-

[NExT |

Optimizing Linux® Performance: A Hands-On Guide to Linux® Performance Tools
By Phillip G. Ezolt

g Lt Publisher: Pearson PTR
To Pub Date: March 14, 2005
Print ISBN: 0-13-148682-9
Pages: 384

Table of Contents | Index

Overview

The first comprehensive, expert guide for end-to-end Linux application optimization Learn to choose the right tools—and use
application performance is more crucial than ever—and in today's complex production environments, it's tougher to ensure,
code access, plus an exceptional array of optimization tools. But the tools are scattered across the Internet. Many are poorl
problems. Now, one of those experts has written the definitive Linux tuning primer for every professional: Optimizing Linux@
each of today's most important Linux optimization tools, showing how they fit into a proven methodology for perfecting over
how to pinpoint exact lines of source code that are impacting performance. He teaches sysadmins and application developer
solutions more quickly. You'll discover how to: Identify bottlenecks even if you're not familiar with the underlying system Fir
meaning of the events you're measuring Optimize system CPU, user CPU, memory, network I/O, and disk I/O—and underst
applications, through case studies you can easily adapt to your own environmentlInstall and use oprofile, the advanced syste
and practical introduction to all the principles and strategies you'll need. If you're migrating to Linux, you'll quickly master L
background or environment, this book can help you improve the performance of all your Linux applications—increasing busi

-

[NExT |

Optimizing Linux® Performance: A Hands-On Guide to Linux® Performance Tools
By Phillip G. Ezolt

Publisher: Pearson PTR
Pub Date: March 14, 2005
Print ISBN: 0-13-148682-9
Pages: 384

Table of Contents | Index

Copyright

Hewlett-Packard® Professional Books

Preface
Why Is Performance Important?
Linux: Strengths and Weakness
How Can This Book Help You?
Why Learn How to Use Performance Tools?
Can I Tune for Performance?
Who Should Read This Book?
How Is This Book Organized?

Acknowledgments

About the Author

Chapter 1. Performance Hunting Tips
Section 1.1. General Tips
Section 1.2. Outline of a Performance Investigation
Section 1.3. Chapter Summary

Chapter 2. Performance Tools: System CPU
Section 2.1. CPU Performance Statistics
Section 2.2. Linux Performance Tools: CPU
Section 2.3. Chapter Summary

Chapter 3. Performance Tools: System Memory
Section 3.1. Memory Performance Statistics
Section 3.2. Linux Performance Tools: CPU and Memory
Section 3.3. Chapter Summary

Chapter 4. Performance Tools: Process-Specific CPU
Section 4.1. Process Performance Statistics
Section 4.2. The Tools
Section 4.3. Chapter Summary

Chapter 5. Performance Tools: Process-Specific Memory
Section 5.1. Linux Memory Subsystem
Section 5.2. Memory Performance Tools
Section 5.3. Chapter Summary

Chapter 6. Performance Tools: Disk I/0O
Section 6.1. Introduction to Disk I/O
Section 6.2. Disk I/O Performance Tools
Section 6.3. What's Missing?
Section 6.4. Chapter Summary

Chapter 7. Performance Tools: Network
Section 7.1. Introduction to Network I/O
Section 7.2. Network Performance Tools
Section 7.3. Chapter Summary

Chapter 8. Utility Tools: Performance Tool Helpers
Section 8.1. Performance Tool Helpers
Section 8.2. Tools
Section 8.3. Chapter Summary
Chapter 9. Using Performance Tools to Find Problems
Section 9.1. Not Always a Silver Bullet
Section 9.2. Starting the Hunt
Section 9.3. Optimizing an Application
Section 9.4. Optimizing a System
Section 9.5. Optimizing Process CPU Usage
Section 9.6. Optimizing Memory Usage
Section 9.7. Optimizing Disk I/O Usage
Section 9.8. Optimizing Network I/O Usage
Section 9.9. The End
Section 9.10. Chapter Summary
Chapter 10. Performance Hunt 1: A CPU-Bound Application (GIMP)
Section 10.1. CPU-Bound Application
Section 10.2. Identify a Problem
Section 10.3. Find a Baseline/Set a Goal
Section 10.4. Configure the Application for the Performance Hunt
Section 10.5. Install and Configure Performance Tools
Section 10.6. Run Application and Performance Tools
Section 10.7. Analyze the Results
Section 10.8. Jump to the Web
Section 10.9. Increase the Image Cache
Section 10.10. Hitting a (Tiled) Wall
Section 10.11. Solving the Problem
Section 10.12. Verify Correctness?
Section 10.13. Next Steps
Section 10.14. Chapter Summary
Chapter 11. Performance Hunt 2: A Latency-Sensitive Application (nautilus)
Section 11.1. A Latency-Sensitive Application

Section 11.2. Identify a Problem

Section 11.3. Find a Baseline/Set a Goal

Section 11.4. Configure the Application for the Performance Hunt
Section 11.5. Install and Configure Performance Tools

Section 11.6. Run Application and Performance Tools

Section 11.7. Compile and Examine the Source

Section 11.8. Using gdb to Generate Call Traces

Section 11.9. Finding the Time Differences

Section 11.10. Trying a Possible Solution
Section 11.11. Chapter Summary
Chapter 12. Performance Hunt 3: The System-Wide Slowdown (prelink)
Section 12.1. Investigating a System-Wide Slowdown
Section 12.2. Identify a Problem
Section 12.3. Find a Baseline/Set a Goal
Section 12.4. Configure the Application for the Performance Hunt
Section 12.5. Install and Configure Performance Tools
Section 12.6. Run Application and Performance Tools
Section 12.7. Simulating a Solution
Section 12.8. Reporting the Problem
Section 12.9. Testing the Solution
Section 12.10. Chapter Summary

Chapter 13. Performance Tools: What's Next?
Section 13.1. The State of Linux Tools
Section 13.2. What Tools Does Linux Still Need?
Section 13.3. Performance Tuning on Linux
Section 13.4. Chapter Summary

Appendix A. Performance Tool Locations

Appendix B. Installing oprofile
B.1 Fedora Core 2 (FC2)

B.2 Enterprise Linux 3 (EL3)
B.3 SUSE 9.1
Index

| ¢mPREV | [NExT |

< Day Day Up >

Copyright
www.hp.com/hpbooks

Many of the designations used by manufacturers and sdlersto distinguish their products are clamed as
trademarks. Where those designations appear in this book, and the publisher was aware of atrademark
claim, the designations have been printed with initia capita lettersor in adl capitds.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no respongbility for errors or omissions. No ligbility is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
gpecid saes, which may include e ectronic versions and/or custom covers and content particular to your
business, training god's, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales

(800) 382-3419

corpsa es@pearsontechgroup.com

For sdlesoutside the U. S, please contact:

International Sales

internationa @pearsoned.com

Vigt us on the Web: www.phptr.com

Library of Congress Number: 2004117118

Copyright © 2005 Hewlett-Packard Development Company, L.P.

All rightsreserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storageina
retrieval system, or transmission in any form or by any means, eectronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
One Lake Street

Upper Saddle River, NJ 07458

Text printed in the United States on recycled paper at RR Donndley & Sons Company in
Crawfordsville, IN

Firgt printing, March 2005
Dedication

This book is dedicated to my wife Sarah, (the best in the world), who gave up so many weekends
to make this book possible. Thank you, Thank you, Thank you!

http://www.hp.com/hpbooks
mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://www.phptr.com

< Day Day Up >

< Day Day Up >

Hewlett-Packard® Professional Books

HP-UX
Cooper/Maoore
Fernandez

Keenan

M addll
Olker
PoniatowsKi

PoniatowsKi

PoniatowsKi

PoniatowsKi
PoniatowsKi

PoniatowsKi

PoniatowsKi

Rehman

Sauer Ruemmler/Weygant
Weygant

Wong

UNIX, L INUX

M osber ger/Eranian
Poniatowski

PoniatowsKi

HP-UX 11i Internas
Configuring CDE

HP-UX CSE: Officid Study Guide and Desk
Reference

Disk and File Management Tasks on HP-UX
Optimizing NFS Performance
HP-UX 11i Virtud Partitions

HP-UX 11i System Administration Handbook and
Toolkit, Second Edition

The HP-UX 11.x System Administration Handbook
and Toolkit

HP-UX 11.x System Adminigtration "How To" Book
HP-UX 10.x System Adminigtration "How To" Book

HP-UX System Administration Handbook and
Toolkit

Learning the HP-UX Operating System

HP-UX CSA: Officid Study Guide and Desk
Reference

HP-UX 11i Tuning and Performance
Clugtersfor High Availability, Second Edition

HP-UX 11i Security

|A-64 Linux Kernd
Linux on HP Integrity Servers

UNIX Usar's Handbook, Second Edition

< Day Day Up >

[_ﬁ PREY] [_ MEHT ‘]

Preface

Why |s Performance Important?

Linux: Strengths and Weakness

How Can ThisBook Help Y ou?

Why Learn How to Use Performance Tools?
Can | Tunefor Performance?

Who Should Read This Book?

How Is This Book Organized?

— —

| #mPREV |

[NExT |

Why Is Performance Important?

If you have ever sat waiting for acomputer to do something, (while pounding on your desk, cursing, and
wondering, "What is taking so long?'), you know why it isimportant to have afast and well-tuned
computer system. Although not al performance problems can be easily solved, understanding why things
are dow can mean the difference between fixing the problem in software, upgrading the dow hardware,
or smply throwing the whole computer out the window. Fortunately, most operating systems, Linux in
particular, provide the tools to figure out why the machine runs dowly. By using afew basic toals, you
can determine where the system is dowing down and fix the partsthat are running inefficiently.

Although adow system is particularly annoying to end users, application developers have an even more
important reason to performance tune their applications. An efficient gpplication runs on more systems. If
you write duggish applications that need a zippy computer, you €iminate customers who have dower
computers. After dl, not everyone hasthe latest hardware. A well-tuned application is usable by more
customers, resulting in abigger potentia user base. In addition, if potentia customers must choose
between two different applicationswith amilar functionality, they often choose the one that runsfaster or
ismore efficient. Findly, along-lived application likely goes through severa rounds of optimization to
cope with different customer demands, so it iscrucia to know how to track down performance
problems.

If you are a system administrator, you have aresponsbility to the users of the system to make surethat it
runs at an adequate performance levd. If the system runs dowly, users complain. If you can determine
the problem and fix it quickly, they stop complaining. Asabonus, if you can solvether problem by
tuning the gpplication or operating system (and thus keep them from having to buy new hardware), you
make company bean counters happy. Knowing how to effectively use performance tools can mean the
difference between spending days or spending hours on a performance problem.

[#mPREV |

[NExT up |

| #mPREV | [NExT |

Linux: Strengths and Weakness

If you use Linux, maintain it, and develop onit, you are in a strange but good Situation. Y ou have
unprecedented access to source code, developers, and mailing lists, which often document design
decisonsyears after they are made. Linux isan excellent environment in which to find and fix
performance problems. This contrasts a proprietary environment, where it can be difficult to get direct
access to software devel opers, may be hard to find written discussions about most design decisions, and
is nearly impossible to access source code. In addition to this productive environment, Linux also has
powerful performance tools that enable you to find and fix performance problems. Thesetoolsrivd their
proprietary counterparts.

Even with these impressive benefits, the Linux ecosystem gtill has challengesto overcome. Linux
performance tools are scattered everywhere. Different groups with different aims devel op the tools, and
asaresult, thetools are not necessarily in acentralized location. Some tools areincluded in standard
Linux distributions, such as Red Hat, SUSE, and Debian; others are scattered throughout the Internet. If
you're trying to solve a performance problem, you first have to know that the tools you need exist, and
then figure out whereto find them. Because no single Linux performance tool solves every type of
performance problem, you aso must figure out how to use them jointly to determine what is broken.
Thiscan be abit of an art, but becomes easier with experience. Although most of the genera Strategies
can be documented, Linux does not have any guide that tells you how to aggregate performance toolsto
actudly solve aproblem. Mogt of thetools or subsystems have information about tuning the particular
subsystem, but not how to use them with other tools. Many performance problems span severa areas of
the systemn, and unless you know how to use the tools collectively, you will not be able thefix the
problem.

| ¢mPREV | [NExT |

| #mPREV | [NExT |

How Can This Book Help You?

Y ouwill learn many things from this book, including the following:
« What the various performance tools measure
« How to use each tool
« How to combine the tools to solve a performance problem
How to start with apoorly performing system and pinpoint the problem
How the methods are used to solve real-world problems (case studies)

Using the methods in this book, you can make awell-organized and diagnosed problem description that
you can pass on to the origina developers. If you're lucky, they will solve the problem for you.

| #mPREV | [NExT |

| #mPREV | [NExT |

Why Learn How to Use Performance Tools?

Why should anyone put effort into tuning asystem or application?
A wdl-tuned system can do more work with fewer resources.
« A wdl-tuned gpplication can run on older hardware.
« A well-tuned desktop can save userstime.
A well-tuned server provides a higher service quality for more users.

If you know how to effectively diagnose performance problems, you can take atargeted approach to
solving the problem instead of just taking a shot in the dark and hoping that it works. If you are an
gpplication developer, this means that you can quickly figure out what piece of codeis causing the
problem. If you are asystem adminigtrator, it means that you can figure out what part of the system
needsto be tuned, or upgraded, without wasting time unsuccessfully trying different solutions. If you are
an end user, you can figure out which applications are lagging and report the problem to the developers
(or update your hardware, if necessary).

Linux has reached a crossroads. Mogt of the functionality for ahighly productive system is dready
complete. The next evolutionary step isfor Linux and its applications to be tuned to compete with and
surpass the performance of other operating systems. Some of this performance optimization has aready
begun. For example, the SAMBA, Apache, and TUX Web server projects have, through significant
time investments, tuned and optimized the system and code. Other performance optimizations—such as
the Native POSI X Thread Library (NPTL), which dramaticaly improves threading performance; and
object prelinking, which improves application startup time—are just arting to be integrated into Linux.
Linux isripefor performance improvements.

[¢mPREV | [NExT o |

| #mPREV | [NExT |

Can | Tune for Performance?

The best thing about performance optimization isthat you do not need to know the details of the entire
application or system to effectively fix performance problems. Performance optimization requiresa
complementary set of skillsto those of atypica application developer.

Y ou heed to be observant and persistent. It takes more of a detective than a programmer to hunt down
and eliminate performance problems. It isexhilarating to find and fix these. When you start, performance
isterrible. However, you track down the cause, rip it out by the roots, and, if you're lucky, the system
then runstwice asfadt. Voila!

To get to the voila, you must understand the powerful but sometimes confusing world of Linux
performance tools. Thistakes somework, but in the end, it isworth it. The tools can show you aspects
of your application and system that you never expected to see.

| ¢mPrREV | [NExT o |

| #mPREV |

[NExT |

Who Should Read This Book?

Thisbook helps Linux software developers, system adminigtrators, and end usersto use the Linux
performance toolsto find the performance problemsin agiven system. Beginning performance
investigators learn the basics of performance investigation and analysis. Medium to advanced
performance investigators, especidly those with performance experience on other proprietary operating
systems, learn about the Linux equivaents of commands from other syslems with which they may
dready befamiliar.

Software developers learn how to pinpoint the exact line of source code that causes a performance
problem. System administrators who are performance tuning a system learn about the tools that show
why asystem isdowing down, and they can then use that information to tune the system. Findly,
athough not the primary focus of the book, end userslearn the basic skills necessary to figure out which
applications are consuming al the system resources.

[@ PREV | [NExT up |

| #mPREV |

[NExT |

How Is This Book Organized?

This book teaches an audience of variouslevels of experienceto find and fix performance problems. To
accomplish this, the chapters are presented so that you can pick and choose to read different parts of
the book without reading the entire book straight through.

Chapter 1 isdevoted to the basic methods of performance problem hunting. It contains a series of
non-Linux—specific tips and suggestions that prove useful for tracking down performanceissues. These
guidelines are generd suggestions for performance problem hunting and can be applied to tracking down
performance issues on any type of computer system.

Chapters 2 through 8 (the bulk of this book) cover the various tools available to measure different
performance tatistics on aLinux system. These chapters explain what various tools measure, how they
areinvoked, and provide an example of each tool being used. Each chapter demonstrates tool s that
measure aspects of different Linux subsystems, such as system CPU, user CPU, memory, network 1/0,
and disk I/O. If atool measures aspects of more than one subsystem, it is presented in more than one
chapter. Each chapter describes multiple tools, but only the appropriate tool options for a particular
subsystem are presented in a given chapter. The descriptions follow thisformat:

1. Introduction— This section explains what the tool is meant to measure and how it operates.

2. Performance tool options— This section does not just rehash the tool's documentation.
Instead, it explains which options are relevant to the current topic and what those options mean.
For example, some performance tool man pages identify the events that atool measures but do
not explain what the events mean. This section explains the meaning of the events and how they
are relevant to the current subsystem.

3. Example— This section provides one or more examples of the tool being used to measure
performance statistics. This section shows the tool being invoked and any output thet it generates.

Chapter 9 isLinux specific and contains a series of stepsto use when confronted with adow-performing
Linux system. It explains how to use the previoudy described Linux performance toolsin concert to
pinpoint the cause of the performance problem. This chapter isthe most ussful if you want to start with a
mishbehaving Linux system and just diagnose the problem without necessarily understanding the details of
thetools. Chapters 10 through 12 present case studiesin which the methodol ogies and tools previoudy
described are used together to solve red-world problems. The case studies highlight Linux performance
tools used to find and fix different types of performance problems. a CPU-bound application, a
latency-sengtive gpplication, and an 1/O bound application.

Chapter 13 overviews the performance tools and the opportunities Linux has for improvement.

This book aso has two appendixes. Appendix A contains atable of the performance tools discussed in
this book and includesa URL to the latest version of each tool. Appendix A dso identifieswhich Linux
distributions support each particular tool. Finaly, Appendix B containsinformation that explains how to
inddl opr of i | e, whichisavery powerful but hard-to-ingtal tool on afew mgor Linux distributions.

[#mPREV |

[NExT o |

| #mPREV |

[NExT |

Acknowledgments

Fird, | want to thank to the good people at Prentice Hall, including J1I Harry, BrendaMulligan, Gina
Kanouse, and Keith Cline,

Second, | want to thank all the people who reviewed theinitial book proposal and added valuable
technica reviews and suggestions, including Karel Baoun, Joe Brazedl, Bill Carr, Jonathan Corbet,
Matthew Crosby, Robert Husted, Paul Lussier, Scott Mann, Bret Strong, and George Vish 1. | dso
want to thank all the people who taught me what | know about performance and let me optimize Linux
even though the vaue of Linux optimization was uncertain at the time, including John Henning, Greg
Tarsa, Dave Stanley, Greg Gaertner, Bill Carr, and the whole BPE tools group (which supported and
encouraged my work on Linux).

In addition, | want to thank the good folks of SPEC who took mein and taught me why benchmarks,
when donewell, help the entire industry. | especiadly want to thank Kaivalya Dixit, whose passon and
integrity for benchmarking will be sorely missed.

Thanks also to al the people who helped me kegp my sanity with many games of Carcassonne and
Settlers of Catan, including Sarah Ezolt, Dave and Y oko Mitzd, Tim and Maureen Chorma, lond and
MarinaVaslescu, Joe Doucette, and Jm Zawisza.

Findly, I want to thank my family, including Sashaand Mischief, who remind me that we aways have
timefor awalk or to chase dental floss; Ron and Joni Elias, who cheer me on; Russell, Carol, and Tracy
Ezolt, who gave their support and encouragement as | worked on this; and to my wife, Sarah, whoisthe
most understanding and supportive person you can imagine.

[#mPREV |

[NExT o |

| #mPREV | [NExT |

About the Author

PHIL EZOLT discovered Linux more than nine years ago when pursuing an undergraduate el ectrical
and computer engineering degree from Carnegie Mdlon. For six years, Phil ported and designed Linux
performance tools for Compaq's Alpha performance group and represented Compaq in the SPEC CPU
subcommittee. During that time, he improved Linux performance on theindustry standard SPEC Web
and CPU benchmarks using the performance tools he ported and developed. Phil is currently part of a
Hewlett-Packard team developing Sepia, a visudization technology that uses Linux XC clusters,
OpenGL, and off-the-shelf graphics cards to pardldize red-time high-end visuaizations. Heisaso
currently pursng ameaster's degree in computer science from Harvard University and isabig fan of
German-style board games.

| ¢mPrREV | [NExT o |

| #mPREV | [NExT |

Chapter 1. Performance Hunting Tips

Solving performance problems without foresight and planning is painful. Y ou wagte time and are
congtantly frustrated as the cause of the problem repeatedly dips through your fingers. By following the
right set of procedures, you can transform afrustrating performance hunt into an interesting detective
story. Each piece of information leads you closer to the true cul prit. People can not dways be trusted.
The evidence will be your only friend. Asyou investigate the problem, it will take unusud twists and
turns, and the information that you discovered in the beginning of the hunt may turn out to be what helps
you figure out the problem in the end. The best part isthat you will have athrill of adrenaline and sense
of accomplishment when you finally nab the"bad guy™ and fix the problem.

If you have never investigated a performance problem, the first steps can be overwheming. However,

by following afew obvious and nonobvioustips, you can savetime and bewell on your way to finding
the cause of a performance problem. The god of this chapter isto provide you with a series of tips and
guidelinesto help you hunt a performance problem. These tips show you how to avoid some of the
common traps when investigating what iswrong with your system or application. Most of thesetipswere
hard-learned lessons that resulted from wasted time and frustrating dead ends. Thesetips help you solve
your performance problem quickly and efficiently.

After reading this chapter, you should be able to
« Avoid repesting the work of others.
 Avoid repesating your own work.
Avoid faseleadsthat result from gathering mideading information.
Creste auseful reference document about your investigation.

Although no performance investigation is flawless (you will amost dways say, "If only | would have
thought of that first"), these tips help you to avoid some of the common mistakes of a performance
investigation.

[@ PREV | [NExT up |

< Day Day Up >

1.1. General Tips
1.1.1. Take Copious Notes (Save Everything)

Probably the most important thing that you can do when investigating a performance problemisto
record every output that you see, every command that you execute, and every piece of information that
you research. A well-organized set of notes alows you to test atheory about the cause of a
performance problem by smply looking a your notes rather than rerunning tests. This savesahuge
amount of time. Write it down to create a permanent record.

When gtarting a performance investigation, | usudly create adirectory for the investigation, open anew
"Notes' filein GNU emacs, and start to record information about the system. | then store performance
resultsin this directory and Store interesting and related pieces of information in the Notesfile. | suggest
that you add the following to your performance investigation file and directory:

+ Record the hardwar e/softwar e configuration— Thisinvolves recording information about the
hardware configuration (amount of memory and type of CPU, network, and disk subsystem) as
wdl| asthe software environment (the OS and software versons and the relevant configuration
files). Thisinformation may seem easy to reproduce later, but when tracking down a problem,
you may significantly change a system's configuration. Careful and meticulous notes can be used
to figure out the system's configuration during a particular test.

Example: Savethe output of cat / proc/ pci , dnmesg, and unane - a for each test.

« Save and organize performance results— It can be valuableto review performance resultsa
long time after you run them. Record the results of atest with the configuration of the system.
Thisalowsyou to compare how different configurations affect the performance results. It would
be possiblejust to rerun the test if needed, but usudly testing a configuration is atime-consuming
process. It ismore efficient just to keep your noteswell organized and avoid repeating work.

« Write down the command-line invocations— Asyou run performance tools, you will often
create complicated and complex command lines that measure the exact areas of the system that
interest you. If you want to rerun atest, or run the same test on adifferent application,
reproducing these command lines can be annoying and hard to do right on thefirst try. It is
better just to record exactly what you typed. Y ou can then reproduce the exact command line
for afuture test, and when reviewing past results, you can aso see exactly what you measured.
TheLinux command scri pt (describedin detail in Chapter 8, "Utility Tools: Performance Tool
Helpers') or "cut and paste”’ from atermind isagood way to do this.

+ Record research information and URLs— Asyou investigate a performance problem, it is
import to record relevant information you found on the Internet, through e-mail, or through
persond interactions. If you find aWeb Ste that seemsrelevant, cut and paste the text into your
notes. (Web sites can disappear.) However, adso save the URL, because you might need to
review the page later or the page may point to information that becomesimportant later inan
invedtigation.

