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PREFACE

The book, to the best of the author’s knowledge, is the first text of its kind that
presents both the traditional and the modern aspects of ‘Al and Soft
Computing’ in a clear, insightful and highly comprehensive writing style. It
provides an in-depth analysis of the mathematical models and algorithms, and
demonstrates their applications in real world problems of significant
complexity.

1. About the book

The book covers 24 chapters altogether. It starts with the behavioral
perspective of the ‘human cognition’ and covers in detail the tools and
techniques required for its intelligent realization on machines. The classical
chapters on search, symbolic logic, planning and machine learning have been
covered in sufficient details, including the latest research in the subject. The
modern aspects of soft computing have been introduced from the first
principles and discussed in a semi-informal manner, so that a beginner of the
subject is able to grasp it with minimal effort. Besides soft computing, the
other leading aspects of current Al research covered in the book include non-
monotonic and  spatio-temporal reasoning, knowledge acquisition,
verification, validation and maintenance issues, realization of cognition on
machines and the architecture of Al machines. The book ends with two case
studies: one on ‘criminal investigation’ and the other on ‘navigational
planning of robots,” where the main emphasis is given on the realization of
intelligent systems using the methodologies covered in the book.

The book is unique for its diversity in contents, clarity and precision of
presentation and the overall completeness of its chapters. It requires no
mathematical prerequisites beyond the high school algebra and elementary
differential calculus; however, a mathematical maturity is required to follow
the logical concepts presented therein. An elementary background of data
structure and a high level programming language like Pascal or C is helpful to
understand the book. The book, thus, though meant for two semester courses
of computer science, will be equally useful to readers of other engineering
disciplines and psychology as well as for its diverse contents, clear
presentation and minimum prerequisite requirements.

In order to make the students aware of the applied side of the subject,
the book includes a few homework problems, selected from a wide range of
topics. The problems supplied, in general, are of three types: i) numerical, ii)
reflexive and iii) provocative. The numerical problems test the students’



understanding of the subject. The reflexive type requires a formulation of the
problem from its statement before finding its solution. The provocative type
includes the well-known problems of modern AI research, the solution to
some of which are known, and some are open ended. With adequate hints
supplied with the problems, the students will be able to solve most of the
numerical and reflexive type problems themselves. The provocative type,
however, requires some guidance from the teacher in charge. The last type of
problems is included in the text to give the research-oriented readers an idea
of the current trend in Al research. Graduate students of Al will also find
these problems useful for their dissertation work.

The book includes a large number of computer simulations to illustrate
the concepts presented in logic programming, fuzzy Petri nets, imaging and
robotics. Most of the simulation programs are coded in C and Pascal, so that
students without any background of PROLOG and LISP may understand them
easily. These programs will enhance the students’ confidence in the subject
and enable them to design the simulation programs, assigned in the exercise as
homework problems. The professionals will find these simulations interesting
as it requires understanding of the end results only, rather than the formal
proofs of the theorems presented in the text.

2. Special features

The book includes the following special features.

i) Unified theme of presentation: Most of the existing texts on Al cover a set
of chapters of diverse thoughts, without demonstrating their inter-relationship.
The readers, therefore, are misled with the belief that Al is merely a
collection of intelligent algorithms, which precisely is not correct. The
proposed book is developed from the perspective of cognitive science, which
provides the readers with the view that the psychological model of cognition
can be visualized as a cycle of 5 mental states: sensing, acquisition,
perception, planning and action, and there exists a strong interdependence
between each two sequential states. The significance of search in the state of
perception, reasoning in the state of planning, and learning as an intermediate
process between sensing and action thus makes sense. The unified theme of
the book, therefore, is to realize the behavioral perspective of cognition on an
intelligent machine, so as to enable it act and think like a human being.
Readers will enjoy the book especially for its totality with an ultimate aim to
build intelligent machines.

ii) Comprehensive coverage of the mathematical models: This probably is
the first book that provides a comprehensive coverage of the mathematical



models on Al and Soft Computing. The existing texts on “mathematical
modeling in AI” are beyond the scope of undergraduate students.
Consequently, while taking courses at graduate level, the students face much
difficulty in studying from monographs and journals. The book, however,
bridges the potential gap between the textbooks and advanced monographs in
the subject by presenting the mathematical models from a layman’s
understanding of the problems.

iii) Case studies: This is the only book that demonstrates the realization of
the proposed tools and techniques of Al and Soft Computing through case
studies. The readers, through these case studies, will understand the
significance of the joint usage of the Al and Soft Computing tools and
techniques in interesting problems of the real world. Case studies for two
distinct problems with special emphasis to their realization have been covered
in the book in two separate chapters. The case study I is concerned with a
problem of criminal investigation, where the readers will learn to use the soft
computing tools in facial image matching, fingerprint classification, speaker
identification and incidental description based reasoning. The readers can
build up their own systems by adding new fuzzy production rules and facts
and deleting the unwanted rules and facts from the system. The book thus will
serve the readership from both the academic and the professional world.
Electronic and computer hobbyists will find the case study II on mobile robots
very exciting. The algorithms of navigational planning (in case study II),
though tested with reference to “Nomad Super Scout II robot,” have been
presented in generic form, so that the interested readers can code them for
other wheel-based mobile robots.

iv) Line Diagrams: The book includes around 190 line diagrams to give the
readers a better insight to the subject. Readers will enjoy the book for they
directly get a deeper view of the subject through diagrams with a minimal
reading of the text.

3. Origin of the book

The book is an outgrowth of the lecture materials prepared by the author for a
one semester course on “Artificial Intelligence,” offered to the graduate
students in the department of Electronics and Telecommunication
Engineering, Jadavpur University, Calcutta. An early version of the text was
also used in a summer-school on “Al and Neural Nets,” offered to the faculty
members of various engineering colleges for their academic development and
training. The training program included theories followed by a laboratory
course, where the attendees developed programs in PROLOG, Pascal and C
with the help of sample programs/toolkit. The toolkit is included in the book
on a CD and the procedure to use it is presented in Appendix A.



4. Structural organization of the book

The structural organization of the book is presented below with a dependency
graph of chapters, where Ch. 9 — Ch. 10 means that chapter 10 should be
read following chapter 9, for example.

Ch. 1

Ch.2 Ch.3 Ch.17 Ch. 13 Ch.18

PO

Ch. 16 Ch.19 Ch.5 Ch.4 Ch.23 Ch. 14
ChL. 6
v
Ch.7 Ch.11 Ch. 15 Ch. 20

\{
Ch. 24 Ch. 22 Ch. 21

July 12, 1999
Jadavpur University Amit Konar
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Introduction to

Artificial
Intelligence and

Soft Computing

This chapter provides a brief overview of the disciplines of Artificial
Intelligence (Al) and Soft Computing. It introduces the topics covered under
the heads of intelligent systems and demonstrates the scope of their
applications in real world problems of significant complexity. It also
highlights the direction of research in this broad discipline of knowledge.
The historical development in Al and the means by which the subject was
gradually popularized are briefly outlined here. The chapter addresses many
new tools and techmniques, commonly used to represent and solve complex
problems. The organization of the book in light of these tools and
techniques is also presented briefly in this chapter.

1.1 Evolution of Computing

At the beginning of the Stone Age, when people started taking shelters in
caves, they made attempts to immortalize themselves by painting their
images on rocks. With the gradual progress in civilization, they felt interested



to see themselves in different forms. So, they started constructing
models of human being with sand, clay and stones. The size, shape,
constituents and style of the model humans continued evolving but the man
was not happy with the models that only looked like him. He had a strong
desire to make the model ‘intelligent’, so that it could act and think as he did.
This, however, was a much more complex task than what he had done before.
So, he took millions of years to construct an ‘analytical engine’ that could
perform a little arithmetic mechanically. Babbage’s analytical engine was the
first significant success in the modern era of computing. Computers of the
first generation, which were realized following this revolutionary success,
were made of thermo-ionic valves. They could perform the so-called ‘number
crunching’ operations. The second-generation computers came up shortly after
the invention of transistors and were more miniaturized in size. They were
mainly used for commercial data processing and payroll creation. After more
than a decade or so, when the semiconductor industries started producing
integrated circuits (IC) in bulk, the third generation computers were launched
in business houses. These machines had an immense capability to perform
massive computations in real time. Many electromechanical robots were also
designed with these computers. Then after another decade, the fourth
generation computers came up with the high-speed VLSI engines. Many
electronic robots that can see through cameras to locate objects for placement
at the desired locations were realized during this period. During the period of
1981-1990 the Japanese Government started to produce the fifth generation
computing machines that, besides having all the capabilities of the fourth
generation machines, could also be able to process intelligence. The
computers of the current (fifth) generation can process natural languages, play
games, recognize images of objects and prove mathematical theorems, all of
which lie in the domain of Artificial Intelligence (AI). But what exactly is AI?
The following sections will provide a qualitative answer to this question.

1.2 Defining Al

The phrase Al, which was coined by John McCarthy [1] three decades ago,
evades a concise and formal definition to date. One representative definition is
pivoted around the comparison of intelligence of computing machines with
human beings [11]. Another definition is concerned with the performance of
machines which “historically have been judged to lie within the domain of
intelligence” [17], [35]. None of these definitions or the like have been
universally accepted, perhaps because of their references to the word
“intelligence”, which at present is an abstract and immeasurable quantity. A
better definition of A, therefore, calls for formalization of the term
“intelligence”. Psychologist and Cognitive theorists are of the opinion that
intelligence helps in identifying the right piece of knowledge at the appropriate



instances of decision making [27], [14].The phrase “AI” thus can be def-
ined as the simulation of human intelligence on a machine, so as to make
the machine efficient to identify and use the right piece of
“Knowledge” at a given step of solving a problem. A system capable of
planning and executing the right task at the right time is generally called
rational [36]. Thus, Al alternatively may be stated as a subject dealing with
computational models that can think and act rationally [18]', [47], [37],
[6]'. A common question then naturally arises: Does rational thinking and
acting include all possible characteristics of an intelligent system? If so, how
does it represent behavioral intelligence such as machine learning, perception
and planning? A little thinking, however, reveals that a system that can reason
well must be a successful planner, as planning in many circumstances is part
of a reasoning process. Further, a system can act rationally only after
acquiring adequate knowledge from the real world. So, perception that stands
for building up of knowledge from real world information is a prerequisite
feature for rational actions. One step further thinking envisages that a
machine without learning capability cannot possess perception. The rational
action of an agent (actor), thus, calls for possession of all the elementary
characteristics of intelligence. Relating Al with the computational models
capable of thinking and acting rationally, therefore, has a pragmatic
significance.

1.3 General Problem Solving
Approaches in Al

To understand what exactly Al is, we illustrate some common problems.
Problems dealt with in Al generally use a common term called ‘state’. A
state represents a status of the solution at a given step of the problem solving
procedure. The solution of a problem, thus, is a collection of the problem
states. The problem solving procedure applies an operator to a state to get the
next state. Then it applies another operator to the resulting state to derive a
new state. The process of applying an operator to a state and its subsequent

1.The branch of computer science that is concerned with the automation of
intelligent behavior.

2. The study of computations that make it possible to perceive, reason and
act.

3. A field of study that seeks to explain and emulate intelligent behavior in
terms of computational processes.

4. The study of mental faculties through the use of computational models.



transition to the next state, thus, is continued until the goal (desired) state is
derived. Such a method of solving a problem is generally referred to as state-
space approach. We will first discuss the state-space approach for problem
solving by a well-known problem, which most of us perhaps have solved in
our childhood.

Example 1.1:  Consider a 4-puzzle problem, where in a 4-cell board there
are 3 cells filled with digits and 1 blank cell. The initial state of the game
represents a particular orientation of the digits in the cells and the final state
to be achieved is another orientation supplied to the game player. The
problem of the game is to reach from the given initial state to the goal (final)
state, if possible, with a minimum of moves. Let the initial and the final state
be as shown in figures 1(a) and (b) respectively.

2 p

(a) initial state (b) final state

Fig. 1.1: The initial and the final states of the Number Puzzle game,
where B denotes the blank space.

We now define two operations, blank-up (BU) / blank-down (BD) and
blank-left (BL) / blank-right (BR) [9], and the state-space (tree) for the
problem is presented below (vide figure 1.2) using these operators.

The algorithm for the above kind of problems is straightforward. It
consists of three steps, described by steps 1, 2(a) and 2(b) below.

Algorithm for solving state-space problems
Begin
1. state: = initial-state; existing-state:=state;
2. While state # final state do
Begin
a. Apply operations from the set {BL, BR, BU,
BD} to each state so as to generate new-states;

b. Ifnew-states M the existing-states # O
Then do



Begin state := new-states — existing-states;
Existing-states := existing-states U {states}
End;
End while;

End.

1B

ﬂ 3 B|1
B nE 23
Goal ignored old state

Fig.1.2: The state-space for the Four-Puzzle problem.

It is thus clear that the main trick in solving problems by the state-space
approach is to determine the set of operators and to use it at appropriate states
of the problem.

Researchers in Al have segregated the AI problems from the non-Al
problems. Generally, problems, for which straightforward mathematical /
logical algorithms are not readily available and which can be solved by
intuitive approach only, are called Al problems. The 4-puzzle problem, for



instance, is an ideal AI Problem. There is no formal algorithm for its
realization, i.e., given a starting and a goal state, one cannot say prior to
execution of the tasks the sequence of steps required to get the goal from the
starting state. Such problems are called the ideal A/ problems. The well-
known water-jug problem [35], the Travelling Salesperson Problem (TSP)
[35], and the n-Queen problem [36] are typical examples of the classical Al
problems. Among the non-classical Al problems, the diagnosis problems and
the pattern classification problem need special mention. For solving an Al
problem, one may employ both Al and non-Al algorithms. An obvious
question is: what is an A7 algorithm? Formally speaking, an Al algorithm
generally means a non-conventional intuitive approach for problem solving.
The key to Al approach is intelligent search and matching. In an intelligent
search problem / sub-problem, given a goal (or starting) state, one has to reach
that state from one or more known starting (or goal) states. For example,
consider the 4-puzzle problem, where the goal state is known and one has to
identify the moves for reaching the goal from a pre-defined starting state.
Now, the less number of states one generates for reaching the goal, the better
is the AT algorithm. The question that then naturally arises is: how to control
the generation of states. This, in fact, can be achieved by suitably designing
some control strategies, which would filter a few states only from a large
number of legal states that could be generated from a given starting /
intermediate state. As an example, consider the problem of proving a
trigonometric identity that children are used to doing during their schooldays.
What would they do at the beginning? They would start with one side of the
identity, and attempt to apply a number of formulae there to find the possible
resulting derivations. But they won’t really apply all the formulae there.
Rather, they identify the right candidate formula that fits there best, such that
the other side of the identity seems to be closer in some sense (outlook).
Ultimately, when the decision regarding the selection of the formula is over,
they apply it to one side (say the L.H.S) of the identity and derive the new
state. Thus they continue the process and go on generating new intermediate
states until the R.H.S (goal) is reached. But do they always select the right
candidate formula at a given state? From our experience, we know the answer
is “not always”. But what would we do if we find that after generation of a
few states, the resulting expression seems to be far away from the R.H.S of
the identity. Perhaps we would prefer to move to some old state, which is
more promising, i.e., closer to the R.H.S of the identity. The above line of
thinking has been realized in many intelligent search problems of Al. Some of
these well-known search algorithms are:

a) Generate and Test

b) Hill Climbing

¢) Heuristic Search

d) Means and Ends analysis



(a) Generate and Test Approach: This approach concerns the
generation of the state-space from a known starting state (root) of the problem
and continues expanding the reasoning space until the goal node or the
terminal state is reached. In fact after generation of each and every state, the
generated node is compared with the known goal state. When the goal is
found, the algorithm terminates. In case there exist multiple paths leading to
the goal, then the path having the smallest distance from the root is preferred.
The basic strategy used in this search is only generation of states and their
testing for goals but it does not allow filtering of states.

(b) Hill Climbing Approach: Under this approach, one has to first
generate a starting state and measure the total cost for reaching the goal from
the given starting state. Let this cost be f. While f < a predefined utility value
and the goal is not reached, new nodes are generated as children of the current
node. However, in case all the neighborhood nodes (states) yield an identical
value of f and the goal is not included in the set of these nodes, the search
algorithm is trapped at a hillock or local extrema. One way to overcome this
problem is to select randomly a new starting state and then continue the above
search process. While proving trigonometric identities, we often use Hill
Climbing, perhaps unknowingly.

(¢) Heuristic Search: Classically heuristics means rule of thumb. In
heuristic search, we generally use one or more heuristic functions to determine
the better candidate states among a set of legal states that could be generated
from a known state. The heuristic function, in other words, measures the
fitness of the candidate states. The better the selection of the states, the fewer
will be the number of intermediate states for reaching the goal. However, the
most difficult task in heuristic search problems is the selection of the heuristic
functions. One has to select them intuitively, so that in most cases hopefully
it would be able to prune the search space correctly. We will discuss many of
these issues in a separate chapter on Intelligent Search.

(d) Means and Ends Analysis: This method of search attempts to
reduce the gap between the current state and the goal state. One simple way to
explore this method is to measure the distance between the current state and
the goal, and then apply an operator to the current state, so that the distance
between the resulting state and the goal is reduced. In many mathematical
theorem- proving processes, we use Means and Ends Analysis.

Besides the above methods of intelligent search, there exist a good
number of general problem solving techniques in AI. Among these, the most
common are: Problem Decomposition and Constraint Satisfaction.



Problem Decomposition: Decomposition of a problem means breaking
a problem into independent (de-coupled) sub-problems and subsequently sub-
problems into smaller sub-problems and so on until a set of decomposed sub-
problems with known solutions is available. For example, consider the
following problem of integration.

1= |+ 9x +2) dx,
which may be decomposed to

| & a0+ Oxdo+] @dv),

where fortunately all the 3 resulting sub-problems need not be decomposed
further, as their integrations are known.

Constraint Satisfaction: This method is concerned with finding the
solution of a problem by satisfying a set of constraints. A number of
constraint satisfaction techniques are prevalent in Al In this section, we
illustrate the concept by one typical method, called hierarchical approach for
constraint satisfaction (HACS) [47]. Given the problem and a set of
constraints, the HACS decomposes the problem into sub-problems; and the
constraints that are applicable to each decomposed problem are identified and
propagated down through the decomposed problem. The process of re-
decomposing the sub-problem into smaller problems and propagation of the
constraints through the descendants of the reasoning space are continued until
all the constraints are satisfied. The following example illustrates the principle
of HACS with respect to a problem of extracting roots from a set of
inequality constraints.

Example 1.2: The problem is to evaluate the variables X;, X, and X3 from
the following set of constraints:

{XIZZ, X223, X1+X2 S6, Xl,Xz,X3€I}.

For solving this problem, we break the ‘>’ into ‘>’ and ‘=" and propagate the
sub-constraints through the arcs of the tree. On reaching the end of the arcs,
we attempt to satisfy the propagated constraints in the parent constraint and
reduce the constraint set. The process is continued until the set of constraints
is minimal, i.e., they cannot be broken into smaller sets (fig. 1.3).

There exists quite a large number of Al problems, which can be solved
by non-AI approach. For example, consider the Travelling Salesperson
Problem. It is an optimization problem, which can be solved by many non-Al
algorithms. However, the Neighborhood search AI method [35] adopted for



this problem is useful for the following reason. The design of the Al
algorithm should be such that the time required for solving the problem is a
polynomial (and not an exponential) function of the size (dimension) of the
problem. When the computational time is an exponential function of the
dimension of the problem, we call it a combinatorial exploration problem.
Further, the number of variables to be used for solving an Al problem should
also be minimum, and should not increase with the dimension of the
problem. A non-Al algorithm for an Al problem can hardly satisfy the above
two requirements and that is why an Al problem should be solved by an Al
approach.

{Xi22; X223; Xi+X2 £6; Xi,X2,Xs€e I}

X1>2

{Xi1=2, X223 ; {X1=3, X223 ;
Xi+ X2 £6; Xje I, Vj} Xi+ X2 £6; Xjel,Vj}
Xz :3 X2>3 Xz :3 X 2> 3

(Xi=2, X,=3} {X;=2, X,=4} {X; =3,X,=3}  No solution

Fig. 1.3: The constraint tree, where the arcs propagate the constraints, and
the nodes down the tree hold the reduced set of constraints.

