[d-s] world.txt

C. od “change’d|s’“ world.txt

D. cat world.txt changes changed

20. Which of the following regular expressions will match the strings dig and dug but not dog?

A. d.g

B. d[iu]g

C. d[i-u]g

D. di*g

04836book.indd 39 1/16/09 9:35:44 AM

40 Chapter 1 n Exploring Linux Command-Line Tools

Answers to Review Questions

1. D. Any of these approaches will work, or at least might work. (You might err when per-
forming any of them.) Option B or C is likely to be the most efficient approach; with a long
filename to type, option A is likely to be tedious.

2. B. The echo command is implemented internally to bash, although an external version is
also available on most systems. The cat, tee, and sed commands are not implemented
internally to bash, although they can be called from bash as external commands.

3. D. The echo command echoes what follows to standard output, and $PROC is an environment
variable. Thus, echo $PROC displays the value of the $PROC environment variable, meaning
that it must have been set to the specified value by you, one of your configuration files, or a
program you’ve run. Although many environment variables are set to particular values to con-
vey information, $PROC isn’t a standard environment variable that might be associated with
information described in options A, B, or C.

4. A. The pwd command prints (to standard output) the name of the current working directory.
The remaining options are simply incorrect, although option B describes the cd command
and various tools can be used to reformat wide text for display or printing in fewer columns,
as in option C.

5. D. The exec command causes the rest of the command to replace the current shell. Thus,
when you exit from gedit in this scenario, the result will be the same as if you’d terminated
the shell, namely, the xterm window will close. The exec command doesn’t raise the execu-
tion privilege, so option A is incorrect. (The su and sudo commands can raise execution
privilege, though.) Because the xterm window closes, option B is incorrect. X won’t ordi-
narily terminate when a single xterm does, and definitely not if that xterm was launched
from a window manager, so option C is incorrect.

6. A. The dot (.) character refers to the current working directory, and the slash (/) is a directory
separator. Thus, preceding a program name by ./ unambiguously identifies the intention to
run the program that’s stored in the current directory. Option B will run the first instance of
the program that’s found on the current path. Because paths often omit the current directory
for security reasons, this option is likely to fail. The run command isn’t a standard Linux com-
mand, so option C is unlikely to do anything, much less what the question specifies. Option D
would be correct except that it reverses the order of the two characters. The effect is to attempt
to run the .myprog file in the root (/) directory. This file probably doesn’t exist, and even if it
did, it’s not the file the question specifies should be run.

7. C. By default, man uses the less pager to display information on most Linux systems.
Although an X-based version of man does exist (xman), the basic man doesn’t use a custom
X-based application, nor does it use Firefox or the Vi editor.

04836book.indd 40 1/16/09 9:35:44 AM

Answers to Review Questions 41

8. C. The > redirection operator stores a command’s standard output in a file, overwriting
the contents of any existing file by the specified name. Option A specifies the standard
input redirection so that ifconfig will take the contents of file.txt as input. Option B
is almost correct; the >> redirection operator redirects standard output, as requested, but
it appends data to the specified file rather than overwriting it. Option D specifies a pipe;
the output of ifconfig is sent through the file.txt program, if it exists. (Chances are it
doesn’t, so you’d get a command not found error message.)

9. C. The &> redirection operator sends both standard output and standard error to the speci-
fied file, as option C states. (The name of the file, input.txt, is intentionally deceptive, but
the usage is still valid.) Option A mentions standard error but describes it as if it were an
input stream, which it’s not; it’s an output stream. Option B mentions standard input, but
the &> operator doesn’t affect standard input.

10. D. In principle, you can pipe together as many commands as you like. (In practice, of
course, there will be limits based on input buffer size, memory, and so on, but these limits
are far higher than the 2, 3, or 4 commands specified in options A, B, and C.)

11. B. The tee command sends its output both to standard output and to a named file. Thus,
placing the tee command (with an output filename) after another command and a pipe will
achieve the desired effect. Options A and D redirect gabby’s output to a file, which means
you won’t be able to see the output and interact with it. Option C sends the contents of
gabby-out.txt to gabby as input, which isn’t what’s desired, either.

12. C. The 2> redirection operator redirects standard error only, leaving standard output unaf-
fected. Sending standard error to /dev/null gets rid of it. Option A pipes the standard
output of verbose through the quiet program, which isn’t a standard Linux program.
Option B sends both standard output and standard error to /dev/null, so you won’t be
able to interact with the program, as the question specifies you must be able to do. Option
D redirects standard output only to the junk.txt file, so once again, interaction will be
impossible—and you’ll see the unwanted error messages on the screen.

13. A. Option A correctly describes the difference between these two redirection operators.
Option B is almost correct, but the >> operator will create a new file if one doesn’t already
exist. The >> operator does not redirect standard error (as stated in option C) or standard
input (as stated in option D).

14. C. The tail command displays the final 10 lines of a file. (You can change the number of
lines displayed with the -n option.) The uniq command removes duplicate lines from a list.
The cut command echoes the specified characters or fields from an input text file. The wc
command displays counts of the number of characters, words, and lines in a file.

15. A. The pr program takes a text file as input and adds formatting features intended for
printing, such as a header and blank lines to separate pages. The command also pipes the
output through lpr (which is a Linux printing command).

04836book.indd 41 1/16/09 9:35:44 AM

42 Chapter 1 n Exploring Linux Command-Line Tools

16. B, C, D. The nl command numbers lines, so it does this task without any special options.
(Its options can fine-tune the way it numbers lines, though.) The cat command can also
number lines via its -b and -n options; -b numbers non-blank lines, whereas -n numbers
all lines (including blank lines). The fmt command is the only one described here that will
not number the lines of the input file.

17. C. The sed utility can be used to “stream” text and change one value to another. In this
case, the s option is used to replace dog with mutt. The syntax in option A is incorrect,
and choices B and D are incorrect because grep doesn’t include the functionality needed to
make the changes.

18. B. The fmt command performs the desired task of shortening long lines by inserting car-
riage returns. It sends its results to standard output, so option B uses output redirection to
save the results in a new file. The sed command of option A won’t accomplish anything
useful; it only replaces the string Ctrl-M with the string NL. Although these strings are both
sometimes used as abbreviations for carriage returns or new lines, the replacement of these
literal strings isn’t what’s required. Option C creates an exact copy of the original file, with
the long single-line paragraphs intact. Although option D’s pr command is a formatting
tool, it won’t reformat individual paragraphs. It will also add headers that you probably
don’t want.

19. A. The grep utility is used to find matching text within a file and print those lines. It
accepts regular expressions, which means you can place in brackets the two characters that
differ in the words for which you’re looking. The syntax for sed, od, and cat wouldn’t per-
form the specified task.

20. B. The bracket expression within the d[iu]g regular expression means that either i or u
may be the middle character; hence, this regular expression matches both dig and dug but
not dog. Option A’s dot matches any single character, so d.g matches all three words. The
range expression [i-u] matches any single character between i and u, inclusive. Because
o falls between these two letters, option C matches all three words. Finally, di*g matches
dig, diig, diiig, or any other word that begins with d, ends with g, and contains any
number of i letters in-between. Thus, option D matches dig but not dug as required.

04836book.indd 42 1/16/09 9:35:44 AM

Chapter

2
Managing Software

The following linux ProfeSSional
inSTiTuTe objecTiveS are covered in
ThiS chaPTer:

1.102.3 Manage shared libraries (weight: 1)ÛÛ

1.102.4 Use Debian package management (weight: 3)ÛÛ

1.102.5 Use RPM and Yum package management (weight: 3)ÛÛ

1.103.5 Create, monitor, and kill processes (weight: 4)ÛÛ

1.103.6 Modify process execution priorities (weight: 2)ÛÛ

04836book.indd 43 1/7/09 9:04:42 AM

A Linux system is defined largely by the collection of software it
contains. The Linux kernel, the libraries used by many packages,
the shells used to interpret commands, the X Window System

GUI, the servers, and more all make up the system’s software environment. Many of the chap-
ters of this book are devoted to configuring specific software components, but they all have
something in common: tools used to install, uninstall, upgrade, and otherwise manipulate the
software. Ironically, this commonality is a major source of differences between Linux systems.
Two major Linux package management tools exist: RPM and Debian packages. (Several less-
common package management systems also exist.) With few exceptions, each individual Linux
computer uses precisely one package management system, so you’ll need to know only one
to administer a single system. To be truly fluent in all things Linux, though, you should be at
least somewhat familiar with both of them. Thus, this chapter describes both.

This chapter also covers libraries—software components that can be used by many dif-
ferent programs. Libraries help reduce the disk space and memory requirements of complex
programs, but they also require some attention; if that attention isn’t given to them, they
can cause problems by their absence or because of incompatibilities between their and their
dependent software’s versions.

Package management, and in some sense library management, relates to programs as files
on your hard disk. Once run, though, programs are dynamic entities. Linux provides tools
to help you manage running programs (known as processes)—you can learn what processes
are running, change their priorities, and terminate processes you don’t want running.

Package Concepts
Before proceeding, you should understand some of the principles that underlie Linux pack-
age management tools. Any computer’s software is like a house of cards: One program may
rely on five other programs or libraries, each of which relies on several more, and so on.
The foundation on which all these programs rely is the Linux kernel. Any of these packages
can theoretically be replaced by an equivalent one; however, doing so sometimes causes
problems. Worse, removing one card from the stack could cause the whole house of cards
to come tumbling down.

Linux package management tools are intended to minimize such problems by tracking
what software is installed. The information that the system maintains helps avoid problems
in several ways:

Packages The most basic information that package systems maintain is information about
software packages—that is, collections of files that are installed on the computer. Packages

04836book.indd 44 1/7/09 9:04:43 AM

Package Concepts 45

are usually distributed as single files that are similar to tarballs (archives created with the
tar utility and usually compressed with gzip or bzip2) or zip files. Once installed, most
packages consist of dozens or hundreds of files, and the package system tracks them all.
Packages include additional information that aids in the subsequent duties of package man-
agement systems.

Installed file database Package systems maintain a database of installed files. The data-
base includes information about every file installed via the package system, the name of the
package to which it belongs, and associated additional information.

Dependencies One of the most important types of information maintained by the pack-
age system is dependency information—that is, the requirements of packages for one
another. For instance, if SuperProg relies on UltraLib to do its work, the package data-
base records this information. If you attempt to install SuperProg when UltraLib isn’t
installed, the package system won’t let you do so. Similarly, if you try to uninstall Ultra-
Lib when SuperProg is installed, the package system won’t let you. (You can override
these prohibitions, as described later in “Forcing the Installation.” Doing so is usually
inadvisable, though.)

Checksums The package system maintains checksums and assorted ancillary infor-
mation about files. This information can be used to verify the validity of the installed
software. This feature has its limits, though; it’s intended to help you spot disk errors,
accidental overwriting of files, or other non-sinister problems. It’s of limited use in
detecting intrusions, because an intruder could use the package system to install altered
system software.

Upgrades and uninstallation By tracking files and dependencies, package systems permit easy
upgrades and uninstallation: Tell the package system to upgrade or remove a package, and it
will replace or remove every file in the package. Of course, this assumes that the upgrade or
uninstallation doesn’t cause dependency problems; if it does, the package system will block the
operation unless you override it.

Binary package creation Both the RPM and Debian package systems provide tools to help
create binary packages (those that are installed directly) from source code. This feature is
particularly helpful if you’re running Linux on a peculiar CPU; you can download source
code and create a binary package even if the developers didn’t provide explicit support for
your CPU. Creating a binary package from source has advantages over compiling software
from source in more conventional ways, because you can then use the package management
system to track dependencies, attend to individual files, and so on.

Both the RPM and Debian package systems provide all of these basic features, although
the details of their operation differ. These two package systems are incompatible with one
another in the sense that their package files and their installed file databases are different;
you can’t directly install an RPM package on a Debian-based system or vice versa. (Tools to
convert between formats do exist, and developers are working on ways to better integrate
the two package formats.)

04836book.indd 45 1/7/09 9:04:43 AM

46 Chapter 2 n Managing Software

Most distributions install just one package system. It’s possible to install
more than one, though, and some programs (such as alien) require both
for full functionality. Actually using both systems to install software is inad-
visable because their databases are separate. If you install a library using a
Debian package and then try to install an RPM that relies on that library, RPM
won’t realize that the library is already installed and will return an error.

Using RPM
The most popular package manager in the Linux world is the RPM Package Manager (RPM).
RPM is also available on non-Linux platforms, although it sees less use outside the Linux
world. The RPM system provides all the basic tools described in the preceding section, “Pack-
age Concepts,” such as a package database that allows for checking conflicts and ownership
of particular files.

RPM Distributions and Conventions
Red Hat developed RPM for its own distribution. Red Hat released the software under the
General Public License (GPL), however, so others have been free to use it in their own dis-
tributions—and this is precisely what has happened. Some distributions, such as Mandriva
(formerly Mandrake) and Yellow Dog, are based on Red Hat, so they use RPMs as well as
many other parts of the Red Hat distribution. Others, such as SUSE, borrow less from the
Red Hat template, but they do use RPMs. Of course, all Linux distributions share many
common components, so even those that weren’t originally based on Red Hat are very simi-
lar to it in many ways other than their use of RPM packages. On the other hand, distribu-
tions that were originally based on Red Hat have diverged from it over time. As a result,
the group of RPM-using distributions shows substantial variability, but all of them are still
Linux distributions that provide the same basic tools, such as the Linux kernel, common
shells, an X server, and so on.

Red Hat has splintered into two distributions: Fedora is the downloadable
version favored by home users, students, and businesses on a tight budget.
The Red Hat name is now reserved for the for-pay version of the distribution,
known more formally as Red Hat Enterprise Linux (RHEL).

RPM is a cross-platform tool. As noted earlier, some non-Linux Unix systems can use
RPM, although most don’t use it as their primary package-distribution system. RPM supports
any CPU architecture. Red Hat Linux is or has been available for at least five CPUs: x86,
x86-64 (a.k.a. AMD64 and EM64T), IA-64, Alpha, and SPARC. Among the distributions

04836book.indd 46 1/7/09 9:04:44 AM

Using RPM 47

mentioned earlier, Yellow Dog is a PowerPC distribution (it runs on Apple PowerPC-based
Macs and some non-Apple systems), and SuSE is available on x86, x86-64, and PowerPC sys-
tems. For the most part, source RPMs are transportable across architectures—you can use the
same source RPM to build packages for x86, AMD64, PowerPC, Alpha, SPARC, or any other
platform you like. Some programs are composed of architecture-independent scripts and so
need no recompilation. There are also documentation and configuration packages that work
on any CPU.

The convention for naming RPM packages is as follows:

packagename-a.b.c-x.arch.rpm

Each of the filename components has a specific meaning:

Package name The first component (packagename) is the name of the package, such as
samba or samba-server for the Samba file and print server. Note that the same program
may be given different package names by different distribution maintainers.

Version number The second component (a.b.c) is the package version number, such as
3.0.25b. The version number doesn’t have to be three period-separated numbers, but that’s
the most common form. The program author assigns the version number.

Build number The number following the version number (x) is the build number (also
known as the release number). This number represents minor changes made by the package
maintainer, not by the program author. These changes may represent altered startup scripts
or configuration files, changed file locations, added documentation, or patches appended to
the original program to fix bugs or to make the program more compatible with the target
Linux distribution. Many distribution maintainers add a letter code to the build number to
distinguish their packages from those of others. Note that these numbers are not compa-
rable across package maintainers—George’s build number 5 of a package is not necessarily
an improvement on Susan’s build number 4 of the same package.

Architecture The final component preceding the .rpm extension (arch) is a code for the
package’s architecture. The i386 architecture code is the most common; it represents a file
compiled for any x86 CPU from the 80386 onward. Some packages include optimizations for
Pentiums or above (i586 or i686), and non-x86 binary packages use codes for their CPUs,
such as ppc for PowerPC CPUs or x86_64 for the x86-64 platform. Scripts, documentation,
and other CPU-independent packages generally use the noarch architecture code. The main
exception to this rule is source RPMs, which use the src architecture code.

As an example of RPM version numbering, the Mandriva 2008.0 distribution for x86-64
ships with a Samba package called samba-server-3.0.25b-4.5mdv2008.0.x86_64.rpm, indi-
cating that this is build 4.5mdv2008.0 of Samba 3.0.25b, compiled with x86-64 optimiza-
tions. These naming conventions are just that, though—conventions. It’s possible to rename a
package however you like, and it will still install and work. The information in the filename
is retained within the package. This fact can be useful if you’re ever forced to transfer RPMs
using a medium that doesn’t allow for long filenames. In fact, early versions of SUSE eschewed
long filenames, preferring short filenames such as samba.rpm.

04836book.indd 47 1/7/09 9:04:44 AM

48 Chapter 2 n Managing Software

In an ideal world, any RPM package will install and run on any RPM-based distribution
that uses an appropriate CPU type. Unfortunately, compatibility issues can crop up from
time to time, including the following:

Distributions may use different versions of the RPM utilities. This problem can completely Ûn

prevent an RPM from one distribution from being used on another.

An RPM package designed for one distribution may have dependencies that are unmet in Ûn

another distribution. A package may require a newer version of a library than is present
on the distribution you’re using, for instance. This problem can usually be overcome by
installing or upgrading the depended-on package, but sometimes doing so causes problems
because the upgrade may break other packages. By rebuilding the package you want to
install from a source RPM, you can often work around these problems, but sometimes the
underlying source code also needs the upgraded libraries.

An RPM package may be built to depend on a package of a particular name, such Ûn

as samba-client depending on samba-common; but if the distribution you’re using
has named the package differently, the rpm utility will object. You can override this
objection by using the --nodeps switch, but sometimes the package won’t work once
installed. Rebuilding from a source RPM may or may not fix this problem.

Even when a dependency appears to be met, different distributions may include slightly Ûn

different files in their packages. For this reason, a package meant for one distribution
may not run correctly when installed on another distribution. Sometimes installing an
additional package will fix this problem.

Some programs include distribution-specific scripts or configuration files. This problem Ûn

is particularly acute for servers, which may include startup scripts that go in /etc/rc.d/
init.d or elsewhere. Overcoming this problem usually requires that you remove the
offending script after installing the RPM and either start the server in some other way or
write a new startup script, perhaps modeled after one that came with some other server
for your distribution.

In most cases, it’s best to use the RPMs intended for your distribution. RPM meta-pack-
agers, such as the Yellow Dog Updater Modified (Yum), can simplify locating and installing
packages designed for your distribution. If you’re forced to go outside of your distribution’s
officially supported list of packages, mixing and matching RPMs from different distribu-
tions usually works reasonably well for most programs. This is particularly true if the dis-
tributions are closely related or you rebuild from a source RPM. If you have trouble with
an RPM, though, you may do well to try to find an equivalent package that was built with
your distribution in mind.

The rpm Command Set
The main RPM utility program is known as rpm. Use this program to install or upgrade a
package at the shell prompt. The rpm command has the following syntax:

rpm [operation][options] [package-files|package-names]

04836book.indd 48 1/7/09 9:04:44 AM

Using RPM 49

Table 2.1 summarizes the most common rpm operations, and Table 2.2 summarizes the
most important options. Be aware, however, that rpm is a complex tool, so this listing is nec-
essarily incomplete. For information about operations and options more obscure than those
listed in Tables 2.1 and 2.2, see the man pages for rpm. Many of rpm’s less-used features are
devoted to the creation of RPM packages by software developers.

Ta b le 2 .1 Common rpm Operations

Operation Description

-i Installs a package; system must not contain a package of the same
name

-U Installs a new package or upgrades an existing one

-F or --freshen Upgrades a package only if an earlier version already exists

-q Queries a package—finds if a package is installed, what files it
contains, and so on

-V or --verify Verifies a package—checks that its files are present and unchanged
since installation

-e Uninstalls a package

-b Builds a binary package, given source code and configuration files;
moved to the rpmbuild program with RPM version 4.2

--rebuild Builds a binary package, given a source RPM file; moved to the
rpmbuild program with RPM version 4.2

--rebuilddb Rebuilds the RPM database to fix errors

Ta b le 2 . 2 Common rpm Options

Option Used with Operations Description

--root dir Any Modifies the Linux system having a root
directory located at dir. This option can
be used to maintain one Linux installation
discrete from another one (say, during OS
installation or emergency maintenance).

--force -i, -U, -F Forces installation of a package even
when it means overwriting existing files
or packages.

04836book.indd 49 1/7/09 9:04:44 AM

50 Chapter 2 n Managing Software

Ta b le 2 . 2 Common rpm Options (continued)

Option Used with Operations Description

-h or --hash -i, -U, -F Displays a series of hash marks (#) to
indicate the progress of the operation.

-v -i, -U, -F Used in conjunction with the -h option to
produce a uniform number of hash marks
for each package.

--nodeps -i, -U, -F, -e Specifies that no dependency checks
be performed. Installs or removes the
package even if it relies on a package or
file that’s not present or is required by a
package that’s not being uninstalled.

--test -i, -U, -F Checks for dependencies, conflicts, and
other problems without actually installing
the package.

--prefix path -i, -U, -F Sets the installation directory to path
(works only for some packages).

-a or --all -q, -V Queries or verifies all packages.

-f file or --file file -q, -V Queries or verifies the package that
owns file.

-p package-file -q Queries the uninstalled RPM package-file.

-i -q Displays package information, including
the package maintainer, a short descrip-
tion, and so on.

-R or --requires -q Displays the packages and files on which
this one depends.

-l or --list -q Displays the files contained in the package.

To use rpm, you combine one operation with one or more options. In most cases, you
include one or more package names or package filenames as well. (A package filename is a
complete filename, but a package name is a shortened version. For instance, a package file-
name might be samba-server-3.0.25b-4.5mdv2008.0.x86_64.rpm, whereas the matching
package name is samba-server.) You can issue the rpm command once for each package,
or you can list multiple packages, separated by spaces, on the command line. The latter

04836book.indd 50 1/7/09 9:04:45 AM

Using RPM 51

is often preferable when you’re installing or removing several packages, some of which
depend on others in the group. Issuing separate commands in this situation requires that
you install the depended-on package first or remove it last, whereas issuing a single com-
mand allows you to list the packages on the command line in any order.

Some operations require that you give a package filename, and others require a package
name. In particular, -i, -U, -F, and the rebuild operations require package filenames; -q,
-V, and -e normally take a package name, although the -p option can modify a query (-q)
operation to work on a package filename.

When you’re installing or upgrading a package, the -U operation is generally the most
useful because it allows you to install the package without manually uninstalling the old
one. This one-step operation is particularly helpful when packages contain many dependen-
cies because rpm detects these and can perform the operation should the new package fulfill
the dependencies provided by the old one.

To use rpm to install or upgrade a package, issue a command similar to the following:

rpm -Uvh samba-server-3.0.25b-4.5mdv2008.0.x86_64.rpm

You can also use rpm -ivh in place of rpm -Uvh if you don’t already have a samba-
server package installed.

It’s possible to distribute the same program under different names. In
this situation, upgrading may fail, or it may produce a duplicate installa-
tion, which can yield bizarre program-specific malfunctions. Red Hat has
described a formal system for package naming to avoid such problems,
but they still occur occasionally. Therefore, it’s best to upgrade a package
using a subsequent release provided by the same individual or organiza-
tion that provided the original.

Verify that the package is installed with the rpm -qi command, which displays informa-
tion such as when and on what computer the binary package was built. Listing 2.1 demon-
strates this command. (rpm -qi also displays an extended plain-English summary of what
the package is, which has been omitted from Listing 2.1.)

listing 2.1: RPM Query Output

$ rpm -qi samba-server

Name : samba-server Relocations: (not relocatable)

Version : 3.0.25b Vendor: Mandriva

Release : 4.5mdv2008.0 Build Date: Tue 27 May 2008➦

 08:39:24 PM EDT

Install Date: Sat 31 May 2008 12:15:20 PM EDT Build Host:➦

 linsec.homelinux.org

Group : Networking/Other Source RPM:➦

 samba-3.0.25b-4.5mdv2008.0.src.rpm

04836book.indd 51 1/7/09 9:04:45 AM

52 Chapter 2 n Managing Software

Size : 13524400 License: GPL

Signature : DSA/SHA1, Tue 27 May 2008 09:38:42 PM EDT,➦

 Key ID 9aa8d0d022458a98

Packager : Mandriva Linux Security Team <security@mandriva.com>

URL : http://www.samba.org

Summary : Samba (SMB) server programs

Extracting Data from RPMs
Occasionally you may want to extract data from RPMs without installing the package. For
instance, this can be a good way to retrieve the original source code from a source RPM for
compiling the software without the help of the RPM tools or to retrieve fonts or other non-
program data for use on a non-RPM system.

RPM files are actually modified cpio archives. Thus, converting the files into cpio files
is relatively straightforward, whereupon you can use cpio to retrieve the individual files. To
do this job, you need to use the rpm2cpio program, which ships with most Linux distribu-
tions. (You can use this tool even on distributions that don’t use RPM.) This program takes
a single argument—the name of the RPM file—and outputs the cpio archive on standard
output. So, if you want to create a cpio archive file, you must redirect the output:

$ rpm2cpio samba-server-3.0.25b-4.5mdv2008.0.src.rpm➦

 > samba-server-3.0.25b-4.5mdv2008.0.cpio

The redirection operator (>) is described in more detail in Chapter 1,
“Exploring Linux Command-Line Tools,” as is the pipe operator (|), which
is mentioned shortly.

You can then extract the data using cpio, which takes the -i option to extract an
archive and --make-directories to create directories:

$ cpio -i --make-directories < samba-server-3.0.25b-4.5mdv2008.0.cpio

Alternatively, you can use a pipe to link these two commands together without creating
an intermediary file:

$ rpm2cpio samba-server-3.0.25b-4.5mdv2008.0.src.rpm | ➦

 cpio -i --make-directories

In either case, the result is an extraction of the files in the archive in the current direc-
tory. In the case of binary packages, this is likely to be a series of subdirectories that mimic
the layout of the Linux root directory—that is, usr, lib, etc, and so on, although precisely
which directories are included depends on the package. For a source package, the result of
the extraction process is likely to be a source code tarball, a .spec file (which holds infor-
mation RPM uses to build the package), and perhaps some patch files.

04836book.indd 52 1/7/09 9:04:45 AM

Using RPM 53

When you’re extracting data from an RPM file using rpm2cpio and cpio,
create a holding subdirectory and then extract the data into this subdirectory.
This practice will ensure that you can find all the files. If you extract files in
your home directory, some of them may get lost amidst your other files. If
you extract files as root in the root (/) directory, they could conceivably over-
write files that you want to keep.

Another option for extracting data from RPMs is to use alien, which is described later,
in “Converting Between Package Formats.” This program can convert an RPM into a
Debian package or a tarball.

Using Yum
Yum (http://linux.duke.edu/projects/yum/), mentioned earlier, is one of several
meta-packagers—it enables you to easily install a package and all its dependencies using
a single command line. When using Yum, you don’t even need to locate and download
the package files, because Yum does this for you by searching in one or more repositories
(Internet sites that host RPM files for a particular distribution).

Yum originated with the fairly obscure Yellow Dog Linux distribution, but it’s since
been adopted by Red Hat, Fedora, and some other RPM-based distributions. Yum isn’t
used by all RPM-based distributions, though; SUSE and Mandriva, to name just two, each
use their own meta-packagers. Debian-based distributions generally employ the Advanced
Package Tools (APT), as described later, in “Using apt-get.” Nonetheless, because of the
popularity of Red Hat and Fedora, knowing Yum can be valuable.

The most basic way to use Yum is with the yum command, which has the following
syntax:

yum [options] [command] [package...]

Which options are available depend on the command you use. Table 2.3 describes com-
mon yum commands.

Ta b le 2 . 3 Common yum Commands

Command Description

install Installs one or more packages by package name. Also
installs dependencies of the specified package or packages.

update Updates the specified package or packages to the latest
available version. If no packages are specified, yum updates
every installed package.

check-update Checks to see whether updates are available. If they are, yum
displays their names, versions, and repository area (updates
or extras, for instance).

04836book.indd 53 1/7/09 9:04:46 AM

54 Chapter 2 n Managing Software

Ta b le 2 . 3 Common yum Commands (continued)

Command Description

upgrade Works like update with the --obsoletes flag set, which
handles obsolete packages in a way that’s superior when
performing a distribution version upgrade.

remove or erase Deletes a package from the system; similar to rpm -e, but
yum also removes depended-on packages.

list Displays information about a package, such as the installed
version and whether an update is available.

provides or whatprovides Displays information about packages that provide a speci-
fied program or feature. For instance, typing yum provides
samba lists all the Samba-related packages, including every
available update. Note that the output can be copious.

search Searches package names, summaries, packagers, and
descriptions for a specified keyword. This is useful if you
don’t know a package’s name but can think of a word that’s
likely to appear in one of these fields but not in these fields
for other packages.

info Displays information about a package, similar to the rpm -qi
command.

clean Cleans up the Yum cache directory. Running this command
from time to time is advisable, lest downloaded packages
chew up too much disk space.

shell Enters the Yum shell mode, in which you can enter multiple
Yum commands one after another.

resolvedep Displays packages matching the specified dependency.

localinstall Installs the specified local RPM files, using your Yum reposi-
tories to resolve dependencies.

localupdate Updates the system using the specified local RPM files,
using your Yum repositories to resolve dependencies. Pack-
ages other than those updated by local files and their depen-
dencies are not updated.

deplist Displays dependencies of the specified package.

04836book.indd 54 1/7/09 9:04:46 AM

Using RPM 55

In most cases, using Yum is easier than using RPM directly to manage packages, because
Yum finds the latest available package, downloads it, and installs any required dependen-
cies. Yum has its limits, though; it’s only as good as its repositories, so it can’t install soft-
ware that’s not stored in those repositories.

If you use Yum to automatically upgrade all packages on your system,
you’re effectively giving control of your system to the distribution main-
tainer. Although Red Hat or other distribution maintainers are unlikely to try
to break into your computer in this way, an automatic update with minimal
supervision on your part could easily break something on your system, par-
ticularly if you’ve obtained packages from unusual sources in the past.

If you don’t want to install the package, but merely want to obtain it, you can use
yumdownloader. Type this command followed by the name of a package, and the latest
version of the package will be downloaded to the current directory. This can be handy
if you need to update a system that’s not connected to the Internet; you can use another
system that runs the same distribution to obtain the packages and then transfer them to
the target system.

If you prefer to use GUI tools rather than command-line tools, you should be aware that
GUI front-ends to yum exist. Examples include yumex and kyum. You can use the text-mode
yum to install these front-ends, as in yum install kyum.

Exercise 2.1 runs you through the process of managing packages using the rpm utility.

e x e r c i S e 2 .1

Managing Packages using rPM

To manage packages using the rpm utility, follow these steps:

1. Log into the Linux system as a normal user.

2. Acquire a package to use for testing purposes. You can try using a package from
your distribution that you know you haven’t installed; but if you try a random pack-
age, you may find it’s already installed or has unmet dependencies. This lab uses as
an example the installation of zsh-4.3.4-4mdv2008.0.x86_64.rpm, a shell that’s not
installed by default on most systems, from the Mandriva 2008.0 DVD onto a Man-
driva 2008.0 system. You must adjust the commands as necessary if you use another
RPM file in your tests.

3. Launch an xterm from the desktop environment’s menu system if you used a GUI login.

4. Acquire root privileges. You can do this by typing su in an xterm, by selecting Ses-
sion  New Root Console from a Konsole window, or by using sudo (if it’s config-
ured) to run the commands in the following steps.

5. Type rpm -q zsh to verify that the package isn’t currently installed. The system
should respond with the message package zsh is not installed.

04836book.indd 55 1/7/09 9:04:46 AM

56 Chapter 2 n Managing Software

e x e r c i S e 2 .1 (c ont inue d)

6. Type rpm -qpi zsh-4.3.4-4mdv2008.0.x86_64.rpm. (You’ll need to add a com-
plete path to the package file if it’s not in your current directory.) The system should
respond by displaying information about the package, such as the version num-
ber, the vendor, the hostname of the machine on which it was built, and a package
description.

7. Type rpm -ivh zsh-4.3.4-4mdv2008.0.x86_64.rpm. The system should install the
package and display a series of hash marks (#) as it does so.

8. Type rpm -q zsh. The system should respond with the complete package name, includ-
ing the version and build numbers. This response verifies that the package is installed.

9. Type zsh. This launches a Z shell, which functions much like the more common bash
and tcsh shells. You’re likely to see your command prompt change slightly, but you
can issue most of the same commands you can use with bash or tcsh.

10. Type rpm -V zsh. The system shouldn’t produce any output—just a new command
prompt. The verify (-V or --verify) command checks the package files against data
stored in the database. Immediately after installation, most packages should show
no deviations. (A handful of packages will be modified during installation, but zsh
isn’t one of them.)

11. Type rpm -e zsh. The system shouldn’t produce any output—just a new command
prompt. This command removes the package from the system. Note that you’re
removing the zsh package while running the zsh program. Linux continues to run
the zsh program you’re using, but you’ll be unable to launch new instances of the
program. Some programs may misbehave if you do this because files will be missing
after you remove the package.

12. Type exit to exit zsh and return to your normal shell.

13. Type rpm -q zsh. The system should respond with a package zsh is not
installed error because you’ve just uninstalled the package.

14. Type yum install zsh. The system should check your repositories, download zsh,
and install it. It will ask for confirmation before beginning the download.

15. Type rpm -q zsh. The results should be similar to those in step 8, although the ver-
sion number may differ.

16. Type rpm -e zsh. This step removes zsh from the system but produces no output,
just as in step 11.

The final three steps will work only if your distribution uses Yum.

04836book.indd 56 1/7/09 9:04:46 AM

Using RPM 57

RPM and Yum Configuration Files
Ordinarily, you needn’t explicitly configure RPM or Yum; distributions that use RPM con-
figure it in reasonable ways by default. Sometimes, though, you may want to tweak a few
details, particularly if you routinely build source RPM packages and want to optimize the
output for your system. You may also want to add a Yum repository for some unusual soft-
ware you run. To do so, you typically edit an RPM or Yum configuration file.

The main RPM configuration file is /usr/lib/rpm/rpmrc. This file sets a variety of
options, mostly related to the CPU optimizations used when compiling source packages.
You shouldn’t edit this file, though; instead, you should create and edit /etc/rpmrc (to
make global changes) or ~/.rpmrc (to make changes on a per-user basis). The main reason
to create such a file is to implement architecture optimizations—for instance, to optimize
your code for your CPU model by passing appropriate compiler options when you build a
source RPM into a binary RPM. This is done with the optflags line:

optflags: athlon -O2 -g -march=i686

This line tells RPM to pass the -O2 -g -march-i686 options to the compiler whenever
building for the athlon platform. Although RPM can determine your system’s architecture,
the optflags line by itself isn’t likely to be enough to set the correct flags. Most default rpmrc
files include a series of buildarchtranslate lines that cause rpmbuild (or rpm for older ver-
sions of RPM) to use one set of optimizations for a whole family of CPUs. For x86 systems,
these lines typically look like this:

buildarchtranslate: athlon: i386

buildarchtranslate: i686: i386

buildarchtranslate: i586: i386

buildarchtranslate: i486: i386

buildarchtranslate: i386: i386

These lines tell RPM to translate the athlon, i686, i586, i486, and i386 CPU codes to
use the i386 optimizations. This effectively defeats the purpose of any CPU-specific opti-
mizations you create on the optflags line for your architecture, but it guarantees that the
RPMs you build will be maximally portable. To change matters, you must alter the line for
your CPU type, as returned when you type uname -p. For instance, on an Athlon-based sys-
tem, you might enter the following line:

buildarchtranslate: athlon: athlon

Thereafter, when you rebuild a source RPM, the system will use the appropriate
Athlon optimizations. The result can be a slight performance boost on your own sys-
tem, but reduced portability—depending on the precise optimizations you choose, such
packages may not run on non-Athlon CPUs. (Indeed, you may not even be able to install
them on non-Athlon CPUs!)

04836book.indd 57 1/7/09 9:04:47 AM

58 Chapter 2 n Managing Software

Yum is configured via the /etc/yum.conf file, with additional configuration files in the
/etc/yum.repos.d/ directory. The yum.conf file holds basic options, such as the directory
to which Yum downloads RPMs and where Yum logs its activities. Chances are you won’t
need to modify this file. The /etc/yum.repos.d/ directory, on the other hand, potentially
holds several files, each of which describes a Yum repository—that is, a site that holds
RPMs that may be installed via Yum. You probably shouldn’t directly edit these files;
instead, if you want to add a repository, manually download the RPM that includes the
repository configuration and install it using rpm. The next time you use Yum, it will access
your new repository along with the old ones. Several Yum repositories exist, mostly for Red
Hat and Fedora, such as the following:

Livna This repository (http://rpm.livna.org/rlowiki/) hosts multimedia tools, such as
additional codecs and video drivers.

KDE Red Hat Red Hat and Fedora favor the GNU Network Object Model Environment
(GNOME) desktop environment, although they ship with the K Desktop Environment
(KDE). The repository at http://kde-redhat.sourceforge.net provides improved KDE
RPMs for those who favor KDE.

Fresh RPMs This repository (http://freshrpms.net) provides additional RPMs, mostly
focusing on multimedia applications and drivers.

Many additional repositories exist. Try a Web search on terms such as yum repository, or
check the Web page of any site that hosts unusual software you want to run to see whether it
provides a Yum repository. If so, it should provide an RPM or other instructions on adding
its site to your Yum repository list.

RPM Compared to Other Package Formats
RPM is a very flexible package management system. In most respects, it’s comparable to
Debian’s package manager, and it offers many more features than tarballs do. When com-
pared to Debian packages, the greatest strength of RPMs is probably their ubiquity. Many
software packages are available in RPM form from their developers and/or from distribu-
tion maintainers.

Distribution packagers frequently modify the original programs in order to
make them integrate more smoothly into the distribution as a whole. For
instance, distribution-specific startup scripts may be added, program bina-
ries may be relocated from default /usr/local subdirectories, and pro-
gram source code may be patched to fix bugs or add features. Although
these changes can be useful, you may not want them, particularly if you’re
using a program on a distribution other than the one for which the package
was intended.

The fact that there are so many RPM-based distributions can be a boon. You may be
able to use an RPM intended for one distribution on another, although as noted earlier, this
isn’t certain. In fact, this advantage can turn into a drawback if you try to mix and match

04836book.indd 58 1/7/09 9:04:47 AM

Using Debian Packages 59

too much—you can wind up with a mishmash of conflicting packages that can be difficult
to disentangle.

The RPMFind Web site, http://rpmfind.net, is an extremely useful
resource when you want to find an RPM of a specific program. Another site
with similar characteristics is Fresh RPMs, http://freshrpms.net. These
sites include links to RPMs built by programs’ authors, specific distribu-
tions’ RPMs, and those built by third parties. Adding such sites as Yum
repositories can make it even easier to use them.

Compared to tarballs, RPMs offer much more sophisticated package management tools.
This can be important when you’re upgrading or removing packages and also for verifying
the integrity of installed packages. On the other hand, although RPMs are common in the
Linux world, they’re less common on other platforms. Therefore, you’re more likely to find
tarballs of generic Unix source code, and tarballs are preferred if you’ve written a program
that you intend to distribute for other platforms.

Using Debian Packages
In their overall features, Debian packages are similar to RPMs; but the details of operation
for each differ, and Debian packages are used on different distributions than are RPMs.
Because each system uses its own database format, RPMs and Debian packages aren’t inter-
changeable without converting formats. Using Debian packages requires knowing how to
use the dpkg, dselect, and apt-get commands. A few other commands can also be helpful.

Debian Distributions and Conventions
As the name implies, Debian packages originated with the Debian distribution. Since that
time, the format has been adopted by several other distributions, including Libranet, Ubuntu,
and Xandros. Such distributions are derived from the original Debian, which means that
packages from the original Debian are likely to work well on other Debian-based systems.
Although Debian doesn’t emphasize flashy GUI installation or configuration tools, its deriva-
tives add GUI configuration tools to the base Debian system, which makes these distributions
more appealing to Linux novices. The original Debian favors a system that’s as bug free as
possible, and it tries to adhere strictly to open-source software principles rather than invest
effort in GUI configuration tools. The original Debian is unusual in that it’s maintained by
volunteers who are motivated by the desire to build a product they want to use rather than by
a company that is motivated by profit.

Like RPM, the Debian package format is neutral with respect to both OS and CPU type.
Debian packages are extremely rare outside Linux, although efforts are under way to create
a Debian distribution that uses the GNU Hurd kernel rather than the Linux kernel. Such a
distribution wouldn’t be Linux but would closely resemble Debian GNU/Linux in opera-
tion and configuration.

04836book.indd 59 1/7/09 9:04:47 AM

60 Chapter 2 n Managing Software

The original Debian distribution has been ported to many different CPUs, including
x86, x86-64, IA-64, PowerPC, Alpha, 680x0, MIPS, and SPARC. The original architecture
was x86, and subsequent ports exist at varying levels of maturity. Derivative distributions
generally work only on x86 systems, but this could change in the future.

Debian packages follow a naming convention similar to those for RPMs; but Debian pack-
ages sometimes omit codes in the filename to specify a package’s architecture, particularly
on x86 packages. When these codes are present, they may differ from RPM conventions. For
instance, a filename ending in i386.deb indicates an x86 binary, powerpc.deb is a PowerPC
binary, and all.deb indicates a CPU-independent package, such as documentation or scripts.
As with RPM files, this file-naming convention is only that—a convention. You can rename
a file as you see fit, to either include or omit the processor code. There is no code for Debian
source packages because, as described in the upcoming section “Debian Packages Compared
to Other Package Formats,” Debian source packages consist of several separate files.

The dpkg Command Set
Debian packages are incompatible with RPM packages, but the basic principles of opera-
tion are the same across both package types. Like RPMs, Debian packages include depen-
dency information, and the Debian package utilities maintain a database of installed
packages, files, and so on. You use the dpkg command to install a Debian package. This
command’s syntax is similar to that of rpm:

dpkg [options][action] [package-files|package-name]

The action is the action to be taken; common actions are summarized in Table 2.4. The
options (Table 2.5) modify the behavior of the action, much like the options to rpm.

Ta b le 2 . 4 dpkg Primary Actions

Action Description

-i or --install Installs a package

--configure Reconfigures an installed package: runs the post-instal-
lation script to set site-specific options

-r or --remove Removes a package, but leaves configuration files intact

-P or --purge Removes a package, including configuration files

-p or --print-avail Displays information about an installed package

-I or --info Displays information about an uninstalled package file

-l pattern or --list pattern Lists all installed packages whose names match pattern

04836book.indd 60 1/7/09 9:04:47 AM

Using Debian Packages 61

Ta b le 2 . 4 dpkg Primary Actions (continued)

Action Description

-L or --listfiles Lists the installed files associated with a package

-S pattern or --search pattern Locates the package(s) that own the file(s) specified
by pattern

-C or --audit Searches for partially installed packages and suggests
what to do with them

Ta b le 2 .5 Options for Fine-Tuning dpkg Actions

Option Used with Actions Description

--root=dir All Modifies the Linux system using a root
directory located at dir. Can be used to
maintain one Linux installation discrete
from another one, say during OS instal-
lation or emergency maintenance.

-B or --auto-deconfigure -r Disables packages that rely on one that
is being removed.

--force-things Assorted Forces specific actions to be taken.
Consult the dpkg man page for details
of things this option does.

--ignore-depends=package -i, -r Ignores dependency information for
the specified package.

--no-act -i, -r Checks for dependencies, conflicts,
and other problems without actually
installing or removing the package.

--recursive -i Installs all packages that match the
package name wildcard in the speci-
fied directory and all subdirectories.

-G -i Doesn’t install the package if a newer
version of the same package is already
installed.

-E or --skip-same-version -i Doesn’t install the package if the
same version of the package is
already installed.

04836book.indd 61 1/7/09 9:04:47 AM

62 Chapter 2 n Managing Software

As with rpm, dpkg expects a package name in some cases and a package filename in others.
Specifically, --install (-i) and --info (-I) both require the package filename, but the other
commands take the shorter package name.

As an example, consider the following command, which installs the samba_3.0.26a-
1ubuntu2.3_amd64.deb package:

dpkg -i samba_3.0.26a-1ubuntu2.3_amd64.deb

If you’re upgrading a package, you may need to remove an old package before installing
the new one. To do this, use the -r option to dpkg, as in the following:

dpkg -r samba

To find information about an installed package, use the -p parameter to dpkg, as shown
in Listing 2.2. This listing omits an extended English description of what the package does.

listing 2.2: dpkg Package Information Query Output

$ dpkg -p samba

Package: samba

Priority: optional

Section: net

Installed-Size: 9792

Maintainer: Ubuntu Core Developers <ubuntu-devel-discuss@lists.ubuntu.com>

Architecture: amd64

Version: 3.0.26a-1ubuntu2.3

Replaces: samba-common (<= 2.0.5a-2)

Depends: samba-common (= 3.0.26a-1ubuntu2.3), logrotate, libacl1 (>= 2.2.11-1),

libattr1 (>= 2.4.4-1), libc6 (>= 2.6-1), libcomerr2 (>= 1.33-3), libcupsys2

(>= 1.3.0), libgnutls13 (>= 1.6.3-0), libkrb53 (>= 1.6.dfsg.1), libldap2

(>= 2.1.17-1), libpam0g (>= 0.99.7.1), libpopt0 (>= 1.10), zlib1g

(>= 1:1.2.3.3.dfsg-1), debconf (>= 0.5) | debconf-2.0, libpam-runtime

(>= 0.76-13.1), libpam-modules, lsb-base (>= 3.0-6), procps, update-inetd

Recommends: smbldap-tools

Suggests: openbsd-inetd | inet-superserver

Size: 4180134

Debian-based systems often use a pair of somewhat higher-level utilities, apt-get and
dselect, to handle package installation and removal. These utilities are described in the
next couple of sections. Their interfaces can be very useful when you want to install sev-
eral packages, but dpkg is often more convenient when you’re manipulating just one or two
packages. Because dpkg can take package filenames as input, it’s also the preferred method
of installing a package that you download from an unusual source or create yourself.

04836book.indd 62 1/7/09 9:04:48 AM

Using Debian Packages 63

Using apt-cache
The APT suite of tools includes a program, apt-cache, that’s intended solely to provide
information about the Debian package database (known in Debian terminology as the
package cache). You may be interested in using several features of this tool:

Display package information Using the showpkg subcommand, as in apt-cache showpkg
samba, displays information about the package. The information displayed is different from
that returned by dpkg’s informational actions.

Display package statistics You can learn how many packages you’ve installed, how many
dependencies are recorded, and various other statistics about the package database, by
passing the stats subcommand, as in apt-cache stats.

Find unmet dependencies If a program is reporting missing libraries or files, typing apt-
cache unmet may help; this function of apt-cache returns information about unmet depen-
dencies, which may help you track down the source of missing-file problems.

Display dependencies Using the depends subcommand, as in apt-cache depends samba,
shows all of the specified package’s dependencies. This information can be helpful in tracking
down dependency-related problems. The rdepends subcommand finds reverse dependencies—
packages that depend on the one you specify.

Locate all packages The pkgnames subcommand displays the names of all the packages
installed on the system. If you include a second parameter, as in apt-cache pkgnames sa,
the program returns only those packages that begin with the specified string.

Several more subcommands and options exist, but these are the ones you’re most likely
to use. Several apt-cache subcommands are intended for package maintainers and debug-
ging serious package database problems rather than day-to-day system administration.
Consult the man page for apt-cache for more information.

Using apt-get
APT, and its apt-get utility, is Debian’s equivalent to Yum on certain RPM-based distribu-
tions. This meta-packaging tool enables you to perform easy upgrades of packages, especially
if you have a fast Internet connection. Debian-based systems include a file, /etc/apt/sources.
list, that specifies locations from which important packages can be obtained. If you installed
the OS from a CD-ROM drive, this file will initially list directories on the installation CD-
ROM in which packages can be found. There are also likely to be a few lines near the top,
commented out with hash marks (#), indicating directories on an FTP site or a Web site from
which you can obtain updated packages. (These lines may be uncommented if you did a net-
work install initially.)

Although APT is most strongly associated with Debian systems, a port to
RPM-based systems is also available. Check http://apt4rpm.sourceforge
.net for information about this port.

04836book.indd 63 1/7/09 9:04:48 AM

64 Chapter 2 n Managing Software

Don’t add a site to /etc/apt/sources.list unless you’re sure it can be
trusted. The apt-get utility does automatic and semiautomatic upgrades,
so if you add a network source to sources.list and that source contains
unreliable programs or programs with security holes, your system will
become vulnerable after upgrading via apt-get.

The apt-get utility works by obtaining information about available packages from the
sources listed in /etc/apt/sources.list and then using that information to upgrade or
install packages. The syntax is similar to that of dpkg:

apt-get [options][command] [package-names]

Table 2.6 lists the apt-get commands, and Table 2.7 lists the most commonly used options.
In most cases, you won’t use any options with apt-get—just a single command and possibly
one or more package names. One particularly common use of this utility is to keep your sys-
tem up to date with any new packages. The following two commands will accomplish this
goal if /etc/apt/sources.list includes pointers to up-to-date file archive sites:

apt-get update

apt-get dist-upgrade

Ta b le 2 .6 apt-get Commands

Command Description

update Obtains updated information about packages available from the
installation sources listed in /etc/apt/sources.list.

upgrade Upgrades all installed packages to the newest versions available,
based on locally stored information about available packages.

dselect-upgrade Performs any changes in package status (installation, removal, and so
on) left undone after running dselect.

dist-upgrade Similar to upgrade, but performs “smart” conflict resolution to avoid
upgrading a package if doing so would break a dependency.

install Installs a package by package name (not by package filename),
obtaining the package from the source that contains the most up-to-
date version.

remove Removes a specified package by package name.

source Retrieves the newest available source package file by package file-
name using information about available packages and installation
archives listed in /etc/apt/sources.list.

04836book.indd 64 1/7/09 9:04:48 AM

Using Debian Packages 65

Ta b le 2 .6 apt-get Commands (continued)

Command Description

check Checks the package database for consistency and broken package
installations.

clean Performs housekeeping to help clear out information about
retrieved files from the Debian package database. If you don’t use
dselect for package management, run this from time to time in
order to save disk space.

autoclean Similar to clean, but removes information only about packages that
can no longer be downloaded.

Ta b le 2 .7 Most Useful apt-get Options

Option Used with Commands Description

-d or --download-only upgrade, dselect-upgrade,
install, source

Downloads package files but
doesn’t install them.

-f or --fix-broken install, remove Attempts to fix a system
on which dependencies are
unsatisfied.

-m, --ignore-missing, or
--fix-missing

upgrade, dselect-upgrade,
install, remove, source

Ignores all package files that
can’t be retrieved (because
of network errors, missing
files, or the like).

-q or --quiet All Omits some progress indi-
cator information. May be
doubled (for instance, -qq)
to produce still less progress
information.

-s, --simulate, --just-print,
--dry-run, --recon, or
--no-act

All Performs a simulation of
the action without actually
modifying, installing, or
removing files.

-y, --yes, or --assume-yes All Produces a “yes” response
to any yes/no prompt in
installation scripts.

04836book.indd 65 1/7/09 9:04:48 AM

66 Chapter 2 n Managing Software

Ta b le 2 .7 Most Useful apt-get Options (continued)

Option Used with Commands Description

-b, --compile, or --build source Compiles a source package
after retrieving it.

--no-upgrade install Causes apt-get to not
upgrade a package if an
older version is already
installed.

If you use APT to automatically upgrade all packages on your system,
you’re effectively giving control of your system to the distribution main-
tainer. Although Debian or other distribution maintainers are unlikely to try
to break into your computer in this way, an automatic update with minimal
supervision on your part could easily break something on your system,
particularly if you’ve obtained packages from unusual sources in the past.

In Exercise 2.2, you’ll familiarize yourself with the Debian package system.

e x e r c i S e 2 . 2

Managing debian Packages

To manage Debian packages, follow these steps:

1. Log into the Linux system as a normal user.

2. Acquire a package to use for testing purposes. You can try using a package from
your distribution that you know you haven’t installed; but if you try a random pack-
age, you may find it’s already installed or has unmet dependencies. This lab uses as
an example the installation of zsh_4.3.4-24ubuntu1_amd64.deb, a shell that’s not
installed by default on most systems, obtained using the -d option to apt-get on an
Ubuntu 8.04 system. You must adjust the commands as necessary if you use another
package, distribution, or architecture in your tests.

3. Launch an xterm from the desktop environment’s menu system if you used a GUI login.

4. Acquire root privileges. You can do this by typing su in an xterm, by selecting Ses-
sion  New Root Console from a Konsole window, or by using sudo (if it’s config-
ured) to run the commands in the following steps.

5. Type dpkg -L zsh to verify that the package isn’t currently installed. This command
responds with a list of files associated with the package if it’s installed or with an
error that reads Package `zsh’ is not installed if it’s not.

04836book.indd 66 1/7/09 9:04:49 AM

Using Debian Packages 67

e x e r c i S e 2 . 2 (c ont inue d)

6. Type dpkg -I zsh_4.3.4-24ubuntu1_amd64.deb. (You’ll need to add a complete
path to the package file if it’s not in your current directory.) The system should
respond by displaying information about the package, such as the version number,
dependencies, the name of the package maintainer, and a package description.

7. Type dpkg -i zsh_4.3.4-24ubuntu1_amd64.deb. The system should install the pack-
age and display a series of lines summarizing its actions as it does so.

8. Type dpkg -p zsh. The system should respond with information about the package
similar to that displayed in step 6.

9. Type zsh. This launches a Z shell, which functions much like the more common bash
and tcsh shells. You’re likely to see your command prompt change slightly, but you
can issue most of the same commands you can use with bash or tcsh.

10. Type dpkg -P zsh. This command removes the package from the system, including
configuration files. It may produce a series of warnings about non-empty directories
that it couldn’t remove. Note that you’re removing the zsh package while running
the zsh program. Linux continues to run the zsh program you’re using, but you’ll be
unable to launch new instances of the program. Some programs may misbehave
because files will be missing after you remove the package.

11. Type exit to exit from zsh and return to your normal shell.

12. Type dpkg -L zsh. The system should respond with a Package `zsh’ is not
installed error because you’ve just uninstalled it.

13. Type apt-get install zsh to install zsh using the APT system. Depending on your
configuration, the system may download the package from an Internet site or ask you
to insert a CD-ROM. If it asks for a CD-ROM, insert it and press the Enter key. The sys-
tem should install the package.

14. Type dpkg -p zsh. The system should respond with information about the package
similar to that displayed in step 6 or 8.

15. Type dpkg -P zsh. This command removes the package from the system, as
described in step 10.

Using dselect, aptitude, and Synaptic
The dselect program is a high-level package browser. Using it, you can select packages to
install on your system from the APT archives defined in /etc/apt/sources.list, review the
packages that are already installed on your system, uninstall packages, and upgrade packages.
Overall, dselect is a powerful tool, but it can be intimidating to the uninitiated because it
presents a lot of options that aren’t obvious, using a text-mode interactive user interface.

04836book.indd 67 1/7/09 9:04:49 AM

68 Chapter 2 n Managing Software

Although dselect supports a few command-line options, they’re mostly obscure or
minor (such as options to set the color scheme). Consult dselect’s man page for details. To
use the program, type dselect. The result is the dselect main menu, as shown running in
a KDE Konsole window in Figure 2.1.

f i gu r e 2 .1 The dselect utility provides access to APT features using a menu system.

Another text-based Debian package manager is aptitude. In interactive mode, aptitude is
similar to dselect in a rough way, but aptitude adds menus accessed by pressing Ctrl+T and
rearranges some features. You can also pass various commands to aptitude on the command
line, as in aptitude search samba, which searches for packages related to Samba. Features
accessible from the command line (or the interactive interface) include the following:

Update package lists You can update package lists from the APT repositories by typing
aptitude update.

Install software The install command-line option installs a named package. This com-
mand has several variant names and syntaxes that modify its action. For instance, typing
aptitude install zsh installs the zsh package, but typing aptitude install zsh- and
aptitude remove zsh both uninstall zsh.

Upgrade software The full-upgrade and safe-upgrade options both upgrade all
installed packages. The safe-upgrade option is conservative about removing packages or
installing new ones and so may fail; full-upgrade is less conservative about these actions
and so is more likely to complete its tasks, but it may break software in the process.

Search for packages The search option, noted earlier, searches the database for packages
matching the specified name. The result is a list of packages, one per line, with summary
codes for each package’s install status, its name, and a brief description.

04836book.indd 68 1/7/09 9:04:49 AM

Using Debian Packages 69

Clean up the database The autoclean option removes already downloaded packages that
are no longer available, and clean removes all downloaded packages.

Obtain help Typing aptitude help results in a complete list of options.

Broadly speaking, aptitude combines the interactive features of dselect with the com-
mand-line options of apt-get. All three programs provide similar functionality, so you can
use whichever one you prefer.

A tool that’s similar to dselect and aptitude in some ways is Synaptic, but Synaptic
is a fully GUI X-based program and as such is easier to use. Overall, dselect, aptitude,
and Synaptic are useful tools, particularly if you need to locate software but don’t know its
exact name—the ability to browse and search the available packages can be a great boon.
Unfortunately, the huge package list can be intimidating.

Reconfiguring Packages
Debian packages often provide more extensive initial setup options than do their RPM
counterparts. Frequently, the install script included in the package asks a handful of ques-
tions, such as asking for the name of an outgoing mail-relay system for a mail server
program. These questions help the system set up a standardized configuration that’s none-
theless been customized for your system.

In the course of your system administration, you may alter the configuration files for a
package. If you do this and find you’ve made a mess of things, you may want to revert to
the initial standard configuration. To do so, you can use the dpkg-reconfigure program,
which runs the initial configuration script for the package you specify:

dpkg-reconfigure samba

This command reconfigures the samba package, asking the package’s initial installation
questions and restarting the Samba daemons. Once this is done, the package should be in
something closer to its initial state.

Debian Packages Compared to Other Package Formats
The overall functionality of Debian packages is similar to that of RPMs, although there are
differences. Debian source packages aren’t single files; they’re groups of files—the original
source tarball, a patch file that’s used to modify the source code (including a file that con-
trols the building of a Debian package), and a .dsc file that contains a digital “signature”
to help verify the authenticity of the collection. The Debian package tools can combine
these and compile the package to create a Debian binary package. This structure makes
Debian source packages slightly less convenient to transport because you must move at least
two files (the tarball and patch file; the .dsc file is optional) rather than just one. Debian
source packages also support just one patch file, whereas RPM source packages may con-
tain multiple patch files. Although you can certainly combine multiple patch files into one,
doing so makes it less clear where a patch comes from, thus making it harder to back out of
any given change.

04836book.indd 69 1/7/09 9:04:49 AM

70 Chapter 2 n Managing Software

These source package differences are mostly of interest to software developers. As a sys-
tem administrator or end user, you need not normally be concerned with them unless you
must recompile a package from a source form—and even then, the differences between the
formats need not be overwhelming. The exact commands and features used by each system
differ, but they accomplish similar overall goals.

Because all distributions that use Debian packages are derived from Debian, they tend
to be more compatible with one another (in terms of their packages) than RPM-based dis-
tributions are. In particular, Debian has defined details of its system startup scripts and
many other features to help Debian packages install and run on any Debian-based system.
This helps Debian-based systems avoid the sorts of incompatibilities in startup scripts that
can cause problems using one distribution’s RPMs on another distribution. Of course, some
future distribution could violate Debian’s guidelines for these matters, so this advantage
isn’t guaranteed to hold over time.

As a practical matter, it can be harder to locate Debian packages than RPM packages
for some exotic programs. Debian maintains a good collection at http://www.debian.org/
distrib/packages, and some program authors make Debian packages available as well. If
you can find an RPM but not a Debian package, you may be able to convert the RPM to
Debian format using a program called alien, as described shortly in “Converting Between
Package Formats.” If all else fails, you can use a tarball, but you’ll lose the advantages of
the Debian package database.

Configuring Debian Package Tools
With the exception of the APT sources list mentioned earlier, Debian package tools don’t
usually require configuration. Debian installs reasonable defaults (as do its derivative distri-
butions). On rare occasions, though, you may want to adjust some of these defaults. Doing
so requires that you know where to look for them.

The main configuration file for dpkg is /etc/dpkg/dpkg.cfg or ~/.dpkg.cfg. This file
contains dpkg options, as summarized in Table 2.5, but without the leading dashes. For
instance, to have dpkg always perform a test run rather than actually install a package,
you’d create a dpkg.cfg file that contains one line:

no-act

For APT, the main configuration file you’re likely to modify is /etc/apt/sources.
list, which is described earlier, in “Using apt-get.” Beyond this file is /etc/apt/apt.conf,
which controls APT and dselect options. As with dpkg.cfg, chances are you won’t need to
modify apt.conf. If you do need to make changes, the format is more complex and is mod-
eled after those of the Internet Software Consortium’s (ISC’s) Dynamic Host Configuration
Protocol (DHCP) and Berkeley Internet Name Domain (BIND) servers’ configuration files.
Options are grouped together by open and close curly braces ({}):

APT

{

04836book.indd 70 1/7/09 9:04:50 AM

Converting Between Package Formats 71

 Get

 {

 Download-Only “true”;

 };

};

These lines are equivalent to permanently setting the --download-only option described
in Table 2.7. You can, of course, set many more options. For details, consult apt.conf’s man
page. You may also want to review the sample configuration file, /usr/share/doc/apt/
examples/apt.conf. (The working /etc/apt/apt.conf file is typically extremely simple
and therefore not very helpful as an example.)

You should be aware that Debian’s package tools rely on various files in the /var/lib/
dpkg directory tree. These files maintain lists of available packages, lists of installed pack-
ages, and so on. In other words, this directory tree is effectively the Debian installed file
database. As such, you should be sure to back up this directory when you perform system
backups and be careful about modifying its contents.

Converting Between Package Formats
Sometimes you’re presented with a package file in one format, but you want to use another
format. This is particularly common when you use a Debian-based distribution and can only
find tarballs or RPM files of a package. When this happens, you can keep looking for a pack-
age file in the appropriate format, install the tools for the foreign format, create a package
from a source tarball using the standard RPM or Debian tools, or convert between package
formats with a utility like alien.

This section focuses on this last option. The alien program comes with Debian and a few
other distributions but may not be installed by default. If it’s not installed on your system,
install it by typing apt-get install alien on a system that uses APT, or use the RPM Find
or Debian package Web site to locate it. This program can convert between RPM packages,
Debian packages, Stampede packages (used by Stampede Linux), and tarballs.

You need to be aware of some caveats. For one thing, alien requires that you have
appropriate package manager software installed—for instance, both RPM and Debian to
convert between these formats. The alien utility doesn’t always convert all dependency
information completely correctly. When converting from a tarball, alien copies the files
directly as they had been in the tarball, so alien works only if the original tarball has files
that should be installed off the root (/) directory of the system.

Although alien requires both RPM and Debian package systems to be
installed to convert between these formats, alien doesn’t use the data-
base features of these packages unless you use the --install option.
The presence of a foreign package manager isn’t a problem as long as you
don’t use it to install software that might duplicate or conflict with soft-
ware installed with your primary package manager.

04836book.indd 71 1/7/09 9:04:50 AM

72 Chapter 2 n Managing Software

The basic syntax of alien is as follows:

alien [options] file[...]

The most important options are --to-deb, --to-rpm, --to-slp, and --to-tgz, which convert
to Debian, RPM, Stampede, and tarball format, respectively. (If you omit the destination format,
alien assumes you want a Debian package.) The --install option installs the converted pack-
age and removes the converted file. Consult the alien man page for additional options.

For instance, suppose you have a Debian package called someprogram-1.2.3-4_i386.
deb, and you want to create an RPM from it. You can issue the following command to
create an RPM called someprogram-1.2.3-5.i386.rpm:

alien --to-rpm someprogram-1.2.3-4_i386.deb

If you use a Debian-based system and want to install a tarball but keep a record of the files
it contains in your Debian package database, you can do so with the following command:

alien --install binary-tarball.tar.gz

It’s important to remember that converting a tarball converts the files in the directory
structure of the original tarball using the system’s root directory as the base. Therefore, you
may need to unpack the tarball, juggle files around, and repack it to get the desired results
prior to installing the tarball with alien. For instance, suppose you’ve got a binary tarball
that creates a directory called program-files, with bin, man, and lib directories under this.
The intent may have been to unpack the tarball in /usr or /usr/local and create links for
critical files. To convert this tarball to an RPM, you can issue the following commands:

tar xvfz program.tar.gz

mv program-files usr

tar cvfz program.tgz usr

rm -r usr

alien --to-rpm program.tgz

By renaming the program-files directory to usr and creating a new tarball, you’ve
created a tarball that, when converted to RPM format, will have files in the locations you
want—/usr/bin, /usr/man, and /usr/lib. You might need to perform more extensive
modifications, depending on the contents of the original tarball.

Package Dependencies and Conflicts
Although package installation often proceeds smoothly, sometimes it doesn’t. The usual
sources of problems relate to unsatisfied dependencies or conflicts between packages. The
RPM and Debian package management systems are intended to help you locate and resolve
such problems, but on occasion (particularly when mixing packages from different vendors),
they can actually cause problems. In either event, it pays to recognize these errors and know
how to resolve them.

04836book.indd 72 1/7/09 9:04:50 AM

Package Dependencies and Conflicts 73

If you use a meta-packager, such as Yum or APT, for all your package man-
agement, you’re much less likely to run into problems with package depen-
dencies and conflicts. These problems are most likely to arise when you
install lone packages, especially those from unusual sources.

Real and Imagined Package Dependency Problems
Package dependencies and conflicts can arise for a variety of reasons, including the
following:

Missing libraries or support programs One of the most common dependency problems is
caused by a missing support package. For instance, all KDE programs rely on Qt, a widget
set that provides assorted GUI tools. If Qt isn’t installed, you won’t be able to install any
KDE packages using RPMs or Debian packages. Libraries—support code that can be used
by many different programs as if it were part of the program itself—are particularly com-
mon sources of problems in this respect.

Incompatible libraries or support programs Even if a library or support program is
installed on your system, it may be the wrong version. For instance, if a program requires
Qt 3.3, the presence of Qt 2.2 won’t do much good. Fortunately, Linux library-naming
conventions enable you to install multiple versions of a library in case you have programs
with competing requirements.

Duplicate files or features Conflicts arise when one package includes files that are already
installed and that belong to another package. Occasionally, broad features can conflict as
well, as in two Web server packages. Feature conflicts are usually accompanied by name
conflicts. Conflicts are most common when mixing packages intended for different distri-
butions, because distributions may split files across packages in different ways.

Mismatched names RPM and Debian package management systems give names to
their packages. These names don’t always match across distributions. For this reason,
if one package checks for another package by name, the first package may not install
on another distribution, even if the appropriate package is installed, because that target
package has a different name.

Some of these problems are very real and serious. Missing libraries, for instance, must
be installed. (Sometimes, though, a missing library isn’t quite as missing as it seems, as
described in the upcoming section “Forcing the Installation.”) Others, like mismatched
package names, are artifacts of the packaging system. Unfortunately, it’s not always easy
to tell into which category a conflict fits. When using a package management system, you
may be able to use the error message returned by the package system, along with your own
experience with and knowledge of specific packages, to make a judgment. For instance, if
RPM reports that you’re missing a slew of libraries with which you’re unfamiliar, you’ll
probably have to track down at least one package—unless you know you’ve installed the
libraries in some other way, in which case you may want to force the installation.

04836book.indd 73 1/7/09 9:04:50 AM

74 Chapter 2 n Managing Software

Workarounds to Package Dependency Problems
When you encounter an unmet package dependency or conflict, what can you do about it?
There are several approaches to these problems. Some of these approaches work well in some
situations but not others, so you should review the possibilities carefully. The options include
forcing the installation, modifying your system to meet the dependency, rebuilding the prob-
lem package from source code, and finding another version of the problem package.

Forcing the Installation
One approach is to ignore the issue. Although this sounds risky, it’s appropriate in some
cases involving failed RPM or Debian dependencies. For instance, if the dependency is on
a package that you installed by compiling the source code yourself, you can safely ignore
the dependency. When using rpm, you can tell the program to ignore failed dependencies by
using the --nodeps parameter:

rpm -i apackage.rpm --nodeps

You can force installation over some other errors, such as conflicts with existing pack-
ages, by using the --force parameter:
rpm -i apackage.rpm --force

Do not use --nodeps or --force as a matter of course. Ignoring the depen-
dency checks can lead you into trouble, so you should use these options
only when you need to do so. In the case of conflicts, the error messages
you get when you first try to install without --force will tell you which
packages’ files you’ll be replacing, so be sure you back them up or are pre-
pared to reinstall the package in case of trouble.

If you’re using dpkg, you can use the --ignore-depends=package, --force-depends, and
--force-conflicts parameters to overcome dependency and conflict problems in Debian-
based systems. Because there’s less deviation in package names and requirements among
Debian-based systems, these options are less often needed on such systems.

Upgrading or Replacing the Depended-On Package
Officially, the proper way to overcome a package dependency problem is to install, upgrade,
or replace the depended-upon package. If a program requires, say, Qt 3.3 or greater, you
should upgrade an older version (such as 3.2) to 3.3. To perform such an upgrade, you’ll need
to track down and install the appropriate package. This usually isn’t too difficult if the new
package you want comes from a Linux distribution, and especially if you use a meta-packager
such as Yum or APT; the appropriate depended-on package should come with the same
distribution.

One problem with this approach is that packages intended for different distributions
sometimes have differing requirements. If you run Distribution A and install a package that

04836book.indd 74 1/7/09 9:04:50 AM

Package Dependencies and Conflicts 75

was built for Distribution B, the package will express dependencies in terms of Distribu-
tion B’s files and versions. The appropriate versions may not be available in a form intended
for Distribution A; and by installing Distribution B’s versions, you can sometimes cause
conflicts with other Distribution A packages. Even if you install the upgraded package and
it works, you may run into problems in the future when it comes time to install some other
program or upgrade the distribution as a whole—the upgrade installer may not recognize
Distribution B’s package or may not be able to upgrade to its own newer version.

Rebuilding the Problem Package
Some dependencies result from the libraries and other support utilities installed on the
computer that compiled the package, not from requirements in the underlying source code.
If the software is recompiled on a system that has different packages, the dependencies
will change. Therefore, rebuilding a package from source code can overcome at least some
dependencies.

If you use an RPM-based system, the command to rebuild a package is straightforward:
You call rpmbuild (or rpm with old versions of RPM) with the name of the source package
and use --rebuild, as follows:

rpmbuild --rebuild packagename-version.src.rpm

Of course, to do this you must have the source RPM for the package. This can usually
be obtained from the same location as the binary RPM. When you execute this command,
rpmbuild extracts the source code and executes whatever commands are required to build
a new package—or sometimes several new packages. (One source RPM can build multiple
binary RPMs.) The compilation process can take anywhere from a few seconds to several
hours, depending on the size of the package and the speed of your computer. The result
should be one or more new binary RPMs in /usr/src/distname/RPMS/arch, where dist-
name is a distribution-specific name (such as redhat on Red Hat or packages on SuSE) and
arch is your CPU architecture (such as i386 or i586 for x86 or ppc for PowerPC). You can
move these RPMs to any convenient location and install them just as you would any others.

Source packages are also available for Debian systems, but aside from
sites devoted to Debian and related distributions, Debian source packages
are rare. The sites that do have these packages provide them in forms that
typically install easily on appropriate Debian or related systems. For this
reason, it’s less likely that you’ll rebuild a Debian package from source.

Locating Another Version of the Problem Package
Frequently, the simplest way to fix a dependency problem or package conflict is to use a differ-
ent version of the package you want to install. This could be a newer or older official version
(4.2.3 rather than 4.4.7, say), or it might be the same official version but built for your distri-
bution rather than for another distribution. Sites like RPM Find (http://www.rpmfind.net)

04836book.indd 75 1/7/09 9:04:51 AM

76 Chapter 2 n Managing Software

and Debian’s package listing (http://www.debian.org/distrib/packages) can be very useful
in tracking down alternative versions of a package. Your own distribution’s Web site or FTP
site can also be a good place to locate packages.

If the package you’re trying to install requires newer libraries than you’ve
got and you don’t want to upgrade those libraries, an older version of the
package may work with your existing libraries. Before doing so, though, you
should check to be sure that the newer version of the program doesn’t fix
security bugs. If it does, you should find another way to install the package.

The main problem with locating another version of the package is that sometimes you
really need the version that’s not installing correctly. It may have features you need, or it
may fix important bugs. On occasion, other versions may not be available, or you may be
unable to locate another version of the package in your preferred package format.

Startup Script Problems
One particularly common problem when trying to install servers from one distribution in
another is getting SysV startup scripts working. Although most major Linux distributions
use SysV startup scripts, these scripts aren’t always transportable across distributions. Dif-
ferent distributions frequently implement support routines in unique ways, so these scripts
may be incompatible. The result is that the server you installed may not start up, even if the
links to the startup scripts are correct. Possible workarounds include modifying the startup
script that came with the server, building a new script based on another one from your dis-
tribution, and starting the server through a local startup script like /etc/rc.d/rc.local or
/etc/rc.d/boot.local. Chapter 5, “Booting Linux and Editing Files,” describes startup
scripts in more detail.

Startup script problems affect only servers and other programs that are
started automatically when the computer boots; they don’t affect typical
user applications or libraries.

Managing Shared Libraries
Most Linux software relies heavily on shared libraries. The preceding sections have described
some of the problems that can arise in managing shared library packages—for example, if a
library isn’t installed or is the wrong version, you may have problems installing a package.
Library management goes beyond merely configuring them, though. To understand this, you
must first understand a few library principles. You can then move on to setting the library path
and using commands that manage libraries.

04836book.indd 76 1/7/09 9:04:51 AM

Managing Shared Libraries 77

Library Principles
The idea behind a library is to simplify programmers’ lives by providing commonly used
program fragments. For instance, one of the most important libraries is the C library (libc),
which provides many of the higher-level features associated with the C programming lan-
guage. Another common type of library is associated with GUIs. These libraries are often
called widget sets because they provide the on-screen widgets used by programs—buttons,
scroll bars, menu bars, and so on. The GIMP Tool Kit (GTK+) and Qt are the most popular
Linux widget sets, and both ship largely as libraries. Libraries are chosen by programmers,
not by users; you usually can’t easily substitute one library for another. (The main excep-
tions are minor version upgrades.)

Linux uses the GNU C library (glibc) version of the C library. Package-
manager dependencies and other library references are to glibc specifi-
cally. As of glibc 2.3.4, for historical reasons the main glibc file is usually
called /lib/libc.so.6, but this file is sometimes a symbolic link to a file of
another name, such as /lib/libc-2.3.4.so.

In principle, the routines in a library can be linked into a program’s main file, just
like all the object code files created by the compiler. This approach, however, has certain
problems:

The resulting program file is huge. This means it takes up a lot of disk space, and it Ûn

consumes a lot of RAM when loaded.

If multiple programs use the library, as is common, the program-size issue is multiplied Ûn

several times.

The program can’t take advantage of improvements in the library without recompiling Ûn

(or at least relinking) the program.

For these reasons, most programs use their libraries as shared libraries (a.k.a. dynamic
libraries). In this form, the main program executable omits most of the library routines.
Instead, the executable includes references to shared library files, which can then be loaded
along with the main program file. This approach helps keep program file size down, enables
sharing of the memory consumed by libraries across programs, and enables programs to
take advantage of improvements in libraries by upgrading the library.

Linux shared libraries are similar to the dynamic link libraries (DLLs) of
Windows. Windows DLLs are usually identified by .DLL filename exten-
sions; but in Linux, shared libraries usually have a .so or .so.version
extension, where version is a version number. (.so stands for shared
object.) Linux static libraries (used by linkers for inclusion in programs
when dynamic libraries aren’t to be used) have .a filename extensions.

04836book.indd 77 1/7/09 9:04:51 AM

78 Chapter 2 n Managing Software

On the downside, shared libraries can degrade program load time slightly if the library isn’t
already in use by another program, and they can create software management complications:

Shared library changes can be incompatible with some or all programs that use the Ûn

library. Linux uses library numbering schemes to enable you to keep multiple versions of
a library installed at once. Upgrades that shouldn’t cause problems can overwrite older
versions, whereas major upgrades get installed side-by-side with their older counterparts.
This approach minimizes the chance of problems, but sometimes changes that shouldn’t
cause problems do cause them.

Programs must be able to locate shared libraries. This task requires adjusting configu-Ûn

ration files and environment variables. If it’s done wrong, or if a program overrides the
defaults and looks in the wrong place, the result is usually that the program won’t run
at all.

The number of libraries for Linux has risen dramatically over time. When they’re used Ûn

in shared form, the result can be a tangled mess of package dependencies, particularly
if you use programs that rely on many or obscure libraries. In most cases, this issue
boils down to a package problem that can be handled by your package management
tools.

If an important shared library becomes inaccessible because it was accidentally over-Ûn

written, due to a disk error or for any other reason, the result can be severe system
problems. In a worst-case scenario, the system might not even boot.

In most cases, these drawbacks are manageable and are much less important than the
problems associated with using static libraries. Thus, dynamic libraries are very popular.

Static libraries are sometimes used by developers who create programs
using particularly odd, outdated, or otherwise exotic libraries. This enables
them to distribute their binary packages without requiring users to obtain
and install their oddball libraries. Likewise, static libraries are sometimes
used on small emergency systems, which don’t have enough programs
installed to make the advantages of shared libraries worth pursuing.

Locating Library Files
The major administrative challenge of handling shared libraries involves enabling programs
to locate those shared libraries. Binary program files can point to libraries either by name
alone (as in libc.so.6) or by providing a complete path (as in /lib/libc.so.6). In the
first case, you must configure a library path—a set of directories in which programs should
search for libraries. This can be done both through a global configuration file and through
an environment variable. If a static path to a library is wrong, you must find a way to cor-
rect the problem. In all of these cases, after making a change, you may need to use a special
command to get the system to recognize the change, as described later in “Library Manage-
ment Commands.”

04836book.indd 78 1/7/09 9:04:51 AM

Managing Shared Libraries 79

Setting the Path Systemwide
The first way to set the library path is to edit the /etc/ld.so.conf file. This file consists
of a series of lines, each of which lists one directory in which shared library files may be
found. Typically, this file lists between half a dozen and a couple dozen directories. Some
distributions have an additional type of line in this file. These lines begin with the include
directive; they list files that are to be included as if they were part of the main file. For
instance, Ubuntu 8.04’s ld.so.conf begins with this line:

include /etc/ld.so.conf.d/*.conf

This line tells the system to load all the files in /etc/ld.so.conf.d whose names end in
.conf as if they were part of the main /etc/ld.so.conf file. This mechanism enables pack-
age maintainers to add their unique library directories to the search list by placing a .conf
file in the appropriate directory.

Some distributions, such as Gentoo, use a mechanism with a similar goal but different
details. With these distributions, the env-update utility reads files in /etc/env.d to create
the final form of several /etc configuration files, including /etc/ld.so.conf. In particular,
the LDPATH variables in these files are read, and their values make up the lines in ld.so.
conf. Thus, to change ld.so.conf in Gentoo or other distributions that use this mecha-
nism, you should add or edit files in /etc/env.d and then type env-update to do the job.

Generally speaking, there’s seldom a need to change the library path system-wide. Library
package files usually install themselves in directories that are already on the path or add their
paths automatically. The main reason to make such changes would be if you installed a library
package, or a program that creates its own libraries, in an unusual location via a mechanism
other than your distribution’s main package utility. For instance, you might compile a library
from source code and then need to update your library path in this way.

After you change your library path, you must use ldconfig to have your programs use
the new path, as described later in “Library Management Commands.”

In addition to the directories specified in /etc/ld.so.conf, Linux refers to
the trusted library directories, /lib and /usr/lib. These directories are
always on the library path, even if they aren’t listed in ld.so.conf.

Temporarily Changing the Path
Sometimes, changing the path permanently and globally is unnecessary and even inappro-
priate. For instance, you might want to test the effect of a new library before using it for all
your programs. To do so, you could install the shared libraries in an unusual location and
then set the LD_LIBRARY_PATH environment variable. This environment variable specifies
additional directories the system is to search for libraries.

Chapter 9, “Writing Scripts, Configuring E-Mail, and Using Databases,”
describes environment variables in more detail.

04836book.indd 79 1/7/09 9:04:52 AM

80 Chapter 2 n Managing Software

To set the LD_LIBRARY_PATH environment variable using the bash shell, you can type a
command like this:

$ export LD_LIBRARY_PATH=/usr/local/testlib:/opt/newlib

This line adds two directories, /usr/local/testlib and /opt/newlib, to the search
path. You can specify as few or as many directories as you like, separated by colons. These
directories are added to the start of the search path, which means they take precedence over
other directories. This fact is handy when you’re testing replacement libraries, but it can
cause problems if users manage to set this environment variable inappropriately.

You can set this environment variable permanently in a user’s shell startup script files, as
described in Chapter 9. Doing so means the user will always use the specified library paths
in addition to the normal system paths. In principle, you could set the LD_LIBRARY_PATH
globally; however, using /etc/ld.so.conf is the preferred method of effecting global
changes to the library path.

Unlike other library path changes, this one doesn’t require that you run ldconfig for it
to take effect.

Correcting Problems
Library path problems usually manifest as a program’s inability to locate a library. If you
launch the program from a shell, you’ll see an error message like this:

$ gimp

gimp: error while loading shared libraries: libXinerama.so.1: cannot➦

 open shared object file: No such file or directory

This message indicates that the system couldn’t find the libXinerama.so.1 library file.
The usual cause of such problems is that the library isn’t installed, so you should look for
it using commands such as find (described in Chapter 4, “Managing Files”). If the file isn’t
installed, try to track down the package to which it should belong (a Web search can work
wonders in this task) and install it.

If, on the other hand, the library file is available, you may need to add its directory globally
or to LD_LIBRARY_PATH. Sometimes the library’s path is hard-coded in the program’s binary
file. (You can discover this using ldd, as described shortly in “Library Management Com-
mands.”) When this happens, you may need to create a symbolic link from the location of the
library on your system to the location the program expects. A similar problem can occur when
the program expects a library to have one name but the library has another name on your sys-
tem. For instance, the program may link to biglib.so.5, but your system has biglib.so.5.2
installed. Minor version-number changes like this are usually inconsequential, so creating a
symbolic link will correct the problem:

ln -s biglib.so.5.2 biglib.so.5

You must type this command as root in the directory in which the library resides. You
must then run ldconfig, as described in the next section.

04836book.indd 80 1/7/09 9:04:52 AM

Managing Shared Libraries 81

Library Management Commands
Linux provides a pair of commands that you’re likely to use for library management. The
ldd program displays a program’s shared library dependencies—that is, the shared libraries
that a program uses. The ldconfig program updates caches and links used by the system
for locating libraries—that is, it reads /etc/ld.so.conf and implements any changes in
that file or in the directories to which it refers. Both of these tools are invaluable in manag-
ing libraries.

Displaying Shared Library Dependencies
If you run into programs that won’t launch because of missing libraries, the first step is to
check which libraries the program file uses. You can do this with the ldd command:

$ ldd /bin/ls

 librt.so.1 => /lib/librt.so.1 (0x0000002a9566c000)

 libncurses.so.5 => /lib/libncurses.so.5 (0x0000002a95784000)

 libacl.so.1 => /lib/libacl.so.1 (0x0000002a958ea000)

 libc.so.6 => /lib/libc.so.6 (0x0000002a959f1000)

 libpthread.so.0 => /lib/libpthread.so.0 (0x0000002a95c17000)

 /lib64/ld-linux-x86-64.so.2 (0x0000002a95556000)

 libattr.so.1 => /lib/libattr.so.1 (0x0000002a95dad000)

Each line of output begins with a library name, such as librt.so.1 or libncurses.
so.5. If the library name doesn’t contain a complete path, ldd attempts to find the true
library and displays the complete path following the => symbol, as in /lib/librt.so.1
or /lib/libncurses.so.5. You needn’t be concerned about the long hexadecimal number
following the complete path to the library file. The preceding example shows one library
(/lib64/ld-linux-x86-64.so.2) that’s referred to with a complete path in the executable
file. It lacks the initial directory-less library name and => symbol.

The ldd command accepts a few options. The most notable of these is probably -v, which
displays a long list of version information following the main entry. This information may
be helpful in tracking down which version of a library a program is using, in case you have
multiple versions installed.

Keep in mind that libraries can themselves depend on other libraries. Thus, you can
use ldd to discover what libraries are used by a library. Because of this potential for a
dependency chain, it’s possible that a program will fail to run even though all its libraries
are present. When using ldd to track down problems, be sure to check the needs of all the
libraries of the program, and all the libraries used by the first tier of libraries, and so on,
until you’ve exhausted the chain.

The ldd utility can be run by ordinary users, as well as by root. You must run it as root
if you can’t read the program file as an ordinary user.

04836book.indd 81 1/7/09 9:04:52 AM

82 Chapter 2 n Managing Software

Reloading the Library Cache
Linux (or, more precisely, the ld.so and ld-linux.so programs, which manage the loading
of libraries) doesn’t read /etc/ld.so.conf every time a program runs. Instead, the system
relies on a cached list of directories and the files they contain, stored in binary format in
/etc/ld.so.cache. This list is maintained in a format that’s much more efficient than a
plain-text list of files and directories. The drawback is that you must reload that cache
every time you add or remove libraries. These additions and removals include both chang-
ing the contents of the library directories and adding or removing library directories.

The tool to do this job is called ldconfig. Ordinarily, it’s called without any options:

ldconfig

This program does, though, take options to modify its behavior:

Display verbose information Ordinarily, ldconfig doesn’t display any information as it
works. The -v option causes the program to summarize the directories and files it’s regis-
tering as it goes about its business.

Don’t rebuild the cache The -N option causes ldconfig to not perform its primary duty
of updating the library cache. It will, though, update symbolic links to libraries, which is a
secondary duty of this program.

Process only specified directories The -n option causes ldconfig to update the links
contained in the directories specified on the command line. The system won’t examine the
directories specified in /etc/ld.so.conf or the trusted directories (/lib and /usr/lib).

Don’t update links The -X option is the opposite of -N; it causes ldconfig to update the
cache but not manage links.

Use a new configuration file You can change the configuration file from /etc/ld.so.conf
by using the -f conffile option, where conffile is the file you want to use.

Use a new cache file You can change the cache file that ldconfig creates by passing the -C
cachefile option, where cachefile is the file you want to use.

Use a new root The -r dir option tells ldconfig to treat dir as if it were the root (/)
directory. This option is helpful when you’re recovering a badly corrupted system or install-
ing a new OS.

Display current information The -p option causes ldconfig to display the current
cache—all the library directories and the libraries they contain.

Both RPM and Debian library packages typically run ldconfig automatically after
installing or removing the package. The same thing happens as part of the installation pro-
cess for many packages compiled from source. Thus, you may well be running ldconfig
more than you realize in the process of software management. You may need to run the
program yourself if you manually modify your library configuration in any way.

04836book.indd 82 1/7/09 9:04:52 AM

Managing Processes 83

Managing Processes
When you type a command name, that program is run, and a process is created for it.
Knowing how to manage these processes is critical to using Linux. Key details in this task
include identifying processes, manipulating foreground and background processes, killing
processes, and adjusting process priorities.

Understanding the Kernel: The First Process
The Linux kernel is at the heart of every Linux system. Although you can’t manage the kernel
process in quite the way you can manage other processes, short of rebooting the computer, you
can learn about it. To do so, you can use the uname command, which takes several options to
display information:

Node name The -n or --nodename option displays the system’s node name—that is, its
network hostname.

Kernel name The -s or --kernel-name option displays the kernel name, which is normally
Linux on a Linux system.

Kernel version You can find the kernel version with the -v or --kernel-version option.
Ordinarily, this holds the kernel build date and time, not an actual version number.

Kernel release The actual kernel version number can be found via the -r or --kernel-
release option.

Machine The -m or --machine option returns information about your machine. This is
likely to be a CPU code, such as i686 or x86_64.

Processor Using the -p or --processor option may return information about your CPU,
such as the manufacturer, model, and clock speed; in practice, it returns unknown on many
systems.

Hardware platform Hardware platform information is theoretically returned by the -i or
--hardware-platform option, but this option often returns unknown.

OS name The -o or --operating-system option returns the OS name—normally GNU/
Linux for a Linux system.

Print all information The -a or --all option returns all available information.

In practice, you’re most likely to use uname -a at the command line to learn some of the
basics about your kernel and system. The other options are most useful in multi-platform
scripts, which can use these options to quickly obtain critical information to help them
adjust their actions for the system on which they’re running.

Examining Process Lists
One of the most important tools in process management is ps. This program displays
processes’ status (hence the name, ps). It sports many helpful options, and it’s useful in

04836book.indd 83 1/7/09 9:04:52 AM

84 Chapter 2 n Managing Software

monitoring what’s happening on a system. This can be particularly critical when the com-
puter isn’t working as it should be—for instance, if it’s unusually slow. The ps program
supports an unusual number of options, but just a few of them will take you a long way.
Likewise, interpreting ps output can be tricky because so many options modify the pro-
gram’s output. Some ps-like programs, most notably top, also deserve attention.

Using Useful ps Options
The official syntax for ps is fairly simple:

ps [options]

This simplicity of form hides considerable complexity because ps supports three differ-
ent types of options, as well as many options within each type. The three types of options
are as follows:

Unix98 options These single-character options may be grouped together and are preceded
by a single dash (-).

BSD options These single-character options may be grouped together and must not be
preceded by a dash.

GNU long options These multi-character options are never grouped together. They’re
preceded by two dashes (--).

Options that may be grouped together may be clustered without spaces between them.
For instance, rather than typing ps -a -f, you can type ps -af. The reason for so much
complexity is that the ps utility has historically varied a lot from one Unix OS to another.
The version of ps that ships with major Linux distributions attempts to implement most
features from all these different ps versions, so it supports many different personalities. In
fact, you can change some of its default behaviors by setting the PS_PERSONALITY environ-
ment variable to posix, old, linux, bsd, sun, digital, or various others. The rest of this
section describes the default ps behavior on most Linux systems.

Some of the more useful ps features include the following:

Display help The --help option presents a summary of some of the more common ps
options.

Display all processes By default, ps displays only processes that were run from its own
terminal (xterm, text-mode login, or remote login). The -A and -e options cause it to dis-
play all the processes on the system, and x displays all processes owned by the user who
gives the command. The x option also increases the amount of information that’s displayed
about each process.

Display one user’s processes You can display processes owned by a given user with the -u
user, U user, and --User user options. The user variable may be a username or a user ID.

Display extra information The -f, -l, j, l, u, and v options all expand the information
provided in the ps output. Most ps output formats include one line per process, but ps can
display enough information that it’s impossible to fit it all on one 80-character line. There-
fore, these options provide various mixes of information.

04836book.indd 84 1/7/09 9:04:53 AM

Managing Processes 85

Display process hierarchy The -H, -f, and --forest options group processes and use
indentation to show the hierarchy of relationships between processes. These options are
useful if you’re trying to trace the parentage of a process.

Display wide output The ps command output can be more than 80 columns wide. Normally,
ps truncates its output so that it will fit on your screen or xterm. The -w and w options tell ps
not to do this, which can be useful if you direct the output to a file, as in ps w > ps.txt. You
can then examine the output file in a text editor that supports wide lines.

You can combine these ps options in many ways to produce the output you want. You’ll
probably need to experiment to learn which options produce the desired results because
each option modifies the output in some way. Even those that would seem to influence just
the selection of processes to list sometimes modify the information that’s provided about
each process.

Interpreting ps Output
Listings 2.3 and 2.4 show a couple of examples of ps in action. Listing 2.3 shows ps -u
rodsmith --forest, and Listing 2.4 shows ps u U rodsmith.

listing 2.4: Output of ps -u rodsmith --forest

$ ps -u rodsmith --forest

 PID TTY TIME CMD

 2451 pts/3 00:00:00 bash

 2551 pts/3 00:00:00 ps

 2496 ? 00:00:00 kvt

 2498 pts/1 00:00:00 bash

 2505 pts/1 00:00:00 _ nedit

 2506 ? 00:00:00 _ csh

 2544 ? 00:00:00 _ xeyes

19221 ? 00:00:01 dfm

listing 2.5: Output of ps u U rodsmith

$ ps u U rodsmith

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

rodsmith 19221 0.0 1.5 4484 1984 ? S May07 0:01 dfm

rodsmith 2451 0.0 0.8 1856 1048 pts/3 S 16:13 0:00 -bash

rodsmith 2496 0.2 3.2 6232 4124 ? S 16:17 0:00 /opt/kd

rodsmith 2498 0.0 0.8 1860 1044 pts/1 S 16:17 0:00 bash

rodsmith 2505 0.1 2.6 4784 3332 pts/1 S 16:17 0:00 nedit

rodsmith 2506 0.0 0.7 2124 1012 ? S 16:17 0:00 /bin/cs

rodsmith 2544 0.0 1.0 2576 1360 ? S 16:17 0:00 xeyes

rodsmith 2556 0.0 0.7 2588 916 pts/3 R 16:18 0:00 ps u U

04836book.indd 85 1/7/09 9:04:53 AM

86 Chapter 2 n Managing Software

The output produced by ps normally begins with a heading line, which displays the
meaning of each column. Important information that may be displayed (and labeled)
includes the following:

Username This is the name of the user who runs the programs. Listings 1.4 and 1.5
restricted this output to one user to limit the size of the listings.

Process ID The process ID (PID) is a number that’s associated with the process. This item
is particularly important because you need it to modify or kill the process, as described
later in this chapter.

Parent process ID The parent process ID (PPID) identifies the process’s parent. (Neither
Listing 2.4 nor Listing 2.5 shows the PPID.)

TTY The teletype (TTY) is a code used to identify a terminal. As illustrated by Listings
1.4 and 1.5, not all processes have TTY numbers—X programs and daemons, for instance,
don’t. Text-mode programs do have these numbers, which point to a console, xterm, or
remote login session.

CPU time The TIME and %CPU headings are two measures of CPU time used. The first
indicates the total amount of CPU time consumed, and the second represents the percent-
age of CPU time the process is using when ps executes. Both can help you spot runaway
processes—those that are consuming too much CPU time. Unfortunately, what constitutes
“too much” varies from one program to another, so it’s impossible to give a simple rule to
help you spot a runaway process.

CPU priority As described shortly, in “Managing Process Priorities,” it’s possible to give
different processes different priorities for CPU time. The NI column, if present (it’s not in
the preceding examples) lists these priority codes. The default value is 0. Positive values rep-
resent reduced priority, whereas negative values represent increased priority.

Memory use Various headings indicate memory use—for instance, RSS is resident set size (the
memory used by the program and its data) and %MEM is the percentage of memory the program
is using. Some output formats also include a SHARE column, which is memory that’s shared
with other processes (such as shared libraries). As with CPU-use measures, these columns can
help point you to the sources of difficulties; but because legitimate memory needs of programs
vary so much, it’s impossible to give a simple criterion for when a problem exists.

Command The final column in most listings is the command used to launch the process.
This is truncated in Listing 2.5 because this format lists the complete command, but so
much other information appears that the complete command won’t usually fit on one line.
(This is where the wide-column options can come in handy.)

As you can see, a lot of information can be gleaned from a ps listing—or perhaps that
should be the plural listings, because no single format includes all of the available informa-
tion. For the most part, the PID, username, and command are the most important pieces of
information. In some cases, though, you may need specific other components. If your sys-
tem’s memory or CPU use has skyrocketed, for instance, you’ll want to pay attention to the
memory or CPU use column.

04836book.indd 86 1/7/09 9:04:53 AM

Managing Processes 87

It’s often necessary to find specific processes. You might want to find the
PID associated with a particular command in order to kill it, for instance.
This information can be gleaned by piping the ps output through grep, as
in ps ax | grep bash to find all the instances of bash.

Although you may need a wide screen or xterm to view the output, you may find ps -A
--forest to be a helpful command in learning about your system. Processes that aren’t
linked to others were either started directly by init or have had their parents killed, and
so they have been “adopted” by init. (Chapter 5 describes init and the boot procedure in
more detail.) Most of these processes are fairly important—they’re servers, login tools, and
so on. Processes that hang off several others in this tree view, such as xeyes and nedit in
Listing 2.4, are mostly user programs launched from shells.

top : A Dynamic ps Variant
If you want to know how much CPU time various processes are consuming relative to one
another, or if you want to quickly discover which processes are consuming the most CPU
time, a tool called top is the one for the job. The top tool is a text-mode program, but of
course it can be run in an xterm or similar window, as shown in Figure 2.2; there are also
GUI variants, like kpm and gnome-system-monitor. By default, top sorts its entries by CPU
use, and it updates its display every few seconds. This makes it a very good tool for spotting
runaway processes on an otherwise lightly loaded system—those processes almost always
appear in the first position or two, and they consume an inordinate amount of CPU time.
Looking at Figure 2.2, you might think that FahCore_65.exe is such a process, but in fact,
it’s legitimately consuming a lot of CPU time. You’ll need to be familiar with the purposes
and normal habits of programs running on your system in order to make such determina-
tions; the legitimate needs of different programs vary so much that it’s impossible to give a
simple rule for judging when a process is consuming too much CPU time.

f i gu r e 2 . 2 The top command shows system summary information and information
about the most CPU-intensive processes on a computer.

04836book.indd 87 1/7/09 9:04:53 AM

88 Chapter 2 n Managing Software

Like many Linux commands, top accepts several options. The most useful are listed here:

-d delay This option specifies the delay between updates, which is normally 5 seconds.

-p pid If you want to monitor specific processes, you can list them using this option.
You’ll need the PIDs, which you can obtain with ps, as described earlier. You can specify
up to 20 PIDs by using this option multiple times, once for each PID.

-n iter You can tell top to display a certain number of updates (iter) and then quit.
(Normally, top continues updating until you terminate the program.)

-b This option specifies batch mode, in which top doesn’t use the normal screen-update
commands. You might use this to log CPU use of targeted programs to a file, for instance.

You can do more with top than watch it update its display. When it’s running, you can
enter any of several single-letter commands, some of which prompt you for additional
information. These commands include the following:

h and ? These keystrokes display help information

k You can kill a process with this command. The top program will ask for a PID number,
and if it’s able to kill the process, it will do so. (The upcoming section “Killing Processes”
describes other ways to kill processes.)

q This option quits from top.

r You can change a process’s priority with this command. You’ll have to enter the PID
number and a new priority value—a positive value will decrease its priority, and a negative
value will increase its priority, assuming it has the default 0 priority to begin with. Only
root may increase a process’s priority. The renice command (described shortly, in “Man-
aging Process Priorities”) is another way to accomplish this task.

s This command changes the display’s update rate, which you’ll be asked to enter (in seconds).

P This command sets the display to sort by CPU usage, which is the default.

M You can change the display to sort by memory usage with this command.

More commands are available in top (both command-line options and interactive com-
mands) than can be summarized here; consult top’s man page for more information.

One of the pieces of information provided by top is the load average, which is a measure of
the demand for CPU time by applications. In Figure 2.2, you can see three load-average esti-
mates on the top line; these correspond to the current load average and two previous measures.
A system on which no programs are demanding CPU time has a load average of 0. A system
with one program running CPU-intensive tasks has a load average of 1. Higher load averages
reflect programs competing for available CPU time. You can also find the current load aver-
age via the uptime command, which displays the load average along with information on how
long the computer has been running. The load average can be useful in detecting runaway pro-
cesses. For instance, if a system normally has a load average of 0.5 but it suddenly gets stuck
at a load average of 2.5, a couple of CPU-hogging processes may have hung—that is, become
unresponsive. Hung processes sometimes needlessly consume a lot of CPU time. You can use
top to locate these processes and, if necessary, kill them.

04836book.indd 88 1/7/09 9:04:54 AM

Managing Processes 89

jobs : Processes Associated with Your Session
The jobs command displays minimal information about the processes associated with the
current session. In practice, jobs is usually of limited value, but it does have a few uses.
One of these is to provide job ID numbers. These numbers are conceptually similar to PID
numbers, but they’re not the same. Jobs are numbered starting from 1 for each session, and
in most cases, a single shell has only a few associated jobs. The job ID numbers are used by
a handful of utilities in place of PIDs, so you may need this information.

A second use of jobs is to ensure that all your programs have terminated prior to log-
ging out. Under some circumstances, logging out of a remote login session can cause the
client program to freeze up if you’ve left programs running. A quick check with jobs will
inform you of any forgotten processes and enable you to shut them down.

Understanding Foreground and Background Processes
One of the most basic process-management tasks is to control whether a process is running
in the foreground or the background—that is, whether it’s monopolizing the use of the ter-
minal from which it was launched. Normally, when you launch a program, it takes over the
terminal, preventing you from doing other work in that terminal. (Some programs, though,
release the terminal. This is most common for servers and some GUI programs.)

If a program is running but you decide you want to use that terminal for something
else, pressing Ctrl+Z normally pauses the program and gives you control of the terminal.
(An important point is that this procedure suspends the program, so if it’s performing real
work, that work stops!) This can be handy if, say, you’re running a text editor in a text-
mode login, and you want to check a filename so you can mention it in the file you’re edit-
ing. You press Ctrl+Z and type ls to get the file listing. To get back to the text editor, you
then type fg, which restores the text editor to the foreground of your terminal. If you’ve
suspended several processes, you add a job number, as in fg 2 to restore job 2. You can
obtain a list of jobs associated with a terminal by typing jobs, which displays the jobs and
their job numbers.

A variant on fg is bg. Whereas fg restores a job to the foreground, bg restores a job to run-
ning status, but in the background. You can use this command if the process you’re running
is performing a CPU-intensive task that requires no human interaction but you want to use
the terminal in the meantime. Another use of bg is in a GUI environment—after launching a
GUI program from an xterm or similar window, that shell is tied up servicing the GUI pro-
gram, which probably doesn’t really need the shell. Pressing Ctrl+Z in the xterm window will
enable you to type shell commands again, but the GUI program will be frozen. To unfreeze
the GUI program, type bg in the shell, which enables the GUI program to run in the back-
ground while the shell continues to process your commands.

As an alternative to launching a program, using Ctrl+Z, and typing bg to run a program in
the background, you can append an ampersand (&) to the command when launching the pro-
gram. For instance, rather than edit a file with the NEdit GUI editor by typing nedit myfile.
txt, you can type nedit myfile.txt &. This command launches the nedit program in the
background from the start, leaving you able to control your xterm window for other tasks.

04836book.indd 89 1/7/09 9:04:54 AM

90 Chapter 2 n Managing Software

Managing Process Priorities
Sometimes, you may want to prioritize your programs’ CPU use. For instance, you may
be running a program that’s very CPU-intensive but that will take a long time to finish its
work, and you don’t want that program to interfere with others that are of a more interac-
tive nature. Alternatively, on a heavily loaded computer, you may have a job that’s more
important than others that are running, so you may want to give it a priority boost. In
either case, the usual method of accomplishing this goal is through the nice and renice
commands. You can use nice to launch a program with a specified priority or use renice
to alter the priority of a running program.

You can assign a priority to nice in any of three ways: by specifying the priority pre-
ceded by a dash (this works well for positive priorities but makes them look like negative
priorities), by specifying the priority after a -n parameter, or by specifying the priority after
an --adjustment= parameter. In all cases, these parameters are followed by the name of the
program you want to run:

nice [argument] [command [command-arguments]]

For instance, the following three commands are all equivalent:

$ nice -12 number-crunch data.txt

$ nice -n 12 number-crunch data.txt

$ nice --adjustment=12 number-crunch data.txt

All three of these commands run the number-crunch program at priority 12 and pass
it the data.txt file. If you omit the adjustment value, nice uses 10 as a default. The range
of possible values is –20 to 19, with negative values having the highest priority. Only root
may launch a program with increased priority (that is, give a negative priority value), but
any user may use nice to launch a program with low priority. The default priority for a
program run without nice is 0.

If you’ve found that a running process is consuming too much CPU time or is being
swamped by other programs and so should be given more CPU time, you can use the
renice program to alter its priority without disrupting the program’s operation. The syn-
tax for renice is as follows:

renice priority [[-p] pids] [[-g] pgrps] [[-u] users]

You must specify the priority, which takes the same values this variable takes with
nice. In addition, you must specify one or more PIDs (pids), one or more group IDs
(pgrps), or one or more usernames (users). In the latter two cases, renice changes the
priority of all programs that match the specified criterion—but only root may use renice
in this way. Also, only root may increase a process’s priority. If you give a numeric value
without a -p, -g, or -u option, renice assumes the value is a PID. You may mix and match
these methods of specification. For instance, you might enter the following command:

renice 7 16580 -u pdavison tbaker

This command sets the priority to 7 for PID 16580 and for all processes owned by
pdavison and tbaker.

04836book.indd 90 1/7/09 9:04:54 AM

Managing Processes 91

Killing Processes
Sometimes, reducing a process’s priority isn’t a strong enough action. A program may have
become totally unresponsive, or you may want to terminate a process that shouldn’t be run-
ning. In these cases, the kill command is the tool to use. This program sends a signal (a
method that Linux uses to communicate with processes) to a process. The signal is usually
sent by the kernel, the user, or the program itself to terminate the process. Linux supports
many numbered signals, each of which is associated with a specific name. You can see them
all by typing kill -l. If you don’t use -l, the syntax for kill is as follows:

kill -s signal pid

Although Linux includes a kill program, many shells, including bash and
csh, include built-in kill equivalents that work in much the same way as
the external program. If you want to be sure you’re using the external pro-
gram, type its complete path, as in /bin/kill.

The -s signal parameter sends the specified signal to the process. You can specify the
signal using either a number (such as 9) or a name (such as SIGKILL). The signals you’re
most likely to use are 1 (SIGHUP, which terminates interactive programs and causes many
daemons to reread their configuration files), 9 (SIGKILL, which causes the process to exit
without performing routine shutdown tasks), and 15 (SIGTERM, which causes the process to
exit but allows it to close open files and so on). If you don’t specify a signal, the default is
15 (SIGTERM). You can also use the shortened form -signal. If you do this and use a signal
name, you should omit the SIG portion of the name—for instance, use KILL rather than
SIGKILL. The pid option is, of course, the PID for the process you want to kill. You can
obtain this number from ps or top.

The kill program will kill only those processes owned by the user who
runs kill. The exception is if that user is root; the superuser may kill any
user’s processes.

running Programs Persistently

Signals can be passed to programs by the kernel even if you don’t use the kill command.
For instance, when you log out of a session, the programs you started from that session are
sent the SIGHUP signal, which causes them to terminate. If you want to run a program that
will continue running even when you log out, you can launch it with the nohup program:

$ nohup program options

This command causes the program to ignore the SIGHUP signal. It can be handy if you
want to launch certain small servers that may legitimately be run as ordinary users.

04836book.indd 91 1/7/09 9:04:55 AM

92 Chapter 2 n Managing Software

A variant on kill is killall, which has the following form:

killall [options] [--] name [...]

This command kills a process based on its name rather than its PID number. For
instance, killall vi kills all the running processes called vi. You may specify a signal in
the shortened form (-signal) or by preceding the signal number with -s or --signal. As
with kill, the default is 15 (SIGTERM). One potentially important option to killall is -i,
which causes it to ask for confirmation before sending the signal to each process. You might
use it like this:

$ killall -i vi

Kill vi(13211) ? (y/n) y

Kill vi(13217) ? (y/n) n

In this example, two instances of the Vi editor were running, but only one should have
been killed. As a general rule, if you run killall as root, you should use the -i parameter;
if you don’t, it’s all too likely that you’ll kill processes that you shouldn’t, particularly if the
computer is being used by many people at once.

Some versions of Unix provide a killall command that works very differ-
ently from Linux’s killall. This alternate killall kills all the processes
started by the user who runs the command. This is a potentially much
more destructive command, so if you ever find yourself on a non-Linux
system, do not use killall until you’ve discovered what that system’s
killall does (say, by reading the killall man page).

Summary
Linux provides numerous tools to help you manage software. Most distributions are built
around the RPM or Debian package systems, both of which enable installation, upgrade,
and removal of software using a centralized package database to avoid conflicts and other
problems that are common when no central package database exists. You can perform
basic operations on individual files or, with the help of extra tools such as Yum and APT,
keep your system synchronized with the outside world, automatically or semi-automatically
updating all your software to the latest versions.

No matter how you install your software, you may need to manage shared libraries.
These software components are necessary building blocks of large modern programs, and
in the best of all possible worlds they operate entirely transparently. Sometimes, though,
shared libraries need to be upgraded or the system configuration changed so that programs

04836book.indd 92 1/7/09 9:04:55 AM

Exam Essentials 93

can find the libraries. When this happens, knowing about critical configuration files and
commands can help you work around any difficulties.

Beyond managing packages and libraries, Linux software management involves manipulat-
ing processes. Knowing how to manipulate foreground and background processes, adjust pro-
cess priorities, and kill stray processes can help you keep your Linux system working well.

Exam Essentials

Identify critical features of RPM and Debian package formats. RPM and Debian pack-
ages store all files for a given package in a single file that also includes information about
what other packages the software depends on. These systems maintain a database of
installed packages and their associated files and dependencies.

Describe the tools used for managing RPMs. The rpm program is the main tool for install-
ing, upgrading, and uninstalling RPMs. This program accepts operations and options that
tell it precisely what to do. The Yum utility, and particularly its yum command, enables
installation of a package and all its dependencies via the Internet, rather than from local
package files.

Describe the tools used for managing Debian packages. The dpkg program installs or
uninstalls a single package or a group of packages you specify. The apt-get utility retrieves
programs from installation media or from the Internet for installation and can automati-
cally upgrade your entire system. The dselect program serves as a menu-driven interface
to apt-get, enabling you to select programs you want to install from a text-mode menu.

Summarize tools for extracting files and converting between package formats. The
rpm2cpio program can convert an RPM file to a cpio archive, enabling users of non-RPM
systems to access files in an RPM. The alien utility can convert in any direction between
Debian packages, RPMs, Stampede packages, and tarballs. This enables the use of pack-
ages intended for one system on another.

Summarize the reasons for using shared libraries. Shared libraries keep disk space and
memory requirements manageable by placing code that’s needed by many programs in
separate files from the programs that use it, enabling one copy to be used multiple times.
More generally, libraries enable programmers to use basic “building blocks” that others
have written without having to constantly reinvent code.

Describe methods available to change the library path. The library path can be
changed system-wide by editing the /etc/ld.so.conf file and then typing ldconfig. For
temporary or per-user changes, directories may be added to the path by placing them in
the LD_LIBRARY_PATH environment variable.

04836book.indd 93 1/7/09 9:04:55 AM

94 Chapter 2 n Managing Software

Explain the difference between foreground and background processes. Foreground pro-
cesses have control of the current terminal or text-mode window (such as an xterm). Back-
ground processes don’t have exclusive control of a terminal or text-mode window but are
still running.

Describe how to limit the CPU time used by a process. You can launch a program with
nice or use renice to alter its priority in obtaining CPU time. If a process is truly out of
control, you can terminate it with the kill command.

04836book.indd 94 1/7/09 9:04:55 AM

Review Questions 95

Review Questions

1. Which of the following is not an advantage of a source package over a binary package?

A. A single source package can be used on multiple CPU architectures.

B. By recompiling a source package, you can sometimes work around library incompat-
ibilities.

C. You can modify the code in a source package, altering the behavior of a program.

D. Source packages can be installed more quickly than binary packages can.

2. Which is true of using both RPM and Debian package management systems on one computer?

A. It’s generally inadvisable because the two systems don’t share installed-file database
information.

B. It’s impossible because their installed-file databases conflict with one another.

C. It causes no problems if you install important libraries once in each format.

D. It’s a common practice on Red Hat and Debian systems.

3. Which of the following statements is true about binary RPM packages that are built for a
particular distribution?

A. They can often be used on another RPM-based distribution for the same CPU architec-
ture, but this isn’t guaranteed.

B. They may be used in another RPM-based distribution only when you set the
--convert-distrib parameter to rpm.

C. They may be used in another RPM-based distribution only after you convert the pack-
age with alien.

D. They can be recompiled for an RPM-based distribution running on another type of
CPU.

4. An administrator types the following command on an RPM-based Linux distribution:
rpm -ivh megaprog.rpm

What is the effect of this command?

A. The megaprog package, if it’s installed, is uninstalled from the computer.

B. The megaprog.rpm package, if it exists, is valid, and isn’t already installed, is installed
on the system.

C. The megaprog.rpm source RPM package is compiled into a binary RPM for the com-
puter.

D. Nothing; megaprog.rpm isn’t a valid RPM filename, so rpm will refuse to operate on
this file.

04836book.indd 95 1/7/09 9:04:55 AM

96 Chapter 2 n Managing Software

5. Which of the following commands will extract the contents of the myfonts.rpm file into
the current directory?

A. rpm2cpio myfonts.rpm | cpio -i --make-directories

B. rpm2cpio myfonts.rpm > make-directories

C. rpm -e myfonts.rpm

D. alien --to-extract myfonts.rpm

6. To use dpkg to remove a package called theprogram, including its configuration files,
which of the following commands would you issue?

A. dpkg -P theprogram

B. dpkg -p theprogram

C. dpkg -r theprogram

D. dpkg -r theprogram-1.2.3-4.deb

7. Which of the following describes a difference between apt-get and dpkg?

A. apt-get provides a GUI interface to Debian package management; dpkg doesn’t.

B. apt-get can install tarballs in addition to Debian packages; dpkg can’t.

C. apt-get can automatically retrieve and update programs from Internet sites; dpkg can’t.

D. apt-get is provided only with the original Debian distribution, but dpkg comes with
Debian and its derivatives.

8. What command would you type to obtain a list of all installed packages on a Debian system?

A. apt-cache pkgnames

B. apt-cache showpkg

C. dpkg -r allpkgs

D. dpkg -i

9. As root, you type apt-get update on a Debian system. What should be the effect of this
command?

A. None; update is an invalid option to apt-get.

B. The APT utilities deliver information about the latest updates you’ve made to the APT
Internet repositories, enabling you to share your changes with others.

C. The APT utilities download all available upgrades for your installed programs and
install them on your system.

D. The APT utilities retrieve information about the latest packages available so that you
may install them with subsequent apt-get commands.

10. Which of the following commands would you type to update the unzip program on a
Fedora system to the latest version? (Select all that apply.)

A. yum update unzip

B. yum upgrade unzip

C. yum -u unzip

D. yum -U unzip

04836book.indd 96 1/7/09 9:04:55 AM

Review Questions 97

11. How should you configure a system that uses Yum to access an additional Yum software
repository?

A. Edit the /etc/apt/sources.list file to include the repository site’s URL, as detailed
on the repository’s Web site.

B. Download a package from the repository site and install it with RPM, or place a con-
figuration file from the repository site in the /etc/yum.repos.d directory.

C. Use the add-repository subcommand to yum or the Add Repository option in the File
menu in yumex, passing it the URL of the repository.

D. Edit the /etc/yum.conf file, locate the [repos] section, and add the URL to the
repository after the existing repository URLs.

12. What is the preferred method of adding a directory to the library path for all users?

A. Modify the LD_LIBRARY_PATH environment variable in a global shell script.

B. Add the directory to the /etc/ld.so.conf file, and then type ldconfig.

C. Type ldconfig /new/dir, where /new/dir is the directory you want to add.

D. Create a symbolic link from that directory to one that’s already on the library path.

13. You prefer the look of GTK+ widgets to Qt widgets, so you want to substitute the GTK+
libraries for the Qt libraries on your system. How would you do this?

A. You must type ldconfig --makesubs=qt,gtk. This command substitutes the GTK+
libraries for the Qt libraries at load time.

B. You must uninstall the Qt library packages and re-install the GTK+ packages with the
--substitute=qt option to rpm or the --replace=qt option to dpkg.

C. You must note the filenames of the Qt libraries, uninstall the packages, and create
symbolic links from the Qt libraries to the GTK+ libraries.

D. You can’t easily do this; libraries can’t be arbitrarily exchanged for one another. You
would need to rewrite all the Qt-using programs to use GTK+.

14. A user types kill -9 11287 at a bash prompt. What is the probable intent, assuming the
user typed the correct command?

A. To cut off a network connection using TCP port 11287

B. To display the number of processes that have been killed with signal 11287 in the last
nine days

C. To cause a server with process ID 11287 to reload its configuration file

D. To terminate a misbehaving or hung program with process ID 11287

15. What programs might you use to learn what your system’s load average is? (Select all that
apply.)

A. ld

B. load

C. top

D. uptime

04836book.indd 97 1/7/09 9:04:56 AM

98 Chapter 2 n Managing Software

16. Which of the following commands creates a display of processes, showing the parent/child
relationships through links between their names?

A. ps --forest

B. ps aux

C. ps -e

D. All of the above

17. You use top to examine the CPU time being consumed by various processes on your sys-
tem. You discover that one process, dfcomp, is consuming more than 90 percent of your
system’s CPU time. What can you conclude?

A. Very little; dfcomp could be legitimately consuming that much CPU time or it could be
an unauthorized or malfunctioning program.

B. No program should consume 90 percent of available CPU time; dfcomp is clearly mal-
functioning and should be terminated.

C. This is normal; dfcomp is the kernel’s main scheduling process, and it consumes any
unused CPU time.

D. This behavior is normal if your CPU is less powerful than a 2.5GHz EM64T Pentium;
but on newer systems, no program should consume 90 percent of CPU time.

18. You type jobs at a bash command prompt and receive a new command prompt with no
intervening output. What can you conclude?

A. The total CPU time used by your processes is negligible (below 0.1).

B. No processes are running under your username except the shell you’re using.

C. The jobs shell is installed and working correctly on the system.

D. No background processes are running that were launched from the shell you’re using.

19. Which two of the following commands are equivalent to one another? (Select two.)

A. nice --value 10 crunch

B. nice -n -10 crunch

C. nice -10 crunch

D. nice crunch

20. Which of the following are restrictions on ordinary users’ abilities to run renice? (Select
all that apply.)

A. Users may not modify the priorities of processes that are already running.

B. Users may not modify the priorities of other users’ processes.

C. Users may not decrease the priority (that is, increase the priority value) of their own
processes.

D. Users may not increase the priority (that is, decrease the priority value) of their own
processes.

04836book.indd 98 1/7/09 9:04:56 AM

Answers to Review Questions 99

Answers to Review Questions

1. D. Because they must be compiled prior to installation, source packages require more time
to install than binary packages do, contrary to option D’s assertion. The other options all
describe advantages of source packages over binary packages.

2. A. Package management systems don’t share information, but neither do their databases
actively conflict. Installing the same libraries using both systems would almost guarantee
that the files served by both systems would conflict with one another. Actively using both
RPM and Debian packages isn’t common on any distribution, although it’s possible with all
of them.

3. A. RPMs are usually portable across distributions, but occasionally they contain incompat-
ibilities. There is no --convert-distrib parameter to rpm, nor is alien used to convert
from RPM format to RPM format. Binary packages can’t be rebuilt for another CPU archi-
tecture, but source packages may be rebuilt for any supported architecture provided the
source code doesn’t rely on any CPU-specific features.

4. B. The -i operation installs software, so option B is correct. (The -v and -h options cause
a status display of the progress of the operation, which wasn’t mentioned in the option.)
Uninstallation is performed by the -e operation, and rebuilding source RPMs is done by the
--rebuild operation (to either rpm or rpmbuild, depending on the RPM version). Although
the filename megaprog.rpm is missing several conventional RPM filename components, the
rpm utility doesn’t use the filename as a package validity check, so option D is incorrect.

5. A. The rpm2cpio program extracts data from an RPM file and converts it into a cpio
archive that’s sent to standard output. Piping the results through cpio and using the -i and
--make-directories options, as in option A, will extract those files to the current direc-
tory. Option B creates a cpio file called make-directories that contains the files from
the RPM package. Option C will uninstall the package called myfonts.rpm (but not the
myfonts package). The alien utility has no --to-extract target, so option D is invalid.

6. A. An uppercase -P invokes the purge operation, which completely removes a package and
its configuration files. The lowercase -p causes dpkg to print information about the pack-
age’s contents. The -r parameter removes a package but leaves configuration files behind.
The final variant (option D) also specifies a complete filename, which isn’t used for removing
a package—you should specify only the shorter package name.

7. C. You can specify Debian package archive sites in /etc/apt/sources.list, and then you
can type apt-get update and apt-get upgrade to quickly update a Debian system to the
latest packages. GUI package management tools for Debian and related distributions exist, but
they aren’t apt-get. The alien program can convert an RPM file and install the converted
package on a Debian system; dpkg and apt-get both come with all Debian-based distribu-
tions.

04836book.indd 99 1/7/09 9:04:56 AM

100 Chapter 2 n Managing Software

8. A. The apt-cache subcommand pkgnames displays the names of all installed packages
or, if a further string is used, of all installed packages whose names begin with that string,
making option A correct. The showpkg subcommand to apt-cache displays information
about a named package; when used without a package name, as in option B, it displays no
data. The dpkg -r action removes a package, so option C would remove the package called
allpkgs if it were installed. The dpkg -i action installs a package, so option D is incor-
rect—and that option doesn’t list a package name, which the -i action requires.

9. D. The update option to apt-get causes retrieval of new information, as described in
option D. This option is perfectly valid, contrary to option A’s assertion. The apt-get pro-
gram doesn’t permit you to upload information to the Internet repositories, so option B is
incorrect. Option C describes the effect of the upgrade or dist-upgrade options, not the
update option.

10. A, B. The yum utility’s update and upgrade options are nearly identical in effect, and either
can be used to upgrade an individual package, such as unzip. The primary command
options to yum don’t use dashes, so -u and -U are both incorrect.

11. B. Yum uses files in the /etc/yum.repos.d directory to locate its repositories, so you can
add to the repository list by adding files to this subdirectory, as option B specifies, typically
either by installing an RPM or by adding a file manually. Option A describes a method of
adding a repository to a computer that uses APT, not Yum. Option C’s add-repository
subcommand is fictitious. Although the /etc/yum.conf file described in option D is real, it
doesn’t store repository data.

12. B. The /etc/ld.so.conf file holds the global library path, so editing it is the preferred
approach. You must then type ldconfig to have the system update its library path cache.
Although you can add a directory to the library path by altering the LD_LIBRARY_PATH
environment variable globally, this approach isn’t the preferred one. Option C simply won’t
work. Option D also won’t work, although linking individual library files would work. This
method isn’t the preferred one for adding a whole directory, though.

13. D. Libraries are selected by programmers, not by users or system administrators. If you
don’t like the widgets provided by one library, you have few options. (Many widget sets
do provide a great deal of configurability, though, so you may be able to work around the
problem in other ways.) Options A and B describe fictitious options to ldconfig, rpm, and
dpkg. Option C wouldn’t work; Qt-using programs would crash when they found GTK+
libraries in place of the Qt libraries they were expecting.

14. D. The kill program accepts various signals in numeric or named form (9 in this example)
along with a process ID number (11287 in this example). Signal 9 corresponds to SIGKILL,
which is an extreme way to kill processes that have run out of control. Although you might
use kill to kill network processes, you can’t pass kill a TCP port number and expect it to
work. The program also won’t display information about the number of processes that have
been killed. To do as option C suggests, you’d need to tell kill to pass SIGHUP (signal 1), so
the command would be kill -1 11287.

04836book.indd 100 1/7/09 9:04:56 AM

Answers to Review Questions 101

15. C, D. The top utility displays a dynamic list of processes ordered according to their CPU
use along with additional system information, including load averages. If you want only the
load average at a specific moment, uptime may be better because it presents less extraneous
information—it shows the current time, the time since the system was booted, the number
of active users, and the load averages. The ld command has nothing to do with displaying
load averages (it’s a programming tool that links together program modules into an execut-
able program). There is no standard Linux program called load.

16. A. The --forest option to ps shows parent/child relationships by creating visual links
between process names in the ps output. (Listing 2.4 shows this effect.) Options B and C
are both valid ps commands, but neither creates the specified effect.

17. A. CPU-intensive programs routinely consume 90 percent or more of available CPU time,
but not all systems run such programs. Furthermore, some types of program bugs can cre-
ate such CPU loads. Thus, you must investigate the matter more. What is dfcomp? Is it
designed as a CPU-intensive program? Is it consuming this much CPU time consistently, or
was this a brief burst of activity?

18. D. The jobs command summarizes processes that were launched from your current shell.
When no such processes are running, jobs returns nothing, so option D is correct. The
jobs command doesn’t check or summarize CPU load, so option A is incorrect. The jobs
command also doesn’t check for processes run from shells other than the current one, so
option B is incorrect (processes running under your username could have been launched
from another shell or from a GUI environment). There is no standard jobs shell in Linux,
so option C is incorrect.

19. C, D. The nice command launches a program (crunch in this example) with increased
or decreased priority. The default priority when none is specified is 10, and the nice -10
crunch command also sets the priority to 10, so options C and D are equivalent. Option A
isn’t a valid nice command because nice has no --value option. Option B is a valid nice
command, but it sets the priority to –10 rather than 10.

20. B, D. Linux insulates users’ actions from one another, and this rule applies to renice; only
root may modify the priority of other users’ processes. Similarly, only root may increase
the priority of a process, in order to prevent users from setting their processes to maximum
priority, thus stealing CPU time from others. Option A correctly describes nice, but not
renice; the whole point of renice is to be able to change the priorities of existing pro-
cesses. Option C also describes an action that renice permits.

04836book.indd 101 1/7/09 9:04:56 AM

04836book.indd 102 1/7/09 9:04:56 AM

Chapter

3
Configuring Hardware

THe following linux Professional
insTiTuTe objeCTives are Covered in
THis CHaPTer:

1.101.1 Determine and configure hardware settings ÛÛ
(weight: 2)

1.102.1 Design hard disk layout (weight: 2)ÛÛ

1.104.1 Create partitions and filesystems (weight: 2)ÛÛ

1.104.2 Maintain the integrity of filesystems (weight: 2)ÛÛ

1.104.3 Control mounting and unmounting of filesystems ÛÛ
(weight: 3)

04836book.indd 103 1/16/09 9:36:03 AM

All OSs run atop hardware, and this hardware influences how
the OSs run. Most obviously, hardware can be fast or slow,
reliable or unreliable. Somewhat more subtly, OSs provide

various means of configuring and accessing the hardware—partitioning hard disks and
reading data from Universal Serial Bus (USB) devices, for instance. You must understand at
least the basics of how Linux interacts with its hardware environment in order to effectively
administer a Linux system, so this chapter presents this information.

This chapter begins with a look at the BIOS, which is the lowest-level software that runs
on a computer. The BIOS starts the boot process and configures certain hardware devices.
This chapter then moves on to expansion cards and USB devices.

This chapter concludes with an examination of disk hardware and the filesystems it
contains—disk interface standards, disk partitioning, how to track disk usage, how to tune
filesystems for optimal performance, how to check filesystems’ internal consistency, and
how to repair simple filesystem defects. Assuming a filesystem is in good shape, you must
be able to mount it to be able to use it, so that topic is also covered here. (One disk topic,
boot managers, is covered in Chapter 5, “Booting Linux and Editing Files.”)

Configuring the BIOS and Core Hardware
All computers ship with a set of core hardware—most obviously, a central processing
unit (CPU), which does the bulk of the computational work, and random access memory
(RAM), which holds data. Many additional basic features help glue everything together,
and some of these can be configured both inside and outside of Linux. At the heart of much
of this hardware is the Basic Input/Output System (BIOS), which provides configuration
tools and initiates the OS booting process. You can use the BIOS to enable and disable key
hardware components, but once Linux is booted, you may need to manage this hardware
using Linux utilities. Key components managed by the BIOS (and, once it’s booted, Linux)
include interrupts, I/O addresses, DMA addresses, the real-time clock, and Advanced Tech-
nology Attachment (ATA) hard disk interfaces.

Understanding the Role of the BIOS
The BIOS is the firmware that initiates the process of booting an operating system on a
computer. It resides on the motherboard in ROM, typically in an electronically erasable
programmable read-only memory (EEPROM), a.k.a. flash memory. When you turn on a
computer, the BIOS performs a power-on self-test (POST), initializes hardware to a known

04836book.indd 104 1/16/09 9:36:03 AM

Configuring the BIOS and Core Hardware 105

operational state, loads the boot loader from the boot device (typically the first hard disk),
and passes control to the boot loader, which in turn loads the OS.

Historically, a further purpose of the BIOS was to provide fundamental input/output
(I/O) services to the operating system and application programs, insulating them from
hardware changes. Although the Linux kernel uses the BIOS to collect information about
the hardware, once Linux is running, it doesn’t use BIOS services for I/O. Having said that,
Linux system administrators require a basic understanding of the BIOS because of the key
role it plays in configuring hardware and in booting.

The BIOS as described here is used on most x86 and x86-64 computers;
however, some computers use radically different software in place of the PC
BIOS. Apple computers, for instance, use either OpenFirmware (for PowerPC
systems) or the Extensible Firmware Interface (EFI; for Intel-based Macs).
A few other computers use EFI, as well. Although OpenFirmware, EFI, and
other firmware programs differ from the traditional (some now say “legacy”)
x86 BIOS, these systems all perform similar tasks. If you must administer a
non-BIOS system, you should take some time to research the details of how
its low-level firmware operates; however, this won’t greatly affect how Linux
treats the hardware at the level of day-to-day system administration.

Although BIOS implementations vary from manufacturer to manufacturer, most provide
an interactive facility to configure them. Typically, you enter this setup tool by pressing the
Delete, F1, or F2 key early in the boot sequence. (Consult your motherboard manual or look
for on-screen prompts for details.) Figure 3.1 shows a typical BIOS setup main screen. You
can use the arrow keys, the Enter key, and so on to move around the BIOS options and adjust
them. Computers usually come delivered with reasonable BIOS defaults, but you may need to
adjust them if you add new hardware or if a standard piece of hardware is causing problems.

f i gu r e 3 .1 The BIOS setup screen provides features related to low-level hardware
configuration.

04836book.indd 105 1/16/09 9:36:04 AM

106 Chapter 3 n Configuring Hardware

One key ability of the BIOS is enabling or disabling on-board hardware. Modern moth-
erboards provide a wide range of hardware devices, including hard disk controllers, RS-232
serial ports, parallel ports, USB ports, Ethernet ports, audio hardware, and even video
hardware. Usually, having this hardware available is beneficial, but sometimes it’s not. The
hardware may be inadequate, so you’ll want to replace it with a more capable plug-in card;
or you may not need it. In such cases, you can disable the device in the BIOS. Doing so
keeps the device from consuming the hardware resources that are described shortly, reduc-
ing the odds of an unused device interfering with the hardware you do use.

Precisely how to disable hardware in the BIOS varies from one computer to another.
You should peruse the available menus to find mention of the hardware you want to dis-
able. Menus entitled Integrated Peripherals or Advanced are particularly likely to hold these
features. Once you’ve spotted the options, follow the on-screen prompts for hints at how
to proceed; for instance, Figure 3.1 shows an Item Specific Help area on the right side of
the screen. Information about keys to press to perform various actions appears here. Once
you’re finished, follow the on-screen menus and prompts to save your changes and exit.
When you do so, the computer will reboot.

Once Linux boots, it uses its own drivers to access the computer’s hardware. Under-
standing the hardware resources that Linux uses will help you determine when you may
want to shut down, boot into the BIOS, and disable particular hardware devices at such a
low level.

booting without a Keyboard

Most PCs have keyboards attached to them; however, many Linux computers function as
servers, which don’t require keyboards for day-to-day operation. In such cases, you may
want to detach the keyboard to reduce clutter and eliminate the risk of accidental key-
presses causing problems.

Unfortunately, many computers complain and refuse to boot if you unplug the keyboard
and attempt to boot the computer. To disable this warning, look for a BIOS option called
Halt On or something similar. This option tells the BIOS under what circumstances it
should refuse to boot. You should find an option to disable the keyboard check. Once
you select this option, you should be able to shut down, detach the keyboard, and boot
normally. Of course, you’ll need to be able to access the computer via a network con-
nection or in some other way to administer it, so be sure this is configured before you
remove the keyboard!

04836book.indd 106 1/16/09 9:36:04 AM

Configuring the BIOS and Core Hardware 107

IRQs
An interrupt request (IRQ), or interrupt, is a signal sent to the CPU instructing it to sus-
pend its current activity and to handle some external event such as keyboard input. On the
x86 platform, IRQs are numbered from 0 to 15. More modern computers, including x86-
64 systems, provide more than these 16 interrupts. Some interrupts are reserved for specific
purposes, such as the keyboard and the real-time clock; others have common uses (and are
sometimes overused) but may be reassigned; and some are left available for extra devices
that may be added to the system. Table 3.1 lists the IRQs and their common purposes in
the x86 system. (On x86-64 systems, IRQs are typically assigned as in Table 3.1, but addi-
tional hardware may be assigned to higher IRQs.)

Ta b le 3 .1 IRQs and Their Common Uses

IRQ Typical Use Notes

0 System timer Reserved for internal use.

1 Keyboard Reserved for keyboard use only.

2 Cascade for IRQs 8–15 The original x86 IRQ-handling circuit can manage
just 8 IRQs; 2 are tied together to handle 16 IRQs,
but IRQ 2 must be used to handle IRQs 8–15.

3 Second RS-232 serial port
(COM2: in Windows)

May also be shared by a fourth RS-232 serial port.

4 First RS-232 serial port
(COM1: in Windows)

May also be shared by a third RS-232 serial port.

5 Sound card or second paral-
lel port (LPT2: in Windows)

6 Floppy disk controller Reserved for the first floppy disk controller.

7 First parallel port (LPT1: in
Windows)

8 Real-time clock Reserved for system clock use only.

9 Open interrupt

10 Open interrupt

11 Open interrupt

04836book.indd 107 1/16/09 9:36:05 AM

108 Chapter 3 n Configuring Hardware

Ta b le 3 .1 IRQs and Their Common Uses (continued)

IRQ Typical Use Notes

12 PS/2 mouse

13 Math coprocessor Reserved for internal use.

14 Primary ATA controller The controller for ATA devices such as hard drives;
typically /dev/hda and /dev/hdb under Linux.

15 Secondary ATA controller The controller for more ATA devices; typically
/dev/hdc and /dev/hdd under Linux.

The original Industry Standard Architecture (ISA) bus design makes sharing an inter-
rupt between two devices tricky. Ideally, every ISA device should have its own IRQ. The
more recent Peripheral Component Interconnect (PCI) bus makes sharing interrupts a bit
easier, so PCI devices frequently end up sharing an IRQ. The ISA bus has become rare on
computers made since 2001 or so, but it’s common on older computers. Even some com-
puters that lack physical ISA slots may use ISA internally to manage some devices, such as
RS-232 serial ports and parallel ports.

IRQ 5 is a common source of interrupt conflicts because it’s the default
value for sound cards as well as for second parallel ports.

Once a Linux system is running, you can explore what IRQs are being used for various
purposes by examining the contents of the /proc/interrupts file. A common way to do
this is with the use of the cat command:

$ cat /proc/interrupts

 CPU0

 0: 42 IO-APIC-edge timer

 1: 444882 IO-APIC-edge i8042

 4: 12 IO-APIC-edge

 6: 69 IO-APIC-edge floppy

 8: 0 IO-APIC-edge rtc

 9: 0 IO-APIC-fasteoi acpi

 14: 3010291 IO-APIC-edge ide0

 15: 11156960 IO-APIC-edge ide1

 16: 125264892 IO-APIC-fasteoi eth0

 17: 0 IO-APIC-fasteoi cx88[0], cx88[0]

 20: 3598946 IO-APIC-fasteoi sata_via

04836book.indd 108 1/16/09 9:36:05 AM

Configuring the BIOS and Core Hardware 109

 21: 4566307 IO-APIC-fasteoi uhci_hcd:usb1, uhci_hcd:usb2, ehci_hcd:usb3

 22: 430444 IO-APIC-fasteoi VIA8237

NMI: 0 Non-maskable interrupts

LOC: 168759611 Local timer interrupts

TRM: 0 Thermal event interrupts

THR: 0 Threshold APIC interrupts

SPU: 0 Spurious interrupts

ERR: 0

The /proc filesystem is a virtual filesystem—it doesn’t refer to actual files
on a hard disk, but to kernel data that’s convenient to represent using a
filesystem. The files in /proc provide information about the hardware,
running processes, and so on. Many Linux utilities use /proc behind the
scenes; or you can directly access these files using utilities like cat, which
copies the data to the screen when given just one argument.

This output shows the names of the drivers that are using each IRQ. Some of these
driver names are easy to interpret, such as floppy. Others are more puzzling, such as cx88
(it’s a driver for a video capture card). If the purpose of a driver isn’t obvious, try doing a
Web search on it; chances are you’ll find a relevant hit fairly easily. Note that the preceding
output shows interrupts numbered up to 22; this system supports more than the 16 base
x86 interrupts.

The /proc/interrupts file lists IRQs that are in use by Linux, but Linux
doesn’t begin using an IRQ until the relevant driver is loaded. This may
not happen until you try to use the hardware. Thus, the /proc/interrupts
list may not show all the interrupts that are configured on your system.
For instance, the preceding example shows nothing for IRQ 7, which is
reserved for the parallel port, because the port hadn’t been used prior
to viewing the file. If the parallel port were used and /proc/interrupts
viewed again, an entry for IRQ 7 and the parport0 driver would appear.

If your system suffers from IRQ conflicts, you must reconfigure one or more devices to
use different IRQs. This topic is described shortly, in “Configuring Expansion Cards.”

I/O Addresses
I/O addresses (also referred to as I/O ports) are unique locations in memory that are reserved
for communications between the CPU and specific physical hardware devices. Like IRQs, I/O
addresses are commonly associated with specific devices and should not ordinarily be shared.
Table 3.2 lists some Linux device filenames along with the equivalent names in Windows, as
well as the common IRQ and I/O address settings.