Asyou collect and record dl thisinformation, you may wonder why it isworth the effort. Some
information may seem usdless or mideading now, but it might be useful in the future. (A good
performanceinvestigation islike agood detective show: Although the cluesare confusing &t firdt,
everything becomes clear in the end.) Keep the following in mind as you investigate a problem:

The implications of results may be fuzzy— It isnot dways clear what a performancetool istelling
you. Sometimes, you need more information to understand the implications of aparticular result. At a
later point, you might look back at seemingly usdlesstest resultsin anew light. The old information may
actudly disprove or prove aparticular theory about the nature of the performance problem.

All information is useful information (which iswhy you save it)— It might not beimmediatdy clear

< Day Day Up >

< Day Day Up >

1.2. Outline of a Performance Investigation

This section outlines a series of essentia steps as you begin a performance investigation. Because the
ultimate goal isto fix the problem, the best ideaiis to research the problem before you even touch a
performance tool. Following a particular protocol isan efficient way to solve your problem without
wasting vauabletime.

1.2.1. Finding a Metric, Baseline, and Target

Thefirgt step in aperformance investigation isto determine the current performance and figure out how
much it needsto beimproved. If your system issignificantly underperforming, you may decidethat itis
worth the time to investigate. However, if the system is performing close to its pesk values, it might not
be worth an investigation. Figuring out the peak performance va ues hel ps you to set reasonable
performance expectations and gives you a performance god, so that you know when to stop optimizing.
Y ou can always tweak the system just alittle more, and with no performance target, you can waste alot
of time squeezing out that extra percent of performance, even though you may not actualy need it.

1.2.1.1 Establish a Metric

To figure out when you have finished, you must create or use an aready established metric of your
system's performance. A metric is an objective measurement that indicates how the system s
performing. For example, if you are optimizing aWeb server, you could choose "serviced Web requests
per second.” If you do not have an objective way to measure the performance, it can be nearly
impaossible to determine whether you are making any progress as you tune the system.

1.2.1.2 Establish a Baseline

After you figure out how you are going to measure the performance of a particular system or gpplication,
it isimportant to determine your current performance levels. Run the gpplication and record its
performance before any tuning or optimization; thisis caled the basdine value, and it isthe starting point
for the performance investigation.

1.2.1.3 Establish a Target

After you pick ametric and baseline for the performance, it isimportant to pick atarget. Thistarget
guides you to the end of the performance hunt. Y ou can indefinitely tweak asystem, and you can dways
get it just alittle better with more and moretime. If you pick your target, you will know when have
finished. To pick areasonable god, the following are good starting points:

« Find otherswith a similar configuration and ask for their performance measurements—
Thisisanided dtuation. If you can find someone with asmilar system that performs better, not
only will you be able to pick atarget for your system, you may aso be able to work with that
person to determine why your configuration is dower and how your configurations differ. Using
another system as areference can prove immensely useful when investigating a problem.

« Find results of industry standard benchmarks— Many Web sites compare benchmark
results of various aspects of computing systems. Some of the benchmark results can be achieved
only with a heroic effort, so they might not represent realistic use. However, many benchmark
gtes have the configuration used for particular results. These configurations can provide cluesto
help you tune the system.

« Useyour hardware with a different OS or application— It may be possibleto run adifferent
goplication on your system with asimilar function. For example, if you have two different Web
servers, and one performs dowly, try adifferent one to see whether it performs any better.
Alternatively, try running the same gpplication on adifferent operating system. If the system
performs better in either of these cases, you know that your origina application has room for
improvement.

< Day Day Up >

| #mPREV | [NExT |

1.3. Chapter Summary

Hunting a performance problem should be a satisfying and exciting process. If you have a good method
in place to research and andyze, it will be repaid back many times as you hunt the problem. First,
determine whether other people have had smilar problems; if they have, try their solutions. Be skeptical
of what they tell you, but look for others with experience of asimilar problem. Create areasonable
metric and target for your performance hunt; the metric enables you to know when you have finished.
Automate performance tests. Be sure to save test results and configuration information when you
generate them so that you can review the results later. Keep your results organized and record any
research and other information that you find that relatesto your problem. Findly, periodicaly review
your notesto find information that you might have missed thefirg time. If you follow these guiddines,
you will have aclear goa and aclear procedure to investigate the problem.

This chapter provided abasic background for a performance investigation, and the following chapters
cover the Linux-specific performance tools themsalves. Y ou learn how to use the tools, what type of
information they can provide, and how to use them in combination to find performance problemson a
particular system.

[¢mPREV | [NExT o |

[NExT |

| #mPREV |

Chapter 2. Performance Tools: System
CPU

This chapter overviews the syssem-wide Linux performance tools. These tools are your first line of
defense when tracking a performance problem. They can show you how the overal systemis performing
and which areas are misbehaving. This chapter discusses the statistics that these tools can measure and
how to use the individua toolsto gather those atistics. After reading this chapter, you should

Undergstand the basic metrics of system-wide performance, including CPU usage

Understand which tools can retrieve these system-wide performance metrics

[NE=T o |

| ¢mPrREV |

< Day Day Up >

2.1. CPU Performance Statistics

Each sysem-wide Linux performance tool provides different waysto extract smilar statistics. Although
no tool diplaysdl the statistics, some of the tools display the same statistics. Rather than describe the
meaning of the statistics multiple times (once for each toal), we review them once before dl thetoolsare
described.

2.1.1. Run Queue Statistics

In Linux, a process can be either runnable or blocked waiting for an event to complete. A blocked
process may be waiting for datafrom an 1/0O device or the results of asystem cal. If aprocessis
runnable, that meansthat it is competing for the CPU time with the other processesthat are dso
runnable. A runnable processis not necessarily using the CPU, but when the Linux scheduler isdeciding
which processto run next, it picks from thelist of runnable processes. When these processes are
runnable, but waiting to use the processor, they form aline called the run queue. Thelonger therun
gueue, the more processeswait inline.

The performance tools commonly show the number of processesthat are runnable and the number of
processes that are blocked waiting for 1/0. Another common system statistic isthat of load average. The
load on asystem isthe total amount of running and runnable process. For example, if two processes
were running and three were available to run, the system'sload would befive. Theload averageisthe
amount of load over agiven amount of time. Typicaly, the load average istaken over 1 minute, 5
minutes, and 15 minutes. This enables you to see how the load changes over time.

2.1.2. Context Switches

Most modern processors can run only one process or thread at atime. Although some processors, such
hyperthreaded processors, can actualy run more than one process s multaneoudy, Linux treats them as
multiple single-threaded processors. To create the illusion that a given single processor runs multiple
tasks smultaneoudy, the Linux kernd constantly switches between different processes. The switch
between different processesis called a context switch, because when it happens, the CPU savesdl the
context information from the old process and retrieves al the context information for the new process.
The context contains alarge amount of information that Linux tracks for each process, including, among
others, which ingtruction the processis executing, which memory it has alocated, and which filesthe
process has open. Switching these contexts can involve moving alarge amount of information, and a
context switch can be quite expensive. It isagood ideato minimize the number of context switchesif

possble.

To avoid context switches, it isimportant to know how they can happen. First, context switches can
result from kernel scheduling. To guarantee that each processreceives afair share of processor time, the
kernel periodically interrupts the running process and, if appropriate, the kernel scheduler decidesto
dtart another process rather than let the current process continue executing. It is possible that your
system will context switch every time this periodic interrupt or timer occurs. The number of timer
interrupts per second varies per architecture and kernel version. One easy way to check how often the
interrupt firesistousethe/ proc/ i nt err upt s fileto determine the number of interruptsthat have
occurred over aknown amount of time. Thisisdemongtrated in Listing 2.1.

Listing 2.1.

root @ocal host asmi386]# cat /proc/interrupts | grep tinmer
; sleep 10 ; cat /proc/interrupts | grep tinmer

0: 24060043 XT-PIC timer

0: 24070093 XT-PIC timer

In Liging 2.1, we ask the kernd to show us how many timesthe timer has fired, wait 10 seconds, and

+lhvs Al AviAali iy ThAat maaasre et An thi e maanhinma thhatirmeey Firos A A rdAa ~nfF ION N7N NOD D251 NN NAD\

< Day Day Up >

< Day Day Up >

2.2. Linux Performance Tools: CPU

Here begins our discussion of performance tools that enable you to extract information previoudy
described.

2.2.1. vmstat (Virtual Memory Statistics)

vist at Sandsfor virtud memory satistics, which indicatesthat it will give you informetion about the
virtual memory system performance of your system. Fortunately, it actualy does much more than that.
vnst at iSagreat command to get arough ideaof how your system performsasawhole. It tellsyou

« How many processes are running

« How the CPU isbheing used

« How many interrupts the CPU receives

« How many context switches the scheduler performs
Itisan excdlent tool to useto get arough ideaof how the system performs.
2.2.1.1 CPU Performance-Related Options

vnst at can beinvoked with the following command line:
virstat [-n] [-s] [delay [count]]

vist at can berun intwo modes. sample mode and average mode. If no parameters are specified,
vnst at Sta runsin average mode, where vinst at displaysthe average vaduefor al the Satisticssince
system boot. However, if adday is specified, thefirst sample will be the average since system boot, but
after that vinst at samplesthe system every delay seconds and prints out the atistics. Table 2-1
describesthe optionsthat vnst at accepts.

Table 2-1. vmstat Command-Line Options
Option Explanation

-n By default, virst at periodicaly prints out the column headers for each performance statistic.
This option disablesthat feature so that after theinitial header, only performance data displays.
This proves helpful if you want to import the output of vinst at into a spreadshest.

-S This displays aone-shot details output of system statisticsthat vist at gathers. The Satistics
are the totas since the system booted.

del ay Thisistheamount of time between virst at samples.

vist at providesavariety of different output statistics that enable you to track different aspects of the
system performance. Table 2-2 describesthose related to CPU performance. The next chapter covers
those related to memory performance.

Table 2-2. CPU-Specific vnst at Output

Column Explanaion

< Day Day Up >

| #mPREV | [NExT |

2.3. Chapter Summary

This chapter focused on the system-wide performance metric of CPU usage. These metrics mainly
demonstrate how the operating system and machine are behaving, rather than a particular application.

This chapter demonstrated how performancetools, such as sar and vnst at , can be used to extract this
system-wide performance information from arunning system. Thesetools are thefirgt line of defense
when diagnosing asystem problem. They help to determine how the system is behaving and which
subsystem or gpplication may be particularly stressed. The next chapter focuses on the system-wide
performance tools that enable you to andyze the memory usage of the entire system.

| ¢mPrREV | [NExT o |

[NExT |

| #mPREV |

Chapter 3. Performance Tools: System
Memory

This chapter overviews the system-wide Linux memory performance tools. This chapter discussesthe
memory dtatigtics that these tools can measure and how to use the individua toolsto gather those
datistics. After reading this chapter, you should

Understand the basic metrics of system-wide performance, including memory usage

Understand which tool s can retrieve system-wide memory performance metrics

[¢mPREV | [NExT o |

< Day Day Up >

3.1. Memory Performance Statistics

Each sysem-wide Linux performance tool provides different waysto extract smilar statistics. Although
no tool displaysdl the statistics, some of the tools display the same statistics. The beginning of this
chapter reviewsthe details of these datistics, and those descriptions are then referenced asthe tools are
described.

3.1.1. Memory Subsystem and Performance

In modern processors, saving information to and retrieving information from the memory subsystem
usudly takeslonger than the CPU executing code and manipulating that information. The CPU usudly
gpends asignificant amount of timeidle, waiting for instructions and data to be retrieved from memory
before it can execute them or operate based on them. Processors have various levels of cache that
compensate for the dow memory performance. Toolssuch as opr of i | e can show where various
processor cache misses can occur.

3.1.2. Memory Subsystem (Virtual Memory)

Any given Linux system has a certain amount of RAM or physicad memory. When addressing this
physica memory, Linux bresksit up into chunksor "pages’ of memory. When dlocating or moving
around memory, Linux operates on page-sized pieces rather than individual bytes. When reporting some
memory statistics, the Linux kerndl reports the number of pages per second, and thisvaue can vary
depending on the architectureit isrunning on. Listing 3.1 creates asmall application that displaysthe
number of bytes per page for the current architecture.

Listing 3.1.

#i ncl ude <uni std. h>
int main(int argc, char *argv[])

{
}

printf("System page size: %\ n", get pagesi ze());

On the | A32 architecture, the page Szeis4KB. In rare cases, these page-sized chunks of memory can
cause too much overhead to track, so the kernel manipulates memory in much bigger chunks, known as
HugePages. These are on the order of 2048K B rather than 4K B and gresatly reduce the overhead for
managing very large amounts of memory. Certain gpplications, such as Oracle, use these huge pagesto
load an enormous amount of dataiin memory while minimizing the overhead that the Linux kernel needs
to manageit. If HugePages are not completdly filled with data, these can waste a Sgnificant amount of
memory. A half-filled normal page wastes 2KB of memory, wheress a haf-filled HugePage can waste
1,024KB of memory.

The Linux kernd can take a scattered collection of these physical pages and present to applications a
well laid-out virtua memory space.

3.1.2.1 Swap (Not Enough Physical Memory)

All systems have afixed amount of physical memory in the form of RAM chips. The Linux kernd dlows
gpplicationsto run even if they require more memory than available with the physical memory. The Linux
kernel usesthe hard drive as atemporary memory. This hard drive spaceis called swap space.

Although swap is an excellent way to alow processesto run, it isterribly dow. It can be up to 1,000
times dower for an gpplication to use swap rather than physica memory. If asystemis performing
poorly, it usudly proves hepful to determine how much swap the sysemisusing.

3.1.2.2 Buffers and Cache (Too Much Physical Memory)

< Day Day Up >

< Day Day Up >

3.2. Linux Performance Tools: CPU and Memory

Here begins our discussion of performance toolsthat enable you to extract the memory performance
information described previoudy.

3.2.1. vmstat (Virtual Memory Statistics) Il

Asyou have seen before, vist at can provide information about many different performance aspects of a
system—athough its primary purpose, as shown next, isto provide information about virtua memory
system performance. In addition to the CPU performance statistics described in the previous chapter, it
can dsotdl you thefollowing:

« How much sweapisbeing used
« How the physica memory isbeing used
« How much memory isfree

Asyou can see, vmdtat provides (viathe satisticsit displays) awedlth of information about the health and
performance of the sysem in asingleline of text.

3.2.1.1 System-Wide Memory-Related Options

In addition to the CPU dtatistics vist at can provide, you can invoke virst at with thefollowing
command-line options when investigating memory datistics:

virstat [-a] [-s] [-m

Asbefore, you can run vinst at in two modes. sample mode and average mode. The added command-line
options enable you to get the performance dtatistics about how the Linux kernd isusing memory. Table 3-1
describes the optionsthat vnst at accepts.

Table 3-1. vmstat Command-Line Options
Option Explanation

-a This changes the default output of memory dtatisticsto indicate the active/inactive amount
of memory rather than information about buffer and cache usage.

-s (procps Thisprintsout the vmtable. Thisisagrab bag of differentstatistics about the system since
3.20r it has booted. It cannot be run in sample mode. It contains both memory and CPU
gredter) datigtics.

-m(procps Thisprintsout the kernd'sdab info. Thisisthe sameinformation that can be retrieved by

3.20r typing cat / pr oc/ sl abi nf o. Thisdescribesin detail how the kernel'smemory is
gredter) alocated and can be hel pful to determine what area of the kernel is consuming the most
memory.

Table 3-2 providesalig of the memory datisticsthat virst at can provide. Aswith the CPU dtatistics,
when runin norma mode, thefirg linethat vinst at providesisthe average vauesfor al therate statistics (
so and si) and theinstantaneous vaue for dl the numeric setistics (swpd, f r ee, buf f , cache, act i ve,
andi nacti ve).

Table R-2 Memorv-Snecific vinet at Outniit Statistics

< Day Day Up >

| #mPREV | [NExT |

3.3. Chapter Summary

This chapter focused on system-wide memory performance metrics. These metrics mainly demonstrate
how the operating system is using memory rather than a particular application.

This chapter demonstrated how performancetools such as sar and vinst at can be used to extract this
system-wide memory performance information from arunning system. The output of these tools
indicates how the system as awholeis using available memory. The next chapter describesthetools
availableto investigate asingle processs CPU usage.

[¢mPREV | [NExT o |

| #mPREV | [NExT |

Chapter 4. Performance Tools:
Process-Specific CPU

After using the syslem-wide performance tools to figure out which processis dowing down the system,
you must apply the process-specific performance toolsto figure out how the processis behaving. Linux
providesarich set of toolsto track the important statistics of a process and application's performance.

After reading this chapter, you should be ableto
Determine whether an gpplication's runtime is spent in the kernd or application.
Determine what library and system calls an gpplication is making and how long they aretaking.

Profile an gpplication to figure out what source lines and functions are taking the longest time to
complete.

[NExT |

| ¢mPREV |

| #mPREV |

[NExT |

4.1. Process Performance Statistics

Thetoolsto analyze the performance of gpplications are varied and have existed in one form or another
sncetheearly daysof UNIX. Itiscritica to understand how an application isinteracting with the
operating system, CPU, and memory system to understand its performance. Most applications are not
sdlf-contained and make many cdlsto the Linux kernd and different libraries. These callsto the Linux
kerne (or system cals) may be assmple as"what'smy PID?" or as complex as "read 12 blocks of data
fromthedisk." Different systems calswill have different performance implications. Correspondingly, the
library cals may be as smple as memory alocation or as complex as graphics window cregtion. These
library calls may dso have different performance characterigtics.

4.1.1. Kernel Time Versus User Time

The most basic split of where an application may spend itstimeis between kerndl and user time. Kernel
timeisthetime spentin the Linux kernd, and user timeis the amount of time spent in application or
library code. Linux hastoolssuch t i me and ps that can indicate (appropriately enough) whether an
application is spending itstime in application or kernel code. It aso has commands such as oprofi | e
and st r ace that enable you to trace which kernd calls are made on the behaf of the process, aswell as
how long each of those callstook to complete.

4.1.2. Library Time Versus Application Time

Any gpplication with even aminor amount of complexity relies on system libraries to perform complex
actions. These libraries may cause performance problems, so it isimportant to be able to see how much
time an gpplication spendsin aparticular library. Although it might not always be practical to modify the
source code of thelibraries directly to fix aproblem, it may be possible to change the application code
to cdl different or fewer library functions. The| t r ace command and opr of i | e Suite provideaway to
andyze the performance of librarieswhen they are used by agpplications. Toolsbuilt in to the Linux
loader, | d, helpsyou determine whether the use of many libraries dows down an application’'s sart time.

4.1.3. Subdividing Application Time

When the application is known to be the bottleneck, Linux providestoolsthat enable you to profile an
gpplication to figure out where time is spent within an application. Toolssuch as gpr of and oprofil e
can generate profiles of an application that pin down exactly which sourcelineis causing large amounts
of timeto be spent.

[#mPREV |

[NExT o |

< Day Day Up >

4.2. The Tools

Linux has avariety of toolsto help you determine which pieces of an application are the primary users of the
CPU. This section describes these tools.

4.2.1.time

Theti me command performs abasic function when testing acommand's performance, yet it is often thefirst
placetoturn. Theti me command acts as a stopwatch and times how long acommand takes to execute. It
measures three types of time. Firgt, it measuresthe red or elapsed time, which isthe amount of time between
when the program started and finished execution. Next, it measures the user time, which isthe amount of time
that the CPU spent executing application code on behdf of the program. Findly, t i me measuressysemtime,
which isthe amount of time the CPU spent executing system or kernel code on behdf of the application.

4.2.1.1 CPU Performance-Related Options

Theti me command (see Table 4-1) isinvoked in the following manner:
time [-v] application

Table 4-1. ti me Command-Line Options
Option Explanation

-V This option presents a verbose display of the program'stime and statistics. Some statistics are
zeroed out, but more statigtics are valid with Linux kernd v2.6 than with Linux kerndl v2.4.

Most of the valid Satistics are present in both the standard and verbose mode, but the verbose
mode provides a better description for each statitic.

Theappl i cat i on istimed, and information about its CPU usage is displayed on standard output after it has
completed.

Table 4-2 describesthe valid output statistic that the t i me command provides. The rest are not measured and
adwaysdisplay zero.

Table 4-2. CPU-Specific ti me Output

Column Explandtion

User time (seconds) Thisisthe number of seconds of CPU spent by the gpplication.

System time (seconds) Thisisthe number of seconds spent in the Linux kernd on behdf of the
application.

Elapsad (wall-clock) time Thisisthe amount of time eapsed (in wall-clock time) between when the
(h:mm:ssor m:ss) application was launched and when it completed.

Percent of CPU thisjobgot ~ Thisisthe percentage of the CPU that the process consumed as it was
running.

U Y AL I 7\ L =l PR T Y T Y T Y T L Y Y, o

http://antprof.sourceforge.net/hprof.html
http://www.go-mono.com/performance.html
http://www.perl.com/pub/a/2004/06/25/profiling.html
http://docs.python.org/lib/profile.html
http://antprof.sourceforge.net/hprof.html
http://www.go-mono.com/performance.html
http://www.perl.com/pub/a/2004/06/25/profiling.html
http://docs.python.org/lib/profile.html

< Day Day Up >

| #mPREV | [NExT |

4.3. Chapter Summary

This chapter covered how to track the CPU performance bottlenecks of individua processes. You
learned to determine how an gpplication was spending itstime by attributing the time spent to the Linux
kernel, system libraries, or even to the gpplication itsdf. Y ou aso learned how to figure out which cdls
were made to the kerndl and system libraries and how long each took to complete. Findly, you learned
how to profile an application and determine the particular line of source code that was spending alarge
amount of time. After mastering these tools, you can start with an application that hogs the CPU and use
these toolsto find the exact functionsthat are spending dl thetime.

Subsequent chaptersinvestigate how to find bottlenecks that are not CPU bound. In particular, you
learn about the tools used to find 1/0O bottlenecks, such as a saturated disk or an overloaded network.

[#mPREV | [NExT o |

[NExT |

| #mPREV |

Chapter 5. Performance Tools:
Process-Specific Memory

This chapter coverstools that enable you to diagnose an application's interaction with the memory
subsystem as managed by the Linux kernel and the CPU. Because different layers of the memory
subsystem have orders of magnitude differencesin performance, fixing an gpplication to efficiently use
the memory subsystemn can have a dramatic influence on an application's performance.

After reading this chapter, you should be able to
Determine how much memory an applicationisusing (ps, / pr oc).
« Determine which functions of an gpplication are dlocating memory (menpr of).

« Profilethe memory usage of an gpplication using both software smulation (kcachegri nd,
cachegri nd) and hardware performance counters (opr of i | e).

Determine which processes are creating and using shared memory (i pcs).

[NExT o |

[#mPREV |

| #mPREV | [NExT |

5.1. Linux Memory Subsystem

When diagnosing memory performance problems, it may become necessary to observe how an
gpplication performs a various levels within the memory subsystem. At thetop leve, the operating
system decides how the swap and physical memory are being used. It decides what pieces of an
gpplication's address space will bein physicd memory, which is cdled the resdent set. Other memory
used by the application but not part of the resident set will be swapped to disk. The application decides
how much memory it will request from the operating system, and thisis called the virtua set. The
goplication can dlocate thisexplicitly by cdling mal | oc or implicitly by usng alarge amount of stack or
using alarge number of libraries. The gpplication can aso alocate shared memory that can be used by
itself and other gpplications. The ps performancetool isuseful for tracking the virtuad and resdent set
gze The menpr of performancetool isuseful for tracking which codein an gpplication is alocating
memory. Thei pcs tool isuseful for tracking shared memory usage.

When an gpplication isusing physica memory, it beginsto interact with the CPU's cache subsystem.
Modern CPUs have multiple levels of cache. The fastest cacheis closest to the CPU (adlso called L1 or
Leve 1 cache) and isthe smdlest in size. Suppose, for instance, that the CPU has only two levels of
cache: L1 and L2. When the CPU requests a piece of memory, the processor checks to see whether it
isaready intheL1 cache. If itis, the CPU usesit. If it was not in the L1 cache, the processor generates
alL1 cachemiss. It then checksinthe L2 cache; if thedataisinthe L2 cache, it isused. If the datais not
inthe L2 cache, an L2 cache miss occurs, and the processor must go to physica memory to retrieve the
information. Ultimatdly, it would be best if the processor never goesto physical memory (becauseit finds
thedatainthe L1 or even L2 cache). Smart cache use—rearranging an application’s data structures and
reducing code size, for example—may make it possible to reduce the number of caches misses and
increase performance. cachegri nd and opr of i | e aregreet toolsto find information about how an
gpplication is using the cache and about which functions and data structures are causing cache misses.

| ¢mPrREV | [NExT o |

< Day Day Up >

5.2. Memory Performance Tools

This section examines the various memory performance tools that enable you to investigate how agiven
gpplication isusing the memory subsystem, including the amount and different types of memory that a
processisusing, whereit isbeing alocated, and how effectively the processis using the processor's cache.