1.4 The Disciplines of Al

The subject of Al spans a wide horizon. It deals with the various kinds
of knowledge representation schemes, different techniques of intelligent
search, various methods for resolving uncertainty of data and knowledge,
different schemes for automated machine learning and many others. Among
the application areas of Al, we have Expert systems, Game-playing, and
Theorem-proving, Natural language processing, Image recognition, Robotics
and many others. The subject of Al has been enriched with a wide discipline
of knowledge from Philosophy, Psychology, Cognitive Science, Computer



Science, Mathematics and Engineering. Thus in fig. 1.4, they have been
referred to as the parent disciplines of AI. An at-a-glance look at fig. 1.4 also
reveals the subject area of Al and its application areas.

PARENT DISCIPLINES OF Al

Philosophy Maths. Psychology Computer
& Cog. Sc. Science
Artificial
Intelligence

* Reasoning * Learning  * Planning * Perception
* Knowledge acquisition * Intelligent search
* Uncertainty management *Others

Subjects covered under Al

e

Game Theorem Language & Image Robotics &
Playing Proving Understanding Navigation

APPLICATION AREAS OF Al

Fig. 1.4: Al, its parent disciplines and application areas.

1.4.1 The Subject of Al

The subject of Al was originated with game-playing and theorem-proving
programs and was gradually enriched with theories from a number of parent



disciplines. As a young discipline of science, the significance of the topics
covered under the subject changes considerably with time. At present, the
topics which we find significant and worthwhile to understand the subject are
outlined below:

Tongue position adjustment

T Motor Nerve

. BRAIN
Voice System of

Learning System of
the Child the Child

!

Child’s pronunciation

v

[Auditory
_ Nerve
Voice System of the A
+ Hearing System
Mother

of the Child

Mother’s pronunciation
Fig. 1. 5: Pronunciation learning of a child from his mother.

Learning Systems: Among the subject areas covered under Al learning
systems needs special mention. The concept of learning is illustrated here
with reference to a natural problem of learning of pronunciation by a child
from his mother (vide fig. 1.5). The hearing system of the child receives the
pronunciation of the character “A” and the voice system attempts to imitate it.
The difference of the mother’s and the child’s pronunciation, hereafter
called the error signal, is received by the child’s learning system through the



auditory nerve, and an actuation signal is generated by the learning system
through a motor nerve for adjustment of the pronunciation of the child. The
adaptation of the child’s voice system is continued until the amplitude of the
error signal is insignificantly low. Each time the voice system passes through
an adaptation cycle, the resulting tongue position of the child for speaking
“A” is saved by the learning process.

The learning problem discussed above is an example of the well-known
parametric learning, where the adaptive learning process adjusts the
parameters of the child’s voice system autonomously to keep its response
close enough to the “sample training pattern”. The artificial neural networks,
which represent the electrical analogue of the biological nervous systems, are
gaining importance for their increasing applications in supervised (parametric)
learning problems. Besides this type, the other common learning methods,
which we do unknowingly, are inductive and analogy-based learning. In
inductive learning, the learner makes generalizations from examples. For
instance, noting that “cuckoo flies”, “parrot flies” and “sparrow flies”, the
learner generalizes that “birds fly”. On the other hand, in analogy-based
learning, the learner, for example, learns the motion of electrons in an atom
analogously from his knowledge of planetary motion in solar systems.

Knowledge Representation and Reasoning: In a reasoning
problem, one has to reach a pre-defined goal state from one or more given
initial states. So, the lesser the number of transitions for reaching the goal
state, the higher the efficiency of the reasoning system. Increasing the
efficiency of a reasoning system thus requires minimization of intermediate
states, which indirectly calls for an organized and complete knowledge base.
A complete and organized storehouse of knowledge needs minimum search to
identify the appropriate knowledge at a given problem state and thus yields
the right next state on the leading edge of the problem-solving process.
Organization of knowledge, therefore, is of paramount importance in
knowledge engineering. A variety of knowledge representation techniques are
in use in Artificial Intelligence. Production rules, semantic nets, frames, filler
and slots, and predicate logic are only a few to mention. The selection of a
particular type of representational scheme of knowledge depends both on the
nature of applications and the choice of users.

Example 1.3: A semantic net represents knowledge by a structured
approach. For instance, consider the following knowledge base:

Knowledge Base: A bird can fly with wings. A bird has wings. A bird has
legs. A bird can walk with legs.



The bird and its attributes here have been represented in figure 1.6 using a
graph, where the nodes denote the events and the arcs denote the relationship
between the nodes.
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Fig. 1.6: A semantic net representation of "birds".

Planning: Another significant area of Al is planning. The problems of
reasoning and planning share many common issues, but have a basic
difference that originates from their definitions. The reasoning problem is
mainly concerned with the testing of the satisfiability of a goal from a given
set of data and knowledge. The planning problem, on the other hand, deals
with the determination of the methodology by which a successful goal can be
achieved from the known initial states [1]. Automated planning finds
extensive applications in robotics and navigational problems, some of which
will be discussed shortly.

Knowledge Acquisition: Acquisition (Elicitation) of knowledge is
equally hard for machines as it is for human beings. It includes generation of
new pieces of knowledge from given knowledge base, setting dynamic data
structures for existing knowledge, learning knowledge from the environment
and refinement of knowledge. Automated acquisition of knowledge by
machine learning approach is an active area of current research in Artificial
Intelligence [5], [20].

Intelligent Search: Search problems, which we generally encounter in
Computer Science, are of a deterministic nature, i.e., the order of visiting the
elements of the search space is known. For example, in depth first and breadth
first search algorithms, one knows the sequence of visiting the nodes in a tree.
However, search problems, which we will come across in Al, are



non-deterministic and the order of visiting the elements in the search space is
completely dependent on data sets. The diversity of the intelligent search
algorithms will be discussed in detail later.

Logic Programming: For more than a century, mathematicians and
logicians were used to designing various tools to represent logical statements
by symbolic operators. One outgrowth of such attempts is propositional
logic, which deals with a set of binary statements (propositions) connected by
Boolean operators. The logic of propositions, which was gradually enriched to
handle more complex situations of the real world, is called predicate logic.
One classical variety of predicate logic-based programs is Leogic Program
[38]. PROLOG, which is an abbreviation for PROgramming in LOGic, is a
typical language that supports logic programs. Logic Programming has
recently been identified as one of the prime area of research in Al. The
ultimate aim of this research is to extend the PROLOG compiler to handle
spatio-temporal models [42], [20] and support a parallel programming
environment [45]. Building architecture for PROLOG machines was a hot
topic of the last decade [24].

Soft Computing: Soft computing, according to Prof. Zadeh, is “an
emerging approach to computing, which parallels the remarkable ability of the
human mind to reason and learn in an environment of uncertainty and
imprecision” [13]. It, in general, is a collection of computing tools and
techniques, shared by closely related disciplines that include fuzzy logic,
artificial neural nets, genetic algorithms, belief calculus, and some aspects of
machine learning like inductive logic programming. These tools are used
independently as well as jointly depending on the type of the domain of
applications. The scope of the first three tools in the broad spectrum of Al is
outlined below.

¢ Fuzzy Logic: Fuzzy logic deals with fuzzy sets and logical connectives
for modeling the human-like reasoning problems of the real world. A
fuzzy set, unlike conventional sets, includes all elements of the universal
set of the domain but with varying membership values in the interval
[0,1]. It may be noted that a conventional set contains its members with a
value of membership equal to one and disregards other elements of the
universal set, for they have zero membership. The most common operators
applied to fuzzy sets are AND (minimum), OR (maximum) and negation
(complementation), where AND and OR have binary arguments, while
negation has unary argument. The logic of fuzzy sets was proposed by
Zadeh, who introduced the concept in systems theory, and later extended it
for approximate reasoning in expert systems [45]. Among the pioneering
contributors on fuzzy logic, the work of Tanaka in stability analysis of
control systems [44], Mamdani in cement kiln control



[19], Kosko [15] and Pedrycz [30] in fuzzy neural nets, Bezdek in pattern
classification [3], and Zimmerman [50] and Yager [48] in fuzzy tools and
techniques needs special mention.

¢ Artificial Neural Nets: Artificial neural nets (ANN) are electrical
analogues of the biological neural nets. Biological nerve cells, called
neurons, receive signals from neighboring neurons or receptors through
dendrites, process the received electrical pulses at the cell body and
transmit signals through a large and thick nerve fiber, called an axon. The
electrical model of a typical biological neuron consists of a linear
activator, followed by a non-linear inhibiting function. The linear
activation function yields the sum of the weighted input excitation, while
the non-linear inhibiting function attempts to arrest the signal levels of the
sum. The resulting signal, produced by an electrical neuron, is thus
bounded (amplitude limited). An artificial neural net is a collection of
such electrical neurons connected in different topology. The most common
application of an artificial neural net is in machine learning. In a learning
problem, the weights and / or non-linearities in an artificial neural net
undergo an adaptation cycle. The adaptation cycle is required for updating
these parameters of the network, until a state of equilibrium is reached,
following which the parameters no longer change further. The ANN
support both supervised and unsupervised types of machine learning. The
supervised learning algorithms realized with ANN have been successfully
applied in control [25], automation [31], robotics [32] and computer
vision [31]. The unsupervised learning algorithms built with ANN, on the
other hand, have been applied in scheduling [31], knowledge acquisition
[5], planning [22] and analog to digital conversion of data [41].

¢ Genetic Algorithms: A genetic algorithm (GA) is a stochastic
algorithm that mimics the natural process of biological evolution [35]. It
follows the principle of Darwinism, which rests on the fundamental belief
of the “survival of the fittest’ in the process of natural selection of
species. GAs find extensive applications in intelligent search, machine
learning and optimization problems. The problem states in a GA are
denoted by chromosomes, which are usually represented by binary strings.
The most common operators used in GA are crossover and mutation. The
processes of execution of crossover and mutation are illustrated in fig.1.7
and 1.8 respectively. The evolutionary cycle in a GA consists of the
following three sequential steps [23].

a) Generation of population (problem states represented
by chromosomes).

b) Genetic evolution through crossover followed by
mutation.



c) Selection of better candidate states from the generated
population.

In step (a) of the above cycle, a few initial problem states are first
identified. The step (b) evolves new chromosomes through the process of
crossover and mutation. In step (c ) a fixed number of better candidate states
are selected from the generated population. The above steps are repeated a
finite number of times for obtaining a solution for the given problem.

|1110 |011| X |1001 I010| Parent chromosomes

T T

crossover points

[1110fo10]  froo1 Jou1 ]

Offsprings obtained by crossover

Fig.1.7: Exchange of genetic information by crossover operation.
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Fig. 1. 8: The mutation operation: randomly selected
bits are complemented.

Management of Imprecision and Uncertainty: Data and knowledge-
bases in many typical Al problems, such as reasoning and planning, are often
contaminated with various forms of incompleteness. The incompleteness of
data, hereafter called imprecision, generally appears in the database for 1)
lack of appropriate data, and ii) poor authenticity level of the sources. The
incompleteness of knowledge, often refered to as uncertainty, originates in
the knowledge base due to lack of certainty of the pieces of knowledge.



Reasoning in the presence of imprecision of data and uncertainty of
knowledge is a complex problem. Various tools and techniques have been
devised for reasoning under incomplete data and knowledge. Some of these
techniques employ 1) stochastic ii) fuzzy and iii) belief network models [16].
In a stochastic reasoning model, the system can have transition from one
given state to a number of states, such that the sum of the probability of
transition to the next states from the given state is strictly unity. In a fuzzy
reasoning system, on the other hand, the sum of the membership value of
transition from the given state to the next state may be greater than or equal to
one. The belief network model updates the stochastic / fuzzy belief assigned
to the facts embedded in the network until a condition of equilibrium is
reached, following which there would be no more change in beliefs. Recently,
fuzzy tools and techniques have been applied in a specialized belief network,
called a fuzzy Petri net, for handling both imprecision of data and
uncertainty of knowledge by a unified approach [14].

1.4.2 Applications of Al Techniques

Almost every branch of science and engineering currently shares the tools and
techniques available in the domain of AI. However, for the sake of the
convenience of the readers, we mention here a few typical applications, where
Al plays a significant and decisive role in engineering automation.

Expert Systems: In this example, we illustrate the reasoning process
involved in an expert system for a weather forecasting problem with special
emphasis to its architecture. An expert system consists of a knowledge base,
database and an inference engine for interpreting the database using the
knowledge supplied in the knowledge base. The reasoning process of a typical
illustrative expert system is described in Fig. 1.9. PR 1 in Fig. 1.9 represents
i-th production rule.

The inference engine attempts to match the antecedent clauses (IF parts)
of the rules with the data stored in the database. When all the antecedent
clauses of a rule are available in the database, the rule is fired, resulting in
new inferences. The resulting inferences are added to the database for
activating subsequent firing of other rules. In order to keep limited data in the
database, a few rules that contain an explicit consequent (THEN) clause to
delete specific data from the databases are employed in the knowledge base.
On firing of such rules, the unwanted data clauses as suggested by the rule are
deleted from the database.

Here PR1 fires as both of its antecedent clauses are present in the
database. On firing of PR1, the consequent clause “it-will-rain” will be added
to the database for subsequent firing of PR2.
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Fig. 1. 9: Illustrative architecture of an expert system.

Image Understanding and Computer Vision: A digital image
can be regarded as a two-dimensional array of pixels containing gray levels
corresponding to the intensity of the reflected illumination received by a
video camera [6]. For interpretation of a scene, its image should be passed
through three basic processes: low, medium and high level vision (fig.1.10).
The importance of low level vision is to pre-process the image by filtering
from noise. The medium level vision system deals with enhancement of
details and segmentation (i.e., partitioning the image into objects of interest
). The high level vision system includes three steps: recognition of the
objects from the segmented image, labeling of the image and interpretation of
the scene. Most of the Al tools and techniques are required in high level
vision systems. Recognition of objects from its image can be carried out
through a process of pattern classification, which at present is realized by
supervised learning algorithms. The interpretation process, on the other hand,
requires knowledge-based computation.

Navigational Planning for Mobile Robots: Mobile robots, sometimes
called automated guided vehicles (AGV), are a challenging area of research,

A



where Al finds extensive applications. A mobile robot generally has one or
more camera or ultrasonic sensors, which help in identifying the obstacles on
its trajectory. The navigational planning problem persists in both static and
dynamic environments. In a static environment, the position of obstacles is
fixed, while in a dynamic environment the obstacles may move at arbitrary
directions with varying speeds, lower than the maximum speed of the robot.
Many researchers using spatio-temporal logic [7-8] have attempted the
navigational planning problems for mobile robots in a static environment. On
the other hand, for path planning in a dynamic environment, the genetic
algorithm [23], [26] and the neural network-based approach [41], [47] have
had some success. In the near future, mobile robots will find extensive
applications in fire-fighting, mine clearing and factory automation. In accident
prone industrial environment, mobile robots may be exploited for automatic
diagnosis and replacement of defective parts of instruments.

Camera Low level vision
Pre-processing —— Enhancement >
< Labeling Recognition Segmentation
[— -
Medium level vision
Interpretation |

High level vision
high level inferences

Fig. 1.10: Basic steps in scene interpretation.

Speech and Natural Language Understanding: Understanding
of speech and natural languages is basically two classical problems. In
speech analysis, the main problem is to separate the syllables of a spoken
word and determine features like amplitude, and fundamental and harmonic
frequencies of each syllable. The words then could be identified from the
extracted features by pattern classification techniques. Recently, artificial
neural networks have been employed [41] to classify words from their
features. The problem of understanding natural languages like English, on



the other hand, includes syntactic and semantic interpretation of the words in
a sentence, and sentences in a paragraph. The syntactic steps are required to
analyze the sentences by its grammar and are similar with the steps of
compilation. The semantic analysis, which is performed following the
syntactic analysis, determines the meaning of the sentences from the
association of the words and that of a paragraph from the closeness of the
sentences. A robot capable of understanding speech in a natural language will
be of immense importance, for it could execute any task verbally
communicated to it. The phonetic typewriter, which prints the words
pronounced by a person, is another recent invention where speech
understanding is employed in a commercial application.

Scheduling: In a scheduling problem, one has to plan the time schedule of
a set of events to improve the time efficiency of the solution. For instance in
a class-routine scheduling problem, the teachers are allocated to different
classrooms at different time slots, and we want most classrooms to be
occupied most of the time. In a flowshop scheduling problem [42], a set of
jobs J; and J, (say) are to be allocated to a set of machines M;, M, and M3,
(say). We assume that each job requires some operations to be done on all
these machines in a fixed order say, M;, M, and M. Now, what should be
the schedule of the jobs (J;-J») or (J, —=J1), so that the completion time of both
the jobs, called the make-span, is minimized? Let the processing time of jobs
Jiand J, on machines M;, M, and M3 be (5, 8, 7) and (8, 2, 3) respectively.
The gantt charts in fig. 1.11 (a) and (b) describe the make-spans for the
schedule of jobs J; - J, and J, - J; respectively. It is clear from these figures
that J;-J, schedule requires less make-span and is thus preferred.
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(a) The J, - J, schedule.



I Ji
M,
g1 5
Lo
M
2 8
B I
M; e
A
3 7

make-span = 28
Job completion time —»

(b): The J,- J; schedule where the hatched lines indicate waiting
time of the machines.

Fig. 1.11: The Gantt charts for the flowshop scheduling problem
with 2 jobs and 3 machines.

Flowshop scheduling problems are a NP complete problem [1] and
determination of optimal scheduling (for minimizing the make-span) thus
requires an exponential order of time with respect to both machine-size and
job-size. Finding a sub-optimal solution is thus preferred for such scheduling
problems. Recently, artificial neural nets and genetic algorithms have been
employed to solve this problem. The heuristic search, to be discussed
shortly, has also been used for handling this problem [34].

Intelligent Control: In process control, the controller is designed from the
known models of the process and the required control objective. When the
dynamics of the plant is not completely known, the existing techniques for
controller design no longer remain valid. Rule-based control is appropriate in
such situations. In a rule-based control system, the controller is realized by a
set of production rules intuitively set by an expert control engineer. The
antecedent (premise) part of the rules in a rule-based system is searched
against the dynamic response of the plant parameters. The rule whose
antecedent part matches with the plant response is selected and fired. When
more than one rule is firable, the controller resolves the conflict by a set of
strategies. On the other hand, there exist situations when the antecedent part
of no rules exactly matches with the plant responses. Such situations are
handled with fuzzy logic, which is capable of matching the antecedent parts of
rules partially/ approximately with the dynamic plant responses. Fuzzy



control has been successfully used in many industrial plants. One typical
application is the power control in a nuclear reactor. Besides design of the
controller, the other issue in process control is to design a plant (process)
estimator, which attempts to follow the response of the actual plant, when
both the plant and the estimator are jointly excited by a common input signal.
The fuzzy and artificial neural network-based learning techniques have recently
been identified as new tools for plant estimation [25], [43].

1.5 A Brief History of Al

Professor Peter Jackson of the University of Edinburgh classified the history
of Al into three periods namely 1) the classical period (of game playing and
theorem proving), ii) the romantic period, and iii) the modern period [12]; the
major research work carried out during these periods is presented below.

1.5.1 The Classical Period

This period dates back to 1950. The main research works carried out during
this period include game playing and theorem proving. The concept of state-
space approach for solving a problem, which is a useful tool for intelligent
problem-solving even now, was originated during this period [27].

The period of classical Al research began with the publication of
Shannon’s paper on chess (1950) [35] and ended with the publication by
Feigenbaum and Feldman [10]. The major area of research covered under this
period is intelligent search problems involved in game-playing and theorem-
proving. Turing’s “test”, which is a useful tool to test machine intelligence,
originated during this period.

1.5.2 The Romantic Period

The romantic period started from the mid 1960s and continued until the mid
1970s. During this period, people were interested in making machines
“understand”, by which they usually mean the understanding of natural
languages. Winograd’s (1972) SHRDLU system [46], a program capable of
understanding a non-trivial subset of English by representing and reasoning
about a restricted domain (a world consisting of toy blocks), in this regard
needs special mention. The knowledge representation scheme using special
structures like “semantic nets” was originated by Quillian [33] during this
period. Minisky (1968) also made a great contribution from the point of view
of information processing using semantic nets. Further, knowledge



representation formalisms using frames, which was another contribution of
Minisky during this period, also need special mention [28].

1.5.3 The Modern Period

The modern period starts from the latter half of the 1970s to the present day.
This period is devoted to solving more complex problems of practical
interest. The MYCIN experiments of Stanford University [4], [39] resulted in
an expert system that could diagnose and prescribe medicines for infectious
bacteriological diseases. The MECHO system for solving problems of
Newtonian machines is another expert system that deals with real life
problems. It should be added that besides solving real world problems,
researchers are also engaged in theoretical research on Al including heuristic
search, uncertainty modeling and non-monotonic and spatio-temporal
reasoning. To summarize, this period includes research on both theories and
practical aspects of Al

1.6  Characteristic Requirements for the
Realization of the Intelligent Systems

The Al problems, irrespective of their type, possess a few common
characteristics. Identification of these characteristics is required for designing a
common framework for handling AI problems. Some of the well-known
characteristic requirements for the realization of the intelligent systems are
listed below.