04836book.indd 109 1/16/09 9:36:05 AM

110 Chapter 3 n Configuring Hardware

Ta b le 3 . 2 Common Linux Devices

Linux Device Windows Name Typical IRQ I/O Address

/dev/ttyS0 COM1 4 0x03f8

/dev/ttyS1 COM2 3 0x02f8

/dev/ttyS2 COM3 4 0x03e8

/dev/ttyS3 COM4 3 0x02e8

/dev/lp0 LPT1 7 0x0378-0x037f

/dev/lp1 LPT2 5 0x0278-0x027f

/dev/fd0 A: 6 0x03f0-0x03f7

/dev/fd1 B: 6 0x0370-0x0377

Although the use is deprecated, older systems sometimes use /dev/cuax
(where x is a number from 0 and up) to indicate an RS-232 serial device.
Thus, /dev/ttyS0 and /dev/cua0 refer to the same physical device.

Once a Linux system is running, you can explore what I/O addresses are being used by
examining the contents of the /proc/ioports file. A common way to do this is with the use
of the cat command:

$ cat /proc/ioports

0000-001f : dma1

0020-0021 : pic1

0040-0043 : timer0

0050-0053 : timer1

0060-006f : keyboard

0070-0077 : rtc

0080-008f : dma page reg

00a0-00a1 : pic2

00c0-00df : dma2

00f0-00ff : fpu

This example truncates the output, which goes on for quite a way on the test system. As
with IRQs, if your system suffers from I/O port conflicts, you must reconfigure one or more

04836book.indd 110 1/16/09 9:36:06 AM

Configuring the BIOS and Core Hardware 111

devices, as described in “Configuring Expansion Cards.” In practice, such conflicts are
rarer than IRQ conflicts.

DMA Addresses
Direct memory addressing (DMA) is an alternative method of communication to I/O
ports. Rather than have the CPU mediate the transfer of data between a device and mem-
ory, DMA permits the device to transfer data directly, without the CPU’s attention. The
result can be lower CPU requirements for I/O activity, which can improve overall system
performance.

To support DMA, the x86 architecture implements several DMA channels, each of
which can be used by a particular device. To learn what DMA channels are in use on your
system, examine the /proc/dma file:

$ cat /proc/dma

 2: floppy

 4: cascade

This output indicates that DMA channels 2 and 4 are in use. As with IRQs and I/O
ports, DMA addresses should not normally be shared. In practice, DMA address conflicts
are rarer than IRQ conflicts, so chances are you won’t run into problems. If you do, consult
the upcoming section “Configuring Expansion Cards.”

Boot Disks and Geometry Settings
Most BIOSs allow you to choose the order of the devices from which to boot, falling back
to the second entry if the first fails, the third entry if the second fails, and so on. A common
order is the first floppy (known as A: in DOS and Windows), followed by the CD-ROM,
followed by the first hard disk. With this configuration, the system attempts to boot from
each device in turn until one works. If all the devices fail to boot, the BIOS displays an
error message.

Although this is a common boot sequence, it has its problems. Specifically, if somebody
accidentally leaves a floppy disk in the drive, this can prevent the system from booting. Worse,
some (mostly old) viruses are transmitted by floppy disks’ boot sectors, so this method can
result in viral infection. Using removable disks as the default boot media also opens the door
to intruders who have physical access to the computer; they need only reboot with a bootable
floppy disk or CD-ROM to gain complete control of your system. For these reasons, it’s better
to make the first hard disk the only boot device. (You must change this configuration when
installing Linux or using an emergency boot disk for maintenance.) Some BIOSs (most com-
monly on notebooks) make temporary changes easier by providing a special key to allow a
one-time change to the boot sequence. On most other computers, to change the boot sequence,
you must locate the appropriate BIOS option, change it, and reboot the computer. It’s usually
located in an Advanced menu, so look there.

04836book.indd 111 1/16/09 9:36:06 AM

112 Chapter 3 n Configuring Hardware

Another disk option is the one for detecting disk devices. Figure 3.1 shows three disk
devices: the A: floppy disk (/dev/fd0 under Linux), a 1048MB primary master hard disk,
and a CD-ROM drive as the secondary master. In most cases, the BIOS detects and config-
ures hard disks and CD-ROM drives correctly. You may need to tell it what sort of floppy
disk you’ve got, though. Also, in rare circumstances, you must tell the BIOS about the hard
disk’s cylinder/head/sector (CHS) geometry.

The CHS geometry is a holdover from the early days of the x86 architecture. Figure 3.2
shows the traditional hard disk layout, which consists of a fixed number of read/write heads
that can move across the disk surfaces (or platters). As the disk spins, each head marks out a
circular track on its platter; these tracks collectively make up a cylinder. Each track is broken
down into a series of sectors. Thus, any sector on a hard disk can be uniquely identified by
three numbers: a cylinder number, a head number, and a sector number. The x86 BIOS was
designed to use this three-number CHS identification code. One consequence of this con-
figuration is that the BIOS must know how many cylinders, heads, and sectors the disk has.
Modern hard disks relay this information to the BIOS automatically; but for compatibility
with the earliest hard disks, BIOSs still enable you to set these values manually.

f i gu r e 3 . 2 Hard disks are built from platters, each of which is broken into tracks,
which are broken into sectors.

Pivoting arms with
read/write heads

Track
Sector

Platters

The BIOS will detect only certain types of disks. Of particular importance,
SCSI disks and (on some computers) serial ATA disks won’t appear in the
main BIOS disk-detection screen. These disks are handled by supplemen-
tary BIOSs associated with the controllers for these devices. Some BIOSs
do provide explicit options to add SCSI devices into the boot sequence, so
you can give priority to either ATA or SCSI devices. For those without these
options, SCSI disks generally take second seat to ATA disks.

CHS geometry, unfortunately, has its problems. For one thing, all but the earliest hard
disks use variable numbers of sectors per cylinder—modern disks squeeze more sectors
onto outer tracks than inner ones, fitting more data on each disk. Thus, the CHS geometry
presented to the BIOS by the hard disk is a convenient lie. Worse, because of limits on the
numbers in the BIOS and in the ATA hard disk interface, plain CHS geometry tops out
at 540MB, which is puny by today’s standards. Various patches, such as CHS geometry

04836book.indd 112 1/16/09 9:36:06 AM

Configuring the BIOS and Core Hardware 113

translation, can be used to expand the limit to about 8GB. Today, though, the preference is
to use logical block addressing (LBA) mode. (Some sources use the expansion linear block
addressing for this acronym.) In this mode, a single unique number is assigned to each sec-
tor on the disk, and the disk’s firmware is smart enough to read from the correct head and
cylinder when given this sector number. Modern BIOSs typically provide an option to use
LBA mode, CHS translation mode, or possibly some other modes with large disks. In most
cases, LBA mode is the best choice. If you must retrieve data from very old disks, though,
you may need to change this option.

Because of variability in how different BIOSs handle CHS translation, mov-
ing disks between computers can result in problems because of mismatched
CHS geometries claimed in disk structures and by the BIOS. Linux is usually
smart enough to work around such problems, but you may see some odd
error messages in disk utilities like fdisk. If you see messages about incon-
sistent CHS geometries, proceed with caution when using low-level disk
utilities lest you create an inconsistent partition table that could cause prob-
lems, particularly in OSs that are less robust than Linux on this score.

Coldplug and Hotplug Devices
Whenever you deal with hardware, you should keep in mind a distinction between two
device types: coldplug and hotplug. These device types differ depending on whether they
can be physically attached and detached when the computer is turned on (that is, “hot”),
versus only when it’s turned off (“cold”).

Coldplug devices are designed to be physically connected and disconnected
only when the computer is turned off. Attempting to attach or detach such
devices when the computer is running can damage the device or the com-
puter, so do not attempt to do so.

Traditionally, components that are internal to the computer, such as the CPU, memory,
PCI cards, and hard disks, have been coldplug devices. A hotplug variant of PCI, however,
has been developed and is used on some systems—mainly on servers and other systems that
can’t afford the downtime required to install or remove a device.

Modern external devices, such as Ethernet, USB, and IEEE-1394 devices, are hotplug; you
can attach and detach such devices as you see fit. These devices rely on specialized Linux soft-
ware to detect the changes to the system as they’re attached and detached. Several utilities help
in managing hotplug devices:

Sysfs The sysfs virtual filesystem, mounted at /sys, exports information about devices so
that user space utilities can access the information.

04836book.indd 113 1/16/09 9:36:07 AM

114 Chapter 3 n Configuring Hardware

A user space program is one that runs as an ordinary program, whether it
runs as an ordinary user or as root. This contrasts with kernel space code,
which runs as part of the kernel. Typically, only the kernel (and hence ker-
nel space code) can communicate directly with hardware. User space pro-
grams are the ultimate users of hardware, though. Traditionally, the /dev
filesystem has provided the main means of interface between user space
programs and hardware; however, the tools described here help expand on
this access, particularly in ways that are useful for hotplug devices.

HAL Daemon The Hardware Abstraction Layer (HAL) Daemon, or hald, is a user space
program that runs at all times (that is, as a daemon) that provides other user space pro-
grams with information about available hardware.

D-Bus The Desktop Bus (D-Bus) provides a further abstraction of hardware information
access. Like hald, D-Bus runs as a daemon. D-Bus enables processes to communicate with
each other as well as to register to be notified of events, both by other processes and by
hardware (such as the availability of a new USB device).

udev Traditionally, Linux has created device nodes as conventional files in the /dev direc-
tory tree. The existence of hotplug devices and various other issues, however, have motivated
the creation of udev: a virtual filesystem, mounted at /dev, which creates dynamic device
files as drivers are loaded and unloaded. You can configure udev through files in /etc/udev,
but the standard configuration is usually sufficient for common hardware.

These tools all help programs work seamlessly in a world of hotplug devices by enabling
the programs to learn about hardware, including receiving notification when the hardware
configuration changes.

Older external devices, such as parallel and RS-232 ports, are officially coldplug in
nature. In practice, many people treat these devices as if they were hotplug, and they can
usually get away with it; but there is a risk of damage, so it’s safest to power down a com-
puter before connecting or disconnecting such a device. When RS-232 or parallel port
devices are hotplugged, they typically aren’t registered by tools such as udev and hald.
Only the ports to which these devices connect are handled by the OS; it’s up to user space
programs, such as terminal programs or the printing system, to know how to communicate
with the external devices.

Configuring Expansion Cards
Many hardware devices require configuration—you must set the IRQ, I/O port, and DMA
addresses used by the device. (Not all devices use all three resources.) Through the mid-1990s,
this process involved tedious changes to jumpers on the hardware. Today, though, you can
configure most options through software.

04836book.indd 114 1/16/09 9:36:07 AM

Configuring Expansion Cards 115

Even devices that are built into the motherboard are configured through
the same means used to configure PCI cards.

Configuring PCI Cards
The PCI bus, which is the standard expansion bus for most internal devices, was designed
with Plug-and-Play (PnP)-style configuration in mind; thus, automatic configuration of PCI
devices is the rule rather than the exception. For the most part, PCI devices configure them-
selves automatically, and there’s no need to make any changes. You can, though, tweak
how PCI devices are detected in several ways:

The Linux kernel has an option that affects how it detects PCI devices: Bus Options Ûn 
PCI Access Mode. This option has four values: BIOS, which uses the BIOS to do the job;
MMConfig, which uses a protocol of that name to detect PCI devices; Direct, which uses
a Linux-specific direct-detection system; and Any, which tries MMConfig followed by
Direct followed by BIOS detection. In most cases, Any is the most appropriate option;
however, if your devices aren’t being detected correctly or are being assigned resources
that are causing conflicts, you may want to try experimenting with this option.

Most BIOSs have PCI options that change the way PCI resources are allocated. Ûn

Adjusting these options may help if you run into strange hardware problems with PCI
devices. These options affect only the BIOS detection system, though, and so may work
only if you select BIOS as the PCI-detection method in the kernel.

Some Linux drivers support options that cause them to configure the relevant hard-Ûn

ware to use particular resources. You should consult the drivers’ documentation files
for details of the options they support. You must then pass these options to the kernel
using a boot loader (as described in Chapter 5) or as kernel module options.

You can use the Ûn setpci utility to directly query and adjust PCI devices’ configurations.
This tool is most likely to be useful if you know enough about the hardware to fine-
tune its low-level configuration; it’s not often used to tweak the hardware’s basic IRQ,
I/O port, or DMA options.

In addition to the configuration options, you may want to check how PCI devices are
currently configured. The lspci command is used for this purpose; it displays all informa-
tion about the PCI busses on your system and all devices connected to those busses. This
command takes several options that fine-tune its behavior. The most common of these are
listed in Table 3.3.

Ta b le 3 . 3 Options for lspci

Option Effect

-v Increases verbosity of output. This option may be doubled (-vv)
or tripled (-vvv) to produce yet more output.

04836book.indd 115 1/16/09 9:36:07 AM

116 Chapter 3 n Configuring Hardware

Ta b le 3 . 3 Options for lspci (continued)

Option Effect

-n Displays information in numeric codes rather than translating
the codes to manufacturer and device names.

-nn Displays both the manufacturer and device names and their
associated numeric codes.

-x Displays the PCI configuration space for each device as a hexa-
decimal dump. This is an extremely advanced option. Tripling
(-xxx) or quadrupling (-xxxx) this option displays information
about more devices

-b Shows IRQ numbers and other data as seen by devices rather
than as seen by the kernel.

-t Displays a tree view depicting the relationship between devices.

-s [[[[domain]:]
bus]:][slot][.[func]]

Displays only devices that match the listed specification. This
can be used to trim the results of the output.

-d [vendor]:[device] Shows data on the specified device.

-i file Uses the specified file to map vendor and device IDs to names.
(The default is /usr/share/misc/pci.ids.)

-m Dumps data in a machine-readable form, intended for use
by scripts. A single -m uses a backward-compatible format,
whereas doubling (-mm) uses a newer format.

-D Displays PCI domain numbers. These numbers normally aren’t
displayed.

-M Performs a scan in bus-mapping mode, which can reveal
devices hidden behind a misconfigured PCI bridge. This is an
advanced option that can be used only by root.

--version Displays version information.

Learning about Kernel Modules
Hardware in Linux is handled by kernel drivers, many of which come in the form of kernel
modules. These are stand-alone driver files, typically stored in the /lib/modules directory
tree, that can be loaded and unloaded to provide access to hardware. Typically, Linux loads
the modules it needs when it boots, but you may need to load additional modules yourself.

04836book.indd 116 1/16/09 9:36:07 AM

Configuring Expansion Cards 117

You can learn about the modules that are currently loaded on your system by using
lsmod, which takes no options and produces output like this:

$ lsmod

Module Size Used by

isofs 35820 0

zlib_inflate 21888 1 isofs

floppy 65200 0

nls_iso8859_1 5568 1

nls_cp437 7296 1

vfat 15680 1

fat 49536 1 vfat

sr_mod 19236 0

ide_cd 42848 0

cdrom 39080 2 sr_mod,ide_cd

This output has been edited for brevity. Although outputs this short are
possible with certain configurations, they’re rare.

The most important column in this output is the first one, labeled Module; this column
specifies the names of all the modules that are currently loaded. You can learn more about
these modules with modinfo, as described shortly, but sometimes their purpose is fairly
obvious. For instance, the floppy module provides access to the floppy disk drive.

The Used by column of the lsmod output describes what’s using the module. All the
entries have a number, which indicates the number of other modules or processes that are
using the module. For instance, in the preceding example, the isofs module (used to access
CD-ROM filesystems) isn’t currently in use, as revealed by its 0 value; but the vfat module
(used to read VFAT hard disk partitions and floppies) is being used, as shown by its value of
1. If one of the modules is being used by another module, the using module’s name appears
in the Used by column. For instance, the isofs module relies on the zlib_inflate module,
so the latter module’s Used by column includes the isofs module name. This information
can be useful when you’re managing modules. For instance, if your system produced the
preceding output, you couldn’t directly remove the zlib_inflate module because it’s being
used by the isofs module; but you could remove the isofs module, and after doing so you
could remove the zlib_inflate module. (Both modules would need to be added back to
read most CD-ROMs, though.)

The lsmod command displays information only about kernel modules, not
about drivers that are compiled directly into the Linux kernel. For this rea-
son, a module may need to be loaded on one system but not on another to
use the same hardware because the second system may compile the rel-
evant driver directly into the kernel.

04836book.indd 117 1/16/09 9:36:08 AM

118 Chapter 3 n Configuring Hardware

Loading Kernel Modules
Linux enables you to load kernel modules with two programs: insmod and modprobe. The
insmod program inserts a single module into the kernel. This process requires you to have
already loaded any modules on which the module you’re loading relies. The modprobe pro-
gram, by contrast, automatically loads any depended-on modules and so is generally the
preferred way to do the job.

In practice, you may not need to use insmod or modprobe to load modules
because Linux can load them automatically. This ability relies on the kernel’s
module auto-loader feature, which must be compiled into the kernel, and on
various configuration files, which are also required for modprobe and some
other tools. Using insmod and modprobe can be useful for testing new mod-
ules or for working around problems with the auto-loader, though.

In practice, insmod is a fairly straightforward program to use; you type it followed by
the module filename:

insmod /lib/modules/2.6.26/kernel/drivers/block/floppy.ko

This command loads the floppy.ko module, which you must specify by filename. Modules
have module names, too, which are usually the same as the filename but without the exten-
sion, as in floppy for the floppy.ko file. Unfortunately, insmod requires the full module name.

You can pass additional module options to the module by adding them to the command
line. Module options are highly module-specific, so you must consult the documentation
for the module to learn what to pass. Examples include options to tell an RS-232 serial
port driver what interrupt to use to access the hardware or to tell a video card framebuffer
driver what screen resolution to use.

Some modules depend on other modules. In these cases, if you attempt to load a module
that depends on others and those other modules aren’t loaded, insmod will fail. When this
happens, you must either track down and manually load the depended-on modules or use
modprobe. In the simplest case, you can use modprobe much as you use insmod, by passing it
a module name:

modprobe floppy

As with insmod, you can add kernel options to the end of the command line. Unlike
insmod, you specify a module by its module name rather than its module filename when
you use modprobe. Generally speaking, this helps make modprobe easier to use, as does
the fact that modprobe automatically loads dependencies. This greater convenience means
that modprobe relies on configuration files. It also means that you can use options (placed
between the command name and the module name) to modify modprobe’s behavior:

Be verbose The -v or --verbose option tells modprobe to display extra information about
its operations. Typically, this includes a summary of every insmod operation it performs.

04836book.indd 118 1/16/09 9:36:08 AM

Configuring Expansion Cards 119

Change configuration files The modprobe program uses a configuration file called /etc/
modprobe.conf. You can change the file by passing a new file with the -C filename option,
as in modprobe -C /etc/mymodprobe.conf floppy.

Perform a dry run The -n or --dry-run option causes modprobe to perform checks and
all other operations except the actual module insertions. You might use this option in con-
junction with -v to see what modprobe would do without loading the module. This may be
helpful in debugging, particularly if inserting the module is having some detrimental effect,
such as disabling disk access.

Remove modules The -r or --remove option reverses modprobe’s usual effect; it causes the
program to remove the specified module and any on which it depends. (Depended-on mod-
ules are not removed if they’re in use.)

Force loading The -f or --force option tells modprobe to force the module loading even
if the kernel version doesn’t match what the module expects. This action is potentially dan-
gerous, but it’s occasionally required when using third-party binary-only modules.

Show dependencies The --show-depends option shows all the modules on which the spec-
ified module depends. This option doesn’t install any of the modules; it’s purely informative
in nature.

Show available modules The -l or --list option displays a list of available options whose
names match the wildcard you specify. For instance, typing modprobe -l v* displays all
modules whose names begin with v. If you provide no wildcard, modprobe displays all avail-
able modules. Like --show-depends, this option doesn’t cause any modules to be loaded.

This list of options is incomplete. The others are relatively obscure, so
you’re not likely to need them often. Consult the modprobe man page for
more information.

Removing Kernel Modules
In most cases, you can leave modules loaded indefinitely; the only harm that a module
does when it’s loaded but not used is to consume a small amount of memory. (The lsmod
program shows how much memory each module consumes.) Sometimes, though, you may
want to remove a loaded module. Reasons include reclaiming that tiny amount of memory,
unloading an old module so you can load an updated replacement module, and removing a
module that you suspect is unreliable.

The work of unloading a kernel module is done by the rmmod command, which is some-
thing of the opposite of insmod. The rmmod command takes a module name as an option,
though, rather than a module filename:

rmmod floppy

04836book.indd 119 1/16/09 9:36:08 AM

120 Chapter 3 n Configuring Hardware

This example command unloads the floppy module. You can modify the behavior of
rmmod in various ways:

Be verbose Passing the -v or --verbose option causes rmmod to display some extra infor-
mation about what it’s doing. This may be helpful if you’re troubleshooting a problem.

Force removal The -f or --force option forces module removal even if the module is
marked as being in use. Naturally, this is a very dangerous option, but it’s sometimes help-
ful if a module is misbehaving in some way that’s even more dangerous. This option has no
effect unless the CONFIG_MODULE_FORCE_UNLOAD kernel option is enabled.

Wait until unused The -w or --wait option causes rmmod to wait for the module to
become unused, rather than return an error message, if the module is in use. Once the mod-
ule is no longer being used (say, after a floppy disk is unmounted if you try to remove the
floppy module), rmmod unloads the module and returns. Until then, rmmod doesn’t return,
making it look like it’s not doing anything.

A few more rmmod options exist; consult the rmmod man page for details.
Like insmod, rmmod operates on a single module. If you try to unload a module that’s

depended on by other modules or is in use, rmmod will return an error message. (The -w option
modifies this behavior, as just described.) If the module is depended on by other modules,
those modules are listed, so you can decide whether to unload them. If you want to unload an
entire module stack—that is, a module and all those upon which it depends—you can use the
modprobe command and its -r option, as described earlier in “Loading Kernel Modules.”

Configuring USB Devices
Modern computers invariably ship with USB ports, and USB is now an extremely popular
(perhaps the most popular) external interface form. This fact means you must understand
something about USB, including USB itself, Linux’s USB drivers, and Linux’s USB manage-
ment tools.

USB Basics
USB is a protocol and hardware port for transferring data to and from devices. It allows for
many more (and varied) devices per interface port than either ATA or SCSI and gives better
speed than RS-232 serial and parallel ports. The USB 1.0 and 1.1 specifications allow for
up to 127 devices and 12Mbps of data transfer. USB 2.0 allows for much higher transfer
rates—480Mbps, to be precise.

Data transfer speeds may be expressed in bits per second (bps) or multiples
thereof, such as megabits per second (Mbps); or in bytes per second (B/s) or
multiples thereof, such as megabytes per second (MB/s). In most cases, there
are 8 bits per byte, so multiplying or dividing by eight may be necessary if
you’re trying to compare speeds of devices that use different measures.

04836book.indd 120 1/16/09 9:36:09 AM

Configuring USB Devices 121

USB is the preferred interface method for many external devices, including printers,
scanners, mice, digital cameras, and music players. USB keyboards, Ethernet adapters,
modems, speakers, hard drives, and other devices are also available, although USB has yet
to dominate these areas as it has some others.

Most computers ship with four to eight USB ports. (A few years ago, two USB ports were
more common.) Each port can handle one device by itself, but you can use a USB hub to con-
nect several devices to each port. Thus, you can theoretically connect huge numbers of USB
devices to a computer. In practice, you may run into speed problems, particularly if you’re
using USB 1.x for devices that tend to transfer a lot of data, such as scanners, printers, or
hard drives.

If you’ve got an older computer that only supports USB 1.x, and you want
to connect a high-speed USB 2.0 device, buy a separate USB 2.0 board.
You can use this board for the USB 2.0 device and either disable the
onboard USB 1.x ports or use them for slower devices.

Linux USB Drivers
Several different USB controllers are available, with names such as UHCI, OHCI, EHCI,
and R8A66597. Modern Linux distributions ship with the drivers for the common USB
controllers enabled, so your USB port should be activated automatically when you boot the
computer. The UHCI and OHCI controllers handle USB 1.x devices, but most other con-
trollers can handle USB 2.0 devices. Note that these controllers merely provide a means to
access the actual USB devices (mice, printers, and so on). Chances are you’ll be most inter-
ested in the tools and utilities that enable you to use these devices.

You can learn a great deal about your devices by using the lsusb utility. A simple use of
this program with no options reveals basic information about your USB devices:

$ lsusb

Bus 003 Device 008: ID 0686:400e Minolta Co., Ltd

Bus 003 Device 001: ID 0000:0000

Bus 002 Device 002: ID 046d:c401 Logitech, Inc. TrackMan Marble Wheel

Bus 002 Device 001: ID 0000:0000

Bus 001 Device 001: ID 0000:0000

In this example, three USB busses are detected (001, 002, and 003). The first bus has
no devices attached, but the second and third each have one device—a Logitech TrackMan
Marble Wheel trackball and a Minolta DiMAGE Scan Elite 5400 scanner, respectively. (The
scanner’s name isn’t fully identified by this output, except insofar as the ID number encodes
this information.) You can gather additional information by using various options to lsusb:

Be verbose The -v option produces extended information about each product.

Restrict bus and device number Using the -s [[bus]:][devnum] option restricts output to
the specified bus and device number.

04836book.indd 121 1/16/09 9:36:09 AM

122 Chapter 3 n Configuring Hardware

Restrict vendor and product You can limit output to a particular vendor and product by
using the -d [vendor]:[product] option. The vendor and product are the codes just after
ID on each line of the basic lsusb output.

Display device by filename Using -D filename displays information about the device
that’s accessible via filename, which should be a file in the /proc/bus/usb directory tree.
This directory provides a low-level interface to USB devices, as described shortly.

Tree view The -t option displays the device list as a tree, so that you can more easily see
what devices are connected to specific controllers.

Version The --version option displays the version of the lsusb utility and exits.

Early Linux USB implementations required a separate driver for every USB device. Many
of these drivers remain in the kernel, and some software relies on them. For instance, USB
disk storage devices use USB storage drivers that interface with Linux’s SCSI support, making
USB hard disks, removable disks, and so on look like SCSI devices.

Linux is migrating toward a model in which a USB filesystem provides access to USB
devices. This filesystem appears as part of the /proc virtual filesystem. In particular,
USB device information is accessible from /proc/bus/usb. Subdirectories of /proc/bus
/usb are given numbered names based on the USB controllers installed on the computer,
as in /proc/bus/usb/001 for the first USB controller. Software can access files in these
directories to control USB devices rather than use device files in /dev as with most hard-
ware devices.

USB Manager Applications
USB can be challenging for OSs because it was designed as a hot-pluggable technology. The
Linux kernel wasn’t originally designed with this sort of activity in mind, so the kernel relies
on external utilities to help manage matters. Two tools in particular are used for managing
USB devices: usbmgr and hotplug.

The usbmgr package (located at http://www.dotaster.com/~shuu/linux/usbmgr/) is
a program that runs in the background to detect changes on the USB bus. When it detects
changes, it loads or unloads the kernel modules that are required to handle the devices. For
instance, if you plug in a USB Zip drive, usbmgr will load the necessary USB and SCSI disk
modules. This package uses configuration files in /etc/usbmgr to handle specific devices
and /etc/usbmgr/usbmgr.conf to control the overall configuration.

With the shift from in-kernel device-specific USB drivers to the USB device filesystem
(/proc/bus/usb), usbmgr has been declining in importance. In fact, it may not be installed
on your system. Instead, most distributions rely on the Hotplug package (http://linux-
hotplug.sourceforge.net), which relies on kernel support added with the 2.4.x kernel
series. This system uses files stored in /etc/hotplug to control the configuration of specific
USB devices. In particular, /etc/hotplug/usb.usermap contains a database of USB device
IDs and pointers to scripts in /etc/hotplug/usb that are run when devices are plugged in
or unplugged. These scripts might change permissions on USB device files so that ordinary
users can access USB hardware, run commands to detect new USB disk devices, or other-
wise prepare the system for a new (or newly removed) USB device.

04836book.indd 122 1/16/09 9:36:09 AM

Configuring Hard Disks 123

Configuring Hard Disks
Hard disks are among the most important components in your system. Three different hard
disk interfaces are common on modern computers: Parallel Advanced Technology Attach-
ment (PATA), a.k.a. ATA; Serial Advanced Technology Attachment (SATA); and Small
Computer System Interface (SCSI). In addition, external USB and IEEE-1394 drives are
available, as well as external variants of SATA and SCSI drives. Each has its own method of
low-level configuration.

Configuring PATA Disks
PATA disks once ruled the roost in the x86 PC world, but today they’re fast giving way to
SATA disks. Thus, you’re most likely to encounter PATA disks on slightly older computers—
say, from 2005 or earlier. PATA disks are still readily available, though, and PATA is still
used even in some new computers, particularly for CD-ROM and DVD-ROM drives.

As the full name implies, PATA disks use a parallel interface, meaning that several bits
of data are transferred over the cable at once. Thus, PATA cables are wide, supporting a
total of either 40 or 80 lines, depending on the variety of PATA. You can connect up to two
devices to each PATA connector on a motherboard or plug-in PATA controller, meaning that
PATA cables typically have three connectors—one for the motherboard and two for disks.

PATA disks must be configured as masters or as slaves. This can be done via jumpers on the
disks themselves. Typically, the master device sits at the end of the cable and the slave device
resides on the middle connector. In recent years, a new configuration option has appeared on
PATA disks: cable select. When set to this option, the drive attempts to configure itself auto-
matically based on its position on the PATA cable. Thus, your easiest configuration is usually
to set all PATA devices to use the cable-select option; you can then attach them to whatever
position is convenient, and the drives should configure themselves.

For best performance, disks should be placed on separate controllers rather than config-
ured as master and slave on a single controller, because each PATA controller has a limited
throughput that may be exceeded by two drives. Until recently, most motherboards have
included at least two controllers, so putting each drive on its own controller isn’t a problem
until you install more than two drives in a single computer.

All but the most ancient BIOSs auto-detect PATA devices and provide information about
their capacities and model numbers in the BIOS setup utilities. Until recently, most mother-
boards would boot PATA drives in preference to other drives, although BIOSs have also often
provided options to change this preference in favor of SCSI drives. Thus, in a mixed-drive
setup, you may have to place your boot loader on a PATA drive.

In Linux, PATA disks have traditionally been identified as /dev/hda, /dev/hdb, and so
on, with /dev/hda being the master drive on the first controller, /dev/hdb being the slave
drive on the first controller, and so on. Thus, gaps can occur in the numbering scheme—if
you’ve got master disks on the first and second controllers but no slave disks, your system
will contain /dev/hda and /dev/hdc, but no /dev/hdb. Partitions are identified by numbers
after the main device name, as in /dev/hda1, /dev/hdb2, and so on.

04836book.indd 123 1/16/09 9:36:09 AM

124 Chapter 3 n Configuring Hardware

The naming rules for disks also apply to optical media, except that these media aren’t
typically partitioned. Most Linux distributions also create a link to your optical drive under
the name /dev/cdrom or /dev/dvd. Removable PATA disks, such as Zip disks, are given
identifiers as if they were fixed PATA disks, optionally including partition identifiers.

Recently, Linux drivers have appeared that treat PATA disks as if they were SCSI disks.
Thus, you may find that your device filenames follow the SCSI rules rather than the PATA
rules even if you have PATA disks.

Configuring SATA Disks
SATA is a newer interface than PATA, but SATA is rapidly displacing PATA as the interface
of choice. New motherboards typically host four or more SATA interfaces, often at the
expense of PATA interfaces.

SATA disks connect to their motherboards or controllers on a one-to-one basis—unlike
PATA, you can’t connect more than one disk to a single cable. This fact simplifies configu-
ration; there typically aren’t jumpers to set, and you needn’t be concerned with the position
of the disk on the cable.

As the word serial in the expansion of SATA implies, SATA is a serial bus—only one bit
of data can be transferred at a time. SATA transfers more bits per unit time on its data line,
though, so SATA is faster than PATA (187–375 MB/s for SATA vs. 16–133 MB/s for PATA;
but these are theoretical maximums that are unlikely to be achieved in real-world situa-
tions). Because of SATA’s serial nature, SATA cables are much thinner than PATA cables.

Modern BIOSs detect SATA disks and provide information about them just as they do
for PATA disks. The BIOS may provide boot order options, too. Older BIOSs are likely to be
more limited. This is particularly true if your motherboard doesn’t provide SATA support but
you use a separate SATA controller card. You may be able to boot from an SATA disk in such
cases if your controller card supports this option, or you may need to use a PATA boot disk.

Most Linux SATA drivers treat SATA disks as if they were SCSI disks, so you should
read the next section, “Configuring SCSI Disks,” for information about device naming.
Some older drivers treat SATA disks like PATA disks, so you may need to use PATA names.

Configuring SCSI Disks
There are many types of SCSI definitions, which use a variety of different cables and operate
at various speeds. SCSI is traditionally a parallel bus, like PATA, although the latest variant,
Serial Attached SCSI (SAS), is a serial bus like SATA. SCSI has traditionally been considered a
superior bus to PATA; however, the cost difference has risen dramatically over the past decade,
so few people today use SCSI. You may find it on older systems or on very high-end systems.

SCSI supports up to 8 or 16 devices per bus, depending on the variety. One of these
devices is the SCSI host adapter, which either is built into the motherboard or comes as a
plug-in card. In practice, the number of devices you can attach to a SCSI bus is more limited
because of cable-length limits, which vary from one SCSI variety to another. Each device has
its own ID number, typically assigned via a jumper on the device. You must ensure that each
device’s ID is unique. Consult its documentation to learn how to set the ID.

04836book.indd 124 1/16/09 9:36:09 AM

Configuring Hard Disks 125

SCSI hard disks aren’t detected by the standard x86 BIOS. You can still boot from a
SCSI hard disk if your SCSI host adapter has its own BIOS that supports booting. Most
high-end SCSI host adapters have this support, but low-end SCSI host adapters don’t have
BIOSs. If you use such a host adapter, you can still attach SCSI hard disks to the adapter,
and Linux can use them, but you’ll need to boot from a PATA or SATA hard disk.

SCSI IDs aren’t used to identify the corresponding device file on a Linux system. Hard
drives follow the naming system /dev/sdx (where x is a letter from a up), SCSI tapes are
named /dev/stx and /dev/nstx (where x is a number from 0 up), and SCSI CD-ROMs and
DVD-ROMs are named /dev/scdx (where x is a number from 0 up).

SCSI device numbering (or lettering) is usually assigned in increasing order based on the
SCSI ID. If you have one hard disk with a SCSI ID of 2 and another hard disk with a SCSI ID
of 4, they will be assigned to /dev/sda and /dev/sdb, respectively. The real danger is if you
add a third SCSI drive and give it an ID of 0, 1, or 3. This new disk will become /dev/sda (for
an ID of 0 or 1) or /dev/sdb (for ID 3), bumping up one or both of the existing disks’ Linux
device identifiers. For this reason, it’s usually best to give hard disks the lowest possible SCSI
IDs so that you can add future disks using higher IDs.

The mapping of Linux device identifiers to SCSI devices depends in part on
the design of the SCSI host adapter. Some host adapters result in assignment
starting from SCSI ID 7 and working down to 0 rather than the reverse, with
Wide SCSI device numbering continuing on from there to IDs 14 through 8.

Another complication is when you have multiple SCSI host adapters. In this case, Linux
assigns device filenames to all of the disks on the first adapter followed by all those on the
second adapter. Depending on where the drivers for the SCSI host adapters are found (com-
piled directly into the kernel or loaded as modules) and how they’re loaded (for modular
drivers), you may not be able to control which adapter takes precedence.

Remember that some non-SCSI devices, such as USB disk devices and
SATA disks, are mapped onto the Linux SCSI subsystem. This can cause a
true SCSI hard disk to be assigned a higher value than you’d expect if you
use such “pseudo-SCSI” devices.

The SCSI bus is logically one-dimensional—that is, every device on the bus falls along a
single line. This bus must not fork or branch in any way. Each end of the SCSI bus must be
terminated. This refers to the presence of a special resistor pack that prevents signals from
bouncing back and forth along the SCSI chain. Consult your SCSI host adapter and SCSI
devices’ manuals to learn how to terminate them. Remember that both ends of the SCSI
chain must be terminated, but devices mid-chain must not be terminated. The SCSI host
adapter qualifies as a device, so if it’s at the end of the chain, it must be terminated.

Modern SCSI devices usually include a jumper or other setting to enable or disable termina-
tion. Older internal devices use comb-shaped resister packs that you insert or remove to termi-
nate the device, and older external devices use external terminators that attach to one of the

04836book.indd 125 1/16/09 9:36:10 AM

126 Chapter 3 n Configuring Hardware

device’s two SCSI connectors. (A few external SCSI devices are permanently terminated and
have just one SCSI connector.)

Incorrect termination often results in bizarre SCSI problems, such as an inability to
detect SCSI devices, poor performance, or unreliable operation. Similar symptoms can
result from the use of poor-quality SCSI cables or cables that are too long.

Configuring External Disks
External disks come in several varieties, the most common of which are USB, IEEE-1394,
and SCSI. SCSI has long supported external disks directly, and many SCSI host adapters
have both internal and external connectors. You configure external SCSI disks just like
internal disks, although the physical details of setting the SCSI ID number and termination
may differ; consult your devices’ manuals for details.

Linux treats external USB and IEEE-1394 disks just like SCSI devices, from a software
point of view. Typically, you can plug the device in, see a /dev/sdx device node appear,
and use it as you would a SCSI disk. This is the case for both true external hard disks and
media such as solid state USB pen drives.

External drives are easily removed, and this can be a great convenience;
however, you should never unplug an external drive until you’ve unmounted
the disk in Linux using the umount command, as described in Chapter 5. Fail-
ure to unmount a disk is likely to result in damage to the filesystem, including
lost files. In addition, although USB and IEEE-1394 busses are hot-pluggable,
most SCSI busses aren’t, so connecting or disconnecting a SCSI device while
the computer is running is dangerous. (Inserting or ejecting a removable
SCSI disk, such as a Zip disk, is safe, however.)

Designing a Hard Disk Layout
Whether your system uses PATA, SATA, or SCSI disks, you must design a disk layout for
Linux. If you’re using a system with Linux preinstalled, you may not need to deal with this
task immediately; however, sooner or later you’ll have to install Linux on a new computer
or one with an existing OS or upgrade your hard disk. The next few pages describe the x86
partitioning scheme, Linux mount points, and common choices for a Linux partitioning
scheme. The upcoming section “Creating Partitions and Filesystems” covers the mechanics
of creating partitions.

Why Partition?
The first issue with partitioning is the question of why you should do it. The answer is that
partitioning provides a variety of advantages, including the following:

Multi-OS support Partitioning enables you to keep the data for different OSs separate.
In fact, many OSs can’t easily co-exist on the same partition because they don’t support

04836book.indd 126 1/16/09 9:36:10 AM

Designing a Hard Disk Layout 127

each other’s primary filesystems. This feature is obviously important only if you want the
computer to boot multiple OSs. It can still be handy to help maintain an emergency system,
though—you can install a single OS twice, using the second installation as an emergency
maintenance tool for the first in case problems develop.

Filesystem choice By partitioning your disk, you can use different filesystems—data struc-
tures designed to hold all the files on a partition—on each partition. Perhaps one filesystem
is faster than another and so is important for time-critical or frequently accessed files, but
another may provide accounting or backup features you want to use for users’ data files.

Disk space management By partitioning your disk, you can lock certain sets of files into a
fixed space. For instance, if you restrict users to storing files on one or two partitions, they
can fill those partitions without causing problems on other partitions, such as system parti-
tions. This feature can help keep your system from crashing if space runs out. On the other
hand, if you get the partition sizes wrong, it can cause lesser problems much sooner than
would be the case if you’d used fewer partitions.

Disk error protection Disks sometimes develop problems. These problems can be the
result of bad hardware or of errors that creep into the filesystems. In either case, splitting a
disk into partitions provides some protection against such problems. If data structures on
one partition become corrupted, these errors affect only the files on that disk. This separa-
tion can therefore protect data on other partitions and simplify data recovery.

Security You can use different security-related mount options on different partitions. For
instance, you might mount a partition that holds critical system files read-only, preventing
users from writing to that partition. Linux’s file security options should provide similar
protection, but taking advantage of Linux filesystem mount options provides redundancy
that can be helpful in case of an error in setting up file or directory permissions.

Backup Some backup tools work best on whole partitions. By keeping partitions small,
you may be able to back up more easily than you could if your partitions were large.

In practice, most Linux computers use several partitions, although precisely how the
system is partitioned varies from one system to another. (The upcoming section “Common
Partitions and Filesystem Layouts” describes some possibilities.)

Types of Disk Partitions
The x86 architecture dates back to the 1980s, when a big hard disk was about 10MB in
size. In such an environment, creating lots of partitions on the disk seemed pointless, so the
original x86 partitioning scheme supported just four partitions. Today, these four parti-
tions are known as primary partitions. Some OSs, such as DOS and Windows, must boot
from a primary partition. Linux isn’t so limited, but using one or more primary partitions
for some (or even all) of Linux’s partition needs is common.

As hard disks grew larger and OSs more plentiful, the four-partition limit of the origi-
nal x86 partitioning scheme became a problem. To work around the issue while maintain-
ing backward compatibility, the x86 partitioning scheme was extended by using a single

04836book.indd 127 1/16/09 9:36:10 AM

128 Chapter 3 n Configuring Hardware

primary partition as a placeholder for an arbitrary number of additional partitions. The
placeholder partition is known as an extended partition, and the partitions it contains
are called logical partitions. The x86 partitioning system supports an arbitrary number of
logical partitions, but because they’re all contained within a single extended partition, the
logical partitions must all be contiguous with one another. Figure 3.3 depicts this scheme,
although the specific partition sizes, locations, and number of partitions are arbitrary.

f i gu r e 3 . 3 The x86 partitioning system uses up to four primary partitions, one of
which can be a placeholder extended partition that contains logical partitions.

Third primary
partition

First primary
partition

Second primary partition/extended partition

First logical
partition

Second logical
partition

Under Linux, primary and extended partitions are assigned numbers from 1 to 4, as in
/dev/hda1 or /dev/sdb3 for the first primary partition on the first PATA disk or the third
primary partition on the second SCSI disk, respectively. These numbers are fixed, and num-
bers can be skipped. For instance, a disk might have /dev/hda1 and /dev/hda3, but not
/dev/hda2 or /dev/hda4.

Logical partitions are assigned numbers from 5 up, as in /dev/hda5 or /dev/sdb5. These
numbers are assigned sequentially, and numbers aren’t ordinarily skipped; if a disk has
/dev/hda6, then /dev/hda5 also exists.

For the most part, Linux doesn’t care whether a partition is primary or logical; you can
use either partition type for just about any partition function in Linux. For booting the OS,
you can use either type of partition, but if you put certain Linux files on a logical partition,
you’ll limit your boot loader options. (This topic is described in more detail in Chapter 5.)

In addition to the distinction between primary, extended, and logical partitions, another
class of partition types is important: The x86 partition table supports partition type codes,
which are two-digit hexadecimal numbers that are assigned to specific functions. For
instance, 0x06 is reserved for a certain type of File Allocation Table (FAT) partition, 0x82
denotes a Linux swap partition, and 0x83 indicates a Linux filesystem partition. Some
OSs, such as DOS and Windows, rely on these type codes to determine which partitions
they should try to access. DOS and Windows ignore Linux partitions because of their type
codes, for instance. For the most part, though, Linux ignores partition type codes; you can
try to mount any type of partition. A couple of partial exceptions to this rule exist, though:

During installation, most Linux distributions pay attention to the partition type codes Ûn

to help them guess how the system is configured. Installers and Linux disk utilities also
create partitions with appropriate type codes set.

Linux relies on the extended partition type codes (0x05 and 0x0f) to identify extended Ûn

partitions. You can try to act directly on the extended partition using various utilities,
but for the most part doing so would be a mistake.

04836book.indd 128 1/16/09 9:36:11 AM

Designing a Hard Disk Layout 129

The x86 partition table stores partition information in both CHS and LBA forms. The par-
tition table also records the CHS geometry for the disk. If you use a disk on just one computer,
no problems will result; but if you move a disk from one computer to another, the CHS geom-
etry might change, which can result in confusion. Linux is usually pretty flexible about this
and can generally cope well with such changes. Other OSs aren’t always so flexible.

Although partitioning is usually considered a hard disk tool, some other disk devices
can be partitioned. This practice is most common with certain types of removable disks.
Because most removable disks are treated just like hard disks in Linux, you can partition
them as you see fit; this practice is common with certain types of removable disks, such as
Zip disks and USB pen drives. Other removable disks, such as CD-ROMs and magneto-
optical (MO) disks, aren’t commonly partitioned. Linux doesn’t support partitioning for
some types of disks, such as floppy disks. If you’re in doubt about whether to partition a
particular type of removable disk, try examining a working disk. As root, type fdisk -l
/dev/hdb (change hdb to an appropriate device identifier) to examine the partition table on
a disk. If this command returns partition table information, other disks of this type should
probably be partitioned. The upcoming section “Partitioning a Disk” describes how to use
fdisk in more detail.

non-x86 Partitioning systems

Most non-x86 platforms have their own partitioning systems. Most of these systems are
simpler than the x86 system in that there’s no distinction between primary, extended,
and logical partitions. The basic principles of partitioning are the same across these plat-
forms: The disk is split into multiple partitions for the same reasons x86 systems are par-
titioned, and Linux identifies the partitions in the same way (as /dev/hda2, for instance).
Thus, at a system level, non-x86 partitions work just like x86 partitions.

To manipulate non-x86 partitions, though, you may use different tools. Sometimes
these tools have the same names as the x86 tools, but their operational details may dif-
fer. One tool that’s common across several platforms is GNU Parted (http://www.gnu
.org/software/parted/), which supports x86, Macintosh, and several other types of
partition tables.

Linux can handle about a dozen different partitioning schemes, although x86 distribu-
tions may not have the necessary support compiled by default. The File Systems  Parti-
tion Types kernel configuration area lists the available options, should you need to read
disks created on an unusual platform.

Most computers with an x86-64 CPU use the x86 partitioning scheme; however, some
x86-64 systems, including most Intel-based Macintoshes, use the Globally Unique Identifier
(GUID) Partition Table (GPT) system. Linux can handle GPT partitions just fine, but if you
need to manipulate GPT partition tables, you should use GNU Parted rather than fdisk.

04836book.indd 129 1/16/09 9:36:11 AM

130 Chapter 3 n Configuring Hardware

An Alternative to Partitions: LVM
An alternative to partitions for some functions is logical volume management (LVM). To
use LVM, you set aside one or more partitions and assign them partition type codes of
0x8e. You then use a series of utilities, such as pvcreate, vgcreate, lvcreate, and lvscan,
to manage the partitions (known as physical volumes in this scheme), to merge them into
volume groups, and to create and manage logical volumes within the volume groups. Ulti-
mately, you then access the logical volumes using names you assigned to them in the /dev/
mapper directory, such as /dev/mapper/myvol-home.

LVM sounds complicated, and it is. Why would you want to use it? The biggest advantage
to LVM is that it enables you to easily resize your logical volumes without worrying about the
positions or sizes of surrounding partitions. In a sense, the logical volumes are like files in a
regular filesystem; the filesystem (or volume group, in the case of LVM) manages the alloca-
tion of space when you resize files (or logical volumes). This can be a great boon if you’re not
sure of the optimum starting sizes of your partitions. You can also easily add disk space, in
the form of a new physical disk, to expand the size of an existing volume group.

On the down side, LVM adds complexity, and not all Linux distributions support it out
of the box. LVM can complicate disaster recovery, and if your LVM configuration spans
multiple disks, a failure of one disk will put all files in your volume group at risk. It’s easiest
to configure a system with at least one filesystem (dedicated to /boot, or perhaps the root
filesystem containing /boot) in its own conventional partition, reserving LVM for /home,
/usr, and other filesystems.

Despite these drawbacks, and the fact that LVM isn’t included in the LPIC objectives,
you might consider investigating LVM further in some situations. It’s most likely to be use-
ful if you want to create a system with many specialized filesystems and you want to retain
the option of resizing those filesystems in the future. A second situation where LVM is
handy is if you need to create very large filesystems that are too large for a single physical
disk to handle.

Mount Points
Once a disk is partitioned, an OS must have some way to access the data on the parti-
tions. In DOS and Windows, this is done by assigning a drive letter, such as C: or D:, to
each partition. (DOS and Windows use partition type codes to decide which partitions get
drive letters and which to ignore.) Linux, though, doesn’t use drive letters; instead, Linux
uses a unified directory tree. Each partition is mounted at a mount point in that tree. A
mount point is a directory that’s used as a way to access the filesystem on the partition, and
mounting the filesystem is the process of linking the filesystem to the mount point.

For instance, suppose that a Linux system has three partitions: the root (/) partition,
/home, and /usr. The root partition holds the basic system files, and all other partitions are
accessed via directories on that filesystem. If /home contains users’ home directories, such
as sally and sam, those directories will be accessible as /home/sally and /home/sam once
this partition is mounted at /home. If this partition were unmounted and remounted at
/users, the same directories would become accessible as /users/sally and /users/sam.

04836book.indd 130 1/16/09 9:36:11 AM

Designing a Hard Disk Layout 131

Partitions can be mounted just about anywhere in the Linux directory tree, including on
directories on the root partition as well as directories on mounted partitions. For instance,
if /home is a separate partition, you can have a /home/morehomes directory that serves as a
mount point for another partition.

The upcoming section “Mounting and Unmounting Filesystems” describes the com-
mands and configuration files that are used for mounting partitions. For now, you should
only be concerned with what constitutes a good filesystem layout (that is, what directories
you should split off into their own partitions) and how to create these partitions.

Common Partitions and Filesystem Layouts
So, what directories are commonly split off into separate partitions? Table 3.4 summarizes
some popular choices. Note that typical sizes for many of these partitions vary greatly
depending on how the system is used. Therefore, it’s impossible to make recommendations
on partition size that will be universally acceptable.

Ta b le 3 . 4 Common Partitions and Their Uses

Partition (Mount Point) Typical Size Use

Swap (not mounted) 1.5–2 times sys-
tem RAM size

Serves as an adjunct to system RAM; is
slow, but enables the computer to run more
or larger programs.

/home 200MB–1000GB
(or more)

Holds users’ data files. Isolating it on a sepa-
rate partition preserves user data during a
system upgrade. Size depends on the num-
ber of users and their data storage needs.

/boot 20–200MB Holds critical boot files. Creating it as a sepa-
rate partition lets you circumvent limitations
of older BIOSs and boot loaders on hard
disks over 8GB.

/usr 500MB–10GB Holds most Linux program and data files;
this is sometimes the largest partition,
although /home is larger on systems with
many users or if users store large data files.

/usr/local 100MB–3GB Holds Linux program and data files that are
unique to this installation, particularly those
that you compile yourself.

/opt 100MB–5GB Holds Linux program and data files that are
associated with third-party packages, espe-
cially commercial ones.

04836book.indd 131 1/16/09 9:36:11 AM

132 Chapter 3 n Configuring Hardware

Ta b le 3 . 4 Common Partitions and Their Uses (continued)

Partition (Mount Point) Typical Size Use

/var 100MB–500GB Holds miscellaneous files associated with
the day-to-day functioning of a computer.
These files are often transient in nature.
Most often split off as a separate partition
when the system functions as a server that
uses the /var directory for server-related
files like mail queues.

/tmp 100MB–20GB Holds temporary files created by ordinary
users.

/mnt N/A Not a separate partition; rather, it or its
subdirectories are used as mount points for
removable media like floppies or CD-ROMs.

/media N/A Holds subdirectories that may be used as
mount points for removable media, much
like /mnt or its subdirectories.

Some directories—/etc, /bin, /sbin, /lib, and /dev—should never be placed on sepa-
rate partitions. These directories host critical system configuration files or files without
which a Linux system can’t function. For instance, /etc contains /etc/fstab, the file that
specifies what partitions correspond to what directories, and /bin contains the mount util-
ity that’s used to mount partitions on directories.

The 2.4.x and later kernels include support for a dedicated /dev filesystem,
which obviates the need for files in a disk-based /dev directory; so, in some
sense, /dev can reside on a separate filesystem, although not a separate
partition. The udev utility controls the /dev filesystem in recent versions
of Linux.

Creating Partitions and Filesystems
If you’re installing Linux on a computer, chances are it will present you with a tool to help
guide you through the partitioning process. These installation tools will create the parti-
tions you tell them to create or create partitions sized as the distribution’s maintainers
believe appropriate. If you need to partition a new disk you’re adding, though, or if you

04836book.indd 132 1/16/09 9:36:12 AM

Creating Partitions and Filesystems 133

want to create partitions using standard Linux tools rather than rely on your distribution’s
installation tools, you must know something about the Linux programs that accomplish
this task. Partitioning involves two tasks: creating the partitions and preparing the parti-
tions to be used. In Linux, these two tasks are usually accomplished using separate tools,
although some tools can handle both tasks simultaneously.

when to Create Multiple Partitions

One problem with splitting off lots of separate partitions, particularly for new administra-
tors, is that it can be difficult to settle on appropriate partition sizes. As noted in Table 3.4,
the appropriate size of various partitions can vary substantially from one system to another.
For instance, a workstation is likely to need a fairly small /var partition (say, 100MB), but a
mail or news server may need a /var partition that’s gigabytes in size. Guessing wrong isn’t
fatal, but it is annoying. You’ll need to resize your partitions (which is tedious and danger-
ous) or set up symbolic links between partitions so that subdirectories on one partition can
be stored on other partitions. LVM can simplify such after-the-fact changes, but as noted
earlier, LVM adds its own complexity.

For this reason, I generally recommend that new Linux administrators try simple partition
layouts first. The root (/) partition is required, and swap is a very good idea. Beyond this,
/boot can be helpful on hard disks of more than 8GB with older distributions or BIOSs but
is seldom needed with computers or distributions sold since 2000. An appropriate size for
/home is often relatively easy for new administrators to guess, so splitting it off generally
makes sense. Beyond this, I recommend that new administrators proceed with caution.

As you gain more experience with Linux, you may want to break off other directories into
their own partitions on subsequent installations or when upgrading disk hardware. You can
use the du command to learn how much space is used by files within any given directory.

Partitioning a Disk
The traditional Linux tool for disk partitioning is called fdisk. This tool’s name is short
for fixed disk, and the name is the same as a DOS and Windows tool that accomplishes the
same task. (When I mean to refer to the DOS/Windows tool, I capitalize its name, as in
FDISK. The Linux tool’s name is always entirely lowercase.) Both DOS’s FDISK and Linux’s
fdisk are text-mode tools to accomplish similar goals, but the two are very different in
operational details.

Although fdisk is the traditional tool, several others exist. One of these that’s gaining in
popularity is GNU Parted, which can both partition a disk and prepare the partitions for use

04836book.indd 133 1/16/09 9:36:12 AM

134 Chapter 3 n Configuring Hardware

in a single operation. GNU Parted can also resize several partition types without losing data.
Although this operation is risky, dynamic partition resizing can save a lot of time and effort.

Using fdisk
To use Linux’s fdisk, type the command name followed by the name of the disk device you
want to partition, as in fdisk /dev/hda to partition the primary master PATA disk. The
result is an fdisk prompt. On most modern disks, you’ll also see a note telling you that the
number of cylinders is greater than 1024:

fdisk /dev/hda

The number of cylinders for this disk is set to 7297.

There is nothing wrong with that, but this is larger than 1024,

and could in certain setups cause problems with:

1) software that runs at boot time (e.g., old versions of LILO)

2) booting and partitioning software from other OSs

 (e.g., DOS FDISK, OS/2 FDISK)

Command (m for help):

At the Command (m for help): prompt, you can type commands to accomplish vari-
ous goals:

Display the current partition table You may want to begin by displaying the current partition
table. To do so, type p. If you only want to display the current partition table, you can type
fdisk -l /dev/hda (or whatever the device identifier is) at a command prompt rather than
enter fdisk’s interactive mode. This command displays the partition table and then exits.

Create a partition To create a partition, type n. The result is a series of prompts asking for
information about the partition—whether it should be a primary, extended, or logical parti-
tion; the partition’s starting cylinder; the partition’s ending cylinder or size; and so on. The
details of what you’re asked depend in part on what’s already defined. For instance, fdisk
won’t ask you if you want to create an extended partition if one already exists. One fdisk fea-
ture you may find odd is that it measures partition start and end points in cylinders, not mega-
bytes. This is a holdover from the CHS measurements used by the x86 partition table. In most
cases it’s not a problem; you can pick the default start point and then specify the partition size
in megabytes or gigabytes, and fdisk will compute the correct end cylinder.

Delete a partition To delete a partition, type d. The program will ask for the partition
number, which you must enter.

Change a partition’s type When you create a partition, fdisk assigns it a type code of
0x83, which corresponds to a Linux filesystem. If you want to create a Linux swap parti-
tion or a partition for another OS, you can type t to change a partition type code. The pro-
gram then prompts you for a partition number and a type code.

04836book.indd 134 1/16/09 9:36:12 AM

Creating Partitions and Filesystems 135

List partition types Several dozen partition type codes exist, so it’s easy to forget what
they are. Type l (that’s a lowercase L) at the main fdisk prompt to see a list of the most
common ones. You can also get this list by typing L when you’re prompted for the partition
type when you change a partition’s type code.

Mark a partition bootable Some OSs, such as DOS and Windows, rely on their partitions
having special bootable flags in order to boot. You can set this flag by typing a, whereupon
fdisk asks for the partition number.

Get help Type m or ? to see a summary of the main fdisk commands.

Exit Linux’s fdisk supports two exit modes. First, you can type q to exit the program
without saving any changes; anything you do with the program is lost. This option is par-
ticularly helpful if you’ve made a terrible mistake. Second, typing w writes your changes to
the disk and exits the program.

As an example, consider deleting a primary, an extended, and a logical partition on a
Zip disk and creating a single new one in their place:

fdisk /dev/sda

Command (m for help): p

Disk /dev/sda: 100 MB, 100663296 bytes

4 heads, 48 sectors/track, 1024 cylinders

Units = cylinders of 192 * 512 = 98304 bytes

 Device Boot Start End Blocks Id System

/dev/sda1 1 510 48936 83 Linux

/dev/sda2 511 1024 49344 5 Extended

/dev/sda5 511 1024 49320 83 Linux

Command (m for help): d

Partition number (1-5): 5

Command (m for help): d

Partition number (1-5): 2

Command (m for help): d

Selected partition 1

Command (m for help): n

Command action

 e extended

 p primary partition (1-4)

04836book.indd 135 1/16/09 9:36:12 AM

136 Chapter 3 n Configuring Hardware

p

Partition number (1-4): 4

First cylinder (1-1024, default 1): 1

Last cylinder or +size or +sizeM or +sizeK (1-1024, default 1024): 1024

Command (m for help): w

The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.

This process begins with a p command to verify that the program is operating on the
correct disk. With this information in hand, the three existing partitions are deleted. Note
that the first two deletions ask for a partition number, but the third doesn’t, because only
one partition is left. Once this is done, n is used to create a new primary partition. This
example creates a partition numbered 4 because this is the standard for Zip disks. Once
the task is complete, the w command is used to write the changes to disk and exit the pro-
gram. The result of this sequence is a Zip disk with a single primary partition (/dev/sda4)
marked as holding a Linux filesystem.

Using GNU Parted
GNU Parted (http://www.gnu.org/software/parted/) is a cross-platform partitioning
tool—you can use it with non-x86 partition tables as well as x86 partition tables. It also
supports more features than fdisk and is easier to use in some ways. For instance, it mea-
sures disk space in megabytes rather than cylinders. GNU Parted also supports dynamic
partition resizing for several filesystem types, which can be a great convenience. On the
other hand, GNU Parted uses its own way of referring to partitions, which can be confus-
ing. It’s also more finicky about mismatched CHS geometries than is fdisk. Although GNU
Parted isn’t covered on the LPI exam, knowing a bit about it can be handy.

You start GNU Parted much as you start fdisk, by typing its name followed by the
device you want to modify, as in parted /dev/hda to partition /dev/hda. The result is
some brief introductory text followed by a (parted) prompt at which you type commands.
Type ? to see a list of commands, which are multi-character commands similar to Linux
shell commands. For instance, print displays the current partition table, mkpart creates
(makes) a partition, rm removes a partition, move moves a partition, and resize changes a
partition’s size. Some of the more advanced options work on only some filesystem types,
such as Linux’s native ext2fs and ext3fs and the DOS/Windows standby of FAT. (The next
section describes filesystem types in more detail.)

Resizing or moving a filesystem can be dangerous. If the resizing code con-
tains a bug or if there’s a power failure during the operation, data can be
lost. Thus, I strongly recommend you back up any important data before
resizing or moving a partition. Also, resizing or moving your boot partition
can render the system unbootable until you re-install your boot loader.

04836book.indd 136 1/16/09 9:36:12 AM

Creating Partitions and Filesystems 137

Preparing a Partition for Use
Once a partition is created, you must prepare it for use. This process is often called “making
a filesystem” or “formatting a partition.” It involves writing low-level data structures to disk.
Linux can then read and modify these data structures to access and store files in the parti-
tion. You should know something about the common Linux filesystems and know how to use
filesystem-creation tools to create them.

The word formatting is somewhat ambiguous. It can refer to either low-level
formatting, which creates a structure of sectors and tracks on the disk media,
or high-level formatting, which creates a filesystem. Hard disks are low-level
formatted at the factory and should never need to be low-level formatted
again. Floppy disks, though, can be both low- and high-level formatted. The
tools described here can high-level format a floppy disk as well as a hard
disk. To low-level format a floppy disk, you must use the fdformat command,
as in fdformat /dev/fd0. This command cannot be used on a hard disk.

Common Filesystem Types
Linux supports quite a few different filesystems, both Linux native and those intended for
other OSs. Some of the latter barely work under Linux, and even when they do work reli-
ably, they usually don’t support all the features that Linux expects in its native filesystems.
Thus, when preparing a Linux system, you’ll use one or more of its native filesystems for
most or all partitions:

Ext2fs The Second Extended File System (ext2fs or ext2) is the traditional Linux native
filesystem. It was created for Linux and was the dominant Linux filesystem throughout the
late 1990s. Ext2fs has a reputation as a reliable filesystem. It has since been eclipsed by other
filesystems, but it still has its uses. In particular, ext2fs can be a good choice for a small
/boot partition, if you choose to use one, and for small (sub-gigabyte) removable disks. On
such small partitions, the size of the journal used by more advanced filesystems can be a real
problem, so the non-journaling ext2fs is a better choice. (Journaling is described in more
detail shortly.) The ext2 filesystem type code is ext2.

Ext3fs The Third Extended File System (ext3fs or ext3) is basically ext2fs with a journal
added. The result is a filesystem that’s as reliable as ext2fs but that recovers from power
outages and system crashes much more quickly. The ext3 filesystem type code is ext3.

Ext4fs The Fourth Extended File System (ext4fs or ext4) is the next-generation version of
this filesystem family. It adds the ability to work with very large disks (those over 32 terabytes)
or very large files (those over 2 terabytes), as well as extensions intended to improve perfor-
mance. As of late 2008, ext4fs is considered experimental, but this will of course change. Its
filesystem type code is ext4dev, but this will change to ext4 when the filesystem is finalized.

ReiserFS This filesystem was designed from scratch as a journaling filesystem for Linux
and is a popular choice in this role. It’s particularly good at handling filesystems with large

04836book.indd 137 1/16/09 9:36:12 AM

138 Chapter 3 n Configuring Hardware

numbers of small files (say, smaller than about 32KB) because ReiserFS uses various tricks to
squeeze the ends of files into each other’s unused spaces. This small savings can add up to a
large percentage of file sizes when files are small. You can use reiserfs as the type code for
this filesystem.

As of Linux kernel version 2.6.26, ReiserFS version 3.x is current. A from-
scratch rewrite of ReiserFS, known as Reiser4, is being developed but has
not yet been integrated into the mainstream kernel.

JFS IBM developed the Journaled File System (JFS) for its AIX OS and later re-implemented
it on OS/2. The OS/2 version was subsequently donated to Linux. JFS is a technically sophis-
ticated journaling filesystem that may be of particular interest if you’re familiar with AIX or
OS/2 or want an advanced filesystem to use on a dual-boot system with one of these OSs. As
you might expect, this filesystem’s type code is jfs.

XFS Silicon Graphics (SGI) created its Extents File System (XFS) for its IRIX OS and,
like IBM, later donated the code to Linux. Like JFS, XFS is a very technically sophisticated
filesystem. XFS has gained a reputation for robustness, speed, and flexibility on IRIX,
but some of the XFS features that make it so flexible on IRIX aren’t supported well under
Linux. Use xfs as the type code for this filesystem.

In practice, most administrators choose ext3fs or ReiserFS as their primary filesystems;
however, JFS and XFS also work well, and some administrators prefer them, particularly
on large disks that store large files. Hard data on the merits and problems with each filesys-
tem are difficult to come by, and even when they do exist, they’re suspect because filesystem
performance interacts with so many other factors. For instance, as just noted, ReiserFS can
cram more small files into a small space than can other filesystems, but this advantage isn’t
very important if you’ll be storing mostly larger files.

If you’re using a non-x86 platform, be sure to check filesystem develop-
ment on that platform. A filesystem may be speedy and reliable on one
CPU but sluggish and unreliable on another.

In addition to these Linux-native filesystems, you may need to deal with some others
from time to time, including the following:

FAT The File Allocation Table (FAT) filesystem is old and primitive—but ubiquitous.
It’s the only hard disk filesystem supported by DOS and Windows 9x/Me. For this reason,
every major OS understands FAT, making it an excellent filesystem for exchanging data on
removable disks. Two major orthogonal variants of FAT exist: It varies in the size of the
FAT data structure after which the filesystem is named (12-, 16-, or 32-bit pointers), and it
has variants that support long filenames. Linux automatically detects the FAT size, so you
shouldn’t need to worry about this. To use the original FAT filenames, which are limited to
eight characters with an optional three-character extension (the so-called 8.3 filenames),

04836book.indd 138 1/16/09 9:36:13 AM

Creating Partitions and Filesystems 139

use the Linux filesystem type code of msdos. To use Windows-style long filenames, use the
filesystem type code of vfat. A Linux-only long filename system, known as umsdos, sup-
ports additional Linux features—enough that you can install Linux on a FAT partition,
although this practice isn’t recommended except for certain types of emergency disks or to
try Linux on a Windows system.

NTFS The New Technology File System (NTFS) is the preferred filesystem for Windows
NT/200x/XP/Vista. Unfortunately, Linux’s NTFS support is rather rudimentary. As of
the 2.6.x kernel series, Linux can reliably read NTFS and can overwrite existing files, but the
Linux kernel can’t write new files to an NTFS partition.

If you must have good NTFS read/write support for a dual-boot system,
look into NTFS-3G (http://www.ntfs-3g.org/). This is a read/write NTFS
driver that resides in user space rather than in kernel space. It’s used as the
default NTFS driver by some Linux distributions.

HFS and HFS+ Apple has long used the Hierarchical File System (HFS) with its Mac OS,
and Linux provides full read/write HFS support. This support isn’t as reliable as Linux’s
read/write FAT support, though, so you may want to use FAT when exchanging files with
Mac users. Apple has extended HFS to better support large hard disks and many Unix-like
features with its HFS+ (a.k.a. Extended HFS). Linux 2.6.x adds limited HFS+ support; but
this filesystem is still fairly new in the 2.6.x kernels, and write support for it is risky.

ISO-9660 The standard filesystem for CD-ROMs has long been ISO-9660. This filesys-
tem comes in several levels. Level 1 is similar to the original FAT in that it supports only
8.3 filenames. Levels 2 and 3 add support for longer 32-character filenames. Linux sup-
ports ISO-9660 using its iso9660 filesystem type code. Linux’s ISO-9660 support also
works with the Rock Ridge extensions, which are a series of extensions to ISO-9660 to
enable it to support Unix-style long filenames, permissions, symbolic links, and so on. If a
disc includes Rock Ridge extensions, Linux will automatically detect and use them.

Joliet This filesystem is used much like Rock Ridge, as an extension to ISO-9660, but it’s
technically a separate filesystem. Joliet was created by Microsoft for use by Windows, so it
emphasizes Windows filesystem features rather than Unix/Linux filesystem features. Linux
supports Joliet as part of its iso9660 driver; if a disc contains Joliet but not Rock Ridge,
Linux uses the Joliet filesystem.

UDF The Universal Disc Format (UDF) is the next-generation filesystem for optical discs.
It’s commonly used on DVD-ROMs and recordable optical discs. Linux supports it, but
read/write UDF support is still in its infancy.

As a practical matter, if you’re preparing a hard disk for use with Linux, you should
probably use Linux filesystems only. If you’re preparing a disk that will be used for a dual-
boot configuration, you may want to set aside some partitions for other filesystem types.
For removable disks, you’ll have to be the judge of what’s most appropriate. You might use
ext2fs for a Linux-only removable disk, FAT for a cross-platform disk, or ISO-9660 (per-
haps with Rock Ridge and Joliet) for a CD-R or recordable DVD.

04836book.indd 139 1/16/09 9:36:13 AM

140 Chapter 3 n Configuring Hardware

ISO-9660 and other optical disc filesystems are created with special tools
intended for this purpose. Specifically, mkisofs creates an ISO-9660 file-
system (optionally with Rock Ridge, Joliet, HFS, and UDF components
added), while cdrecord writes this image to a blank CD-R.

Creating a Filesystem
Most filesystems, including all Linux-native filesystems, have Linux tools that can create
the filesystem on a partition. Typically, these tools have filenames of the form mkfs.fstype,
where fstype is the filesystem type code. These tools can also be called from a front-end
tool called mkfs; you pass the filesystem type code to mkfs using its -t option:

mkfs -t ext3 /dev/hda6

For ext2 and ext3 filesystems, the mke2fs program is often used instead of
mkfs. The mke2fs program is just another name for mkfs.ext2.

This command creates an ext3 filesystem on /dev/hda6. Depending on the filesystem,
the speed of the disk, and the size of the partition, this process can take anywhere from
a fraction of a second to a few seconds. Most filesystem-build tools support additional
options, some of which can greatly increase the time required to build a filesystem. In par-
ticular, the -c option is supported by several filesystems. This option causes the tool to per-
form a bad-block check—every sector in the partition is checked to be sure it can reliably
hold data. If it can’t, the sector is marked as bad and isn’t used.

If you perform a bad-block check and find that some sectors are bad,
chances are the entire hard disk doesn’t have long to live. Sometimes this
sort of problem can result from other issues, though, such as bad cables or
SCSI termination problems.

Of the common Linux filesystems, ext2fs and ext3fs provide the most options in their
mkfs tools. (In fact, these tools are one and the same; the program simply creates a filesys-
tem with a journal when it’s called as mkfs.ext3 or when mkfs is called with -t ext3.) You
can type man mkfs.ext2 to learn about these options, most of which deal with obscure and
unimportant features. One obscure option that does deserve mention is -m percent, which
sets the reserved-space percentage. The idea is that you don’t want the disk to completely
fill up with user files; if the disk starts getting close to full, Linux should report that the
disk is full before it really is, at least for ordinary users. This gives the root user the ability
to log in and create new files, if necessary, to help recover the system.

The ext2fs/ext3fs reserved-space percentage defaults to 5 percent, which translates to
quite a lot of space on large disks. You may want to reduce this value (say, by passing -m 2
to reduce it to 2 percent) on your root (/) filesystem and perhaps even lower (1 percent or
0 percent) on some, such as /home. Setting -m 0 also makes sense on removable disks,

04836book.indd 140 1/16/09 9:36:13 AM

Creating Partitions and Filesystems 141

which aren’t likely to be critical for system recovery and are probably a bit cramped to
begin with.

In addition to providing filesystem-creation tools for Linux-native filesystems, Linux
distributions usually provide such tools for various non-Linux filesystems. The most impor-
tant of these may be for FAT. The main tool for this task is called mkdosfs, but it’s often
linked to the mkfs.msdos and mkfs.vfat names, as well. This program can automatically
adjust the size of the FAT data structure to 12 or 16 bits depending on the device size. You
can override this option with the -F fat-size option, where fat-size is the FAT size in
bits—12, 16, or 32. In fact, this option is required if you want to create a FAT-32 partition,
which is a practical necessity for any partition over 2GB in size and is usually desirable for
partitions over 512MB in size. No special options are required to create a FAT filesystem
that can handle Windows-style (VFAT) long filenames; these are created by the OS.

In Exercise 3.1, you’ll practice creating filesystems using mkfs and related utilities.

e x e r C i s e 3 .1

Creating filesystems

Try creating some filesystems on a spare partition or a removable disk. Even a floppy disk
will do, although you won’t be able to create journaling filesystems on a floppy disk. The
following steps assume you’re using a Zip disk, /dev/sda4; change the device specifica-
tion as necessary. Be sure to use an empty partition! Accidentally entering the wrong
device filename could wipe out your entire system!

This exercise uses a few commands that are described in more detail later in this chapter.
To create some filesystems, follow these steps:

1. Log in as root.

2. Use fdisk to verify the partitions on your target disk by typing fdisk -l /dev/sda.
You should see a list of partitions, including the one you’ll use for your tests.

3. Verify that your test partition is not currently mounted. Type df to see the currently
mounted partitions and verify that /dev/sda4 is not among them.

4. Type mkfs -t ext2 /dev/sda4. You should see several lines of status information
appear.

5. Type mount /dev/sda4 /mnt to mount the new filesystem to /mnt. (You may use
another mount point, if you like.)

6. Type df /mnt to see basic accounting information for the filesystem. On a 100MB Zip
disk, you should see that 95,171 blocks are present, 13 blocks are used, and 90,244
blocks are available. The difference between the present and available blocks is
caused by the 5 percent reserved space.

7. Type umount /mnt to unmount the filesystem.

8. Type mkfs -t ext2 -m 0 to create a new ext2 filesystem on the device, but without
any reserved space.

04836book.indd 141 1/16/09 9:36:13 AM

142 Chapter 3 n Configuring Hardware

e x e r C i s e 3 .1 (c ont inue d)

9. Repeat steps 5–7. Note that the available space has increased (to 95,158 blocks on a
Zip disk). The available space plus the used space should now equal the total blocks.

10. Repeat steps 4–7, but use a filesystem type code of ext3 to create a journaling file-
system. (This won’t be possible if you use a floppy disk.) Note how much space is
consumed by the journal.

11. Repeat steps 4–7, but use another filesystem, such as JFS or ReiserFS. Note how the
filesystem-creation tools differ in the information they present and in their stated
amounts of available space.

Be aware that, because of differences in how filesystems store files and allocate space,
a greater amount of available space when a filesystem is created may not translate into a
greater capacity to store files.

Creating Swap Space
Some partitions don’t hold files. Most notably, Linux can use a swap partition, which is
a partition that Linux treats as an extension of memory. (Linux can also use a swap file,
which is a file that works in the same way. Both are examples of swap space.) Linux uses
the partition type code of 0x82 to identify swap space, but as with other partitions, this
code is mostly a convenience to keep other OSs from trying to access Linux swap parti-
tions; Linux uses /etc/fstab to define which partitions to use as swap space, as described
in Chapter 4, “Managing Files.”

Solaris for x86 also uses a partition type code of 0x82, but in Solaris,
this code refers to a Solaris partition. If you dual-boot between Solaris
and Linux, this double meaning of the 0x82 partition type code can
cause confusion. This is particularly true when installing the OSs. You
may need to use Linux’s fdisk to temporarily change the partition type
codes to keep Linux from trying to use a Solaris partition as swap space
or to keep Solaris from trying to interpret Linux swap space as a data
partition.

Although swap space doesn’t hold a filesystem per se and isn’t mounted in the way that
filesystem partitions are mounted, swap space does require preparation similar to that for
creation of a filesystem. This task is accomplished with the mkswap command, which you
can generally use by passing it nothing but the device identifier:

mkswap /dev/hda7

04836book.indd 142 1/16/09 9:36:13 AM

Maintaining Filesystem Health 143

This example turns /dev/hda7 into swap space. To use the swap space, you must activate
it with the swapon command:

swapon /dev/hda7

To permanently activate swap space, you must create an entry for it in /etc/fstab, as
described in Chapter 4.

Maintaining Filesystem Health
Filesystems can become “sick” in a variety of ways. They can become overloaded with too
much data, they can be tuned inappropriately for your system, or they can become corrupted
because of buggy drivers, buggy utilities, or hardware errors. Fortunately, Linux provides a
variety of utilities that can help you keep an eye on the status of your filesystems, tune their
performance, and fix them.

Many of Linux’s filesystem maintenance tools should be run when the file-
system is not mounted. Changes made by maintenance utilities while the
filesystem is mounted can confuse the kernel’s filesystem drivers, result-
ing in data corruption. In the following pages, I mention when utilities can
and can’t be used with mounted filesystems.

Tuning Filesystems
Filesystems are basically just big data structures—they’re a means of storing data on disk in
an indexed method that makes it easy to locate the data at a later time. Like all data struc-
tures, filesystems include design compromises. For instance, a design feature may enable
you to store more small files on disk but might chew up disk space, thus reducing the total
capacity available for storage of larger files. In many cases, you have no choice concern-
ing these compromises, but some filesystems include tools that enable you to set filesystem
options that affect performance. This is particularly true of ext2fs and the related ext3fs
and ext4fs. Three tools are particularly important for tuning these filesystems: dumpe2fs,
tune2fs, and debugfs. The first of these tools provides information about the filesystem,
and the other two enable you to change tuning options.

Obtaining Filesystem Information
You can learn a lot about your ext2 or ext3 filesystem with the dumpe2fs command. This
command’s syntax is fairly straightforward:

dumpe2fs [options] device

The device is the filesystem device file, such as /dev/hda2 or /dev/sdb7. This command
accepts several options, most of which are rather obscure. The most important option is

04836book.indd 143 1/16/09 9:36:14 AM

144 Chapter 3 n Configuring Hardware

probably -h, which causes the utility to omit information about group descriptors. (This
information is helpful in very advanced filesystem debugging but not for basic filesystem
tuning.) For information about additional options, consult the man page for dumpe2fs.

Unless you’re a filesystem expert and need to debug a corrupted filesystem, you’re most
likely to want to use dumpe2fs with the -h option. The result is about three dozen lines of
output, each specifying a particular filesystem option, like these:

Last mounted on: <not available>

Filesystem features: has_journal filetype sparse_super

Filesystem state: clean

Inode count: 657312

Block count: 1313305

Last checked: Thu Jul 3 12:32:23 2008

Check interval: 15552000 (6 months)

Some of these options’ meanings are fairly self-explanatory; for instance, the filesystem
was last checked (with fsck, described in “Checking Filesystems”) on July 3. Other options
aren’t so obvious; for instance, the Inode count line may be puzzling. (It’s a count of the
number of inodes supported by the filesystem. Each inode contains information for one file,
so the number of inodes effectively limits the number of files you can store.)

The next two sections describe some of the options you may want to change. For now,
you should know that you can retrieve information about how your filesystems are cur-
rently configured using dumpe2fs. You can then use this information when modifying the
configuration; if your current settings seem reasonable, you can leave them alone, but if
they seem ill adapted to your configuration, you can change them.

Unlike many low-level disk utilities, you can safely run dumpe2fs on a filesystem that’s
currently mounted. This can be handy when you’re studying your configuration to decide
what to modify.

Most other filesystems lack an equivalent to dumpe2fs, but XFS provides something with
at least some surface similarities: xfs_info. To invoke it, pass the command the name of
the partition that holds the filesystem you want to check:

xfs_info /dev/sda7

meta-data=/dev/sda7 isize=256 agcount=88, agsize=1032192 blks

 = sectsz=512 attr=0

data = bsize=4096 blocks=89915392, imaxpct=25

 = sunit=0 swidth=0 blks, unwritten=1

naming =version 2 bsize=4096

log =internal bsize=4096 blocks=8064, version=1

 = sectsz=512 sunit=0 blks

realtime =none extsz=65536 blocks=0, rtextents=0

04836book.indd 144 1/16/09 9:36:14 AM

Maintaining Filesystem Health 145

Instead of the partition name, you can pass the mount point, such as /home or /usr/
local. Unlike most filesystem tools, xfs_info requires that the filesystem be mounted. The
information returned by xfs_info is fairly technical, mostly related to block sizes, sector
sizes, and so on.

Another XFS tool is xfs_metadump. This program copies the filesystem’s metadata (file-
names, file sizes, and so on) to a file. For instance, xfs_metadump /dev/sda7 ~/dump-file
copies the metadata to ~/dump-file. This command doesn’t copy actual file contents and
so isn’t useful as a backup tool. Instead, it’s intended as a debugging tool; if the filesystem is
behaving strangely, you can use this command and send the resulting file to XFS developers
for study.

Adjusting Tunable Filesystem Parameters
The tune2fs program enables you to change many of the filesystem parameters that are
reported by dumpe2fs. This program’s syntax is fairly simple, but it hides a great deal of
complexity:

tune2fs [options] device

The complexity arises because of the large number of options that the program accepts.
Each feature that tune2fs enables you to adjust requires its own option:

Adjust the maximum mount count Ext2fs and ext3fs require a periodic disk check with
fsck. This check is designed to prevent errors from creeping onto the disk undetected. You
can adjust the maximum number of times the disk may be mounted without a check with
the -c mounts option, where mounts is the number of mounts. You can trick the system into
thinking the filesystem has been mounted a certain number of times with the -C mounts
option; this sets the mount counter to mounts.

Adjust the time between checks Periodic disk checks are required based on time as well as
the number of mounts. You can set the time between checks with the -i interval option,
where interval is the maximum time between checks. Normally, interval is a number with
the character d, w, or m appended, to specify days, weeks, or months, respectively.

Add a journal The -j option adds a journal to the filesystem, effectively converting an
ext2 filesystem into an ext3 filesystem. Journal management is described in more detail
shortly, in “Maintaining a Journal.”

Set the reserved blocks The -m percent option sets the percentage of disk space that’s
reserved for use by root. The default value is 5, but this is excessive on multi-gigabyte
hard disks, so you may want to reduce it. You may want to set it to 0 on removable disks
intended to store user files. You can also set the reserved space in blocks, rather than as a
percentage of disk space, with the -r blocks option.

The options described here are the ones that are most likely to be useful. Several other
options are available; consult tune2fs’s man page for details.

As with most low-level disk utilities, you shouldn’t use tune2fs to adjust a mounted
filesystem. If you want to adjust a key mounted filesystem, such as your root (/) filesystem,

04836book.indd 145 1/16/09 9:36:14 AM

146 Chapter 3 n Configuring Hardware

you may need to boot up an emergency disk system, such as the CD-ROM-based Knoppix
(http://www.knoppix.org). Many distributions’ install discs can be used in this capacity,
as well.

If you use XFS, the xfs_admin command is the rough equivalent of tune2fs. Some
options you may want to adjust include the following:

Use version 2 journal format The -j option enables version 2 log (journal) format, which
can improve performance in some situations.

Obtain the filesystem label and UUID You can use the -l and -u options to obtain the
filesystem’s label (name) and universally unique identifier (UUID), respectively. The name
is seldom used in Linux but can be used in some cases. The UUID is a long code that is
increasingly used by distributions to specify a filesystem to be mounted, as described later,
in “Permanently Mounting Filesystems.”

Set the filesystem label and UUID You can change the filesystem’s label or UUID by using
the -L label or -U uuid option, respectively. The label is at most 12 characters in length.
You’ll normally use the -U option to set the UUID to a known value (such as the UUID the
partition used prior to it being reformatted); or you can use generate as the uuid value to
have xfs_admin create a new UUID. You should not set the UUID to a value that’s in use
on another partition!

In use, xfs_admin might look something like this:

xfs_admin -L av_data /dev/sda7

writing all SBs

new label = “av_data”

This example sets the name of the filesystem on /dev/sda7 to av_data. As with tune2fs,
xfs_admin should only be used on unmounted filesystems.

Interactively Debugging a Filesystem
In addition to reviewing and changing filesystem flags with dumpe2fs and tune2fs, you can
interactively modify a filesystem’s features using debugfs. This program provides the abili-
ties of dumpe2fs, tune2fs, and many of Linux’s normal file-manipulation tools all rolled
into one. To use the program, type its name followed by the device filename corresponding
to the filesystem you want to manipulate. You’ll then see the debugfs prompt:

debugfs /dev/hda11

debugfs:

You can type commands at this prompt to achieve specific goals:

Display filesystem superblock information The show_super_stats or stats command
produces superblock information, similar to what dumpe2fs displays.

Display inode information You can display the inode data on a file or directory by typing
stat filename, where filename is the name of the file.

04836book.indd 146 1/16/09 9:36:14 AM

Maintaining Filesystem Health 147

Undelete a file You can use debugfs to undelete a file by typing undelete inode name,
where inode is the inode number of the deleted file and name is the filename you want to
give to it. (You can use undel in place of undelete if you like.) This facility is of limited
utility because you must know the inode number associated with the deleted file. You can
obtain a list of deleted inodes by typing lsdel or list_deleted_inodes, but the list may
not provide enough clues to let you zero in on the file you want to recover.

Extract a file You can extract a file from the filesystem by typing write internal-
file external-file, where internal-file is the name of a file in the filesystem you’re
manipulating and external-file is a filename on your main Linux system. This facility can
be handy if a filesystem is badly damaged and you want to extract a critical file without
mounting the filesystem.

Manipulate files Most of the commands described in Chapter 4 work within debugfs. You
can change your directory with cd, create links with ln, remove a file with rm, and so on.

Obtain help Typing list_requests, lr, help, or ? produces a summary of available
commands.

Exit Typing quit exits from the program.

This summary just scratches the surface of debugfs’s capabilities. In the hands of an
expert, this program can help rescue a badly damaged filesystem or at least extract critical
data from it. To learn more, consult the program’s man page.

Although debugfs is a useful tool, it’s potentially dangerous. Don’t use
it on a mounted filesystem, don’t use it unless you have to, and be very
careful when using it. If in doubt, leave the adjustments to the experts. Be
aware that the LPI exam does cover debugfs, though.

The closest XFS equivalent to debugfs is called xfs_db. Like debugfs, xfs_db provides
an interactive tool to access and manipulate a filesystem; but xfs_db provides fewer tools
that are amenable to novice or intermediate use. Instead, xfs_db is a tool for XFS experts.

Maintaining a Journal
Ext2fs is a traditional filesystem. Although it’s a good performer, it suffers from a major
limitation: After a power failure, a system crash, or another uncontrolled shutdown, the
filesystem could be in an inconsistent state. The only way to safely mount the filesystem
so that you’re sure its data structures are valid is to perform a full disk check on it, as
described in “Checking Filesystems.” This task is usually handled automatically when the
system boots, but it takes time—probably several minutes, or perhaps more than an hour
on a large filesystem or if the computer has many smaller filesystems.

The solution to this problem is to change to a journaling filesystem. Such a filesystem
maintains a journal, which is a data structure that describes pending operations. Prior to
writing data to the disk’s main data structures, Linux describes what it’s about to do in

04836book.indd 147 1/16/09 9:36:14 AM

148 Chapter 3 n Configuring Hardware

the journal. When the operations are complete, their entries are removed from the journal.
Thus, at any given moment the journal should contain a list of disk structures that might
be undergoing modification. The result is that, in the event of a crash or power failure, the
system can examine the journal and check only those data structures described in it. If
inconsistencies are found, the system can roll back the changes, returning the disk to a con-
sistent state without checking every data structure in the filesystem. This greatly speeds the
disk-check process after power failures and system crashes. Today, journaling filesystems
are the standard for most Linux disk partitions. Very small partitions (such as a separate
/boot partition, if you use one) and small removable disks (such as Zip disks) often lack
journals, though.

Four journaling filesystems are common on Linux: ext3fs, ReiserFS, XFS, and JFS. Of
these, the last three require little in the way of journal configuration. Ext3fs is a bit differ-
ent; it’s basically just ext2fs with a journal added. This fact means you can add a journal
to an ext2 filesystem, converting it into an ext3 filesystem. This is what the -j option to
tune2fs does, as described earlier in “Adjusting Tunable Filesystem Parameters.”

Although using tune2fs on a mounted filesystem is generally inadvis-
able, it’s safe to use its -j option on a mounted filesystem. The result
is a file called .journal that holds the journal. If you add a journal to an
unmounted filesystem, the journal file will be invisible.

Adding a journal alone won’t do much good, though. In order to use a journal, you must
mount the filesystem with the correct filesystem type code—ext3 rather than ext2. (The
upcoming section “Mounting and Unmounting Filesystems” describes how to do this.)

The journal, like other filesystem features, has its own set of parameters. You can
set these with the -J option to tune2fs. In particular, the size=journal-size and
device=external-journal sub-options enable you to set the journal’s size and the device on
which it’s stored. By default, the system creates a journal that’s the right size for the filesys-
tem and stores it on the filesystem itself.

Checking Filesystems
Tuning a filesystem is a task you’re likely to perform every once in a while—say, when
making major changes to an installation. Another task is much more common: checking a
filesystem for errors. Bugs, power failures, and mechanical problems can all cause the data
structures on a filesystem to become corrupted. The results are sometimes subtle, but if
they’re left unchecked, they can cause severe data loss. For this reason, Linux includes tools
for verifying a filesystem’s integrity and for correcting any problems that may exist. The
main tool you’ll use for this purpose is called fsck. This program is actually a front end
to other tools, such as e2fsck (a.k.a. fsck.ext2 and fsck.ext3) or XFS’s xfs_check and
xfs_repair. The syntax for fsck is as follows:

fsck [-sACVRTNP] [-t fstype] [--] [fsck-options] filesystems

04836book.indd 148 1/16/09 9:36:14 AM

Maintaining Filesystem Health 149

The LPI objectives emphasize e2fsck rather than fsck, but because fsck
is the more general tool that’s useful on more filesystems, it’s the form
described in more detail in this book.

The more common parameters to fsck enable you to perform useful actions:

Check all files The -A option causes fsck to check all the filesystems marked to be
checked in /etc/fstab. This option is normally used in system startup scripts.

Indicate progress The -C option displays a text-mode progress indicator of the check pro-
cess. Most filesystem check programs don’t support this feature, but e2fsck does.

Show verbose output The -V option produces verbose output of the check process.

No action The -N option tells fsck to display what it would normally do without actually
doing it.

Set the filesystem type Normally, fsck determines the filesystem type automatically.
You can force the type with the -t fstype flag, though. Used in conjunction with -A,
this causes the program to check only the specified filesystem types, even if others are
marked to be checked. If fstype is prefixed with no, then all filesystems except the
specified type are checked.

Filesystem-specific options Filesystem check programs for specific filesystems often have
their own options. The fsck command passes options it doesn’t understand, or those that
follow a double dash (--), to the underlying check program. Common options include -a
or -p (perform an automatic check), -r (perform an interactive check), and -f (force a full
filesystem check even if the filesystem initially appears to be clean).

Filesystem list The final parameter is usually the name of the filesystem or filesystems
being checked, such as /dev/sda6.

Normally, you run fsck with only the filesystem device name, as in fsck /dev/sda6.
You can add options as needed, however. Check fsck’s man page for less common options.

Run fsck only on filesystems that are not currently mounted or that are
mounted in read-only mode. Changes written to disk during normal read/
write operations can confuse fsck and result in filesystem corruption.

Linux runs fsck automatically at startup on partitions that are marked for this in /etc/
fstab, as described later in “Permanently Mounting Filesystems.” The normal behavior
of e2fsck causes it to perform just a quick cursory examination of a partition if it’s been
unmounted cleanly. The result is that the Linux boot process isn’t delayed because of a file-
system check unless the system wasn’t shut down properly. This rule has a couple of excep-
tions, though: e2fsck forces a check if the disk has gone longer than a certain amount of
time without checks (normally six months) or if the filesystem has been mounted more than
a certain number of times since the last check (normally 20). You can change these options

04836book.indd 149 1/16/09 9:36:15 AM

150 Chapter 3 n Configuring Hardware

using tune2fs, as described earlier in “Adjusting Tunable Filesystem Parameters.” There-
fore, you’ll occasionally see automatic filesystem checks of ext2fs and ext3fs partitions even
if the system was shut down correctly.

Journaling filesystems do away with filesystem checks at system startup even if the sys-
tem wasn’t shut down correctly. Nonetheless, these filesystems still require check programs
to correct problems introduced by undetected write failures, bugs, hardware problems, and
the like. If you encounter odd behavior with a journaling filesystem, you might consider
unmounting it and performing a filesystem check—but be sure to read the documentation
first. Some Linux distributions do odd things with some journaling filesystem check pro-
grams. For instance, Mandriva uses a symbolic link from /sbin/fsck.reiserfs to /bin/
true. This configuration speeds system boot times should ReiserFS partitions be marked
for automatic checks, but it can be confusing if you need to manually check the filesystem.
If this is the case, run /sbin/reiserfsck to do the job. Similarly, /sbin/fsck.xfs is usu-
ally nothing but a script that advises the user to run xfs_check or xfs_repair.

Monitoring Disk Use
One common problem with disks is that they can fill up. To avoid this problem, you need
tools to tell you how much space your files are consuming. This is the task of the df and du
programs, which summarize disk use on a partition-by-partition and directory-by-directory
basis, respectively.

Monitoring Disk Use by Partition
The df command’s syntax is as follows:

df [options] [files]

In the simplest case, you can type the command name to see a summary of disk space
used on all of a system’s partitions:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sdb10 5859784 4449900 1409884 76% /

/dev/sdb12 2086264 991468 1094796 48% /opt

/dev/hda13 2541468 320928 2220540 13% /usr/local

/dev/hda9 15361340 10174596 5186744 67% /home

/dev/hda10 22699288 13663408 7882820 64% /other/emu

/dev/hda6 101089 22613 74301 24% /boot

/dev/sdb5 1953216 1018752 934464 53% /other/shared

none 256528 0 256528 0% /dev/shm

speaker:/home 6297248 3845900 2451348 62% /speaker/home

//win/music 17156608 8100864 9055744 48% /win/mp3s

04836book.indd 150 1/16/09 9:36:15 AM

Maintaining Filesystem Health 151

This output shows the device file associated with the filesystem, the total amount of space
on the filesystem, the used space on the filesystem, the free space on the filesystem, the percent-
age of space that’s used, and the mount point. Typically, when used space climbs above about
80 percent, you should consider cleaning up the partition. The appropriate ceiling varies from
one system and partition to another, though. The risk is greatest on partitions that hold files
that change frequently—particularly if large files are likely to be created on a partition, even if
only temporarily.

You can fine-tune the effects of df by passing it several options. Each option modifies
the df output in a specific way:

Include all filesystems The -a or --all option includes pseudo filesystems with a size of 0
in the output. These filesystems may include /proc, /sys, /proc/bus/usb, and others.

Use scaled units The -h or --human-readable option causes df to scale and label its units;
for instance, instead of reporting a partition as having 5859784 blocks, it reports the size as
5.6G (for 5.6GB). The -H and --si options have a similar effect, but they use power-of-10
(1,000, 1,000,000, and so on) units rather than power-of-2 (1,024, 1,048,576, and so on)
units. The -k (--kilobytes) and -m (--megabytes) options force output in their respective
units.

Summarize inodes By default, df summarizes available and used disk space. You can
instead receive a report on available and used inodes by passing the -i or --inodes option.
This information can be helpful if a partition has very many small files, which can deplete
available inodes sooner than they deplete available disk space.

The -i option works well for ext2, ext3, XFS, and some other filesystems
that create a fixed number of inodes when the filesystem is created. Other
filesystems, such as ReiserFS, create inodes dynamically, rendering the
-i option meaningless.

Local filesystems only The -l or --local option causes df to omit network filesystems.
This can speed up operation.

Display filesystem type The -T or --print-type option adds the filesystem type to the
information df displays.

Limit by filesystem type The -t fstype or --type=fstype option displays only informa-
tion about filesystems of the specified type. The -x fstype or --exclude-type=fstype
option has the opposite effect; it excludes filesystems of the specified type from the report.

This list is incomplete; consult df’s man page for details about more options. In addition
to these options, you can specify one or more files to df. When you do this, the program
restricts its report to the filesystem on which the specified file or directory exists. For instance,
to learn about the disk space used on the /home partition, you could type df /home. Alterna-
tively, you can give a device filename, as in df /dev/hda9.

04836book.indd 151 1/16/09 9:36:15 AM

152 Chapter 3 n Configuring Hardware

Monitoring Disk Use by Directory
The df command is helpful for finding out which partitions are in danger of becoming
overloaded; but once you’ve obtained this information, you may need to fine-tune the diag-
nosis and track down the directories and files that are chewing up disk space. The tool for
this task is du, which has a syntax similar to that of df:

du [options] [directories]

This command searches directories you specify and reports how much disk space each
is consuming. This search is recursive, so you can learn how much space the directory and
all its subdirectories consume. The result can be a very long listing if you specify directories
with many files, but several options can reduce the size of this output. Others can perform
helpful tasks as well:

Summarize files as well as directories Ordinarily, du reports on the space used by the
files in directories but not the space used by individual files. Passing the -a or --all option
causes du to report on individual files as well.

Compute a grand total Adding the -c or --total option causes du to add a grand total to
the end of its output.

Use scaled units The -h or --human-readable option causes du to scale and label its units;
for instance, instead of reporting the total disk space used as 5859784 blocks, it reports the
size as 5.6G (for 5.6GB). The -H and --si options have a similar effect, but they use power-
of-10 (1,000, 1,000,000, and so on) units rather than power-of-2 (1,024, 1,048,576, and so
on) units. The -k (--kilobytes) and -m (--megabytes) options force output in their respec-
tive units.

Count hard links Ordinarily, du counts files that appear multiple times as hard links only
once. This reflects true disk space used, but sometimes you may want to count each link
independently (for instance, if you’re creating a CD-R and the file will be stored once for
each link). To do so, include the -l (that’s a lowercase L) or --count-links option. (Links
are described in more detail in Chapter 4.)

Limit depth The --max-depth=n option limits the report to n levels. (The subdirectories’
contents are counted even if they aren’t reported.)

Summarize If you don’t want a line of output for each subdirectory in the tree, pass the -s
or --summarize option, which limits the report to those files and directories you specify on
the command line. This option is equivalent to --max=depth=0.

Limit to one filesystem The -x or --one-file-system option limits the report to the cur-
rent filesystem. If another filesystem is mounted within the tree you want summarized, its
contents aren’t included in the report.

This list is incomplete; you should consult du’s man page for information about addi-
tional options.

04836book.indd 152 1/16/09 9:36:15 AM

Mounting and Unmounting Filesystems 153

As an example of du in action, consider using it to discover which of your users is con-
suming the most disk space in /home. Chances are you’re not concerned with the details of
which subdirectories within each home directory are using the space, so you’ll pass the -s
option to the program:

du -s /home/*

12 /home/ellen

35304 /home/freddie

1760 /home/jennie

12078 /home/jjones

0 /home/lost+found

10110324 /home/mspiggy

In this example, the wildcard character (*) stands for all the directories in /home, thus
producing summaries for all these subdirectories. (For more on this topic, consult Chap-
ter 4.) Clearly, mspiggy (or whoever owns the /home/mspiggy directory) is the biggest
disk space user—or at least, that directory’s contents are consuming the most space. You
could investigate further, say by typing du -s /home/mspiggy/* to learn where the disk
space is being used within the /home/mspiggy directory. In the case of user files, if this
space consumption is a problem, you may want to contact this user instead of trying to
clean it up yourself.

Many types of files shouldn’t simply be deleted. For instance, most pro-
gram files should be removed via the system’s package management
system, if you decide to remove them. (This topic is covered in Chapter 2,
“Managing Software.”) If you’re not sure what a file is or how it should be
removed, don’t delete it—try a Web search, type man filename, or other-
wise research it to figure out what it is.

Mounting and Unmounting Filesystems
Maintaining filesystems is necessary, but the whole reason filesystems exist is to store
files—in other words, to be useful. Under Linux, filesystems are most often used by being
mounted—that is, associated with a directory. This task can be accomplished on a one-
time basis by using tools such as mount (and then unmounted with umount) or persistently
across reboots by editing the /etc/fstab file.

Temporarily Mounting or Unmounting Filesystems
Linux provides the mount command to mount a filesystem to a mount point. The umount
command reverses this process. (Yes, umount is spelled correctly; it’s missing the first n.) In

04836book.indd 153 1/16/09 9:36:15 AM

154 Chapter 3 n Configuring Hardware

practice, using these commands isn’t usually too difficult, but they support a large number
of options.

Syntax and Parameters for mount
The syntax for mount is as follows:

mount [-alrsvw] [-t fstype] [-o options] [device] [mountpoint]

Common parameters for mount support a number of features:

Mount all filesystems The -a parameter causes mount to mount all the filesystems listed
in the /etc/fstab file, which specifies the most-used partitions and devices. The upcoming
section “Permanently Mounting Filesystems” describes this file’s format.

Mount read-only The -r parameter causes Linux to mount the filesystem read-only, even
if it’s normally a read/write filesystem.

Show verbose output As with many commands, -v produces verbose output—the pro-
gram provides comments on operations as they occur.

Mount read/write The -w parameter causes Linux to attempt to mount the filesystem for
both read and write operations. This is the default for most filesystems, but some experi-
mental drivers default to read-only operation. The -o rw option has the same effect.

Specify the filesystem type Use the -t fstype parameter to specify the filesystem type.
Common filesystem types are ext2 (for ext2fs), ext3 (for ext3fs), ext4dev (for ext4fs devel-
opment code; this will change to ext4 once ext4fs is finalized), reiserfs (for ReiserFS), jfs
(for JFS), xfs (for XFS), vfat (for FAT with VFAT long filenames), msdos (for FAT using only
short DOS filenames), iso9660 (for CD-ROM filesystems), udf (for DVD and some CD-ROM
filesystems), nfs (for NFS network mounts), smbfs (for SMB/CIFS network shares), and cifs
(a newer driver for SMB/CIFS network shares). Linux supports many others. If this param-
eter is omitted, Linux will attempt to auto-detect the filesystem type.

Linux requires support in the kernel or as a kernel module to mount a
filesystem of a given type. If this support is missing, Linux will refuse to
mount the filesystem in question.

Mount by label or UUID The -L label and -U uuid options tell mount to mount the file-
system with the specified label or UUID, respectively.

Additional options You can add many options using the -o parameter. Many of these are
filesystem specific.

Device The device is the device filename associated with the partition or disk device, such
as /dev/hda4, /dev/fd0, or /dev/cdrom. This parameter is usually required, but it may be
omitted under some circumstances, as described shortly.

04836book.indd 154 1/16/09 9:36:16 AM

Mounting and Unmounting Filesystems 155

Mount point The mountpoint is the directory to which the device’s contents should
be attached. As with device, it’s usually required, but it may be omitted under some
circumstances.

The preceding list of mount parameters isn’t comprehensive; consult the mount man page
for some of the more obscure options. The most common applications of mount use few
parameters because Linux generally does a good job of detecting the filesystem type and the
default parameters work reasonably well. For instance, consider this example:

mount /dev/sdb7 /mnt/shared

This command mounts the contents of /dev/sdb7 on /mnt/shared, auto-detecting the
filesystem type and using the default options. Ordinarily, only root may issue a mount com-
mand; however, if /etc/fstab specifies the user, users, or owner option, an ordinary user
may mount a filesystem using a simplified syntax in which only the device or mount point
is specified, but not both. For instance, a user may type mount /mnt/cdrom to mount a CD-
ROM if /etc/fstab specifies /mnt/cdrom as its mount point and uses the user, users, or
owner option.

Most Linux distributions ship with auto-mounter support, which causes the
OS to automatically mount removable media when they’re inserted. In GUI
environments, a file browser may also open on the inserted disk. In order to
eject the disk, the user will need to unmount the filesystem by using umount,
as described shortly, or by selecting an option in the desktop environment.

When Linux mounts a filesystem, it ordinarily records this fact in /etc/mtab. This file
has a format similar to that of /etc/fstab and is stored in /etc, but it’s not a configura-
tion file that you should edit. You might examine this file to determine what filesystems are
mounted, though. (The df command, described in more detail in “Monitoring Disk Use by
Partition,” is another way to learn what filesystems are mounted.)

Options for mount
When you do need to use special parameters (via -o or in /etc/fstab), it’s usually to add
filesystem-specific options. Table 3.5 summarizes the most important filesystem options.
Some of these are meaningful only in the /etc/fstab file.

Ta b le 3 .5 Important Filesystem Options for the mount Command

Option Supported Filesystems Description

defaults All Causes the default options for this filesystem
to be used. It’s used primarily in the /etc/
fstab file to ensure that the file includes an
options column.

04836book.indd 155 1/16/09 9:36:16 AM

156 Chapter 3 n Configuring Hardware

Ta b le 3 .5 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

loop All Causes the loopback device for this mount
to be used. Allows you to mount a file as if
it were a disk partition. For instance, mount
-t vfat -o loop image.img /mnt/image
mounts the file image.img as if it were a disk.

auto or noauto All Mounts or doesn’t mount the filesystem at
boot time or when root issues the mount -a
command. The default is auto, but noauto is
appropriate for removable media. Used in
/etc/fstab.

user or nouser All Allows or disallows ordinary users to mount
the filesystem. The default is nouser, but user
is often appropriate for removable media.
Used in /etc/fstab. When included in this
file, user allows users to type mount /mount-
point (where /mountpoint is the assigned
mount point) to mount a disk. Only the user
who mounted the filesystem may unmount it.

users All Similar to user, except that any user may
unmount a filesystem once it’s been mounted.

owner All Similar to user, except that the user must own
the device file. Some distributions, such as
Red Hat, assign ownership of some device files
(such as /dev/fd0 for the floppy disk) to the
console user, so this can be a helpful option.

remount All Changes one or more mount options without
explicitly unmounting a partition. To use this
option, you issue a mount command on an
already-mounted filesystem but with remount
along with any options you want to change.
This feature can be used to enable or disable
write access to a partition, for example.

ro All Specifies a read-only mount of the filesystem.
This is the default for filesystems that include
no write access and for some with particularly
unreliable write support.

04836book.indd 156 1/16/09 9:36:16 AM

Mounting and Unmounting Filesystems 157

Ta b le 3 .5 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

rw All read/write
filesystems

Specifies a read/write mount of the filesys-
tem. This is the default for most read/write
filesystems.

uid=value Most filesystems that
don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Sets the owner of all files. For instance,
uid=500 sets the owner to whoever has
Linux user ID 500. (Check Linux user IDs in
the /etc/passwd file.)

gid=value Most filesystems that
don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Works like uid=value, but sets the group of all
files on the filesystem. You can find group IDs
in the /etc/group file.

umask=value Most filesystems that
don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Sets the umask for the permissions on files.
value is interpreted in binary as bits to be
removed from permissions on files. For
instance, umask=027 yields permissions of
750, or –rwxr-x---. Used in conjunction with
uid=value and gid=value, this option lets you
control who can access files on FAT, HPFS,
and many other foreign filesystems.

dmask=value Most filesystems that
don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Similar to umask, but sets the umask for direc-
tories only, not for files.

fmask=value Most filesystems that
don’t support Unix-
style permissions, such
as vfat, hpfs, ntfs,
and hfs

Similar to umask, but sets the umask for files
only, not for directories.

conv=code Most filesystems used
on Microsoft and Apple
OSs: msdos, umsdos,
vfat, hpfs, and hfs

If code is b or binary, Linux doesn’t modify
the files’ contents. If code is t or text, Linux
auto-converts files between Linux-style and
DOS- or Macintosh-style end-of-line char-
acters. If code is a or auto, Linux applies the
conversion unless the file is a known binary
file format. It’s usually best to leave this at its
default value of binary because file conver-
sions can cause serious problems for some
applications and file types.

04836book.indd 157 1/16/09 9:36:16 AM

158 Chapter 3 n Configuring Hardware

Ta b le 3 .5 Important Filesystem Options for the mount Command (continued)

Option Supported Filesystems Description

norock iso9660 Disables Rock Ridge extensions for ISO-9660
CD-ROMs.

nojoliet iso9660 Disables Joliet extensions for ISO-9660
CD-ROMs.

Some filesystems support additional options that aren’t described here. The man page for
mount covers some of these, but you may need to look at the filesystem’s documentation for
some filesystems and options. This documentation may appear in /usr/src/linux/Docu-
mentation/filesystems or /usr/src/linux/fs/fsname, where fsname is the name of the
filesystem.

Using umount
The umount command is simpler than mount. The basic umount syntax is as follows:

umount [-afnrv] [-t fstype] [device | mountpoint]

Most of these parameters have meanings similar to their meanings in mount, but some
differences deserve mention:

Unmount all Rather than unmount partitions listed in /etc/fstab, the -a option causes
the system to attempt to unmount all the partitions listed in /etc/mtab, the file that holds
information about mounted filesystems. On a normally running system, this operation is
likely to succeed only partly because it won’t be able to unmount some key filesystems, such
as the root partition.

Force unmount You can use the -f option to tell Linux to force an unmount operation
that might otherwise fail. This feature is sometimes helpful when unmounting NFS mounts
shared by servers that have become unreachable.

Fall back to read-only The -r option tells umount that if it can’t unmount a filesystem, it
should attempt to remount it in read-only mode.

Unmount partitions of a specific filesystem type The -t fstype option tells the system
to unmount only partitions of the specified type. You can list multiple filesystem types by
separating them with commas.

The device and mount point You need to specify only the device or only the mountpoint,
not both.

As with mount, normal users can’t ordinarily use umount. The exception is if the partition
or device is listed in /etc/fstab and specifies the user, users, or owner option, in which
case normal users can unmount the device. (In the case of user, only the user who mounted

04836book.indd 158 1/16/09 9:36:17 AM

Mounting and Unmounting Filesystems 159

the partition may unmount it; in the case of owner, the user issuing the command must also
own the device file, as with mount.) These options are most useful for removable-media
devices.

Be cautious when removing floppy disks or unplugging USB disk-like devices
(USB “pen drives” or external hard disks). Linux caches accesses to most
filesystems, which means that data may not be written to the disk until some
time after a write command. Because of this, it’s possible to corrupt a disk by
ejecting or unplugging it, even when the drive isn’t active. You must always
issue a umount command before ejecting a mounted disk. (GUI unmount
tools do this behind the scenes, so using a desktop’s unmount or eject option
is equivalent to using umount.) After issuing the umount command, wait for
the command to return, and if the disk has activity indicators, wait for them
to stop blinking to be sure Linux has finished using the device. This isn’t
an issue for most internal removable media, such as DVD and Zip drives,
because Linux can lock their eject mechanisms, preventing this sort of prob-
lem. Another way to write the cache to disk is to use the sync command; but
because this command does not fully unmount a filesystem, it’s not a substi-
tute for umount.

Permanently Mounting Filesystems
The /etc/fstab file controls how Linux provides access to disk partitions and removable
media devices. Linux supports a unified directory structure in which every disk device (parti-
tion or removable disk) is mounted at a particular point in the directory tree. For instance,
you might access a USB pen drive at /media/pen. The root of this tree is accessed from /.
Directories off this root may be other partitions or disks, or they may be ordinary directories.
For instance, /etc should be on the same partition as /, but many other directories, such as
/home, may correspond to separate partitions. The /etc/fstab file describes how these file-
systems are laid out. (The filename fstab is an abbreviation for filesystem table.)

The /etc/fstab file consists of a series of lines that contain six fields each; the fields are
separated by one or more spaces or tabs. A line that begins with a hash mark (#) is a comment
and is ignored. Listing 3.1 shows a sample /etc/fstab file.

listing 3.1: Sample /etc/fstab File

#device mount point filesystem options dump fsck

/dev/hda1 / ext3 defaults 1 1

UUID=3631a288-673e-40f5-9e96-6539fec468e9 \

 /usr reiserfs defaults 0 0

LABEL=/home /home reiserfs defaults 0 0

/dev/hdb5 /windows vfat uid=500,umask=0 0 0

/dev/hdc /media/cdrom iso9660 users,noauto 0 0

04836book.indd 159 1/16/09 9:36:17 AM

160 Chapter 3 n Configuring Hardware

/dev/sda1 /media/pen auto users,noauto 0 0

server:/home /other/home nfs users,exec 0 0

//winsrv/shr /other/win cifs users,credentials=/etc/creds 0 0

/dev/hda4 swap swap defaults 0 0

The meaning of each field in this file is as follows:

Device The first column specifies the mount device. These are usually device filenames
that reference hard disks, floppy drives, and so on. Most distributions now specify parti-
tions by their labels or UUIDs, as in the LABEL=/home and UUID=3631a288-673e-40f5-
9e96-6539fec468e9 entries in Listing 3.1. When Linux encounters such an entry, it tries
to find the partition whose filesystem has the specified name or UUID and mount it. This
practice can help reduce problems if partition numbers change, but some filesystems lack
these labels. It’s also possible to list a network drive, as in server:/home, which is the
/home export on the computer called server; or //winsrv/shr, which is the shr share on
the Windows or Samba server called winsrv.

Mount point The second column specifies the mount point; in the unified Linux filesys-
tem, this is where the partition or disk will be mounted. This should usually be an empty
directory in another filesystem. The root (/) filesystem is an exception. So is swap space,
which is indicated by an entry of swap.

Filesystem type The filesystem type code is the same as the type code used to mount a file-
system with the mount command. You can use any filesystem type code you can use directly
with the mount command. A filesystem type code of auto lets the kernel auto-detect the file-
system type, which can be a convenient option for removable media devices. Auto-detection
doesn’t work with all filesystems, though.

Mount options Most filesystems support several mount options, which modify how the
kernel treats the filesystem. You may specify multiple mount options, separated by com-
mas. For instance, uid=500,umask=0 for /windows in Listing 3.1 sets the user ID (owner) of
all files to 500 and sets the umask to 0. (User IDs and umasks are covered in more detail
in Chapter 4.) Table 3.3 summarizes the most common mount options. Type man mount or
consult filesystem-specific documentation to learn more.

Backup operation The next-to-last field contains a 1 if the dump utility should back up
a partition or a 0 if it shouldn’t. If you never use the dump backup program, this option is
essentially meaningless. (The dump program was once a common backup tool, but its use is
discouraged today.)

Filesystem check order At boot time, Linux uses the fsck program to check filesystem
integrity. The final column specifies the order in which this check occurs. A 0 means that
fsck should not check a filesystem. Higher numbers represent the check order. The root
partition should have a value of 1, and all others that should be checked should have a
value of 2. Some filesystems, such as ReiserFS, shouldn’t be automatically checked and so
should have values of 0.

04836book.indd 160 1/16/09 9:36:17 AM

Mounting and Unmounting Filesystems 161

If you add a new hard disk or have to repartition the one you’ve got, you’ll probably
need to modify /etc/fstab. You may also need to edit it to alter some of its options. For
instance, setting the user ID or umask on Windows partitions mounted in Linux may be
necessary to let ordinary users write to the partition.

Managing user-Mountable Media

You may want to give ordinary users the ability to mount certain partitions or removable
media, such as floppies, CD-ROMs, and USB pen drives. To do so, create an ordinary
/etc/fstab entry for the filesystem, but be sure to add the user, users, or owner option
to the options column. Table 3.5 describes the differences between these three options.
Listing 3.1 shows some examples of user-mountable media: /media/cdrom, /media/pen,
/other/home, and /other/win. The first two of these are designed for removable media
and include the noauto option, which prevents Linux from wasting time trying to mount
them when the OS first boots. The second pair of mount points are network file shares
that are mounted automatically at boot time; the users option on these lines enables
ordinary users to unmount and then remount the filesystem, which might be handy if,
say, ordinary users have the ability to shut down the server.

As with any filesystems you want to mount, you must provide mount points—that is, create
empty directories—for user-mountable media. Removable media are usually mounted in
subdirectories of /mnt or /media.

The credentials option for the /other/win mount point in Listing 3.1 deserves greater
elaboration. Ordinarily, most SMB/CIFS shares require a username and password as a
means of access control. Although you can use the username=name and password=pass
options to smbfs or cifs, these options are undesirable, particularly in /etc/fstab,
because they leave the password vulnerable to discovery—anybody who can read /etc/
fstab can read the password. The credentials=file option provides an alternative—
you can use it to point Linux at a file that holds the username and password. This file has
labeled lines:

username=hschmidt

password=yiW7t9Td

Of course, the file you specify (/etc/creds in Listing 3.1) must be well protected—it
must be readable only to root and perhaps to the user whose share it describes.

04836book.indd 161 1/16/09 9:36:17 AM

162 Chapter 3 n Configuring Hardware

Summary
Most Linux tools and procedures provide a layer around the hardware, insulating you from
a need to know too many details. Nonetheless, sometimes you’ve got to dig in and config-
ure hardware directly. BIOS settings can control onboard devices such as hard disk control-
lers and USB ports. USB and SCSI devices have their own quirks, and USB in particular is
quickly evolving.

Hard disks are one class of hardware that’s likely to require more attention than most.
Specifically, you must know how to create partitions and prepare filesystems on those
partitions. These tasks are necessary when you install Linux (although most distributions
provide GUI tools to help guide you through this task during installation), when you add
a hard disk, or when you reconfigure an existing system. You should also know something
about boot managers. These programs help get Linux up and running when you turn on a
computer’s power, so they’re unusually critical to Linux operation.

Filesystem management is basic to being able to administer or use a Linux system. The
most basic of these basic tasks are filesystem tasks—the ability to mount filesystems, check
their health, and repair ailing filesystems. Once a filesystem is mounted, you may want to
periodically check to see how full it is, lest you run out of disk space.

Exam Essentials

Summarize BIOS essentials. The BIOS provides two important functions: First, it configures
hardware—both hardware that’s built into the motherboard and hardware on many types of
plug-in cards. Second, the BIOS begins the computer’s boot process, passing control on to the
boot loader in the MBR.

Describe what files contain important hardware information. There are many files under
the /proc filesystem. Many of these files have been mentioned throughout this chapter.
Familiarize yourself with these files, such as /proc/ioports, /proc/interrupts, /proc/
dma, /proc/bus/usb, and others.

Explain Linux’s model for managing USB hardware. Linux uses drivers for USB control-
lers. These drivers in turn are used by some device-specific drivers (for USB disk devices,
for instance) and by programs that access USB hardware via entries in the /proc/bus/usb
directory tree.

Summarize how to obtain information about PCI and USB devices. The lspci and lsusb
programs return information about PCI and USB devices, respectively. You can learn man-
ufacturers’ names and various configuration options by using these commands.

Identify common disk types and their features. PATA disks were the most common type
on PCs until about 2005. Since then, SATA disks, which are more easily configured, have
gained substantially in popularity. SCSI disks have long been considered the top-tier disks,
but their high price has kept them out of inexpensive commodity PCs.

04836book.indd 162 1/16/09 9:36:17 AM

Exam Essentials 163

Describe the purpose of disk partitions. Disk partitions break the disk into a handful of
distinct parts. Each partition can be used by a different OS, can contain a different filesys-
tem, and is isolated from other partitions. These features improve security and safety and
can greatly simplify running a multi-OS system.

Summarize important Linux disk partitions. The most important Linux disk partition is
the root (/) partition, which is at the base of the Linux directory tree. Other possible parti-
tions include a swap partition, /home for home directories, /usr for program files, /var for
transient system files, /tmp for temporary user files, /boot for the kernel and other critical
boot files, and more.

Describe commands that help you monitor disk use. The df command provides a one-
line summary of each mounted filesystem’s size, available space, free space, and percentage
of space used. The du command adds up the disk space used by all the files in a specified
directory tree and presents a summary by directory and subdirectory.

Summarize the tools that can help keep a filesystem healthy. The fsck program is a front-
end to filesystem-specific tools such as e2fsck and fsck.jfs. By whatever name, these pro-
grams examine a filesystem’s major data structures for internal consistency and can correct
minor errors.

Explain how filesystems are mounted in Linux. The mount command ties a filesystem
to a Linux directory; once the filesystem is mounted, its files can be accessed as part of
the mount directory. The /etc/fstab file describes permanent mappings of filesystems to
mount points; when the system boots, it automatically mounts the described filesystems
unless they use the noauto option (which is common for removable disks).

04836book.indd 163 1/16/09 9:36:17 AM

164 Chapter 3 n Configuring Hardware

Review Questions

1. What are common IRQs for serial ports? (Select all that apply.)

A. 1

B. 3

C. 4

D. 16

2. What tool would you use to disable a motherboard’s sound hardware if you don’t want to
use it?

A. The BIOS

B. The alsactl utility

C. The lsmod command

D. None of the above; onboard sound devices can’t be disabled

3. What is the purpose of udev?

A. To aid in the development of software

B. To manage the /dev directory tree

C. To load Linux device drivers

D. To store devices’ BIOS configurations in files

4. You’ve just installed Linux on a new computer with a single SATA hard disk. What device
identifier will refer to the disk?

A. /dev/sda

B. /dev/sda or /dev/hda

C. /dev/hda

D. C:

5. Which files contain essential system information such as IRQs, DMA channels, and I/O
addresses? (Select all that apply.)

A. /proc/ioports

B. /proc/ioaddresses

C. /proc/dma

D. /proc/interrupts

04836book.indd 164 1/16/09 9:36:17 AM

Review Questions 165

6. Typing fdisk -l /dev/hda on an x86 Linux computer produces a listing of four parti-
tions: /dev/hda1, /dev/hda2, /dev/hda5, and /dev/hda6. Which of the following is true?

A. The disk contains two primary partitions and two extended partitions.

B. Either /dev/hda1 or /dev/hda2 is an extended partition.

C. The partition table is corrupted; there should be a /dev/hda3 and a /dev/hda4 before
/dev/hda5.

D. If you add a /dev/hda3 with fdisk, /dev/hda5 will become /dev/hda6 and /dev/
hda6 will become /dev/hda7.

7. A new Linux administrator plans to create a system with separate /home, /usr/local, and
/etc partitions. Which of the following best describes this configuration?

A. The system won’t boot because /etc contains configuration files necessary to mount
non-root partitions.

B. The system will boot, but /usr/local won’t be available because mounted partitions
must be mounted directly off their parent partition, not in a subdirectory.

C. The system will boot only if the /home partition is on a separate physical disk from the
/usr/local partition.

D. The system will boot and operate correctly, provided each partition is large enough for
its intended use.

8. Which of the following directories is most likely to be placed on its own hard disk partition?

A. /bin

B. /sbin

C. /mnt

D. /home

9. You discover that an x86 hard disk has partitions with type codes of 0x0f, 0x82, and 0x83.
Assuming these type codes are accurate, what can you conclude about the disk?

A. The disk holds a partial or complete Linux system.

B. The disk holds DOS or Windows 9x/Me and Windows NT/200x/XP installations.

C. The disk holds a FreeBSD installation.

D. The disk is corrupt; those partition type codes are incompatible.

10. You run Linux’s fdisk and modify your partition layout. Before exiting the program, you
realize that you’ve been working on the wrong disk. What can you do to correct this problem?

A. Nothing; the damage is done, so you’ll have to recover data from a backup.

B. Type w to exit fdisk without saving changes to disk.

C. Type q to exit fdisk without saving changes to disk.

D. Type u repeatedly to undo the operations you’ve made in error.

04836book.indd 165 1/16/09 9:36:18 AM

166 Chapter 3 n Configuring Hardware

11. What does the following command accomplish?
mkfs -t ext2 /dev/sda4

A. It sets the partition table type code for /dev/sda4 to ext2.

B. It converts a FAT partition into an ext2fs partition without damaging the partition’s
existing files.

C. It creates a new ext2 filesystem on /dev/sda4, overwriting any existing filesystem
and data.

D. Nothing; the -t option isn’t valid, and so it causes mkfs to abort its operation.

12. Which of the following best summarizes the differences between DOS’s FDISK and
Linux’s fdisk?

A. Linux’s fdisk is a simple clone of DOS’s FDISK but written to work from Linux rather
than from DOS or Windows.

B. The two are completely independent programs that accomplish similar goals, although
Linux’s fdisk is more flexible.

C. DOS’s FDISK uses GUI controls, whereas Linux’s fdisk uses a command-line interface,
but they have similar functionality.

D. Despite their similar names, they’re completely different tools—DOS’s FDISK handles
disk partitioning, whereas Linux’s fdisk formats floppy disks.

13. What mount point should you associate with swap partitions?

A. /

B. /swap

C. /boot

D. None

14. Which of the following options is used with fsck to force it to use a particular
filesystem type?

A. -A

B. -N

C. -t

D. -C

15. Which of the following pieces of information can df not report?

A. How long the filesystem has been mounted

B. The number of inodes used on an ext3fs partition

C. The filesystem type of a partition

D. The percentage of available disk space used on a partition

04836book.indd 166 1/16/09 9:36:18 AM

Review Questions 167

16. What is an advantage of a journaling filesystem over a conventional (non-journaling)
filesystem?

A. Journaling filesystems are older and better tested than non-journaling filesystems.

B. Journaling filesystems never need to have their filesystems checked with fsck.

C. Journaling filesystems support Linux ownership and permissions; non-journaling file-
systems don’t.

D. Journaling filesystems require shorter disk checks after a power failure or system crash.

17. To access files on a USB pen drive, you type mount /dev/sdc1 /media/pen as root.
Which types of filesystems will this command mount?

A. Ext2fs

B. FAT

C. HFS

D. All of the above

18. Which of the following /etc/fstab entries will mount /dev/sdb2 as the /home directory
at boot time?

A. /dev/sdb2 reiserfs /home defaults 0 0

B. /dev/sdb2 /home reiserfs defaults 0 0

C. /home reiserfs /dev/sdb2 noauto 0 0

D. /home /dev/sdb2 reiserfs noauto 0 0

19. What filesystem options might you specify in /etc/fstab to make a removable disk (USB
pen drive, Zip disk, floppy disk, and so on) user-mountable? (Select all that apply.)

A. user

B. users

C. owner

D. owners

20. What is the minimum safe procedure for removing a USB pen drive, mounted from
/dev/sdb1 at /media/pen, from a Linux computer?

A. Type umount /media/pen, wait for the command to return and disk activity lights to
stop, and then unplug the drive.

B. Unplug the drive, and then type umount /media/pen to ensure that Linux registers the
drive’s removal from the system.

C. Unplug the drive, and then type sync /dev/sdb1 to flush the caches to ensure prob-
lems don’t develop.

D. Type pendrive-remove, and then quickly remove the disk before its activity light stops
blinking.

04836book.indd 167 1/16/09 9:36:18 AM

168 Chapter 3 n Configuring Hardware

Answers to Review Questions

1. B, C. IRQs 3 and 4 are common defaults for RS-232 serial ports. IRQ 1 is reserved for the
keyboard. Although IRQ 16 exists on modern systems, it didn’t exist on early x86 systems,
and its purpose isn’t standardized.

2. A. Modern BIOSs provide the means to disable many onboard devices, including sound
hardware, in case you don’t want to use them. Although the alsactl utility mentioned in
option B is real, it’s used to load or store sound card mixer settings, not to disable the sound
hardware. The lsmod command mentioned in option C displays information about loaded
kernel modules, but it doesn’t remove them or disable the hardware they use. Contrary to
option D, on-board sound hardware can usually be disabled.

3. B. The udev software creates and manages a dynamic /dev directory tree, adding entries
to that directory for devices that exist on the target system. The udev software has nothing
to do with software development (option A). It doesn’t load drivers (option C), although
it does respond to the loading of drivers by creating appropriate entries in /dev. It also
doesn’t store BIOS configuration options in a file (option D).

4. B. SATA disks are usually handled by Linux’s SCSI subsystem and so are referred to as /dev
/sdx; however, some drivers handle these disks as if they were PATA disks, and so refer to
them as /dev/hdx. Thus, option B is correct. Option D (C:) is how Windows would likely
refer to the first partition on the disk, but Linux doesn’t use this style of disk identifier.

5. A, C, D. There is no /proc/ioaddresses file. All the other files listed contain useful infor-
mation; /proc/ioports holds information about I/O ports, /proc/dma holds information
about DMA port usage, and /proc/interrupts holds information about IRQs.

6. B. Logical partitions are numbered 5 and up, and they reside in an extended partition with
a number between 1 and 4. Therefore, one of the first two partitions must be an extended
partition that houses partitions 5 and 6. Because logical partitions are numbered starting
at 5, their numbers won’t change if /dev/hda3 is subsequently added. The disk holds one
primary, one extended, and two logical partitions.

7. A. The /etc/fstab file contains the mapping of partitions to mount points, so /etc must
be an ordinary directory on the root partition, not on a separate partition. Options B and C
describe restrictions that don’t exist. Option D would be correct if /etc were not a separate
partition.

8. D. The /home directory is frequently placed on its own partition in order to isolate it from
the rest of the system and sometimes to enable use of a particular filesystem or filesystem
mount options. The /bin and /sbin directories should never be split off from the root (/)
filesystem because they contain critical executable files that must be accessible in order to
do the most basic work, including mounting filesystems. The /mnt directory often contains
subdirectories used for mounting floppy disks, CD-ROMs, and other removable media or
may be used for this purpose itself. It’s seldom used to directly access hard disk partitions,
although it can be used for this purpose.

04836book.indd 168 1/16/09 9:36:18 AM

Answers to Review Questions 169

9. A. The 0x0f partition type code is one of two valid partition type codes for an extended
partition. (The other is 0x05.) The 0x82 code refers to a Linux swap partition, whereas
0x83 denotes a Linux filesystem partition. Thus, it appears that this disk holds Linux parti-
tions. Windows 9x/Me, Windows NT/200x/XP, and FreeBSD all use other partition type
codes for their partitions. Partitions exist, in part, to enable different OSs to store their data
side-by-side on the same disk, so mixing several partition types (even for different OSs) on
one disk doesn’t indicate disk corruption.

10. C. Linux’s fdisk doesn’t write changes to disk until you exit the program by typing w.
Typing q exits without writing those changes, so typing q in this situation will avert disas-
ter. Typing w would be precisely the wrong thing to do. Typing u would do nothing useful
because it’s not an undo command.

11. C. The mkfs command creates a new filesystem, overwriting any existing data and therefore
making existing files inaccessible. This command doesn’t set the partition type code in the
partition table. The -t ext2 option tells mkfs to create an ext2 filesystem; it’s a perfectly
valid option.

12. B. Although they have similar names and purposes, Linux’s fdisk isn’t modeled after
DOS’s FDISK. DOS’s FDISK does not have GUI controls. Linux’s fdisk does not format
floppy disks.

13. D. Swap partitions aren’t mounted in the way filesystems are, so they have no associated
mount points.

14. C. The –t option is used to tell fsck what filesystem to use. Normally, fsck determines
the filesystem type automatically. The –A option causes fsck to check all the filesystems
marked to be checked in /etc/fstab. The –N option tells fsck to take no action and to
display what it would normally do without doing it. The –C option displays a text-mode
progress indicator of the check process.

15. A. A default use of df reports the percentage of disk space used. The number of inodes and
filesystem types can both be obtained by passing parameters to df. This utility does not
report how long a filesystem has been mounted.

16. D. The journal of a journaling filesystem records pending operations, resulting in quicker
disk checks after an uncontrolled shutdown. Contrary to option A, journaling filesystems
are, as a class, newer than non-journaling filesystems; in fact, the journaling ext3fs is built
upon the non-journaling ext2fs. Although disk checks are quicker with journaling filesys-
tems than with non-journaling filesystems, journaling filesystems do have fsck utilities,
and these may still need to be run from time to time. All Linux native filesystems support
Linux ownership and permissions; this isn’t an advantage of journaling filesystems, con-
trary to option C.

17. D. When typed without a filesystem type specification, mount attempts to auto-detect the
filesystem type. If the media contains any of the specified filesystems, it should be detected
and the disk mounted.

04836book.indd 169 1/16/09 9:36:18 AM

170 Chapter 3 n Configuring Hardware

18. B. The /etc/fstab file consists of lines that contain the device identifier, the mount point,
the filesystem type code, filesystem mount options, the dump flag, and the filesystem check
frequency, in that order. Option B provides this information in the correct order and so
will work. Option A reverses the second and third fields but is otherwise correct. Options
C and D both scramble the order of the first three fields and also specify the noauto mount
option, which causes the filesystem to not mount automatically at boot time.

19. A, B, C. The user, users, and owner options in /etc/fstab all enable ordinary users to
mount a filesystem, but with slightly different implications: user enables anybody to mount
a filesystem, and only that user may unmount it; users enables anybody to mount a filesys-
tem, and anybody may unmount it; and owner enables only the owner of the mount point
to mount or unmount a filesystem. Any of these is likely to be accompanied by noauto,
which prevents Linux from attempting to mount the filesystem at boot time. The owners
parameter of option D doesn’t exist.

20. A. Option A correctly describes the safe procedure for removing a removable medium that
lacks a locking mechanism from a Linux computer. (Instead of typing umount /media/
pen, you could type umount /dev/sdb1; in this context, the two commands are equivalent.)
Option B reverses the order of operations; the umount command must be typed before you
physically remove the pen drive. Option C also has it backward; the sync command would
need to be issued before removing the drive. (The sync command can prevent damage when
removing disks, but it isn’t a complete substitute for umount.) There is no standard pendrive-
remove command in Linux, and if you were to write a script that calls umount and call it
pendrive-remove, pulling the pen drive quickly, as option D describes, would be exactly the
wrong thing to do.

04836book.indd 170 1/16/09 9:36:18 AM

Chapter

4
Managing Files

The Following linux ProFessional
insTiTuTe objecTives are covered in
This chaPTer:

1.103.3 Perform basic file management (weight: 4)ÛÛ

1.104.4 Manage disk quotas (weight: 1)ÛÛ

1.104.5 Manage file permissions and ownership (weight: 3)ÛÛ

1.104.6 Create and change hard and symbolic links ÛÛ
(weight: 2)

1.104.7 Find system files and place files in the correct ÛÛ
location (weight: 2)

04836book.indd 171 1/7/09 9:05:47 AM

Ultimately, Linux is a collection of files stored on your hard
disk. Other disk files contain all your user data. For these
reasons, being able to manage the files contained on your file-

systems is an important skill for any Linux system administrator. Chapter 3, “Configuring
Hardware,” described creating disk partitions, preparing filesystems on them, maintaining
those filesystems, and mounting them. This chapter continues this topic by looking more
closely at file management.

This chapter begins with an examination of the basic commands used to access and
manipulate files. As a multi-user OS, Linux provides tools that enable you to restrict who
may access your files, so I describe the Linux ownership model and the commands that are
built on this model to control file access. Furthermore, Linux provides a system that enables
you to restrict how much disk space individual users may consume, so I describe this fea-
ture. Finally, this chapter looks at locating files—both the formal description of where cer-
tain types of files should reside and the commands you can use to locate specific files.

Managing Files
Basic file management is critical to the use of any computer. This is particularly true on
Unix-like systems, including Linux, because these systems treat almost everything as a file,
including most hardware devices and various specialized interfaces. Thus, being able to
create, delete, move, rename, archive, and otherwise manipulate files is a basic skill of any
Linux user or system administrator.

To begin, you should understand something of the rules that govern filenames and the
shortcuts you can use to refer to files. With this information in hand, you can move on to
learn how to manipulate files, how to manipulate directories, how to archive files, and how
to manage links.

File Naming and Wildcard Expansion Rules
Linux filenames are much like the filenames on any other OS. Every OS has its filename
quirks, though, and these differences can be stumbling blocks to those who move between
systems—or to those who want to move files between systems.

Linux filenames can contain uppercase or lowercase letters, numbers, and even most punc-
tuation and control characters. To simplify your life and avoid confusion, though, I recom-
mend restricting non-alphanumeric symbols to the dot (.), the dash (-), and the underscore

04836book.indd 172 1/7/09 9:05:47 AM

Managing Files 173

(_). Some programs create backup files that end in the tilde (~), as well. Although Linux file-
names can contain spaces, and although such filenames are common in some OSs, they must
be escaped on the Linux command line by preceding the space with a backslash (\) or by
enclosing the entire filename in quotes (“). This requirement makes spaces a bit awkward in
Linux, so most Linux users substitute dashes or occasionally underscores.

A few characters have special meaning and should never be used in filenames. These
include the asterisk (*), the question mark (?), the forward slash (/), the backslash (\), and
the quotation mark (“). Although you can create files that contain all of these characters
except for the forward slash (which serves to separate directory elements) by escaping them,
they’re likely to cause greater confusion than other symbols.

Linux filename length depends on the filesystem in use. On ext2fs, ext3fs, ReiserFS,
XFS, and many others, the limit is 255 characters. If you’ve ever used DOS, you’re prob-
ably familiar with the 8.3 filename limit: DOS filenames are restricted to eight characters
followed by an optional three-character extension. These two components are separated by
a dot. Although one- to four-character extensions are common in Linux, Linux filenames
can contain an arbitrary number of dots. In fact, filenames can begin with a dot. These so-
called dot files are hidden from view by most utilities that display files, so they’re popular
for storing configuration files in your home directory.

If you access a File Allocation Table (FAT) filesystem on a removable disk
or partition used by DOS, you can do so using any of three filesystem type
codes: msdos, which limits you to 8.3 filenames; vfat, which supports
Windows-style long filenames; or umsdos, which is a Linux-only extension
that supports Linux-style long filenames.

Two filenames are particularly special. A filename that consists of a single dot (.) refers
to the current directory, whereas a filename that consists of a double dot (..) refers to the
parent directory. For instance, if your current directory is /home/jerry, then . refers to
that directory and .. refers to /home.

One critical difference between Linux filenames and those of many other OSs is that
Linux treats its filenames in a case-sensitive way; in other words, Filename.txt is different
from filename.txt or FILENAME.TXT. All three files can exist in a single directory. Under
Windows, all three filenames refer to the same file. Although Windows 95 and later all
retain the case of the filename, they ignore it when you refer to an existing file, and they
don’t permit files whose names differ only in case to co-exist in a single directory. This dif-
ference isn’t a major problem for most people who migrate from Windows to Linux, but
you should be aware of it. It can also cause problems when you try to read a FAT disk using
the Linux vfat driver because Linux has to follow the Windows rules when managing files
on that disk.