5.2.1. ps

ps iSan excellent command to track aprocesss dynamic memory usage. In addition to the CPU statistics
aready mentioned, ps gives detailed information about the amount of memory that the applicationisusing
and how that memory usage affectsthe system.

5.2.1.1 Memory Performance-Related Options

ps has many different options and can retrieve many different statistics about the state of arunning
application. Asyou saw in the previous chapter, ps can retrieve information about the CPU that a process
isspending, but it so can retrieve information about the amount and type of memory that aprocessis
using. It can beinvoked with the following command line:

ps [-0 vsz,rss,tsiz,dsiz,mpjflt, m nflt, pmem command] <Pl D>

Table 5-1 describesthe different types of memory statisticsthat ps can display for agiven PID.
Table 5-1. ps Command-Line Options
Option Explandtion

-0 Enables you to specify exactly what process statistics you want to track. The different
<statistic> ggidicsare specified in acomma-separated list with no spaces.

vsz Stetidic: Thevirtud set sizeisthe amount of virtuad memory that the gpplicationisusing.
Because Linux only dlocated physica memory when an gpplication triesto useit, this
vaue may be much grester than the amount of physica memory the gpplicationisusing.

rss Satidtic: Theresdent set Szeisthe amount of physical memory the gpplicationis
currently using.

tsiz Staidic: Text Szeisthevirtua size of the program code. Once again, thisisn't the
physical size but rether the virtud size; however, it isagood indication of the size of the
program.

dsiz Staidic: Datasizeisthe virtua size of the program's data usage. Thisisagood

indication of the Sze of the data Structures and stack of the gpplication.

maj 1t Statigtic: Mgjor faults are the number of page faultsthat caused Linux to read apage
from disk on behaf of the process. Thismay happen if the process accessed a piece of
data or ingtruction that remained on the disk and Linux loaded it ssamlesdy for the
application.

mnflt Satigtic: Minor faults are the number of faultsthat Linux could fulfill without resorting to
adisk read. This might happen if the application touches a piece of memory that has
been dlocated by the Linux kernd. In thiscase, it isnot necessary to go to disk,

hoeeca ice the karnal can 111k niclk a2 free niece af Memorns and aca an it 1o the annl 1 oot on

http://antprof.sourceforge.net/hprof.html
http://www.go-mono.com/performance.html
http://antprof.sourceforge.net/hprof.html
http://www.go-mono.com/performance.html

< Day Day Up >

| #mPREV | [NExT |

5.3. Chapter Summary

This chapter presented the various Linux tools that are available to diagnose memory-performance
problems. It demonstrated tools that show how much memory an gpplication is consuming (ps, /pr oc)
and which functions within the application are dlocating that memory (nenpr of). It also covered tools
that can monitor the effectiveness of the processor and system cache and memory subsystem (
cachegri nd, kcachegri nd and opr of i | e). Finaly, it described atool that monitors shared memory
usage (ipcs). Used together, these tools can track every alocation of memory, the size of these
dlocations, the functiona locations of the dlocationsin the applications, and how effectively the
gpplication is using the memory subsystem when accessing these alocations.

The next chapter moves away from memory to investigate disk 1/O bottlenecks.

[#mPREV | [NExT o |

[NE=T o |

| #mPREV |

Chapter 6. Performance Tools: Disk I/O

This chapter covers performance tools that help you gauge disk 1/0 subsystem usage. These tools can
show which disks or partitions are being used, how much I/O each disk is processing, and how long 1/0
requests issued to these disks are waiting to be processed.

After reading this chapter, you should be able to
Determine the amount of tota amount and type (read/write) of disk 1/0O on asystem (vnst at).
» Determine which devices are servicing most of the disk 1/0O (vist at , i ost at , sar).
« Determine how effectively aparticular disk isfidding I/O requests (i ost at).

« Determine which processes are usng agiven set of files (I sof).

[#mPREV | [NExT up |

| #mPREV | [NExT |

6.1. Introduction to Disk I/O

Before diving into performance toals, it is necessary to understand how the Linux disk I/O system is
structured. Most modern Linux systems have one or more disk drives. If they are IDE drives, they are
usudly named hda, hdb, hdc, and so on; whereas SCSI drives are usudly named sda, sdb, sdc, and
soon. A disk istypicaly split into multiple partitions, where the name of the partition'sdeviceis created
by adding the partition number to the end of the base device name. For example, the second partition on
thefirst IDE hard driveinthe sysem isusudly labeled / dev/ hda2. Eachindividud partition usualy
contains elther afile system or aswap partition. These partitions are mounted into the Linux root file
system, as specifiedin / et ¢/ f st ab. These mounted file systems contain the files that applications read
to and write from.

When an application does aread or write, the Linux kernel may have a copy of thefile stored into its
cache or buffers and returns the requested information without ever accessng the disk. If the Linux
kernd does not have a copy of the data stored in memory, however, it adds arequest to the disk's 1/0
queue. If the Linux kernel notices that multiple requests are asking for contiguous locations on the disk, it
merges them into asingle big request. This merging increases overal disk performance by diminating the
seek time for the second request. When the request has been placed in the disk queue, if the disk isnot
currently busy, it startsto servicethe 1/0 request. If the disk is busy, the request waitsin the queue until
thedriveisavailable, and thenitis serviced.

[#mPREV | [NExT o |

< Day Day Up >

6.2. Disk I/O Performance Tools

This section examines the various disk 1/0 performance tools that enable you to investigate how a given
application isusing the disk 1/0 subsystem, including how heavily each disk is being used, how well the
kernel's disk cacheisworking, and which files a particular gpplication has " open.”

6.2.1. vmstat (ii)

Asyou saw in Chapter 2, " Performance Tools: System CPU," vist at iSagreet tool to give an overdl
view of how the system is performing. In addition to CPU and memory statigtics, virst at can provide a
system-wide view of I/O performance.

6.2.1.1 Disk I/O Performance-Related Options and Outputs

Whileusng vnst at toretrieve disk 1/0 gtatistics from the system, you must invoke it asfollows:
virstat [-D] [-d] [-p partition] [interval [count]]

Table 6-1 describes the other command-line parameters that influence the disk I/O Satistics that vimstat
will display.

Table 6-1. vimst at Command-Line Options
Option Explandtion

-D Thisdigplays Linux I/O subsystem totd statistics. This option can give you agood idea of
how your 1/0 subsystem isbeing used, but it won't give Satistics on individud disks. The
satistics given are the total's since system boot, rather than just those that occurred
between this sample and the previous sample.

-d Thisoption displaysindividua disk Satistics at arate of onesampleper i nt erval . The
datigics are the totals Since system boot, rather than just those that occurred between this
sample and the previous sample.

P This displays performance statistics about the given partition a arate of one sample per
partition . eryal . The statistics are the totals since system boot, rather than just those that
occurred between this sample and the previous sample.

interval Thelength of time between samples.

count Thetota number of samplesto take.

If yourun vist at without any parametersother than [i nt erval] and [count] , it showsyou the default
output. This output contains three columns relevant to disk 1/0 performance: bo, bi , and wa. These
datistics are described in Table 6-2.

Table 6-2. vnst at 1/O Statistics
Satisic Explanaion

bo Thisindicates the number of total blockswritten to disk in the previousinterva. (In vnst at
Whorlk asefor adide ichmicallvy 1 024 hviee)

< Day Day Up >

| #mPREV | [NExT |

6.3. What's Missing?

All thedisk I/O tools on Linux provide information about the utilization of a particular disk or partition.
Unfortunately, after you determine that a particular disk isabottleneck, there are no tools that enable
you to figure out which processis causing dl the I/O traffic.

Usudly asystem administrator has a good idea about what gpplication uses the disk, but not aways.
Many times, for example, | have been usng my Linux system when the disks started grinding for
gpparently no reason. | can usualy run t op and look for a process that might be causing the problem.
By eiminating processesthat | believe are not doing 1/0, | can usudly find the culprit. However, this
requires knowledge of what the various applications are supposed to do. It isaso error prone, because
the guess about which processes are not causing the problem might be wrong. In addition, for asystem
with many users or many running applications, it is not dways practica or easy to determinewhich
gpplication might be causing the problem. Other UNIXes support the i nbl k and oubl k parametersto
ps , which show you the amount of disk 1/O issued on behaf of a particular process. Currently, the Linux
kernel does not track the I/O of a process, so the ps tool has no way to gather thisinformation.

Youcanuse| sof to determine which processes are accessing fileson aparticular partition. After you
list al PIDs accessing thefiles, you can then attach to each of the PIDswith st r ace and figure out
which oneisdoing asgnificant amount of 1/0O. Although this method works, it isredly aBand-Aid
solution, because the number of processes accessing a partition could be large and it istime-consuming
to attach and analyze the system calls of each process. Thismay also miss short-lived processes, and
may unacceptably dow down processes when they are being traced.

Thisisan areawherethe Linux kernel could be improved. The ability to quickly track which processes
are generating 1/0O would alow for much quicker diagnosis of 1/0 performance-related problems.

[#mPREV | [NExT o |

| #mPREV | [NExT |

6.4. Chapter Summary

This chapter presented the Linux disk I/O performance tools used to extract information about
system-wide (vist at), device-specific (vnst at , i ost at , sar), and file-specific (I sof) disk I/O
usage. It explained the different types of 1/0 dtatistics and how to extract these statistics from Linux using
the I/O performance tools. It also discussed some of the significant limitations of the current tools and
areasfor future growth.

The next chapter examines the tools that enable you to determine the cause of network bottlenecks.

[¢mPREV | [NExT o |

| #mPREV |

[NExT |

Chapter 7. Performance Tools: Network

This chapter introduces some of the network performance tools available on Linux. We primarily focus
on the toolsthat analyze the network traffic on asingle box rather than network-wide management tools.
Although network performance evauation usualy does not make sensein totd isolation (thet is, nodes
do not normdly talk to themsalves), it isvauable to investigate the behavior of asingle sysem on the
network to identify local configuration and application problems. In addition, understanding the
characterigtics of network traffic on asingle system can help to locate other problem systems, or local
hardware and applications errors that dow down network performance.

After reading this chapter, you should be able to

[@ PREV |

Determine the speed and duplex settings of the Ethernet devicesinthe systlem (ni i - t ool ,
et ht ool).

Determine the amount of network traffic flowing over each Ethernet interface (i f confi g, sar ,
gkrel | m i ptraf, netstat, et her ape).

Determine the types of IP traffic flowing in to and out of the system (gkrel | m, i ptraf ,
net st at , et her ape).

Determine the amount of each type of IP traffic flowing in to and out of the system (gkr el I m,
i ptraf, et herape).

Determine which applications are generating I P traffic (net st at).

[NExT up |

< Day Day Up >

7.1. Introduction to Network 1/O

Network traffic in Linux and every other mgjor operating system is abstracted as a series of hardware
and software layers. Thelink, or lowest, layer contains network hardware such as Ethernet devices.
When moving network traffic, thislayer does not distinguish types of traffic but just transmits and
recelves data (or frames) asfast as possible.

Stacked abovethelink layer isanetwork layer. Thislayer usesthe Internet Protocol (1P) and Internet
Control Message Protocol (ICMP) to address and route packets of data from machine to machine.
IP/ICMP make their best-effort attempt to pass the packets between machines, but they make no
guarantees about whether a packet actudly arrives at its destination.

Stacked above the network layer isthe transport layer, which defines the Transport Control Protocol
(TCP) and User Datagram Protocol (UDP). TCPisareliable protocol that guarantees that amessageis
either delivered over the network or generates an error if the message isnot delivered. TCP'ssbling
protocol, UDP, is an unreliable protocol that deliberately (to achieve the highest data rates) does not
guarantee message delivery. UDP and TCP add the concept of a"service' to IP. UDP and TCP receive
messages on numbered "ports.” By convention, each type of network serviceisassgned adifferent
number. For example, Hypertext Transfer Protocol (HTTP) istypically port 80, Secure Shell (SSH) is
typically port 22, and File Transport Protocol (FTP) istypicaly port 23. In aLinux sysem, thefile

/ et c/ servi ces definesal the ports and the types of servicethey provide.

Thefina layer isthe application layer. It includes al the different gpplications that use the layersbelow to
transmit packets over the network. These include applications such Web servers, SSH clients, or even
peer-to-peer (P2P) file-sharing clients such as bittorrent.

Thelowest three layers (link, network, and transport) areimplemented or controlled within the Linux
kernel. The kernd provides statistics about how each layer is performing, including information about the
bandwidth usage and error count as data flows through each of the layers. The tools covered in this
chapter enable you to extract and view those statistics.

7.1.1. Network Traffic in the Link Layer

At thelowest levels of the network stack, Linux can detect the rate at which datatrafficisflowing
through the link layer. Thelink layer, which istypicaly Ethernet, sendsinformation into the network asa
series of frames. Even though the layers above may have pieces of information much larger than the
frame gze, thelink layer breaks everything up into frames to send them over the network. This maximum
szeof datain aframeisknown asthe maximum transfer unit (MTU). Y ou can use network
configuration toolssuch asi p or i f confi g to set theMTU. For Ethernet, the maximum sizeis
commonly 1,500 bytes, athough some hardware supports jumbo frames up to 9,000 bytes. The size of
the MTU has adirect impact on the efficiency of the network. Each framein thelink layer hasasmall
header, so using alarge MTU increasesthe ratio of user datato overhead (header). When using alarge
MTU, however, each frame of data has a higher chance of being corrupted or dropped. For clean
physica links, ahigh MTU usudly leadsto better performance because it requires less overhead; for
noisy links, however, asmaler MTU may actually enhance performance because less data hasto be
re-sent when asingle frameis corrupted.

At the physical layer, frames flow over the physical network; the Linux kernel collects a number of
different satistics about the number and types of frames:.

« Transmitted/received— If the frame successfully flowed into or out of the machine, itis
counted as atransmitted or received frame.

» Errors— Frameswith errors (possibly because of abad network cable or duplex mismatch).

» Dropped— Framesthat were discarded (most likely because of low amounts of memory or
buffers).

< Day Day Up >

< Day Day Up >

7.2. Network Performance Tools

This section describes the Linux network performance tools available to diagnose performance problems.
We gtart with the tools to determine the lowest level of network performance (physica statistics) and add
toolsthat can investigate the layers above that.

7.2.1. mii-tool (Media-Independent Interface Tool)

mi-tool isanEthernet-specific hardwaretool primarily used to configure an Ethernet device, but it can
aso provide information about the current configuration. Thisinformation, such asthelink speed and
duplex setting, can be useful when tracking down the cause of an under-performing network device.

7.2.1.1 Network I/O Performance-Related Options

m i -tool requiresroot accessto beused. It isinvoked with the following command line:
mi-tool [-v] [device]

mi-tool printsthe Ethernet settingsfor the given device. If no devices are specified, mi i -t ool digplays
information about al the available Ethernet devices. If the - v optionisused, ni i - t ool displaysverbose
statistics about the offered and negotiated network capabilities.

7.2.1.2 Example Usage

Ligting 7.1 showsthe configuration of et ho on the system. Thefirgt linetells usthat the Ethernet deviceis
currently using a 100BASE-T full-duplex connection. The next few lines describe the capabilities of the
network card in the machine and the capabilities that the card has detected of the network device on the
other end of thewire.

Listing 7.1.

[root @ohs |inux-2.6.8-1.521]# /sbin/mi-tool -v ethO
et hO: negoti ated 100baseTx-FD, |ink ok
product info: vendor 00:00:00, nodel O rev O
basi ¢ node: aut onegoti ati on enabl ed
basi ¢ status: autonegotiation conplete, link ok
capabilities: 100baseTx-FD 100baseTx- HD 10baseT- FD 10baseT- HD
advertising: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT- HD
flowcontro
i nk partner: 100baseTx-FD 100baseTx-HD 10baseT- FD 10baseT- HD

mi-tool provideslow-level information about how the physical level of the etheRnet deviceis
configured.

7.2.2. ethtool

et ht ool providessimilar cgpabilitiestoni i -t ool for configuration and display of Statisticsfor Ethernet
devices. However, et ht ool isthe more powerful tool and contains more configuration options and device
datitics.

7.2.2.1 Network 1/0O Performance-Related Options

et ht ool requiresroot accessto be used. It isinvoked with the following command line:

et ht ool [device]

< Day Day Up >

| #mPREV | [NExT |

7.3. Chapter Summary

This chapter provided information about how to use the Linux network performance tools to monitor the
network traffic flowing through asystem dl the way from thelow-level network interfacesto high-level
applications. It introduced tools to query the current physical link settings(ni i - t ool , et ht ool) and
tools that monitor the amount and types of packets flowing through the low-level interfaces (i f confi g,

i p,sar,gkrel | miptraf, netstat, et her ape). It then presented toolsthat display the different
typesof IPtraffic (gkrel | m i ptraf , net st at , et her ape) and the amounts of each type of traffic (
gkrel | m i ptraf, et her ape). Thischapter then presented atool (net st at) that maps the IP socket
usage to the processthat is recelving/sending each type of traffic. Finaly, anetwork-visudization tool
was presented that visudizes the rel ationship between the type and amount of data flowing through a
network and which nodesit isflowing between (et her ape).

The next chapters describe some of the common Linux tools that make using performance tools essier.
They are not performance tools themsalves, but they make using the performance tools more palatable.
They can dso help to visudize and andyze the results of the tools, aswell as automate some of the more
repetitive tasks.

[¢mPREV | [NExT o |

| #mPREV | [NExT |

Chapter 8. Utility Tools: Performance
Tool Helpers

This chapter providesinformatiopn about the utilities available on aLinux system that can enhancethe
effectiveness and usability of the performance tools. The utility tools are not performance tools
themselves, but when used with the performance tools, they can help automate tedious tasks, andyze
performance statitics, and create performance tool-friendly applications.

After reading this chapter, you should be able to
Automate the display and collection of periodic performance data (bash, wat ch).
+ Record dl commands and output displayed during a performance investigation (t ee, scri pt).
« Import, analyze, and graph performance data (gnuneri c).
- Determinethelibrariesthat an gpplicationisusing (I dd).
Determine which functions are part of which libraries (obj dunp).
Investigate runtime characteristics of an application (gdb).

Creste performance tool/debugging-friendly gpplications (gcc).

[#mPREV | [NExT o |

| #mPREV | [NExT |

8.1. Performance Tool Helpers

Linux has arich heritage of toolsthat can be used together and become greater than the sum of the
parts. Performance tools are no different. Although performance tools are useful on their own, combining
them with other Linux tools can significantly boost their effectiveness and ease of use.

8.1.1. Automating and Recording Commands

Asmentioned in an earlier chapter, one of the most valuable stepsin a performance investigation isto
save the commandsthat are issued and results that are generated during a performance investigation.
Thisalowsyou to review them later and look for new indghts. To help with this, Linux providesthet ee
command, which enables you to save tool output to afile, and the scri pt command, which records
every key press and every output displayed on the screen. Thisinformation can be saved and reviewed
later or used to create a script to automate test execution.

It isimportant to automate commands because it reduces the chance of errors and enables you to think
about the problem without having to remember dl the details. Both the bash shell andthe wat ch
command enable you to periodically and automaticaly execute long and complicated command lines
after typing them once. After you have the command line correct, bash and wat ch can periodicaly
execute the command without the need to retypeiit.

8.1.2. Graphing and Analyzing Performance Statistics

In addition to the tools for recording and automation, Linux provides powerful andysistoolsthat can
help you understand the implications of performance statistics. Whereas most performance tools
generate performance statistics as text output, it is not aways easy to see patterns and trends over time.
Linux providesthe powerful gnuner i ¢ Spreadsheet, which can import, anayze, and graph performance
data. When you graph the data, the cause of a performance problem may become apparent, or it may at
least open up new areas of investigation.

8.1.3. Investigating the Libraries That an Application Uses

Linux aso providestoolsthat enable you to determine which libraries an application relieson, aswel as
toolsthat display al the functionsthat agiven library provides. The | dd command providestheligt of dl
the shared librariesthat a particular gpplication isusing. This can prove helpful if you aretrying to track
the number and location of the libraries that an application uses. Linux aso providesthe obj dunp
command, which enables you to search through agiven library or application to display dl the functions
that it provides. By combining the | dd and obj dunp commands, you can take the output of | t r ace,
which only provides the names of the functionsthat an gpplication cdls, and determinewhich library a
givenfunctionis part of.

8.1.4. Creating and Debugging Applications

Findly, Linux also providestoolsthat enable you to create performance-tool-friendly applications, in
addition to toolsthat enable you to interactively debug and investigate the attributes of running
gpplications. The GNU compiler collection (gcc) can insert debugging information into applications that
adoprofi | e infinding the exact line and source file of aspecific performance problem. In addition, the
GNU debugger (gdb) can aso be used to find information about running applications not available by
default to various performance tools.

< Day Day Up >

< Day Day Up >

8.2. Tools

Used together, the following tools can greatly enhance the effectiveness and ease of use of the
performance tools described in previous chapters.

8.2.1. bash

bash isthe default Linux command-line shdll, and you most likely useit every time you interact with the
Linux commeand line. bash has apowerful scripting language that istypicaly used to create shell scripts.
However, the scripting language can aso be cdled from the command line and enables you to easily
automate some of the more tedious tasks during a performance investigation.

8.2.1.1 Performance-Related Options

bash providesaseries of commands that can be used together to periodically run aparticular command.
Most Linux usershave bash astheir default shell, so just logging in to amachine or opening atermind
bringsup abash prompt. If you are not using bash, you caninvokeit by typing bash.

After you haveabash command prompt, you can enter aseries of bash Scripting commands to automate
the continuous execution of aparticular command. This feature proves most useful when you need to
periodically extract performance statistics using a particular command. These scripting options are
describedin Table 8-1.

Table 8-1. bash Runtime Scripting Options
Option Explandtion
whil e condition Thisexecutesaloop until the condition isfase.
do Thisindicatesthe gart of aloop.

done Thisindicatesthe end of aloop.

bash isinfinitely flexible and is documented in the bash man page. Although bash's complexity can be
overwheming, it is not necessary to magter it dl to put bash immediately to use.

8.2.1.2 Example Usage

Although some performancetools, such asvist at and sar , periodicaly display updated performance
datistics, other commands, suchas ps and i f conf i g, do not. bash can call commands such as ps and

i f confi g to periodicaly display their statistics. For example, in Ligting 8.1, we ask bash to do something
inawhi | e loop based on the condition TRue. Because the TRue command isawaystrue, the whi | e loop
will never exit. Next, the commands that will be executed after each iteration start after the do command.
These commands ask bash to deep for one second and thenrun i f conf i g to extract performance
information about the et ho controller. However, because we are only interested in the received packets,
we gr ep output of i f confi g forthestring " RX packet s" . Findly, weissuethe done command to tell
bash we are done with the loop. Because the TRue command always returnstrue, this entire loop will run
forever unlessweinterrupt it with a<Ctrl-C>.

Listing 8.1.
[ezolt@vintermute tnp]$ while true; do sleep 1; /sbin/ifconfig

ethO | grep
"RX packets" ; done;

< Day Day Up >

| #mPREV | [NExT |

8.3. Chapter Summary

This chapter provided agrab bag of Linux utility toolsthat are ussful when investigating a performance
problem. It introduced tools such as bash, wat ch, t ee, and scri pt , which automate the display and
collection of performance data. It also introduced gnuneri ¢, atool that can both graph and anayze the
results of text-based performancetools. It then investigated | dd and obj dunp, which can be used to
track down which library afunction is part of. It then described gdb, atool that can investigate the
execution and runtime information of currently running gpplications. Findly, this chapter described gec, a
tool that can produce binaries with symbolic debugging information that hel ps other performance toals,
such asoprofi | e, 1o map events back to aspecific sourceline.

In the upcoming chapters, we put together al the tools presented so far and solve some redl-life
performance problems.

| #mPREV | [NExT |

[NExT |

| #mPREV |

Chapter 9. Using Performance Tools to
Find Problems

This chapter contains amethod for using the previoudy presented performance tools together to narrow
down the cause of a performance problem.

After reading this chapter, you should be able to

« Stat with amisbehaving system and use the Linux performance toolsto track down the
misbehaving kernd functions or gpplications.

Start with amisbehaving application and use the Linux performance tools to track down the
misbehaving functions or sourcelines.