1.6.1 Symbolic and Numeric Computation
on Common Platform

It is clear from the previous sections that a general purpose intelligent
machine should be able to perform both symbolic and numeric computations
on a common platform. Symbolic computing is required in automated
reasoning, recognition, matching and inductive as well as analogy-based
learning. The need for symbolic computing was felt since the birth of Al in
the early fifties. Recently, the connectionist approach for building intelligent
machines with structured models like artificial neural nets is receiving more
attention. The ANN based models have successfully been applied in learning,
recognition, optimization and also in reasoning problems [29] involved in
expert systems. The ANNs have outperformed the classical approach in many
applications, including optimization and pattern classification problems.
Many Al researchers, thus, are of the opinion that in the long run



the connectionist approach will replace the classical approach in all respects.
This, however, is a too optimistic proposition, as the current ANNs require
significant evolution to cope with the problems involved in logic
programming and non-monotonic reasoning. The symbolic and connectionist
approach, therefore, will continue co-existing in intelligent machines until the
latter, if ever, could replace the former in the coming years.

1.6.2 Non-Deterministic Computation

The Al problems are usually solved by state-space approach, introduced in
section 1.3. This approach calls for designing algorithms for reaching one or
more goal states from the selected initial state(s). The transition from one
state to the next state is carried out by applying appropriate rules, selected
from the given knowledge base. In many circumstances, more than one rule is
applicable to a given state for yielding different next states. This informally is
referred to as non-determinism. Contrary to the case, when only one rule is
applicable to a given state, this system is called deterministic. Generally Al
problems are non-deterministic. The issues of determinism and non-
determinism are explained here with respect to an illustrative knowledge-based
system. For instance, consider a knowledge base consisting of the following
production rules and database.

Production Rules

PRI1: IF (A) AND (B) THEN ( C).
PR2: IF ( C ) THEN ( D).

PR3: IF (C) AND ( E ) THEN (Y).
PR4: IF (Y) THEN (Z).

Database: A, B, E.

The graph representing the transition of states for the above reasoning
problem is presented in fig.1.12. Let A and B be starting states and Z be the
goal state. It may be noted that both PR2 and PR3 are applicable at state (C)
yielding new states. However, the application of PR3 at state (C) can
subsequently lead to the goal state Z, which unfortunately remains unknown
until PR4 is applied at state Y. This system is a typical example of non-
determinism. The dropping of PR2 from the knowledge base, however, makes
the system deterministic. One formal approach for testing determinism / non-
determinism of a reasoning system can be carried out by the following
principle:
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Fig. 1.12: A Petri-like net representing non-determinism in a reasoning system
with initial states A and B and goal state Z.

Principle for testing determinism: After deriving the goal state
from the initial states, continue marking (backtracking) the parents of each
node starting from the goal node, until the initial states are reached. If
unmarked nodes are detected, then the system is non-deterministic; otherwise
it is deterministic. It may be noted that testing of determinism in a
knowledge-based system, for any set of starting and goal states, is a distinct
problem and no conclusion about determinism can be drawn for modified
initial or goal states.

The principle for testing determinism in the proposed knowledge-based
system is illustrated here with reference to the dependence graph (Petri-like
net) of fig.1.12. It may be noted that while backtracking on the graph, node
D is not marked and thus the system is non-deterministic.

Besides reasoning, non-determinism plays a significant role in many
classical Al problems. The scope of non-determinism in heuristic search has
already been mentioned. In this section, we demonstrate its scope in
recognition problems through the following example.

Example 1.3: This example illustrates the differences of deterministic and
non-deterministic transition graphs [9], called automata. Let us first consider
the problem of recognition of a word, say, “robot”. The transition graph (fig.
1.13(a)) for the current problem is deterministic, since the arcs emerging out
from a given state are always distinct. However, there exist problems, where
the arcs coming out from a state are not always distinct. For instance,
consider the problem of recognizing the words “robot” and “root”. Here, since
more than one outgoing arc from state B (fig. 1.13(b)) contains the same label
(0), they are not distinct and the transition graph is non-deterministic.
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System states: A,B,C,D,E; Received symbols : 1, 0,b, 0,t, x wherex ¢ {r, 0, b, t}.
x / 1: transition on X to next state with output =1 (success) ; x/ 0: transition on x to
next state with output 0 (failure).

Fig.1. 13 (a) : A deterministic automata used for the recognition of the word

“robot”.
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Fig.1. 13 (b): A non-deterministic automata that recognizes words “robot”
and “root”.

1.6.3 Distributed Computing

Because of too much non-determinism in the AI problems, distributed
computing with shared resources is given much importance in the current
computational models of intelligence. Data structures like Petri nets [14], and
computational models like “AND-parallelism”, “OR-parallelism”, “Stream-
parallelism” [45] etc., have been recently emerging to realize distributed
computing on intelligent machines. Distributed computing has twofold
advantages in Al: i) to support massive parallelism and ii) to



improve reliability by realizing fragments of computational models onto a
number of software or hardware modules.

1.6.4 Open System

The design of an intelligent system should be made, so that it can be readily
extended for spatio-temporal changes in the environment. For example, one
should use a dynamic knowledge base, which can automatically acquire
knowledge from its environment. Further, the learning systems should adapt
their parameters to take into account the new problem instances. An open
system also allows hardware/software interfacing with the existing system.

1.7 Programming Languages for Al

Generally relational languages like PROLOG [38] or functional languages like
LISP are preferred for symbolic computation in Al. However, if the program
requires much arithmetic computation (say, for the purpose of uncertainty
management) then procedural language could be used. There is a dilemma
between the choice of programming languages for solving Al problems to
date. A procedural language that offers a call for a relational function or a
relational language that allows interface with a procedural one is probably the
best choice. Currently, a number of shells (for ES) are available, where the
user needs to submit knowledge only and the shell offers the implementation
of both numeric as well as symbolic processing simultaneously.

1.8 Architecture for AI Machines

During the developmental phase of AI, machines used for conventional
programming were also used for Al programming. However, since Al
programs deal more with relational operators than number crunching, the need
for special architectures for the execution of Al programs was felt. Gradually,
it was discovered that due to non-determinism in the Al problems, it supports
a high degree of concurrent computing. The architecture of an Al machine thus
should allow symbolic computation in a concurrent environment. Further, for
minimizing possible corruption of program resources (say variables or
procedures), concurrent computation may be realized in a fine grain distributed
environment. Currently PROLOG and LISP machines are active areas of Al
research, where the emphasis is to incorporate the above issues at the hardware
and software levels. Most of these architectures are designed for research
laboratories and are not available in the open commercial market to date. We
hope for a better future for Al, when these special architectures will find
extensive commercial exploitation.



1.9 Objective and Scope of the Book

The objective of the book is to bridge the potential gap between the existing
textbooks of Al and research papers/monographs. The available texts on Al
usually do not cover mathematical issues. Further, soft computing, which
plays a significant role in modeling intelligent problems, has rarely been
included in a textbook on AI. The book, thus, to the best of the author’s
knowledge, is the first text of its kind that covers all modern aspects of Al
and soft computing and their applications in a single easy-to-read volume.

The book has been organized in the following manner. Chapter 2
introduces the behavioral aspects of cognition [21]. Problem solving by
production system is presented in chapter 3. A detailed review on intelligent
search is presented in chapter 4. Various aspects of knowledge representation
and reasoning are covered in chapters 5-11. The chapters included are
predicate logic (chapter 5), logic programming (chapter 6), default and non-
monotonic logic (chapter 7), structured approach to knowledge representation
(chapter 8), and dealing with imprecision and uncertainty (chapter 9). A
separate chapter on structured approach to fuzzy reasoning systems is included
in chapter 10 of the book for both its increasing demand and scarcity of the
literature on the topic. The spatio-temporal models for reasoning are covered
in chapter 11. Some aspects of intelligent planning are covered in chapter 12.
The principles of machine learning are presented in chapter 13 and some of
their realizations with ANN are covered in chapter 14. One complete chapter
(chapter 15) is devoted to genetic algorithm. These are the major areas covered
in the book. The other issues outlined in the book, for the sake of
completeness are: realizing cognition with fuzzy neural nets (chapter 16),
visual perception (chapter 17), linguistic perception (chapter 18), constraint
satisfaction (chapter 19), knowledge acquisition (chapter 20), verification and
validation models (chapter 21) and architecture of Al machines (chapter 22).
These are relatively growing topics and thus will help the readers learn the
frontier areas of the subject. Chapter 23 and 24 cover two case studies: one
on criminal investigation and the other on navigational planning of robots.

1.10 Summary

The subject of AI deals more with symbolic processing than numeric
computation. Knowledge representation, reasoning, planning, learning,
intelligent search and uncertainty management of data and knowledge are the
common areas covered under Al. Some of the applications areas of Al are
speech and image understanding, expert systems, pattern classification and
navigational planning of mobile robots. LISP and PROLOG are the usual
languages for programming Al problems. Because of severe non-determinism



in Al problems, it supports massive parallelism. Specialized parallel
processing architecture for PROLOG and LISP machines is in development
and may be available shortly in the open market.

Exercises

1. Determine the starting state, goal state, and legal moves and draw the
state-space for the well-known missionaries-cannibals problem, listed
below:

There are three missionaries, three cannibals and a boat on the left bank of
a river. All of the six persons need to be transported to the right bank
using a boat. The boat carries only two persons and at least one person
should bring the boat back. If the cannibals outnumber the missionaries on
either bank, they will eat the missionaries.

2. Design a semantic net, describing relationships among different modules of
an aircraft. Write a program in Pascal/C to realize the net for answering the
following questions:

Queries: a) Does the aircraft have seats?
b) If answer to (a) is yes, then how many seats does it have?

3. Consider the following knowledge base and database.

Knowledge base:

PR1: IF (( X is a man and Y is a woman ) AND

(X and Y are lovers))
THEN (X is a friend of Y).

PR2: IF ((X is a man and Y is a woman) AND

( X married Y))
THEN (X loves Y).

PR3: IF ((X is aman and Y is a woman) AND

(Y married X))
THEN (Y loves X).

PR4: IF ((X loves Y ) AND

(Y loves X))
THEN (X and Y are lovers).
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(2]
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Database:

1. Ram is a man.

2. Sita is a woman.
3. Ram married Sita.
4. Sita married Ram.

Show the sequence of selection of PRs to prove that “Ram is a friend of
Sita”. What other (intermediate) inferences does the inference engine
derive to prove the above conclusion?

What additional piece of knowledge should one add to the system to
eliminate the fourth data element, which is redundant in presence of the
third data element?

Design a deterministic automata for the recognition of the word “apple”.
Extend your design to recognize the words “apple” and “ape” by a non-
deterministic automata.
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The Psychological
Perspective of
Cognition

The chapter provides an overview of the last thirty years’ research in
cognitive psychology with special reference to the representation of sensory
information on the human mind. The interaction of visual, auditory and
linguistic information in memory for understanding instances of the real
world scenario has been elucidated in detail. The construction of mental
imagery from the visual scenes and interpretation of the unknown scenes
with such imagery have also been presented in this chapter. Neuro-
physiological evidences to support behavioral models of cognition have
been provided throughout the chapter. The chapter ends with a discussion
on a new ‘model of cognition’ that mimics the different mental states and
their inter-relationship through reasoning and automated machine learning.
The scope of Al in building the proposed model of cognition has also been
briefly outlined.

2.1 Introduction

Theword ‘cognition’ generally refersto afaculty of mental activities dealing with
abstraction of information from a real world scenario, their representation and



storage in memory and automatic recall [27]. It aso includes construction of
higher level percepts from primitive/low level information/knowledge, hereafter
referred to as perception. The chapter is an outgrowth of the last thirty years
research in neurocomputing and cognitive science. It elucidates various models
of cognition to represent different types of sensory information and their
integration on memory for understanding and reasoning with the real world
context. It also outlines the process of construction of mental imagery from the
real instances for subsequent usage in understanding complex three-dimensional
objects.

The chapter starts with the cognitive perspective of pattern recognition. It
covers elementary matching of ‘sensory instances with identical ‘templates
saved in memory. This is referred to as the ‘template matching theory’. The
weakness of the template matching theory is outlined and the principle to
overcome it through matching problem instances with stored minimal
representational models (prototypes) is presented. An alternative feature-
based approach for pattern recognition is also covered in this chapter. A more
recent approach to 3-dimensional object recognition based on Marr’ stheory is
also presented here.

The next topic, covered in the chapter, is concerned with cognitive models
of memory. It includes the Atkinson-Shiffring’s model, the Tulving’'s model
and the outcome of the Parallel Distributed Processing (PDP) research by
Rumelhart and McClelland [30].

The next section in the chapter deals with mental imagery and the
relationship among its components. It includes a discussion on the
relationship between object shape versus imagery and ambiguous figures
versus their imagery. Neuro-physiological support to building perception from
imagery is also outlined in this section. Representation of spatial and temporal
information and the concept of relative scaling is also presented here with a
specialized structure, called cognitive maps.

Understanding a problem and its representation in symbolic form is
considered next in the chapter. Examples have been cited to demonstrate how a
good representation serves an efficient solution to the problem.

The next section proposes a hew model of cognition based on its
behavioral properties. The model consists of a set of mental states and their
possible inter-dependence. The state transition graph representing the model
of cognition includes 3 closed cycles, namely, i) the sensing-action cycle, ii)
the acquisition-perception cycle, and iii) the sensing-acquisition-perception-
planning-action cycle. Details of the functionaries of the different states of
cognition will be undertaken in this section.



The scope of realization of the proposed model of cognition will be briefly
outlined in the next section by employing Al tools and techniques. A
concluding section following this section includes a discussion on the
possible direction of research in cognitive science.

2.2 The Cognitive Perspective of
Pattern Recognition

The process of recognizing a pattern involves ‘identifying a complex
arrangement of sensory stimuli’ [20], such as a character, a facial image or a
signature. Four distinct techniques of pattern recognition with reference to
both contexts and experience will be examined in this section.

2.2.1 Template-Matching Theory

A ‘template’ is part or whole of a pattern that one saves in his memory for
subsequent matching. For instance, in template matching of images, one may
search the template in the image. If the template is part of an image, then
matching requires identifying the portion (block) of the image that closely
resembles the template. If the template is a whole image, such as the facial
image of one's friend, then matching requires identifying the template among a
set of images [4]. Template matching is useful in contexts, where pattern shape
does not change with time. Signature matching or printed character matching
may be categorized under this head, where the size of the template is equal to
the font size of the patterns.

Example 2.1: This example illustrates the principle of the template-
matching theory. Fig. 2.1 (a) is the template, searched in the image of aboy in
fig. 2.1(b). Here, theimage is partitioned into blocks [5] equal to the size of the
template and the objective is to identify the block in the image (fig. 2.1(b)) that
best matches with the template (fig. 2.1 (a)).

@ (b)

Fig. 2.1: Matching of the template (a) with the blocksin (b).



The template-matching theory suffers from the following counts.

i) Restriction in font size and type: Template-matching theory is not
applicable to cases when the search domain does not include the template
of the same size and font type. For instance, if someone wants to match a
large-sized character, say Z, with an image containing a different font or
sizeof letter Z, the template-matching theory failsto serve the purpose.

ii) Restriction due to rotational variance: In case the search space of
the template contains a slightly rotated version of the template, the theory
is unable to detect it in the space. Thus, the template-matching theory is
sensitive to rotational variance of images.

It may be added here that the template-matching theory was framed for
exact matching and the theory as such, therefore, should not be blamed for the
reason for which it was meant. However, in case one wants to overcome the
above limitations, he/she may be advised to use the Prototype-matching
theory outlined below.

2.2.2 Prototype-Matching Theory

‘Prototypes are idealized / abstract patterns' [20] in memory, which is
compared with the stimulus that people receive through their sensory organs.
For instance, the prototype of stars could be an asterisk (*). A prototype of a
letter ‘A’ could be a symbol that one can store in his memory for matching
with any of the patternsin fig. 2.2 (a) or thelike.

A AAAAA A

Fig. 2.2 (a): Variousfontsand sizeof ‘A’.

Prototype-matching theory works well for images also. For example, if one
has to identify his friend among many people, he should match the prototype
of thefacial image and his structure, stored in memory, with the visual images
of individuals. The prototype (mental) image, in the present context, could
include an approximate impression of the face under consideration. How
exactly the prototype is kept in memory is unknown to the researchers still
today.

An alternative approach to pattern recognition, to be discussed shortly, is
the well-known feature-based matching.



2.2.3 Feature-based Approach
for Pattern Recognition

The main consideration of this approach isto extract a set of primitive features,
describing the object and to compare it with similar features in the sensory
patterns to be identified. For example, suppose we are interested to identify
whether character ‘H’ is present in the following list of characters (fig. 2.2 (b)).

A HFKIL

Fig. 2.2 (b): A list of charactersincluding H.

Now, first the elementary features of ‘H’ such astwo parallel lines and one
line intersecting the parallel lines roughly at half of their lengths are detected.
These features together are searched in each of the characters in fig. 2.2 (b).
Fortunately, the second character in the figure approximately contains similar
features and consequently it is the matched pattern.

For matching facial images by the feature-based approach, the features like
the shape of eyes, the distance from the nose tip to the center of each eye, etc.
are first identified from the reference image. These features are then matched
with the corresponding features of the unknown set of images. The image with
the best matched features is then identified. The detailed scheme for image
matching by specialized feature descriptors such as fuzzy moments [5] will be
presented in chapter 23.

2.2.4 The Computational Approach

Though there exist quite a large number of literature on the computational
approach for pattern recognition, the main credit in this field goes to David
Marr. Marr [19] pioneered a new concept of recognizing 3-dimensional objects.
He stressed the need for determining the edges of an object and constructed a
2 Y>-D model that carries more information than a 2-D but less than a 3-D image.
An approximate guess about the 3-D object, thus, can be framed from its 2 ¥2-D
images.

Currently, computer scientists are in favor of aneural model of perception.
According to them, an electrical analogue of the biological neural net can be
trained to recognize 3-D objects from their feature space. A number of training



algorithms have been devised during the last two decades to study the
behavioral properties of perception. The most popular among them is the well-
known back-propagation algorithm, designed after Rumelhart in connection
with their research on Parallel Distributed Processing (PDP) [30]. The details of
the neural algorithms for pattern recognition will be covered in chapter 14.

2.3 Cognitive Models of Memory

Sensory information is stored in the human brain at closely linked neuronal
cells. Information in some cells can be preserved only for a short duration.
Such memory is referred to as Short Term Memory (STM). Further, there are
cells in the human brain that can hold information for a quite long time, of the
order of years. Such memory is called Long Term Memory (LTM). STMs and
LTMs can aso be of two basic varieties, namely iconic memory and echoic
memory. The iconic memories can store visual information, while the echoic
memories participate in storing audio information. These two types of
memories together are generally called sensory memory. Tulving alternatively
classified human memory into three classes, namely episodic, semantic and
procedural memory. Episodic memory saves facts on their happening, the
semantic memory constructs knowledge in structural form, while the
procedural ones help in taking decisions for actions. In this section, a brief
overview of memory systems will be undertaken, irrespective of the type/
variety of memory; these memory systems together are referred to as cognitive
memory. Three distinct classes of cognitive memory models such as Atkinson-
Shiffrin’s model, Tulving’s model and the PDP model will be outlined in this
section.

2.3.1 The Atkinson-Shiffrin’s Model

The Atkinson-Shifrin’s model consists of a three layered structure of memory
(fig. 2.3). Sensory information (signals) such as scene, sound, touch, smell, etc.
is received by receptors for temporary storage in sensory registers (memory).
The sensory registers (Reg.) are large capacity storage that can save
information with high accuracy. Each type of sensory information is stored in
separate (sensory) registers. For example, visual information is saved in iconic
registers, while audio information is recorded in echoic registers. The sensory
registers decay at a fast rate to keep provisions for entry of new information.
Information from the sensory registers is copied into short term memory
(STM). STMs are fragile but less volatile than sensory registers. Typicaly
STMs can hold information with significant strength for around 30 seconds,
while sensory registers can hold it for just a fraction of a second. Part of the
information stored in STM is copied into long term memory (LTM). LTMs have
large capacity and can hold information for several years.
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Fig. 2.3: Three-level hierarchical model of cognitive memory.

STMs have faster access time [1] than LTMs. Therefore, for the purpose
of generating inferences, useful information from LTMs is copied into STMs.
This has been shown in fig. 2.3 by a feedback path from LTM to STM.
Because of its active participation in reasoning, STMs are sometimes called
active memory.