You can use wildcards with many commands. A wildcard is a symbol or set of symbols
that stands in for other characters. Three classes of wildcards are common in Linux:

?    A question mark (?) stands in for a single character. For instance, b??k matches book,
balk, buck, or any other four-character filename that begins with b and ends with k.

04836book.indd 173 1/7/09 9:05:47 AM

174 Chapter 4 n Managing Files

*    An asterisk (*) matches any character or set of characters, including no character. For
instance, b*k matches book, balk, and buck just as does b??k. b*k also matches bk, bbk, and
backtrack.

Bracketed values Characters enclosed in square brackets ([]) normally match any char-
acter in the set. For instance, b[ao][lo]k matches balk and book but not buck. It’s also
possible to specify a range of values; for instance, b[a-z]ck matches back, buck, and other
four-letter filenames of this form whose second character is a lowercase letter. This differs
from b?ck—because Linux treats filenames in a case-sensitive way and because ? matches
any character (not just any letter), b[a-z]ck doesn’t match bAck or b3ck, although b?ck
matches both of these filenames.

Wildcards are implemented in the shell and passed to the command you call. For
instance, if you type ls b??k, and that wildcard matches the three files balk, book, and
buck, the result is precisely as if you’d typed ls balk book buck. The process of wildcard
expansion is known as file globbing or simply globbing.

The way wildcards are expanded can lead to undesirable consequences.
For instance, suppose you want to copy two files, specified via a wildcard,
to another directory, but you forget to give the destination directory. The
cp command (described shortly) will interpret the command as a request
to copy the first of the files over the second.

File Commands
A few file-manipulation commands are extremely important to everyday file operations.
These commands enable you to list, copy, move, rename, and delete files.

The ls Command
To manipulate files, it’s helpful to know what they are. This is the job of the ls command,
whose name is short for list. The ls command displays the names of files in a directory. Its
syntax is simple:

ls [options] [files]

The command supports a huge number of options; consult ls’s man page for details. The
most useful options include the following:

Display all files Normally, ls omits files whose names begin with a dot (.). These dot files
are often configuration files that aren’t usually of interest. Adding the -a or --all param-
eter displays dot files.

Color listing The --color option produces a color-coded listing that differentiates direc-
tories, symbolic links, and so on by displaying them in different colors. This works at the
Linux console, in xterm windows in X, and from some types of remote logins, but some

04836book.indd 174 1/7/09 9:05:48 AM

Managing Files 175

remote login programs don’t support color displays. Some Linux distributions configure
their shells to use this option by default.

Display directory names Normally, if you type a directory name as one of the files, ls
displays the contents of that directory. The same thing happens if a directory name matches
a wildcard. Adding the -d or --directory parameter changes this behavior to list only the
directory name, which is sometimes preferable.

Long listing The ls command normally displays filenames only. The -l parameter (a lower-
case L) produces a long listing that includes information such as the file’s permission string
(described later, in “Understanding Permissions”), owner, group, size, and creation date.

Display file type The -F or --file-type option appends an indicator code to the end of
each name so you know what type of file it is. The meanings are as follows:

/ Directory

@ Symbolic link

= Socket

| Pipe

Recursive listing The -R or --recursive option causes ls to display directory contents
recursively. That is, if the target directory contains a subdirectory, ls displays both the files
in the target directory and the files in its subdirectory. The result can be a huge listing if a
directory has many subdirectories.

Both the options list and the files list are optional. If you omit the files list, ls
displays the contents of the current directory. You may instead give one or more file or
directory names, in which case ls displays information about those files or directories,
as in this example:

$ ls -F /usr /bin/ls

/bin/ls

/usr:

X11R6/ games/ include/ man/ src/

bin/ i386-glibc20-linux/ lib/ merge@ tmp@

doc/ i486-linux-libc5/ libexec/ sbin/

etc/ i586-mandrake-linux/ local/ share/

This output shows both the /bin/ls program file and the contents of the /usr direc-
tory. The latter consists mainly of subdirectories, but it includes a couple of symbolic
links as well. By default, ls creates a listing that’s sorted by filename, as shown in this
example. Note, though, that uppercase letters (as in X11R6) always appear before lower-
case letters (as in bin).

04836book.indd 175 1/7/09 9:05:48 AM

176 Chapter 4 n Managing Files

One of the most common ls options is -l, which creates a listing like this:

$ ls -l t*

-rwxr-xr-x 1 rodsmith users 111 Apr 13 13:48 test

-rw-r--r-- 1 rodsmith users 176322 Dec 16 09:34 thttpd-2.20b-1.i686.rpm

-rw-r--r-- 1 rodsmith users 1838045 Apr 24 18:52 tomsrtbt-1.7.269.tar.gz

-rw-r--r-- 1 rodsmith users 3265021 Apr 22 23:46 tripwire.rpm

This output includes the permission strings, ownership, file sizes, and file creation dates
in addition to the filenames. This example also illustrates the use of the * wildcard, which
matches any string—thus, t* matches any filename that begins with t.

You can combine multiple options by merging them with a single preced-
ing dash, as in ls -lp to get a long listing that also includes file type codes.
This can save a bit of typing compared to the alternative of ls -l -F.

The cp Command
The cp command copies a file. Its basic syntax is as follows:

cp [options] source destination

The source is normally one or more files, and the destination may be a file (when the
source is a single file) or a directory (when the source is one or more files). When copying to
a directory, cp preserves the original filename; otherwise, it gives the new file the filename
indicated by destination. The command supports a large number of options; consult its
man page for more information. Some of the more useful options enable you to modify the
command’s operation in helpful ways:

Force overwrite The -f or --force option forces the system to overwrite any existing files
without prompting.

Use interactive mode The -i or --interactive option causes cp to ask you before over-
writing any existing files.

Preserve ownership and permissions Normally, a copied file is owned by the user who
issues the cp command and uses that account’s default permissions. The -p or --preserve
option preserves ownership and permissions, if possible.

Perform a recursive copy If you use the -R or --recursive option and specify a directory
as the source, the entire directory, including its subdirectories, is copied. Although -r also
performs a recursive copy, its behavior with files other than ordinary files and directories
is unspecified. Most cp implementations use -r as a synonym for -R, but this behavior isn’t
guaranteed.

Perform an archive copy The -a or --archive option is similar to -R, but it also preserves
ownership and copies links as is. The -R option copies the files to which symbolic links

04836book.indd 176 1/7/09 9:05:48 AM

Managing Files 177

point rather than the symbolic links themselves. (Links are described in more detail later in
this chapter, in “Managing Links.”)

Perform an update copy The -u or --update option tells cp to copy the file only if the
original is newer than the target or if the target doesn’t exist.

This list of cp options is incomplete but covers the most useful options.
Consult cp’s man page for information about additional cp options.

As an example, the following command copies the /etc/fstab configuration file to a
backup location in /root, but only if the original /etc/fstab is newer than the existing
backup:

cp -u /etc/fstab /root/fstab-backup

The mv Command
The mv command (short for move) is commonly used both to move files and directories
from one location to another and to rename them. Linux doesn’t distinguish between these
two types of operations, although many users do. The syntax of mv is similar to that of cp:

mv [options] source destination

The command takes many of the same options as cp does. From the earlier list,
--preserve, --recursive, and --archive don’t apply to mv, but the others do.

To move one or more files or directories, specify the files as the source and specify a
directory or (optionally, for a single-file move) a filename for the destination:

$ mv document.odt important/purchases/

This command copies the document.odt file into the important/purchases subdirectory.
If the move occurs on one low-level filesystem, Linux does the job by rewriting directory
entries; the file’s data need not be read and rewritten. This makes mv fast. When the target
directory is on another partition or disk, though, Linux must read the original file, rewrite
it to the new location, and delete the original. This slows down mv. Also, mv can move
entire directories within a filesystem but not between filesystems.

The preceding example used a trailing slash (/) on the destination directory.
This practice can help avoid problems caused by typos. For instance, if the
destination directory were mistyped as important/purchase (missing the
final s), mv would move document.odt into the important directory under the
filename purchase. Adding the trailing slash makes it explicit that you intend
to move the file into a subdirectory. If it doesn’t exist, mv complains, so you’re
not left with mysterious misnamed files. You can also use the Tab key to
avoid problems. When you press Tab in many Linux shells, such as bash, the
shell tries to complete the filename automatically, reducing the risk of a typo.

04836book.indd 177 1/7/09 9:05:49 AM

178 Chapter 4 n Managing Files

Renaming a file with mv works much like moving a file, except that the source and desti-
nation filenames are in the same directory, as shown here:

$ mv document.odt washer-order.odt

This renames document.odt to washer-order.odt in the same directory. You can com-
bine these two forms as well:

$ mv document.odt important/purchases/washer-order.odt

This command simultaneously moves and renames the file.

The rm Command
To delete a file, use the rm command, whose name is short for remove. Its syntax is simple:

rm [options] files

The rm command accepts many of the same options as cp or mv. Of those described with
cp, --preserve, --archive, and --update don’t apply to rm, but all the others do. With rm,
-r is synonymous with -R.

By default, Linux doesn’t provide any sort of “trash-can” functionality for
its rm command; once you’ve deleted a file with rm, it’s gone and cannot be
recovered without retrieving it from a backup or performing low-level disk
maintenance (such as with debugfs). Therefore, you should be cautious
when using rm, particularly when you’re logged on as root. This is espe-
cially true when you’re using the -R option—rm -R / will destroy an entire
Linux installation! Many Linux GUI file managers do implement trash-can
functionality so that you can easily recover files moved to the trash (assum-
ing you haven’t emptied the trash), so you may want to use a file manager
for removing files.

The touch Command
Linux-native filesystems maintain three time stamps for every file:

Creation timeÛn

Last modification timeÛn

Last access timeÛn

Various programs rely on these time stamps; for instance, the make utility (which helps
compile a program from source code) uses the time stamps to determine which source-code
files must be recompiled if an object file already exists for a particular file. Thus, sometimes
you may need to modify the time stamps. This is the job of the touch command, which has
the following syntax:

touch [options] files

04836book.indd 178 1/7/09 9:05:49 AM

Managing Files 179

By default, touch sets the modification and access times to the current time. You might
use this if, for instance, you wanted make to recompile a particular source code file even
though a newer object file existed. If the specified files don’t already exist, touch creates
them as empty files. This can be handy if you want to create dummy files—say, to experi-
ment with other file-manipulation commands.

You can pass various options to touch to have it change its behavior:

Change only the access time The -a or --time=atime option causes touch to change the
access time alone, not the modification time.

Change only the modification time The -m or --time=mtime option causes touch to
change the modification time alone, not the access time.

Do not create file If you don’t want touch to create any files that don’t already exist, pass
it the -c or --no-create option.

Set the time as specified The -t timestamp option sets the time to the specified timestamp.
This value is given in the form MMDDhhmm[[CC]YY][.ss], where MM is the month, DD is the day,
hh is the hour (on a 24-hour clock), mm is the minute, [CC]YY is the year (such as 2009 or 09,
which are equivalent), and ss is the second. Another way to set a particular time is with the
-r reffile or --reference=reffile option, where reffile is a file whose time stamp you
want to replicate.

File Archiving Commands
A file archiving tool collects a group of files into a single “package” file that you can easily
move around on a single system; back up to a recordable DVD, tape, or other removable
media; or transfer across a network. Linux supports several archiving commands, the most
prominent being tar and cpio. The dd command, although not technically an archiving
command, is similar in some ways, because it can copy an entire partition or disk into a
file, or vice versa.

The zip format, which is common on Windows, is supported by the Linux
zip and unzip commands. Other archive formats, such as the Roshal
Archive (RAR) and StuffIt, can also be manipulated using Linux utilities.
These archive formats may be important in some environments, but they
aren’t covered on the LPI exam.

The tar Utility
The tar program’s name stands for “tape archiver.” Despite this fact, you can use tar to
archive data to other media. In fact, tarballs (archive files created by tar and typically com-
pressed with gzip or bzip2) are often used for transferring multiple files between computers
in one step, such as when distributing source code.

04836book.indd 179 1/7/09 9:05:50 AM

180 Chapter 4 n Managing Files

The tar program is a complex package with many options, but most of what you’ll do
with the utility can be covered with a few common commands. Table 4.1 lists the primary
tar commands, and Table 4.2 lists the qualifiers that modify what the commands do. When-
ever you run tar, you use exactly one command, and you usually use at least one qualifier.

Ta b le 4 .1 tar Commands

Command Abbreviation Description

--create c Creates an archive

--concatenate A Appends tar files to an archive

--append r Appends non-tar files to an archive

--update u Appends files that are newer than those in
an archive

--diff or --compare d Compares an archive to files on disk

--list t Lists an archive’s contents

--extract or --get x Extracts files from an archive

Ta b le 4 . 2 tar Qualifiers

Qualifier Abbreviation Description

--directory dir C Changes to directory dir before perform-
ing operations

--file [host:]file f Uses the file called file on the computer
called host as the archive file

--listed-incremental file g Performs an incremental backup or
restore, using file as a list of previously
archived files

--one-file-system l (on some
versions of tar)

Backs up or restores only one filesystem
(partition)

--multi-volume M Creates or extracts a multi-tape archive

--tape-length N L Changes tapes after N kilobytes

04836book.indd 180 1/7/09 9:05:50 AM

Managing Files 181

Ta b le 4 . 2 tar Qualifiers (continued)

Qualifier Abbreviation Description

--same-permissions p Preserves all protection information

--absolute-paths P Retains the leading / on filenames

--verbose v Lists all files read or extracted; when used
with --list, displays file sizes, ownership,
and time stamps

--verify W Verifies the archive after writing it

--exclude file (none) Excludes file from the archive

--exclude-from file X Excludes files listed in file from the
archive

--gzip or --ungzip z Processes an archive through gzip

--bzip2 j (some older
versions used
I or y)

Processes an archive through bzip2

Of the commands listed in Table 4.1, the most commonly used are --create, --extract,
and --list. The most useful qualifiers from Table 4.2 are --file, --listed-incremental,
--one-file-system, --same-permissions, --gzip, --bzip2, and --verbose. If you fail to
specify a filename with the --file qualifier, tar will attempt to use a default device, which
is often (but not always) a tape device file.

As an example, consider archiving and compressing the my-work subdirectory of your
home directory to a USB pen drive mounted at /media/pen. The following command will
do the trick:

$ tar cvfz /media/pen/my-work.tgz ~/my-work

If you then transfer this pen drive to another system, mount it at /media/usb, and want
to extract the archive, you can do so with another command:

$ tar xvfz /media/usb/my-work.tgz

This command creates a subdirectory called my-work in the current working directory
and populates it with the files from the archive. If you don’t know what’s in an archive,
it’s a good practice to examine it with the --list command before extracting its contents.
Although common practice has tarballs with a single subdirectory, sometimes tarballs drop
many files in the current working directory, which can make them difficult to track down if
you run the command in a directory that already has many files.

04836book.indd 181 1/7/09 9:05:50 AM

182 Chapter 4 n Managing Files

The cpio Utility
The cpio program is similar in principle to tar, but the details of its operation differ. As
with tar, you can direct its output straight to a tape device or to a regular file. Backing up
to a tape device can be a convenient way to back up the computer because it requires no
intermediate storage. To restore data, you use cpio to read directly from the tape device file
or from a regular file.

The cpio utility has three operating modes:

Copy-out mode This mode, activated by use of the -o or --create option, creates an
archive and copies files into it.

Copy-in mode You activate copy-in mode by using the -i or --extract option. This mode
extracts data from an existing archive. If you provide a filename or a pattern to match,
cpio extracts only the files whose names match the pattern you provide.

Copy-pass mode This mode is activated by the -p or --pass-through option. It combines
the copy-out and copy-in modes, enabling you to copy a directory tree from one location to
another.

The copy-out and copy-in modes are named confusingly.

In addition to the options used to select the mode, cpio accepts many other options, the
most important of which are summarized in Table 4.3. To create an archive, you combine
the --create (or -o) option with one or more of the options in Table 4.3; to restore data,
you do the same, but you use --extract (or -i). In either case, cpio acts on filenames that
you type at the console. In practice, you’ll probably use the redirection operator (<) to pass
a filename list to the program.

Ta b le 4 . 3 Options for Use with cpio

Option Abbreviation Description

--reset-access-time -a Resets the access time after reading a file
so that it doesn’t appear to have been read.

--append -A Appends data to an existing archive.

--pattern-file=filename -E filename Uses the contents of filename as a list of
files to be extracted in copy-in mode.

--file=filename -F filename Uses filename as the cpio archive file; if
this parameter is omitted, cpio uses stan-
dard input or output.

04836book.indd 182 1/7/09 9:05:50 AM

Managing Files 183

Ta b le 4 . 3 Options for Use with cpio (continued)

Option Abbreviation Description

--format=format -H format Uses a specified format for the archive file.
Common values for format include bin (the
default, an old binary format), crc (a newer
binary format with a checksum), and tar
(the format used by tar).

N/A -I filename Uses the specified filename instead of
standard input. (Unlike -F, this option does
not redirect output data.)

--no-absolute-filenames N/A In copy-in mode, extracts files relative to
the current directory, even if filenames in the
archive contain full directory paths.

N/A -O filename Uses the specified filename instead of
standard output. (Unlike -F, this option
does not redirect input data.)

--list -t Displays a table of contents for the input.

--unconditional -u Replaces all files without first asking for
verification.

--verbose -v Displays filenames as they’re added to or
extracted from the archive. When used
with -t, displays additional listing informa-
tion (similar to ls -l).

To use cpio to archive a directory, you must pass a list of files to the utility using
standard input. You can do this with the find utility (described in more detail later, in
“The find Command”):

$ find ./my-work | cpio -o > /media/pen/my-work.cpio

The resulting archive file is uncompressed, though. To compress the data, you must
include the gzip utility in the pipe:

$ find ./my-work | cpio -o | gzip > /media/pen/my-work.cpio.gz

Extracting data from an uncompressed cpio archive (say, on another computer with the
media mounted at /media/usb) entails using the -i option, but no pipe is required:

$ cpio -i < /media/usb/my-work.cpio

04836book.indd 183 1/7/09 9:05:51 AM

184 Chapter 4 n Managing Files

If your cpio archive is compressed, you must first uncompress it with gunzip. By using
the -c option to this command, you can pass its output to cpio in a pipe:

$ gunzip -c /media/usb/my-work.cpio.gz | cpio -i

The dd Utility
Sometimes you want to archive a filesystem at a very low level. For instance, you may want
to create a representation of a CD-ROM that you can store on your hard disk or back up a
filesystem that Linux can’t understand. To do so, you can use the dd program. This utility
is a low-level copying program, and when it’s given the device file for a partition as input, it
copies that partition’s contents to the output file you specify. This output file can be another
partition identifier, a tape device, or a regular file, to name three possibilities. The input
and output files are passed with the if=file and of=file options:

dd if=/dev/sda3 of=/dev/st0

This command backs up the /dev/sda3 disk partition to /dev/st0 (a SCSI tape drive).
The result is a very low-level backup of the partition that can be restored by swapping the
if= and of= options:

dd if=/dev/st0 of=/dev/sda3

The dd utility can be a good way to create exact backups of entire partitions, but as a gen-
eral backup tool, it has serious problems. It backs up the entire partition, including any empty
space. For instance, a 2GB partition that holds just 5MB of files will require 2GB of storage
space. Restoring individual files is also impossible unless the target device is a random access
device that can be mounted; if you back up to tape, you must restore everything (at least to
a temporary file or partition) to recover a single file. Finally, you can’t easily restore data to a
partition that’s smaller than the original partition; and when restoring to a larger partition,
you’ll end up wasting some of the space available on that partition.

Despite these problems, dd can be handy in some situations. It can be a good way to
make an exact copy of a CD-ROM, for instance. You can use dd to copy a disk for which
Linux lacks filesystem drivers. If you need to create multiple identical Linux installations,
you can do so by using dd to copy a working installation to multiple computers, as long as
they have hard disks the same size.

You can also use dd in some other capacities. For instance, if you need an empty file of a
particular size, you can copy from the /dev/zero device (a Linux device that returns nothing
but zeroes) to a target file. You’ll need to use the bs=size and count=length options to set
the block size and length of the file, though:

$ dd if=/dev/zero of=empty-file.img bs=1024 count=720

This example creates a 720KB (1024 × 720 bytes) empty file. You might then manipulate
this file by, for example, creating a filesystem on it with mkfs.

04836book.indd 184 1/7/09 9:05:51 AM

Managing Files 185

backing up using optical Media

Optical media require special backup procedures. Normally, cdrecord accepts input from
a program like mkisofs, which creates an ISO-9660 or UDF filesystem—the type of file-
system that’s most often found on CD-ROMs and DVDs.

One option for backing up to optical discs is to use mkisofs and then cdrecord to copy
files to the disc. If you copy files “raw” this way, though, you’ll lose some information,
such as write permission bits. You’ll have better luck if you create a tar or cpio archive
on disk. You can then use mkisofs to place that archive in an ISO-9660 or UDF filesys-
tem, and then burn the image file to the optical disc. The result will be a disc that you can
mount and that will contain an archive you can read with tar or cpio.

A somewhat more direct option is to create an archive file and burn it directly to the optical
disc using cdrecord, bypassing mkisofs. Such a disc won’t be mountable in the usual way,
but you can access the archive directly by using the CD-ROM device file. On restoration, this
works much like a tape restore except that you specify the optical device filename (such as
/dev/cdrom) instead of the tape device filename (such as /dev/st0).

Managing Links
In Linux, a link is a way to give a file multiple identities, similar to shortcuts in Windows
and aliases in Mac OS. Linux employs links to help make files more accessible, to give com-
mands multiple names, to enable programs that look for the same files in different locations
to access the same files, and so on. Two types of links exist: hard links and soft links (a.k.a.
symbolic links). (Their differences are described in more detail shortly.) The ln command
creates links. Its syntax is similar to that of cp:

ln [options] source link

The source is the original file, and the link is the name of the link you want to create.
This command supports options that have several effects:

Remove target files The -f or --force option causes ln to remove any existing links or
files that have the target link name. The -i or --interactive option has a similar effect,
but it queries you before replacing existing files and links.

Create directory hard links Ordinarily, you can’t create hard links to directories. The
root user can attempt to do so, though, by passing the -d, -F, or --directory option to ln.
(Symbolic links to directories aren’t a problem.) In practice, this feature is unlikely to work
because most filesystems don’t support it.

04836book.indd 185 1/7/09 9:05:51 AM

186 Chapter 4 n Managing Files

Create a symbolic link The ln command creates hard links by default. To create a symbolic
link, pass the -s or --symbolic option to the command.

A few other options exist to perform more obscure tasks; consult ln’s man page for details.
By default, ln creates hard links, which are produced by creating two directory entries

that point to the same file (more precisely, the same inode). Both filenames are equally valid
and prominent; neither is a “truer” filename than the other, except that one was created first
(when creating the file) and the other was created second. To delete the file, you must delete
both hard links to the file. Because of the way hard links are created, they must exist on a
single low-level filesystem; you can’t create a hard link from, say, your root (/) filesystem to
a separate filesystem you’ve mounted on it, such as /home (if it’s a separate filesystem). The
underlying filesystem must support hard links. All Linux native filesystems support this fea-
ture, but some non-Linux filesystems don’t.

Symbolic links, by contrast, are special file types. The symbolic link is a separate file
whose contents point to the linked-to file. Linux knows to access the linked-to file when-
ever you try to access the symbolic link, so in most respects accessing a symbolic link
works just like accessing the original file. Because symbolic links are basically files that
contain filenames, they can point across low-level filesystems—you can point from the root
(/) filesystem to a file on a separate /home filesystem, for instance. The lookup process for
accessing the original file from the link consumes a tiny bit of time, so symbolic link access
is slower than hard link access—but not by enough that you’d notice in any but very bizarre
conditions or artificial tests. Long directory listings show the linked-to file:

$ ls -l alink.odt

lrwxrwxrwx 1 rodsmith users 8 Dec 2 15:31 alink.odt -> test.odt

In practice, symbolic links are more common than hard links; their disadvantages are
minor, and the ability to link across filesystems and to directories can be important. Linux
employs links in certain critical system administration tasks. For instance, System V (SysV)
startup scripts use symbolic links in runlevel directories, as described in Chapter 5, “Booting
Linux and Editing Files.” Certain commands that have historically been known by multiple
names are also often accessible via links. For example, the /sbin/fsck.ext2, /sbin/fsck.
ext3, and /sbin/e2fsck programs are usually links (hard links on some systems, symbolic
links on others). You can often leave these links alone, but sometimes you must adjust them.
Chapter 5 describes changing the SysV startup script links to affect what programs run
when the system boots, for instance.

Directory Commands
Most of the commands that apply to files also apply to directories. In particular, ls, mv,
touch, and ln all work with directories, with the caveats mentioned earlier. The cp com-
mand also works with directories, but only when you use a recursion option, such as
-r. A couple of additional commands, mkdir and rmdir, enable you to create and delete
directories, respectively.

04836book.indd 186 1/7/09 9:05:52 AM

Managing File Ownership 187

The mkdir Command
The mkdir command creates a directory. This command’s official syntax is as follows:

mkdir [options] directory-name(s)

In most cases, mkdir is used without options, but a few are supported:

Set mode The -m mode or --mode=mode option causes the new directory to have the speci-
fied permission mode, expressed as an octal number. (The upcoming section “Understand-
ing Permissions” describes permission modes.)

Create parent directories Normally, if you specify the creation of a directory within a
directory that doesn’t exist, mkdir responds with a No such file or directory error and
doesn’t create the directory. If you include the -p or --parents option, though, mkdir creates
the necessary parent directory.

The rmdir Command
The rmdir command is the opposite of mkdir; it destroys a directory. Its syntax is similar:

rmdir [options] directory-name(s)

Like mkdir, rmdir supports few options, the most important of which handle these tasks:

Ignore failures on non-empty directories Normally, if a directory contains files
or other directories, rmdir doesn’t delete it and returns an error message. With the
--ignore-fail-on-non-empty option, rmdir still doesn’t delete the directory, but it
doesn’t return an error message.

Delete tree The -p or --parents option causes rmdir to delete an entire directory tree.
For instance, typing rmdir -p one/two/three causes rmdir to delete one/two/three, then
one/two, and finally one, provided no other files or directories are present.

When you’re deleting an entire directory tree filled with files, rm -R is a
better choice than rmdir because rm -R deletes files within the specified
directory but rmdir doesn’t.

Managing File Ownership
Security is an important topic that cuts across many types of commands and Linux sub-
systems. In the case of files, security is built on file ownership and file permissions. These
two topics are closely intertwined; ownership is meaningless without permissions that use
it, and permissions rely on the existence of ownership.

Ownership is two tiered: Each file has an individual owner and a group with which
it’s associated (sometimes called the group owner, or simply the file’s group). Each group

04836book.indd 187 1/7/09 9:05:52 AM

188 Chapter 4 n Managing Files

can contain an arbitrary number of users, as described in Chapter 7, “Administering the
System.” The two types of ownership enable you to provide three tiers of permissions to
control access to files: by the file’s owner, by the file’s group, and to all other users. The
commands to manage these two types of ownership are similar, but they aren’t identical.

Assessing File Ownership
You can learn who owns a file with the ls command, which was described earlier. In par-
ticular, that command’s -l option produces a long listing, which includes both ownership
and permission information:

$ ls -l

total 1141

-rw-r--r-- 1 rodsmith users 219648 Mar 8 13:06 4425ch02.doc

-rw-r--r-- 1 rodsmith users 942590 Mar 6 23:31 f0201.tif

This long listing includes the username of the owner (rodsmith for both files in this exam-
ple) and the group name of the files’ groups (users for both files in this example). The permis-
sion string (-rw-r--r-- for both files in this example) is also important for file security, as
described later in “Controlling Access to Files.”

In most cases, the usernames associated with files are the same as login usernames. Files
can, however, be owned by accounts that aren’t ordinary login accounts. For instance, some
servers have accounts of their own, and server-specific files may be owned by these accounts.

If you delete an account, as described in Chapter 7, the account’s files don’t vanish, but
the account name does. Internally, Linux uses numbers rather than names, so you’ll see
numbers in place of the username and group name in the ls output. Depending on the file,
you may want to archive it, reassign ownership to an existing user, or delete it.

Changing a File’s Owner
Whenever a file is created, it’s assigned an owner. The superuser can change a file’s owner-
ship using the chown command, whose syntax is as follows:

chown [options] [newowner][:newgroup] filenames

As you might expect, the newowner and newgroup variables are the new owner and group
for the file; you can provide both or omit either, but you can’t omit both. For instance, sup-
pose you want to give ownership of a file to sally and the skyhook group:
chown sally:skyhook forward.odt

Linux’s chown command accepts a dot (.) in place of a colon (:) to delimit the
owner and group, at least as of the core file utilities version 6.10. The use of
a dot has been deprecated, though, meaning that the developers favor the
alternative and may eventually eliminate the use of a dot as a feature.

04836book.indd 188 1/7/09 9:05:52 AM

Controlling Access to Files 189

You can use several options with chown, most of which are fairly obscure. One that’s
most likely to be useful is -R or --recursive, which implements the ownership change
on an entire directory tree. Consult the man page for chown for information about addi-
tional options.

The chown command may only be used by root. If an ordinary user tries to use it, the
result is an Operation not permitted error message.

Changing a File’s Group
Both root and ordinary users may run the chgrp command, which changes a file’s group.
(Ordinary users may only change a file’s group to a group to which the user belongs.) This
command’s syntax is similar to, but simpler than, that of chown:

chgrp [options] newgroup filenames

The chgrp command accepts many of the same options as chown, including -R or
--recursive. In practice, chgrp provides a subset of the chown functionality, with the
important exception that ordinary users can use chgrp.

Controlling Access to Files
The bulk of the complexity in file ownership and permissions is on the permissions end
of things. Linux’s system of permissions is moderately complex, so understanding how it
works is critical to any manipulation of permissions. With the basic information in hand,
you can tackle the commands used to change file permissions.

Understanding Permissions
Linux permissions are fairly complex. In addition to providing access control for files, a few
special permission bits exist, which provide some unusual features.

The Meanings of Permission Bits
Consider the following file access control string that’s displayed with the -l option to ls:

$ ls -l test

-rwxr-xr-x 1 rodsmith users 111 Apr 13 13:48 test

This string (-rwxr-xr-x in this example) is 10 characters long. The first character has
special meaning—it’s the file type code. The type code determines how Linux will interpret
the file—as ordinary data, a directory, or a special file type. Table 4.4 summarizes Linux
type codes.

04836book.indd 189 1/7/09 9:05:52 AM

190 Chapter 4 n Managing Files

Ta b le 4 . 4 Linux File Type Codes

Code Meaning

- Normal data file; may be text, an executable program, graphics, compressed
data, or just about any other type of data.

d Directory; disk directories are files just like any others, but they contain file-
names and pointers to disk inodes.

l Symbolic link; the file contains the name of another file or directory. When
Linux accesses the symbolic link, it tries to read the linked-to file.

p Named pipe; a pipe enables two running Linux programs to communicate with
each other. One opens the pipe for reading, and the other opens it for writing,
enabling data to be transferred between the programs.

s Socket; a socket is similar to a named pipe, but it permits network and bidirec-
tional links.

b Block device; a file that corresponds to a hardware device to and from which
data is transferred in blocks of more than one byte. Disk devices (hard disks,
floppies, CD-ROMs, and so on) are common block devices.

c Character device; a file that corresponds to a hardware device to and from
which data is transferred in units of one byte. Examples include parallel and
RS-232 serial port devices.

The remaining nine characters of the permission string (rwxr-xr-x in the example) are
broken up into three groups of three characters. The first group controls the file owner’s
access to the file, the second controls the group’s access to the file, and the third controls all
other users’ access to the file (often referred to as world permissions).

In each of these three cases, the permission string determines the presence or absence
of each of three types of access: read, write, and execute. Read and write permissions are
fairly self-explanatory, at least for ordinary files. If the execute permission is present, it
means that the file may be run as a program. (Of course, this doesn’t turn a non-program
file into a program; it only means that a user may run a file if it’s a program. Setting the
execute bit on a non-program file will probably cause no real harm, but it could be confus-
ing.) The absence of the permission is denoted by a dash (-) in the permission string. The
presence of the permission is indicated by a letter—r for read, w for write, or x for execute.

Thus, the example permission string rwxr-xr-x means that the file’s owner, members
of the file’s group, and all other users can read and execute the file. Only the file’s owner
has write permission to the file. You can easily exclude those who don’t belong to the file’s
group, or even all but the file’s owner, by changing the permission string, as described in
“Changing a File’s Mode” later in this chapter.

04836book.indd 190 1/7/09 9:05:52 AM

Controlling Access to Files 191

Individual permissions, such as execute access for the file’s owner, are often referred to
as permission bits. This is because Linux encodes this information in binary form. Because
it’s binary, the permission information can be expressed as a single 9-bit number. This
number is usually expressed in octal (base 8) form because a base-8 number is 3 bits in
length, which means that the base-8 representation of a permission string is three digits
long, one digit for each of the owner, group, and world permissions. The read, write, and
execute permissions each correspond to one of these bits. The result is that you can deter-
mine owner, group, or world permissions by adding base-8 numbers: 1 for execute permis-
sion, 2 for write permission, and 4 for read permission.

Table 4.5 shows some examples of common permissions and their meanings. This table
is necessarily incomplete; with 9 permission bits, the total number of possible permissions
is 29, or 512. Most of those possibilities are peculiar, and you’re not likely to encounter or
create them except by accident.

Ta b le 4 .5 Example Permissions and Their Likely Uses

Permission String Octal Code Meaning

rwxrwxrwx 777 Read, write, and execute permissions for all users.

rwxr-xr-x 755 Read and execute permission for all users. The file’s
owner also has write permission.

rwxr-x--- 750 Read and execute permission for the owner and group.
The file’s owner also has write permission. Users who
aren’t the file’s owner or members of the group have
no access to the file.

rwx------ 700 Read, write, and execute permissions for the file’s
owner only; all others have no access.

rw-rw-rw- 666 Read and write permissions for all users. No execute
permissions for anybody.

rw-rw-r-- 664 Read and write permissions for the owner and group.
Read-only permission for all others.

rw-rw---- 660 Read and write permissions for the owner and group.
No world permissions.

rw-r--r-- 644 Read and write permissions for the owner. Read-only
permission for all others.

rw-r----- 640 Read and write permissions for the owner, and read-
only permission for the group. No permission for others.

04836book.indd 191 1/7/09 9:05:53 AM

192 Chapter 4 n Managing Files

Ta b le 4 .5 Example Permissions and Their Likely Uses (continued)

Permission String Octal Code Meaning

rw------- 600 Read and write permissions for the owner. No permis-
sion for anybody else.

r-------- 400 Read permission for the owner. No permission for any-
body else.

Execute permission makes sense for ordinary files, but it’s meaningless for most other
file types, such as device files. Directories, though, use the execute bit another way. When a
directory’s execute bit is set, that means that the directory’s contents may be searched. This
is a highly desirable characteristic for directories, so you’ll almost never find a directory on
which the execute bit is not set in conjunction with the read bit.

Directories can be confusing with respect to write permission. Recall that directories are
files that are interpreted in a special way. As such, if a user can write to a directory, that
user can create, delete, or rename files in the directory, even if the user isn’t the owner of
those files and does not have permission to write to those files. You can use the sticky bit
(described shortly, in “Special Permission Bits”) to alter this behavior.

Symbolic links are unusual with respect to permissions. This file type always has 777
(rwxrwxrwx) permissions, thus granting all users full access to the file. This access applies
only to the link file itself, however, not to the linked-to file. In other words, all users can
read the contents of the link to discover the name of the file to which it points, but the per-
missions on the linked-to file determine its file access. Changing the permissions on a sym-
bolic link affects the linked-to file.

Many of the permission rules don’t apply to root. The superuser can read or write any
file on the computer—even files that grant access to nobody (that is, those that have 000
permissions). The superuser still needs an execute bit to be set to run a program file, but
the superuser has the power to change the permissions on any file, so this limitation isn’t
very substantial. Some files may be inaccessible to root, but only because of an underly-
ing restriction—for instance, even root can’t access a hard disk that’s not installed in the
computer.

Special Permission Bits
A few special permission options are also supported, and they may be indicated by changes
to the permission string:

Set user ID (SUID) The set user ID (SUID) option is used in conjunction with executable
files, and it tells Linux to run the program with the permissions of whoever owns the file
rather than with the permissions of the user who runs the program. For instance, if a file
is owned by root and has its SUID bit set, the program runs with root privileges and can
therefore read any file on the computer. Some servers and other system programs run this

04836book.indd 192 1/7/09 9:05:53 AM

Controlling Access to Files 193

way, which is often called SUID root. SUID programs are indicated by an s in the owner’s
execute bit position in the permission string, as in rwsr-xr-x.

Set group ID (SGID) The set group ID (SGID) option is similar to the SUID option, but it
sets the group of the running program to the group of the file. It’s indicated by an s in the
group execute bit position in the permission string, as in rwxr-sr-x. When the SGID bit is
set on a directory, new files or subdirectories created in the original directory will inherit the
group ownership of the directory, rather than be based on the user’s current default group.

Sticky bit The sticky bit has changed meaning during the course of Unix history. In modern
Linux implementations (and most modern versions of Unix), it’s used to protect files from
being deleted by those who don’t own the files. When this bit is present on a directory, the
directory’s files can be deleted only by their owners, the directory’s owner, or root. The sticky
bit is indicated by a t in the world execute bit position, as in rwxr-xr-t.

These special permission bits all have security implications. SUID and
SGID programs (and particularly SUID root programs) are potential secu-
rity risks. Although some programs must have their SUID bits set to func-
tion properly, most don’t, and you shouldn’t set these bits unless you’re
certain that doing so is necessary. The sticky bit isn’t dangerous this way,
but because it affects who may delete files in a directory, you should con-
sider its effect—or the effect of not having it—on directories to which many
users should have write access, such as /tmp. Typically, such directories
have their sticky bits set.

using acls

Unix-style permissions have served Linux well since its creation and are emphasized on the
LPI exam; but a new and improved permission system is now available. An access control
list (ACL) is a list of users or groups and the permissions they’re given. Linux ACLs, like Linux
owner, group, and world permissions, consist of three permission bits, one each for read,
write, and execute permissions. The file’s owner can assign ACLs to an arbitrary number of
users and groups, making ACLs more flexible than Linux permissions, which are limited to
groups defined by the system administrator.

ACLs require support in the underlying filesystem. All the major Linux filesystems now
support ACLs, but you may need to recompile your kernel (or at least the relevant kernel
module) to activate this support.

ACLs require their own commands to set and view. The setfacl command sets an ACL,
and the getfacl command displays the ACLs for a file. Consult these commands’ man
pages for more information.

04836book.indd 193 1/7/09 9:05:53 AM

194 Chapter 4 n Managing Files

Changing a File’s Mode
You can modify a file’s permissions using the chmod command. This command may be
issued in many different ways to achieve the same effect. Its basic syntax is as follows:

chmod [options] [mode[,mode...]] filename...

The chmod options are similar to those of chown and chgrp. In particular, --recursive
(or -R) changes all the files in a directory tree.

Most of the complexity of chmod comes in the specification of the file’s mode. You can
specify the mode in two basic forms: as an octal number or as a symbolic mode, which is a
set of codes related to the string representation of the permissions.

The octal representation of the mode is the same as that described earlier and summa-
rized in Table 4.5. For instance, to change permissions on report.tex to rw-r--r--, you
can issue the following command:

$ chmod 644 report.tex

In addition, you can precede the three digits for the owner, group, and world permis-
sions with another digit that sets special permissions. Three bits are supported (hence
values between 0 and 7): adding 4 sets the set user ID (SUID) bit, adding 2 sets the set
group ID (SGID) bit, and adding 1 sets the sticky bit. If you omit the first digit (as in the
preceding example), Linux clears all three bits. Using four digits causes the first to be
interpreted as the special permissions code.

For instance, suppose you’ve acquired a script called bigprogram. You want to set
both SUID and SGID bits (6); to make the program readable, writeable, and execut-
able by the owner (7); to make it readable and executable by the group (5); and to make
it completely inaccessible to all others (0). The following commands illustrate how to
do this; note the difference in the mode string before and after executing the chmod
command:

$ ls -l bigprogram

-rw-r--r-- 1 rodsmith users 10323 Oct 31 18:58 bigprogram

$ chmod 6750 bigprogram

$ ls -l bigprogram

-rwsr-s--- 1 rodsmith users 10323 Oct 31 18:58 bigprogram

A symbolic mode, by contrast, consists of three components: a code indicating the
permission set you want to modify (the owner, the group, and so on); a symbol indicat-
ing whether you want to add, delete, or set the mode equal to the stated value; and a code
specifying what the permission should be. Table 4.6 summarizes all these codes. Note that
these codes are all case sensitive.

04836book.indd 194 1/7/09 9:05:53 AM

Controlling Access to Files 195

Ta b le 4 .6 Codes Used in Symbolic Modes

Permission
Set Code Meaning

Change
Type Code Meaning

Permission to
Modify Code Meaning

u Owner + Add r Read

g Group - Remove w Write

o World = Set equal to x Execute

a All X Execute only if the file is
a directory or already has
execute permission

s SUID or SGID

t Sticky bit

u Existing owner’s
permissions

g Existing group
permissions

o Existing world
permissions

To use symbolic permission settings, you combine one or more of the codes from the
first column of Table 4.6 with one symbol from the third column and one or more codes
from the fifth column. You can combine multiple settings by separating them by commas.
Table 4.7 provides some examples of chmod using symbolic permission settings.

Ta b le 4 .7 Examples of Symbolic Permissions with chmod

Command Initial Permissions End Permissions

chmod a+x bigprogram rw-r--r-- rwxr-xr-x

chmod ug=rw report.tex r-------- rw-rw----

chmod o-rwx  bigprogram rwxrwxr-x rwxrwx---

chmod g=u report.tex rw-r--r-- rw-rw-r--

chmod g-w,o-rw report.tex rw-rw-rw- rw-r-----

04836book.indd 195 1/7/09 9:05:54 AM

196 Chapter 4 n Managing Files

In Exercise 4.1, you’ll experiment with the effect of Linux ownership and permissions on
file accessibility.

e x e r c i s e 4 .1

Modifying ownership and Permissions

During this exercise, you’ll need to use three accounts: root and two user accounts, each
in a different group. To study these effects, follow these steps:

1. Log in three times using three virtual terminals: once as root, once as user1, and
once as user2. (Use usernames appropriate for your system, though. Be sure that
user1 and user2 are in different groups.) If you prefer, instead of using virtual ter-
minals, you can open three xterm windows in an X session, using su to acquire each
user’s privileges.

2. As root, create a scratch directory—say, /tmp/scratch. Type mkdir /tmp/scratch.

3. As root, give all users read and write access to the scratch directory by typing chmod 
0777 /tmp/scratch.

4. In the user1 and user2 login sessions, change to the scratch directory by typing
cd /tmp/scratch.

5. As user1, copy a short text file to the scratch directory using cp, as in cp /etc/ 
fstab ./testfile.

6. As user1, set 0644 (-rw-r--r--) permissions on the file by typing chmod 0644 
testfile. Type ls -l, and verify that the permission string in the first column
matches this value (-rw-r--r--).

7. As user2, try to access the file by typing cat testfile. The file should appear on
the screen.

8. As user2, try to change the name of the file by typing mv testfile changedfile.
The system won’t produce any feedback, but if you type ls, you’ll see that the file’s
name has changed. Note that user2 doesn’t own the file but can rename it because
user2 can write to the directory in which the file resides.

9. As user2, try to change the mode of the file by typing chmod 0600 changedfile. The
system should respond with an Operation not permitted error because only the file’s
owner may change its permissions.

10. As user2, try to delete the file by typing rm changedfile. Depending on your con-
figuration, the system may or may not ask for verification, but it should permit the
deletion. This is true despite the fact that user2 doesn’t own the file because user2
can write to the directory in which the file resides.

11. As user1, repeat step 5 to re-create the test file.

04836book.indd 196 1/7/09 9:05:54 AM

Controlling Access to Files 197

e x e r c i s e 4 .1 (c ont inue d)

12. As user1, give the file more restrictive permissions by typing chmod 0640. Typing ls 
-l should reveal permissions of -rw-r-----, meaning that the file’s owner can read
and write the file, members of the file’s group can read it, and other users are given
no access.

13. As user2, repeat steps 7–10. The cat operation should fail with a Permission denied
error, but steps 8–10 should produce the same results as they did the first time around.
(If the cat operation succeeded, then either user2 belongs to the file’s group or the
file’s mode is set incorrectly.)

14. Log out of the user1 and user2 accounts.

15. As root, type rm -r /tmp/scratch to delete the scratch directory and its contents.

If you like, you can perform tests with more file permission modes and other file-
manipulation commands before step 14.

As a general rule, symbolic permissions are most useful when you want to make a simple
change (such as adding execute or write permissions to one or more class of users) or when
you want to make similar changes to many files without affecting their other permissions
(for instance, adding write permissions without affecting execute permissions). Octal permis-
sions are most useful when you want to set a specific absolute permission, such as rw-r--r--
(644). In any event, a system administrator should be familiar with both methods of setting
permissions.

A file’s owner and root are the only users who may adjust a file’s permissions. Even if
other users have write access to a directory in which a file resides and write access to the
file itself, they may not change the file’s permissions (but they may modify or even delete
the file). To understand why this is so, you need to know that the file permissions are stored
as part of the file’s inode, which isn’t part of the directory entry. Read/write access to
the directory entry, or even the file itself, doesn’t give a user the right to change the inode
structures (except indirectly—for instance, if a write changes the file’s size or a file deletion
eliminates the need for the inode).

Setting the Default Mode and Group
When a user creates a file, that file has default ownership and permissions. The default
owner is, understandably, the user who created the file. The default group is the user’s
primary group. The default permissions are configurable. These are defined by the user
mask (umask), which is set by the umask command. This command takes as input an octal
value that represents the bits to be removed from 777 permissions for directories, or from
666 permissions for files, when a new file or directory is created. Table 4.8 summarizes the
effect of several possible umask values.

04836book.indd 197 1/7/09 9:05:54 AM

198 Chapter 4 n Managing Files

Ta b le 4 . 8 Sample Umask Values and Their Effects

Umask Created Files Created Directories

000 666 (rw-rw-rw-) 777 (rwxrwxrwx)

002 664 (rw-rw-r--) 775 (rwxrwxr-x)

022 644 (rw-r--r--) 755 (rwxr-xr-x)

027 640 (rw-r-----) 750 (rwxr-x---)

077 600 (rw-------) 700 (rwx------)

277 400 (r--------) 500 (r-x------)

Note that the umask isn’t a simple subtraction from the values of 777 or 666; it’s a
bit-wise removal. Any bit that’s set in the umask is removed from the final permission for
new files; but if a bit isn’t set (as in the execute bit in ordinary files), its specification in
the umask doesn’t do any harm. For instance, consider the 7 values in several entries of
Table 4.8’s Umask column. This corresponds to a binary value of 111. An ordinary file
might have rw- (110) permissions; but applying the umask’s 7 (111) eliminates 1 values
but doesn’t touch 0 values, thus producing a 000 (binary) value—that is, --- permissions,
expressed symbolically.

Ordinary users can enter the umask command to change the permissions on new files they
create. The superuser can also modify the default setting for all users by modifying a system
configuration file. Typically, /etc/profile contains one or more umask commands. Setting
the umask in /etc/profile may or may not have an effect because it can be overridden at
other points, such as a user’s own configuration files. Nonetheless, setting the umask in /etc
/profile or other system files can be a useful procedure if you want to change the default
system policy. Most Linux distributions use a default umask of 002 or 022.

To find what the current umask is, type umask alone, without any parameters. Typ-
ing umask -S produces the umask expressed symbolically rather than in octal form. You
may also specify a umask in this way when you want to change it, but in this case, you
specify the bits that you do want set. For instance, umask u=rwx,g=rx,o=rx is equivalent
to umask 022.

In addition to setting the default mask with umask, users can change their default group
with newgrp, as in newgrp skyhook to create new files with the group set to the skyhook
group. To use this command, the user must be a member of the specified group. The newgrp
command also accepts the -l parameter, as in newgrp -l skyhook, which reinitializes the
environment as if the user had just logged in.

04836book.indd 198 1/7/09 9:05:55 AM

Controlling Access to Files 199

Changing File Attributes
Some filesystems support attributes in addition to those described in the preceding sections.
In particular, some Linux native filesystems support several attributes that you can adjust
with the chattr command:

Append only The a attribute sets append mode, which disables write access to the file
except for appending data. This can be a security feature to prevent accidental or malicious
changes to files that record data, such as log files.

Compressed The c attribute causes the kernel to automatically compress data written to
the file and uncompress it when it’s read back.

Immutable The i flag makes a file immutable, which goes a step beyond simply disabling
write access to the file. The file can’t be deleted, links to it can’t be created, and the file
can’t be renamed.

Data journaling The j flag tells the kernel to journal all data written to the file. This
improves recoverability of data written to the file after a system crash but can slow perfor-
mance. This flag has no effect on ext2 filesystems.

Secure deletion Ordinarily, when you delete a file, its directory entry is removed and its
inode is marked as being available for recycling. The data blocks that make up the bulk of
the file aren’t erased. Setting the s flag changes this behavior; when the file is deleted, the
kernel zeros its data blocks, which may be desirable for files that contain sensitive data.

No tail-merging Tail-merging is a process in which small pieces of data at the ends of files
that don’t fill a complete block are merged with similar pieces of data from other files. The
result is reduced disk space consumption, particularly when you store many small files rather
than a few big ones. Setting the t flag disables this behavior, which is desirable if the filesystem
will be read by certain non-kernel drivers, such as those that are part of the Grand Unified
Boot Loader (GRUB).

No access time updates If you set the A attribute, Linux won’t update the access time stamp
when you access a file. This can reduce disk input/output, which is particularly helpful for
saving battery life on laptops.

This list of attributes is incomplete but includes the most useful options; consult the man
page for chattr for more flags. You set the options you want using the minus (-), plus (+), or
equal (=) symbol to remove an option from an existing set, add an option to an existing set,
or set a precise set of options (overwriting any that already exist), respectively. For instance,
to add the immutable flag to the important.txt file, you enter the following command:

chattr +i important.txt

The result is that you’ll be unable to delete the file, even as root. To delete the file, you
must first remove the immutable flag:

chattr -i important.txt

04836book.indd 199 1/7/09 9:05:55 AM

200 Chapter 4 n Managing Files

Managing Disk Quotas
Just one or two users of a multi-user system can cause serious problems for others by con-
suming too much disk space. If a single user creates huge files (say, multimedia recordings),
those files can use enough disk space to prevent other users from creating their own files.
To help manage this situation, Linux supports disk quotas—limits enforced by the OS on
how many files or how much disk space a single user may consume. The Linux quota sys-
tem supports quotas both for individual users and for Linux groups.

Enabling Quota Support
Quotas require support in both the kernel for the filesystem being used and various user-
space utilities. The ext2fs, ext3fs, ReiserFS, JFS, and XFS filesystems support quotas, but
this support is missing for some filesystems in early 2.6.x kernels. Try using the latest ker-
nel if you have problems with your preferred filesystem. You must explicitly enable support
via the Quota Support kernel option in the filesystem area when recompiling your kernel.
Many distributions ship with this support precompiled, so recompiling your kernel may not
be necessary, but you should be aware of this option if you do recompile your kernel.

Two general quota support systems are available for Linux. The first was used through
the 2.4.x kernels and is referred to as the quota v1 support. The second was added with the
2.6.x kernel series and is referred to as the quota v2 system. This description applies to the
latter system, but the former works in a similar way.

Outside of the kernel, you need support tools to use quotas. For the quota v2 system,
this package is usually called quota, and it installs a number of utilities, configuration files,
SysV startup scripts, and so on.

You can install the support software from source code, if you like; however,
this job is handled most easily using a package for your distribution. This
description assumes that you install the software in this way. If you don’t,
you may need to create SysV or local startup scripts to initialize the quota
support when you boot your computer. The Quota Mini-HOWTO, at http://
en.tldp.org/HOWTO/Quota.html, provides details of how to do this.

You must modify your /etc/fstab entries for any partitions on which you want to use
quota support. In particular, you must add the usrquota filesystem mount option to employ
user quotas and the grpquota option to use group quotas. Entries that are so configured
resemble the following:

/dev/hdc5 /home ext3 usrquota,grpquota 1 1

This line activates both user and group quota support for the /dev/hdc5 partition, which
is mounted at /home. Of course, you can add other options if you like.

04836book.indd 200 1/7/09 9:05:55 AM

Managing Disk Quotas 201

Depending on your distribution, you may need to configure the quota package’s SysV
startup scripts to run when the system boots. Chapter 5 describes SysV startup script
management in detail. Typically, you’ll type a command such as chkconfig quota on;
but you should check on the SysV scripts installed by your distribution’s quota package.
Some distributions require the use of commands other than chkconfig to do this task, as
described in Chapter 5. Whatever its details, this startup script runs the quotaon com-
mand, which activates quota support.

After installing software and making configuration file changes, you must activate the
systems. The simplest way to do this is to reboot the computer, and this step is necessary if
you had to recompile your kernel to add quota support directly into the kernel. If you didn’t
do this, you should be able to get by with less disruptive measures: using modprobe to install
the kernel module, if necessary; running the SysV startup script for the quota tools; and
remounting the filesystems on which you intend to use quotas by typing mount -o remount 
/mount-point, where /mount-point is the mount point in question.

Setting Quotas for Users
At this point, quota support should be fully active on your computer, but the quotas them-
selves aren’t set. You can set the quotas by using edquota, which starts the Vi editor (described
in Chapter 1, “Exploring Linux Command-Line Tools”) on a temporary configuration file
(/etc/quotatab) that controls quotas for the user you specify. When you exit the utility,
edquota uses the temporary configuration file to write the quota information to low-level
disk data structures that control the kernel’s quota mechanisms. For instance, you might
type edquota sally to edit sally’s quotas. The contents of the editor show the current quota
information:

Quotas for user sally:

/dev/hdc5: blocks in use: 3209, limits (soft = 5000, hard = 6500)

 inodes in use: 403, limits (soft = 1000, hard = 1500)

The temporary configuration file provides information about both the number of disk
blocks in use and the number of inodes in use. (Each file or symbolic link consumes a single
inode, so the inode limits are effectively limits on the number of files a user may own. Disk
blocks vary in size depending on the filesystem and filesystem creation options, but they typi-
cally range from 512 bytes to 8KB.) Changing the use information has no effect, but you can
alter the soft and hard limits for both blocks and inodes. The hard limit is the maximum
number of blocks or inodes that the user may consume; the kernel won’t permit a user to sur-
pass these limits. Soft limits are somewhat less stringent; users may temporarily exceed soft
limit values, but when they do so, the system issues warnings. Soft limits also interact with
a grace period; if the soft quota limit is exceeded for longer than the grace period, the kernel
begins treating it like a hard limit and refuses to allow the user to create more files. You can
set the grace period by using edquota with its -t option, as in edquota -t. Grace periods are
set on a per-filesystem basis rather than a per-user basis.

A few more quota-related commands are useful. The first is quotacheck, which verifies
and updates quota information on quota-enabled disks. This command is normally run

04836book.indd 201 1/7/09 9:05:55 AM

202 Chapter 4 n Managing Files

as part of the quota package’s SysV startup script, but you may want to run it periodically
(say, once a week) as a cron job. (Chapter 7 describes cron jobs.) Although theoretically not
necessary if everything works correctly, quotacheck ensures that quota accounting doesn’t
become inaccurate. The second useful auxiliary quota command is repquota, which sum-
marizes the quota information about the filesystem you specify or on all filesystems if you
pass it the -a option. This tool can be very helpful in keeping track of disk usage. The
quota command has a similar effect. The quota tool takes a number of options to have
them modify their outputs. For instance, -g displays group quotas, -l omits NFS mounts,
and -q limits output to filesystems on which usage is over the limit. Consult quota’s man
page for still more obscure options.

Locating Files
Maintaining your filesystems in perfect health, setting permissions, and so on is pointless if
you can’t find your files. For this reason, Linux provides several tools to help you locate the
files you need to use. The first of these tools is actually a standard for where files are located;
with the right knowledge, you may be able to find files without the use of any specialized
programs. The second class of tools includes just such specialized programs, which search a
directory tree or a database for files that meet whatever criteria you specify.

The FHS
Linux’s placement of files is derived from 40 years of Unix history. Given that fact, the
structure is remarkably simple and coherent, but it’s easy for a new administrator to become
confused. Some directories seem, on the surface, to fulfill similar or even identical roles, but
in fact there are subtle but important differences. This section describes the Linux directory
layout standards and presents an overview of what goes where.

The FSSTND and FHS
Although Linux draws heavily on Unix, Unix’s long history has led to numerous splits and
variants, starting with the Berkeley Standard Distribution (BSD), which was originally a set of
patches and extensions to AT&T’s original Unix code. As a result of these schisms within the
Unix community, early Linux distributions didn’t always follow identical patterns. The result
was a great deal of confusion. This problem was quite severe early in Linux’s history, and it
threatened to split the Linux community into factions. Various measures were taken to combat
this problem, one of which was the development of the Filesystem Standard (FSSTND), which
was first released in early 1994. The FSSTND standardized several specific features, such as
the following:

Standardized the programs that reside in Ûn /bin and /usr/bin. Differences on this score
caused problems when scripts referred to files in one location or the other.

04836book.indd 202 1/7/09 9:05:55 AM

Locating Files 203

Specified that executable files shouldn’t reside in Ûn /etc, as had previously been common.

Removed changeable files from the Ûn /usr directory tree, enabling it to be mounted read-
only (a useful security measure).

There have been three major versions of FSSTND: 1.0, 1.1, and 1.2. FSSTND began to
rein in some of the chaos in the Linux world in 1994. By 1995, however, FSSTND’s limita-
tions were becoming apparent. Thus, a new standard was developed: the Filesystem Hier-
archy Standard (FHS). This new standard is based on FSSTND but extends it substantially.
The FHS was created in conjunction with developers of some non-Linux Unix-like OSs, for
instance. For this reason, the FHS is more than a Linux standard; it may be used to define
the layout of files on other Unix-like OSs.

One important distinction made by the FHS is that between shareable files and unshare-
able files. Shareable files may be reasonably shared between computers, such as user data
files and program binary files. (Of course, you don’t need to share such files, but you may
do so.) If files are shared, they’re normally shared through an NFS server. Unshareable files
contain system-specific information, such as configuration files. For instance, you’re not
likely to want to share a server’s configuration file between computers.

A second important distinction used in the FHS is that between static files and vari-
able files. The former don’t normally change except through direct intervention by the
system administrator. Most program executables are good examples of static files. Variable
files may be changed by users, automated scripts, servers, or the like. For instance, users’
home directories and mail queues are composed of variable files. The FHS tries to isolate
each directory into one cell of this 2 × 2 (shareable/unshareable × static/variable) matrix.
Figure 4.1 illustrates these relationships. Some directories are mixed, but in these cases,
the FHS tries to specify the status of particular subdirectories. For instance, /var is vari-
able, and it contains some shareable and some unshareable subdirectories, as shown in
Figure 4.1.

Like the FSSTND, the FHS comes in numbered versions. Version 2.3, the latest version
as I write, was released in January 2004. The URL for FHS’s official Web page is http://
www.pathname.com/fhs/.

F i gu r e 4 .1 The FHS attempts to fit each important directory in one cell of a 4 × 4 matrix.

Shareable Unshareable

/usr
/opt

/etc
/boot

/home
/var/mail

/var/run
/var/lock

Static

Variable

04836book.indd 203 1/7/09 9:05:56 AM

204 Chapter 4 n Managing Files

Important Directories and Their Contents
The FHS defines some directories very precisely, but details for others are left unresolved.
For instance, users’ files normally go in the /home directory, but you may have reason to
call this something else or to use two or more separate directories for users’ files. Overall,
the most common directories defined by the FHS or used by convention are the following:

/    Every Linux filesystem traces its roots to a single directory, known as / (pronounced,
and often referred to, as the root filesystem or root directory). All other directories branch
off this one. Linux doesn’t use drive letters; instead, every partition or removable disk is
mounted at a mount point within another partition (/ or something else). Certain critical
subdirectories, such as /etc and /sbin, must reside on the root partition, but others can
optionally be on separate partitions. Don’t confuse the root directory with the /root direc-
tory, described shortly.

/boot    The /boot directory contains static and unshareable files related to the initial boot-
ing of the computer. Higher-level startup and configuration files reside in another directory,
/etc. Some systems impose particular limits on /boot. For instance, older x86 BIOSs and
older versions of the Linux Loader (LILO) may require that /boot reside below the 1,024th
cylinder of the hard disk. These requirements sometimes, but not always, necessitate that
the /boot directory be a separate partition.

/bin    This directory contains certain critical executable files, such as ls, cp, and mount.
These commands are accessible to all users and constitute the most important commands
that ordinary users might issue. You won’t normally find commands for big application
programs in /bin (although the Vi editor is located here). The /bin directory contains static
files. Although in some sense the /bin files are shareable, because they’re so important to the
basic operation of a computer, the directory is almost never shared—any potential clients
must have their own local /bin directories.

/sbin    This directory is similar to /bin, but it contains programs that are normally run
only by the system administrator—tools like fdisk and e2fsck. It’s static and theoretically
shareable, but in practice, it makes no sense to share it.

/lib    This directory is similar to /bin and /sbin, but it contains program libraries, which
are made up of code that’s shared across many programs and stored in separate files to save
disk space and RAM. The /lib/modules subdirectory contains kernel modules—drivers
that can be loaded and unloaded as required. Like /bin and /sbin, /lib is static and theo-
retically shareable, although it’s not shared in practice.

/usr    This directory hosts the bulk of a Linux computer’s programs. Its contents are share-
able and static, so it can be mounted read-only and may be shared with other Linux systems.
For these reasons, many administrators split /usr off into a separate partition, although
doing so isn’t required. Some subdirectories of /usr are similar to their namesakes in the
root directory (such as /usr/bin and /usr/lib), but they contain programs and libraries
that aren’t absolutely critical to the basic functioning of the computer.

04836book.indd 204 1/7/09 9:05:56 AM

Locating Files 205

/usr/local    This directory contains subdirectories that mirror the organization of /usr,
such as /usr/local/bin and /usr/local/lib. The /usr/local directory hosts files that
a system administrator installs locally—for instance, packages that are compiled on the
target computer. The idea is to have an area that’s safe from automatic software upgrades
when the OS as a whole is upgraded. Immediately after Linux is installed, /usr/local
should be empty except for some stub subdirectories. Some system administrators split this
off into its own partition to protect it from OS reinstallation procedures that might erase
the parent partition.

/usr/X11R6    This directory houses files related to the X Window System (X for short),
Linux’s GUI environment. Like /usr/local, this directory contains subdirectories similar
to those in /usr, such as /usr/X11R6/bin and /usr/X11R6/lib.

/opt    This directory is similar to /usr/local in many ways, but it’s intended for ready-
made packages that don’t ship with the OS, like commercial word processors or games.
Typically, these programs reside in subdirectories in /opt named after themselves, such as
/opt/applix. The /opt directory is static and shareable. Some system administrators break
it into a separate partition or make it a symbolic link to a subdirectory of /usr/local and
make that a separate partition.

/home    This directory contains users’ data, and it’s shareable and variable. Although the /home
directory is considered optional in FHS, in practice it’s a matter of the name being optional.
For instance, if you add a new disk to support additional users, you might leave the existing
/home directory intact and create a new /home2 directory to house the new users. The /home
directory often resides on its own partition.

/root    This is the home directory for the root user. Because the root account is so critical
and system specific, this variable directory isn’t really shareable.

/var    This directory contains transient files of various types--system log files, print spool
files, mail and news files, and so on. As such, the directory’s contents are variable. Some
subdirectories are shareable, but others are not. Many system administrators put /var in its
own partition, particularly on systems that see a lot of activity in /var, like major Usenet
news or mail servers.

/tmp    Many programs need to create temporary (hence variable) files, and the usual place
to do so is in /tmp. Most distributions include routines that clean out this directory peri-
odically and sometimes wipe the directory clean at bootup. The /tmp directory is seldom
shared. Some administrators create a separate /tmp partition to prevent runaway processes
from causing problems on the root filesystem when processes create too-large temporary
files. A similar directory exists as part of the /var directory tree (/var/tmp).

/mnt    Linux mounts removable-media devices within its normal directory structure, and
/mnt is provided for this purpose. Some (mostly older) distributions create subdirectories
within /mnt, such as /mnt/floppy and /mnt/cdrom, to function as mount points. Others
use /mnt directly or even use separate mount points off /, such as /floppy and /cdrom. The
FHS mentions only /mnt; it doesn’t specify how it’s to be used. Specific media mounted in
/mnt may be either static or variable. As a general rule, these directories are shareable.

04836book.indd 205 1/7/09 9:05:56 AM

206 Chapter 4 n Managing Files

/media    This directory is an optional part of the FHS. It’s like /mnt, but it should contain
subdirectories for specific media types, such as /media/floppy and /media/cdrom. Many
modern distributions use /media subdirectories as the default mount points for common
removable disk types.

/dev    Because Linux treats most hardware devices as if they were files, the OS must have
a location in its filesystem where these device files reside. The /dev directory is that place.
It contains a large number of files that function as hardware interfaces. If a user has suf-
ficient privileges, that user may access the device hardware by reading from and writing to
the associated device file. The Linux kernel supports a device filesystem that enables /dev
to be an automatically created virtual filesystem—the kernel and support tools create /dev
entries on-the-fly to accommodate the needs of specific drivers. Most distributions now use
this facility.

/proc   This is an unusual directory because it doesn’t correspond to a regular directory or
partition. Instead, it’s a virtual filesystem that’s created dynamically by Linux to provide
access to certain types of hardware information that aren’t accessible via /dev. For instance,
if you type cat /proc/cpuinfo, the system responds by displaying information about your
CPU—its model name, speed, and so on.

Knowledge of these directories and their purposes is invaluable in properly administer-
ing a Linux system. For instance, understanding the purpose of directories like /bin, /sbin,
/usr/bin, /usr/local/bin, and others will help you when it comes time to install a new
program. Placing a program in the wrong location can cause problems at a later date. For
example, if you put a binary file in /bin when it should go in /usr/local/bin, that program
may later be overwritten or deleted during a system upgrade when leaving it intact would
have been more appropriate.

Tools for Locating Files
You use file-location commands to locate a file on your computer. Most frequently, these
commands help you locate a file by name; but sometimes you can use other criteria, such
as modification date. These commands can search a directory tree (including root, which
scans the entire system) for a file matching the specified criteria in any subdirectory.

The find Command
The find utility implements a brute-force approach to finding files. This program finds files
by searching through the specified directory tree, checking filenames, file creation dates,
and so on to locate the files that match the specified criteria. Because of this method of
operation, find tends to be slow; but it’s very flexible and is very likely to succeed, assum-
ing the file for which you’re searching exists. The find syntax is as follows:

find [path...] [expression...]

You can specify one or more paths in which find should operate; the program will
restrict its operations to these paths. The expression is a way of specifying what you want

04836book.indd 206 1/7/09 9:05:57 AM

Locating Files 207

to find. The man page for find includes information about these expressions, but some of
the more common enable you to search by various common criteria:

Search by filename You can search for a filename using the -name pattern expression.
Doing so finds files that match the specified pattern. If pattern is an ordinary filename,
find matches that name exactly. You can use wildcards if you enclose pattern in quotes,
and find will locate files that match the wildcard filename.

Search by permission mode If you need to find files that have certain permissions, you can
do so by using the -perm mode expression. The mode may be expressed either symbolically
or in octal form. If you precede mode with a +, find locates files in which any of the speci-
fied permission bits are set. If you precede mode with a -, find locates files in which all the
specified permission bits are set.

Search by file size You can search for a file of a given size with the -size n expression.
Normally, n is specified in 512-byte blocks, but you can modify this by trailing the value
with a letter code, such as c for bytes or k for kilobytes.

Search by group The -gid GID expression searches for files whose group ID (GID) is set to
GID. The -group name option locates files whose group name is name. The former can be handy
if the GID has been orphaned and has no name, but the latter is generally easier to use.

Search by user ID The -uid UID expression searches for files owned by the user whose
user ID (UID) is UID. The -user name option searches for files owned by name. The former
can be handy if the UID has been orphaned and has no name, but the latter is generally
easier to use.

Restrict search depth If you want to search a directory and, perhaps, some limited number
of subdirectories, you can use the -maxdepth levels expression to limit the search.

There are many variant and additional options; find is a very powerful command. As an
example of its use, consider the task of finding all C source code files, which normally have
names that end in .c, in all users’ home directories. If these home directories reside in /home,
you might issue the following command:

find /home -name “*.c”

The result will be a listing of all the files that match the search criteria.

Ordinary users may use find, but it doesn’t overcome Linux’s file permis-
sion features. If you lack permission to list a directory’s contents, find will
return that directory name and the error message Permission denied.

The locate Command
The locate utility works much like find if you want to find a file by name, but it differs in
two important ways:

The Ûn locate tool is far less sophisticated in its search options. You normally use it to
search only on filenames, and the program returns all files that contain the specified

04836book.indd 207 1/7/09 9:05:57 AM

208 Chapter 4 n Managing Files

string. For instance, when searching for rpm, locate will return other programs, like
gnorpm and rpm2cpio.

The Ûn locate program works from a database that it maintains. Most distributions
include a cron job that calls locate with options that cause it to update its database
periodically, such as once a night or once a week. (You can also use the updatedb com-
mand to do this task at any time.) For this reason, locate may not find recent files,
or it may return the names of files that no longer exist. If the database-update utilities
omit certain directories, files in them won’t be returned by a locate query.

Because locate works from a database, it’s typically much faster than find, particularly on
system-wide searches. It’s likely to return many false alarms, though, especially if you want to
find a file with a short name. To use it, type locate search-string, where search-string is
the string that appears in the filename.

Some Linux distributions use slocate rather than locate. The slocate
program includes security features to prevent users from seeing the
names of files in directories they shouldn’t be able to access. On most
systems that use slocate, the locate command is a link to slocate, so
locate implements slocate’s security features. A few distributions don’t
install either locate or slocate by default.

The whereis Command
The whereis program searches for files in a restricted set of locations, such as standard
binary file directories, library directories, and man page directories. This tool does not
search user directories or many other locations that are easily searched by find or locate.
The whereis utility is a quick way to find program executables and related files like docu-
mentation or configuration files.

The whereis program returns filenames that begin with whatever you type as a search
criterion, even if those files contain extensions. This feature often turns up configuration
files in /etc, man pages, and similar files. To use the program, type the name of the program
you want to locate. For instance, the following command locates ls:

$ whereis ls

ls: /bin/ls /usr/share/man/man1/ls.1.bz2

The result shows both the ls executable (/bin/ls) and the ls man page. The whereis
program accepts several parameters that modify its behavior in various ways. These are
detailed in the program’s man page.

The which Command
Considered as a search command, which is very weak; it merely searches your path for the
command that you type and lists the complete path to the first match it finds. (You can

04836book.indd 208 1/7/09 9:05:57 AM

Locating Files 209

search for all matches by adding the -a option.) For instance, you might want to know
where the xterm program is located:

$ which xterm

/usr/bin/xterm

Because the files that which finds are on your path, it won’t help you to run these pro-
grams. Instead, it’s likely to be useful if you need to know the complete path for some
reason—say, because you want to call the program from a script and don’t want to make
assumptions about the path available to the script and so want to include the complete path
in the script.

The type Command
This command isn’t really a search command; instead, it tells you how a command you
type will be interpreted—as a built-in command, an external command, an alias, and so
on. For instance, you can use it to identify several common commands:

$ type type

type is a shell builtin

$ type cat

cat is /bin/cat

$ type ls

ls is aliased to `ls --color’

This example identifies type itself as a built-in shell command, cat as a separate pro-
gram stored in /bin, and ls as an alias for ls --color. You can add several options to
modify the command’s behavior. For instance, -t shortens the output to builtin, file,
alias, or other short identifiers; and -a provides a complete list, for instance providing
both the alias expansion and the location of the ultimate executable when provided with an
alias name.

In Exercise 4.2, you’ll get to use several ways to locate files.

e x e r c i s e 4 . 2

Locating Files

This exercise demonstrates several methods of locating files. You’ll locate the startx pro-
gram. (If your system doesn’t have X installed, you can try searching for another program
or file, such as pwd or fstab. You may need to change the path passed to find in step 5.) To
find a file, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system if you used a GUI
login method.

04836book.indd 209 1/7/09 9:05:57 AM

210 Chapter 4 n Managing Files

e x e r c i s e 4 . 2 (c ont inue d)

3. Type locate startx. The system should display several filenames that include the
string startx. This search should take very little time. (A few distributions lack
the locate command, so this step won’t work on some systems.)

4. Type whereis startx. The system responds with the names of a few files that
contain the string startx. Note that this list may be slightly different than the list
returned by step 3 but that the search proceeds quickly.

5. Type find /usr -name startx. This search takes longer, and when run as an ordinary
user, most likely returns several Permission denied error messages. It should also
return a single line listing the /usr/bin/startx or /usr/X11R6/bin/startx program
file. Note that this command searches only /usr. If you searched /usr/X11R6, the com-
mand would take less time; if you searched /, the command would take more time.

6. Type which startx. This search completes almost instantaneously, returning the
complete filename of the first instance of startx the system finds on its path.

7. Type type startx. Again, the search completes very quickly. It should identify startx
as an external command stored at /usr/bin/startx, /usr/X11R6/bin/startx, or
possibly some other location.

Summary
File management is basic to being able to administer or use a Linux system. Various com-
mands are useful to both users and administrators for copying, moving, renaming, and other-
wise manipulating files and directories. You may also want to set up access controls, both to
limit the amount of disk space users may consume and to limit who may access specific files
and directories. Finally, Linux provides tools to help you locate files using various criteria.

Exam Essentials

Describe commands used to copy, move, and rename files in Linux. The cp command
copies files, as in cp first second to create a copy of first called second. The mv com-
mand does double duty as a file-moving and a file-renaming command. It works much like
cp, but mv moves or renames the file rather than copying it.

Summarize Linux’s directory-manipulation commands. The mkdir command creates a
new directory, and rmdir deletes a directory. You can also use many file-manipulation com-
mands, such as mv and rm (with its -r option), on directories.

04836book.indd 210 1/7/09 9:05:58 AM

Exam Essentials 211

Explain the difference between hard and symbolic links. Hard links are duplicate directory
entries that both point to the same inode and hence to the same file. Symbolic links are special
files that point to another file or directory by name. Hard links must reside on a single file-
system, but symbolic links may point across filesystems.

Summarize the common Linux archiving programs. The tar and cpio programs are both
file-based archiving tools that create archives of files using ordinary file access commands.
The dd program is a file-copy program; but when it’s fed a partition device file, it copies the
entire partition on a very low-level basis, which is useful for creating low-level image back-
ups of Linux or non-Linux filesystems.

Describe Linux’s file ownership system. Every file has an owner and a group, identified by
number. File permissions can be assigned independently to the file’s owner, the file’s group,
and all other users.

Explain Linux’s file permissions system. Linux provides independent read, write, and
execute permissions for the file’s owner, the file’s group, and all other users, resulting in
nine main permission bits. Special permission bits are also available, enabling you to launch
program files with modified account features or alter the rules Linux uses to control who
may delete files.

Summarize the commands Linux uses to modify permissions. The chmod command is
Linux’s main tool for setting permissions. You can specify permissions using either an
octal (base 8) mode or a symbolic notation. The chown and chgrp commands enable you to
change the file’s owner and group, respectively. (The chown command can do both but can
only be run by root.)

Describe the prerequisites of using Linux’s disk quota system. Linux’s disk quota
system requires support in the Linux kernel for the filesystem on which quotas are to
be used. You must also run the quotaon command, typically from a SysV startup script,
to enable this feature.

Explain how quotas are set. You can edit quotas for an individual user via the edquota
command, as in edquota larry to edit larry’s quotas. This command opens an editor on a
text file that describes the user’s quotas. You can change this description, save the file, and
exit from the editor to change the user’s quotas.

Summarize how Linux’s standard directories are structured. Linux’s directory tree begins
with the root (/) directory, which holds mostly other directories. Specific directories may
hold specific types of information, such as user files in /home and configuration files in
/etc. Some of these directories and their subdirectories may be separate partitions, which
helps isolate data in the event of filesystem corruption.

Describe the major file-location commands in Linux. The find command locates files by
brute force, searching through the directory tree for files that match the criteria you specify.
The locate (or slocate) command searches a database of files in important directories. The
whereis command searches a handful of important directories, and which searches the path.
The type command identifies another command as a built-in shell command, a shell alias, or
an external command (including the path to that command).

04836book.indd 211 1/7/09 9:05:58 AM

212 Chapter 4 n Managing Files

Review Questions

1. You want to use /media/cdrom to access your CD-ROM drive, so you insert a CD-ROM
into the drive and type mount /media/cdrom /dev/cdrom as root. You receive the error
message /media/cdrom is not a block device. Why did this happen?

A. You must first prepare the mount point by typing mountpoint /media/cdrom; only
then will the mount command succeed.

B. The command reverses the order of the CD-ROM device file and the mount point; it
should be mount /dev/cdrom /media/cdrom.

C. The /dev/cdrom filename isn’t valid; you must determine what device file is associated
with your CD-ROM drive.

D. The CD-ROM is defective or the CD-ROM drive is malfunctioning. Try another
CD-ROM and, if necessary, replace the drive.

2. What is wrong with the following /etc/fstab file entry? (Select all that apply.)
/dev/hda8 nfs default 0 0

A. The entry is missing a mount point specification.

B. All /etc/fstab fields should be separated by commas.

C. The default option may only be used with ext2 filesystems.

D. /dev/hda8 is a disk partition, but nfs indicates a network filesystem.

3. You want to discover the sizes of several dot files in a directory. Which of the following
commands might you use to do this?

A. ls -la

B. ls -p

C. ls -R

D. ls -d

4. You want to move a file from your hard disk to a USB pen drive. Which of the following
is true?

A. You’ll have to use the --preserve option to mv to keep ownership and permissions set
correctly.

B. The mv command will adjust filesystem pointers without physically rewriting data if
the pen drive uses the same filesystem type as the hard disk partition.

C. You must use the same filesystem type on both media to preserve ownership and
permissions.

D. The mv command will delete the file on the hard disk after copying it to the pen drive.

04836book.indd 212 1/7/09 9:05:58 AM

Review Questions 213

5. You type mkdir one/two/three and receive an error message that reads, in part, No such
file or directory. What can you do to overcome this problem? (Select all that apply.)

A. Add the --parents parameter to the mkdir command.

B. Issue three separate mkdir commands: mkdir one, then mkdir one/two, and then
mkdir one/two/three.

C. Type touch /bin/mkdir to be sure the mkdir program file exists.

D. Type rmdir one to clear away the interfering base of the desired new directory tree.

6. Which of the following commands are commonly used to create archive files? (Select all
that apply.)

A. restore

B. tar

C. tape

D. cpio

7. You’ve received a tarball called data79.tar from a colleague, but you want to check the
names of the files it contains before extracting them. Which of the following commands
would you use to do this?

A. tar uvf data79.tar

B. tar cvf data79.tar

C. tar xvf data79.tar

D. tar tvf data79.tar

8. You want to create a link from your home directory on your hard disk to a directory on a
CD-ROM drive. Which of the following types of links might you use?

A. Only a symbolic link.

B. Only a hard link.

C. Either a symbolic or a hard link.

D. None of the above; such links aren’t possible under Linux.

9. What command would you type (as root) to change the ownership of somefile.txt from
ralph to tony?

A. chown ralph:tony somefile.txt

B. chmod somefile.txt tony

C. chown somefile.txt tony

D. chown tony somefile.txt

10. Typing ls -ld wonderjaye reveals a symbolic file mode of drwxr-xr-x. Which of the
following are true? (Select all that apply.)

A. wonderjaye is a symbolic link.

B. wonderjaye is an executable program.

C. wonderjaye is a directory.

D. wonderjaye may be read by all users of the system.

04836book.indd 213 1/7/09 9:05:58 AM

214 Chapter 4 n Managing Files

11. When should programs be configured SUID root?

A. At all times; this permission is required for executable programs.

B. Whenever a program should be able to access a device file.

C. Only when they require root privileges to do their job.

D. Never; this permission is a severe security risk.

12. Which of the following commands would you type to enable world read across access to the
file myfile.txt? (Assume that you’re the owner of myfile.txt.)

A. chmod 741 myfile.txt

B. chmod 0640 myfile.txt

C. chmod u+r myfile.txt

D. chmod o+r myfile.txt

13. Which of the following umask values will result in files with rw-r----- permissions?

A. 640

B. 210

C. 022

D. 027

14. You see the usrquota and grpquota options in the /etc/fstab entry for a filesystem.
What is the consequence of these entries?

A. Quota support will be available if it’s compiled into the kernel; it will be automatically
activated when you mount the filesystem.

B. Quota support will be available if it’s compiled into your kernel, but you must activate
it with the quotaon command.

C. Quota support will be disabled on the filesystem in question unless you activate it with
the quotaon command.

D. Nothing; these options are malformed and so will have no effect.

15. Which of the following commands can be used to summarize the quota information about
all filesystems?

A. repquota

B. repquota -a

C. quotacheck

D. quotacheck -a

16. You’ve installed a commercial spreadsheet program called WonderCalc on a workstation.
In which of the following directories are you most likely to find the program executable
file?

A. /usr/sbin

B. /etc/X11

C. /bin

D. /opt/wcalc/bin

04836book.indd 214 1/7/09 9:05:59 AM

Review Questions 215

17. Which of the following file-location commands is likely to take the most time to find a file
that may be located anywhere on the computer (assuming the operation succeeds)?

A. The find command.

B. The locate command.

C. The whereis command.

D. They’re all equal in speed.

18. What can the type command do that whereis can’t do?

A. Identify the command as being for x86 or x86-64 CPUs

B. Locate commands based on their intended purpose, not just by name

C. Identify a command as an alias, internal command, or external command

D. Assist in typing a command by finishing typing it for you

19. You want to track down all the files in /home that are owned by karen. Which of the fol-
lowing commands will do the job?

A. find /home -uid karen

B. find /home -user karen

C. locate /home -username karen

D. locate /home karen

20. What can you conclude from the following interaction?
$ which man

/usr/bin/man

A. The only file called man on the system is in /usr/bin.

B. The /usr/bin/man program was installed by system package tools.

C. The /usr/bin/man program will be run by any user who types man.

D. The first instance of the man program, in path search order, is in /usr/bin.

04836book.indd 215 1/7/09 9:05:59 AM

216 Chapter 4 n Managing Files

Answers to Review Questions

1. B. The mount command takes a device filename first and a mount point second, so option B
is correct. There is no need for special mount point preparation, as option A implies, other
than the existence of the mount point directory. Contrary to option C, /dev/cdrom is often a
valid device file for CD-ROMs (or more precisely, a symbolic link to a valid device file). Fur-
thermore, the error message mentions /media/cdrom, not /dev/cdrom. Defective CD-ROMs
and drives can certainly cause problems, as option D implies, but this error message refers to
block devices, suggesting the problem is one of Linux configuration, not media viability.

2. A, D. A mount directory must be specified between the device entry (/dev/hda8) and the file-
system type code (nfs). The nfs filesystem type code may only be used with an NFS export
specification of the form server:/export as the device specification. Fields in /etc/fstab are
separated by spaces or tabs, not commas (but commas are used between individual options if
several options are specified in the options column). The default option may be used with any
filesystem type.

3. A. The -l parameter produces a long listing, including file sizes. The -a parameter pro-
duces a listing of all files in a directory, including the dot files. Combining the two produces
the desired information (along with information about other files). The -p, -R, and -d
options don’t have the specified effects.

4. D. When moving from one partition or disk to another, mv must necessarily read and copy
the file and then delete the original if that copy was successful. If both filesystems support
ownership and permissions, they’ll be preserved; mv doesn’t need an explicit --preserve
option to do this, and this preservation does not rely on having exactly the same filesystem
types. Although mv doesn’t physically rewrite data when moving within a single low-level
filesystem, this approach can’t work when you’re copying to a separate low-level filesystem
(such as from a hard disk to a pen drive); if the data isn’t written to the new location, it
won’t be accessible should the disk be inserted in another computer.

5. A, B. If you try to create a directory inside a directory that doesn’t exist, mkdir responds with
a No such file or directory error. The --parents parameter tells mkdir to automatically
create all necessary parent directories in such situations. You can also manually do this by cre-
ating each necessary directory separately. (It’s possible that mkdir one wouldn’t be necessary
in this example if the directory one already existed. No harm will come from trying to create a
directory that already exists, although mkdir will return a File exists error.)

6. B, D. The tar and cpio programs are common Linux archive-creation utilities. The restore
command restores (but does not back up) data; its backup counterpart command is dump, but
dump is no longer a recommended backup tool on Linux. There is no standard tape command
in Linux.

7. D. With the tar utility, the --list (t) command is used to read the archive and display its
contents. The --verbose (v) option creates a verbose file listing, and --file (f) specifies
the filename—data79.tar in this case. Option D uses all of these features. Options A, B,
and C all substitute other commands for --list, which is required by the question.

04836book.indd 216 1/7/09 9:05:59 AM

Answers to Review Questions 217

8. A. Symbolic links can point across filesystems, so creating a symbolic link from one filesys-
tem (in which your home directory resides) to another (on the CD-ROM) isn’t a problem.
Hard links, as in options B and C, are restricted to a single filesystem and so won’t work for
the described purpose. Because symbolic links will work as described, option D is incorrect.

9. D. Option D is the correct command. Typing chown ralph:tony somefile.txt, as in
option A, sets the owner of the file to ralph and the group to tony. The chmod command
used in option B is used to change file permissions, not ownership. Option C reverses the
order of the filename and the owner.

10. C, D. The d character that leads the mode indicates that the file is actually a directory,
whereas the r symbol in the r-x triplet at the end of the symbolic mode indicates that all
users of the system have read access to the directory. Symbolic links are denoted by leading
l characters, which this mode lacks, so option A is incorrect. Although the x symbols usu-
ally denote executable program files, as specified in option B, in the case of directories this
permission bit indicates that the directory’s contents may be searched; executing a directory
is meaningless.

11. C. The set user ID (SUID) bit enables programs to run as the program’s owner rather than
as the user who ran them. This makes SUID root programs risky, so setting the SUID
bit on root-owned programs should be done only when it’s required for the program’s
normal functioning, as stated in option C. This should certainly not be done for all pro-
grams because the SUID bit is not required of all executable programs as option A asserts.
Although the SUID root configuration does enable programs to access device files, the
device files’ permissions can be modified to give programs access to those files, if this is
required, so option B is incorrect. Although SUID root programs are a security risk, as
stated in option D, they’re a necessary risk for a few programs, so option D goes too far.

12. D. Using symbolic modes, the o+r option adds read (r) permissions to the world (o). Thus,
option D is correct. Option A sets the mode to rwxr----x, which is a bit odd and doesn’t pro-
vide world read access to the file, although it does provide world execute access. Option B sets
the mode to rw-r-----, which gives the world no access whatsoever to the file. Option C adds
read access to the file for the owner (u) if the owner doesn’t already have this access; it doesn’t
affect the world permissions.

13. D. Option D, 027, removes write permissions for the group and all world permissions. (Files
normally don’t have execute permissions set, but explicitly removing write permissions when
removing read permissions ensures reasonable behavior for directories.) Option A, 640, is the
octal equivalent of the desired rw-r----- permissions; but the umask sets the bits that are to
be removed from permissions, not those that are to be set. Option B, 210, would remove write
permission for the owner, but it wouldn’t remove write permission for the group, which is
incorrect. This would also leave all world permissions open. Finally, option C, 022, wouldn’t
remove world read permission.

14. B. Using quotas requires kernel support, the usrquota or grpquota (for user or group
quotas) filesystem mount option, and activation via the quotaon command (which often
appears in SysV startup scripts). Thus, option B is correct. Option A suggests that quotaon
is not necessary, and option C suggests that quotaon is sufficient, but neither is true. The
usrquota and grpquota options are both valid, so option D is incorrect.

04836book.indd 217 1/7/09 9:05:59 AM

218 Chapter 4 n Managing Files

15. B. The repquota utility is used to summarize the quota information about the filesystem.
When used with the –a option, it shows this information for all filesystems. The quotacheck
utility checks quota information about a disk and writes corrections.

16. D. The /opt directory tree exists to hold programs that aren’t a standard part of a Linux dis-
tribution, such as commercial programs. These programs should install in their own directo-
ries under /opt; these directories usually have bin subdirectories of their own, although this
isn’t required. The /usr/sbin directory holds programs that are normally run only by the
system administrator, and /bin holds critical basic binary files. The /etc/X11 directory holds
X-related configuration files. None of these directories is an appropriate place for a spread-
sheet program.

17. A. The find utility operates by searching all files in a directory tree, and so it’s likely to
take a long time to search all of a computer’s directories. The locate program uses a pre-
compiled database, and whereis searches a limited set of directories, so these commands
will take less time.

18. C. The type command identifies a command, as executed by the shell, as being a built-in
shell command, a shell alias, or an external command, whereas the whereis command
helps find the location of external command files. Neither type nor whereis identifies the
CPU architecture of a program file, can locate commands based on intended purpose, or
complete an incompletely typed command.

19. B. The find command includes the ability to search by username using the -user name
option, where name is the username; thus, option B is correct. The -uid option to find can
also locate files owned by a user; but it takes a numeric user ID (UID) number as an argu-
ment, so option A isn’t quite correct. The locate command provides no ability to search by
user, so options C and D are incorrect.

20. D. The which program searches the path just as bash does, but it prints the path to the first
executable program it finds on the path. Thus, option D is correct. The which program
doesn’t conduct an exhaustive search of the system, so there could be many more files called
man on the system, contrary to option A. System package tools and which aren’t closely
related; option B is incorrect. Although /usr/bin/man would be run when the user whose
which output matches that in the question types man, this may not be true of others because
the path can vary from one user to another. Thus, option C is incorrect.

04836book.indd 218 1/7/09 9:05:59 AM

Chapter

5
Booting Linux and
Editing Files

ThE FoLLowing Linux ProFEssionaL
insTiTuTE oBjEcTivEs arE covErEd in
This chaPTEr:

1.101.2: Boot the system (weight: 3)ÛÛ

1.101.3: Change runlevels and shutdown or reboot system ÛÛ
(weight: 3)

1.102.2: Install a boot manager (weight: 2)ÛÛ

1.103.8: Perform basic file editing operations using vi ÛÛ
(weight: 3)

04836book.indd 219 1/7/09 9:06:17 AM

So far, this book has dealt largely with a running Linux system,
but from time to time, you’ll need to boot Linux. Ordinarily
this process is a painless one: You press the power button, wait

a couple of minutes, and see a Linux login prompt. Sometimes, though, you’ll have to inter-
vene in this process in one way or another.

Linux boot loaders can be configured to boot Linux with particular options and even
to boot other operating systems, so knowing how to configure them and use them can help
you to accomplish your boot-related goals. Once the system is booted, you should know
how to study log files related to the boot process. This can help you to diagnose problems
or verify that the system is operating the way it should be.

Finally, this chapter looks at editing files with Vi. Vi isn’t particularly boot-related,
knowing how to edit files is vital to many administrative tasks, including editing the boot
loader configuration files.

Installing Boot Loaders
Hard disks contain more than partitions and their contents. One very small part of the disk
is unusually important: The master boot record (MBR) contains the partition table and a
boot loader (also sometimes called a boot manager). The boot loader is the software that
the BIOS reads and executes when the system begins to boot. The boot loader, in turn, is
responsible for loading the Linux kernel into memory and starting it running. Thus, con-
figuring a hard disk (or at least your boot hard disk) isn’t complete until the boot loader is
configured. Although Linux distributions provide semi-automated methods of configur-
ing a boot loader during system installation, you may need to know more, particularly if
you recompile your kernel or need to set up an advanced configuration—say, one to select
between several OSs.

In practice, two boot loaders are important in Linux: the Linux Loader (LILO) and
the Grand Unified Boot Loader (GRUB). LILO is older, and it’s slowly being replaced by
GRUB as the most common Linux boot loader, but LILO is still common.

LILO and GRUB are both x86 and x86-64 boot loaders. Other platforms
have their own boot loaders. Some of these are similar to LILO in operation
(and may even be called LILO), but they aren’t quite identical. You should
consult platform-specific documentation if you need to reconfigure a
non-x86 boot loader.

04836book.indd 220 1/7/09 9:06:18 AM

Installing Boot Loaders 221

Boot Loader Principles
The x86 and x86-64 boot process can be a bit convoluted, in part because so many options
are available. Figure 5.1 depicts a typical configuration, showing a couple of possible boot
paths. In both cases, the boot process begins with the BIOS. As described in Chapter 3,
“Configuring Hardware,” you tell the BIOS which boot device to use—a hard disk, a floppy
disk, a CD-ROM drive, or something else. Assuming you pick a hard disk as the primary
boot device, or if higher-priority devices aren’t bootable, the BIOS loads code from the MBR.
This code is the primary boot loader code. In theory, it could be just about anything, even a
complete (if tiny) OS.

F i gu r E 5 .1 The x86 boot system provides several options for redirecting the process,
but ultimately an OS kernel is loaded.

BIOS MBR

B

Boot
sector Kernel Non-boot partition

A

In practice, the primary boot loader does one of two things:

It examines the partition table and locates the partition that’s marked as bootable. ÛN

The primary boot loader then loads the boot sector from that partition and executes
it. This boot sector contains a secondary boot loader, which continues the process by
locating an OS kernel, loading it, and executing it. This option is depicted by the A
arrows in Figure 5.1.

It locates an OS kernel, loads it, and executes it directly. This approach bypasses the ÛN

secondary boot loader entirely, as depicted by the B arrow in Figure 5.1.

Traditionally, x86 systems running DOS or Windows follow path A. DOS and Win-
dows 9x/Me ship with very simple boot loaders that provide little in the way of options.
Windows NT/200x/XP/Vista provides a boot loader that can provide limited redirection
in the second stage of the A path.

Linux’s boot loaders, LILO and GRUB, are both much more flexible. They support
installation in either the MBR or the boot sector of a boot partition. Thus, you can either
keep a DOS/Windows-style primary boot loader and direct the system to boot a kernel
from a boot sector installation (path A) or bypass this step and load the kernel straight
from the MBR (path B). The first option has the advantage that another OS is unlikely
to wipe out LILO or GRUB, because it’s stored safely in a Linux partition. Windows has
a tendency to write its standard MBR boot loader when it’s installed, so if you need to
re-install Windows on a dual-boot system, this action will wipe out an MBR-based boot
loader. If the boot loader is stored in a Linux partition’s boot sector, it will remain intact,
although Windows might configure the system to bypass it. To reactivate the Linux boot
loader, you must use a tool such as the DOS/Windows FDISK to mark the Linux partition
as the boot partition.

04836book.indd 221 1/7/09 9:06:18 AM

222 Chapter 5 N Booting Linux and Editing Files

A drawback of placing LILO or GRUB in a partition’s boot sector is that this partition
must normally be a primary partition. (An exception is if you’re using some other boot
loader in the MBR or in another partition. If this third-party boot loader can redirect the
boot process to a logical partition, this restriction goes away.) For this reason, many people
prefer to put LILO or GRUB in the hard disk’s MBR.

In the end, both approaches work, and for a Linux-only installation, the advantages
and disadvantages of both approaches are very minor. Some distributions don’t give you
an option at install time. For them, you should review your boot loader configuration and,
when you must add a kernel or otherwise change the boot loader, modify the existing con-
figuration rather than try to create a new one.

Both LILO and GRUB can be installed to a floppy disk as well as to a hard
disk. Even if you don’t want to use a floppy disk as part of your regular
boot process, you may want to create an emergency floppy disk with LILO
or GRUB. You can then use it to boot Linux if something goes wrong with
your regular LILO or GRUB installation.

This description provides a somewhat simplified view of boot loaders. LILO and GRUB
are both much more complex than this. They can redirect the boot process to non-Linux
boot sectors and present menus that enable you to boot multiple OSs or multiple Linux ker-
nels. You can chain several boot loaders, including third-party boot loaders such as System
Commander or BootMagic. Chaining boot loaders in this way enables you to take advan-
tage of unique features of multiple boot loaders, such as the ability of System Commander
to boot several versions of DOS or Windows on a single partition.

LPI objective 102.2 mentions the superblock. Despite its placement in an
objective about boot loaders, the superblock isn’t really a boot loader
concept; rather, it’s part of the filesystem. The superblock describes basic
filesystem features, such as the filesystem’s size and status. The debugfs
and dumpe2fs commands, described in Chapter 3, provide some basic
superblock information.

Using LILO as the Boot Loader
LILO was once the default boot loader for Linux on the x86 architecture. Although LILO
has since been usurped in popularity by GRUB, it’s still a small, useful boot loader. To use
LILO, you must configure it and install it in your boot sector. Once it’s installed, you can
reboot the computer and tell LILO which OS or kernel you want to boot.

The term LILO can denote one of two things. The uppercased LILO refers to
the boot loader that is installed into your boot sector. The lowercased lilo
refers to the program that is used to install the LILO boot loader.

04836book.indd 222 1/7/09 9:06:19 AM

Installing Boot Loaders 223

Configuring LILO
You configure LILO using the /etc/lilo.conf file. This file is generally broken into two
main sections: global and per-image options. (The latter are kept in sections known as
stanzas.) Some per-image options are further separated depending on whether they’re for
a Linux kernel or another OS. To further confound the matter, many of the per-image
options may be used at the global level to indicate a default value.

Essential LILO Global Options

Listing 5.1 shows a typical /etc/lilo.conf file, including both global options and three
stanzas for booting two Linux kernels and a non-Linux OS. Most configuration lines take
the form option or option=value, but lines that begin with hash marks (#) are comments
and are ignored. All but the first line of each stanza are traditionally indented. This practice
makes it easy to spot where a new stanza begins.

Listing 5.1: A Typical LILO Configuration File

lilo.conf

#

Global Options:

#

boot=/dev/hda

prompt

timeout=150

default=fedora

lba32

vga=normal

root=/dev/hda5

read-only

#

Kernel Options (may have multiple):

#

image=/boot/vmlinuz-2.6.25

 label=fedora

 initrd=/boot/initrd-2.6.25

 append=”mem=2048M”

image=/boot/bzImage-2.6.26-experimental

 label=debian

 root=/dev/hda6

#

Other Operating Systems Options (may have multiple):

#

other=/dev/hda2

 label=dos

04836book.indd 223 1/7/09 9:06:19 AM

224 Chapter 5 N Booting Linux and Editing Files

The system described by Listing 5.1 contains DOS, Fedora Linux, and
Debian GNU/Linux. DOS resides on /dev/hda2, Fedora Linux resides on
/dev/hda5, and Debian GNU/Linux resides on /dev/hda6. Fedora and
Debian share a separate /boot partition, /dev/hda1.

The lilo.conf file supports many options. Most of these are fairly obscure; chances are
you’ll only need to use a handful of them in order to achieve specific common goals:

Boot loader location The boot= option specifies the name of the device that contains
the boot sector (/dev/hda in the case of Listing 5.1). In this example, the MBR of the first
PATA hard drive is used as the boot sector. In this configuration, LILO functions as the
primary boot loader—it’s the first one loaded by the BIOS. If you wanted LILO to reside in
a partition on /dev/hda, you would give a specific partition identifier, such as /dev/hda1.
In this configuration, the BIOS would load a standard x86 MBR boot loader, which would
then load LILO.

Default stanza The default= setting specifies the default kernel or OS that boots. If this
option is omitted, the first image listed in lilo.conf is used as the default.

Boot prompt The prompt line instructs LILO to issue the boot: prompt and wait for
user input. This option is usually desirable, but it can be omitted if you want the system to
directly boot a single configuration.

Boot timeout The timeout= setting specifies the amount of time, in tenths of a second, that
LILO will wait for keyboard input before booting the default kernel image. You must use
the prompt option to enable the timeout. Listing 5.1’s setting of 150 indicates a 15-second
timeout.

Large disk support The lba32 option enables LILO to boot from disks where the kernel
image resides on a partition that is past the 1,024th cylinder. This option is almost always
desirable, but you may omit it if you’re using a very old computer.

Video options The vga= line selects the VGA text mode that is used when booting. Choices
include normal, extended, ask, and a number. Unless you’re having problems with the video
display during the boot process, you should probably leave this alone.

Linux root partition The root= option’s value is passed to the Linux kernel to tell it what
partition to use as its root (/) partition. You can set a default value for this option and over-
ride it in individual stanzas, as Listing 5.1 does.

Boot in read-only mode The read-only option indicates that the root filesystem should be
mounted read-only. Usually, the operating system will remount the filesystem to read-write.

Want to password-protect your booting process? Look into the password,
restricted, mandatory, and bypass options, which are documented in the
man page for lilo.conf. Modern BIOSs also provide password protection.

04836book.indd 224 1/7/09 9:06:19 AM

Installing Boot Loaders 225

Essential LILO Per-image Options

LILO supports two main types of stanzas: those for Linux kernels and those for other OSs.
The image= option is used to indicate a Linux kernel, and the other= option is used to indi-
cate some other OS. Either type of line begins a stanza, and subsequent lines are conven-
tionally indented until the next stanza or the end of the file. You may want to adjust several
types of per-image options:

Linux boot image The image= line indicates the Linux kernel file to use when booting.
You must pass the complete path to the Linux kernel image file.

Non-Linux boot partition An other= line indicates the partition that contains its own
boot loader. When this option is selected, LILO passes control to the boot loader in that
partition. DOS, Windows, OS/2, BeOS, FreeBSD, and other OSs can all place their own
boot loaders in their partitions, so this tool enables you to pass control to these OSs.

OS label The label= option provides a name for LILO to use. When you boot, you type
the name of the label or press the Tab key to get a list of available labels, as described later
in “Interacting with LILO.”

RAM disk The initrd= line points to an initial RAM disk. This is a small filesystem in
a file that the boot loader loads into memory and delivers to the kernel as a RAM-based
substitute for a disk drive. Linux distributions frequently use RAM disks like this to store
kernel drivers as a way of keeping the kernel size down while still supporting a wide range
of drivers. When you build your own kernel, it’s usually simpler to build drivers that are
necessary to the boot process (such as those for your hard disk controller and the root file-
system) into the main kernel file.

Extra kernel options You can pass arbitrary options to the kernel with the append= option.
For instance, Listing 5.1’s fedora stanza passes the mem=2048M option to the kernel in this
way. (This specific option tells the computer that is has 2048MB of RAM. Linux usually
detects available RAM correctly, but sometimes this or some other option is necessary.)

In addition, some of the options described in the section “Essential LILO Global Options”
can be used in per-image stanzas. In particular, vga=, root=, and read-only are often found in
per-image stanzas. If they aren’t used in stanzas, the global options apply.

Adding a Kernel to LILO
To add a new kernel to LILO, follow these steps as root:

1. Load /etc/lilo.conf into your favorite text editor.

2. Copy a working Linux stanza.

3. In the copied stanza, modify the label= line to give the copy a new name. The name
should be a string of letters, numbers, or both, without spaces.

4. Change the image= line to point to the new kernel file.

5. Change any other options that may need changing. For instance, if you’ve prepared a
new RAM disk, change the initrd= line to point to it. If your new configuration doesn’t
use a RAM disk, you can eliminate any initrd= line that’s present in the stanza.

04836book.indd 225 1/7/09 9:06:19 AM

226 Chapter 5 N Booting Linux and Editing Files

6. Save your changes, and exit the text editor.

7. At a root command prompt, type lilo. This command installs LILO in the MBR or
boot partition’s boot sector. You should see a list of stanza names echo to the screen.
Ensure that your new configuration is present.

Remember to perform step 7! It’s easy to overlook this step, and if you do
so, your changes won’t take effect. If you forget and reboot before typing
lilo, you should boot using a working kernel, log in as root, type lilo,
and reboot again.

A similar procedure can be used to add a new non-Linux OS, but you would then copy
and modify a working other= configuration (or copy the one shown in Listing 5.1).

Don’t remove old image= or other= configurations until you’re certain
the new images are working. This will allow you to boot to the old kernel
image in case of failure. Another alternative is to install LILO with your
new configuration onto a temporary device such as a floppy disk or a USB
memory stick. To do this, change the boot= line to point to the test boot
device, such as boot=/dev/fd0 to install LILO to a floppy disk.

You can pass some options to lilo to modify what it does:

Specify an alternate configuration file The -C config-file option specifies an alternate
configuration file to use rather than /etc/lilo.conf.

Test the configuration The -t option tests the configuration; it doesn’t write anything to
the boot sector.

Produce verbose output The -v option produces verbose output when lilo is run. This is
useful with the -t option to see how your changes will work out.

Specify a boot device The -b bootdev option specifies a boot device, overriding the boot=
option in lilo.conf.

It’s possible to install a new LILO boot loader and still have it fail when you
try to use it. The lilo man page describes the errors that may occur. LILO
prints the letters L, I, L, and O to indicate how it’s progressing.

Interacting with LILO
Sometimes you’ll need to boot with options that you didn’t place in the /etc/lilo.conf
file. If you’ve configured LILO to provide a boot: (or sometimes lilo:) prompt, you can
pass extra options to the boot loader on that command line.

04836book.indd 226 1/7/09 9:06:20 AM

Installing Boot Loaders 227

One thing you may wish to do is boot into single-user mode. Assuming that the image
you want to use is called linux, you can type something like this:

boot: linux 1

Instead of supplying the number 1 for single-user mode, you can specify
the letter s or S or the word single.

It’s also possible that your init program (usually /sbin/init) is corrupt, missing, or
incorrectly configured. At times like this, it’s possible to specify an alternate init program.
A common technique is to use a regular shell program like bash in place of init. You do so
at the boot: prompt like this:

boot: linux init=/bin/sh

Using GRUB as the Boot Loader
GRUB has taken over as the default boot loader for many Linux distributions because it
offers numerous features that LILO lacks. For example, you don’t have to reinstall GRUB
after editing its configuration, and you have many more interactive options while booting.
As with LILO, you must still explicitly add a new kernel to the GRUB configuration if you
intend to use that kernel. If GRUB isn’t installed in your boot sector, you must also install it,
although this step isn’t necessary if GRUB is already working. As with LILO, you can interact
with GRUB during the boot process, passing options to control how the system boots.

Configuring GRUB
The usual location for GRUB’s configuration file is /boot/grub/menu.lst. Some distri-
butions (such as Fedora, Red Hat, and Gentoo) use the filename grub.conf rather than
menu.lst. GRUB can read its configuration file at boot time, which means you needn’t
reinstall the boot loader to the boot sector when you change the configuration file. As
with LILO, the GRUB configuration file is broken into global and per-image sections,
each of which has its own options. Before getting into section details, though, you should
understand a few GRUB quirks.

GRUB Nomenclature and Quirks

Listing 5.2 shows a sample GRUB configuration file. This file is roughly equivalent to
the LILO configuration file shown in Listing 5.1. In particular, it can boot the same OSs
using the same kernels—Fedora on /dev/hda5, Debian on /dev/hda6, and DOS on /dev
/hda2. Fedora and Debian share a /boot partition (/dev/hda1), on which the GRUB con-
figuration resides.

04836book.indd 227 1/7/09 9:06:20 AM

228 Chapter 5 N Booting Linux and Editing Files

Listing 5.2: A Sample GRUB Configuration File

grub.conf/menu.lst

#

Global Options:

#

default=0

timeout=15

splashimage=/grub/bootimage.xpm.gz

#

Kernel Image Options:

#

title Fedora (2.6.25)

 root (hd0,0)

 kernel /vmlinuz-2.6.25 ro root=/dev/hda5 mem=2048M

 initrd /initrd-2.6.25

title Debian (2.6.26-experimental)

 root (hd0,0)

 kernel (hd0,0)/bzImage-2.6.26-experimental ro root=/dev/hda6

#

Other operating systems

#

title DOS

 rootnoverify (hd0,1)

 chainloader +1

GRUB doesn’t refer to disk drives by device filename the way Linux does. GRUB num-
bers drives so that instead of /dev/hda, GRUB uses (hd0). Similarly, /dev/hdb is likely to
be (hd1). GRUB doesn’t distinguish between PATA, SATA, and SCSI drives, so on a SCSI-
only system, the first SCSI drive is (hd0). On a mixed system, ATA drives normally receive
the lower numbers, although this isn’t always the case. GRUB’s drive mappings can be
found in the /boot/grub/device.map file.

Additionally, GRUB numbers partitions on a drive starting at 0 instead of the 1 that is
used by Linux. GRUB separates partition numbers from drive numbers with a comma, as
in (hd0,0) for the first partition on the first disk (normally Linux’s /dev/hda1 or /dev/
sda1) or (hd0,4) for the first logical partition on the first disk (normally Linux’s /dev/hda5
or /dev/sda5). Floppy devices are referred to as (fd0), or conceivably (fd1) or higher if
you have more than one floppy drive. Floppy disks aren’t partitioned, so they don’t receive
partition numbers.

GRUB defines its own root partition, which can be different from the Linux root parti-
tion. GRUB’s root partition is the partition in which GRUB’s configuration file (menu.lst
or grub.conf) resides. Because this file is normally in Linux’s /boot/grub/ directory, the
GRUB root partition will be the same as Linux’s root partition if you do not use a separate

04836book.indd 228 1/7/09 9:06:20 AM

Installing Boot Loaders 229

/boot or /boot/grub partition. If you split off /boot into its own partition, as is fairly com-
mon, GRUB’s root partition will be the same as Linux’s /boot partition. You must keep
this difference in mind when referring to files in the GRUB configuration directory.

Essential Global GRUB Options

GRUB’s global section precedes its per-image configurations. Typically, you’ll find fewer
options in this global section than in a LILO global configuration:

Default OS The default= option tells GRUB which OS to boot. Listing 5.2’s default=0
causes the first listed OS to be booted (remember, GRUB indexes from 0). If you want to
boot the second listed operating system, use default=1, and so on through all your OSs.

Timeout The timeout= option defines how long, in seconds, to wait for user input before
booting the default operating system. Note that GRUB measures its timeout period in seconds,
whereas LILO uses tenths of a second.

Background graphic The splashimage= line points to a graphics file that’s displayed as the
background for the boot process. This line is optional, but most Linux distributions point
to an image to spruce up the boot menu. The filename reference is relative to the GRUB root
partition, so if /boot is on a separate partition, that portion of the path is omitted. Alterna-
tively, the path may begin with a GRUB device specification, such as (hd0,5) to refer to a
file on that partition.

Essential GRUB Per-Image Options

GRUB’s per-image options are typically indented after the first line, much like LILO’s, but
this is a convention, not a requirement of the file format. The options begin with an identi-
fication and continue with options that tell GRUB how to handle the image:

Title The title line begins a per-image stanza and specifies the label to display when the
boot loader runs. Unlike LILO’s label option, the GRUB title can accept spaces and is
conventionally much more descriptive, as shown in Listing 5.2.

GRUB root The root option specifies the location of GRUB’s root partition. This is the
/boot partition if a separate one exists; otherwise it’s usually the Linux root (/) partition.
GRUB can reside on a FAT partition, on a floppy disk, or on certain other OSs’ parti-
tions, though, so GRUB’s root could conceivably be somewhere more exotic.

Kernel specification The kernel setting describes the location of the Linux kernel as well
as any kernel options that are to be passed to it. Paths are relative to GRUB’s root partition.
As an alternative, you can specify devices using GRUB’s syntax, such as kernel (hd0,5)
/vmlinuz ro root=/dev/hda5. Note that you pass most kernel options on this line. LILO
splits off kernel options on separate lines, such as the append= line, the root= line, and
the read-only option. In GRUB, you incorporate these options onto the kernel line. The
ro option tells the kernel to mount its root filesystem read-only (it’s later remounted read/
write), and the root= option specifies the Linux root filesystem. Because these options are
being passed to the kernel, they use Linux-style device identifiers, when necessary, unlike
other options in the GRUB configuration file.

04836book.indd 229 1/7/09 9:06:21 AM

230 Chapter 5 N Booting Linux and Editing Files

Initial RAM disk Use the initrd option to specify an initial RAM disk, much like the
option of the same name in LILO.

Non-Linux root The rootnoverify option is similar to the root option except that GRUB
won’t try to access files on this partition. It’s used to specify a boot partition for OSs for
which GRUB can’t directly load a kernel, such as DOS and Windows.

Chain loading The chainloader option tells GRUB to pass control to another boot
loader. Typically, it’s passed a +1 option to load the first sector of the root partition (usually
specified with rootnoverify) and to hand over execution to this secondary boot loader.

To add a kernel to GRUB, follow these steps:

1. As root, load the menu.lst or grub.conf file into a text editor.

2. Copy a working configuration for a Linux kernel.

3. Modify the title line to give your new configuration a unique name.

4. Modify the kernel line to point to the new kernel. If you need to change any kernel
options, do so.

5. If you’re adding, deleting, or changing a RAM disk, make appropriate changes to the
initrd line.

6. If desired, change the global default line to point to the new kernel.

7. Save your changes, and exit the text editor.

At this point, GRUB is configured to boot your new kernel. When you reboot, you
should see it appear in your menu, and you should be able to boot it. If you have problems,
boot a working configuration to debug the issue.

Don’t eliminate a working configuration for an old kernel until you’ve deter-
mined that your new kernel works correctly.

Installing the GRUB Boot Loader
Installation of GRUB is a little different than for LILO. The command for installing GRUB
is grub-install. Also, you must specify the boot sector by device name when you install
the boot loader. The basic command looks like

grub-install /dev/hda

or

grub-install ‘(hd0)‘

Either command will install GRUB into the first sector (or the MBR) of your first hard
drive. In the second example, you need single quotes around the device name. If you want
to install GRUB in the boot sector of a partition rather than in the MBR, you include a
partition identifier, as in /dev/hda1 or (hd0,0).

04836book.indd 230 1/7/09 9:06:21 AM

Installing Boot Loaders 231

Remember that you do not need to reinstall GRUB after making changes to its configu-
ration file! You only need to install GRUB this way if you make certain changes to your
disk configuration, such as resizing or moving the GRUB root partition, moving your entire
installation to a new hard disk, or possibly reinstalling Windows (which tends to wipe out
MBR-based boot loaders). In some of these cases, you may need to boot Linux via a backup
boot loader, such as LILO or GRUB installed to floppy disk. (Type grub-install /dev/fd0
to create one, and then label it and store it in a safe place.)

using Third-Party Boot Loaders

LILO, GRUB, and the basic DOS/Windows boot loaders aren’t the only ones available.
Products such as System Commander (http://avanquest.com) and GAG (http://gag
.sourceforge.net) provide alternatives to LILO and GRUB. Some of these products, though,
can’t directly boot Linux; instead, they function as primary boot loaders that then call LILO
or GRUB, which must be installed as secondary boot loaders on a Linux partition’s MBR.

Why would you want to do this? The main reason is that these third-party boot loaders
sometimes provide features that LILO and GRUB lack. For instance, System Commander
enables you to boot multiple copies of DOS or Windows from a single partition, which
can help you get around problems related to the limited number of primary partitions
available on x86 computers. GAG provides GUI menus that may be less intimidating to
some users than the text-mode menus of GRUB, or especially LILO. In any event, you can
either implement a two-tiered boot system that employs both the third-party boot load-
er’s OS options and redundant or unique options in LILO or GRUB; or you can configure
LILO or GRUB to immediately boot your preferred kernel. Which approach is appropriate
depends on your specific needs.

Another boot loader that deserves mention is LOADLIN. This boot loader is actually an ordi-
nary DOS program. If you place a Linux kernel on a FAT partition, you can boot to DOS and
use LOADLIN to boot Linux. This practice used to be common, particularly for emergency
recovery situations, but GRUB and native Linux emergency recovery tools have become
sophisticated enough that LOADLIN is seldom required. Nonetheless, it can still be handy as
an emergency boot option if you happen to have DOS installed or available.

Non-x86 platforms have their own boot loaders, such as BootX (http://penguinppc
.org/bootloaders/bootx/) on PowerPC-based Macs. You may need to consult your
distribution’s documentation to learn about such boot loaders, if you’re using Linux on
a non-x86 computer.

04836book.indd 231 1/7/09 9:06:21 AM

232 Chapter 5 N Booting Linux and Editing Files

Interacting with GRUB
The first screen the GRUB boot loader shows you is a list of all the operating systems you
specified with the title option in your GRUB configuration file. You can wait for the time-
out to expire for the default operating system to boot. To select an alternative, use your
arrow keys to highlight the operating system that you want to boot. Once your choice is
highlighted, press the Enter key to start booting.

Follow these steps when you want to change or pass additional options to your oper-
ating system:

1. Use your arrow keys to highlight the operating system that most closely matches what
you want to boot.

2. Press the E key to edit this entry. You’ll see a new screen listing all the options for
this entry.

3. Use your arrow keys to highlight the kernel option line.

4. Press the E key to edit the kernel options.

5. Edit the kernel line to add any options, such as 1 to boot to single-user mode. GRUB
passes the extra option to the kernel.

6. Press the Enter key to complete the edits.

7. Press the B key to start booting.

You can make whatever changes you like in step 5, such as using a different init pro-
gram. You do this by appending init=/bin/bash (or whatever program you want to use) to
the end of the kernel line.

Understanding the Boot Process
Any time you modify the way your computer boots, the possibility exists that you won’t
get the results you expect. In these cases, it’s useful to know where you can turn for more
information about what is happening during startup. The reports you receive on a particu-
lar boot can better guide you once you understand something about what’s supposed to
happen when a Linux system boots.

Extracting Information about the Boot Process
Certain Linux kernel and module log information is stored in what is called the kernel ring
buffer. By default, Linux displays messages destined for the kernel ring buffer during the
boot process—they’re those messages that scroll past too quickly to read. (Some distribu-
tions hide all but the earliest of these messages unless you select a special option during the
boot process.) You can inspect this information with this command:

dmesg

04836book.indd 232 1/7/09 9:06:21 AM

Understanding the Boot Process 233

This command generates a lot of output, so you may want to pipe it through the less
pager or redirect it to a file. Here are some examples of these commands:

dmesg | less

dmesg > boot.messages

Many Linux distributions store the kernel ring buffer to /var/log/dmesg
soon after the system boots. Because new information is logged to the ker-
nel ring buffer as the system operates, and because the kernel ring buffer’s
size is finite, you may need to consult this log file to learn about the boot
process once the system has been operating for a while.

Another source of logging information is the system logger (syslogd). The most useful
syslogd file to look at is usually /var/log/messages, but /var/log/syslog and other log
files in /var/log can also hold helpful information.

Some Linux distributions also log boot-time information to other files.
Debian uses a daemon called bootlogd that, by default, logs any messages
that go to /dev/console to the /var/log/boot file. Fedora and Red Hat use
syslogd services to log information to /var/log/boot.log.

Locating and Interpreting Boot Messages
Boot messages in the kernel ring buffer or /var/log files can be cryptic to the uninitiated.
Some tips can help you locate and interpret the information you find in these sources:

Use less and its search functions The less pager is a great tool for examining both the
kernel ring buffer and log files. The search function (accessed by pressing the slash key, /)
can help you look for particular strings.

Look for hardware type names Many boot messages, particularly in the kernel ring buf-
fer, relate to hardware. Try searching for the name of the hardware type, such as SCSI or
USB, if you’re having problems with these subsystems. Remember that Linux treats many
disk devices as SCSI disks, too!

Look for hardware chipset names Linux drivers sometimes log messages along with their
driver names, which are usually based on the chipset in question. If you know your hard-
ware well enough to know the chipset name, search for it, or for a subset of it. For instance,
searching for 8169 may turn up messages related to a RealTek 8169 Ethernet interface. Sim-
ilarly, you can search for higher-level kernel module names, such as ReiserFS for messages
from the ReiserFS filesystem driver.

Study the output from a working system Familiarize yourself with the contents of the
kernel ring buffer and log files on a working system. If you know what to expect when a
system is functioning correctly, you’ll find it easier to identify problems when they occur.

04836book.indd 233 1/7/09 9:06:22 AM

234 Chapter 5 N Booting Linux and Editing Files

Sometimes, a system won’t boot at all. In this case, kernel boot messages (which ordinar-
ily go into the kernel ring buffer) are displayed on the screen, which can help you identify the
cause of a failure. Many modern Linux distributions hide these messages by default, but you
can sometimes reveal them by pressing the Esc key during the boot process. Once the kernel
boot process has completed, other systems take over, and the last few messages displayed on
the screen can also provide clues—for instance, if the last message displayed mentions start-
ing a particular server, it’s possible that the server is hanging and interrupting the boot pro-
cess. You may be able to disable the server by using a single-user boot mode and therefore
bypass the problem.

The Boot Process
The process of taking an x86 computer from its initial state when the power is turned on
to having a working operating system running is complex due to the way modern personal
computers have evolved. The steps a computer goes through in order to boot an operating
system are as follows:

1. The system is given power, and a special hardware circuit causes the CPU to look at a
predetermined address and execute the code stored in that location. The BIOS resides
at this location, so the CPU runs the BIOS.

2. The BIOS code performs some tasks. These include checking for hardware, configuring
hardware, and looking for a boot sector. This boot sector contains the boot loader. (If
the computer uses a multi-staged loader, the boot sector’s boot loader is called the pri-
mary boot loader).

3. When the boot loader takes over from the BIOS, if it’s a multi-staged loader, it looks
for a secondary loader. Some boot loaders go straight to a secondary loader in a hard
drive’s active partition. Other boot loaders, like LILO and GRUB, can do much more,
as just described.

Active partitions are simply partitions that are marked with a special flag.
Some boot loaders and OSs, such as DOS and Windows, use the active
flag as a way of determining which OS to boot. Linux and its boot load-
ers ignore the active flag for most purposes. That doesn’t stop Linux from
being able to mark a partition as active. Use disk partitioning tools such as
fdisk, cfdisk, and sfdisk for this task. Each hard drive should have only
one active partition.

4. The final goal of the boot loader is to find a kernel (Linux or otherwise), load it into
memory, and execute it.

5. Once the Linux kernel takes over, it performs tasks such as initializing devices, mount-
ing the root partition, and finally loading and executing the initial program for your
system. By default, this is the program /sbin/init.

04836book.indd 234 1/7/09 9:06:22 AM

Dealing with Runlevels and the Initialization Process 235

6. The initial program gets the process ID (PID) of 1 because it’s the first program to run
on the system. Assuming that /sbin/init is the initial program, it reads a file called
/etc/inittab to determine what other programs to run. Other programs usually include
getty programs for console logins, system initialization scripts for mounting more parti-
tions or starting up system services, and an X Display Manager (XDM) program to give
you a graphical login.

How the init program and the initialization scripts work is covered next, in “Dealing
with Runlevels and the Initialization Process.”

If you would like more details about this boot process, read http://www
.linuxdevcenter.com/pub/a/linux/excerpts/linux_kernel/how_
computer_boots.html. This page describes the process from the com-
puter being powered up to the kernel being loaded and launching
/sbin/init.

Dealing with Runlevels and
the Initialization Process
Linux relies on runlevels to determine what features are available. Runlevels are numbered
from 0 to 6, and each one is assigned a set of services that should be active. Upon booting,
Linux enters a predetermined runlevel, which you can set. Knowing what these functions
are, and how to manage runlevels, is important if you’re to control the Linux boot process
and ongoing operations. Toward this end, you must understand the purpose of runlevels,
be able to identify the services that are active in a runlevel, be able to adjust those services,
be able to check your default and current runlevels, and be able to change the default and
current runlevels.

Runlevel Functions
Earlier in this chapter, I described single-user mode. To get to this mode when booting Linux,
you use the number 1, the letter S or s, or the word single as an option passed to the kernel by
the boot loader. Single-user mode is simply an available runlevel for your system. The available
runlevels on most systems are the numbers 0 through 6. The letters S and s are synonymous
with runlevel 1 as far as many utilities are concerned.

Runlevels 0, 1, and 6 are reserved for special purposes; the remaining runlevels are avail-
able for whatever purpose you or your Linux distribution provider decide. Table 5.1 summa-
rizes the conventional uses of the runlevels. Other assignments—and even runlevels outside
the range of 0 to 6—are possible, but such configurations are rare. (Gentoo uses an unusual

04836book.indd 235 1/7/09 9:06:22 AM

236 Chapter 5 N Booting Linux and Editing Files

runlevel system, as described shortly.) If you run into peculiar runlevel numbers, consult
/etc/inittab—it defines them and often contains comments explaining the various runlevels.

Ta B LE 5 .1 Runlevels and Their Purposes

Runlevel Purpose

0 A transitional runlevel, meaning that it’s used to shift the system from one
state to another. Specifically, it shuts down the system. On modern hard-
ware, the system should completely power down. If not, you’re expected to
either reboot the computer manually or power it off.

1, s, or S Single-user mode. What services, if any, are started at this runlevel varies by
distribution. It’s typically used for low-level system maintenance that may be
impaired by normal system operation, such as resizing partitions.

2 On Debian and its derivatives, a full multi-user mode with X running and a
graphical login. Most other distributions leave this runlevel undefined.

3 On Fedora, Mandriva, Red Hat, and most other distributions, a full multi-user
mode with a console (non-graphical) login screen.

4 Usually undefined by default and therefore available for customization.

5 On Fedora, Mandriva, Red Hat, and most other distributions, the same behavior
as runlevel 3 with the addition of having X run with an XDM (graphical) login.

6 Used to reboot the system. This runlevel is also a transitional runlevel. Your sys-
tem is completely shut down, and then the computer reboots automatically.

Don’t configure your default runlevel to 0 or 6. If you do, your system will
immediately shut down or reboot once it finishes powering up. Runlevel 1
could conceivably be used as a default, but chances are you’ll want to use 2,
3, or 5 as your default runlevel, depending on your distribution and use for
the system.

As a general rule, distributions have been drifting toward Red Hat’s runlevel set; however,
there are some exceptions and holdouts, such as Debian. Gentoo also deserves special atten-
tion. Although it uses numbered runlevels at its core, Gentoo builds on this by enabling an
arbitrary number of named runlevels. The default runlevel is called, appropriately enough,
default. Gentoo’s system permits you to create named runlevels for, say, connecting a laptop
to half a dozen different networks, each with its own unique network configuration require-
ments. When you move from one network to another, enter the appropriate runlevel, as
described later in “Changing Runlevels on a Running System.”

04836book.indd 236 1/7/09 9:06:22 AM

Dealing with Runlevels and the Initialization Process 237

Identifying the Services in a Runlevel
There are two main ways to affect what programs run when you enter a new runlevel. The
first is to add or delete entries in your /etc/inittab file. A typical /etc/inittab file contains
many entries, and except for a couple of special cases, inspecting or changing the contents
of this file is best left to experts. Once all the entries in /etc/inittab for your runlevel are
executed, your boot process is complete and you can log in.

Linux distributions are moving away from /etc/inittab as a startup con-
trol file. The new system uses entries in /etc/event.d to control init’s
startup sequence. Most distributions still use /etc/inittab to specify the
default runlevel, though. Ubuntu Linux is an exception to this rule; it has no
/etc/inittab file by default. If you want to change your default runlevel in
Ubuntu, you can create an /etc/inittab file that contains nothing but the
initdefault line described shortly.

Basics of the /etc/inittab File
Entries in /etc/inittab follow a simple format. Each line consists of four colon-
delimited fields:

id:runlevels:action:process

Each of these fields has a specific meaning:

Identification code The id field consists of a sequence of 1–4 characters that identifies its
function.

Applicable runlevels The runlevels field consists of a list of runlevels for which this entry
applies. For instance, 345 means the entry is applicable to runlevels 3, 4, and 5.

Action to be taken Specific codes in the action field tell init how to treat the process.
For instance, wait tells init to start the process once when entering a runlevel and to wait
for the process’s termination, and respawn tells init to restart the process whenever it ter-
minates (which is great for login processes). Several other actions are available; consult the
man page for inittab for details.

Process to run The process field is the process to run for this entry, including any options
and arguments that are required.

The part of /etc/inittab that tells init how to handle each runlevel looks like this:

grep “rc [0-6]“ /etc/inittab

l0:0:wait:/etc/init.d/rc 0

l1:1:wait:/etc/init.d/rc 1

l2:2:wait:/etc/init.d/rc 2

l3:3:wait:/etc/init.d/rc 3

04836book.indd 237 1/7/09 9:06:23 AM

238 Chapter 5 N Booting Linux and Editing Files

l4:4:wait:/etc/init.d/rc 4

l5:5:wait:/etc/init.d/rc 5

l6:6:wait:/etc/init.d/rc 6

These lines start with codes that begin with an l (a lowercase letter L, not a number 1)
followed by the runlevel number—for instance, l0 for runlevel 0, l1 for runlevel 1, and so
on. These lines specify scripts or programs that are to be run when the specified runlevel
is entered. In the case of this example (which was taken from a Fedora 6 system), all the
scripts are the same (/etc/init.d/rc), but the script is passed the runlevel number as an
argument. Some distributions call specific programs for certain runlevels, such as shutdown
for runlevel 0.

The upcoming section “Checking and Changing Your Default Runlevel”
describes how to tell init what runlevel to enter when the system boots.

On systems that use the new startup system based on /etc/event.d, you’ll find equivalent
startup information in the form of scripts in /etc/event.d. For instance, /etc/event.d/rc3
controls entry into runlevel 3. This script in turn runs the SysV startup scripts for runlevel 3,
as described next.

The SysV Startup Scripts
The /etc/init.d/rc or /etc/rc.d/rc script performs the crucial task of running all the
scripts associated with the runlevel. The runlevel-specific scripts are stored in /etc/rc.d/
rc?.d, /etc/init.d/rc?.d, /etc/rc?.d, or a similar location. (The precise location varies
between distributions.) In all these cases, ? is the runlevel number. When entering a run-
level, rc passes the start parameter to all the scripts with names that begin with a capital
S and the stop parameter to all the scripts with names that begin with a capital K. These
System V (SysV) startup scripts start or stop services depending on the parameter they’re
passed, so the naming of the scripts controls whether they’re started or stopped when a
runlevel is entered. These scripts are also numbered, as in S10network and K35smb.

The rc program runs the scripts in numeric order. This feature enables distribution
designers to control the order in which scripts run by giving them appropriate numbers.
This control is important because some services depend on others. For instance, network
servers must normally be started after the network is brought up.

In reality, the files in the SysV runlevel directories are symbolic links to the main scripts,
which are typically stored in /etc/rc.d, /etc/init.d, or /etc/rc.d/init.d (again, the
exact location depends on the distribution). These original SysV startup scripts have names
that lack the leading S or K and number, as in smb instead of K35smb.

You can also start services by hand. Run them with the start option,
as in /etc/init.d/smb start to start the smb (Samba) server. Other
useful options are stop, restart, and status. Most scripts support all
these options.

04836book.indd 238 1/7/09 9:06:23 AM

Dealing with Runlevels and the Initialization Process 239

To determine which services are active in a runlevel, search the appropriate SysV startup
script directory for scripts with filenames that begin with an S. Alternatively, you can use a
runlevel management tool, as described next.

Managing Runlevel Services
The SysV startup scripts in the runlevel directories are symbolic links back to the original
script. This is done so you don’t need to copy the same script into each runlevel directory.
Instead, you can modify the original script without having to track down its copies in all
the SysV runlevel directories. You can also modify which programs are active in a runlevel
by editing the link filenames. Numerous utility programs are available to help you manage
these links, such as chkconfig, ntsysv, update-rc.d, and rc-update. I describe the first
two of these tools because they’re supported on most distributions. If your distribution
doesn’t support these tools, you should check distribution-centric documentation.

Managing Runlevel Services with chkconfig
To list the services and their applicable runlevels with chkconfig, use the --list option.
The output looks something like this but is likely to be much longer:

chkconfig --list

pcmcia 0:off 1:off 2:on 3:on 4:on 5:on 6:off

nfs-common 0:off 1:off 2:off 3:on 4:on 5:on 6:off

xprint 0:off 1:off 2:off 3:on 4:on 5:on 6:off

setserial 0:off 1:off 2:off 3:off 4:off 5:off 6:off

This output shows the status of the services in all seven runlevels. For instance, you can see
that nfs-common is inactive in runlevels 0–2, active in runlevels 3–5, and inactive in runlevel 6.

On Red Hat, Fedora, and some other distributions, chkconfig can manage
servers that are handled by xinetd as well as SysV startup scripts. The
xinetd-mediated servers appear at the end of the chkconfig listing.

If you’re interested in a specific service, you can specify its name:

chkconfig --list nfs-common

nfs-common 0:off 1:off 2:off 3:on 4:on 5:on 6:off

To modify the runlevels in which a service runs, use a command like this:

chkconfig --level 23 nfs-common on

The previous example is for Debian-based systems. On Red Hat and similar
systems, you would probably want to target runlevels 3, 4, and 5 with some-
thing like --level 345 rather than --level 23.

04836book.indd 239 1/7/09 9:06:23 AM

240 Chapter 5 N Booting Linux and Editing Files

You can set the script to be on (to activate it), off (to deactivate it), or reset (to set it to
its default value).

If you’ve added a startup script to the main SysV startup script directory, you can have
chkconfig register it and add appropriate start and stop links in the runlevel directories.
When you do this, chkconfig inspects the script for special comments to indicate default
runlevels. If these comments are in the file and you’re happy with the suggested levels, you
can add it to these runlevels with a command like this:

chkconfig --add nfs-common

This command adds the nfs-common script to those managed by chkconfig. You would,
of course, change nfs-common to your script’s name. This approach may not work if the script
lacks the necessary comment lines with runlevel sequence numbers for chkconfig’s benefit.

Managing Runlevel Services with ntsysv
The ntsysv utility is an interactive text-mode tool. It was created by Red Hat and is used
mainly on Red Hat and related distributions, such as Fedora and Mandriva. If you run ntsysv
without any arguments, you can configure your current runlevel. If you want to specify alter-
nate runlevels to configure, run it with the --level option, as in ntsysv --level 1 to config-
ure runlevel 1 or ntsysv --level 23 to configure runlevels 2 and 3. In either event, the result
resembles Figure 5.2, which shows ntsysv running in an xterm window.

F i gu r E 5 . 2 The ntsysv program enables you to control services from a menu of
available services.

To adjust services, use your keyboard’s arrow keys to select a service, and press the
spacebar to toggle the service on or off. An asterisk in the square brackets indicates that
the service is on. No asterisk means the service won’t execute for the runlevels you’ve
selected. When you’re done, press the Tab key to highlight the OK button, and then press
the Enter key.

04836book.indd 240 1/7/09 9:06:23 AM

Dealing with Runlevels and the Initialization Process 241

Checking Your Runlevel
Sometimes it’s necessary to check your current runlevel. Typically, you’ll do this prior
to changing the runlevel or to check the status if something isn’t working correctly. Two
different runlevel checks are possible: checking your default runlevel and checking your
current runlevel.

Checking and Changing Your Default Runlevel
You can determine your default runlevel by inspecting the /etc/inittab file with the less
command or opening it in an editor. Alternatively, you may use the grep command to look
for the line specifying the initdefault action. On a Fedora system, you’ll see something
like this:

grep :initdefault: /etc/inittab

id:5:initdefault:

On Debian, you’ll probably see this:

grep :initdefault: /etc/inittab

id:2:initdefault:

You may notice that neither system defines a process to run. In the case of the initdefault
action, the process field is ignored.

If you want to change the default runlevel for the next time you boot your system, edit the
initdefault line in /etc/inittab and change the runlevel field to the value that you want.
If your system lacks an /etc/inittab file, create one that contains only an initdefault line
that specifies the runlevel you want to enter by default.

Determining Your Current Runlevel
If your system is up and running, you can determine your runlevel information with the
runlevel command:

runlevel

N 2

The first character is the previous runlevel. When the character is N, this means the system
hasn’t switched runlevels since booting. It’s possible to switch to different runlevels on a run-
ning system with the init and telinit programs, as described next. The second character in
the runlevel output is your current runlevel.

Changing Runlevels on a Running System
Sometimes you may want to change runlevels on a running system. You might do this to get
more services, such as going from a console to a graphical login runlevel, or to shut down
or reboot your computer. This can be accomplished with the init (or telinit), shutdown,
halt, reboot, and poweroff commands.

04836book.indd 241 1/7/09 9:06:23 AM

242 Chapter 5 N Booting Linux and Editing Files

Changing Runlevels with init or telinit
The init process is the first process run by the Linux kernel, but you can also use it to have
the system reread the /etc/inittab file and implement changes it finds there or to change to
a new runlevel. The simplest case is to have it change to the runlevel you specify. For instance,
to change to runlevel 1 (the runlevel reserved for single-user or maintenance mode), you
would type this command:

init 1

To reboot the system, you can use init to change to runlevel 6 (the runlevel reserved for
reboots):

init 6

A variant of init is telinit. This program can take a runlevel number just like init to
change to that runlevel, but it can also take the Q or q option to have the tool reread /etc/
inittab and implement any changes it finds there. Thus, if you’ve made a change to the run-
level in /etc/inittab, you can immediately implement that change by typing telinit q.

The man pages for these commands indicate slightly different syntaxes;
but telinit is sometimes a symbolic link to init, and in practice init
responds just like telinit to the Q and q options.

Changing Runlevels with shutdown
Although you can shut down or reboot the computer with init, doing so has some problems.
One issue is that it’s simply an unintuitive command for this action. Another is that chang-
ing runlevels with init causes an immediate change to the new runlevel. This may cause
other users on your system some aggravation because they’ll be given no warning about the
shutdown. Thus, it’s better to use the shutdown command in a multi-user environment when
you want to reboot, shut down, or switch to single-user mode. This command supports extra
options that make it friendlier in such environments.