« Track down excess usage of the CPU, memory, disk I/O, and network.

| ¢mPREV | [NExT |

| #mPREV | [NExT |

9.1. Not Always a Silver Bullet

This chapter assumesthat it is possible to solve a performance problem by changing software. Tuning an
gpplication or system to achieve atarget performance god isnot dways possible. If tuning fails, it may
require a hardware upgrade or change. If the capacity of the system is maxed out, performance tuning
only helpsto acertain extent.

For example, it may be necessary (or even cheaper) to just upgrade the amount of system memory
rather than track down which gpplications are using system memory, and then tune them so that they
reduce their usage. The decision to just upgrade the system hardware rather than track down and tune a
particular performance problem depends on the problem and isa value judgment of theindividua
investigating it. It rely depends on which option is chegper, either time-wise (to investigate the problem)
or money-wise (to buy new hardware). Ultimately, in some Stuations, tuning will be the preferred or only
option, so that iswhat this chapter describes.

[@ PREV | [NExT up |

| #mPREV |

[NExT |

9.2. Starting the Hunt

After you decide to start optimizing something on Linux, you first have to decide what you are going to
optimize. The method used in this chapter covers some of the more common performance problems and
an example shows you how to use the previoudy presented tools together to solve a problem. The next
series of sections helps guide you in your discovery of the cause of a performance problem. In many
sections you are asked to run various performance tools and jump to different sectionsin this chapter
based on the results. This helpsto pinpoint the source of the problem.

As gtated in previous chapters, it isagood ideato save the results of each test that you perform. This
enablesyou to review theresultslater and even to send the resultsto someone e seif theinvestigation is
inconclusve.

Let's get started.

When investigating aproblem, it isbest to start with asystem that has aslittle unrelated programs running

aspossible, so close or kill any unneeded applications or processes. A clean system helps diminate the
potentidly confusing interference caused by any extraneous gpplications.

If you have a specific application or program that is not performing asit should, jump to Section 9.3. If
no particular gpplication isduggish and, instead, the entire Linux system is not performing asit should,
jumpto Section 9.4.

[¢mPREV | [NExT o |

< Day Day Up >

9.3. Optimizing an Application

When optimizing an application, severa areas of the gpplication’s execution may present aproblem. This
section directs you to the proper section based on the problem that you are seeing.

Figure 9-1 showsthe stepsthat we will take to optimize the application.

Figure 9-1.

9.3.1
|s memory usage
a problem?

8.3.2
Is startup time a problem?

Yes

9.3.3
s the loader
introducing a
serious delay in
program startup?

Goto 9.6.6

Mo

Yes

Goto 9.9

034
Is CPU usage a problem?

Yes

Goto 9.5
Mo

8.3.5
Is disk usage a problem?

Yes

Goto 9.7.3

Mo

036
Is network usage a problem?

< Day Day Up >

< Day Day Up >

9.4. Optimizing a System

Sometimes, it isimportant to gpproach amisbehaving system and figure out exactly what isdowing
everything down.

Because we are investigating a system-wide problem, the cause can be anywhere from user gpplications
to system librariesto the Linux kerndl. Fortunately, with Linux, unlike many other operating systems, you
can get the source for most if not al gpplications on the system. If necessary, you can fix the problem
and submit thefix to the maintainers of that particular piece. In theworst case, you can run afixed
verson locdly. Thisisthe power of open-source software.

Figure 9-2 shows aflowchart of how wewill diagnose a system-wide performance problem.

Figure 9-2.

Go to Section 9.4.1 to begin theinvestigation.
9.4.1. Is the System CPU-Bound?

Uset op, proci nf o, OF npst at and determine where the system is spending itstime. If the entire
system is spending lessthan 5 percent of the total time inidle and wait modes, your systemis
CPU-bound. Proceed to Section 9.4.3. Otherwise, proceed to Section 9.4.2.

9.4.2. Is a Single Processor CPU-Bound?

Although the system as awhole may not be CPU-bound, in a symmetric multiprocessing (SMP) or
hyperthreaded system, an individual processor may be CPU-bound.

Uset op Or npst at to determine whether an individual CPU haslessthan 5 percent in idle and wait
modes. If it does, one or more CPU is CPU-bound; in this case, go to Section 9.4.4.

Otherwise, nothing is CPU-bound. Go to Section 9.4.7.
9.4.3. Are One or More Processes Using Most of the System CPU?

The next gep isto figure out whether any particular gpplication or group of gpplicationsisusing the
CPU. Theeasiest way to do thisistorun t op. By defaullt, t op sortsthe processesthat usethe CPU in
descending order. t op reports CPU usage for a process as the sum of the user and system time spent
on behalf of that process. For example, if an application spends 20 percent of the CPU in user space
code, and 30 percent of the CPU in system code, t op Will report that the process has consumed 50
percent of the CPU. Sum up the CPU time of al the processes. If that timeis significantly lessthan the
sysem-wide system plus user time, the kernd is doing significant work that is not on the behdf of
gpplications. Go to Section 9.4.5.

Otherwise, go to Section 9.5.1 once for each process to determine whereit is spending itstime.
9.4.4. Are One or More Processes Using Most of an Individual CPU?

The next step isto figure out whether any particular gpplication or group of gpplicationsisusing the
individual CPUs. The easiest way to do thisistorun t op. By defaullt, t op sorts the processes that use
the CPU in descending order. When reporting CPU usage for a process, t op showsthetotad CPU and
system time that the gpplication uses. For example, if an application spends 20 percent of the CPU in
user space code, and 30 percent of the CPU in system code, t op will report that the application has
consumed 50 percent of the CPU.

Firgt, run t op, and then add the last CPU to thefieldsthat t op displays. Turn on Irix mode so that t op

< Day Day Up >

< Day Day Up >

9.5. Optimizing Process CPU Usage

When a particular process or application has been determined to be a CPU bottleneck, it is necessary to
determine where (and why) it isspending itstime.

Figure 9-3 shows the method for investigating a processs CPU usage.

Figure 9-3.

Go to Section 9.5.1 to begin theinvestigation.
9.5.1. Is the Process Spending Time in User or Kernel Space?

You canusetheti me command to determine whether an gpplication is spending itstimein kernd or
user mode. opr of i | e can aso be used to determine wheretime is spent. By profiling per process, it is
possible to see whether aprocessis spending itstimein the kernel or user space.

If the gpplication is spending asgnificant amount of timein kernel space (greater than 25 percent), goto
Section 9.5.2. Otherwise, go to Section 9.5.3.

9.5.2. Which System Calls Is the Process Making, and How Long Do
They Take to Complete?

Next, run st r ace to see which system calls are made and how long they take to complete. Y ou can
asorun oprofi | e to seewhich kernel functionsare being called.

It may be possible to increase performance by minimizing the number of system callsmade or by
changing which systems cadls are made on behaf of the program. Some of the system's cals may be
unexpected and aresult of the gpplication's callsto variouslibraries. Youcanrun | trace and strace
to help determine why they are being made.

Now that the problem has been identified, it isup to you to fix it. Go to Section 9.9.
9.5.3. In Which Functions Does the Process Spend Time?

Next, run opr of i | e onthe gpplication using the cycle event to determine which functionsare using al
the CPU cycles (that is, which functions are spending al the application time).

Keep in mind that dthough opr of i | e shows you how much time was spent in a process, when profiling
at thefunction levd, it isnot clear whether aparticular function is hot becauseit is called very often or
whether it just takes along time to complete.

One way to determine which caseistrueisto acquire a source-level annotation from opr of i | e and
look for ingtructions/source lines that should have little overhead (such as assgnments). The number of
samplesthat they have will approximate the number of timesthat the function was called relativeto other
high-cost source lines. Again, thisis only approximate because opr of i | e sSamplesonly the CPU, and
out-of-order processors can misattribute some cycles.

Itisaso hepful to get acal graph of the functionsto determine how the hot functions are being called.
To do this, goto Section 9.5.4.

9.5.4. What Is the Call Tree to the Hot Functions?

Next, you can figure out how and why the time-consuming functions are being caled. Running the
aoplication with gpr of can show the call tree for each function. If the time-consuming functionsarein a
library, you canuse | t r ace to seewhich functions. Finally, you can use newer versonsof oprofi | e

< Day Day Up >

< Day Day Up >

9.6. Optimizing Memory Usage

Often, it iscommon that a program that uses alarge amount of memory can cause other performance
problemsto occur, such as cache misses, trand ation lookaside buffer (TLB) misses, and swapping.

Figure 9-4 showsthe flowchart of decisonsthat we will make to figure out how the system memory is
being used.

Figure 9-4.

Go to Section 9.6.1 to start the investigation.

9.6.1. Is the Kernel Memory Usage Increasing?

To track down what is using the system's memory, you first have to determine whether the kernd itself is
dlocating memory. Run s| abt op and see whether thetotd size of the kernd's memory isincreasing. If it
isincreasing, jump to Section 9.6.2.

If the kernd's memory usageis not increasing, it may be a particular process causing theincrease. To
track down which processis responsible for the increase in memory usage, go to Section 9.6.3.

9.6.2. What Type of Memory Is the Kernel Using?

If the kerndl's memory usageisincreasing, once again run sl abt op to determine what type of memory
the kernel isdlocating. The name of the dab can give some indication about why that memory isbeing
allocated. Y ou can find more detail s on each dab name in the kerndl source and through Web searches.
By just searching the kernd source for the name of that dab and determining which filesit isusedin, it
may become clear why it isalocated. After you determine which subsystem isdlocating dl that memory,
try to tune the amount of maximum memory that the particular subsystem can consume, or reduce the
usage of that subsystem.

Go to Section 9.9.

9.6.3. Is a Particular Process's Resident Set Size Increasing?

Next, you can use t op Or ps t0 see whether aparticular processsresdent set sizeisincreasing. Itis
easiest to add the r ss field to the output of t op and sort by memory usage. If aparticular processis
increasingly using more memory, we need to figure out what type of memory it isusing. To figure out
what type of memory the application isusing, go to Section 9.6.6. If no particular processisusing more
memory, go to Section 9.6.4.

9.6.4. Is Shared Memory Usage Increasing?

Usei pcs to determine whether the amount of shared memory being used isincreasing. If itis, goto
Section 9.6.5 to determine which processes are using the memory. Otherwise, you have asystem
memory leak not covered in this book. Go to Section 9.9.

9.6.5. Which Processes Are Using the Shared Memory?

Usei pcs to determine which processes are using and alocating the shared memory. After the
processes that use the shared memory have been identified, investigate the individual processesto
determine why the memory isbeing using for each. For example, look in the application’s source code
for calsto shnget (to alocate shared memory) or shimat (to attach to it). Read the application's
documentation and look for options that explain and can reduce the gpplication's use of shared memory.

Trv to reduce shared memoryv usage and 0o to Section 9.9.

< Day Day Up >

< Day Day Up >

9.7. Optimizing Disk I/O Usage

When you determinethat disk 1/0 isaproblem, it can be helpful to determine which gpplicationis
causing thel/O.

Figure 9-5 shows the steps we take to determine the cause of disk 1/0 usage.

Figure 9-5.

9.71
Is the system
stressing a
particular disk?

9.7.2
Which application
is accessing that
disk?

9.7.3
What files are
accessed by

that application?

Goto 9.9

To begintheinvestigation, jump to Section 9.7.1

NN ™ 1 [N Y o Y TR o Y R o Y N [o N I o Y

< Day Day Up >

< Day Day Up >

9.8. Optimizing Network I/O Usage

When you know that anetwork problem is happening, Linux provides a set of toolsto determine which
gpplications are involved. However, when you are connected to external machines, the fix to a network
problem is not awayswithin your control.

Figure 9-6 shows the steps that we take to investigate a network performance problem.

Figure 9-6.

To start the investigation, continueto Section 9.8.1.

9.8.1. Is Any Network Device Sending/Receiving Near the
Theoretical Limit?

Thefirst thingto doisto use et ht ool to determine what hardware speed each Ethernet deviceis set to.
If you record thisinformation, you then investigate whether any of the network devices are saturated.
Ethernet devices and/or switches can be easily mis-configured, and et ht ool shows what speed each
device believesthat it is operating a. After you determine the theoretical limit of each of the Ethernet
devices, usei ptraf (of evenif confi g) to determinethe amount of traffic that isflowing over each
interface. If any of the network devices appear to be saturated, go to Section 9.8.3; otherwise, go to
Section 9.8.2.

9.8.2. Is Any Network Device Generating a Large Number of Errors?

Network traffic can also appear to be dow because of ahigh number of network errors. Usei f confi g
to determine whether any of the interfaces are generating alarge number of errors. A large number of
errors can be the result of amismatched Ethernet card / Ethernet switch setting. Contact your network
adminigtrator, search the Web for people with similar problems, or email questionsto one of the Linux
networking newsgroups.

Go to Section 9.9.

9.8.3. What Type of Traffic Is Running on That Device?

If aparticular deviceisservicing alarge amount of data, usei pt r af to track down what types of traffic
that deviceis sending and receiving. When you know the type of traffic that the deviceishandling,
advanceto Section 9.8.4.

9.8.4. Is a Particular Process Responsible for That Traffic?

Next, we want to determine whether aparticular processis respongblefor that traffic. Use net st at
with the - p switch to see whether any processis handling the type of traffic that isflowing over the
network port.

If an application isresponsble, go to Section 9.8.6. If none are responsible, go to Section 9.8.5.
9.8.5. What Remote System Is Sending the Traffic?

If no application isresponsible for thistraffic, some system on the network may be bombarding your
system with unwanted traffic. To determine which systemissending dl thistraffic, usei pt raf or
et her ape.

If itispossible, contact the owner of this system and try to figure out why thisis happening. If the owner
isunreachable, it might be possibletoset up i pfi | t er s withinthe Linux kernd to dwaysdrop this

nartict lar traffic or to <t 11N A firanval behween the ramote machi ne and the local machi ne to 1 nteycent

< Day Day Up >

| #mPREV | [NExT |

9.9. The End

When you findly arrive here, your problem may or may not be solved, but you will have alot of
information characterizing it. Search the Web and newsgroups for people with smilar problems. E-mall
them and devel opers to see how they resolved it. Try a solution and see whether the system's or
gpplication's behavior has changed. Every time you try anew solution, jump to Section 9.2 to diagnose
the system again, because the application's behavior may change with every fix.

[@ PREV | [NExT up |

| #mPREV | [NExT |

9.10. Chapter Summary

This chapter provided amethod for using the Linux performance tool s together to track down different
types of performance problems. Although it is not possible to capture every type of performance
problem that could go wrong, this methodology hel ps you find some of the more common problems. In
addition, if the problem that you face is not covered here, the datathat you collect will till be useful
because it might open up different areas of investigation.

The next few chapters show this method being used to find performance problems on aLinux system.

[¢mPREV | [NExT o |

| #mPREV | NEXT oy |

Chapter 10. Performance Hunt 1: A
CPU-Bound Application (GIMP)

This chapter contains an example of how to usethe Linux performance toolsto find and fix performance
problemsin a CPU-bound application.

After reading this chapter, you should be able to
« Figure out which sourcelinesare using dl the CPU in a CPU-bound application.

« Useltrace and oprofi | e tofigureout how often an gpplicationis caling variousinterna and
externd functions.

Look for patternsin the applications source, and search online for information about how an
gpplication behaves and possible solutions.

« Usethis chapter asatemplate for tracking down a CPU-related performance problem.

[NExT up |

[#mPREV |

| #mPREV | [NExT |

10.1. CPU-Bound Application

In this chapter, we investigate an application that is CPU-bound. It isimportant to be ableto optimize a
CPU-bound application becauseit is one of the most common performance problems.

Itisalso usudly thefind frontier for aheavily tuned gpplication.

Asthedisk and network bottlenecks are removed, the application becomes CPU-bound. In addition, it
is often easier to buy faster disks or more memory than to upgrade a CPU, o if aprocessis
CPU-bound, it isan important skill to be able to hunt down and fix a CPU performance problem rather
than just buy anew system.

[#mPREV | [NExT o |

[NExT |

| #mPREV |

10.2. Identify a Problem

Thefirgt step in a performance hunt it to identify a problem to investigate. In thiscase, | choseto
investigate a performance problem that crops up when using GIMP, an open-source image-manipulation
program. GIMP can dice and dice various aspects of animage, but it also has apowerful set of filters
that can warp and change an imagein avariety of ways. Thesefilters can change the gppearance of the
image based on some complicated agorithms. Typicaly, thefilterstake along timeto complete and are
very CPU-intensive. One of thefiltersin particular, Van Gogh (LIC), takes an input image and modifies
it o that it lookslike apainting donein the style of Van Gogh. Thisfilter takes a particularly long amount
of time to complete. When running, thefilter uses nearly 100 percent of CPU and takes several minutes
to complete. The amount of time to complete depends on the size of the image, the machine's CPU
gpeed, and the values of the parameters passed into thefilter. In this chapter, we investigate why this
filter isso dow using Linux performance tools and see whether there is any way to speed it up.

[NExT o |

[#mPREV |

< Day Day Up >

10.3. Find a Baseline/Set a Goal

Thisfirst step in any performance hunt isto determine the current state of the problem. In the case of the
GIMPfilter, we need to figure out how much timeit takesto run on aparticular image. Thisisour
basdine time. Once we have this basdline time, we can then try an optimization and see whether it
decreases the execution time. Sometimes, it can be tricky to time how long something takes to execute.
It isnot as easy as using a stopwatch because the operating system may be scheduling other tasks at the
sametimethat our particularly CPU-intensive job isrunning. Inthiscase, if other jobsare running in
addition to the CPU-intensive one, the amount of wall-clock time could be much greater than the amount
of CPU time that the process actually uses. In this case, we are lucky; by looking &t t op asthefilter is
running, we can seethat the | i ¢ processistaking up most of the CPU usage, asshownin Listing 10.1.

Listing 10.1.

[ezolt @ocal host ktracer]$ top

top - 08:24:48 up 7 days, 9:08, 6 users, |oad average: 1.04,
0.64, 0.76

Pl D USER PR N VIRT RES SHR S %CPU %UVEM Tl VE+
COMIVAND
32744 ezolt 25 0 53696 45m 11m R 89.6 14.6 0:16.00 lic
2067 root 15 0 69252 2Im17mS 6.0 6.8 161:56.22 X
32738 ezolt 15 0 35292 2/ml1l4mS 2.3 8.7 0: 05. 08
gi np

From this, we can deduce that GIMP actudly spawns a separate process to run when running the filter.
So when thefilter isrunning, we can then use ps to track how much CPU timethe processis using and
when it hasfinished. When we have the PID of thefilter using t op, we can runtheloopin Listing 10.2
and ask ps to periodicaly observe how much CPU timethefilter isusing.

Listing 10.2.

while true ; do sleep 1 ; ps 32744; done
PID TTY STAT TI ME COMVAND

32744 pts/ 0 R 2: 46
/usr/local/lib/gim/2. 0/plug-ins/lic -ginp 8 6 -run O

Note

If you need to time an gpplication but do not have a stopwatch, you canuseti me and cat asasmple
stopwatch. Justtypeti me cat whenyou want to art timing, and then press <Ctrl-D> when you are
finished. t i me showsyou how much time has passed.

Whenrunningthel i ¢ filter on the reference image (which isafetching picture of my basement) and
using the ps method just mentioned to time the filter, we can seefrom Lidting 10.2 that it takes 2 minutes
and 46 seconds to run on the entireimage. Thistimeisour basdine time. Now that we know the amount
of timethat thefilter takesto run out of the box, we can set our god for the performance hunt. It is not
always clear how to set areasonable god for a performance investigation. A reasonable valuefor agod
can depend on severd factors, including the amount of tuning that has aready been done on the

< Day Day Up >

| #mPREV | [NExT |

10.4. Configure the Application for the Performance
Hunt

The next step in our investigation isto set up the application for the performance hunt by recompiling the
application with symbols. Symbols dlow the performancetools (such as opr of i | e) toinvestigate which
functions and source lines are responsible for al the CPU timethat is being spent.

For the GIMP, we download the latest GIMP tarball from its Web site, and then recompileit. Inthe
case of GIMP and much open-source software, thefirst step in recompilation isrunning the conf i gur e
command, which generates the makefiles that will be used to build the application. The conf i gure
command passes any flags present in the CFLAGS environmenta variable into the makefile. Inthis case,
because we want the GIMP to be built with symbols, we set the cFLAGS varidbleto contain - g3. This
causes symbolsto beincluded in the binaries that are built. Thiscommand isshownin Listing 10.3 and
overridesthe current value of the CFLAGS environmenta variable and setsit to - g3.

Listing 10.3.
[root @ ocal host ginp-2.0.3]# env CFLAGS=-g3 ./configure

We then make and ingall the version of GIMP with dl the symbolsincluded, and when werun this
verson, the performance toolswill tel uswhere time is being spent.

| ¢mPREV | [NExT |

| #mPREV | [NExT |

10.5. Install and Configure Performance Tools

The next step in the hunt isto ingtd| the performance toolsif they are not dready ingtaled. Although this
might seem like an easy thing to do, it often involves chasing down custom-made packages for a
distribution or even recompiling the tools from scratch. In this case, we are going to use opr of i | e ON
Fedora Core 2, so we haveto track down both the opr of i | e kernd module, which in Fedoras case,
isonly included in the symmetric multiprocessing (SMP) kernelsand the opr of i | e package. It also may
beinterestingto usethe| t race performancetool to see which library functions are called and how
often they are being cdled. Fortunatdly, | t r ace isincluded in Fedora Core 2, so we do not haveto

track it down.

[¢mPREV | [NExT o |

< Day Day Up >

10.6. Run Application and Performance Tools

Next, we run the gpplication and take measurements using the performance tools. Becausethe | i ¢ filter
iscalled directly from the GIMP, we have to use tools that can attach and monitor an aready running
process.

Inthe case of oprofi | e, wecan Start oprof i | e, run thefilter, and then Stop opr of i | e after thefilter
has been completed. Becausethe | i ¢ filter takes up approximately 90 percent of the CPU when
running, the system-wide samplesthat opr of i | e collectswill bemainly rdevant for thel i ¢ filter. When
l'i c Startstorun, we start opr of i | e in another window; when | i ¢ finishesin that other window, we
stop opr of i | e. The starting and stopping of opr of i | e isshownin Ligting 10.4.

Listing 10.4.

[root @ ocal host ezolt]# opcontrol --start
Profiler running.

[root @ ocal host ezolt]# opcontrol --dunp
[root @ ocal host ezolt]# opcontrol --stop

St oppi ng profiling.

| t race must berun alittle differently. After thefilter has been dtarted, | t r ace can be attached to the
running process. Unlike opr of i | e, ataching | t r ace t0 a process brings the entire process to a crawl.
This can inaccurately inflate the amount of time taken for each library cdl; however, it provides
information about the number of timeseach cdl ismade. Ligting 10.5 showsalisingfrom| tr ace.

Listing 10.5.

[ezol t @ ocal host ktracer]$ Itrace -p 32744 -c

% tinme seconds usecs/call calls function
43.61 156.419150 254 614050 rint
16. 04 57.522749 281 204684 ginp_rgb_to_hsl
14. 92 53.513609 261 204684 g _rand_doubl e_range
13. 88 49. 793988 243 204684 gi np_rgba_set uchar
11.55 41. 426779 202 204684
gi np_pi xel _rgn_get _pi xe
0. 00 0. 006287 6287 1 gtk _wi dget destroy
0. 00 0. 003702 3702 1 g rand_new
0. 00 0. 003633 3633 1 ginp_progress_init
0. 00 0. 001915 1915 1 gi np_drawabl e_get
0. 00 0.001271 1271 1
gi np_drawabl e_mask_bounds
0. 00 0. 000208 208 1 g _malloc
0. 00 0. 000110 110 1 gettext
0.00 0. 000096 96 1 ginp_pixel _rgn_init
100. 00 358.693497 1432794 t ot al

To get the full number of library cdls, itispossbletolet | t r ace rununtil completion; however, it takes
aredly long time, soin this case, we pressed <Ctrl-C> after along period of time had e apsed. Thiswill
not always work, because an application may go through different stages of execution, and if you stop it
early, you may not have acomplete picture of what functions the gpplication is caling. However, this
short sample will a least give usagtarting point for andyss.

< Day Day Up >

< Day Day Up >

10.7. Analyze the Results

Now that we have used opr of i | e to collect information about wheretimeis spent when thefilter is
running, we have to analyze the results to look for waysto change its execution and increase
performance.

First, we use opr of i | e tolook a how the entire system was spending time. Thisisshown in Liging
10.6.

Listing 10.6.