The hierarchical structure of Atkinson-Shiffrin’s cognitive memory model
can be compared with the memory systems in computers. The STM is similar
with cache, while the LTM could be compared with main (RAM) memory. The
reasoning system in the human brain is analogous with the central processing
unit (CPU) of the computer. The reasoning system fetches information from the
STM, as CPU receives information from cache, when the addressed words are
available in the cache. In case the addressed words are not available in cache,



they are fetched from the main and transferred to the cache and the CPU as
well. Analogously, when the information required for reasoning is not found in

STM, they could be transferred from the LTM to the STM and then to the
reasoning system.

2.3.2 Debates on the Atkinson-Shiffrin’s Model

Researchers of various domains have debated the Atkinson-Shiffrin’s model.
Many psychologists [14], [15] do not agree with the view of the existence of
STMs and LTMs as separate units. Neuro-physiological research, however,
supports the existence of these two separate units. Recent reports on
experimentation with the human brain put forward another challenging
question: Is there any direct input to LTM from sensory registers? The
following experimental results answer to the controversial issues.

Medical Experiment 1: /n order to cure the serious epilepsy of a person
X, a portion of his temporal lobes and hippocampus region was
removed. The operation resulted in a successful cure in epilepsy, but
caused a severe memory loss. The person was able to recall what
happened before the operation, but could not learn or retain new
information, even though his STM was found normal [21].

Medical Experiment 2: The left side of the cerebral cortex of a person was
damaged by a motorcycle accident. It was detected that his LTM was
normal but his STM was severely limited [2].

The experiment 1 indicates that the communication link from the STM to
the LTM might have been damaged. The experiment 2, however, raised the
question: how does the person input information to hisLTM when his STM is
damaged? The answer to this question follows from Tveter’s model, outlined
below.

Without referring to the Atkinson-Shiffrin's model, Tveter in his recent
book [34] considered an alternative form of memory hierarchy (fig. 2.4). The
sensory information, here, directly enters into the LTM and can be passed on
to the STM from the LTM. The STM has two outputs leading to the LTM. One
output of the STM helps in making decisions, while the other is for permanent
storageinthe LTM.

2.3.3 Tulving’s Model
The Atkinson-Shiffrin’s model discussed a flow of control among the various

units of memory system. Tulving's model, on the other hand, stresses the
significance of abstracting meaningful information from the environment by



cognitive memory and its utilization in problem solving. The model comprises of
three distinct units namely episodic, semantic and procedural memory.

For storage
intheLTM

input for
decision making

input from sensory
receptors/memory

Fig. 2.4: Tveter's Model showing direct entry tothe LTM.

Episodic memory stores information about happened events and their
relationship. The semantic memory, on the other hand, represents knowledge
and does not change frequently. The procedural memory saves procedures for
execution of a task [33]. A schematic architecture of Tulving’'s model is
presented infig. 2.5.

The episodic memory in fig. 2.5 receives an information “the sky is cloudy”
and saves it for providing the necessary information to the semantic memory.
The semantic memory stores knowledge in an antecedent-consequent form.
The nodes in the graph denote information and the arcs denote the causal
relationship. Thus the graph represents two rules: Rule 1 and Rule 2, given
below.

Rule 1: If the sky is cloudy
Then it will rain.

Rule 2: [f'it rains
Then the roads will be flooded.
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Fig. 2.5: Schematic architecture of Tulving’s cognitive memory.

After execution of these two sequential rules, the semantic memory derives
that ‘the roads will be flooded . The procedural memory first checks the pre-
condition: “the road will be flooded” and then implements the action of
cleaning the drainage system.



Tulving's model bridges a potential gap between the Atkinson-Shiffrin’'s
model and the modern aspects of knowledge representation. For instance, the
episodic memory contains only facts like data clauses in a PROLOG program
(vide chapter 6). The semantic memory is similar with ‘semantic nets' used for
structured knowledge representation and reasoning (vide chapter 8). The
procedural memory may be compared with a frame (vide chapter 8) that
provides methods to solve a problem.

2.3.4 The Parallel Distributed
Processing Approach

The outcome of the research on Parallel Distributed Processing (PDP) by
Rumelhart, McClelland and their associates opened up a new frontier in
machine learning. Unlike the other models of cognitive memory, the PDP
approach rests on the behavioral characteristics of single cellular neurons. The
PDP team considered the cognitive system as an organized structure of
neurons, which together forms a neural net. Such a network has an immense
capability to learn and save the learned information / knowledge for
subsequent usage. The PDP approach thus supports the behavioral features
of cognitive memory but cannot explain the true psychological perspectives of
cognition. For instance, it cannot differentiate the STM with the LTM, but
experimental evidences support their co-existence. However, irrespective of
any such issues, the PDP approach undoubtedly has significance from the
point of view of realization of cognition on machines. The fundamental
characteristics of this approach, which gave it a unique status in cognitive
science, are presented below.

It is one of the pioneering works on cognition that resembled the
biological memory as a distributed collection of single cellular neurons
that could betrained in atime parallel manner.

" It demonstrated a possibl e realization of cognition on machines.

For similar input patterns, the neural net should respond similarly, while
for distinct input patterns with sufficient difference, the resulting
responses of the neural net will also be different sufficiently.

In fact, thisis a significant observation that led to the foundation of a
completely new class of pattern recognition by supervised learning. In a
supervised learning scheme there is atrainer that can provide the desired
output for the given input patterns. The details of a supervised learning
paradigm will be covered in a separate chapter on neural nets [35].



The PDP approach supports the content addressable features of
memory, rather than addressable memory.

In conventional computers we use random access memory, where we
find the contents, once the address is supplied. But in our biological
brain, we may sometimes remember part of an information and retrieve the
whole after a while. Retrieving the whole information from its part is
usually done by content addressable memory (CAM).

2.4 Mental Imagery

How do people remember scenes? Perhaps they represent scenes in some form
of imagein their brain. The mental representation of scenesisinformally called
mental imagery [17] in cognitive science. This section explores two important
areasin cognitive science. First, it covers mental imagery, its rotation and part-
whole relationship. Next it presents cognitive maps' that denote the spatial
relationship among objects. People form an idea of distances between any two
places by their cognitive map.

2.4.1 Mental Representation of Imagery

Psychologists have a decade-long controversy on the mental representation of
images of physical objects. One school of psychologists[17] believes that the
images are stored in human memory in analog patterns, i.e., asimilar prototype
image of the object is recorded in memory. The other school [29] argues that
we store images by symbolic logic-based codes. Symbolic logics are currently
used in Artificial Intelligence to represent spatial, temporal and relational data
and knowledge but are inadequate to describe complex shape of imagery. We
are, however, trained to remember the shape of objects / animals with high
accuracy, which probably could not be reproduced (decoded) from symbolic
codes. Therefore, without going into the controversy, we may favor the
opinion of thefirst school of psychologists.

2.4.2 Rotation of Mental Imagery

Psychologists are of the view that people can rotate their mental imagery, as
we physically rotate the objects around a point or an axis. As experimental
evidence, let us consider the character imagesin fig. 2.6.

! Cognitive mapsin Artificial Intelligence, however, have amore general
meaning. It stands for networks capable of acquiring, learning, encoding
and decoding information / knowledge.



A "
@) (b)

Fig. 2.6: The character ‘A’ and its 180 degree rotated
view around its top vertex point.

Itisclear from fig. 2.6 that (b) is the inverted view of that in (a). Based on
the experimental evidences on rotation of mental imagery, the following points
can be envisaged.

More complex is the shape of the original image, more (reaction) time
[20] isrequired to identify its rotated view [31].

More is the angle of rotation, more is the reaction time to identify the
uniqueness of the mental imagery [31].

Non-identical but more close images and their rotated view require large
reaction time to identify their non-uniqueness[32].

Familiar figures can be rotated more quickly than the unfamiliar ones

[8].

With practice one can improve his/ her reaction time to rotate a mental
image[13].

2.4.3 Imagery and Size
In this section, the different views on imagery and size will be outlined briefly.

Kosslyn’s view: Stephen Kosslyn wasthe pioneering researcher to study
whether people make faster judgements with large images than smaller images.
Kosslyn has shown that a mental image of an elephant beside that of a rabbit
would force people to think of arelatively small rabbit. Again, the same image
of the rabbit seems to be larger than that of afly. Thus, people have their own
relative judgement about mental imageries. Another significant contribution of
Kosslyn is the experimental observation that people require more time to create



larger mental imageries than smaller ones [18]. The results, though argued by
the contemporary psychologists, however, follow directly from intuition.

Moyer’s view: Robert Moyer provided additional information on the
correspondence between the relative size of the objectsand the relative size of
their mental imagery. Moyer’s results were based on psychophysics, the
branch of psychology engaged in measuring peoples’ reactions to perceptual
stimuli [24]. In psychophysics, people take alonger time to determine which of
the two amost equal straight lines is larger. Moyer thus stated that the
reaction time to identify a larger mental image between two closely equal
imagesis quite large.

Peterson’s view: Unlike visua imagery, Intons-Peterson [28] experimented
with auditory signals (also called images). She asked her students to first
create a mental imagery of a cat’s purring and then the ringing tone of a
telephone set. She then advised her students to move the pitch of the first
mental imagery up and compare it with the second imagery. After many hours
of experimentation, she arrived at the conclusion that people require quite a
large time to compare two mental imageries, when they are significantly
different. But they require less time to traverse the mental imagery when they
arevery close. For instance, the imagery of purring, being close enough to the
ticking of aclock, requireslesstime to compare them.

2.4.4 Imagery and Their Shape

How can people compare two similar shaped imageries? Obviously the
reasoning process looks at the boundaries and compares the closeness of the
two imageries. It is evident from commonsense reasoning that two imageries of
an almost similar boundary require alonger time to determine whether they are
identical. Two dissimilar shaped imageries, however, require a little reaction
time to arrive at a decision about their non-uniqueness.

Paivio [26] made a pioneering contribution in this regard. He established the
principle, stated above, by experiments with mental clock imagery. When the
angle between the two arm positionsin a clock is comparable with the same in
another imagery, obviously the reaction time becomes large to determine which
angle is larger. The credit to Paivio lies in extending the principle in a generic
sense.

2.4.5 Part-whole Relationship in Mental Imagery

Reed was interested in studying whether people could determine a part-whole
relationship of their mental image [20]. For instance, suppose one has saved



his friend@ facial image in memory. If he is now shown a portion of his friends
face, would he be able to identify him? The answer in many cases was in the

afirmative.

Reed experimented with geometric figures. For instance, he first showed a
Star of David (vide fig. 2.7) and then a parallelogram to a group of people and
asked them to save the figures in their memory. Consequently, he asked them
whether there exists a part-whole relationship in the two mental imageries.
Only 14% of the people could answer it correctly. Thus determining part-whole
relationship in mental imagery is difficult. But we do it easily through

practicing.

Fig. 2.7: The Star of David.

2.4.6 Ambiguity in Mental Imagery

Most psychologists are of the opinion that people can hardly identify
ambiguity in mental imagery, though they can do it easily with paper and
pencil [20]. For instance consider the following imagery (videfig. 2.8).

Fig. 2.8: The letter X topped by the letter H is difficult to extract
from the mental imagery but not impossible by paper and pencil.

Peterson and her colleagues, however, pointed out that after some help, people
can identify ambiguity also in mental imagery [28], [20].

2.4.7 Neuro Physiological Similarity
between Imagery and Perception

The word ‘perception’ refers to the construction of knowledge from the
sensory data for subsequent usage in reasoning. Animals including lower
class mammals generally form perception from visual data. Psychologists,
therefore, have long wondered: does mental imagery and perception have any



neuro-physiological similarity? An answer to this was given by Farah [12] in
1988, which earned her the Troland award in experimental psychology.
Goldenbarg and his colleagues [9] noted through a series of experiments that
there exists a correlation between accessing of mental imagery and increased
blood flow in the visual cortex. For example, when people make judgements
with visual information, the blood flow in the visual cortex increases.

2.4.8 Cognitive Maps of Mental Imagery

Cognitive maps are the internal representation of real world spatial information.
Their exact form of representation is not clearly known to date. However, most
psychologists believe that such maps include both propositional codes as well
as imagery for internal representation. For example, to encode the structural
map of a city, one stores the important places by their imagery and the
relationship among these by some logical codes. The relationship in the
present context refers to the distance between two places or their directional
relevance, such as place A isnorth to place B and at a distance of %2 Km.

How exactly people represent distance in their cognitive map is yet a
mystery. McNamara and his colleagues [22] made several experiments to
understand the process of encoding distance in the cognitive maps. They
observed that after the process of encoding the road maps of cities is over,
people can quickly remember the cities closely connected by roads to a city
under consideration. But the cities far away by mileage from a given city do
not appear quickly in our brain. This implicates that there must be some
mechanisms to store the relative distances between elements in a cognitive

map.

Besides representing distance and geographical relationship among
objects, the cognitive maps also encode shapes of the pathways connecting
the objects. For example, if the road includes curvilinear paths with large
straight line segments, videfig. 2.9, the same could be stored in our cognitive
map easily [7]. However, experimental evidences show that people cannot
easily remember complex curvilinear road trajectories (fig. 2.10). Recently, Moar
and Bower [23] studied the encoding of angle formation by two non-collinear
road trgjectories. They observed experimentally that people have a general
tendency to approximate near right angles as right angles in their cognitive
map. For example, three streets that form atriangle in reality may not appear so
in the cognitive map. Thisis due to the fact that the sum of the internal angles
of atriangle in any physical system is 180 degrees; however, with the angles
close to 90 degrees being set exactly to 90 degrees in the cognitive map, the



sum need not be 180 degrees. Thus a triangular path appears distorted in the
cognitive map.

/

/ North

L’ East

Fig. 2.9: A path with large straight-line segments.

TNy

Fig. 2.10: A complex curvilinear path, difficult for encoding in
acognitive map.

2.5 Understanding a Problem

According to Greeno [10], understanding a problem involves constructing an
internal representation of the problem statement. Thus to understand a
sentence we must have some representation of the words and phrases and
some semantic links between the words, so that the construct resembles the
original sentence in meaning. The understanding of a problem, therefore, calls
for understanding the meaning of the words in the problem in more elementary
forms. Greeno stressed the need for three issues: coherence, correspondence
and relationship to background knowledge in connection with
understanding a problem.

Coherence: A coherent representation is a pattern, so that al its
components (fragments) make sense. Readers with a background of wave
propagation theory, of course, will wonder: why the term ‘coherence’!
Coherence in wave propagation theory correspondsto wavelets (small waves)
with the same phase. In the present context, coherence stands for equal
emphasis on each component of the pattern, so that it is not biased to one or



more of its components. For example, to create a mental representation of the
sentence "Tree trunks are straws for thirsty leaves and branches’, one should
not pay more emphasis on straws than trunks (stems of the trees). Formally,
coherence calls for a mental representation of the sentence with equal

emphasis on each word / fact / concept.

Correspondence: Correspondence refers to one-to-one mapping from the
problem statement to the mental representation. If the mapping is incorrect or
incomplete, then a proper understanding is not feasible. Correspondence, in
most cases, however, isdetermined by the third issue, presented below.

Relationship to background knowledge: Background knowledge is
essential to map components of the problem statement to mental
representation. Without it people fail to understand the meaning of the words
in a sentence and thus lose the interconnection of that word with othersin the
same sentence. Students can feel the significance of the background
knowledge, when they attend the next class on a subject without attending the
previous classes on the same topic.

2.5.1 Steps in Understanding a Problem

Understanding a problem consists of two main steps: i) identifying pertinent
information from the problem description, deleting many unnecessary ones
and ii) a well-organized scheme to represent the problem. Both the steps are
crucial in understanding a problem. The first step reduces the scope of
generality and thus pinpoints the important features of the problem. It should,
of course, be added here that too much specialization of the problem features
may sometimes yield a subset of the original problem and thus the original
problem is lost. Determining the problem features, thus, is a main task in
understanding the problem. Once the first step is over, the next step is to
represent the problem features by an internal representation that truly
describes the problem. The significance of the second step lies in the exact
encoding of the features into the mental representation, so that the semantics
of the problem and the representation have no apparent difference. The
second step depends solely on the type of the problem itself and thus differs
for each problem. In most cases, the problem is represented by a specialized
data structure such as matrices, trees, graphs, etc. The choice of the structure
and organization of the data / information by that structure, therefore, should
be given priority for understanding a problem. It should be mentioned here
that the time-efficiency in understanding a problem depends largely on its
representation and consequently on the selection of the appropriate data
structures. A few examples are presented below to give the readers some idea
about understanding and solving a problem.

Example 2.2: This example demonstrates how a graphic representation can
help in solving a complex problem. The problem is with a monk. He started
climbing up atall mountain on one sunny morning and reached the top on the



same evening. Then he started meditating for several days in atemple at the
hilltop. After several days, on another sunny morning, he left the temple and
started climbing down the hill through the same road surrounding the
mountain. The road is too narrow and can accommodate only one passenger at
onetime.

The problem isto prove that there must be a point on the hill that the
monk will visit at the same time of the day both in his upward and downward
journey, irrespective of his speed. This problem can be best solved by
assuming that there are two monks, one moving up, while the other is climbing
down the hill. They started moving at the same time of the day. Since the road
is narrow, they must meet at some spot on theroad (videfig. 2.11).

2000 Km
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The vertical bars denote the monks. The upward (downward)
arrow indicates the upward (downward) journey of the monks.
Note that the two monks must meet at some point on the road.

Fig. 2.11: Representation of the monk problem.

It may be noted that the main stress of the problem should be given to the
meeting of the monks only and should not be confused with their meeting
time. The solution of the given problem is a simple extension of the modified

problem with two monks, which the reader can guess easily .

There exist quite alarge number of interesting problems (see exercises) that
can be efficiently represented by specialized data structures. For instance, the
4-puzzle problem can be described by a matrix; the water-jug problem by a



graph and the missionaries-cannibals problem by a tree. There exist also a
different variety of problems that could be formulated by propositional codes
or other knowledge representation techniques. Identifying the best
representation of a problem is an art and one can learn it through intuition
only. No hard and fast rules can be framed for identifying the appropriate
representation of the problem space.

2.6 A Cybernetic View to Cognition

An elementary model of cognition (vide fig. 2.12) is proposed in this section
based on its foundation in cognitive psychology [7], [11]. The model consists
of a set of 5 mental states, denoted by ellipses, and their activation through
various physiological and psychological processes. The model includes
feedback of states and is thus cyclic. The model [16] in fig. 2.12, for instance,
contains three cycles, namely the perception-acquisition cycle, the sensing-
action cycle, and the last one that passes through all states, including
sensing, acquisition, perception, planning and action, is hereafter called the
cognition cycle [16].

2.6.1 The States of Cognition

Sensing: Apparently, sensing in engineering sciences refers to reception and
transformation of signals into measurable form. However, sensing, which has
awider perspective in cognitive science, stands for all the above together with
pre-processing (filtering from stray information) and extraction of features from
the received information. For example, visual information on reception is
filtered from undesirable noise [5] and the elementary features like size, shape,
color, etc. are extracted for storing into short term memory (STM).

Acquisition: The acquisition state compares the response of the STM with
aready acquired and permanently stored information of the LTM. The content
of LTM, however, changes occasionally, through feedback from the
perception state. This process, often called refinement of knowledge, is
generally carried out by a process of unsupervised learning. The learning is
unsupervised since such refinement of knowledge is an autonomous process
and reguires no trainer for its adaptation.

Perception: This state constructs high level knowledge from acquired
information of relatively lower level and organizes it, generaly, in a structural
form for the efficient access of knowledge in subsequent phases. The



construction of knowledge and its organization is carried out through a
process of automated reasoning that analyzes the semantic (meaningful)
behavior of the low-level knowledge and their association. The state of
perception itself is autonomous, as the adaptation of its internal parameters
continues for years long until death. It can be best modeled by a semantic net
(3], [6] -

Sensory information

Sensing
/
Action
Acquisition
Cognition
cycle
SL UL
Planning +«
Perception
RS

SL= Supervised learning, UL= Unsupervised learning, RS= Reasoning
Fig. 2.12: The different mental states of cognition and their relationship.

Planning: The state of planning engages itself to determine the steps of
action involved in deriving the required goal state from known initial states of
the problem. The main task of this state is to identify the appropriate piece of
knowledge for application at a given instance of solving a problem. It executes
the above task through matching the problem states with its perceptual model,
saved in the semantic memory.

It may be added here that planning and reasoning, although sharing much
common formalism, have a fundamental difference that originates from their
nomenclature. The reasoning may be continued with the concurrent execution
of the actions, while in planning, the schedule of actions are derived and
executed in a later phase. In our model of cognition, we, thus, separated the
action state from the planning state.