The shutdown program sends a message to all users who are logged into your system and
prevents other users from logging in during the process of changing runlevels. The shutdown
command also lets you specify when to effect the runlevel change so that users have time to
exit editors and safely stop other processes they may have running.

When the time to change runlevels is reached, shutdown signals the init process for you.
In the simplest form, shutdown is invoked with a time argument like

shutdown now

This changes the system to runlevel 1, the single-user or maintenance mode. The now
parameter causes the change to occur immediately. Other possible time formats include
hh:mm, for a time in 24-hour clock format (such as 6:00 for 6:00 am or 13:30 for 1:30 pm),
and +m for a time m minutes in the future.

04836book.indd 242 1/7/09 9:06:24 AM

Dealing with Runlevels and the Initialization Process 243

You can add extra parameters to specify that you want to reboot or halt (that is, power
off) the computer. Specifically, -r reboots the system, -H halts it (terminates operation but
doesn’t power it off), and -P powers it off. The -h option may halt or power off the com-
puter, but usually it powers it off. For instance, you can type shutdown -r +10 to reboot
the system in 10 minutes.

To give people some warning about the impending shutdown, you can add a message to
the end of the command:

shutdown -h +15 “system going down for maintenance”

If you schedule a shutdown but then change your mind, you can use the -c option to
cancel it:

shutdown -c “never mind”

Changing Runlevels with the halt, reboot, and poweroff Commands
Three additional shortcut commands are halt, reboot, and poweroff. (In reality, reboot and
poweroff are usually symbolic links to halt. This command behaves differently depending on
the name with which it’s called.) As you might expect, these commands halt the system (shut
it down without powering it off), reboot it, or shut it down and (on hardware that supports
this feature) turn off the power, respectively.

In Exercise 5.1, you’ll experiment with some of the methods of changing runlevels just
described.

E x E r c i s E 5 .1

changing runlevels

This exercise will demonstrate the effects of changing the runlevel in various ways on a
working system. Be aware that some of the effects will be different from one system to
another, depending on both the distribution and the system-specific configuration of the
computer. Also, in the course of running this exercise, you’ll reboot the computer, so you
shouldn’t do it on a system that anybody else is using. To manage your runlevels, follow
these steps:

1. Log in as root, or acquire root privileges by using su or by using sudo with each
of the following commands. Use a text-mode or remote login; some of the exercise
activities will shut down X.

2. Type runlevel to learn your current runlevel. Recall that the first character returned
refers to the previous runlevel (N denotes no previous runlevel; it hasn’t been changed
since the system booted). The second output character is the current runlevel. This is
likely to be 2 on Debian or Debian-derived systems, and 3 or 5 on Red Hat or Red Hat-
derived systems.

04836book.indd 243 1/7/09 9:06:24 AM

244 Chapter 5 N Booting Linux and Editing Files

E x E r c i s E 5 .1 (c ont inue d)

3. If your system reports it’s in runlevel 5, type telinit 3 to switch to runlevel 3.
Chances are your X server will stop working. (Pressing Alt+F7 from a text-mode
console will show a blank text-mode screen rather than the X display this key-
stroke would normally reveal.)

4. If your system initially reported a runlevel of 3, type telinit 5 to switch to run-
level 5. This will probably start X; however, if X is misconfigured, the screen is likely
to blink two or three times and possibly display an error message. If X isn’t installed,
nothing much will happen, aside from a display about a few services being stopped
and started. If X starts, you can get back to your text-mode console by pressing
Ctrl+Alt+F1.

5. If your system reported that it was in runlevel 2, you can try other runlevels, such as
3, 4, or 5; however, this isn’t likely to have much effect. You can temporarily start or
stop X by typing /etc/init.d/gdm start or /etc/init.d/gdm stop. (You may need
to change gdm to xdm or kdm.)

6. Return to your original runlevel using telinit, as in telinit 5.

7. On Red Hat or similar systems, edit /etc/inittab and change the default runlevel
by changing the number in the line that reads id:n:initdefault:. The number, n, is
likely to be either 3 or 5; change it to the other value. (It’s wise to make a backup of
/etc/inittab before editing it!)

8. Reboot the computer by typing reboot now or shutdown -r now.

9. Log in as root again, and type runlevel to verify that you’re running in the runlevel
you specified in step 7.

10. Edit /etc/inittab to restore it to its original state, or restore it from its backup.

11. Type telinit 6. This enters runlevel 6, which reboots the system. The computer
should now be running as it was before you began this exercise.

Editing Files with Vi
Vi was the first full-screen text editor written for Unix. It’s designed to be small and simple.
Vi is small enough to fit on tiny, floppy-based emergency boot systems. For this reason
alone, Vi is worth learning; you may need to use it in an emergency recovery situation. Vi
is, however, a bit strange, particularly if you’re used to GUI text editors. To use Vi, you
should first understand the three modes in which it operates. Once you understand those
modes, you can begin learning about the text-editing procedures Vi implements. You’ll also
examine how to save files and exit Vi.

04836book.indd 244 1/7/09 9:06:24 AM

Editing Files with Vi 245

Most Linux distributions ship with a variant of Vi known as Vim, or “Vi
Improved.” As the name implies, Vim supports more features than the
original Vi does. The information presented here applies to both Vi and
Vim. Most distributions that ship with Vim support launching it by typing
vi, as if it were the original Vi.

Understanding Vi Modes
At any given moment, Vi is running in one of three modes:

Command mode This mode accepts commands, which are usually entered as single let-
ters. For instance, i and a both enter insert mode, although in somewhat different ways,
as described shortly, and o opens a line below the current one.

Ex mode To manipulate files (including saving your current file and running outside pro-
grams), you use ex mode. You enter ex mode from command mode by typing a colon (:),
typically directly followed by the name of the ex mode command you want to use. After
you run the ex mode command, Vi returns automatically to command mode.

Insert mode You enter text in insert mode. Most keystrokes result in text appearing on
the screen. One important exception is the Esc key, which exits insert mode and returns to
command mode.

If you’re not sure what mode Vi is in, press the Esc key. Doing so returns
you to command mode, from which you can reenter insert mode, if
necessary.

Unfortunately, terminology surrounding Vi modes is inconsistent at best. For instance,
command mode is sometimes referred to as normal mode, and insert mode is sometimes
called edit mode or entry mode. Ex mode often isn’t described as a mode at all, but is
referred to as colon commands.

Exploring Basic Text-Editing Procedures
As a method of learning Vi, consider the task of editing /etc/lilo.conf to add a new kernel.
Listing 5.3 shows the original lilo.conf file used in this example. If you want to follow along,
enter it using a text editor with which you’re already familiar, and save it to a file on your disk.

Listing 5.3: Sample /etc/lilo.conf File

boot=/dev/sda

map=/boot/map

install=/boot/boot.b

prompt

04836book.indd 245 1/7/09 9:06:24 AM

246 Chapter 5 N Booting Linux and Editing Files

default=linux

timeout=50

image=/boot/vmlinuz

 label=linux

 root=/dev/sda6

 read-only

Don’t try editing your real /etc/lilo.conf file as a learning exercise; a
mistake could render your system unbootable the next time you type lilo.
You might put your test lilo.conf file in your home directory for this
exercise.

The first step to using Vi is to launch it and have it load the file. In this example, type
vi lilo.conf while in the directory holding the file. The result should resemble Figure 5.3,
which shows Vi running in a Konsole window. The tildes (~) down the left side of the dis-
play indicate the end of the file. The bottom line shows the status of the last command—an
implicit file load command because you specified a filename when launching the program.

F i gu r E 5 . 3 The last line of a Vi display is a status line that shows messages from the
program.

Adding a new entry to lilo.conf involves duplicating the lines beginning with the
image= line and modifying the duplicates. Therefore, the first editing task is to duplicate
these four lines. To do this, follow these steps:

1. Move the cursor to the beginning of the image= line by using the Down arrow key; you
should see the cursor resting on the i.

04836book.indd 246 1/7/09 9:06:25 AM

Editing Files with Vi 247

You can also use the h, j, k, and l keys in place of the Left, Down, Up, and
Right arrow keys. This is a holdover from the days before all keyboards
had arrow keys. Some people prefer to use these keys because they can be
faster to use, once the mappings are learned, than the arrow keys.

2. You must now yank four lines of text. This term is used much as copy is used in most
text editors—you copy the text to a buffer from which you can later paste it back into the
file. To yank text, you use the yy command, preceded by the number of lines you want to
yank. Thus, type 4yy (do not press the Enter key, though). Vi responds with the message
4 lines yanked on its bottom status line. The dd command works much like yy, but it
deletes the lines as well as copying them to a buffer. Both yy and dd are special cases of
the y and d commands, respectively, which yank or delete text in amounts specified by
the next character, as in dw to delete the next word.

3. Move the cursor to the last line of the file by using the arrow keys.

4. Type p (again, without pressing the Enter key). Vi pastes the contents of the buffer start-
ing on the line after the cursor. The file should now have two identical image= stanzas.
The cursor should be resting at the start of the second one. If you want to paste the text
into the document starting on the line before the cursor, use an uppercase P command.

Now that you’ve duplicated the necessary lines, you must modify one copy to point to
your new kernel. To do so, follow these steps:

1. Move the cursor to the v in vmlinuz on the second image= line. You’re about to begin
customizing this second stanza.

2. Until now, you’ve operated Vi in command mode. You can use any of several commands
to enter insert mode. At this point, the most appropriate is R, which enters insert mode
so that it’s configured for text replacement rather than insertion. If you prefer to insert
text rather than overwrite it, you can use i or a (the latter advances the cursor one space,
which is sometimes useful at the end of a line). For the purposes of these instructions,
type R to enter insert mode. You should see -- REPLACE -- appear in the status line.

3. Type the name of a new Linux kernel. For the purposes of this example, let’s say you’ve
called it bzImage-2.6.26, so that’s what you type. This entry should replace vmlinuz.

4. Use the arrow keys to move the cursor to the start of linux on the next line. You must
replace this label so that your new entry has its own label.

5. Type a new label, such as mykernel. This label should replace the existing linux label.

6. Exit insert mode by pressing the Esc key.

7. Save the file and quit by typing :wq. This is an ex-mode command, as described shortly.
(The ZZ command is equivalent to :wq.)

Many additional commands are available that you may want to use in some situations.
Here are some of the highlights:

Change case Suppose you need to change the case of a word in a file. Instead of enter-
ing insert mode and retyping the word, you can use the tilde (~) key in command mode to

04836book.indd 247 1/7/09 9:06:25 AM

248 Chapter 5 N Booting Linux and Editing Files

change the case. Position the cursor on the first character you want to change, and press ~
repeatedly until the task is done.

Undo To undo any change, type u in command mode.

Open text In command mode, typing o opens text—that is, it inserts a new line immedi-
ately below the current one and enters insert mode on that line.

Search To search forward for text in a file, type / in command mode, followed immedi-
ately by the text you want to locate. Typing ? searches backward rather than forward.

Change text The c command changes text from within command mode. You invoke it much
like the d or y command, as in cw to change the next word or cc to change an entire line.

Go to a line The G key brings you to a line that you specify. The H key “homes” the cur-
sor—that is, it moves the cursor to the top line of the screen. The L key brings the key to
the bottom line of the screen.

Replace globally To replace all occurrences of one string with another, type :%s/original/
replacement, where original is the original string and replacement is its replacement. Change
% to a starting line number, comma, and ending line number to perform this change on a small
range of lines.

Vi offers a great deal more depth than is presented here; the editor is quite capable, and
some Linux users are very attached to it. Entire books have been written about Vi. Consult
one of these, or a Vi Web page like http://www.vim.org, for more information.

Saving Changes
To save changes to a file, type :w from command mode. This enters ex mode and runs the
w ex-mode command, which writes the file using whatever filename you specified when you
launched Vi. Related commands enable other functions:

Edit a new file The :e command edits a new file. For instance, :e /etc/inittab loads
/etc/inittab for editing. Vi won’t load a new file unless the existing one has been saved
since its last change or unless you follow :e with an exclamation mark (!).

Include an existing file The :r command includes the contents of an old file in an exist-
ing one.

Execute an external command The ex-mode command :! executes the external command
that you specify. For instance, typing :!ls runs ls, enabling you to see what files are present
in the current directory.

Quit Use the :q command to quit the program. As with :e, this command won’t work
unless changes have been saved or you append an exclamation mark to the command (as
in :q!).

You can combine ex commands such as these to perform multiple actions in sequence.
For instance, typing :wq writes changes and then quits from Vi.

04836book.indd 248 1/7/09 9:06:25 AM

Exam Essentials 249

Summary
Although Linux distributions are designed to boot painlessly and reliably once installed,
understanding the boot process will help you overcome problems and maintain your sys-
tem. Most Linux systems employ a boot loader known as LILO or GRUB. Although these
programs are rather different, they both fit themselves into the standard x86 boot system,
enabling the computer to load the Linux kernel. The kernel then runs the init program,
which in turn reads various configuration files to boot all the services that make a running
Linux system.

Modifying your LILO or GRUB configuration enables you to boot different Linux kernels
or non-Linux OSs. You can also pass new boot options to Linux. Once the system is booted,
you can use the dmesg command or log files to study the boot process in order to verify that it
went correctly or to find clues as to why it didn’t.

You can use the Vi editor to edit your LILO or GRUB configuration file, or any other
plain text file on your computer. Although Vi is old-fashioned in many ways, it’s small and
fits on emergency disk systems. Every administrator should be familiar with Vi, even if it’s
not your editor of choice for day-to-day operations.

Exam Essentials

Explain how LILO is configured and used. LILO uses the /etc/lilo.conf configuration
file. This file contains global options and per-image options. Use the lilo program to install
the LILO boot loader in your boot sector. When the system boots, LILO presents a boot:
prompt at which you type the name of the kernel or OS you want to boot.

Describe how GRUB is configured and used. GRUB uses the menu.lst or grub.conf
configuration file in /boot/grub. This file contains global and per-image options. Use the
grub-install program to install the boot loader. When GRUB boots, it presents a menu of
OS options that you select using the keyboard arrow keys.

Describe the boot process. The CPU runs the BIOS, the BIOS loads and runs a boot
loader, the boot loader loads and runs secondary boot loaders (if needed) and the Linux
kernel, the Linux kernel loads and runs the initial system program (init), and init starts
the rest of the system services via SysV and other startup scripts. The BIOS looks for boot
loaders in various boot sectors, including the MBR of a hard drive or the boot sector of a
disk partition or floppy disk.

Summarize where to look for boot-time log information. The dmesg command prints out
logs from the kernel ring buffer, which holds boot-time and other kernel messages. Other
useful log information can be found in /var/log/messages and other files in /var/log.

Summarize the role of /sbin/init. The init program is responsible for starting many pro-
grams and services on your Linux operating system. This is done by running processes that
are listed in /etc/inittab, including an rc script that runs the SysV initialization scripts.

04836book.indd 249 1/7/09 9:06:25 AM

250 Chapter 5 N Booting Linux and Editing Files

Explain how runlevels are configured. The default runlevel is specified with a line
like id:2:initdefault: in the /etc/inittab file. Use commands such as chkconfig,
update-rc.d, and ntsysv to change which services are started when switching to spe-
cific runlevels. Runlevels 0, 1, and 6 are reserved for shutdown, single-user mode, and
rebooting, respectively. Runlevels 3, 4, and 5 are the common user runlevels on Red
Hat and most other distributions, and runlevel 2 is the usual user runlevel on Debian
systems.

Describe how to change runlevels. The programs init and telinit can be used to change
to other runlevels. shutdown, halt, poweroff, and reboot are also useful when shutting
down, rebooting, or switching to single-user mode.

Describe Vi’s three editing modes. You enter text using insert mode, which supports text
entry and deletion. The command and ex modes are used to perform more complex com-
mands or to run outside programs to operate on the text entered or changed in insert mode.

04836book.indd 250 1/7/09 9:06:26 AM

Review Questions 251

Review Questions

1. Where might the BIOS find a boot loader?

A. RAM

B. /dev/boot

C. MBR

D. /dev/kmem

2. You want to boot a Linux system into single-user mode. What might you type at a LILO
boot: prompt to accomplish this task?

A. s

B. single-user

C. linux 1

D. telinit 6

3. After booting, one of your hard disks doesn’t respond. What might you do to find out
what’s gone wrong?

A. Check the /var/log/diskerror log file to see what’s wrong.

B. Verify that the disk is listed in /mnt/disks.

C. Check the contents of /etc/inittab to be sure it’s mounting the disk.

D. Type dmesg | less, and peruse the output for disk-related messages.

4. What is the first program that the Linux kernel runs once it’s booted in a normal boot
process?

A. dmesg

B. init

C. startup

D. rc

5. Which of the following is the LILO boot loader configuration file?

A. /dev/lilo

B. The MBR

C. /boot/lilo/lilo.conf

D. /etc/lilo.conf

6. What should be the first line of a LILO configuration file stanza intended to boot a Linux
kernel stored as /boot/bzImage-2.6.26?

A. image=/boot/bzImage-2.6.26

B. image /boot/bzImage-2.6.26

C. kernel /boot/bzImage-2.6.26

D. kernel=/boot/bzImage-2.6.26

04836book.indd 251 1/7/09 9:06:26 AM

252 Chapter 5 N Booting Linux and Editing Files

7. Which command is used to install GRUB into the MBR of your first ATA hard drive?

A. grub (hd0,1)

B. grub-install /dev/hda1

C. lilo /dev/hda

D. grub-install /dev/hda

8. The string root (hd1,5) appears in your /boot/grub/menu.lst file. What does this mean?

A. GRUB tells the kernel that its root partition is the fifth partition of the first disk.

B. GRUB looks for files on the sixth partition of the second disk.

C. GRUB looks for files on the fifth partition of the first disk.

D. GRUB installs itself in /dev/hd1,5.

9. What line in /etc/inittab would indicate that your default runlevel is 5?

A. ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

B. id:5:initdefault:

C. si:5:sysinit:/etc/init.d/rcS

D. l5:5:wait:/etc/init.d/rc 5

10. Which runlevels are reserved by init for reboot, shutdown, and single-user mode pur-
poses? (Select all that apply.)

A. 0

B. 1

C. 5

D. 6

11. You type the following command:
$ runlevel

5 3

What can you tell about your runlevel status? (Select all that apply.)

A. The current runlevel is 5.

B. The current runlevel is 3.

C. The previous runlevel is 5.

D. The previous runlevel is 3.

12. A system administrator types the following command:
shutdown -c

What is the effect of this command?

A. A previously scheduled shutdown is cancelled.

B. The system shuts down and reboots immediately.

C. The system shuts down and halts immediately.

D. The system asks for confirmation and then shuts down.

04836book.indd 252 1/7/09 9:06:26 AM

Review Questions 253

13. Which of the following commands may not be used instead of shutdown in certain circum-
stances?

A. reboot

B. halt

C. poweroff

D. takedown

14. You want to change to single-user mode on a running system. What command might you
use to do this?

A. runlevel 1

B. telinit 1

C. shutdown -1

D. single-user

15. What does runlevel 4 do?

A. It reboots the computer.

B. It starts a multi-user system without X running.

C. It starts a multi-user system with X and an X-based login running.

D. Its purpose isn’t standardized, so it can be used for anything you like.

16. How would you remove two lines of text from a file using Vi?

A. In command mode, position the cursor on the first line and type 2dd.

B. In command mode, position the cursor on the last line and type 2yy.

C. In insert mode, position the cursor at the start of the first line, hold down the Shift key
while pressing the Down arrow key twice, and press the Delete key on the keyboard.

D. In insert mode, position the cursor at the start of the first line and press Ctrl+K twice.

17. In Vi’s command mode, you type :q!. What is the effect?

A. Nothing; this isn’t a valid Vi command.

B. The text :q! is inserted into the file you’re editing.

C. The program terminates and saves any existing files that are in memory.

D. The program terminates without saving your work.

18. What is an advantage of Vi over Emacs?

A. Vi is X-based and so is easier to use than Emacs.

B. Vi is smaller and so can fit on compact emergency systems and embedded devices.

C. Vi’s mode-based operations permit it to handle non-English languages.

D. Vi includes a built-in Web browser and e-mail client; Emacs doesn’t.

04836book.indd 253 1/7/09 9:06:26 AM

254 Chapter 5 N Booting Linux and Editing Files

19. From Vi’s command mode, you want to enter insert mode. How might you do this? (Select
all that apply.)

A. Type R.

B. Type i.

C. Type a.

D. Type :.

20. How do you exit Vi’s insert mode in order to type command-mode commands?

A. Press the ~ key.

B. Press the Esc key.

C. Type Ctrl+X followed by Ctrl+C.

D. Press the F10 key.

04836book.indd 254 1/7/09 9:06:26 AM

Answers to Review Questions 255

Answers to Review Questions

1. C. The Master Boot Record (MBR) can contain a boot loader that is up to 512 bytes in size.
If more space is required, the boot loader must load a secondary boot loader. Although the
boot loader is loaded into RAM, it’s not stored there permanently because RAM is volatile
storage. Both /dev/boot and /dev/kmem are references to files on Linux filesystems; they’re
meaningful only after the BIOS has found a boot loader and run it and lots of other boot
processes have occurred.

2. C. You can type a stanza name (such as linux, although this can vary) and a runlevel num-
ber (such as 1) at a LILO boot: prompt to boot into the specified runlevel; runlevel 1 is
single-user mode. Option A won’t do the trick unless you’ve got a stanza called s and your
system is configured to boot into single-user mode by default. Option B is similar. Option
C is a command you can type once Linux has booted to reboot the computer, but it won’t
work as described at a LILO boot: prompt.

3. D. The kernel ring buffer, which can be viewed by typing dmesg (piping this through less
is a good supplement), contains messages from the kernel, including those from hardware
drivers. These messages may provide a clue about why the disk didn’t appear. The /var/
log/diskerror file is fictitious, as is /mnt/disks. The /etc/inittab file doesn’t directly
control disk access and so is unlikely to provide useful information.

4. B. Ordinarily, Linux runs init as the first program; init then runs, via various scripts,
other programs. The dmesg program is a user diagnostic and information tool used to
access the kernel ring buffer; it’s not part of the startup process. The startup program is
fictitious. The rc program is a script that init calls, typically indirectly, during the startup
sequence, but it’s not the first program the kernel runs.

5. D. Option D is the correct LILO configuration file. Option A is a fictitious file; it doesn’t
exist. Although LILO’s boot loader code may be written to the MBR, as implied by option
B, this isn’t the location of the LILO configuration file. Option C is reminiscent of the loca-
tion of the GRUB configuration file; it’s not the location of the LILO configuration file.

6. A. The image keyword identifies a kernel file in the LILO configuration file, and an equal
sign (=) separates this keyword from the filename. Option B lacks this equal sign, and
options C and D use the kernel keyword instead of image. (GRUB uses kernel, but
slightly differently from the way LILO uses image.)

7. D. You use grub-install to install the GRUB boot loader code into an MBR or boot sec-
tor. When using grub-install, you specify the boot sector on the command line. The MBR
is the first sector on a hard drive, so you give it the Linux device identifier for the entire hard
disk, /dev/hda. Option A specifies using the grub utility, which is an interactive tool, and
the device identifier shown in option A is a GRUB-style identifier for what would probably
be the /dev/hda3 partition in Linux. Option B is almost correct but installs GRUB to the
/dev/hda1 partition’s boot sector rather than the hard disk’s MBR. Option C is the com-
mand to install LILO to the MBR rather than to install GRUB.

04836book.indd 255 1/7/09 9:06:26 AM

256 Chapter 5 N Booting Linux and Editing Files

8. B. The root keyword in a GRUB configuration file tells GRUB where to look for files,
including its own configuration files, kernel files, and so on. Because GRUB numbers start-
ing from 0, (hd1,5) refers to the sixth partition on the second disk. Option A is incorrect
because you pass the Linux root partition to the kernel on the kernel line. Options A and C
both misinterpret the GRUB numbering scheme. The GRUB installation location is speci-
fied on the grub-install command line, and /dev/hd1,5 isn’t a standard Linux device file.

9. B. The initdefault action specifies the default runlevel.

10. A, B, D. Runlevel 0 is the reserved runlevel for halting the system. Runlevel 1 is reserved
for single-user mode. Runlevel 6 is reserved for rebooting. Runlevel 5 is a regular, user-
configurable runlevel. (Many systems use it for a regular boot with a GUI login prompt.)

11. B, C. The first number in the runlevel output is the previous runlevel (the letter N is used
to indicate that the system hasn’t changed runlevels since booting). The second number is
the current runlevel.

12. A. The -c option to shutdown cancels a previously scheduled shutdown. Options B and C
describe the effects of the -r and -h options to shutdown, respectively. No shutdown option
asks for confirmation before taking action, although you can delay a shutdown by specify-
ing a shutdown time in the future.

13. D. There is no standard takedown command in Linux. The reboot command is equiva-
lent to shutdown -r, halt is equivalent to shutdown -H, and poweroff is equivalent to
shutdown -P.

14. B. The telinit command is used to change runlevels; when it’s passed the 1 parameter,
telinit changes to runlevel 1, which is single-user mode. The runlevel command displays
the current runlevel but doesn’t change runlevels. Although telinit can be used to shut
down or reboot the computer, the shutdown command can’t be used to change runlevels
except to runlevel 0 or 6. There is no standard single-user command.

15. D. Runlevel 4 isn’t standardized, and most distributions don’t use it for anything specific
(although in practice it will do something if you enter it). You can safely redefine runlevel 4
to achieve specific goals. Option A describes runlevel 6. Option B describes runlevel 3 on
Red Hat and related distributions. Option C describes runlevel 5 on Red Hat and related
distributions.

16. A. In Vi, dd is the command-mode command that deletes lines. Preceding this command by
a number deletes that number of lines. Although yy works similarly, it copies (yanks) text
rather than deleting it. Option C works in many more modern text editors, but not in Vi.
Option D works in Emacs and similar text editors, but not in Vi.

17. D. The :q! Vi command does as option D states. Option A is simply incorrect. Option B
would be correct if this command were typed while in Vi’s insert mode, but the question
specifies that command mode is in use. To achieve option C, the command would be :wq,
not :q!.

04836book.indd 256 1/7/09 9:06:27 AM

Answers to Review Questions 257

18. B. Vi is included on Linux emergency disks, embedded systems, and other systems where
space is at a premium because its executable is tiny. Emacs is, in contrast, a behemoth. Con-
trary to option A, Vi isn’t an X-based program (although X-based Vi variants are available);
Emacs can be used in text mode or with X. Vi’s modes, referred to in option C, have nothing
to do with non-English language support. Option D is backward; it’s Emacs that includes a
Web browser, e-mail client, and other add-ons.

19. A, B, C. Typing R in command mode enters insert mode with the system configured to over-
write existing text. Typing i or a enters insert mode with the system configured to insert
text. (The i and a commands differ in how they place the cursor; a advances one space.)
Typing : in command mode enters ex mode (you typically type the ex-mode command on
the same command line immediately after the colon).

20. B. The Esc key exits Vi’s insert mode. Typing a tilde (~) inserts that character into the
file. The Ctrl+X, Ctrl+C key combination exits from Emacs, but it’s not a defined Vi key
sequence. The F10 key also isn’t defined in Vi.

04836book.indd 257 1/7/09 9:06:27 AM

04836book.indd 258 1/7/09 9:06:27 AM

The LPI 102 Exam
(60 Weights)

PART

II

04836book.indd 259 1/8/09 3:47:55 PM

04836book.indd 260 1/8/09 3:47:56 PM

Chapter

6
Configuring the
X Window System,
Localization, and
Printing

ThE foLLoWIng LInuX ProfESSIonaL
InSTITuTE objECTIvES arE CovErEd In
ThIS ChaPTEr:

1.106.1 Install and configure X11 (weight: 2)ÛÛ

1.106.2 Set up a display manager (weight: 2)ÛÛ

1.106.3 Accessibility (weight: 1)ÛÛ

1.107.3 Localization and internationalization (weight: 3) ÛÛ

1.108.4: Manage printers and printing (weight: 2)ÛÛ

04836book.indd 261 1/8/09 3:47:56 PM

Major modern desktop OSs all provide some form of graphical
user environment (GUI), which provides the windows, menus,
dialog boxes, flexible fonts, and so on, with which you’re prob-

ably familiar. In Linux, the main GUI is known as the X Window System (or X for short).
X configuration is either very easy or moderately hard; most distributions today provide
auto-detection and easy configuration options during installation, and these usually work
correctly. When they don’t, or when you want to tweak the configuration, you must delve
into the X configuration file or use a GUI X configuration tool. Doing either requires that you
know how X treats the video hardware, among other things.

Beyond basic X configuration are a few extra topics. These include fonts, GUI login tools,
user desktop environments, using X for remote access, and localization. Each of these topics is
closely associated with basic X configuration, but they all go beyond it in one way or another,
extending X’s capabilities or providing more features for users, as described in this chapter.

The X display can be considered one form of output. Another is printing, and this chapter
covers that topic, as well. With a properly configured printer, you can obtain hardcopy of the
documents you create and edit using both X and text-based applications.

Configuring Basic X Features
Basic X configuration sets features such as the mouse used, the keyboard layout, the screen
resolution, the video refresh rate, the display color depth, and the video card you’re using.
Some of these options require telling X about what hardware you have installed, whereas
others enable you to adjust settings on your hardware. In any event, before you proceed
with actual configuration, you should know something about the X servers that are avail-
able for Linux because your selection will determine what additional tools are available and
what files you may need to adjust manually. GUI and text-mode configuration utilities can
help you configure X; but sometimes you must delve into the configuration files, so know-
ing their format is important. This requires that you know what the major option groups
do so you can adjust them.

X Server Options for Linux
Although X is by far the dominant GUI for Linux, several implementations of X are available:

XFree86 The dominant X server in Linux until 2004 was XFree86 (http://www.xfree86
.org). This open-source server supports a wide array of video cards and input devices, and

04836book.indd 262 1/8/09 3:47:57 PM

Configuring Basic X Features 263

most Linux software is designed with XFree86 in mind. As I write, the most recent version is
4.7.0. Significant changes occurred between 3.3.6 and the 4.x series, and some older utilities
work only with the 3.3.6 and earlier versions of XFree86. Although a tiny number of systems
must run XFree86 3.3.6 or earlier for driver support reasons, most systems today run XFree86
4.x or X.org-X11; the latter is more common on distributions released since 2004.

X.org-X11 In 2004, most Linux distributions shifted from XFree86 to X.org-X11
because of some licensing changes to XFree86. X.org-X11 6.7.0 was based on XFree86
4.3.99, but it’s developed independently up to the current version 7.4. Because X.org-X11
is based on XFree86, the two are virtually identical in most important respects. One sig-
nificant difference is the name of the configuration file; another is the default location for
fonts. Subsequent sections of this chapter point out these differences. You can learn more
at http://www.x.org/wiki/.

Accelerated-X The commercial Accelerated-X server from Xi Graphics (http://www.xig
.com) is an alternative to the open-source XFree86 and X.org-X11. In practice, running Accel-
erated-X is seldom necessary, but if you have problems getting your video card working, you
may want to look into Accelerated-X; its driver base is independent of the more popular open-
source choices, so it’s possible you’ll have better luck with it. The Accelerated-X configuration
tools and files are completely different from those described in “Methods of Configuring X”
and “X Configuration Options,” so you’ll need to consult its documentation for help. The rest
of this chapter’s topics still apply to Accelerated-X.

In practice, it’s usually easiest to stick with whatever X server your distribution provides.
For modern distributions, this is most often X.org-X11, but it may be XFree86, particularly
if you’re running an older distribution. For a handful of rare video cards, you may need to
run the rather elderly XFree86 3.3.6 rather than a more recent version.

Methods of Configuring X
Configuring X has traditionally been a difficult process because the X configuration file
includes many arcane options. The task is made simpler if you can use a configuration utility,
and most Linux distributions now run such a utility as part of the installation process. If the
configuration utility doesn’t do everything you want it to do, though, you may need to delve
into the X configuration file to set options manually, so knowing something about its format
will help a lot. You must also know how to go about restarting X in order to test your changes.

The upcoming section “X Configuration Options” describes in more detail
the major X features and how to control them.

X Configuration Utilities
X configuration utilities vary from one version of X to another. Most important, the tools
for XFree86 4.x and X.org-X11 are very different from those for XFree86 3.3.6 and earlier.

04836book.indd 263 1/8/09 3:47:57 PM

264 Chapter 6 n Configuring the X Window System, Localization, and Printing

using Manufacturer-Provided video drivers

One of X’s functions is to provide drivers that control the video card. XFree86, X.org-X11,
and Accelerated-X all ship with a wide variety of drivers that support most video cards.
Some cards, though (particularly very new ones), have weak support in the stock packages.
XFree86 4.x and X.org-X11 both support a modular driver architecture, which means you
can drop in a driver module for your card and, with minimal changes to your X configura-
tion, use it without recompiling the main X package. Some video card manufacturers pro-
vide Linux video card drivers designed to work with XFree86 and X.org-X11. (Both X servers
can use the same drivers.) Thus, if you have problems with the standard X video drivers,
you may want to check with your video card manufacturer and the video card chipset manu-
facturers for Linux drivers.

Installing and using the manufacturer-provided video drivers is usually a matter of extract-
ing files from a tarball and making a few configuration file changes. Sometimes manufactur-
ers provide scripts that do this automatically. Consult the documentation that comes with
these drivers for details. Many of these drivers are particularly helpful for enabling 3D accel-
eration features of modern cards. This support is most important for certain Linux games,
but some non-game software can also benefit from 3D acceleration.

Note that some manufacturers have a habit of placing the standard Linux drivers (or, in
this case, the standard XFree86 or X.org-X11 drivers) on their Web site. Thus, you should
try to ascertain whether the drivers are genuinely different from what you already have
before you bother installing them.

Users of video cards based on nVidia chipsets are most likely to benefit from using nVidia’s
proprietary drivers. These drivers provide superior 3D and real-time video acceleration
compared to the standard X drivers.

One problem with manufacturer-supplied drivers is that they’re often proprietary. You
might not have source code, which means the drivers might not work on more exotic
CPUs, and the drivers could cease working with a future upgrade to your X server.

Configuration Tools for XFree86 4.x and X.org-X11

Several configuration tools for XFree86 4.x and X.org-X11 are available:

The X server itself The X server itself includes the capacity to query the hardware and
produce a configuration file. To do this, type XFree86 -configure (for XFree86) or Xorg
-configure (for X.org-X11) when no X server is running. The result should be a file called
/root/XF86Config.new (for XFree86) or /root/xorg.conf.new (for X.org-X11). This file
may not produce optimal results, but it’s at least a starting point for manual modifications.

04836book.indd 264 1/8/09 3:47:58 PM

Configuring Basic X Features 265

Distribution-specific tools Many modern distributions ship with their own custom X
configuration tools. These include Red Hat’s (and Fedora’s) Display Settings tool (acces-
sible from the default desktop menu or by typing system-config-display in an xterm) and
SUSE’s YaST and YaST2. These tools frequently resemble the distribution’s install-time X
configuration tools, which can vary substantially.

xf86cfg or xorgcfg This utility works only on XFree86 4.x or X.org-X11 (each package
ships with a version named after itself). It’s deprecated, meaning it’s no longer supported;
but if it’s present on your system, it can help you tweak settings once X is at least partially
running.

All of these utilities gather the same type of information needed to manually configure X.
Your best bet for understanding these tools and what they want is to understand the under-
lying X configuration file’s format and contents.

Configuration Tools for XFree86 3.3.6 and Earlier

Many configuration tools are available for XFree86 3.3.6 and before. The most common of
these tools are xf86config, Xconfigurator, and XF86Setup. If you must use XFree86 3.3.6 or
earlier, you should consult the documentation for one of these programs or edit your X con-
figuration file manually. Chances are you won’t need to do so, however, because most systems
can use XFree86 4.x or X.org-X11.

As a general rule, Xconfigurator can be a good tool to use for configuring a new system
for the first time, and XF86Setup is good for adjusting an existing system without digging into
XFree86’s XF86Config file. (This file has the same name as one configuration utility, but its
case is different.) Unfortunately for those forced to use XFree86 3.3.6, these tools are very
hard to find and use with modern distributions, so you may be forced to use xf86config or
edit the configuration file manually.

The X Configuration File Format
The X configuration file’s name and location varies with the version of X being run:

X.org-X11 This server’s configuration file is called xorg.conf, and it’s usually stored in
/etc/X11, although /etc and several other locations are also acceptable to the server.

XFree86 4.x The XFree86 4.x configuration file format is slightly different from that
of XFree86 3.3.6 and earlier. To support the transition period, XFree86 4.x supports a
configuration file called XF86Config-4, which is typically located in /etc/X11. If this file
isn’t found, XFree86 4.x looks for a file called XF86Config in /etc/X11 or /etc. This file’s
format is exactly the same as for the X.org-X11 configuration file.

XFree86 3.3.6 and earlier The X configuration file’s name is XF86Config, and the file is
most commonly located in /etc/X11 or /etc.

All three of these classes of X server use configuration files that are broken down into multi-
line sections, one section for each major feature. These sections begin with a line consisting of
the keyword Section and the section name in quotes and end with the keyword EndSection:

Section “InputDevice”

 Identifier “Keyboard0”

04836book.indd 265 1/8/09 3:47:58 PM

266 Chapter 6 n Configuring the X Window System, Localization, and Printing

 Driver “kbd”

 Option “XkbModel” “pc105”

 Option “XkbLayout” “us”

 Option “AutoRepeat” “500 200”

EndSection

This section tells X about the keyboard—its model, layout, and so on. Details for the sec-
tions you’re most likely to need to adjust are described shortly, in “X Configuration Options.”

For the most part, the different X servers support the same sections and most of the
same option names. A few exceptions to this rule do exist, though:

The Ûn Option keyword isn’t used in XFree86 3.3.6 and earlier. Instead, the option name
(such as XkbLayout or AutoRepeat in the preceding example) appears without quotes as
the first word on the line.

XFree86 3.3.6 and earlier don’t use the Ûn ServerLayout section, described later in “Putting
It All Together.”

XFree86 3.3.6 and earlier lack the Ûn Identifier and Driver lines, which are common in
the XFree86 4.x and X.org-X11 configuration files.

Some section-specific features vary between versions. I describe the most important of Ûn

these in the coming pages.

The X Configure-and-Test Cycle
If your X configuration isn’t working correctly, you need to be able to modify that con-
figuration and then test it. Many Linux distributions configure the system to start X auto-
matically; but starting X automatically can make it difficult to test the X configuration. To
a new Linux administrator, the only obvious way to test a new configuration is to reboot
the computer.

A better solution is to kick the system into a mode in which X is not started automati-
cally. On Red Hat, Fedora, and similar distributions, this goal can be achieved by typing
telinit 3. This action sets the computer to use runlevel 3, in which X normally doesn’t
run. Chapter 5, “Booting Linux and Editing Files,” covers runlevels in more detail.

Some distributions, such as Debian, Ubuntu, and Gentoo, don’t use runlevels as a signal
for whether to start X. With such distributions, you must shut down the GUI login server
by typing /etc/init.d/xdm stop. (You may need to change xdm to gdm or kdm, depending
on your configuration.)

Once the X session is shut down, you can log in using a text-mode login prompt and
tweak your X settings manually, or you can use text-based X configuration programs. You
can then type startx to start the X server again. If you get the desired results, quit from X
and type telinit 5 (/etc/init.d/xdm start in Debian and other distributions that don’t
use runlevels to start the GUI login prompt) to restore the system to its normal X login
screen. If after typing startx you don’t get the results you want, you can end your X ses-
sion and try modifying the system some more.

04836book.indd 266 1/8/09 3:47:59 PM

Configuring Basic X Features 267

If X is working minimally but you want to modify it using X-based configuration tools,
you can do so after typing startx to get a normal X session running. Alternatively, you can
reconfigure the system before taking it out of the X-enabled runlevel.

Another approach to restarting X is to leave the system in its X-enabled runlevel and
then kill the X server. The Ctrl+Alt+Backspace keystroke does this on many systems, or you
can do it manually with the kill command after finding the appropriate process ID with
the ps command, as shown here:

ps ax | grep X

1375 ? S 6:32 /etc/X11/X -auth /etc/X11/xdm/authdir/

kill 1375

This approach works better on systems that don’t map the running of X to specific
runlevels, such as Debian and its derivatives.

X Configuration Options
When editing the X configuration file, the best approach is usually to identify the feature
that’s not working and zero in on the section that controls this feature. You can then edit that
section, save your changes, and test the new configuration. In XFree86 4.x and X.org-X11,
the major sections described here are called Module, InputDevice, Monitor, Device, Screen,
and ServerLayout. You’re likely to have two InputDevice sections, one for the keyboard and
one for the mouse. (In XFree86 3.3.6 and earlier, the mouse is handled by a separate Pointer
section.) The section order doesn’t matter.

Fonts are a complex enough topic that they’re described in more detail
later, in “Configuring X Fonts.” Part of this configuration is handled in the
Files section.

Loading Modules
The Module section controls the loading of X server modules—drivers for specific features
or hardware. A typical example looks like this:

Section “Module”

 Load “dbe”

 Load “extmod”

 Load “fbdevhw”

 Load “glx”

 Load “record”

 Load “freetype”

 Load “type1”

 Load “dri”

EndSection

04836book.indd 267 1/8/09 3:47:59 PM

268 Chapter 6 n Configuring the X Window System, Localization, and Printing

Each module is named (dbe, extmod, and so on) and is loaded by name using the Load
option. Most of these module names can be deciphered with a bit of knowledge about the
features they control. For instance, freetype and type1 handle TrueType and Adobe Type 1
font rendering, respectively. If you’re perusing your Module section and see modules you don’t
understand, you shouldn’t worry about it; generally speaking, modules that are configured
automatically are necessary for normal operation, or at least they do no harm.

For the most part, if an X configuration works, you shouldn’t try to adjust the Module
section, even if you want to tweak the X configuration. Sometimes, though, you’ll need to
add lines to or remove lines from this section. This is particularly likely to be necessary if
you’re activating 3D acceleration support or some sort of exotic feature. In such cases, you
should consult the documentation for the feature you want to activate.

Setting the Keyboard
The keyboard is one of two common input devices configured via an InputDevice section:

Section “InputDevice”

 Identifier “Keyboard0”

 Driver “kbd”

 Option “XkbModel” “pc105”

 Option “XkbLayout” “us”

 Option “AutoRepeat” “500 200”

EndSection

The Identifier line provides a label that’s used by another section (ServerLayout,
described in “Putting It All Together”). This line and the ServerLayout section aren’t present
in XFree86 3.3.6 or earlier. The string given on this line is arbitrary, but for a keyboard, a
descriptive name such as this example’s Keyboard0 will help you understand the file.

The Driver line tells X what driver to use to access the keyboard. This should be kbd
or Keyboard, depending on your X server. Unless your keyboard isn’t working at all, you
shouldn’t adjust this line.

The Option lines set various options that adjust various keyboard features, such as the
model, the layout, and the repeat rate. For the most part, the defaults work well; however,
you may want to change the AutoRepeat option or add it if it’s not present. This option tells
X when to begin repeating characters when you hold down a key and how often to repeat
them. It takes two numbers as values, enclosed in quotes: the time until the first repeat and
the time between subsequent repeats, both expressed in milliseconds (ms). In the preceding
example, the system waits 500ms (half a second) for the first repeat and then 200ms for
each subsequent repeat (that is, five repeats per second).

Many desktop environments and other user-level utilities provide tools
to set the keyboard repeat rate. Thus, the options you set in the X con-
figuration file are used as defaults only and may be overridden by users’
settings.

04836book.indd 268 1/8/09 3:47:59 PM

Configuring Basic X Features 269

Setting the Mouse
A second InputDevice section controls how X treats the mouse:

Section “InputDevice”

 Identifier “Mouse0”

 Driver “mouse”

 Option “Protocol” “IMPS/2”

 Option “Device” “/dev/input/mice”

 Option “Emulate3Buttons” “no”

 Option “ZAxisMapping” “4 5”

EndSection

In XFree86 3.3.6 and earlier, this section is called Pointer rather than
InputDevice.

As with the keyboard, the Identifier line is used in the ServerLayout section to tell X
which input device to use. The Driver line identifies the driver to use: mouse. The Option
lines set mouse control options. The most important of these are Device and Protocol.

The Device line tells X what Linux device file to read to access the mouse. In this example,
it’s /dev/input/mice, but other common possibilities include /dev/mouse (a pointer to the
real mouse device, whatever its name), /dev/psaux (for the PS/2 mouse port), /dev/usb/
usbmouse (an old identifier for USB mice), /dev/ttyS0 (the first RS-232 serial port mouse),
and /dev/ttyS1 (the second RS-232 serial port mouse). If your mouse is working at all (even
if its motions are erratic), don’t change this line. If your mouse isn’t working, you may need to
experiment.

The Protocol option tells X what signals to expect from the mouse for various move-
ments and button presses. The most common protocols for new mice today are IMPS/2
and ExplorerPS/2, which are very similar in practice. (Note that “PS/2” is both a hard-
ware interface and a software protocol; many USB mice use the PS/2 mouse protocol even
though they don’t use the PS/2 mouse port.) If your mouse has a scroll wheel, chances are
you should use one of these protocols. If your mouse is older, you may need to try an older
protocol, such as PS/2, Microsoft, or Logitech. The Auto protocol causes X to try to guess
the mouse’s protocol, which often works correctly.

Additional options are usually less critical than the Device and Protocol options. The
Emulate3Buttons option tells X whether to treat a chord (that is, a simultaneous press) of
both buttons on a two-button mouse as if it were a middle button press. This option is usu-
ally disabled on three-button mice and scroll mice (the scroll wheel does double duty as a
middle mouse button). The ZAxisMapping option in the preceding example maps the scroll
wheel actions to the fourth and fifth buttons, because X must treat scroll wheels as if they
were buttons. When you scroll up or down, these “button” presses are generated. Software
can detect this and take appropriate actions.

04836book.indd 269 1/8/09 3:47:59 PM

270 Chapter 6 n Configuring the X Window System, Localization, and Printing

Setting the Monitor
Some of the trickiest aspects of X configuration relate to the monitor options. You set these
in the Monitor section, which has a tendency to be quite large, particularly in XFree86 3.3.6
and earlier. A shortened Monitor section looks like this:

Section “Monitor”

 Identifier “Monitor0”

 ModelName “VisionMaster Pro 450”

 HorizSync 27.0-115.0

 VertRefresh 50.0-160.0

 # My custom 1360x1024 mode

 Modeline “1360x1024” 197.8 \

 1360 1370 1480 1752 \

 1024 1031 1046 1072 -HSync -VSync

EndSection

As in the keyboard and mouse configurations, the Identifier option is a free-form
string that contains information that’s used to identify a monitor. The Identifier can be
just about anything you like. Likewise, the ModelName option can be anything you like; it’s
used mainly for your own edification when reviewing the configuration file.

As you continue down the section, you’ll see the HorizSync and VertRefresh lines,
which are extremely critical; they define the range of horizontal and vertical refresh rates
that the monitor can accept, in kilohertz (kHz) and hertz (Hz), respectively. Together, these
values determine the monitor’s maximum resolution and refresh rate. Despite the name, the
HorizSync item alone doesn’t determine the maximum horizontal refresh rate. Rather, this
value, the VertRefresh value, and the resolution determine the monitor’s maximum refresh
rate. X selects the maximum refresh rate that the monitor will support given the resolution
you specify in other sections. Some X configuration utilities show a list of monitor models
or resolution and refresh rate combinations (such as “1024 × 768 at 72 Hz”). You select
an option and the utility then computes the correct values based on that selection. This
approach is often simpler to handle, but it’s less precise than entering the exact horizontal
and vertical sync values. You should enter these values from your monitor’s manual.

Don’t set random horizontal and vertical refresh rates; particularly on older
hardware, setting these values too high can damage a monitor. (Modern
monitors ignore signals presented at too high a refresh rate.)

To settle on a resolution, X looks through a series of mode lines, which are specified
via the Modeline option. Computing mode lines is tricky, so I don’t recommend you try it
unless you’re skilled in such matters. The mode lines define combinations of horizontal and
vertical timing that can produce a given resolution and refresh rate. For instance, a particu-
lar mode line might define a 1024 × 768 display at a 90Hz refresh rate, and another might

04836book.indd 270 1/8/09 3:48:00 PM

Configuring Basic X Features 271

represent 1024 × 768 at 72Hz. The preceding example splits the mode line across multiple
lines, but more frequently it appears as a single line in the file.

Some mode lines represent video modes that are outside the horizontal or vertical sync
ranges of a monitor. X can compute these cases and discard the video modes that a moni-
tor can’t support. If asked to produce a given resolution, X searches all the mode lines that
accomplish the job, discards those that the monitor can’t handle, and uses the remaining
mode line that creates the highest refresh rate at that resolution. (If no mode line sup-
ports the requested resolution, X drops down to another specified resolution, as described
shortly, and tries again.)

As a result of this arrangement, you’ll see a large number of Modeline entries in the
XF86Config file for XFree86 3.3.6 and earlier. Most end up unused because they’re for
resolutions you don’t use or because your monitor can’t support them. You can delete these
unused mode lines, but it’s usually not worth the effort.

XFree86 4.x and X.org-X11 support a feature known as Data Display Channel (DDC).
This is a protocol that enables monitors to communicate their maximum horizontal and
vertical refresh rates and appropriate mode lines to the computer. The XFree86 -configure
or Xorg -configure command uses this information to generate mode lines, and on every
start, the system can obtain horizontal and vertical refresh rates. The end result is that an
XFree86 4.x or X.org-X11 system can have a substantially shorter Monitor section than is
typical with XFree86 3.3.x.

Setting the Video Card
Your monitor is usually the most important factor in determining your maximum refresh rate
at any given resolution, but X sends data to the monitor only indirectly, through the video
card. Because of this, it’s important that you be able to configure this component correctly.
An incorrect configuration of the video card is likely to result in an inability to start X.

Choosing the Server or Driver

XFree86 4.x and X.org-X11 use driver modules that are stored in separate files from the
main X server executable. The server can’t determine what module is required automati-
cally, however. Instead, you must give it that information in the XF86Config or xorg.conf
file. In particular, the driver module is set by a line in the Device section, which resembles
the following:

Driver “nv”

This line sets the name of the driver. The drivers reside in the /usr/X11R6/lib/modules/
drivers/ directory. Most of the drivers’ filenames end in _drv.o, and if you remove this por-
tion, you’re left with the driver name. For instance, nv_drv.o corresponds to the nv driver.

Some X configuration utilities provide a large list of chipsets and specific
video card models, so you can select the chipset or board from this list to
have the utility configure this detail.

04836book.indd 271 1/8/09 3:48:00 PM

272 Chapter 6 n Configuring the X Window System, Localization, and Printing

Setting Card-Specific Options

The Device section of the xorg.conf file sets various options related to specific X servers.
A typical Device section resembles the following:

Section “Device”

 Identifier “Videocard0”

 Driver “nv”

 VendorName “nVidia”

 BoardName “GeForce 6100”

 VideoRam 131072

EndSection

The Identifier line provides a name that’s used in the subsequent Screen section to
identify this particular Device section. (X configuration files frequently host multiple Device
sections—for instance, one for a bare-bones VGA driver and one for an accelerated driver.)
The VendorName and BoardName lines provide information that’s useful mainly to people
reading the file.

The VideoRam line is unnecessary with most boards because the driver can detect the
amount of RAM installed in the card. With some devices, however, you may need to specify
the amount of RAM installed in the card, in kilobytes. For instance, the preceding example
indicates a card with 128MB of RAM installed.

Many drivers support additional driver-specific options. They may enable support for
features such as hardware cursors (special hardware that enables the card to handle mouse
pointers more easily) or caches (using spare memory to speed up various operations).
Consult the XF86Config or xorg.conf man page or other driver-specific documentation
for details.

Setting the Resolution and Color Depth
The Screen section tells X about the combination of monitors and video cards you’re using.
XFree86 4.x and X.org-X11 support multiple video cards and monitors on one system, and
even in XFree86 3.3.6 and earlier you can define several monitors or video cards and switch
between them by editing the Screen section. This can be handy if you’re testing a new monitor
or video card driver. In any event, the Screen section looks something like this:

Section “Screen”

 Identifier “Screen0”

 Device “Videocard0”

 Monitor “Monitor0”

 DefaultDepth 24

 SubSection “Display”

 Depth 24

 Modes “1024x768” “1024x600” “800x600” “640x480”

04836book.indd 272 1/8/09 3:48:01 PM

Configuring Basic X Features 273

 EndSubSection

 SubSection “Display”

 Depth 8

 Modes “1024x768” “800x600” “640x480”

 EndSubSection

EndSection

The Device and Monitor lines refer to the Identifier lines in your Device and Moni-
tor sections, respectively. The Screen section includes one or more Display subsections,
which define the video modes that X may use. This example creates two such displays. The
first uses a color depth of 24 bits (Depth 24) and possible video mode settings of 1024x768,
1024x600, 800x600, and 640x480. (These video modes are actually names that refer to the
mode lines defined in the Monitor section, or to standard mode lines.) The second pos-
sible display uses an 8-bit color depth (Depth 8) and supports only 1024x768, 800x600, and
640x480 video modes.

To choose between the Display subsections, you include a DefaultDepth line. (This
line is called DefaultColorDepth in XFree86 3.3.6 and earlier.) In this example, X uses the
24-bit display if possible, unless it’s overridden by other options when starting X.

Graphical video modes require a certain amount of RAM on the video card. (On some
laptop computers and computers with video hardware integrated into the motherboard, a
portion of system RAM is reserved for this use by the BIOS.) The total amount of RAM
required is determined by an equation:

R = xres × yres × bpp ÷ 8,388,608

In this equation, R is the RAM in megabytes, xres is the x resolution in pixels, yres is
the y resolution in pixels, and bpp is the bit depth. For instance, consider a 1280 × 1024
display at 24-bit color depth:

R = 1280 × 1024 × 24 ÷ 8,388,608 = 3.75MB

All modern video cards have at least 32MB of RAM—usually much more. This is more
than enough to handle even very high resolutions at 32-bit color depth (the greatest depth
possible). Thus, video RAM shouldn’t be a limiting factor in terms of video mode selection,
at least not with modern video hardware. Very old video cards can impose limits, so you
should be aware of those limits.

Modern video cards ship with large amounts of RAM to support 3D accel-
eration features. X supports such features indirectly through special 3D
acceleration packages, but 3D acceleration support is limited compared to
basic video card support. If 3D acceleration is important to you, you should
research the availability of this support.

In Exercise 6.1, you’ll adjust the X resolution and color depth by editing the XF86Config
or xorg.conf file.

04836book.indd 273 1/8/09 3:48:01 PM

274 Chapter 6 n Configuring the X Window System, Localization, and Printing

E X E r C I S E 6 .1

Changing the X resolution and Color depth

To adjust the X resolution and color depth by editing the XF86Config or xorg.conf file,
follow these steps:

1. Log onto the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system.

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Ses-
sion  New Root Console from a Konsole, or by using sudo (if it’s configured) to run
the following commands.

4. Back up the current xorg.conf file by typing cp /etc/X11/xorg.conf /root. (Some
distributions may place this file in /etc rather than /etc/X11. If you’re using XFree86
rather than X.org-X11, the file is called XF86Config or XF86Config-4. You may need
to adjust this command as appropriate.)

5. Load the xorg.conf file into a text editor by typing the editor’s name followed by
the complete path to the file in the xterm. For instance, gedit /etc/X11/xorg.conf
loads the file into the gedit editor, which is part of GNOME. Other popular editor
names include emacs, vi, kedit, and nedit.

6. Locate the Screen section of the file, identified by a line that reads Section “Screen”.

7. Within the Screen section, locate a line that begins DefaultDepth. This line sets
the default color depth of the display, in bits. Adjust the value to one you want to
use. Common values include 8 (256 colors), 15 (32,768 colors), 16 (65,536 colors),
24 (16,777,216 colors), and 32 (over 4 million colors). Note that greater color depths
often look better but may slow down the display.

8. Examine the Display subsections, which begin with the line Subsection “Display”.
If a Display subsection doesn’t exist for the color depth you’ve selected, create one
by copying an existing Display subsection for another color depth and changing the
Depth line to match the color depth you selected. Copy all the lines from the Subsection
“Display” line to the matching EndSubSection line, inclusive.

9. In the Display subsection for the color depth you’ve selected, locate the Modes line.
This line specifies the display modes (resolutions) that X will try to use, in order. A
typical Modes line lists one or more display modes, in order, as in Modes “1280x1024”
“1024x768” “800x600”. In this case, X will try a 1280 × 1024 display first. If it can’t
produce that resolution, X will try a 1024 × 768 display. If X can’t produce that display,
it will try 800 × 600.

10. Adjust the Modes line so that your desired resolution is first in the list. If you want to
have fallback resolutions, list them after the primary resolution. Be sure to enclose
your mode in quotation marks. (You can’t list arbitrary display modes; for instance,
“700x500” is unlikely to work. X should recognize common display resolutions, though.)

04836book.indd 274 1/8/09 3:48:01 PM

Configuring Basic X Features 275

11. Save the changes to the file, and exit from your editor.

12. If X isn’t started, try starting it by typing startx at a text-mode command prompt.

13. If X is already running, log out of your session and, if necessary, select an option to
restart X or press Ctrl+Alt+Backspace to force X to quit and restart.

Putting It All Together
XFree86 4.x and X.org-X11 require a section that’s not present in the XFree86 3.3.6 con-
figuration file: ServerLayout. This section links together all the other components of the
X configuration:

Section “ServerLayout”

 Identifier “single head configuration”

 Screen “Screen0” 0 0

 InputDevice “Mouse0” “CorePointer”

 InputDevice “Keyboard0” “CoreKeyboard”

EndSection

Typically, this section identifies one Screen section and two InputDevice sections (for the
keyboard and the mouse). Other configurations are possible, though. For instance, XFree86
4.x and X.org-X11 support multi-head displays, in which multiple monitors are combined
to form a larger desktop than either one alone would support. In these configurations, the
ServerLayout section includes multiple Screen sections.

Obtaining X Display Information
Sometimes it’s helpful to know about the capabilities of your display, because it’s man-
aged by X. The tool for this job is xdpyinfo. When you type xdpyinfo, the result is copi-
ous information about the current display, such as the X version number, the resolution
and color depth of all the current displays, and so on. Much of this information is highly
technical in nature, so you may not understand it all. That’s OK. I recommend you run this
program and peruse the output to see what you can learn from it. If you should later want
to obtain similar information on another computer’s display, you’ll know how to obtain it.

For still more technical information, you can use the -ext extension option to xpdyinfo.
The extension is the name of an X extension, which is a software module that provides
extended capabilities to X. (The basic xpdyinfo command, without any options, lists all the
available extensions.)

You can obtain detailed technical information about a specific window with the xwininfo
command. In basic use, you type xwininfo, move the mouse cursor over a window, and click.
The result is a list of assorted data about the window you clicked, such as its size, location,
and ID number. Alternatively, you can use the -id id or -name name options to specify the
window by ID number or name; or you can use -root to specify the root window—that is,
the entire display.

04836book.indd 275 1/8/09 3:48:02 PM

276 Chapter 6 n Configuring the X Window System, Localization, and Printing

Configuring X Fonts
Fonts have long been a trouble spot for Linux (or more precisely, for X). X was created at
a time when available font technologies were primitive by today’s standards, and although
X has been updated in various ways to take advantage of newer technologies, these updates
have been lacking compared to the font subsystems in most competing OSs. X’s core font
system can be set up from the X configuration file. Alternatively, you can configure a font
server—a program that delivers fonts to one or many computers using network protocols—
to handle the fonts. The latest Linux font technology sets up fonts in a way that’s more
independent of X and that produces more pleasing results, at least to most peoples’ eyes.

Font Technologies and Formats
Font technologies can be classified as falling into one of two broad categories:

Bitmap fonts The simplest type of font format is the bitmap font, which represents fonts
much like bitmap graphics, in which individual pixels in an array are either active or inac-
tive. Bitmap fonts are fairly easy to manipulate and display, from a programming perspec-
tive, which makes them good for low-powered computers. The problem is that each font
must be optimized for display at a particular resolution. For instance, a font that’s 20 pixels
high will appear one size on the screen (typically 72 to 100 dots per inch, or dpi) but will
be much smaller when printed (typically at 300 to 600 dpi). Similarly, you need multiple
files to display a single font at multiple sizes (such as 9 point versus 12 point). This means a
single font, such as Times, requires potentially dozens of individual files for display at dif-
ferent sizes and on different display devices. If you lack the correct font file, the result will
be an ugly scaled display.

Outline fonts Most modern fonts are distributed as outline fonts (a.k.a. scalable fonts). This
type of format represents each character as a series of lines and curves in a high-resolution
matrix. The computer can scale this representation to any font size or for any display resolu-
tion, enabling a single font file to handle every possible use of the font. The main problem with
outline fonts is that this scaling operation is imperfect; scalable fonts often look slightly worse
than bitmap fonts, particularly at small sizes. Scaling and displaying the fonts also takes more
CPU time than displaying a bitmap font. This factor used to be important, but on modern
CPUs it’s not much of an issue.

Both bitmap and outline fonts come in several different formats. X ships with a number
of basic bitmap and outline fonts, and you’re unlikely to need to deal explicitly with bitmap
fonts or their formats, so I don’t describe them in any detail. Outline fonts are another matter,
though. The two main formats are Adobe’s PostScript Type 1 (Type 1 for short) and Apple’s
TrueType. Fonts available on the Internet and on commercial font CDs come in one or both of
these formats.

XFree86 3.3.6 and earlier supported Type 1 fonts but not TrueType fonts. XFree86 4.x
and X.org-X11 support both Type 1 and TrueType fonts. If you want to use TrueType fonts

04836book.indd 276 1/8/09 3:48:02 PM

Configuring X Fonts 277

with XFree86 3.3.6 or earlier, you must do so with the help of a font server, as described
shortly in “Configuring a Font Server.”

Configuring X Core Fonts
X core fonts are those that are handled directly by X. To configure these fonts, you must
do two things: prepare a font directory that holds the fonts, and add the font directory to
X’s font path.

Preparing a Font Directory
The first step to installing fonts is to prepare a directory in which to store them. XFree86 has
traditionally stored its fonts in subdirectories of /usr/X11R6/lib/X11/fonts/, but X.org-X11
changes this to /usr/share/fonts or /usr/share/X11/fonts. In either case, if you’re adding
fonts you’ve downloaded from the Internet or obtained from a commercial font CD-ROM,
you may want to store your fonts elsewhere, such as /opt/fonts or /usr/local/fonts.
(Chapter 4, “Managing Files,” includes information about the logic behind Linux’s directory
system.) You may want to create separate subdirectories for fonts in different formats or from
different sources.

When you’re installing Type 1 fonts, Linux needs the font files with names that end in
.pfa or .pfb; these files contain the actual font data. (The .pfa and .pfb files store the data
in slightly different formats, but the two file types are equivalent.) Additional files distributed
with Type 1 fonts aren’t necessary for Linux. TrueType fonts come as .ttf files, and that’s all
you need for Linux.

Linux uses fonts in the same format that Windows, OS/2, and most other
OSs use. Mac OS uses font files in special Macintosh-only “suitcases,” which
Linux can’t use directly. If you want to use such fonts in Linux, you must con-
vert them. The FontForge program (http://fontforge.sourceforge.net)
can do this conversion, among other things.

Once you’ve copied fonts to a directory, you must prepare a summary file that describes
the fonts. This file is called fonts.dir, and it begins with a line that specifies the number
of fonts that are described. Subsequent lines provide a font filename and an X logical font
description (XLFD), which is a tedious-looking description of the font. A complete fonts
.dir line can be rather intimidating:

courb.pfa -ibm-Courier-bold-r-normal--0-0-0-0-m-0-iso8859-1

Fortunately, you needn’t create this file manually; programs exist to do so automati-
cally. In XFree86 4.3 and later and in X.org-X11, the simplest way to do the job is to use
mkfontscale and mkfontdir:

mkfontscale

mkfontdir

04836book.indd 277 1/8/09 3:48:02 PM

278 Chapter 6 n Configuring the X Window System, Localization, and Printing

The mkfontscale program reads all the fonts in the current directory and creates a
fonts.scale file, which is just like a fonts.dir file but describes only outline fonts. The
mkfontdir program combines the fonts.scale file with the fonts.dir file, creating it if it
doesn’t already exist.

Other programs to perform this task also exist. Most notably, ttmkfdir creates a
fonts.dir file that describes TrueType fonts, and type1inst does the job for Type 1 fonts.
The mkfontscale program is preferable because it handles both font types; but if you’re
using an older distribution that lacks this program, or if it’s not doing a satisfactory job,
you can try one of these alternative programs.

Adding Fonts to X’s Font Path
Once you’ve set up fonts in a directory and created a fonts.dir file describing them, you
must add the fonts to the X font path. You do this by editing the Files section of the
XF86Config or xorg.conf file:

Section “Files”

 FontPath “/usr/share/fonts/100dpi:unscaled”

 FontPath “/usr/share/fonts/Type1”

 FontPath “/usr/share/fonts/truetype”

 FontPath “/usr/share/fonts/URW”

 FontPath “/usr/share/fonts/Speedo”

 FontPath “/usr/share/fonts/100dpi”

EndSection

If your Files section contains FontPath lines that refer to unix:/7100
or unix:/-1 but that don’t list conventional directories, read the section
“Configuring a Font Server”; your system is configured to rely on an X font
server for its core fonts. In this case, you may want to modify your font
server configuration rather than change the X core fonts directly, although
you can add font directories to have X both use the font server and directly
handle your new fonts. If your X server configuration lacks a Files section,
it uses a hard-coded default font path. You can add your own complete
Files section to add new font paths.

To add your new font directory to the font path, duplicate one of the existing FontPath
lines and change the directory specification to point to your new directory. The order of
these directories is significant; when matching font names, X tries each directory in turn,
so if two directories hold fonts of the same name, the first one takes precedence. Thus, if
you want your new fonts to override any existing fonts, place the new directory at the top
of the list; if you want existing fonts to take precedence, add your directory to the end of
the list.

04836book.indd 278 1/8/09 3:48:03 PM

Configuring X Fonts 279

The :unscaled string in the first entry in the preceding example tells X to
use bitmap fonts from this directory only if they exactly match the requested
font size. Without this string, X will attempt to scale bitmap fonts from a font
directory (with poor results). Typically, bitmap directories are listed twice:
once near the top of the font path with the :unscaled specification and again
near the bottom of the list without it. This produces quick display of match-
ing bitmapped fonts, followed by any matching scalable fonts, followed by
scaled bitmap fonts.

Once you’ve added your font directory to X’s font path, you should test the configuration.
The most reliable way to do this is to shut down X and restart it. (If your system boots directly
into X, consult “Running an XDMCP Server” for information on doing this.) A quicker
approach, but one that presents some opportunity for error, is to add the font path to a run-
ning system by using the xset program:

$ xset fp+ /your/font/directory

$ xset fp rehash

The first of these commands adds /your/font/directory to the end of the font path.
(Substitute +fp for fp+ to add the directory to the start of the existing font path.) The second
command tells X to re-examine all the font directories to rebuild the list of available fonts.
The result is that you should now be able to access the new fonts. (You’ll need to restart any
programs that should use the new fonts.) One program to quickly test the matter is xfontsel.
This program enables you to select an X core font for display so you can check to be sure the
fonts you’ve added are available and display as you expect.

Configuring a Font Server
Prior to the release of XFree86 4.0, several Linux distributions began using TrueType-enabled
font servers to provide TrueType font support. Some systems continue to use font servers, but
most have now abandoned this practice.

Font servers are also handy ways to deliver fonts to many computers from a central loca-
tion. This can be a great time-saver if you want to add fonts to many computers—set them
up to use a font server and then tweak that server’s font configuration. To use a font server, X
must list that server in its font path:

Section “Files”

 FontPath “unix:/7100”

 FontPath “tcp/fount.pangaea.edu:7100”

EndSection

The first line in this example specifies a local font server. (Using unix:/-1 rather than
unix:/7100 also works in some cases.) The second line specifies that the font server on the
remote system fount.pangaea.edu is to be used. If your system is already configured to use
a font server, you needn’t change the X configuration to add or delete fonts; instead, you

04836book.indd 279 1/8/09 3:48:03 PM

280 Chapter 6 n Configuring the X Window System, Localization, and Printing

can modify the font server’s configuration. (You can still modify the X font configuration
directly, but it may be cleaner to manage all the local fonts from one configuration file.)

To add fonts to a font server, you should first install the fonts on the system, as described
earlier in “Preparing a Font Directory.” You should then modify the font server’s configu-
ration file, /etc/X11/fs/config. Rather than a series of FontPath lines, as in the main X
configuration file, the font server’s configuration lists the font path using the catalogue
keyword as a comma-delimited list:

catalogue = /usr/share/fonts/100dpi:unscaled,

 /usr/share/fonts/Type1,

 /usr/share/fonts/truetype,

 /usr/share/fonts/URW,

 /usr/share/fonts/Speedo,

 /usr/share/fonts/100dpi

The catalogue list may span several lines or just one. In either event, all of the entries
are separated by commas, but the final entry ends without a comma. You can add your new
font directory anywhere in this list.

Once you’ve saved your changes, you must restart the font server. Typically, this is done
via SysV startup scripts (described in more detail in Chapter 5):

/etc/init.d/xfs restart

At this point, you should restart X or type xset fp rehash to have X re-examine its
font path, including the fonts delivered via the font server.

Although X core fonts and font servers were once very important, most modern X applica-
tions now emphasize an entirely different font system: Xft. You can add the same fonts as both
X core fonts and as Xft fonts, but the Xft configuration requires doing things in a new way.

Configuring Xft Fonts
X core fonts (including fonts delivered via a font server) have several important drawbacks:

They aren’t easy to integrate between the screen display and printed output. This makes Ûn

them awkward from the point of view of word processing or other applications that
produce printed output.

They’re server based. This means applications may not be able to directly access the Ûn

font files because the fonts may be stored on a different computer than the application.
This can exacerbate the printing integration problem.

They provide limited or no support for kerning and other advanced typographic fea-Ûn

tures. Again, this is a problem for word processing programs and other programs that
must generate printed output.

They don’t support Ûn font smoothing (a.k.a. anti-aliasing). This technology employs gray
pixels (rather than black or white pixels) along curves to create an illusion of greater
resolution than the display can produce.

04836book.indd 280 1/8/09 3:48:03 PM

Managing GUI Logins 281

These problems are deeply embedded in the X core font system, so developers have
decided to bypass that system. The result is the Xft font system, which is based in part on
the FreeType library (http://www.freetype.org), an open-source library for rendering
TrueType and Type 1 fonts. Xft is a client-based system, meaning that applications access
font files on the computer on which they’re running. Xft also supports font smoothing and
other advanced font features. Overall, the result is greatly improved font support. The cost,
though, is that Linux now has two font systems: X core fonts and Xft fonts.

Fortunately, you can share the same font directories through both systems. If you’ve
prepared a font directory as described earlier, in “Preparing a Font Directory,” you can add
it to Xft. Load the /etc/fonts/local.conf file into a text editor. Look for any lines in this
file that take the following form:

<dir>/font/directory</dir>

If such lines are present, duplicate one of them and change the duplicate to point to
your new font directory. If such lines don’t exist, create one just before the </fontconfig>
line. Be sure not to embed your new font directory specification within a comment block,
though. Comments begin with a line that reads <!-- and end with a line that reads -->.

If you create a font directory that holds several subdirectories, you can add
just the main directory to local.conf. For instance, if you created /opt/
fonts/tt and /opt/fonts/type1, adding /opt/fonts to local.conf will
be sufficient to access all the fonts you installed on the system.

Once you’ve made these changes, type fc-cache as root. This command causes Xft to run
through its font directories and create index files. These files are similar to the fonts.dir file
in principle, but the details differ. If you fail to take this step, you’ll still be able to access these
fonts, but each user’s private Xft cache file will contain the lists of fonts. Generating these files
can take some time, thus degrading performance.

To test your Xft fonts, use any Xft-enabled program. Most modern X-based Linux
programs are so enabled, so loading a GUI text editor, word processor, Web browser, or
other tool that enables you to adjust fonts should do the trick.

Managing GUI Logins
Linux can boot into a purely text-based mode in which the console supports text-based
logins and text-mode commands. This configuration is suitable for a system that runs as a
server computer or for a desktop system for a user who dislikes GUIs. Most desktop users,
though, expect their computers to boot into a friendly GUI. For such users, Linux supports
a login system that starts X automatically and provides a GUI login screen. Configuring
and managing this system requires you to understand a bit of how the system works, how
to run it, and how to change the configuration.

04836book.indd 281 1/8/09 3:48:04 PM

282 Chapter 6 n Configuring the X Window System, Localization, and Printing

The X GUI Login System
As described later in this chapter, in “Using X for Remote Access,” X is a network-enabled
GUI. This fact has many important consequences, and one of these relates to Linux’s GUI
login system. This system employs a network login protocol, the X Display Manager Control
Protocol (XDMCP). To handle remote logins, an XDMCP server runs on a computer and
listens for connections from remote computers’ X servers. To handle local logins, an XDMCP
server runs on a computer and starts the local computer’s X server. The XDMCP server then
manages the local X server’s display—that is, it puts up a login prompt like that shown in
Figure 6.1.

f I gu r E 6 .1 An XDMCP server manages local GUI logins to a Linux system.

Three XDMCP servers are common on Linux: the X Display Manager (XDM), the
KDE Display Manager (KDM), and the GNOME Display Manager (GDM). A few more
exotic XDMCP servers are also available, but these three are the most important. As you
may guess by their names, KDM and GDM are associated with the KDE and GNOME
projects, respectively, but neither limits your choice of desktop environment. Most Linux
distributions run either GDM or KDM as the default XDMCP server, but you can change
which one your system uses if you don’t like the default.

04836book.indd 282 1/8/09 3:48:04 PM

Managing GUI Logins 283

Running an XDMCP Server
Several methods exist to start an XDMCP server. The two most common are to launch it
more or less directly from init, via an entry in /etc/inittab or its ancillary configura-
tion files; or to launch it as part of a runlevel’s startup script set, via a SysV startup script.
Chapter 5 describes both init and SysV startup scripts in general, so consult it for infor-
mation about these processes.

Whichever method is used, many distributions configure themselves to run their chosen
XDMCP server when they start in runlevel 5 but not when they start in runlevel 3. This is
the only difference between these two runlevels in most cases. Thus, changing from runlevel
3 to runlevel 5 starts X and the XDMCP server on many distributions, and switching back
to runlevel 3 stops X and the XDMCP server. As described in more detail in Chapter 5, you
can change runlevels as root with the telinit command:

telinit 5

Permanently changing the runlevel requires editing the /etc/inittab file and, in par-
ticular, its id line:

id:5:initdefault:

Change the number (5 in this case) to the runlevel you want to use as the default.
A few distributions—most notably Gentoo, Debian, and Debian’s derivatives (including

the popular Ubuntu)—attempt to start an XDMCP server in all runlevels (or don’t do so
at all). This is done through the use of a SysV startup script called xdm, kdm, or gdm. Thus,
you can temporarily start or stop the XDMCP server by running this script and passing it
the start or stop option. To permanently enable or disable the XDMCP server, you should
adjust your SysV startup scripts, as described in Chapter 5.

In addition to the question of whether to run an XDMCP server is the question of which
XDMCP server to run. Most distributions set a default XDMCP server in one way or another.
Two common methods exist:

Selection via configuration file Some distributions hide the XDMCP server choice in a
configuration file, often in the /etc/sysconfig directory. In Fedora, the /etc/sysconfig/
desktop file sets the DISPLAYMANAGER variable to XDM, KDM, or GDM. In openSUSE, /etc/
sysconfig/displaymanager sets the DISPLAYMANAGER variable in a similar way, but using
lowercase display manager names.

Selection via SysV script In Debian and derivative distributions, such as Ubuntu, the dis-
play manager is set via choice of SysV startup script—use the gdm script to use GDM, kdm
to use KDM, and so on. By default, only one XDMCP server (and associated SysV startup
script) is installed, so if you want to change your XDMCP server, you may need to install
your desired server. Chapter 5 describes how to configure specific SysV startup scripts to
run automatically.

Unfortunately, distribution maintainers have had a habit of changing the details of how
XDMCP servers are launched from time to time, and the settings are often buried in poorly
documented configuration files. Thus, you may need to go digging through the files in your

04836book.indd 283 1/8/09 3:48:04 PM

284 Chapter 6 n Configuring the X Window System, Localization, and Printing

/etc directory to find the correct setting. If you can’t find the setting, try using grep to
search for strings such as DISPLAYMANAGER or the name of the XDMCP server that’s cur-
rently running.

Configuring an XDMCP Server
XDMCP servers, like most programs, can be configured. Unfortunately, this configuration
varies from one server to another, although there are some commonalities.

Configuring XDM
XDM is the simplest of the major XDMCP servers. It accepts usernames and passwords but
doesn’t enable users to perform other actions, such as choose which desktop environment
to run. (This must be configured through user login files.)

XDM’s main configuration file is /etc/X11/xdm/xdm-config. Most distributions ship with
a basic xdm-config file that should work fine for a local workstation. If you want to enable
the system to respond to remote login requests, or if you want to verify that the system is not
so configured, you should pay attention to this line:

DisplayManager.requestPort: 0

This line tells XDM to not access a conventional server port. To activate XDM as a
remote login server, you should change 0 to 177, the traditional XDMCP port. You must
then restart XDM.

The /etc/X11/xdm/Xaccess file is another important XDM configuration file. If XDM
is configured to permit remote access, this file controls who may access the XDM server,
and in what ways. A wide-open system contains lines that use an asterisk (*) to denote that
anybody may access the system:

*

* CHOOSER BROADCAST

The first line tells XDM that anybody may connect, and the second line tells XDM that
anybody may request a chooser—a display of local systems that accept XDMCP connec-
tions. To limit the choices, you should list individual computers or groups of computers
instead of using the asterisk wildcard:

*.pangaea.edu

tux.example.com

*.pangaea.edu CHOOSER BROADCAST

This example lets any computer in the pangaea.edu domain connect or receive a
chooser, and it also lets tux.example.com connect but not receive a chooser.

Many additional options are set in the /etc/X11/xdm/Xresources file; it hosts
X resources, which are similar to environment variables but apply only to X-based
programs. For instance, you can change the text displayed by XDM by altering the
xlogin*greeting resource in this file.

04836book.indd 284 1/8/09 3:48:05 PM

Using X for Remote Access 285

Configuring KDM
KDM is based partly on XDM and so shares many of its configuration options. Unfortunately,
the location of the KDM configuration files is unpredictable; sometimes KDM uses the XDM
configuration files, other times they’re stored in /etc/X11/kdm or /etc/kde/kdm, and some-
times they’re stored in a truly strange location such as /usr/share/kde4/config/kdm/kdmrc.

If you can’t find the KDM configuration files, try using your package manage-
ment tools, described in Chapter 2, “Managing Software.” Try obtaining lists
of files in the kdebase package or other likely candidates, and look for the
KDM configuration files.

KDM expands on XDM by enabling users to select a session type when they log in,
to shut down the computer from the main KDM prompt, and so on. Most of these extra
options are set in the kdmrc file, which appears in the same directory as the other KDM
configuration files. Some of these options override the more common XDM configuration
options for the same features. In particular, the [Xdmcp] section provides options relating
to network operation. The Enable option in that section should be set to true if you want to
support network logins.

Configuring GDM
GDM is more of a break from XDM than is KDM. GDM doesn’t use the conventional XDM
configuration files or similar files. Instead, it uses configuration files that are usually stored in
/etc/X11/gdm. The most important of these files is gdm.conf, and it has a format similar to
the kdmrc file. As with KDM, you should set the enable option to yes in the [xdmcp] section
if you want to enable remote logins.

A GUI control tool for GDM exists on some systems but is missing from
others. Type gdmconfig as root to launch this program, which enables you
to set GDM options using a point-and-click interface.

Like KDM, GDM provides extra options over those of XDM. These options include
the ability to choose your login environment and shut down the computer. GDM is a bit
unusual in that it prompts for the username and only then presents a prompt for the pass-
word. (Figure 6.1 shows the GDM username prompt.) XDM and KDM both present fields
for the username and password simultaneously.

Using X for Remote Access
As noted earlier, in “The X GUI Login System,” X is a network-enabled GUI. This fact
enables you to run Linux programs remotely—you can set up a Linux system with X pro-
grams and run them from other Linux (or even non-Linux) computers. Similarly, you can

04836book.indd 285 1/8/09 3:48:05 PM

286 Chapter 6 n Configuring the X Window System, Localization, and Printing

use a Linux computer as an access terminal for X programs that run on a non-Linux Unix
computer, such as one running Solaris. To do this, you should first understand something
of X’s network model—where the client and server systems are located, how X controls
access to itself, and so on. You can then proceed to perform the remote accesses.

X Client/Server Principles
Most people think of servers as powerful computers hidden away in machine rooms and of
clients as the desktop systems that ordinary people use. Although this characterization is
often correct, it’s very wrong when it comes to X. X is a server, meaning that the X server
runs on the computer at which the user sits. X clients are the programs that users run—
xterm, xfontsel, KMail, OpenOffice.org, and so on. In most cases, the X server and its
clients reside on the same computer, so this peculiar terminology doesn’t matter; but when
you use X for remote access, you must remember that the X server runs on the user’s com-
puter while the X clients run on the remote system.

To make sense of this peculiarity, think of it from the program’s point of view. For instance,
consider a Web browser such as Firefox. This program accesses Web pages stored on a Web
server computer. The Web server responds to requests to load files from Firefox. Just as Firefox
loads files, it displays files on the screen and accepts input from its user. From the program’s
point of view, this activity is much like retrieving Web pages, but it’s handled by an X server
rather than a Web server. This relationship is illustrated in Figure 6.2.

f I gu r E 6 . 2 From a program’s point of view, the X server works much like a
conventional network server such as a Web server.

Web Server
X Client and

Web Browser (Client) X Server

Stores
web pages

Runs user
programs

Provides display
and user input services

Ordinarily, Linux is configured in such a way that its X server responds only to local
access requests as a security measure. Thus, if you want to run programs remotely, you
must make some changes to have Linux lower its defenses—but not too far, lest you let any-
body access the X server, which could result in security breaches.

Using Remote X Clients
Suppose your local network contains two machines. The computer called zeus is a powerful
machine that hosts important programs, like a word processor and data analysis utilities. The
computer called apollo is a much less powerful system, but it has an adequate monitor and

04836book.indd 286 1/8/09 3:48:07 PM

Using X for Remote Access 287

keyboard. Therefore, you want to sit at apollo and run programs that are located on zeus.
Both systems run Linux. To accomplish this task, follow these steps:

1. Log into apollo and, if it’s not already running X, start it.

2. Open a terminal (such as an xterm) on apollo.

3. Type xhost +zeus in apollo’s terminal. This command tells apollo to accept for dis-
play in its X server data that originates on zeus.

4. Log into zeus from apollo. You might use Telnet or Secure Shell (SSH), for instance.
The result should be the ability to type commands in a shell on zeus.

5. On zeus, type export DISPLAY=apollo:0.0. (This assumes you’re using bash; if you’re
using tcsh, the command is setenv DISPLAY apollo:0.0.) This command tells zeus
to use apollo for the display of X programs. (Chapter 9, “Writing Scripts, Configuring
E-Mail, and Using Databases,” describes environment variables, such as DISPLAY, in
greater detail.)

6. Type whatever you need to type to run programs at the zeus command prompt. For
instance, you could type ooffice to launch OpenOffice.org. You should see the pro-
grams open on apollo’s display, but they’re running on zeus—their computations use
zeus’s CPU, they can read files accessible on zeus, and so on.

7. After you’re done, close the programs you’ve launched, log off zeus, and type xhost
-zeus on apollo. This tightens security so that a miscreant on zeus won’t be able to
modify your display on apollo.

Encrypting X Connections with SSh

The SSH protocol is a useful remote-access tool. Although it’s often considered a text-
mode protocol, SSH also has the ability to tunnel network connections—that is, to carry
another protocol through its own encrypted connection. This feature is most useful for
handling remote X access. You can perform the steps described in “Using Remote X
Clients” but omit steps 3 and 5 and the xhost command in step 7. This greatly simplifies
the login process and adds the benefits of SSH’s encryption, which X doesn’t provide. On
the other hand, SSH’s encryption is likely to slow down X access, although if you enable
SSH’s compression features, this problem may be reduced in severity. Overall, tunneling
X through SSH is the preferred method of remote X access, particularly when any net-
work in the process isn’t totally secure.

SSH tunneling does require that certain options be set. In particular, you must either use the
-X option to the ssh client program or set the ForwardX11 option to yes in /etc/ssh_config
on the client system. You must also set the X11Forwarding option to yes in the /etc/sshd_
config file on the SSH server system. These options enable SSH’s X forwarding feature;
without these options, SSH’s X forwarding won’t work.

04836book.indd 287 1/8/09 3:48:07 PM

288 Chapter 6 n Configuring the X Window System, Localization, and Printing

Sometimes, you can skip some of these steps. For instance, depending on how it’s config-
ured, SSH can forward X connections, meaning that SSH intercepts attempts to display X
information and passes those requests on to the system that initiated the connection. When
this happens, you can skip steps 3 and 5, as well as the xhost command in step 7. (See the
Real-World Scenario sidebar “Encrypting X Connections with SSH.”)

As an added security measure, many Linux distributions today configure X to ignore
true network connections. If your distribution is so configured, the preceding steps won’t
work; when you try to launch an X program from the remote system, you’ll get an error
message. To work around this problem, you must make an additional change, depending
on how X is launched:

GDM On older versions of GDM, check the GDM configuration file (typically /etc/X11/
gdm/gdm.conf): look for the line DisallowTCP=true, and change it to read DisallowTCP=false.
On newer versions of GDM, edit /etc/gdm/gdm.schemas, and look for the line that reads
<key>security/DisallowTCP</key>. A couple of lines below this, change the key from true
to false.

KDM or XDM These two XDMCP servers both rely on settings in the Xservers file (in
/etc/X11/xdm for XDM, and in this location or some other highly variable location for
KDM). Look for the line that begins with :0. This line contains the command that KDM
or XDM uses to launch the X server. If this line contains the string -nolisten tcp, remove
that string from the line. Doing so eliminates the option that causes X to ignore conven-
tional network connections.

Special openSUSE configuration In openSUSE, you must edit /etc/sysconfig/
displaymanager and set the DISPLAYMANAGER_XSERVER_TCP_PORT_6000_OPEN option
to yes.

X launched from a text-mode login If you log in using text mode and type startx to launch
X, you may need to modify the startx script itself, which is usually stored in /usr/bin.
Search this script for the string -nolisten tcp. Chances are this string will appear in a vari-
able assignment (such as to defaultserverargs) or possibly in a direct call to the X server
program. Remove the -nolisten tcp option from this variable assignment or program call.

Once you’ve made these changes, you’ll need to restart X as described earlier in “Running
an XDMCP Server.” Thereafter, X should respond to remote access requests.

Distribution maintainers disable X’s ability to respond to remote requests for
a reason. If X responds to remote network requests, the risk of an intruder
using a bug or misconfiguration to trick users by displaying bogus messages
on the screen is greatly increased. Thus, you should disable this protection
only if you’re sure that doing so is necessary. You may be able to use an
SSH link without disabling this protection. SSH has other benefits as well,
as described shortly.

04836book.indd 288 1/8/09 3:48:07 PM

X Accessibility 289

Another option for running X programs remotely is to use the Virtual Network Com-
puting (VNC) system (http://www.realvnc.com). VNC runs a special X server on the
computer that’s to be used from a distance, and a special VNC client runs on the computer
at which you sit. You use the client to directly contact the server. This reversal of client and
server roles over the normal state of affairs with conventional X remote access is beneficial
in some situations, such as when you’re trying to access a distant system from behind cer-
tain types of firewall. VNC is also a cross-platform protocol; it’s possible to control a Win-
dows or Mac OS system from Linux using VNC, but this isn’t possible with X. (X servers
for Windows and Mac OS are available, allowing you to control a Linux system from these
non-Linux OSs.)

X Accessibility
Historically, most computers have been designed for individuals with normal physical
capabilities. As computers have become everyday tools, though, the need for people with
various disabilities to use computers has risen. Linux provides tools to help with this task.
Some basic X settings (controlled in xorg.conf or XF86Config) can help in this respect—
for instance, you can adjust the keyboard repeat rate to prevent spurious key repeats for
individuals who may keep keys pressed longer than average. Other settings are unusual and
may require the use of unique accessibility tools to set. Some options must be set in specific
desktop environments (KDE or GNOME, for example).

Keyboard and Mouse Accessibility Issues
You can set many keyboard and mouse options using ordinary desktop environment tools
for personalizing keyboard and mouse responses. Other options are more exotic, such as
onscreen keyboards.

The LPI objectives mention AccessX; however, this package as such appears
to be abandoned, and its functionality has been folded into the standard
desktop environment control panels described in the following pages.

Standard Keyboard and Mouse Options
Most Linux desktop environments include keyboard and mouse control panel options. For
instance, in a standard Fedora 9 GNOME installation, you can find these options by select-
ing System  Preferences  Hardware  Mouse and System  Preferences  Hardware 
Keyboard. Figure 6.3 shows the Keyboard Preferences control panel. Because the locations
of such options can be customized from one distribution to another and can change from
one release to another, you may need to hunt for the options in your menus.

04836book.indd 289 1/8/09 3:48:08 PM

290 Chapter 6 n Configuring the X Window System, Localization, and Printing

f I gu r E 6 . 3 Linux desktop environments provide control panels with accessibility
options.

You can find some accessibility settings, such as those for keyboard repeat options, on
the main Settings tab. The Accessibility tab provides additional options.

Keyboard and mouse accessibility features include the following:

Keyboard repeat rate The repeat rate and delay can be set using sliders on the keyboard
control panel’s Settings tab. These settings override those set in the X configuration file; but
if you use a bare window manager, you may need to set these options in the X configuration
file. Disabling keyboard repeat or setting a very long delay may be necessary for some users.

Sticky keys When enabled, this option causes keyboard modifier keys (Ctrl, Alt, and Shift)
to “stick” when pressed, affecting the next regular key to be pressed even after release of
the sticky key. This can be useful for users who have difficulty pressing multiple keys simul-
taneously. The Toggle Keys option, available in some tools, sounds a beep when a sticky
key toggles on or off.

Slow keys When activated, this option requires a key to be pressed for longer than a specified
period of time before it registers as a keypress. This feature is useful for individuals who tend
to accidentally press keys.

Bounce/debounce keys If a user tends to accidentally press a single key multiple times,
the bounce keys option may be able to compensate for this tendency. (Aging keyboards also
sometimes produce keybounce.)

Mouse tracking and click options The ordinary mouse tracking and click options can be
adjusted to unusual values for those who have special needs.

04836book.indd 290 1/8/09 3:48:08 PM

X Accessibility 291

Simulated mouse clicks Some environments let you configure the mouse to simulate a
click whenever the mouse pointer stops moving or to simulate a double click whenever the
mouse button is pressed for an extended period.

Mouse emulation/mouse navigation This option enables you to use the cursor keypad on
your keyboard to emulate a mouse.

Mouse gestures Gestures are similar to keyboard shortcuts, but for mice; they permit you
to activate program options by moving your mouse in particular ways.

Using Onscreen Keyboards
If a user has difficulty using a regular keyboard but can use a mouse, that user can employ
an onscreen keyboard. This is an application that displays an image of a keyboard. Using
the mouse to press the keys on the keyboard image works much like using a real keyboard.
Some other keyboards require the user to enter text into their own buffers and then cut-
and-paste the text from the keyboard application into the target program.

Browse the menus for your desktop environment to locate the onscreen keyboards avail-
able on your system. If you can’t find one, or if you don’t like it, use your package manager
to search for such programs—searching on “keyboard” should turn up some options.

The GNOME On-Screen Keyboard (GOK) deserves special mention as a particularly
powerful tool in this category. This program provides not only an onscreen keyboard but also
tools that provide shortcuts for various mouse, menu, and toolbar features of other programs,
as well as tools to help users navigate the GNOME desktop. You can launch GOK from
GNOME by selecting Applications  Accessibility  On-Screen Keyboard (the exact location
may vary from one distribution or GNOME version to another) or by typing gok at a com-
mand prompt. You can learn more at the main GOK Web page, http://www.gok.ca.

Screen Display Settings
Users with poor eyesight can benefit from adjustments to screen settings and applications.
These include font options, contrast settings, and screen magnification tools.

Adjusting Default Fonts
Most desktop environments provide options to set the default fonts used on the screen.
Figure 6.4 shows the Appearance Preferences dialog box provided with GNOME. You can
access this by selecting the System  Preferences  Appearance menu on an Ubuntu 8.04
system. A similar tool is available in KDE, accessible from the Appearance item in its System
Settings panel.

To adjust the fonts, click the font for each of the main categories, such as Application
Font and Document Font in Figure 6.4. The result is a font selection dialog box, in which
you can select the font (Sans, Times, and so on), the font style (normal, bold, and so on),
and size in points. Adjust these options until you find a setting that works well. You’ll have
to adjust the font for each of the categories, or at least for those that are most important.

04836book.indd 291 1/8/09 3:48:08 PM

292 Chapter 6 n Configuring the X Window System, Localization, and Printing

f I gu r E 6 . 4 Linux desktop environments provide control panels with accessibility
options.

Unfortunately, although many applications take their cues on fonts from the GNOME
and KDE settings, others don’t. Thus, you may need to adjust options in at least some indi-
vidual applications, as well as in the desktop environment as a whole.

Adjusting Contrast
Desktop environments provide various themes—settings for colors, window manager deco-
rations, and so on. Some themes are better than others in terms of legibility. For instance,
some themes are very low in contrast, and others are high in contrast.

Monitors have their own contrast controls. You can adjust these for best
legibility, of course, but the contrast adjustments afforded by desktop
environment settings are independent of a monitor’s contrast settings.

In GNOME, you can set themes in the same Appearance preferences dialog box in which
you set the fonts (Figure 6.4); you click the Theme tab and select the theme you want to use.
In KDE, the Appearance item in System Settings provides theme options.

Using Magnifier Tools
A screen magnifier application enlarges part of the screen—typically the area immediately
surrounding the mouse. One common screen magnifier is KMag, which is part of the KDE
suite. (You can use KMag even in GNOME, XFce, or other desktop environments, though.)

04836book.indd 292 1/8/09 3:48:09 PM

Configuring Localization and Internationalization 293

To use it, type kmag or select it from your desktop menus. The result is the KMag window
on the screen, which enlarges the area around the cursor by default.

Using Additional Assistive Technologies
In addition to keyboard, mouse, and conventional display tools, some additional programs
can help those with special needs. Most notably, screen readers and Braille displays can
help those who can’t read conventional displays.

Configuring Linux to Speak
Computer speech synthesis has existed for decades. Today, several speech synthesis products
are available for Linux, including these:

Orca This program, which is based at http://live.gnome.org/Orca, is a screen reader
that’s been integrated into GNOME 2.16 and later.

Emacspeak Similar to Orca in many respects, this program aims to enable those with
visual impairments to use a Linux computer. You can learn more at http://emacspeak
.sourceforge.net.

Using Braille Displays
A Braille display is a special type of computer monitor. Rather than display data visually,
it creates a tactile display of textual information in Braille. As such, a Braille display is an
efficient way for those with visual impairments to access text-mode information, such as
that displayed at a Linux text-mode console. Many Linux text-mode programs can manage
a Braille display with no changes.

To use a Braille display, special Linux software is required. The BRLTTY (http://www
.mielke.cc/brltty/) project provides a Linux daemon that redirects text-mode console
output to a Braille display. It includes features that support scrollback, multiple virtual ter-
minals, and even speech synthesis.

The 2.6.26 Linux kernel adds some direct support for Braille displays. If you’re familiar
with Linux kernel compilation, you should check the Accessibility options in the Device
Drivers area of the kernel configuration.

Configuring Localization
and Internationalization
Linux is an international OS. Its developers reside in many countries around the world, and
its users are even more widespread. As such, Linux supports a wide variety of character sets,
keyboards, date/time display formats, and other features that can vary from one region to
another. Many of these features are set up when you answer questions during installation,

04836book.indd 293 1/8/09 3:48:09 PM

294 Chapter 6 n Configuring the X Window System, Localization, and Printing

but knowing about them—and how to change them—can help you manage your system,
particularly if you need to change these options for any reason.

Setting Your Time Zone
Linux uses Coordinated Universal Time (UTC) internally. This is the time in Greenwich, Eng-
land, uncorrected for Daylight Saving Time. When you write a file to disk on a Linux-native
filesystem, the time stamp is stored in UTC. When you use tools such as cron (described in
Chapter 7, “Administering the System”), they “think” in UTC. Chances are, though, that you
use local time. Thus, a Linux computer must be able to translate between local time and UTC.

To perform this translation, Linux needs to know your time zone. Linux looks to the
/etc/localtime file for information about its local time zone. This file is one of the rare
configuration files that’s not a plain-text file, so you shouldn’t try editing it with a text editor.
This file could be a file of its own, or it could be a symbolic or hard link to another file. If it’s
a symbolic link, you should be able to determine your time zone by performing a long file list-
ing to see the name of the file to which localtime links:

$ ls -l /etc/localtime

lrwxrwxrwx 1 root root 36 May 14 2008 /etc/localtime -> ➦

/usr/share/zoneinfo/America/New_York

If /etc/localtime is a regular file and not a symbolic link, or if you want further confir-
mation of your time zone, try using the date command by itself:

$ date

Mon Sep 1 12:50:58 EDT 2008

The result includes a standard three-letter time zone code (EDT in this example). Of
course, you’ll need to know these codes, or at least the code for your area. For a list of
time zone abbreviations, consult http://www.timeanddate.com/library/abbreviations/
timezones/. Note that the time zone codes vary depending on whether Daylight Saving
Time is active, but the Linux time zone files don’t change with this detail. Part of what
these files do is describe when to change the clock for Daylight Saving Time. If you need
to change your time zone, you should copy or link a sample file from a standard directory
location to the /etc/localtime file:

1. Log in as root or acquire root privileges.

2. Change to the /etc directory.

3. View the contents of the /usr/share/zoneinfo directory. This directory contains files
for certain time zones named after the zones or the regions to which they apply, such as
GMT, Poland, and Japan. Most users will need to look in subdirectories, such as /usr/
share/zoneinfo/US for the United States or /usr/share/zoneinfo/America for North
and South America. These subdirectories contain zone files named after the regions or
cities to which they apply, such as Eastern or Los_Angeles. (The US subdirectory con-
tains files named after time zones or states, whereas the America subdirectory holds files

04836book.indd 294 1/8/09 3:48:09 PM

Configuring Localization and Internationalization 295

named after cities.) Identify the file for your time zone. Note that you might use a zone
file named after a city other than the one in which you reside but that’s in the same time
zone as you. For instance, the New_York file works fine if you’re in Boston, Philadelphia,
Cincinnati, or any other city in the same (Eastern) time zone as New York.

4. If a localtime file exists in /etc, delete it or rename it. (For instance, type rm localtime.)

5. Create a symbolic link from your chosen time zone file to the /etc/localtime file. For
instance, you can type ln -s /usr/share/zoneinfo/US/Eastern localtime to set up
a computer in the U.S. Eastern time zone. Alternatively, you can copy a file (cp) rather
than create a symbolic link (ln -s). If /etc and your target file are on the same filesys-
tem, you can create a hard link rather than a symbolic link if you like.

At this point, your system should be configured to use the time zone you’ve selected.
If you changed time zones, you should be able to see the difference by typing date, as
described earlier. The time zone code on your system should change compared to issuing
this command before you changed the /etc/localtime file or link. The time should also
change by the number of hours between the time zones you’ve selected (give or take a bit
for the time it took you to change the time zone files).

In addition to /etc/localtime, some distributions use a secondary file with text-mode
time zone data. This file is called /etc/timezone on Debian and its derivatives. On Fedora
and related distributions, it’s /etc/sysconfig/clock. This file contains a line or two with
the name of the time zone, sometimes in the form of a variable assignment. For instance, the
/etc/timezone file on my Ubuntu system looks like this:

America/New_York

This file provides a quick way to check your time zone. It should also be updated when
you change your time zone, lest higher-level configuration tools become confused.

Some distributions provide text-mode or GUI tools to help make time zone changes. Look
for a program called tzsetup, tzselect, tzconfig, or something similar. Typically, these
programs ask you for your location in several steps (starting with your continent, then your
nation, and perhaps then your state or city) and create an appropriate symbolic link.

Querying and Setting Your Locale
To localize your computer, you must first understand what a locale is in Linux parlance.
Once you understand the basics, you can identify your current locale and other locales
available to you. If necessary, you may need to install another locale’s data. You can then
set your computer to use that locale.

What Is a Locale?
In Linux, a locale is a way of specifying the computer’s (or user’s) language, country, and
related information for purposes of customizing displays. A single locale takes the follow-
ing form:

[language[_territory][.codeset][@modifier]]

04836book.indd 295 1/8/09 3:48:09 PM

296 Chapter 6 n Configuring the X Window System, Localization, and Printing

Each part of this string has a set of specific acceptable forms. For instance, language can
be en (English), fr (French), ja (Japanese), and so on. These are two- or three-letter codes
for languages.

The territory can be US (United States), FR (France), JP (Japan), and so on. These are
codes for specific regions—generally nations.

The codeset can be ASCII, UTF-8, or other encoding names. The American Standard Code
for Information Interchange (ASCII) is the oldest and most primitive encoding method; it sup-
ports 7-bit encodings (generally stored in 8-bit bytes) that can handle English, including common
punctuation and symbols. ASCII can’t handle characters used in many non-English languages,
though, so it’s awkward at best for international use. ISO-8859 was an early attempt to extend
ASCII; it employs an eighth bit to extend ASCII by 128 characters, giving room for the charac-
ters needed by a small number of non-Roman alphabets. ISO-8859 is broken down into many
substandards, each of which handles one language or small group of languages. ISO-8859-1
covers Western European languages and ISO-8859-5 provides Cyrillic support, for instance.

The latest language codeset is the 8-bit Unicode Transformation Format (UTF-8). Like
ISO-8859, UTF-8 starts with ASCII, but it extends it by supporting variable-byte extensions,
so that a single character can take anywhere from one to four bytes to be encoded. This pro-
vides the ability to encode text in any language supported by Unicode, which is a character
set designed to support as many languages as possible. The big advantage of UTF-8 over
ISO-8859 is that there’s no need to specify a substandard, such as ISO-8859-1 or ISO-8859-5;
UTF-8 handles all of its writing systems automatically.

The modifier is a locale-specific code that modifies how it works. For instance, it may
affect the sort order in a language-specific manner.

What Is Your Locale?
A locale code can be assigned to one or more of several environment variables. To learn
how these are set on your system, issue the locale command without any arguments:

$ locale

LANG=en_US.UTF-8

LC_CTYPE=”en_US.UTF-8”

LC_NUMERIC=”en_US.UTF-8”

LC_TIME=”en_US.UTF-8”

LC_COLLATE=”en_US.UTF-8”

LC_MONETARY=”en_US.UTF-8”

LC_MESSAGES=”en_US.UTF-8”

LC_PAPER=”en_US.UTF-8”

LC_NAME=”en_US.UTF-8”

LC_ADDRESS=”en_US.UTF-8”

LC_TELEPHONE=”en_US.UTF-8”

LC_MEASUREMENT=”en_US.UTF-8”

LC_IDENTIFICATION=”en_US.UTF-8”

LC_ALL=

04836book.indd 296 1/8/09 3:48:09 PM

Configuring Localization and Internationalization 297

As you can see, quite a few locale variables exist. When programs pay attention to these
variables, they adjust themselves appropriately for your locale. For instance, a word proces-
sor may default to using common US paper sizes (such as 8.5 × 11 inches) when the territory
code in LC_PAPER is set to US, but European paper sizes (such as A4, 210 × 297 mm) when
territory is set to a code for a country where these paper sizes are more common.

Most of the locale variables set specific and obvious features, such as LC_PAPER (paper
size), LC_MEASUREMENT (measurement units), and so on. The LC_ALL variable is a sort of mas-
ter override—if it’s set, it overrides all the other LC_* variables.

A related environment variable is LANG. It takes the same type of locale specification as
the LC_* variables. It sets the locale in case the LC_* variables aren’t set.

While you’re using the locale command, you should try it with the -a option, which
identifies all the locales that are available to you:

$ locale -a

C

en_US.utf8

POSIX

In this example (from an Ubuntu system), very few locales are installed. Some systems
may have many more; one of my computers has literally hundreds of locales available.

Changing Your Locale
If you want to change your locale, you should first verify that an appropriate one is avail-
able to you by using locale -a, as just described. If you don’t see appropriate codes, you
may need to install additional packages. Unfortunately, names for these packages aren’t
standardized. Your best bet is to use a GUI package manager such as yumex or Synaptic
(described in Chapter 2) to search on package names and descriptions that include locale
or language. In the case of an Ubuntu system that provided just a few locales, many more
could be installed from packages called language-support-??, where ?? is a two-character
language code.

To temporarily change your locale, the simplest method is to set the LC_ALL environment
variable. For safety, you should also set LANG. For instance, to use the locale for Great Britain
rather than the United States, you can type

$ export LANG=en_GB.UTF-8

$ export LC_ALL=en_GB.UTF-8

The result should be that all the locale variables change for that session. There will also
be changes in the output of programs that honor locales. Note that this change only affects
the current shell and the programs launched from it; you won’t see changes in programs
that are already running or that you launch from another shell.

To permanently change your locale, you can adjust your bash startup script files, such as
~/.bashrc or /etc/profile, as described in Chapter 1, “Exploring Linux Command-Line
Tools.” (Shell scripting is described in more detail in Chapter 9, but setting or adjusting the
LANG and LC_ALL environment variables is fairly straightforward.)

04836book.indd 297 1/8/09 3:48:10 PM

298 Chapter 6 n Configuring the X Window System, Localization, and Printing

X’s configuration file (x.org or XF86Config) includes an option called XkbLayout in the
keyboard’s InputDevice section. This option takes a partial or complete locale specifica-
tion, but converted to lowercase—for instance, us or en_us.utf-8. Adjusting this option
can provide you with access to language- or country-specific keys. After changing this
option, you’ll have to restart X for the changes to take effect.

Some programs and sets of programs may require you to set the language independent
of the overall system locale. Thus, you may need to adjust the language for certain specific
programs. If a program doesn’t seem to respond to the overall locale setting, check its doc-
umentation or browse through its menus to find a way to adjust its defaults.

One setting requires special mention: LANG=C. When you set LANG to C, programs
that see this environment variable display output without passing it through locale
translations. This can be helpful in some cases if a program’s output is being corrupted
by the locale—say by having conversions to UTF-8 change characters that need to be
preserved as 8-bit entities. Thus, setting LANG=C can help to avoid some types of prob-
lems, particularly in pipelines and scripts that pass one program’s data to another
program in binary form.

Localization support is, to some extent or another, the responsibility of
each program’s author. It’s entirely possible to write a program that sup-
ports just one language or a small subset of languages. Thus, you won’t be
able to get every program to support your desired language, particularly if
it’s an unusual one.

Modifying Text-File Locales
Sometimes it’s necessary to process textual data that originated on a system that used
one encoding but process the data with a program that doesn’t support that encoding.
For instance, your preferred text editor might support UTF-8 but not ISO-8859. If you
deal exclusively with English text files in ASCII, this isn’t a problem; but if you receive an
ISO-8859-1 text file with a few non-Roman characters, such as characters with umlauts,
your editor might display those characters strangely.

To overcome this problem, the iconv utility converts between character sets. Its syntax
is as follows:

iconv -f encoding [-t encoding] [inputfile]...

The -f and -t options specify the source and destination encodings. (You can obtain a
list of encodings by typing iconv --list.) If you omit the target encoding, iconv uses your
current locale for guidance. The program sends output to standard output, so if you want
to store the data in a file, you must redirect it:

$ iconv -f iso-8859-1 -t UTF-8 umlautfile.txt > umlautfile-utf8.txt

04836book.indd 298 1/8/09 3:48:10 PM

Configuring Printing 299

Configuring Printing
Most Linux desktop users work with X, but many also work with another output medium:
printed pages. Printing in Linux is a cooperative effort involving several tools. Applications
submit print jobs as PostScript documents. Because most Linux systems aren’t connected
directly to true PostScript printers, a program called Ghostscript converts the print job
into a form that the system’s printer can actually handle. The print queue, which is man-
aged by software known as the Common Unix Printing System (CUPS), then sends the job
to the printer. At various stages, administrators and users can examine the contents of a
print queue and modify the queue. Understanding the tools used to create and manage print
queues will help you to manage Linux printing.

Conceptualizing the Linux Printing Architecture
Linux printing is built around the concept of a print queue. This is a sort of holding area
where files wait to be printed. A single computer can support many distinct print queues.
These frequently correspond to different physical printers, but it’s also possible to configure
several queues to print in different ways to the same printer. For instance, you might use
one queue to print single-sided and another queue for double-sided printing on a printer
that supports duplexing.

Users submit print jobs by using a program called lpr. Users can call this program directly,
or they may let another program call it. In either case, lpr sends the print job into a specified
queue. This queue corresponds to a directory on the hard disk, typically in a subdirectory of
the /var/spool/cups directory. The CUPS daemon runs in the background, watching for print
jobs to be submitted. The printing system accepts print jobs from lpr or from remote com-
puters, monitors print queues, and serves as a sort of “traffic cop,” directing print jobs in an
orderly fashion from print queues to printers.

The LPI exam emphasizes the CUPS printing system, which is the most
common printing system on modern Linux systems. Older systems used
the BSD Line Printer Daemon (LPD) or the similar LPRng printing systems.
Many of the CUPS tools are workalikes of the LPD tools. If you ever use a
system that runs LPD or LPRng, you’ll find that user commands such as
lpr work in the way you expect, but configuring the printer must be done
in a very different way.

One important and unusual characteristic of Linux printing is that it’s highly network
oriented. As just noted, Linux printing tools can accept print jobs that originate from remote
systems as well as from local ones. Even local print jobs are submitted via network protocols,
although they don’t normally use network hardware, so even a computer with no network
connections can print. In addition to being a server for print jobs, CUPS can function as a
client, passing print jobs to other computers that run the same protocols.

04836book.indd 299 1/8/09 3:48:10 PM

300 Chapter 6 n Configuring the X Window System, Localization, and Printing

Applications can query CUPS about a printer’s capabilities—its paper sizes, whether it sup-
ports color, and so on. The older LPD and LPRng printing systems didn’t support such bidi-
rectional communication. Thus, support for these features still isn’t universal; some programs
make assumptions about a printer’s capabilities or must be told things that other programs can
figure out by themselves.

Understanding PostScript and Ghostscript
If you’ve configured printers under Windows, Mac OS, OS/2, or certain other OSs, you’re
probably familiar with the concept of a printer driver. In these OSs, the printer driver stands
between the application and the printer queue. In Linux, the printer driver is part of Ghost-
script (http://www.cs.wisc.edu/~ghost/), which exists as part of the printer queue, albeit a
late part. This relationship can be confusing at times, particularly because not all applications
or printers need Ghostscript. Ghostscript serves as a way to translate PostScript, a common
printer language, into forms that can be understood by many different printers. Understand-
ing Ghostscript’s capabilities, and how it fits into a printer queue, can be important for con-
figuring printers.

PostScript: The De Facto Linux Printer Language
Laser printers began to become popular in the 1980s. The first laser printers were very expen-
sive devices, and many of them supported what was at that time a new and powerful printer
language: PostScript. PostScript printers became popular as accessories for the Unix systems
of the day. Unix print queues weren’t designed with Windows-style printer drivers in mind, so
Unix programs that took advantage of laser printer features were typically written to produce
PostScript output directly. As a result, PostScript developed into the de facto printing stan-
dard for Unix and, by inheritance, Linux. Where programs on Windows systems were built
to interface with the Windows printer driver, similar programs on Linux generate PostScript
and send the result to the Linux printer queue.

Some programs violate this standard. Most commonly, many programs can produce
raw text output. Such output seldom poses a major problem for modern printers, although
some PostScript-only models choke on raw text. Some other programs can produce either
PostScript or Printer Control Language (PCL) output for Hewlett-Packard laser printers or
their many imitators. A very few programs can generate output that’s directly accepted by
other types of printers.

The problem with PostScript as a standard is that it’s uncommon on the low- and mid-
priced printers with which Linux is often paired. Therefore, to print to such printers using
traditional Unix programs that generate PostScript output, you need a translator and a way
to fit that translator into the print queue. This is where Ghostscript fits into the picture.

Ghostscript: A PostScript Translator
When it uses a traditional PostScript printer, a computer sends a PostScript file directly to
the printer. PostScript is a programming language, albeit one that’s oriented toward the goal
of producing a printed page as output. Ghostscript is a PostScript interpreter that runs on a

04836book.indd 300 1/8/09 3:48:11 PM

Configuring Printing 301

computer. It takes PostScript input, parses it, and produces output in any of dozens of different
bitmap formats, including formats that can be accepted by many non-PostScript printers. This
makes Ghostscript a way to turn many inexpensive printers into Linux-compatible PostScript
printers at very low cost. Ghostscript is available as open source software (GNU Ghostscript),
with a more advanced variant (Aladdin Free Public License, or AFPL, Ghostscript) available
for free. AFPL Ghostscript is not freely redistributable in any commercial package, though.
Because all Linux distributions are available on CD-ROMs sold for a price, they ship with the
older GNU Ghostscript, which works well enough for most users.

One of Ghostscript’s drawbacks is that it produces large output files. A PostScript file that
produces a page filled with text may be just a few kilobytes in size. If this page is to be printed
on a 600 dots per inch (dpi) printer using Ghostscript, the resulting output file could be as
large as 4MB—assuming it’s black and white. If the page includes color, the size could be
much larger. In some sense, this is unimportant because these big files will be stored on your
hard disk only briefly. They do still have to get from the computer to the printer, though, and
this process can be slow. Also, some printers (particularly laser printers) may require memory
expansion to operate reliably under Linux.

Choosing an appropriate Printer for Linux

If you want a speedy printer for Linux, choose a model with built-in PostScript. This is
particularly true for textual and line-art output, which suffers the most in terms of size
expansion going from PostScript to bitmap. In my experience, Ghostscript-driven printers
work well enough for 600dpi black-and-white printers with speeds of up to about six pages
per minute (ppm), although theoretically both the parallel port and USB 1.x port should be
able to handle speeds of three to five times that value. If the printer’s speed is greater than
that, the parallel or USB 1.x port may not be able to deliver the necessary performance,
although you may be able to tweak it to get somewhat better speed. USB 2.0 and Ethernet
printers can handle higher speeds, which can be important for fast color printers.

Color ink-jet printers are generally limited more by the speed of the print head than by the
speed of the data coming over their ports. Few such printers directly support PostScript,
either. Some models come with Windows-based PostScript engines that are conceptually
similar to Ghostscript, but such software is useless under Linux. There are a few Post-
Script ink-jets on the market, as well as color PostScript printers that use other printing
technologies.

For information about what printers are supported by Ghostscript, check the Ghostscript
Web page or the OpenPrinting database Web page (http://www.linuxprinting.org/
printer_list.cgi).

04836book.indd 301 1/8/09 3:48:11 PM

302 Chapter 6 n Configuring the X Window System, Localization, and Printing

Squeezing Ghostscript into the Queue
Printing to a non-PostScript printer in Linux requires fitting Ghostscript into the print
queue. This is generally done through the use of a smart filter. This is a program that’s
called as part of the printing process. The smart filter examines the file that’s being
printed, determines its type, and passes the file through one or more additional programs
before the printing software sends it on to the printer. The smart filter can be configured
to call Ghostscript with whatever parameters are appropriate to produce output for the
queue’s printer.

CUPS ships with its own set of smart filters, which it calls automatically when you tell
the system what model printer you’re using. CUPS provides a Web-based configuration
tool, as described in the upcoming section “Using the Web-Based CUPS Utilities.” This
system, or distribution-specific GUI printer configuration tools, can make setting up a
printer for CUPS fairly straightforward.

The end result of a typical Linux printer queue configuration is the ability to treat
any supported printer as if it were a PostScript printer. Applications that produce Post-
Script output can print directly to the queue. The smart filter detects that the output is
PostScript and runs it through Ghostscript. The smart filter can also detect other file
types, such as plain-text and various graphics files, and it can send them through appro-
priate programs instead of or in addition to Ghostscript in order to create a reasonable
printout.

If you have a printer that can process PostScript, the smart filter is usually still involved,
but it doesn’t pass PostScript through Ghostscript. In this case, the smart filter passes Post-
Script directly to the printer, but it still sends other file types through whatever processing
is necessary to turn them into PostScript.

Running a Printing System
Because Linux printing systems run as daemons, they must be started before they’re useful.
This task is normally handled automatically via startup scripts in /etc/rc.d, /etc/init.d,
or /etc/rc?.d (where ? is a runlevel number). Look for startup scripts that contain the
string cups (or lpd or lprng for older systems) in their names to learn what your system is
running. If you’re unsure if a printing system is currently active, use the ps utility to search
for running processes by these names, as in:

$ ps ax | grep cups

 1896 ? Ss 0:01 cupsd

This example shows that cupsd, the CUPS daemon, is running, so the system is using
CUPS for printing. If you can’t find any running printing system, consult your distribu-
tion’s documentation to learn what is available and check that the appropriate package is
installed. All major distributions include startup scripts that should start the appropriate
printing daemon when the computer boots.

04836book.indd 302 1/8/09 3:48:11 PM

Configuring Printing 303

Configuring CUPS
CUPS uses various configuration files in the /etc/cups directory and its subdirectories to
manage its operation. You can edit these files directly, and you may need to do so if you
want to share printers or use printers shared by other CUPS systems. The simplest way to
add printers to CUPS, though, is to use the tool’s Web-based configuration utility.

Editing the CUPS Configuration Files
You can add or delete printers by editing the /etc/cups/printers.conf file, which con-
sists of printer definitions. Each definition begins with the name of a printer, identified by
the string DefaultPrinter (for the default printer) or Printer (for a nondefault printer) in
angle brackets (<>), as in the following:

<DefaultPrinter okidata>

This line marks the beginning of a definition for a printer queue called okidata. The
end of this definition is a line that reads </Printer>. Intervening lines set assorted printer
options, such as identifying strings, the printer’s location (its local hardware port or net-
work location), its current status, and so on. Additional options are stored in a PostScript
Printer Definition (PPD) file that’s named after the queue and stored in the /etc/cups/ppd
subdirectory. PPD files follow an industry-standard format. For PostScript printers, you can
obtain a PPD file from the printer manufacturer, typically from a driver CD-ROM or from
the manufacturer’s Web site. CUPS and its add-on driver packs also ship with a large num-
ber of PPD files that are installed automatically when you use the Web-based configuration
utilities.

As a general rule, you’re better off using the CUPS Web-based configuration tools to add
printers rather than adding printers by directly editing the configuration files. If you like,
though, you can study the underlying files and tweak the configurations using a text editor
to avoid having to go through the full Web-based tool to make a minor change.

One exception to this rule relates to configuring the CUPS Web-based interface tool
itself and CUPS’ ability to interface with other CUPS systems. One of the great advantages
of CUPS is that it uses a new network printing protocol, known as the Internet Printing
Protocol (IPP), in addition to the older LPD protocol used by BSD LPD and LPRng. IPP
supports a feature it calls browsing, which enables computers on a network to automati-
cally exchange printer lists. This feature can greatly simplify configuring network printing.
You may need to change some settings in the main CUPS configuration file, /etc/cups/
cupsd.conf, to enable this support.

The /etc/cups/cupsd.conf file, which is structurally similar to the Apache Web server
configuration file, contains a number of configuration blocks that specify which other sys-
tems should be able to access it. Each block controls access to a particular location on the
server. These blocks look like this:

<Location /printers>

Order Deny,Allow

Deny from All

04836book.indd 303 1/8/09 3:48:11 PM

304 Chapter 6 n Configuring the X Window System, Localization, and Printing

BrowseAllow from 127.0.0.1

BrowseAllow from 192.168.1.0/24

BrowseAllow from @LOCAL

Allow from 127.0.0.1

Allow from 192.168.1.0/24

Allow from @LOCAL

</Location>

If you’re configuring a workstation with a local printer that you don’t want
to share, or if you want to configure a workstation to use printers shared
via LPD or some other non-IPP printing protocol, you shouldn’t need to
adjust /etc/cups/cupsd.conf. If you want to access remote IPP printers,
however, you should at least activate browsing by setting the directive
Browsing On, as described shortly. You shouldn’t have to modify your
location definitions unless you want to share your local printers.

The /printers location, shown here, controls access to the printers themselves. The
following list includes features of this example:

Directive order The Order Deny,Allow line tells CUPS in which order it should apply
allow and deny directives—in this case, allow directives modify deny directives.

Default policy The Deny from All line tells the system to refuse all connections except
those that are explicitly permitted.

Browsing control lines The BrowseAllow lines tell CUPS from which other systems it should
accept browsing requests. In this case, it accepts connections from itself (127.0.0.1), from sys-
tems on the 192.168.1.0/24 network, and from systems connected to local subnets (@LOCAL).

Access control lines The Allow lines give the specified systems non-browse access to
printers—that is, those systems can print to local printers. In most cases, the Allow lines
are the same as the BrowseAllow lines.

You can also create a definition that uses Allow from All and then creates BrowseDeny
and Deny lines to limit access. As a general rule, though, the approach shown in this example
is safer. Locations other than the /printers location can also be important. For instance,
there’s a root (/) location that specifies default access permissions to all other locations and
an /admin location that controls access to CUPS administrative functions.

Before the location definitions in cupsd.conf are a few parameters that enable or
disable browsing and other network operations. You should look for the following options
specifically:

Enabling browsing The Browsing directive accepts On and Off values. The CUPS default
is to enable browsing (Browsing On), but some Linux distributions disable it by default.

Browsing access control The BrowseAddress directive specifies the broadcast address to
which browsing information should be sent. For instance, to broadcast data on your print-
ers to the 192.168.1.0/24 subnet, you’d specify BrowseAddress 192.168.1.255.

04836book.indd 304 1/8/09 3:48:12 PM

Configuring Printing 305

Once you’ve configured a CUPS server to give other systems access to its printers via
appropriate location directions, and once you’ve configured the client systems to use brows-
ing via Browsing On, all the systems on the network should auto-detect all the printers on
the network. You don’t need to configure the printer on any computer except the one to
which it’s directly connected. All printer characteristics, including their network locations
and PPD files, are propagated automatically by CUPS. This feature is most important in
configuring large networks with many printers or networks on which printers are frequently
added and deleted.

Obtaining CUPS Printer Definitions
Most Linux distributions ship with CUPS smart filter support for a variety of printers.
If you can’t find support for your printer, you can look for additional printer definitions.
These definitions may consist of PPD files, appropriate behind-the-scenes “glue” to tell
CUPS how to use them, and possibly Ghostscript driver files. You can obtain these printer
definitions from several sources:

Your Linux distribution Many distributions ship extra printer definitions under various
names, so check your distribution for such a package. Many distributions include some of
the driver packages described next.

Foomatic The Linux Printing Web site hosts a set of utilities and printer definitions
known collectively as Foomatic (http://www.linuxfoundation.org/en/OpenPrinting/
Database/Foomatic). These provide many additional printer definitions for CUPS (as well
as for other printing systems).

Gutenprint The Gutenprint drivers, originally known as GIMP Print, after the GNU
Image Manipulation Program (GIMP), support a wide variety of printers. Check http://
gimp-print.sourceforge.net for more information.

CUPS DDK The CUPS Driver Development Kit (DDK; http://www.cups.org/ddk/) is a
set of tools designed to simplify CUPS driver development. It ships with a handful of drivers
for Hewlett-Packard and Epson printers.

Printer manufacturers Some printer manufacturers offer CUPS drivers for their printers.
These may be nothing more than Foomatic, Gutenprint, or other open source drivers; but a
few provide proprietary drivers, some of which support advanced printer features that the
open source drivers don’t support.

Chances are good that you’ll find support for your printer in your standard installation,
particularly if your distribution has installed the Foomatic or Gutenprint package. If you
start configuring printers and can’t find your model, though, you should look for an addi-
tional printer definition set from one of the preceding sources.

Using the Web-Based CUPS Utilities
The CUPS IPP printing system is closely related to the Hypertext Transfer Protocol
(HTTP) used on the Web. The protocol is so similar, in fact, that you can access a CUPS
daemon by using a Web browser. You need only specify that you want to access the server

04836book.indd 305 1/8/09 3:48:12 PM

306 Chapter 6 n Configuring the X Window System, Localization, and Printing

on port 631—the normal printer port. To do so, enter http://localhost:631 in a Web
browser on the computer running CUPS. (You may be able to substitute the hostname or
access CUPS from another computer by using the other computer’s hostname, depending
on your cupsd.conf settings.) This action brings up a list of administrative tasks you can
perform. Click Printers or Manage Printers to open the printer management page, shown
in Figure 6.5.

f I gu r E 6 .5 CUPS provides its own Web-based configuration tool.

If you’re configuring a stand-alone computer or the only one on a network to
use CUPS, the printer list will be empty, unlike the one shown in Figure 6.5.
If other computers on your network use CUPS, you may see their printers in
the printer list, depending on their security settings.

You can add, delete, or modify printer queues using the CUPS Web control system. To
add a printer, follow these steps:

1. From the Home or Administration tab, click Add Printer.

2. The system displays a page asking for the printer’s name, location, and description.
Enter appropriate information in the Name, Location, and Description fields. These
fields are all entirely descriptive, so enter anything you like. (Users will use your entry
in the Name field to access the printer, though.) When you click Continue, CUPS asks
for the printer device.

04836book.indd 306 1/8/09 3:48:12 PM

Configuring Printing 307

3. The printer device may be a local hardware port (such as a parallel printer port or
a USB port), a remote LPD printer, a remote SMB/CIFS (Samba) printer, or another
device. The precise options available vary from one distribution to another. Select the
appropriate one from the pop-up list, and click Continue.

USB printers must be turned on and connected to the computer when
CUPS starts in order to be configured or used. If your printer was turned
off or disconnected when your system booted, you may need to restart
CUPS via its SysV startup script and then start over again to configure it.

4. If you entered a network printer, the result is a page in which you enter the complete
path to the device. Type the path, such as lpd://printserv/brother to print to the
brother queue on the printserv computer. Click Continue when you’re done.

5. If you entered a local device in step 3 or after you’ve entered the complete path in step 4,
you’ll see a list of manufacturers. Select one, and click Continue. Alternatively, you can
point directly to a PPD file if you have one handy. If you do this, you’ll skip the next step.

6. CUPS now displays a complete list of printer models in the class you selected in step 5.
Select an appropriate model, and click Continue. Alternatively, you can provide a PPD
file if you have one.

7. If you haven’t already logged in for other administrative tasks, CUPS asks for a username
and password. Type root as the username and your root password as the password.

CUPS doesn’t normally encrypt its data, so you shouldn’t use it to administer
printers remotely. Doing so would be a security risk, because the passwords
would be exposed to sniffing.

8. CUPS informs you that the printer has been added.

9. If you wait a few seconds, the notification that the printer has been added is replaced
by a page in which you can set printer-specific options, such as sheet feeder sources
and print resolutions. Adjust any options you like, and then click Set Printer Options.

If you click the Printers item at the top of the page, you should be returned to the print-
ers list (Figure 6.5), but your new printer should be listed among the existing queues. You
can print a test page by clicking Print Test Page. If all goes well, a test page will emerge from
your printer. If it doesn’t, go back and review your configuration by clicking Modify Printer.
This action takes you through the steps for adding a printer but with your previous selections
already entered as the defaults. Try changing some settings until you get the printer to work.

From the printer queue list, you can also click Configure Printer to set various printer
options. What options are available depends on the printer, but common options include the
resolution, color dithering options, the paper size, whether to enable double-sided printing,
and the presence of banner pages.

04836book.indd 307 1/8/09 3:48:13 PM

308 Chapter 6 n Configuring the X Window System, Localization, and Printing

Printing to Network Printers
If your network hosts many Windows computers, you may use the Server Message Block/
Common Internet File System (SMB/CIFS) for file and printer sharing among Windows
systems. Linux’s Samba server also implements this protocol and so can be used for sharing
printers from Linux.

On the flip side, you can print to an SMB/CIFS printer queue from a Linux system. To
do so, you select an SMB/CIFS queue in the printer configuration tool. Under CUPS, it’s
called Windows Printer via SAMBA in step 3 in the preceding procedure. You must then
provide your username, password, server name, and share name, but the format isn’t obvi-
ous from the Web-based configuration tool:

smb://username:password@SERVER/SHARE

This is a uniform resource identifier (URI) for an SMB/CIFS share. You must substitute
appropriate values for username, password, SERVER, and SHARE, of course. Once this is done
and you’ve finished the configuration, you should be able to submit print jobs to the SMB/
CIFS share.

SMB/CIFS printers hosted by Windows systems are usually non-PostScript
models, so you must select a local Linux smart filter and Ghostscript driver,
just as you would for a local printer. Printers hosted by Linux systems run-
ning Samba, by contrast, are frequently configured to act like PostScript
printers, so you should select a PostScript driver when connecting to them.

If you want to print to a Unix or Linux server that uses the old LPD protocol, the URI
format is similar but omits a username and password:

lpd://hostname/queue

You can use the same format, but substitute ipp:// for lpd://, to print to a CUPS
server if browsing is disabled on your network.

In practice, you may be faced with a decision: Should you use LPD, IPP, or SMB/CIFS
for submitting print jobs? To be sure, not all print servers support all three protocols, but
a Linux server might support them all. As a general rule, IPP is the simplest to configure
because it supports browsing, which means that CUPS clients shouldn’t need explicit con-
figuration to handle specific printers. This makes IPP the best choice for Linux-to-Linux
printing, assuming both systems run CUPS. When CUPS isn’t in use, LPD is generally
easier to configure than SMB/CIFS, and it has the advantage of not requiring the use of a
username or password to control access. Because SMB/CIFS security is password-oriented,
clients typically store passwords in an unencrypted form on the hard disk. This fact can
become a security liability, particularly if you use the same account for printing as for other
tasks. On the other hand, sometimes using a password on the server provides more of a
security benefit than the risk of storing that password on the client. Generally speaking, if
clients are few and well protected, whereas the server is exposed to the Internet at large,
using passwords can be beneficial. If clients are numerous and exposed to the Internet,

04836book.indd 308 1/8/09 3:48:13 PM

Configuring Printing 309

whereas the print server is well protected, a password-free security system that relies on IP
addresses may be preferable.

Monitoring and Controlling the Print Queue
You can use several utilities to submit print jobs and to examine and manipulate a Linux
print queue. These utilities are lpr, lpq, lprm, and lpc. All of these commands can take the
-P parameter to specify that they operate on a specific print queue.

Printing Files with lpr
Once you’ve configured the system to print, you probably want to start printing. As men-
tioned earlier, Linux uses the lpr program to submit print jobs. This program accepts
many options that you can use to modify the program’s action:

Specify a queue name The -Pqueuename option enables you to specify a print queue. This
is useful if you have several printers or if you’ve defined several queues for one printer. If
you omit this option, the default printer is used.

In the original BSD version of lpr, there should be no space between the
-P and the queuename. LPRng and CUPS are more flexible in this respect;
you can insert a space or omit it as you see fit.

Delete the original file Normally, lpr sends a copy of the file you print into the queue,
leaving the original unharmed. Specifying the -r option causes lpr to delete the original
file after printing it.

Suppress the banner The -h option suppresses the banner for a single print job. Early
versions of CUPS didn’t support this option, but recent versions do.

Specify a job name Print jobs have names to help identify them, both while they’re in the
queue and once they’re printed (if the queue is configured to print banner pages). The name
is normally the name of the first file in the print job, but you can change it by including the
-J jobname option. The -C and -T options are synonymous with -J.

Notify a user by e-mail The -m username option causes lpd to send e-mail to username
when the print job is complete. This option was unavailable in early versions of CUPS but
is available in recent versions.

Specify the number of copies You can specify the number of copies of a print job by using
the -# number option, as in -# 3 to print three copies of a job.

Suppose you have a file called report.txt that you want to print to the printer attached
to the lexmark queue. This queue is often busy, so you want the system to send e-mail to
your account, ljones, when it’s finished so you know when to pick up the printout. You
can use the following command to accomplish this task:

$ lpr -Plexmark -m ljones report.txt

04836book.indd 309 1/8/09 3:48:13 PM

310 Chapter 6 n Configuring the X Window System, Localization, and Printing

The lpr command is accessible to ordinary users as well as to root, so anybody may
print using this command. It’s also called from many programs that need to print directly,
such as graphics programs and word processors. These programs typically give you some
way to adjust the print command so that you can enter parameters such as the printer
name. For instance, Figure 6.6 shows Firefox’s Print dialog box, which features a list of
available print queues and a Copies field so that you can print multiple copies. Additional
tabs enable you to set more options. Some programs provide a text entry field in which you
type some or all of an lpr command instead of selecting from a list of available queues and
options. Consult the program’s documentation if you’re not sure how it works.

f I gu r E 6 .6 Most Linux programs that can print do so by using lpr, but many hide the
details of the lpr command behind a dialog box.

Sometimes you want to process a file in some way prior to sending it to the printer.
Chapter 1 covers some commands that can do this, such as fmt and pr. Another handy pro-
gram is mpage, which reads plain-text or PostScript files and reformats them so that each
printed sheet contains several reduced-size pages from the original document. This can be a
good way to save paper if you don’t mind a reduction in the document size. In the simplest
case, you can use mpage much as you’d use lpr:

$ mpage -Plexmark report.ps

This command prints the report.ps file reduced to fit four pages per sheet. You can
change the number of source pages to fit on each printed page with the -1, -2, -4, and -8
options, which specify one, two, four, or eight input pages per output page, respectively.
Additional mpage options exist to control features such as the paper size, the font to be used

04836book.indd 310 1/8/09 3:48:13 PM

Configuring Printing 311

for plain-text input files, and the range of input file pages to be printed. Consult the man
page for mpage for more details.

Displaying Print Queue Information with lpq
The lpq utility displays information about the print queue—how many files it contains,
how large they are, who their owners are, and so on. By entering the user’s name as an
argument, you can also use this command to check on any print jobs owned by a particular
user. To use lpq to examine a queue, you can issue a command like the following:

$ lpq -Php4000

hp4000 is ready and printing

Rank Owner Job File(s) Total Size

active rodsmit 1630 file:/// 90112 bytes

Of particular interest is the job number—1630 in this example. You can use this number
to delete a job from the queue or reorder it so that it prints before other jobs. Any user may
use the lpq command.

Removing Print Jobs with lprm
The lprm command removes one or more jobs from the print queue. You can issue this
command a couple of ways:

If Ûn lprm is used with a number, that number is understood to be the job ID (as shown in
lpq’s output) of the job that’s to be deleted.

If a user runs the BSD Ûn lprm and passes a dash (-) to the program, it removes all the jobs
belonging to the user.

This program may be run by root or by an ordinary user; but as just noted, its capabili-
ties vary depending on who runs it. Ordinary users may remove only their own jobs from the
queue, but root may remove anybody’s print jobs.

Controlling the Print Queue
In the original BSD LPD system, the lpc utility starts, stops, and reorders jobs within
print queues. Although CUPS provides an lpc command, it has few features. Instead of
using lpc, you should use the CUPS Web interface, which provides point-and-click print
queue management:

You can disable a queue by clicking the Stop Printer link for the printer on the CUPS Ûn

Web interface (Figure 6.5). When you do so, this link changes to read Start Printer,
which reverses the effect when clicked. The Jobs link also provides a way to cancel and
otherwise manage specific jobs.

You can use a series of commands, such as Ûn cupsenable, cupsdisable, and lpmove, to
control the queue. These commands enable a queue, disable a queue, or move a job
from one queue to another. Moving a job can be handy if you must shut down a queue
for maintenance and want to redirect the queue’s existing jobs to another printer.

04836book.indd 311 1/8/09 3:48:14 PM

312 Chapter 6 n Configuring the X Window System, Localization, and Printing

Summary
X is Linux’s GUI system. In part because of Linux’s modular nature, X isn’t a single program;
you have your choice of X servers to run on Linux. Fortunately, most Linux distributions
use the same X server as all others (X.org-X11). Both X.org-X11 and its main competitor,
XFree86, are configured in much the same way, using the xorg.conf (for X.org-X11) or
XF86Config configuration file. Whatever its name, this file consists of several sections, each of
which controls one X subsystem, such as the mouse, the keyboard, or the video card. This file
also controls X’s core fonts system, but you can use a font server in addition to this system;
and most modern programs are now emphasizing an entirely new font system, Xft, instead of
X core fonts. For this reason, Linux font configuration can be complex.

X’s GUI login system uses an XDMCP server, which starts X and manages the X display.
Three XDMCP servers are in common use in Linux: XDM, KDM, and GDM. They all per-
form the same basic tasks, but configuration details differ. (XDM is also less sophisticated
than KDM or GDM.) X is a network-enabled GUI, which means you can use an X server to
access programs running on another computer. Doing so requires performing a few steps for
each login session. You can also tunnel X accesses through SSH, which greatly improves the
security of the connection.

An assortment of tools can help make Linux more accessible to users with visual or
motor impairments. You can adjust font size, screen contrast, and other display features to
improve legibility; use screen magnifiers to help users read part of a larger screen; or even
bypass a visual display entirely and use a screen reader for auditory output or a Braille dis-
play for tactile output. On the input side, you can adjust keyboard repeat rates, use sticky
keys, or modify the mouse tracking speed and click sensitivity to improve users’ ability to
input data accurately. You can even have a mouse stand in for a keyboard or vice-versa by
using appropriate software.