[root @ ocal host ezolt]# opreport -f | |less

CPU. CPU wWith tinmer interrupt, speed 0 MHz (esti mated)
Profiling through tinmer interrupt
Tl MER: O]
sanpl es| %
69896 36.9285 /usr/local/lib/libginp-2.0.s0.0.0.3
44237 23.3719 /usr/local/lib/libginpcolor-2.0.s0.0.0.3
28386 14.9973 /usr/local/lib/ginp/2.0/plug-ins/lic
16133 8.5236 /usr/lib/libglib-2.0.s0.0.400.0

As Lidting 10.6 shows, 75 percent of the CPU timewas spentinthe| i ¢ process or GIMP-related
libraries. Most likely, these librariesare called by the | i ¢ process, afact that we can confirm by
combining theinformationthet | t r ace givesuswith theinformation from opr of i | e. Ligting 10.7 shows
thelibrary calls madefor asmall portion of the run of thefilter.

Listing 10.7.

[ezolt @ ocal host ktracer]$ ltrace -p 32744 -c

%tinme seconds usecs/call calls function
46. 13 101.947798 272 374307 rint
15.72 34. 745099 278 124862 g_rand_doubl e_range
14. 77 32. 645236 261 124862
gi np_pi xel _rgn_get _pi xe
13.01 28. 743856 230 124862 gi np_rgba_set uchar
10. 36 22.905472 183 124862 gi np_rgb_to_hsl
0. 00 0. 006832 6832 1 gtk _wi dget destroy
0. 00 0. 003976 3976 1 ginp_progress_init
0. 00 0. 003631 3631 1 g_rand_new
0. 00 0. 001992 1992 1 gi np_drawabl e_get
0. 00 0. 001802 1802 1
gi np_dr awabl e_mask_bounds
0. 00 0. 000184 184 1 g malloc
0. 00 0.000118 118 1 gettext
0. 00 0. 000100 100 1 ginp_pixel _rgn_init
100. 00 221.006096 873763 t ot al

Next, weinvestigate the information that opr of i | e gives us about where CPU timeis being spentin
each of thelibraries, and see whether the hot functionsin the libraries are the same as those thet the filter
cals. For each of the three top CPU-using images, we ask opr epor t t0 give us more details about

wihirh i inctiane 1n thoe lilhran 7 Aara cncndina Al the time The roa ilfe aro dhasanm in | ickrina 1N © fAr the

< Day Day Up >

< Day Day Up >

10.8. Jump to the Web

Now that we have found which GIMP functions are used for much of the time, we haveto figure out
exactly what these functions are and possibly optimize their use,

First, we search the Web for pi xel _rgn_get _pi xel andtry to determinewhat it does. After afew
fdse garts, thefollowing link and information reveded in Listing 10.11 confirm our suspicions about
what pi xel _rgn_get pi xel does.

Listing 10.11.

"There are calls for pixel _rgn_get_ pixel, row, col, and rect,
whi ch grab

data fromthe image and dunp it into a buffer that you' ve
pre-all ocat ed.

And there are set calls to match. Look for "Pixel Regions" in
gi mp. h."

(from

http://gi np-pl ug-ins. sourceforge. net/doc/Witing/ htm/sect-

i mage. htm)

In addition, theinformationin Listing 10.12 suggeststhat it isagood ideato avoid using
pi xel _rgn_get calls.

Listing 10.12.

"Note that these calls are relatively slow, they can easily be
t he

sl owest thing in your plug-in. Do not get (or set) pixels one
at a tine

usi ng pixel _rgn_[get|set] _pixel if there is any other way.
(from

http://ww. home. uni x-ag. or g/ si non/ gi np/ guadec2002/ gi np-

pl ugi n/ htm /i magedata. ht m)

In addition, the Web search yidds information about the gi np_r gb_set _uchar function by Smply
turning up the source for the function. Asshown in Listing 10.13, this call just packsthe red, green, and
bluevauesinto a G npRGB structure that represents asingle color.

Listing 10.13.

voi d

ginp_rgb_set uchar (G nmpRGB *rgb,
guchar r,
guchar g,
guchar b)

{

g_return_if_fail (rgb != NULL);

rgb->r = (gdouble) r / 255.0;
rgb->g = (gdouble) g / 255.0;
rgb->b = (gdouble) b / 255.0;

}

Information gleaned from the Web confirms our suspicion: The pi xel _rgn_get _ pi xel functionisa

http://www.home.unix-ag.org/simon/gimp/guadec2002/gimp-plugin/html/efficientaccess.html
http://gimp-plug-ins.sourceforge.net/doc/Writing/html/sect-tiles.html
http://gimp-plug-ins.sourceforge.net/doc/Writing/html/sect-
http://www.home.unix-ag.org/simon/gimp/guadec2002/gimp-
http://www.home.unix-ag.org/simon/gimp/guadec2002/gimp-plugin/html/efficientaccess.html
http://gimp-plug-ins.sourceforge.net/doc/Writing/html/sect-tiles.html

< Day Day Up >

| #mPREV | [NExT |

10.9. Increase the Image Cache

The Web sites explain that GIMP managesimagesin adightly counterintuitive fashion. Instead of storing
theimagein abig array, GIMP instead breaks the image up into aseries of tiles. Thesetiles are 64x64
wide. When afilter wantsto access a particular pixel of the image, GIMP |oads the appropriatetile, and
then finds and returnsthe pixel vaue. Each call to retrieve a particular pixdl can be dow. If this process
isdone repestedly for each pixd, this can dramatically dow down performance as GIMP rdoads thetile
that it will useto retrieve the pixd values. Fortunately, GIMP provides away to cachethe old tile values
and use the cache vaues rather than reload thetiles at each time. This should increase performance. The
amount of cachethat GIMP provides can be controlled by usngthe gi mp_til e cache ntiles cdl.
Thiscdl iscurrently usedingdethe | i ¢ and setsthe cache to twice as many tiles astheimageiswide.

Even though this might seem like enough cache, the GIMP might possibly still need more. Thesmple
way to test thisisto increase the cache to avery large value and see whether that improves
performance. So, in this case, we increase the amount of cache to 10 times the amount that is normally
used. After increasing this value and rerunning thefilter, we receive atime of 2 minutes and 40 seconds.
Thisisan increase of 6 seconds, but we have not reached our goal of 2 minutes and 30 seconds. This
saysthat we must look in other areasto increase the performance.

| ¢mPrREV | [NExT o |

| #mPREV | [NExT |

10.10. Hitting a (Tiled) Wall

In addition to using the tile cache, the Web pages suggest a better way to increase the performance of
get _pi xel . By accessing the pixd information directly (without acdl to gi np_pi xel _rgn_get _pi xel
), itispossible to dramaticaly increase the performance of the pixel access.

GIMP can provide away for thefilter programmer to directly accessthetiles of animage. Thefilter can
then access the image data asiif it were accessing adataarray, instead of requiring acal into aGIMP
library. However, there is a catch. When you have direct accessto the pixel data, itisonly for the
current tile. GIMP will then iterate over dl thetilesin theimage, alowing you to ultimately have accessto
al the pixelsin theimage, but you cannot access them al smultaneoudly. It isonly possibleto look &t the
pixesfromasngletile, and thisisincompatiblewithhow | i ¢ accessesdata. Whenthe i ¢ filteris
generating anew pixd at aparticular location, it caculatesits new vaue based on the vaues of the pixels
that surround it. Therefore, when generating new pixelson the edge of atile, the | i ¢ filter requires pixe
datafrom dl the pixdsaround it. Unfortunately, these pixels may be on the previoustile or the next tilein
theimage. Because this pixd information is not available, theimagefilter will not work with this
optimized access method.

[NExT o |

[¢mPREV |

< Day Day Up >

10.11. Solving the Problem

Because we have determined that the reading of pixel vauesistaking asignificant amount of time, there
isyet another solution that may solve the problem. We have to start looking at how thefilter runs. Asit
generates the new image, it repeatedly asks for the same pixel. Because the new pixel valueisbased on
the pixelsthat surround it, during the course of running the filter on theimage, each pixel can be accessed
by each of its nine neighbors. This meansthat each pixe in theimage will beread by each of its
neighbors and, asaresult, it isread at least ninetimes.

Because the callsto the GIMP library are expensive, we would only like to do them once for each pixel
rather than ninetimes. It is poss ble to optimize access to the image by reading the entireimage into a
locdl array when the filter starts up, and then accessing thisloca array asthefilter runs, rather than
cdling the GIMP library routines each time we want to access the data. This method should significantly
reduce the overhead for looking up the pixel data. Instead of a couple of function callsfor each data
access, wejust access our local array. On filter initidization, the array isalocated with mal | oc andfilled
with the pixel data. Thisisshownin Listing 10.14.

Listing 10.14.

int g_imge w dth, g_imge_height;
G npRGB *g_cached_i mage;

voi d cache_i mage(G npPi xel Rgn *src_rgn,int w dth,int height)
{

static guchar datal4];

int x,vy;

G nmpRGB *current _pi xel ;

g_image_w dth = w dt h;
g_i mage_hei ght = hei ght;

g_cached_image = mall oc(si zeof (G npRGB) *wi dt h*hei ght) ;
current _pixel = g _cached_i mage;

/* Malloc */
for (y = 0; y < height; y++)
{
for (x = 0; x < width; x++)
{
gi np_pi xel _rgn_get _pixel (src_rgn, data, x, Yy);
gi np_rgba_set _uchar (current_pixel, data[O0],
data[1], data[?],
data[3]);

}

current _pi xel ++;

}

In addition, the peek routine has been rewritten just to accessthisloca array rather than call into the
GIMPlibrary functions. Thisisshownin Listing 10.15.

Listing 10.15.

static void peek (G npPi xel Rgn *src_rgn,
gi nt X,
gi nt Y,
G Mo RGB *col or)

< Day Day Up >

| #mPREV | [NExT |

10.12. Verify Correctness?

After we have an optimization that has significantly reduced the filter's runtime, it is necessary to verify
that the output image it producesis the same for both the optimized and the unoptimized filter. After
loading up the origind reference image and comparing it to the newly generated image, 1 used GIMPto
take the difference of the two images. If the reference and optimized image areidenticd, al the pixels
should be zero (black). However, the different image was not perfectly black. Visudly, it looked black,
but upon closer ingpection (using the GIMP color picker), some of the pixelswere nonzero. Thismeans
that the reference and optimized images are different.

Thiswould normaly be acause for concern, because this might indicate that optimization changed the
behavior of thefilter. However, a closer examination of the filter's source code showed severd places
where random noise was used to dightly jitter the image before the filter was run. Any two runs of the
filter would be different, so the optimization waslikely not to blame. Because the differences between
the two images were so visudly smal, we can assume that the optimization did not introduce any
problems.

| ¢mPREV | [NExT |

| #mPREV | [NExT |

10.13. Next Steps

We exceeded our god of 10 percent performanceincreaseinthel i c filter, sointhat sense, weare
done with the optimization process. However, if we want to continue to increase performance, we have
to reprofile the filter when using the new optimizations. It isimportant to reprofile the gpplication after
each performance optimization is applied and to not rely on old profiles when continuing to optimize the
application. The gpplication's runtime behavior can change dramatically after each optimization. If you do
not profile after every optimization, you run therisk of chasing a performance problem that no longer
exigs.

| ¢mPREV | [NExT |

| #mPREV | [NExT |

10.14. Chapter Summary

In this chapter, we determined why an gpplication (the GIMPfilter | i ¢) was CPU-bound. We figured
out the base runtime of the application, set agod for optimization, and saved areferenceimageto verify
that our optimizations did not change the behavior of the gpplication. We used the Linux CPU
performancetools (oprofi | e ad | t r ace) to investigate exactly why the application was CPU-bound.
We then used the Web to understand how the application worked and to figure out different waysto
optimizeit. Wetried afew different optimizations, but ultimately, we chose the classic performance
trade-off of increased memory usage for reduced CPU usage.

We beat our optimization god, and then verified that our optimization did not change the output of the
goplication.

Whereas this chapter focused on optimizing a single application's runtime, the next chapter presentsa
performance hunt that concentrates on reducing the amount of latency when interacting with X
Windows. Reducing latency can betricky, because a single event often sets off a nonobvious set of
other events. The hard part isfiguring out what events are being caled and how long each of them are
teking.

[#mPREV | [NExT up |

| #mPREV | [NExT |

Chapter 11. Performance Hunt 2: A
Latency-Sensitive Application (nautilus)

This chapter contains an example of how to usethe Linux performancetoolsto find and fix a
performance problem in alatency-sensitive application.

After reading this chapter, you should be able to

« Useltrace and oprofi | e tofigure out wherelatency isbeing generated in alatency-sendtive
goplication.

Use gdb to generate astack trace for each call to a"hot” function.

Use performance tools to determine where time is spent for an application that uses many
different shared libraries.

« Usethischapter asatemplate to find the cause of high latency in alatency-sengtive gpplication.

[#mPREV | [NExT up |

| #mPREV | [NExT |

11.1. A Latency-Sensitive Application

In this chapter, we investigate an application that is sengitive to dow latency. Latency can be thought of
asthetimeit takes for an application to respond to different externd or interna events. An gpplication
with alatency performance problem often does not hog the CPU for long periods of time; instead, it only
usesasmall amount of CPU time to respond to different events. However, the response to the particular
eventsis not swift enough. When fixing alatency performance problem, we need to reduce the latency in
response to the various events and figure out what parts of the gpplication are dowing down the
response. Asyou will see, tracking down alatency problem requires adightly different tactic than
tracking down a CPU-intensive problem.

[NExT o |

[¢mPREV |

| #mPREV | [NExT |

11.2. Identify a Problem

Aswith the performance problem in the preceding chapter, we have to define what we will investigate
and try to overcomeit. In this case, we will optimize the time to open a pop-up menu when using the
nautilus file manager for the GNOME desktop. In nautilus, pop-up menus are opened by right-clicking
anywherein anautilusfile management window. Inthis particular case, we will beinvestigating the
performance of the pop-up menus that appear when we right-click the background of an open window
rather than when we right-click a particular file or folder.

Why should we optimize this? Even though the amount of time to open a pop-up may belessthan a
second, it isstill dow enough that users can perceive the lag between when they right-click the mouse
and when the menu shows up. This duggish pop-up givesthe GNOME user the impression that the
computer isrunning dowly. People notice adight delay, and it can make interaction with nautilus
annoying or give the impression that the desktop isdow.

This particular performance problem is different from the GIMP problem of the preceding chapter. First,
the core components of the desktop (in this case, GNOME) are typically more complicated and
interlocked than atypical desktop application. The componentstypicaly rely on avariety of subsystems
and shared librariesto do their work. Whereas the GIMP was ardatively self-contained gpplication,
making it easier to profile and recompile when necessary, the GNOME desktop is made up of many
different interlocking components. The components may require multiple processes and shared libraries,
each performing a different task on behdf of the desktop. nautilus, in particular, islinked to 72 different
shared libraries. Tracking down exactly which piece of code is spending time, how much it is spending,
and why it is spending it, can be adaunting task.

The sgnificant second difference of this performance investigation from the GIMP investigation isthat the
timeswe are trying to reduce are on the order of milliseconds rather than seconds or minutes. When the
timesare so smdl, it can be difficult to make sure that the profiling datathat you are capturing is actually
the result of the event that you are trying to measure rather than just the noise around trying to stop and
gart the profiling tools. However, this short time period aso makesit practical to trace dl aspects of
what the application doesfor the interesting period of time.

[¢mPREV | [NExT o |

< Day Day Up >

11.3. Find a Baseline/Set a Goal

Aswith the previous hunt, the first step isto determine the current state of the problem. To make our
livesalittle easer, and to avoid some of the profiling problems mentioned in the preceding section, we
are going to cheat alittle and make the pop-up menu problem look more similar to the long-running
CPU-intens ve tasks that we measured before. The amount of time that it takes for asingle pop-up to
appear isin the millisecond range, which makesit hard to accurately measure it with our performance
profiling tools. As mentioned previoudy, it will be difficult to start them and stop them in the proper
amount of time and guarantee that we are only measuring what we are interested in (that is, the CPU
time spent to open up the actua menu). Here iswhere we cheet. Instead of opening up the menu just
onetime, we will open up the menu 100 timesin rapid succession. Thisway, the total amount of time
spent opening menus will increase by afactor of 100. This enables usto use our profiling toolsto
capture information about how the menu is executing.

Because right-clicking 100 times would be tedious, and a human (unless very well trained) could not
reliably open up a pop-up menu 100 times in arepeatable manner, we must automateit. To reliably
open up the pop-up menu 100 times, we rely on the xautomation package. The xautomation packageis
available a http://hoopajoo.net/projects/xautomation.html. It can send arbitrary X Window eventsto the
X server, mimicking auser. After downloading the xautometion tar file, unzipping and compiling it, we
can useit to automate the right mouse click.

Unlike with the GIMP, we cannot smply measure the amount of CPU time used by nautilusto evauate
the time needed to create 100 pop-up menus. Thisis mainly because nautilus does not start immediately
before amenu is opened and end immediately after. We are going to use wall-clock time to see how
much timeit takes to complete thistask. Thisrequiresthat the system not have any other things running
whilewerun thetest.

Listing 11.1 shows the shell script of xautomation commands that are used to open 100 pop-up menus
in the nautilus file browser. When we run the test, we have to make sure that we have oriented the
nautilus window s0 that none of the clicks actually opens a pop-up menu on afolder, and that instead dll
the pop-ups occur on the background. Thisisimportant because the code paths for the different pop-up
menus could beradicdly different.

Listing 11.1.

#! / bi n/ bash

for i in 'seq 1 100';

do
echo $i
./ xte "mousenove 100 100" ' rmouseclick 3" 'mouseclick 3
./ xte '"nmousenove 200 100’ mouseclick 3 mouseclick 3'

done

The commandsin Listing 11.1 move the cursor to position (100,100) on the X screen, and click the
right mouse button (button 3). This brings up amenu. Then they click the right mouse button again, and
this closes the menu. They then moveto X position (100,100), and repest the process.

Next, weuset i me to see how much the script of these 100 iterations takes to complete. Thisis our
basdine time. When we do our optimizations, we will check them againg thistime to see whether they
have improved. This baseline time for the stock Fedora 2 version of nautilus on my laptop is 26.5
seconds.

Findly, we haveto pick agod for our optimization path. One easy way to do thisisto find an
application that aready has fast pop-up menus and see how long it takes for it to bring up a pop-up
menu 100 times. A perfect example of thisisxterm, which has nice snappy menus. Although the menus
are not a< combnlicated asthoe in nartiliis they dhotild at least be cond dered an 1 inber hotind on how

http://hoopajoo.net/projects/xautomation.html
http://hoopajoo.net/projects/xautomation.html

< Day Day Up >

| #mPREV |

[NExT |

11.4. Configure the Application for the Performance
Hunt

The next step in the investigation isto set up the gpplication for the performance hunt. Whereaswith
GIMP we recompiled the gpplication immediately, we are going to take a different approach with
nautilus. It may be hard to figure out exactly which pieces need to be recompiled because it relieson so
many different shared libraries. Instead of recompiling, we are going to download and ingtall the
debugging information for each of the gpplications and libraries. For Fedoraand Enterprise Linux, Red
Hat providesaset of debugi nf o r pns that contain al the symbol information and sourcesthat were
generated by the compiler when the application was complied. Each binary package or library hasa
corresponding debugi nf o r pmthat containsthe debugging information. Thisalows Red Hat to ship the
binaries without the disk-gpace-consuming debugging information. However, it dlows developers, or
those investigating performance problems, to download the gppropriate debugi nf o packages and use
them. In this case, Red Hat's version of opr of i | e will aso recognizethe debugi nf o packages and
pick up the symbolswhen profiling both an gpplication, such anautilus, and alibrary, such as gt k. Inthis
case, we are going to download the debugi nf o for gt k, nautilus, glib, and the kernd. If oprofile
findsalibrary that contributes a significant amount of cycles, but does not dlow you to andyze the
libraries (opr epor t printsout "no symbals'); thisindicates that no debugging information isingtaled for
thelibrary. We can download and ingtall the appropriate debugi nf o packagefor thelibrary, and then
opr of i | e will have accessto the debugging information and will then be able to map the events back to
the origind functions and source lines.

| ¢mPrREV | [NExT o |

| #mPREV | [NExT |

11.5. Install and Configure Performance Tools

The next step in the hunt isto ingtall the performance tools we need to investigate the problem. Aswe
did in the performance hunt for the GIMP, wewill ingtal both oprofi | e and | t race. Inthiscase, we
will dso download and ingtdl gdb (if itisnot dready instdled). gdb enables usto look at some of the

dynamic aspects of the running gpplication.

| #mPREV | [NExT |

< Day Day Up >

11.6. Run Application and Performance Tools

Next, we run the gpplication and take measurements using the performance tools. Because we aready
suspect that acomplex interaction of many different processes and libraries might be the cause of the
problem, we are going to start with opr of i | e and seewhat it hasto say.

Because we only want opr of i | e to measure events that occur while we are opening the pop-up menus,
we are going to use the command line shown in Ligting 11.3 to start and stop the profiling immediately
before and immediatdly after we run our script (named scri pt . sh) that opens and closes 100 pop-up
menus.

Listing 11.3.
opcontrol —start ; ./script.sh ; opcontrol -stop

Running opr epor t after that profiling information has been collected gives us the information shown in
Liging 11.4.

Listing 11.4.

CPU. CPUwth timer interrupt, speed 0 MHz (esti nated)
Profiling through tinmer interrupt
TI MER: 0]
sanpl es| %
3134 27.1460 /usr/lib/libgobject-2.0.s0.0.400.0
1840 15.9376 /usr/lib/libglib-2.0.s0.0.400.0
1303 11.2863 /lib/tls/libc-2.3.3.s0

1048 9.0775 /lib/tls/libpthread-0.61.so

900 7.7956 /usr/lib/libgtk-x11-2.0.s0.0.400.0
810 7.0160 /usr/ X11R6/ bi n/ Xorg

719 6.2278 /usr/lib/libgdk-x11-2.0.so0.0.400.0
334 2.8930 /usr/lib/libpango-1.0.s0.0.399.1
308 2.6678 /lib/ld-2.3.3.s0

298 2.5812 /usr/ X11R6/1ib/1ibX1l.so0.6.2

228 1.9749 /usr/lib/libbonoboui-2.s0.0.0.0
152 1.3166 /usr/ X11R6/1ib/libXft.so.2.1.2

Asyou can see, timeis spent in many different libraries. Unfortunately, itisnot a al clear which
gpplication is responsible for making those cdls. In particular, we have no ideawhich processes have
cdledthel i bgobj ect library. Fortunately, opr of i | e provides away to record the shared libraries
functionsthat an gpplication usesduring arun. Listing 11.5 shows how to configure opr of i | e'ssample
collection to separate the samples by library, which meansthat opr of i | e will attribute the samples
collected in shared libraries to the programs that called them.

Listing 11.5.
opcontrol -p library; opcontrol ---reset

After we rerun our test (using the commandsin Listing 11.3), opr epor t Splitsup the library samples per
gpplication, asshownin Ligting 11.6.

Listing 11.6.

< Day Day Up >

< Day Day Up >

11.7. Compile and Examine the Source

So now that we have some idea about which callsthe application istaking al of the time, we will
download the source and compileit. Until now, al of our analys'swas possible using the binary
packagesthat Red Hat provides. However, now we need to dive into the source code to examine why
the hot functions are called and then, when we figure out why, make changesin the sourceto dleviae
the performance problem. Aswe did for GIMP, when we recompile, we generate debugging symbols
by setting CFLAGS to - g beforewe call the configure script.

In this case, we downloaded and installed Red Hat's source r pmfor nautilus, which places the source of
nautilusin/ usr/ src/ redhat / SOURCES/ . By using Red Hat's source package, we have the exact
source and patchesthat Red Hat used to create the binary in the package. It isimportant to investigate
the source that was used to create the binaries that we have been investigating, because another version
may have different performance characteristics. After we exiract the source, we can begin to figure out
wherethe bonobo_wi ndow add_popup cal ismade. We can search dl the sourcefilesin the nautilus
directory using the commandsin Ligting 11.9.

Listing 11.9.