Action: This state determines the control commands for actuation of the
motor limbs in order to execute the schedule of the action-plan for a given



problem. It is generally carried out through a process of supervised learning,
with the required action as input stimulus and the strength of the control
signals as the response.

Example 2.3: This example demonstrates the various states of cognition
with reference to avisual image of asleeping cat in acorridor (Fig. 2.13).

Fig. 2.13: Digital image of asleeping cat in acorridor.
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Fig. 2.14: The state of perception about a cat in the semantic memory.
Here, the sensing unit is a video camera, which received the digital image of
the cat in the corridor. The image was then pre-processed and its bit-map was



saved in a magnetic media, which here acts as an acquisition unit. The
Acquisition State of the model of cognition, thus, contains only a pixel-wise
intensity map of the scene. Human beings, however, never store the bit-map of
a scene; rather, they extract some elementary features, for instance, the shape
of the face (round / oval-shaped ), length of the tail (long / too long / short),
texture of the fur and the posture of the creature. The extracted features of a
scene may vary depending on age and experience of the person. For example, a
baby of 10 months only extracts the (partial) boundary edges of the image,
while a child of 3 years old can extract that “the face of the creature is round
and has a long tail”. An adult, on the other hand, gives priority to postures,
saves it in STM and uses it as the key information for subsequent search in
the LTM model of perception. The LTM in the present context is a semantic
net, which keeps record of different creatures with their attributes. A typical
organization of a semantic net, representing a cat (fig.2.14) and a corridor (fig.
2.15) is presented below.

connect is part of a
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Fig. 2.15 : The state of perception about a corridor in the
semantic memory.

Now, for illustrating the utility of the perception, planning and action
states, let us consider the semantic net for the following sentencein fig. 2.16.

“The milkman lays packets full of milk in the corridor.”

lays full of inthe
Milk

A 4

A 4

Corridor

A 4

Milkman Packets

Fig. 2.16: Semantic net of atypical fact in the state of perception.

Combining al the above semantic nets together, we form a composite
model of the entire scene, which together with the additional piece of
knowledge: “If a living creature is fond of something and it is kept away from
him, then he cannot access it,” helps someone to generate the following
schedule of plansthrough a process of backward reasoning [16].



Plan: Keep the packets full of milk away from the cat.

Further, for execution of the above plan, one has to prepare the following
schedul e of actions:

1. Move to the corridor.
2. Pick up the packets of milk.
3. Keep them in a safe place beyond the reach of the cat.

It may be noted that the generation of the above schedule of actions for a
given plan by human beings requires almost no time. This, perhaps, is due to
the supervised learning scheme that hel ps speeding up the generation of such
aschedule.

The semantic net that serves as a significant tool for knowledge
representation and reasoning requires further extension for handling various
states of cognition efficiently. A specialized Petri-like net has been employed
in chapter 16 of this book, for building models of cognition for applicationsin
inexact reasoning, learning, refinement of knowledge and control and co-
ordination of tasks by an artificial cognitive map. The Petri-like nets mentioned
here, however, have structural resemblance only with ideal Petri nets [25] but
are distinct with respect to their properties.

2.7 Scope of Realization of Cognition
in Artificial Intelligence

‘Cognition’ being an interdisciplinary area has drawn the attention of peoples
of diverse interest. The psychologists study the behavioral aspects of
cognition. They construct conceptual models that resemble the behavior of
cognition and interpret the biological phenomena with their conceptual
models. Researchers of Artificial Intelligence, however, have a different
attitude towards cognition. They observe the biological behavior of human
beings and attempt to realize such behavior on an intelligent agent by
employing intelligent tools and techniques. A robot, for example, could be
such an agent, which receives sensory signals from its environment and acts
on it by its actuators and motor assemblies to execute a physical task. A
question then naturally arises: should we call al the sensing-action cycle
executing agents artificially intelligent? If so, whereistheir intelligence?
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Fig. 2.17: A process control loop that executes the sensing-action
cycle.

A little thinking, however, reveals that most of the closed loop control
systems sense signals from their environment and act on it to satisfy a desired
goal (criterion). There is a controller in the control loop that receives the
deviation (error) of the measured signal from the desired signal (set-point), and
generates a control command for the plant. The plant in turn generates an
output signal, which is fed back to the controller through the error detector
module (vide fig. 2.17). The controller could be analog or digital. An analog
controller is alag/ lead network, realized with R-C circuits. A digital controller,
on the other hand, could be realized with a microcomputer that recursively
executes a difference eguation. Such controllers were called intelligent two
decades back. But, they are never called artificially intelligent. So a mere
performer of the sensing-action cycle in the elementary model of cognition
(vide fig. 2.12) cannot be called artificially intelligent. But they can be made
intelligent by replacing the standard controllers by a knowledge-based system.
It should be added here that a sensing-action cycle performer too is sometimes
called artificially intelligent, in case it requires some intelligent processing of
the raw information. For instance, consider a robot that has to plan its
trajectory from a predefined initial position of the gripper to a final position.
Suppose that the robot can take images of its neighboring world by a camera
and determine the 3-D surfaces around it that block its motion. There may exist
alarge number of possible trajectories of gripper movement and the robot has
to determine the shortest path without hitting an obstacle. Such schemes
obviously require much of Al tools and techniques and thus should be called
artificialy intelligent. But what are the tools that can make them intelligent?

The book provides an answer to this question through its next 22 chapters.
A brief outline of the answer to the question, however, is presented here to
hold the patience of the curious readers. A cursory view to the elementary



model of cognition (vide fig. 2.12) reveals that there exist 5 mental states and 3
possible cycles that an intelligent agent can execute. The task of the agent, in
the present context, is to maintain a transition of states by reasoning and
learning paradigms. The reasoning schemes provide the agent new inferences,
abstracted from sensory data and knowledge. It is capable of deriving
inferences even in the absence of complete data and knowledge bases. The
learning schemes, on the other hand, help the agent by providing him
necessary actuating signals, when excited with sensory signals. The agent
thus is able to maintain state-transitions with the reasoning and the learning
modules. The book provides a detailed analysis of the mathematical models
that can be employed to design the reasoning and learning schemes in an
intelligent agent.

It must be added here that the model of cognition (videfig. 2.12) isageneric
scheme and the whole of it need not be realized in most intelligent agents. We
now list some of the possible realization of the agents.

Pattern Recognition Agent: A pattern recognition agent receives

sensory signals and generates a desired pattern to be used for some

definitive purposes. For example, if the agent is designed for speaker
recognition, one has to submit some important speech features of the
speakers such as pitch, format frequencies, etc. and the system would

be able to give us the speaker number. If the recognition system is to

recognize objects from their visual features, then one has to submit

some features such as the largest diagonal that the 2-D image can

inscribe, the smallest diagonal that it can inscribe and the area of the 2-

D image surface. In turn, the system can return the name of the 2-D

objects such as ellipse, circle, etc. It may be mentioned here that a
pattern recognition system realizes only the sensing-action cycle of
the cognition.

A Path Planning Agent: A path planning agent perhaps is one of
the complete agents that uses all the states in the elementary model of
cognition (fig. 2.12). Such agents have ultrasonic sensors / laser
range finders by which it can sense obstacles around it. It saves the
sensed images in its short term memory and then extracts knowledge
about the possible locations of the obstacles. Thisisreferred to asthe
obstacle map of the robot’s environment. For subsequent planning
and the action cycle, the robot may use the obstacle map. Details of
the path planning scheme of the mobile robot will be presented in
chapter 24.



2.8 Summary

Cognitive science has emerged as a new discipline of knowledge that deas
with the mental aspectsof human beings. The chapter aims at establishing the
psychological perspectives of the human cognition. It elucidated the various
models of human memory and representation of imagery and cognitive maps
on memory. The mechanism of understanding a problem is also presented here
with special reference to representation of the problems.

Artificial Intelligence, on the other hand, isayoung branch of science that
rests on the theme of building intelligent machines. The chapter briefly
outlined the fundamental principles of cognitive science and demonstrated the
possible ways of realizing them on intelligent machines. The tools and
techniques required for its possible realization have been referred to only. But
their detailed mechanism will be covered throughout the book.

The special feature of the chapter is the cybernetic view to cognition. The
elementary model of cognition has 5 mental states. These states can undergo
transformation under appropriate reasoning and learning cycles. An intelligent
agent can autonomously control the transition of states through reasoning
and learning mechanisms. An agent need not always be a person. A machine
that receives sensory information and acts accordingly on the environment
can also play the role of an agent. Thus modern robots are ideal agents. The
chapter demonstrated some applications of these agentsin pattern recognition
and path planning amidst obstacles.

Exercises

1. A template image of dimension of (m x m) pixels is to be searched in a
digital image of dimension (n x n). Assume that mod (n/ m) =0 and n >> m.
If the matching of the template block with equal sized image blocks is
carried out at an interleaving of (m/2) pixels, both row and column-wise,
determine the number of times the template is compared with the blocksin

theimage[ 5.

[Hints: The number of comparison per row of theimage = (2n/ m-1).
The number of comparison per column of theimage = (2n/ m -1).
Total number of comparison = (2n/m-1)%]

2. For matching a template image of dimension (m x m) pixels with a given
image of dimension (n x n), where n >>m and mod (n/ m) =0, one uses the
aboveinterleaving.



Further, instead of comparing pixel-wise intensity, we estimate the
following 5 parameters (features) of the template with the same parameters
in each block of theimage[4] :

L-1
Mean intensity M; =& b P(b),
b=0

L-1
Variance of intensity V> =& { (b-M, )*P(b)},
b=0
L-1
Skewness of intensity Sk; =(1/ V*) & { (b-M;)*P(b)},
b=0

L-1
Kurtosis of intensity Ku; = (1/V;*) & { (b-M,)* P(b)}, and
b=0
L-1
Energy of intensity E =& {P(b)}?,
b=0

where b represents the gray level of each pixel in ablock i and L is the
number of gray levelsin theimage.

The square of absolute deviation of these features of the i-th block
from the corresponding features of the template is denoted by m?, v/, sk?,
kui?, e respectively.

Let d; denote a measure of distance between the features of the i-th
block to that of the template. Show (logically) that the weakest feature
match model identifiesthe j-th block, by estimating

di=Max{ m? v? sk’ ku? e}, 1£" i £(2n/m-1)
such thatd; =Min { d; |1£" i £(2n/m-1°} [4].

Also show that the strongest feature match model identifies the j-th block
by estimating

di=Min{ m? v? sk’ ku? e?}, 1£" i £(2n/m-1)>°

such thatd; =Min { d; |1£" i £(2n/m-1°} [4].



Further show that the Euclidean least square model identifies the j-th
block by estimating

d ={ m*+v+sk?+ ku?+ e*}* 1£" i £(2n/m-1)’
suchthatd; =Min {d [1£" i £(2n/m-1)*} [4].

Write a program in your favorite language to match a given template with
the blocks in an image, using the above guidelines. Mark the actual block
in the image that you want to identify and measure the shift of the
matched blocks by executing your program. Perform the experiments with
different templates on the same image and then conclude which of the
three measures isthe best estimator of template matching.

Given two jugs, one 4 liters and the other 3 liters with no markingsin them.
Also given awater supply with alarge storage. Using these 2 jugs, how
can you separate 2 liters of water? Also draw the tree representing the
transition of states.

[Hints: Define operators such as filling up a jug, evacuating a jug,
transferring water from one jug to the other etc. and construct a tree
representing change of state of each jug due to application of these
operators. Stop when you reach a state of 2 liters water in either of the 2
jugs. Do not use repeated states, since repeated states will result in a
graph with loops. If you cannot solve it yourself, search for the solution in
the rest of the book.]

Redraw the state-space for the water jug problem, by allowing repetition of
the states. Should you call it atree yet?

Show by Tulving's model which of the following information/knowledge
should be kept in the episodic, semantic and procedural memories.

a) Therewasahugerain last evening.

b) The sky was cloudy.

¢) Themoon wasinvisible.

d) The seawas covered with darkness.

€) Thetidesinthe seahad alarge swinging.

f)  Theboatmen could not control the direction of their boats.

g) Itwasaterrific day for the fishermen sailing in the sea by boats.

h) Since the sea was covered with darkness, the boatmen used a battery
driven lamp to catch fish.

i) Because of the large swinging of the tides, the fishermen got a large
number of fish caught in the net.



i)  Thenet wastoo heavy to be brought to the seashore.
k) The fishermen used large sticks to control the motion of their boats
towards the shore.

7. The Atkinson-Shiffrin’s model can be represented by first ordered transfer

functions, vide fig.2.18, presented below:

sensory
information
1 o 1/(S+T)) oy 1/(S+Ty) L,
sensory STM LTM

register
Fig.2.18: Schematic representation of the Atkinson-Shiffrin’s model.

Given T; = 10 seconds and T, = 30 minutes, find the time response of
the STM and the LTM, when a unit impulse is used as an excitation signal
for the sensory register. Also given that the Laplace inverse of

1/(S+a)ise?".

Now suppose we replace the excitation signal by a 0.5 unit impulse. Find
the response of the STM and the LTM. Can we distinguish the current
responses from the last ones? If the answer is yes, what does the result
imply?
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Production
Systems

‘Production systems’ is one of the oldest techniques of knowledge
representation. A production system includes a knowledge base, represented
by production rules, a working memory to hold the matching patterns of data
that causes the rules to fire and an interpreter, also called the inference
engine, that decides which rule to fire, when more than one of them are
concurrently firable. On firing of a rule, either its new consequences are
added to the working memory or old and unnecessary consequences of
previously fired rules are dropped out from the working memory. The
addition to and deletion from working memory depends on the consequent
(then) part of the fired rule. Addition of new elements to the working memory
is required to maintain firing of the subsequent rules. The deletion of data
elements from the working memory, on the other hand, prevents a rule from
firing with the same set of data. This chapter provides a detailed account of
production systems, its architecture and relevance to state-space formulation
for problem solving.

3.1 Introduction

Knowledge in an Expert System can be represented in various ways. Some
of the well- known techniques for representation of knowledge include



Production Systems, Logical Calculus and Structured Models. This chapter is
devoted to the Production System-based approach of knowledge
representation. Logical Calculus-based methods for knowledge representation
are covered in chapter 5, 6 and 7 while the structured models for reasoning
with knowledge are presented in chapter 8. The reasoning methodologies
presented in chapter 3, 5 and 6 are called monotonic [8] as the conclusions
arrived at in any stage of reasoning do not contradict their predecessor
premises derived at earlier. However, reasoning people often apply common
sense, which in many circumstances results in conclusions that contradict the
current or long chained premises. Such a type of reasoning is generally called
non-monotonic [8]. A detailed account of the non-monotonic logics will be
covered later in chapter 7. The reasoning methodologies covered in chapter 3-
8 do not presume any temporal and spatial variations of their problem states.
The issues of spatio-temporal models for reasoning will be taken up later in
chapter 11.

This chapter is an opening chapter on knowledge representation. We,
therefore, discuss some elementary aspects, relevant to this chapter. Before
presenting the technique for knowledge representation by Production Systems,
we define the term “Knowledge”, which is widely used throughout the text.

Formally, a piece of knowledge is a function that maps a domain of
clauses onto a range of clauses. The function may take algebraic or
relational form depending on the type of applications. As an example
consider the production rule PR, , which maps a mother-child relationship
between (m, c) to a Love relationship between the same pair.

PR,: Mother (m, ¢c) - Loves (m, c)

where the clause Mother (m, c) describes that “m” is a mother of child “c”; the
clause Loves (m, c¢) denotes that “m” loves “c” and the arrow denotes the if-

then condition. In brief, the rule implicates: if “m” is a mother of child “c
then “m” loves “c”.

The production system is the simplest and one of the oldest
techniques for knowledge representation. A production system consists of
three items: i) a set of production rules (PR), which together forms the
knowledge base, ii) One (or more) dynamic database(s), called the working
memory and 1iii) a control structure / interpreter, which interprets the database
using the set of PRs [4], [7]. The production system, which has wide
applications in automata theory, formal grammars and the design of
programming languages, however, entered into knowledge engineering (1978)
by Buchanan and Feigenbarm [2] only a few years back.



Before presenting the architecture of a production system, applied to
intelligent problem solving, let us first introduce the functionaries of its
modules.

3.2 Production Rules

The structure of a production rule PR, can be formally stated as follows:
PR: Pr(X)A P, (V)A .P.(X2) = Qi (V)VO:0 V.. Ou(Y,X)

where Pi and Qj are predicates; X, y, z are variables; “A“, “V” | and “ —”
denote the logical AND, OR and if-then operators respectively. The left-hand
side of a PR is called the antecedent / conditional part and the right-hand side
is called the consequent / conclusion part. Analogously, the left-side symbol

Pi is called the antecedent predicate, while the right-side symbol Q; is called

the consequent predicates.

It should be pointed out that the antecedent and consequent need not be
always predicates. They may equally be represented by object-attribute-value
triplets. For example, (person-age-value) may be one such triplet. To represent
the rules in this fashion, we consider an example, presented in PR2.

PR2 : if (person age above-21) &
(person wife nil) &
(person sex male)
then (person eligible for marriage) .

It should further be noted that though object-attribute-value in PRs are
often represented using variables, still the presence of constants in the triplet-
form cannot be excluded. PR3, given below, is one such typical example.

PR3: if (Ram age 25) &
(Ram wife nil) &
(Ram sex male)
then (Ram eligible for marriage).

In the last example person’s name and age are explicit in the PR.

3.3 The Working Memory

The working memory (WM) generally holds data either in the form of clauses
or object-attribute-value (OAV) triplet form. The variables in the antecedent
predicates / OAYV relationship of the antecedent part of PRs are matched



against the data items of the WM. In case all the variable instantiation of the
antecedent parts of a rule are consistent, then the rule is fired and the new
consequents are added to the WM. In some production systems, the right-
hand-side of the rule indicates which data are to be added to or deleted from
the WM. Normally, new consequents are added to the WM and some old
data of WM, which are no longer needed, are deleted from the WM to
minimize the search time required for matching the antecedent parts of a rule
with the data in WM. OPSS5 is a production language that offers the addition /
deletion features highlighted above.

3.4 The Control Unit / Interpreter

The control unit / interpreter for a production system passes through three
steps, which together is called the recognize-act cycle [4].

Recognize-Act Cycle

l. Match the variables of the antecedents of a rule, kept in a knowledge
base, with the data recorded in the WM.

2. If more than one rule, which could fire, is available then decide
which rule to fire by designing a set of strategies for resolving the
conflict regarding firing of the rules.

3. After firing of a rule, add new data items to WM or delete old (and
unnecessary) data, as suggested by the fired rule from the WM and
go to step (1).

Generally, a start-up element is kept at the working memory at the
beginning of a computation to get the recognize-act cycle going. The
computation process is terminated if no rule fires or the fired rule contains an
explicit command to halt.

The conflict resolution process helps the system by identifying which
rule to fire. It is, however, possible to construct a rule-set where only one rule
is firable at any instant of time. Such systems are called deterministic. Since
most of the real world problems contain a non-deterministic set of rules, it
becomes difficult for many systems to present the rule-set in a deterministic
manner.



Good performance of a control unit / interpreter depends on two properties,
namely, i) sensitivity and 1ii) stability [4]. A production system or more
specifically a control unit is called sensitive, if the system can respond
quickly to the change in environment, reflected by the new contents of the
WM. Stability, on the other hand, means showing continuity in the line
of reasoning.

3.5 Conflict Resolution Strategies

The Conflict Resolution strategies vary from system to system. However,
among the various strategies, the following three are most common. In many
systems a combination of two or all of the following strategies [4] are used
for resolving conflict in a control unit.

1. Refractoriness

This strategy requires that the same rule should not be fired more than once
when instantiated with the same set of data. The obvious way of
implementing this is to discard the instantiations from the WM, which have
been used up once. Another version of their strategy deletes instantiations,
which were used up during the last recognition-act cycle. This actually helps
the system overcome the problems of moving on loops.

2. Recency

This strategy requires that the most recent elements of the WM be used up for
instantiating one of the rules. The idea is to follow the leading edge of
computation, rather than doubling back to take another look at the old data.
Doubling back, of course, is necessary when the reasoning in the current line
of action fails.

3.  Specificity

This strategy requires that the rule with more number of antecedent clauses be
fired than rules handling fewer antecedent clauses. As an example, consider
the following two rules, denoted as PR1 and PR2.

PR1: Bird (X) — Fly (X).

PR2: Bird (X), Not emu (X) > Fly (X).



Suppose the WM contains the data Bird (parrot) and Not emu (parrot). Then
both the rules are firable. However, the second rule should be fired using the
specificity strategy.