The second main visual output tool on computers is a printer, and Linux provides
sophisticated printer support. The CUPS package manages printers in Linux by accepting
local or remote print jobs, passing them through a smart filter for processing, and queuing
the jobs so that they print in a reasonable order. Most CUPS configuration is best handled
via its own Web interface, but some options (particularly security features) can be set via
text configuration files.

Exam Essentials

Name the major X servers for Linux. XFree86 has been the traditional standard Linux
X server, but in 2004 X.org-X11 (which was based on XFree86) rapidly gained prominence
as the new standard Linux X server. Accelerated-X is a commercial X server that sometimes
supports video cards that aren’t supported by XFree86 or X.org-X11.

04836book.indd 312 1/8/09 3:48:14 PM

Exam Essentials 313

Describe the X configuration file format. The XFree86 and X.org-X11 configuration file
is broken into multiple sections, each of which begins with the keyword Section and ends
with EndSection. Each section sets options related to a single X feature, such as loading
modules, specifying the mouse type, or describing the screen resolution and color depth.

Summarize the differences between X core fonts, a font server, and Xft fonts. X core
fonts are managed directly by X, and they lack modern font features such as font smooth-
ing. Font servers integrate with the X core fonts but run as separate programs and may
optionally deliver fonts to multiple computers on a network. Xft fonts bypass the X core
font system to provide client-side fonts in a way that supports modern features such as font
smoothing.

Explain the role of an XDMCP server. An XDMCP server, such as XDM, KDM, or
GDM, launches X and controls access to X via a login prompt—that is, it serves as Linux’s
GUI login system. XDMCP servers are also network enabled, providing a way to log in
remotely from another X server.

Summarize X’s client/server model. An X server runs on the user’s computer to control
the display and accept input from the keyboard and mouse. Client programs run on the
same computer or on a remote computer to do the bulk of the computational work. These
client programs treat the X server much as they treat other servers, requesting input from
and sending output to them.

Explain the benefits of using SSH for remote X access. SSH can simplify remote X-based
network access by reducing the number of steps required to run X programs from a remote
computer. More important, SSH encrypts data, which keeps information sent between the
X client and X server secure from prying eyes.

Summarize X accessibility features. You can adjust keyboard and mouse options to help
those with motor impairments to use keyboards and mice or to substitute one device for the
other. Font size, contrast, and magnification tools can help those with visual impairments.
Finally, text readers and Braille displays can enable blind individuals to use a Linux system.

Describe how to set a time zone in Linux. Linux uses a binary file, /etc/localtime, to
describe the features of the time zone. This file is copied or linked from a repository of such
files at system installation, but you can replace the file at any time.

Explain the role of Ghostscript in Linux printing. PostScript is the standard Linux printing
language, and Ghostscript converts PostScript into bitmap formats that are acceptable to non-
PostScript printers. Thus, Ghostscript is a critical translation step in most Linux print queues.

Summarize how print jobs are submitted and managed under Linux. You use lpr to
submit a print job for printing, or an application program may call lpr itself or implement
its functionality directly. The lpq utility summarizes jobs in a queue, and lprm can remove
print jobs from a queue.

04836book.indd 313 1/8/09 3:48:14 PM

314 Chapter 6 n Configuring the X Window System, Localization, and Printing

Review Questions

1. When you configure an X server, you need to make changes to configuration files and then
start or restart the X server. Which of the following can help streamline this process?

A. Shut down X by switching to a runlevel in which X doesn’t run automatically, and then
reconfigure it and use startx to test X startup.

B. Shut down X by booting into single-user mode, and then reconfigure X and use
telinit to start X running again.

C. Reconfigure X, and then unplug the computer to avoid the lengthy shutdown process
before restarting the system and X along with it.

D. Use the startx utility to check the X configuration file for errors before restarting the
X server.

2. Which of the following summarizes the organization of the X configuration file?

A. The file contains multiple sections, one for each screen. Each section includes subsec-
tions for individual components (keyboard, video card, and so on).

B. Configuration options are entered in any order desired. Options relating to specific
components (keyboard, video card, and so on) may be interspersed.

C. The file begins with a summary of individual screens. Configuration options are pre-
ceded by a code word indicating the screen to which they apply.

D. The file is broken into sections, one or more for each component (keyboard, video
card, and so on). The file also has one or more sections that define how to combine
the main sections.

3. A monitor’s manual lists its range of acceptable synchronization values as 27–96kHz hori-
zontal and 50–160Hz vertical. What implications does this have for the resolutions and
refresh rates the monitor can handle?

A. The monitor can run at up to 160Hz vertical refresh rate in all resolutions.

B. The monitor can handle up to 160Hz vertical refresh rate depending on the color depth.

C. The monitor can handle up to 160Hz vertical refresh rate depending on the resolution.

D. The monitor can handle vertical resolutions of up to 600 lines (96,000 ÷ 160), but
no more.

4. In what section of XF86Config or xorg.conf do you specify the resolution that you want
to run?

A. In the Screen section, subsection Display, using the Modes option

B. In the Monitor section, using the Modeline option

C. In the Device section, using the Modeline option

D. In the DefaultResolution section, using the Define option

04836book.indd 314 1/8/09 3:48:15 PM

Review Questions 315

5. What is an advantage of a font server?

A. It provides faster font displays than are otherwise possible.

B. It can simplify font maintenance on a network with many X servers.

C. It’s the only means of providing TrueType support for XFree86 4.x.

D. It enables the computer to turn a bitmapped display into an ASCII text file.

6. What methods do Linux distributions use to start X automatically when the system boots?
(Select all that apply.)

A. Start an XDMCP server from the Start folder

B. Start an XDMCP server from an ~/.xinitrc script

C. Start an XDMCP server via a SysV startup script

D. Start an XDMCP server from init

7. How would you change the text displayed by XDM as a greeting?

A. Click Configure  Greeting from the XDM main menu, and edit the text in the resulting
dialog box.

B. Edit the /etc/X11/xdm/Xresources file, and change the text in the
xlogin*greeting line.

C. Edit the /etc/X11/xorg.conf file, and change the Greeting option in the xdm area.

D. Run xdmconfig, and change the greeting on the Login tab.

8. Which of the following features do KDM and GDM provide that XDM doesn’t?

A. An encrypted remote X-based access ability, improving network security

B. The ability to accept logins from remote computers, once properly configured

C. The ability to select the login environment from a menu on the main login screen

D. A login screen that shows the username and password simultaneously rather than
sequentially

9. Which of the following commands tells the X server to accept connections from
penguin.example.com?

A. xhost +penguin.example.com

B. export DISPLAY=penguin.example.com:0

C. telnet penguin.example.com

D. xaccess penguin.example.com

04836book.indd 315 1/8/09 3:48:15 PM

316 Chapter 6 n Configuring the X Window System, Localization, and Printing

10. To assist an employee who has trouble with keyboard repeat features, you’ve disabled this
function in /etc/X11/xorg.conf. Why might this step not be sufficient to the goal of dis-
abling keyboard repeat?

A. GNOME, KDE, or other desktop environment settings for keyboard repeat may over-
ride those set in xorg.conf.

B. The xorg.conf file has been deprecated; you should instead adjust the /etc/X11/
XF86Config file.

C. Keyboard settings in xorg.conf apply only to PS/2 keyboards; you must use
usbkbrate to adjust keyboard repeat for USB keyboards.

D. You must also locate and reset the DIP switch on the keyboard to disable keyboard
repeat.

11. Which of the following programs may be used to provide computer-generated speech for
users who have trouble reading computer displays? (Select all that apply.)

A. SoX

B. Emacspeak

C. Orca

D. talk

12. You manage a computer that’s located in Los Angeles, California, but the time zone is mis-
configured as being in Tokyo, Japan. What procedure can you follow to fix this problem?
(Select all that apply.)

A. Run hwclock --systohc to update the clock to the correct time zone.

B. Delete /etc/localtime, and replace it with an appropriate file from /usr/share/
zoneinfo.

C. Edit the /etc/tzconfig file so that it specifies North_America/Los_Angeles as the
time zone.

D. Use the tzselect program to select a new (Los Angeles) time zone.

13. You’re configuring a Linux system that doesn’t boot any other OS. What is the recom-
mended time to which the computer’s hardware clock should be set?

A. Helsinki time

B. Local time

C. US Pacific time

D. UTC

04836book.indd 316 1/8/09 3:48:15 PM

Review Questions 317

14. You’ve developed a script that uses several Linux commands and edits their output. You
want to be sure that the script runs correctly on a computer in Great Britain, although
you’re located elsewhere. What might you do to test this?

A. Enter the BIOS, locate and change the location code, reboot into Linux, and run the
script.

B. Edit /etc/locale.conf, change all the LC_* variables to en_GB.UTF-8, and then
reboot and run the script.

C. Type export LC_ALL=en_GB.UTF-8, and run the script from the same shell you used to
type this command.

D. Type locale_set Great_Britain, and run the script from the same shell you used to
type this command.

15. Which character set encoding is the preferred method on modern Linux systems?

A. UTF-8

B. ASCII

C. ISO-8859-1

D. ISO-8859-8

16. Which of the following describes the function of a smart filter?

A. It detects the type of a file and passes it through programs to make it printable on a
given model of printer.

B. It detects information in print jobs that may be confidential as a measure against
industrial espionage.

C. It sends e-mail to the person who submitted the print job, obviating the need to wait
around the printer for a printout.

D. It detects and deletes prank print jobs that are likely to have been created by miscreants
trying to waste your paper and ink.

17. What information about print jobs does the lpq command display? (Select all that apply.)

A. The name of the application that submitted the job

B. A numerical job ID that can be used to manipulate the job

C. The amount of ink or toner left in the printer

D. The username of the person who submitted the job

18. You’ve submitted several print jobs, but you’ve just realized that you mistakenly submitted
a huge document that you didn’t want to print. Assuming you can identify which job this
was, that it’s not yet printing, and that its job ID number is 749, what command would you
type to delete it from the okidata print queue?

A. The answer depends on whether you’re using BSD LPD, LPRng, or CUPS.

B. lpdel -Pokidata 749

C. lprm -Pokidata 749

D. None of the above; the task is impossible.

04836book.indd 317 1/8/09 3:48:15 PM

318 Chapter 6 n Configuring the X Window System, Localization, and Printing

19. Which of the following is generally true of Linux programs that print?

A. They send data directly to the printer port.

B. They produce PostScript output for printing.

C. They include extensive collections of printer drivers.

D. They can print only with the help of add-on commercial programs.

20. What tool might you use to print a four-page PostScript file on a single sheet of paper?

A. PAM

B. mpage

C. 4Front

D. route

04836book.indd 318 1/8/09 3:48:16 PM

Answers to Review Questions 319

Answers to Review Questions

1. A. On most Linux systems, some runlevels don’t run X by default, so using one of them
along with the startx program (which starts X running) can be an effective way to quickly
test changes to an X configuration. The telinit program changes runlevels, which is a
lengthy process compared to using startx. Unplugging the computer to avoid the shutdown
process is self-defeating because you’ll have to suffer through a long startup (if you use a
non-journaling filesystem), and it can also result in data loss. The startx utility doesn’t
check the veracity of an X configuration file; it starts X running from a text-mode login.

2. D. The XF86Config and xorg.conf file design enables you to define variants or multiple
components and easily combine or recombine them as necessary.

3. C. The vertical refresh rate range includes a maximum value, but that value may be reduced
when the resolution and vertical refresh rate would demand a higher horizontal refresh rate
than the monitor can handle. In practice, the horizontal limit is usually most important, at
least when running at typical resolutions. The color depth is irrelevant to the computation.

4. A. Option A describes the correct location for this option. The Modeline option in the
Monitor section (as described in option B) defines one possible resolution, but there are
usually several Modeline entries defining many resolutions. The Modeline option doesn’t
exist in the Device section (as suggested by option C), nor is that section where the resolu-
tion is set. There is no DefaultResolution section (as referenced in option D).

5. B. By maintaining fonts on one font server and pointing other X servers to that font server,
you can reduce the administrative cost of maintaining the fonts on all the systems. Font servers
don’t produce faster font displays than X’s local font handling; if anything, the opposite is true.
XFree86 4.x supports TrueType fonts directly, but XFree86 3.3.6 and earlier didn’t include
this support by default. Converting a bitmapped display into ASCII text is a function of optical
character recognition (OCR) software, not a font server.

6. C, D. XDMCP servers are typically launched either from a SysV startup script or by init
(as specified in /etc/inittab), as described in options C and D. The XDMCP server then
starts X. The Start folder mentioned in option A is a Windows construct, not a Linux con-
struct. The ~/.xinitrc script mentioned in option B is an X login script used when start-
ing X from the command line via startx; it’s not used to automatically start X when the
system boots.

7. B. The XDM greeting is a resource set in the /etc/X11/xdm/Xresources file, so option
B is correct. XDM doesn’t offer many options on its main screen and certainly not one to
change its greeting, as described in option A. Although the xorg.conf file mentioned in
option C is real, this file provides no XDM configuration options because XDM is a sepa-
rate program from the X server. There is no standard xdmconfig program, as mentioned in
option D.

04836book.indd 319 1/8/09 3:48:16 PM

320 Chapter 6 n Configuring the X Window System, Localization, and Printing

8. C. KDM and GDM add many features, one of which is a menu that enables users to select
their desktop environment or window manager when they log in rather than specifying it
in a configuration file, as option C states. Option A describes one of the advantages of the
Secure Shell (SSH) as a remote-access protocol. Option B describes a feature common to all
three XDMCP servers. Option D describes the way both KDM and XDM function; GDM
is the one that presents username and password fields in series rather than simultaneously.

9. A. The xhost command controls various aspects of the local X server, including the remote
computers from which it will accept connections. Option B sets the DISPLAY environment
variable, which doesn’t directly affect the X server (it does tell X clients which X server
to use). Option C initiates a text-mode remote login session with penguin.example.com.
Option D’s xaccess is a fictitious program.

10. A. As stated in option A, GNOME, KDE, and other user programs often override the key-
board repeat settings in the X configuration file. Option B has it almost backward; most
Linux distributions have abandoned XFree86, and therefore its XF86Config file, in favor
of X.org-X11 and its xorg.conf file. Option C is pure fiction; xorg.conf settings apply to
all varieties of keyboards, and there is no standard usbkbrate program. Although some
keyboards do have hardware switches, these don’t affect X’s ability to control the keyboard
repeat rate, contrary to option D.

11. B, C. The Emacspeak and Orca programs both provide text-to-speech conversion facilities.
SoX is an audio format converter, but it won’t convert from text to speech. The talk program
is an early Unix online text-mode “chat” program, but it has no built-in speech synthesis
capabilities.

12. B, D. Time zones are determined by the /etc/localtime file, so replacing that one with the
correct file (a selection is stored in /usr/share/zoneinfo) will fix the problem. (You may
also need to edit /etc/timezone or some other file to keep automatic utilities from becom-
ing confused.) Utilities such as tzselect will make these changes for you after prompting
you for your location. The hwclock program mentioned in option A reads and writes data
from the system’s hardware clock. Although it relies on time zone data, it can’t adjust your
system’s time zone itself. There is no standard /etc/tzconfig file, although the tzconfig
program, like tzselect, can help you set the time zone.

13. D. Linux, like Unix, maintains its time internally in Coordinated Universal Time (UTC), so
setting the computer’s hardware clock to UTC is the recommended procedure for comput-
ers that run only Linux. Although Linus Torvalds spent time at the University of Helsinki,
Helsinki time (as in option A) has no special place in Linux. Local time (as in option B)
is appropriate if the computer dual-boots to an OS, such as Windows, that requires the
hardware clock to be set to local time, but this is the second-best option for a Linux-only
system. Option C’s US Pacific time, like Helsinki time, has no special significance in Linux.

14. C. The LC_ALL environment variable, when set, adjusts all the locale (LC_*) variables, so
setting this and then running the script will make the programs that your script uses work
as if on a British computer. The BIOS has no location code data. There is no standard
/etc/locale.conf file. There is no standard locale_set utility.

04836book.indd 320 1/8/09 3:48:16 PM

Answers to Review Questions 321

15. A. The Unicode Transformation Format 8 (UTF-8) standard can encode characters for just
about any language on Earth, while looking just like ordinary ASCII to programs that only
understand ASCII. Thus, UTF-8 is the preferred method for character encoding when a
choice is possible. ASCII is an old standard that’s adequate for English and a few other lan-
guages, but it lacks some or all characters needed by most languages. ISO-8859 is a stan-
dard that extends ASCII, but it requires separate encodings for different languages and so is
awkward when a computer must process data from multiple languages.

16. A. The smart filter makes a print queue “smart” in that it can accept different file types
(plain text, PostScript, graphics, and so on) and print them all correctly. It doesn’t detect
confidential information or prank print jobs. The lpr program can be given a parameter to
e-mail a user when the job finishes, but the smart filter doesn’t do this.

17. B, D. The job ID and job owner are both displayed by lpq. Unless the application embeds
its own name in the filename, that information won’t be present. Most printers lack Linux
utilities to query ink or toner status; certainly lpq can’t do this.

18. C. The lprm command deletes a job from the print queue. It can take the -Pqueue option to
specify the queue and a print job number or various other parameters to specify which jobs
to delete. BSD LPD, LPRng, and CUPS all implement the lprm command, so you can use
it with any of these systems. Option B presents the correct syntax but the wrong command
name; there is no standard lpdel command.

19. B. PostScript is the de facto printing standard for Unix and Linux programs. Linux pro-
grams generally do not send data directly to the printer port; on a multi-tasking, multi-user
system, this would produce chaos because of competing print jobs. Although a few pro-
grams include printer driver collections, most forgo this in favor of generating PostScript.
Printing utilities come standard with Linux; add-on commercial utilities aren’t required.

20. B. The mpage utility prints multiple input pages on a single output page, so it’s ideally suited
to the specified task. PAM is the Pluggable Authentication Modules, a tool for helping to
authenticate users. 4Front is the name of a company that produces commercial sound drivers
for Linux. The route command is used to display or configure a Linux routing table.

04836book.indd 321 1/8/09 3:48:16 PM

04836book.indd 322 1/8/09 3:48:16 PM

Chapter

7
Administering
the System

The following linux ProfeSSionAl
inSTiTuTe objecTiveS Are covered in
ThiS chAPTer:

1.107.1 Manage user and group accounts and related ÛÛ
system files (weight: 5)

1.107.2 Automate system administration tasks by ÛÛ
scheduling jobs (weight: 4)

1.108.1 Maintain system time (weight: 3)ÛÛ

1.108.2 System logging (weight: 2)ÛÛ

04836book.indd 323 1/16/09 9:36:32 AM

Much of Linux system administration deals with handling
mundane day-to-day tasks. Many of these tasks relate to users
and groups: adding them, deleting them, configuring their

environments, and so on. On a small system, you might perform such tasks infrequently,
but on a busy system, you might adjust accounts frequently. In any event, you must know
how to do these things. Another class of day-to-day tasks involves managing and reviewing
log files. These are files that record details of system operations, such as remote logins. Log
files can be invaluable debugging resources, but even if you aren’t experiencing a problem,
you should review them periodically to be sure everything’s working as it should.

Many Linux tasks relate to time. Linux keeps time somewhat differently than some
other OSs, and understanding how Linux treats time is important. So are the skills needed
to set the time in Linux. (Some automated tools can be very helpful, but you must know
how to configure them.) You can also tell Linux to run particular jobs at specific times in
the future. This can be handy to help automate repetitive tasks, such as synchronizing data
with other systems on a regular basis.

Managing Users and Groups
Linux is a multi-user system that relies on accounts—data structures and procedures used to
identify individual users of a computer. Managing these accounts is a basic but important sys-
tem administration skill. Before delving into the details, I describe a few basic concepts you
should understand about user and group administration. With that out of the way, I describe
the tools and configuration files that you employ to manage users and groups.

Understanding Users and Groups
Chances are you have a good basic understanding of accounts already. Fundamentally,
Linux accounts are like accounts on Windows, Mac OS, and other OSs. Some Web sites
use accounts, too. Nonetheless, a few details deserve explanation. These include Linux
username conventions, the nature of Linux groups, and the way Linux maps the numbers
it uses internally to the usernames and group names that people generally use.

Understanding Linux Usernames
Linux is fairly flexible about its usernames. Most versions of Linux support usernames con-
sisting of any combination of upper- and lowercase letters, numbers, and many punctuation

04836book.indd 324 1/16/09 9:36:32 AM

Managing Users and Groups 325

symbols, including periods and spaces. Some punctuation symbols, however, such as spaces,
cause problems for certain Linux utilities, so it’s generally best to avoid using punctuation in
Linux usernames. Underscores (_) and periods (.) are relatively unlikely to cause problems
and so are occasionally used. Also, usernames must begin with a letter, so a username such as
45u is invalid, but u45 is fine. Although usernames may consist of up to 32 characters, many
utilities truncate usernames longer than 8 characters or so in their displays; for this reason,
many administrators try to limit username length to 8 characters.

Linux treats usernames in a case-sensitive way. Therefore, a single computer can support
both ellen and Ellen as separate users. This practice can lead to a great deal of confusion,
so it’s best to avoid creating accounts whose usernames differ only in case. The traditional
practice is to use entirely lowercase letters in Linux usernames, such as sally, sam, ellen,
and george. Usernames don’t need to be based on first names, of course—you could use
sam_jones, s.jones, sjones, jones, jones17, or d76, to name just a few possibilities. Most
sites develop a standard method of creating usernames, such as using the first initial and the
last name. Creating and following such a standard practice can help you locate an account
that belongs to a particular individual. If your computer has many users, though, you may
find a naming convention produces duplicates, particularly if your standard is to use ini-
tials to shorten usernames. You may be forced to deviate from the standard or incorporate
numbers to distinguish between all the Davids or Smiths of the world, because each account
requires a unique username.

Linking Users Together for Productivity via Groups
Linux uses groups as a means of organizing users. In many ways, groups parallel users. In
particular, they’re defined in similar configuration files, have names similar to usernames,
and are represented internally by numbers (as are accounts).

Groups are not accounts, however. Rather, groups are a means of organizing collections
of accounts, largely as a security measure. Every file on a Linux system is associated with
a specific group, and various permissions can be assigned to members of that group. For
instance, group members (such as faculty at a university) may be allowed to read a file, but
others (such as students) may be disallowed such access. Because Linux provides access to
most hardware devices (such as serial ports and tape backup units) through files, you can
also use this same mechanism to control access to hardware.

Every group has anywhere from no members to as many members as there are users on the
computer. Group membership is controlled through the /etc/group file. This file contains a
list of groups and the members belonging to each group. The details of this file’s contents are
described in the section “Configuring Groups.”

In addition to membership defined in /etc/group, each user has a default or primary
group. The user’s primary group is set in the user’s configuration in /etc/passwd (the file
that defines accounts). When users log onto the computer, their group membership is set
to their primary group. When users create files or launch programs, those files and run-
ning programs are associated with a single group—the current group membership. A user
can access files belonging to other groups as long as the user belongs to that group and the
group access permissions permit the access. To run programs or create files with a group

04836book.indd 325 1/16/09 9:36:32 AM

326 Chapter 7 n Administering the System

other than the primary one, however, the user must run the newgrp command to switch
current group membership. For instance, to change to the project2 group, you might type
the following:

$ newgrp project2

If the user typing this command is listed as a member of the project2 group in /etc/
group, the user’s current group membership changes. Thereafter, files created by that user
will be associated with the project2 group. Alternatively, users can change the group associ-
ated with an existing file by using the chgrp or chown command, as described in Chapter 4,
“Managing Files.”

This group structure enables you to design a security system that permits different collec-
tions of users to easily work on the same files while simultaneously keeping other users of the
same computer from prying into files they should not be able to access. In a simple case, you
may create groups for different projects, classes, or workgroups, with each user restricted to
one of these groups. A user who needs access to multiple groups can be a member of each of
these groups—for instance, a student who takes two classes can belong to the groups associ-
ated with each class, or a supervisor may belong to all the supervised groups.

Mapping UIDs and GIDs to Users and Groups
As mentioned earlier, Linux defines users and groups by numbers, referred to as user IDs
(UIDs) and group IDs (GIDs), respectively. Internally, Linux tracks users and groups by
these numbers, not by name. For instance, the user sam may be tied to UID 523, and ellen
may be UID 609. Similarly, the group project1 may be GID 512, and project2 may be
GID 523. For the most part, these details take care of themselves—you use names, and
Linux uses /etc/passwd or /etc/group to locate the number associated with the name. You
may occasionally need to know how Linux assigns numbers when you tell it to do some-
thing, though. This is particularly true when you’re troubleshooting or if you have cause to
manually edit /etc/passwd or /etc/group.

Linux distributions reserve the first hundred user and group IDs (0–99) for system use.
The most important of these is 0, which corresponds to root (both the user and the group).
Subsequent low numbers are used by accounts and groups that are associated with specific
Linux utilities and functions. For instance, UID 2 and GID 2 may be the daemon account
and group, respectively, which are used by various servers; and UID 8 and GID 12 might
be the mail account and group, which can be used by mail-related servers and utilities.
Not all account and group numbers from 0 to 99 are in use; usually, only one or two dozen
accounts and a dozen or so groups are used in this way. You can check your /etc/passwd
and /etc/group files to determine which user and group IDs are so used.

Aside from UID 0 and GID 0, UID and GID numbers aren’t fully standard-
ized. For instance, although UID 2 and GID 2 map to the daemon account
and daemon group on Red Hat and SUSE, on Debian UID 2 and GID 2 map to
the bin account and bin group; the daemon account and group correspond
to UID 1 and GID 1. If you need to refer to a particular user or group, use
the name rather than the number.

04836book.indd 326 1/16/09 9:36:33 AM

Managing Users and Groups 327

Beyond 100, user and group IDs are available for use by ordinary users and groups. Many
distributions, however, reserve up to 500 or even 1000 for special purposes. Frequently,
therefore, the first normal user account is assigned a UID of 500 or 1000. When you create
additional accounts, the system typically locates the next-highest unused number, so the sec-
ond user you create is UID 501, the third is 502, and so on. When you remove an account,
that account’s ID number may be reused, but the automatic account-creation tools typically
don’t do so if subsequent numbers are in use, leaving a gap in the sequence. This gap causes
no harm unless you have so many users that you run out of ID numbers. (The limit is 65,536
users with the 2.2.x kernels and over 4.2 billion with the 2.4.x and later kernels, including
root and other system accounts. The limit can be set lower in configuration files or because
of limits in support programs.) In fact, reusing an ID number can cause problems if you don’t
clear away the old user’s files—the new user will become the owner of the old user’s files,
which can lead to confusion.

Typically, GID 100 is users—the default group for some distributions. On any but a
very small system with few users, you’ll probably want to create your own groups. Because
different distributions have different default ways of assigning users to groups, it’s best
that you familiarize yourself with your distribution’s way of doing this and plan your own
group-creation policies with this in mind. For instance, you may want to create your own
groups within certain ranges of IDs to avoid conflicts with the distribution’s default user-
and group-creation processes.

It’s possible to create multiple usernames that use the same UID or multiple group
names that use the same GID. In some sense, these are different accounts or groups; they
have different entries in /etc/passwd or /etc/group, so they can have different home
directories, different passwords, and so on. Because these users or groups share IDs with
other users or groups, though, they’re treated identically in terms of file permissions.
Unless you have a compelling reason to do so, you should avoid creating multiple users or
groups that share an ID.

Intruders sometimes create accounts with UID 0 to give themselves root
privileges on the systems they invade. Any account with a UID of 0 is effec-
tively the root account, with all the power of the superuser. If you spot a
suspicious account in your /etc/passwd file with a UID of 0, your system
has probably been compromised.

Configuring User Accounts
How frequently you’ll do user maintenance depends on the nature of the system you admin-
ister. Some systems, such as small personal workstations, need changes very rarely. Others,
such as large systems in environments in which users are constantly coming and going, may
require daily maintenance. The latter situation would seem to require more knowledge of
user account configuration tools; but even in a seldom-changing system, it’s useful to know
how to do these things so that you can do them quickly and correctly when you do need to
add, modify, or delete user accounts.

04836book.indd 327 1/16/09 9:36:33 AM

328 Chapter 7 n Administering the System

Some security-related account issues are covered in Chapter 10, “Securing
Your System.”

This chapter describes the traditional text-based tools for account creation and main-
tenance. Most modern Linux distributions ship with GUI tools that accomplish the same
goals. These tools vary from one distribution or environment to another, so they’re hard to
summarize for Linux as a whole. The LPI exam also emphasizes the text-based tools. Over-
all, the text-based tools provide the greatest flexibility and are most broadly applicable, but
you can certainly use the GUI tools if you like.

Adding Users
Adding users can be accomplished through the useradd utility. (This program is called
adduser on some distributions.) Its basic syntax is as follows:

useradd [-c comment] [-d home-dir] [-e expire-date] [-f inactive-days]➦

 [-g default-group] [-G group[,...]] [-m [-k skeleton-dir] | -M]➦

 [-p password] [-s shell] [-u UID [-o]] [-r] [-n] username

Some of these parameters modify settings that are valid only when the
system uses shadow passwords. This is the standard configuration for
most distributions today.

In its simplest form, you may type just useradd username, where username is the user-
name you want to create. The rest of the parameters are used to modify the default values
for the system, which are stored in the file /etc/login.defs.

The parameters for the useradd command modify the program’s operation in various ways:

Comment The -c comment parameter passes the comment field for the user. Some admin-
istrators store public information like a user’s office or telephone number in this field. Others
store just the user’s real name or no information at all.

Home directory You specify the account’s home directory with the -d home-dir param-
eter. This defaults to /home/username on most systems.

Account expiration date Set the date on which the account will be disabled, expressed in
the form YYYY-MM-DD, with the -e expire-date option. (Many systems accept alternative
forms, such as MM-DD-YYYY, as well.) The default is for an account that doesn’t expire.

Inactive days An account becomes completely disabled a certain number of days after a
password expires. The -f inactive-days parameter sets the number of days. A value of -1
disables this feature and is the default.

Default group You set the name or GID of the user’s default group with the -g default-
group option. The default for this value varies from one distribution to another.

04836book.indd 328 1/16/09 9:36:34 AM

Managing Users and Groups 329

Additional groups The -G group[,...] parameter sets the names or GIDs of one or more
groups to which the user belongs. These groups need not be the default group, and you can
specify more than one by separating them with commas.

Home directory options The system automatically creates the user’s home directory if -m
is specified. Normally, default configuration files are copied from /etc/skel, but you may
specify another template directory with the -k skeleton-dir option. Many distributions
use -m as the default when running useradd.

No home directory creation The -M option forces the system to not automatically create a
home directory, even if /etc/login.defs specifies that this action is the default.

Encrypted password specification The -p encrypted-password parameter passes the
pre-encrypted password for the user to the system. The encrypted-password value is added,
unchanged, to the /etc/passwd or /etc/shadow file. This means that if you type an unen-
crypted password, it won’t work as you probably expect. In practice, this parameter is most
useful in scripts, which can encrypt a password (using crypt) and then send the encrypted
result through useradd. The default value disables the account, so you must run passwd to
change the user’s password.

Default shell Set the name of the user’s default login shell with the -s shell option. On
most systems, this defaults to /bin/bash, but you can specify another shell or even a program
that’s not traditionally a shell. For instance, some systems include a shutdown account that
calls /sbin/shutdown. Logging into this account immediately shuts down the computer.

UID The -u UID parameter creates an account with the specified user ID value (UID). This
value must be a positive integer, and it’s normally greater than 500 for user accounts. Sys-
tem accounts typically have numbers less than 100. The -o option allows the number to be
reused so that two usernames are associated with a single UID.

System account creation The -r parameter specifies the creation of a system account—an
account with a value less than UID_MIN, as defined in /etc/login.defs. (This is normally
100, 500, or 1000.) useradd doesn’t create a home directory for system accounts.

No user group In some distributions, such as Red Hat, the system creates a group with
the same name as the specified username. The -n parameter disables this behavior.

Suppose you’ve added a hard disk and mounted it as /home2. You want to create an
account for a user named Sally in this directory and place her home directory on the new
disk. You want to make the new user a member of the project1 and project4 groups, with
default membership in project4. The user has also requested tcsh as her default shell. The
following commands accomplish this goal:

useradd -d /home2/sally -g project4 -G project1,project4 -s /bin/tcsh sally

passwd sally

Changing password for user sally

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

04836book.indd 329 1/16/09 9:36:34 AM

330 Chapter 7 n Administering the System

The passwd command asks for the password twice, but it does not echo
what you type. This prevents somebody who sees your screen from read-
ing the password. passwd is described in more detail shortly, in “Setting a
Password.”

Modifying User Accounts
User accounts may be modified in many ways: You can directly edit critical files such as /etc/
passwd, modify user-specific configuration files in the account’s home directory, or use system
utilities like those used to create accounts. You usually modify an existing user’s account at
the user’s request or to implement some new policy or system change, such as moving home
directories to a new hard disk. Sometimes, though, you must modify an account immedi-
ately after its creation in order to customize it in ways that aren’t easily handled through the
account-creation tools or because you realize you forgot a parameter to useradd.

Setting a Password

Although useradd provides the -p parameter to set a password, this tool isn’t very useful
when directly adding a user because it requires a pre-encrypted password. Therefore, it’s
usually easiest to create an account in disabled form (by not using -p with useradd) and set
the password after creating the account. You can do this with the passwd command, which
has the following syntax:

passwd [-k] [-l] [-u [-f]] [-d] [-S] [username]

Although passwd is frequently used to set or change passwords, some
of its actions don’t prompt you for a password. Instead, they modify the
password in predictable ways, as described shortly. Other uses produce
a password prompt at which you must type a new password (twice, to
guard against typos).

The parameters to this command enable you to modify its behavior:

Update expired accounts The -k parameter indicates that the system should update an
expired account.

Lock accounts The -l parameter locks an account by prefixing the encrypted password
with an exclamation mark (!). The result is that the user can no longer log into the account,
but the files are still available and the change can be easily undone. This parameter is par-
ticularly handy if you want to temporarily suspend user access to an account—say, because
you’ve spotted some suspicious activity involving the account or because you know a user
won’t be using the account for a while and you want to minimize the chance of it being
abused in the interim.

04836book.indd 330 1/16/09 9:36:34 AM

Managing Users and Groups 331

Unlock accounts The -u parameter unlocks an account by removing a leading exclamation
mark. useradd creates accounts that are locked and have no password, so using this command
on a fresh account results in an account with no password. Normally, passwd doesn’t allow
this—it returns an error if you attempt it. Adding -f forces passwd to turn the account into
one with no password.

Remove an account’s password The -d parameter removes the password from an account,
rendering it password-less.

Display account information The -S option displays information about the password for
an account—whether it’s set, and what type of encryption it uses.

Ordinary users may use passwd to change their passwords, but many passwd parameters
may only be used by root. Specifically, -l, -u, -f, -d are all off-limits to ordinary users. Sim-
ilarly, only root may specify a username to passwd. When ordinary users run the program,
they should omit their usernames; passwd will change the password for the user who ran the
program. As a security measure, passwd asks for a user’s old password before changing the
password when an ordinary user runs the program. This precaution is not taken when root
runs the program, so that the superuser may change a user’s password without knowing the
original password. This is necessary because the administrator normally doesn’t know
the user’s password. It also provides a way for the system administrator to help a user who’s
forgotten a password—the administrator can type passwd username and then enter a new
password for the user.

Linux passwords may consist of letters, numbers, and punctuation. Linux distinguishes
between upper- and lowercase letters in passwords, which means you can use mixed-case
passwords, numbers, and punctuation to improve security.

Chapter 10 provides information about selecting good passwords.

Exercise 7.1 provides you with practice in creating accounts on a Linux system.

e x e r c i S e 7.1

creating user Accounts

This exercise explores the process of creating user accounts. After performing this exer-
cise, you should be familiar with the text-mode Linux account-creation tools and be able
to create new accounts, including preparing new users’ home directories. To add and test
a new account, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

04836book.indd 331 1/16/09 9:36:35 AM

332 Chapter 7 n Administering the System

e x e r c i S e 7.1 (c ont inue d)

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Ses-
sion  New Root Console from a Konsole, or by using sudo (if it’s configured) to run
the commands in the following steps.

4. Type useradd -m username, where username is the name you want to be associated
with the account. This command creates an account. The -m parameter tells Linux to
create a home directory for the user and fill it with default account configuration files.

5. Type passwd username. You’ll be asked to enter a password for the user and to type it
a second time. Enter a random string or select a password as described in “Setting a
Password.”

6. Press Ctrl+Alt+F2 to go to a fresh text-mode login screen. (If you’re already using multi-
ple virtual terminals, you may need to use a function key number greater than F2.)

7. Try logging in as the new user to verify that the account works properly.

In practice, creating accounts on a production system may require variations on this pro-
cedure. You may need to use additional options in step 4, for instance; consult the sec-
tion “Adding Users” or the useradd man page for details on these options. Furthermore,
setting the password may require changes. On a small system with few users, you may
be able to create accounts in the presence of their future users, in which case the user
can type the password in step 5. On other systems, you may need to generate passwords
yourself and then give them to users in some way.

Using usermod

The usermod program closely parallels useradd in its features and parameters. This utility
changes an existing account instead of creating a new one, though. The major differences
between useradd and usermod are as follows:

usermodÛn allows the addition of a -m parameter when used with -d. The -d parameter
alone changes the user’s home directory, but it doesn’t move any files. Adding -m causes
usermod to move the user’s files to the new location.

usermodÛn supports a -l parameter, which changes the user’s login name to the speci-
fied value. For instance, typing usermod sally -l sjones changes the username from
sally to sjones.

You may lock and unlock a user’s password with the Ûn -L and -U options, respectively.
These options duplicate functionality provided by passwd.

The usermod program changes the contents of /etc/passwd or /etc/shadow, depending
on the option used. If -m is used, usermod also moves the user’s files, as already noted.

04836book.indd 332 1/16/09 9:36:35 AM

Managing Users and Groups 333

Changing an account’s characteristics while the owner is logged in can
have undesirable consequences. This is particularly true of the -d -m
combination, which can cause the files a user is working on to move. Most
other changes, such as changes to the account’s default shell, don’t take
effect until the user has logged out and back in again.

If you change the account’s UID, this action does not change the UIDs stored with a
user’s files. Because of this, the user may lose access to these files. You can manually update
the UIDs on all files by using the chown command, as described in Chapter 4. Specifically, a
command like the following, issued after changing the UID on the account sally, restores
proper ownership on the files in sally’s home directory:

chown -R sally /home/sally

This action does not change the ownership of files that aren’t in sally’s home directory.
If you believe such files exist, you may need to track them down with the find command,
as you’ll see in the upcoming section “Deleting Accounts.” Also, this command blindly
changes ownership of all files in the /home/sally directory. This is probably OK, but it’s
conceivable that some files in that directory should be owned by somebody else—say,
because sally and another user are collaborating on a project.

When using the -G option to add a user to new groups, be aware that any groups not
listed will be removed. The gpasswd command, described in the upcoming section “Using
gpasswd,” provides a way to add a user to one or more specific groups without affecting
existing group memberships, and so it’s generally preferable for this purpose.

Using chage

The chage command allows you to modify account settings relating to account expiration.
It’s possible to configure Linux accounts so that they automatically expire if either of two
conditions is true:

The password hasn’t been changed in a specified period of time.Ûn

The system date is past a predetermined time.Ûn

These settings are controlled through the chage utility, which has the following syntax:

chage [-l] [-m mindays] [-M maxdays] [-d lastday] [-I inactivedays]➦

 [-E expiredate] [-W warndays] username

The program’s parameters modify the command’s actions:

Display information The -l option causes chage to display account expiration and password
aging information for a particular user.

Set the minimum time between password changes The -m mindays parameter sets the
minimum number of days between password changes. 0 indicates that a user can change a
password multiple times in a day; 1 means that a user can change a password once a day; 2
means that a user may change a password once every two days; and so on.

04836book.indd 333 1/16/09 9:36:35 AM

334 Chapter 7 n Administering the System

Set the maximum time between password changes The -M maxdays parameter sets the max-
imum number of days that may pass between password changes. For instance, 30 requires a
password change approximately once a month.

If the user changes a password before the deadline, the counter is reset
from the password-change date.

Set the last password change date The -d lastday parameter sets the last day a password
was changed. This value is normally maintained automatically by Linux, but you can use
this parameter to artificially alter the password change count. lastday is expressed in the
format YYYY/MM/DD or as the number of days since January 1, 1970.

Set the maximum inactive days The -I inactivedays parameter sets the number of days
between password expiration and account disablement. An expired account may not be
used or may force the user to change the password immediately upon logging in, depending
on the distribution. A disabled account is completely disabled.

Set the expiration date You can set an absolute expiration date with the -E expiredate
option. For instance, you might use -E 2010/05/21 to have an account expire on May 21,
2010. The date may also be expressed as the number of days since January 1, 1970. A value of
-1 represents no expiration date.

Set the number of warning days The -W warndays option sets the number of days before
account expiration that the system will warn the user of the impending expiration. It’s
generally a good idea to use this feature to alert users of their situation, particularly if you
make heavy use of password-change expirations. Note that these warnings are usually only
shown to text-mode login users; GUI login users, file-share users, and so on usually don’t
see these messages.

The chage command can normally be used only by root. The one exception to this rule
is if the -l option is used; this feature allows ordinary users to check their account-expira-
tion information.

Directly Modifying Account Configuration Files

User configuration files can be modified directly. The /etc/passwd and /etc/shadow files
control most aspects of an account’s basic features. Both files consist of a set of lines, one
line per account. Each line begins with a username and continues with a set of fields, delim-
ited by colons (:). Many of these items may be modified with usermod or passwd. A typical
/etc/passwd entry resembles the following:

sally:x:529:100:Sally Jones:/home/sally:/bin/bash

Each field has a specific meaning, as follows:

Username The first field in each /etc/passwd line is the username (sally in this example).

04836book.indd 334 1/16/09 9:36:35 AM

Managing Users and Groups 335

Password The second field has traditionally been reserved for the password. Most Linux
systems, however, use a shadow password system in which the password is stored in /etc/
shadow. The x in the example’s password field is an indication that shadow passwords are
in use. In a system that doesn’t use shadow passwords, an encrypted password appears
here instead.

UID Following the password is the account’s user ID (529 in this example).

Primary GID The default login group ID is next in the /etc/passwd line for an account.
The example uses a primary GID of 100.

Comment The comment field may have different contents on different systems. In the
preceding example, it’s the user’s full name. Some systems place additional information
here, in a comma-separated list. Such information may include the user’s telephone number,
office number, title, and so on.

Home directory The user’s home directory is next up in the list.

Default shell The default shell is the final item on each line in /etc/passwd. This is nor-
mally /bin/bash, /bin/tcsh, or some other common command shell. It’s possible to use
something unusual here, though. For instance, many systems include a shutdown account
with /bin/shutdown as the shell. If you log into this account, the computer immediately
shuts down. You can create user accounts with a shell of /bin/false, which prevents users
from logging in as ordinary users but leaves other utilities intact. Users can still receive mail
and retrieve it via a remote mail retrieval protocol like POP or IMAP, for instance. A vari-
ant on this scheme uses /bin/passwd so that users may change their passwords remotely
but can’t log in using a command shell.

You can directly modify any of these fields, although in a shadow password system, you
probably do not want to modify the password field; you should make password-related
changes via passwd so that they can be properly encrypted and stored in /etc/shadow. As
with changes initiated via usermod, it’s best to change /etc/passwd directly only when the
user in question isn’t logged in, to prevent a change from disrupting an ongoing session.

Like /etc/passwd, /etc/shadow may be edited directly. An /etc/shadow line resembles
the following:

sally:E/moFkeT5UnTQ:14069:0:-1:7:-1:-1:

Most of these fields correspond to options set with the chage utility, although some are
set with passwd, useradd, or usermod. The meaning of each colon-delimited field on this
line is as follows:

Username Each line begins with the username. Note that the UID is not used in /etc/
shadow; the username links entries in this file to those in /etc/passwd.

Password The password is stored in encrypted form, so it bears no obvious resemblance
to the actual password. An asterisk (*) or exclamation mark (!) denotes an account with
no password (that is, the account doesn’t accept logins—it’s locked). This is common for
accounts used by the system itself.

04836book.indd 335 1/16/09 9:36:36 AM

336 Chapter 7 n Administering the System

If you’ve forgotten the root password for a system, you can boot with an
emergency recovery system and copy the contents of a password field for
an account whose password you do remember. You can then boot normally,
log in as root, and change the password. In a real pinch, you can delete the
contents of the password field, which results in a root account with no pass-
word (that is, none is required to log in). If you do this, be sure to immedi-
ately change the root password after rebooting!

Last password change The next field (14069 in this example) is the date of the last pass-
word change. This date is stored as the number of days since January 1, 1970.

Days until a change is allowed The next field (0 in this example) is the number of days
before a password change is allowed.

Days before a change is required This field is the number of days after the last password
change before another password change is required.

Days of warning before password expiration If your system is configured to expire pass-
words, you may set it to warn the user when an expiration date is approaching. A value of 7,
as in the preceding example, is typical.

Days between expiration and deactivation Linux allows for a gap between the expiration
of an account and its complete deactivation. An expired account either can’t be used or
requires that the user change the password immediately after logging in. In either case, its
password remains intact. A deactivated account’s password is erased, and the account can’t
be used until it’s reactivated by the system administrator.

Expiration date This field shows the date on which the account will expire. As with the last
password change date, the date is expressed as the number of days since January 1, 1970.

Special flag This field is reserved for future use and normally isn’t used or contains a
meaningless value. This field is empty in the preceding example.

For fields relating to day counts, a value of -1 or 99999 typically indicates that the relevant
feature has been disabled. The /etc/shadow values are generally best left to modification
through the usermod and chage commands because they can be tricky to set manually—for
instance, it’s easy to forget a leap year or the like when computing a date as the number of
days since January 1, 1970. Similarly, because of its encrypted nature, the password field can’t
be edited effectively except through passwd or similar utilities. You can cut and paste a value
from a compatible file or use crypt, but it’s generally easier to use passwd. Copying encrypted
passwords from other systems is also somewhat risky because it means that the users will have
the same passwords on both systems, and this fact will be obvious to anybody who’s acquired
both encrypted password lists.

04836book.indd 336 1/16/09 9:36:36 AM

Managing Users and Groups 337

The /etc/shadow file is normally stored with very restrictive permissions,
such as rw------- (600), with ownership by root. (Precise permissions
vary from one distribution to another, though.) This fact is critical to the
shadow password system’s utility because it keeps non-root users from
reading the file and obtaining the password list, even in an encrypted form.
By contrast, /etc/passwd must be readable by ordinary users and usually
has rw-r--r-- (644) permissions. If you manually modify /etc/shadow, be
sure it has the correct permissions when you’re done.

network Account databases

Many networks employ network account databases. Such systems include the Network
Information System (NIS), an update to this system called NIS+, the Lightweight Directory
Access Protocol (LDAP), Kerberos realms, Windows NT 4.0 domains, and Active Direc-
tory (AD) domains. All of these systems move account database management onto a
single centralized computer (often with one or more backup systems). The advantage of
this approach to account maintenance is that users and administrators need not deal with
maintaining accounts independently on multiple computers. A single account database
can handle accounts on dozens (or even hundreds or thousands) of different computers,
greatly simplifying day-to-day administrative tasks and simplifying users’ lives. Using such
a system, though, means that most user accounts won’t appear in /etc/passwd and /etc/
shadow, and groups may not appear in /etc/group. (These files will still hold information
on local system accounts and groups, though.)

Linux can participate in these systems. In fact, some distributions provide options to enable
such support at OS installation time. Typically, you must know the name or IP address of
the server that hosts the network account database, and you must know what protocol that
system uses. You may also need a password or some other protocol-specific information,
and the server may need to be configured to accept accesses from the Linux system you’re
configuring.

Activating use of such network account databases after installing Linux is a complex
topic. It involves installing appropriate software, modifying the /etc/nsswitch.conf
file, and modifying the Pluggable Authentication Module (PAM) configuration files in
/etc/pam.d. Such systems often alter the behavior of tools such as passwd and usermod
in subtle or not-so-subtle ways. If you need to use such a system, you’ll have to consult
documentation specific to the service you intend to use. My book Linux in a Windows
World (O’Reilly, 2005) covers this topic for Windows NT 4.0 domains, LDAP, and Kerberos;
and Mark Minasi and Dan York’s Linux for Windows Administrators (Sybex, 2002) covers
this topic for Windows NT 4.0 domains and NIS.

04836book.indd 337 1/16/09 9:36:37 AM

338 Chapter 7 n Administering the System

Deleting Accounts
On the surface, deleting user accounts is easy. You may use the userdel command to do
the job of removing a user’s entries from /etc/passwd and, if the system uses shadow pass-
words, /etc/shadow. The userdel command takes just three parameters:

Remove user files The -r or --remove parameter causes the system to remove all files
from the user’s mail spool and home directory, as well as the home directory.

Force deletion You can force deletion of the account while a user is logged in by using the
-f or --force option in conjunction with -r. This option also forces removal of the mail
spool even if it’s owned by another user and forces removal of the home directory even if
another user uses the same home directory.

Get help The -h or --help option summarizes userdel options.

Thus, removing a user account such as sally is easily accomplished with the following
command:

userdel -r sally

You may omit the -r parameter if you want to preserve the user’s files. Be aware of one
potential complication: Users may create files outside their home directories. For instance,
many programs use the /tmp directory as “scratch space,” so user files often wind up there.
These files are deleted automatically after a certain period, but you may have other directories
in which users may store files. To locate all such files, you can use the find command with its
-uid parameter (or -user, if you use find before deleting the account). For instance, if sally
was UID 529, you can use the following command to locate all her files:

find / -uid 529

The result is a list of files owned by UID 529 (formerly sally). You can then go through
this list and decide what to do with the files—change their ownership to somebody else,
delete them, back them up to CD-R, or what have you. It’s wise to do something with these
files, or they may be assigned ownership to another user if Sally’s UID is reused. This can
become awkward if the files exceed the new user’s disk quota or if they contain information
that the new user should not have—such a person may mistakenly be accused of indiscre-
tions or even crimes.

A few servers—most notably Samba—keep their own list of users. If you run such a
server, it’s best to remove the user’s entry from that server’s user list when you remove the
user’s main account. In the case of Samba, this is normally done by manually editing the
smbpasswd file (usually located in /etc, /etc/samba, or /etc/samba.d) and deleting the line
corresponding to the user in question, or using the smbpasswd command and its -x option,
as in smbpasswd -x sally, to delete the sally account from Samba’s database.

Configuring Groups
Linux provides group configuration tools that parallel those for user accounts in many
ways. Groups are not accounts, however, so many features of these tools differ. Likewise,

04836book.indd 338 1/16/09 9:36:37 AM

Managing Users and Groups 339

you can create or modify groups by directly editing the configuration files in question.
Their layout is similar to that for account control files, but the details differ.

Adding Groups
Linux provides the groupadd command to add a new group. This utility is similar to
useradd but has fewer options. The groupadd syntax is as follows:

groupadd [-g GID [-o]] [-r] [-f] groupname

The parameters to this command enable you to adjust its operation:

Specify a GID You can provide a specific GID with the -g GID parameter. If you omit this
parameter, groupadd uses the next available GID. Normally, the GID you specify must be
unused by other groups, but the -o parameter overrides this behavior, allowing you to create
multiple groups that share one GID.

Create a sub-500 GID The -r parameter instructs groupadd to create a group with a GID
of less than 500. Not all distributions support this option; it was added by Red Hat and has
been used on some related distributions. Red Hat uses GIDs of 500 and above for user private
groups (that is, groups named after individual users), hence the -r parameter.

Force creation Normally, if you try to create a group that already exists, groupadd returns
an error message. The -f parameter suppresses that error message. Not all versions of
groupadd support this parameter.

In most cases, you’ll create groups without specifying any parameters except for the
group name itself:

groupadd project3

This command creates the project3 group, giving it whatever GID the system finds con-
venient—usually the highest existing GID plus 1. Once you’ve done this, you can add users
to the group, as described in the next section. When you add new users, you can add them
directly to the new group with the -g and -G parameters to useradd, described earlier.

Modifying Group Information
Group information, like user account information, may be modified either using utility pro-
grams or by directly editing the underlying configuration file, /etc/group. There are fewer
options for modifying groups than for modifying accounts, and the utilities and configura-
tion files are similar. In fact, usermod is one of the tools that’s used to modify groups.

Using groupmod and usermod

The groupmod command modifies an existing group’s settings. Its syntax is as follows:

groupmod [-g GID [-o]] [-n newgroupname] oldgroupname

04836book.indd 339 1/16/09 9:36:37 AM

340 Chapter 7 n Administering the System

The options to this command modify its operation:

Specify a GID Specify the new group ID using the -g GID option. groupmod returns an error
if you specify a new group ID that’s already in use, unless you include the -o parameter, in
which case you can create two groups that share a single GID.

Specify a group name Specify a new group name with the -n newgroupname option.

One of the most common group manipulations you’ll perform is not handled through
groupmod; it’s done with usermod. Specifically, usermod allows you to add a user to a group
with its -G parameter. For instance, the following command sets sally to be a member of
the users, project1, and project4 groups, and it removes her from all other groups:

usermod -G users,project1,project4 sally

Be sure to list all the user’s current groups in addition to any groups to
which you want to add the user. Omitting any of the user’s current groups
will remove the user from those groups. You can discover the groups to
which a user currently belongs with the groups command, as in groups
sally. To avoid accidentally omitting a group, many system administrators
prefer to modify the /etc/group file in a text editor or use gpasswd. Both
options allow you to add users to groups without specifying a user’s exist-
ing group memberships.

Using gpasswd

The gpasswd command is the group equivalent to passwd. The gpasswd command also
enables you to modify other group features and to assign group administrators—users who
may perform some group-related administrative functions for their groups. The basic syn-
tax for this command is:

gpasswd [-a user] [-d user] [-R] [-r] [-A user[,...]] [-M user[,...]] group

The options for this command modify its actions:

Add a user The -a user option adds the specified user to the specified group.

Delete a user The -d user option deletes the specified user from the specified group.

Disallow newgrp additions The -R option configures the group to not allow anybody to
become a member through newgrp.

Remove password The -r option removes the password from a group.

Add group administrators The root user may use the -A user[,...] parameter to specify
group administrators. Group administrators may add members to and remove members
from a group and change the group password. Using this parameter completely overwrites
the list of administrators, so if you want to add an administrator to an existing set of group
administrators, you must specify all of their usernames.

04836book.indd 340 1/16/09 9:36:37 AM

Managing Users and Groups 341

Add users The -M user[,...] option works like -A, but it also adds the specified user(s)
to the list of group members.

If entered without any parameters except a group name, gpasswd changes the password
for the group. Group passwords enable you to control temporary membership in a group, as
granted by newgrp. Ordinarily, members of a group may use newgrp to change their current
group membership (affecting the group of files they create). If a password is set, even those
who aren’t members of a group may become temporary group members; newgrp prompts
for a password that, if entered correctly, gives the user temporary group membership.

Unfortunately, some of these features aren’t implemented correctly in all distributions.
In particular, password entry by non-group members sometimes does not give group mem-
bership—the system responds with an access denied error message. The -R option also
sometimes doesn’t work correctly—group members whose primary group membership is
with another group may still use newgrp to set their primary group membership.

Directly Modifying Group Configuration Files

Group information is stored primarily in the /etc/group file. Like account configuration
files, the /etc/group file is organized as a set of lines, one line per group. A typical line in
this file resembles the following:

project1:x:501:sally,sam,ellen,george

Each field is separated from the others by a colon. The meanings of the four fields are
as follows:

Group name The first field (project1 in the preceding example) is the name of the group.

Password The second field (x in the preceding example) is the group password. Dis-
tributions that use shadow passwords typically place an x in this field; others place the
encrypted password directly in this field.

GID The group ID number (in this example’s case, 501) goes in this field.

User list The final field is a comma-separated list of group members.

Users may also be members of a group based on their own /etc/passwd file primary
group specification. For instance, if user george has project1 listed as his primary group,
he need not be listed in the project1 line in /etc/group. If user george uses newgrp to
change to another group, though, he won’t be able to change back to project1 unless he’s
listed in the project1 line in /etc/group.

Systems with shadow passwords also use another file, /etc/gshadow, to store shadow
password information about groups. This file stores the shadow password and information
for group administrators, as described earlier in “Using gpasswd.”

If you configure Linux to use a network account database, the /etc/group file
is present and may define groups important for the system’s basic operation.
As with /etc/passwd and /etc/shadow, though, important user groups are
likely to be defined only on the network account server, not in /etc/group.

04836book.indd 341 1/16/09 9:36:38 AM

342 Chapter 7 n Administering the System

Deleting Groups
Deleting groups is done via the groupdel command, which takes a single parameter: a group
name. For instance, groupdel project3 removes the project3 group. You can also delete a
group by editing the /etc/group file (and /etc/gshadow, if present) and removing the relevant
line for the group. It’s generally better to use groupdel, because groupdel checks to see if the
group is any user’s primary group. If it is, groupdel refuses to remove the group; you must
change the user’s primary group or delete the user account first.

As with deleting users, deleting groups can leave orphaned files on the computer. You
can locate them with the find command, which is described in more detail in Chapter 4.
For instance, if a deleted group used a GID of 503, you can find all the files on the computer
with that GID by using the following command:

find / -gid 503

Once you’ve found any files with the deleted group’s ownership, you must decide what to
do with them. In some cases, leaving them alone won’t cause any immediate problems; but
if the GID is ever reused, it can lead to confusion and even security breaches. Therefore, it’s
usually best to delete the files or assign them other group ownership using the chown or chgrp
command.

Tuning User and System Environments
Text-mode user environments are controlled through shell configuration files. For bash,
these files include /etc/profile, /etc/bash.bashrc, ~/.profile, ~/.bashrc, ~/.bash
profile, and ~/.profile. The files in /etc are global configuration files, which affect all
users; those in users’ home directories (which are usually copied from the skeleton direc-
tory at account creation, as described earlier) affect individual users’ accounts and can be
customized by individual users. These files control the various bash options, including envi-
ronment variables—named variables that hold data for the benefit of many programs. For
instance, you might set the $EDITOR environment variable to the name of your favorite text
editor. Some (but not all) programs that launch editors pay attention to this environment
variable and launch the editor you specify.

As a system administrator, you can change the system-wide bash configuration files to
add, remove, or change the environment variables that all users receive. Generally speaking,
you should do so because the documentation for a specific program indicates that it uses par-
ticular environment variables. You can also see all your current environment variables by typ-
ing env. (The list is rather long, so you may want to pipe it through less, as in env | less.)

In addition to setting default environment variables and otherwise modifying users’ text-
mode login environment by adjusting their bash configuration files, you can adjust the default
set of files created by useradd. As described earlier, in “Adding Users,” useradd copies files
from the skeleton directory (/etc/skel by default) into a newly created home directory. Typi-
cally, /etc/skel contains a handful of user configuration files, such as .bashrc. You can
add files (and even directories) to this directory, including user configuration files, a starting
directory tree, a README file for new users, and anything else you like. Because these files are

04836book.indd 342 1/16/09 9:36:38 AM

Using System Log Files 343

copied into users’ home directories and users are given ownership of the copies, the users can
read, change, and even delete their copies of these files. Thus, you shouldn’t place any options
in these files that are sensitive from a security point of view or that users should not be able
to change. (In truth, entries you place in global bash configuration files can easily be over-
ridden by individual users, as well.) Also, be aware that any changes you make to the global
files won’t automatically be moved into existing users’ copies of these files; changes will affect
only the files received by new users. This fact makes the global files (such as /etc/profile)
preferable to /etc/skel for any changes to system defaults you want to implement system-
wide, particularly if you expect you’ll ever want to modify your changes.

Various programs set environment variables themselves, and some are main-
tained automatically by bash. For instance, bash maintains the PWD environ-
ment variable, so you shouldn’t try to set it in a configuration script. Also, be
aware that adjusting the bash configuration files only affects bash. If a user’s
default shell is something else, or if a user doesn’t use a text-mode shell (say,
if the user logs into X and launches programs from a GUI menu), setting
environment variables in the bash configuration files will do no good.

Using System Log Files
Linux maintains log files that record various key details about system operation. You may
be able to begin using log files immediately, but knowing how to change the log file config-
uration can also be important. You do this by configuring the syslogd daemon (a daemon
is a program that runs continuously in the background waiting for an event to trigger it to
perform some action). Some servers and other programs perform their own logging and so
must be configured independently of syslogd. You may even want to configure one com-
puter to send its log files to another system as a security measure. You should also be aware
of issues surrounding log file rotation; if your computer doesn’t properly manage existing
log files, they can grow to consume all your available disk space, at least on the partition
on which they’re stored. In addition to configuring logging, you must be able to use the log
files that the system generates.

Understanding syslogd
Most Linux systems employ a special daemon to handle log maintenance in a unified way.
The traditional Linux system logger is syslogd, which is often installed from a package called
sysklogd. The syslogd daemon handles messages from servers and other user-mode pro-
grams. It’s usually paired with a daemon called klogd, which is generally installed from the
same sysklogd package as syslogd. The klogd daemon manages logging of kernel messages.

04836book.indd 343 1/16/09 9:36:38 AM

344 Chapter 7 n Administering the System

Other choices for system loggers exist. For instance, syslog-ng is a
replacement that supports advanced filtering options, and metalog is
another option. Recent versions of Fedora use rsyslogd. This chapter
describes the traditional syslogd logger. Others are similar in principle,
and even in some specific features, but differ in many details.

The basic idea behind a system logger is to provide a unified means of handling log files.
The daemon runs in the background and accepts data delivered from servers and other
programs that are configured to use the log daemon. The daemon can then use informa-
tion provided by the server to classify the message and direct it to an appropriate log file.
This configuration enables you to consolidate messages from various servers in a handful of
standard log files, which can be much easier to use and manage than potentially dozens of
log files from the various servers running on the system.

In order to work, of course, the log daemon must be configured. In the case of syslogd,
this is done through the /etc/syslog.conf file. (The rsyslogd configuration file is /etc/
rsyslog.conf and is similar to syslog.conf.) The next section describes the syslog.conf
file’s format in more detail.

Setting Logging Options
The format of the /etc/syslog.conf file is conceptually simple but provides a great deal of
power. Comment lines, as in many Linux configuration files, are denoted by a hash mark
(#). Non-comment lines take the following form:

facility.priority action

In this line, the facility is a code word for the type of program or tool that generated
the message to be logged; the priority is a code word for the importance of this message;
and the action is a file, remote computer, or other location that’s to accept the message. The
facility and priority are often referred to collectively as the selector.

Valid codes for the facility are auth, authpriv, cron, daemon, kern, lpr, mail, mark, news,
security, syslog, user, uucp, and local0 through local7. Many of these names refer to
specific servers or program classes. For instance, mail servers and other mail-processing tools
typically log using the mail facility. Most servers that aren’t covered by more specific codes
use the daemon facility. The security facility is identical to auth, but auth is the preferred
name. The mark facility is reserved for internal use. An asterisk (*) refers to all facilities. You
can specify multiple facilities in one selector by separating the facilities with commas (,).

Valid codes for the priority are debug, info, notice, warning, warn, error, err, crit,
alert, emerg, and panic. The warning priority is identical to warn, error is identical to
err, and emerg is identical to panic. The error, warn, and panic priority names are dep-
recated; you should use their equivalents instead. Other than these identical pairs, these
priorities represent ascending levels of importance. The debug level logs the most informa-
tion; it’s intended, as the name implies, for debugging programs that are misbehaving. The
emerg priority logs the most important messages, which indicate very serious problems.

04836book.indd 344 1/16/09 9:36:38 AM

Using System Log Files 345

When a program sends a message to the system logger, it includes a priority code; the log-
ger logs the message to a file if you’ve configured it to log messages of that level or higher.
Thus, if you specify a priority code of alert, the system will log messages that are clas-
sified as alert or emerg but not messages of crit or below. An exception to this rule is if
you precede the priority code by an equal sign (=), as in =crit, which describes what to do
with messages of crit priority only. An exclamation mark (!) reverses the meaning of a
match. For instance, !crit causes messages below crit priority to be logged. A priority of
* refers to all priorities.

You can specify multiple selectors for a single action by separating the selectors by a
semicolon (;). Note that commas are used to separate multiple facilities within a single
selector, whereas semicolons are used to separate multiple selectors as a whole. Examples
of complete selectors appear shortly.

Most commonly, the action is a filename, typically in the /var/log directory tree. The
messages, syslog, and secure files in this directory are three common and important log
files, although not all distributions use all of these files. Other possible logging locations
include a device filename for a console (such as /dev/console) to display data on the screen,
a remote machine name preceded by an at sign (@) to log data to the specified system, and a
list of usernames of individuals who should see the message if they’re logged in. For the last
of these options, an asterisk (*) means all logged-in users.

Some examples should help clarify these rules. First is a fairly ordinary and simple entry:

mail.* /var/log/mail

This line sends all log entries identified by the originating program as related to mail to
the /var/log/mail file. Most of the entries in a default /etc/syslog.conf file resemble this
one. Together, they typically cover all of the facilities mentioned earlier. Some messages may
be handled by multiple rules. For instance, another rule might look like this one:

*.emerg *

This line sends all emerg-level messages to the consoles of all users who are logged into the
computer using text-mode tools. If this line and the earlier mail.* selector are both present,
emerg-level messages related to mail will be logged to /var/log/mail and displayed on users’
consoles.

A more complex example logs kernel messages in various ways, depending on their
priorities:

kern.* /var/log/kernel

kern.crit @logger.pangaea.edu

kern.crit /dev/console

kern.info;kern.!err /var/log/kernel-info

The first of these rules logs all kernel messages to /var/log/kernel. The second line sends
critical messages to logger.pangaea.edu. (This system must be configured to accept remote
logs, which is a topic not covered in this book.) The third line sends a copy of critical mes-
sages to /dev/console, which causes them to be displayed on the computer’s main text-mode

04836book.indd 345 1/16/09 9:36:39 AM

346 Chapter 7 n Administering the System

console display. Finally, the last line sends messages that are between info and err in priority
to /var/log/kernel-info. Because err is the priority immediately above crit, and because
info is the lowest priority, these four lines cause all kernel messages to be logged two or three
times: once to /var/log/kernel as well as to either the remote system and the console or to
/var/log/kernel-info.

Most distributions ship with reasonable system logger settings, but you may want to
examine these settings and perhaps adjust them. If you change them, be aware that you
may need to change some other tools. For instance, all major distributions ship with
tools that help rotate log files. If you change the files to which syslogd logs messages,
you may need to change your log file rotation scripts as well. This topic is covered in the
next section.

In addition to the system logger’s options, you may be able to set logging options in
individual programs. For instance, you may tell programs to record more or less infor-
mation or to log routine information at varying priorities. Some programs also provide
the means to log via the system log daemon or via their own mechanisms. Details vary
greatly from one program to another, so you should consult the program’s documenta-
tion for details.

Most programs that use the system log daemons are servers and other
system tools. Programs that individuals run locally seldom log data
via the system log daemon, although there are some exceptions to this
rule, such as the Fetchmail program for retrieving e-mail from remote
servers.

Manually Logging Data
For the most part, the system logger accepts log entries from system tools, such as servers.
Occasionally, though, you may want to manually create a log entry or have a script do so.
The tool for this job is known as logger, and it has the following syntax:

logger [-isd] [-f file] [-p pri] [-t tag] [-u socket] [message ...]

Options to logger permit changing its default function:

Record logger PID The -i option records the process ID (PID) of the logger process
along with other data.

Output to standard error You can echo data to standard error, as well as to the log
file, by using the -s option. An interactive script might use this feature to alert users to
problems.

Log using datagrams The -d option causes logger to use datagrams rather than a stream
connection to the system logger socket. This is an advanced feature that you should only

04836book.indd 346 1/16/09 9:36:39 AM

Using System Log Files 347

use if you’re instructed to do so in documentation or if you understand the networking
issues involved.

Log a file You can log the contents of a file by using the -f file option. Be cautious with
this option; if file is big, your system log file can grow to ridiculous size!

Identify a priority The -p pri option specifies a priority, as described earlier.

Log tags By default, logger includes its name in the log file as a tag. You can change this
tag with the -t tag option. This is useful if you want to identify a script or other program
that created the log entry and don’t care to record the fact that logger was involved in the
process.

Specify a socket Ordinarily, logger calls the default system log tools to do its job. You
can log directly to a network socket using the -u socket option, if you prefer.

Specify a message If you don’t specify a file using -f file, logger will log whatever you
type after other options as the message to be logged. If you don’t provide a message on the
command line, logger accepts input you type on subsequent lines as information to be
logged. You should terminate such input by pressing Ctrl+D.

As an example, suppose you want to log the message “shutting down for system mainte-
nance” to the system log. You can do so by typing the following command:

$ logger shutting down for system maintenance

The result will be an entry like the following, probably in /var/log/messages:

Jul 29 14:09:50 nessus logger: shutting down for system maintenance

Adding parameters changes the details of what’s logged, as just described. You can place
a call to logger in a script as a way of documenting the script’s activities. For instance, a
system backup script might use logger to record details such as its start and stop times and
the number and size of the files it has backed up.

Rotating Log Files
Log files are intended to retain information about system activities for a reasonable period
of time; but system logging daemons provide no means to control the size of log files. Left
unchecked, log files can therefore grow to consume all the available space on the partition
on which they reside. To avoid this problem, Linux systems employ log file rotation tools.
These tools rename and optionally compress the current log files, delete old log files, and
force the logging system to begin using new log files.

The most common log rotation tool is a package called logrotate. This program is typi-
cally called on a regular basis via a cron job. (The upcoming section “Running Jobs in the
Future” describes cron jobs in more detail.) The logrotate program consults a configura-
tion file called /etc/logrotate.conf, which includes several default settings and typically
refers to files in /etc/logrotate.d to handle specific log files. A typical /etc/logrotate.
conf file includes several comment lines, denoted by hash marks (#), as well as lines to set
various options, as illustrated by Listing 7.1.

04836book.indd 347 1/16/09 9:36:39 AM

348 Chapter 7 n Administering the System

listing 7.1: Sample /etc/logrotate.conf File

Rotate logs weekly

weekly

Keep 4 weeks of old logs

rotate 4

Create new log files after rotation

create

Compress old log files

compress

Refer to files for individual packages

include /etc/logrotate.d

Set miscellaneous options

notifempty

nomail

noolddir

Rotate wtmp, which isn’t handled by a specific program

/var/log/wtmp {

 monthly

 create 0664 root utmp

 rotate 1

}

Most of the lines in Listing 7.1 set options that are fairly self-explanatory or that are
well explained by the comments that immediately precede them—for instance, the weekly
line sets the default log rotation interval to once a week. If you see an option in your file
that you don’t understand, consult the man page for logrotate.

Because log file rotation is handled by cron jobs that typically run late at
night, it won’t happen if a computer is routinely turned off at the end of the
day. This practice is common with Windows workstations but is uncommon
with servers. Either Linux workstations should be left running overnight as
a general practice or some explicit steps should be taken to ensure that log
rotation occurs despite routine shutdowns. The anacron utility, described in
the upcoming section “Using anacron,” is particularly well suited to this task.

04836book.indd 348 1/16/09 9:36:39 AM

Using System Log Files 349

The last few lines of Listing 7.1 demonstrate the format for the definition of a specific log
file. These definitions begin with the filename for the file (multiple filenames may be listed,
separated by spaces), followed by an open curly brace ({). They end in a close curly brace
(}). Intervening lines set options that may override the defaults. For instance, the /var/log/
wtmp definition in Listing 7.1 sets the monthly option, which tells the system to rotate this
log file once a month, overriding the default weekly option. Such definitions are common in
the individual files in /etc/logrotate.d, which are typically owned by the packages whose
log files they rotate. Examples of features that are often set in these definitions include:

Rotated file naming Ordinarily, rotated log files acquire numbers, such as messages.1 for
the first rotation of the messages log file. Using the dateext option causes the rotated log
file to obtain a date code instead, as in messages-20091005 for the rotation performed on
October 5, 2009.

Compression options As already noted, compress causes logrotate to compress log files
to save space. This is done using gzip by default, but you can specify another program with
the compresscmd keyword, as in compresscmd bzip2 to use bzip2. The compressoptions
keyword enables you to pass options to the compression command (say, to improve the
compression ratio).

Creation of new log files The create option causes logrotate to create a new log file for
use by the system logger or program. This option takes a file mode, an owner, and a group
as additional options. Some programs don’t work well with this option, though. Most of
them use the copytruncate option instead, which tells logrotate to copy the old log file to
a new name and then clear all the data out of the original file.

Time options The daily, weekly, and monthly options tell the system to rotate the log
files at the specified intervals. These options aren’t always used; some configurations use a
size threshold rather than a time threshold for when to rotate log files.

Size options The size keyword sets a maximum size for a log file. It takes a size in bytes
as an argument (adding k or M to the size changes it to kilobytes or megabytes, respectively).
For instance, size 100k causes logrotate to rotate the file when it reaches 100KB in size.

Rotation options The rotate x option causes x copies of old log files to be maintained. For
instance, if you set rotate 2 for the /var/log/messages file, logrotate will maintain /var/
log/messages.1 and /var/log/messages.2 in addition to the active /var/log/messages file.
When that file is rotated, /var/log/messages.2 is deleted, /var/log/messages.1 is renamed
to /var/log/messages.2, /var/log/messages becomes /var/log/messages.1, and a new
/var/log/messages is created.

Mail options If you use mail address, logrotate will e-mail a log file to the specified
address when it’s rotated out of existence. Using nomail causes the system to not send any
e-mail; the log is quietly deleted.

Scripts The prerotate and postrotate keywords both begin a series of lines that are
treated as scripts to be run immediately before or after log file rotation, respectively. In
both cases, these scripts end with the endscript keyword. These commands are frequently
used to force syslogd or a server to begin using a new log file.

04836book.indd 349 1/16/09 9:36:40 AM

350 Chapter 7 n Administering the System

In most cases, servers and other programs that log data either do so via the system log-
ging daemon or ship with a configuration file that goes in /etc/logrotate.d to handle the
server’s log files. These files usually do a reasonable job, but you may want to double-check
them. For instance, you might discover that your system is configured to keep too many or
too few old log files for your taste, in which case adjusting the rotate option is in order.
You should also check the /var/log directory and its subdirectories every now and then. If
you see huge numbers of files accumulating, or if files are growing to unacceptable size, you
may want to check the corresponding logrotate configuration files. If an appropriate file
doesn’t exist, create one. Use a working file as a template, modifying it for the new file. Pay
particular attention to the prerotate and postrotate scripts; you may need to consult the
documentation for the program that’s creating the log file to learn how to force that pro-
gram to begin using a new log file.

In most cases, log files remain on the computer that recorded them. Sometimes, though, you
may want to copy such files off-site. The easiest way to do this may be to reconfigure the log
daemon to send the messages you want to archive to another system, as described in “Setting
Logging Options.” Another possibility is to create a cron job (as described later, in “Running
Jobs in the Future”) to copy files to another system using a network share, ssh, or some other
network tool. You can also manually copy log files onto removable disks, if you like. There are
few technical reasons to archive log files for more than a few weeks—only if a problem escapes
your notice for a long time will they be useful. Managers or lawyers may want to keep them
around for the long term for business or legal reasons, though.

Reviewing Log File Contents
Log files do no good if they simply accumulate on the system. Their purpose is to be used
as a means of identifying problems or documenting normal activity. When a server isn’t
responding as you expect, when a computer refuses logins it should be accepting (or accepting
logins it should be refusing), or when a system’s network interface isn’t coming up (to name
just three types of problems), you should check your log files as part of your troubleshooting
procedures. Log files can also be useful in less troublesome situations, such as helping you
to identify the load on a server so as to plan upgrades. Several procedures, many of which
involve tools described elsewhere in this book, can help you access your log files:

Paging through whole log files You can use a pager program, such as less (described in
Chapter 1, “Exploring Linux Command-Line Tools”), to view the entire contents of a log
file. A text editor can fill the same role.

Searching for keywords You can use grep (described in Chapter 1) to pull lines that con-
tain keywords out of log files. This can be particularly handy when you don’t know which
log file is likely to hold an entry. For instance, typing grep eth0 /var/log/* locates all
lines in all files in the /var/log directory that contain the string eth0.

Examining the start or end of a file You can use the head or tail command (described in
Chapter 1) to examine the first or last several lines of a log file. The tail command is par-
ticularly handy; you can use it to look at the last few entries just after you take some action
that you expect to produce some diagnostic log file entries.

04836book.indd 350 1/16/09 9:36:40 AM

Using System Log Files 351

Monitoring log files In addition to checking the last few lines of a log file, tail can moni-
tor a file on an ongoing basis, echoing lines to the screen as they’re added to the file. You do
this with the -f option to tail, as in tail -f /var/log/messages.

Using advanced log analysis tools Various packages exist expressly for the purpose of
analyzing log files. For instance, there’s Logcheck, which is part of the Sentry Tools pack-
age (http://sourceforge.net/projects/sentrytools/). This package comes with some
distributions, such as Mandriva and Debian. Unfortunately, it requires a fair amount of
customization for your own system, so it’s most easily implemented if it comes with your
distribution, preconfigured for its log file format.

Log file analysis is a skill that’s best learned through experience. Many log file messages
are cryptic, and they can be cryptic in different ways for different programs. For instance,
consider these entries:

Apr 14 23:17:00 speaker /USR/SBIN/CRON[6026]: (george) CMD➦

 (/usr/bin/fetchmail -f /home/george/.fetchmailrc > /dev/null)

Apr 14 23:17:52 speaker sshd[6031]: Accepted publickey for george from➦

 ::ffff:192.168.1.3 port 48139 ssh2

These two lines relate to two entirely different events, but they have a similar format.
Both entries begin with a time stamp and the name of the computer on which the activity
occurred (speaker in this example). Next on each line is an identifier for the program that
logged the activity, including its PID number: /USR/SBIN/CRON[6026] and sshd[6031] in
this example. Note that these names are generated by the programs that create the activity,
so they aren’t necessarily consistent or even fully accurate. For instance, there is no /USR/
SBIN/CRON program, although there is a /usr/sbin/cron program. (Recall that Linux has a
case-sensitive filesystem.)

All of this information helps you identify what program logged the entry and when it did
so. The rest of the log entry contains the actual logged data. The first entry in this example
is from the cron utility, and it identifies a program run on behalf of george—specifically,
cron ran the fetchmail program, passed it the name of a configuration file via the -f option,
and redirected the output to /dev/null. The second entry (for sshd) identifies a login from
192.168.1.3 on port 48139, again involving the user george.

You can use entries like these to help identify malfunctioning servers, spot security
breaches, and otherwise debug your system. Doing so, though, requires at least some famil-
iarity with the normal log file contents as well as other system details. For instance, in the
preceding example, if your system has no george account, these entries should both be sus-
picious; but you must be familiar enough with the format of the entries to spot that george
is a username (or be able to work it out). You must also know that your system should have
no george account.

Overall, you should probably examine your log files from time to time to become familiar
with their contents. This will help you spot abnormalities when the system begins misbehaving
or when you want to use log files to help track down an unwelcome visitor.

04836book.indd 351 1/16/09 9:36:40 AM

352 Chapter 7 n Administering the System

Log file entries can be conspicuous by their absence as well as by suspicious
content within them. Intruders often try to cover their tracks by editing log
files to remove the entries that betray their unauthorized accesses. Some-
times, though, they’re sloppy about this and just delete all the log entries
from the time in question. If you notice unusual gaps in your log files, such
as a space of an hour with no entries on a system that normally logs a couple
dozen entries in that period, you may want to investigate further.

Maintaining the System Time
Linux depends on its system clock more than many OSs. Tools such as cron and at (described
later, in “Running Jobs in the Future”) run programs at specified times, the make development
tool uses files’ time stamps to determine which ones need attention, and so on. Thus, you
should be familiar with how Linux deals with time, how to set the time zone, how to set the
time, and how to keep the clock accurate.

Linux Time Concepts
The x86 computers that most often run Linux, as well as most other computers of this
general class, have two built-in clocks. The first of these clocks, sometimes called the
hardware clock, maintains the time while the computer is turned off. When you boot
Linux, it reads the hardware clock and sets the software clock to the value it retrieves.
The software clock is what Linux uses for most purposes while it’s running.

Most desktop OSs, such as Windows and pre-X versions of Mac OS, set their clocks to
the local time. This approach is simple and convenient for people who are used to dealing
mainly with local time, but for purposes of networking, it’s inadequate. When it’s 4:00
in New York, it’s 1:00 in Los Angeles, so network protocols that rely even partly on time
can become confused (or at the very least, create confusing log entries) when they operate
across time zones. Linux, like other Unix-like OSs, sets its clock to Coordinated Universal
Time (UTC), which for most purposes is identical to Greenwich Mean Time (GMT)—the
time in Greenwich, England, unadjusted for Daylight Saving Time. This approach means
that Linux systems in New York and Los Angeles (and London and Moscow and Beijing)
should have identical times, assuming all are set correctly. For communicating with users,
though, these systems need to know their time zones. For instance, when you type ls -l to
see a file listing complete with time stamps, Linux reads the time stamp in UTC and then
adds or subtracts the appropriate amount of time so that the time stamp appears in your
local time. Of course, all of this means that you must be able to set the computer’s time
zone. On most systems, this is done at system installation; the distribution’s installer asks
you for your time zone and sets things up correctly. If you erred during installation or if
you need to change the time zone for any reason, Chapter 6, “Configuring the X Window
System, Localization, and Printing,” describes how to set your time zone.

04836book.indd 352 1/16/09 9:36:40 AM

Maintaining the System Time 353

LPI objective 108.1 includes the files /usr/share/zoneinfo, /etc/timezone,
and /etc/localtime. These files are also included under LPI objective
107.3 and are described in Chapter 6, which covers that objective.

Linux’s internal use of UTC can complicate setting the hardware clock. Ideally, the
hardware clock should be set to UTC; but if your system multi-boots between Linux and
an OS that expects the hardware clock to be in local time, you’ll have to set the hardware
clock to local time and configure Linux to deal with this fact. For the most part, this con-
figuration works well, but you may have to watch the clock the first time you reboot in the
spring or fall after changing your clocks because of a Daylight Saving Time adjustment.
Depending on your Linux and other OS’s settings, your hardware clock may be reset in a
way one OS or the other doesn’t expect.

Both the hardware clock and the software clock are notoriously unreliable on standard
x86 hardware; both clocks tend to drift, so your clock can easily end up being several minutes
off the correct time within a month or two of being set. To deal with this problem, Linux sup-
ports various network protocols for setting the time. The most popular of these is the Network
Time Protocol (NTP), which is described in the upcoming section “Using NTP.”

Manually Setting the Time
You can manually set your system’s clock—or more precisely, its clocks, because as noted
earlier, Linux maintains two clocks: the hardware clock and the software clock. The main
tool to set the software clock is date, which has the following syntax when setting the clock:

date [-u|--utc|--universal] [MMDDhhmm[[CC]YY][.ss]]

Used without any options, this command displays the current date. If you pass a time to
the program, it sets the software clock to that time. This format contains a month, a day,
an hour, and a minute at a minimum, all in two-digit codes (MMDDhhmm). You can optionally
add a 2- or 4-digit year and the seconds within a minute if you like. You should specify the
time in a 24-hour format. For instance, to set the time to 3:02 pm on October 27, 2009,
you’d type the following command:

date 102715022009

By default, date assumes you’re specifying the time in local time. If you want to set the
clock in UTC, include the -u, --utc, or --universal option.

Because x86 hardware maintains both software and hardware clocks, Linux provides
tools to synchronize the two. Specifically, the hwclock utility enables you to set the hard-
ware clock from the software clock or vice versa, as well as do a few other things. Its syn-
tax is fairly straightforward:

hwclock [options]

04836book.indd 353 1/16/09 9:36:41 AM

354 Chapter 7 n Administering the System

You can specify options to accomplish several goals:

Show the hardware clock To view the hardware clock, pass the -r or --show option. The
time is displayed in local time, even if the hardware clock is set to UTC.

Set the hardware clock manually To set the hardware clock to a date you specify, you
need two options: --set and --date=newdate. The newdate is in the date format that the
date program accepts.

Set the hardware clock based on the software clock If you’ve set the software clock, you
can synchronize the hardware clock to the same value with the --systohc option.

Set the software clock based on the hardware clock If your hardware clock is accurate but
your software clock isn’t, you can use the --hctosys option to set the software clock to the
hardware clock’s value. This option is often used in a SysV startup script to set the system
clock when the computer first boots.

Specify UTC or local time You can tell Linux to treat the hardware clock as storing UTC
by using the --utc option or to treat it as holding local time by using the --localtime
option. The default is whichever was last used when the hardware clock was set.

Ordinarily, you won’t use hwclock directly very often. You may need to use it after a
Daylight Saving Time shift if you maintain your hardware clock in local time, but some dis-
tributions include scripts that manage this task automatically. You may also want to use it
once in a while to keep the hardware clock from drifting too far from an accurate time; but
again, some distributions do this automatically as part of the system shutdown procedure.

You can also set the hardware clock via your computer’s BIOS setup utility.
Consult your motherboard or computer hardware manual for details. You
must reboot the system to do this, typically pressing the Delete or some
other key at a critical time early in the boot process (before your boot loader
takes over). You must then find the time option and set it appropriately. If
Linux is using UTC, remember to set the clock to UTC rather than local time.

Using NTP
Typically, a clock on an isolated computer needn’t be set with any great precision. It doesn’t
really matter if the time is off by a few seconds, or even a few minutes, so long as the time
is reasonably consistent on that one computer for the purpose of cron, other scheduling
tools, and time stamps. Sometimes, though, maintaining a truly accurate system time is
important. This is true for a few scientific, business, and industrial applications (such as
astronomical measurements or a system that determines the start and stop times for televi-
sion broadcasts). In a networked environment, maintaining the correct time can be more
important. Time stamps on files may become confused if a file server and its clients have
different times, for instance. Worse, a few protocols, such as the Kerberos security suite,

04836book.indd 354 1/16/09 9:36:41 AM

Maintaining the System Time 355

embed time stamps in their packets and rely on those time stamps for normal system func-
tioning. If two systems using Kerberos have wildly different times, they may not be able to
communicate. For these reasons, several protocols exist to synchronize the clocks of mul-
tiple systems. Of these, NTP is the most popular and flexible, so I describe it. You should
first understand the basic principles of NTP operation. You can then go on to configuring
an NTP server for your network and setting up other systems as NTP clients.

Understanding NTP Basics
One of the most popular, flexible, and accurate network time tools is NTP. This protocol
creates a tiered hierarchy of time sources, as illustrated in Figure 7.1. At the top of the
structure are one or more highly accurate time sources—typically atomic clocks or radio
receivers that pull their times from broadcast time signals based on atomic clocks. These
are referred to as stratum 0 time servers, but they aren’t directly accessible to any but the
stratum 1 time servers to which they’re connected. These stratum 1 computers run NTP
servers that deliver the time to stratum 2 servers, which deliver the time to stratum 3 servers,
and so on for an arbitrary number of strata.

f i gu r e 7.1 NTP enables an expanding pyramid of computers to set their clocks to a
highly accurate source signal.

Stratum 0

Stratum 1

Stratum 2

Stratum 3

Stratum 4

04836book.indd 355 1/16/09 9:36:45 AM

356 Chapter 7 n Administering the System

Other time-setting protocols include one built into the Server Message
Block/Common Internet File System (SMB/CIFS) used for Windows file
sharing and implemented in Linux by Samba and a protocol used by the
rdate utility in Linux.

The key to NTP is the fact that each server can deliver time to an expanding number
of clients. For instance, if a stratum 1 server has 1,000 clients, each of which has 1,000
clients, and so on, stratum 3 will consist of 1,000,000 systems and stratum 4 will contain
1,000,000,000 systems. Each increase in the stratum number slightly decreases the accu-
racy of the time signal, but not by much; even a stratum 4 system’s clock should be accurate
to well under a second, which is accurate enough for almost all purposes. More important,
if you run a network, you can set aside one computer as an NTP server and set all your
other computers’ clocks from that one server. Even if your primary NTP server’s clock is off
by a second, all the clocks on your network should be set to within a tiny fraction of each
other, which is the most important consideration for time-dependent network protocols
such as Kerberos.

NTP works by measuring the round-trip time for packets between the server and the client.
The two systems exchange packets with embedded time stamps; the client then adjusts its time
so that it is synchronized with the source’s time stamp but adds a bit to the time reported by
the source to account for this round-trip delay. For this reason, when you select an NTP source
(as described next, in “Locating a Time Source”), you should pick one with the shortest pos-
sible network time delay, all other things being equal. (In truth, several measures of reliability
exist, and the NTP programs try to take them all into account.)

The main Linux NTP server program functions as both a server and a client; it sets its
clock based on the time of the server to which it’s pointed, and it enables other systems to
set their clocks based on its own. Even the end points in the NTP hierarchy (the stratum 4
and some stratum 3 servers in Figure 7.1) often run the full NTP server package. The reason
is that this software runs constantly and can monitor for and adjust the clock drift that’s
common in x86 and other computers’ clocks, resulting in much more consistent timekeeping
than is possible with a program that simply sets the clock and then ignores it until the next
time the program is run. In other words, NTP doesn’t just reset the system clock periodi-
cally; the server improves the accuracy of the system clock. In part, this is done through the
ntp.drift file, which is usually buried in /var/lib/ntp but is sometimes stored in /etc.
This file holds information about the software clock’s inaccuracies and so can be used to
correct for them. A full NTP server, even when it’s functioning only as an NTP client, peri-
odically checks with its source systems to keep the system time set correctly and to update
the ntp.drift file.

Locating a Time Source
You may think that locating an NTP server with a low stratum number (such as stratum 1) is
ideal. Although it’s true that your own system will have a minutely more accurate clock when
using such a source, the best approach in most cases is to synchronize with a stratum 2 or
lower system. The reason is that this practice will help keep the load on the stratum 1 servers

04836book.indd 356 1/16/09 9:36:45 AM

Maintaining the System Time 357

low, thus improving the overall performance of the NTP network as a whole. An exception
might be if you’re configuring an NTP server that will itself deliver the time to hundreds or
more computers.

To locate an NTP server, you should consult one or more of several sources:

Your ISP Many Internet service providers (ISPs), including business networks and univer-
sities, operate NTP servers for the benefit of their users. These servers are usually very close
to your own in a network sense, making them good choices for NTP. You should consult
your ISP or the networking department at your organization to learn if such a system is
available.

Your distribution’s NTP server Some Linux distributions operate NTP servers for their
users. If you happen to be close to these servers in a network sense, they can be good
choices; however, chances are this isn’t the case, so you may want to look elsewhere.

Public NTP server lists Lists of public NTP servers are maintained at http://support
.ntp.org/bin/view/Servers/WebHome. These servers can be good choices, but you’ll need to
locate the one closest to you in a network sense, and perhaps contact the site you choose
to obtain permission to use it.

Public NTP server pool The pool.ntp.org subdomain is dedicated to servers that have
volunteered to function as public NTP servers. These servers are accessed in a round-robin
fashion by hostname, so you can end up using different servers each time you launch NTP.
Thus, using the public NTP server pool can be a bit of a gamble, but the results are usually
good enough for casual users or if you don’t want to spend time checking and maintain-
ing your NTP configuration. To use the pool, you can configure your NTP server to use
either the pool.ntp.org subdomain name or a numbered host within that domain, such as
0.pool.ntp.org. Consult http://support.ntp.org/bin/view/Servers/NTPPoolServers
for details.

The closest server in a network sense may not be the closest computer in a
geographic sense. For instance, a national ISP may route all traffic through
just one or two hub sites. The result can be that traffic from, say, Atlanta,
Georgia to Tampa, Florida may go through Chicago, Illinois. Such a detour is
likely to increase round-trip time and decrease the accuracy of NTP. In such a
situation, a user in Atlanta may be better off using a Chicago NTP server than
one in Tampa, even though Tampa is much closer geographically.

Once you’ve located a few possible time servers, try using ping to determine the round-
trip time for packets to this system. If any systems have very high ping times, you may
want to remove them from consideration.

Configuring NTP Servers
When you’re setting up a network to use NTP, select one system (or perhaps two for a net-
work with several dozen or more computers) to function as the primary NTP server. This

04836book.indd 357 1/16/09 9:36:45 AM

358 Chapter 7 n Administering the System

computer needn’t be very powerful, but it must have always-up access to the network. You
can then install the NTP server and configure it.

Most Linux distributions ship the NTP software in a package called ntp, xntp, ntpd, or
xntpd. Look for this package and, if it’s not already installed, install it. If you can’t find this
package, check http://www.ntp.org/downloads.html. This site hosts NTP source code,
which you can compile and install. Alternatively, you can look for a binary package for
another distribution. Either way, if you don’t install your distribution’s own NTP package,
you’ll need to create your own SysV startup script or start the NTP daemon in some other way.

Once NTP is installed, look for its configuration file, /etc/ntp.conf. This file contains
various NTP options, but the most important are the server lines:

server clock.example.com

server ntp.pangaea.edu

server time.luna.edu

Each of these lines points to a single NTP server. When your local NTP daemon starts
up, it contacts all the servers specified in /etc/ntp.conf, measures their accuracy against
each other, and settles on one as its primary time source. Typically, you list about three
upstream time servers for a system that’s to serve many other computers. This practice
enables your server to weed out any servers that deliver a bad time signal, and it also gives
automatic fallback in case an upstream server becomes temporarily or permanently unavail-
able. If your NTP server won’t be serving many computers itself, you may want to config-
ure it for three servers initially and then drop the ones your system isn’t using as its primary
time source after a day or two. This will reduce the load on these servers.

You may want to peruse your configuration file for entries to remove. For instance,
the configuration file may contain references to servers you’d rather not use or other odd
options with associated comments that make you think they’re inappropriate. Generally
speaking, you shouldn’t adjust entries in the ntp.conf file other than the reference server
lines, but special circumstances or odd starting files may require you to make changes.

Once you’ve made your changes, start or restart your NTP daemon. Typically, this is
done via a SysV startup script:

/etc/init.d/ntpd restart

You may need to change the path to the file, the SysV script filename, or the option (change
restart to start if you’re starting NTP for the first time). Most distributions configure NTP
to start whenever the system boots once you install the server. Consult Chapter 5, “Booting
Linux and Editing Files,” for details of changing this configuration.

To verify that NTP is working, you can use ntpq, which is an interactive program that
accepts various commands. Figure 7.2 shows it in operation, displaying the output of the
peers command, which displays the servers to which your NTP server is connected. In
Figure 7.2, three external servers are listed, plus LOCAL(0), which is the last-resort refer-
ence source of the computer’s own clock. The refid column shows the server to which
each system is synchronized, the st column shows the stratum of the server, and additional
columns show more technical information. The server to which yours is synchronized is

04836book.indd 358 1/16/09 9:36:46 AM

Maintaining the System Time 359

denoted by an asterisk (*), other servers with good times are indicated by plus signs (+),
and most other symbols (such as x and -) denote servers that have been discarded from
consideration for various reasons. Consult ntpq’s man page for more information about its
operation.

f i gu r e 7. 2 The ntpq program enables you to verify that an NTP server is functioning
correctly.

You won’t see a server selected as the source until a few minutes after you
restart the NTP daemon. The reason is that your local NTP process takes a
while to determine which of the sources is providing the best signal.

Configuring NTP Clients
Once you’ve configured one or more NTP servers, you can configure the rest of your sys-
tems to point to them. Their configuration is done just like the NTP server configuration,
with a couple of exceptions:

You set your NTP clients to refer to the NTP server (or servers) you’ve just configured Ûn

rather than to an outside NTP source. This way, your local systems won’t put an addi-
tional burden on the outside NTP server you’ve selected.

You may want to ensure that your NTP clients can’t be accessed as servers. This is Ûn

a security measure. You can do this with an iptables firewall rule or by using the
restrict default ignore line in ntp.conf. This line tells the server to ignore all
incoming NTP requests. Ideally, you should use both methods.

Once you’ve configured a client, restart its NTP daemon. You can then use ntpq to
check its status. You should see that it refers only to your network’s own NTP server or
servers. These systems should be listed as belonging to a stratum with a number one higher
than the servers to which they refer.

In some cases, a simpler way to set the time on a client is to use ntpdate. This program is
part of the NTP suite, and it performs a one-time clock setting. To use it, type the command
name followed by the hostname or IP address of an NTP server:

ntpdate clock.example.com

04836book.indd 359 1/16/09 9:36:46 AM

360 Chapter 7 n Administering the System

Some NTP packages include a call to ntpdate in their NTP daemon startup scripts in
order to ensure that the system is set to the correct time when it starts. The ntpdate com-
mand, however, has been deprecated and could disappear from the NTP package at any
time. Instead, you can start ntpd with its -g option, which enables it to perform a one-time
clock setting to a value that’s wildly divergent from the current time. (Ordinarily, ntpd exits
if the time server’s time differs from the local time by more than a few minutes.)

Serving Time to windows Systems

If your network hosts both Linux and Windows systems, you may want to use a Linux
system as a time source for Windows clients or conceivably even use a Windows server
as a time source for Linux clients. One way to do this is to run NTP on Windows. Consult
http://geodsoft.com/howto/timesync/wininstall.htm or perform a Web search to
locate NTP software for Windows systems. For Windows NT/200x /XP/Vista, you can type
NET TIME /SETSNTP:time.server, where time.server is the name of your local NTP time
server. This command performs a one-time setting of the clock but doesn’t run in the
background as the full NTP package does on Linux. Running this command in a Windows
login script may be adequate for your purposes.

For older Windows 9x /Me systems, you can type NET TIME \\SERVER /SET /YES to have
the system set the time to the time maintained by SERVER, which must be a Windows or
Samba file or print server. This command doesn’t use NTP, but if you’ve got a Linux sys-
tem that runs both NTP and Samba, it can be a good way to get the job done.

Running Jobs in the Future
Some system maintenance tasks should be performed at regular intervals and are highly auto-
mated. For instance, the /tmp directory (which holds temporary files created by many users)
tends to collect useless data files. Linux provides a means of scheduling tasks to run at speci-
fied times to handle such issues. This tool is the cron program, which runs what are known as
cron jobs. A related tool is at, which enables you to run a command on a one-time basis at a
specified point in the future as opposed to doing so on a regular basis, as cron does.

Understanding the Role of cron
The cron program is a daemon, so it runs continuously, looking for events that cause it to
spring into action. Unlike most daemons, which are network servers, cron responds to tem-
poral events. Specifically, it “wakes up” once a minute, examines configuration files in the

04836book.indd 360 1/16/09 9:36:46 AM

Running Jobs in the Future 361

/var/spool/cron and /etc/cron.d directories and the /etc/crontab file, and executes com-
mands specified by these configuration files if the time matches the time listed in the files.

There are two types of cron jobs: system cron jobs and user cron jobs. System cron jobs
are run as root and perform system-wide maintenance tasks. By default, most Linux dis-
tributions include system cron jobs that clean out old files from /tmp, perform log rotation
(as described earlier, in “Rotating Log Files”), and so on. You can add to this repertoire,
as described shortly. Ordinary users can create user cron jobs, which might run some user
program on a regular basis. You can also create a user cron job as root, which might be
handy if you need to perform some task at a time not supported by the system cron jobs,
which are scheduled rather rigidly.

One of the critical points to remember about cron jobs is that they run unsupervised.
Therefore, you shouldn’t call any program in a cron job if that program requires user input.
For instance, you wouldn’t run a text editor in a cron job; but you might run a script that
automatically manipulates text files, such as log files.

Creating System cron Jobs
The /etc/crontab file controls system cron jobs. This file normally begins with several
lines that set environment variables, such as $PATH and $MAILTO (the former sets the path,
and the latter is the address to which programs’ output is mailed). The file then contains
several lines that resemble the following:

02 4 * * * root run-parts /etc/cron.daily

This line begins with five fields that specify the time. The fields are, in order, the minute
(0–59), the hour (0–23), the day of the month (1–31), the month (1–12), and the day of the
week (0–7; both 0 and 7 correspond to Sunday). For the month and day of the week values,
you can use the first three letters of the name rather than a number, if you like.

In all cases, you can specify multiple values in several ways:

An asterisk (Ûn *) matches all possible values.

A list separated by commas (such as Ûn 0,6,12,18) matches any of the specified values.

Two values separated by a dash (Ûn -) indicate a range, inclusive of the end points. For
instance, 9-17 in the hour field specifies a time of from 9:00 a.m. to 5:00 p.m.

A slash, when used in conjunction with some other multi-value option, specifies stepped Ûn

values—a range in which some members are skipped. For instance, */10 in the minute
field indicates a job that’s run every 10 minutes.

After the first five fields, /etc/crontab entries continue with the account name to be
used when executing the program (root in the preceding example) and the command to
be run (run-parts /etc/cron.daily in this example). The default /etc/crontab entries
generally use run-parts, cronloop, or a similar utility that runs any executable scripts
within a directory. Thus, the preceding example runs all the scripts in /etc/cron.daily at
4:02 a.m. every day. Most distributions include monthly, daily, weekly, and hourly system
cron jobs, each corresponding to scripts in a directory called /etc/cron.interval, where

04836book.indd 361 1/16/09 9:36:46 AM

362 Chapter 7 n Administering the System

interval is a word associated with the run frequency. Others place these scripts in /etc/
cron.d/interval directories.

The exact times chosen for system cron jobs to execute vary from one dis-
tribution to another. Normally, though, daily and longer-interval cron jobs
run early in the morning—between midnight and 6:00 a.m. Check your
/etc/crontab file to determine when your system cron jobs run.

To create a new system cron job, you may create a script to perform the task you want
performed (as described in Chapter 9, “Writing Scripts, Configuring E-Mail, and Using
Databases”) and copy that script to the appropriate /etc/cron.interval directory. When
the runtime next rolls around, cron will run the script.

Before submitting a script as a cron job, test it thoroughly. This is particu-
larly important if the cron job will run when you’re not around. You don’t
want a bug in your cron job script to cause problems by filling the hard
disk with useless files or producing thousands of e-mail messages when
you’re not present to quickly correct the problem.

If you need to run a cron job at a time or interval that’s not supported by the standard
/etc/crontab, you can either modify that file to change or add the cron job runtime or
create a user cron job, as described shortly. If you choose to modify the system cron job
facility, model your changes after an existing entry, changing the times and script storage
directory as required.

System cron job storage directories should be owned by root, and only
root should be able to write to them. If ordinary users can write to a sys-
tem cron directory, unscrupulous users can write scripts to give them-
selves superuser privileges and place them in the system cron directory.
The next time cron runs those scripts, the users will have full administra-
tive access to the system.

Creating User cron Jobs
To create a user cron job, you use the crontab utility, not to be confused with the /etc/
crontab configuration file. The syntax for crontab is as follows:

crontab [-u user] [-l | -e | -r] [file]

If given without the -u user parameter, crontab modifies the cron job associated with
the current user. (User cron jobs are often called crontabs; but because the word is already
used in reference to the system-wide configuration file and the utility itself, this usage can
be perplexing.) The crontab utility can become confused by the use of su to change the

04836book.indd 362 1/16/09 9:36:47 AM

Running Jobs in the Future 363

current user identity, so if you use this command, it’s safest to also use -u user, even when
you’re modifying your own cron job.

If you want to work directly on a cron job, use the -l, -r, or -e option. The -l option
causes crontab to display the current cron job; -r removes the current cron job; and -e
opens an editor so that you can edit the current cron job. (Vi is the default editor, but you
can change this by setting the VISUAL or EDITOR environment variable, as described in
Chapter 1.)

Alternatively, you can create a cron job configuration file and pass the filename to crontab
using the file parameter. For instance, crontab -u tbaker my-cron causes crontab to use
my-cron for tbaker’s cron jobs.

Whether you create the cron job and submit it via the file parameter or edit it via -e,
the format of the cron file is similar to that described earlier. You can set environment
variables by using the form VARIABLE=value, or you can specify a command preceded by
five numbers or wildcards to indicate when the job is to run. In a user cron job, you do
not specify the username used to execute the job, as you do with system cron jobs. That
information is derived from the owner of the cron job. Listing 7.2 shows a sample cron job
file. This file runs two programs at different intervals: The fetchmail program runs every
30 minutes (on the hour and half hour), and clean-adouble runs on Mondays at 2:00 a.m.
Both programs are specified via complete paths, but you can include a PATH environment
variable and omit the complete path specifications.

listing 7.2: A Sample User cron Job File

SHELL=/bin/bash

MAILTO=tbaker

HOME=/home/tbaker

0,30 * * * * /usr/bin/fetchmail -s

0 2 * * mon /usr/local/bin/clean-adouble $HOME

Ultimately, user cron job files are stored in the /var/spool/cron, /var/spool/cron/tabs,
or /var/spool/cron/crontabs directory. Each file in this directory is named after the user
under whose name it runs; for example, tbaker’s file might be called /var/spool/cron/
tabs/tbaker. You shouldn’t directly edit the files in this directory; instead, use crontab to
make changes.

Access to the cron facility may be restricted in several ways:

Executable permissions The permissions on the cron and crontab programs may be
restricted using standard Linux permissions mechanisms, as described in Chapter 4. Not
all distributions configure themselves in this way, but for those that do, users who should
be able to schedule jobs using cron should be added to the appropriate group. This group
is often called cron, but you should check the group owner and permissions on the /usr/
sbin/cron and /usr/bin/crontab program files to be sure.

Allowed users list The /etc/cron.allow file contains a list of users who should be permit-
ted access to cron. If this file is present, only users whose names appear in the file may use
cron; all others are denied access. If this file isn’t present, anybody may use cron, assuming
access isn’t restricted by executable permissions or a disallowed users list.

04836book.indd 363 1/16/09 9:36:47 AM

364 Chapter 7 n Administering the System

Disallowed users list The /etc/cron.deny file contains a list of users who should be
denied access to cron. If this file is present, any user whose name appears in the file is
denied access to cron, but all others may use it, assuming executable permissions and the
allowed users list don’t restrict access.

Exercise 7.2 guides you through the process of creating user cron jobs.

e x e r c i S e 7. 2

creating user cron jobs

cron jobs can be a useful way to run programs at regular times. In this exercise, you’ll
create a simple user cron job that will mail you the output of an ifconfig command on a
daily basis. This exercise assumes that you’re authorized to use cron as an ordinary user.
To configure your cron job, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Create and edit a file called cronjob in your home directory. Use your favorite text
editor for this purpose. The file should contain the following lines:

SHELL=/bin/bash

MAILTO=yourusername

00 12 * * * /sbin/ifconfig

Be sure to type these lines exactly; a typo will cause problems. One exception:
Substitute your e-mail address on the Linux system or elsewhere for yourusername;
cron uses the MAILTO environment variable to determine to whom to e-mail the out-
put of cron jobs.

4. Type crontab cronjob to install the cronjob file as a cron job. Note that this com-
mand replaces any existing user cron jobs that may exist. If you’ve already defined
user cron jobs for your account, you should edit your existing cronjob file to add the
line calling ifconfig rather than create a new file.

5. Wait for 12:00 noon (00 12 in the cron time format). When this time rolls around, you
should have a new e-mail waiting for you with the contents of the ifconfig output.

Instead of waiting for 12:00 noon, you can substitute a time that’s a couple of minutes in
the future. Remember that cron specifies minutes first, followed by the hour in a 24-hour
format. For instance, if you create the file at 3:52 p.m., you might enter 54 15 as the first
two numbers on the final line of the file; this will cause the cron job to execute at 15:54 on
a 24-hour clock, or 3:54 p.m.

04836book.indd 364 1/16/09 9:36:47 AM

Running Jobs in the Future 365

Using anacron

Although cron is a great tool for performing certain tasks, such as rotating log files, on sys-
tems that are up most or all of the time, it’s a much less useful tool on systems that are fre-
quently shut down, such as notebook computers or even many desktop systems. Frequently,
late-night cron jobs are never executed on such systems, which can lead to bloated log files,
cluttered /tmp directories, and other problems.

One solution to such problems is anacron (http://anacron.sourceforge.net). This
program is designed as a supplement to cron to ensure that regular maintenance jobs are
executed at reasonable intervals. It works by keeping a record of programs it should execute
and how frequently it should do so, in days. Whenever anacron is run, it checks to see when
it last executed each of the programs it’s configured to manage. If a period greater than the
program’s execution interval has passed, anacron runs the program. Typically, anacron
itself is run from a system startup script, and perhaps from a cron job. You can then recon-
figure your regular system cron jobs as anacron jobs and be sure they’ll execute even on
systems that are regularly shut down for long stretches of time.

Like cron, anacron is controlled through a configuration file named after itself: /etc/
anacrontab. This file consists of three main types of lines: comment lines (denoted by a
leading hash mark, #), environment variable assignments (as in SHELL=/bin/bash), and job
definition lines. This last type of line contains four fields:

period delay identifier command

The period is how frequently, in days, the command should be run. The delay is a delay
period, in minutes, between the time anacron starts and the time the command is run, if it
should be run. This feature is intended to help keep the system from being overloaded if ana-
cron determines it needs to run many commands when it starts up. The identifier is a string
that identifies the command. You can pass it to anacron on the command line to have ana-
cron check and, if necessary, run only that one command. Finally, command is the command
to be run. This is a single command or script name, optionally followed by any parameters it
may take.

Listing 7.3 shows a sample /etc/anacrontab file. This file sets a couple of environment
variables; PATH is particularly important if any scripts call programs without specifying their
complete paths. The three job definition lines tell anacron to run the run-parts command,
passing it the name of a different directory for each line. This command is used on some dis-
tributions to run cron jobs, so the effect of calling it from anacron is to take over cron’s duties.
The first line, run once a day, causes anacron to run (via run-parts) the scripts in /etc/cron.
daily; the second line causes the scripts in /etc/cron.weekly to be run once a week; and the
third, run once every 30 days, runs the scripts in /etc/cron.monthly.

listing 7.3

SA m Ple /etc/anacrontab f i le

SHELL=/bin/bash

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

04836book.indd 365 1/16/09 9:36:47 AM

366 Chapter 7 n Administering the System

format: period delay job-identifier command

1 5 cron.daily run-parts /etc/cron.daily

7 10 cron.weekly run-parts /etc/cron.weekly

30 15 cron.monthly run-parts /etc/cron.monthly

Of course, to do any good, anacron must be called itself. This is typically done in one of
two ways:

Via a startup script You can create a startup script to run anacron. A simple SysV startup
script that takes no options but that runs anacron should do the job if configured to run from
your regular runlevel. Alternatively, you can place a call to anacron in a local startup script,
such as Fedora and Red Hat’s /etc/rc.d/rc.local or SUSE’s /etc/boot.d/boot.local.

Via a cron job You can create a cron job to run anacron. Typically, this call will replace
your regular system cron job entries (in /etc/crontab), and you’ll probably want to call
anacron on a daily basis or more frequently.

The startup script approach is best employed on systems that are shut down and started
up frequently, such as laptops or desktop systems that are regularly shut down at the end
of the day. One drawback to this approach is that it can cause sluggish performance when
the system is booted if anacron needs to run a time-consuming task. Calling anacron via a
cron job can shift the burden to off hours, but if cron can reliably run anacron, cron can as
easily and reliably run the jobs that anacron runs. Typically, you use a cron job if the sys-
tem is sometimes, but not always, left running overnight. This ensures that anacron and the
jobs it handles are run fairly frequently, if not on a completely regular basis. Alternatively,
you can call anacron more frequently than once a day. For instance, if it’s called once every
six hours, it will almost certainly be called during a typical eight-hour workday.

For a desktop system, you might try calling anacron via a cron job at the
user’s typical lunch break. This will help minimize the disruption caused by
any resource-intensive programs that anacron must run.

No matter how you run anacron, you should be sure to disable any cron jobs that anacron
now handles. If you don’t do so, those tasks will be performed twice, which may needlessly
burden your system. Because anacron measures its run intervals in days, it’s not a useful utility
for running hourly cron jobs. Thus, you shouldn’t eliminate any hourly system cron jobs when
you edit your cron configuration for anacron.

Using at
Sometimes cron and anacron are overkill. You may simply want to run a single command
at a specific point in the future on a one-time basis rather than on an ongoing basis. For
this task, Linux provides another command: at. In ordinary use, this command takes a
single option (although options to fine-tune its behavior are also available): a time. This
time can take any of several forms:

04836book.indd 366 1/16/09 9:36:48 AM

Running Jobs in the Future 367

Time of day You can specify the time of day as HH:MM, optionally followed by AM or PM if
you use a 12-hour format. If the specified time has already passed, the operation is sched-
uled for the next occurrence of that time—that is, for the next day.

noon, midnight, or teatime These three keywords stand for what you’d expect (teatime is
4:00 p.m.).

Day specification To schedule an at job more than 24 hours in advance, you must add
a day specification after the time-of-day specification. This can be done in numeric form,
using the format MMDDYY, MM/DD/YY or DD.MM.YY. Alternatively, you can specify the date as
month-name day or month-name day year.

A specified period in the future You can specify a time using the keyword now, a plus sign
(+), and a time period, as in now + 2 hours to run a job in two hours.

The at command relies on a daemon, atd, to be running. If your system
doesn’t start atd automatically, you may need to configure a SysV startup
script to do so.

When you run at and give it a time specification, the program responds with its own
prompt, at>, which you can treat much like your normal bash or other command shell
prompt. When you’re done typing commands, press Ctrl+D to terminate input. Alternatively,
you can pass a file with commands by using the -f parameter to at, as in at -f commands.sh
noon to use the contents of commands.sh as the commands you want to run at noon.

The at command has several support tools. The most important of these is atd, the at
daemon. This program must be running for at to do its work. If it’s not, check for its pres-
ence using ps. If it’s not running, look for a SysV startup script and ensure that it’s enabled,
as described in Chapter 5.

Other at support programs include atq, which lists pending at jobs; atrm, which
removes an at job from the queue; and batch, which works much like at but executes jobs
when the system load level drops below 0.8. These utilities are all fairly simple. To use atq,
simply type its name. (The program does support a couple of options, but chances are you
won’t need them; consult atq’s man page for details.) To use atrm, type the program name
and the number of the at job, as returned by atq. For instance, you might type atrm 12 to
remove at job number 12.

The at facility supports access restrictions similar to those of cron. Specifically, the /etc/
at.allow and /etc/at.deny files work analogously to the /etc/cron.allow and /etc/cron
.deny files. There are a few wrinkles with at, though. Specifically, if neither at.allow nor
at.deny exists, only root may use at. If at.allow exists, the users it lists are granted access
to at; if at.deny exists, everybody except those mentioned in this file is granted access to at.
This differs from cron, in which everybody is granted access if neither access-control file is
present. This tighter default security on at means that the program is seldom installed with
restrictive execute permissions, but of course you can use program file permissions to deny
ordinary users the ability to run at if you want an extra layer of security.

04836book.indd 367 1/16/09 9:36:48 AM

368 Chapter 7 n Administering the System

Summary
Routine system administration involves a variety of tasks, many of which center around
user management. Adding, deleting, and modifying user accounts and groups are critical
tasks that all system administrators must master. Also related to users, you should know
where to go to modify the default user environment.

System log files are critical troubleshooting tools that are maintained by the system.
You should be able to configure what data is logged to what files and know how to use
these log files.

Time management is important in Linux. Setting the Linux clocks (both hardware and
software) and configuring NTP to keep the software clock accurate are important tasks.
Tools that rely on the time include cron, anacron, and at, which enable the system to run
programs in the future. These tools are used for many common system tasks, including
rotating log files.

Exam Essentials

Summarize methods of creating and modifying user accounts. Accounts can be created
or modified with the help of tools designed for the purpose, such as useradd and usermod.
Alternatively, you can directly edit the /etc/passwd and /etc/shadow files, which hold the
account information.

Describe the function of groups in Linux. Linux groups enable security features to be applied
to arbitrary groups of users. Each group holds an arbitrary collection of users, and group per-
missions can be set on files giving all group members the same access rights to the files.

Explain the purpose of the skeleton files. Skeleton files provide a core set of configuration
files that should be present in users’ home directories when those directories are created.
They provide a starting point for users to modify their important shell and other configura-
tion files.

Summarize how to configure system logging. System logging is controlled via the /etc/
syslog.conf file. Lines in this file describe what types of log data, generated by programs,
are sent to log files and to which log files the log messages should go.

Describe how log rotation is managed. Log rotation is controlled via the /etc/logrotate
.conf file (which typically refers to files in /etc/logrotate.d). Entries in these files tell the
system whether to rotate logs at fixed intervals or when they reach particular sizes. When a
log rotates, it’s renamed (and possibly compressed), a new log file is created, and the oldest
archived log file may be deleted.

Explain the two types of clocks in x86 hardware. The hardware clock keeps time when
the system is powered down, but it isn’t used by most programs while the system is running.

04836book.indd 368 1/16/09 9:36:48 AM

Exam Essentials 369

Such programs refer to the software clock, which is set from the hardware clock when the
computer boots.

Summarize the function of NTP. The Network Time Protocol (NTP) enables a computer
to set its clock based on the time maintained by an NTP server system. NTP can function
as a tiered protocol, enabling one system to function as a client to an NTP server and as a
server to additional NTP clients. This structure enables a single highly accurate time source
to be used by anywhere from a few to (theoretically) billions of computers via a tiered sys-
tem of links.

Explain the difference between system and user cron jobs. System cron jobs are controlled
from /etc/crontab, are created by root, and may be run as any user (but most commonly as
root). System cron jobs are typically run at certain fixed times on an hourly, daily, weekly,
or monthly basis. User cron jobs may be created by any user (various security measures per-
mitting), are run under the authority of the account with which they’re associated, and may
be run at just about any repeating interval desired.

04836book.indd 369 1/16/09 9:36:48 AM

370 Chapter 7 n Administering the System

Review Questions

1. Which of the following are legal Linux usernames? (Select all that apply.)

A. larrythemoose

B. 4sale

C. PamJones

D. Samuel_Bernard_Delaney_the_Fourth

2. Why are groups important to the Linux user administration and security models?

A. They can be used to provide a set of users with access to files without giving all users
access to the files.

B. They allow you to set a single login password for all users within a defined group.

C. Users may assign file ownership to a group, thereby hiding their own creation of the file.

D. By deleting a group, you can quickly remove the accounts for all users in the group.

3. An administrator types chage -M 7 time. What is the effect of this command?

A. The time account’s password must be changed at least once every seven days.

B. All users must change their passwords at least once every seven days.

C. All users are permitted to change their passwords at most seven times.

D. The time account’s age is set to seven months.

4. What is wrong with the following /etc/passwd file entry? (Select all that apply.)
4sally:x:529:Sally Jones:/home/myhome:/bin/passwd

A. The default shell is set to /bin/passwd, which is an invalid shell.

B. The username is invalid; Linux usernames can’t begin with a number.

C. The home directory doesn’t match the username.

D. Either the UID or the GID field is missing.

5. You want sally, tom, and dale to be members of the group managers (GID 501). How
would you edit the managers entry in /etc/group to accomplish this goal?

A. managers:501:sally tom dale

B. managers:501:sally:tom:dale

C. managers:x:501:sally:tom:dale

D. managers:x:501:dale,sally,tom

6. What types of files might be reasonable files to include in /etc/skel? (Select all that apply.)

A. A copy of the /etc/shadow file

B. An empty set of directories to encourage good file management practices

C. A README or similar welcome file for new users

D. A starting .bashrc file

04836book.indd 370 1/16/09 9:36:49 AM

Review Questions 371

7. What would a Linux system administrator type to remove the nemo account and its home
directory?

A. userdel nemo

B. userdel -f nemo

C. userdel -r nemo

D. rm -r /home/nemo

8. Which of the following system logging codes represents the highest priority?

A. emerg

B. warning

C. crit

D. debug

9. Which of the following configuration files does the logrotate program consult for its
settings?

A. /etc/logrotate.conf

B. /usr/sbin/logrotate/logrotate.conf

C. /usr/src/logrotate/logrotate.conf

D. /etc/logrotate/.conf

10. You want to create a log file entry noting that you’re manually shutting down the system to
add a new network card. How might you create this log entry, just prior to using shutdown?

A. dmesg -l “shutting down to add network card”

B. syslog shutting down to add network card

C. rsyslogd “shutting down to add network card”

D. logger shutting down to add network card

11. Your manager has asked that you configure logrotate to run on a regular, unattended
basis. What utility/feature should you configure to make this possible?

A. at

B. logrotate.d

C. cron

D. inittab

12. You’ve set your system (software) clock on a Linux-only computer to the correct time,
and now you want to set the hardware clock to match. What command might you type to
accomplish this goal?

A. date --sethwclock

B. ntpdate

C. hwclock --utc --systohc

D. time --set --hw

04836book.indd 371 1/16/09 9:36:49 AM

372 Chapter 7 n Administering the System

13. As root, you type date 12110710. What will be the effect?

A. The software clock will be set to 7:10 a.m. on December 11 of the current year.

B. The software clock will be set to 12:11 p.m. on October 7 of the current year.

C. The software clock will be set to 7:10 a.m. on November 12 of the current year.

D. The software clock will be set to 12:11 p.m. on July 10 of the current year.

14. What will be the effect of a computer having the following two lines in /etc/ntp.conf?
server pool.ntp.org

server tardis.example.org

A. The local computer’s NTP server will poll a server in the public NTP server pool; the
first server option overrides subsequent server options.

B. The local computer’s NTP server will poll the tardis.example.org time server; the
last server option overrides earlier server options.

C. The local computer’s NTP server will poll both a server in the public NTP server pool
and tardis.example.org and use whichever site provides the cleanest time data.

D. The local computer’s NTP server will refuse to run because of a malformed server
specification in /etc/ntp.conf.

15. You’ve configured one computer on your five-computer network, gateway.pangaea.edu,
as an NTP server that obtains its time signal from ntp.example.com. What computer(s)
should your network’s other computers use as their time source(s)?

A. You should consult a public NTP server list to locate the best server for you.

B. Both gateway.pangaea.edu and ntp.example.com.

C. Only ntp.example.com.

D. Only gateway.pangaea.edu.

16. Which of the following tasks are likely to be handled by a cron job? (Select all that apply.)

A. Starting an important server when the computer boots

B. Finding and deleting old temporary files

C. Scripting supervised account creation

D. Monitoring the status of servers and e-mailing a report to the superuser

17. Which of the following lines, if used in a user cron job, will run /usr/local/bin/cleanup
twice a day?

A. 15 7,19 * * * tbaker /usr/local/bin/cleanup

B. 15 7,19 * * * /usr/local/bin/cleanup

C. 15 */2 * * * tbaker /usr/local/bin/cleanup

D. 15 */2 * * * /usr/local/bin/cleanup

04836book.indd 372 1/16/09 9:36:49 AM

Review Questions 373

18. You’re installing Linux on a laptop computer. Which of the following programs might you
want to add to ensure that log rotation is handled correctly?

A. tempus

B. anacron

C. crontab

D. ntpd

19. What do the following commands accomplish? (The administrator presses Ctrl+D after typing
the second command.)
at teatime

at> /usr/local/bin/system-maintenance

A. Nothing; these commands aren’t valid.

B. Nothing; teatime isn’t a valid option to at.

C. Nothing; you may only type valid bash built-in commands at the at> prompt.

D. The /usr/local/bin/system-maintenance program or script is run at 4:00 p.m..

20. How might you schedule a script to run once a day on a Linux computer? (Select all
that apply.)

A. Place the script, or a link to it, in /etc/cron.daily.

B. Use the at command to schedule the specified script to run on a daily basis at a time of
your choosing.

C. Create a user cron job that calls the specified script once a day at a time of your choosing,
and install that cron job using crontab.

D. Use run-parts to schedule the specified script to run on a daily basis.

04836book.indd 373 1/16/09 9:36:49 AM

374 Chapter 7 n Administering the System

Answers to Review Questions

1. A, C. A Linux username must contain fewer than 32 characters and start with a letter, and it
may consist of letters, numbers, and certain symbols. Options A and C both meet these crite-
ria. (Option C uses mixed upper- and lowercase characters, which is legal but discouraged.)
Option B begins with a number, which is invalid. Option D is longer than 32 characters.

2. A. Groups provide a good method of file-access control. Although they may have passwords,
these are not account login passwords; those passwords are set on a per-account basis. Files
do have associated groups, but these are in addition to individual file ownership and so they
can’t be used to mask the file’s owner. Deleting a group does not delete all the accounts asso-
ciated with the group.

3. A. The chage command changes various account expiration options. The -M parameter
sets the maximum number of days for which a password is valid, and in the context of the
given command, time is a username. Thus, option A is correct. Options B, C, and D are
all made up.

4. B, D. As stated in option B, Linux usernames may not begin with numbers, so the username
is invalid. The /etc/passwd entries have third and fourth fields of the UID and the GID,
but this line has only one of those fields (which one is intended is impossible to determine);
this example line’s fourth field is clearly the fifth field of a valid entry. Option A is incorrect
because, although /bin/passwd is an unorthodox login shell, it’s perfectly valid. This con-
figuration might be used on, say, a Samba file server or a POP mail server to enable users to
change their passwords via SSH without granting login shell access. Option C is a correct
observation but an incorrect answer; the username and the user’s home directory name
need not match.

5. D. Option D shows a valid /etc/group entry that has the desired effect. (Note that the
order of users in the comma-separated user list is unimportant.) Option A has two prob-
lems: It’s missing a password field (x in the correct entry), and the usernames are separated
by spaces rather than commas. Option B also has two problems: It’s missing a password
field, and its usernames are separated by colons rather than commas. Option C has just one
problem: Its usernames are separated by colons rather than commas.

6. B, C, D. Files in /etc/skel are copied from this directory to new users’ home directories
by certain account-creation tools. Thus, files you want in all new users’ home directories
should reside in /etc/skel. Options B, C, and D all describe reasonable possibilities,
although none is absolutely required. Including a copy of /etc/shadow in /etc/skel
would be a very bad idea, though, because this would give all users access to all other users’
encrypted passwords, at least as of the moment of account creation.

04836book.indd 374 1/16/09 9:36:49 AM

Answers to Review Questions 375

7. C. The userdel command deletes an account, and the -r option to userdel causes it to
delete the user’s home directory and mail spool, thus satisfying the terms of the question.
Option A deletes the account but leaves the user’s home directory intact. Option B does the
same; the -f option forces account deletion and file removal under some circumstances, but
it’s only meaningful when -r is also used. Option D’s rm command deletes the user’s home
directory (assuming it’s located in the conventional place, given the username) but doesn’t
delete the user’s account.

8. A. The emerg priority code is the highest code available and so is higher than all the other
options. (The panic code is equivalent to emerg but isn’t one of the options.) From highest
to lowest priorities, the codes given as options are emerg, crit, warning, and debug.

9. A. The logrotate program consults a configuration file called /etc/logrotate.conf,
which includes several default settings and typically refers to files in /etc/logrotate.d to
handle specific log files.

10. D. The logger utility can be used to create a one-time log file entry that you specify. In its
simplest form, it takes no special arguments, just a message to be inserted in the log file, as
in option D. The dmesg utility in option A is used to review the kernel ring buffer; it doesn’t
create log file entries. Option B’s syslog command isn’t a Linux user-mode command,
although it is the name of the logging system generically, as well as a programming lan-
guage command name. Option C’s rsyslogd is the name of one of several system logging
daemons; it maintains the system log but isn’t used to manually insert log entries.

11. C. The logrotate program can be started automatically—and unattended—on a regular
basis by adding an entry for it in cron. The at utility would be used if you wanted the pro-
gram to run only once, whereas logrotate.d defines how the program is to handle specific
log files. The inittab file is used for services and startup and not for individual programs.

12. C. The hwclock utility is used to view or set the hardware clock. The --utc option tells it
to use UTC, which is appropriate for a Linux-only system, and --systohc sets the hard-
ware clock based on the current value of the software clock. Thus, option C is correct.
Option A’s date utility can be used to set the software clock but not the hardware clock; it
has no --sethwclock option. Option B’s ntpdate is used to set the software clock to the
time maintained by an NTP server; it doesn’t directly set the hardware clock. Option D’s
time command is used to time how long a command takes to complete; it has no --set or
--hw option and does not set the hardware clock.

13. A. The format of the date command’s date code is [MMDDhhmm[[CC]YY][.ss]]. Given
that the question specified an eight-digit code, this means that the ordering of the items, in
two-digit blocks, is month-day-hour-minute. Option A correctly parses this order, whereas
options B, C, and D do not.

14. C. Multiple server entries in /etc/ntp.conf tell the system to poll all the named servers
and to use whichever one provides the best time data. Thus, option C is correct. (The pool.
ntp.org subdomain and numbered computers within that subdomain give round-robin
access to a variety of public time servers.) Options A and B both incorrectly state that one
server statement overrides another, when in fact this isn’t the case. The server statements
shown in the question are properly formed.

04836book.indd 375 1/16/09 9:36:50 AM

376 Chapter 7 n Administering the System

15. D. Once you’ve configured one computer on your network to use an outside time source and
run NTP, the rest of your computers should use the first computer as their time reference.
This practice reduces the load on the external time servers, as well as your own external net-
work traffic. Thus, option D is correct. (Very large networks might configure two or three
internal time servers that refer to outside servers for redundancy, but this isn’t necessary for
the small network described in the question.) Option A describes the procedure to locate a
time server for the first computer configured (gateway.pangaea.edu) but not for subsequent
computers. Although configuring other computers to use ntp.example.com instead of or in
addition to gateway.pangaea.edu is possible, doing so will needlessly increase your net-
work traffic and the load on the ntp.example.com server.

16. B, D. The cron utility is a good tool for performing tasks that can be done in an unsuper-
vised manner, like deleting old temporary files or checking to see that servers are running
correctly. Tasks that require interaction, like creating accounts, aren’t good candidates for
cron jobs, which must execute unsupervised. Although a cron job could restart a crashed
server, it’s not normally used to start a server when the system boots; that’s done through
SysV startup scripts or a super server.

17. B. User cron jobs don’t include a username specification (tbaker in options A and C). The
*/2 specification for the hour in options C and D causes the job to execute every other hour;
the 7,19 specification in options A and B causes it to execute twice a day, on the 7th and 19th
hours (in conjunction with the 15 minute specification, that means at 7:15 a.m. and 7:15 p.m.).

18. B. The anacron program is a supplement to cron that helps ensure that log rotation, /tmp
directory cleanup, and other traditional cron tasks are handled even when the computer is
shut down (and, hence, when cron isn’t running) for extended periods of time. Thus, this
is the program to add to the system to achieve the stated goal. There is no common Linux
utility called tempus. Option C’s crontab is the name of a file or program for controlling
cron, which is likely to be an unreliable means of log rotation on a laptop computer. The
ntpd program is the NTP daemon, which helps keep the system clock in sync with an exter-
nal source. Although running ntpd on a laptop computer is possible, it won’t directly help
with the task of scheduling log rotation.

19. D. The at command runs a specified program at the stated time in the future. This time
may be specified in several ways, one of which is teatime, which stands for 4:00 p.m.
Thus, option D is correct. The objections stated in options A, B, and C are all invalid.

20. A, C. The contents of /etc/cron.daily are automatically run on a daily basis in most
Linux distributions, and the crontab utility can create user cron jobs that run programs at
arbitrary time intervals, so both A and C are correct. The at command noted in option B
can be used to run a program a single time, but not on a regular basis (such as daily). The
run-parts utility is used by some distributions as a tool to help run programs in the /etc/
cron.* subdirectories, but it’s not used to schedule jobs.

04836book.indd 376 1/16/09 9:36:50 AM

Chapter

8
Configuring Basic
Networking

The followiNg liNux ProfessioNal
iNsTiTuTe oBjeCTives are Covered iN
This ChaPTer:

1.109.1 Fundamentals of internet protocols (weight: 4)ÛÛ

1.109.2 Basic network configuration (weight: 4)ÛÛ

1.109.3 Basic network troubleshooting (weight: 4)ÛÛ

1.109.4 Configure client-side DNS (weight: 2)ÛÛ

04836book.indd 377 12/4/08 10:20:49 AM

Most Linux systems are connected to a network, either as
clients or as servers (and often as both). Even home computers
usually connect to the Internet in one way or another. For this

reason, understanding how to set up Linux’s basic networking tools is necessary for fully
configuring Linux. To begin this task, you must first understand the basics of modern net-
working, such as the nature of network addresses and the types of tools that are commonly
used on networks. From there, you can move on to Linux network configuration, including
tasks such as setting a computer’s address, routing, and name resolution. Unfortunately,
network configuration sometimes goes wrong; understanding the tools and techniques used
to diagnose and fix network problems is a necessary part of network configuration, so this
chapter covers the basics of network troubleshooting.

Understanding TCP/IP Networking
Networking involves quite a few components that are built atop one another. These include
network hardware, data packets, and protocols for data exchange. Together, these compo-
nents make up a network stack. The most common network stack today is the Transmission
Control Protocol/Internet Protocol (TCP/IP) stack, but this isn’t the only stack available.
Nonetheless, understanding the basics of TCP/IP theory will help you to configure and
manage networks.

Knowing the Basic Functions of Network Hardware
Network hardware is designed to enable two or more computers to communicate with one
another. Modern computers have network interfaces built into their motherboards, but inter-
nal (PCI or ISA) network cards and external (USB, PC Card, and similar) network interfaces
are also available. Many networks rely on wires or cables to transmit data between machines
as electrical impulses, but network protocols that use radio waves or even light to do the job
are growing rapidly in popularity.

Sometimes the line between network hardware and peripheral interface ports can be
blurry. For instance, a parallel port normally isn’t considered a network port; but when it’s
used with the Parallel Line Interface Protocol (PLIP; http://tldp.org/HOWTO/PLIP.html),
the parallel port becomes a network device. More commonly, a USB or RS-232 serial port
can become a network interface when used with the Point-to-Point Protocol (PPP), typically
in conjunction with a telephone modem.

04836book.indd 378 12/4/08 10:20:50 AM

Understanding TCP/IP Networking 379

PPP configuration used to be an important topic but has rapidly dropped
in relevance as dial-up telephone connections to the Internet have declined
with the rise in broadband Internet access. Linux still supports PPP connec-
tions, but they aren’t covered in this book or by the latest versions of the LPI
exam. If you need to know how to configure a PPP connection, consult your
distribution’s documentation or the PPP HOWTO (http://tldp.org/HOWTO/
PPP-HOWTO/index.html).

At its core, network hardware is hardware that facilitates the transfer of data between
computers. Hardware that’s most often used for networking includes features that help this
transfer in various ways. For instance, such hardware may include ways to address data
intended for specific remote computers, as described later in the section “Addressing Hard-
ware.” When basically non-network hardware is pressed into service as a network medium,
the lack of such features may limit the utility of the hardware or require extra software to
make up for the lack. If extra software is required, you’re unlikely to notice the deficiencies
as a user or system administrator because the protocol drivers handle the work, but this
makes the hardware more difficult to configure and more prone to sluggishness or other
problems than other types of network hardware.

Investigating Types of Network Hardware
Linux supports several types of common network hardware. The most common of
these is Ethernet, which comes in several varieties. Most modern Ethernet hardware
uses twisted-pair cabling, which consists of pairs of wires twisted around each other
to minimize interference. Such varieties of Ethernet are identified by a -T suffix to the
Ethernet variety name, as in 10Base-T or 100Base-T. The numbers denote the speed of
the protocol in megabits per second (Mbps). In the late 1990s, 100Base-T took over from
10Base-T as the standard in office and even home networks. More recently, 1000Base-T
and Ethernet variants that use optical cabling and that are capable of 1000Mbps speeds
(that is, gigabit Ethernet) have become the standard, with 10-gigabit Ethernet the new
emerging standard.

Other types of network hardware exist, but most are less common than Ethernet. These
include Token Ring, LocalTalk, Fiber Distributed Data Interface (FDDI), High-Performance
Parallel Interface (HIPPI), and Fibre Channel. Token Ring was common on some IBM-
dominated networks in the 1990s but has been steadily losing ground to Ethernet for years.
Likewise, LocalTalk was the favored medium for early Macintoshes, but new Macs ship with
Ethernet instead of LocalTalk. FDDI, HIPPI, and Fibre Channel are all high-speed interfaces
that are used in high-performance applications. Some of these protocols support significantly
greater maximum cable lengths than does Ethernet, which makes them suitable for linking
buildings that are many yards, or even miles, apart.

Wireless networking (a.k.a. Wi-Fi) is an exception to Ethernet’s dominance. Common
wireless protocols include 802.11a, 802.11b, and 802.11g. These protocols support maxi-
mum speeds of 11Mbps (for 802.11b) or 54Mbps (for 802.11a and 802.11g). The upcoming

04836book.indd 379 12/4/08 10:20:50 AM

380 Chapter 8 n Configuring Basic Networking

802.11n will support 300Mbps speeds. (Many manufacturers are already shipping products
based on pre-release 802.11n documents. The standard is expected to be finalized in late
2009.) With the exception of the rarely used 802.11a, Wi-Fi protocols are compatible with
one another, albeit at the speed of the slowest protocol in use. Wireless networking is partic-
ularly useful for laptop computers, but it’s even handy for homes and small offices that don’t
have adequate wired network infrastructures in place.

If you use a wireless protocol, your data are transmitted via radio waves,
which are easily intercepted. Wireless protocols include optional encryp-
tion, but this feature is often disabled by default, and some varieties are
notoriously poor. If you use wireless network products, be sure to enable
Wi-Fi Protected Access (WPA) or, better, WPA2 encryption. The weaker
Wired Equivalent Privacy (WEP) encryption is easily broken. For added pro-
tection, use a strong encryption protocol, such as the Secure Shell (SSH)
login tool or Secure Sockets Layer (SSL) encryption, when transferring any
data that’s even remotely sensitive; and be extra cautious about security
on networks that support wireless access. In a typical configuration, an
intruder who can break into your wireless access point looks to the rest of
your network like any other local user, so protecting that access point is
extremely important.