[nautilus]$ find -type f | xargs grep bonobo_w ndow_add_popup

.Isrc/file-manager/fmdirectory-view.c:
bonobo_wi ndow_add_popup\
(get _bonobo_wi ndow (view), nenu, popup_path);

Fortunately, it appearsasif bonobo_wi ndow_add_popup isonly caled from asnglefunction,
create_popup_nenu, asshownin Listing 11.10.
Listing 11.10.

static G kMenu *create_popup_nenu (FMDirectoryView *view,
const char *popup_pat h)

G kMenu *nmenu;

menu = GITK_MENU (gtk _nmenu_new ());
gt k_nmenu_set _screen (nmenu, gtk w dget_get_screen
(GTK_W DGET (view)));

gt k_wi dget _show (GTK_W DGET (nenu));

bonobo_w ndow_add_popup (get bonobo_w ndow (view), nmenu,
popup_pat h);

g_signal _connect _object (menu, "hide",
G _CALLBACK (popup_nenu_hi dden),
G _OBJECT (view),
G_CONNECT_SWAPPED) ;

return menu;

< Day Day Up >

< Day Day Up >

11.8. Using gdb to Generate Call Traces

Thetwo different toolsfor retrieving information about which functions our application was caling gave
us different information about which functions were the hot functions. We theorized that the high-level
functionsthat | t r ace reported were caling the low-level function that oper of i | e wasreporting. It
would be nice to have a performance tool that could show us exactly which functionswere caling
g_type_check_i nstance_i s_a toverify thistheory.

Although no Linux performance tool shows us exactly which functionsare calling aparticular function,
gpr of should be ableto present this callback information, but this requires recompiling the gpplication
and dl thelibrariesthat it relies on with the - pg flag to be effective. For nautilus, which relieson 72
shared libraries, this can be a daunting and infeasible task, so we have to look for another solution.
Newer versonsof opr of i | e can aso provide thistype of information, but because opr of i | e only
samples periodicaly, it will still not be able to account for every cal to any given function.

Fortunately, we can creatively use gdb to extract that information. Using gdb to trace the application
greatly dows down the run; however, we do not really care whether the trace takes along time. We are
interested in finding the number of timesthat a particular functionis caled rather than the amount of time
itiscdled, soit isacceptablefor therun to take along time. Luckily, the creation of the pop-up menuis
inthe millisecond range; evenif itis 1,000 times dower with gdb, it ftill only takes about 15 minutesto
extract thefull trace. The value of the information outweighs our wait to retrieveit.

In particular, to find which functionsarecalling g_t ype _check_i nstance_is_a, wearegoingtousea
few different features of gdb. First, we use gdb's ability to set abreakpoint at that function. Then we use
gdb's ability to generate a backtrace with bt at that breskpoint. These two features areredly al that we
need to figure out which functionsare cdling thisg_t ype _check i nstance_i s_a, but manualy
recording the information and continuing would be tedious. Wewould needtotypebt ; cont after
eechtime gdb bresksin thefunction.

To solvethis, use another one of gdb'sfeatures. gdb can execute agiven set of commandswhen it hitsa
breskpoint. By using the command command, wecantell gdb to execute bt ; cont every timeit hitsthe
breakpoint in our function. So now the backtrace displays automaticaly, and the application continues
running every timeithitsg_t ype_check_i nstance_is_a.

Now we have to isolate when the trace actually runs. We could just set up the breakpoint in
g_type_check_instance_is_a & thedart of the nautilus execution, and gdb would show tracing
information when it is called by any function. Because we only care about those functionsthat are called
when we are creeting a pop-up menu, we want to limit that tracing to only when pop-ups are being
created. To do this, we set another breakpoint at the beginning and end of the

fmdirectory view pop_up_background_cont ext _menu function. When wereach thefirst
breakpoint, we turn on the backtracingin g_t ype_check_i nst ance_i s_a; When wereach the second
breakpoint, we exit the debugger. Thislimits the backtrace information to that which is generated when
we are creating a pop-up menu. Finally, we want to be able to save this backtrace information for
post-processing. We can use gdb 'sability to log its output to afile to save the information for later. The
commands passed into gdb to extract thisinformation are shown in Listing 11.12.

Listing 11.12.

Prevent gdb from stopping after a screenful of output
set height O

Turn on output logging to a file (default: gdb.txt)
set 1 ogging on

Turn off output to the screen

set logging redirect on

Stop when a popup nenu is about to be created

break fmdirectory-view c:5730

< Day Day Up >

| #mPREV | [NExT |

11.9. Finding the Time Differences

Now that we have narrowed down which functions do the work of creating the menu, we want to figure
out which pieces are taking up dl the time and which pieces are rlatively lightweight. A great way to do
that, without using any performancetoolsat al, isto just disable pieces of code and see how it changes

performance. Even though this causes nautilus to function incorrectly, it will at least indicate which of the
functionsaretaking al thetime.

Wefirgt haveto start by taking a basdline, because the binaries we are testing have been compiled with
different flags than those provided by Red Hat. We time the scripts aswe did before. In this case, arun
of 100 iterations takes 30.5 seconds on the version that we have compiled oursalves. Next, we
comment out the eel _pop_up_cont ext _nmenu cal. Thisshows us how much timeit took nautilusto
detect the mouse click and decide that a context menu needed to be created. Even if we completely
optimize away al the commandsin these functions, we will not be ableto run any faster than this. Inthis
casg, it takes 7.6 seconds to run al 100 iterations. Next, we comment out bonobo_w ndow_add_popup
to see how much timeit costs usto actudly cal thefunctionthat | t r ace saysistaking the most amount
of time. If we comment out bonobo_wi ndow_add_popup, the 100 iterations take 21.9 seconds to
complete. Thissaysthat if we optimize away the bonobo_wi ndow_add_popup, it can shave ~8
seconds off the total run, which isnearly a25 percent improvement.

[#mPREV |

[NExT up |

< Day Day Up >

11.10. Trying a Possible Solution

So, aswe have seen, bonobo_wi ndow_add_popup iSan expensive function that must be called every
time we want to create a pop-up menu. If we are repeatedly calling it with the same parameters, it may
be possible to cachethe vaueit returns from theinitia call and usethat every time after that instead of
repeatedly cdling that expensve function. Ligting 11.19 shows an example of arewritten function to do
just that.

Listing 11.19.
voi d

fmdirectory_view pop_up_background_cont ext _nenu
(FMDi rectoryVi ew *vi ew,

{

GdkEvent Butt on *event)

/* Primtive Cache */
static FMDirectoryView *old_view = NULL;
static G kMenu *ol d_nmenu = NULL;

g_assert (FM.I S DI RECTORY_VI EW (view));

/* Make the context nenu itenms not flash as they update to
proper di sabl ed,
* etc. states by forcing nenus to update now.

*/
if ((old_view!= view) ||
vi ew >det ai | s->nenu_states_untrustworthy)

{
update_nmenus_if_pending (view);
old view = view,
ol d_nmenu = create_popup_nenu(Vvi ew,
FM_DI RECTORY_VI EW POPUP_PATH_BACKGROUND) ;
}

eel pop_up_context_rnmenu (ol d_nenu,
EEL_DEFAULT_POPUP_MENU_DI SPLACEMENT,
EEL_DEFAULT_POPUP_MENU_DI SPLACENMENT,
event);

In this case, we remember the menu that was generated last time. If we are past it in the same view, and
we do not believe that the menu for that view has changed, we just use the same menu that we used last
time instead of creating anew one. Thisis not asophisticated technique, and it will bregk down if the
user does not open a pop-up menu in the same directory repeatedly. For example, if the user opensa
pop-up in directory 1, and then opensonein directory 2, if the user then opens apop-up in directory 1,
nautilus will fill create anew menu. It is possible to creaste asimple cache that stores menus asthey are
created. When opening a menu, the first check isto see whether these views already have menusin the
cache. If they do, the cached menus could be viewed; otherwise, new ones could be created. This cache
would be especidly useful for some specia directories, such as the desktop, computer, or home
directory where the user will most likely open apop-up menu more than once. After applying this
proposed solution and timing it with the 100 iterations, the time has dropped to 24.0 seconds. Thisisa
~20 percent performance improvement, and close to the theoretical improvement that we would get if
we did not create the menti at Al (21 O «econds) Creatina non-tin mentisin varotis directories worked

< Day Day Up >

| #mPREV | [NExT |

11.11. Chapter Summary

In this chapter, we determined why a particular component of an application had high latency (pop-up
menusin nautilus). Wefigured out how to automate the creation of the pop-up menus (xautomation) and
extend the amount of time that nautilus spent creating pop-up means (100 iterations). We used

opr of i | e tofigure out in which function nautiluswas spending dl of itstime. Wethenused | t r ace and
gdb to determine which shared library calls were responsible for making al the cdls. After wefigured
out which library calswere high cogt, wetried to reduce or limit the number of timesthey were caled.
In this case, we stored a pointer to anew menu when it was allocated and used it later to avoid
unneeded redllocations. We created a proposed patch and then ran our performance test againgt it to
see whether performance improved. Performance improved, and functionality did not appear to be
affected. The next step isto submit the patch to the nautilus devel opers for comment. Whereasthis
chapter focused on optimizing asingle application's latency, the next chapter presents a performance
hunt that concentrates on solving a system-level performance problem. Thistype of hunt can often
involve investigating many different areas of the system, including hardware (disk, network, and memory)
and software (gpplications, shared libraries, and the Linux kernd).

| ¢mPrREV | [NExT o |

[NExT |

| #mPREV |

Chapter 12. Performance Hunt 3: The
System-Wide Slowdown (prelink)

This chapter contains an example of how to usethe Linux performancetoolsto find and fix a
performance problem that affects the entire system rather than a specific gpplication.

After reading this chapter, you should be able to
« Track down which individua processis causing the system to dow down.
« Usestrace toinvestigate the performance behavior of aprocessthat is not CPU-bound.
Use st r ace toinvestigate how an gpplication isinteracting with the Linux kernel.

Submit bug reports that describe a performance problem so that an author or maintainer has
enough information to fix the problem.

[NExT o |

| ¢mPrREV |

[NExT |

| #mPREV |

12.1. Investigating a System-Wide Slowdown

In this chapter, we investigate a system-wide dowdown. Initidly, we will notice that the system is
behaving dowly, and we will use the Linux performance tools to pinpoint the exact cause. This sort of
problem happens quite often. Asauser or system administrator, you may sometimes notice the Linux
machine becoming duggish or taking along time to complete atask. It is vauable to be able to figure out

why the machineisdowing down.

[@ PREV | [NExT up |

| #mPREV |

[NExT |

12.2. Identify a Problem

Onceagain, our first step isto identify the exact problem that we will investigate. In this case, we are
going to investigate a periodic dowdown that occurs when | use my Fedora Core 2 deskt op . Typicdly,
the deskt op performance is reasonable, but occasionally, the disk starts grinding and, as aresult, menus
and agpplications take forever to open. After awhile, the disk grinding subsides, and then the deskt op
behavior goes back to normal. In this chapter, we figure out exactly what is causing this problem, and

why.

Thistype of problem is different from the problemsin the two previous chapters, because weinitialy
have absolutdly no ideawhat part of the system is causing the problem. When investigating the GIMP's
and nautilus's performance, we knew which gpplication was responsible for the problem. In this case,
we just have amisbehaving system, and the performance problem could theoreticaly bein any part of
the system. Thistype of Situation is common. When confronted with it, it isimportant to usethe
performance toolsto actudly track down the cause of the problem rather than just guess the cause and
try asolution.

| ¢mPREV |

[NExT |

< Day Day Up >

12.3. Find a Baseline/Set a Goal

Once again, thefirgt step isto determine the current state of the problem.

However, inthiscase, it isnot so easy to do. We do not know when the problem will begin or how long
itwill last, so we cannot redly set abasdine without moreinvestigation. Asfar asagod, idedly we
would like the problem to disappear completely, but the problem might be caused by essentia OS
functions, so diminating it entiredly might not be possible.

First, we need to do alittle more investigation into why this problem is hgppening to figure out a
reasonable basdline. Theinitid stepistorun t op asthe dowdown ishappening. Thisgivesusalist of
processes that may be causing the problem, or it may even point at the kernd itsdlf.

Inthiscase, asshownin Ligting 12.1, werun t op and ask it to show only nonidle processes (by
pressing <I>ast op runs).

Listing 12.1.

top - 12:03:40 up 12 mn, 7 users, |oad average: 1.35, 0.98,
0.53

Tasks: 86 total, 2 running, 84 sleeping, 0 stopped,

0 zonbie

Cpu(s): 2.3%us, 5.0%sy, 1.7%ni, 0.0%id, 91.0% wa,
0.0% hi, 0.0% si

Mem 320468k total, 317024k used, 3444k free,
24640k buffers
Swap: 655192k total, Ok used, 655192k free,

183620k cached

PI D USER PR NI VIRT RES SHR S %CPU %UEM TI VE+
COMVAND
5458 r oot 34 19 4920 1944 2828 R 1.7 0.6 0:01. 13
prelink
5389 ezolt 17 0O 3088 904 1620 R 0.7 0.3 0: 00. 70
t op

Thet op outputin Ligting 12.1 has severd interesting properties. First, we notice that no processis
hogging the CPU; both nonidle tasks are using less than 2 percent of the total CPU time. Second, the
system is spending 91 percent waiting for 1/0 to happen. Third, the system is not using any of the swap
space, o the grinding disk iIsNOT caused by swapping. Findly, an unknown process, pr el i nk, iS
running when the problem happens. It isunclear what this pr el i nk command is, so we will remember
that application name and investigate it later.

Our next stepistorun vist at to seewhat the systemisdoing. Listing 12.2 showsthe result of vist at
and confirmswhat we saw with top. That is, ~90 percent of the time the system iswaiting for I/O. It dso
tellsusthat the disk subsystem isreading in about 1,000 blocks a second of data. Thisisasignificant
amount of disk I/O.

Listing 12.2.

[ezolt @ ocal host ezolt]$ vnmstat 1 10

procs ----------- menory---------- ---swap-- ----- i 0----
--system- ----cpu----
r b swpd free buff cache Si SO bi bo in

Cs us sy id wa

< Day Day Up >

[NExT |

| #mPREV |

12.4. Configure the Application for the Performance
Hunt

The next step in the investigation isto set up the application for the performance hunt. prel i nk isa
small and sdf-contained application. In fact, it does not even use any shared libraries. (It isstaticaly
linked.) However, it isagood ideato recompileit with al the symbols so that we can examineit in the
debugger (gdb) if we need to. Again, thistool usesthe conf i gur e command to generate the makefiles.
We must download the sourceto pr el i nk and recompileit with symbols. We can once again
download the source r prs for prel i nk from Red Hat. The sourcewill beingtdled in

/ usr/ src/ redhat / SOURCES. Once we unpack pr el i nk's source code, we compileit asshownin
Liging 12.6.

Listing 12.6.

env CFLAGS=-g3 ./configure
gmake

After prel i nk isconfigured and compiled, we can use the binary we compiled to investigate the
performance problems.

[NExT o |

| ¢mPrREV |

| #mPREV | [NExT |

12.5. Install and Configure Performance Tools

The next step in the hunt isto ingtall the performancetools. Inthiscase, neither | t r ace nor oprofi | e
will beof help. opr of i | e iSused to profile applications that use a sgnificant amount of CPU time, and
because pr el i nk usesonly about 3 percent of the CPU when running, opr of i | e will not hepus.
Becausethe prel i nk binary isstatically linked and does not use any shared libraries, | t r ace will dso
not help us. However, st r ace, the system call tracer, may help, so we need to ingtall that.

[@ PREV | [NExT up |

< Day Day Up >

12.6. Run Application and Performance Tools

Now we can findly begin to anayze the performance characteritics of the different modesof prel i nk.
Asyou just saw, pr el i nk does not spend much time using the CPU; instead, it spendsall of itstime on
disk I/O. Because pr el i nk must call the kernd for disk 1/0, we should be able to trace its execution
usngthe st race performancetool. Because the quick mode of pr el i nk does not appear to be that
much fagter than the stlandard f ul | - r un mode, we compare both runsusing st r ace to see whether
any suspicious behavior shows up.

At firs, weask st r ace totracethe dower full runof prel i nk. Thisistherun that crestestheinitia
cachethat isused when pr el i nk isrunningin quick mode. Initidly, weask st r ace to show usthe
summary of the syssem cdlsthat pr el i nk made and see how long each took to complete. The
command to do thisisshown in Ligting 12.7.

Listing 12.7.

[root @ ocal host prelink]# strace -c -0 af _sum
[usr/sbin/prelink -af

[usr/sbin/prelink:
[usr/libexec/aut opackage/ | uau- downl oader. bin: Could

not parse '/usr/libexec/aut opackage/ |l uau- downl oader. bin: error
whi | e

| oadi ng shared libraries: |ibuau.so.2: cannot open shared
object file: No

such file or directory’

)ﬁér/sbin/prelink: [usr/lib/nozilla-1.6/regchronme: Could not
par se

"“/usr/lib/mozilla-1.6/regchrome: error while |oading shared
i braries:

| i bxpcom so: cannot open shared object file: No such file or
directory’

Lidting 12.7 isalso asample of prelink's output. pr el i nk isstruggling whentryingto pr el i nk some of
the system executables and libraries. Thisinformation becomes vauable later, so remember it.

Ligting 12.8 showsthe summary output filethet the st r ace commandin Ligting 12.7 generated.
Listing 12.8.

[root @ ocal host prelink] # cat af_sum

execve("/usr/sbin/prelink", ["/usr/sbin/prelink", "-af"], [/*
31 vars

*11) =0

% tinme seconds usecs/call calls errors syscall

77.87 151.249181 65 2315836 read
11.93 23.163231 55 421593 pread
3.59 6.976880 63 110585 pwite
1. 3.294913 17 196518 nr emap
1.02 1.977743 32 61774 | st at 64
0 1.890977 40 47820 1 open
0 1. 406801 249 5639 vfork

< Day Day Up >

< Day Day Up >

12.7. Simulating a Solution

Theinformation revealed by st race showsthat pr el i nk ispending alot of timetrying to open and
andyze binariesthat it cannot possibly prelink. The best way to test whether caching of nonprelinkable
binaries could improve pr el i nk's performanceisto modify pr el i nk Sothat it addsal these
unprelinkable binariestoitsinitid cache. Unfortunately, adding code to cache these "unprelinkable”
binaries could be acomplicated process that involves a good amount of knowledge about the internals
of the pr el i nk gpplication. An easer method isto smulate the cache by replacing dl the unprdinkable
binaries with aknown prelinkable binary. This causes dl the formerly unprelinkable binariesto be
ignored when quick mode is run. Thisis exactly what would happen if we had aworking cache, sowe
can use it to estimate the performance increase we would seeif pr el i nk were able to cache and ignore
unprelinkable binaries.

To dart the experiment, we copy dl thefilesin/ usr/ bi n/ tothe sandbox directory and run prel i nk
on thisdirectory. Thisdirectory includes normd binaries, and shell scripts, and other libraries that cannot
be prelinked. Wethenrun pr el i nk onthe sandbox directory and tell it to create anew cache rather
than rely on the system cache. Thisisshown in Ligting 12.15.

Listing 12.15.
[usr/sbin/prelink -C new_cache -f sandbox/

Next, in Ligting 12.16, we time how long it takes the quick mode of pr el i nk to run. We had to run this
multipletimes until it gave aconsstent result. (The first run warmed the cache for each of the succeeding
runs.) Thebasdinetimein Listing 12.16 is.983 seconds. We have to best thistime for our optimization

(improving the cache) to be worth investigating.

Listing 12.16.

time /usr/sbin/prelink -C new _cache -q sandbox/

r eal OnD. 983s
user OmD. 597s
Sys OnD. 386s

Next, in Listing 12.17, werun st r ace onthispr el i nk command. Thisisto record whichfiles pr el i nk
opensinthe sandbox directory.

Listing 12.17.

strace -0 strace_prelink_sandbox /usr/sbin/prelink -C
new _cache -q
sandbox/

Next we create anew directory, sandbox2, into which we once again copy al the binariesin the /usi/bin
directory. However, we overwrite dl thefilesthat pr el i nk "opened" inthe preceding st r ace output
with aknown good binary, less, which can be prelinked. We copy the lesson to al the problem binaries
rather than just deleting them, so that both sandboxes contain the same number of files. After we set up
the second sandbox, we run thefull verson of pr el i nk on thisnew directory using the command in
Listing 12.18.

Listing 12.18.

[root @ocal host prelink]#/ usr/sbin/prelink -C new cache2 -f
sandbox?2/

< Day Day Up >

< Day Day Up >

12.8. Reporting the Problem

Because we have found a problem and potentia solution in a pretty low-level piece of system software,
it isagood ideato work with the author to resolve the problem. We must at least submit abug report so
that the author knows that a problem exists. Submitting the tests we used to discover the problem helps
him to reproduce the problem and hopefully fix it. In this case, we will add abug report to Red Hat's
bugzilla (bugzillaredhat.com) tracking system. (Most other distributions have smilar bug tracking
systems.) Our bug report describes the problem that we encountered and the possible solution that we
discovered.

When arriving a bugzilla, wefirst search for bug reportsin pr el i nk to see whether anyone else has
reported this problem. In this case, no one has, so we enter the bug report in Listing 12.22 and wait for
the author or maintainer to respond and possibly fix the bug.

Listing 12.22.

From Bugzil | a Hel per:

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.6)
Gecko/ 20040510

Descri ption of problem

VWhen running in quick nmode, prelink does not cache the fact

t hat sone

bi nari es can not be prelinked. As a result it rescans them
every tinme ,

even if prelink is running in quick node. This causes the disk
to grind

and dramatically slows down the whole system

There are 3 types of executables that it retries during quick
node:

1) Static Binaries
2) Shell Scripts

3) Binaries that rely on unprelinkable binaries. (Such as

OpenGL)

For 1&2, it would be nice if prelink cached that fact that

t hese

execut abl es can not be prelinked, and then in quick nmode check
their

ctime & ntime, and don't even try to read themif it already
knows t hat

they can't be prelinked.

For 3, it would be nice if prelink recorded which libraries
are causing
the prelink to fail (Take the OpenGL case for exanple), and
record t hat

< Day Day Up >

| #mPREV | [NExT |

12.9. Testing the Solution

Because we have not solved the problem inthe pr el i nk code, but instead reported a bug, we cannot
test thefixed pr el i nk timeagaing our origina basdineimmediately. However, if the author or
maintainer is able to implement the proposed changes, or even find a better way to optimize things, we
will be ableto check out the performance of the updated verson when it arrives.

| #mPREV | [NExT |

| #mPREV | [NExT |

12.10. Chapter Summary

In this chapter, we started with a mishehaving system and used performance toolsto pinpoint which
subsystem was used excessively (the disk subsystem as shown by vist at) and which component
caused the problem (pr el i nk). Wethen investigated the pr el i nk gpplication to determinewhy it used
so much disk I/0 (using st r ace). Wediscovered in pr el i nk's documentation a cached mode that
should dramatically reduce disk 1/0. We investigated the performance of the cached mode and found
that it did not diminate disk 1/0 as much asit should, becauseit wastrying to pr el i nk filesthat could
not be prelinked. We then smulated a cache that avoided trying to pr el i nk filesthat could not be
prelinked and verified that it Sgnificantly reduced the amount of disk I/0O and runtime of prel i nk in
quick mode. Findly, we submitted a bug report to the author of pr el i nk in the hopes that the author
will recognize the problem and fix it. This chapter wasthe last chapter of Linux performance hunts.

In the next chapter, thefina chapter, welook at the higher-leve picture of Linux performance and
performance tools. We review methodol ogies and tools covered in this book and look at some of the
areas of Linux performance tools that are ripe for improvement.

| ¢mPREV | [NExT |

| #mPREV | [NExT |

Chapter 13. Performance Tools: What's
Next?

This chapter contains musings about the current state of Linux performance tools, whet still needsto
improved, and why Linux is currently agreat platform to do performance investigation.

After reading this chapter, you should be able to

Understand the holesin the Linux performance toolbox, and understand some of the idedl
olutions

Understand the benefits of Linux asaplatform for performance investigation

[#mPREV | [NExT o |

| #mPREV | [NExT |

13.1. The State of Linux Tools

This book toursthe current Linux performancetools, how to use them individudly, and how to use them
together to solve performance problems. Aswith every aspect of Linux, these performancetools are
congtantly evolving, so when investigating a problem, it isaways agood ideato review the man page or
documentation of a performance tool to determine whether its usage has changed. The fundamenta
functions of the performance tools rarely change, but new features are commonly added, so it is helpful
to review the latest rel ease notes and documentation for agiven toal.

| ¢mPrREV | [NExT o |

< Day Day Up >

13.2. What Tools Does Linux Still Need?

Aswe toured some of the Linux performance tools, we saw some holesin the overall
performance-investigation functionality. Some of these holes are the result of kernd limitations, and some
exis just because no one has written atool to solve the problem. However, filling some of these holes
would make it dramaticaly easer to track down and fix Linux performance problems.