3.6 An Alternative Approach
for Conflict Resolution

The MYCIN experiments [3] of Stanford University proposed another
approach for resolving conflicts via metarules. Metarules too are rules, whose
task is to control the direction of reasoning and not to participate in the
reasoning process itself. Metarules can be either domain-specific or domain-
free. A domain-specific metarule is applicable for identifying the rule to fire
only in a specific domains, while domain-free metarules are of very general
kinds and can be used for controlling the firing of rules in a generalized
knowledge base. To illustrate this concept, we take examples from MYCIN

[3].
Example 3.1: Domain-specific metarule
Metarule:  IF 1) the infection is pelvic abscess and

2) there are rules which mention in their premise
entero-bactoriae, and

3) there are rules which mention in their premise
gram- positive rods.

THEN there exists suggestive evidence (0.4) that the
former should be applied before the latter.

Example 3.2: Domain-free rule

Metarule: [IF 1) there are rules which do not mention the current
goal in their premise, and

2) there are rules while mention the current goal
in their premise

THEN it is definite (1.0) that the former should be applied
before the latter.
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The architecture of a production system [5] is now presented, vide fig.
3.1. The conflict resolution with two rules PRi and PRj
demonstrated in this architecture. The other descriptions in fig. 3.1 being self-
explanatory are left to the readers for interpretation.

has been



To demonstrate the working principle of a production system, let us
illustrate it using the well- known water-jug problem. The following
statement can best describe the problem.

3.7 An Illustrative Production System

We now consider the well known water jug problem, presented below, as a
case study of production systems.

Example 3.3: Given 2 water jugs, 4 liters and 3 liters. Neither has any
measuring marks on it. There is a pump that can be used to fill the jugs.
How can you get exactly 2 liters of water into 4-liter jugs?

Let us assume that u and v denote the content of 4L and 3L jugs
respectively. The content of the two jugs will be represented by (u, v).
Suppose, the start-up element in the WM is (0,0). The set of PRs for the
problem [8] are listed below.

List of PRs for the water-jug problem
PR1. (u,v:u<4) - 4,v)
PR2. (uv:v<3)-> (u3)

PR3. (uv:u>0)— (u-D,v), where D is a fraction of the previous
content of u.

PR 4. (u,v:v>0) > (u, v-D), where D is a fraction of the previous
content of v.

PR5 (uv:u>0)—> (0,v)

PR6. (u,v:v>0)—> (u0)

PR7. (wv:iutv 24A v>0)—> 4, v-(4-u)
PR8 (uv:utv 23A u>0)—>@w-03-v),3)
PRY9. (u,v:u+v <4A v>0) - (u+v,0)

PR 10. (uy,v:u+v <3Au>0)—-> (O,u+v)



To keep track of the reasoning process, we draw a state-space for the
problem. Note that the leaves generated after firing of the rules should be
stored in WM. We first consider all possibilities of the solution (i.e., without
resolving the conflict). Later we would fire only one rule even though more
than one are firable. The state-space without conflict resolution is given in fig.
3.2.

(0,0)
PR 2 / \ PR 1
0.3) 4,0)
PR 9 PR 2 / \ PR 6
30 | [@3) {, 3)
PR 2 ‘_}( \4-.“ \ PR 6
(3.3) " " [ao
PR 7 / \ PR 10
@2) o
PR 5 / \ PR 1
(0,2) oD
PR 9 \ PR 8
2,0)
2.3)

Fig. 3.2: The state-space for the water-jug problem.

To resolve conflict for this system, one can use the following strategies.



i) Prefer rules for firing, where u + v can be brought to 5L or 6L.

ii) Avoid doubling back, whenever possible. In other words, never
attempt to generate old entries.

3.8 The RETE Match Algorithm

The recognition-act cycle, mentioned earlier, suffers from a limitation of
matching the common antecedents of two or more rules with working
memory elements a number of times for testing the friability of the rules. For
instance, consider the following three production rules PR 1 through PR 3.

PR 1: IF (Xis a Bird) &
(X has wings) &
(the wings of X are not defective)
THEN (ADD to WM that X can Fly).

PR 2: IF (X has Wings) &
(X is a mammal)

THEN (Add to WM that X can fly).

PR 3: IF (X is a Bird) &
(X has wings) &
(Color of X is black) &
(X lays eggs at the nest of Y) &
(Color of Y is black)
THEN (Add to WM that X is a spring Bird).

Assume that the WM contents are given by WM =

{ Cuckoo is a Bird, parrot is a Bird, Cuckoo has wings, Color of cuckoo is
black, Cuckoo lays eggs at the nest of crow, Color of crow is black }.

The recognition-act cycle, in the present context, will attempt to match the
antecedents of PR1 first with the data recorded in WM. Since the third



antecedent clause is not available in WM, the interpreter will leave this rule
and start the matching cycle for the antecedents of PR 2 with contents of
WM. Since the second antecedent clause of PR 2 is not available, the
interpreter would start the matching cycle for the antecedents of PR 3. So,
when there exist common antecedents of a number of rules, the interpreter
checks their possibility of firing one by one and thus matches the common
antecedents of the rules a number of times. Such repeated matching of
common antecedents can be avoided by constructing a network to keep track
of these variable bindings. The word ‘rete’, which in Latin means net [7],
refers to such a network. The RETE algorithm is illustrated below with the
network of fig.3.3.

Parrot is a Bird

Cuckoo is a Bird

Cuckoo has wings
X = Cuckoo

Color of Cuckoo is black

Cuckoo is a spring Bird

Color of crow is black

Y= Crow

Cuckoo lays eggs at the nest of crow

Fig. 3.3: Construction of the ‘rete’.



In fig. 3.3, the antecedent clauses have been represented by circles. It may
be noted that at each node there may exist more than one clause. Further, the
bound values of the variables here are X = Cuckoo and Y = Crow. Thus the
third rule only is selected for firing. In case more than one rule is found to be
firable, then the conflict resolution strategies, described earlier, will be
invoked to identify the right rule for firing.

The RETE algorithm thus constructs a network like fig. 3.3 and
continues updating it as more rules are fired. It saves significant matching
cycles by matching common antecedents of the rules once only.

3.9 Types of Production Systems

In this section, we present two special types of production systems: i)
commutative system and ii) decomposable system [4]. Special features of these
production systems are outlined below.

3.9.1 Commutative Production System

A production system is called commutative if for a given set of rules R and
a working memory WM the following conditions are satisfied:

i) Freedom in orderliness of rule firing: Arbitrary order of firing of the
applicable rules selected from set S will not make a difference in the
content of WM. In other words, the WM that results due to an
application of a sequence of rules from S is invariant under the
permutation of the sequence.

ii) Invariance of the pre-condition of attaining goal: 1f the pre-condition
of a goal is satisfied by WM before firing of a rule, then it should remain
satisfiable after firing of the rule.

iii) Independence of rules: The firability condition of an yet unfired rule R;
with respect to WM remains unaltered, even after firing of the rule R; for

any j.

The most significant advantage of a commutative production system is
that rules can be fired in any order without having the risk of losing the goal,
in case it is attainable. Secondly, an irrevocable control strategy can be
designed for such systems, as an application of a rule to WM never needs to
be undone.



3.9.2 Decomposable Production System

A production system is called decomposable if the goal G and the working
memory can be partitioned into G; and WM,;, such that

G: ANDi(Gi ),
wM=U { WM}

Vi

and the rules are applied onto each WM; independently or concurrently to
yield Gi. The termination of search occurs when all the goals G; for all i have
been identified.

The main advantage of decomposition is the scope in concurrent access
of the WM, which allows parallel firing of rules, without causing a difference
in the content of the working memory WM. Decomposable production
systems have been successfully used for evaluation of symbolic integration.
Here a integral can be expressed as a sum of more than one integral, all of
which can be executed independently.

3.10 Forward versus Backward
Production Systems

Most of the common classical reasoning problems of Al can be solved by any
of the following two techniques called i) forward and ii) backward reasoning.
In a forward reasoning problem such as 4-puzzle games or the water-jug
problem, where the goal state is known, the problem solver has to identify the
states by which the goal can be reached. These class of problems are generally
solved by expanding states from the known starting states with the help of a
domain-specific knowledge base. The generation of states from their
predecessor states may be continued until the goal is reached. On the other
hand, consider the problem of system diagnosis or driving a car from an
unknown place to home. Here, the problems can be easily solved by
employing backward reasoning, since the neighboring states of the goal node
are known better than the neighboring states of the starting states. For
example, in diagnosis problems, the measurement points are known better
than the cause of defects, while for the driving problem, the roads close to
home are known better than the roads close to the unknown starting location
of driving. It is thus clear that, whatever be the class of problems, system
states from starting state to goal or vice versa are to be identified, which
requires expanding one state to one or more states. If there exists no
knowledge to identify the right offspring state from a given state, then many



possible offspring states are generated from a known state. This enhances the
search-space for the goal. When the distance (in arc length) between the
starting state and goal state is long, determining the intermediate states and
the optimal path (minimum arc length path) between the starting and the goal
state becomes a complex problem. The issues of determining an optimal path
will be taken up in detail in the next chapter.

The following example illustrates the principle of forward and backward
reasoning with reference to the well-known “farmer’s fox-goat-cabbage
problem”.

Example 3.4: The problem may be stated as follows. A farmer wants to
transfer his three belongings, a wolf, a goat and a cabbage, by a boat from
the left bank of a river to its right bank. The boat can carry at most two items
including the farmer. If unattended, the wolf may eat up the goat and the goat
may eat up the cabbage. How should the farmer plan to transfer the items?

The illegal states in the problem are (W,G || F,C), (G,C | | F,W), (F, W
|| G,C)and (F, C|| W, G) where F, G, | |, W and C denote the farmer, the
goat, the river, the wolf and the cabbage respectively. In the first case the wolf
and the goat are at the left bank, and the farmer and the cabbage are at the right
bank of the river. The second case demonstrates the presence of goat and
cabbage in the left and the farmer and the wolf in the right bank. Similarly,
the other illegal states can be explained easily.

A part of the knowledge base for the system is given below.
PR1: (F,G,W,C||Nil)—> (W,C]||F, Q)
PR2: (W,C||F,G)—> (F,W,C||G)
PR3:(F,W,C||G)—> (C||F,W,QG)

PR4: (C||F,W,G) - (F,G,C||W)
PR5: (F,G,C||W) - (G| |F, W, C)
PR6:(G||F,W,C) - (F,G||W,CO)
PR7:(F,G,||W,C) — (Nil||F,G,W,C)
PR8 (F,W,C||G)—> (W]]|F,G,O)
PR9: (W ||F,G,C)— (F,G, W |]|C)

PR 10: (F,G,W ||C)—> (G| |F,W,C)
PR11: (G| |F,W,C)— (F,G||W,0)
PR 12: (F,G||W,C) —>(Nil ||F,G,W,C)



Forward Reasoning: Given the starting state ( F, G, W, C | | Nil) and the
goal state (Nil | | F, G, W, C), one may expand the state-space, starting with
(F,G,W,C | | Nil) by the supplied knowledge base, as follows:
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Fig. 3.4: The forward reasoning trace of the farmer’s problem with a
partially expanded state-space.



Backward Reasoning: The backward reasoning scheme can also be
invoked for the problem. The reasoning starts with the goal and identifies a
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Fig. 3.5: Backward reasoning solution of the farmer’s problem.



rule whose right-hand side contains the goal. It then generates the left side of
the rule in a backward manner. The resulting antecedents of the rules are called
sub-goals. The sub-goals are again searched among the consequent part of the
rules and on a successful match the antecedent parts of the rule are generated
as the new sub-goals. The process is thus continued until the starting node is
obtained.

A caution about backward reasoning: Backward reasoning' in
many circumstances does not support the logical semantics of problem
solving. It may even infer wrong conclusions, when a goal or sub-goal (any
intermediate state leading to the goal ) has multiple causes for occurrence, and
by backward reasoning we miss the right cause and select a wrong cause as its
predecessor in the state-space graph. This is illustrated in the following
example below with reference to a hypothetical knowledge base.

Example 3.4: Consider the following knowledge base, the starting state
and the goal state for a hypothetical problem. The “,” in the left-hand side of
the production rules PR 1 through PR 4 denotes joint occurrence of them.

PR1: p,q —s
PR2: s,t > u
PR3: p,q,r > W
PR4: w—ov
PR5: v,;t—>u
Starting state: p and q
Goal state: u.

Other facts: t.

The state-space graph for the hypothetical problem, presented in fig. 3.6,
indicates that the goal can be correctly inferred by forward reasoning.
However, backward reasoning may infer a wrong conclusion: p and q and r, if
PR 5, PR 4 and PR 3 are used in order starting with the goal. Note that r is
an extraneous premise, derived by backward reasoning. But in practice the
goal is caused due to p, q and t only. Hence, backward reasoning may
sometimes yield wrong inferences.

" Backward reasoning is not supported by the logic of propositions and
predicates, vide chapter 5.
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Fig. 3.6: The state-space graph of a hypothetical problem.

Bi-directional Reasoning: Instead of employing either forward or
backward reasoning, both of them may be used together in automated problem
solving [6]. This is required especially in situations when expanding from
either direction leads to a large state-space. Fig. 3.7 (a) and (b) demonstrates
the state-space created respectively by forward and backward reasoning, while
fig. 3.7 (c) shows expansion of the state space from both sides together.
Surely, it requires expansion of less state-space.

Starting state Starting state Starting state

v

v

Goal state Goal State Goal State

(a) (b) (c)

Fig. 3.7: The state-space in (a) forward, (b) backward and (c) bi-
directional reasoning.



It may be added here that when instead of expanding all possible states
in both the forward and backward direction, as shown in fig. 3.7 (c), a few
states may be selected in both directions. This can be done by employing a
heuristic search, where a heuristic function is used to select a few states
among many for expansion. Heuristic search on a graph will be covered in
detail in the next chapter. The resulting forward and backward reasoning state-
space under this circumstance may not have an intersection, as cited in fig.
3.8. Bi-directional search in the present context is a waste of computational
effort.

Starting state

forward z
backward I:I

A\ 4
Goal state

Fig.3.8: Bi-directional search with minimal overlap in the state-space
generated by forward and backward reasoning.

3.11 General Merits of a Production System

Production systems, as already stated, are the oldest form of knowledge
representation that can maintain its traditional significance for the following
reasons.



3.11.1 Isolation of Knowledge and Control Strategy

The architecture of a production system, presented in fig. 3.1, demonstrates
that the knowledge base and the interpreter are realized on different modules.
This has significance from the point of view of the knowledge engineer. The
knowledge engineer collects the rules from the experts of her domain of interest
and codes the rules in appropriate format as required for the knowledge base.
Since the knowledge base is augmented with new rules and some rules are
updated and sometimes deleted from the storehouse, a loose coupling between
the knowledge base and the interpreter is helpful for them. Such a loose
coupling protects the interpreter code from unwanted access by the knowledge
engineers or users. Alternatively, updating the codes of the interpreter does not
cause a change in the knowledge base due to their loose coupling. The
separation of the knowledge base and the interpreter in a production system
has, therefore, been done purposefully.

3.11.2 A Direct Mapping onto State-space

The modules of a production system can be directly mapped onto the state-
space. For instance, the contents of the working memory represent the states,
the production rules cause state transitions and the conflict resolution strategies
control the selection of the promising states by firing one rule among many
firable rules. Production systems thus may be compared with a problem solver
that searches the goal through state-space search. The best first search
algorithms that we will present in the next chapter have much similarity with
a production system. The only differences between the two perhaps lies in the
process of selection of the next state. While in production systems this is
done by conflict resolution strategy, it is realized in the best first search
algorithms by selecting a state with a minimum cost estimate” .

3.11.3 Modular Structure of Production Rules

The production rules used in a production system generate the space of
instantiation of other rules in the working memory. Thus one fired rule causes
another rule to fire, thereby forming a chain of fired rule sequences. This is
informally called chaining of rules. However, a production rule does not call
other rules like function or procedure calls. Such syntactic independence of

* In a special form of the best first search algorithm like A*, the total cost of
reaching a state x from the starting node (root), called g(x), and the predicted
cost of reaching the goal from x, called h(x), is minimized. A node x is
selected for expansion, if it has the minimum g(x) + h(x) among many
possible unexpanded nodes.



rules supports the incremental development of reasoning systems by adding,
updating and deleting rules without affecting the existing rules in the
knowledge base.

3.11.4 Tracing of Explanation

A production system with conflict resolution strategy selects only one rule at
each recognize-act cycle for firing. Thus the fired rules are virtually time-
tagged. Since the rules cause state-transition in a production system, stating
the rule to the user during its firing, let the user understand the significance of
the state transition. Presenting the set of the time-tagged rule in sequence thus
gives the user an explanation of the sequence of the operators used to reach the
goal.

3.12 Knowledge Base Optimization
in a Production System

The performance of a production system depends largely on the organization of
its knowledge base. The inferences derived by a production system per unit
time, also called time efficiency, can be improved by reducing the matching
time of the antecedents of the production rules with data in the WM. Further,
if the rules are constructed in a manner so that there is no conflict in the order
of rule firing, then the problem of conflict resolution too can be avoided.
Another important issue of rule-base design is to select the rules so that the
resulting state-space for rule firing does not contain any cycles. The last issue
is to identify the concurrently firable rules that do not have conflict in their
action parts. This, if realized for a rule-based system, will improve the
performance to a high extent. This issue will be covered in detail in chapter 22,
where the architecture of knowledge-based systems is highlighted.

For optimization of rules in a rule-based system, Zupan [9] suggested the
following points.

i) Construct by backward reasoning a state-space graph from the desired
goal nodes (states) up to the nodes, which cannot be expanded further in a
backward manner. Each goal node, also called fixed points, is thus
reachable (has connectivity) from all possible starting states. It may be
noted that some of the connectivity from the starting nodes to the goal
nodes may pass through cycles. It should also be noted that the resulting
state-space will not miss the shortest paths from the goal to any other



state, as the predecessor states of each state are found by an exhaustive
breadth first search.

ii) The common states in the graph are replaced by a single vertex and the
parallel paths are identified.

iii) Do not generate an existing state.

3.13 Conclusions

Production systems are the simplest method for knowledge representation in
Al Experts, who are specialists in their respective subject-domain, need not be
conversant with knowledge engineering tools for encoding knowledge in
simple if-then rules. The efficiency of a production system depends mainly on
the order of firing of rules and hence on the conflict resolution strategies.
Selection of conflict resolution strategies, thus, is a significant issue in
designing a production system. Among the other interesting properties of a
production system, the two that need special mention are i) sensitivity and ii)
stability. A production system with good sensitivity implies that a small
change in data clauses of WM would cause a significant change in the
inferences. Stability, on the other hand, means continuation of reasoning in the
same line.

Exercises

1. For the missionaries-cannibals problem, presented in Exercises of
chapter 1, formulate one conflict resolution strategy. Test the advantage
of using the strategy with the state-space representation of the problem.

2. Test whether the following production systems are commutative. Justify
your answer.

a) Knowledge base

If A & B Then C.
If C Then D.
If A & D then E.

Initial WM = { A, B}.
b) Knowledge base

If A & B Then C.
If X & Y Then C.
If A Then E.



(1]

(2]

If B then F.
Initial WM = {A, B, X, Y}.
Knowledge base

If A & B Then Not (C ) [i.e. eliminate C from WM]
If C Then D.

Initial WM = {A, B, C}.
Which of the following two production systems is more stable ?
Knowledge base
If A & B Then C.
If C Then D.
If D Then E.
Initial WM = {A, B} and goal ={E}.
Knowledge base
If A Then B.
If C Then E.

If A& C ThenF.
If F Then A.

Initial WM = {A, C} and goal = {F}.
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Problem Solving
by Intelligent
Search

Problem solving requires two prime considerations: first representation of
the problem by an appropriately organized state space and then testing the
existence of a well-defined goal state in that space. Identification of the goal
state and determination of the optimal path, leading to the goal through one
or more transitions from a given starting state, will be addressed in this
chapter in sufficient details. The chapter, thus, starts with some well-known
search algorithms, such as the depth first and the breadth first search, with
special emphasis on their results of time and space complexity. It then
gradually explores the ‘heuristic search’ algorithms, where the order of
visiting the states in a search space is supported by thumb rules, called
heuristics, and demonstrates their applications in complex problem solving.
It also discusses some intelligent search algorithms for game playing.