In addition to the network hardware in your computers, you need network hardware
outside the computers. With the exception of wireless networks, you need some form of
network cabling that’s unique to your hardware type. (For 100Base-T Ethernet, get cabling
that meets at least Category 5, or Cat-5, specifications. Gigabit Ethernet works best with
Cat-5e or optical cables.) Many network types, including twisted-pair Ethernet, require the
use of a central device known as a hub or switch. You plug every computer on a local net-
work into this central device, as shown in Figure 8.1. The hub or switch then passes data
between the computers.

As a general rule, switches are superior to hubs. Hubs mirror all traffic to all comput-
ers, whereas switches are smart enough to send packets only to the intended destination.
Switches also allow full-duplex transmission, in which both parties can send data at
the same time (like two people talking on a telephone). Hubs permit only half-duplex
transmission, in which the two computers must take turns (like two people using
walkie-talkies). The result is that switches let two pairs of computers engage in full-
speed data transfers with each other; with a hub, these two transfers would interfere
with each other.

Computers with Wi-Fi adapters can be configured to communicate directly with one
another, but it’s more common to employ a wireless router, which links together both wire-
less and Ethernet devices. Such routers also provide connections to an outside network—
typically the Internet, sometimes via a broadband connection.

04836book.indd 380 12/4/08 10:20:51 AM

Understanding TCP/IP Networking 381

f i gu r e 8 .1 Many networks link computers together via a central device known as a
hub or switch.

Hub or switch

Understanding Network Packets
Modern networks operate on discrete chunks of data known as packets. Suppose you want
to send a 100KB file from one computer to another. Rather than send the file in one burst of
data, your computer breaks it down into smaller chunks. The system might send 100 packets
of 1KB each, for instance. This way, if there’s an error sending one packet, the computer
can resend just that one packet rather than the entire file. (Many network protocols include
error-detection procedures.)

When the recipient system receives packets, it must hold on to them and reassemble them
in the correct order to recreate the complete data stream. It’s not uncommon for packets to
be delayed or even lost in transmission, so error-recovery procedures are critical for protocols
that handle large transfers. Some types of error recovery are handled transparently by the
networking hardware.

There are several types of packets, and they can be stored within each other. For instance,
Ethernet includes its own packet type (known as a frame), and the packets generated by net-
working protocols that run atop Ethernet, such as those described in the next section, are
stored within Ethernet frames. All told, a data transfer can involve several layers of wrap-
ping and unwrapping data. With each layer, packets from the layer above may be merged or
split up.

Understanding Network Protocol Stacks
It’s possible to think of network data at various levels of abstractness. For instance, at one
level, a network carries data packets for a specific network type (such as Ethernet); the data
packets are addressed to specific computers on a local network. Such a description, while

04836book.indd 381 12/4/08 10:20:51 AM

382 Chapter 8 n Configuring Basic Networking

useful for understanding a local network, isn’t very useful for understanding higher-level
network protocols, such as those that handle e-mail transfers. These high-level protocols are
typically described in terms of commands sent back and forth between computers, frequently
without reference to packets. The addresses used at different levels also vary, as explained in
the upcoming section “Using Network Addresses.”

A protocol stack is a set of software that converts and encapsulates data between layers of
abstraction. For instance, the stack can take the commands of e-mail transfer protocols, and
the e-mail messages that are transferred, and package them into packets. Another layer of
the stack can take these packets and repackage them into Ethernet frames. There are several
layers to any protocol stack, and they interact in highly specified ways. It’s often possible to
swap out one component for another at any given layer. For instance, at the top of each stack
is a program that uses the stack, such as an e-mail client. You can switch from one e-mail
client to another without too much difficulty; both rest atop the same stack. Likewise, if you
change a network card, you have to change the driver for that card, which constitutes a layer
very low in the stack. Applications above that driver can remain the same.

Each computer in a transaction requires a compatible protocol stack. When they com-
municate, the computers pass data down their respective stacks and then send data to the
partner system, which passes the data up its stack. Each layer on the receiving system sees
the data as packaged by its counterpart on the sending computer.

Protocol stacks are frequently represented graphically in diagrams like Figure 8.2, which
shows the configuration of the TCP/IP protocol stack that dominates the Internet today. As
shown in Figure 8.2, client programs at the application layer initiate data transfers. These
requests pass through the transport, internet, and link layers on the client computer, where-
upon they leave the client system and pass to the server system. (This transfer can involve a
lot of complexity not depicted in Figure 8.2.) On the server, the process reverses itself, with
the server program running at the application layer replying to the client program. This
reply reverses the journey, traveling down the server computer’s stack, across the network,
and up the stack on the client. A full-fledged network connection can involve many back-
and-forth data transfers.

When spelled with an uppercase I, the word Internet refers to the globe-
spanning network of networks with which you’re no doubt familiar. When
spelled with a lowercase i, however, the word internet refers to any collection
of networks. An internet in this sense could be a couple of small networks
in somebody’s basement with no outside connections. Internet networking
protocols such as TCP/IP can work on any internet, up to and including
the Internet.

Each component layer of the sending system is equivalent to a layer on the receiving sys-
tem, but these layers need not be absolutely identical. For instance, you can have different
models of network card at the link layer, or you can even use entirely different network hard-
ware types, such as Ethernet and Token Ring, if some intervening system translates between
them. The computers may run different OSs and hence use different—but logically equiva-
lent—protocol stacks. What’s important is that the stacks operate in compatible ways.

04836book.indd 382 12/4/08 10:20:52 AM

Understanding TCP/IP Networking 383

f i gu r e 8 . 2 Information travels “down” and “up” protocol stacks, being checked and
packed at each step of the way.

Application

Transport

Internet

Link

Client

Reply

Request

Application

Transport

Internet

Link

Server

Linux was designed with TCP/IP in mind, and the Internet is built atop TCP/IP. Other
protocol stacks are available, though, and you may occasionally run into them. In particu-
lar, NetBEUI was the original Microsoft and IBM protocol stack for Windows, AppleTalk
was Apple’s initial protocol stack, and the Internet Packet Exchange/Sequenced Packet
Exchange (IPX/SPX) was Novell’s favored protocol stack. All three are now fading in
importance, but you may still need to use them in some environments. Linux supports
AppleTalk and IPX/SPX but not NetBEUI.

Knowing TCP/IP Protocol Types
Within TCP/IP, several different protocols exist. Each of these protocols can be classified
as falling on one of the four layers of the TCP/IP stack, as shown in Figure 8.2. The most
important of the internet- and transport-layer protocols are the building blocks for the
application-layer protocols with which you interact more directly. These important inter-
net- and transport-layer protocols include the following:

IP The Internet Protocol (IP) is the core protocol in TCP/IP networking. Referring to
Figure 8.2, IP is an internet-layer (a.k.a. a network-layer or layer 2) protocol. IP provides a
“best effort” method for transferring packets between computers—that is, the packets aren’t
guaranteed to reach their destination. Packets may also arrive out of order or corrupted.
Other components of the TCP/IP stack must deal with these issues and have their own ways
of doing so. IP is also the portion of TCP/IP with which IP addresses are associated. (The
Real-World Scenario sidebar “The Coming of IPv6” describes a change in the IP portion of
TCP/IP that’s underway.)

04836book.indd 383 12/4/08 10:20:52 AM

384 Chapter 8 n Configuring Basic Networking

ICMP The Internet Control Message Protocol (ICMP) is a simple protocol for commu-
nicating data. ICMP is most often used to send error messages between computers—for
instance, to signal that a requested service isn’t available. This is often done by modify-
ing an IP packet and returning it to its sender, which means that ICMP is technically an
internet-layer protocol, although it relies upon IP. In most cases, you won’t use programs
that generate ICMP packets on demand; they’re created behind the scenes as you use other
protocols. One exception is the ping program, which is described in more detail in “Testing
Basic Connectivity.”

UDP The User Datagram Protocol (UDP) is the simplest of the common transport-layer
(a.k.a. layer 3) TCP/IP protocols. It doesn’t provide sophisticated procedures to correct for
out-of-order packets, guarantee delivery, or otherwise improve the limitations of IP. This
fact can be a problem, but it also means that UDP can be faster than more sophisticated
tools that provide such improvements to IP. Common application-layer protocols that are
built atop UDP include the Domain Name System (DNS), the Network File System (NFS),
and many streaming media protocols.

TCP The Transmission Control Protocol (TCP) may be the most widely used transport-
layer protocol in the TCP/IP stack. Unlike UDP, TCP creates full connections with error
checking and correction as well as other features. These features simplify the creation of
network protocols that must exchange large amounts of data, but the features come at a
cost: TCP imposes a small performance penalty. Most of the application-layer protocols
with which you may already be familiar, including the Simple Mail Transfer Protocol
(SMTP), the Hypertext Transfer Protocol (HTTP), and the File Transfer Protocol (FTP),
are built atop TCP.

You may notice that the name of the TCP/IP stack is built up of two of the TCP and IP
protocol names. This is because these two protocols are so important for TCP/IP networking
generally. TCP/IP, though, is much more than just these two protocols; it includes additional
protocols, most of which (below the application layer) are rather obscure. On the other hand,
a TCP/IP exchange need not use both TCP and IP—it could be a UDP or ICMP exchange, for
instance.

Understanding Network Addressing
In order for one computer to communicate with another over a network, the computers
need to have some way to refer to each other. The basic mechanism for doing this is pro-
vided by a network address, which can take several different forms, depending on the type
of network hardware, protocol stack, and so on. Large and routed networks pose addi-
tional challenges to network addressing, and TCP/IP provides answers to these challenges.
Finally, to address a specific program on a remote computer, TCP/IP uses a port number,
which identifies a specific running program, something like the way a telephone extension
number identifies an individual in a large company. The following sections describe all
these methods of addressing.

04836book.indd 384 12/4/08 10:20:52 AM

Understanding Network Addressing 385

The Coming of iPv6

Another alternative protocol stack is actually an extension of TCP/IP. The IP portion
of TCP/IP has been at version 4 for many years. A major upgrade to this is underway,
however, and it goes by the name IPv6, for IP version 6. IPv6 adds several features and
improvements to TCP/IP, including standard support for more secure connections and
support for many more addresses. Check http://playground.sun.com/pub/ipng/html/
ipng-main.html or http://www.ipv6forum.com for detailed information about IPv6.

TCP/IP supports a theoretical maximum of about 4 billion addresses. Although this may
sound like plenty, those addresses have not been allocated as efficiently as possible. There-
fore, as the Internet has expanded, the number of truly available addresses has been shrink-
ing at a rapid rate. IPv6 raises the number of addresses to 2128, or 3.4 × 1038. This is enough
to give every square millimeter of land surface on Earth 2.2 × 1018 addresses.

IPv6 is starting to emerge as a real networking force in many parts of the world. The United
States, though, is lagging behind on IPv6 deployment. The Linux kernel includes IPv6 sup-
port, and most distributions now attempt to automatically configure IPv6 networking in
addition to IPv4. Chances are that by the time the average office will need IPv6, it will be
standard. Configuring a system for IPv6 is somewhat different from configuring it for IPv4,
which is what this chapter emphasizes.

Using Network Addresses
Consider an Ethernet network. When an Ethernet frame leaves one computer, it’s normally
addressed to another Ethernet card. This addressing is done using low-level Ethernet features,
independent of the protocol stack in question. Recall, however, that the Internet is composed
of many different networks that use many different low-level hardware components. A user
may have a dial-up telephone connection (through a serial port) but connect to one server that
uses Ethernet and another that uses Token Ring. Each of these devices uses a different type
of low-level network address. TCP/IP requires something more to integrate across different
types of network hardware. In total, three types of addresses are important when you’re try-
ing to understand network addressing: network hardware addresses, numeric IP addresses,
and text-based hostnames.

Addressing Hardware
One of the characteristics of dedicated network hardware such as Ethernet or Token Ring
cards is that they have unique hardware addresses, also known as Media Access Control
(MAC) addresses, programmed into them. In the case of Ethernet, these addresses are 6 bytes
in length, and they’re generally expressed as hexadecimal (base 16) numbers separated by

04836book.indd 385 12/4/08 10:20:52 AM

386 Chapter 8 n Configuring Basic Networking

colons. You can discover the hardware address for an Ethernet card by using the ifconfig
command. Type ifconfig ethn, where n is the number of the interface (0 for the first card, 1
for the second, and so on). You’ll see several lines of output, including one like the following:

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

This line tells you that the device is an Ethernet card and that its hardware address is
00:A0:CC:24:BA:02. What use is this, though? Certain low-level network utilities and
hardware use the hardware address. For instance, network switches use it to direct data
packets. The switch detects that a particular address is connected to a particular wire, and
so it sends data directed at that address only over the associated wire. The Dynamic Host
Configuration Protocol (DHCP), which is described in the upcoming section “Configuring
with DHCP,” is a means of automating the configuration of specific computers. It has an
option that uses the hardware address to consistently assign the same IP address to a given
computer. In addition, advanced network diagnostic tools are available that let you exam-
ine packets that come from or are directed to specific hardware addresses.

For the most part, though, you don’t need to be aware of a computer’s hardware address.
You don’t enter it in most utilities or programs. It’s important for what it does in general.

Linux identifies network hardware devices with type-specific codes. Ethernet
hardware is ethn, where n is a number from 0 up. The first Ethernet device
is eth0, the second is eth1, and so on. Wireless devices have names of the
form wlann. Unlike most Linux hardware devices, network devices don’t have
entries in /dev; instead, low-level network utilities take the device names and
work with them directly.

Managing IP Addresses
Earlier, I said that TCP/IP, at least in its IPv4 incarnation, supports about 4 billion addresses.
This figure is based on the size of the IP address used in TCP/IP: 4 bytes (32 bits). Specifically,
232 = 4,294,967,296. For IPv6, 16-byte (128-bit) addresses are used. Not all of these addresses
are usable; some are overhead associated with network definitions, and some are reserved.

The 4-byte IPv4 (or 16-byte IPv6) address and 6-byte Ethernet address are mathematically
unrelated. Instead, the TCP/IP stack converts between the two using the Address Resolution
Protocol (ARP) for IPv4 or the Neighbor Discovery Protocol (NDP) for IPv6. These proto-
cols enable a computer to send a broadcast query—a message that goes out to all the comput-
ers on the local network. This query asks the computer with a given IP address to identify
itself. When a reply comes in, it includes the hardware address, so the TCP/IP stack can direct
traffic for a given IP address to the target computer’s hardware address.

The procedure for computers that aren’t on the local network is more com-
plex. For such computers, a router must be involved. Local computers send
packets destined to distant addresses to routers, which send the packets on
to other routers or to their destination systems.

04836book.indd 386 12/4/08 10:20:53 AM

Understanding Network Addressing 387

IPv4 addresses are usually expressed as four base-10 numbers (0–255) separated by periods,
as in 192.168.29.39. If your Linux system’s protocol stack is already up and running, you can
discover its IP address by using ifconfig, as described earlier. The output includes a line like
the following, which identifies the IP address (inet addr):

inet addr:192.168.29.39 Bcast:192.168.29.255 Mask:255.255.255.0

Although it isn’t obvious from the IP address alone, this address is broken into two com-
ponents: a network address and a computer address. The network address identifies a block
of IP addresses that are used by one physical network, and the computer address identifies
one computer within that network. The reason for this breakdown is to make the job of
routers easier—rather than record how to direct packets destined for each of the 4 billion IP
addresses, routers can be programmed to direct traffic based on packets’ network addresses,
which is a much simpler job. Ordinarily, a computer can directly communicate only with
computers on its local network segment; to communicate outside of this set of computers, a
router must be involved.

IPv6 addresses work in a similar way, except that they’re larger. Specifically, IPv6
addresses consist of eight groups of four-digit hexadecimal numbers separated by colons,
as in fed1:0db8:85a3:08d3:1319:8a2e:0370:7334. If one or more groups of four digits is
0000, that group or those groups may be omitted, leaving two colons. Only one such group
of zeroes can be compressed in this way, because if you removed two groups, there would
be no way of telling how many sets of zeroes would have to be replaced in each group.

The network mask (also known as the subnet mask or netmask) is a number that
identifies the portion of the IP address that’s a network address and the part that’s a
computer address. It’s helpful to think of this in binary (base 2) because the netmask
uses binary 1 values to represent the network portion of an address and binary 0 values
to represent the computer address. The network portion ordinarily leads the computer
portion. Expressed in base 10, these addresses usually consist of 255 or 0 values, 255
being a network byte and 0 being a computer byte. If a byte is part network and part
computer address, it will have some other value. Another way of expressing a netmask is
as a single number representing the number of network bits in the address. This number
usually follows the IP address and a slash. For instance, 192.168.29.39/24 is equivalent
to 192.168.29.39 with a netmask of 255.255.255.0—the last number shows the network
portion to be three solid 8-bit bytes, hence 24 bits. The longer notation showing all
4 bytes of the netmask is referred to as dotted quad notation. IPv6 netmasks work just
like IPv4 netmasks, except that larger numbers are involved, and IPv6 favors hexadeci-
mal to decimal notation.

On modern IPv4 networks, netmasks are often described in Classless Inter-Domain
Routing (CIDR) form. Such network masks can be broken at any bit boundary for any
address. For instance, 192.168.1.7 could have a netmask of 255.255.0.0, 255.255.255.0,
255.255.255.128, or various other values. (Keeping each byte at 0 or 255 reduces the odds
of human error causing problems but sometimes isn’t practical, depending on the required or
desired sizes of subnets.) Traditionally, though, IPv4 networks have been broken into one of
several classes, as summarized in Table 8.1. Classes A, B, and C are for general networking
use. Class D addresses are reserved for multicasting—sending data to multiple computers
simultaneously. Class E addresses are reserved for future use. There are a few special cases

04836book.indd 387 12/4/08 10:20:53 AM

388 Chapter 8 n Configuring Basic Networking

within most of these ranges. For instance, the 127.x.y.z addresses are reserved for use as loop-
back (a.k.a. localhost) devices—these addresses refer to the computer on which the address
is entered. Addresses in which all the machine bits are set to 1 refer to the network block
itself—they’re used for broadcasts. The ultimate broadcast address is 255.255.255.255, which
sends data to all computers on a network segment. (Routers normally block packets directed
to this address. If they didn’t, the Internet could easily be brought to its knees by a few people
flooding the network with broadcast packets.)

Ta B le 8 .1 IPv4 Network Classes and Private Network Ranges

Class Address Range Reserved Private Addresses

A 1.0.0.0–127.255.255.255 10.0.0.0–10.255.255.255

B 128.0.0.0–191.255.255.255 172.16.0.0–172.31.255.255

C 192.0.0.0–223.255.255.255 192.168.0.0–192.168.255.255

D 224.0.0.0–239.255.255.255 none

E 240.0.0.0–255.255.255.255 none

Within each of the three general-use network classes is a range of addresses reserved
for private use. Most IP addresses must be assigned to individual computers by a suit-
able authority, lest two systems on the Internet both try to use a single address. Anybody
can use the reserved private address spaces, though. (These address blocks are sometimes
referred to as RFC1918 addresses, after the standards document—RFC1918—in which
they’re defined.) The caveat is that routers normally drop packets sent to these addresses,
effectively isolating them from the Internet as a whole. The idea is that these addresses
may be safely used by small private networks. Today, they’re often used behind Network
Address Translation (NAT) routers, which enable arbitrary numbers of computers to
“hide” behind a single system. The NAT router substitutes its own IP address on outgoing
packets and then directs the reply to the correct system. This is very handy if you want to
connect more computers to the Internet than you have IP addresses.

I generally use reserved private addresses for examples in this book. Unless
otherwise specified, these examples work equally well on conventional
assigned (non-private) IP addresses.

IPv6 has its equivalent to private addresses. IPv6 site-local addresses may be routed
within a site but not off-site. They begin with the hexadecimal number fec, fed, fee, or fef.

04836book.indd 388 12/4/08 10:20:53 AM

Understanding Network Addressing 389

Link-local addresses are restricted to a single network segment; they shouldn’t be routed at
all. These addresses begin with the hexadecimal number fe8, fe9, fea, or feb.

IPv4 address classes were designed to simplify routing; but as the Internet evolved, they
became restrictive. Thus, today they serve mainly as a way to set default netmasks, such as
255.0.0.0 for Class A addresses or 255.255.255.0 for Class C addresses. Most configura-
tion tools set these netmasks automatically, but you can override the settings if necessary.

IP addresses and netmasks are extremely important for network configuration. If your
network doesn’t use DHCP or a similar protocol to assign IP addresses automatically, you
must configure your system’s IP address manually. A mistake in this configuration can
cause a complete failure of networking or more subtle errors, such as an inability to com-
municate with just some computers.

Non-TCP/IP stacks have their own addressing methods. NetBEUI uses
machine names; it has no separate numeric addressing method. AppleTalk
uses two 16-bit numbers. These addressing schemes are independent
from IP addresses.

Broadcasting Data
Earlier, I mentioned broadcasts. A broadcast is a type of network transmission that’s sent to
all the computers on a local network, or occasionally all of the computers on a remote net-
work. Under TCP/IP, a broadcast is done by specifying binary 1 values in all the machine
bits of the IP address. The network portion of the IP address may be set to the network’s
regular value, and this is required for directed broadcasts—that is, those that are sent to a
remote network. (Many routers drop directed broadcasts, though.) In many cases, broad-
casts are specified by the use of 255.255.255.255 as an IP address. Packets directed at this
address are sent to all the machines on a local network.

Because the broadcast address for a network is determined by the IP address and net-
mask, you can convert between the broadcast address and netmask, given one of these and
a computer’s IP address. If the netmask happens to consist of whole-byte values (expressed
as 0 or 255 in dotted quad notation), the conversion is easy: Replace the IP address compo-
nents that have 0 values in the dotted quad netmask with 255 values to get the broadcast
address. For instance, consider a computer with an IP address of 172.24.21.201 and a net-
mask of 255.255.0.0. The final two elements of the netmask have 0 values, so you swap in
255 values for these final two elements in the IP address to obtain a broadcast address of
172.24.255.255.

In the case of a CIDR address that has non-255 and non-0 values in the netmask, the sit-
uation is more complex because you must resort to binary (base 2) numbers. For instance,
consider a computer with an IP address of 172.24.21.201 and a netmask of 255.255.128.0
(that is, 172.24.21.201/17). Expressed in binary, these numbers are

10101100 00011000 00010101 11001001

11111111 11111111 10000000 00000000

04836book.indd 389 12/4/08 10:20:53 AM

390 Chapter 8 n Configuring Basic Networking

To create the broadcast address, you must set the top (network address) values to 1 when
the bottom (netmask) value is 0. In this case, the result is

10101100 00011000 01111111 11111111

Converted back into base 10 notation, the resulting broadcast address is 172.24.127.255.
Fortunately, you seldom need to perform such computations. When configuring a computer,
you can enter the IP address and netmask and let the computer do the binary computations.

Understanding Hostnames
Computers work with numbers, so it’s not surprising that TCP/IP uses numbers as com-
puter addresses. People, though, work better with names. For this reason, TCP/IP includes
a way to link names for computers (known as hostnames) to IP addresses. In fact, there
are several ways to do this, some of which are described in the next section, “Resolving
Hostnames.”

As with IP addresses, hostnames are composed of two parts: machine names and
domain names. The former refers to a specific computer and the latter to a collection of
computers. Domain names are not equivalent to the network portion of an IP address,
though; they’re completely independent concepts. Domain names are registered for use
by an individual or organization, which may assign machine names within the domain
and link those machine names to any arbitrary IP address desired. Nonetheless, there is
frequently some correspondence between domains and network addresses because an indi-
vidual or organization that controls a domain is also likely to want a block of IP addresses
for the computers in that domain.

Internet domains are structured hierarchically. At the top of the hierarchy are the top-level
domains (TLDs), such as .com, .edu, and .uk. These TLD names appear at the end of an
Internet address. Some correspond to nations (such as .uk and .us, for the United Kingdom
and the United States, respectively), but others correspond to particular types of entities (such
as .com and .edu, which stand for commercial and educational organizations, respectively).
Within each TLD are various domains that identify specific organizations, such as sybex.
com for Sybex or loc.gov for the Library of Congress. These organizations may optionally
break their domains into subdomains, such as cis.upenn.edu for the Computer and Informa-
tion Science department at the University of Pennsylvania. Even subdomains may be further
subdivided into their own subdomains; this structure can continue for many levels but usually
doesn’t. Domains and subdomains include specific computers, such as www.sybex.com, Sybex’s
Web server.

When you configure your Linux computer, you may need to know its hostname. This will
be assigned by your network administrator and will be a machine name within your organi-
zation’s domain. If your computer isn’t part of an organizational network (say, if it’s a sys-
tem that doesn’t connect to the Internet at all, or if it connects only via a dial-up account),
you’ll have to make up a hostname. Alternatively, you can register a domain name, even if
you don’t use it for running your own servers. Check http://www.icann.org/registrars/
accredited-list.html for pointers to accredited domain registrars. Most registrars charge
between $10 and $15 per year for domain registration. If your network uses DHCP, it may
or may not assign your system a hostname automatically.

04836book.indd 390 12/4/08 10:20:54 AM

Understanding Network Addressing 391

If you make up a hostname, choose an invalid TLD, such as .invalid. This
will guarantee that you don’t accidentally give your computer a name that
legitimately belongs to somebody else. Such a name conflict might pre-
vent you from contacting that system, and it could cause other problems
as well, such as misdirected e-mail.

Resolving Hostnames
The Domain Name System (DNS) is a distributed database of computers that converts
between IP addresses and hostnames. Every domain must maintain at least two DNS servers
that can either provide the names for every computer within the domain or redirect a DNS
query to another DNS server that can better handle the request. Therefore, looking up a host-
name involves querying a series of DNS servers, each of which redirects the search until the
server that’s responsible for the hostname is found. In practice, this process is hidden from you
because most organizations maintain DNS servers that do all the dirty work of chatting with
other DNS servers. You need only point your computer to your organization’s DNS servers.
This detail may be handled through DHCP, or it may be information you need to configure
manually, as described later in the section “Configuring Linux for a Local Network.”

Sometimes, you need to look up DNS information manually. You might do this if you
know the IP address of a server through non-DNS means and suspect your DNS configura-
tion is delivering the wrong address or to check whether a DNS server is working. Several
programs can be helpful in performing such checks:

nslookup This program performs DNS lookups (on individual computers by default) and
returns the results. It also sports an interactive mode in which you can perform a series of
queries. This program is officially deprecated, meaning that it’s no longer being maintained
and will eventually be dropped from its parent package (bind-utils or bind-tools on most
distributions). Thus, you should get in the habit of using host or dig instead of nslookup.

host This program serves as a replacement for the simpler uses of nslookup, but it lacks
an interactive mode, and of course many details of its operation differ. In the simplest case,
you can type host target.name, where target.name is the hostname or IP address you
want to look up. You can add various options that tweak the program’s basic operation;
consult host’s man page for details.

dig This program performs more complex DNS lookups than host. Although you can use
it to find the IP address for a single hostname (or a hostname for a single IP address), it’s
more flexible than host.

whois You can look up information on a domain as a whole with this command. For
instance, typing whois sybex.com reveals who owns the sybex.com domain, who to contact
in case of problems, and so on. You may want to use this command with -H, which omits
the lengthy legal disclaimers that many domain registries insist on delivering along with
whois information. Check the man page for whois for information on additional options.

04836book.indd 391 12/4/08 10:20:54 AM

392 Chapter 8 n Configuring Basic Networking

Sometimes DNS is overkill. For instance, you might just need to resolve a handful of
hostnames. This may be because you’re configuring a small private network that’s not con-
nected to the Internet at large or because you want to set up a few names for local (or even
remote) computers that aren’t in the global DNS database. For such situations, /etc/hosts
may be just what you need. This file holds mappings of IP addresses to hostnames, on a one-
line-per-mapping basis. Each mapping includes at least one name, and sometimes more:

127.0.0.1 localhost

192.168.7.23 apollo.luna.edu apollo

In this example, the name localhost is associated with the 127.0.0.1 address and the
names apollo.luna.edu and apollo are tied to 192.168.7.23. The first of these linkages is
standard; it should exist in any /etc/hosts file. The second linkage is an example that you
can modify as you see fit. The first name is a full hostname, including the domain portion;
subsequent names on the line are aliases—typically the hostname without its full domain
specification.

Once you’ve set up an /etc/hosts file, you can refer to computers listed in the file by
name, whether or not those names are recognized by the DNS servers the computer uses.
One major drawback to /etc/hosts is that it’s a purely local file; setting a mapping in one
computer’s /etc/hosts file only affects name lookups performed by that computer. Thus,
to do good on an entire network, you must modify the /etc/hosts files on all of the com-
puters on the network.

Linux normally performs lookups in /etc/hosts before it uses DNS. You can modify this
behavior by editing the /etc/nsswitch.conf file, and specifically the hosts line. This line lists
the order of the files and dns options, which stand for /etc/hosts and DNS, respectively:

hosts: files dns

Reverse the order of the files and dns options to have the system consult DNS before it
consults /etc/hosts.

The /etc/nsswitch.conf file supports many more options. For instance,
you can perform name resolution using Windows NetBIOS calls or a Light-
weight Directory Access Protocol (LDAP) server by adding appropriate
options to the hosts line, along with the necessary support software. The
passwd, shadow, and group lines control how Linux authenticates users and
manages groups. You should not attempt to change these configurations
unless you understand the systems involved, but you should be aware of
the importance of /etc/nsswitch.conf generally.

In addition to /etc/hosts, Linux supports a file called /etc/networks. It works much
like /etc/hosts, but it applies to network addresses, and it reverses the order of the names
and the IP address on each line:

loopback 127.0.0.0

mynet 192.168.7.0

04836book.indd 392 12/4/08 10:20:54 AM

Understanding Network Addressing 393

This example sets up two linkages: the loopback name to the 127.0.0.0/8 network and
mynet for the 192.168.7.0/24 network. It’s seldom necessary to edit this file.

Network Ports
Contacting a specific computer is important, but one additional type of addressing is left:
The sender must have an address for a specific program on the remote system. For instance,
suppose you’re using a Web browser. The Web server computer may be running more serv-
ers than just a Web server—it may also be running an e-mail server or an FTP server, to
name just two of many possibilities. Another number beyond the IP address enables you to
direct traffic to a specific program. This number is a network port number, and programs
that access a TCP/IP network typically do so through one or more ports.

Port numbers are features of the UDP and TCP protocols. Some protocols,
such as ICMP, don’t use port numbers.

When they start up, servers tie themselves to specific ports, which by convention are
associated with specific server programs. For instance, port 25 is associated with e-mail
servers, and port 80 is used by Web servers. Table 8.2 summarizes the purposes of several
important ports. A client can direct its request to a specific port and expect to contact
an appropriate server. The client’s own port number isn’t fixed; it’s assigned by the OS.
Because the client initiates a transfer, it can include its own port number in the connection
request, so clients don’t need fixed port numbers. Assigning client port numbers dynami-
cally also enables one computer to easily run several instances of a single client because
they won’t compete for access to a single port.

Ta B le 8 . 2 Port Numbers, Their Purposes, and Typical Linux Servers

Port Number TCP or UDP Purpose Example Linux Servers

20 TCP File Transfer Protocol
(FTP) data

ProFTPd, vsftpd

21 TCP FTP ProFTPd, vsftpd

22 TCP Secure Shell (SSH) OpenSSH, Dropbear

23 TCP Telnet in.telnetd

25 TCP Simple Mail Transfer
Protocol (SMTP)

Sendmail, Postfix,
Exim, qmail

53 TCP and UDP Domain Name System (DNS) Berkeley Internet Name
Domain (BIND; a.k.a.
named), djbdns

04836book.indd 393 12/4/08 10:20:55 AM

394 Chapter 8 n Configuring Basic Networking

Ta B le 8 . 2 Port Numbers, Their Purposes, and Typical Linux Servers (continued)

Port Number TCP or UDP Purpose Example Linux Servers

67 UDP Dynamic Host Configuration
Protocol (DHCP)

Internet Software Consor-
tium (ISC) DHCP (dhcpd)

80 TCP Hypertext Transfer
Protocol (HTTP)

Apache, Roxen, thttpd

110 TCP Post Office Protocol
version 3 (POP-3)

Dovecot, Qpopper, popa3d

111 TCP and UDP Portmapper NFS, NIS, other RPC-based
services

113 TCP auth/ident identd

119 TCP Network News Transfer
Protocol (NTTP)

InterNetNews (INN),
Diablo, Leafnode

139 TCP NetBIOS Session (Windows
file sharing)

Samba

143 TCP Internet Mail Access
Protocol (IMAP)

Dovecot, Cyrus IMAP,
UW-IMAP

161 UDP Simple Network Management
Protocol (SNMP)

Net-SNMP

177 UDP XDMCP XDM, KDM, GDM

389 TCP LDAP OpenLDAP

443 TCP HTTP over SSL (HTTPS) Apache, Roxen

445 TCP Microsoft Directory
Services (DS)

Samba

465 TCP SMTP over SSL; or URL Ren-
dezvous Directory (URD)1

Sendmail, Postfix, Exim,
qmail; or network routers

631 TCP Internet Printing Protocol Common Unix Printing
System (CUPS)

993 TCP IMAP over SSL Dovecot, Cyrus IMAP,
UW-IMAP

04836book.indd 394 12/4/08 10:20:55 AM

Understanding Network Addressing 395

Ta B le 8 . 2 Port Numbers, Their Purposes, and Typical Linux Servers (continued)

Port Number TCP or UDP Purpose Example Linux Servers

995 TCP POP-3 over SSL Dovecot, Qpopper, popa3d

5900+ TCP Remote Framebuffer (RFB) Virtual Network Computing
(VNC): OpenVNC, TightVNC

6000–6007 TCP The X Window System (X) X.org-X11, XFree86

1Port 465 is officially registered for URD; however, it’s also commonly used as a secure e-mail delivery port,
although this isn’t the officially designated purpose of this port.

One key distinction in TCP/IP ports is that between privileged ports and unprivileged
ports. The former have numbers less than 1024. Unix and Linux systems restrict access to
privileged ports to root. The idea is that a client can connect to a privileged port and be
confident that the server running on that port was configured by the system administrator
and can therefore be trusted. Unfortunately, on today’s Internet, this trust would be unjus-
tified based solely on the port number, so this distinction isn’t very useful. Port numbers
greater than 1024 may be accessed by ordinary users.

Clients and servers

An important distinction is the one between clients and servers. A client is a program that
initiates a network connection to exchange data. A server listens for such connections
and responds to them. For instance, a Web browser, such as Firefox or Opera, is a client
program. You launch the program and direct it to a Web page, which means that the Web
browser sends a request to the Web (HTTP) server at the specified address. The Web server
sends back data in reply to the request. Clients can also send data, as when you enter infor-
mation in a Web form and click a Submit or Send button.

The terms client and server can also be applied to entire computers that operate mostly
in one or the other role. Thus, a phrase such as Web server is somewhat ambiguous—it
can refer either to the Web server program or to the computer that runs that program.
When this distinction is important and unclear from context, I clarify it (for instance, by
referring to “the Web server program”).

Fortunately, for basic functioning, you need to do nothing to configure ports on a Linux
system. You may have to deal with this issue if you run unusual servers, though, because you
may need to configure the system to link the servers to the correct ports. This can sometimes

04836book.indd 395 12/4/08 10:20:55 AM

396 Chapter 8 n Configuring Basic Networking

involve editing the /etc/services file, which maps port numbers to names, enabling you to
use names in server configurations and elsewhere. This file consists of lines that begin with a
name and end with a port number, including the type of protocol it uses (TCP or UDP):

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp # SSH Remote Login Protocol

telnet 23/tcp

smtp 25/tcp

Configuring Linux for a Local Network
Now that you know something about how networking functions, the question arises: How
do you implement networking in Linux? Most Linux distributions provide you with the
means to configure a network connection during system installation. Therefore, chances
are good that networking already functions on your system. In case it doesn’t, though, the
following sections summarize what you must do to get the job done. Actual configuration
can be done using either the automatic DHCP tool or static IP addresses. Linux’s underly-
ing network configuration mechanisms rely on startup scripts and their configuration files,
but you may be able to use GUI tools to do the job instead.

Network Hardware Configuration
The most fundamental part of network configuration is getting the network hardware up
and running. In most cases, this task is fairly automatic—most distributions ship with sys-
tem startup scripts that auto-detect the network card and load the correct driver module.
If you recompile your kernel, building the correct driver into the main kernel file will also
ensure that it’s loaded at system startup.

If your network hardware isn’t correctly detected, though, subsequent configuration (as
described in the upcoming sections “Configuring with DHCP” and “Configuring with a
Static IP Address”) won’t work. To correct this problem, you must load your network hard-
ware driver. You can do this with the modprobe command:

modprobe tulip

You must know the name of your network hardware’s kernel module (tulip in this
example). Chapter 3, “Configuring Hardware,” describes the task of hardware configuration
and activation in more detail.

Configuring with DHCP
One of the easiest ways to configure a computer to use a TCP/IP network is to use DHCP,
which enables one computer on a network to manage the settings for many other computers.
It works like this: When a computer running a DHCP client boots up, it sends a broadcast in

04836book.indd 396 12/4/08 10:20:55 AM

Configuring Linux for a Local Network 397

search of a DHCP server. The server replies (using nothing but the client’s hardware address)
with the configuration information the client needs to enable it to communicate with other
computers on the network—most important, the client’s IP address and netmask and the net-
work’s gateway and DNS server addresses. The DHCP server may also give the client a host-
name. The client then configures itself with these parameters. The IP address isn’t assigned
permanently; it’s referred to as a DHCP lease, and if it’s not renewed, the DHCP server may
give the lease to another computer. Therefore, from time to time the client checks back with
the DHCP server to renew its lease.

Three DHCP clients are in common use on Linux: pump, dhclient, and dhcpcd (not
to be confused with the DHCP server, dhcpd). Some Linux distributions ship with just
one of these, but others ship with two or even all three. All distributions have a default
DHCP client—the one that’s installed when you tell the system you want to use DHCP
at system installation time. Those that ship with multiple DHCP clients typically enable
you to swap out one for another simply by removing the old package and installing the
new one.

Ideally, the DHCP client runs at system bootup. This is usually handled either by its own
SysV startup file, as described in Chapter 5, “Booting Linux and Editing Files,” or as part
of the main network configuration startup file (typically a SysV startup file called network
or networking). The system often uses a line in a configuration file to determine whether to
run a DHCP client. For instance, Red Hat and Fedora set this option in a file called /etc/
sysconfig/network-scripts/ifcfg-eth0 (this filename may differ if you use something
other than a single Ethernet interface). The line in question looks like this:

BOOTPROTO=dhcp

If the BOOTPROTO variable is set to something else, changing it as shown here will
configure the system to use DHCP. It’s usually easier to use a GUI configuration tool
to set this option, though.

Ubuntu uses the /etc/network/interfaces file for a similar purpose, but the details
differ. On a system that uses DHCP, a line like the following appears:

iface eth0 inet dhcp

Details may vary, of course; for instance, the interface name (eth0) may be something else.
You may prefer to use the GUI system configuration tools to adjust these options.

Once a DHCP client is configured to run when the system boots, the configuration task
is done—at least, if everything works as it should. On very rare occasions, you may need to
tweak DHCP settings to work around client/server incompatibilities or to have the DHCP
client do something unusual. Consult the man page for your DHCP client if you need to
make changes. You’ll then have to modify its SysV startup script or a file to which it refers
in order to change its operation.

If you need to manually run a DHCP client, you can usually do so by typing its name (as
root), optionally followed by a network identifier, as in dhclient eth0 to have the DHCP
client attempt to configure eth0 with the help of any DHCP server it finds on that network.

04836book.indd 397 12/4/08 10:20:56 AM

398 Chapter 8 n Configuring Basic Networking

Configuring with a Static IP Address
If a network lacks a DHCP server, you must provide basic network configuration options
manually. You can set these options using interactive commands, as described shortly;
but to set them in the long term, you adjust a configuration file such as /etc/sysconfig/
network-scripts/ifcfg-eth0 or /etc/network/interfaces. Listing 8.1 shows a typical
ifcfg-eth0 file, configured to use a static IP address. (Note that this file’s exact location
and name may vary from one distribution to another.)

listing 8.1: A Sample Network Configuration File

DEVICE=eth0

BOOTPROTO=static

IPADDR=192.168.29.39

NETMASK=255.255.255.0

NETWORK=192.168.29.0

BROADCAST=192.168.29.255

GATEWAY=192.168.29.1

ONBOOT=yes

Several specific items are required, or at least helpful, for static IP address configuration:

IP address You can set the IP address manually via the ifconfig command (described in
more detail shortly) or via the IPADDR item in the configuration file.

Network mask The netmask can be set manually via the ifconfig command or via the
NETMASK item in a configuration file.

Gateway address You can manually set the gateway via the route command. To set it per-
manently, you need to adjust a configuration file, which may be the same configuration file
that holds other options or another file, such as /etc/sysconfig/network/routes. In either
case, the option is likely to be called GATEWAY. The gateway isn’t necessary on a system that
isn’t connected to a wider network—that is, if the system works only on a local network
that contains no routers.

DNS settings In order for Linux to use DNS to translate between IP addresses and host-
names, you must specify at least one DNS server in the /etc/resolv.conf file. Precede the
IP address of the DNS server by the keyword nameserver, as in nameserver 192.168.29.1.
You can include up to three nameserver lines in this file. Adjusting this file is all you need
to do to set the name server addresses; you don’t have to do anything else to make the set-
ting permanent. You can also set your computer’s local domain name in this file using the
domain option, as in domain luna.edu to set the domain to luna.edu.

The network configuration script may hold additional options, but most of these are related
to others. For instance, Listing 8.1 has an option specifying the interface name (DEVICE=eth0),
another that tells the computer to assign a static IP address (BOOTPROTO=static), and a third
to bring up the interface when the computer boots (ONBOOT=yes). The NETWORK and BROADCAST

04836book.indd 398 12/4/08 10:20:56 AM

Configuring Linux for a Local Network 399

items in Listing 8.1 are derived from the IPADDR and NETMASK items, but you can change them
if you understand the consequences.

Unfortunately, these configuration details vary from one distribution to another. For
instance, if you use Ubuntu, you would edit /etc/network/interfaces rather than /etc/
sysconfig/network-scripts/ifcfg-eth0. The precise layout and formatting of informa-
tion in the two files differs, but the same basic information is present in both of them. You
may need to consult distribution-specific documentation to learn about these details. Alter-
natively, GUI tools are usually fairly easy to figure out, so you can look for these.

If you aren’t sure what to enter for the basic networking values (the IP address, network
mask, gateway address, and DNS server addresses), you should consult your network admin-
istrator. Do not enter random values or values you make up that are similar to those used by
other systems on your network. Doing so is unlikely to work at all, and it can conceivably
cause a great deal of trouble—say, if you mistakenly use an IP address that’s reserved for
another computer.

As just mentioned, the ifconfig program is critically important for setting both the IP
address and netmask. This program can also display current settings. Basic use of ifconfig
to bring up a network interface resembles the following:

ifconfig interface up addr netmask mask

For instance, the following command brings up eth0 (the first Ethernet card) using the
address 192.168.29.39 and the netmask 255.255.255.0:

ifconfig eth0 up 192.168.29.39 netmask 255.255.255.0

This command links the specified IP address to the card so that the computer responds
to the address and claims to be that address when sending data. It doesn’t, though, set up a
route for traffic beyond your current network. For that, you need to use the route command:

route add default gw 192.168.29.1

Substitute your own gateway address for 192.168.29.1. (Routing and the route com-
mand are described in more detail shortly, in “Configuring Routing.”) Both ifconfig and
route can display information on the current network configuration. For ifconfig, omit up
and everything that follows; for route, omit add and everything that follows. For instance,
to view interface configuration, you might issue the following command:

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

 inet addr:192.168.29.39 Bcast:192.168.29.255 Mask:255.255.255.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:10469 errors:0 dropped:0 overruns:0 frame:0

 TX packets:8557 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:1017326 (993.4 Kb) TX bytes:1084384 (1.0 Mb)

 Interrupt:10 Base address:0xc800

04836book.indd 399 12/4/08 10:20:56 AM

400 Chapter 8 n Configuring Basic Networking

When configured properly, ifconfig should show a hardware address (HWaddr), an IP
address (inet addr), and additional statistics. There should be few or no errors, dropped pack-
ets, or overruns for both received (RX) and transmitted (TX) packets. Ideally, few (if any) colli-
sions should occur, but some are unavoidable if your network uses a hub rather than a switch.
If collisions total more than a few percent of the total transmitted and received packets, you
may want to consider replacing a hub with a switch. To use route for diagnostic purposes, you
might try the following:

route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

192.168.29.0 * 255.255.255.0 U 0 0 0 eth0

127.0.0.0 * 255.0.0.0 U 0 0 0 lo

default 192.168.29.1 0.0.0.0 UG 0 0 0 eth0

This shows that data destined for 192.168.29.0 (that is, any computer with an IP address
between 192.168.29.1 and 192.168.29.254) goes directly over eth0. The 127.0.0.0 network
is a special interface that “loops back” to the originating computer. Linux uses this for some
internal networking purposes. The last line shows the default route, which describes what to
do with everything that doesn’t match any other entry in the routing table. This line specifies
the default route’s gateway system as 192.168.29.1. If it’s missing or misconfigured, some or
all traffic destined for external networks, such as the Internet, won’t make it beyond your
local network segment.

As with DHCP configuration, it’s almost always easier to use a GUI configuration tool
to set up static IP addresses, at least for new administrators. The exact locations of the con-
figuration files differ from one distribution to another, so the examples listed earlier may
not apply to your system.

Configuring Routing
As explained earlier, routers pass traffic from one network to another. You configure your
Linux system to directly contact systems on the local network. You also give the computer
a router’s address, which your system uses as a gateway to the Internet at large. Any traf-
fic that’s not destined for the local network is directed at this router, which passes it on to
its destination. In practice, there are likely to be a dozen or more routers between you and
most Internet sites. Each router has at least two network interfaces and keeps a table of
rules concerning where to send data based on the destination IP address. Your own Linux
computer has such a table, but it’s probably very simple compared to those on major Inter-
net routers.

Linux can function as a router, which means it can link two or more networks together,
directing traffic between them on the basis of its routing table. This task is handled, in
part, by the route command. This command can be used to do much more than specify a

04836book.indd 400 12/4/08 10:20:56 AM

Configuring Linux for a Local Network 401

single gateway system, though, as described earlier. A simplified version of the route syn-
tax is as follows:

route {add | del} [-net | -host] target [netmask nm] [gw gw]➦

 [reject] [[dev] interface]

You specify add or del along with a target (a computer or network address) and option-
ally other parameters. The -net and -host options force route to interpret the target as a
network or computer address, respectively. The netmask option lets you set a netmask as you
desire, and gw lets you specify a router through which packets to the specified target should
go. (Some versions of route use gateway rather than gw.) The reject keyword installs a
blocking route, which refuses all traffic destined for the specified network. (This is not a fire-
wall, though.) Finally, although route can usually figure out the interface device (for instance,
eth0) on its own, you can force the issue with the dev option.

As an example, consider a network in which packets destined for the 172.20.0.0/16 sub-
net should be passed through the 172.21.1.1 router, which isn’t the default gateway system.
You can set up this route with the following command:

route add -net 172.20.0.0 netmask 255.255.0.0 gw 172.21.1.1

Incorrect routing tables can cause serious problems because some or all
computers won’t respond. You can examine your routing table by typing
route alone and compare the results to what your routing table should be.
(Consult a network administrator if you’re not sure what your routing table
should contain.) You can then delete incorrect routes and add new ones to
replace them, if necessary. Ultimately, of course, changing your configura-
tion files is the best solution, but typing a couple of route commands will
do the trick in the short term.

One more thing you may need to do if you’re setting up a router is enabling routing.
Ordinarily, a Linux system won’t forward packets it receives from one system that are
directed at another system. If Linux is to act as a router, though, it must accept these
packets and send them on to the destination network (or at least to an appropriate gate-
way). To enable this feature, you must modify a key file in the /proc filesystem:

echo “1” > /proc/sys/net/ipv4/ip_forward

This command enables IP forwarding. Permanently setting this option requires modifying
a configuration file. Some distributions set it in /etc/sysctl.conf:

net.ipv4.ip_forward = 1

Other distributions use other configuration files and options, such as /etc/sysconfig/
sysctl and its IP_FORWARD line. If you can’t find it, try using grep to search for ip_forward
or IP_FORWARD, or modify a local startup script to add the command to perform the change.

04836book.indd 401 12/4/08 10:20:56 AM

402 Chapter 8 n Configuring Basic Networking

Using GUI Configuration Tools
Most distributions include their own GUI configuration tools for network interfaces. For
instance, Fedora and Red Hat ship with a custom GUI tool called Network Configuration
(system-config-network), and SUSE has a text-mode and GUI tool called YaST. The details
of operating these programs differ, but the GUI configuration tool provides a means to enter
the information described earlier.

Although the LPI exam doesn’t cover GUI network configuration tools, they’re generally
easier to locate and use than the configuration files in which settings are stored. Thus, you
may want to look for your distribution’s tool and learn to use it. Once you understand the
principles of network configuration (IP addresses, DHCP, and so on), you shouldn’t have
trouble entering the necessary information in the GUI fields.

The precise details of how to configure a Linux system using GUI tools differ from one
distribution to another. For instance, SUSE’s YaST doesn’t lay out its options in precisely
the same way as Fedora’s Network Configuration tool. The basic principles are the same,
though; you must choose whether to use static IP address assignment or an automatic sys-
tem such as DHCP and enter a number of key options, depending on what configuration
method you choose.

Using the ifup and ifdown Commands
Most Linux distributions today ship with two commands, ifup and ifdown, that combine
the functions of several other network commands, most notably ifconfig and route. In their
simplest forms, they bring interfaces up or shut them down based on information in whatever
files your distribution uses to store network configuration data:

ifup eth0

Determining IP information for eth0... done.

After you issue this command, eth0 will be fully configured, including all routing infor-
mation, assuming you’ve properly configured it by using your distribution’s network config-
uration tools or by manually editing configuration files such as /etc/network/interfaces
and /etc/sysconfig/network-scripts/ifcfg-eth0. You can bring the interface down
with equal ease by typing ifdown eth0.

The ifup and ifdown commands are useful for verifying that the network settings are
configured properly for the next time the computer boots. They’re also useful if you want
to quickly take down the network or bring it back up again, because you can type fewer
commands and you don’t need to remember all the details of IP addresses, routes, and so
on. If you need to experiment or debug a problem, though, using ifconfig and route indi-
vidually is preferable, because they give you finer control over the process.

The ifup and ifdown commands are implemented as scripts that
consult the configuration files and run the relevant low-level commands
behind the scenes.

04836book.indd 402 12/4/08 10:20:57 AM

Configuring Linux for a Local Network 403

Configuring Hostnames
The hostnames described earlier (in “Resolving Hostnames”) are configured in a couple
of ways:

On DNS Your network administrator should be able to add an entry for your system to
your network’s DNS server. This entry should make your computer addressable by name
from other computers on your local network, and perhaps from the Internet at large. Alter-
natively, remote systems’ /etc/hosts files can be modified to include your system.

On your local computer Various local programs should know your computer’s name. For
instance, you may want to have your hostname displayed as part of a command prompt or
entered automatically in e-mail programs. For this task, you must set your hostname locally.
Note that this is entirely independent of your DNS hostname. In theory, you can set the two
to very different values, but this practice is likely to lead to confusion and perhaps even fail-
ure of some programs to operate properly.

The most basic tool for setting your hostname locally is called, appropriately enough,
hostname. Type the command alone to see what your hostname is, or type it with a new
name to set the system’s hostname to that name:

hostname nessus.example.com

Similar commands, domainname and dnsdomainname, display or set the computer’s
domain name (such as example.com). The domainname command sets the domain name as
used by Network Information System (NIS), whereas dnsdomainname sets the domain name
as used by DNS. These commands don’t affect remote servers—just the name given to pro-
grams that use calls designed for these servers.

Many Linux distributions look in the /etc/hostname or /etc/HOSTNAME file for a host-
name to set at boot time. Thus, if you want to set your hostname permanently, you should
look for these files, and if one is present, you should edit it. Fedora uses /etc/sysconfig/
network for this purpose, among others. If you can’t find one of these files, consult your
distribution’s documentation; it’s conceivable that your distribution stores its hostname in
some unusual location.

In Exercise 8.1, you’ll familiarize yourself with some of the tools used to configure
basic network settings. You’ll use these tools both to study and to change your network
configuration.

e x e r C i s e 8 .1

Configuring a Network Connection

In this exercise, the assumption is that the computer is correctly configured to use an IPv4
Ethernet network, including both local network access and access to a larger network
(probably the Internet) via a router.

Some of the procedures in this exercise can easily break your network connectivity if some-
thing goes wrong. If this happens, typing ifdown followed by ifup is one way to recover. If
this fails, rebooting the computer is almost certain to work, although it’s a radical solution.

04836book.indd 403 12/4/08 10:20:57 AM

404 Chapter 8 n Configuring Basic Networking

e x e r C i s e 8 .1 (c ont inue d)

To study and modify your system’s network configuration, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Acquire root privileges. You can do this by typing su in an xterm, by selecting Ses-
sion  New Root Console from a Konsole, or by using sudo (if it’s configured) to run
the commands in the following steps.

4. Type ifconfig. This command displays information about your local network settings
for all your network interfaces. Most systems have both a loopback interface (lo) and an
Ethernet interface (eth0). Look for a line in the Ethernet section that includes the string
inet addr:. The following 4-byte number is your IP address. Write it down, as well as
the value of your netmask (Mask:). Study the other information in this output, too, such
as the number of received (RX) and transmitted (TX) packets, the number of errors, the
number of collisions, and the Ethernet adapter’s hardware address.

5. Type route -n. The output is your computer’s routing table information. This normally
includes information about the loopback network address (127.0.0.0/24), the local net-
work address, and a default route (identified as the route for 0.0.0.0). Some systems
may display fewer or additional lines, depending on local configuration. The default
route includes an IP address under the Gateway column. Write down that address.

6. Use ping to test connectivity to both local and remote computers. (This command is
described in more detail shortly, in “Testing Basic Connectivity.”) You need the name
or IP address of at least one local computer and at least one distant computer (beyond
your local router). Type ping address, where address is the name or IP address of
each test machine. Perform this test for localhost or 127.0.0.1, your own machine
(use the IP address you noted in step 4), your local router (use the IP address you noted
in step 5), and a distant computer (if you’re connected to the Internet, you can use an
Internet-accessible site, such as www.linux.org). All of these ping tests should be suc-
cessful. Note, however, that some systems are configured to ignore packets sent by
ping. Thus, some of these tests may fail if you run into such systems. You can learn the
configuration of local systems from their administrators, but for Internet sites, you may
want to simply try another site if the first one you test fails.

7. Bring down the local Ethernet connection by typing ifconfig eth0 down.

8. Repeat steps 4–6. Note that the eth0 interface is no longer shown when you type
ifconfig, all routes associated with it have been removed from the routing table,
and pinging systems accessible from the interface no longer works. (Linux retains
some information about its former Ethernet link, so you may still be able to ping the
computer itself via its former eth0 address.)

04836book.indd 404 12/4/08 10:20:57 AM

Configuring Linux for a Local Network 405

e x e r C i s e 8 .1 (c ont inue d)

9. Bring the local Ethernet connection back up by typing ifconfig eth0 up address
netmask mask, where address is the original IP address and mask is the original net-
mask, both as identified in step 4.

10. Repeat steps 4–6. Note that the ifconfig command automatically added back your
local network to the routing table but that the default route is still missing. As a result,
you can’t contact any systems that are located off the local network. If your DNS
server is such a system, this means your ability to contact even local machines by
name may be impaired as well.

11. Restore the default route by typing route add default gw gateway, where gateway
is the router address you identified in step 5.

12. Repeat steps 4–6. If your network configuration is typical, all connectivity should be
restored. (Some more exotic systems may still be lacking certain routes.)

using PPP with dsl

Broadband users, and particularly those with Digital Subscriber Line (DSL) connections,
sometimes have to use a variant of PPP to make their connections. PPP is a login-based
way to access the Internet—you use a PPP utility to initiate a connection to a remote
computer, which includes an exchange of a username and a password. A decade ago,
PPP was used in dial-up Internet access (and it’s still used in this capacity), but some DSL
providers have adapted PPP for their own purposes. In the case of DSL, this configuration
method is called PPP over Ethernet (PPPoE).

In many cases, the simplest way to use a PPPoE configuration is to purchase a broad-
band router. This device attaches to the DSL modem and makes the PPPoE connection.
The broadband router then works just like an ordinary Ethernet or Wi-Fi router, as far as
your local computers are concerned, so you can configure Linux as you would on any
other local network.

If you must connect a Linux system directly to a DSL network that uses PPPoE, you must
use a Linux PPPoE client. Most Linux distributions ship with such clients; but configuration
details vary from one distribution to another. Your best bet is to look for your distribution’s
GUI network configuration tool; chances are, you’ll be able to find a set of options that are
clearly labeled as applying to DSL or PPPoE.

04836book.indd 405 12/4/08 10:20:58 AM

406 Chapter 8 n Configuring Basic Networking

Diagnosing Network Connections
Network configuration is a complex topic, and unfortunately, things don’t always work as
planned. Fortunately, there are a few commands you can use to help diagnose a problem.
Five of these are ping, traceroute, tracepath, netstat, and tcpdump. Each of these com-
mands exercises the network in a particular way and provides information that can help
you track down the source of a problem. You can also use some common network pro-
grams that aren’t primarily debugging tools in your debugging efforts.

Testing Basic Connectivity
The most basic network test is the ping command, which sends a simple ICMP packet to
the system you name (via IP address or hostname) and waits for a reply. In Linux, ping
continues sending packets once every second or so until you interrupt it with a Ctrl+C key-
stroke. (You can instead specify a limited number of tests via the -c num option.) Here’s an
example of its output:

$ ping -c 4 speaker

PING speaker (192.168.1.1) 56(84) bytes of data.

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=1 ttl=64 time=0.194ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=2 ttl=64 time=0.203ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=3 ttl=64 time=0.229ms

64 bytes from speaker.example.com (192.168.1.1): icmp_seq=4 ttl=64 time=0.217ms

--- speaker ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3002ms

rtt min/avg/max/mdev = 0.194/0.210/0.229/0.022 ms

This command sent four packets and waited for their return, which occurred quite
quickly (in an average of 0.210ms) because the target system was on the local network. By
pinging systems on both local and remote networks, you can isolate where a network prob-
lem occurs. For instance, if you can ping local systems but not remote systems, the problem
is most probably in your router configuration. If you can ping by IP address but not by
name, the problem is with your DNS configuration.

Tracing a Route
A step up from ping is the traceroute command, which sends a series of three test pack-
ets to each computer between your system and a specified target system. The result looks
something like this:

$ traceroute -n 10.1.0.43

traceroute to 10.1.0.43 (10.1.0.43), 30 hops max, 52 byte packets

04836book.indd 406 12/4/08 10:20:58 AM

Diagnosing Network Connections 407

 1 192.168.1.254 1.021 ms 36.519 ms 0.971 ms

 2 10.10.88.1 17.250 ms 9.959 ms 9.637 ms

 3 10.9.8.173 8.799 ms 19.501 ms 10.884 ms

 4 10.9.8.133 21.059 ms 9.231 ms 103.068 ms

 5 10.9.14.9 8.554 ms 12.982 ms 10.029 ms

 6 10.1.0.44 10.273 ms 9.987 ms 11.215 ms

 7 10.1.0.43 16.360 ms * 8.102 ms

The -n option to this command tells it to display target computers’ IP addresses rather
than their hostnames. This can speed up the process a bit, particularly if you’re having
DNS problems, and it can sometimes make the output easier to read—but you may want to
know the hostnames of problem systems because that can help you pinpoint who’s respon-
sible for a problem.

This sample output shows a great deal of variability in response times. The first hop, to
192.168.1.254, is purely local; this router responded in 1.021, 36.519, and 0.971 milliseconds
(ms) to its three probes. (Presumably the second probe caught the system while it was busy
with something else.) Probes of most subsequent systems are in the 8–20ms range, although
one is at 103.068ms. The final system has only two times; the middle probe never returned,
as the asterisk (*) on this line indicates.

Using traceroute, you can localize problems in network connectivity. Highly variable
times and missing times can indicate a router that’s overloaded or that has an unreliable link
to the previous system on the list. If you see a dramatic jump in times, it typically means that
the physical distance between two routers is great. This is common in intercontinental links.
Such jumps don’t necessarily signify a problem unless the two systems are close enough that
a huge jump isn’t expected.

What can you do with the traceroute output? Most immediately, traceroute is helpful in
determining whether a problem in network connectivity exists in a network for which you’re
responsible. For instance, the variability in the first hop of the preceding example could indi-
cate a problem on the local network, but the lost packet associated with the final destination
most likely is not a local problem. If the trouble link is within your jurisdiction, you can check
the status of the problem system, nearby systems, and the network segment in general.

Some routers are configured in such a way that traceroute isn’t a useful
tool; these routers block all traceroute data, either to themselves only or
for all packets that pass through them. If your traceroute output contains
one or two lines of all asterisks but everything else seems OK, chances are
you’ve run into such a system. If you see nothing but asterisks after a cer-
tain router but diagnostic tools such as ping still work, a router is probably
blocking all traceroute operations.

The tracepath program is an alternative to traceroute. In basic operation, it’s similar,
although it produces one line of output for each test packet and so yields longer outputs than
traceroute. There are also fewer tracepath options than there are traceroute options.

04836book.indd 407 12/4/08 10:20:58 AM

408 Chapter 8 n Configuring Basic Networking

Checking Network Status
Another useful diagnostic tool is netstat. This is something of a Swiss Army knife of net-
work tools because it can be used in place of several others, depending on the parameters
it’s passed. It can also return information that’s not easily obtained in other ways. Some
examples include the following:

Interface information Pass netstat the --interface or -i parameter to obtain information
about your network interfaces similar to what ifconfig returns. (Some versions of netstat
return information in the same format, but others display the information differently.)

Routing information You can use the --route or -r parameter to obtain a routing table
listing similar to what the route command displays.

Masquerade information Pass netstat the --masquerade or -M parameter to obtain
information about connections mediated by Linux’s NAT features, which often go by the
name IP masquerading. NAT enables a Linux router to “hide” a network behind a single
IP address. This can be a good way to stretch limited IPv4 addresses.

Program use Some versions of netstat support the --program (or -p) parameter, which
attempts to provide information about the programs that are using network connections. This
attempt isn’t always successful, but it often is, so you can see what programs are making out-
side connections.

Open ports When used with various other parameters, or without any parameters
at all, netstat returns information about open ports and the systems to which they
connect.

All connections The --all or -a option is used in conjunction with others. It causes netstat
to display information about the ports that server programs open to listen for network connec-
tions, in addition to already-open connections. This use of netstat is described in more detail
in Chapter 10, “Securing Your System.”

Keep in mind that netstat is a very powerful tool, and its options and output aren’t
entirely consistent from one distribution to another. You may want to peruse its man page
and experiment with it to learn what it can do.

Examining Raw Network Traffic
One advanced network troubleshooting tool is tcpdump. This utility is a packet sniffer, which
is a program that can intercept network packets and log them or display them on the screen.
Packet sniffers can be useful diagnostic tools because they enable you to verify that a com-
puter is actually receiving data from other computers. They also enable you to examine the
data in its raw form, which can be useful if you understand enough of the protocol’s imple-
mentation details to spot problems.

04836book.indd 408 12/4/08 10:20:58 AM

Diagnosing Network Connections 409

Although packet sniffers are useful diagnostic tools, they can also be
abused. For instance, unscrupulous individuals can run packet sniffers
to capture passwords that others send over the network. Depending on
your network configuration, this trick can work even if the packet sniffer
isn’t running on either the sending or the receiving computer. For this
reason, many organizations have policies forbidding the use of packet
sniffers except under limited circumstances. Thus, before running a
packet sniffer, you should obtain written permission to use such a pro-
gram from an individual who is authorized to grant such permission.
Failure to do so can lead you into serious trouble, possibly up to losing
your job or even being sued.

In its most basic form, you can use tcpdump by typing its name:

tcpdump

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

19:31:55.503759 IP speaker.example.com.631 > 192.168.1.255.631: UDP,➦

 length: 139

19:31:55.505400 IP nessus.example.com.33513 > speaker.example.com.domain:➦

 46276+ PTR? 255.1.168.192.in-addr.arpa. (44)

19:31:55.506086 IP speaker.example.com.domain > nessus.example.com.33513:➦

 46276 NXDomain* 0/1/0 (110)

The first thing to note about this command is that you must run it as root; ordinary
users aren’t allowed to monitor network traffic in this way. Once it’s run, tcpdump summa-
rizes what it’s doing and then begins printing lines, one for each packet it monitors. (Some
of these lines can be quite long and so may take more than one line on your display.) These
lines include a time stamp, a stack identifier (IP in all of these examples), the origin system
name or IP address and port, the destination system name or IP address and port, and
packet-specific information. Ordinarily, tcpdump keeps displaying packets indefinitely, so
you must terminate it by pressing Ctrl+C. Alternatively, you can pass it the -c num option
to have it display num packets and then quit.

Even this basic output can be very helpful. For instance, consider the preceding example
of three packets, which was captured on nessus.example.com. This computer successfully
received one broadcast packet (addressed to 192.168.1.255) from speaker.example.com’s
UDP port 631, sent a packet to speaker.example.com, and received a packet from that sys-
tem directed at nessus.example.com rather than sent as a broadcast. This sequence verifies
that at least minimal communication exists between these two computers. If you were having
problems establishing a connection, you could rule out a whole range of possibilities based on
this evidence, such as faulty cables or a firewall that was blocking traffic.

If you need more information, tcpdump provides several options that enhance or modify
its output. These include -A to display packet contents in ASCII, -D to display a list of

04836book.indd 409 12/4/08 10:20:59 AM

410 Chapter 8 n Configuring Basic Networking

interfaces to which tcpdump can listen, -n to display all addresses numerically, -v (and addi-
tional -v options, up to -vvv) to display additional packet information, and -w file to write
the captured packets to the specified file. Consult tcpdump’s man page for more details on
these options and for additional options.

Using Additional Tools
In addition to specialized network diagnostic programs, you can use some common user
programs as debugging tools. One of the most useful of these may be Telnet. This program
and protocol is mainly a remote login tool; type the program name followed by the name of
a remote system to receive a login prompt on that system:

$ telnet speaker

Trying 192.168.1.1...

Connected to speaker.

Escape character is ‘^]‘.

speaker login: harry

Password:

Last login: Mon Apr 25 21:48:44 from nessus.example.com

Have a lot of fun...

harry@speaker:~>

Telnet is a poor choice as a remote login protocol because it’s entirely unen-
crypted. As a general rule, you should remove the Telnet server from your
system and never use the telnet client program. It can be a useful lowest-
common-denominator protocol on sufficiently protected private networks,
though, and it can also be a handy tool for debugging, as described next.
Chapter 10 describes SSH, which is a much safer alternative to Telnet.

You can also use Telnet to debug network protocols; if you give it a port number after
the remote hostname, the telnet program connects to that port, enabling you to interact
with the server:

$ telnet speaker 25

Trying 192.168.1.1...

Connected to speaker.

Escape character is ‘^]‘.

220 speaker.example.com ESMTP Postfix

HELO nessus.example.com

250 speaker.example.com

04836book.indd 410 12/4/08 10:20:59 AM

Diagnosing Network Connections 411

This example connects to port 25, which is used by e-mail servers. After connecting,
I entered a HELO command, which is used by SMTP to identify a client; the remote system
responded with a 250 code, which indicates an accepted command.

Of course, to use Telnet in this way, you must know a great deal about the protocol.
Even without this knowledge, though, you can use Telnet to test whether a server is run-
ning: If you try to connect but get a Connection refused error message, you know that
a remote server isn’t running or is inaccessible for some reason (say, because it’s being
blocked by a firewall). If you get in (to the Escape character message shown in the earlier
example or beyond), the server is running, although it may not be working correctly. This
test only works for protocols that use TCP. Some simple tools use UDP instead, and Telnet
won’t connect with them.

Sometimes the File Transfer Protocol (FTP) can be a useful diagnostic tool, as well. This
program, as its name suggests, enables you to transfer files between systems. To use it, type
the program name followed by the FTP server’s name. You’ll then see a login prompt and
be able to issue FTP commands:

$ ftp speaker

Connected to speaker.

220 (vsFTPd 1.2.1)

Name (speaker:harry): harry

530 Please login with USER and PASS.

SSL not available

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp> get zathras.wav

local: zathras.wav remote: zathras.wav

200 PORT command successful. Consider using PASV.

150 Opening BINARY mode data connection for zathras.wav (109986 bytes).

226 File send OK.

109986 bytes received in 0.104 secs (1e+03 Kbytes/sec)

ftp> quit

221 Goodbye.

This example retrieves a single file, zathras.wav, from the remote computer. The basic
ftp client displays a file size, transfer time, and transfer rate (1e+03 Kbytes/sec—in other
words, 1 × 103 KB/s, or 1000 KB/s). This can be a useful way to test your network transfer
speed, although you’ll get more reliable results with files that are several hundred kilobytes
or larger in size. In addition to get, which retrieves files, you can issue commands such
as put, to upload a file; ls or dir, to display the remote system’s directory contents; cd,
to change directories on the remote system; delete, to remove a file; and quit or exit, to

04836book.indd 411 12/4/08 10:20:59 AM

412 Chapter 8 n Configuring Basic Networking

exit from the program. You can use the help or ? command to see a list of available ftp
commands.

Like Telnet, FTP is a poor choice of protocol for security reasons. The same SSH protocol
that can substitute for Telnet can also handle most FTP duties. One important exception exists
to the rule not to use FTP, though: Anonymous FTP sites are a common method of distribut-
ing public files on the Internet. You can download Linux itself from anonymous FTP sites.
These sites typically take a username of anonymous and any password (your e-mail address
is the conventional reply) and give you read access to their contents. In most cases, you can’t
upload files to anonymous FTP sites, and you can access only a limited number of files.

You can access public FTP sites using a Web browser. Enter a URL that
begins with ftp://, such as ftp://downloads.example.org, and the Web
browser connects to the site using FTP rather than HTTP.

Summary
Linux is a network-enabled OS, and it relies on its networking features more than most
OSs do. This networking is built around TCP/IP, so you should understand the basics of
this protocol stack, including IP addresses, hostnames, and routing. Most Linux distribu-
tions provide tools to configure networking during system installation; but if you want to
temporarily or permanently change your settings, you can do so. Tools such as ifconfig
and route can temporarily change your network configuration, and editing critical files or
running distribution-specific utilities enables you to make your changes permanent.

Exam Essentials

Describe the information needed to configure a computer on a static IP network. Four
pieces of information are important: the IP address, the netmask (a.k.a. the network mask
or subnet mask), the network’s gateway address, and the address of at least one DNS server.
The first two are required, but if you omit either or both of the latter two, basic networking
will function, but you won’t be able to connect to the Internet or use most DNS hostnames.

Determine when using /etc/hosts over DNS makes the most sense. The /etc/hosts file
provides a static mapping of hostnames to IP addresses on a single computer. As such, main-
taining this file on a handful of computers for a small local network is fairly straightforward;
but when the number of computers rises beyond a few or when IP addresses change frequently,
running a DNS server to handle local name resolution makes more sense.

04836book.indd 412 12/4/08 10:20:59 AM

Exam Essentials 413

Summarize tools you can use to translate between hostnames and IP addresses. The
nslookup program can perform these translations in both directions using either command-
line or interactive modes, but this program has been deprecated. You’re better off using host
for simple lookups or dig for more complex tasks.

Describe the function of network ports. Network ports enable packets to be directed
to specific programs; each network-enabled program attaches itself to one or more ports,
sending data from that port and receiving data directed to the port. Certain ports are
assigned to be used by specific servers, enabling client programs to contact servers by
directing requests at specific port numbers on the server computers.

Explain when you should use static IP addresses or DHCP. Static IP address configuration
involves manually entering the IP address and other information and is used when a network
lacks a Dynamic Host Configuration Protocol (DHCP) server or when a computer shouldn’t
be configured by that server (say, because the computer is the DHCP server). DHCP configura-
tion is easier to set up on the client but works only if the network has a DHCP server system.

Explain what the route command accomplishes. The route command displays or modi-
fies the routing table, which tells Linux how to direct packets based on their destination
IP addresses.

Describe some basic network diagnostic tools. The ping program tests basic network
connectivity, and traceroute and tracepath perform similar but more complex tests that
can help you localize where on a route between two systems a problem exists. The netstat
utility is a general-purpose network status tool that can report a wide variety of informa-
tion about your network configuration. Packet sniffers such as tcpdump provide detailed
information about the network packets “seen” by a computer, which can be a useful way to
verify that certain packet types are actually being sent or received.

04836book.indd 413 12/4/08 10:20:59 AM

414 Chapter 8 n Configuring Basic Networking

Review Questions

1. Which types of network hardware does Linux support? (Select all that apply.)

A. Token Ring

B. Ethernet

C. DHCP

D. Fibre Channel

2. Which of the following is a valid IPv4 address for a computer on a TCP/IP network?

A. 202.9.257.33

B. 63.63.63.63

C. 107.29.5.3.2

D. 98.7.104.0/24

3. You want to set up a computer on a local network via a static TCP/IP configuration, but
you lack a gateway address. Which of the following is true?

A. Because the gateway address is necessary, no TCP/IP networking functions will work.

B. TCP/IP networking will function, but you’ll be unable to convert hostnames to IP
addresses or vice versa.

C. You’ll be able to communicate with machines on your local network segment but not
with other systems.

D. The computer won’t be able to tell which other computers are local and which are remote.

4. Using a packet sniffer, you notice a lot of traffic directed at TCP port 22 on a local computer.
What protocol does this traffic use, assuming it’s using the correct port?

A. HTTP

B. SMTP

C. Telnet

D. SSH

5. What network port would an IMAP server normally use for IMAP exchanges?

A. 21

B. 25

C. 110

D. 143

6. Which of the following is not a Linux DHCP client?

A. pump

B. dhcpcd

C. dhcpd

D. dhclient

04836book.indd 414 12/4/08 10:21:00 AM

Review Questions 415

7. Which of the following types of information are returned by typing ifconfig eth0?
(Select all that apply.)

A. The names of programs that are using eth0

B. The IP address assigned to eth0

C. The hardware address of eth0

D. The hostname associated with eth0

8. Which of the following programs can be used to perform a DNS lookup?

A. host

B. dnslookup

C. pump

D. ifconfig

9. Which of the following commands should you use to add to host 192.168.0.10 a default
gateway to 192.168.0.1?

A. route add default gw 192.168.0.10 192.168.0.1

B. route add default gw 192.168.0.1

C. route add 192.168.0.10 default 192.168.0.1

D. route 192.168.0.10 gw 192.168.0.1

10. How might you manually bring up an interface on eth1? (Select all that apply.)

A. Type dhclient eth1.

B. Type ifup eth1.

C. Type ifconfig eth1.

D. Type network eth1.

11. What is the purpose of /etc/hostname, if it’s present on the system?

A. It holds the computer’s default hostname.

B. It holds a list of servers that resolve hostnames.

C. It holds a list of IP addresses and associated hostnames.

D. It holds the hostname of the local gateway computer.

12. Network accesses to parts of the Internet work fine, but several common addresses have
stopped responding. Which of the following tools will be most helpful in diagnosing the
source of this problem?

A. netstat

B. ping

C. traceroute

D. ifconfig

04836book.indd 415 12/4/08 10:21:00 AM

416 Chapter 8 n Configuring Basic Networking

13. The ping utility responds normally when you use it with an IP address but not when you
use it with a hostname that you’re positive corresponds to this IP address. What might
cause this problem? (Select all that apply.)

A. The target computer may be configured to ignore packets from ping.

B. Your computer’s DNS configuration may be broken.

C. The DNS configuration on the target system may be broken.

D. The route between your computer and its DNS server may be incorrect.

14. How can you learn what programs are currently accessing the network on a Linux system?

A. Type ifconfig -p eth0.

B. Examine /proc/network/programs.

C. Type netstat -p.

D. Examine /etc/xinetd.conf.

15. To diagnose a problem with an IMAP server (imap.example.com), you type telnet
imap.example.com 143 from a remote client. How can this procedure help you? (Select
all that apply.)

A. You can verify basic connectivity between the client computer and the server program.

B. By examining the output, you can locate intermediate routers that are misbehaving.

C. By using an encrypted protocol, you ensure that problems aren’t caused by a packet-
sniffing intruder.

D. Once connected, you can type IMAP commands to test the server’s response to them.

16. You’re configuring a new system, and your network administrator scribbles its IP address
(172.25.78.89), netmask (255.255.255.0), gateway address (172.25.79.1), and DNS server
address (10.24.89.201) on a piece of paper. You enter this information into your configuration
files and type ifup eth0, but you find that you can’t access the Internet with this computer.
Which of the following is definitely true?

A. Because the DNS server is on a completely different network, it won’t function properly
for your system. You should ask for the local network’s DNS server’s IP address.

B. The netmask identifies the gateway as being on a different network segment than the
computer you’re configuring, so the two can’t communicate directly. You most likely
misread one address.

C. Because the IP addresses involved are private IP addresses, there’s no way for them to
access the Internet. You must ask for public IP addresses for this system or use only
your local private network.

D. The computer’s IP address is a Class B address, but the netmask is for a Class C
address. This combination can’t work together, so you must obtain a new IP address or
netmask.

04836book.indd 416 12/4/08 10:21:00 AM

Review Questions 417

17. What is the purpose of the -n option to route?

A. It causes no operation to be performed; route reports what it would do if -n were
omitted.

B. It precedes specification of a netmask when setting the route.

C. It causes machines to be identified by IP address rather than hostname in output.

D. It forces interpretation of a provided address as a network address rather than a host
address.

18. What is the purpose of /etc/resolv.conf?

A. It sets the computer’s domain and identifies (by IP address) the name servers that the
computer may use.

B. It controls whether the computer’s network options are configured statically or via a
DHCP server.

C. It specifies the IP address of a DHCP server from which the computer attempts to
obtain an IP address.

D. It holds the routing table for the computer, determining the route that network packets
take to other computers.

19. Which of the following entries are found in the /etc/hosts file?

A. A list of hosts allowed to remotely access this one

B. Mappings of IP addresses to hostnames

C. A list of users allowed to remotely access this host

D. Passwords for remote Web administration

20. How can you reconfigure Linux to use DNS queries prior to consulting /etc/hosts?

A. Edit the /etc/resolv.conf file, and be sure the nameserver dns line comes before
the nameserver files line.

B. As root, type nslookup dns.

C. Edit the /etc/named.conf file, and change the preferred-resolution option from
files to dns.

D. Edit /etc/nsswitch.conf, and change the order of the files and dns options on the
hosts: line.

04836book.indd 417 12/4/08 10:21:00 AM

418 Chapter 8 n Configuring Basic Networking

Answers to Review Questions

1. A, B, D. Ethernet is currently the most common type of network hardware for local net-
works. Linux supports it very well, and Linux also includes support for Token Ring and
Fibre Channel network hardware. DHCP is a protocol used to obtain a TCP/IP configura-
tion over a TCP/IP network. It’s not a type of network hardware, but it can be used over
hardware that supports TCP/IP.

2. B. IP addresses consist of four 1-byte numbers (0–255). They’re normally expressed in
base 10 and separated by periods. 63.63.63.63 meets these criteria. 202.9.257.33 includes
one value (257) that’s not a 1-byte number. 107.29.5.3.2 includes five 1-byte numbers.
98.7.104.0/24 is a network address—the trailing /24 indicates that the final byte is a
machine identifier, and the first 3 bytes specify the network.

3. C. The gateway computer is a router that transfers data between two or more network
segments. As such, if a computer isn’t configured to use a gateway, it won’t be able to com-
municate beyond its local network segment. (If your DNS server is on a different network
segment, name resolution via DNS won’t work, although other types of name resolution,
such as /etc/hosts file entries, will still work.)

4. D. The Secure Shell (SSH) protocol uses port 22, so if the traffic to port 22 is using the cor-
rect protocol, it’s SSH traffic. The Hypertext Transfer Protocol (HTTP) is conventionally
bound to port 80; the Simple Mail Transfer Protocol (SMTP) uses port 25; and Telnet uses
port 22. None of these would normally be directed to port 22.

5. D. The Internet Mail Access Protocol (IMAP) is assigned to TCP port 143. Ports 21, 25,
and 110 are assigned to the File Transfer Protocol (FTP), the Simple Mail Transfer Protocol
(SMTP), and the Post Office Protocol version 3 (POP-3), respectively. Although some IMAP
server programs also support POP-3 and might therefore listen to both ports 110 and 143,
the question specifies IMAP exchanges, so option D is the only correct answer.

6. C. Option C, dhcpd, is the Linux DHCP server. The others are all DHCP clients. Any given
computer will use just one DHCP client (or none at all), but from one to three of A, B, and
D will be available choices.

7. B, C. When used to display information on an interface, ifconfig shows the hardware and
IP addresses of the interface, the protocols (such as TCP/IP) bound to the interface, and
statistics on transmitted and received packets. This command does not return information
about programs using the interface or the hostname associated with the interface.

8. A. The host program is a commonly used program to perform a DNS lookup. There is no
standard dnslookup program, although the nslookup program is a deprecated program for
performing DNS lookups. pump is a DHCP client, whereas ifconfig is used for configura-
tion of networking parameters and cards.

9. B. To add a default gateway of 192.168.0.1, the command would be route add default
gw 192.168.0.1. Specifying the IP address of the host system is not necessary and in fact
will confuse the route command.

04836book.indd 418 12/4/08 10:21:00 AM

Answers to Review Questions 419

10. A, B. The dhclient utility, if installed, attempts to configure and bring up the network(s)
passed to it as options (or all networks if it’s given no options) using a DHCP server for
guidance. Thus, option A may work, although it won’t work if no DHCP server is avail-
able. Option B applies whatever network options are configured using distribution-specific
tools and brings up the network. Thus, options A and B both may work, although neither
is guaranteed to work. Option C displays the network status of eth1, but it won’t activate
eth1 if it’s not already active. There is no standard network utility in Linux. Thus, options
C and D won’t work.

11. A. Although not all systems use /etc/hostname, option A correctly describes it for those sys-
tems that use it. Option B describes the purpose of /etc/resolv.conf. Option C describes
the purpose of /etc/hosts. Option D doesn’t describe any standard Linux configuration file,
although the gateway computer’s IP address is likely to appear in a distribution-specific con-
figuration file.

12. C. The traceroute command identifies the computers that lie between your own computer
and a destination computer, along with some very basic information about network packet
travel time and reliability. Thus, traceroute can help you track down the source of the
described problem—perhaps a router that’s critical to reaching all of the non-responsive
systems has failed. The netstat and ifconfig utilities of options A and D both provide
information about local network configuration options, but they most likely won’t be of
much help in diagnosing a problem that affects only some sites. The ping utility may help
you quickly identify sites that have failed but won’t be of much use beyond that.

13. B, D. DNS problems can manifest as an ability to connect to computers using IP addresses
but not using hostnames. Thus, options B and D (and various other DNS-related problems)
could create the symptoms described. If the target system were configured to ignore ping
packets, as described in option A, then it wouldn’t respond when you identified it by IP
address. The target system’s DNS configuration (option C) doesn’t enter into the equation,
because it responds to the ping request via IP address alone.

14. C. The netstat program produces various network statistics, including the process IDs
(PIDs) and names of programs currently accessing the network when passed the -p param-
eter. Thus, option C is correct. The ifconfig program can’t produce this information,
and the -p option to this program is fictitious, so option A is incorrect. Option B’s /proc/
network/programs file is also fictitious. Option C’s /etc/xinetd.conf file is real and may
provide some information about some servers that are using the network (as described in
Chapter 10); but this file won’t provide information about all servers, much less about cli-
ents that are accessing the network.

15. A, D. If you get any response at all, you know that the basic network connection is work-
ing, including that the server is responding to the client. With basic knowledge of IMAP
commands, telnet enables you to test the server’s responses in more detail than most
IMAP clients (mail readers) permit. Thus, options A and D are both correct. Option C
describes the functionality of traceroute or tracepath; telnet provides no information
about intermediate routers’ functionality, so option B is incorrect. Because neither telnet
nor IMAP on port 143 uses encryption, option C is incorrect. Furthermore, a packet sniffer
is likely to have no effect on the transfer of data; it just copies the data so that the packet
sniffer’s user can see it.

04836book.indd 419 12/4/08 10:21:00 AM

420 Chapter 8 n Configuring Basic Networking

16. B. The computer’s IP address (172.25.78.89) and netmask (255.255.255.0) mean that the
computer can directly address computers with IP addresses in the range of 172.25.78.1 to
172.25.78.254; but the gateway address (172.25.79.1) is outside of this range. Thus, either the
IP address or the gateway address is wrong, and option B is correct. Nothing about the way
DNS operates necessitates that the DNS server be on the same network segment as the DNS
client, so option A is incorrect. Although private IP addresses are often isolated from the Inter-
net, as option C specifies, Network Address Translation (NAT) can get around this limitation.
Thus, although there could be some truth to option C, it’s not certain to be true. The class
A/B/C distinctions are just guidelines that can be overridden by specific configurations. Thus,
option C is incorrect.

17. C. The -n option is used when you want to use route to display the current routing table,
and it does as option C specifies. There is no route parameter that behaves as option A
specifies. Option B describes the purpose of the netmask parameter to route. Option D
describes the purpose of the -net parameter to route.

18. A. Option A correctly identifies the function of /etc/resolv.conf. Various distribution-
specific configuration files perform the function described in option B, but /etc/resolv.conf
is not one of these files. A DHCP client sends a broadcast to locate a DHCP server; there is
no client configuration file that holds the DHCP server’s address, as option C describes. The
routing table is maintained internally, although basic routing information may be stored in
distribution-specific configuration files, so option D is also incorrect.

19. B. The /etc/hosts file holds mappings of IP addresses to hostnames, on a one-line-
per-mapping basis. It does not list the users or other hosts allowed to remotely access
this one or affect remote administration through a Web browser.

20. D. The /etc/nsswitch.conf file controls the order of name resolution, among other things.
Option D correctly describes the procedure for changing the order in which Linux performs
name resolution. The /etc/resolv.conf file mentioned in option A controls the DNS servers
that Linux consults, but it doesn’t control access to /etc/hosts. Option B’s nslookup com-
mand resolves a hostname, so option B will return the IP address of the computer called dns,
if Linux can find such a system. The /etc/named.conf file of option C is the configuration
file for the standard name server. This server isn’t likely to be installed on most Linux sys-
tems, and even if it is, the procedure described in option C is invalid.

04836book.indd 420 12/4/08 10:21:01 AM

Chapter

9
Writing Scripts,
Configuring E-mail,
and Using Databases

ThE folloWing linUx ProfESSional
inSTiTUTE objECTivES arE CovErED in
ThiS ChaPTEr:

1.105.1 Customize and use the shell environment (weight: 4)ÛÛ

1.105.2 Customize or write simple scripts (weight: 4)ÛÛ

1.105.3 SQL data management (weight: 2)ÛÛ

1.108.3 Mail Transfer Agent (MTA) basics (weight: 3)ÛÛ

04836c09.indd 421 1/11/09 9:19:19 AM

This chapter covers a number of miscellaneous topics. The
first of these relate to shell management and scripting. Linux
shells (introduced in Chapter 1, “Exploring Linux Command-

Line Tools”) can be customized in various ways. Knowing how to do this will help you be
productive when using Linux. You may even need to set various options to use particular
programs, and you may need to make similar changes on a global level so that all your users
can work effectively. Managing your shell environment is done, essentially, by modifying
standard shell startup scripts, so this chapter covers scripting next. You can write scripts
to help automate tedious repetitive tasks or to perform new and complex tasks. Many of
Linux’s startup functions (described in Chapter 5, “Booting Linux and Editing Files”) are
performed by scripts, so mastering scripting will help you manage the startup process.

The next major topic of this chapter is Structured Query Language (SQL) data manage-
ment. Many Linux installations rely on a SQL database to store information, and so you may
need at least a minimal grounding in how to interact with SQL databases.

Finally, this chapter describes the basics of e-mail management under Linux. Several
Linux e-mail packages exist, and you’re not expected to understand the details of their
configuration for the LPI Level 1 exam; however, you should know how to configure mail
forwarding, examine mail queues, and otherwise interact with a Linux mail server that’s
already basically working.

Managing the Shell Environment
Chapter 1 introduced Linux shell use, including topics such as command completion, history,
redirection, and the basics of environment variables. Now it’s time to go further, with more
details about environment variables, aliases, and configuration files. Using this information,
you’ll be able to customize your shell environment to suit your personal tastes or change the
default environment for all the users on your system.

Reviewing Environment Variables
As described in Chapter 1, environment variables provide the means to pass named data
(variables) to programs launched from a shell. Shells themselves also rely on environment
variables. For instance, $HOSTNAME conventionally holds the computer’s name, such as

04836c09.indd 422 1/11/09 9:19:22 AM

Managing the Shell Environment 423

carson.example.com. A program that needs to know the computer’s name can refer to
$HOSTNAME to obtain this information.

You set an environment variable manually via an equal-sign assignment operator. To
make the variable available to programs you launch from your shell, you then use the
export command:

$ HOSTNAME=carson.example.com

$ export HOSTNAME

You can combine these two commands into one for brevity:

$ export HOSTNAME=carson.example.com

On a bash command line, you can refer to an environment variable by using the echo
command to examine a single variable (as in echo $HOSTNAME) or by typing env to display
all the environment variables.

Environment variable names are usually preceded by a dollar sign ($) in
scripts and on shell command lines, except when they’re assigned. Getting
this detail wrong can produce results you weren’t expecting; for instance,
typing echo HOSTNAME produces the output HOSTNAME, rather than the com-
puter’s hostname.

Although you can set environment variables manually at a bash prompt, a more common
approach is to set them in a global or local bash startup script. These scripts are described in
more detail shortly, in “Modifying Shell Configuration Files.”

Understanding Common Environment Variables
You may encounter many common environment variables on your system. You can find out
how environment variables are configured by typing env. This command is used to run a
program with a changed set of environment variables; but when it’s typed alone, it returns
all the environment variables that are currently set, in a format similar to that of bash envi-
ronment variable assignments:

$ env | grep HOSTNAME

HOSTNAME=carson.example.com

Of course, the variables you see and their values will be unique to your system and even
your account—that’s the whole point of environment variables. Table 9.1 summarizes com-
mon variables you may see in this output.

04836c09.indd 423 1/11/09 9:19:26 AM

424 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Ta b lE 9 .1 Common Environment Variables and Their Meanings

Variable Name Explanation

USER or USERNAME This is your current username. It’s a variable that’s maintained by
the system.

SHELL This variable holds the path to the current command shell.

PWD This is the present working directory. This environment variable is
maintained by the system. Programs may use it to search for files
when you don’t provide a complete pathname.

HOSTNAME This is the current TCP/IP hostname of the computer.

PATH This is an unusually important environment variable. It sets the path for
a session, which is a colon-delimited list of directories in which Linux
searches for executable programs when you type a program name. For
instance, if PATH is /bin:/usr/bin and you type ls, Linux looks for an
executable program called ls in /bin and then in /usr/bin. If the com-
mand you type isn’t on the path, Linux responds with a command not
found error. The PATH variable is typically built up in several configura-
tion files, such as /etc/profile and the .bashrc file in the user’s home
directory.

HOME This variable points to your home directory. Some programs use it to
help them look for configuration files or as a default location in which
to store files.

MAIL This variable holds the location of the user’s mail spool. It’s usually
/var/spool/mail/username.

LANG The system holds your current language, specified as a locale, using
this variable. Locales are described further in Chapter 6, “Configuring
the X Window System, Localization, and Printing.”

LD_LIBRARY_PATH A few programs use this environment variable to indicate directories
in which library files may be found. It works much like PATH.

PS1 This is the default prompt in bash. It generally includes variables of
its own, such as \u (for the username), \h (for the hostname), and
\W (for the current working directory). This value is frequently set in
/etc/profile, but it’s often overridden by users.

NNTPSERVER Some Usenet news reader programs use this environment variable to
specify the name of the news server system. This value may be set in
/etc/profile or in the user’s configuration files.

04836c09.indd 424 1/11/09 9:19:27 AM

Managing the Shell Environment 425

Ta b lE 9 .1 Common Environment Variables and Their Meanings (continued)

Variable Name Explanation

TERM This variable is the name of the current terminal type. To move a
text-mode cursor and display text effects for programs like text-
mode editors, Linux has to know what commands the terminal sup-
ports. The TERM environment variable specifies the terminal in use.
This information is combined with data from additional files to pro-
vide terminal-specific code information. TERM is normally set auto-
matically at login, but in some cases you may need to change it.

DISPLAY This variable identifies the display used by X. It’s usually :0.0, which
means the first (numbered from 0) display on the current computer.
When you use X in a networked environment, though, this value may
be preceded by the name of the computer at which you’re sitting,
as in machine4.luna.edu:0.0. This value is set automatically when
you log in, but you may change it if necessary. You can run multiple
X sessions on one computer, in which case each one gets a different
DISPLAY number—for instance, :0.0 for the first session and :1.0 for
the second.

EDITOR Some programs launch the program pointed to by this environment
variable when they need to call a text editor for you to use. Thus,
changing this variable to your favorite editor can help you work in
Linux. It’s best to set this variable to a text-mode editor, though; GUI
editors may cause problems if they’re called from a program that was
launched from a text-mode login.

The PATH variable sometimes includes the current directory indicator (.)
so that programs in the current directory can be run. This practice poses a
security risk, though, because a miscreant can create a program with the
same name as some other program (such as ls) and trick another user into
running it by simply leaving it in a directory the victim frequents. Even the
root user may be victimized this way. For this reason, it’s best to omit the
current directory from the PATH variable, especially for the superuser. If it’s
really needed for ordinary users, put it at the end of the path.

Any given system is likely to have several other environment variables set, but these
are fairly esoteric or relate to specific programs. If a program’s documentation says that it
needs certain environment variables set, you can set them system-wide in /etc/profile
or some other suitable file, or you can set them in user configuration files, as you deem
appropriate.

Although you can see the entire environment by typing env, this output can be long enough
to be intimidating. If you just want to know the value of one variable, you can use the echo

04836c09.indd 425 1/11/09 9:19:30 AM

426 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

command, which echoes what you type to the screen. If you pass it a variable name preceded
by a dollar sign ($), echo returns the value of the variable. Here’s an example:

$ echo $PS1

[\u@\h \W]\$

This command reveals that the PS1 environment variable is set to [\u@\h \W]\$, which
in turn produces a bash prompt like [david@penguin homes]$. Exercise 9.1 illustrates how
you can change your bash prompt.

E x E r C i S E 9 .1

Changing Your bash Prompt

This exercise describes how to change your bash prompt to show the current time and
number of jobs managed by the shell rather than whatever your distribution’s default is.
To accomplish this task, follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Type export PS1=”\T; \j jobs> “. The backslash (\) is an escape character that
denotes special data to be inserted into the prompt when used in the PS1 environ-
ment variable. \T is expanded into the current time in 12-hour format, and \j is
expanded into the number of jobs the shell manages. The man page for bash has a
complete list of expansions the PS1 variable accepts. The result of typing this com-
mand should be an immediate change in your prompt to resemble something like
04:42; 0 jobs>.

4. Wait for a minute, and then run a program in the background by typing its name and
appending an ampersand (&). For instance, you can type xeyes & to run the xeyes
program from an xterm. You should see the number of jobs increase, and the time
should change.

5. To make this change permanent, edit the .bashrc file in your home directory. Load
this file into your favorite editor, and add a line to its end that reads export PS1=”\T;
\j jobs> “. Save the file, and exit the editor. (Shell configuration files are described
in more detail shortly, in “Modifying Shell Configuration Files.”)

6. To test your change to .bashrc, log out and then log back in again. Instead of your
distribution’s default prompt, you should see the new one.

7. If you don’t like the new prompt, edit .bashrc again and delete the line you added in
step 5.

04836c09.indd 426 1/11/09 9:19:30 AM

Managing the Shell Environment 427

Using Aliases
Most Linux shells, including bash, support command aliases, which are new names you can
give to regular commands. Typically, you’ll use aliases to assign easier-to-remember names to
obscure commands, to implement desirable command options as the default for commands,
or to create a shortened version of a command to minimize the amount of typing you must do.
You can define aliases in a one-off fashion at any bash prompt, but they’re typically included
in your bash startup scripts, as described shortly in “Modifying Shell Configuration Files.”

To implement an alias, you use the following syntax:

alias alias_name=’commands‘

The alias_name is what you want to type at the command prompt, and the shell substi-
tutes commands for whatever you type. As an example, consider the ls command, which lists
the contents of a directory. A popular option for this command is --color, which color-
codes the output, giving directories, links, and other special files particular colors to make
them stand out. If you want to use this option as the default, you can use alias:

$ alias ls=’ls --color’

In this example, ls becomes an alias for an extended version of itself. This doesn’t
result in recursion—that is, the ls to the right of the equal sign is not expanded. After
you type this alias command, typing ls will work as if you’d typed ls --color. In fact,
this particular alias is popular enough that it’s included as a standard part of many distri-
butions’ bash startup scripts.

You can use an alias name that’s unrelated to the original command name. For instance,
suppose you want to type bye instead of logout to terminate a text-mode login session. You
can do so with alias:

$ alias bye=’logout’

In practice, this particular alias isn’t likely to be useful if you type it manually at
a command prompt, because you’ll only log out of a session once. You might want to
include it in a bash startup script, though. If you do that, then you won’t need to type the
alias manually at each session; it will be created automatically whenever you log in.

Modifying Shell Configuration Files
Configuring shells requires editing shell configuration files. These files can be classified
in a couple of ways. First, files may be global files that affect all users of a shell or local
files that affect just one user. Second, files may be login files that are launched only by a
login process (such as a text-mode console login) or non-login files that are launched by
other processes (such as when starting an xterm window). The result is a 2 × 2 matrix of
configuration files, as shown in Table 9.2. (This table shows only bash configuration files;
consult your shell’s documentation if you’re using another shell.)

04836c09.indd 427 1/11/09 9:19:31 AM

428 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Ta b lE 9 . 2 Common bash Configuration Files

Type of File Login File Location Non-Login File Location

Global /etc/profile and files in /etc/
profile.d

/etc/bashrc or /etc/bash.bashrc

User ~/.bash_login, ~/.profile, or
~/.bash_profile

~/.bashrc

Precisely which of these files are used differs from one distribution to another. No matter
the name, though, these files are shell scripts. Shell scripting is described in more detail later,
in “Writing Scripts,” but most bash startup scripts contain a series of bash commands. These
commands may include both built-in commands and external commands.

Global configuration files affect all users of a system; however, their settings may be
overridden by individual users, either in user configuration files or in commands the users
type themselves. Thus, you shouldn’t rely on global configuration files to set options that
shouldn’t be changed by users. For that, you should look to global security features, such
as permissions on executable files.

The /etc/skel directory holds files that are copied to individual users’ home directories
when their accounts are created. These files are sometimes called skeleton files. Typically, this
set of files includes local bash startup files. You can examine these files and, if necessary, alter
them to suit your local needs. Changes to these files affect only new accounts, not existing
accounts. If you want to make a change that affects both existing and new users, you should
edit a global configuration file instead.

Just as shells have startup scripts, they may also have logout scripts—scripts that run
when the user logs out. For bash, this script is ~/.bash_logout. Most distributions don’t
create this script as part of users’ default home directories, but individual users can do so.
The logout script might execute programs to clean up temporary directories, remove security
keys from memory, or perform other tasks that are appropriate when a user logs out.

One problem with logout scripts is that they may not work well when
users log in multiple times. If you regularly have multiple sessions open,
such as logins in multiple Linux virtual terminals, be careful about what
you do in a logout script lest you wipe out important temporary files
when you log out of just one session.

Another bash configuration file is ~/.inputrc, which helps customize your keyboard
configuration. It consists of lines that look like this:

M-Control-u: universal-argument

This line maps the Meta-Ctrl-U keystroke to the universal-argument action. The Meta
key is usually the Esc key on x86 systems, and the universal-argument action is one of

04836c09.indd 428 1/11/09 9:19:31 AM

Writing Scripts 429

many possible actions defined by the readline library, which is one of the basic text-mode
input libraries used by Linux.

In most cases, there’s no need to adjust the ~/.inputrc file, because the default readline
mappings work well for x86 systems with standard keyboards. If you find that certain key-
strokes don’t work the way they should in text mode, though, you may want to research
this configuration file further.

X uses its own keyboard input routines, so ~/.inputrc doesn’t affect
programs run in X, even text-mode programs run inside xterm windows.

Writing Scripts
You’ll do much of your work on a Linux system by typing commands at a shell prompt. As
you use Linux, though, you’re likely to find some of these tasks to be repetitive. If you need
to add 100 new users to the system, for instance, typing useradd 100 times can be tedious.
Fortunately, Linux includes a way to cut through the tedium: shell scripts. These are simple
programs written in an interpreted computer language that’s embedded in the Linux shell
you use to type commands.

Most Linux systems use the bash shell by default, so shell scripts are often written in the
bash shell scripting language; but tcsh and other shell scripting languages are similar. In
fact, it’s not uncommon to see shell scripts that run in any common Linux shell. You’re not
restricted to running shell scripts written in your default shell, however; the first line of a
shell script identifies the shell that should be used to run it.

Many Linux startup scripts, including SysV startup scripts, are in fact shell
scripts. Therefore, understanding shell scripting is necessary if you want
to modify a Linux startup script.

Like any programming task, shell scripting can be quite complex. Conse-
quently, this chapter barely scratches the surface of what can be accom-
plished through shell scripting. Consult a book on the topic, such as
Cameron Newham’s Learning the Bash Shell, 3rd Edition (O’Reilly, 2005)
or Richard Blum’s Linux Command Line and Shell Scripting Bible (Wiley,
2008), for more information.

To use a shell script, you must first know how to start one. Once you start one, you’ll
find that one of the easiest tasks to do is to call external commands. More advanced tasks
include using variables and using conditional expressions.

04836c09.indd 429 1/11/09 9:19:35 AM

430 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Beginning a Shell Script
Shell scripts are plain-text files, so you create them in text editors. A shell script begins with
a line that identifies the shell that’s used to run it, such as the following:

#!/bin/sh

The first two characters are a special code that tells the Linux kernel that this is a
script and to use the rest of the line as a pathname to the program that’s to interpret the
script. (This line is sometimes called the shebang, hashbang, hashpling, or pound bang line.)
Shell scripting languages use a hash mark (#) as a comment character, so the script util-
ity ignores this line, although the kernel doesn’t. On most systems, /bin/sh is a symbolic
link that points to /bin/bash, but it can point to some other shell. Specifying the script as
using /bin/sh guarantees that any Linux system will have a shell program to run the script;
but if the script uses any features specific to a particular shell, you should specify that shell
instead—for instance, use /bin/bash or /bin/tcsh instead of /bin/sh.

When you’re done writing the shell script, you should modify it so that it’s executable. You
do this with the chmod command, as described in Chapter 4, “Managing Files.” Specifically,
you use the +x option to add execute permissions, probably in conjunction with a to add these
permissions for all users. For instance, to make a file called my-script executable, you should
issue the following command:

$ chmod a+x my-script

You’ll then be able to execute the script by typing its name, possibly preceded by ./ to tell
Linux to run the script in the current directory rather than searching the current path. If you
fail to make the script executable, you can still run the script by running the shell program
followed by the script name (as in bash my-script), but it’s generally better to make the
script executable. If the script is one you run regularly, you may want to move it to a location
on your path, such as /usr/local/bin. When you do that, you won’t have to type the com-
plete path or move to the script’s directory to execute it; you can just type my-script.

It’s possible to set a script’s SUID or SGID bits. (See Chapter 4 for information
about the SUID and SGID bits.) Doing so is potentially dangerous, particularly
if the script is owned by root, for reasons described in Chapter 4. You should
therefore be very cautious about applying the SUID bit to scripts.

Using Commands
One of the most basic features of shell scripts is the ability to run commands. You can use
both shell internal commands and external commands. Most of the commands you type in
a shell prompt are external commands—they’re programs located in /bin, /usr/bin, and
other directories on your path. You can run such programs, as well as internal commands,

04836c09.indd 430 1/11/09 9:19:36 AM

Writing Scripts 431

by including their names in the script. You can also specify parameters to such programs in
a script. For instance, suppose you want a script that launches two xterm windows and the
KMail mail reader program. Listing 9.1 presents a shell script that accomplishes this goal.

listing 9.1: A Simple Script That Launches Three Programs

#!/bin/bash

/usr/bin/xterm &

/usr/bin/xterm &

/usr/bin/kmail &

Aside from the first line that identifies it as a script, the script looks just like the com-
mands you might type to accomplish the task manually, except for one fact: The script lists
the complete paths to each program. This is usually not strictly necessary, but listing the
complete path ensures that the script will find the programs even if the PATH environment
variable changes. On the other hand, if the program files move (say, because you upgrade
the package from which they’re installed and the packager decides to move them), scripts
that use complete paths will break.

Each program-launch line in Listing 9.1 ends in an ampersand (&). This character tells
the shell to go on to the next line without waiting for the first to finish. If you omit the
ampersands in Listing 9.1, the effect will be that the first xterm will open but the second
won’t open until the first is closed. Likewise, KMail won’t start until the second xterm
terminates.

Although launching several programs from one script can save time in startup scripts
and some other situations, scripts are also frequently used to run a series of programs that
manipulate data in some way. Such scripts typically do not include the ampersands at the
ends of the commands because one command must run after another or may even rely on
output from the first. A comprehensive list of such commands is impossible because you can
run any program you can install in Linux as a command in a script—even another script.
A few commands that are commonly used in scripts include the following:

Normal file manipulation commands The file manipulation commands, such as ls, mv,
cp, and rm, are often used in scripts. You can use these commands to help automate repeti-
tive file maintenance tasks.

grep This command is described in Chapter 1. It locates files that contain specific strings.

find Where grep searches for patterns within the contents of files, find does so based on
filenames, ownership, and similar characteristics. This command is described in Chapter 4.

cut This command extracts text from fields in a file. It’s frequently used to extract variable
information from a file whose contents are highly patterned. To use it, you pass it one or
more options that specify what information you want, followed by one or more filenames.
For instance, users’ home directories appear in the sixth colon-delimited field of the /etc/
passwd file. You can therefore type cut -f 6 -d “:” /etc/passwd to extract this informa-
tion. The same command in a script will extract this information, which you’ll probably
save to a variable or pass to a subsequent command.

04836c09.indd 431 1/11/09 9:19:36 AM

432 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

sed This program is described in Chapter 1. It provides many of the capabilities of a con-
ventional text editor but via commands that can be typed at a command prompt or entered
in a script.

echo Sometimes a script must provide a message to the user; echo is the tool to accomplish
this goal. You can pass various options to echo or just a string to be shown to the user. For
instance, echo “Press the Enter key” causes a script to display the specified string.

mail The mail command can be used to send e-mail from within a script. Pass it the -s
subject parameter to specify a subject line, and give it an e-mail address as the last argu-
ment. If used at the command line, you then type a message and terminate it with a Ctrl+D
keystroke. If used from a script, you might omit the subject entirely, pass it an external
file as the message using input redirection, or use a here document to pass text to the mail
command as input. (Chapter 1 describes input redirection and here documents.) You might
want to use this command to send mail to the superuser about the actions of a startup
script or a script that runs on an automated basis. This command is described in more
detail later in this chapter.

Many of these commands are extremely complex, and completely describing
them is beyond the scope of this chapter. You can consult these commands’
man pages for more information. A few of them are described elsewhere in
this book.

Even if you have a full grasp of how to use some key external commands, simply execut-
ing commands you might when typing them at a command prompt is of limited utility. Many
administrative tasks require you to modify what you type at a command, or even what com-
mands you enter, depending on information from other commands. For this reason, scripting
languages include additional features to help you make your scripts useful.

Using Variables
Variables can help you expand the utility of scripts. A variable is a placeholder in a script
for a value that will be determined when the script runs. Variables’ values can be passed
as parameters to scripts, generated internally to the scripts, or extracted from the script’s
environment.

Variables that are passed to the script are frequently called parameters. They’re represented
by a dollar sign ($) followed by a number from 0 to 9—$0 stands for the name of the script, $1
is the first parameter to the script, $2 is the second parameter, and so on. To understand how
this might be useful, consider the task of adding a user. As described in Chapter 7, “Admin-
istering the System,” creating an account for a new user typically involves running at least
two commands—useradd and passwd. You may also need to run additional site-specific com-
mands, such as commands that create unusual user-owned directories aside from the user’s
home directory.

04836c09.indd 432 1/11/09 9:19:36 AM

Writing Scripts 433

The shift command shifts the parameter variables, so that what would
ordinarily be $2 becomes $1, what would be $3 becomes $2, and so on.
Adding a number, as in shift 3, shifts the assignments by that number
of units. The shift command does not alter the $0 variable, though.

As an example of how a script with a parameter variable can help in such situations,
consider Listing 9.2. This script creates an account and changes the account’s password
(you’ll be prompted to enter the password when you run the script). It creates a directory in
the /shared directory tree corresponding to the account, and it sets a symbolic link to that
directory from the new user’s home directory. It also adjusts ownership and permissions in
a way that may be useful, depending on your system’s ownership and permissions policies.

listing 9.2: A Script That Reduces Account-Creation Tedium

#!/bin/sh

useradd -m $1

passwd $1

mkdir -p /shared/$1

chown $1.users /shared/$1

chmod 775 /shared/$1

ln -s /shared/$1 /home/$1/shared

chown $1.users /home/$1/shared

If you use Listing 9.2, you need type only three things: the script name with the desired
username and the password (twice). For instance, if the script is called mkuser, you can use
it like this:

mkuser ajones

Changing password for user ajones

New password:

Retype new password:

passwd: all authentication tokens updated successfully

Most of the scripts’ programs operate silently unless they encounter problems, so the
interaction (including typing the passwords, which don’t echo to the screen) is a result of
just the passwd command. In effect, Listing 9.2’s script replaces seven lines of commands
with one. Every one of those lines uses the username, so by running this script, you also
reduce the chance of a typo causing problems.

Another type of variable is assigned within scripts—for instance, such variables can be set
from the output of a command. These variables are also identified by leading dollar signs, but
they’re typically given names that at least begin with a letter, such as $Addr or $Name. (When
values are assigned to variables, the dollar sign is omitted, as illustrated shortly.) You can then
use these variables in conjunction with normal commands as if they were command param-
eters, but the value of the variable is passed to the command.

04836c09.indd 433 1/11/09 9:19:37 AM

434 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

For instance, consider Listing 9.3, which checks to see if the computer’s router is up
with the help of the ping utility. This script uses two variables. The first is $ip, which is
extracted from the output of route using the grep, tr, and cut commands. (These com-
mands are described in Chapter 1.) When you’re assigning a value to a variable from the
output of a command, that command should be enclosed in back-quote characters (̀),
which appear on the same key as the tilde (~) on most keyboards. These are not ordinary
single quotes, which appear on the same key as the regular quote character (“) on most
keyboards. The second variable, $ping, simply points to the ping program. It can as easily
be omitted, with subsequent uses of $ping replaced by the full path to the program or sim-
ply by ping (relying on the $PATH environment variable to find the program). Variables like
this are sometimes used to make it easier to modify the script in the future. For instance, if
you move the ping program, you need only modify one line of the script. They can also be
used in conjunction with conditionals to ensure that the script works on more systems—for
instance, if ping were called something else on some systems.

listing 9.3: Script Demonstrating Assignment and Use of Variables

#!/bin/sh

ip=`route -n | grep UG | tr -s “ “ | cut -f 2 -d “ “`

ping=”/bin/ping”

echo “Checking to see if $ip is up...”

$ping -c 5 $ip

In practice, you use Listing 9.3 by typing the script’s name. The result should be the mes-
sage Checking to see if 192.168.1.1 is up (with 192.168.1.1 replaced by the computer’s
default gateway system) and the output from the ping command, which should attempt
to send five packets to the router. If the router is up and is configured to respond to pings,
you’ll see five return packets and summary information. If the router is down, you’ll see
error messages to the effect that the host was unreachable.

Listing 9.3 is of limited practical use and contains bugs. For instance,
the script identifies the computer’s gateway merely by the presence of the
string UG in the router’s output line from route. If a computer has two rout-
ers defined, this won’t work correctly, and the result is likely to be a script
that misbehaves. Listing 9.3 does demonstrate how variables can be
assigned, though.

Scripts like Listing 9.3, which obtain information from running one or more commands,
are useful in configuring features that rely on system-specific information or information
that varies with time. You can use a similar approach to obtain the current hostname (using
the hostname command), the current time (using date), the total time the computer’s been
running (using uptime), free disk space (using df), and so on. When combined with condi-
tional expressions (described shortly), variables become even more powerful because then
your script can perform one action when one condition is met and another in some other

04836c09.indd 434 1/11/09 9:19:37 AM

Writing Scripts 435

case. For instance, a script that installs software can check free disk space and abort the
installation if insufficient disk space is available.

In addition to assigning variables with the assignment operator (=), you can read variables
from standard input using read, as in read response to read input for subsequent access as
$response. This method of variable assignment is useful for scripts that must interact with
users. For instance, instead of reading the username from the command line, Listing 9.2
may be modified to prompt the user for the username. Listing 9.4 shows the result. To use
this script, you type its name without typing a username on the command line. The script
will then prompt for a username, and after you enter one, the script will attempt to create an
account with that name.

listing 9.4: Modified Version of Listing 9.2 That Employs User Interaction

#!/bin/sh

echo -n “Enter a username: “

read name

useradd -m $name

passwd $name

mkdir -p /shared/$name

chown $name.users /shared/$name

chmod 775 /shared/$name

ln -s /shared/$name /home/$name/shared

chown $name.users /home/$name/shared

One special type of variable was mentioned earlier in this chapter: environment variables,
described in “Managing the Shell Environment.” Environment variables are assigned and
accessed just like shell script variables. The difference is that the script or command that sets
an environment variable uses the export command (in bash) to make the value of the vari-
able accessible to programs launched from the shell or shell script that made the assignment.
In other words, you can set an environment variable in one script and use it in another script
that the first script launches. Environment variables are most often set in shell startup scripts,
but the scripts you use can access them. For instance, if your script calls X programs, it might
check for the presence of a valid $DISPLAY environment variable and abort if it finds that this
variable isn’t set. By convention, environment variable names are all uppercase, whereas non-
environment shell script variables are all lowercase or mixed case.

Using Conditional Expressions
Scripting languages support several types of conditional expressions. These enable a script
to perform one of several actions contingent on some condition—typically the value of a
variable. One common command that uses conditional expressions is if, which allows the
system to take one of two actions depending on whether some condition is true. The if key-
word’s conditional expression appears in brackets after the if keyword and can take many
forms. For instance, -f file is true if file exists and is a regular file; -s file is true if file

04836c09.indd 435 1/11/09 9:19:38 AM

436 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

exists and has a size greater than 0; and string1 == string2 is true if the two strings have
the same values.

Conditionals may be combined together with the logical and (&&) or logical or (||) opera-
tors. When conditionals are combined with &&, both sides of the operator must be true for
the condition as a whole to be true. When || is used, if either side of the operator is true, the
condition as a whole is true.

To better understand the use of conditionals, consider the following code fragment:

if [-s /tmp/tempstuff]

 then

 echo “/tmp/tempstuff found; aborting!”

 exit

fi

This fragment causes the script to exit if the file /tmp/tempstuff is present and is larger
than 0 bytes. The then keyword marks the beginning of a series of lines that execute only if
the conditional is true, and fi (if backward) marks the end of the if block. Such code may
be useful if the script creates and then later deletes this file, because its presence indicates
that a previous run of the script didn’t succeed or is still underway.

An alternative form for a conditional expression uses the test keyword rather than
square brackets around the conditional:

if test -s /tmp/tempstuff

You can also test a command’s return value by using the command as the condition:

if [command]

 then

 additional-commands

fi

In this example, the additional-commands will be run only if command completes success-
fully. If command returns an error code, the additional-commands won’t be run.

Conditional expressions may be expanded by use of the else clause:

if [conditional-expression]

 then

 commands

 else

 other-commands

fi

Code of this form causes either commands or other-commands to execute, depending on
the evaluation of conditional-expression. This is useful if something should happen in
a part of the program, but precisely what should happen depends on some condition. For
instance, you may want to launch one of two different file archiving programs depending
on a user’s input.

04836c09.indd 436 1/11/09 9:19:38 AM

Writing Scripts 437

What do you do if more than two outcomes are possible—for instance, if a user may
provide any one of four possible inputs? You can nest several if/then/else clauses, but this
gets awkward very quickly. A cleaner approach is to use case:

case word in

 pattern1) command(s) ;;

 pattern2) command(s) ;;

 ...

esac

For a case statement, a word is likely to be a variable, and each pattern is a possible
value of that variable. The patterns can be expanded much like filenames, using the same
wildcards and expansion rules (* to stand for any string, for instance). You can match an
arbitrary number of patterns in this way. Each set of commands must end with a double
semicolon (;;), and the case statement as a whole ends in the string esac (case backward).

Upon execution, bash executes the commands associated with the first pattern to match
the word. Execution then jumps to the line following the esac statement; any intervening
commands don’t execute. If no patterns match the word, no code within the case statement
executes. If you want to have a default condition, use * as the final pattern; this pattern
matches any word, so its commands will execute if no other pattern matches.

Using Loops
Conditional expressions are sometimes used in loops. Loops are structures that tell the script
to perform the same task repeatedly until some condition is met (or until some condition is
no longer met). For instance, Listing 9.5 shows a loop that plays all the .wav audio files in a
directory.

listing 9.5: A Script That Executes a Command on Every Matching File in a Directory

#!/bin/bash

for d in `ls *.wav` ; do

 aplay $d

done

The aplay command is a basic audio file player that works with the Advanced
Linux Sound Architecture (ALSA) audio drivers. On some systems, you may
need to use play or some other command instead of aplay.

The for loop as used here executes once for every item in the list generated by ls *.wav.
Each of those items (filenames) is assigned in turn to the $d variable and so is passed to the
aplay command.

The seq command can be useful in creating for loops (and in other ways, too): This
command generates a list of numbers starting from its first argument and continuing to its
last one. For instance, typing seq 1 10 generates 10 lines, each with a number between

04836c09.indd 437 1/11/09 9:19:38 AM

438 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

1 and 10. You can use a for loop beginning for x in `seq 1 10` to have the loop execute
10 times, with the value of x incrementing with each iteration. If you pass just one param-
eter to seq, it interprets that number as an ending point, with the starting point being 1.
If you pass three values to seq, it interprets them as a starting value, an increment amount,
and an ending value.

Another type of loop is the while loop, which executes for as long as its condition is true.
The basic form of this loop type is like this:

while [condition]

do

 commands

done

The until loop is similar in form, but it continues execution for as long as its condition
is false—that is, until the condition becomes true.

Using Functions
A function is a part of a script that performs a specific sub-task and that can be called
by name from other parts of the script. Functions are defined by placing parentheses
after the function name and enclosing the lines that make up the function within curly
braces:

myfn() {

 commands

}

The keyword function may optionally precede the function name. In either event, the
function is called by name as if it were an ordinary internal or external command.

Functions are very useful in helping to create modular scripts. For instance, if your script
needs to perform half a dozen distinct computations, you may place each computation in a
function and then call them all in sequence. Listing 9.6 demonstrates the use of functions in
a simple program that copies a file but aborts with an error message if the target file already
exists. This script accepts a target and a destination filename and must pass those filenames
to the functions.

listing 9.6: A Script Demonstrating the Use of Functions

#/bin/bash

doit() {

 cp $1 $2

}

function check() {

04836c09.indd 438 1/11/09 9:19:38 AM

Writing Scripts 439

 if [-s $2]

 then

 echo “Target file exists! Exiting!”

 exit

 fi

}

check $1 $2

doit $1 $2

If you enter Listing 9.6 and call it safercp, you can use it like this, assuming the file
original.txt exists and dest.txt doesn’t:

$./safercp original.txt dest.txt

$./safercp original.txt dest.txt

Target file exists! Exiting!

The first run of the command succeeded because dest.txt didn’t exist. When the com-
mand was run a second time, though, the destination file did exist, so the program terminated
with the error message.

Note that the functions aren’t run directly and in the order in which they appear in the
script. They’re run only when called in the main body of the script (which in Listing 9.6
consists of just two lines, each corresponding to one function call).

Shell scripts are useful tools, and creating them effectively requires practice. Exercise 9.2
begins your exploration of shell scripts, but in the long run, you’ll need to learn to design
your own shell scripts by doing more than copying examples from a book.

E x E r C i S E 9 . 2

Creating a Simple Script

This exercise presents a shell script that gives you the option of reading every text file
(with a name ending in .txt) in the current directory with less. To begin with this script,
follow these steps:

1. Log into the Linux system as a normal user.

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Start an editor, and tell it to edit a file called testscript.

4. Type the following lines into the editor:

#!/bin/bash

for file in `ls *.txt` ; do

 echo -n “Display $file? “

04836c09.indd 439 1/11/09 9:19:38 AM

440 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

E x E r C i S E 9 . 2 (c ont inue d)

 read answer

 if [$answer == ‘y’]

 then

 less $file

 fi

done

Be sure you’ve typed every character correctly; any mistake may cause the script to
misbehave. One common error is mistyping the back-tick characters (̀) as ordinary
single quote characters (‘).

5. Save the file, and exit the editor.

6. Type chmod a+x testscript to add the executable bit to the file’s permissions.

7. Type ./testscript to run the script. If there are no text (*.txt) files in your current
directory, the script displays a no such file or directory error message; but if
any text files are present, the script gives you the option of viewing each one in turn
via less.

This example script is extremely limited, but it illustrates several important script features,
such as variable assignment and use, for loops, and if/then conditional expressions.

Managing E-mail
E-mail is one of the most important network services. What’s more, Linux relies on e-mail
even in a completely non-networked environment—certain Linux subsystems, such as cron
(described in Chapter 7), may use e-mail to notify you of activities. For this reason, most
Linux distributions ship with e-mail server software installed and configured for basic
activities, and you should have a basic understanding of how to use these servers to accom-
plish various tasks. You should understand the basics of e-mail and be able to identify the
specific e-mail server package your system is running. You should also be able to set up
e-mail aliases (alternate names for users) and forwarding (to send mail for a user to another
destination). Finally, you should understand the security implications of e-mail so that you
can prevent problems or identify them when they occur.

Understanding E-mail
Several protocols exist to manage e-mail. The most common of these is the Simple Mail
Transfer Protocol (SMTP), which is designed as a push mail protocol, meaning that the
sending system initiates the transfer. This design is good for sending data, so SMTP is used

04836c09.indd 440 1/11/09 9:19:39 AM

Managing E-mail 441

through most of a mail delivery system. The final stage, though, often employs a pull mail
protocol, such as the Post Office Protocol (POP) or the Internet Message Access Protocol
(IMAP). With these protocols, the receiving system initiates the transfer. This is useful
when the receiving system is an end user’s workstation, which may not be powered on at
all times or able to receive incoming connections.

SMTP was designed to enable a message to be relayed through an arbitrary number of
computers. For instance, an end user may compose a message, which is sent to the local
SMTP server. (SMTP servers are also known as mail transfer agents, or MTAs.) This server
looks up a recipient system using the Domain Name System (DNS) and sends the message
to that system. This system may use its own internal routing table to redirect the message
to another local system, from which the message may be read, either directly or via a POP
or IMAP server. This arrangement is illustrated in Figure 9.1. Bear in mind that the number
of links in this chain is variable and depends on how each system is configured. In the sim-
plest case, local e-mail stays on just one system. In theory, an arbitrarily large number of
computers can be involved in an e-mail exchange, although in practice it’s rare to see e-mail
pass through more than half a dozen systems.

f i gU r E 9 .1 E-mail typically traverses several links between sender and recipient.

smtp.pangaea.edu

inbox.pangaea.edumail.example.com

franklin.pangaea.educlient.example.com

POP or
IMAPSMTPSMTPSMTP

At each step in a relay chain, e-mail is altered. Most important, each server adds a header
to the e-mail, which is a line that provides information about the message. In particular, mail
servers add Received: headers to document the path the mail has taken. In theory, this enables
you to trace the e-mail back to its source. Unfortunately, spammers and other e-mail abusers
have learned to forge e-mail headers, which greatly complicates such analysis.

Because an SMTP server can function as both a server (receiving mail from other sys-
tems) and a client (sending mail to other systems), you must deal with both sides of the con-
figuration equation. For the most part, this chapter and the LPI Level 1 exam don’t cover
all these details, though, just a few of them. Sometimes a system never functions in one role
or the other, which can simplify matters—but you must then be careful not to accidentally
configure the system incorrectly. In particular, open relay configurations, in which a mail
server relays mail from anybody, should be avoided. This and other security implications of
running an SMTP server are covered in “Securing Your E-Mail Server.”

On Linux, e-mail is tied intricately to user accounts. The mail server holds incoming
messages for each user, typically in a file in /var/spool/mail—for instance, /var/spool/
mail/benf holds mail for the user benf. Some e-mail servers store incoming mail in sub-
directories of the users’ home directories, though. This incoming mail file or directory is
referred to as the user’s mail spool.

04836c09.indd 441 1/11/09 9:19:40 AM

442 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

You may recall that the userdel command, described in Chapter 7, includes
options related to the handling of users’ mail spools. If you delete a user
account but leave the user’s mail spool intact, the mail can still be accessed.
If the mail server software stores mail in /var/spool/mail, leftover mail
spools can cause problems if you eventually re-use an old username.

E-mail can be sent as well as received. The traditional Linux approach to sending e-mail
is to have local programs contact the local mail server to send e-mail. The local mail server
then contacts its outgoing e-mail server, as in Figure 9.1. Most Linux e-mail clients (a.k.a.
mail user agents, or MUAs), as well as similar programs on other platforms, provide the
option to directly contact a remote SMTP server when sending e-mail. Such a configuration
slightly simplifies the e-mail path but can make operation unreliable if the local network
link goes down. If your e-mail client talks to an SMTP server that runs locally, the e-mail
can be queued for delivery by the SMTP server even if the network is temporarily down.

Choosing E-mail Software
Linux supports quite a few e-mail servers. Chances are, one of the major servers will be
installed on your system by default. If not, and if you want to install one, you’ll have to
pick one. You may also want to change your e-mail server if you need to configure it in
advanced ways; some servers are easier to configure than others or support specific options
that others don’t. Four e-mail servers are most popular on Linux:

Sendmail The sendmail program (http://www.sendmail.org) was for many years the domi-
nant e-mail server package on the Internet. In recent years it’s lost some of its dominance to
the other servers described here, as well as to Windows e-mail servers. Nonetheless, sendmail
remains a popular server. It’s very powerful, but it’s also difficult to configure because its con-
figuration file formats are rather arcane.

Postfix Postfix (http://www.postfix.org) was designed as a modular replacement for
sendmail—rather than a single program that does everything (as sendmail is designed), Post-
fix uses multiple programs, each of which handles its own specific small task. This design
improves security, at least in theory. Postfix tends to be easier to configure than sendmail, and
it’s become the default e-mail server on many Linux distributions.

Exim Although Exim (http://www.exim.org) is a monolithic server, like sendmail, it has
a much simpler configuration file format and so is easier to configure. A few Linux distribu-
tions use Exim as the default e-mail server.

qmail The fourth major Linux e-mail server, qmail (http://www.qmail.org), is a modular
server with security as a major design goal. Like Postfix and Exim, qmail is easier to config-
ure than sendmail. It’s not the standard e-mail server in any Linux distribution because its
license is a bit strange and complicates qmail distribution with Linux; however, many sys-
tem administrators like qmail enough that they replace their distributions’ standard e-mail
servers with qmail.

04836c09.indd 442 1/11/09 9:19:40 AM

Managing E-mail 443

You can learn which e-mail server your Linux distribution runs in several ways. The
two most reliable are to use ps (described in Chapter 2, “Managing Software”) to look for
running processes, or to use your package management tools (also described in Chapter 2)
to see which package is installed. In either case, you may need to check for each of the pro-
grams in turn. For instance, you might see results like these:

$ ps ax |grep send

31129 pts/2 R+ 0:00 grep send

$ ps ax | grep post

 7778 ? Ss 0:45 /usr/lib/postfix/master

31132 pts/2 S+ 0:00 grep post

The search for a process containing the string send failed, but the search for post
returned a process called /usr/lib/postfix/master—thus, it appears that Postfix is
running on this system.

You can also look for executable filenames for each e-mail server in /usr/bin or /usr/sbin;
but be aware that most Linux e-mail servers include a program called sendmail. This is done
for compatibility reasons; because the original sendmail program was once ubiquitous, provid-
ing a compatible interface for scripts and administrators helps other SMTP servers work.

In addition to the SMTP server, a fully functional Linux e-mail system is likely to include
other software:

Pull mail servers Two pull mail protocols, POP and IMAP, are popular. If a Linux system
should function as a mail server from which users can read their e-mail remotely, chances are
you’ll install a POP or an IMAP server package, such as Cyrus IMAP (http://cyrusimap1
.andrew.cmu.edu/imapd/) or Dovecot (http://www.dovecot.org).

Fetchmail This program, based at http://fetchmail.berlios.de, fills an odd gap in the
e-mail delivery chain. If you run a small site that relies on an external ISP for e-mail delivery,
chances are the ISP supports only POP or IMAP. If you want to use a variety of e-mail clients,
you may want to run your own SMTP server, and perhaps your own POP or IMAP server, to
deliver mail locally. To do this, you need a program that pulls mail using POP or IMAP and
then injects it into a local SMTP mail queue. This is the job of Fetchmail. Most sites don’t
need it, but for those that do, it’s indispensable.

Mail readers The final link in the e-mail chain is the mail reader. Examples in Linux include
Evolution (http://www.gnome.org/projects/evolution/), KMail (http://kontact.kde
.org/kmail/), pine (http://www.washington.edu/pine/), and mutt (http://www.mutt.org).
The mail utility, which is installed on most Linux systems by default, is the lowest-common-
denominator e-mail utility. It’s described shortly, in “Sending and Receiving E-mail.” Most
Linux e-mail clients enable reading either from a local mail queue or from a remote POP
or IMAP mail server. A multi-user system is likely to have multiple e-mail clients installed,
enabling each user to choose which client to use.

Neither this book nor the LPI Level 1 exam covers pull mail servers, Fetchmail, or mail
readers in any detail. As a practical matter, you may need to learn how to configure any or

04836c09.indd 443 1/11/09 9:19:41 AM

444 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

all of these packages, depending on your site’s needs. Fortunately, mail reader configuration,
which is the most common task, is usually fairly straightforward, as long as you have informa-
tion on the hostnames of your outgoing (SMTP) and incoming (POP, IMAP, or local queue)
e-mail servers.

Managing E-mail
Although setting up an e-mail server for a site is beyond the scope of this book and the LPI
Level 1 exam, managing a few common e-mail server administrative tasks is not. I therefore
describe some common administrative tasks involving sending and receiving mail using the
mail utility, e-mail queue management, configuring aliases, and forwarding e-mail.

Sending and Receiving E-mail
Linux supports a wide variety of e-mail clients, some of which were mentioned earlier, in
“Choosing E-mail Software.” Chances are, you’ll use a full-fledged e-mail client for your
personal e-mail; however, you should also know how to use the mail program. This tool is
a very basic command-line e-mail utility. It has the advantage of being usable from a script,
so you can write a script to automatically handle some e-mail tasks, and perhaps even run
that script automatically. For instance, you might write a script to check for user passwords
that are about to expire and then e-mail the users about this impending event so that they
can change their passwords before their accounts are locked.

Some Linux systems ship with a program called nail rather than mail. The
nail program supports additional features compared to the original mail,
such as the ability to add attachments; but the two programs are very simi-
lar in basic operation. Typically, a link with the name mail points to nail,
so you can call nail as mail.

The mail program is intended to be used on the command line to send or receive messages.
The basic syntax for mail, including its most useful options, is as follows:

mail [-v] [-s subject] [-c cc-addr] [-b bcc-addr] to-addr

mail [-v] [-f [name] | -u user]

The first of these syntax lines is used for sending e-mail; the second is used for reading
e-mail. (Unlike most e-mail readers, mail only supports reading the local e-mail queue,
not e-mail stored on remote servers and read via POP or IMAP.) You can achieve various
goals with the options to mail:

Use verbose operation As with many commands, the -v option produces more verbose
output. This may be helpful if you need to debug problems.

Specify a subject line The -s subject option enables you to specify a subject line.

04836c09.indd 444 1/11/09 9:19:41 AM

Managing E-mail 445

Set a carbon copy address You can send a message to multiple people by sending a carbon
copy using the -c cc-addr or -b bcc-addr options. These options vary in that the -b option
produces a “blind” carbon copy, meaning that the recipient’s address doesn’t appear in the
address list. This is useful if you want to discreetly send a copy of an e-mail to somebody, but
some spam filters may delete such e-mails.

Set the recipient’s address The main recipient’s e-mail address terminates the mail
command’s line for an outgoing e-mail.

Read e‑mail To read your e-mail, pass the -f option to the program, optionally followed
by the name of the mail spool file. Alternatively, you can use the -u user option to read the
mail of the specified user.

This list of options is incomplete, but it includes the most important features. You
should consult the man page for mail to learn about more exotic options. Remember that
some systems use mail whereas others use nail, and available options differ for these
two programs. The preceding options have the same effect for both programs; but some
options, such as -a, have different meanings for the two programs. (The -a option enables
you to insert an arbitrary e-mail header in the original mail, but in nail it’s how you
attach a file to an outgoing message.)

As an example of mail in action, consider the task of sending a quick e-mail message.
Suppose you want to send an e-mail to two recipients informing them of a meeting. You
can do so as follows:

$ mail -s “Meeting reminder” -c benf@example.com sallyg@example.com

Remember the meeting at 4:00 today!

Cc: benf@example.com

After you type the mail command, the program waits for input via standard input, but
there’s no prompt. You signal the end of the message by pressing Ctrl+D. This example shows
a simple one-line message. After you press Ctrl+D, the program displays the Cc: line to verify
this option. You can still change the address at this point, but if you don’t want to, you can
press the Enter key and the message will be on its way.

To use mail in a script, you can use input redirection to pass it the contents of a file to
be mailed:

mail -s “Automated alert!” < /tmp/alert.txt benf@example.com

This line, if included in a script, sends the contents of /tmp/alert.txt to benf@example
.com with the specified subject.

You can use mail to read incoming e-mail, too, but only if it’s stored on a local Linux
mail spool. In this case, you’ll normally use mail interactively. Type mail, and you’ll see the
contents of your mail spool. Each message has a summary line that lists the sender, date,
and subject, among other things:

0046 sally@luna.edu Sun Aug 17 18:27 116/4262 Priorities

04836c09.indd 445 1/11/09 9:19:41 AM

446 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

This is message number 46; it’s from sally@luna.edu; it arrived on August 17 at 18:27
(6:27 p.m.); it has 116 lines and 4262 bytes (including headers); and its subject is Priorities.
To read a message, type its number. You can then delete the message by typing d or reply to it
by typing r.

As a practical matter, most people prefer to use more sophisticated mail readers for their
day-to-day mail reading. You’ll probably find mail more useful for the scripted sending of
e-mail than for reading e-mail or sending personal e-mail.

Checking the E-mail Queue
An e-mail server manages a queue of e-mail messages that it must deliver. This queue is
similar in some respects to the queue of print jobs that the Linux printing system handles,
as described in Chapter 6. Instead of sending jobs to a printer, though, the e-mail server
sends e-mail messages to another computer or stores them in local users’ mail spools. This
task may sound simple, but it can be surprisingly complex. The server may be asked to
deliver many messages in a very short period of time, and thus it may need to delay deliv-
ery of some messages while it works on others. Furthermore, any number of problems can
lead to temporary or permanent inability to deliver messages. When a problem seems to be
temporary, such as a network routing failure, the e-mail server must store the message and
try to deliver it again later. Thus, a Linux computer’s e-mail queue may contain undelivered
messages. Knowing how to identify these messages and manage the queue can help you
keep your Linux computer’s e-mail subsystem working smoothly.

The mailq program is the main tool to help in e-mail queue management. This program
was originally part of the sendmail package, but Postfix, Exim, qmail, and other Linux SMTP
servers have all implemented compatible commands. Unfortunately, command options differ
between implementations. The basic command, without any options, shows the contents of the
e-mail queue on all systems:

$ mailq

-Queue ID- --Size-- ----Arrival Time---- -Sender/Recipient-------

5B42F963F* 440 Sat Aug 23 13:58:19 sally@example.com

 benf@luna.edu

-- 0 Kbytes in 1 Request.

This example, taken from a system running Postfix, shows one message in the queue,
along with relevant identifying information. The exact display format varies from one
SMTP server to another. In most cases, typing mailq is equivalent to typing sendmail -bp.

If your network connection goes down temporarily, or if an upstream e-mail server goes
down for a while, e-mail messages can pile up in the queue. Your SMTP server will ordinar-
ily attempt redelivery at a later date; but if your network connection has come up again and
you want to clear the queue immediately, you can do so. Typing sendmail -q will do the job
with most SMTP servers, and some have other equivalent commands, such as postqueue in
Postfix or runq in Exim.