13.2.1. Hole 1: Performance Statistics Are Scattered

Oneglaring holeisthat Linux hasno singletool that provides dl relevant performance datisticsfor a
particular process. ps was meant to fill thisholein the original UNIX, and on Linux, it is pretty good but
it does not cover al the satistics that other commercia UNIX implementations provide. Some statistics
areinvauable in tracking down performance problems—for example, i nbl k (I/O blocks read in) and
oubl k (1/0 blocks written out), which indicate the amount of disk I/O aprocessisusng; vesw
(voluntary context switches) and i nvcsw (involuntary context switches), which often indicate a process
was context-switched off the CPU; msgr cv (messages received on pipes and sockets) and nsgsnd
(messages sent on pipes and sockets), which show the amount of network and pipe I/O an applicationis
using. Anided tool would add al these statistics and combine the functiondity of many performance
tools presented so far (including opr of i | e, t op, ps, strace, | trace, and the/ pr oc filesystem) into
asngle application. A user should be able point this single gpplication at a process and extract dl the
important performance statistics. Each Statistic would be updated in red time, enabling a user to debug
an gpplication asit runs. It would group statisticsfor asingle areaof investigation in the same location.

For example, if | wereinvestigating memory usage, it would show exactly how memory was being used
in the heap, in the stack, by libraries, shared memory, and in mmap. If aparticular memory areawas
much higher than | expected, | could drill down, and this performance tool would show me exactly
which functions dlocated the memory. If | wereinvestigating CPU usage, | would start with overal
datigtics, such as how much timeis spent in system time versus user time, and how many system cdlsa
particular processis making, but then | would be able to drill down into ether the system or user time
and see exactly which functions are spending dl the time and how often they are being caled. A smart
shell script that used the appropriate preexisting tools to gather and combine thisinformation would go a
long way to achieving some of this functionality, but fundamental changesin the behavior of some of the
toolswould be necessary to completely redizethisvison.

13.2.2. Hole 2: No Reliable and Complete Call Tree

The next performance tool holeisthe fact that thereis currently no way to provide acomplete call tree
of aprogram's execution. Linux has severa incomplete implementations. opr of i | e provides call-tree
generation, but it isbased on sampling, so it will not catch every cal that ismade. gpr of supportscall
trees, but it will not be ableto profile the full application unless every library that a particular process
cdlsisaso complied with profile support. Thismost promisingtoal, val gri nd, hasaskin caled

cal | tree, described in the section, " 5.2.5 kcachegrind,” in Chapter 5, "'Performance Tools:
Process-Specific Memory,” which hasagoa of providing acompletely accurate call tree. However, itis
gtill in development and does not work on dl binaries.

Thiscal-treetool would be useful evenif it dramatically dowed down gpplication performance asit
runs. A common wal of using thiswould beto run opr of i | e to figureout which functionsinan
gpplication are "hot," and then run the call-tree program to figure out why the application called them.
Theoprof i | e Step would provide an accurate view of the gpplication's bottlenecks when it runs at full
gpeed, and the cal tree, evenif it runsdowly, would show how and why the gpplication called those
functions. The only problem would beif the program’s behavior was timing sendtive and it would change
if it was run dowly (for example, something that relied on network or disk I/O). However, many
problems exist that are not timing senditive, and an accurate cal-tree mechanism would go along way to
fixingthee.

13.2.3. Hole 3: I/O Attribution

< Day Day Up >

| #mPREV |

[NExT |

13.3. Performance Tuning on Linux

Even with the holesjust mentioned, Linux istill anided placeto find and fix performance problems. It
was written for developers by developersand, asaresult, it isvery friendly to the performance
investigator. Linux has afew characteristicsthat make it agreat platform to track down performance
problems.

13.3.1. Available Source

Firgt, adevel oper has accessto most (if not al) source code for the entire system. Thisisinvauable
when tracking down a problem that appears to exist outside of your code. On acommercid UNIX or
other operating systems where sourceis not available, you might have to wait for avendor to investigate
the problem, and you have no guarantee that he will fix it if it is his problem. However, on Linux, you can
investigate the problem yoursdlf and figure out exactly why the performance problem is happening. If the
problem is outside your application, you can fix it and submit apatch, or just run with afixed version. If,
by reading the source of the Linux code, you redlize that the problem isin your code, you can then fix
the problem. In elther case, you can fix it immediately and are not gated by waiting for someone else.

13.3.2. Easy Access to Developers

The second advantage of Linux isthet it isrelatively easy to find and contact the developers of a
particular application or library. In contrast to most other proprietary operating systems, whereitis
difficult to figure out which engineer isrespongble for agiven piece of code, Linux is much more open.
Usudly, the names or contact information of the devel opersfor aparticular piece of software are with
the software package. Accessto the developers alows you to ask questions about how a particular
piece of code behaves, what dow-running code intends to do, and whether a given optimization is safe
to perform. The developers are usualy more than happy to help with this.

13.3.3. Linux Is Still Young

Thefind reason that Linux isagreat platform on which to optimize performanceis because it is ill
young. Features are gill being developed, and Linux has many opportunitiesto find and fix
sraightforward performance bugs. Because most devel opers focus on adding functionaity, performance
issues can be left unresolved. An ambitious performance investigator can find and fix many of the small
performance problemsin the ever-developing Linux. These small fixes go beyond asingle individua and
benefit the entire Linux community.

[#mPREV |

[NExT o |

| #mPREV | [NExT |

13.4. Chapter Summary

In this chapter, we investigated afew of the areas where the set of Linux performance tools has
shortcomings and proposed some ideal solutions. We aso discussed why Linux isagood platform on
which to try performance investigation and optimization.

It isup to you, the reader, to change Linux performance for the better. The opportunitiesfor
improvement of Linux performance and Linux performance tools abound. If you find a performance
problem that annoysyou, fix it or report it to the devel opers and work with them to fix it. Either way, no
oneesewill be hit by the problem, and the entire Linux community benefits.

| ¢mPrREV | [NExT o |

< Day Day Up >

Appendix A. Performance Tool Locations

The performance tools described in this book originated from many different locations on the Internet.
Fortunately, most mgjor distributions have pulled them together and included them in the current versons
of their digtributions. Table A-1 describes dl the tools, provides pointersto their original source locations,
and indicates whether they are included in the following distributions. Fedora Core 2 (FC2), Red Hat
Enterprise Linux (EL3), and SUSE 9.1 ($9.1).

Table A-1. Locations of Performance Tools

Toadl Didro Source Location

bash FC2, http://cnswww.cns.cwru.edu/~chet/bash/bashtop.html
EL3, 0.1

et her ape None http://etherape.sourceforge.net/

et ht ool FC2, http://sourceforge.net/projects/gkernel/
EL3, 9.1

free FC2, Part of the pr ocps package: http://procps.sourceforge.net/
EL3, 0.1

gcc FC2, http://gcc.gnu.org/
EL3, $9.1

gdb FC2, http://sources.redhat.com/gdb/
EL3, $9.1

gkrel I m FC2, http:/Aveb.wt.net/~billw/gkre lm/gkrelm.html
9.1

gnone-systemm FC2, Part of the GNOME project, and available from:

oni tor EL3, S9.1

ftp://ftp.gnome.org/pub/gnome/sources'gnome-system-monitor/

gnuneric FC2, http://Mmww.gnome.org/projects/gnumeric/
EL3, $9.1
gpr of FC2, Part of the bi nut i | s package:
EL3, 9.1
http://sources.redhat.com/binutils
ifconfig FC2, Part of the net - t ool s
EL3, $9.1 _
http://ww.tazenda.demon.co.uk/phil/net-tool s/
i ost at FC2, Part of the sysst at package:
9.1

http://perso.wanadoo.fr/sebastien.godard/

HE—. ™7~ ™t L a2l . - I [P o NP § | of L L TR

http://cnswww.cns.cwru.edu/~chet/bash/bashtop.html
http://etherape.sourceforge.net/
http://sourceforge.net/projects/gkernel/
http://procps.sourceforge.net/
http://gcc.gnu.org/
http://sources.redhat.com/gdb/
http://web.wt.net/~billw/gkrellm/gkrellm.html
ftp://ftp.gnome.org/pub/gnome/sources/gnome-system-monitor/
http://www.gnome.org/projects/gnumeric/
http://sources.redhat.com/binutils
http://www.tazenda.demon.co.uk/phil/net-tools/
http://perso.wanadoo.fr/sebastien.godard/
ftp://ftp.inr.ac.ru/ip-routing
ftp://ftp.win.tue.nl:/pub/linux-local/utils/util-linux
http://cebu.mozcom.com/riker/iptraf
http://kcachegrind.sourceforge.net/cgi-bin/show.cgi
http://www.gnu.org/software/libc/libc.html
http://sources.redhat.com/binutils
ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof
http://packages.debian.org/unstable/utils/ltrace.html
http://www.gnome.org/projects/memprof
http://www.tazenda.demon.co.uk/phil/net-tools/
http://perso.wanadoo.fr/sebastien.godard/
http://www.tazenda.demon.co.uk/phil/net-tools/
http://sources.redhat.com/binutils
http://oprofile.sourceforge.net/
ftp://ftp.cistron.nl/pub/people/svm
http://procps.sourceforge.net/
http://perso.wanadoo.fr/sebastien.godard/
http://www.kernel.org/pub/linux/utils/util-linux/
http://procps.sourceforge.net/
http://sourceforge.net/projects/strace/
ftp://alpha.gnu.org/gnu/coreutils/
http://www.gnu.org/directory/GNU/time.html
http://procps.sourceforge.net/
http://valgrind.kde.org/
http://procps.sourceforge.net/
http://cnswww.cns.cwru.edu/~chet/bash/bashtop.html
http://etherape.sourceforge.net/
http://sourceforge.net/projects/gkernel/
http://procps.sourceforge.net/
http://gcc.gnu.org/
http://sources.redhat.com/gdb/
http://web.wt.net/~billw/gkrellm/gkrellm.html
ftp://ftp.gnome.org/pub/gnome/sources/gnome-system-monitor/
http://www.gnome.org/projects/gnumeric/
http://sources.redhat.com/binutils
http://www.tazenda.demon.co.uk/phil/net-tools/
http://perso.wanadoo.fr/sebastien.godard/
ftp://ftp.inr.ac.ru/ip-routing
http://cebu.mozcom.com/riker/iptraf
http://kcachegrind.sourceforge.net/cgi-bin/show.cgi
http://www.gnu.org/software/libc/libc.html
http://sources.redhat.com/binutils
ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof
http://packages.debian.org/unstable/utils/ltrace.html
http://www.gnome.org/projects/memprof
http://www.tazenda.demon.co.uk/phil/net-tools/
http://perso.wanadoo.fr/sebastien.godard/
http://www.tazenda.demon.co.uk/phil/net-tools/
http://sources.redhat.com/binutils
http://oprofile.sourceforge.net/
ftp://ftp.cistron.nl/pub/people/svm
http://procps.sourceforge.net/
http://perso.wanadoo.fr/sebastien.godard/
http://www.kernel.org/pub/linux/utils/util-linux/
http://procps.sourceforge.net/
http://sourceforge.net/projects/strace/
ftp://alpha.gnu.org/gnu/coreutils/
http://www.gnu.org/directory/GNU/time.html
http://procps.sourceforge.net/
http://valgrind.kde.org/
http://procps.sourceforge.net/

< Day Day Up >

Foa =, Foa

| #mPREV | [nexrep)

Appendix B. Installing oprofile

Although the system prafiler opr of i | e isapowerful performancetool, itsingtallation/use can betricky.
This appendix describes some of theissueswhen ingtaling opr of i | e on Fedora Core 2 (FC2), Red
Hat Enterprise Linux (EL3), and SUSE 9.1 (S9.1).

= = =

| gmPREV | [nexTep

| #mPREV | [NExT |

B.1 Fedora Core 2 (FC2)

For FC2, Red Hat provides packagesfor opr ofi | e that should be used rather than those downloaded
fromthe opr of i | e Web site. The uniprocessor kernel does not provide the necessary oprofi | e
drivers. Red Hat packages the necessary opr of i | e kernd moduleswith the snp version of the kerndl.
If youwant torun opr of i | e, you must usethe snp kernd, evenif you arerunningitona
single-processor machine.

[@ PREV | [NExT up |

| #mPREV | NEXT oy |

B.2 Enterprise Linux 3 (EL3)

For EL 3, once again, Red Hat provides packagesfor opr of i | e that should be used rather than those
downloaded from the opr of i | e Web site. The uniprocessor kernel does not provide the necessary
oprof i | e drivers. Red Hat packages the necessary opr of i | e kernd moduleswith the snp or
hugememversons of thekernd. If you want to run opr of i | e, you must usethe snp or hugemem
kernd, evenif you are running it on asingle-processor machine.

Moredetailsonusing opr of i | e in EL3 are provided a
http:/Mmww.redhat.com/docs/manual /enterprise/RHEL -3-M anual/sysadmin-guide/ch-oprofilehtml .

[NExT o |

| ¢mPrREV |

http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/sysadmin-guide/ch-oprofile.html
http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/sysadmin-guide/ch-oprofile.html

| #mPREV | [NExT |

B.3 SUSE 9.1

For SUSE 9.1, SUSE provides packagesfor opr of i | e that should be used rather than those
downloaded fromthe opr of i | e Web site. All versions of the SUSE kernels (def aul t , snp, and
bi gsnp) provide support for opr of i | e, SO0 any of the supplied kerneswill work.

[#mPREV | [NExT o |

(@rrev |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F][G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W]I[X]

(@rrev]

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M][N][O][P][R][S][T][U][V]I[W][X]

% time option
Itrace tool
strace tool
%MEM option, top (v. 2.x and 3.x) tool
% memused option
sar (II) tool
%swpused option
sar (II) tool
+D directory option
Isof (List Open Files) tool
disk I/O subsystem usage
+d directory option
Isof (List Open Files) tool
disk I/O subsystem usage
--annotated-source option
gprof command
--assembly option
opreport tool
--brief option
gprof command
--delay option
slabtop tool
--details option
opreport tool
--flat-profile option
gprof command
--follow-exec option
memprof tool
application use of memory
--follow-fork option
memprof tool
application use of memory
--graph option
gprof command
--help option
kcachegrind tool
application use of memory
Itrace tool
strace tool
--interfaces=name option
netstat tool
network I/0
--long-filenames option
opreport tool
--raw|-w option
netstat tool
network I/0
--sort option
slabtop tool
--source -- option
opreport tool
--statistics|-s option
netstat tool
network I/0
--symbols option
opreport tool
--tcp|-t option
netstat tool
network I/0
--trace-jump=yes|no option
kcachegrind tool
application use of memory
--udp|-u option
netstat tool
network I/0
-/+ buffers/cache option
free tool
-A option
gprof command
-a option
opreport tool 2nd
-A option

ne ~FoMmMMmMmanAd

< Day Day Up >

< Day Day Up >

Index

[SYMBOL] [A][B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O][P][R][S][T][U][V][W][X]

a option
slabtop tool
active
vs. inactive memory 2nd 3rd
Active option
/proc/meminfo file
active option
vmstat II tool
active option, top (v. 2.x and 3.x) tool
application optimization
CPU usage 2nd
disk I/O usage
loaders
memory
network I/0O usage
startup time
application performance investigation
analyzing tool results 2nd 3rd 4th 5th 6th 7th
configuring applications 2nd
identifying problems 2nd
installing/configuring performance tools
latency problems 2nd
analyzing time use 2nd
analyzing tool results 2nd 3rd 4th
configuring applications 2nd
identifying problems 2nd
installing/configuring tools
running applications and tools 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
setting baseline/goals 2nd 3rd 4th
solutions 2nd 3rd
tracing function calls 2nd 3rd 4th 5th 6th
running applications and performance tools 2nd 3rd
setting baseline/goals 2nd 3rd
solutions
accessing image tiles 2nd
accessing image tiles, with local arrays 2nd 3rd 4th
increasing image cache 2nd
searching Web for functions 2nd
verifying
system-wide problems 2nd 3rd 4th 5th 6th
configuring application 2nd
configuring/installing performance tools
running applications/tools 2nd 3rd 4th 5th 6th 7th 8th 9th
simulating solution 2nd 3rd 4th 5th 6th
submitting bug report 2nd 3rd
testing solution
application tests
automating 2nd
applications
CPU cache
kernel mode
subdividing time use
time use
gprof command 2nd 3rd 4th 5th 6th 7th 8th 9th
oprofile (II) tool 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
time use versus library time use 2nd
Itrace tool 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
use of CPU cache
cachegrind tool
oprofile tool
use of memory
/proc//PID tool 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
kcachegrind tool 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
memprof tool 2nd 3rd 4th 5th 6th 7th
oprofile (III) tool 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
ps tool 2nd 3rd 4th 5th 6th
tools supported for Java, Mono, Python, and Perl 2nd
valgrind tool 2nd 3rd 4th 5th 6th 7th 8th
use of shared memory
ipcs tool 2nd 3rd 4th 5th 6th 7th
user mode
automation of tasks

annlicatinn facte O2nAd

< Day Day Up >

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W]I[X]

b option
slabtop tool
vmstat tool
bar() function
memprof tool
application use of memory 2nd 3rd 4th 5th 6th
baseline of system performance
bash shell
automating/executing long commands
example 2nd 3rd
options 2nd 3rd
time command 2nd
bash tool
source location
bi statistic
vmstat tool
disk I/O subsystem usage
Blk_read statistic
iostat tool
disk I/O subsystem usage
Blk_read/s statistic
iostat tool
disk I/O subsystem usage
Blk_wrtn statistic
iostat tool
disk I/0O subsystem usage
Blk_wrtn/s statistic
iostat tool
disk I/O subsystem usage
blocked processes
queue statistics 2nd
bo statistic
vmstat tool
disk I/0O subsystem usage
bt option
GNU debugger
buff option
vmstat II tool
buffers
memory 2nd 3rd 4th
Buffers option
/proc/meminfo file
free tool
procinfo II tool
buffers option, top (v. 2.x and 3.x) tool
bufpg/s option
sar (II) tool

[#mPREV |

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L][M][N][O][P][R][S][T][UI[V]IW][X]

c option
slabtop tool
C/C++
static versus dynamic languages 2nd
cache option
vmstat II tool
cache subsystem, CPUs
application use of memory use
oprofile
applications use
cachegrind
Levels 1 and 2 caches
Cached option
/proc/meminfo file
free tool
cachegrind tool
application use of CPU cache
oprofile
caches
hot functions
caches, memory 2nd 3rd 4th
call trees
process time use
unreliable/incomplete 2nd
calls option
Itrace tool
strace tool
carrier statistic
ip tool
network I/0
ipconfig tool
network I/0
CODE option, top (v. 2.x and 3.x) tool
coll/sstatistic
sar tool
network I/0
collsns statistic
ip tool
network I/0
command option
ps command
ps tool
application use of memory
COMMAND statistic
Isof (List Open Files) tool
disk I/O subsystem usage
command-line mode, top (v. 2.0.x) tool
command-line mode, top (v. 3.x.x) tool 2nd
command-line options
memory performance
free tool 2nd
sar (II) tool
slabtop tool 2nd
mpstat
procinfo tool 2nd
sar tool 2nd
top (v. 2.0.x) tool
vmstat II tool
memory performance
vmestat tool 2nd
Committed_AS option
/proc/meminfo file
context switches 2nd 3rd 4th
count option
iostat tool
disk I/0O subsystem usage
sar tool
network I/0
vmstat tool
disk I/O subsystem usage
CPU cache
application use of memory

~nnliraftinnec 11ca

< Day Day Up >

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W]I[X]

DATA option, top (v. 2.x and 3.x) tool
Debian (testing) distribution
developers
source for performance investigation 2nd
Device field, maps file
/proc//PID tool
processes, maps file
device option
iostat tool
disk I/0O subsystem usage
DEVICE statistic
Isof (List Open Files) tool
disk I/O subsystem usage
Dirty option
/proc/meminfo file
disk I/O performance
application use
files accessed 2nd
single drives 2nd
disk I/O subsystem performance tools
inadequaticies 2nd
iostat
example 2nd 3rd 4th
options 2nd 3rd
statistics 2nd 3rd
Isof (List Open Files)
example 2nd
options 2nd 3rd
statistics 2nd
prelink application
running application/tools 2nd 3rd 4th 5th 6th 7th 8th 9th
simulating solution 2nd 3rd 4th 5th 6th
submitting bug report 2nd 3rd
testing solution
sar
example 2nd
options 2nd
statistics 2nd 3rd
vmstat (ii)
example 2nd 3rd 4th
disk I/O SUBSYSTEM performance tools
vmstat (ii)
options
disk I/O subsystem performance tools
vmstat (ii)
options
statistics 2nd 3rd 4th 5th 6th 7th
disk I/O subsystem usage
inadequate performance tools 2nd
system-wide performance 2nd
disk I/0O usage
application problems
disks statistic
vmstat tool
disk I/O subsystem usage
do option
bash shell
documentation
performance investigation 2nd 3rd 4th 5th 6th 7th 8th
done option
bash shell
dropped statistic
ip tool
network I/0
ipconfig tool
network I/0
dsiz option
ps tool
application use of memory
dynamic languages
versus static languages 2nd

dynamic loader
1A en ¥Annl OnAd

< Day Day Up >

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N][O] [P][R][S][T][U][V][W][X]

EDIT NOTE
Delete entries beginning with performance tools for Ch09
disk or hard disk?
Earlier refs for vmstat II, average and sample modes were for CPU performance so make that addition
For Ch10, performance investigation
applications, INSERT the type of application problem for GIMP
Elapsed time option
time command
environmental variables
Id.so tool 2nd
errors option
strace tool
errors statistic
ip tool
network I/0
ipconfig tool
network I/0
etherape tool
network I/0
example 2nd
options 2nd 3rd
source location
Ethernet network I/0
ethtool performance tool
options
ip performance tool
example 2nd 3rd 4th
options 2nd 3rd
statistics 2nd
ipconfig performance tool
example 2nd
layers
link layer 2nd
physical layer 2nd
mii-tool performance tool
example 2nd
options 2nd
netstat performance tool
example 2nd 3rd 4th 5th
sar performance tool
example 2nd 3rd
ethtool tool
source location
ethtool tool tool
network I/0
options
etime option
ps command
Exit status option
time command

[¢mPREV |

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [3] [K] [L] [M][N][O][P][R][S][T][U][V][W]I[X]

fault/s option
sar (II) tool
FD statistic
Isof (List Open Files) tool
disk I/O subsystem usage
Fedora Core 2 (FC2) distribution
installing
oprofile tool
performance tools included 2nd
file option
script command
File Transport Protocol (FTP)
foo() function
memprof tool
application use of memory 2nd 3rd 4th 5th 6th
forks option
vmstat tool
frame statistic
ipconfig tool
network I/0
frames
network statistics 2nd
Free option
free tool
procinfo II tool
free option
vmstat II tool
free swap option
vmstat II tool
free tool
memory performance
example 2nd 3rd 4th
options 2nd 3rd 4th
statistics 2nd
source location
frmpg/s option
sar (II) tool
FTP (File Transport Protocol)
function option
Itrace tool
functions
memory subsystem use
function library size 2nd
function text size 2nd
heap sizes 2nd
process time usage
call trees
hot functions 2nd

[#mPREV |

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F][G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W]I[X]

gcc (GNU compiler collection)
example 2nd 3rd 4th
options 2nd 3rd
gcc tool
source location
gdb (GNU debugger)
example 2nd 3rd 4th
options 2nd 3rd
gdb tool
source location
tracing function calls 2nd 3rd 4th 5th 6th 7th
get_pixel function 2nd 3rd
getpixel function
GIMP application
analyzing tool results 2nd 3rd 4th 5th 6th 7th
performance investigation
configuring applications 2nd
identifying problems 2nd
installing/configuring performance tools
setting baseline/goals 2nd 3rd
versus nautilus file manager 2nd
running applications and performance tools 2nd 3rd
solutions
accessing image tiles 2nd
accessing image tiles, with local arrays 2nd 3rd 4th
increasing image cache 2nd
searching Web for functions 2nd
verifying
gimp\#208pixel_rgb_set_uchar function
Web search 2nd
gimp\#208pixel_rgn_get_pixel function
Web search 2nd
gimp_bilinear_rgb function
gimp_pixel_rgn_get_pixel function
gimp_rgba_set_uchar function
gimp_tile_cache_ntiles function
gkrellm tool
network I/0
example 2nd
options 2nd
statistics 2nd
source location
gnome-system-monitor
CPU-related options 2nd
example 2nd 3rd
gnome-system-monitor (II) tool
memory performance
example 2nd
options 2nd
GNU compiler collection (gcc)
example 2nd 3rd 4th
options 2nd 3rd
GNU compiler collection. [See gcc tool]
GNU debugger (gdb)
example 2nd 3rd 4th
options 2nd 3rd
GNU debugger. [See gdb tool]
gnumeric spreadsheet
example 2nd 3rd 4th
options 2nd 3rd
gnumeric tool
source location
gprof command
example 2nd 3rd 4th 5th
options 2nd 3rd
gprof tool 2nd
source location