4.1 Introduction

We have already come across some of the problems that can be solved by
intelligent search. For instance, the well-known water-jug problem, the
number puzzle problem and the missionaries-cannibals problem are ideal
examples of problems that can be solved by intelligent search. Common
experience reveals that a search problem is associated with two important



issues: first ‘what to search’ and secondly ‘where to search’. The first one is
generally referred to as ‘the key’, while the second one is termed ‘search
space’. In Al the search space is generally referred to as a collection of states
and is thus called state space. Unlike common search space, the state space in
most of the problems in Al is not completely known, prior to solving the
problem. So, solving a problem in Al calls for two phases: the generation of
the space of states and the searching of the desired problem state in that space.
Further, since the whole state space for a problem is quite large, generation of
the whole space prior to search may cause a significant blockage of storage,
leaving a little for the search part. To overcome this problem, the state space
is expanded in steps and the desired state, called “the goal”, is searched after
each incremental expansion of the state space.

Depending on the methodology of expansion of the state space and
consequently the order of visiting the states, search problems are differently
named in Al. For example, consider the state space of a problem that takes the
form of a tree. Now, if we search the goal along each breadth of the tree,
starting from the root and continuing up to the largest depth, we call it
breadth first search. On the other hand, we may sometimes search the goal
along the largest depth of the tree, and move up only when further traversal
along the depth is not possible. We then attempt to find alternative offspring
of the parent of the node (state) last visited. If we visit the nodes of a tree
using the above principles to search the goal, the traversal made is called
depth first traversal and consequently the search strategy is called depth first
search. We will shortly explore the above schemes of traversal in a search
space. One important issue, however, needs mention at this stage. We may
note that the order of traversal and hence search by breadth first or depth first
manner is generally fixed by their algorithms. Thus once the search space,
here the tree, is given, we know the order of traversal in the tree. Such types
of traversal are generally called ‘deterministic’. On the other hand, there exists
an alternative type of search, where we cannot definitely say which node will
be traversed next without computing the details in the algorithm. Further, we
may have transition to one of many possible states with equal likelihood at an
instance of the execution of the search algorithm. Such a type of search, where
the order of traversal in the tree is not definite, is generally termed ‘non-
deterministic’'. Most of the search problems in Al are non-deterministic. We
will explore the details of both deterministic and non-deterministic search in
this chapter.

' There exists also a third variety, called stochastic (random) search, where
random numbers are used to select the order of visiting the states in the search
space. The execution of such search algorithms twice at a given iteration need
not necessarily select the same state in the next visit.



4.2 General Problem Solving Approaches

There exist quite a large number of problem solving techniques in Al that rely
on search. The simplest among them is the generate and test method. The
algorithm for the generate and test method can be formally stated as follows:

Procedure Generate & Test
Begin
Repeat
Generate a new state and call it current-state;
Until current-state = Goal,
End.

It is clear from the above algorithm that the algorithm continues the
possibility of exploring a new state in each iteration of the repeat-until loop
and exits only when the current state is equal to the goal. Most important part
in the algorithm is to generate a new state. This is not an easy task. If
generation of new states is not feasible, the algorithm should be terminated.
In our simple algorithm, we, however, did not include this intentionally to
keep it simplified.

But how does one generate the states of a problem? To formalize this, we
define a four tuple, called state space, denoted by

{ nodes, arc, goal, current },
where
nodes represent the set of existing states in the search space;

an arc denotes an operator applied to an existing state to cause
transition to another state;

goal denotes the desired state to be identified in the nodes; and

current represents the state, now generated for matching with the goal.

The state space for most of the search problems we will cover in this
chapter takes the form of a tree or graph’. The fig. 1.2 in chapter 1, for

instance, represents the state space for a 4-puzzle problem in the form of a
tree.

® The basic distinction between a tree and a graph lies in the count of parents
of a node in the respective data structures. For a graph, this could be any
positive integer, while for a tree it has a maximum value of one.



We will now present two typical algorithms for generating the state
space for search. These are depth first search and breadth first search.

4.2.1 Breadth First Search

The breadth first search algorithm visits the nodes of the tree along its
breadth, starting from the level with depth 0 to the maximum depth. It can be
easily realized with a queue. For instance, consider the tree, given in fig. 4.1.
Here, the nodes in the tree are traversed following their ascending ordered
labels.

depth

Fig. 4.1: The order of traversal in a tree of depth 3 by
breadth first manner.

The algorithm for traversal in a tree by depth first manner can be
presented with a queue as follows:

Procedure Breadth-first-search
Begin
i) Place the starting node in a queue;
ii) Repeat
Delete queue to get the front element;
If the front element of the queue = goal,
return success and stop;



Else do

Begin
insert the children of the front element,
if exist, in any order at the rear end of
the queue;

End

Until the queue is empty;
End.

The breadth first search algorithm, presented above, rests on a simple
principle. If the current node is not the goal add the offspring of the
current in any order to the rear end of the queue and redefine the front
element of the queue as the current. The algorithm terminates, when the goal
is found.
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Fig. 4.2: First few steps of breadth first search on the tree of fig. 4.1.

Time Complexity

For the sake of analysis, we consider a tree of equal branching factor from
each node = b and largest depth = d. Since the goal is not located within
depth (d-1), the number of false search [1], [2] is given by

1+b+b” +b° + ... + b = (b%1)/(b-1), b>>1.



Further, the first state within the fringe nodes could be the goal. On the
other hand, the goal could be the last visited node in the tree. Thus, on an
average, the number of fringe nodes visited is given by

(1+b%) /2.

Consequently, the total number of nodes visited in an average case becomes
(b%-1) / (b-1) + (1+b%) / 2

= b (b+1)/2(b-1).

Since the time complexity is proportional to the number of nodes visited,
therefore, the above expression gives a measure of time complexity.

Space Complexity

The maximum number of nodes will be placed in the queue, when the
leftmost node at depth d is inspected for comparison with the goal. The
queue length under this case becomes b’. The space complexity of the
algorithm that depends on the queue length, in the worst case, thus, is of the
order of b,

In order to reduce the space requirement, the generate and test algorithm
is realized in an alternative manner, as presented below.

4.2.2 Depth First Search

The depth first search generates nodes and compares them with the goal along
the largest depth of the tree and moves up to the parent of the last visited
node, only when no further node can be generated below the last visited node.
After moving up to the parent, the algorithm attempts to generate a new
offspring of the parent node. The above principle is employed recursively to
each node of a tree in a depth first search. One simple way to realize the
recursion in the depth first search algorithm is to employ a stack. A stack-
based realization of the depth first search algorithm is presented below.

Procedure Depth first search

Begin

1. Push the starting node at the stack,
pointed to by the stack-top;



2. While stack is not empty do
Begin
Pop stack to get stack-top element;
If stack-top element = goal, return
success and stop

Else push the children of the stack-top

element in any order into the stack;

End while;

End.

depth

Fig. 4.3: Depth first search on a tree, where the node numbers denote

the order of visiting that node.

In the above algorithm, a starting node is placed in the stack, the top of
which is pointed to by the stack-top. For examining the node, it is popped
out from the stack. If it is the goal, the algorithm terminates, else its children
are pushed into the stack in any order. The process is continued until the stack
is empty. The ascending order of nodes in fig. 4.3 represents its traversal on
the tree by depth first manner. The contents of the stack at the first few
iterations are illustrated below in fig. 4.4. The arrowhead in the figure denotes
the position of the stack-top.
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Fig. 4.4: A snapshot of the stack at the first few iterations.

Space Complexity

Maximum memory in depth first search is required, when we reach the
largest depth at the first time. Assuming that each node has a branching
factor b, when a node at depth d is examined, the number of nodes saved in
memory are all the unexpanded nodes up to depth d plus the node being
examined. Since at each level there are (b-1) unexpanded nodes, the total
number of memory required = d (b -1) +1. Thus the space complexity of
depth first search is a linear function of b, unlike breadth first search, where
it is an exponential function of b. This, in fact, is the most useful aspect of
the depth first search.

Time Complexity

If we find the goal at the leftmost position at depth d, then the number of
nodes examined = (d +1). On the other hand, if we find the goal at the
extreme right at depth d, then the number of nodes examined include all the
nodes in the tree, which is

1+b+b* +b° +...4b* = (b -1) / (b-1)

So, the total number of nodes examined in an average case
= (d+1) 2+ " -1) / 2(b-1)
=b(b'+d) /2 (b-1)

This is the average case time complexity of the depth first search algorithm.

Since for large depth d, the depth first search requires quite a large
runtime, an alternative way to solve the problem is by controlling the depth
of the search tree. Such an algorithm, where the user mentions the initial



depth cut-off at each iteration, is called an Iterative Deepening Depth First
Search or simply an Iterative deepening search.

4.2.3 Iterative Deepening Search

When the initial depth cut-off is one, it generates only the root node and
examines it. If the root node is not the goal, then depth cut-off is set to two
and the tree up to depth 2 is generated using typical depth first search.
Similarly, when the depth cut-off is set to m, the tree is constructed up to
depth m by depth first search. One may thus wonder that in an iterative
deepening search, one has to regenerate all the nodes excluding the fringe
nodes at the current depth cut-off. Since the number of nodes generated by
depth first search up to depth h is

(b"'-1) / (b-1),

the total number of nodes expanded in failing searches by an iterative
deepening search will be

(d-1)
{1/} X O"'-1)
h=0

=b(b"-d)/ (b-1).

The last pass in the algorithm results in a successful node at depth d, the
average time complexity of which by typical depth first search is given by

b(b*+d)/2 (b-1).

Thus the total average time complexity is given by
b(b*-d)/ (b-1)" +b(b*+d) /2 (b-1).

= (b+1) b*'/2 (b -1)".

Consequently, the ratio of average time complexity of the iterative deepening
search to depth first search is given by

{b+1) b /2 (b -1} (b /2 (b-1)}
= (b+1): (b-1).



The iterative deepening search thus does not take much extra time, when
compared to the typical depth first search. The unnecessary expansion of the
entire tree by depth first search, thus, can be avoided by iterative deepening. A
formal algorithm of iterative deepening is presented below.

Procedure Iterative-deepening
Begin
1. Set current depth cutoff =1;
2. Put the initial node into a stack, pointed to by stack-top;
3.  While the stack is not empty and the depth is within the
given depth cut-off do
Begin
Pop stack to get the stack-top element;
if stack-top element = goal, return it and stop
else push the children of the stack-top in any order
into the stack;
End While;
4. Increment the depth cut-off by 1 and repeat
through step 2;
End.

The breadth first, depth first and the iterative deepening search can be
equally used for Generate and Test type algorithms. However, while the
breadth first search requires an exponential amount of memory, the depth first
search calls for memory proportional to the largest depth of the tree. The
iterative deepening, on the other hand, has the advantage of searching in a
depth first manner in an environment of controlled depth of the tree.

4.2.4 Hill Climbing

The ‘generate and test’ type of search algorithms presented above only
expands the search space and examines the existence of the goal in that space.
An alternative approach to solve the search problems is to employ a function
f(x) that would give an estimate of the measure of distance of the goal from
node x. After f(x) is evaluated at the possible initial nodes x, the nodes are



sorted in ascending order of their functional values and pushed into a stack in
the ascending order of their ‘f* values. So, the stack-top element has the least f
value. It is now popped out and compared with the goal. If the stack-top
element is not the goal, then it is expanded and f is measured for each of its
children. They are now sorted according to their ascending order of the
functional values and then pushed into the stack. If the stack-top element is
the goal, the algorithm exits; otherwise the process is continued until the
stack becomes empty. Pushing the sorted nodes into the stack adds a depth
first flavor to the present algorithm. The hill climbing algorithm is formally
presented below.

Procedure Hill-Climbing
Begin

1. Identify possible starting states and measure the distance (f) of their
closeness with the goal node; Push them in a stack according to the
ascending order of their f;

2. Repeat
Pop stack to get the stack-top element;
If the stack-top element is the goal, announce it and exit

Else push its children into the stack in the ascending order of their
f values;

Until the stack is empty;
End.

A ridge

Fig.4.5: Moving along a ridge in two steps (by two successive

operators) in hill climbing.

The hill climbing algorithm too is not free from shortcomings. One
common problem is trapping at local maxima at a foothill. When trapped at
local maxima, the measure of f at all possible next legal states yield less
promising values than the current state. A second drawback of the hill
climbing is reaching a plateau [2]. Once a state on a plateau is reached, all



legal next states will also lie on this surface, making the search ineffective. A
new algorithm, called simulated annealing, discussed below could easily
solve the first two problems. Besides the above, another problem that too
gives us trouble is the traversal along the ridge. A ridge (vide fig. 4.5) on
many occasions leads to a local maxima. However, moving along the ridge is
not possible by a single step due to non-availability of appropriate operators.
A multiple step of movement is required to solve this problem.

4.2.5 Simulated Annealing

“Annealing” is a process of metal casting, where the metal is first melted at a
high temperature beyond its melting point and then is allowed to cool down,
until it returns to the solid form. Thus in the physical process of annealing,
the hot material gradually loses energy and finally at one point of time reaches
a state of minimum energy. A common observation reveals that most physical
processes have transitions from higher to lower energy states, but there still
remains a small probability that it may cross the valley of energy states [2]
and move up to a energy state, higher than the energy state of the valley. The
concept can be verified with a rolling ball. For instance, consider a rolling
ball that falls from a higher (potential) energy state to a valley and then moves
up to a little higher energy state (vide fig. 4.6). The probability of such

high energy state

a little higher energy
state than the valley

valley ( the minimum energy state)

Fig. 4.6: A rolling ball passes through a valley to a higher

energy state.

transition to a higher energy state, however, is very small and is given by

p =exp (-AE / KT)



where p is the probability of transition from a lower to a higher energy state,
AE denotes a positive change in energy, K is the Boltzman constant and T is
the temperature at the current thermal state. For small AE, p is higher than the
value of p, for large AE. This follows intuitively, as w.r.t the example of ball
movement, the probability of transition to a slightly higher state is more than
the probability of transition to a very high state.

An obvious question naturally arises: how to realize annealing in search?
Readers, at this stage, would remember that the need for simulated annealing
is to identify the direction of search, when the function f yields no better
next states than the current state. Under this circumstance, AE is computed for
all possible legal next states and p’ is also evaluated for each such next state
by the following formula:

p = =exp(-AE/ T)

A random number in the closed interval of [0,1] is then computed and p’
is compared with the value of the random number. If p’ is more, then it is
selected for the next transition. The parameter T, also called temperature, is
gradually decreased in the search program. The logic behind this is that as T
decreases, p’ too decreases, thereby allowing the algorithm to terminate at a
stable state. The algorithm for simulated annealing is formally presented
below.

Procedure Simulated Annealing
Begin

1. Identify possible starting states and measure the distance (f) of their
closeness with the goal; Push them in a stack according to the
ascending order of their f;

2. Repeat
Pop stack to get stack-top element;
If the stack-top element is the goal,
announce it and exit;
Else do
Begin
a) generate children of the stack-top element N and
compute f for each of them;

b) If measure of f for at least one child of N is improving



Then push those children into stack in ascending order of
their f;

¢) If none of the children of N is better in f

Then do
Begin
a) select any one of them randomly, compute its p’ and test
whether p’ exceeds a randomly generated number in the interval
[0,1]; If yes, select that state as the next state; If no, generate
another alternative legal next state and test in this way until one

move can be selected; Replace stack-top element by the selected
move (state);

b) Reduce T slightly; If the reduced value is negative, set it to
Zero;

End;
Until the stack is empty;
End.

The algorithm is similar to hill climbing, if there always exists at least
one better next state than the state, pointed to by the stack-top. If it fails, then
the last begin-end bracketed part of the algorithm is invoked. This part
corresponds to simulated annealing. It examines each legal next state one by
one, whether the probability of occurrence of the state is higher than the
random value in [0,1]. If the answer is yes, the state is selected, else the next
possible state is examined. Hopefully, at least one state will be found whose
probability of occurrence is larger than the randomly generated probability.

Another important point that we did not include in the algorithm is the
process of computation of AE. It is computed by taking the difference of the
value of f of the next state and that of the current (stack-top) state.

The third point to note is that T should be decreased once a new state with
less promising value is selected. T is always kept non-negative. When T
becomes zero, p” will be zero and thus the probability of transition to any
other state will be zero.

4.3 Heuristic Search

This section is devoted to solve the search problem by a new technique, called
heuristic search. The term “heuristics” stands for “ thumb rules”, i.e., rules
which work successfully in many cases but its success is not guaranteed.



In fact, we would expand nodes by judiciously selecting the more promising
nodes, where these nodes are identified by measuring their strength compared
to their competitive counterparts with the help of specialized intuitive
functions, called heuristic functions.

Heuristic search is generally employed for two distinct types of
problems: i) forward reasoning and ii) backward reasoning. We have already
discussed that in a forward reasoning problem we move towards the goal state
from a pre-defined starting state, while in a backward reasoning problem, we
move towards the starting state from the given goal. The former class of
search algorithms, when realized with heuristic functions, is generally called
heuristic Search for OR-graphs or the Best First search Algorithms. It may be
noted that the best first search is a class of algorithms, and depending on the
variation of the performance measuring function it is differently named. One
typical member of this class is the algorithm A*. On the other hand, the
heuristic backward reasoning algorithms are generally called AND-OR graph
search algorithms and one ideal member of this class of algorithms is the
AO* algorithm. We will start this section with the best first search algorithm.

4.3.1 Heuristic Search for OR Graphs

Most of the forward reasoning problems can be represented by an OR-graph,
where a node in the graph denotes a problem state and an arc represents an
application of a rule to a current state to cause transition of states. When a
number of rules are applicable to a current state, we could select a better state
among the children as the next state. We remember that in hill climbing, we
ordered the promising initial states in a sequence and examined the state
occupying the beginning of the list. If it was a goal, the algorithm was
terminated. But, if it was not the goal, it was replaced by its offsprings in any
order at the beginning of the list. The hill climbing algorithm thus is not free
from depth first flavor. In the best first search algorithm to be devised
shortly, we start with a promising state and generate all its offsprings. The
performance (fitness) of each of the nodes is then examined and the most
promising node, based on its fitness, is selected for expansion. The most
promising node is then expanded and the fitness of all the newborn children is
measured. Now, instead of selecting only from the generated children, all the
nodes having no children are examined and the most promising of these
fringe nodes is selected for expansion. Thus unlike hill climbing, the best
first search provides a scope of corrections, in case a wrong step has been
selected earlier. This is the prime advantage of the best first search algorithm
over hill climbing. The best first search algorithm is formally presented
below.



Procedure Best-First-Search
Begin

1. Identify possible starting states and measure the distance (f) of their
closeness with the goal; Put them in a list L;

2.  While L is not empty do
Begin

a) Identify the node n from L that has the minimum f; If there
exist more than one node with minimum f, select any one of them
(say, n) arbitrarily;

b) If n is the goal
Then return n along with the path from the starting node,
and exit;
Else remove n from L and add all the children of n to the list L,
with their labeled paths from the starting node;
End While;
End.

As already pointed out, the best first search algorithm is a generic
algorithm and requires many more extra features for its efficient realization.
For instance, how we can define f is not explicitly mentioned in the
algorithm. Further, what happens if an offspring of the current node is not a
fringe node. The A* algorithm to be discussed shortly is a complete
realization of the best first algorithm that takes into account these issues in
detail. The following definitions, however, are required for presenting the
A¥* algorithm. These are in order.

Definition 4.1: A node is called open if the node has been generated and
the h’ (x) has been applied over it but it has not been expanded yet.

Definition 4.2: A node is called closed if it has been expanded for
generating offsprings.

In order to measure the goodness of a node in A* algorithm, we require
two cost functions: 1) heuristic cost and ii) generation cost. The heuristic cost
measures the distance of the current node x with respect to the goal and is
denoted by h(x). The cost of generating a node x, denoted by g(x), on the
other hand measures the distance of node x with respect to the starting node in
the graph. The total cost function at node x, denoted by f(x), is the sum of

g(x) plus h(x).



The generation cost g(x) can be measured easily as we generate node x
through a few state transitions. For instance, if node x was generated from
the starting node through m state transitions, the cost g(x) will be
proportional to m (or simply m). But how does one evaluate the h(x)? It may
be recollected that h(x) is the cost yet to be spent to reach the goal from the
current node x. Obviously, any cost we assign as h(x) is through prediction.
The predicted cost for h(x) is generally denoted by h’(x). Consequently, the
predicted total cost is denoted by f(x), where

f7(x) = g(x) +h” ().
Now, we shall present the A* algorithm formally.