04836c09.indd 446 1/11/09 9:19:41 AM

Managing E-mail 447

All e-mail servers offer a wide variety of advanced options to prioritize e-mail delivery,
accept messages on the command line, delete specific messages from the queue, debug e-mail
connections, and so on. Unfortunately, commands and procedures to use these features vary
from one e-mail server to another. Thus, you should consult your server’s documentation to
learn how to use these features.

Redirecting E-mail
E-mail aliases enable one address to stand in for another one. For instance, all e-mail servers
are supposed to maintain an account called postmaster. E-mail to this account should be
read by somebody who’s responsible for maintaining the system. One way to do this is to set
up an alias linking the postmaster name to the name of a real account. You can do this by
editing the aliases file, which usually resides in /etc or sometimes in /etc/mail.

The aliases file format is fairly straightforward. Comment lines begin with hash marks
(#), and other lines take the following form:

name: addr1[,addr2[,...]]

The name that leads the line is a local name, such as postmaster. Each address (addr1,
addr2, and so on) can be a local account name to which the messages are forwarded, the
name of a local file in which messages are stored (denoted by a leading slash), a command
through which messages are piped (denoted by a leading vertical bar character), the name
of a file whose contents are treated as a series of addresses (denoted by a leading :include:
string), or a full e-mail address (such as fred@example.com).

A typical default configuration includes a few useful aliases for accounts such as
postmaster. Most such configurations map most of these aliases to root. Reading mail
as root is inadvisable, though—doing so increases the odds of a security breach or other
problem because of a typo or bug in the mail reader. Thus, you may want to set up an
alias line like the following:

root: yourusername

This redirects all of root’s mail, including mail directed to root via another alias, to
yourusername, which can take any of the forms just described (it’s most likely to be a local
username or a valid remote e-mail address). Some mail servers, including sendmail, Postfix,
and qmail, require you to compile /etc/aliases into a binary file that can be processed
more quickly. To do so, use the newaliases command:

newaliases

Exim has a newaliases command for compatibility with sendmail, but it
doesn’t do anything, by default.

04836c09.indd 447 1/11/09 9:19:42 AM

448 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Another approach to redirecting mail is to do so on the user level. In particular, you
can edit the ~/.forward file in a user’s home directory to have mail for that user sent to
another address. Specifically, the ~/.forward file should contain the new address—either
a username on the current computer or an entire e-mail address on another computer. This
approach has the advantage that it can be employed by individual users—say, to consoli-
date e-mail from multiple systems into one account without bothering system administra-
tors. A drawback is that it can’t be used to set up aliases for nonexistent accounts or for
accounts that lack home directories. The ~/.forward file can also be changed or deleted by
the account owner, which might not be desirable if you want to enforce a forwarding rule
that the user shouldn’t be able to override.

Securing Your E-mail Server
Like any server, an e-mail server is a potential security risk. Broadly speaking, this risk
takes two forms:

Bugs Bugs in the e-mail server can expose your system to danger. In theory, a bug might
enable somebody to gain access to your system by sending an e-mail or by connecting to
the SMTP port (25) via a Telnet client and typing SMTP commands to trigger the bug. For
this reason, many Linux distributions today limit access to the e-mail server to the local
computer only.

Misconfiguration Poor configuration of an e-mail server can cause problems. E-mail
servers aren’t designed to provide login access, so they aren’t likely to be abusable to gain
full login access. Instead, the big risk is a configuration that will make your system a men-
ace to the Internet. The most common misconfiguration of this nature is an open relay,
which is a computer that will relay mail from any computer to any other computer. In the
past, spammers made heavy use of open relays as a way to help hide their true identities,
but spammers today have largely moved on to other techniques. Nonetheless, some spam-
mers still abuse open relays.

To guard against bugs, you should ensure that your e-mail server is upgraded to the latest
version. Chapter 2 describes software management, so you should consult it for advice on
keeping your system software up to date.

Major Linux distributions configure their e-mail servers so that they aren’t open relays;
however, a misconfiguration can open your e-mail server. Various Web sites provide tests for
such misconfigurations. Check http://www.abuse.net/relay.html or http://www.spamhelp
.org/shopenrelay/ to test your system to verify that it’s not an open relay. These sites, and
others like them, run a series of tests, attempting to relay e-mail through your server. If your
server is properly configured, the page will report that it was unable to connect or that it was
unable to relay e-mail. If the testing site was able to relay e-mail, though, you’ll need to learn
more to properly configure your server. Unfortunately, the steps needed to secure an open relay
vary from one e-mail server to another, and they require relatively advanced configuration,
which is beyond the scope of this book or the LPI Level 1 exam. You can learn about closing
open relay configurations in your e-mail server’s documentation.

04836c09.indd 448 1/11/09 9:19:42 AM

Managing Data with SQL 449

Managing Data with SQL
The Structured Query Language (SQL), as its expanded name suggests, is a language used
for retrieving data from a database. In practice, SQL is implemented in several different
database products. Thus, you should know a little about the SQL products that are avail-
able for Linux. With a SQL package installed, you can begin learning about the principles
of SQL use and move on to actual data storage and retrieval.

Picking a SQL Package
SQL is a language for accessing data, and specific SQL packages implement that language.
This distinction is similar to that between a network protocol (such as SMTP) and the servers
that implement it (such as sendmail, Postfix, and Exim). In principle, you can use any SQL
package to satisfy your SQL database needs. In practice, specific products that store data
using SQL may work better with (or even require) particular packages. Some of the more
common choices in Linux include the following:

MySQL Sun owns this SQL implementation, which it has released under the GPL. Most
major Linux distributions include MySQL in their package databases. For a complete instal-
lation, you’ll probably need to install multiple packages, such as a client, a server, and perhaps
development tools. You can learn more at http://www.sun.com/software/products/mysql/.

PostgreSQL This SQL implementation evolved from the earlier Ingres software (the
name PostgreSQL is a compressed form of post-Ingres SQL). It’s available under the BSD
license and is available as multiple packages in most Linux distributions. As with MySQL,
you’ll most likely have to install a client, a server, and perhaps additional support pack-
ages. PostgreSQL is headquartered at http://www.postgresql.org.

SQLite This package, based at http://www.sqlite.org, is a library that implements SQL. As
such, it’s not a standalone database; instead, it’s intended as a way to provide programs with a
way to store data using a SQL interface within the program. If you install a program that uses
SQLite, your distribution’s package manager should install the relevant libraries for you. If you
want to write a program that requires database access and you don’t want to install a complete
client/server SQL package such as MySQL or PostgreSQL, SQLite may be just what you need.

There are literally dozens more SQL database products for Linux. For the purpose of learn-
ing SQL, MySQL or PostgreSQL should do fine, or you can use another full implementation if
you prefer. If you have a specific purpose in mind for using SQL, though, you should research
SQL packages in more detail. You may need a particular product for compatibility with other
software, or you may need a SQL package that provides specific features.

As just noted, some SQL packages, including MySQL and PostgreSQL, operate on a client-
server model: One program (the server) manages the database, while another (the client) pro-
vides users and programs with access to the database. Such implementations can work over a
network, enabling users at multiple client systems to access a centralized database server.

04836c09.indd 449 1/11/09 9:19:42 AM

450 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Understanding SQL Basics
SQL is a tool for accessing databases, and more specifically, relational databases. Figure 9.2
illustrates data in a relational database. Each row (sometimes known as a tuple) represents a
single object or other item, and each column (sometimes referred to as an attribute or field)
represents a specific feature. The combination of rows and columns is referred to as a table.
Each database may contain multiple tables, and SQL supports multiple databases. Thus, to
access data, you must first select a database and a table, as described in more detail shortly.

The data in a table are unordered, at least conceptually. (In practice, of course, data will
be stored in some order on disk, but this order is arbitrary.) You can impose an order on
query results, as described shortly; for instance, you may retrieve data from the database
represented by Figure 9.2 and order the results according to cost (the final column).

f i gU r E 9 . 2 A relational database stores data in a table, with each row representing
one object or item and each column representing specific attributes.

tuples
(rows)

attributes (columns)

lizard green 5 inches soft $10

tree green 10 feet medium $200

pillow white 18 inches soft $5

brick red 8 inches hard $1

banana yellow 8 inches soft $0.10

A database enables retrieval of information that matches specific criteria. You can search
for all the green objects in Figure 9.2, for instance. You can also insert, delete, and update
information in a table. SQL supports multiple tables, so you can have, for instance, different
tables for property in your office and for employees who work in your office.

Columns (attributes) in a database hold specific types of data, and swapping them
around makes little sense. For instance, it’s clear that the second column in Figure 9.2 is
a color, whereas the final column is a price or value, expressed in dollars. It would make
little sense to enter green as a value or $1.00 as a color. The restrictions placed on what
may appear in a column are known as a domain or a data type: The domain for the second
column is a set of color names, whereas the domain for the final column is a numeric value
expressed in dollars. Table 9.3 summarizes some common SQL data types.

04836c09.indd 450 1/11/09 9:19:42 AM

Managing Data with SQL 451

Ta b lE 9 . 3 Common SQL Data Types

Data Type Name Purpose

INTEGER (a.k.a. INT) 4-byte integer value

SMALLINT 2-byte integer value

DECIMAL Precision storage of decimal values

NUMERIC Precision storage of decimal values

FLOAT Floating-point number

DOUBLE PRECISION Floating-point number stored with twice the precision of FLOAT

DATETIME A date and time

DATE A date

TIME A time, in HH:MM:SS format; may be a time of day or a period
of time

CHAR One or more characters

VARCHAR A variable number of characters

ENUM An enumerated list, such as one of small, medium, or large

SET Data that may have zero or more values, as in any of the set of
nuts, sprinkles, fudge, and cherry for ice cream toppings

Additional data types exist; Table 9.3 is intended to give you a feel for what’s available and
to list some of the data types you’re likely to encounter. Some implementations support unique
data types, too. Each of these data types has its own features. For instance, the numeric data
types (INTEGER, DECIMAL, and so on) can be manipulated by mathematic operators.

Using MySQL
To learn about SQL, you should have access to a SQL database. For purposes of demon-
stration, I’m using MySQL as a reference. Other SQL implementations are similar to what
I describe here, but some details differ. One of these details is how to start the database. In
the case of MySQL, your distribution should include a SysV or other startup script for the
SQL server. This server may also need to be configured with its own root password. Debian
and related distributions will prompt for this when you install the package, but you may
need to set this manually with other distributions.

04836c09.indd 451 1/11/09 9:19:42 AM

452 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Starting to Use MySQL
To begin a SQL session, you should first ensure that the server is running, as just described.
You can then start the SQL client. In the case of MySQL, this program is called mysql:

$ mysql

If you’ve just installed MySQL for learning purposes, it may have no databases defined.
To learn what’s defined, you can use the SHOW DATABASES command:

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

+--------------------+

1 row in set (0.00 sec)

This example illustrates an important feature of SQL: Commands are ter-
minated by semicolons (;). There are a few exceptions to this rule, but if
you forget the semicolon, you’re likely to see a new prompt that reads ->
rather than mysql>, at least in MySQL. You can use this fact to split your
commands across multiple lines, if you like. If you forget the semicolon that
terminates a command, you can enter it by itself on the -> prompt line. SQL
commands are conventionally shown in uppercase, but SQL commands are
case-insensitive, so you can type your commands in uppercase, lowercase,
or any mixture of case you like.

In this example, one database is already defined: information_schema. Some installations
define a database called test. If you see such a database, you can probably use it for your
own tests; however, other users may be able to see and modify this database, so don’t store
important data in it. If you’re not in charge of the SQL installation, you should double-check
with whoever is in charge of it to be sure you can use the test database—or any other data-
base, for that matter.

Creating Databases and Tables
If no database for testing purposes exists, you can create one with the CREATE DATABASE
command, which takes a database name as an option:

mysql> CREATE DATABASE test;

Query OK, 1 row affected (0.00 sec)

04836c09.indd 452 1/11/09 9:19:43 AM

Managing Data with SQL 453

Although SQL commands are case-insensitive, database names are not.
Thus, be sure to create the database name using whatever case you intend
to use to refer to it in the future.

If you type SHOW DATABASES;, you’ll see the test database in addition to any that already
existed. Regardless of whether test (or some other testing database) existed when you first
started MySQL or had to be created, you can begin using it with the USE command:

mysql> USE test;

Within each database, tables must be created and selected for use. The commands to
do so are similar to the commands used to create and select databases. In a newly created
database, no tables exist:

mysql> SHOW TABLES;

Empty set (0.00 sec)

The response Empty set denotes an empty database. To fill the database with data, you
must first decide on a table structure—what sort of data you want to record. For instance,
Figure 9.2 shows various attributes of common objects: their names, colors, sizes, hardnesses,
and values in dollars. To create a table that includes columns for these five attributes, you use
a CREATE TABLE command, passing it various details:

mysql> CREATE TABLE objects (name VARCHAR(30), color VARCHAR(20),

 -> size FLOAT, hardness ENUM(‘soft’,’medium’,’hard’),

 -> value DECIMAL(10,2));

Query OK, 0 rows affected (0.01 sec)

This example creates a table with five columns: name, color, size, hardness, and value.
Each column has an associated data type, as described in Table 9.3. A few points worth
noting about this table definition are as follows:

The Ûn name and color columns are both VARCHAR examples, but with different sizes: The
name may be up to 30 characters, whereas the color may be up to 20 characters. If
these were defined as CHARs, each name would have to be precisely 30 characters in size,
and each color precisely 20 characters. A limited set of colors can be specified by using
an ENUM rather than a VARCHAR. Presumably you wouldn’t want to limit object names
this way.

The Ûn size column is a FLOAT, which is less precise than an integer data type, but a
FLOAT can hold real (non-integer) numbers. Figure 9.2 includes sizes in inches (includ-
ing fractions of an inch) and feet, but in practice you’ll need to convert everything to
one unit—probably inches, in this case.

04836c09.indd 453 1/11/09 9:19:43 AM

454 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Note the syntax for defining the Ûn ENUM: The list of values as a whole is enclosed in paren-
theses (()), and each enumerated value is enclosed in single quotes (‘) and separated from
other values by a comma (,).

The Ûn DECIMAL value includes a specification of the number of digits (10 in this example)
and the number of digits after the decimal point (2 in this example), separated by a
comma. Some implementations support a MONEY data type that can be used in this
case, but MySQL lacks this data type, so DECIMAL is the best choice for the job. A
DECIMAL type is better for currency than FLOAT because a FLOAT type is likely to intro-
duce rounding errors due to the way numbers are encoded in a FLOAT value. Such
errors are typically unacceptable in currency, although they may be tolerable in some
applications.

If you need to create a table with other types of values, you should consult the documen-
tation for your specific SQL implementation to see what data types it supports.

With the table created, you may want to verify that it’s been created correctly. You can
do so by typing DESCRIBE objects;. The result should be a summary of the fields you’ve
just created for the objects table.

Storing Data
You can now begin storing data in your database. To do so, use the INSERT INTO command:

mysql> INSERT INTO objects

 -> VALUES(‘lizard’,’green’,6,’soft’,10.00);

This example creates an entry for the first row of Figure 9.2 (but with one error, which
is deliberate). You can verify that the database now holds this information by typing
SELECT * FROM objects;. The result is a listing of all the data in the objects table, which
in this case should be just the one entry. (The next section, “Retrieving Data,” covers data
retrieval in more detail.)

This example entered incorrect data for one field: The lizard is entered in the table as
being 6 inches in size, rather than 5. You can correct this error by using UPDATE:

mysql> UPDATE objects SET size=5 WHERE name=’lizard’;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

This example begins with the keyword UPDATE and the table name (objects). The example
then tells MySQL what to update: SET size=5—in other words, set the size field to 5. The
WHERE keyword begins a specification of which rows to change. In this case, with only one row
present, you can use any data or even omit WHERE and the rest of the line up to the semicolon.
In most cases, though, you must provide enough criteria to uniquely identify the column you
want to change. In this example, the name of the object is used—hence name=’lizard’, which
tells MySQL to change the data for all rows for which the name field is lizard.

Before you continue with data retrieval activities, you should complete a database.
Exercise 9.3 will guide you through this process.

04836c09.indd 454 1/11/09 9:19:43 AM

Managing Data with SQL 455

E x E r C i S E 9 . 3

Creating a SQl Database

In this exercise, you’ll continue creating a small database. This exercise assumes that you’ve
performed the steps described in “Creating Databases and Tables” and “Storing Data” and
that you therefore have a SQL database called test, which contains a table called objects,
which contains one entry based on the first line in the matrix in Figure 9.2. To complete this
database, follow these steps:

1. If you’re not currently running MySQL, do so by typing mysql.

2. If you’re not already using the test database, type USE test; to begin using the test
database.

3. Type INSERT INTO objects VALUES(‘tree’, ‘green’, 120, ‘medium’, 200);.
(You may split this command across lines, if you like.) This entry is based on the sec-
ond row of Figure 9.2, but note that the size value has been expressed in inches.

4. Verify that you entered the data correctly by typing SELECT * FROM objects; and
verifying that the new entry is present.

5. Repeat step 3 (and step 4, if you like) for the remaining rows in Figure 9.2.

If you like, you can continue and enter more data; however, if you do so, some subse-
quent examples may not work as described.

Retrieving Data
The whole point of having a database is to be able to retrieve data from it. The main com-
mand for doing so has already been described: SELECT. This command’s power lies in its
ability to accept specifications of what to select. You can use a variety of keywords to select
data that matches various criteria, such as exact matches or matches to a range of values.
The overall form of SELECT may be described in this way:

SELECT field(s) FROM table [WHERE conditions] [ORDER BY field]

Previous uses of SELECT have used an asterisk (*) as field(s), meaning that the com-
mand returns all the columns that match the remaining criteria. You can instead specify
columns by name. For instance, suppose you’re only interested in the colors and values of
objects. You can view this restricted set of data using SELECT:

mysql> SELECT value,color FROM objects;

+--------+--------+

| value | color |

+--------+--------+

| 10.00 | green |

04836c09.indd 455 1/11/09 9:19:43 AM

456 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

| 200.00 | green |

| 5.00 | white |

| 1.00 | red |

| 0.10 | yellow |

+--------+--------+

5 rows in set (0.00 sec)

The field(s) criteria appears as a comma-separated list of columns. In this example, the
criteria were listed in the reverse order from their order in the database, and so they appear
in the reverse order in the output.

A more interesting way to retrieve data is to use WHERE conditions. This tool has already
been mentioned, in reference to updating data. You can use conditions to retrieve specific
data in several ways:

Exact matches Using a column name, an equal sign, and a value to match returns only
those rows that match the specified value. For instance, typing SELECT * FROM objects
WHERE color=’green’; returns the two entries for green objects (lizard and tree).

Numeric tests You can retrieve data that match certain numeric criteria. For instance, to
retrieve data on all objects that are greater than 10 inches in size, you can type SELECT *
FROM objects WHERE size>10;.

Alphabetic tests The greater-than (>) and less-than (<) operators work on letters as well
as numbers. This fact can be used to retrieve data based on the first letter of a string, as in
SELECT * FROM objects WHERE name>’b’; to retrieve records for which the name begins
with b or later letters in the alphabet. (Although this example uses a greater-than operator,
it does in fact match the letter b.)

Multiple tests You can combine multiple criteria using the AND and OR operators. For
instance, to retrieve data on soft objects valued at more than $7.50, you can type SELECT *
FROM objects WHERE hardness=’soft’ AND value>7.50;.

You can have MySQL return the data as an ordered list by specifying a field name after
the ORDER BY keyword:

mysql> SELECT * FROM objects WHERE hardness=’soft’ ORDER BY value;

+--------+--------+------+----------+-------+

| name | color | size | hardness | value |

+--------+--------+------+----------+-------+

| banana | yellow | 8 | soft | 0.10 |

| pillow | white | 18 | soft | 5.00 |

| lizard | green | 5 | soft | 10.00 |

+--------+--------+------+----------+-------+

3 rows in set (0.00 sec)

04836c09.indd 456 1/11/09 9:19:43 AM

Managing Data with SQL 457

Combining Data from Multiple Tables
As noted earlier, a database may contain multiple tables. This feature of SQL enables you
to create tables for different functions. For instance, Figure 9.2 might represent a database
of object characteristics that are of interest for some reason. You might also have a data-
base containing the locations and conditions (on a 10-point scale) of different objects, as
shown in Table 9.4. Sometimes you might want to combine these two tables to create a
master table on which you can perform queries. In order to do so, though, the two tables
must have one matching field that can be used to bind the two tables together, and each
table must have one field whose value uniquely identifies each row. This uniquely identify-
ing field is known as a primary key. In the case of Figure 9.2, the first column (called name)
can serve as a primary key. In the case of Table 9.4, the Object ID column will do the job.

Ta b lE 9 . 4 Data on Object Locations and Conditions

Object ID Object Name Location Condition

1 banana kitchen 9

2 banana kitchen 8

3 tree back yard 2

4 brick garage 10

5 brick garage 9

6 brick back yard 9

7 lizard living room 8

You can create this table much as you created the first one:

mysql> CREATE TABLE locations (id INTEGER, name VARCHAR(30),

 -> location VARCHAR(30), cond INTEGER);

mysql> INSERT INTO locations VALUES(1, ‘banana’, ‘kitchen’, 9);

Additional INSERT operations will fill out the table. At this point, you can use the SELECT
operator to select data based on fields from both tables. For instance, suppose you want to
know where all the green objects are located. The first table (objects) contains color data but
not locations, whereas the second table (locations) holds locations but not color data. You
can accomplish the goal by using a few tricks:

mysql> SELECT objects.name, objects.color, locations.location

 -> FROM objects, locations

04836c09.indd 457 1/11/09 9:19:44 AM

458 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

 -> WHERE objects.name=locations.name AND objects.color=’green’;

+--------+-------+-------------+

| name | color | location |

+--------+-------+-------------+

| tree | green | back yard |

| lizard | green | living room |

+--------+-------+-------------+

2 rows in set (0.00 sec)

MySQL automatically combines the two tables and produces output based on the criteria
you specify. The final output in this example includes the name, color, and location of the
objects, even though each table has just two of those three values.

A second way to combine data from multiple tables is to use JOIN. This approach is very
similar to the preceding one, but you specify one table using FROM and the other using JOIN:

mysql> SELECT objects.name, objects.color, locations.location

 -> FROM objects

 -> JOIN locations

 -> WHERE objects.name=locations.name AND objects.color=’green’;

Combining data enables you to simplify the structure of your database in certain situations.
The examples used here illustrate this fact, albeit with very small data sets. The data in the
objects table describes objects generically, whereas the data in the locations table describes
objects specifically. A retail business might use similar tables to describe its inventory—some-
thing analogous to the objects table can hold descriptions of products, whereas something
like the locations table can specify where each box holding a particular product is shelved,
perhaps even across multiple warehouses or stores. This design enables each table to be rela-
tively small. If all the data were stored in a single table, that table would require multiple
entries for each item, duplicating a lot of data. By splitting the data across tables, each table
can be much smaller, thus reducing storage space.

A retrieval command that requires special mention is GROUP BY. This command is used
in conjunction with mathematical operators, such as SUM(), to restrict the operation of the
operator to the specified columns. For instance, suppose you want to know the total value
of all the objects in the database, grouped by object type. You can do so as follows, com-
bining data from both tables:

mysql> SELECT objects.name, objects.value, SUM(value)

 -> FROM objects, locations

 -> WHERE locations.name=objects.name

 -> GROUP BY value;

The result is a summary of the values of all the objects by type. Omitting the GROUP BY
clause produces an error message in MySQL.

04836c09.indd 458 1/11/09 9:19:44 AM

Summary 459

Deleting Data
Sometimes your data need to be deleted. Table 9.4 suggests that the tree in the back yard
is ill—its condition rating is just 2 on a 10-point scale. Perhaps you’ll decide to cut it
down, and therefore remove it from the locations database. To do so, you’ll use the
DELETE command, which takes the following form:

DELETE FROM table WHERE conditions

For instance, to delete that now-removed tree, you can type the following command:

mysql> DELETE FROM locations

 -> WHERE name=’tree’ AND location=’back yard’ ;

Query OK, 1 row affected (0.05 sec)

In this specific case, the WHERE condition is more detailed than it needs to be, because
the back-yard tree is the only one in the table. As usual when deleting any sort of data on a
computer, though, it’s better to be overly cautious than overly sloppy.

Before deleting data, try using SELECT to see what data your WHERE con-
ditions match. Doing this will help you prevent accidentally deleting too
much data.

You can delete all the data from a table by using a variant of the DELETE command:
DELETE * from locations;. This command deletes all the table’s data without deleting the
table itself. This may be useful if the table is hopelessly messed up from experimentation.
An even more drastic deletion operation is DROP: DROP TABLE locations;. This example
completely eliminates the locations table. Naturally, this is an extremely dangerous com-
mand, but you may want to use it when cleaning up your own SQL practice session.

Learning More About SQL
SQL is a very complex topic, and this chapter can only scratch the surface. For more informa-
tion, you should read more from various sources. Your own SQL package’s documentation
can be a good starting point, particularly if you need to use features that are unique to your
implementation. Books on SQL, such as Alan Beaulieu’s Learning SQL (O’Reilly, 2005) and
Baron Schwartz’s High-Performance MySQL: Optimization, Backups, Replication, and More
(O’Reilly, 2008), are also worth reading if you need to do more than trivial SQL work.

Summary
Serious Linux administrators must have at least a basic understanding of shell scripts.
Many configuration and startup files are in fact shell scripts, and being able to read them,
and perhaps modify them, will help you administer your system. Being able to create new

04836c09.indd 459 1/11/09 9:19:45 AM

460 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

shell scripts is also important, because doing so will help you simplify tedious tasks and
create site-specific tools by gluing together multiple programs to accomplish your goals.

E-mail server administration is another task with which you must have at least a pass-
ing familiarity. Although most Linux systems don’t operate as e-mail servers in the sense
of computers whose primary duty is to handle e-mail, most Linux installations do include
e-mail servers for processing locally-generated e-mail, and sometimes to send e-mail to
outside systems or even to receive e-mail for local users. You can configure e-mail for-
warding and perform a few other tweaks without delving too heavily into e-mail server
configuration.

The final topic of this chapter, SQL use, will help you manage simple databases stored
using the SQL language. Many programs rely on SQL for their operation, so being able to
perform simple SQL queries will help you work with these programs. You may even decide
to set up databases to help manage your own tasks, such as tracking where you keep things
in your office or home.

Exam Essentials
Explain the function of environment variables. Environment variables are used to store
information on the system for the benefit of running programs. Examples include the PATH
environment variable, which holds the locations of executable programs, and HOSTNAME,
which holds the system’s hostname.

Describe how a shell script can be useful. A shell script combines several commands,
possibly including conditional expressions, variables, and other programming features,
to make the script respond dynamically to a system. Therefore, a shell script can reduce
administrative effort by performing a series of repetitive tasks at one command.

Describe the purpose of shell aliases. Aliases enable you to create a command “shortcut”—
a simple command that can stand in for a different or longer command. Aliases are typically
defined in shell startup scripts as a way to create a shortened version of a command, to have
useful options for a command be used as new defaults, or to create an easier-to-remember
version of a command.

Summarize the major SMTP servers for Linux. Sendmail was the most common SMTP
server a decade ago and is still very popular today. Postfix and Exim are often supplied as the
default mail servers on modern distributions, whereas qmail is often installed by administra-
tors but isn’t the default for any major distribution. Postfix and qmail use modular designs,
whereas sendmail and Exim are monolithic.

Explain the difference between an e‑mail alias and e‑mail forwarding. An e-mail alias is
configured systemwide, typically in /etc/aliases. It can set up forwarding for any local
address, even if that address doesn’t correspond to a real account; and if the system is prop-
erly configured, only root may edit /etc/aliases and therefore modify aliases. E-mail for-
warding, on the other hand, is handled by the ~/.forward file in a user’s home directory; it’s
intended as a means for users to control their own e-mail forwarding without bothering the
system administrator.

04836c09.indd 460 1/11/09 9:19:45 AM

Exam Essentials 461

Summarize the structure of a SQL database. Each SQL installation consists of a number
of named databases, each of which in turn may contain multiple tables. Each table can be
thought of as a two-dimensional array of data. Each row in a table describes some object or
concept (inventory items, employees, movies in a personal DVD collection, and so on), and
each column in a table holds data about these objects or concepts (model number, salary, or
director, for example).

Describe the commands used to enter data in a SQL database. The INSERT command
inserts a single entry into a database. It requires a table name and a set of values, as in
INSERT INTO movies VALUES(‘Brazil’, ‘Terry Gilliam’, 1985);. The UPDATE com-
mand can be used in a similar way to update an existing entry, but you must use SET to
specify the column to set and WHERE to identify the row or rows to be modified.

Explain the commands used to extract data from a SQL database. The SELECT command
retrieves data from a SQL database. It can be used with a variety of additional options,
such as FROM, JOIN, and WHERE, to identify the table or tables from which data should be
retrieved and to locate specific values of interest.

04836c09.indd 461 1/11/09 9:19:45 AM

462 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Review Questions

1. Where is the best location for the current directory indicator (.) to reside in root’s PATH
environment variable?

A. Before all other directories.

B. After all other directories.

C. Nowhere; it shouldn’t be in root’s path.

D. Wherever is convenient.

2. You want to create a shortcut for the command cd ~/papers/trade. Which of the following
lines, if entered in a bash startup script, will accomplish this goal?

A. alias cdpt=’cd ~/papers/trade’

B. export cdpt=’cd ~/papers/trade’

C. cd ~/papers/trade

D. shortcut cdpt “cd ~/papers/trade”

3. What is the purpose of the EDITOR environment variable?

A. Set to Y (the default), the shell environment permits editing of commands; set to N, such
editing is disallowed.

B. Some, but not all, programs refer to EDITOR to determine what external editor to
launch when they do so.

C. If you type edit filename at a command prompt, the program specified by EDITOR
will be launched.

D. Set to GUI, programs call a GUI editor; set to TEXT, programs call a text-based editor.

4. In what environment variable is the current working directory stored?

A. PATH

B. CWD

C. PWD

D. PRESENT

5. Which of the following commands, if typed in a bash shell, will create an environment
variable called MYVAR with the contents mystuff which will be accessible to subsequently-
launched programs?

A. export MYVAR=’mystuff’

B. MYVAR=’mystuff’

C. $MYVAR==mystuff

D. echo $MYVAR mystuff

04836c09.indd 462 1/11/09 9:19:45 AM

Review Questions 463

6. What file might a user modify to alter his or her own bash environment?

A. ~/.startup

B. /etc/bashrc

C. /home/.bashrc

D. ~/.bashrc

7. What commands might you use (along with appropriate options) to learn the value of a
specific environment variable? (Select all that apply.)

A. env

B. DISPLAY

C. export

D. echo

8. After using a text editor to create a shell script, what step should you take before trying to
use the script?

A. Set one or more executable bits using chmod.

B. Copy the script to the /usr/bin/scripts directory.

C. Compile the script by typing bash scriptname, where scriptname is the script’s name.

D. Run a virus checker on the script to be sure it contains no viruses.

9. Describe the effect of the following short script, cp1, if it’s called as cp1 big.c big.cc:
#!/bin/sh

cp $2 $1

A. It has the same effect as the cp command—copying the contents of big.c to big.cc.

B. It compiles the C program big.c and calls the result big.cc.

C. It copies the contents of big.cc to big.c, eliminating the old big.c.

D. It converts the C program big.c into a C++ program called big.cc.

10. What is the purpose of conditional expressions in shell scripts?

A. They prevent scripts from executing if license conditions aren’t met.

B. They display information about the script’s computer environment.

C. They enable the script to take different actions in response to variable data.

D. They enable scripts to learn in a manner reminiscent of Pavlovian conditioning.

11. Which of the following lines identify valid shell scripts on a normally configured system?
(Select all that apply.)

A. #!/bin/script

B. #!/bin/bash

C. !#/bin/tcsh

D. #!/bin/sh

04836c09.indd 463 1/11/09 9:19:45 AM

464 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

12. Which of the following is not a valid looping statement in bash shell scripting?

A. for

B. while

C. goto

D. until

13. Your SMTP e-mail server, mail.luna.edu, receives a message addressed to postmaster@
mail.luna.edu. There is no postmaster account on this computer. Assuming the system
is properly configured, how should the e-mail server respond?

A. Deliver the e-mail to another account, either locally or on another computer.

B. Bounce the message so that the recipient knows the account doesn’t exist.

C. Hold the message in the local mail queue until the postmaster account is created.

D. Delete the message without bouncing it so as to reduce e-mail clutter.

14. Which of the following is not a popular SMTP server for Linux?

A. Postfix

B. Sendmail

C. Fetchmail

D. Exim

15. You see the following line in a script:
mail -s “Error” -c abort < /tmp/msg root

What is the effect of this line, if and when it executes?

A. An e-mail is sent to the user Error, the script is aborted using root privileges, and
error messages are written to /tmp/msg.

B. An e-mail with the subject of Error and the contents from /tmp/msg is sent to the
local users root and abort.

C. An e-mail with the subject of Error and the contents of /tmp/msg is sent to the local
user root, and then the script is aborted.

D. An e-mail is sent with Error priority to the local user root, and the e-mail system is
then shut down with error messages being stored in /tmp/msg.

16. Your Internet connection has gone down for several hours. What is true of e-mail sent by
your users to off-site recipients via a properly configured local SMTP server?

A. The SMTP server will refuse to accept e-mail from local clients during the outage.

B. E-mail will be neither delayed nor lost.

C. All e-mail sent during the outage will be lost.

D. E-mail will be delayed by a few hours but not lost.

04836c09.indd 464 1/11/09 9:19:46 AM

Review Questions 465

17. You examine your /etc/aliases file and find it contains the following line:
root: jody

What can you conclude from this?

A. E-mail addressed to jody on this system will be sent to the local user root.

B. E-mail addressed to root on this system will be sent to the local user jody.

C. The local user jody has broken into the system and acquired root privileges.

D. The local user jody has permission to read e-mail directly from root’s mail queue.

18. You’ve just installed MySQL and run it by typing mysql. How would you create a database
called fish to store data on different varieties of fish?

A. Type NEW DATABASE fish; at the mysql> prompt.

B. Type create database fish; at the mysql> prompt.

C. Type NEW DATABASE FISH; at the mysql> prompt.

D. Type DATABASE CREATE fish; at the mysql> prompt.

19. Which of the following are true statements about SQL tables? (Select all that apply.)

A. Multiple tables may exist in a single SQL database.

B. Tables may be combined for cross-table searches using the DROP command.

C. Tables consist of rows, each of which holds attributes, and columns, each of which
defines a specific database item.

D. Careful table design can reduce the amount of data entry and database storage size.

20. What is the effect of the following SQL command, assuming the various names and data exist?
mysql> UPDATE stars SET magnitude=2.25 WHERE starname=’Mintaka’;

A. It returns database entries from the stars table for all stars with magnitude of 2.25
and starname of Mintaka.

B. It sets the value of the stars field in the magnitude set to Mintaka, using a precision
of 2.25.

C. It sets the value of the magnitude field to 2.25 for any item in the stars table with the
starname of Mintaka.

D. It combines the stars and magnitude=2.25 tables, returning all items for which
starname is Mintaka.

04836c09.indd 465 1/11/09 9:19:46 AM

466 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

Answers to Review Questions

1. C. The current directory indicator is particularly dangerous in root’s PATH environment
variable because it can be used by unscrupulous local users to trick root into running pro-
grams of the unscrupulous user’s design.

2. A. The alias built-in command creates a duplicate name for a (potentially much longer) com-
mand. Option A shows the correct syntax for using this built-in command; it causes the new
alias cdpt to work like the much longer cd ~/papers/trade. The export command in option
B creates an environment variable called cdpt that holds the value cd ~/papers/trade. This
will have no useful effect. Option C, if placed in a bash startup script, will cause the user’s
current directory to shift to ~/papers/trade immediately after the user logs in. There is no
standard shortcut command, so option D is meaningless.

3. B. Some programs use the EDITOR environment variable as described in option B. Con-
trary to option A, the EDITOR environment variable has nothing to do with command-line
editing. The edit command doesn’t behave as option C suggests. (This command may be
configured differently on different systems.) You can create links called GUI and TEXT to
have the EDITOR environment variable behave as option D suggests, but this isn’t a normal
configuration.

4. C. The PWD environment variable holds the present working directory. The PATH environ-
ment variable holds a colon-delimited list of directories in which executable programs are
stored so that they may be run without specifying their complete pathnames. There are no
standard CWD and PRESENT environment variables.

5. A. Option A creates the desired environment variable. Option B creates a local variable—
but not an environment variable—called MYVAR, holding the value mystuff. After typing
option B, you can also type export MYVAR to achieve the desired goal, but option B by itself
is insufficient. Option C isn’t a valid bash shell command. Option D displays the contents
of the MYVAR variable and also echoes mystuff to the screen, but it doesn’t change the con-
tents of any environment variable.

6. D. The ~/.bashrc file is a non-login bash startup script file. As such, it can be used to alter
a user’s bash environment. There is no standard ~/.startup file for bash, so option A is
incorrect. The /etc/bashrc file is a global bash startup script. Editing it will modify users’
bash environments, but an individual user should not be able to modify it, so option B is
incorrect. There is no standard /home/.bashrc file; this option would only be correct if the
user’s home directory were set to /home, which would almost certainly be an error.

7. A, D. The env command displays all defined environment variables, so option A satisfies the
question. (In practice, you might pipe the results through grep to find the value of a specific
environment variable.) The echo command, when passed the name of a specific environment
variable, displays its current value, so option D is also correct. DISPLAY is an environment
variable, but it’s not a command for displaying environment variables, so option B is incor-
rect. You can use the export command to create an environment variable, but not to display
the current settings for one, so option C is incorrect.

04836c09.indd 466 1/11/09 9:19:46 AM

Answers to Review Questions 467

8. A. Scripts, like binary programs, normally have at least one executable bit set, although they
can be run in certain ways without this feature. There is no standard /usr/bin/scripts
directory, and scripts can reside in any directory. Scripts are interpreted programs, which
means they don’t need to be compiled. Typing bash scriptname will run the script. Viruses
are extremely rare in Linux, and because you just created the script, the only ways it could pos-
sibly contain a virus would be if your system was already infected or if you wrote it as a virus.

9. C. The cp command is the only one called in the script, and that command copies files.
Because the script passes the arguments ($1 and $2) to cp in reverse order, their effect is
reversed—where cp copies its first argument to the second name, the cp1 script copies the
second argument to the first name. The cp command has nothing to do with compiling C
or C++ programs, so neither does the script.

10. C. Conditional expressions return a true or false response, enabling the script to execute
one set of instructions or another or to terminate or continue a loop.

11. B, D. Valid shell scripts begin with the characters #! and the complete path to a program
that can run the script. Options B and D both meet this description, because /bin/bash is
a shell program that’s installed on virtually all Linux systems and /bin/sh is usually a link
to /bin/bash or to some other valid shell. There is no standard /bin/script program, so
option A is incorrect. Option C is almost correct; /bin/tcsh is a valid shell on most sys-
tems, but the order of the first two characters is reversed, so this option is incorrect.

12. C. The bash scripting language doesn’t support a goto statement, although some languages
(such as BASIC) do. The for, while, and until statements are all valid looping statements
in bash.

13. A. All SMTP e-mail servers are supposed to accept e-mail to postmaster. Linux systems
typically do so by using an alias to forward the e-mail to another local user, or occasionally
to a user on another computer. Thus, option A is correct. Options B and D both describe
non-delivery of the message, in violation of proper e-mail server configuration. Option C
is effectively the same as option D unless creation of the postmaster account is imminent,
and an e-mail server would have no way of knowing this.

14. C. The Fetchmail program is a tool for retrieving e-mail from remote POP or IMAP
servers and injecting it into a local (or remote) SMTP e-mail queue. As such, it’s not an
SMTP server, so option C is correct. Postfix, sendmail, and Exim are all popular SMTP
e-mail servers for Linux.

15. B. The -s option to mail sets the message subject line, and -c sets carbon copy (cc:)
recipients. Input redirection (via <) reads the contents of a line into mail as a message.
A mail command line normally terminates with the primary recipient. Thus, option B
correctly describes the effect of the specified line. Options A, C, and D are all confused in
their interpretation of the effects of mail parameters. Options B and D also confuse input
and output redirection, and option A incorrectly suggests that a script (or the mail pro-
gram) can elevate its run status to root privileges.

04836c09.indd 467 1/11/09 9:19:46 AM

468 Chapter 9 n Writing Scripts, Configuring E-mail, and Using Databases

16. D. SMTP servers accept local e-mail for delivery even if their Internet connections are down. If
the SMTP server can’t contact recipient servers, the SMTP server holds the e-mail and attempts
delivery later, so option D is correct. Because SMTP servers don’t check on the availability of
remote servers until after e-mail is accepted for delivery, option A is incorrect. Option B can’t
possibly be correct unless the server has a backup Internet connection, which wasn’t specified
in the question. Option C isn’t correct because the SMTP server will hold the mail and attempt
delivery later.

17. B. The /etc/aliases file configures system-wide e-mail forwarding. The specified line
does as option B describes. A configuration like this one is common. Option A has things
reversed. Option C is not a valid conclusion from this evidence alone, although an intruder
may conceivably be interested in redirecting root’s e-mail; so if jody shouldn’t be receiving
root’s e-mail, this should be investigated further. Although the effect of option D (jody
reading root’s e-mail) is nearly identical to the correct answer’s effect, they are different;
jody cannot directly access the file or directory that is root’s e-mail queue. Instead, the
described configuration redirects root’s e-mail into jody’s e-mail queue. Thus, option D
is incorrect.

18. B. The CREATE DATABASE command creates a new database with the specified name. Because
SQL commands are case-insensitive, this command may be typed in uppercase or lowercase,
and option B is correct. Options A and C both use the incorrect command NEW rather than
CREATE, and option C specifies the database name as FISH rather than fish. (Database names
are case-sensitive.) Option D reverses the order of the CREATE and DATABASE keywords.

19. A, D. A single database may hold multiple tables, as option A suggests. Option D is also
correct; by splitting data across tables (such as into tables describing objects generically
and specifically), databases can be more space-efficient. Option B is incorrect because the
DROP command doesn’t combine tables; it deletes a table! Option C is incorrect because it
reverses the meaning of rows and columns in a SQL table.

20. C. The UPDATE command modifies existing database table entries, and in this case it does so
as option C describes. Option B also describes an update operation, but in a confused and
incorrect way. Options A and D both describe database retrieval operations, but UPDATE
doesn’t retrieve data.

04836c09.indd 468 1/11/09 9:19:46 AM

Chapter

10
Securing Your System

The following linux ProfeSSional
inSTiTuTe objecTiveS are covered in
ThiS chaPTer:

1.110.1 Perform security administration tasks (weight: 3)ÛÛ

1.110.2 Set up host security (weight: 3)ÛÛ

1.110.3 Securing data with encryption (weight: 3)ÛÛ

04836book.indd 469 12/4/08 10:21:41 AM

Chances are, you take basic security measures in your daily
life—locking the door to your house, avoiding unsafe neighbor-
hoods, keeping valuables out of sight in your car, and so on.

Such measures can minimize the risk of a theft or even personal injury, and similar measures
on a computer can help protect the computer from compromise. This chapter covers several
security issues: restricting access to the computer by port number, managing the security of
individual programs, managing passwords, setting miscellaneous account security options,
and using encryption to secure data. Understanding these basics will help you begin to secure
your computer.

There is no such thing as a 100 percent secure computer. You can take
steps to improve security, but no one step or set of steps will absolutely
guarantee that you’ll have no problems. You must decide for yourself (or
the organization for which you work must decide) just how much effort
to put into securing your systems and live with the level of threat that
remains. This chapter’s security information can help you start securing
your system; but if you need more than very basic security, you’ll have to
learn and do more than I can describe here.

Administering Network Security
Linux systems are often used as server computers, or at least they’re connected to the Internet
more or less directly. On such systems, network security is particularly important, because
incorrectly configured servers can provide miscreants with a way into your system to do what-
ever damage they like. Several methods of protecting networked computers from unwanted
outside access exist. Some of the simplest of these methods involve shutting down or restrict-
ing access to network servers by controlling the network ports they use. (Network ports are
described in Chapter 8, “Configuring Basic Networking.”) You can check for existing network
connections, check for open ports (that is, ports that are in use by a server program), use super
server restrictions to limit access, and disable servers you’re not using.

The popular media uses the term hacker to refer to computer criminals. This
word has an older meaning, though: It refers to individuals who are skilled
with computers (and particularly with programming), who enjoy these activi-
ties, and who use their skills to productive and legal ends. Many Linux pro-
grammers consider themselves hackers in this positive sense. Therefore, I
use another term, cracker, to refer to computer criminals.

04836book.indd 470 12/4/08 10:21:42 AM

Administering Network Security 471

Using Super Server Restrictions
Many network server programs open network ports and listen for connections directly.
Some programs, though, work through an intermediary: a super server. This is a program
that listens for network connections on behalf of another program and then, when a con-
nection is initiated, hands off control of that connection to the intended server. This activ-
ity may sound like pointless complication, but it actually has several advantages over a
more direct connection. For instance, using a super server can reduce memory load if the
super server handles many small servers that are seldom used—most of the time, only the
super server and perhaps one or two of the servers it handles will be in memory. Another
advantage is security: You can employ security checks in the super server to protect all the
servers that the super server manages. In the following pages, I describe the basics of con-
figuring Linux’s two major super servers, inetd and xinetd, with particular emphasis on
their security features. In the case of inetd, security is handled by a package called TCP
Wrappers. xinetd’s security features are built into xinetd itself, by contrast.

Whenever possible, apply redundant access controls. For instance, you
can use both a server’s own security features and TCP Wrappers or xinetd
to block unwanted access. Doing this helps protect against bugs and mis-
configuration—if a problem emerges in the super server configuration, for
instance, the secondary block will probably halt the intruder. If you config-
ure the system carefully, such an access will also leave a log file message
that you’ll see, so you’ll be alerted to the fact that the super server didn’t
do its job.

Configuring inetd
The inetd package was once the standard super server in Linux, and it’s still used on some
systems. Over the past decade, though, xinetd has gained substantial ground, so your system
may use xinetd instead. Type ps ax | grep inetd to see which super server is running on
your system—the output should include a line with either the inetd or the xinetd command.
Some systems run neither super server, though. If your system has inetd installed, the next
few pages cover it.

Setting Up inetd

You control servers that launch via inetd through the /etc/inetd.conf file or files in
/etc/inetd.d. The /etc/inetd.conf file consists of a series of lines, one for each server.
A typical line resembles the following:

ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.ftpd -l

04836book.indd 471 12/4/08 10:21:43 AM

472 Chapter 10 n Securing Your System

This and several subsequent examples refer to in.ftpd, an FTP server
that was once quite popular but that’s being replaced on many systems
by other FTP servers. Some of these servers cannot be run from a super
server, so using another server may not work in all of these cases.

Instead of using a single monolithic /etc/inetd.conf file, recent versions of inetd
enable you to split the configuration into several files in the /etc/inetd.d directory. Doing
so enables you to easily add or delete server configurations by adding or deleting their con-
figuration files. For brevity, the following paragraphs refer only to /etc/inetd.conf, but
the description applies to files in /etc/inetd.d, as well.

Each line consists of several fields separated by one or more spaces. The meanings of
these fields are as follows:

Service name The first field (ftp in the preceding example) is the name of the service as it
appears in the /etc/services file.

Socket type The socket type entry tells the system what type of connection to expect—a
reliable two-way connection (stream), a less reliable connection with less overhead (dgram),
a low-level connection to the network (raw), or various others. The differences between
these types are highly technical; your main concern in editing this entry should be to cor-
rectly type the value specified by the server’s documentation.

Protocol This is the TCP/IP transport-layer protocol used, usually tcp or udp.

Wait/no wait For dgram socket types, this entry specifies whether the server connects to
its client and frees the socket (nowait) or processes all its packets and then times out (wait).
Servers that use other socket types should specify nowait in this field.

User This is the username used to run the server. The root and nobody users are com-
mon choices, but others are possible as well. As a general rule, you should run servers with
a low-privilege user whenever possible as a security precaution. Some servers require root
access, though. Consult the server’s documentation for details.

Server name This is the filename of the server. In the preceding example, the server is
specified as /usr/sbin/tcpd, which is the TCP Wrappers binary. As described shortly in
“Controlling Access via TCP Wrappers,” this program is an important security tool and
should usually be included as the means of launching programs via inetd.

Parameters Everything after the server name consists of parameters that are passed to the
server. If you use TCP Wrappers, you pass the name of the true target server (such as /usr/
sbin/in.ftpd) in this field, along with its parameters.

The hash mark (#) is a comment symbol for /etc/inetd.conf. Therefore, if a server is
running via inetd and you want to disable it, you can place a hash mark at the start of the
line. If you want to add a server to inetd.conf, you need to create an entry for it. Most
servers that can be run from inetd include sample entries in their documentation. Many
distributions ship with inetd.conf files that include entries for common servers as well,
although many of them are commented out; remove the hash mark at the start of the line
to activate the server.

04836book.indd 472 12/4/08 10:21:44 AM

Administering Network Security 473

After modifying inetd.conf, you must restart the inetd super server. This super server
normally runs as a standard SysV server, so you can restart it by typing something similar
to the following:

/etc/rc.d/init.d/inetd restart

Alternatively, you can tell inetd to reload its configuration by passing the SysV startup
script the reload parameter rather than restart. The restart option shuts down the server
and then starts it again. When you use reload, the server never stops running; it just rereads
the configuration file and implements any changes. As a practical matter, the two are similar.
Using restart is more likely to correctly implement changes, but it’s also more likely to dis-
rupt existing connections.

Instead of using the SysV startup scripts, you can use kill or killall (described in
Chapter 2, “Managing Software”) to pass the SIGHUP signal to inetd. This signal causes
many servers, including inetd, to reload their configuration files. For instance, you can type
kill -HUP pid if you know the process ID (PID) of inetd, or killall -HUP inetd to have
all instances of inetd reload their configuration files. (Ordinarily, only one instance of inetd
runs on a system.) In practice, this should work very much like the reload option to the SysV
startup script—in fact, such scripts often use this technique to implement this option.

It’s generally wise to disable as many servers as possible in inetd.conf
(or the xinetd configuration files, if you use xinetd). As a general rule, if
you don’t understand what a server does, disable it. This will improve the
security of your system by eliminating potentially buggy or misconfigured
servers from the equation.

Controlling Access via TCP Wrappers

The TCP Wrappers package provides a program known as tcpd. Instead of having inetd
call a server directly, inetd calls tcpd, which does two things: It checks whether a client
is authorized to access the server, and if the client has this authorization, tcpd calls the
server program.

TCP Wrappers is configured through two files: /etc/hosts.allow and /etc/hosts.deny.
The first of these specifies computers that are allowed access to the system in a particular way,
the implication being that systems not listed are not permitted access. By contrast, hosts.deny
lists computers that are not allowed access; all others are granted access to the system. If a
computer is listed in both files, hosts.allow takes precedence.

Both files use the same basic format. The files consist of lines of the following form:

daemon-list : client-list

The daemon-list is a list of servers, using the names for the servers that appear in /etc/
services. Wildcards are also available, such as ALL for all servers.

The client-list is a list of computers to be granted or denied access to the specified dae-
mons. You can specify computers by name or by IP address, and you can specify a network
by using a leading or trailing dot (.) when identifying networks by name or IP address

04836book.indd 473 12/4/08 10:21:44 AM

474 Chapter 10 n Securing Your System

block, respectively. For instance, .luna.edu blocks all computers in the luna.edu domain,
and 192.168.7. blocks all computers in the 192.168.7.0/24 network. You can also use
wildcards in the client-list, such as ALL (all computers). EXCEPT causes an exception. For
instance, when placed in hosts.deny, 192.168.7. EXCEPT 192.168.7.105 blocks all com-
puters in the 192.168.7.0/24 network except for 192.168.7.105.

The man pages for hosts.allow and hosts.deny (they’re actually the same document)
provide additional information about more advanced features. You should consult them as
you build TCP Wrappers rules.

Remember that not all servers are protected by TCP Wrappers. Normally,
only those servers that inetd runs via tcpd are so protected. Such servers
typically include, but are not limited to, Telnet, FTP, TFTP, rlogin, finger,
POP, and IMAP servers. A few servers can independently parse the TCP
Wrappers configuration files, though; consult the server’s documentation
if in doubt.

Configuring xinetd
The xinetd program is an extended super server. It provides the functionality of inetd plus
security options that are similar to those of TCP Wrappers. Modern versions of Fedora,
Mandriva, Red Hat, SUSE, and a few other distributions use xinetd by default. Other dis-
tributions may use it in the future. If you like, you can replace inetd with xinetd on any
distribution.

Setting Up xinetd

The /etc/xinetd.conf file controls xinetd. On distributions that use xinetd by default,
this file contains only global default options and a directive to include files stored in /etc/
xinetd.d. Each server that should run via xinetd then installs a file in /etc/xinetd.d with
its own configuration options.

Whether the entry for a server goes in /etc/xinetd.conf or a file in /etc/xinetd.d, it
contains information similar to that in the inetd.conf file. The xinetd configuration file,
though, spreads the information across multiple lines and labels it more explicitly. List-
ing 10.1 shows an example that’s equivalent to the earlier inetd.conf entry from “Setting
Up inetd.” This entry provides precisely the same information as the inetd.conf entry
except that it doesn’t include a reference to /usr/sbin/tcpd, the TCP Wrappers binary.
Because xinetd includes similar functionality, it’s generally not used with TCP Wrappers.

listing 10.1: Sample xinetd Configuration Entry

service ftp

{

 socket_type = stream

 protocol = tcp

 wait = no

04836book.indd 474 12/4/08 10:21:44 AM

Administering Network Security 475

 user = root

 server = /usr/sbin/in.ftpd

 server_args = -l

}

One additional xinetd.conf parameter is important: disable. If you include the line
disable = yes in a service definition, xinetd ignores the entry. Some servers install startup
files in /etc/xinetd.d that have this option set by default; you must edit the file and change
the entry to read disable = no to enable the server. You can also disable a set of servers
by listing their names in the defaults section of the main xinetd.conf file on a line called
disabled, as in disabled = ftp shell.

As with inetd, after you make changes to xinetd’s configuration, you must restart the
super server. You do this by typing a command similar to the one used to restart inetd. As
with that command, you can use either reload or restart, with similar effects:

/etc/rc.d/init.d/xinetd restart

Also as with inetd, you may pass the SIGHUP signal to xinetd via the kill or killall
command to have it reload its configuration file. This approach may be preferable if you’re
using a distribution, such as Slackware, that doesn’t use a conventional SysV startup script
to launch xinetd.

Controlling Access via xinetd

Security is handled on a server-by-server basis through the use of configuration parameters
in /etc/xinetd.conf or the server-specific configuration files. Some of these options are
similar to the function of hosts.allow and hosts.deny:

Network interface The bind option tells xinetd to listen on only one network interface
for the service. For instance, you can specify bind = 192.168.23.7 on a router to have it
listen only on the Ethernet card associated with that address. This feature is extremely use-
ful in routers, but it isn’t as useful in computers with just one network interface. (You can
use this option to bind a server only to the loopback interface, 127.0.0.1, if a server should
be available only locally. You might do this with a configuration tool like the Samba Web
Administration Tool, or SWAT.) A synonym for this option is interface.

Allowed IP or network addresses You can use the only_from option to specify IP addresses,
networks (as in 192.168.78.0/24), or computer names on this line, separated by spaces. The
result is that xinetd will accept connections only from these addresses, similar to TCP Wrap-
pers’ hosts.allow entries.

Disallowed IP or network addresses The no_access option is the opposite of only_from;
you list computers or networks here that you want to blacklist. This is similar to the hosts.
deny file of TCP Wrappers.

Access times The access_times option sets times during which users may access the
server. The time range is specified in the form hour:min-hour:min, using a 24-hour clock.
Note that this option only affects the times during which the server will respond. If the

04836book.indd 475 12/4/08 10:21:44 AM

476 Chapter 10 n Securing Your System

xinetd access_times option is set to 8:00-17:00 and somebody logs in at 4:59 p.m. (one
minute before the end time), that user may continue using the system well beyond the
5:00 p.m. cutoff time.

You should enter these options into the files in /etc/xinetd.d that correspond to the
servers you want to protect. Place the lines between the opening brace ({) and closing brace
(}) for the service. If you want to restrict all your xinetd-controlled servers, you can place
the entries in the defaults section in /etc/xinetd.conf.

Some servers provide access control mechanisms similar to those of
TCP Wrappers or xinetd. For instance, Samba provides hosts allow and
hosts deny options that work much like the TCP Wrappers file entries.
These options are most common on servers that are awkward or impos-
sible to run via inetd or xinetd.

configuring a firewall

Although the LPI Level 1 exam objectives don’t mention firewalls, you should be familiar
with the concept. A firewall is a computer that restricts access to other computers or soft-
ware that runs on a single computer to protect it alone. Broadly speaking, two types of
firewalls exist: packet-filter firewalls, which work by blocking or permitting access based
on low-level information in individual data packets (such as source and destination IP
addresses and ports), and proxy filters, which partially process a transaction (such as a
Web page retrieval) and block or deny access based on high-level features in this transac-
tion (such as the filename of an image in the Web page).

In Linux, the kernel includes packet-filter firewall capabilities, which can be programmed
via the iptables program. You can set up rules by typing iptables followed by vari-
ous options that define specific restrictions, such as limits on the IP addresses that may
access a specific network port. Creating an effective firewall requires learning iptables
in detail and writing a script that calls this program repeatedly to set up specific rules.

Many distributions make things easier by providing a generic firewall script that you can
configure using a GUI tool. These tools are generally designed for protecting a single
computer against unwanted outside access. Check your distribution’s GUI system admin-
istration options for a firewall configuration tool. You may be able to set security based
on a few levels (high, medium, and low security, for instance) or in a somewhat more
refined manner.

Linux can also function as a firewall computer that protects an entire network; however,
such a configuration is likely to require in-depth knowledge of iptables, as well as topics
such as configuring Linux as a router.

04836book.indd 476 12/4/08 10:21:45 AM

Administering Network Security 477

Disabling Unused Servers
Quite a few server programs ship with most Linux distributions, which can be a great
advantage—you don’t need to hunt for servers you want to run. On the other hand, this
very advantage can be a drawback—if you’re not careful, you can end up running a server
and not even realize it’s installed! For this reason, you should periodically search for
servers and shut down any that you find that aren’t really necessary. You must begin this
task by locating unwanted servers. Several tools to do so exist, such as netstat, lsof,
and remote network scanners. You can also search your local configuration files for clues
about what may be running. Disabling unused servers can be done by uninstalling the
package or by reconfiguring the server.

Using netstat
One way to begin diagnosing network security is to look for network activity or open ports
on a computer. One tool that can help in this respect is netstat. This program is the Swiss
Army knife of network status tools; it provides many different options and output formats
to deliver information about routing tables, interface statistics, and so on. For spotting
unnecessary servers, you can use netstat with its -a and -p options, as shown here:

netstat -ap

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State➦

PID/Program name

tcp 0 0 *:ftp *:* LISTEN➦

690/inetd

tcp 0 0 teela.rodsbooks.com:ssh nessus.rodsbooks.:39361 ESTABLISHED➦

787/sshd

I’ve trimmed most of the entries from this output to make it manageable as
an example. Also, netstat can be run as an ordinary user, but it may not
return as much information. Specifically, only root and a process’s owner
see the PID and program name of a process.

This version of the netstat command shows active network connections, which can
reveal the presence of servers that are running on your computer. The Local Address and
Foreign Address columns specify the local and remote addresses, including both the host-
name or IP address and the port number or associated name from /etc/services. The
first of the two entries shown here isn’t actively connected, so the local address, the foreign
address, and the port number are all listed as asterisks (*). This entry does specify the local
port, though: ftp. This line indicates that a server is running on the ftp port (TCP port 21).
The State column specifies that the server is listening for a connection. The final column in
this output, under the PID/Program name heading, indicates that the process with a process

04836book.indd 477 12/4/08 10:21:45 AM

478 Chapter 10 n Securing Your System

ID (PID) of 690 is using this port. In this case, it’s inetd. In other words, this server is run-
ning and listening for connections, but nobody is currently connected to it.

The second output line indicates that a connection has been established between teela
.rodsbooks.com and nessus.rodsbooks.com (the second hostname is truncated). The local
system (teela) is using the ssh port (TCP port 22), and the client (nessus) is using port
39361 on the client system. The process that’s handling this connection on the local system
is sshd, running as PID 787.

It may take some time to peruse the output of netstat, but doing so will leave you with
a much improved understanding of your system’s network connections. If you spot servers
listening for connections that you didn’t realize were active, you should investigate the matter
further. Some servers may be innocent or even necessary. Others may be pointless security
risks. The upcoming section “Disabling Unused Servers” describes how to shut down servers
you don’t want to have running.

When you use the -p option to obtain the name and PID of the process using
a port, the netstat output is wider than 80 columns. You may want to open
an extra-wide xterm window to handle this output or redirect it to a file that
you can study in a text editor capable of displaying more than 80 columns.
To quickly spot servers listening for connections, type netstat -lp rather
than netstat -ap. The result will show all servers that are listening for con-
nections, omitting client connections and specific server instances that are
already connected to clients.

Exercise 10.1 demonstrates the use of netstat to monitor network port use.

e x e r c i S e 10 .1

Monitor network Port use

To get started with netstat, follow these steps:

1. Log into the Linux system as a normal user. (Acquiring root privileges will produce
more complete output, as described earlier, but isn’t strictly necessary for this exercise.)

2. Launch an xterm from the desktop environment’s menu system, if you used a GUI
login method.

3. Type netstat -ap | less, and page through the output. Chances are, you’ll see
quite a few entries for servers that are listening for connections and for established
connections to local servers or from local clients to remote servers. Pay particular
attention to servers that are listening for new connections—that is, those that list
LISTEN in the State column of the output.

4. Type netstat -ap | grep ssh to find connections involving SSH. Depending on
your configuration and the servers you have running, you may see no output or many
lines of output.

04836book.indd 478 12/4/08 10:21:45 AM

Administering Network Security 479

e x e r c i S e 10 .1 (c ont inue d)

5. In another login session or xterm window, initiate an SSH connection to another
computer. For instance, type ssh remote.luna.edu to connect to remote.luna.edu.

6. Type netstat -ap | grep ssh in your original session (not in your SSH connection).
Compare the output to that which you obtained in step 4. The output should have an
additional line, reflecting the session you initiated in step 5.

7. Log out of the SSH session you initiated.

8. Type netstat -ap | grep ssh again. The output should be missing the line for the
session you’ve now closed.

If you’re using a multi-user system, additional SSH sessions may come and go during the
course of this lab, reflecting the activities of other users.

Using lsof
The lsof program nominally lists open files. It can be used to identify what files are open
in a directory, find who’s accessing them, and so on. The definition of file used by lsof is
broad, though; it includes network connections. Thus, you can use lsof instead of netstat
for some tasks, including locating servers that are in use. In its most basic form in this role,
you should pass the -i parameter to lsof:

lsof -i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

ssh 2498 rodsmith 3u IPv4 3292662 TCP ➦

nessus.rodsbooks.com:53106->seeker.rodsbooks.com:ssh (ESTABLISHED)

exim4 4827 Debian-exim 5u IPv4 3369596 TCP *:smtp (LISTEN)

sshd 4997 root 3u IPv4 13273 TCP *:ssh (LISTEN)

As in the output of netstat shown earlier, this output is truncated for brevity’s sake.
This example shows two types of connections. The first non-header line, which begins
with ssh, shows an outgoing connection from nessus.rodsbooks.com (the system on
which the command was typed) to the ssh port on seeker.rodsbooks.com. Such con-
nections are identified by the existence of two hostnames in the NAME column and by the
keyword ESTABLISHED in the same column. The next two lines, which begin with exim4
and sshd, show two servers that are listening for connections on the smtp and ssh ports,
respectively. These lines are identified by the fact that the NAME column takes the form
*:service (LISTEN), where service is the service name or port number. Other columns
in the output reveal additional information, such as the PID and username associated with
the port access.

04836book.indd 479 12/4/08 10:21:45 AM

480 Chapter 10 n Securing Your System

If you type lsof -i as an ordinary user, you’ll only see your own network
connections; thus, in order for this command to be a useful diagnostic for
system security, you must run it as root.

You can restrict the output of lsof by including an address after the -i option. The
address takes the following form:

[46][protocol][@hostname|hostaddr][:service|port]

The digit 4 or 6 represents an IPv4 or IPv6 connection, the protocol is the protocol
type (TCP or UDP), the hostname or hostaddr is the computer hostname or IP address
associated with the remote system, the service is a service name (from /etc/services),
and the port is the port number. For instance, suppose you want to verify that no FTP
server is running on a computer. You can search for any connections associated with the
FTP port:

lsof -i :ftp

Alternatively, you can replace ftp with 21, because 21 is the port number associated
with the FTP port. (Table 8.2 in Chapter 8 summarizes the common network port num-
bers.) In either case, this command returns a list of all processes associated with FTP con-
nections, both incoming and outgoing. If no such connections exist, the command returns
no output; the system simply produces a new command prompt. Be sure to note which out-
put lines are linked with server as opposed to client processes. Even if you’re not running an
FTP server locally, the preceding command may produce dozens of lines of output if users
on the computer are making use of FTP clients.

To perform a general audit of your system’s network connections, you should type lsof -i
by itself, without restricting the output. You’ll probably want to pipe the output through less
or use an xterm’s scroll buffer to review the output. Piping the output through grep to search
for the string LISTEN can be a shortcut to find active servers:

lsof -i | grep LISTEN

Paging through the raw output (without using grep to search for LISTEN) will provide you
with a better idea of your system’s overall network use. You could conceivably spot some-
thing suspicious, such as an outgoing network connection to a sensitive computer that the
client shouldn’t be contacting. This network activity may indicate active cracking attempts
by a user of the client, intrusion by an outsider, or the work of an automated worm or Trojan
horse program.

If you identify programs that shouldn’t be running, such as unnecessary servers, you can
use the command name, PID, and other information to help shut them down. The upcoming
section “Disabling Unused Servers” describes how to do this in more detail.

04836book.indd 480 12/4/08 10:21:46 AM

Administering Network Security 481

Using Remote Network Scanners
Network scanners, such as Nmap (http://www.insecure.org/nmap/) or Nessus (http://
www.nessus.org), can scan for open ports on the local computer or on other computers.
The more sophisticated scanners, including Nessus, check for known vulnerabilities, so
they can tell you if a server may be compromised should you decide to leave it running.

Network scanners are used by crackers to locate likely target systems, as
well as by network administrators for legitimate purposes. Many organiza-
tions have policies forbidding the use of network scanners except under
specific conditions. Therefore, you should check these policies and obtain
explicit permission, signed and in writing, to perform a network scan. Fail-
ure to do so could cost you your job or even result in criminal charges, even
if your intentions are honorable.

Nmap is capable of performing a basic check for open ports. Pass the -sT parameter and
the name of the target system to it, as shown here:

$ nmap -sT seeker.rodsbooks.com

Starting Nmap 4.53 (http://insecure.org) at 2008-09-04 15:38 EDT

Interesting ports on seeker.rodsbooks.com (192.168.1.6):

Not shown: 1704 closed ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

2049/tcp open nfs

3306/tcp open mysql

Nmap done: 1 IP address (1 host up) scanned in 0.100 seconds

As with the output of netstat and lsof shown earlier, this output has been
trimmed for brevity’s sake.

This output shows four open ports: 22, 80, 2049, and 3306, used by ssh, http, nfs, and
mysql, respectively. If you weren’t aware that these ports were active, you should log into
the scanned system and investigate further, using netstat, lsof, or ps to locate the pro-
grams using these ports and, if desired, shut them down. The -sT option specifies a scan of
TCP ports. A few servers, though, run on UDP ports, so you need to scan them by typing
nmap -sU hostname. (This usage requires root privileges, unlike scanning TCP ports.)

Nmap is capable of more sophisticated scans, including “stealth” scans that aren’t likely
to be noticed by most types of firewalls, ping scans to detect which hosts are active, and
more. The Nmap man page provides details. Nessus, which is built atop Nmap, provides a

04836book.indd 481 12/4/08 10:21:46 AM

482 Chapter 10 n Securing Your System

GUI and a means of performing automated and still more sophisticated tests. Nessus comes
as separate client and server components; the client enables you to control the server, which
does the actual work.

When you use a network scanner, you should consider the fact that the ports you see
from your test system may not be the same as those that might be visible to an attacker.
This issue is particularly important if you’re testing a system that resides behind a firewall
from another system that’s behind the same firewall. Your test system is likely to reveal
accessible ports that would not be accessible from the outside world. On the other hand, a
cracker on your local network would most likely have access similar to your own, so you
shouldn’t be complacent because you use a firewall. Nonetheless, firewalls can be important
tools for hiding servers without shutting them down.

You can use a standalone Linux boot CD-ROM to perform security checks
on a network. Tools intended for this purpose, such as BackTrack (http://
www.remote-exploit.org/backtrack.html), provide easy access to Nmap
and other network security tools, enabling quick checks of network security
even if no computer on that network regularly runs Linux.

Examining Configuration Files
Most Linux server packages include configuration files. Thus, you may be able to spot
installed but unwanted servers by looking for their configuration files. On most systems,
two classes of files are important: those controlling SysV startup scripts and those control-
ling your super server. Slackware is a bit odd because it doesn’t use SysV startup scripts per
se; instead, it uses one startup script for each runlevel. For Slackware, therefore, you must
skim the relevant runlevel startup script looking for suspicious calls.

SysV startup scripts are described in detail in Chapter 5, “Booting Linux and Editing
Files,” so review that chapter for details of how they’re managed. Generally speaking, you’ll
look in /etc/rc?.d, /etc/init.d/rc?.d, or /etc/rc.d/rc?.d, where ? is your default run-
level number, for scripts whose names take the form S##server, where ## is a number and
server is the name of the server. If you find such a script for a server you know you don’t
want to run, you should disable it using your SysV startup script editing tools, as described
in Chapter 5.

Be aware that many SysV startup scripts start entire subsystems that aren’t directly
network-related. Thus, you’ll probably see SysV startup scripts that you don’t recognize.
You shouldn’t automatically disable these scripts, because they may be necessary even
if you don’t recognize the name. If in doubt, leave it in place until you can research the
matter further.

Try doing a Web search on the name of the SysV startup script (minus the
S and sequence number), possibly in conjunction with “Linux” or “startup
script.” Chances are, you’ll find a helpful reference.

04836book.indd 482 12/4/08 10:21:46 AM

Administering Network Security 483

The other major configuration-file class you should examine is the super server configura-
tion. Thus, you should check your inetd or xinetd configuration files for unwanted servers.
Also, unlike SysV startup scripts, super servers only launch network servers. Therefore, you
should take a more aggressive approach to disabling entries you don’t recognize from your
super server configuration than you do with SysV startup scripts.

On some older systems, /etc/inittab deserves examination. This file, described in
Chapter 5, controls some of the earliest stages of the startup process. Of greatest interest
from a security point of view is the fact that older /etc/inittab installations started the
processes used to accept text-mode logins, as well as similar processes used to accept log-
ins via dial-up modems and RS-232 serial ports. These processes are called getty or some
variant of this, such as mingetty. Ordinarily, a Linux machine must have at least one such
process running, and it’s controlled via an /etc/inittab entry such as the following:

1:2345:respawn:/sbin/mingetty --noclear tty1

The first character of this line (1) specifies the virtual terminal (VT) it controls. Most
Linux distributions include similar lines for the first six VTs, and there’s usually no need to
adjust these lines. Lines that begin with S#, where # is a number, control login via RS-232
serial ports and modems:

S0:2345:respawn:/usr/sbin/mgetty -F -s 57600 /dev/ttyS0

If you want to use a modem with the computer but don’t want to enable remote logins
via the modem, you should ensure that /etc/inittab does not have such lines.

Modern systems that lack /etc/inittab or have only very basic /etc/inittab files
typically move these functions into other files, such as SysV startup scripts or files in /etc/
event.d. You won’t ordinarily need to modify such configurations, but you may want to
check to be sure your system isn’t listening for dial-up modem connections unnecessarily.
Files called /etc/event.d/tty# control local login access, whereas /etc/event.d/ttyS#
files control RS-232 serial or modem access.

Uninstalling or Reconfiguring Servers
Once you’ve identified an unnecessary server, your task becomes one of shutting it down.
Broadly speaking, two options exist:

You can disable the server by changing its SysV configuration or disabling it in your Ûn

system’s super server. Consult Chapter 5 and the preceding sections on inetd and
xinetd for details on how to perform these tasks. Disabling the server in this way has
the advantage that you can easily reactivate the server in the future if you decide to do
so. It has the disadvantage that the server’s files will continue to consume disk space,
and the server might be accidentally reactivated in the future.

You can completely uninstall the server using your distribution’s package management Ûn

tools or by otherwise deleting its files. Chapter 2, “Managing Software,” describes this
task. Completely uninstalling software has the advantage of reducing the risk of acci-
dental reactivation, but it has the drawback that you won’t be able to easily reactivate
the server intentionally should you decide to do so.

04836book.indd 483 12/4/08 10:21:47 AM

484 Chapter 10 n Securing Your System

Overall, completely removing the server is generally preferable unless you merely want
to temporarily disable a server. If you decide to reactivate the server in the future, you can
always re-install it.

Administering Local Security
Security isn’t limited to networking—local security issues can be as much of a threat
as remote intruders. Thus, you should attend to some local security matters: securing
passwords, limiting root access to the computer, setting user limits, and tracking down
SUID/SGID files.

Securing Passwords
A default Linux configuration relies heavily on passwords. Users’ passwords are their keys
into the system, and if users are careless with their passwords, security breaches can result.
Understanding these risks is critical to maintaining system security, but this is one task for
which you must enlist the help of your users; after all, they’re the ones who are in posses-
sion of their passwords! You should also be aware of some of the tools Linux provides to
help keep passwords secure. (Most of the details concerning password-related commands
are described in Chapter 7, “Administering the System.”)

Password Risks
Passwords can end up in crackers’ hands in various ways, and you must take steps to mini-
mize these risks. Steps you can take to improve your system’s security include the following:

Use strong passwords. Users should employ good passwords, as described shortly in
“Choosing a Good Password.” This practice won’t eliminate all risk, though.

Change passwords frequently. You can minimize the chance of damage due to a compro-
mised password by changing passwords frequently. Some Linux tools can help to enforce
such changes, as described briefly in “Tools for Managing Passwords” and in more detail in
Chapter 7.

Use shadow passwords. If a cracker who’s broken into your system through an ordinary
user account can read the password file, or if one of your regular users is a cracker who has
access to the password file, that individual can run any of several password-cracking pro-
grams on the file. For this reason, you should use shadow passwords stored in /etc/shadow
whenever possible. Most Linux distributions use shadow passwords by default. If yours
doesn’t, consult the upcoming section “Tools for Managing Passwords” for information
about enabling this feature.

Keep passwords secret. You should remind your users not to reveal their passwords to
others. Such trust is sometimes misplaced, and sometimes even a well-intentioned password
recipient may slip up and let the password fall into the wrong hands. This can happen by

04836book.indd 484 12/4/08 10:21:47 AM

Administering Local Security 485

writing the password down, storing it in electronic form, or sending it by e-mail or other
electronic means. Users shouldn’t e-mail their own passwords even to themselves, because
e-mail can be intercepted.

Use secure remote login protocols. Certain remote login protocols are inherently insecure;
all data traverse the network in an unencrypted form. Intervening computers can be con-
figured to snatch passwords from such sessions. Because of this, it’s best to disable Telnet,
FTP, and other protocols that use cleartext passwords in favor of protocols that encrypt
passwords, such as SSH.

Be alert to shoulder surfing. If your users log in using public terminals, as is common
on college campuses, in Internet cafes, and the like, it’s possible that others will be able
to watch them type their passwords (a practice sometimes called shoulder surfing). Users
should be alert to this possibility and minimize such logins if possible.

Use each password on just one system. If one computer’s password database is com-
promised, and if users of that system reuse their passwords on other systems, those other
systems can be compromised. For this reason, it’s best to use each password just once.
Unfortunately, the proliferation of Web sites that require passwords for access makes this
rule almost impossible to enforce, at least without violating the rule of not writing the pass-
word down. (Modern Web browsers can remember passwords for you, but this is done by
storing them in a file—essentially, writing them down.) A reasonable compromise might be
to use one password for the least-sensitive Web sites (such as online newspapers) and unique
passwords for sensitive Web sites (such as banking sites) and login accounts.

Be alert to social engineering. Crackers often use social engineering to obtain passwords.
This practice involves tricking individuals into giving up their passwords by pretending to be
a system administrator or by otherwise misleading victims. Amazingly, a large percentage
of people fall for this ploy. A related practice is phishing, in which an attacker puts up a fake
Web site or sends an e-mail pretending to be from somebody else. The victim is then lured
into revealing sensitive data (such as credit card numbers).

Some of these steps are things you can do, such as replacing insecure remote login protocols
with encrypted ones. Others are things your users must do. This illustrates the importance of
user education, particularly on systems with many users.

Choosing a Good Password
As a general rule, people tend to be lazy when it comes to security. In computer terms, this
means users tend to pick passwords that are easy to guess, and they change those passwords
infrequently. Both these conditions make a cracker’s life easier, particularly if the cracker
knows the victim. Fortunately, Linux includes tools to help make your users select good
passwords and change them regularly.

Common (and therefore poor) passwords include those based on the names of family
members, friends, and pets; favorite books, movies, television shows, or the characters in
any of these; telephone numbers, street addresses, or Social Security numbers; or other
meaningful personal information. Any single word that’s found in a dictionary (in any

04836book.indd 485 12/4/08 10:21:47 AM

486 Chapter 10 n Securing Your System

language) is a poor choice for a password. The best possible passwords are random col-
lections of letters, digits, and punctuation. Unfortunately, such passwords are difficult to
remember. A reasonable compromise is to build a password in two steps: First, choose a
base that’s easy to remember but difficult to guess. Second, modify that base in ways that
increase the difficulty of guessing the password.

One approach to building a base is to use two unrelated words, such as bun and pen.
You can then merge these two words (bunpen). Another approach, and one that’s arguably
better than the first, is to use the first letters of a phrase that’s meaningful to the user. For
instance, the first letters of “yesterday I went to the dentist” become yiwttd. In both cases,
the base should not be a word in any language. As a general rule, the longer the password,
the better. Older versions of Linux had password length limits of eight characters, but those
limits have been lifted by the use of the MD5 password hash, which is the standard on
modern Linux distributions. Many Linux systems require passwords to be at least four to
six characters in length; the passwd utility won’t accept anything shorter than the distribu-
tion’s minimum.

With the base in hand, it’s time to modify it to create a password. The user should apply
at least a couple of several possible modifications:

Adding numbers or punctuation The single most important modification is to insert ran-
dom numbers or punctuation in the base. This step might yield, for instance, bu3npe&n or
y#i9wttd. As a general rule, add at least two symbols or numbers.

Mixing case Linux uses case-sensitive passwords, so jumbling the case of letters can
improve security. Applying this rule might produce Bu3nPE&n and y#i9WttD, for instance.

Reversing order A change that’s very weak by itself but that can add somewhat to secu-
rity when used in conjunction with the others is to reverse the order of some or all letters.
You might apply this to just one word of a two-word base. This could yield Bu3nn&EP and
DttW9i#y, for instance.

Your best tool for getting users to pick good passwords is to educate them. Tell them
that passwords can be guessed by malicious individuals who know them or even who target
them and look up personal information in telephone books, on Web pages, and so on. Tell
them that, although Linux encrypts its passwords internally, programs exist that feed entire
dictionaries through Linux’s password encryption algorithms for comparison to encrypted
passwords. If a match is found, the cracker has found the password. Therefore, using a
password that’s not in a dictionary, and that isn’t a simple variant of a dictionary word,
improves security substantially. Tell your users that their accounts might be used as a first
step toward compromising the entire computer or as a launching point for attacks on other
computers. Explain to your users that they should never reveal their passwords to others,
even people claiming to be system administrators—this is a common scam, but real system
administrators don’t need users’ passwords. You should also warn them not to use the same
password on multiple systems because doing so quickly turns a compromised account on
one system into a compromised account on all the systems. Telling your users these things
will help them understand the reasons for your concern, and it’s likely to help motivate at
least some of them to pick good passwords.

04836book.indd 486 12/4/08 10:21:47 AM

Administering Local Security 487

If your users are unconcerned after being told these things (and in any large installation,
some will be), you’ll have to rely on the checks possible in passwd. Most distributions’ imple-
mentations of this utility require a minimum password length (typically four to six characters).
They also usually check the password against a dictionary, thus weeding out some of the
absolute worst passwords. Some require that a password contain at least one or two digits or
punctuation.

Password-cracking programs, such as Crack (http://www.crypticide
.com/alecm/security/), are easy to obtain. You might consider running
such programs on your own encrypted password database to spot poor
passwords, and in fact, this is a good policy in many cases. It’s also grounds
for dismissal in many organizations and can even result in criminal charges
being brought, at least if done without authorization. If you want to weed out
bad passwords this way, discuss the matter with your superiors and obtain
written permission from a person with the authority to grant it before pro-
ceeding. Take extreme care with the files involved, too; it’s best to crack the
passwords on a computer with no network connections.

Another password security issue is password changes. Frequently changing passwords
minimizes the window of opportunity for crackers to do damage; if a cracker obtains a
password but it changes before the cracker can use it (or before the cracker can do fur-
ther damage using the compromised account), the password change has averted disaster.
As described shortly, you can configure accounts to require periodic password changes.
When so configured, an account will stop accepting logins after a time if the password
isn’t changed periodically. (You can configure the system to warn users when this time is
approaching.) This is a very good option to enable on sensitive systems or those with many
users. Don’t set the expire time too low, though—if users have to change their passwords
too frequently, they’ll probably just switch between a couple of passwords, or pick poor
ones. Precisely what “too low” a password change time is depends on the environment. For
most systems, one to six months is probably a reasonable change time, but for some it may
be longer or shorter.

Tools for Managing Passwords
Most Linux distributions use shadow passwords by default, and for the most part, this
chapter is written with the assumption that this feature is active. In addition to providing
extra security by moving hashed passwords out of the world-readable /etc/passwd file and
into the more secure /etc/shadow file, shadow passwords add extra account information.

One of the advantages of shadow passwords is that they support password aging and
account expiration features. These features enable you to enforce password changes at regu-
lar intervals or to automatically disable an account after a specified period of time. You can
enable these features and set the times using the chage command, which is described in more
detail in Chapter 7.

04836book.indd 487 12/4/08 10:21:47 AM

488 Chapter 10 n Securing Your System

The usermod utility, described in Chapter 7, can be used to adjust some shadow pass-
word features, such as account expiration dates. The chage command is more thorough
with respect to account security features, but usermod can adjust more non-security
account features.

Limiting root Access
Because root can do anything on a Linux computer, access to that account must of
course be limited. On a system with a single administrator, this can be accomplished by
having the administrator set a unique root password that nobody else knows. This user
can then log in directly as root or use su to acquire root privileges. The su command’s
name stands for switch user, and it’s used to change a user’s apparent identity. Typing su
alone results in a prompt for the root password. If the user types that password correctly,
the session effectively becomes a root session. You can also type a username after su to
acquire that user’s privileges. When root does so, no password is required. (This is some-
times handy for investigating problems reported by a single user.) To run a single pro-
gram with root privileges, use -c to specify the program name, as in su -c “lsof -i” to
run lsof -i as root.

Logging in directly as root is generally discouraged for several reasons: No record of who
typed the password appears in log files; the root password can be intercepted in various ways;
and if the user leaves the terminal, a passerby can hijack the computer. Using su is somewhat
better than a direct login from a security point of view, because use of su generally leaves a
trace in system logs of who became root.

A method of acquiring root access that is somewhat more secure than either direct logins
or su is sudo. This program runs a single command as root; for instance, to run lsof -i as
root, you type

$ sudo lsof -i

[sudo] password for georgia:

In this example, the computer prompts for the user’s (georgia’s) password, not for the
root password. The idea behind sudo is that you first configure the computer to accept cer-
tain users as sudo users. Those users may then use their own passwords to perform superuser
tasks, even if those users don’t have the root password. You can even fine-tune what tasks
users may perform. This is done via the /etc/sudoers configuration file. You must edit this
configuration file via visudo, which is a variant of Vi (described in Chapter 5) that’s used
only to edit /etc/sudoers.

The /etc/sudoers file consists of two types of entries: aliases and user specifications.
Aliases are basically variables; you can use them to define groups of commands, groups of
users, and so on. User specifications link users to machines and commands (possibly using
aliases for some or all options). Thus, you can configure sudoers such that georgia can run
network programs with root privileges but not account maintenance tools, whereas george
can run account maintenance tools but not network programs.

04836book.indd 488 12/4/08 10:21:48 AM

Administering Local Security 489

Your default /etc/sudoers file probably includes several examples. Consider the follow-
ing lines:

Storage

Cmnd_Alias STORAGE = /sbin/fdisk, /sbin/sfdisk, /sbin/parted,➦

/sbin/partprobe, /bin/mount, /bin/umount

Processes

Cmnd_Alias PROCESSES = /bin/nice, /bin/kill, /usr/bin/kill, /usr/bin/killall

%sys ALL = STORAGE, PROCESSES

%disk ALL = STORAGE

%wheel ALL=(ALL) ALL

This example defines two command aliases, STORAGE and PROCESSES, each of which
stands in for a set of commands. Users who are members of the sys group may use both
sets of commands; users who are members of the disk group may use the STORAGE com-
mands but not the PROCESSES commands; and members of the wheel group may use all
commands, whether or not they’re explicitly mentioned in /etc/sudoers.

Some distributions, such as Ubuntu, make heavy use of sudo; these distributions are
designed to be administered exclusively via sudo, and they set up an /etc/sudoers file that
provides at least one user with easy access to all system utilities. Other distributions don’t
rely on sudo this way, although you can tweak your sudo configuration to enable adminis-
tration via sudo if you like.

Setting Login, Process, and Memory Limits
Sometimes you may want to impose limits on how many times users may log in, how much
CPU time they can consume, how much memory they can use, and so on. Imposing such limits
is best done through a Pluggable Authentication Modules (PAM) module called pam_limits.
Most major Linux distributions use this module as part of their standard PAM configuration,
so chances are you won’t need to add it; however, you will still need to configure pam_limits.
You do so by editing its configuration file, /etc/security/limits.conf. This file contains
comments (denoted by a hash mark, #) and limit lines that consist of four fields:

domain type item value

Each of these fields specifies a particular type of information:

The domain The domain describes the entity to which the limit applies. It can be a user-
name; a group name, which takes the form @groupname; or an asterisk (*) wildcard, which
matches everybody.

Hard or soft limits The type field specifies the limit as hard or soft. A hard limit is
imposed by the system administrator and cannot be exceeded under any circumstances,

04836book.indd 489 12/4/08 10:21:48 AM

490 Chapter 10 n Securing Your System

whereas a soft limit may be temporarily exceeded by a user. You can also use a dash (-) to
signify that a limit is both hard and soft.

The limited item The item field specifies what type of item is being limited. Examples
include core (the size of core files), data (the size of a program’s data area), fsize (the size
of files created by the user), nofile (the number of open data files), rss (the resident set size),
stack (the stack size), cpu (the CPU time of a single process in minutes), nproc (the number
of concurrent processes), maxlogins (the number of simultaneous logins), and priority (the
process priority). The data, rss, and stack items all relate to memory consumed by a pro-
gram. These and other measures of data capacity are measured in kilobytes.

The value The final field specifies the value that’s to be applied to the limit.

As an example, consider a system on which certain users should be able to log in and
perform a limited number of actions but not stay logged in indefinitely and consume vast
amounts of CPU time. You can use a configuration like this one:

@limited hard cpu 2

This configuration applies a hard CPU limit of two minutes to the limited group. Mem-
bers of this group can log in and run programs; but if one of those programs consumes more
than two minutes of CPU time, it will be terminated.

CPU time and total system access time are two entirely different things. CPU
time is calculated based on the amount of time the CPU is actively process-
ing a user’s data. Idle time (for instance, when a user’s shell is active but no
CPU-intensive tasks are running) doesn’t count. Thus, a user can log in and
remain logged in for hours even with a very low hard CPU time limit. This
limit is intended to prevent problems caused by users who run very CPU-
intensive programs on systems that shouldn’t be used for such purposes.

Another way to set limits on system resource use is via the ulimit command. This
command is a bash built-in command, so it only affects bash and programs launched
from it. The ulimit syntax is as follows:

ulimit [options [limit]]

The options define what is being limited:

Core file limits The -c option limits the size of core dumps, which are files created for
debugging purposes in certain types of program crashes.

File limits The -f option limits the size of files that may be created by the shell, and -n
limits the number of open file descriptors. (Most systems don’t honor the -n limits, though.)

Process limits The -u option limits the number of processes a user may run, and -t limits
the total CPU time in seconds.

04836book.indd 490 12/4/08 10:21:48 AM

Administering Local Security 491

Memory limits The -v option sets the total amount of virtual memory available to the
shell, -s sets the maximum stack size, -m sets the maximum resident set size, -d limits pro-
grams’ data set size, and -l sets the maximum size that may be locked into memory.

Hard and soft limits The -H and -S options modify other options, causing them to be set
as hard or soft limits, respectively. Hard limits may not be subsequently increased, but soft
limits may be. If neither option is provided, ulimit sets both the hard and soft limits for
the feature specified.

Current settings Passing -a causes ulimit to report its current settings.

The limit is typically a numeric value associated with the limit. The ulimit command
is often found in system or user bash startup scripts, typically as ulimit -c 0, in order to
prevent creation of core files, which can sometimes clutter a filesystem. If your users per-
form software development, you may want to ensure that you do not set this limit, or at
least set it as a soft limit (as in ulimit -Sc 0) so users may override it when necessary.

Because ulimit is a bash built-in command, its utility as a system security
tool is limited. If users have access to GUI login tools or can log into the
system in any way that bypasses bash (such as via SSH, depending on
how it’s configured), restrictions imposed by ulimit become meaningless.
Thus, you should treat ulimit as a way to prevent problems because of
accidental, rather than intentional, abuse of the system.

One particularly radical approach to security is to use the /etc/nologin file. If this file
is present, only root may log into the computer. In many respects, this is like setting criti-
cal system limits to 0 for all other users. This file is most likely to be useful on dedicated
server systems that have no regular console or remote shell users.

Locating SUID/SGID Files
Chapter 4, “Managing Files,” describes the SUID and SGID bits. In brief, these are special
flags that may be applied to executable program files, causing Linux to treat the program as
if it were run by the program file’s owner (for SUID) or by the file’s group (for SGID) rather
than by the individual who actually ran the program. For instance, if a program’s SUID bit
is set, and if the program file is owned by bruce, the program, when run by anybody, will
be able to access all the files owned by bruce and otherwise behave as if bruce had run it.

The SUID and SGID bits are frequently associated with the root account in order to
enable them to perform tasks that require special privilege. For instance, the passwd program
(described in Chapter 7) is SUID root because only root may modify the Linux password
database. Thus, for an ordinary user to change a password, some mechanism must exist to
run a process as root. That mechanism, in the case of passwd, is the SUID bit.

The problem with all of this is that the SUID and SGID bits can be security risks. For
instance, suppose the rm program’s SUID bit was set. This program is normally owned by
root, so setting the SUID bit on rm would mean that any user could delete any file on the

04836book.indd 491 12/4/08 10:21:48 AM

492 Chapter 10 n Securing Your System

system. Although no Linux distribution sets the SUID bit on rm by default, the SUID bit can
be set inappropriately. This can happen by accident (say, a mistyped command by root), by
malice (if a cracker gains access to the system), or because of a more subtle misconfigura-
tion by the distribution maintainer (the SUID bit set unnecessarily on a program for which
it’s less blatantly inappropriate than rm). Even if the SUID or SGID bit is set appropriately,
a bug in the program can become more serious because the bug executes as root. If the bug
enables users to write files, for example, any user can exploit the bug to overwrite critical
system configuration files. For these reasons, you should periodically review your system to
find all the SUID programs and, if appropriate, change their configuration.

To do this, you can use the find command, which is described in detail in Chapter 4. In
particular, you can use the -perm mode option, which searches for files with the specified
permission mode. To search for SUID and SGID files, you should pass a mode of +6000. The
symbolic representation for the SUID and SGID bits is 6000, and the plus sign (+) tells find
to locate any file with any of the specified bits set. (You could search for SUID files alone by
passing +4000 or SGID alone by passing +2000.) You may also want to pass -type f, which
restricts the search to regular files. (Directories use the SUID and SGID bits differently, as
described in Chapter 4.) Thus, to search the entire computer for SUID and SGID programs,
you type this:

find / -perm +6000 -type f

The result is a list of files, one per line, that have either the SUID or the SGID bits set.
Programs that are likely to be present in this list include su, ping, mount, passwd, umount,
and sudo. These programs all have a legitimate need to be so configured. Most systems
have additional SUID and SGID programs. If you have doubts about whether the program
really needs this status, you should investigate further. Try verifying the package integrity
using your package management tools and perform a Web search on the program name and
“SUID” or “SGID,” as appropriate. You can also try changing the SUID status of the pro-
gram using chmod, as described in Chapter 4, and see if it still works as it should when run
by a normal user.

Programs that are SUID or SGID root but that shouldn’t be can be a sign
of system compromise. Crackers might reconfigure programs this way in
order to more easily do their dirty work. Thus, if you find such programs,
investigate the overall integrity of the system. On the other hand, if a
distribution maintainer set the SUID or SGID bit unnecessarily, this isn’t
cause for concern about a break-in, although you may want to fix the
matter. Likewise, accidental misconfiguration by you or another adminis-
trator isn’t cause for massive system upheaval—but you’ll need to dig a
bit deeper to ascertain whether such a change was accidental or a sign of
a deeper problem.

04836book.indd 492 12/4/08 10:21:49 AM

Configuring SSH 493

Configuring SSH
In the past, Telnet has been the remote text-mode login protocol of choice on Linux and
Unix systems. Unfortunately, Telnet is severely lacking in security features. Thus, in recent
years SSH has grown in popularity, and it is in fact the preferred remote login tool. SSH
can also handle file transfer tasks similar to those of FTP. For these reasons, knowing how
to configure SSH can be very helpful. This task requires knowing a bit about SSH generally
and about the SSH configuration file under Linux. As is usual in this chapter, I conclude the
look at SSH with information about the security implications of running the server.

SSH is complex enough that I can’t cover more than its basics in this chapter.
Consult OpenSSH’s documentation or a book on the topic, such as SSH,
The Secure Shell: The Definitive Guide, Second Edition, by Daniel J. Barrett,
Richard Silverman, and Robert G. Byrnes (O’Reilly, 2005), for more details.

SSH Basics
Linux supports remote login access through several different servers, including Telnet,
Virtual Network Computing (VNC), and even X. Unfortunately, most of these methods
suffer from a major drawback: They transfer all data over the network in unencrypted
form. This fact means that anybody who can monitor network traffic can easily snatch
sensitive data, often including passwords. (VNC and a few other protocols encrypt pass-
words but not other data.) This limitation puts a serious dent in the utility of these remote
login tools; after all, if using a remote access protocol means you’ll be giving away sensi-
tive data or compromising your entire computer, it’s not a very useful protocol.

Non-encrypting remote access tools are particularly risky for performing
work as root, either by logging in directly as root or by logging in as an ordi-
nary user and then using su, sudo, or other tools to acquire root privileges.

SSH was designed to close this potentially major security hole by employing strong encryp-
tion techniques for all parts of the network connection. SSH encrypts the password exchange
and all subsequent data transfers, making it a much safer protocol for remote access.

In addition to encryption, SSH provides file transfer features and the ability to tunnel
other network protocols—that is, to enable non-encrypted protocols to piggyback their data
over an SSH connection, thus delivering SSH’s encryption advantages to other protocols. This
feature is frequently employed in conjunction with X, enabling encrypted remote GUI access,
as described in Chapter 6, “Configuring the X Window System, Localization, and Printing.”

04836book.indd 493 12/4/08 10:21:49 AM

494 Chapter 10 n Securing Your System

Of course, SSH’s advantages don’t come without a price. The main drawback of SSH is that
the encryption and decryption consume CPU time. This fact slows down SSH connections
compared to those of direct connections and can degrade overall system performance. This
effect is modest, though, particularly for plain text-mode connections. If you tunnel a protocol
that transfers much more data, such as X, you may see a greater performance drop when using
SSH. Even in this case, the improved security is generally worth the slight speed cost.

Several SSH servers are available for Linux, but the most popular by far is the OpenSSH
server (http://www.openssh.org). This program was one of the first open-source imple-
mentations of the SSH protocol, which was developed by the commercial SSH Commu-
nications Security (http://www.ssh.com), whose server is now sold under the name SSH
Tectia. OpenSSH, SSH Tectia, and other SSH products can interoperate with one another,
assuming they’re all configured to support at least one common level of the SSH protocol.
OpenSSH 5.1, the latest version as I write, supports SSH levels 1.3, 1.5, and 2.0, with 2.0
being the preferred level because of known vulnerabilities in the earlier versions.

OpenSSH is closely associated with the OpenBSD OS, so its Web site has
an OpenBSD bias. If you visit the site, you may want to click the Linux link
under the For Other OS’s heading. You can find Linux-compatible source
code and binaries from that site, and OpenSSH now ships with most Linux
distributions.

OpenSSH may be launched via either a super server (inetd or xinetd) or a SysV
startup script. The latter method is preferred, because the server may need to perform
CPU-intensive tasks upon starting, so if it’s started from a super server, OpenSSH may be
sluggish to respond to connection requests, particularly on systems with weaker CPUs.
Most distributions deliver SysV startup scripts with their SSH packages. If you make
changes to your SSH configuration, you may need to pass the reload or restart option
to the startup script, as in /etc/init.d/sshd reload. (Chapter 5 covers SysV startup
scripts in more detail.) However it’s launched, the OpenSSH server binary name is sshd—
the same as the binary name for SSH Tectia.

Setting SSH Options for Your System
For the most part, SSH works reasonably well when it’s first installed, so you may not need
to make any changes to its configuration. If you do need to make changes, though, these
are mostly handled through the main SSH configuration file, /etc/ssh/sshd_config. You
can also edit some additional files to limit access to the SSH server or to change how SSH
manages the login process.

Configuring Basic SSH Features
The /etc/ssh/sshd_config file consists mainly of option lines that take the following form:

Option value

04836book.indd 494 12/4/08 10:21:50 AM

Configuring SSH 495

Don’t confuse the sshd_config file with the ssh_config file. The former
controls the OpenSSH server, whereas the latter controls the SSH client
program, ssh.

In addition to configuration lines, the sshd_config file holds comments, which are denoted
by hash marks (#). Most sample configuration files include a large number of SSH options that
are commented out; these lines specify the default values, so uncommenting the lines without
otherwise changing them will have no effect. If you want to change an option, uncomment the
line and change it. Most options’ default values are suitable for most systems. The following
list includes some that you may want to check and, perhaps, change:

Protocol This option specifies the protocol levels OpenSSH understands. Possible values
are 1 and 2. You can configure OpenSSH to support both protocols by separating them by
a comma, as in 1,2 or 2,1, which are equivalent. Given the fact that OpenSSH protocol
level 1 has been compromised, the safest configuration is to set Protocol 2. This limits the
server’s ability to communicate with older clients, though.

PermitRootLogin By default, this option is set to yes, which enables OpenSSH to accept
direct logins by root. This is safer than a similar configuration under Telnet, but for a bit
of added security, set this value to no. The result will be that anybody wanting to perform
remote work as root will need to first log in as an ordinary user, which means that an
intruder who has somehow acquired the root password will also need a regular username
and its password.

X11Forwarding This option specifies whether or not OpenSSH’s X tunneling features
should be active. If you want to enable remote users to run X programs via SSH, you must
set this option to yes. Doing so can slightly degrade security of the client’s X display,
though, depending on certain other options; hence the conservative default value of no.

For information about additional options, consult the man page for sshd_config. If
you make changes to the SSH configuration, remember to restart it using the server’s SysV
startup script.

SSH Keys
Part of SSH’s security involves encryption keys. Each server system and each user has a
unique number, or key, for identification purposes. In fact, SSH uses a security system
that involves two keys: a public key and a private key. These two keys are mathematically
linked in such a way that data encrypted with a particular public key may be decrypted
only with the matching private key. When establishing a connection, each side sends its
public key to the other. Thereafter, each side encrypts data with the other side’s public key,
ensuring that the data can be decrypted only by the intended recipient. In practice, this is
just the first step of the process, but it’s critical. What’s more, SSH clients typically retain
the public keys of servers they’ve contacted. This enables them to spot changes to the public
key. Such changes can be signs of tampering.

04836book.indd 495 12/4/08 10:21:50 AM

496 Chapter 10 n Securing Your System

Most OpenSSH server SysV startup scripts include code that looks for stored public
and private keys and, if they’re not present, generates them. In total, four to six keys are
needed: public and private keys for two or three encryption tools SSH supports. These keys
are normally stored in /etc/ssh and are called ssh_host_rsa_key and ssh_host_dsa_key
for private keys, with .pub filename extensions added for public keys. Some systems add
ssh_host_rsa1_key and its associated public key. If your system doesn’t have these keys,
and you can’t get the SSH server to start up, you can try generating the keys with the
ssh-keygen command:

ssh-keygen -q -t rsa1 -f /etc/ssh/ssh_host_key -C ‘’ -N ‘’

ssh-keygen -q -t rsa -f /etc/ssh/ssh_host_rsa_key -C ‘’ -N ‘’

ssh-keygen -q -t dsa -f /etc/ssh/ssh_host_dsa_key -C ‘’ -N ‘’

Each of these commands generates both a private key (named in the -f parameter) and a
public key (with the same name but with .pub appended).

Don’t run these ssh-keygen commands if the SSH key files already exist. Replacing the
working files will cause clients who’ve already connected to the SSH server to complain
about the changed keys and possibly refuse to establish a connection.

Be sure the private keys are suitably protected; if an intruder obtains one
of these keys, the intruder can impersonate your system. Typically, these
files should have 0600 (-rw-------) permissions and be owned by root.
The public key files (with .pub filename extensions) should be readable by
all users, though.

When you configure a client system, you may want to consider creating a global cache of
host keys. As already noted, the ssh program records host keys for each individual user. (It
stores these in the ~/.ssh/known_hosts file.) When you set up the client, you can populate
the global ssh_known_hosts file, which is normally stored in /etc or /etc/ssh. Doing so
ensures that the public key list is as accurate as the sources you use to populate the global
file. It also eliminates confirmation messages when users connect to the hosts whose keys
you’ve selected to include in the global file.

How do you create this file? One simple way is to copy the file from a user account that’s
been used to connect to the servers you want to include. For instance, you can type cp /home/
ecernan/.ssh/known_hosts /etc/ssh/ssh_known_hosts to use ecernan’s file. You may want
to manually review this file before copying it. It consists of one line per host. Each line begins
with a hostname, IP address, or both, and continues with the key type and the key. You can
ignore most of this information, but pay attention to the hostnames and IP addresses. Ensure
that the list includes all the SSH servers your client is likely to want to use and that it does
not include inappropriate or unnecessary servers. You can remove lines in your text editor, if
necessary. To add entries, use the account whose file you’re copying to connect to the system
you want to add. Chances are, ssh will display a warning about connecting to an unknown
system. Confirm that you want to do so. Once you do this and reload the file, you should see
an entry for the server.

04836book.indd 496 12/4/08 10:21:50 AM

Configuring SSH 497

OpenSSH 4.0 and later support hashing of hostnames in the known
hosts file. When this feature is enabled, the hostname is hashed (that is,
encrypted using a one-way encryption algorithm) and stored in hashed
form. The idea is that you’ll still be able to authenticate SSH servers to
which you connect, because a hash of the typed hostname will match a
hash of the stored hostname; but if an intruder steals your known hosts
file, the intruder will be unable to determine the identities of the computers
to which you’ve been connecting.

Controlling SSH Access
You can limit who may access an SSH server in various ways. The most obvious and basic
method is via password authentication. The usual SSH authentication method is to employ
a username and password, much as Telnet does. (The ssh client program sends the user-
name automatically or as part of the command line, so you won’t see a username prompt
when logging in via ssh.)

Beyond password authentication, SSH supports several other types of limitations:

TCP Wrappers If you run SSH from a super server, or if the server was compiled with TCP
Wrappers support, you can use the /etc/hosts.allow and /etc/hosts.deny files to limit
access by IP address. Note that if you launch SSH via a SysV startup script, this approach
works only if the server was compiled to support it. This support may or may not be present
in your distribution’s standard SSH package.

Firewalls As with all servers, you can restrict access by using a firewall. SSH uses TCP
port 22. Technically, this isn’t an SSH feature, but it’s certainly useful for protecting an
SSH server.

/etc/nologin If this file is present, SSH honors it. As described earlier, this file’s presence
means that only root may log in. Ordinarily, the file’s contents are displayed as an error
message; however, OpenSSH doesn’t do this.

Copying Files via SSH
Most users employ the ssh client program, which provides remote login access—type ssh
othersystem to log into othersystem using the same username you’re using on the client
system; or add a username, as in ssh user@othersystem, to log in using another username.

SSH includes a file-copying command, too: scp. This command works much like the
cp command for copying files locally; however, you must specify the target computer,
and optionally the username, just before the target filename. For instance, to copy the file
masterpiece.c to the lisa account on leonardo.example.com, you would type

$ scp masterpiece.c lisa@leonardo.example.com:

The colon (:) that terminates this command is extremely important; if you omit it,
you’ll find that scp works like cp, and you’ll end up with a file called lisa@leonardo

04836book.indd 497 12/4/08 10:21:50 AM

498 Chapter 10 n Securing Your System

.example.com. If you want to rename the file, you can do so by including the new name
following the colon.

Configuring Logins without Passwords
If you use SSH a lot, or if you use it in automated tools, you’ll no doubt become annoyed by
the need to type a password with every connection. There is a way around this requirement:
You can set up the SSH client with keys and give the public key to the server computer. With
this configuration, the SSH client computer can identify itself, possibly obviating the need
for you to type a password.

Configuring SSH to operate without the use of passwords is convenient,
but it does increase security risks. If somebody you don’t trust ever gains
access to your account on the SSH client system, that person will be able
to log into the SSH server system as you without the benefit of your pass-
word. Thus, you should create a password-less login only from a client
that’s very well protected, if at all. Configuring access to the root account
in this way is particularly risky.

To configure SSH to not require a password, follow these steps:

1. Log into the SSH client system as the user who will be performing remote access.

2. Type the following command to generate a version 2 SSH key:

$ ssh-keygen -q -t rsa -f ~/.ssh/id_rsa -C ‘’ -N ‘’

3. Step 2 generates two files: id_rsa and id_rsa.pub. Transfer the second of these files to
the SSH server computer in any way that’s convenient—via floppy disk, by using scp,
or by any other means. Copy the file under a temporary name, such as temp.rsa.

4. Log into the SSH server system. If you use SSH, you’ll need to type your password.

5. Add the contents of the file you’ve just transferred to the end of the ~/.ssh/authorized_
keys file. (This file is sometimes called ~/.ssh/authorized_keys2, so you should check
to see which is present. If neither is present, you may need to experiment.) Typing cat
~/temp.rsa >> ~/.ssh/authorized_keys should do this job, if you stored the original file
as ~/temp.rsa.

If you now log out of the SSH server system and try to log in again via SSH from the
client, you shouldn’t be prompted for a password; the two computers handle the authen-
tication automatically. If this doesn’t work, chances are the ~/.ssh/authorized_keys
file needs another name, as described earlier. You may also want to check that the file
includes a line matching the contents of the original public-key file on the client. Some
older clients may require you to specify that you use version 2 of the SSH protocol by
including the -2 option:

$ ssh -2 server

04836book.indd 498 12/4/08 10:21:51 AM

Configuring SSH 499

Using ssh-agent
Another SSH authentication option is to use the ssh-agent program. This program
requires a password to initiate connections, so it’s more secure than configuring logins
without passwords; however, ssh-agent remembers your password, so you need only type
it once per local session. To use ssh-agent, follow these steps:

1. Follow the procedure for enabling no-password logins described in “Configuring
Logins without Passwords,” but with one change: Omit the -N ‘’ option from the
ssh-keygen command in step 2. You’ll be asked for a passphrase at this step. This
passphrase will be your key for all SSH logins managed via ssh-agent.

2. On the SSH client system, type ssh-agent /bin/bash. This launches ssh-agent, which
in turn launches bash. You’ll use this bash session for subsequent SSH logins.

3. In your new shell, type ssh-add ~/.ssh/id_rsa. This adds your RSA key to the set that’s
managed by ssh-agent. You’ll be asked to type your SSH passphrase at this time.

From this point on, whenever you use SSH to connect to a remote system to which
you’ve given your public key, you won’t need to type a password. You will, however, have
to repeat steps 2 and 3 whenever you log out, and the benefits will accrue only to the shell
launched in step 2 or any shells you launch from that one.

If you make heavy use of this facility, you can insert ssh-agent into your normal login
procedure. For instance, you can edit /etc/passwd so that ssh-agent /bin/bash is your
login shell. For a GUI login, you can rename your normal GUI login script (for instance,
change ~/.xsession to ~/.xsession-nossh) and create a new GUI login script that calls
ssh-agent with the renamed script as its parameter. Either action inserts ssh-agent at the
root of your user process tree so that any call to SSH uses ssh-agent.

Using SSH Login Scripts
Ordinarily, an SSH text-mode login session runs the user’s configured shell, which runs the
shell’s defined login scripts. The OpenSSH server also supports its own login script, sshrc
(normally stored in /etc or /etc/ssh). The OpenSSH server runs this script using /bin/sh,
which is normally a symbolic link to bash, so you can treat it as an ordinary bash script.

Setting Up SSH Port Tunnels
SSH has the ability to extend its encryption capabilities to other protocols, but doing so
requires extra configuration. The way this is done is known as tunneling. Chapter 6 described
a special type of SSH tunneling involving X, but the process can work for other protocols.

The basic idea behind an SSH tunnel is illustrated in Figure 10.1. The server computer
runs two server programs: a server for the tunneled protocol (Figure 10.1 uses the Internet
Mail Access Protocol, IMAP, as an example) and an SSH server. The client computer also
runs two clients: one for the tunneled protocol and one for SSH. The SSH client also listens
for connections for the tunneled protocol; it’s effectively both a client and a server. When
the SSH client receives a connection from the tunneled protocol’s client, the result is that the
tunneled protocol’s connection is encrypted using SSH, tunneled to the SSH server, and then
directed to the target server. Thus, data pass over the network in encrypted form, even if the
target protocol doesn’t support encryption.

04836book.indd 499 12/4/08 10:21:51 AM

500 Chapter 10 n Securing Your System

f i gu r e 10 .1 An SSH tunnel extends SSH’s encryption benefits to other protocols.

IMAP Client
SSH Client

IMAP Server
SSH ServerIMAP client to

SSH client
(IMAP proxy server)

SSH connection
(tunneling IMAP)

SSH server
(IMAP proxy client)

to IMAP server

Of course, all of this requires special configuration. The default configuration on the
server enables tunneling; but to be sure, check the /etc/ssh/sshd_config file on the server
for the following option:

AllowTcpForwarding no

If this line is present, change no to yes. If it’s not present, or if it’s already set to yes, you
shouldn’t need to change your SSH server configuration.

On the client side, you must establish a special SSH connection to the server computer.
You do this with the normal ssh client program, but you must pass it several parameters.
An example will help illustrate this use of ssh:

ssh -N -f -L 142:mail.luna.edu:143 benf@mail.luna.edu

The -N and -f options tell ssh to not execute a remote command and to execute in the
background after asking for a password, respectively. These options are necessary to create a
tunnel. The -L option specifies the local port on which to listen, the remote computer to which
to connect, and the port on the remote computer to which to connect. This example listens on
the local port 142 and connects to port 143 on mail.luna.edu. (You’re likely to use the same
port number on both ends; I changed the local port number in this example to more clearly
distinguish between the local and remote port numbers.) The final parameter (benf@mail
.luna.edu in this example) is the remote username and computer to which the tunnel goes.
Note that this computer need not be the same as the target system specified via -L.

If you want SSH on the client system to listen to a privileged port (that is,
one numbered below 1024), you must execute the ssh program as root,
as shown in the preceding example. If listening to a non-privileged port is
acceptable, the ssh client can be run as a normal user.

With the tunnel established, you can use the client program to connect to the local
port specified by the first number in the -L parameter (port 142 in the preceding exam-
ple). For instance, this example is intended to forward IMAP traffic, so you’d configure
a mail reader on the client to retrieve IMAP e-mail from port 142 on localhost. When

04836book.indd 500 12/4/08 10:21:52 AM

Using GPG 501

the e-mail reader does this, SSH kicks in and forwards traffic to the SSH server, which
then passes the data on to the local port 143, which is presumably running the real IMAP
server. All of this is hidden from the e-mail reader program; as far as it’s concerned, it’s
retrieving e-mail from a local IMAP server.

SSH Security Considerations
SSH is intended to solve security problems rather than create them. Indeed, on the whole
using SSH is superior to using Telnet for remote logins, and SSH can also take over FTP-like
functions and tunnel other protocols. Thus, SSH is a big security plus compared to using
less-secure tools.

Like all servers, though, SSH can be a security liability if it’s run unnecessarily or inap-
propriately. Ideally, you should configure SSH to accept only protocol level 2 connections
and to refuse direct root logins. If X forwarding is unnecessary, you should disable this
feature. If possible, use TCP Wrappers or a firewall to limit the machines that can contact
an SSH server. As with all servers, you should keep SSH up to date; there’s always the pos-
sibility of a bug causing problems.

You should consider whether you really need a remote text-mode login server. Such a
server can be a great convenience—often enough to justify the modest risk involved. For
extremely high-security systems, though, using the computer exclusively from the console
may be an appropriate approach to security.

One unusual security issue with SSH is its keys. As noted earlier, the private-key files
are extremely sensitive and should be protected from prying eyes. Remember to protect the
backups of these files, as well—don’t leave a system backup tape lying around where it can
be easily stolen.

Using GPG
SSH is designed to encrypt interactive login sessions and file transfers. Sometimes, though,
another type of encryption is desirable: You may want to encrypt e-mail messages or files
sent to another person via some other means. E-mail was never designed as a secure data
transfer tool, and most e-mail messages pass through several e-mail servers and network
routers. A compromise at any one of these points enables a cracker to sniff e-mail traffic
and extract sensitive data, such as credit card or Social Security numbers. Encrypting your
e-mail keeps such details private.

The usual tool for encrypting e-mail is the GNU Privacy Guard (GPG or GnuPG;
http://www.gnupg.org) package. This package is an open source re-implementation of
the proprietary Pretty Good Privacy (PGP). In addition to encrypting entire messages,
GPG enables you to digitally “sign” messages. Used in this way, messages can be read
by recipients who lack the GPG software or appropriate keys; but those who have these
tools can verify that the contents haven’t been tampered with.

04836book.indd 501 12/4/08 10:21:52 AM

502 Chapter 10 n Securing Your System

Generating and Importing Keys
To begin using GPG, you should first install the software. Chances are, your distribution
includes it as a standard package, so you can install it that way. Once this is done, you must
generate keys. GPG keys are conceptually similar to SSH keys: You need a private key (a.k.a. a
secret key) and a public key. As the names imply, the private key is kept private, but the public
key is publicly available. You can sign your messages with your private key, and readers can
verify it with your public key; or you can encrypt a message with another user’s public key, and
it can be decrypted only with that user’s private key.

To generate keys, you use the gpg program with its --gen-key option:

$ gpg --gen-key

The program will ask you a series of questions. In most cases, answering with the
defaults should work well, although you may have to type in your full name and e-mail
address. The keys are stored in the ~/.gnupg directory.

Once you’ve generated your keys, you can export your public key:

$ gpg --export name > gpg.pub

This command saves the public key associated with name in the file gpg.pub. You can use
your e-mail address as name. (If you create additional public keys or add others’ public keys,
you can specify their names to export those keys.) You can then make your key available to
others so that they may encrypt e-mail messages sent to you or verify your signed messages.
Adding the --armor option produces ASCII output, which may be preferable if you intend
to e-mail the public key. You can make the file accessible on your Web site, transfer it as an
e-mail attachment, or distribute it in various other ways.

To encrypt e-mail you send to others, you must obtain their public keys. Ask your
correspondents how to obtain them. Once you’ve done so, you can add their keys to
your keyring (that is, the set of keys GPG maintains):

$ gpg --import filename

This command adds filename to your set of public keys belonging to other people.

Although public keys are, by definition, public, there are security concerns
relating to them. Specifically, you should be sure you use a legitimate pub-
lic key. Hypothetically, a miscreant could publish a fake public key in order
to obtain sensitive communications or fake a signed e-mail. For instance,
George might distribute a fake GPG public key that claimed to be from Har-
old. George could then either sign messages claiming to be from Harold or
intercept e-mail sent to Harold that was encrypted using the fake key. Thus,
you should use as secure a communication method as possible to distrib-
ute your public key and to receive public keys from others.

04836book.indd 502 12/4/08 10:21:52 AM

Using GPG 503

Once you’ve created your own key and, perhaps, imported keys from others, you can see
what keys are available by using the --list-keys option to gpg:

$ gpg --list-keys

/home/gjones/.gnupg/pubring.gpg

pub 1024D/190EDB2E 2008-09-05

uid George A. Jones <gjones@example.com>

sub 2048g/0D657AC8 2008-09-05

pub 1024D/A8B2061A 2008-09-05

uid Jennie Martin <jennie@luna.edu>

sub 2048g/4F33EF6B 2008-09-05

The uid lines contain identifiers you’ll use when encrypting or decrypting data, so you
should pay particular attention to that information.

Encrypting and Decrypting Data
To encrypt data, you use gpg with its --out and --encrypt options and, optionally,
--recipient and --armor:

$ gpg --out encrypted-file --recipient uid --armor --encrypt original-file

You can use the UID from a gpg --list-keys output, or just the e-mail address portion, as
the uid in this command. If you haven’t signed the recipient’s key, you’ll have to verify that you
want to use that key. The result is a new file, encrypted-file, which holds an encrypted ver-
sion of original-file. If you omit the --armor option, the resulting file is a binary file; if you
send it as e-mail, you’ll need to send it as an attachment or otherwise encode it for transmis-
sion over the text-based e-mail system. If you include the --armor option, the output is ASCII,
so you can cut-and-paste the encrypted message into an e-mail or send it as an attachment.

If you receive a message or file that was encrypted with your public key, you can reverse
the encryption by using the --decrypt option:

$ gpg --out decrypted-file --decrypt encrypted-file

You’ll be asked to enter your passphrase. The result should be a decrypted version of the
original file.

In practice, GPG can be even easier to use than this description may make you think. GPG
is primarily used to secure and verify e-mail, so most Linux e-mail clients provide GPG inter-
faces. These options call gpg with appropriate options to encrypt, sign, or decrypt messages.
Details vary from one e-mail client to another, so you should consult your e-mail client’s
documentation for details.

04836book.indd 503 12/4/08 10:21:52 AM

504 Chapter 10 n Securing Your System

Signing Messages and Verifying Signatures
As noted earlier, GPG can be used to sign messages so that recipients know they come from
you. To do so, use the --sign or --clearsign option to gpg:

$ gpg --clearsign original-file

The --sign option creates a new file with the same name as the original, but with .gpg
appended to the filename. This file is encrypted using your private key, so that it may only
be decrypted with your public key. This means that anybody with your public key may read
the message, but anybody who can read it knows it’s from you. The --clearsign option
works similarly, but it leaves the message text unencrypted and only adds an encrypted sig-
nature that can only be verified using your public key. The --clearsign option creates
a file with a name that ends in .asc.

If you receive a signed message, you can verify the signature using the --verify option
to gpg:

$ gpg --verify received-file

If any of the keys in your keyring can decode the message or verify the signature, gpg
displays a Good signature message. To read a message that was encrypted via the --sign
option, you must decrypt the message via the --decrypt option, as described earlier.

Summary
Maintaining system security is both important and time-consuming. A great deal of
security emphasis is on network security, and for this, configuring your super server and
disabling unused servers will go a long way. Attending to passwords and performing
miscellaneous tasks to keep your local accounts from becoming security risks are also
important security tasks.

Encryption is a hot topic in security. SSH is a protocol and tool that can handle many
network encryption tasks by encrypting two-way connections between computers. Typi-
cally used as a remote login protocol, SSH can also be used to transfer files or encrypt
other protocols. When you want to encrypt data sent to another individual via a tool such
as e-mail, you can do so with the help of GPG. This package enables you to encrypt indi-
vidual files, which can then be attached to or embedded in e-mail messages and decrypted
by the recipient.

04836book.indd 504 12/4/08 10:21:53 AM

Exam Essentials 505

Exam Essentials

Identify the purpose of a super server. Super servers, such as inetd and xinetd, manage
incoming network connections for multiple servers. They can add security and convenience
features, and they can help minimize the memory load imposed by seldom-accessed servers.

Explain the function of super server port access controls. Super servers or programs called
by them (such as TCP Wrappers) can restrict access to ports for the servers they manage.
These restrictions occur at a higher level than a firewall’s restrictions, and they apply only to
the servers managed by the super server.

Summarize the tools you can use to identify the servers running on a computer. The netstat
and lsof programs both provide options to list all (or a subset of) the open network connec-
tions, as well as programs that are listening for connections. Remote network scanners, such
as Nmap, can probe another computer for open network ports. Perusal of local configuration
files can also provide clues to what’s running on a computer.

Describe why SUID and SGID programs are potentially risky. The set user ID (SUID)
and set group ID (SGID) bits tell Linux to run the program as the user or group that owns
the file. This is particularly risky when root owns the program file because it essentially
elevates all users to root for the purposes of running the file, making bugs in the program
more dangerous and raising the possibility of a clever user abusing the program to acquire
full root privileges or otherwise wreaking havoc.

Explain why shadow passwords are important. Shadow passwords store password hashes
in a file that can’t be read by ordinary users, thus making it harder for miscreants on the
local system to read the hashed passwords and use brute-force attacks to discover other
users’ passwords. Modern Linux distributions use shadow passwords by default.

Explain how to generate a good password. Ideally, passwords should be random. Failing
that, one good approach is to generate a base that’s hard to guess and then modify it by add-
ing digits and punctuation, changing the case of some characters, and changing letter order.

Explain why SSH is the preferred remote text-mode login tool. The Secure Shell (SSH)
protocol provides encryption for all traffic, including both the password exchange and all
subsequent data exchanges, whereas older tools, such as Telnet, do not. This makes SSH
much safer (if not 100 percent safe) for the exchange of sensitive data, particularly over
untrusted networks such as the Internet.

Identify the most important SSH configuration file. The SSH server is controlled through
the /etc/ssh/sshd_config file. The SSH client configuration file is /etc/ssh/ssh_config;
don’t confuse the two.

Describe the function of GPG. GPG enables public-key encryption of individual files or
e-mail messages. You can use GPG to encrypt sensitive data for transmission over e-mail
or other insecure means.

04836book.indd 505 12/4/08 10:21:53 AM

506 Chapter 10 n Securing Your System

Review Questions

1. Typing lsof -i | grep LISTEN as root produces three lines of output, corresponding
to the sendmail, sshd, and proftpd servers. What can you conclude about the security of
this system?

A. Everything’s OK; the presence of sshd ensures that data are being encrypted via SSH.

B. The sendmail and sshd servers are OK, but the FTP protocol used by proftpd is inse-
cure and should never be used.

C. The sendmail server should be replaced by Postfix or qmail for improved security, but
sshd and proftpd are fine.

D. No conclusion can be drawn without further information; the listed servers may or
may not be appropriate or authentic.

2. As part of a security audit, you plan to use Nmap to check all the computers on your net-
work for unnecessary servers. Which of the following tasks should you do prior to running
your Nmap check?

A. Back up /etc/passwd on the target systems to eliminate the possibility of its being
damaged.

B. Obtain the root passwords to the target systems so that you can properly configure
them to accept the Nmap probes.

C. Obtain written permission from your boss to perform the Nmap sweep.

D. Configure /etc/sudoers on the computer you intend to use for the sweep, to give
yourself the ability to run Nmap.

3. Your login server is using PAM, and you want to limit users’ access to system resources.
Which configuration file will you need to edit?

A. /etc/limits.conf

B. /etc/pam/limits.conf

C. /etc/security/limits.conf

D. /etc/security/pam/limits.conf

4. Which of the following tools might you use to check for open ports on a local computer?
(Select all that apply.)

A. Nmap

B. netstat

C. lsof

D. portmap

04836book.indd 506 12/4/08 10:21:53 AM

Review Questions 507

5. Which of the following commands will locate all program files on a computer on which the
SUID bit is set?

A. find / -type SUID

B. find / -perm +4000 -type f

C. find / -perm +SUID -type f

D. find / -type +4000

6. The /etc/sudoers file on a computer includes the following line. What is its effect?
%admin ALL=(ALL) ALL

A. Members of the admin group may run all programs with root privileges by using sudo.

B. Users in the admin user alias, defined earlier in the file, may run all programs with
root privileges by using sudo.

C. The admin user alias is defined to include all users on the system.

D. The admin command alias is defined to include all commands.

7. Which command would you type, as root, to discover all the open network connections on
a Linux computer?

A. lsof -c a

B. netstat -ap

C. ifconfig eth0

D. nmap -sT localhost

8. A server/computer combination appears in both hosts.allow and hosts.deny. What’s the
result of this configuration when TCP Wrappers runs?

A. TCP Wrappers refuses to run and logs an error in /var/log/messages.

B. The system’s administrator is paged to decide whether to allow access.

C. hosts.deny takes precedence; the client is denied access to the server.

D. hosts.allow takes precedence; the client is granted access to the server.

9. When is the bind option of xinetd most useful?

A. When you want to run two servers on one port

B. When you want to specify computers by name rather than IP address

C. When xinetd is running on a system with two network interfaces

D. When resolving conflicts between different servers

10. You’ve discovered that the Waiter program (a network server) is running inappropriately on
your computer. You therefore locate its SysV startup script and shut it down by removing that
script from your default runlevel. How can you further improve security? (Select all that apply.)

A. By blocking the Waiter program’s port using a firewall rule

B. By reading the Waiter program’s documentation to learn how to run it in stealth mode

C. By tunneling the Waiter program’s port through SSH

D. By uninstalling the Waiter package

04836book.indd 507 12/4/08 10:21:53 AM

508 Chapter 10 n Securing Your System

11. You want to use xinetd access controls to limit who may access a server that’s launched via
xinetd. Specifically, only users on the 192.168.7.0/24 network block should be able to use
that server. How may you do this?

A. Enter hosts_allow = 192.168.7.0/24 in the /etc/xinetd.d configuration file for
the server in question.

B. Enter only_from = 192.168.7.0/24 in the /etc/xinetd.d configuration file for the
server in question.

C. Enter server : 192.168.7., where server is the server’s name, in the /etc/hosts
.allow file.

D. Enter server : 192.168.7., where server is the server’s name, in the /etc/hosts
.deny file.

12. Of the following, which is the best password?

A. Odysseus

B. iA71Oci^My

C. pickettomato

D. Denver2Colorado

13. Which of the following types of attacks involves sending bogus e-mail to lure unsuspecting
individuals into divulging sensitive financial or other information?

A. Phishing

B. Script kiddies

C. Spoofing

D. Ensnaring

14. Ordinary users report being unable to log onto a computer, but root has no problems doing
so. What might you check for to explain this situation?

A. A misbehaving syslogd daemon

B. A login process that’s running as root

C. The presence of an /etc/nologin file

D. The presence of an SUID bit on /bin/login

15. Which servers might you consider retiring after activating an SSH server? (Select all
that apply.)

A. SMTP

B. Telnet

C. FTP

D. NFS

04836book.indd 508 12/4/08 10:21:53 AM

Review Questions 509

16. You find that the ssh_host_dsa_key file in /etc/ssh has 0666 (-rw-rw-rw-) permissions.
Your SSH server has been in operation for several months. Should you be concerned?

A. Yes

B. No

C. Only if the ssh_host_dsa_key.pub file is also world-readable

D. Only if you’re launching SSH from a super server

17. For best SSH server security, how should you set the Protocol option in /etc/ssh/sshd_
config?

A. Protocol 1

B. Protocol 2

C. Protocol 1,2

D. Protocol 2,1

18. Why is it unwise to allow root to log on directly using SSH?

A. Somebody with the root password but no other password can then break into the
computer.

B. The root password should never be sent over a network connection; allowing root
logins in this way is inviting disaster.

C. SSH stores all login information, including passwords, in a publicly readable file.

D. When logged on using SSH, root’s commands can be easily intercepted and duplicated
by undesirable elements.

19. You’ve downloaded a GPG public key from a Web site, into the file fredkey.pub. What
must you do with this key to use it?

A. Type inspect-gpg fredkey.pub.

B. Type gpg --readkey fredkey.pub.

C. Type import-gpg fredkey.pub.

D. Type gpg --import fredkey.pub.

20. You want to send an encrypted message to an e-mail correspondent. You both have GPG.
What do you need to exchange before you can send your encrypted message?

A. Your correspondent must obtain your GPG public key.

B. Your correspondent must obtain your GPG private key.

C. You must obtain your correspondent’s GPG public key.

D. You must obtain your correspondent’s GPG private key.

04836book.indd 509 12/4/08 10:21:53 AM

510 Chapter 10 n Securing Your System

Answers to Review Questions

1. D. The server names alone are insufficient to determine if they’re legitimate. The computer
in question may or may not need to run any of these servers, and their presence may or may
not be intentional, accidental, or the sign of an intrusion. Contrary to option A, the mere
presence of an SSH server does not ensure security. Although, as option B asserts, FTP is not
a secure protocol, it’s still useful in some situations, so the mere presence of an FTP server
is not, by itself, grounds for suspicion. Similarly, in option C, although some administrators
prefer Postfix or qmail to sendmail for security reasons, sendmail isn’t necessarily bad, and
the names alone don’t guarantee that the sshd and proftpd servers are legitimate.

2. C. Although Nmap and other port scanners are useful security tools, they’re also used
by crackers, and many organizations have policies restricting their use. Thus, you should
always obtain permission to use such tools prior to using them. A port scanner can’t cause
damage to /etc/passwd, so there’s no need to back it up, contrary to option A. A port
scanner also doesn’t need the root password on a target system to operate, so you don’t
need this information. In fact, asking for it could be seen as extremely suspicious! Although
you could use sudo to run Nmap, there’s no need to do so to perform a TCP scan, and you
can perform a UDP scan by running Nmap as root in other ways (such as via a direct login
or by using su). Thus, option D isn’t strictly necessary, although you might want to tweak
/etc/sudoers as a matter of system policy.

3. C. The /etc/security/limits.conf file holds the configuration settings that allow you to
limit users’ access. The other options listed don’t give the correct path to this file.

4. A, B, C. Nmap is usually used to perform scans of remote computers, but it can scan the
computer on which it’s run, as well. The netstat and lsof utilities can both identify pro-
grams that are listening for connections (that is, open ports) on the local computer. The
portmap program is used by the Network File System (NFS) and some other servers, but
it’s not used to identify open ports.

5. B. The -perm option to find locates files with the specified permissions, and +4000 is a per-
mission code that matches SUID files. The -type f option restricts matches to files in order
to avoid false alarms on directories. Options A, C, and D use these options incorrectly.

6. A. Option A correctly describes the meaning of the specified line. A percent sign (%) identifies
a Linux group name, and the remainder of the line tells sudoers to enable users of that group
to run all programs as root by using sudo.

7. B. The netstat command can do what is described in the question. To do so, the -ap
options to the command are good choices, so option B is correct. Although lsof can also
accomplish the job, the -c a option is incorrect; this option restricts output to processes
whose names begin with a. Thus, option A is incorrect. Option C’s ifconfig command
doesn’t display open network connections, so it’s incorrect. Although option D’s nmap com-
mand will locate ports that are open on the localhost interface, it doesn’t locate all open
connections, nor does it locate connections on anything but the localhost interface.

04836book.indd 510 12/4/08 10:21:54 AM

Answers to Review Questions 511

8. D. TCP Wrappers uses this feature to allow you to override broad denials by adding more
specific explicit access permissions to hosts.allow, as when setting a default deny policy
(ALL : ALL) in hosts.deny.

9. C. The bind option of xinetd lets you tie a server to just one network interface rather than
link to them all. It has nothing to do with running multiple servers on one port, specifying
computers by hostname, or resolving conflicts between servers.

10. A, D. Using a firewall rule to block Waiter’s port, as in option A, can increase security by
providing redundancy; if Waiter is accidentally run in the future, the firewall rule will block
access to its port. Uninstalling the program, as in option D, improves security by reducing
the risk that the program will be accidentally run in the future. Most programs don’t have
a “stealth” mode, so option B is incorrect. (Furthermore, reading the documentation isn’t
enough; to improve security, you must change some configuration.) Tunneling Waiter’s con-
nections might have some benefit in some situations, but this configuration requires setup
on both client and server computers and by itself leaves the server’s port open, so option C
is incorrect.

11. B. Option B correctly describes how to accomplish this goal. Option A is incorrect because
the hosts_allow option isn’t a legal xinetd configuration file option. Option C correctly
describes how to configure the described restriction using TCP Wrappers, which is generally
used with inetd, but it’s not the way this is done using xinetd. Option D also describes a
TCP Wrappers description, but it reverses the meaning.

12. B. Ideally, passwords should be completely random but still memorable. Option B’s pass-
word was generated from a personally meaningful acronym and then modified to change
the case of some letters and add random numbers and symbols. This creates a password
that’s close to random but still memorable. Option A uses a well-known mythological
figure, who is likely to be in a dictionary. Option C uses two common words, which is
arguably better than option A, but not by much. Option D uses two closely related words
separated by a single number, which is also a poor choice for a password.

13. A. Phishing involves sending bogus e-mail or setting up fake Web sites that lure unsuspecting
individuals into divulging sensitive financial or other information. Script kiddies are intruders
who use root kits. Spoofing involves pretending data is coming from one computer when it’s
coming from another. Ensnaring isn’t a type of attack.

14. C. The /etc/nologin file, if present, prevents logins from ordinary users; only root may
log in. You might set this file when performing maintenance and then forget to remove it,
thus explaining the symptoms in the question. The syslogd daemon mentioned in option A
records system messages and is unlikely to produce the specified symptoms. The login process
ordinarily runs as root and is normally SUID root, so options B and D are also incorrect.

15. B, C. SSH is most directly a replacement for Telnet, but SSH also includes file-transfer
features that enable it to replace FTP in many situations. SSH is not a direct replacement
for either SMTP or NFS.

16. A. The ssh_host_dsa_key file holds one of three critical private keys for SSH. The fact
that this key is readable (and writeable!) to the entire world is disturbing. In principle, a
miscreant who has acquired this file might be able to redirect traffic and masquerade as
your system, duping users into delivering passwords and other sensitive data.

04836book.indd 511 12/4/08 10:21:54 AM

512 Chapter 10 n Securing Your System

17. B. SSH protocol level 2 is more secure than protocol level 1; thus, option B (specifying accep-
tance of level 2 only) is the safest approach. Option A is the least safe approach because it
precludes the use of the safer level 2. Options C and D are exactly equivalent in practice; both
support both protocol levels.

18. A. Allowing only normal users to log in via SSH effectively requires two passwords for any
remote root maintenance, improving security. SSH encrypts all connections, so it’s unlikely
that the password, or commands issued during an SSH session, will be intercepted. (None-
theless, some administrators prefer not to take even this small risk.) SSH doesn’t store pass-
words in a file.

19. D. Option D provides the correct command to import fredkey.pub prior to use. The
inspect-gpg and import-gpg commands of options A and C are fictitious; and there is
no --readkey option to gpg, as option B suggests.

20. C. The usual method of sending encrypted messages with GPG entails the sender using the
recipient’s public key to encrypt the message. Thus, option C is correct. Option A would be
correct if your correspondent needed to send you an encrypted message, but the question
only specifies your sending the encrypted message. Options B and D both entail delivery of
private keys, which is inadvisable at best, because private keys in the wrong hands permit
the holder to impersonate the person who owns the keys.

04836book.indd 512 12/4/08 10:21:54 AM

Appendix

A
About the
Companion CD

In thIs AppenDIx:

What you’ll find on the CDNN

System requirementsNN

Using the CD NN

TroubleshootingNN

04836book.indd 513 12/18/08 8:53:45 PM

What You’ll Find on the CD
The following sections are arranged by category and summarize the software and other
goodies you’ll find on the CD. If you need help with installing the items provided on the CD,
refer to the installation instructions in the “Using the CD” section of this appendix.

Some programs on the CD might fall into one of these categories:

Shareware programs are fully functional, free, trial versions of copyrighted programs.
If you like particular programs, register with their authors for a nominal fee and
receive licenses, enhanced versions, and technical support.

Freeware programs are free, copyrighted games, applications, and utilities. You can copy
them to as many computers as you like—for free—but they offer no technical support.

GNU software is governed by its own license, which is included inside the folder of
the GNU software. There are no restrictions on distribution of GNU software. See the
GNU license at the root of the CD for more details.

Trial, demo, or evaluation versions of software are usually limited either by time or by
functionality (such as not letting you save a project after you create it).

Sybex Test Engine
For Windows

The CD contains the Sybex test engine, which includes all of the assessment test and chap-
ter review questions in electronic format, as well as two bonus exams located only on the CD.

PDF of the Book
For Windows

We have included an electronic version of the text in .pdf format. You can view the elec-
tronic version of the book with Adobe Reader.

Adobe Reader
For Windows

We’ve also included a copy of Adobe Reader so you can view PDF files that accompany
the book’s content. For more information on Adobe Reader or to check for a newer version,
visit Adobe’s website at www.adobe.com/products/reader/.