< Day Day Up >

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O] [P][R][S][T][U][V][W][X]

hardware
interrupts 2nd
performance investigation
hardware and software layers 2nd
link layer
network I/0
physical layer
network I/O 2nd
heap memory subsystem use 2nd
High option
free tool
HighFree option
/proc/meminfo file
HighTotal option
/proc/meminfo file
hot functions
process time use
cache misses
HTTP (Hypertext Transfer Protocol)
HugePages 2nd
Hypertext Transfer Protocol (HTTP)

[@ PREV |

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N][O] [P][R][S][T][U][V][W][X]

ICMP (Internet Control Message Protocol)
id option
vmstat tool 2nd
idle option
mpstat tool
ifconfig tool
source location
in option
vmstat tool
inactive
vs. active memory 2nd 3rd
Inactive option
/proc/meminfo file
inactive option
vmstat II tool
inactive option, top (v. 2.x and 3.x) tool
inblk (I/O blocks read in) tool
Inode field, maps file
/proc//PID tool
processes, maps file
inprogress 10 statistic
vmstat tool
disk I/O subsystem usage
Internet Control Message Protocol (ICMP)
Internet Protocol (IP)
interrupts, hardware 2nd
interval option
iostat tool
disk I/O subsystem usage
sar tool
network I/0
vmstat tool
disk I/O subsystem usage
invesw (involuntary context switches) tool
Involuntary context switches: option
time command
I0: cur statistic
vmstat tool
disk I/O subsystem usage
I0: s statistic
vmstat tool
disk I/0O subsystem usage
iostat tool
disk I/O subsystem usage
example 2nd 3rd 4th
options 2nd 3rd
statistics 2nd 3rd
IP (Internet Protocol)
ip tool
network I/0O
example 2nd 3rd 4th
options 2nd 3rd
statistics 2nd
source location
ip-fragstatistic
sar tool
network I/0
ipconfig tool
network I/0
example 2nd
options
statistics 2nd
ipcs tool
application use of memory
supported for Java, Mono, Python, and Perl 2nd
application use of shared memory
example 2nd 3rd 4th
options 2nd 3rd
iptraf tool
network I/0
example 2nd 3rd
options 2nd 3rd

cntirere loncarinn

< Day Day Up >

-

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O][P][R][S][T][U][V][W][X]

Java
memory performance tools
application use 2nd
static versus dynamic languages 2nd
java command
-Xrunhprof command-line option

-

| #mPREV |

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F][G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W]I[X]

kbbuffers option
sar (II) tool
kbcached option
sar (II) tool
kbmemfree option
sar (II) tool
kbmemused option
sar (II) tool
kbswpcad option
sar (II) tool
kbswpfree option
sar (II) tool
kbswpused option
sar (II) tool
kcachegrind tool
application use of memory
example 2nd 3rd 4th 5th 6th 7th
options 2nd 3rd
source location
kernel mode
applications
kernel scheduling
context switches
kernel space
CPU usage
kernel usage
system-wide performance

| ¢mPREV |

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M][N][O] [P][R][S][T][U][V][W][X]

| option
slabtop tool
latency performance investigation
analyzing time use 2nd
analyzing tool results 2nd 3rd 4th
configuring applications 2nd
identifying problems 2nd
installing/configuring tools
running applications and tools 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
setting baseline/goals 2nd 3rd 4th
solutions 2nd 3rd
tracing function calls 2nd 3rd 4th 5th 6th
latency performance problems
investigating 2nd
Id (The linux loader) tool
source location
Id.so tool 2nd
environmental variables 2nd
example
options
statistics 2nd
ldd command
example 2nd
options 2nd
Idd tool
source location
Level 1 and 2 CPU caches
libraries
memory subsystem use
function library size 2nd
time use versus application time use 2nd
Itrace tool 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
utility performance helpers
example 2nd
options 2nd
link layer
link layer, network I/0O
Linux kernel
memory usage (slabs) 2nd 3rd 4th 5th
time use versus user time use
load average
queue statistics 2nd
loaders
application problems
Low option
free tool
LowFree option
/proc/meminfo file
LowTotal option
/proc/meminfo file
Isof (List Open Files) tool
disk I/O subsystem usage
example 2nd
options 2nd 3rd
statistics 2nd
Isof tool
source location
Itrace command
Itrace tool 2nd
analyzing results 2nd
latency-sensitive applications 2nd 3rd 4th
example 2nd 3rd 4th 5th
installing/configuring 2nd
options 2nd
running 2nd
latency-sensitive applications 2nd 3rd 4th
source location
statistics 2nd

< Day Day Up >

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O] [P][R][S][T][U][V][W][X]

m option, top (v. 2.x and 3.x) tool
M option, top (v. 2.x and 3.x) tool
majflt option
ps tool
application use of memory
maijflt/s option
sar (II) tool
Major page faults option
time command
Mapped option
/proc/meminfo file
maximum transfer unit (MTUs) 2nd
mcast statistic
ip tool
network I/0
MemFree option
/proc/meminfo file
memory
swap memory use
memory performance
application use
application use of memory
memory performance tools
/proc/meminfo file
example 2nd
options 2nd
statistics 2nd 3rd
application use of memory
/proc//PID
kcachegrind 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
memprof 2nd 3rd 4th 5th 6th 7th
oprofile (III) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
ps 2nd 3rd 4th 5th 6th
tools supported for Java, Mono, Python, and Perl 2nd
valgrind 2nd 3rd 4th 5th 6th 7th 8th
application use of shared memory
ipcs 2nd 3rd 4th 5th 6th 7th
free
example 2nd 3rd 4th
options 2nd 3rd 4th
statistics 2nd
gnome-system-monitor (II)
example 2nd
options 2nd
processes, maps file
/proc//PID 2nd 3rd
processes, status
/proc//PID
processes, status file
/proc//PID 2nd 3rd 4th 5th
procinfo II
CPU statistics 2nd
example 2nd
options
sar (II)
example 2nd 3rd
options 2nd 3rd
statistics 2nd
slabtop
example 2nd
options 2nd 3rd
top (v. 2.x and 3.x)
example 2nd 3rd
runtime mode 2nd
statistics 2nd
vmstat II 2nd
average mode
command-line options
example 2nd 3rd 4th 5th
output statistics 2nd
memory subsystem
active vs. inactive memory 2nd 3rd

learnal 11icadaea (clahc)

< Day Day Up >

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O] [P][R][S][T][U][V][W][X]

n option
slabtop tool
nautilus file manager
latency performance investigation 2nd
analyzing time use 2nd
analyzing tool results 2nd 3rd 4th
configuring applications 2nd
identifying problems 2nd
installing/configuring tools
running applications and tools 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
setting baseline/goals 2nd 3rd 4th
solutions 2nd 3rd
tracing function calls 2nd 3rd 4th 5th 6th
versus GIMP application 2nd
nDRT option, top (v. 2.x and 3.x) tool
netstat tool
network I/0O
example 2nd 3rd 4th 5th
options 2nd 3rd 4th
source location
network configuration tools
MTU settings 2nd
network I/O
layers 2nd
link layer
physical layer 2nd
protocol-level network I/0
network I/O performance
error-prone devices
limits
traffic
application sockets
process time use
remote processes 2nd
network I/O performance tools
etherape
example 2nd
options 2nd 3rd
ethtool
options
gkrellm
example 2nd
options 2nd
statistics 2nd

example 2nd 3rd 4th
options 2nd 3rd
statistics 2nd
ipconfig
example 2nd
options
statistics 2nd
iptraf
example 2nd 3rd
options 2nd 3rd
mii-tool
example 2nd
options 2nd
netstat
example 2nd 3rd 4th 5th
options 2nd 3rd 4th
sar
example 2nd 3rd
options 2nd 3rd
statistics 2nd
network I/O usage
application problems
system-wide performance
network layer
network performance tools
inadequate tools 2nd
NODE statistic

lenf (1l ict Ornean FEilac) +anl

< Day Day Up >

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O] [P] [R][S][T][U][V][W]I[X]

o option
slabtop tool
objdump command
example 2nd
options 2nd
objdump tool
source location
Offset field, maps file
/proc//PID tool
processes, maps file
opannotate tool
analyzing results 2nd
example
options 2nd 3rd
opcontrol program 2nd
event handling 2nd
options 2nd
opreport program 2nd 3rd 4th 5th 6th 7th 8th
opreport tool
analyzing results
example 2nd
options 2nd 3rd 4th
running
latency-sensitive applications
oprofile (II) tool
example 2nd 3rd 4th 5th 6th
opannotate options 2nd 3rd
opreport options 2nd 3rd 4th
options
oprofile (III) tool
application use of memory
example 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
options 2nd
oprofile tool 2nd 3rd 4th
analyzing results 2nd 3rd 4th
latency-sensitive applications 2nd 3rd 4th
application use of CPU cache
oprofile
CPU-related options 2nd 3rd
example 2nd 3rd 4th 5th 6th
installing
on Fedora Core 2 FC2
on Red Hat Enterprise Linux (EL3) 2nd
on SUSE 9.1 (S9.1)
installing/configuring 2nd
opcontrol program
event handling 2nd
options 2nd
opreport program 2nd 3rd
running
latency-sensitive applications 2nd 3rd 4th 5th 6th
source location
option
ps tool
application use of memory
oublk (I/0 blocks written out) tool
overruns statistic
ip tool
network I/0
ipconfig tool
network I/0

< Day Day Up >

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O] [P][R][S][T][U][V][W][X]

P option
slabtop tool
packets statistic
ip tool
network I/0
Page oinoption
procinfo II tool
Page out option
procinfo II tool
Page size option
time command
pages paged in option
vmstat II tool
pages paged out option
vmstat II tool
pages swapped in option
vmstat II tool
pages swapped in/out option
vmstat II tool
partitions statistic
vmstat tool
disk I/O subsystem usage
Pathname field, maps file
/proc//PID tool
processes, maps file
pcpu option
ps command
peek function
Percent of CPU this job got option
time command
performance investigation
applications
analyzing tool results 2nd 3rd 4th 5th 6th 7th
configuring applications 2nd
identifying problems 2nd
installing/configuring performance tools
running applications and performance tools 2nd 3rd
searching Web for functions 2nd
setting baseline/goals 2nd 3rd
solutions, accessing image tiles 2nd
solutions, accessing image tiles, with local arrays 2nd 3rd 4th
solutions, increasing image cache 2nd
solutions, verifying
automating tasks 2nd 3rd
documentation 2nd 3rd 4th
guidelines 2nd
hardware/software configuration
performance results
research information/URLs
establishing baseline
establishing metric
establishing target 2nd
general guidelines 2nd
initial use of performance tools
latency-sensitive applications 2nd
analyzing time use 2nd
analyzing tool results 2nd 3rd 4th
configuring applications 2nd
identifying problems 2nd
installing/configuring tools
running 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
setting baseline/goals 2nd 3rd 4th
solutions 2nd 3rd
tracing function calls 2nd 3rd 4th 5th 6th
low-overhead tools 2nd
multiple tool use 2nd
solutions earlier by others 2nd 3rd
system-wide slowdown
configuring application 2nd
configuring/installing performance tools
identifying problems 2nd

running applications/tools 2nd 3rd 4th 5th 6th 7th 8th 9th
cortrinAa hacaline/Aanale 2nAd 2rd A+h E+h &+h 7+h

< Day Day Up >

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F][G] [H] [1] [J] [K] [L] [M] [N][O] [P] [R][S][T][U][V][W]I[X]

r/s statistic
iostat tool
disk I/O subsystem usage
RAM
rawsckstatistic
sar tool
network I/0
rd_sec/s statistic
sar tool
disk I/0O subsystem usage
read sectors statistic
vmstat tool
disk I/O subsystem usage 2nd
reads statistic
vmstat tool
disk I/O subsystem usage
reads: merged statistic
vmstat tool
disk I/O subsystem usage
reads: ms statistic
vmstat tool
disk I/O subsystem usage
reads: sectors statistic
vmstat tool
disk I/O subsystem usage
reads: total statistic
vmstat tool
disk I/O subsystem usage
Red Hat Enterprise Linux (EL3)
installing
oprofile tool 2nd
performance tools included 2nd
requested writes statistic
vmstat tool
disk I/O subsystem usage
RES option, top (v. 2.x and 3.x) tool
rkB/s statistic
iostat tool
disk I/O subsystem usage
rrqm/s statistic
iostat tool
disk I/0O subsystem usage
rsec/s statistic
iostat tool
disk I/O subsystem usage
rss option
ps tool
application use of memory
runnable processes
queue statistics 2nd
runtime mode, top (v. 2.0.x) tool 2nd 3rd
runtime mode, top (v. 2.x and 3.x) tool 2nd
runtime mode, top (v. 3.x.x) tool 2nd 3rd 4th
RX packets statistic
ipconfig tool
network I/0
rxbyt/sstatistic
sar tool
network I/0
rxcmp/sstatistic
sar tool
network I/0
rxdrop/sstatistic
sar tool
network I/0
rxerr/sstatistic
sar tool
network I/0
rxfifo/sstatistic
sar tool
network I/0
rxfram/sstatistic

car Fanl

< Day Day Up >

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W]I[X]

S option
Itrace tool
s option
slabtop tool
sample mode, vmstat II tool
memory performance
sample mode, vmstat tool 2nd 3rd
sar (II) tool
memory performance
example 2nd 3rd
options 2nd 3rd
statistics 2nd
sar tool
CPU-related options 2nd 3rd 4th
CPU-related statistics 2nd
disk I/O subsystem usage
example 2nd
options 2nd
statistics 2nd 3rd
example 2nd 3rd 4th 5th
network I/0
example 2nd 3rd
options 2nd 3rd
statistics 2nd
script command
example 2nd 3rd
options 2nd 3rd
script tool
source location
seconds option
Itrace tool
strace tool
Secure Shell (SSH) service
Serial Line Internet Protocol (SLIP)
Shared option
free tool
procinfo II tool
SHR option, top (v. 2.x and 3.x) tool
si option
vmstat II tool
SIZE statistic
Isof (List Open Files) tool
disk I/O subsystem usage
Slab option
/proc/meminfo file
slabs, memory 2nd 3rd 4th 5th
slabtop tool
memory performance
example 2nd
options 2nd 3rd
source location
SLIP (Serial Line Internet Protocol)
so option
vmstat II tool
software
performance investigation
SSH (Secure Shell) service
startup time of applications
static languages
versus dynamic languages 2nd
strace tool 2nd
disk I/O subsystem usage
example 2nd
options 2nd
source location
statistics 2nd
system-wide slowdown
configuring/installing tool
running applications/tools 2nd 3rd 4th 5th
simulating solution 2nd 3rd 4th 5th
SUSE 9.1 (S9.1) distribution
installing

anrnfila fAanl

< Day Day Up >

< Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O] [P][R][S][T][U][V][W][X]

T option
top (v. 2.0.x) tool
target for system performance 2nd
TCP (Transport Control Protocol)
network I/0
tcpsckstatistic
sar tool
network I/0
tee command
example 2nd
options 2nd
tee tool
source location
thrashing
time command
example 2nd 3rd 4th
options 2nd 3rd
statistics 2nd
time option
ps command
time tool
application use of time
source location
time use
applications
gprof command 2nd 3rd 4th 5th 6th 7th 8th 9th
oprofile (II) tool 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th
libraries versus applications 2nd
Itrace tool 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
Linux kernel versus users
subdividing application use
time use performance tools
time command
example 2nd 3rd 4th
options 2nd 3rd
statistics 2nd
top (v. 2.0.x) tool 2nd
command-line mode
command-line options
CPU-related options 2nd
example 2nd 3rd 4th
runtime mode 2nd 3rd
sorting/display options
system-wide statistics 2nd
top (v. 2.x and 3.x)
memory performance
top (v. 2.x and 3.x) tool
memory performance
example 2nd 3rd
statistics 2nd
runtime mode 2nd
top (v. 3.x.x) tool
command-line mode
command-line options
CPU-related options
example 2nd 3rd
runtime mode
runtime options 2nd 3rd
system-wide options
top tool
source location
system-wide slowdown 2nd
Total option
free tool
procinfo II tool
total reads statistic
vmstat tool
disk I/O subsystem usage
total swap option
vmstat II tool
total, used, free option, top (v. 2.x and 3.x) tool
Totals option

froe +nnl

< Day Day Up >

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W][X]

UDP (User Datagram Protocol)
udpsckstatistic
sar tool
network I/0
us option
vmstat tool 2nd
usecs/call option
Itrace tool
Used option
free tool
used swap option
vmstat II tool
Usedoption
procinfo II tool
User Datagram Protocol (UDP)
network I/0
user mode
applications
user space
CPU usage
USER statistic
Isof (List Open Files) tool
disk I/O subsystem usage
User time option
time command
users/call option
strace tool
utility performance helpers
bash shell
example 2nd 3rd
options 2nd 3rd
GNU compiler collection
example 2nd 3rd 4th
options 2nd 3rd
GNU debugger
example 2nd 3rd 4th
options 2nd 3rd
gnumeric
example 2nd 3rd 4th
gnumeric spreadsheet
options 2nd 3rd
ldd command
example 2nd
options 2nd
ltrace command
objdump command
example 2nd
options 2nd
script command
example 2nd 3rd
options 2nd 3rd
tee command
example 2nd
options 2nd
watch command 2nd
options 2nd 3rd

[#mPREV |

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O][P][RI[S][T][U][V][W]I[X]

v option
slabtop tool
valgrind tool
application use of memory
example 2nd 3rd 4th 5th 6th
options 2nd 3rd
source location
vcsw (voluntary context switches) tool
VIRT option, top (v. 2.x and 3.x) tool
virtual memory
Virtual Memory Statistics. [See vmstat tool]
VmData statistic
/proc//PID tool
processes: status file
VmExe statistic
/proc//PID tool
processes: status file
VmLck statistic
/proc//PID tool
processes: status file
VmRSS statistic
/proc//PID tool
processes: status file
vmsta tool
source location
vmstat II tool
average mode
memory performance
memory performance 2nd
command-line options
example 2nd 3rd 4th 5th
output statistics 2nd
sample mode
memory performance
vmstat tool 2nd
average mode 2nd 3rd
command-line options 2nd
CPU-specific statistics 2nd 3rd 4th 5th 6th 7th
disk I/O subsystem usage
example 2nd 3rd 4th
options 2nd
statistics 2nd 3rd 4th 5th 6th 7th
sample mode 2nd 3rd
system-wide slowdown 2nd 3rd
VmStk statistic
/proc//PID tool
processes: status file
Voluntary context switches option
time command
vsz option
ps tool
application use of memory

| ¢mPrREV |

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W][X]

w/s statistic
iostat tool
disk I/O subsystem usage
wa option
vmstat tool 2nd
wa statistic
vmstat tool
disk I/O subsystem usage
watch command
automating/executing long commands
options 2nd 3rd 4th
Web searches
source for performance investigation
while condition option
bash shell
wkB/s statistic
iostat tool
disk I/0O subsystem usage
wr_sec/s statistic
sar tool
disk I/O subsystem usage
Writeback option
/proc/meminfo file
writes statistic
vmstat tool
disk I/O subsystem usage 2nd
writes: merged statistic
vmstat tool
disk I/O subsystem usage
writes: ms statistic
vmstat tool
disk I/O subsystem usage
writes: sectors statistic
vmstat tool
disk I/O subsystem usage
writes: total statistic
vmstat tool
disk I/O subsystem usage
written sectors statistic
vmstat tool
disk I/O subsystem usage
wrgm/s statistic
iostat tool
disk I/O subsystem usage
wsec/s statistic
iostat tool
disk I/O subsystem usage

[#mPREV |

-

| #mPREV |

Index

[SYMBOL] [A] [B] [C] [D] [E] [F][G] [H] [1] [J] [K] [L] [M] [N][O][P][R][S][T][U][V][W]I[X]

xautomation package
xeyes command
Itrace tool 2nd 3rd 4th 5th

-

| ¢mPREV |

	Optimizing Linux Performance: A Hands-On Guide to Linux Performance Tools
	Table of Contents
	Copyright
	Hewlett-Packard Professional Books
	Preface
	Why Is Performance Important?
	Linux: Strengths and Weakness
	How Can This Book Help You?
	Why Learn How to Use Performance Tools?
	Can I Tune for Performance?
	Who Should Read This Book?
	How Is This Book Organized?

	Acknowledgments
	About the Author
	Chapter 1. Performance Hunting Tips
	1.1. General Tips
	1.2. Outline of a Performance Investigation
	1.3. Chapter Summary

	Chapter 2. Performance Tools: System CPU
	2.1. CPU Performance Statistics
	2.2. Linux Performance Tools: CPU
	2.3. Chapter Summary

	Chapter 3. Performance Tools: System Memory
	3.1. Memory Performance Statistics
	3.2. Linux Performance Tools: CPU and Memory
	3.3. Chapter Summary

	Chapter 4. Performance Tools: Process-Specific CPU
	4.1. Process Performance Statistics
	4.2. The Tools
	4.3. Chapter Summary

	Chapter 5. Performance Tools: Process-Specific Memory
	5.1. Linux Memory Subsystem
	5.2. Memory Performance Tools
	5.3. Chapter Summary

	Chapter 6. Performance Tools: Disk I/O
	6.1. Introduction to Disk I/O
	6.2. Disk I/O Performance Tools
	6.3. What's Missing?
	6.4. Chapter Summary

	Chapter 7. Performance Tools: Network
	7.1. Introduction to Network I/O
	7.2. Network Performance Tools
	7.3. Chapter Summary

	Chapter 8. Utility Tools: Performance Tool Helpers
	8.1. Performance Tool Helpers
	8.2. Tools
	8.3. Chapter Summary

	Chapter 9. Using Performance Tools to Find Problems
	9.1. Not Always a Silver Bullet
	9.2. Starting the Hunt
	9.3. Optimizing an Application
	9.4. Optimizing a System
	9.5. Optimizing Process CPU Usage
	9.6. Optimizing Memory Usage
	9.7. Optimizing Disk I/O Usage
	9.8. Optimizing Network I/O Usage
	9.9. The End
	9.10. Chapter Summary

	Chapter 10. Performance Hunt 1: A CPU-Bound Application (GIMP)
	10.1. CPU-Bound Application
	10.2. Identify a Problem
	10.3. Find a Baseline/Set a Goal
	10.4. Configure the Application for the Performance Hunt
	10.5. Install and Configure Performance Tools
	10.6. Run Application and Performance Tools
	10.7. Analyze the Results
	10.8. Jump to the Web
	10.9. Increase the Image Cache
	10.10. Hitting a (Tiled) Wall
	10.11. Solving the Problem
	10.12. Verify Correctness?
	10.13. Next Steps
	10.14. Chapter Summary

	Chapter 11. Performance Hunt 2: A Latency-Sensitive Application (nautilus)
	11.1. A Latency-Sensitive Application
	11.2. Identify a Problem
	11.3. Find a Baseline/Set a Goal
	11.4. Configure the Application for the Performance Hunt
	11.5. Install and Configure Performance Tools
	11.6. Run Application and Performance Tools
	11.7. Compile and Examine the Source
	11.8. Using gdb to Generate Call Traces
	11.9. Finding the Time Differences
	11.10. Trying a Possible Solution
	11.11. Chapter Summary

	Chapter 12. Performance Hunt 3: The System-Wide Slowdown (prelink)
	12.1. Investigating a System-Wide Slowdown
	12.2. Identify a Problem
	12.3. Find a Baseline/Set a Goal
	12.4. Configure the Application for the Performance Hunt
	12.5. Install and Configure Performance Tools
	12.6. Run Application and Performance Tools
	12.7. Simulating a Solution
	12.8. Reporting the Problem
	12.9. Testing the Solution
	12.10. Chapter Summary

	Chapter 13. Performance Tools: What's Next?
	13.1. The State of Linux Tools
	13.2. What Tools Does Linux Still Need?
	13.3. Performance Tuning on Linux
	13.4. Chapter Summary

	Appendix A. Performance Tool Locations
	Appendix B. Installing oprofile
	B.1 Fedora Core 2 (FC2)
	B.2 Enterprise Linux 3 (EL3)
	B.3 SUSE 9.1

	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X