04836book.indd 514 12/18/08 8:53:45 PM

Troubleshooting 515

Electronic Flashcards
For PC, Pocket PC, and Palm

These handy electronic flashcards are just what they sound like. One side contains a
question or fill-in-the-blank question, and the other side shows the answer.

System Requirements
Make sure your computer meets the minimum system requirements shown in the following
list. If your computer doesn’t match up to most of these requirements, you may have prob-
lems using the software and files on the companion CD. For the latest and greatest infor-
mation, please refer to the ReadMe file located at the root of the CD-ROM.

A PC running Microsoft Windows 98, Windows 2000, Windows NT4 (with SP4 or NN

later), Windows Me, Windows XP, or Windows Vista

An Internet connectionNN

A CD-ROM driveNN

Using the CD
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive. The license agreement appears.

Windows users: The interface won’t launch if you have autorun disabled.
In that case, click Start  Run (for Windows Vista, Start  All Programs N
Accessories  Run). In the dialog box that appears, type D:\Start.exe.
(Replace D with the proper letter if your CD drive uses a different letter.
If you don’t know the letter, see how your CD drive is listed under My
Computer.) Click OK.

2. Read the license agreement, and then click the Accept button if you want to use the CD.

The CD interface appears. The interface allows you to access the content with just one
or two clicks.

Troubleshooting
Wiley has attempted to provide programs that work on most computers with the minimum
system requirements. Alas, your computer may differ, and some programs may not work
properly for some reason.

04836book.indd 515 12/18/08 8:53:46 PM

516 Appendix A N About the Companion CD

The two likeliest problems are that you don’t have enough memory (RAM) for the pro-
grams you want to use or you have other programs running that are affecting installation
or running of a program. If you get an error message such as “Not enough memory” or
“Setup cannot continue,” try one or more of the following suggestions and then try using
the software again:

Turn off any antivirus software running on your computer. Installation programs
sometimes mimic virus activity and may make your computer incorrectly believe that
it’s being infected by a virus.

Close all running programs. The more programs you have running, the less memory is
available to other programs. Installation programs typically update files and programs;
so if you keep other programs running, installation may not work properly.

Have your local computer store add more RAM to your computer. This is, admittedly,
a drastic and somewhat expensive step. However, adding more memory can really help
the speed of your computer and allow more programs to run at the same time.

Customer Care
If you have trouble with the book’s companion CD-ROM, please call the Wiley Product
Technical Support phone number at (800) 762-2974. Outside the United States, call
+1 (317) 572-3994. You can also contact Wiley Product Technical Support at http://sybex
.custhelp.com. John Wiley & Sons will provide technical support only for installation and
other general quality-control items. For technical support on the applications themselves,
consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please
call (877) 762-2974.

04836book.indd 516 12/18/08 8:53:46 PM

Glossary

04836book.indd 517 1/9/09 12:13:06 PM

518 Glossary

Numbers
8.3 filename A filename that consists of no more than eight characters plus an optional dot
(.) and three-character extension. This file-naming limit exists in DOS and the original File
Allocation Table (FAT) filesystem it uses.

A
access control list (ACL) A security system that provides a list of usernames or groups
and their permissions to access a resource. ACLs are expanding and supplementing tradi-
tional Unix-style permissions on new filesystems. Ext2fs, ext3fs, ext4fs, ReiserFS, JFS, and
XFS all support ACLs natively.

account Stored information and a reserved directory that allows one individual to use a
computer. The term is often used and thought of as if it were a distinct virtual component
of a computer that a person can use, as in “Sam logged into his account,” or “Miranda’s
account isn’t working.”

ACL See access control list (ACL).

active partition The partition that’s marked as bootable in the Master Boot Record
(MBR). Some boot loaders, such as the standard DOS/Windows boot loader, boot the
active partition.

Address Resolution Protocol (ARP) A protocol used to learn a network hardware
address based on an IPv4 address. See also Neighbor Discovery Protocol (NDP).

Advanced Linux Sound Architecture (ALSA) One of two major sets of sound drivers in
Linux. Added as a standard part of the 2.6.x kernel series, but available as an add-on pack-
age for earlier kernels. See also Open Sound System (OSS).

Advanced Package Tools (APT) A package management tool that’s most often used atop
Debian packages, although a version for RPM also exists. APT enables package installation
and updates from Internet repositories, including automatic dependency resolution.

Advanced Technology Attachment (ATA) A type of interface for hard disks, CD-ROM
drives, tape drives, and other mass-storage devices. Also often referred to as EIDE. The
older parallel ATA (PATA) is being supplanted by the newer serial ATA (SATA). The term
ATA alone may refer to either, but more commonly it refers to PATA.

ALSA See Advanced Linux Sound Architecture (ALSA).

American Standard Code for Information Interchange (ASCII) An encoding method for
alphanumeric data, commonly used for text files. ASCII is a common code, but because it
lacks characters used by many non-English languages, other encoding methods, such as
UTF-8, are slowly supplanting it.

04836book.indd 518 1/9/09 12:13:07 PM

Glossary 519

anti-aliasing A technique for rendering fonts that uses shades of gray along curved or
angled edges in order to improve the legibility and aesthetic appeal of individual characters.

Apache The most commonly used Web server package for Linux.

APT See Advanced Package Tools (APT).

ARP See Address Resolution Protocol (ARP).

ASCII See American Standard Code for Information Interchange (ASCII).

ATA See Advanced Technology Attachment (ATA).

B
backport The practice of moving more advanced features into less advanced versions of a
package. This has been common to add hardware support from development kernels into
stable kernels.

Basic Input/Output System (BIOS) A low-level software component included on a com-
puter’s motherboard in read-only memory (ROM) form. The CPU runs BIOS code when it
first starts up, and the BIOS is responsible for locating and booting an OS or OS loader.

baud A measure of data transmission speed, commonly used over serial lines, corresponding
to the number of signal elements transmitted per second. This term is often used as a synonym
for “bits per second”; but many modems encode more than one bit per signal element, so the
two aren’t always synonymous.

Berkeley Internet Name Domain (BIND) A common Domain Name System (DNS) server
for Linux.

BIND See Berkeley Internet Name Domain (BIND).

BIOS See Basic Input/Output System (BIOS).

bitmap font A font whose characters are defined in terms of the activation or inactivation
of individual pixels. Bitmap fonts are quick to display but inflexible. See also scalable font.

boot loader A program that directs the boot process. The BIOS calls the boot loader, which
loads the Linux kernel or redirects the boot process to another boot loader. Also known as a
boot manager.

boot manager See boot loader.

broadband 1. High-speed (greater than 200Kbps) Internet connections delivered to homes
and small businesses. 2. Networking technologies that support simultaneous transmission
of data, voice, and video.

04836book.indd 519 1/9/09 12:13:07 PM

520 Glossary

broadcast A type of network communication in which one computer sends a message to
many computers (typically all the computers on the sender’s local network segment).

build number A number identifying minor changes made to a binary package by its main-
tainer rather than changes implemented by the program’s author, which are reflected in the
version number.

C
C library (libc) Standard programming routines used by many programs written in the
C programming language. The most common Linux C library is also referred to as GNU
libc (glibc).

cathode ray tube (CRT) A type of computer display that uses a glass screen with an elec-
tron gun that shoots charged particles at the screen to make images. CRTs are similar to
conventional television sets. CRTs have been largely replaced by LCD monitors.

central processing unit (CPU) The main chip on a computer; it handles the bulk of its
computational tasks.

CGI See Common Gateway Interface (CGI).

checksum A simple file integrity check in which the values of individual bits or bytes are
summed up and compared to a stored value for a reference version of the file.

chroot jail A method of running a program (particularly a server) so that its access to the
computer is limited to a particular directory tree. A chroot jail is a useful security measure
for certain types of servers.

CHS geometry See cylinder/head/sector (CHS) geometry.

CIDR See classless inter-domain routing (CIDR).

classless inter-domain routing (CIDR) A method of breaking IP addresses into subnets
for routing purposes that doesn’t rely on the traditional Class A/B/C distinctions. CIDR is
more flexible than the class system but requires certain Internet routers to have larger rout-
ing tables.

client 1. A program that initiates data transfer requests using networking protocols. 2.
A computer that runs one or more client programs.

CMOS See complementary metal oxide semiconductor (CMOS).

command completion A feature of many Linux shells that simplifies typing long com-
mands. Pressing the Tab key causes the shell to search for possible commands or filenames
that would complete the command. If only one command or filename matches the charac-
ters typed so far, the shell completes the entry. If not, the shell enters the characters up to
the point where the user must specify another character.

04836book.indd 520 1/9/09 12:13:07 PM

Glossary 521

Common Gateway Interface (CGI) A system for running scripts or programs from a Web
server at the request of Web clients.

Common Unix Printing System (CUPS) A printing system for Linux and other Unix-like
systems. CUPS adds several features that had been missing from the earlier BSD LPD and
LPRng printing systems.

complementary metal oxide semiconductor (CMOS) A part of the BIOS that gives the
user the ability to control key chipset features, such as enabling or disabling built-in ports.

conditional expression A construct of computer programming and scripting languages
used to express a condition, such as the equality of two variables or the presence of a file on
a disk. Conditional expressions enable a program or script to take one action in one case
and another action in the other case.

Coordinated Universal Time (UTC) A time closely related to Greenwich Mean
Time (GMT).

CPU See central processing unit (CPU).

cracker An individual who breaks into computers. Crackers may do this out of curiosity,
out of malice, for profit, or for other reasons.

cron job A program or script that’s run at a regular interval by the cron daemon. See also
system cron job and user cron job.

CRT See cathode ray tube (CRT).

CUPS See Common Unix Printing System (CUPS).

cylinder/head/sector (CHS) geometry A method of hard disk addressing in which a
triplet of numbers (a cylinder, a head, and a sector) is used to identify a specific sector. CHS
geometry addressing contrasts with linear block addressing (LBA).

D
daemon A program that runs constantly, providing background services. Linux servers
are typically implemented as daemons, although there are also non-server daemons, such as
crond, the cron daemon.

Data Display Channel (DDC) A protocol that enables a computer to query a monitor for
its maximum horizontal and vertical refresh rates and other vital statistics.

DDC See Data Display Channel (DDC).

Debian package A package file format that originated with the Debian distribution but
is now used on several other distributions. Debian packages feature excellent dependency
tracking and easy installation and removal procedures.

04836book.indd 521 1/9/09 12:13:08 PM

522 Glossary

default route The route that network packets take if a more specific route doesn’t direct
them in some other way. The default route typically involves a gateway or router system that
can further redirect the packets.

dependency A requirement of one software package that another one be installed. For
instance, most Linux programs include a dependency on the C library.

desktop environment A set of programs that provide a friendly graphical environment
for a Linux user.

DHCP See Dynamic Host Configuration Protocol (DHCP).

DHCP lease A temporary assignment of an IP address to a DHCP client by a DHCP
server. Clients must periodically renew their DHCP leases or risk losing the right to use
the address.

digital subscriber line (DSL) A type of broadband network access provided over telephone
lines. Several subtypes of DSL exist, including Asymmetric DSL (ADSL) and Symmetric
DSL (SDSL).

direct memory addressing (DMA) A means of transferring data between devices (such as
sound cards or SCSI host adapters) and memory without directly involving the CPU.

disk quota A limit on the amount of disk space that an individual or group may use.

DMA See direct memory addressing (DMA).

DNS See Domain Name System (DNS).

domain name A name assigned to a group of computers, such as example.com. Individual
computers have hostnames that include the domain name, such as jupiter.example.com.

Domain Name System (DNS) A distributed set of computers that run servers to convert
between computer names (such as ns.example.com) and IP addresses (such as 192.168.45.204).
DNS servers are organized hierarchically and refer requests to systems responsible for succes-
sively more specific domains.

dot file A Linux or Unix file whose name begins with a dot (.). Most Linux shells and
programs hide such files from the user by default; therefore, user configuration files usually
come in this form so as to be unobtrusive in directory listings.

dotted quad A method of referring to an IP address or netmask that uses four 1-byte
numbers separated by dots (.), as in 192.168.72.27 or 255.255.255.0.

DSL See digital subscriber line (DSL).

Dynamic Host Configuration Protocol (DHCP) A protocol used on local networks for
dissemination of network configuration information. A single DHCP server can maintain
information for many DHCP clients, reducing overall configuration effort.

04836book.indd 522 1/9/09 12:13:08 PM

Glossary 523

dynamic library A type of library that’s stored as a separate file from an executable pro-
gram but that’s loaded along with the main program file. Dynamic libraries save disk space
and RAM compared to static libraries. See also library and static library.

E
EEPROM See electronically erasable programmable read-only memory (EEPROM).

EHCI See Enhanced Host Controller Interface (EHCI).

electronically erasable programmable read-only memory (EEPROM) A type of data
storage chip that retains data when power has been turned off but that can be erased and
rewritten electronically. Frequently used to store a computer’s or plug-in card’s BIOS.

encryption key A number that’s used in conjunction with an algorithm to scramble data
in a way that can be descrambled only with the use of the same or a related number.

Enhanced Host Controller Interface (EHCI) A type of controller for USB 2.0 ports.

environment variable A setting that’s available to any program running in a session.
Environment variables can define features such as the terminal type being used, the path to
search for executable programs, and the location of an X server for GUI programs.

export 1. As a noun, a directory that’s shared via the Network File System (NFS) server. 2.
As a verb, the act of sharing a directory via NFS.

ext2 See Second Extended File System (ext2fs or ext2).

ext2fs See Second Extended File System (ext2fs or ext2).

ext3 See Third Extended File System (ext3fs or ext3).

ext3fs See Third Extended File System (ext3fs or ext3).

ext4 See Fourth Extended File System (ext4fs or ext4).

ext4fs See Fourth Extended File System (ext4fs or ext4).

extended partition A type of disk partition used on x86 systems. Extended partitions are
placeholders for one or more logical partitions.

Extents File System (XFS) One of several journaling filesystems for Linux. XFS was
developed by Silicon Graphics (SGI) for its IRIX OS and then ported to Linux.

F
FAT See File Allocation Table (FAT).

FHS See Filesystem Hierarchy Standard (FHS).

04836book.indd 523 1/9/09 12:13:08 PM

524 Glossary

File Allocation Table (FAT) 1. A type of filesystem used as a native filesystem by DOS and
Windows and also supported as a non-native filesystem by Linux and most other OSs. 2.
On the FAT filesystem, a data structure after which the filesystem is named.

file globbing The process of wildcard expansion—for instance, matching the existing file
glossary.txt when the string glos*.txt is typed. Also called globbing.

file server A computer or program that delivers files to other computers via network pro-
tocols upon request. Examples of file-server programs include NFS, Samba, and FTP.

file type code A special code that identifies the type of a file, such as a regular file, a
directory, or a device file.

filesystem 1. The low-level data structures recorded on a disk in order to direct the placement
of file data. The filesystem determines characteristics like the maximum partition size, the file-
naming rules, and what extra data (time stamps, ownership, and so on) may be associated with
a file. 2. The overall layout of files and directories on a computer. For instance, a Linux filesys-
tem includes a root directory (/), several directories under this (/usr, /var, /boot, and others),
subdirectories of these, and so on.

Filesystem Hierarchy Standard (FHS) A standard that defines the names and contents of
critical directories in a Linux filesystem (meaning 2).

Filesystem Standard (FSSTND) An early attempt to define the names and contents of
critical directories in a Linux filesystem (meaning 2). The FSSTND has been supplanted by
the FHS.

firewall 1. A program or kernel configuration that blocks access to specific ports or net-
work programs on a computer. 2. A computer that’s configured as a router and that includes
firewall software that can restrict access between the networks it manages.

font server A program that provides font bitmaps to client programs on the same or other
computers. The font server may work directly from font bitmaps, or it may generate the bit-
maps from outline fonts such as PostScript Type 1 or TrueType fonts.

font smoothing See anti-aliasing.

Fourth Extended File System (ext4fs or ext4) The fourth version of the popular Linux
filesystem. Ext4fs adds the ability to handle larger files and filesystems, as well as various
performance enhancements, to the ext3fs feature set.

frame In networking, a data packet associated with network hardware (such as Ethernet)
as opposed to the software (such as TCP/IP).

free software Software that is distributed under a license, such as the GPL, that permits
copying and modification under liberal terms. See also open source.

Free Software Foundation (FSF) A non-profit organization based in Cambridge Massa-
chusetts dedicated to the promotion of what it calls free software.

04836book.indd 524 1/9/09 12:13:08 PM

Glossary 525

FSF See Free Software Foundation (FSF).

FSSTND See Filesystem Standard (FSSTND).

full duplex A mode of communication in which data can be transferred in two directions at
the same time.

function In the context of programming or scripting, a section of code that can be called
by name from other sections of code in order to perform some specific task or set of com-
putations.

G
General Public License (GPL) A common free software license, created and favored by
the Free Software Foundation.

GID See group ID (GID).

gigabit Ethernet A variety of Ethernet that can transfer 1,000 megabits (1 gigabit)
per second.

glibc See GNU C library (glibc).

globbing See file globbing.

GMT See Greenwich Mean Time (GMT).

GNOME See GNU Network Object Model Environment (GNOME).

GNU See GNU’s Not Unix (GNU).

GNU C library (glibc) A specific type of C library used on Linux systems since the late
1990s. See also C library (libc).

GNU Network Object Model Environment (GNOME) A common desktop environment
for Linux, headquartered at http://www.gnome.org.

GNU Privacy Guard (GPG or GnuPG) Software for encrypting data using public-key/
private-key technology. Frequently used for encrypting e-mail that carries sensitive data.

GNU’s Not Unix (GNU) A project sponsored by the Free Software Foundation to create a
free implementation of Unix. Linux relies heavily on GNU software—so much so that some
people prefer the term GNU/Linux to Linux.

GnuPG See GNU Privacy Guard (GPG or GnuPG).

GPG See GNU Privacy Guard (GPG or GnuPG).

GPL See General Public License (GPL).

04836book.indd 525 1/9/09 12:13:09 PM

526 Glossary

Grand Unified Boot Loader (GRUB) A popular boot loader for Linux. GRUB can boot a
Linux kernel or redirect the boot process to another boot loader in a non-Linux partition, thus
booting other OSs. Similar to the competing Linux Loader (LILO). See also boot loader.

graphical user interface (GUI) A method of human/computer interaction characterized
by a graphical display, a mouse to move a pointer around the screen, and the ability to per-
form actions by pointing at objects on the screen and clicking a mouse button.

Greenwich Mean Time (GMT) The time in Greenwich, England, unadjusted for Daylight
Saving Time. Linux systems use this time internally and adjust to local time by knowing the
system’s time zone. See also Coordinated Universal Time (UTC).

group A collection of users. Files are owned by a user and a group, and group members
may be given access to files independent of the owner and all other users. This feature may
be used to enhance collaborative abilities by giving members of a group read/write access to
particular files while still excluding those who aren’t members of the group. It can also be
used by system administrators to control access to system files and resources.

group administrator A person with administrative authority over a group. A group admin-
istrator can add or delete members from a group and perform similar administrative tasks.

group ID (GID) A number associated with a particular group. Similar to a user ID (UID).

GRUB See Grand Unified Boot Loader (GRUB).

GUI See graphical user interface (GUI).

H
hacker 1. An individual who is skilled at using or programming computers and who
enjoys using these skills in constructive ways. Many Linux programmers consider them-
selves hackers in this sense of the term. 2. A cracker (see also cracker). This use of the term
is more prevalent in the mass media, but it’s frowned upon in the Linux community.

half-duplex A type of data transmission in which data can be sent in only one direction at
a time.

hard link A directory entry for a file that has another directory entry. All hard links are
equally valid ways of accessing a file, and all must be deleted in order to delete a file. See
also soft link.

hardware address A code that uniquely identifies a single network interface. This address
is built into the device itself rather than assigned in Linux.

hardware clock A clock that’s built into x86 (and most other computers’) hardware. The
hardware clock maintains the time when the system is powered down. See also software clock.

04836book.indd 526 1/9/09 12:13:09 PM

Glossary 527

hash An encryption method in which a file or string is encoded in a manner that cannot
be reversed. Hashes are commonly used for password storage and as a more secure variant
on checksums, among other things. See also checksum.

header In e-mail, a line that contains information about a message’s delivery path, sender,
recipient, or other meta-information.

header file File that contains interface definitions for software routines contained in a
library. Program source code that uses a library must refer to the associated header files.

here document A form of redirection, denoted by <<, which takes the following lines of
input to be passed to a program as standard input. Most often used to pass fixed input to a
program as standard input in scripts, obviating the need for separate support files.

HFS See Hierarchical File System (HFS).

Hierarchical File System (HFS) A filesystem used on Mac OS.

high-level formatting A type of disk formatting that writes the data that define a filesystem.
Also called making a filesystem. See also low-level formatting.

hostname A computer’s human-readable name, such as persephone.example.com.

hot-pluggable Hardware that can be safely added or removed while the computer is
powered up and running. USB and FireWire are examples of protocols that support hot-
plugging hardware.

HTTP See Hypertext Transfer Protocol (HTTP).

hub A type of network hardware that serves as a central exchange point in a network.
Each computer has a cable that links to the hub, so all data pass through the hub. Hubs
echo all data they receive to all the other computers to which they connect. See also switch.

hung Term used to describe a program that’s stopped responding to user input, network
requests, or other types of input to which it should respond. Hung processes sometimes con-
sume a great deal of CPU time.

Hypertext Transfer Protocol (HTTP) A protocol used for transferring Web pages from a
Web server to a Web browser.

I
ICMP See Internet Control Message Protocol (ICMP).

incremental backup A type of backup in which only files that have changed since the last
backup are backed up. This is used to reduce the time required to back up a computer, at
the cost of potentially greater restoration complexity.

04836book.indd 527 1/9/09 12:13:09 PM

528 Glossary

Industry Standard Architecture (ISA) The expansion bus used on the original IBM PC.
Most manufacturers began dropping ISA from their motherboards around 2001. ISA is
inferior to PCI in most respects.

inode A filesystem data structure that contains critical information about the file, such as
its size and location on the disk.

Internet Control Message Protocol (ICMP) A type of network packet that’s commonly
used to signal error conditions, such as corrupted packets.

Internet Printing Protocol (IPP) A protocol for printing on a network. Used by CUPS
on Linux.

Internet Protocol (IP) An internet-layer protocol that’s an important part of the TCP/IP
network stack because it handles data packet exchange based on low-level addressing.

interrupt request (IRQ) A method by which peripherals (SCSI host adapters, sound cards,
and so on) signal that they require attention from the CPU. An IRQ also refers to a specific
interrupt signal line. The original x86 architecture supported 16 IRQs (8 on very old sys-
tems), numbered 0–15; but IRQs 2 and 9 are linked, so in practice, there are only 15 IRQs.
Many of these are used by basic hardware like floppy disks. Recent x86 systems support
more than 16 IRQs.

IP See Internet Protocol (IP).

IP address A computer’s numeric TCP/IP address, such as 192.168.45.203.

IP masquerading See Network Address Translation (NAT).

IPP See Internet Printing Protocol (IPP).

IPv6 The “next-generation” Internet Protocol. This upgrade to TCP/IP allows for a
theoretical maximum of approximately 3.4 × 1038 addresses, as opposed to the 4 billion
addresses possible with the IPv4 that’s in common use in 2009.

IRQ See interrupt request (IRQ).

ISA See Industry Standard Architecture (ISA).

ISO-9660 The most common filesystem on CD-ROM and related optical media. ISO-9660
is often paired with Rock Ridge extensions or a Joliet filesystem in order to support long
filenames and other features.

J
JFS See Journaled File System (JFS).

Joliet A filesystem commonly used on CD-ROMs and related optical media. Joliet sup-
ports Microsoft-style long filenames and is almost always used in conjunction with an ISO-
9660 filesystem.

04836book.indd 528 1/9/09 12:13:09 PM

Glossary 529

journal An advanced filesystem feature that records data about pending disk operations.
See also journaling filesystem.

Journaled File System (JFS) One of several journaling filesystems for Linux. JFS was
developed by IBM for its AIX OS. A subsequent implementation was created for OS/2, and
Linux’s JFS is derived from this code.

journaling filesystem A type of filesystem that maintains a record of its operations. Such
filesystems can typically recover quickly after a power failure or system crash. Common
Linux journaling filesystems are ext3fs, ReiserFS, JFS, and XFS. See also filesystem.

K
K Desktop Environment (KDE) A common desktop environment for Linux, headquar-
tered at http://www.kde.org.

KDE See K Desktop Environment (KDE).

kernel The core of a computer operating system. Technically, Linux is a kernel; everything
else in a Linux computer runs atop the Linux kernel.

kernel module A driver or other kernel-level program that may be loaded or unloaded as
required.

kernel ring buffer A record of recent messages generated by the Linux kernel. Immedi-
ately after a Linux system boots, this buffer contains the bootup messages generated by
drivers and major kernel subsystems. This buffer may be viewed with the dmesg command.

L
LBA See logical block addressing (LBA).

LCD See liquid crystal display (LCD).

libc See C library (libc).

library A collection of code that’s potentially useful to many programs. This code is stored
in special files to save disk space and RAM when running programs that use the library. See
also static library and dynamic library.

LILO See Linux Loader (LILO).

linear block addressing (LBA) See logical block addressing (LBA).

link A way of providing multiple names to reference a single file. Links are created with
the ln command.

04836book.indd 529 1/9/09 12:13:10 PM

530 Glossary

Linux 1. The open source OS kernel originally developed by Linus Torvalds and since then
maintained and expanded by a large team of programmers. 2. An OS based on the Linux
kernel, particularly if it follows the Unix model. Most Linux OSs rely heavily on software
from the GNU project, so some people prefer the term GNU/Linux.

Linux Loader (LILO) A popular Linux boot loader. Can boot a Linux kernel or redirect
the boot process to another boot loader in a non-Linux partition, thus booting other OSs.
Similar to the competing Grand Unified Boot Loader (GRUB). See also boot loader.

liquid crystal display (LCD) A type of flat-panel display that’s common on laptops and
has recently become standard on desktop systems. LCDs are lightweight and consume little
electricity, but they’re more expensive to produce than are conventional CRT monitors.

load average A measure of the demands for CPU time by running programs. A load aver-
age of 0 means no demand for CPU time; 1 represents a single program placing constant
demand on the CPU; and values higher than 1 represent multiple programs competing for
CPU time. The top and uptime commands both provide load average information.

localhost A name for the local computer.

log file A text file, maintained by the system as a whole or by an individual server, in which
important system events are recorded. Log files typically include information about user log-
ins, server access attempts, and automatic routine maintenance.

log file rotation A routine maintenance process in which the computer suspends record-
ing data in log files, renames them, and opens new log files. This process keeps log files
available for a time, but ultimately it deletes them, preventing them from growing to con-
sume all available disk space. Also called log rotation.

log rotation See log file rotation.

logical block addressing (LBA) A method of accessing data on a disk that uses a single
sector number to retrieve data from that sector. LBA contrasts with cylinder/head/sector
(CHS) addressing. Some sources refer to LBA as linear block addressing.

logical partition A type of x86 hard disk partition that has no entry in the primary parti-
tion table. Instead, logical partitions are carried within an extended partition.

loop A programming or scripting construct enabling multiple executions of a segment of
code. Typically terminated through the use of a conditional expression.

loopback address A name that refers to a network interface or address that points back to
the computer itself. This is typically the 127.0.0.1 IP address.

low-level formatting Creating data structures on a disk that define the locations of indi-
vidual sectors and tracks. Hard disks are low-level formatted at the factory and should not
normally be low-level formatted by end users. Floppy disks may need to be low-level for-
matted by end users via the Linux fdformat command. See also high-level formatting.

04836book.indd 530 1/9/09 12:13:10 PM

Glossary 531

M
MAC address See Media Access Control (MAC) address.

machine name The portion of a hostname that identifies a computer on a network, as
opposed to the network as a whole (for instance, ginkgo is the machine name portion of
ginkgo.example.com). The machine name is sometimes used in reference to the entire
hostname.

major version number The first number in a program’s version number. For instance, if a
program’s version number is 1.2.3, the major version number is 1.

master boot record (MBR) The first sector of a hard disk. The MBR contains code that
the BIOS runs during the boot process as well as the primary partition table.

MBR See master boot record (MBR).

Media Access Control (MAC) address A low-level address associated with a piece of net-
work hardware. The MAC address is usually stored on the hardware itself, and it’s used for
local network addressing only. Addressing between networks (such as on the Internet) uses
higher-level addresses, such as an IP address.

mode The permissions of a file. In conjunction with the file’s owner and group, the mode
determines who may access a file and in what ways.

mode lines Definition of the timings required by particular video resolutions running at
particular refresh rates.

modem Short for modulator/demodulator. A device for transferring digital data over an
analog transmission medium. Traditionally, the analog transmission medium has been the
normal telephone network, but the word modem is increasingly being applied to devices
used for broadband Internet access.

module A kernel driver or other kernel component that’s stored in a separate file. Linux
can load modules on demand or on command, saving RAM when modules aren’t in use and
reducing the size of the kernel.

module stack A set of modules that build up to provide some set of features. For
instance, to deliver sound, you may need to load several sound driver modules that make
up a module stack.

mount 1. The process of adding a filesystem (meaning 1) to a directory tree. 2. A command
of the same name that performs this task.

mount point A directory to which a new filesystem (meaning 1) is attached. Mount points
are typically empty directories before their host filesystems are mounted.

mounted The status of a filesystem that has been linked to a directory tree using the mount
command.

04836book.indd 531 1/9/09 12:13:10 PM

532 Glossary

multi-head display A display that’s made up of two or more physical monitors that together
show a wider view on a larger virtual workspace.

multicast A method of sending network data to multiple remote sites. Multicasts differ
from broadcasts in that multicasts are more focused, whereas broadcasts are typically sent
to all the computers on a network.

N
NAT See Network Address Translation (NAT).

NDP See Neighbor Discovery Protocol (NDP).

Neighbor Discovery Protocol (NDP) A protocol used to learn a network hardware address
based on an IPv6 address. See also Address Resolution Protocol (ARP).

netmask See network mask.

Network Address Translation (NAT) A technique in which a router can “hide” a whole
network from view, making all the systems look like one computer to the outside world.

Network File System (NFS) A file-sharing protocol used among Linux and Unix computers.

network mask A bit pattern that identifies the portion of an IP address that’s an entire
network and the part that identifies a computer on that network. The pattern may be
expressed in dotted quad notation (as in 255.255.255.0) or as the number of network bits
following an IP address and a slash (as in 192.168.45.203/24). The network mask is also
referred to as the netmask or subnet mask.

network stack See protocol stack.

Network Time Protocol (NTP) A network protocol and server enabling one computer to
set its clock based on the value maintained by another clock.

New Technology File System (NTFS) The favored filesystem on Windows NT/200x/XP/
Vista systems. Linux supports NTFS, but this support is limited.

NFS See Network File System (NFS).

NTFS See New Technology File System (NTFS).

NTP See Network Time Protocol (NTP).

O
OHCI See Open Host Controller Interface (OHCI).

Open Host Controller Interface (OHCI) A common hardware standard for managing
USB 1.x ports.

04836book.indd 532 1/9/09 12:13:10 PM

Glossary 533

open relay An SMTP mail server that’s configured to relay mail from anywhere to anywhere.
Open relays are frequently abused by spammers to obfuscate their messages’ true origins.

Open Sound System (OSS) One of two common sound systems for Linux, the other
being the Advanced Linux Sound Architecture (ALSA). OSS is available in all versions of
the Linux kernel, but ALSA is preferred in the 2.6.x kernel series.

open source A broad set of software licenses, or the software that uses them, that permits
redistribution and copying under liberal terms. The open source definition is somewhat
broader than that of free software.

OSS See Open Sound System (OSS).

outline font See scalable font.

P
package A collection of files stored in a single carrier file, ready for installation using a
package management system such as RPM or the Debian package system.

packet A limited amount of data collected together with addressing information and sent
over a network.

packet filter firewall A type of firewall that operates on individual network data packets,
passing or rejecting packets based on information such as the source and destination
addresses and ports.

packet sniffer A program that monitors network traffic at a low level, enabling diagnosis
of problems and capturing data. Packet sniffers can be used both for legitimate network
diagnosis and for data theft.

parallel ATA (PATA) The traditional form of ATA interface, in which several bits are
transferred at once. See also serial ATA (SATA).

PATA See parallel ATA (PATA).

path A colon-delimited list of directories in which program files may be found. (Similar
lists define the locations of directories, fonts, and other file types.)

PCI See Peripheral Component Interconnect (PCI).

PCL See Printer Control Language (PCL).

Peripheral Component Interconnect (PCI) An expansion bus capable of much higher
speeds than the older ISA bus. Modern computers usually include several PCI slots.

permission bit A single bit used to define whether a given user or class of users has a par-
ticular type of access to a file. For instance, the owner’s execute permission bit determines
whether the owner can run a file as a program. The permission bits together make up the
file’s mode.

04836book.indd 533 1/9/09 12:13:11 PM

534 Glossary

phishing The process of sending bogus e-mail or putting up fake Web sites with the goal
of collecting sensitive personal information (such as credit card numbers).

pipe A method of executing two programs so that one program’s output serves as the second
program’s input. Piped programs are separated in a Linux shell by a vertical bar (|).

pipeline See pipe.

Plug and Play (PnP) A set of hardware standards enabling automated, or at least software-
based, configuration of hardware. This term applies mostly to ISA devices, although PCI and
other devices are sometimes described as being PnP devices.

PnP See Plug and Play (PnP).

Point-to-Point Protocol (PPP) A method of initiating a TCP/IP connection between two
computers over an RS-232 serial line or modem. See also PPP over Ethernet (PPPoE).

port See port number.

port number A number that identifies the program from which a data packet comes or to
which it’s addressed. When a program initiates a network connection, it associates itself
with one or more ports, enabling other computers to uniquely address the program.

POST See power-on self-test (POST).

PostScript A programming language used on many high-end printers. PostScript is
optimized for displaying text and graphics on the printed page. The Linux program
Ghostscript converts from PostScript to bitmapped formats understood by many low-end
and mid-range printers.

PostScript Printer Definition (PPD) A configuration file that provides information on a
printer’s capabilities—its paper size, whether it prints in color, and so on.

PostScript Type 1 An outline font format associated with PostScript but useable under
Linux with or without a PostScript printer. See also TrueType.

power-on self-test (POST) A series of basic hardware checks performed by the BIOS when
the computer is first powered on and before the boot loader or OS boots. The POST can
detect some, but not all, serious hardware problems before the OS boots.

PPD See PostScript Printer Definition (PPD).

PPP See Point-to-Point Protocol (PPP).

PPP over Ethernet (PPPoE) A variant of the Point-to-Point Protocol (PPP) that’s opti-
mized for use over Ethernet rather than RS-232 serial connections. PPPoE is used by
some DSL providers.

PPPoE See PPP over Ethernet (PPPoE).

04836book.indd 534 1/9/09 12:13:11 PM

Glossary 535

primary partition A type of x86 partition that’s defined in a data structure contained in
the hard disk’s partition table in the MBR. An x86 computer can host only four primary
partitions per hard disk.

print queue A storage place for files waiting to be printed.

Printer Control Language (PCL) A language developed by Hewlett-Packard for controlling
printers. (Many of Hewlett-Packard’s competitors now use PCL.) PCL is most commonly
found on mid-range laser printers, but some ink-jet printers also support the language. Several
PCL variants exist, the most common ranging from PCL 3 to PCL 6.

printer driver A software component that converts printable data generated by an appli-
cation into a format that’s suitable for a specific model of printer. In Linux, printer drivers
usually reside in Ghostscript, but some applications include a selection of printer drivers to
print directly to various printers.

private key One of two keys used in certain types of cryptography. The private key should
be carefully guarded against theft. See also encryption key and public key.

privileged port A port (see port number) that’s numbered less than 1024. Linux restricts
access to such ports to root. In networking’s early days, any program running on a privileged
port could be considered trustworthy because only programs configured by professional sys-
tem administrators could be run on such ports. Today, that’s no longer the case. See also
unprivileged port.

process A piece of code that’s maintained and run by the Linux kernel separately from
other pieces of code. Most processes correspond to programs that are running. One program
can be run multiple times, resulting in several processes.

protocol stack A collection of drivers, kernel procedures, and other software that
implements a standard means of communicating across a network. Two computers must
support compatible protocol stacks to communicate. The most popular protocol stack
today is TCP/IP. Also called a network stack.

public key One of two keys used in certain types of cryptography. The public key is
frequently given to the other side in a communication link. See also encryption key and
private key.

R
random access A method of access to a storage device (RAM, hard disk, and so on) by
which information may be stored or retrieved in an arbitrary order with little or no speed
penalty. See also sequential access.

RAM See random access memory (RAM).

04836book.indd 535 1/9/09 12:13:11 PM

536 Glossary

random access memory (RAM) Memory that can be randomly accessed. More specifi-
cally, RAM can be read and written with ease and makes up the bulk of the memory in
modern computers.

real-time clock (RTC) See software clock.

recursive lookup A method of name resolution in which the DNS server queries a series
of DNS servers, each of which has information about more and more specific networks, in
order to locate the IP address associated with a hostname.

redirection A procedure in which a program’s standard output is sent to a file rather than to
the screen or in which the program’s standard input is obtained from a file rather than from
the keyboard. See also standard input and standard output.

regular expression A method of matching textual information that may vary in important
ways but that contains commonalities. The regular expression captures the commonalities
and uses various types of wildcards to match variable information.

ReiserFS One of several journaling filesystems for Linux. Developed from scratch for Linux.

release number See build number.

Rock Ridge extensions A set of extensions to the ISO-9660 filesystem that enable storage
of Unix-style long filenames, ownership, permissions, and other filesystem features on an
ISO-9660 filesystem. See also ISO-9660 and Joliet.

root directory The directory that forms the base of a Linux filesystem (meaning 2). All
other directories are accessible from the root directory, either directly or via intermediate
directories.

root filesystem See root directory.

root kit A set of scripts and other software that enable script kiddies to break into
computers.

root servers A set of DNS servers that deliver information to other DNS servers about
top-level domains (.com, .net, .us, and so on). DNS servers consult the root DNS servers
first when performing full recursive DNS lookups.

RPM See RPM Package Manager (RPM).

RPM Package Manager (RPM) A package file format and associated utilities designed by
Red Hat but now used on many other distributions as well. RPM features excellent depen-
dency tracking and easy installation and removal procedures.

RTC See real-time clock (RTC).

runlevel A number associated with a particular set of services that are being run. Changing
runlevels changes services or can shut down or restart the computer.

04836book.indd 536 1/9/09 12:13:11 PM

Glossary 537

S
Samba A server that implements the SMB/CIFS file-sharing protocols for Linux.

SAS See Serial Attached SCSI (SAS).

SATA See Serial ATA (SATA).

scalable font A font whose characters are defined in terms of a series of lines and curves.
Scalable fonts are easily scaled to fit any display, printer, or other output device, but this
scaling operation consumes CPU time. Also known as an outline font. See also bitmap font.

script kiddies Individuals with little knowledge or skill who break into computers using
scripts created by others. Such break-ins often leave obvious traces, and script kiddies fre-
quently cause collateral damage that produces system instability.

SCSI See Small Computer System Interface (SCSI).

Second Extended File System (ext2fs or ext2) The most common filesystem (meaning 1)
in Linux from the mid-1990s through approximately 2001.

Secure Shell (SSH) A remote login protocol and program that uses encryption to ensure
that intercepted data packets cannot be used by an interloper. Generally regarded as the
successor to Telnet on Linux systems.

sendmail A popular SMTP mail server for Linux and Unix.

sequential access A method of accessing a storage medium. Requires reading or writing
data in a specific order. The most common example is a tape; to read data at the end of a
tape, you must wind past the interceding data. See also random access.

Serial ATA (SATA) A type of ATA interface that uses serial data transfer rather than the
parallel data transfers used in older forms of ATA. See also parallel ATA (PATA).

Serial Attached SCSI (SAS) A type of SCSI interface that uses serial data transfer rather
than the parallel data transfers used in older forms of SCSI.

set group ID (SGID) A special type of file permission used on a program file to make
the program run with the permissions of its group. (Normally, the user’s group permis-
sions are used.)

set user ID (SUID) A special type of file permission used on a program file to make the
program run with the permissions of its owner rather than those of the user who runs
the program.

SGID See set group ID (SGID).

shareable files Files that can be reasonably shared with another computer, as in users’
home directory files and program files in /opt or /usr.

04836book.indd 537 1/9/09 12:13:12 PM

538 Glossary

shared library See dynamic library.

shell A program that provides users with the ability to run programs, manipulate files,
and so on.

shell history A log of commands typed at a shell. The shell history enables easy repetition
of a previously typed command.

shell script A program written in a language that’s built into a shell.

signal In reference to processes, a code that the kernel uses to control the termination of
the process or to tell it to perform some task. Signals can be used to kill processes.

Simple Mail Transfer Protocol (SMTP) The most common push mail protocol on the Inter-
net. SMTP is implemented in Linux by servers such as sendmail, Postfix, Exim, and qmail.

skeleton directory A directory, typically /etc/skel, that holds files that should be copied
to each new user’s home directory as the user’s account is created.

Small Computer System Interface (SCSI) An interface standard for hard disks, CD-ROM
drives, tape drives, scanners, and other devices.

smart filter A program, run as part of a print queue, that determines the type of a file and
passes it through appropriate programs to convert it to a format the printer can handle.

smart relay A mail server configuration that involves sending all outgoing mail to a specific
upstream mail server rather than directly to the destination system. Such configurations are
common on small networks in which the ISP blocks direct SMTP connections to any but its
own mail server as an anti-spam measure or when you want one of your own systems to handle
all of a network’s outgoing mail as a tracking measure.

SMTP See Simple Mail Transfer Protocol (SMTP).

social engineering The practice of convincing individuals to disclose sensitive information
without arousing suspicion. Social engineers may pretend to be system administrators to ask
for passwords, for instance. See also phishing.

socket A programming construct enabling connection to network connection endpoints
(the combination of IP addresses and port numbers).

soft link A type of file that refers to another file on the computer. When a program tries
to access a soft link, Linux passes the contents of the linked-to file to the program. If the
linked-to program is deleted, the soft link stops working. Deleting the soft link doesn’t
affect the original file. Also referred to as a symbolic link. See also hard link.

software clock A type of clock maintained by a running Linux system and used by most
software programs that must refer to the time. See also hardware clock.

04836book.indd 538 1/9/09 12:13:12 PM

Glossary 539

software modem A modem that implements key functionality in software that must be run
by the host computer. These modems require special drivers, which are uncommon in Linux.

source code The version of a program written by a human and typically stored in plain-
text (ASCII) file format. Source code is converted to a binary form that a computer can run
by a compiler.

spool directory A directory in which print jobs, mail, or other files wait to be processed.
Spool directories are maintained by specific programs, such as the printing system or SMTP
mail server.

SQL See Structured Query Language (SQL).

squashing In the context of the NFS file server, this refers to changing the effective UID or
GID of an access request to limit the system’s vulnerability. The root account on the client is
often squashed to the nobody account on the server.

SSH See Secure Shell (SSH).

standard error An output stream that’s reserved for high-priority messages, such as errors.
See also standard output.

standard input The default method of delivering input to a program. It normally corre-
sponds to the keyboard at which you type.

standard output The default method of delivering purely text-based information from a
program to the user. It normally corresponds to a text-mode screen, xterm window, or the
like. See also standard error.

stateful packet inspection A firewall tool in which a packet’s state (that is, whether it’s
marked to begin a transaction, to continue an existing exchange, and so on) is considered in
the filtering process.

static file A file that seldom changes. Partitions that hold nothing but static files may
be mounted read-only to minimize the risk of accidental or malicious changes to the
partition’s files.

static library A type of library that’s compiled into the program’s main executable file.
This contrasts with a dynamic library.

sticky bit A special file permission bit that’s most commonly used on directories. When
set, only a file’s owner may delete the file, even if the directory in which it resides can be
modified by others.

stratum In the context of the Network Time Protocol (NTP), the distance of a server from
an atomic clock or other original time source. Stratum 0 servers are such sources but can’t
be contacted directly except by a stratum 1 server. Stratum 2 servers set their clocks from
stratum 1 servers, stratum 3 servers set their clocks from stratum 2 servers, and so on.

04836book.indd 539 1/9/09 12:13:12 PM

540 Glossary

stream Text or other input or output as processed by a program. Examples include files,
keyboard input, and output to a screen.

Structured Query Language (SQL) A language designed for interacting with databases.

subdomain A subdivision of a domain. A subdomain may contain computers or subdo-
mains of its own.

subnet mask See network mask.

SUID See set user ID (SUID).

super server A server that listens for network connections intended for other servers and
launches those servers. Examples on Linux are inetd and xinetd.

superblock A filesystem (meaning 1) data structure that holds critical information about
the filesystem, such as its size and revision number.

superuser A user with extraordinary rights to manipulate critical files on the computer.
The superuser’s username is normally root.

swap file A disk file configured to be used as swap space.

swap partition A disk partition configured to be used as swap space.

swap space Disk space used as an extension to a computer’s RAM. Enables a system to
run more programs or to process larger data sets than would otherwise be possible.

switch A type of network hardware that serves as a central exchange point in a net-
work. Each computer has a cable that links to the switch, so all data pass through the
switch. A switch usually sends data only to the computer to which the packets are
addressed. See also hub.

symbolic link See soft link.

system clock See hardware clock.

system cron job A cron job that handles system-wide maintenance tasks, like log rotation
or deletion of unused files from /tmp. See also user cron job.

System V (SysV) A form of AT&T Unix that defined many of the standards used on
modern Unix systems and Unix clones, such as Linux.

SysV See System V (SysV).

SysV startup script A type of startup script that follows the System V startup standards.
Such a script starts one service or related set of services.

04836book.indd 540 1/9/09 12:13:12 PM

Glossary 541

T
tarball A package file format based on the tar utility. Tarballs are easy to create and are
readable on any version of Linux and on most non-Linux systems. They contain no depen-
dency information, and the files they contain aren’t easy to remove once installed.

TCP See Transmission Control Protocol (TCP).

TCP/IP See Transmission Control Protocol/Internet Protocol (TCP/IP).

terminal program A program that’s used to initiate a simple text-mode connection
between two computers, especially via a modem or RS-232 serial connection.

terminated In the context of SCSI devices, refers to the presence of a resistor pack that
prevents signals from bouncing back from the end of a SCSI chain. The devices on both
ends of a SCSI chain must be terminated, but other devices must not be terminated.

Third Extended File System (ext3fs or ext3) A variant of the Second Extended Filesys-
tem (ext2 or ext2fs) that adds a journal to reduce startup times after a power failure or sys-
tem crash. See also journaling filesystem.

Transmission Control Protocol (TCP) A major transport-layer protocol type in modern
networking. TCP supports error correction and other features that are helpful in maintain-
ing a link between two computers.

Transmission Control Protocol/Internet Protocol (TCP/IP) The most important protocol
stack in common use today, and the basis for the Internet.

TrueType A font format developed by Apple and dominant in the Mac OS and Windows
worlds. TrueType support in Linux is provided by certain font servers, by XFree86 4.x, by
X.org-X11, and by Xfs. See also PostScript Type 1.

trusted hosts A security system in which the server trusts a specified set of clients to
manage key aspects of the security. The trusted hosts model is used by NFS and some other
Linux servers but is risky on the Internet at large.

tunnel The process of using one protocol to carry another protocol’s traffic. Tunneling
enables you to gain the advantages of one protocol when using another. For instance, the
Secure Shell (SSH) may be used to tunnel various other protocols, thus adding encryption to
a non-encrypted protocol.

twisted-pair A type of wiring in which pairs of wires are wrapped around each other (and
typically enclosed in a plastic sheath). Twisted-pair cabling is commonly used for Ethernet
and certain other network cabling. Many telephone wires also use twisted-pair cabling.

04836book.indd 541 1/9/09 12:13:12 PM

542 Glossary

U
UDF See Universal Disc Format (UDF).

UDP See User Datagram Protocol (UDP).

UHCI See Universal Host Controller Interface (UHCI).

UID See user ID (UID).

umask See user mask (umask).

Unicode A standard for representing text in numerous alphabets and other writing sys-
tems. See also Unicode Transformation Format (8-bit).

Unicode Transformation Format (8-bit) A variable-length encoding format for Unicode.
UTF-8 is slowly supplanting ASCII as a standard encoding method.

Universal Disc Format (UDF) A next-generation optical disc filesystem, frequently used
on DVD-ROMs.

Universal Host Controller Interface (UHCI) A common hardware standard for managing
USB 1.x ports.

Universal Serial Bus (USB) A type of interface for low- to medium-speed external
devices, such as keyboards, mice, cameras, modems, printers, scanners, and removable disk
drives. USB 2.0 increases the speed to the point that USB is useable for hard disks in less-
demanding applications.

unprivileged port A port (see port number) that’s numbered greater than 1024. Such
ports may be accessed by any user and so are commonly used by client programs and by a
few servers that may legitimately be run by ordinary users. See also privileged port.

unshareable file A file that should not be shared with other computers. Examples include
system-specific configuration files (such as most of /etc) and system-specific queue directo-
ries in certain subdirectories of /var.

USB See Universal Serial Bus (USB).

USB hub A piece of hardware that enables connecting multiple USB devices to a single
USB connector on a computer.

user cron job A cron job created by an individual user to handle tasks for that user, such
as running a CPU-intensive job late at night when other users won’t be disturbed by the
job’s CPU demands. See also system cron job.

User Datagram Protocol (UDP) A transport-layer protocol used on the TCP/IP stack.
UDP is a simple and efficient protocol, but it lacks error checking and other advanced fea-
tures that can be helpful in maintaining a connection.

04836book.indd 542 1/9/09 12:13:13 PM

Glossary 543

user ID (UID) A number associated with a particular account. Linux uses the UID inter-
nally for most operations, and it converts to the associated username only when interacting
with people.

user mask (umask) A bit pattern representing the permission bits that are to be removed
from new files as they’re created by processes.

username The name associated with an account, such as theo or miranda. Linux user-
names are case sensitive and may be from 1 to 32 characters in length, although they’re usu-
ally entirely lowercase and no longer than 8 characters.

UTC See Coordinated Universal Time (UTC).

UTF-8 See Unicode Transformation Format (8-bit).

V
variable In computer programming or scripting, a placeholder for data. Variables may
change from one run of a program to another, or even during a single run of a program.

variable file A file whose data may change at any time. Examples include user data files
and queues maintained by servers.

virtual filesystem A filesystem that doesn’t correspond to a real disk partition, removable
disk, or network export. A common example is /proc, which provides access to informa-
tion about the computer’s hardware.

W
widget A control or decoration in a GUI display, such as a button or menu.

widget set A collection of programming tools that help programmers create GUI displays,
such as dialog boxes, menus, and scroll bars.

wildcard A character or group of characters that, when used in a shell as part of a file-
name, matches more than one character. For instance, b??k matches book, back, and buck,
among many other possibilities.

window manager A program that provides decorative and functional additions to the
plain windows provided by X. Linux supports dozens of window managers.

04836book.indd 543 1/9/09 12:13:13 PM

544 Glossary

Y
Yellow Dog Updater, Modified (YUM) A package management tool associated with RPM
packages. YUM enables direct package installation and updates from network repositories,
including dependency resolution.

YUM See Yellow Dog Updater, Modified (YUM).

X
X See X Window System.

X core fonts Fonts managed by the X server.

X Display Manager Control Protocol (XDMCP) A protocol for managing X connections
across a network. XDMCP is also used for displaying a local GUI login screen for Linux
workstations. Common XDMCP servers for Linux include the X Display Manager (XDM),
the GNOME Display Manager (GDM), and the KDE Display Manager (KDM).

X logical font description (XLFD) A format for describing X core fonts. Programs use the
XLFD when telling X to display a font, and the XLFD also appears in X core font configu-
ration files.

X server A program that implements X for a computer; especially the component that
interacts most directly with the video hardware.

X Window System The GUI environment for Linux. A network-aware, cross-platform
GUI that relies on several additional components (such as a window manager and widget
sets) to provide a complete GUI experience. See also X server, XFree86, and X.org-X11.

XDMCP See X Display Manager Control Protocol (XDMCP).

XFree86 A set of X servers and related utilities for Linux and other OSs. Abandoned on
most distributions in favor of X.org-X11.

XFS See Extents File System (XFS).

XLFD See X logical font description (XLFD).

X.org-X11 The most common X server for Linux. Derived from XFree86.

04836book.indd 544 1/9/09 12:13:13 PM

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions
of a topic. Italicized page numbers indicate illustrations.

A
.a filename extension, 77
Accelerated-X server, 263–264
access

files. See permissions
remote, 285–289, 286
root, 488–489
SSH, 497
xinetd configuration, 475–476

access control lines in CUPS printing, 304
access control lists (ACLs), 193
access times, file, 179, 199
accessibility issues, 289–291, 290
Accessibility tab, 290, 290
accounts. See users and user accounts
ACLs (access control lists), 193
actions

runlevels, 237
system log files, 345

Active Directory (AD) domains, 337
active partitions, 234
Address Resolution Protocol (ARP), 386
addresses

DMA, 111
I/O, 109–111
IP. See IP addresses
network. See network addresses

adduser command, 328–329
administration. See system administration
administrators, group, 340
Advanced Linux Sound Architecture

(ALSA) audio drivers, 437
Advanced Technology Attachment (ATA)

hard disk interfaces, 104

Aladdin Free Public License (AFPL)
Ghostscript, 301

alias command, 427
aliases

commands, 427, 489
e-mail, 447
root, 488

aliases file, 447
aliasing, font, 280
alien utility, 71–72
allowed IP and network addresses, 475
allowed users lists

at command jobs, 367
cron jobs, 363

alphabetic tests in SELECT, 456
ALSA (Advanced Linux Sound

Architecture) audio drivers, 437
alternate configuration files, 226
American Standard Code for Information

Interchange (ASCII), 296
ampersands (&)

background programs, 89, 426
redirection, 15
scripts, 431, 436

anacron program, 365–367
analysis tools for system log files, 351
and operators

scripts, 436
SELECT, 456

anonymous FTP sites, 412
anti-aliasing for fonts, 280
aplay command, 437
Appearance Preferences dialog box,

292, 292
append mode attribute, 199

04836book.indd 545 1/7/09 9:45:38 AM

546 appending files – Berkeley Standard Distribution (BSD)

appending files
archive, 181–182
limiting, 199

AppleTalk protocol, 383
apt-cache program, 63
apt-get program, 62–66, 71
aptitude package manager, 68–69
architecture

packages, 47
printing, 299–300

archiving files, 179
cp command, 176–177
cpio program, 182–184
dd command, 184
tar utility, 179–181

arguments, command line, 17
ARP (Address Resolution Protocol), 386
ASCII (American Standard Code for

Information Interchange), 296
assignment of variables, 12, 288, 295,

365, 433–435
asterisks (*)

case statements, 437
cron jobs, 361
domains, 489
facilities, 344–345
filenames, 173–174
grep, 32
netstat, 477
NTP servers, 359
passwords, 335
regular expressions, 30
route tracing, 407
SELECT, 455–456
services, 240
XDM server access, 284

at command, 366–367
at signs (@) for system log files, 345
ATA (Advanced Technology Attachment)

hard disk interfaces, 104
atomic clocks, 355
atq program, 367

attributes
files, 199
SQL, 450, 450

authentication in SSH, 497, 499
authorized_keys file, 498
auto filesystem mounting, 156
AutoRepeat keyboard setting, 268
available kernel modules display, 119

B
back-quote characters (`)

in scripts, 434
text with, 17

background graphics in GRUB, 229
background processes, 89
backslashes (\)

bash prompt, 426
filenames, 173
regular expressions, 30–31

backtick characters(`)
in scripts, 434
text with, 17

BackTrack tool, 482
backups

filesystem mounts, 160
optical media, 185
partitions for, 127

bad-block checks, 140
banners for print jobs, 309
bash (Bourne Again Shell), 4–5, 429
bash_logout script, 428
/.bashrc file, 11
Basic Input/Output System (BIOS)

and boot loaders, 221, 221
boot process, 234
role, 104–106, 105

basic regular expressions, 30
Berkeley Internet Name Domain

(BIND), 70
Berkeley Standard Distribution (BSD), 202

04836book.indd 546 1/7/09 9:45:38 AM

bg command – caches 547

bg command, 89
/bin directory, 204
/bin/sh file, 5
binary package creation, 45
BIND (Berkeley Internet Name

Domain), 70
BIOS (Basic Input/Output System)

and boot loaders, 221, 221
boot process, 234
role, 104–106, 105

bitmap fonts, 276
blank lines with cat, 18
block devices, 190
blocking routes, 401
body numbering style, 24
/boot directory, 204
boot disks and devices

geometry, 111–113, 112
LILO option, 226

/boot/grub/grub.conf file, 227–228
/boot/grub/menu.lst file, 227–228
/boot/grub partition, 229
boot images, 225
boot loaders

GRUB, 227–232
LILO, 222–227
overview, 220–222, 221
third-party, 231

boot managers, 220
/boot partition, 131
boot process, 111, 232

exam essentials, 249–250
extracting information about, 232–233
without keyboards, 106
messages, 233–234
review questions, 251–257
runlevels. See runlevels
steps, 234–235
summary, 249
Vi editor, 244–248, 246

boot sectors, 111, 221–222
bootable partitions, 135

bootlogd daemon, 233
BOOTPROTO variable, 397
BootX boot loader, 231
bounce keys option, 290
Bourne shell (bsh), 4–5
Bourne Again Shell (bash), 4–5, 429
braces ({})

/etc/apt/apt.conf, 70
functions, 438
log rotation files, 349
xinetd configuration, 476

brackets ([])
filenames, 174
regular expressions, 30

Braille display, 293
breaking files into pieces, 21–22
BRLTTY project, 293
broadcast queries, 386
broadcasting data, 389–390
browsing control in CUPS printing, 304
browsing in IPP, 303
BSD (Berkeley Standard Distribution), 202
BSD ps options, 84
bsh shell (Bourne), 4
bugs in e-mail servers, 448
build numbers for packages, 47
buildarchtranslate lines, 57
bytes

counting, 29
extracting text by, 28
splitting files by, 21–22

C
C library (libc), 77
C shell, 5
cabling, 379–380
caches

filesystem unmounting, 159
library, 82
package, 63

04836book.indd 547 1/7/09 9:45:38 AM

548 carats (^) – command completion

carats (̂)
cat, 18
regular expressions, 30

carbon copy addresses, 445
case and case-sensitivity

command history text, 10
filenames, 173
passwords, 486
regular expressions, 31
sorting files, 21
usernames, 325
Vi editor, 247–248

case statements, 437
cat command, 18
cd command, 6
cdrecord command, 185
central processing units (CPUs), 104

information about, 83
limits, 490
process priority, 86
process time, 86

cfdisk tool, 234
chage command, 333–334, 488
chain loading, 222, 230
channels in DMA, 111
character devices file type code, 190
character set conversions, 298
characters

counting, 29
extracting text by, 28
regular expressions, 30
translating, 22

chattr command, 199
check-update command, 53
checksums for packages, 45
chgrp command, 189, 326
chipsets in boot messages, 233
chkconfig command, 201,

239–240, 240
chmod command, 194–197, 430
chords, mouse, 269

chown command
groups, 326
options, 188–189
and UIDs, 333

CHS (cylinder/head/sector) geometry,
112–113, 129

Classless Inter-Domain Routing (CIDR),
387, 389

clean command, 54
cleaning Debian Packages, 65, 69
click options, 290–291
clients

NTP, 359–360
remote, 286–289
vs. servers, 395
X Windows System, 286, 286

clocks, 352–355
codes

file type, 190
partition type, 128

codesets, 296
coldplug devices, 113–114
colons (:)

chown, 188
/etc/group, 341
/etc/inittab, 237
/etc/passwd, 334–335
hardware addresses, 386
IP addresses, 387
PATH directories, 11, 80, 424
SSH file copying, 497–498
Vi editor, 245

color
file listings, 174–175
X Windows System settings, 272–274

color ink-jet printers, 301
columns in SQL, 450, 450
combining

files, 18–20
tables, 457–458

command completion, 8–9

04836book.indd 548 1/7/09 9:45:38 AM

command lines – copy-out mode 549

command lines, 4
exam essentials, 34–35
generating, 17
regular expressions. See

regular expressions
review questions, 36–42
shells. See shells and shell

environment
summary, 34
text filter commands, 17–18

combining files, 18–20
formatting files, 23–26
summarizing files, 28–29
transforming files, 20–23
viewing files, 26–28

Command mode in Vi editor, 245
commands

aliases, 427, 489
help system, 12–13
history, 9–10
internal and external, 6–8
launching processes, 86
piping, 16
redirecting, 14–16
scripts, 430–432
streams, 13–14

commas (,)
comments, 335
cron jobs, 361
ENUM lists, 454
facilities, 344–345
file modes, 195
filesystem lists, 158
fonts, 280
groups, 329
GRUB drive numbers, 228
mount options, 160
SELECT, 456
sort fields, 21
SSH, 495
user lists, 341
Vi, 248

comments
aliases file, 447
anacron jobs, 365
configuration files, 335
/etc/apt/sources.list, 63
/etc/inetd.conf, 472
/etc/lilo.conf, 223
/etc/security/limits.conf, 489
filesystem mounting, 159
log rotation files, 347
scripts, 430
SSH configuration, 495
system log files, 344
user accounts, 328

Common Unix Printing System (CUPS),
299–300, 302

configuration files, 303–305
printer definitions, 305
web-based utilities, 305–308, 306

comparing tar files, 181
compression options

file attribute, 199
log rotation files, 349

computer address, 387
concatenating files, 18, 181
conditional expressions, 435–437
configuration files

examining, 482–483
shell environment, 427–429

conflicts, package, 72–76
connections, network. See network

connections
contrast settings, 292
converting

character sets, 298
package formats, 71–72
spaces to tabs, 22–23
tabs to spaces, 20

Coordinated Universal Time (UTC), 294,
352–354

copy-in mode, 182
copy-out mode, 182

04836book.indd 549 1/7/09 9:45:39 AM

550 copy-pass mode – Debian packages

copy-pass mode, 182
copying files, 176–177, 497–498
core dumps, 490
corrupting disks, 159
cp command, 176–177
cpio program, 52, 179, 182–184
CPUs (central processing units), 104

information about, 83
limits, 490
process priority, 86
process time, 86

Crack program, 487
crackers, 470
CREATE DATABASE command, 452
CREATE TABLE command, 453
creation date in file listings, 176
credentials option, 161
cron program

for anacron, 366
job creation, 362–364
log rotation, 347–348
purpose, 360–361

crontab utility, 362–363
crontabs, 362
cross-platform partitioning, 136
csh shell, 5
CUPS (Common Unix Printing System),

299–300, 302
configuration files, 303–305
printer definitions, 305
web-based utilities, 305–308, 306

CUPS Driver Development Kit, 305
cupsd daemon, 302
cupsdisable command, 311
cupsenable command, 311
curly braces ({})

/etc/apt/apt.conf, 70
functions, 438
log rotation files, 349
xinetd configuration, 476

current directory, 425

current runlevels, 241
cut command, 28–29, 431
cylinder/head/sector (CHS) geometry,

112–113, 129
cylinders, 112

D
D-Bus (Desktop Bus), 114
daemons, 343
dashes (-)

attributes, 199
cron jobs, 361
filenames, 172–174
filesystem options, 149
limits, 490
lprm, 311
ls options, 176
permissions, 190–191
process priority, 90
ps options, 84
ranges, 22, 30

Data Display Channel (DDC) feature, 271
data pipes, 16
data types in SQL, 450–451
databases

MySQL. See MySQL
network account, 337
SQL, 449–451

datagrams, 346–347
date command, 294, 353
day setting for at command, 367
dd command, 179, 184
DDC (Data Display Channel) feature, 271
DDK (Driver Development Kit), 305
deactivation date, 336
Debian packages, 59

apt-cache commands, 63
apt-get commands, 63–66
aptitude manager, 68–69

04836book.indd 550 1/7/09 9:45:39 AM

debounce keys – Digital Subscriber Line (DSL) connections 551

converting to, 72
distributions and conventions,

53, 59–60
dpkg commands, 60–62
dselect program, 67–68, 68
managing, 66–67
vs. other package formats, 69–70
reconfiguring, 69
Synaptic tool, 69
tools configuration, 70–71

debounce keys, 290
debugfs command, 143, 146–147
debugging

filesystems, 146–147
network protocols, 410

defaults
configuration file shells, 335
CUPS printing policy, 304
filesystem options, 155
fonts, 291–292, 292
groups, 325, 328
GRUB OS, 229
LILO stanzas, 224
login shells, 329
ownership and permissions, 197–198
routes, 400
runlevels, 236, 241

delay periods with anacron jobs, 365
DELETE command, 459
deleted inodes, 147
deleting

accounts, 337
command history text, 9
directories, 187
duplicate lines, 23
files, 178, 199
group passwords, 340
groups, 342
MySQL data, 459
partitions, 134, 136
users from groups, 340

dependencies
apt-cache, 63
kernel modules, 119
packages, 45, 72–76
shared libraries, 81

deplist command, 54
depth

color, 272–274
files searches, 207
hard disk monitoring, 152

DESCRIBE command, 454
Desktop Bus (D-Bus), 114
/dev directory, 114, 206
/dev/cdrom directory, 124
/dev/console directory, 233
/dev/dvd directory, 124
/dev/hd directory, 128–129
/dev/hda directory, 123
/dev/input/mice file, 269
/dev/mapper directory, 130
/dev/mouse file, 269
/dev/null file, 15
/dev/sd directory, 125, 128
/dev/st directory, 125
devices

coldplug and hotplug, 113–114
common, 110
file type codes, 190
filesystem mounts, 154, 156, 160
filesystem unmounts, 158
X Windows System settings, 272

df command, 150–151
DFS (Domain File System), 384
dhclient client, 396
DHCP (Dynamic Host Configuration

Protocol), 70, 386, 396–397
DHCP leases, 397
dhcpcd client, 396
dig program, 391
Digital Subscriber Line (DSL)

connections, 405

04836book.indd 551 1/7/09 9:45:39 AM

552 direct memory addressing (DMA) – dselect utility

direct memory addressing (DMA), 111
directives order for CUPS printing, 304
directories, 186

changing, 6
creating, 187
deleting, 187
disk use monitoring by, 152–153
file listings, 174–176
file type code, 190
hard links, 185
permissions, 187, 192

disabling
on-board hardware, 106
unused servers, 477–480

disallowed IP and network addresses, 475
disallowed users lists

at command jobs, 367
cron jobs, 364

disallowing group additions, 340
disks and disk drives

boot, 111–113, 112
corrupting, 159
floppy. See floppy disks and drives
GRUB references, 228–229
hard. See hard disks
RAM, 225, 230

display
contrast, 292
fonts, 291–292, 292
information about, 275
magnifier tools, 292–293
resolution and color depth, 272–273

DISPLAY environment variable, 425
DLLs (dynamic link libraries), 77
DMA (direct memory addressing), 111
dmesg command, 232–233
DNS (Domain Name System), 384

e-mail, 441
hostnames, 391–393, 403
settings, 398

dnsdomainname command, 403

dollar signs ($)
cat, 18
environment variables, 12, 423, 426
regular expressions, 30
script variables, 432–433

Domain File System (DFS), 384
Domain Name System (DNS), 384

e-mail, 441
hostnames, 391–393, 403
settings, 398

domainname command, 403
domains

Active Directory, 337
database, 450–451
hostnames, 390–391
limits, 489

dot files, 173–174
dots (.)

chown, 188
filenames, 172–174
IP addresses, 387
regular expressions, 30
TCP wrappers, 473
usernames, 325

dotted quad notation, 387
double-spaced output in printing, 25
dpkg

command set, 60–62
dependencies, 74

dpkg-reconfigure program, 69
Driver Development Kit (DDK), 305
drivers

audio, 437
manufacturer-provided, 264
network hardware, 396
printer, 300, 305
USB, 121–122
video cards, 271

DROP TABLE command, 459
.dsc files, 69
dselect utility, 62, 67–68, 68

04836book.indd 552 1/7/09 9:45:39 AM

DSL (Digital Subscriber Line) connections – erase command 553

DSL (Digital Subscriber Line)
connections, 405

du command, 152–153
dual-boot systems, 139
dumpe2fs command, 143–144
duplicate commands, 7
duplicate lines removal, 23
duplicate package files and features, 73
Dynamic Host Configuration Protocol

(DHCP), 70, 386, 396–397
dynamic libraries, 77
dynamic link libraries (DLLs), 77

E
e-mail, 440

encrypting, 501
exam essentials, 460–461
log rotation options, 349
overview, 440–442, 441
queues, 446–447
redirecting, 447–448
review questions, 462–468
sending and receiving, 444–446
server security, 448
software, 442–444
summary, 459–460

e2fsck command, 148–149
echo command

environment variables, 12, 425
scripts, 432
text lines, 6

editing command history, 9–10
EDITOR environment variable, 10, 342,

363, 425
editors

command history text, 10
scripts, 430
Vi, 244–248, 246

edquota command, 201

EEPROM (electronically erasable
programmable read-only memory), 104

EFI (Extensible Firmware Interface), 105
8.3 filenames, 138, 173
8-bit Unicode Transformation Format, 296
electronically erasable programmable

read-only memory (EEPROM), 104
Emacs editor, 9
Emacspeak speech synthesis product, 293
emergency disk systems, 146
emulation, mouse, 291
enabling

CUPS browsing, 304
on-board hardware, 106
quotas, 200–201

encryption
GPG, 501–504
passwords, 329, 486
SSH. See SSH (Secure Shell)
wireless networks, 380
X Windows System, 287

end of files, viewing, 26–27, 350
end of lines

cat, 18
regular expressions, 30

env command, 12, 342, 423, 425
env-update utility, 79
environment variables, 4

common, 423–426
purpose, 422–423
setting, 11–12
users, 342

equal signs (=)
aliases, 427
attributes, 199
database matches, 456
environment variables, 423
file modes, 195
system log files, 345
variables, 12, 435

erase command, 54

04836book.indd 553 1/7/09 9:45:39 AM

554 error protection – /etc/passwd file

error protection, partitions for, 127
esac statement, 437
escaping in regular expressions, 30–31
/etc directory

aliases, 447
executables in, 203

/etc/anacrontab file, 365–366
/etc/apt/apt.conf file, 70–71
/etc/apt/sources.list file, 63–64, 67, 70
/etc/at.allow file, 367
/etc/at.deny file, 367
/etc/bashrc file, 11, 342
/etc/cron.allow file, 363
/etc/cron.d directories, 361–362
/etc/cron.daily file, 365
/etc/cron.deny file, 364
/etc/cron.monthly file, 365
/etc/cron.weekly file, 365
/etc/crontab file, 361–362
/etc/crontab file.daily file, 361
/etc/cups directory, 303
/etc/cups/cupsd.conf file, 303–304
/etc/cups/ppd directory, 303
/etc/cups/printers.conf file, 303
/etc/dpkg/dpkg.cfg file, 70
/etc/env.d directory, 79
/etc/event.d directory, 237, 483
/etc/event.d/tty file, 483
/etc/fonts/local.conf file, 281
/etc/fstab file

filesystem checks, 149
filesystem mounting, 153, 159–161
quotas, 200
swap space, 142–143

/etc/group file, 325–327
editing, 339–340, 342
lines in, 341

/etc/gshadow file, 341–342
/etc/hostname file, 403
/etc/hosts file, 391–392, 403
/etc/hosts.allow file, 473, 497
/etc/hosts.deny file, 473, 497

/etc/hotplug directory, 122
/etc/hotplug/usb directory, 122
/etc/hotplug/usb.usermap file, 122
/etc/inetd.conf file, 471–473
/etc/inetd.d directory, 471–472
/etc/init.d directory, 302
/etc/init.d/ntpd restart command, 358
/etc/init.d/rc script, 238
/etc/init.d/shd script, 494
/etc/init.d/xdm start command, 266
/etc/init.d/xdm stop command, 266
/etc/init.d/xfs restart command, 280
/etc/inittab file

boot process, 235
runlevels, 237–238, 241–242
security issues, 483
XDMCP servers, 283

/etc/kde/kdm directory, 285
/etc/ld.so.cache file, 82
/etc/ld.so.conf.d directory, 79
/etc/ld.so.conf file, 79–81
/etc/lilo.conf file, 223–226, 245–248
/etc/localtime file, 294–295, 353
/etc/login.defs file, 328
/etc/logrotate.conf file, 347–350
/etc/logrotate.d directory, 347, 349–350
/etc/mail directory, 447
/etc/modprobe.conf file, 118
/etc/mtab file, 155, 158
/etc/network/interfaces file, 397–399, 402
/etc/networks file, 392
/etc/nologin file, 491, 497
/etc/nsswitch.conf file, 337, 392
/etc/ntp.conf file, 358–359
/etc/pam.d directory, 337
/etc/passwd file

editing, 330
fields, 334–335
GIDs and UIDs, 326–327
passwords, 487
user accounts, 325
usermod for, 332

04836book.indd 554 1/7/09 9:45:40 AM

/etc/profile file – extended HFS 555

/etc/profile file, 11, 198, 342–343, 425
/etc/rc.d directory, 302
/etc/rc.d/boot.local file, 76
/etc/rc.d/rc.local file, 76
/etc/rc.d/rc script, 238
/etc/resolv.conf file, 398
/etc/rpmrc file, 57
/etc/rsyslog.conf file, 344
/etc/security/limits.conf file, 489
/etc/services file, 396, 472–473, 477
/etc/shadow file, 341

fields, 335–337
passwords, 484, 487
usermod for, 332

/etc/skel directory, 342–343, 428
/etc/ssh file, 496
/etc/ssh_config file, 287
/etc/ssh/sshd_config file, 494–495, 500
/etc/sshd_config file, 287
/etc/sudoers file, 488–489
/etc/sysconfig directory, 283
/etc/sysconfig/clock file, 295
/etc/sysconfig/displaymanager file, 288
/etc/sysconfig/network file, 403
/etc/sysconfig/network-scripts/ifcfg-eth0

file, 397, 402
/etc/sysconfig/sysctl.conf file, 401
/etc/sysctl.conf file, 401
/etc/syslog.conf file, 344–346
/etc/timezone file, 295, 353
/etc/udev directory, 114
/etc/usbmgr directory, 122
/etc/usbmgr/usbmgr.conf file, 122
/etc/X11/fs/config file, 280
/etc/X11/gdm directory, 285
/etc/X11/gdm.conf file, 285
/etc/X11/gdm/gdm.conf file, 288
/etc/X11/kdm directory, 285
/etc/X11/X.orgX11 file, 265
/etc/X11/xdm directory, 288
/etc/X11/xdm/Xaccess file, 284
/etc/X11/xdm/xdm-config file, 284

/etc/X11/xdm/Xresources file, 284
/etc/X11/xdm/Xservers file, 288
/etc/X11/XF86Config file, 265
/etc/XF86Config file, 265
/etc/xinetd.conf file, 474–475
/etc/xinetd.d directory, 474
/etc/yum.conf file, 58
/etc/yum.repos.d directory, 58
Ethernet, 379–380

frames, 381–382
printers, 301

Evolution mail reader, 443
Ex mode in Vi editor, 245
exact matches with SELECT, 456
exclamation marks (!)

locked accounts, 330–331
passwords, 335
scripts, 430
system log files, 345
Vi editor, 248

exec command, 6
execute permissions, 190–192
Exim program, 442
exit command, 7
expand command, 20
expansion cards, 114–116
expansion rules for wildcards, 172–174
expiration dates for user accounts, 328,

333–334, 336
expired accounts, updating, 330
export command, 12, 435
exporting

environment variables, 12, 435
GPG keys, 502

expressions. See regular expressions
ext2fs or ext2 (Second Extended File

System), 137
ext3fs or ext3 (Third Extended File

System), 137, 148
ext4fs or ext4 (Fourth Extended File

System), 137
extended HFS, 139

04836book.indd 555 1/7/09 9:45:40 AM

556 extended partitions – Filesystem Hierarchy Standard (FHS)

extended partitions, 128, 128
extended regular expressions, 30–31
Extensible Firmware Interface (EFI), 105
Extents File System (XFS), 138, 148
external commands, 6–8, 430
external disks, 126
extracting

boot process information, 232–233
files, 147
RPM data, 52–53
tar files, 181
text, 28–29

F
facilities in system log files, 344–345
FAT (File Allocation Table) filesystem,

138–139
fc-cache command, 281
FCEDIT environment variable, 10
FDDI (Fiber Distributed Data

Interface), 379
fdformat command, 137
fdisk tool, 133–136, 141, 234
fetchmail program, 443
fg command, 89
FHS (Filesystem Hierarchy Standard)

common directories, 204–206
overview, 202–203, 203

fi keyword, 436
Fiber Distributed Data Interface

(FDDI), 379
Fibre Channel, 379
fields

extracting text by, 28
joining files by, 18–19
sort, 21
SQL, 450

File Allocation Table (FAT) filesystem,
138–139

file globbing, 174
file size in file listings, 176

File Transfer Protocol (FTP), 384
filenames, file searches by, 207
files, 171–172

archiving, 176–177, 179–184
attributes, 199
breaking into pieces, 21–22
combining, 18–20
copying, 176–177, 497–498
deleting, 178, 199
directories. See directories
exam essentials, 210–211
extracting, 147
formatting, 23–26
groups, 189
hexadecimal displays, 21
joining, 18–19
limits, 490
links, 185–186
listing, 174–176
locating. See locating files
modes, 194–198
moving, 177–178
naming, 172–174
octal displays, 20–21
open, 479–480
ownership, 176, 187–189
paging through, 27–28
permissions. See permissions
preparing for printing, 25–26
renaming, 177–178
review questions, 212–218
sorting, 21
summarizing, 28–29
summary, 210
time stamps, 178–179
transforming, 20–23
undeleting, 147
viewing, 26–28
word counts, 29

Filesystem Hierarchy Standard (FHS)
common directories, 204–206
overview, 202–203, 203

04836book.indd 556 1/7/09 9:45:40 AM

Filesystem Standard (FSSTND) – frames 557

Filesystem Standard (FSSTND), 202–203
filesystems

checking, 148–150
common types, 137–140
creating, 140–142
debugging, 146–147
information, 143–145
journals, 147–148, 199
layouts, 132–133
mounting, 153–161
partitions, 127, 137–142
tunable parameters, 145–146
tuning, 143–146
unmounting, 158–159
virtual, 109, 206

filters, 4
printing, 302
proxy, 476
text, 4, 17–18

combining files, 18–20
formatting files, 23–26
summarizing files, 28–29
transforming files, 20–23
viewing files, 26–28

find command, 17
archived files, 183
options, 206–207
scripts, 431
SUID/SGID files, 492
with UIDs, 338, 342

firewalls, 359, 476, 497
flash memory, 104
floppy disks and drives

boot loaders on, 222
corrupting, 159
detecting, 112
drivers, 109
formatting, 137
GRUB, 228
viruses from, 111

fmt command, 23
FontForge program, 277

fonts
default, 291–292, 292
directories, 277–278
paths, 278–279
servers, 276, 279–280
technologies and formats, 276–277
X core, 277–279
Xft, 280–281

fonts.dir file, 277–278
fonts.scale file, 278
Foomatic printer definitions, 305
footers numbering style, 24
for loops, 437–438
forcing actions

account deletion, 338
file overwrites, 176
filesystem unmounts, 158
group creation, 339
kernel module loading, 119
kernel module removal, 120
package installations, 74

form feeds in printing, 25
formats

fonts, 276–277
line numbering, 24
time, 353

formatting
partitions, 137
text files, 23–26

forward file, 448
forward slashes (/)

cron jobs, 361
directories, 177
filenames, 173
help system, 12
IP addresses, 387
paging, 27, 233

forwarding feature in X Windows
System, 287

Fourth Extended File System (ext4fs or
ext4), 137

frames, 381–382

04836book.indd 557 1/7/09 9:45:40 AM

558 FreeType library – GROUP BY command

FreeType library, 281
FROM clause in SELECT, 458
fsck command, 145, 148–149
fsck.ext2 file, 148
fsck.ext3 file, 148
FSSTND (Filesystem Standard), 202–203
FTP (File Transfer Protocol), 384, 411–412
full-duplex transmissions, 380
function keyword, 438
functions in scripts, 438–439

G
GAG boot loader, 231
gateway addresses, 398
GDM (GNOME Display Manager), 282

configuring, 285
remote access, 288

gdm startup script, 283
gdmconfig command, 285
General Public License (GPL), 46
Gentoo distribution, 79
geometry settings, 111–113, 112
gestures, mouse, 291
getfacl command, 193
Ghostscript, 300–302
GIDs (group IDs)

configuration files, 335
SGID files, 491–492
specifying, 339–341
users and groups, 326–327

gigabit Ethernet, 379
GIMP Print drivers, 305
GIMP Tool Kit (GTK+), 77
glibc (GNU C library) version, 77
global configuration files, 428
Globally Unique Identifiers (GUIDs), 129
globbing, 174
GMT (Greenwich Mean Time), 352
GNOME (GNU Network Object Model

Environment) desktop environment, 58

GNOME Display Manager (GDM), 282
configuring, 285
remote access, 288

GNOME On-Screen Keyboard (GOK), 291
gnome-system-monitor tool, 87
GNU C library (glibc) version, 77
GNU Enscript program, 25
GNU Ghostscript, 301
GNU Network Object Model

Environment (GNOME) desktop
environment, 58

GNU Parted tool, 129, 136
GNU Privacy Guard (GPG), 501

encrypting and decrypting data, 503
keys, 502–503
message signing, 504

GNU ps options, 84
GOK (GNOME On-Screen

Keyboard), 291
gpasswd command, 333, 340–341
GPG (GNU Privacy Guard), 501

encrypting and decrypting data, 503
keys, 502–503
message signing, 504

GPL (General Public License), 46
GPT system, 129
grand totals in hard disk monitoring, 152
Grand Unified Boot Loader. See GRUB

(Grand Unified Boot Loader)
graphical user environments (GUIs).

See X Window System
graphics for GRUB, 229
greater than signs (>)

library paths, 81
redirection, 15

Greenwich Mean Time (GMT), 352
grep command

piping, 16
with regular expressions, 31–32
scripts, 431
system log files, 350

GROUP BY command, 458

04836book.indd 558 1/7/09 9:45:40 AM

group IDs (GIDs) – hardware clock 559

group IDs (GIDs)
configuration files, 335
SGID files, 491–492
specifying, 339–341
users and groups, 326–327

groupadd command, 339
groupdel command, 342
groupmod command, 339–340
groups, 338–339

adding, 339
deleting, 342
files, 189
linking users in, 325–326
modifying, 339–341
permissions, 190–191
UIDs and GIDs, 326–327
user accounts, 328–329

grpquota option, 200
GRUB (Grand Unified Boot Loader), 220

global options, 229
installing, 230–231
interacting with, 232
nomenclature and quirks, 227–229
per-image options, 229–230

grub-install command, 230–231
GTK+ (GIMP Tool Kit), 77
GUI configuration tools, 402
GUIDs (Globally Unique Identifiers), 129
GUIs (graphical user environments).

See X Window System
gunzip utility, 184
Gutenprint drivers, 305

H
hackers, 470
HAL (Hardware Abstraction Layer)

daemon, 114
hald tool, 114
half-duplex transmissions, 380
halt command, 243

Halt On option, 106
hard disks

external, 126
GRUB, 228
layout, 126

filesystems. See filesystems
LVM, 130
mount points, 130–131
partitions. See partitions
swap space, 142–143

monitoring use, 150–153
PATA, 123–124
quotas, 200–202
SATA, 124
SCSI, 112, 123–126

hard limits, 490–491
hard links, 152, 185–186
hardware, 103–104

BIOS, 104–106, 105
boot disks and geometry settings,

111–113, 112
boot messages, 233
coldplug and hotplug devices, 113–114
configuration, 396
DMA addresses, 111
exam essentials, 162–163
expansion cards, 114–116
filesystems. See filesystems
hard disk layout, 126–132, 128
hard disks, 123–126
interrupt requests, 107–109
I/O addresses, 109–111
kernel modules, 116–120
network, 378–380, 381
partitions. See partitions
review questions, 164–170
summary, 162
USB devices, 120–122

Hardware Abstraction Layer (HAL)
daemon, 114

hardware addresses, 385–386
hardware clock, 352, 354

04836book.indd 559 1/7/09 9:45:41 AM

560 hash marks (#) – if keyword

hash marks (#)
aliases file, 447
anacron jobs, 365
/etc/apt/sources.list, 63
/etc/inetd.conf, 472
/etc/lilo.conf, 223
/etc/security/limits.conf, 489
filesystem mounting, 159
log rotation files, 347
rpm, 50, 56
scripts, 430
SSH configuration, 495
system log files, 344

hashbang lines, 430
hashing hostnames, 497
hashpling lines, 430
head command, 26, 350
headers

e-mail, 441
numbering style, 24
printing, 25

heads, drive, 112, 112
help

aptitude package manager, 69
with less, 28
partitions, 135
ps options, 84
shells, 12–13

here documents, 15
hexadecimal file display, 21
hidden files, 173
Hierarchical File System (HFS), 139
hierarchy of processes, 85
high-level formatting, 137
High-Performance Parallel Interface

(HIPPI), 379
history command, 10
history of commands, 9–10
home directories, 6

configuration files, 335
user accounts, 328–329

/home directory, 205
HOME environment variable, 424
/home partition, 131
host program, 391
hostname command, 403
HOSTNAME environment variable,

422–424
hostnames

addresses, 390–391
configuring, 403
hashing, 497
resolving, 391–393

hotplug devices, 113–114
hotplug tool, 122
HTTP (Hypertext Transfer Protocol),

305–306, 384
hubs

network, 380
USB, 121

hung processes, 88
hwclock utility, 353–354
Hypertext Transfer Protocol (HTTP),

305–306, 384
hyphens. See dashes (-)

I
ICMP (Internet Control Message

Protocol), 384
iconv utility, 298
ID numbers

group. See group IDs (GIDs)
GUIDs, 129
PIDs. See process IDs (PIDs)
SCSI disks, 125
UIDs. See user IDs (UIDs)

id_rsa file, 498
id_rsa.pub file, 498
identification codes for runlevels, 237
if keyword, 435–436

04836book.indd 560 1/7/09 9:45:41 AM

ifconfig command – ISPs (Internet service providers) as time source 561

ifconfig command
hardware addresses, 28, 386
IP addresses, 387, 398–399

ifdown command, 402
ifup command, 402
IMAP (Internet Message Access Protocol),

441, 443
immutable files, 199
importing GPG keys, 502
in.ftpd server, 472
inactive days settings, 334
incompatible libraries and support

programs, 73, 78
Industry Standard Architecture (ISA)

bus, 108
inet command, 387
inetd package, 471–473
info command, 54
info pages, 13
init program, 242
initialization process, 242
ink-jet printers, 301
inodes

deleted, 147
description, 144
information, 146
monitoring, 151

input/output (I/O) services, 105
input redirection, 14–16
InputDevice sections in X Windows

System, 268–269
inputrc script, 428–429
INSERT INTO command, 454
Insert mode in Vi editor, 245
insmod command, 118–119
install command, 53
installed file database, 45
interactive mode for copying

files, 176
internal commands, 6–8, 430

internationalization, 293–294
locale settings, 295–298
time zones, 294–295

Internet, 382
Internet Control Message Protocol

(ICMP), 384
Internet Message Access Protocol (IMAP),

441, 443
Internet Packet Exchange/Sequenced

Packet Exchange (IPX/SPX), 383
Internet Printing Protocol (IPP), 303, 308
Internet Protocol (IP), 383
Internet service providers (ISPs) as time

source, 357
internets, 382
interpreting boot process messages,

233–234
interrupt requests (IRQs), 107–109
intervals for filesystem checks, 145
I/O addresses, 109–111
IP (Internet Protocol), 383
IP addresses, 386–389

broadcasts, 389–390
netstat, 477
static, 398–400
xinetd configuration, 475

IP masquerading, 408
IPP (Internet Printing Protocol), 303, 308
iptables command, 359, 476
IPv6 (IP version 6), 385
IPX/SPX (Internet Packet Exchange/

Sequenced Packet Exchange), 383
IRQs (interrupt requests), 107–109
ISA (Industry Standard Architecture)

bus, 108
ISO-8859 codeset, 296
ISO-9660 filesystem, 139–140
isofs module, 117
ISPs (Internet service providers) as time

source, 357

04836book.indd 561 1/7/09 9:45:41 AM

562 JFS (Journaled File System) – LDPATH variables

J
JFS (Journaled File System), 138, 148
jobs

print, 309–311, 310
scheduling, 360

anacron, 365–366
at, 366–367
cron, 360–364

jobs command, 89
JOIN clause in SELECT, 458
join command, 18–19
joining files, 18–19
Joliet filesystem, 139
Journaled File System (JFS), 138, 148
journaling attribute, 199
journals, filesystem, 145–148, 199
jumpers for SCSI disks, 125

K
KDE (K Desktop Environment), 58
KDE Red Hat repository, 58
KDM (KDE Display Manager), 282

configuring, 285
remote access, 288

kdm startup script, 283
Kerberos, 337, 354–355
kernel

adding to LILO, 225–226
boot process, 234
GRUB, 229
information, 83

kernel modules
information, 116–117
loading, 118–119
removing, 119–120

kernel ring buffers, 232–233
Keyboard Preferences control panel,

289–291, 290

keyboards
accessibility issues, 289–291, 290
booting without, 106
configuring, 268
onscreen, 291

keyrings in GPG, 502
keys

GPG, 502–503
SSH, 495–496, 501

kill command, 91
killall command, 92
killing processes, 88, 91–92
klogd daemon, 343
kmag command, 293
KMag magnifier tool, 292–293
KMail program, 431, 443
Knoppix disk system, 146
konsole command, 6
kpm tool, 87
ksh shell (Korn), 5

L
labels

filesystem, 146, 154
OS, 225

LANG environment variable,
297–298, 424

languages in locales, 296
large disk support, 224
LBA (logical block addressing) mode,

113, 129
LC_ environment variables, 297
LD_LIBRARY_PATH environment

variable, 79–80, 424
LDAP (Lightweight Directory Access

Protocol), 337, 392
ldconfig command, 79–80, 82
ldd command, 80- 81
LDPATH variables, 79

04836book.indd 562 1/7/09 9:45:41 AM

leases – locating files 563

leases, DHCP, 396
left margin in printing, 25
length

passwords, 486
printing pages, 25–26

less pager
boot process messages, 233
help system, 12
system log files, 350
text files, 27–28

less than signs (<) for redirection, 15
/lib directory, 79, 204
/lib/libc.so/6 file, 77
/lib/modules directory, 116
libc (C library), 77
libraries, 44

missing, 73
shared. See shared libraries

Lightweight Directory Access Protocol
(LDAP), 337, 392

LILO (Linux Loader), 220, 222
adding kernels to, 225–226
global options, 223–224
interacting with, 226–227
per-image options, 225

line ends
cat, 18
regular expressions, 30

line numbers with cat, 18
Line Printer Daemon (LPD), 299
linear block addressing, 113
lines

duplicate, 23
merging, 19–20
numbering, 24–25

links
files, 185–186, 192
shared libraries, 80

Linux Documentation Project, 13
Linux Loader. See LILO (Linux Loader)
list_deleted_inodes command, 147
list_requests command, 147

listing files, 174–176, 479–480
Livna repository, 58
ln command, 80, 185–186
load average, displaying, 88
loaders. See boot loaders
loading

kernel modules, 118–119
X server modules, 267–268

LOADLIN boot loader, 231
local networks, 396

DHCP configuration, 396–397
GUI configuration tools, 402
hardware configuration, 396
hostnames, 403
ifup and ifdown commands, 402
network connection configuration,

403–405
routing configuration, 400–401
static IP addresses, 398–400

local security, 484–488
local time, 352, 354
locale command, 296–297
locales

changing, 297–298
description, 295–296
determining, 296–297
text-files, 298

localhost device addresses, 388
localinstall command, 54
localization, 293–294

locale settings. See locales
time zones, 294–295

LocalTalk networks, 379
localupdate command, yum, 54
locate utility, 207–208
locating files, 202

boot process messages, 233–234
directory conventions, 204–206
exercise, 209–210
FHS system, 202–203, 203
find command, 206–207
locate utility, 207–208

04836book.indd 563 1/7/09 9:45:41 AM

564 location of LILO – /media partition

whereis program, 208
which command, 208–209

location of LILO, 224
locking accounts, 330
log files, 324

rotation, 347
system. See system log files
tracking, 27

Logcheck tool, 351
logger tool, 346–347
logical block addressing (LBA) mode,

113, 129
logical operators

scripts, 436
SELECT, 456

logical partitions, 128, 128
logical volume management (LVM), 130
logins

limits setting, 489–491
without passwords, 498
SSH scripts, 499
X Windows System, 281–285, 282

logout command, 7
logout scripts, 428
logrotate tool, 347–348
long file listings, 175
long filename systems, 139, 173
loopback addresses, 388
loopback devices, 156
loops in scripts, 437–438
low-level formatting, 137
lpc utility, 311
LPD (Line Printer Daemon), 299
lpd command, 308
lpmove command, 311
lpq command, 311
lpr command, 299, 309–311, 310
lprm command, 311
ls command

file ownership, 188
links, 185

options, 174–176
permissions, 189

lsdel command, 147
lsmod command, 117
lsof program, 479–480
lspci command, 115–116
lsusb utility, 121–122
lvcreate utility, 130
LVM (logical volume management), 130
lvscan utility, 130

M
MAC (Media Access Control) addresses,

385–386
machine information, 83
machine names, 390
magnifier tools, 292–293
mail. See e-mail
mail command, 432
MAIL environment variable, 424
mail options for log rotation files, 349
mail program, 443–446
mail readers, 443
mail spools, 441
mail transfer agents (MTAs), 441
mailq program, 446
$MAILTO environment variables, 361
make utility, 178
man pages, 12–13
manufacturer-provided video drivers, 264
masquerade information, 408
master boot records (MBRs), 220–221, 221
master PATA disks, 123
matching lines in regular expressions, 31
MBRs (master boot records),

220–221, 221
Media Access Control (MAC) addresses,

385–386
/media directory, 206
/media partition, 132

04836book.indd 564 1/7/09 9:45:42 AM

memory – MySQL 565

memory, 104
libraries, 77
limits setting, 489–491
process use, 86, 88
video, 272–273

merging lines, 19–20
message signing in GPG, 504
messages

boot process, 233–234
system log files, 347

minus signs. See dashes (-)
misconfiguration of e-mail servers, 448
mismatched names, 73
missing libraries and support

programs, 73
mkdir command, 187
mkdosfs tool, 141
mke2fs program, 140
mkfontdir program, 277–278
mkfontscale program, 277–278
mkfs tool, 140
mkisofs command, 140, 185
mkpart command, 136
mkswap command, 142
/mnt directory, 205
/mnt partition, 132
modes

directories, 187
files, 194–198
monitors, 270–271
runlevel, 235–236
Vi editor, 245

modification time, changing, 179
modinfo command, 117
modprobe command

network hardware drivers, 396
options, 118–119
quotas, 201

module stacks, 120
modules

kernel, 116–120
X Windows System, 267–268

monitoring
hard disk use, 150–153
log files, 351
network port use, 478–479
print queues, 309–311, 310

monitors
contrast controls, 292
X Windows System settings, 270–271

month in sorting files, 21
mount command, 153, 201
mount points

filesystem mounts, 155, 160
filesystem unmounts, 158
partitions, 130–131

mounted filesystems, 153
mounted hard disks, 130
mounting filesystems, 153–161
mouse

accessibility issues, 289–291, 290
X Windows System settings, 269

moving
files, 177–178
partitions, 136
print jobs, 311

mpage command, 310–311
msdos filesystem code, 173
MTAs (mail transfer agents), 441
multi-column printing output, 25
multi-head displays, 275
multi-OS support, 126–127
multi-user mode, 236
multi-volume tar files, 181
multicasting, 387
multiple partitions, 133
multiple tests in SELECT, 456
mutt mail reader, 443
mv command, 177–178
MySQL, 449, 451

combining data, 457–458
databases and tables, 452–455
deleting data, 459
exam essentials, 460–461

04836book.indd 565 1/7/09 9:45:42 AM

566 mysql program – nl command

retrieving data, 455–456
review questions, 462–468
starting, 452
storing data, 454
summary, 459–460

mysql program, 452

N
nail program, 444–445
named pipes file type code, 190
named runlevels, 236
names

disks, 124
files, 172–174, 177–178
groups, 340–341
hostname resolution, 391–393
kernel, 83
kernel modules, 118
mismatched, 73
nodes, 83
packages, 47, 51
print jobs, 309

NAT (Network Address Translation)
routers, 388

Neighbor Discovery Protocol (NDP), 386
Nessus scanner, 481–482
nesting if/then/else clauses, 437
NET TIME command, 360
NetBEUI protocol, 383
netmasks, 387, 389, 398–401
netstat command, 408, 477–479
network account databases, 337
Network Address Translation (NAT)

routers, 388
network addresses, 384

broadcasting data, 389–390
hardware, 385–386
hostnames, 390–393
IP, 386–389
ports, 393–396
xinetd configuration, 475

Network Configuration tool, 402
network connections, 406

configuring, 403–405
FTP commands, 411–412
raw network traffic, 408–410
status, 408
Telnet, 410–411
testing, 406
tracing, 406–407

Network File System (NFS), 384
Network Information System (NIS), 337
network ports

overview, 393–396
use monitoring, 478–479

network printers, 308–309
network scanners, 481–482
network stacks, 378
Network Time Protocol (NTP), 354–355

client configuration, 359–360
overview, 355–356, 355
server configuration, 357–359, 359
time sources, 356–357

networking, 377
addresses. See network addresses
connections. See network connections
exam essentials, 412–413
hardware, 378–380, 381
local networks. See local networks
packets, 381
protocol stacks, 381–383, 383
review questions, 414–420
summary, 412
TCP/IP, 378

hardware, 378–380, 381
protocol stacks, 382, 383
types, 383–384

New Technology File System (NTFS), 139
newaliases command, 448
newgrp command, 198, 326
NFS (Network File System), 384
nice command, 90
NIS (Network Information System), 337
nl command, 24–25

04836book.indd 566 1/7/09 9:45:42 AM

nmap command – packages 567

nmap command, 481–482
NMap scanner, 481–482
NNTPSERVER environment variable, 12,

14, 424
node names, 83
non-blank lines numbering option, 24
non-Linux boot partitions, 225
non-Linux root, 230
non-x86 partitioning systems, 129
nslookup program, 391
NTFS (New Technology File System), 139
NTFS-3G filesystem, 139
NTP (Network Time Protocol), 354–355

client configuration, 359–360
overview, 355–356, 355
server configuration, 357–359, 359
time sources, 356–357

ntp.drift file, 356
ntp package, 358
ntpd package, 358
ntpdate command, 359–360
ntpq program, 358–359, 359
ntsysv utility, 240, 240
number of copies for print jobs, 309
numbering lines, 24–25
numbers in passwords, 486
numeric sorts, 21
numeric tests with SELECT, 456

O
octal file displays, 20–21
octal permissions, 197
od command, 20–21
on-board hardware, 106
onscreen keyboards, 291
open files listing, 479–480
open ports, 408, 481
open relays, 441, 448
OpenFirmware program, 105
OpenPrinting database, 301

OpenSSH server, 494
openSUSE configuration, 288
/opt directory, 205
/opt/fonts directory, 277
/opt partition, 131
optflags lines, 57
optical media, 124, 185
options, command, 6–7
or operators

scripts, 436
SELECT, 456

Orca speech synthesis product, 293
ORDER BY keyword, 456
OS (operating system)

GRUB, 229
information, 83
LILO, 225

outline fonts, 276
output

printing, 25
redirection, 14–16

ownership
defaults, 197–198
files, 176, 187–189
filesystem mounting, 156

P
packages

caches, 63
Debian. See Debian packages
dependencies and conflicts, 72–76
format conversions, 71–72
overview, 44–46
rebuilding, 75
RPM. See RPM (RPM Package

Manager) and RPMs
shared libraries. See shared libraries
SQL, 449
startup script problems, 76
versions, 75–76

04836book.indd 567 1/7/09 9:45:42 AM

568 packet-filter firewalls – per-image options

packet-filter firewalls, 476
packet sniffers, 408–410
packets, 381
page length in printing, 25–26
page separators in line numbering, 24
page width in printing, 25
paging through files, 27–28
PAM (Pluggable Authentication

Modules), 489
pam_limits module, 489
paragraphs, reformatting, 23
Parallel Advanced Technology Attachment

(PATA), 123–124
Parallel Line Interface Protocol

(PLIP), 378
parallel ports, 114, 378
parameters

filesystems, 145–146
scripts, 432–433
server configuration files, 472

parent directories, 187
parent process IDs (PPIDs), 86
parentheses ()

ENUM lists, 454
functions, 438
regular expressions, 30

Parted tool, 129, 136
partitions

archiving, 184
boot process, 234
common, 132–133
creating, 132–134
deleting, 134, 136
displaying, 134
fdisk tool, 133–136
filesystems, 127, 137–142
GNU Parted tool, 136
GRUB, 228
monitoring hard disk use by, 150–151
mount points, 130–131
preparing, 137

purpose, 126–127
swap, 142
types, 127–129, 128

passwd command, 330–331, 432
passwords, 484

change requirements, 333–334, 336
changing, 487
configuration files, 335
cracking programs, 487
filesystem mounts, 161
good, 485–487
groups, 340–341
risks, 484–485
root, 488
setting, 330–331
SMB/CIFS, 308
SSH logins without, 498
tools, 487–488
user accounts, 329–331

paste command, 19–20
PATA (Parallel Advanced Technology

Attachment), 123–124
PATH environment variable, 8, 11, 361,

424–425
paths

archiving files, 181
external commands, 7–8
fonts, 278–279
shared libraries, 78–80

pattern input files in regular
expressions, 31

PCI (Peripheral Component
Interconnect) bus

card configuration, 115–116
IRQs, 108

PCI Access Mode option, 115
PCL (Printer Control Language), 300
peers command, 358
per-image options

GRUB, 229–230
LILO, 225

04836book.indd 568 1/7/09 9:45:42 AM

period setting for at command – pr command 569

period setting for at command, 367
periods (.)

chown, 188
filenames, 172–174
IP addresses, 387
regular expressions, 30
TCP wrappers, 473
usernames, 325

Peripheral Component Interconnect
(PCI) bus

card configuration, 115–116
IRQs, 108

permission mode, searching for files
by, 207

permissions, 189
archiving files, 181
bits, 189–191
chmod command, 194–197
copying files, 176
cron jobs, 363
defaults, 197–198
directories, 187, 192
/etc/shadow, 337
special, 192–193

PermitRootLogin option, 495
.pfa and.pfb files, 277
PGP (Pretty Good Privacy), 501
phishing, 485
PIDs (process IDs)

boot process, 235
displaying, 86
in killing processes, 91
system log files, 346

pine mail reader, 443
ping command, 406
pipes file type code, 190
piping data, 16
platters, disk, 112, 112
play command, 437
PLIP (Parallel Line Interface Protocol), 378
Plug-and-Play (PnP)-style

configuration, 115

Pluggable Authentication Modules
(PAM), 489

plus signs (+)
at command, 367
attributes, 199
find, 492
NTP servers, 359
regular expressions, 30

PnP (Plug-and-Play)-style
configuration, 115

Point-to-Point Protocol (PPP),
378–379, 405

pools, NTP server, 357
POP (Post Office Protocol), 441, 443
port numbers, 384–385
ports

monitoring, 478–479
netstat, 477
network, 393–396
open, 408, 481
SSH tunnels, 499–501, 500
USB, 121, 378

POST (power-on self-test), 104
Post Office Protocol (POP), 441, 443
Postfix program, 442
PostgreSQL package, 449
postmaster account, 447
PostScript Printer Definition (PPD)

files, 303
PostScript printer language, 300–302
PostScript Type 1 fonts, 276–277, 281
pound bang lines, 430
pound signs (#). See hash marks (#)
power-on self-test (POST), 104
poweroff command, 243
PPD (PostScript Printer Definition)

files, 303
PPIDs (parent process IDs), 86
PPP (Point-to-Point Protocol),

378–379, 405
PPPoE (PPP over Ethernet), 405
pr command, 25–26

04836book.indd 569 1/7/09 9:45:43 AM

570 Pretty Good Privacy (PGP) – PWD environment variable

Pretty Good Privacy (PGP), 501
primary boot loaders, 221
primary groups, 325
primary keys, 457
primary partitions, 127–128, 128
Printer Control Language (PCL), 300
printer definitions, 305
printing, 299

architecture, 299–300
CUPS configuration, 303–308
exam essentials, 312–313
kernel information, 83
to network printers, 308–309
PostScript and Ghostscript, 300–302
preparing files for, 25–26
printer manufacturers, 305
printer selection, 301
queues, 309–311, 310
review questions, 314–321
running systems, 302
summary, 312

priorities
processes, 86, 88, 90
system log files, 344–345, 347

private keys
GPG, 502
SSH, 495–496

privileged ports, 395
/proc directory, 206
/proc/bus/usb directory, 122
/proc/dma file, 111
/proc filesystem, 109
/proc/interrupts file, 108–109
/proc/ioports file, 110
process IDs (PIDs)

boot process, 235
displaying, 86
in killing processes, 91
system log files, 346

processes, 44
foreground and background, 89
kernel information, 83

killing, 91–92
lists, 83–88, 87
memory limits setting, 489–491
priorities, 86, 88, 90
runlevels, 237

processors. See central processing units
(CPUs)

.profile files, 11
programs

background, 89, 426
executing, 6
running persistently, 91

progress, filesystem checking, 149
prompts

changing, 426
LILO, 224

protocol stacks, 381–383, 383
protocols

mouse, 269
server configuration files, 472
SSH configuration, 495

provides command, 54
proxy filters, 476
PS_PERSONALITY environment

variable, 84
ps program

e-mail, 443
options, 84–85
output interpretation, 85–87
searching for running

processes, 302
PS1 environment variable, 424, 426
public keys

GPG, 502
SSH, 495–496

pull mail protocols, 443
pump client, 396
punctuation in passwords, 486
pvcreate utility, 130
pwd command, 6–7
PWD environment variable,

343, 424

04836book.indd 570 1/7/09 9:45:43 AM

qmail program – removing 571

Q
qmail program, 442
Qt widget sets, 77
question marks (?)

filenames, 173
regular expressions, 30
searches, 27

queues
displaying, 311
e-mail, 446–447
Ghostscript for, 302
print, 299, 309–311, 310

quota package, 200–201
quotacheck command, 201–202
quotaon command, 201
quotas

enabling, 200–201
setting, 201–202

quotation marks (“)
command options, 17
in filenames, 173

R
RAM disks

GRUB, 230
LILO, 225

random access memory (RAM), 104
libraries, 77
video, 272–273

range expressions in regular
expressions, 30

range of values in filenames, 174
raw network traffic, 408–410
rc program, 238
read command, 435
read-only filesystems mounting, 154
read-only mode, booting in, 224
read permissions, 190–192
read/write filesystems mounting, 154, 157

reboot command, 243
rebuilding

library cache, 82
packages, 75

receiving e-mail, 444–446
reconfiguring servers, 483–484
recursive copies, 176
recursive filename listings, 175
recursive searches in grep, 31
Red Hat distribution, 46

package naming, 51
X configuration tools, 265

Red Hat Enterprise Linux (RHEL), 46
redirecting

e-mail, 447–448
input and output, 14–16

reduced-size pages, 310
reformatting paragraphs, 23
refresh rates for monitors, 270–271
registering domain names, 390
regular expressions, 29

grep with, 31–32
for line numbering, 24
overview, 30–31
sed with, 32–34

ReiserFS filesystem
description, 137–138
journaling, 148
partition monitoring, 150

relational databases, 450
release numbers for packages, 47
releases, kernel, 83
reloading library cache, 82
remote access in X Windows System,

285–289, 286
remote login protocols, 485
remote network scanners, 481–482
removable disks, 129
remove command, 54
removing

Debian Packages, 64
kernel modules, 119–120

04836book.indd 571 1/7/09 9:45:43 AM

572 renaming files – running programs persistently

options, 7
passwords, 331
print jobs, 311
yum packages, 54

renaming files, 177–178
renice command, 88, 90
repeat rate for keyboards, 268, 290
repetition operators in regular

expressions, 30
replacing

packages, 74–75
Vi editor text, 248

repquota command, 202
reserved blocks in filesystems, 145
resistor packs for SCSI disks, 125
resizing partitions, 136
resolution

monitors, 270
video cards, 272–275

resolvedep command, 54
resolving hostnames, 391–393
retrieving MySQL data, 455–456
reverse sorts, 21
reversing password order, 486
RHEL (Red Hat Enterprise Linux), 46
risks, password, 484–485
rm command, 178
rmdir command, 187
rmmod command, 119–120
Rock Ridge extensions, 139
root account

access, 488–489
cron jobs, 362
default user settings, 198
file ownership, 188
killing processes, 91
passwords, 331, 336
paths, 8
permissions, 192
UIDs, 327

root directory, 204
/root directory, 82, 205
root filesystem, 204

root partitions
GRUB, 228
LILO, 224

/root/XF86Config.new file, 264
/root/xorg.conf.new file, 264
rotating system log files, 347–350
route command, 399–401
route tracing, 406–407
routing configuring, 400–401
rows in SQL, 450, 450
RPM (RPM Package Manager) and

RPMs, 46
converting to, 72
dependencies, 74
distributions and conventions,

46–48
vs. other package formats, 58–59
packages

creating, 45
data extraction, 52–53
managing, 55–56

rpm commands, 48–52
Yum, 53–58

RPM Find site, 75–76
rpm2cpio program, 52
rpmbuild program, 57, 75
RPMFind Web site, 59
RS-232 ports, 114, 378, 380
rsyslog logger, 344
runlevel command, 241
runlevels, 235

changing, 241–244
checking, 241
chkconfig, 239–240, 240
current, 241
functions, 235–236
halt, reboot, and poweroff, 243
init and telinit, 242
ntsysv, 240, 240
services, 237–240
shutdown, 242–243
SysV startup scripts, 238–239

running programs persistently, 91

04836book.indd 572 1/7/09 9:45:43 AM

SAS (Serial Attached SCSI) bus – security 573

S
SAS (Serial Attached SCSI) bus, 124
SATA (Serial Advanced Technology

Attachment), 123–124
saving Vi editor changes, 248
/sbin directory, 204
/sbin/init program, 234–235
scalable fonts, 276
scaled units in hard disk monitoring,

151–152
scanners, network, 481–482
scheduling tasks, 360

anacron, 365–366
at, 366–367
cron, 360–364

scp command, 497
screen display settings

contrast, 292
fonts, 291–292, 292
magnifier tools, 292–293
resolution and color depth, 272–273

screen readers, 293
scripts

anacron jobs, 366
beginning, 430
commands, 430–432
conditional expressions, 435–437
configuration files, 482–483
creating, 439–440
functions, 438–439
log rotation files, 349
logout, 428
loops, 437–438
overview, 429
runlevels, 238–239
startup. See startup scripts
variables, 432–435
XDMCP servers, 283

SCSI (Small Computer System Interface)
disks, 112, 123–126

search command, 54

searches
boot process messages, 233
command history, 9
Debian Packages, 68
files. See locating files
with less, 27
regular expressions, 31
system log files, 350
Vi editor, 248
yum, 54

Second Extended File System (ext2fs or
ext2), 137

secret keys in GPG, 502
sectors, 112, 112
secure deletions, 199
Secure Shell. See SSH (Secure Shell)
Secure Sockets Layer (SSL)

encryption, 380
security, 469–470

configuration files, 482–483
disabling unused servers, 477–480
e-mail servers, 448
exam essentials, 505
file ownership, 187–189
firewalls, 476
FTP, 412
GPG, 501–504
inetd package, 471–473
local, 484–488
login, process, and memory limits,

489–491
network port monitoring, 478–479
partitions for, 127
remote network scanners, 481–482
review questions, 506–512
root access, 488–489
server uninstalling and reconfiguring,

483–484
SSH. See SSH (Secure Shell)
SUID/SGID files, 491–492
summary, 504
super server restrictions, 471

04836book.indd 573 1/7/09 9:45:44 AM

574 sed command – single-user mode

TCP Wrappers, 473–474
xinetd, 474–476

sed command, 20
regular expressions, 32–34
scripts, 432

SELECT command, 454–458
semicolons (;)

case statements, 437
MySQL, 452
system log files, 345

sending e-mail, 444–446
sendmail program, 442
seq command, 437–438
Serial Advanced Technology Attachment

(SATA), 123–124
Serial Attached SCSI (SAS) bus, 124
Server Message Block/Common Internet

File System (SMB/CIFS), 308, 356
servers

vs. clients, 395
disabling, 477–480
e-mail security, 448
font, 276, 279–280
super server restrictions, 471

inetd configuration, 471–474
xinetd configuration, 474–476

uninstalling and reconfiguring,
483–484

video cards, 271
X Windows System, 275, 286, 286

services
I/O, 105
runlevels, 237–240
server configuration files, 472

sessions, processes associated with, 89
set command, 6
set group ID (SGID) option, 193–194
set user ID (SUID) option, 192–194
setfacl command, 193
setpci utility, 115
Settings tab, 290
sfdisk tool, 234

SGID files, locating, 491–492
SGID (set group ID) option, 193–194
shadow passwords, 341, 484
shareable files in FHS, 203
shared libraries, 76

dependencies, 81
paths, 78–80
principles, 77–78
reloading library cache, 82

shebang lines, 430
shell command, 54
SHELL environment variable, 424
shells and shell environment, 4

aliases, 427
command completion, 8–9
command history, 9–10
configuration files, 427–429
environment variables, 11–12,

422–426
exam essentials, 460–461
help system, 12–13
internal and external commands, 6–8
options, 4–5
review questions, 462–468
scripts. See scripts
starting, 5–6
summary, 459–460

shift command, 433
shoulder surfing, 485
SHOW DATABASES command, 452–453
show_super_stats command, 146
SHOW TABLES command, 453
shutdown command, 242–243
SIGHUP signal, 91
SIGKILL signal, 91
signals for processes, 91–92
signing GPG messages, 504
SIGTERM signal, 91–92
Simple Mail Transfer Protocol (SMTP),

384, 440–442, 441
simulated mouse clicks, 291
single-user mode, 235–236

04836book.indd 574 1/7/09 9:45:44 AM

size – Stampede format 575

size
file limits, 490
in file listings, 176
log rotation files, 349
partitions, 136
searching for files by, 207

skeleton files, 342, 428
Slackware startup scripts, 475, 482
slashes (/)

cron jobs, 361
directories, 177
filenames, 173
help system, 12
IP addresses, 387
paging, 27, 233

slave PATA disks, 123
slocate utility, 208
slow keys, 290
Small Computer System Interface (SCSI)

disks, 112, 123–126
smart filters, 302
SMB/CIFS (Server Message Block/Common

Internet File System), 308, 356
smbpasswd command, 338
smoothing fonts, 280
SMTP (Simple Mail Transfer Protocol),

384, 440–442, 441
sniffers, 408–410
.so filename extension, 77
social engineering, 485
sockets

file type code, 190
server configuration files, 472
system log files, 347

soft limits, 490–491
soft links, 185–186
software, 44

exam essentials, 93–94
packages. See packages
processes. See processes
review questions, 95–101
summary, 92–93

software clock, 352, 354
sort command, 21
sorting

files, 21
processes, 88

spaces
converting tabs to, 20
converting to tabs, 22–23
usernames, 325

.spec files, 52
special characters with cat, 18
speech synthesis products, 293
split command, 21–22
spools, mail, 441
SQL (Structured Query Language), 449

basics, 450–451, 450
MySQL. See MySQL
packages, 449

SQLite package, 449
square brackets ([])

filenames, 174
regular expressions, 30

SSH (Secure Shell), 380, 493
access control, 497
authentication, 497, 499
basics, 493–494
configuring, 494–495
file copying, 497–498
keys, 495–496, 501
login scripts, 499
logins without passwords, 498
port tunnels, 499–501, 500
security issues, 501
X Windows System, 287–288

ssh-agent program, 499
ssh_host_dsa_key file, 496
ssh_host_rsa_key file, 496
ssh-keygen command, 496, 498
ssh_known_hosts file, 496
SSH Tectia server, 494
SSL (Secure Sockets Layer) encryption, 380
Stampede format, 72

04836book.indd 575 1/7/09 9:45:44 AM

576 standard error (stderr) – system log files

standard error (stderr), 14, 346
standard input (stdin), 14
standard output (stdout), 14
stanzas, 223–224
start of files, viewing, 26, 350
start of lines in regular expressions, 30
startup scripts

anacron jobs, 366
configuration files, 482–483
package problems, 76
runlevels, 238–239
XDMCP servers, 283

startx command, 266–267
static files in FHS, 203
static IP addresses, 398–400
static libraries, 77
statistics with apt-cache, 63
stats command, 146
status, network, 408
stderr (standard error), 14, 346
stdin (standard input), 14
stdout (standard output), 14
sticky bits for permissions, 193
sticky keys, 290
storing MySQL data, 454
strata in time servers, 355–356, 355
streams, 13–14
strong passwords, 484
Structured Query Language (SQL), 449

basics, 450–451, 450
MySQL. See MySQL
packages, 449

su command, 488
subdomains, 390
subexpressions in regular expressions, 30
subject lines in e-mail, 444
subnet masks, 387
sudo program, 488
SUID files, locating, 491–492
SUID (set user ID) option, 192–194
summaries with hard disk

monitoring, 152

summarizing commands for files, 28–29
super server restrictions, 471

inetd configuration, 471–474
xinetd configuration, 474–476

superblocks, 146, 222
superuser. See root account
support programs, missing, 73
SUSE distribution, 46
swap space, 131, 142–143
swapon command, 143
switches, 380
symbolic links, 185–186, 192
Synaptic tool, 69
sysfs virtual filesystem, 113
sysklogd package, 343, 346
syslog-ng logger, 344
syslogd daemon, 233, 343–344
system accounts, 329
system administration, 324

exam essentials, 368–369
groups. See groups
log files. See system log files
review questions, 370–376
scheduling tasks, 360

anacron, 365–366
at, 366–367
cron, 360–364

summary, 368
system time management, 352

NTP, 354–360, 355, 359
time concepts, 352–353
time setting, 353–354

users. See users and user accounts
System Commander boot loader, 231
system-config-display command, 265
system-config-network tool, 402
system cron jobs, 361
system environment tuning, 342–343
system log files, 343

manual logging, 346–347
reviewing contents, 350–352
rotating, 347–350

04836book.indd 576 1/7/09 9:45:44 AM

system time management – time management 577

settings, 344–346
syslogd, 343–344

system time management, 352
NTP, 354–360, 355, 359
time concepts, 352–353
time setting, 353–354

SysV startup scripts
configuration files, 482–483
problems, 76
runlevels, 238–239
XDMCP servers, 283

T
Tab key for command completion, 8
tables

combining, 457–458
deleting, 459
MySQL, 452–454
partition, 134
SQL, 450, 450

tabs, converting spaces to, 20, 22–23
tags for system log files, 347
tail command, 26–27, 350–351
tail-merging process, 199
tar utility, 179–181
tarballs, 45, 72, 179
target files, linking, 185
task scheduling, 360

anacron, 365–366
at, 366–367
cron, 360–364

TCP (Transmission Control Protocol), 384
TCP/IP (Transmission Control Protocol/

Internet Protocol), 378
hardware, 378–380, 381
protocol stacks, 382, 383
types, 383–384

TCP Wrappers, 471, 473–474, 497
tcpd program, 473
tcpdump command, 408–410
tcsh shell, 5, 429

tee command, 16
teletype (TTY) code, 86
telinit program

runlevels, 242, 244
X Windows System, 266
XDMCP servers, 283

telnet program, 410–411
Telnet protocol, 410–411, 493
TERM environment variable, 425
terminating shells, 7
terminations for SCSI bus, 125–126
territories in locales, 296–297
testing network connectivity, 406
text and text files

with backticks, 17
displaying, 6
extracting, 28–29
filter commands, 4, 17–18

combining files, 18–20
formatting files, 23–26
summarizing files, 28–29
transforming files, 20–23
viewing files, 26–28

locales, 298
text editors

command history text, 10
scripts, 430
Vi, 244–248, 246

text-mode X login, 288
then keyword, 436
Third Extended File System (ext3fs or

ext3), 137, 148
third-party boot loaders, 231
3D acceleration support, 273
tilde character (~)

backup files, 17, 173
home directory, 6
Vi editor, 246–247

time command, 6
time management, 352

NTP, 354–360, 355, 359
time concepts, 352–353
time setting, 353–354

04836book.indd 577 1/7/09 9:45:45 AM

578 time of day setting for at command – unmounting

time of day setting for at command, 367
time options for log rotation files, 349
time stamps, 178–179, 356
time zones, 294–295, 352
timeouts

GRUB, 229
LILO, 224

titles in GRUB, 229
TLDs (top-level domains), 390–391
/tmp directory, 205, 360
/tmp partition, 132
Token Ring networks, 379
top-level domains (TLDs), 390–391
top tool, 87–88, 87
touch command, 178–179
tr command, 22
tracepath program, 407
traceroute command, 406–407
tracing routes, 406–407
tracking

log files, 27
mouse, 290

tracks, disk, 112, 112
transforming files, 20–23
translating characters, 22
Transmission Control Protocol

(TCP), 384
Transmission Control Protocol/Internet

Protocol (TCP/IP), 378
hardware, 378–380, 381
protocol stacks, 382, 383
types, 383–384

transposing command history text, 9
TrueType fonts, 276–277, 281
.ttf files, 277
ttmkfdir program, 278
TTY (teletype) code, 86
tune2fs command, 143, 145, 148, 150
tuning filesystems, 143–146
tunnels in SSH, 287, 493–494,

499–501, 500
tuples in SQL, 450, 450

twisted-pair cabling, 379
Type 1 fonts, 276–277, 281
type command, 209

U
udev tool, 114
UDF (Universal Disc Format), 139
UDP (User Datagram Protocol), 384
UIDs. See user IDs (UIDs)
ulimit command, 490–491
umask command, 197–198
umasks, 157, 197–198
umount command

external disks, 126
filesystems, 153, 158–159

umsdos filesystem, 139, 173
uname command, 83
undeleting files, 147
underscores (_)

filenames, 172–173
usernames, 325

unexpand command, 22–23
Unicode format, 296
Unicode Transformation Format

(UTF-8), 296
uniform resource identifiers (URIs), 308
uninstallation

packages, 45
servers, 483–484

uniq command, 23
Universal Disc Format (UDF), 139
Universal Serial Bus. See USB (Universal

Serial Bus) devices
universally unique identifiers (UUIDs),

146, 154
Unix98 ps options, 84
unlocking accounts, 331
unmet dependencies with apt-cache, 63
unmounting

external disks, 126
filesystems, 153, 158–159

04836book.indd 578 1/7/09 9:45:45 AM

unprivileged ports – UUIDs (universally unique identifiers) 579

unprivileged ports, 395
:unscaled specification, 279
unset command, 7
unshareable files in FHS, 203
until loops, 438
unused servers, disabling, 477–480
UPDATE command in MySQL, 455
update command in yum, 53
update copies, 177
updating

Debian Packages, 64, 68
expired accounts, 330
library cache links, 82
tar files, 181
yum packages, 53

upgrade command, yum, 54
upgrading packages, 45

Debian, 64, 68
depended-on, 74–75
yum, 53

uptime command, 88
URIs (uniform resource identifiers), 308
USB (Universal Serial Bus) devices, 104

drivers, 121–122
managing, 122
overview, 120–121
ports, 121, 378
USB 2.0 printers, 301

usbmgr package, 122
USE command, 453
user cron jobs, 361
User Datagram Protocol (UDP), 384
USER environment variable, 424
user IDs (UIDs)

changing, 333
configuration files, 335
deleted accounts, 338
searching for files by, 207
user accounts, 326–327, 329

user masks, 157, 197–198
user-mountable media, 161
user space programs, 114
useradd utility, 328–329, 432

userdel command, 338
usermod command, 332–333, 340
USERNAME environment variable, 424
usernames

characteristics, 324–325
configuration files, 334–335
filesystem mounts, 161
processes, 86
server configuration files, 472

users and user accounts, 324
adding, 328–330
changing, 332–333
configuration files, 334–337, 428
configuring, 327–328
creating, 331–332
deleting, 337
environments, 342–343
expiration settings, 333–334
in groups, 325–326
passwords, 330–331
processes, 84
scripts for, 432–433
UIDs. See user IDs (UIDs)
usernames, 324–325

/usr directory, 204
/usr/lib directory, 79
/usr/lib/rpm/rpmrc file, 57
/usr/local directory, 205
/usr/local partition, 131
/usr partition, 131
/usr/share/fonts directory, 277
/usr/share/X11/fonts directory, 277
/usr/share/zoneinfo directory, 294–295, 353
/usr/X11R6 directory, 205
/usr/X11R6/lib/modules/drivers

directory, 271
/usr/X11R6/lib/X11/fonts directory, 277
UTC (Coordinated Universal Time), 294,

352–354
UTF-8 (Unicode Transformation

Format), 296
UUIDs (universally unique identifiers),

146, 154

04836book.indd 579 1/7/09 9:45:45 AM

580 /var directory – whatprovides command

V
/var directory, 205
/var/lib/dpkg directory, 71
/var/lib/ntp file, 356
/var/log/boot file, 233
/var/log/boot.log file, 233
/var/log directory, 350
/var/log/dmesg directory, 233
/var/log/kernel directory, 345–346
/var/log/kernel-info files, 346
/var/log/mail file, 345
/var/log/messages directory, 233, 347
/var/log/syslog directory, 233
/var/log/wtmp file, 349
/var partition, 132–133
/var/spool/cron directory, 361, 363
/var/spool/cups directory, 299
/var/spool/mail directory, 441
variable files in FHS, 203
variables

assignment, 12, 288, 295, 365,
433–435

environment. See environment variables
scripts, 432–435

vendors of USB drivers, 122
verbose output

archiving files, 181–182
e-mail, 444
filesystem checking, 149
filesystem mounting, 154
kernel modules, 118, 120
library cache, 82
LILO, 226
USB drivers, 121

verifying
archiving files, 181
GPG messages, 504

versions
kernel, 83
packages, 47, 75–76
USB drivers, 122

vertical bars (|)
piping, 16
regular expressions, 30–31
scripts, 436

vfat driver, 173
vfat module, 117
vgcreate utility, 130
Vi editor, 244–245

modes, 245
procedures, 245–248, 246
saving changes, 248

video
contrast, 292
fonts, 291–292, 292
LILO options, 224
magnifier tools, 292–293
manufacturer-provided drivers, 264
resolution and color depth, 272–273

video card settings, 272–275
viewing commands for files, 26–28
Vim editor, 245
virtual filesystems, 109, 206
virtual memory limits, 491
Virtual Network Computing (VNC)

system, 289, 493
viruses from floppy disk, 111
VISUAL environment variable, 363
visudo editor, 488
VNC (Virtual Network Computing)

system, 289, 493
volume management, 130

W
warning days setting, 334, 336
wc command, 29
web-based utilities for CUPS, 305–308,

306
WEP (Wired Equivalent Privacy)

encryption, 380
whatprovides command, 54

04836book.indd 580 1/7/09 9:45:45 AM

WHERE conditions – xdm script 581

WHERE conditions
DELETE, 459
SELECT, 456

whereis program, 208
which command, 208–209
while loops, 438
whois command, 391
Wi-Fi Protected Access (WPA)

protocol, 380
Wi-Fi protocols, 380
wide output with ps, 85
widget sets, 77
widgets, 77
width of printing pages, 25
wildcard characters

case statements, 437
filename expansion rules, 173–174
hard disk monitoring, 153
SELECT, 456

Windows NT 4.0 domains, 337
Windows systems time servers, 360
Wired Equivalent Privacy (WEP)

encryption, 380
wireless networking, 379–380
word counts, 29
working directory, 6,
world permissions, 190
WPA (Wi-Fi Protected Access)

protocol, 380
WPA2 encryption, 380
wrappers, TCP, 471, 473–474, 497
write command, 147
write permissions, 190–192

X
X. See X Window System
X Display Manager (XDM), 282

configuring, 284
remote access, 288

X Display Manager Control Protocol
(XDMCP) servers, 282, 282

configuring, 284–285
running, 283–284

X logical font descriptions
(XLFDs), 277

X.org-X11 server, 263
configuration tools for, 264–265
drivers, 264

X Window System, 262
configuration file format, 265–266
configuration utilities, 263–265
configure-and-test cycle, 266–267
display information, 275
exam essentials, 312–313
fonts, 276–281
keyboard and mouse accessibility,

289–291, 290
keyboard settings, 268
localization and internationalization,

293–298
logins, 281–285, 282
module loading, 267–268
monitor settings, 270–271
mouse settings, 269
options, 262–263
printing. See printing
remote access, 285–289, 286
review questions, 314–321
screen display settings,

291–293, 292
speech synthesis, 293
summary, 312
video card settings, 272–275

X11Forwarding option, 495
xargs command, 17
Xconfigurator tool, 265
XDM (X Display Manager), 282

configuring, 284
remote access, 288

xdm script, 283

04836book.indd 581 1/7/09 9:45:45 AM

582 XDMCP (X Display Manager Control Protocol) servers – zsh shell (Z)

XDMCP (X Display Manager Control
Protocol) servers, 282, 282

configuring, 284–285
running, 283–284

xdpyinfo tool, 275
xf86cfg utility, 265
XF86Config file, 278
XF86Config-4 file, 265
xf86config tool, 265
XF86Setup tool, 265
XFree86 server, 262–263

configuration file format, 265–266
configuration tools, 264–265
drivers, 264

XFS (Extents File System), 138, 148
xfs_admin command, 146
xfs_check command, 148, 150
xfs_db command, 147
xfs_info command, 144–145
xfs_metadump command, 145
xfs_repair command, 148, 150
Xft fonts, 280–281
xinetd server, 471, 474–476
XkbLayout option, 298
XLFDs (X logical font descriptions), 277
xntp package, 358

xntpd package, 358
xorg.conf file, 265, 272, 278
xorgcfg utility, 265
xset program, 279–280
xterm program, 6
xwininfo command, 275

Y
yank operation in Vi, 247
YaST tool, 402
Yellow Dog distributions, 46–47, 53
Yum packager

configuration files, 57–58
yum commands, 53–55

yumdownloader, 55
yumex package manager, 297

Z
Z shell (zsh), 5
ZAxisMapping option, 269
zlib_inflate module, 117
zsh shell (Z), 5

04836book.indd 582 1/7/09 9:45:46 AM

Wiley Publishing, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and
conditions before opening the software packet(s) included
with this book “Book”. This is a license agreement “Agree-
ment” between you and Wiley Publishing, Inc. “WPI”.
By opening the accompanying software packet(s), you
acknowledge that you have read and accept the following
terms and conditions. If you do not agree and do not want
to be bound by such terms and conditions, promptly return
the Book and the unopened software packet(s) to the place
you obtained them for a full refund.
1. License Grant. WPI grants to you (either an individual
or entity) a nonexclusive license to use one copy of the
enclosed software program(s) (collectively, the “Software,”
solely for your own personal or business purposes on a
single computer (whether a standard computer or a work-
station component of a multi-user network). The Software
is in use on a computer when it is loaded into temporary
memory (RAM) or installed into permanent memory (hard
disk, CD-ROM, or other storage device). WPI reserves all
rights not expressly granted herein.
2. Ownership. WPI is the owner of all right, title, and inter-
est, including copyright, in and to the compilation of the
Software recorded on the physical packet included with
this Book “Software Media”. Copyright to the individual
programs recorded on the Software Media is owned by the
author or other authorized copyright owner of each pro-
gram. Ownership of the Software and all proprietary rights
relating thereto remain with WPI and its licensers.
3. Restrictions On Use and Transfer.
(a) You may only (i) make one copy of the Software for
backup or archival purposes, or (ii) transfer the Software to
a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease
the Software, (ii) copy or reproduce the Software through
a LAN or other network system or through any computer
subscriber system or bulletin-board system, or (iii) modify,
adapt, or create derivative works based on the Software.
(b) You may not reverse engineer, decompile, or disas-
semble the Software. You may transfer the Software and
user documentation on a permanent basis, provided that
the transferee agrees to accept the terms and conditions of
this Agreement and you retain no copies. If the Software is
an update or has been updated, any transfer must include
the most recent update and all prior versions.
4. Restrictions on Use of Individual Programs. You must
follow the individual requirements and restrictions detailed
for each individual program in the About the CD-ROM
appendix of this Book or on the Software Media. These
limitations are also contained in the individual license
agreements recorded on the Software Media. These limi-
tations may include a requirement that after using the
program for a specified period of time, the user must pay a
registration fee or discontinue use. By opening the Software
packet(s), you will be agreeing to abide by the licenses and
restrictions for these individual programs that are detailed
in the About the CD-ROM appendix and/or on the Soft-
ware Media. None of the material on this Software Media
or listed in this Book may ever be redistributed, in original
or modified form, for commercial purposes.
5. Limited Warranty.
(a) WPI warrants that the Software and Software Media
are free from defects in materials and workmanship under
normal use for a period of sixty (60) days from the date of
purchase of this Book. If WPI receives notification within

the warranty period of defects in materials or workman-
ship, WPI will replace the defective Software Media.
(b) WPI AND THE AUTHOR(S) OF THE BOOK DIS-
CLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WITH
RESPECT TO THE SOFTWARE, THE PROGRAMS,
THE SOURCE CODE CONTAINED THEREIN, AND/
OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
WPI DOES NOT WARRANT THAT THE FUNCTIONS
CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION
OF THE SOFTWARE WILL BE ERROR FREE.
(c) This limited warranty gives you specific legal rights, and
you may have other rights that vary from jurisdiction to
jurisdiction.
6. Remedies.
(a) WPI’s entire liability and your exclusive remedy for
defects in materials and workmanship shall be limited to
replacement of the Software Media, which may be returned
to WPI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: LPIC-1
Linux Professional Institute Certification Study Guide,
Second Edition, Wiley Publishing, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, or call 1-800-762-2974.
Please allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has
resulted from accident, abuse, or misapplication. Any
replacement Software Media will be warranted for the
remainder of the original warranty period or thirty (30)
days, whichever is longer.
(b) In no event shall WPI or the author be liable for any
damages whatsoever (including without limitation dam-
ages for loss of business profits, business interruption,
loss of business information, or any other pecuniary loss)
arising from the use of or inability to use the Book or the
Software, even if WPI has been advised of the possibility of
such damages.
(c) Because some jurisdictions do not allow the exclusion
or limitation of liability for consequential or incidental
damages, the above limitation or exclusion may not apply
to you.
7. U.S. Government Restricted Rights. Use, duplication, or
disclosure of the Software for or on behalf of the United
States of America, its agencies and/or instrumentalities
“U.S. Government” is subject to restrictions as stated in
paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or
subparagraphs (c) (1) and (2) of the Commercial Computer
Software - Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR supplement, as
applicable.
8. General. This Agreement constitutes the entire under-
standing of the parties and revokes and supersedes all prior
agreements, oral or written, between them and may not be
modified or amended except in a writing signed by both
parties hereto that specifically refers to this Agreement.
This Agreement shall take precedence over any other docu-
ments that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unen-
forceable, each and every other provision shall remain in
full force and effect.

04836book.indd 583 1/11/09 8:35:07 AM

	LPIC-1: Linux Professional Institute Certification Study Guide, 2e
	Front Matter
	Acknowledgments
	About the Author
	Contents at a Glance
	Contents
	Table of Exercises
	Introduction
	Assessment Test
	Answers to Assessment Test

	Chapter 1: Exploring Linux Command- Line Tools
	Understanding Command- Line Basics
	Using Streams, Redirection, and Pipes
	Processing Text Using Filters
	Using Regular Expressions
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 2: Managing Software
	Package Concepts
	Using RPM
	Using Debian Packages
	Converting Between Package Formats
	Package Dependencies and Conflicts
	Managing Shared Libraries
	Managing Processes
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 3: Configuring Hardware
	Configuring the BIOS and Core Hardware
	Configuring Expansion Cards
	Configuring USB Devices
	Configuring Hard Disks
	Designing a Hard Disk Layout
	Creating Partitions and Filesystems
	Maintaining Filesystem Health
	Mounting and Unmounting Filesystems
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 4: Managing Files
	Managing Files
	Managing File Ownership
	Controlling Access to Files
	Managing Disk Quotas
	Locating Files
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 5: Booting Linux and Editing Files
	Installing Boot Loaders
	Understanding the Boot Process
	Dealing with Runlevels and the Initialization Process
	Editing Files with Vi
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 6: Configuring the X Window System, Localization, and Printing
	Configuring Basic X Features
	Configuring X Fonts
	Managing GUI Logins
	Using X for Remote Access
	X Accessibility
	Configuring Localization and Internationalization
	Configuring Printing
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 7: Administering the System
	Managing Users and Groups
	Tuning User and System Environments
	Using System Log Files
	Maintaining the System Time
	Running Jobs in the Future
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 8: Configuring Basic Networking
	Understanding TCP/ IP Networking
	Understanding Network Addressing
	Configuring Linux for a Local Network
	Diagnosing Network Connections
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 9: Writing Scripts, Configuring E- mail, and Using Databases
	Managing the Shell Environment
	Writing Scripts
	Managing E-mail
	Managing Data with SQL
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Chapter 10: Securing Your System
	Administering Network Security
	Administering Local Security
	Configuring SSH
	Using GPG
	Summary
	Exam Essentials
	Review Questions
	Answers to Review Questions

	Appendix: About the Companion CD
	What You’ll Find on the CD
	System Requirements
	Using the CD
	Troubleshooting

	Glossary
	Index