Procedure A*
Begin

1. Put a new node n to the set of open nodes (hereafter open); Measure its
f'(n) = g(n) + h’ (n); Presume the set of closed nodes to be a null set
initially;

2. While open is not empty do
Begin
If n is the goal, stop and return n and the path of n from the
beginning node to n through back pointers;
Else do
Begin

a) remove n from open and put it under closed;

b) generate the children of n;

c) If all of them are new (i.e., do not exist in the graph
before generating them Then add them to open and
label their f* and the path from the root node through
back pointers;

d) If one or more children of n already existed as open
nodes in the graph before their generation Then those
children must have multiple parents; Under this
circumstance compute their f* through current path and
compare it through their old paths, and keep them
connected only through the shortest path from the
starting node and label the back pointer from the
children of n to their parent, if such pointers do not
exist;

e) If one or more children of n already existed as closed
nodes before generation of them, then they too must



have multiple parents; Under this circumstance, find the
shortest path from the starting node, i.e., the path (may be
current or old) through which f of n is minimum; If the
current path is selected, then the nodes in the sub-tree rooted
at the corresponding child of n should have revised f* as the
g’ for many of the nodes in that sub-tree changed; Label the
back pointer from the children of n to their parent, if such
pointers do not exist;

End;

End While;
End.

To illustrate the computation of £ (x) at the nodes of a given tree or
graph, let us consider a forward reasoning problem, say the water-jug
problem, discussed in chapter 3. The state-space for such problems is often
referred to as OR graphs / trees. The production rules we would use here are
identical with those in chapter 3, considered for the above problem.

Example 4.1: Let us consider the following heuristic function, where X
and Y denote the content of 4-liter and 3-liter jugs respectively and x denotes
an arbitrary node in the search space.

h’ (x)=2,when0<X <4 AND 0<Y <3,
=4, when0<X <4 OR 0<Y<3,
=10, when i) X=0ANDY =0

ORii)) X=4AND Y =3

=8, when i)X=0ANDY =3
ORii)X=4 ANDY =0

Assume that g(x) at the root node = 0 and g(x) at a node x with
minimum distance n, measured by counting the parent nodes of each node
starting from x till the root node, is estimated to be g(x) = n. Now let us
illustrate the strategy of the best first search in an informal manner using the
water-jug problem, vide fig. 4.7.

In step 0, we have the node o only where g + h> = 0+10 =10. In step
1, we have two terminal nodes M and N, where (g + h’ =1+8 =9) are equal.
We can, therefore, choose any of these two arbitrarily for generating their
offsprings. Let us select node M for generating offsprings. By expanding node
M, we found nodes P and R in step 2 with g + h> =6 and 12 respectively.
Now, out of these three nodes P, N and R, P has the minimum value of .
So, we select node P for expansion. On expanding node P, we find node S,
where g + h> = 3+4. Now the terminals in the tree are S, Rand N, out of



which node S has the smallest f’. So, node S will be selected for
expansion the next time. The process would thus continue until the goal node
is reached.

sep0 B 00 g+n=0+10

Step 1 0,00 g +th’=0+10
(0,3) (4,0)
1+8 1+8

Step 2 (0,00 g+h’=0+10

(4,0)
1+8

4,3)
2+4 2+10

Step 3
(0,00 g+h>=0+10

(4,0)
1+8
2+4
(3,3)
3+4

Fig. 4.7: Expanding the state-space by the A* algorithm.

Another important issue that needs to be discussed is how to select a
path,when an offspring of a currently expanded node is an already existing



node. Under this circumstance, the parent that yields a lower value of g+h’
for the offspring node is chosen and the other parent is ignored, sometimes by
de-linking the corresponding arc from that parent to the offspring node. Let us
illustrate the above issue with example 4. 2.

Fig. 4.8 (b): A node U having parents R and Q, the least-cost
path being node Q to U.

Example 4.2: Consider the tree shown in fig. 4.8(a), where Q, U and T are
the free terminals (leaves). Assume that among these leaves the f” at node Q is
minimum. So, Q is selected for offspring generation. Now, suppose U is



the offspring of Q (fig. 4.8(b)) and the f* at U through Q is compared less
to the f” at U through R (this in fact is obvious, since g(U) via Q is 2, while
g(U) via R is 3). So, we prefer Q to R as a parent of U and, consequently,
we delink the arc from node R to node U (vide fig. 4.8(b) and (c)). It may be
noted that we would do the same de-linking operation, if U had offsprings
too.

Fig. 4.8 (¢): The modified tree after de-linking of the arc
from node R to node U in fig. 4.8 (b).

The third point to be discussed on the A* algorithm is to mark the arcs
with back-pointers, i.e., from child to parent nodes in the search space. This
helps in tracing the path from goal node to the root. Scrutinize fig. 4.8 (a)-(c)
for details.

The steps of the algorithm have already been illustrated. Now, the
properties of the algorithm will be presented in detail.

Properties of Heuristic Functions

The following notations will be required for understanding the properties of
the heuristic functions.

Notations Meaning
1. C(n;,n) cost / expenses to traverse from node n; to node n;
2. K (n, ny) cost on the cheapest path between n; and n;
3. Y a goal node
4. T the set of goals
5. P, v the path from node n to 'y



6. P r the set of paths from node n to the set of goals I
7. g% (n) the cheapest cost of paths, going from starting (root)
node s to node n,
g* () =K (s, n)
8. h* (n) the cheapest cost of paths, going from node nto I,
h* (n)=Min K (n,y), forallye I’
9. C* the cheapest cost of paths going from's to I,

C* = h* (s)

We now define the following properties of best first search algorithms.

d)

Completeness: An algorithm is said to be complete, if it
terminates with a solution, when one exists.

Admissibility: An algorithm is called admissible if it is
guaranteed to return an optimal solution, whenever a solution exists.

Dominance: An algorithm Al is said to dominate A2, if every
node expanded by Al is also expanded by A2.

Optimality: An algorithm is said to be optimal over a class of
algorithms, if it dominates all members of the class.

We now present here some of the interesting properties of the heuristic
functions.

Property I: Any node n* on an optimal path P*Y -r always satisfies
equation (4.1)

P (n*)=C* (4.1)

where C* is the cheapest cost from s to T



Proof: £* (n*)

= g (n*) +h* (n*)

=K (s, n*)+ Min K (n*, )

vyeTl
= Min K (s,7v)
vyeT
=(C*

The following results directly follow from property 1.
i) f*(s)=C* and
i) f* (y) =C*.

Property II: Any node n that does not lie on any of the optimal paths
P*s.  satisfies inequality (4.2).

£* (n) > C*, (4.2)

Proof: Proof is straightforward and is therefore omitted.

Definition 4.3: An heuristic function h is said to be admissible [6] if
h(n) £ h* (n).

Property III: At any time before A* terminates, there exists an open
node n’ on P*;_ | with f(n’) < C*.

Proof: Consider an optimal path P*_ ., belonging to P*; . Let P*g

4 =8 n ny...,n’,....,y and let n’ be the shallowest (minimum depth)
open node on P’ .. Since y is not closed before termination, n’ is an open

node. Further, since all ancestors of n’ are closed and since the path
s,n;,My,..., n” is optimal, therefore, it must be that the pointers of n’ are along
P*e . .

Therefore, g (n”) = g* (n’).



Therefore, f * (n”) =g* (n’) +h(n’)
< g*(n’) + h* (n”) [by definition of admissibility]
=f* @)
= C*,

Therefore, f(n”) < C*.

Property IV: A* is admissible (returns optimal solution)[6] .

Proof: Suppose A* terminates with a goal node t belonging to T" for
which

ft) = g(t) > C*.

However, A* tests nodes for compliance with termination criteria, only after
it selects them for expansion. Hence, when t was chosen for expansion,

f(t) < f (n), for all open n.

This means that immediately prior to termination, any node n on open
satisfies:

f (n) > C*

which, however, contradicts property III, which claims that there exists at
least one open node n with f(n) < C* . Therefore, the terminating t must have
g (t) = C*, which means that A* returns an optimal path.

Monotonicity and Consistency of Heuristics

Informally speaking, by consistency, we mean that A* never re-opens already
closed nodes. From property I and II, we find that the cheapest path con-
strained to pass through n cannot be less costly than the cheapest path
available without this constraint, i.e.,

g* (@) + h* (n) = h* (s), foralln
—  K(s,n) + h* (n) > h* (s).

Ifn’ is any descendent of n, we should have



h* (n) < K (n,n’) +h* (n’), forall (n, n’).

Now, if we select h (n), the measure of h* (n) in the manner described by the
last expression, we write

h(n) <K (n,n’)+h(n’),

which is the condition for consistency [6].

Definition 4.4: A heuristic function is said to be monotonic / monotone
if it satisfies

h(n) £ C(n,n’) + h (n’) for all n, n’
such that n’ is a successor of n.

Property V: Every consistent heuristic is also admissible.
Proof: We have

h(n) £K (n,n’) +h (n’) [ since h is consistent]

Replacing Y against n’, we have

h(m) <K@ 7y)+h (7)
= h(n) £ h* (n),
which is the condition for admissibility.

The following example [7] illustrates that optimal solution will never be
missed, if h (n) is admissible as presented below.

Example 4.3: Consider the search-space, given in fig. 4.9(a). Note that,
here h > h*, in the case of overestimation, where we made node D so bad (by
making its h value too large) that we can never find the optimal path A-D-G.

On the other hand, in fig. 4.9(b), we illustrate the case of underestimation
(admissibility) of h. Consider the case in fig. 4.9(b) when F, C and D are the
set of expanded nodes and among these nodes C has the least value of f*. We
thus expand C and fortunately reach the goal in one step. It is to be noted
that we wasted some effort to generate the unnecessary nodes E and F. But,
ultimately, we could correctly identify the optimal path A-C-G.



(g+h”)

Alternative path

E*’:l 42 ’;"'; Explored path

7 stimated h >
F xact h*

[E]3+1jf

-

S0+4

Fig. 4.9 (a): Illustration of overestimation of h in A* algorithm.

Estimated h <
Exact h*

Fig. 4.9 ( b): Illustration of underestimation of h in A* algorithm.



4.3.2 Iterative Deepening A* Algorithm

The iterative deepening search algorithm, discussed earlier, searches the goal
node in a depth first manner at limited depth. In each pass the depth is
increased by one level to test the presence of the goal node in that level. The
A* algorithm, on the other hand, in each pass, selects the least cost (f ) node
for expansion. The iterative deepening A* (or IDA*) algorithm presented
below attempts to combine the partial features of iterative deepening and A*
algorithms together. Here, the heuristic measure is used to check the depth
cut-off, rather than the order of the selection of nodes for expansion. The
algorithm is formally presented below.

Procedure IDA*
Begin
1. Initialize the current depth cut-off c = 1;
2. Push a set of starting nodes into a stack; Initialize the cut-off at
next iteration ¢’ = oc;
3. While the stack is not empty do
Begin
Pop stack and get the topmost element n;
If n is the goal, Then report success and
return n with the path from the starting node
Else do
Begin
For each child n’ of n
If f(n’) < ¢ Then push n’ into the stack
Else assign ¢’ := min (¢’, f(n’));
End For;
End;
End While;
4. 1If the stack is empty and ¢’ = o< Then stop and exit;

5. [If the stack is empty and ¢’# o< Then assign c:= ¢’ and return to step 2;

End.



The above algorithm considers two depth cut-off levels. If the stack contains
nodes whose children all have ‘f* value lower than the cut-off value c, then
these children are pushed into the stack to satisfy the depth first criteria of
iterative deepening algorithms. However, when it fails, i.e., ‘f” value of one or
more child n’ of n exceeds the cut-off level ¢, then the ¢’ value of the node n
is set to min (c’, f(n’)). The algorithm terminates when either i) the goal is
identified (successful termination) or ii) the stack is empty and the cut-off
value ¢’ = o<.

The main advantage of IDA* over A* lies in the memory requirement.
The A* requires an exponential amount of memory because of no restriction
on depth cut-off. The IDA* on the other hand expands a node n only when all
its children n” have f (n”) value less than the cut-off value c. Thus it saves a
considerable amount of memory.

Another important point to note is that IDA* expands the same nodes
expanded by A* and finds an optimal solution when the heuristic function
used is optimal.

4.3.3 Heuristic Search on AND-OR Graphs

The second classical problem, where the heuristic search is applicable, is the
backward reasoning problem implemented on AND-OR graphs. Before
describing the technique of pruning an AND-OR graph, let us first understand
the process of expanding an unconstrained graph. Consider the problem of
acquiring a TV set. One has to identify the possible ways one can acquire the
TV set. So, here the goal is “to acquire a TV set” and the terminals of the
graph describe the possible means by which it can be achieved. The details of
the possibility space are given in fig. 4.10.

For heuristic search on AND-OR graph, we use an algorithm, called an AO*
algorithm. The major steps of the AO* algorithm are presented below.

1. Given the Goal node, hereafter called the starting state, find the
possible offsprings of the starting state, such that the Goal can be
derived from them by AND / OR clauses.

3. Estimate the h’ values at the leaves and find the leaf (leaves) with
minimum h’. The cost of the parent of the leaf (leaves) is the minimum
of the cost of the OR clauses plus one or the cost of the AND clauses
plus the number of AND clauses. After the children with minimum h’
are estimated, a pointer is attached to point from the parent node to
its promising children.



3. One of the unexpanded OR clauses / the set of unexpanded AND
clauses, where the pointer points from its parent, is now expanded
and the h’ of the newly generated children are estimated. The effect of
this h’ has to be propagated up to the root by re-calculating the [ of
the parent or the parent of the parents of the newly created child /
children clauses through a least cost path. Thus the pointers may be
modified depending on the revised cost of the existing clauses.

Goal : Acquire a TV set

Symbols
A
Steal TV  Have Buy TV
money
B C D
IF (B OR C OR D)
THEN A.
Steal money Earn money
A
B C D
Identify  Kill  Find a job IF((B AND C) ORD)
THEN A.

a rich man him

Fig. 4.10: An unconstrained AND-OR graph, where the AND, OR arcs
are defined in side by side symbol definitions.

The few steps of the AO* algorithm are illustrated below based on the
above principle.
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Fig. 4. 11: Snapshots of the AO* algorithm.



Procedure AO*

Begin

1. Given the goal node INIT in the graph G; evaluate h’ at INIT;
2. Repeat

(a)Trace the marked arcs from the node INIT, if any such exists, and
select one of the unexpanded nodes, named NODE, that occurs on this
path, for expansion.

(b) If NODE cannot be expanded, Then assign FUTILITY as the h’
value of NODE, indicating that NODE is not solvable;

Else for each such successor, called SUCCESSOR, which is not an
ancestor of NODE, do

Begin
(i) Append SUCCESSOR to the graph G.

(ii) If SUCCESSOR is a terminal node Then Ilabel it
SOLVED and set its h’ value 0.

(i) If SUCCESSOR is not a terminal node Then estimate its
h’ value;

End;
(c) Initialize S to NODE;

(d) Repeat

(i) Select from S a node, none of whose descendants belong to
S. Call it CURRENT and remove it from S.

(i) Estimate the cost of each of the arcs, emerging from
CURRENT. The cost of each arc is equal to the sum of h’
value of each of the nodes at the end of the arc plus the cost
of the arc itself. The new h’ value of CURRENT is the
minimum of the cost just computed for the arcs emerging
from it.

(ii1) Label the best path out of CURRENT by marking the arc that
had the least cost as computed in the last step.



(iv) Ifall of the nodes connected to CURRENT through the new
marked arcs have been labeled SOLVED, Then mark the
CURRENT SOLVED.

(v) If CURRENT is marked SOLVED or the cost of CURRENT
was changed, Then propagate its new status back up the tree,
add all the ancestors of CURRENT to S.

Until S is empty.

Until INIT is labeled solved or its h’ value becomes greater than a maximum
level called FUTILITY:

End.

4.4 Adversary Search

In this section we will discuss special type of search techniques required in a
game playing between two opponent players. The state space in this case is
represented by a tree or graph and includes the possible turns of both players.
Each level of the search space in the present context denotes the possible turn
of one player only. We start with a simple algorithm called MINMAX and
gradually develop more complex algorithms for game playing.

4.4.1 The MINIMAX Algorithm

The MINIMAX algorithm considers the exhaustive possibility of the state
transitions from a given state and consequently covers the entire space. The
algorithm, thus, is applicable to games having few possible state transitions
from a given trial state. One typical example that can be simulated with
MINIMAX is the NIM game. A NIM game is played between two players.
The game starts with an odd number of match sticks, normally 7 or 9, placed
on a single row, called a pile. Each player in his turn has to break a single
pile into two piles of unequal sticks, greater than zero. The game will come
to an end when either of the two players cannot give a successful move. The
player who cannot give a successful move the first time will lose the game.

According to standard convention we name the two players MINIMIZER
and MAXIMIZER. NIM is a defensive game and consequently the opening
player, here, is called the MINIMIZER. For a game such as tic-tac-toe, where
the opener always gets the benefit, the opening player is called the
MAXIMIZER. A graph space for the NIM game is presented in fig. 4.12 (a),
demarcating MAXIMIZER’s move from the MINIMIZER’s move.



MIN move 7

MAX move 1

MIN 5+1+1 44+2+1 34242 34+3+1
move
MAX move \ \ ‘)g
mh \ 2424241 \
A 'Y
MIN
fove 34+1+1+1+1 24+2+1+1+1
MAX move

2+1+1+1+1+1

Symbol: Minimizer’s move [___] , Maximizer’s move NN

Fig. 4.12 (a): State Space for the NIM game.

In the MINIMAX algorithm, to be presented shortly, the following
conventions will be used. The MAXIMIZER’s success is denoted by +1,
while the MINIMIZER’s success by -1 and a draw by a 0. These values are
attached with the moves of the players. A question then naturally arises: how
do the players automatically learn about their success or failure until the game
is over? This is realized in the MINIMAX algorithm by the following
principle: Assign a number from {+1, 0, -1} at the leaves depending on
whether it is a success for the MAXIMIZER, MINIMIZER or a draw
respectively. Now, propagate the values up by checking whether it is a
MAXIMIZER'’s or MINIMIZER'’s move. If it is the MAXIMIZER's move then
its value wiil be the maximum value possessed by its offsprings. In case it is
a MINIMIZER s move then its value will presume the minimum of the values
possessed by its offsprings.



If the values are propagated up to the root node by the above principle,
then each player can select the better move in his turn. The computation
process in a MINIMAX game is illustrated below vide fig. 4.12 (b).

MIN move 7 |
1 5+1+1 4+2+1 34242 3+3+1
MIN
move
2+2+2+1
MAX move
3+1+1+1+1 1 2+2+1+1+1 1
MIN move \
\

2+1+1+1+1+1 1
MAX move

Fig. 4.12 (b): The computation in the state space for the NIM game.

The MINIMAX algorithm is formally presented below.

Procedure MINIMAX
Begin
1. Expand the entire state-space below the starting node;

2. Assign values to the terminals of the state-space from
-1,0,+1}, depending on the success of the MINIMIZER,
draw, or the success of the MAXIMIZER respectively;

3. For each node whose all children possess values, do
Begin
if it is a MAXIMIZER node, then its value will be maximum



of its childrens’ value; if it is a MINIMIZER node, then its
value will be the minimum of its children;
End For;
End.

4.4.2 The Alpha-Beta Cutoff Procedure

The MINIMAX algorithm, presented above, requires expanding the entire
state-space. This is a severe limitation, especially for problems with a large
state-space. To handle this difficulty, an alternative approach is to evaluate
heuristically the status of the next ply move of the player, to select a current
move by the same player. We will demonstrate the process of computation of
the heuristic measures of a node below with the well-known tic-tac-toe game.

Consider a heuristic function e(n) [3], [5] at node n that evaluates the
difference of possible winning lines of the player and his opponent. Formally,

e(n) =M (n) - O (n)

where M (n) = number of my possible winning lines
and O (n) = number of opponent’s winning lines.

For example, in fig. 4.13 M (n) =6 , O (n) = 5 and hence e(n) = 1.

Now, we will discuss a new type of algorithm, which does not require
expansion of the entire space exhaustively. This algorithm is referred to as
alpha-beta cutoff algorithm. In this algorithm, two extra ply of movements are
considered to select the current move from alternatives. Alpha and beta denote
two cutoff levels associated with MAX and MIN nodes. The alpha value of
MAX node cannot decrease, whereas the beta value of the MIN nodes cannot
increase. But how can we compute the alpha and beta values? They are the
backed up values up to the root like MINIMAX. There are a few interesting
points that may be explored at this stage. Prior to the process of computing
MAX / MIN of the backed up values of the children, the alpha-beta cutoff
algorithm estimates e(n) at all fringe nodes n. Now, the values are estimated
following the MINIMAX algorithm. Now, to prune the unnecessary paths
below a node, check whether

i) the beta value of any MIN node below a MAX node is less than or
equal to its alpha value. If yes, prune that path below the MIN node.



ii) the alpha value of any MAX node below a MIN node exceeds the beta
value of the MIN node. If yes prune the nodes below the MAX node.

g

"\ Fd
0 10 | ' 0
’ i o
o \ ,
‘
’

(a) A state M (n) =6 O (n) =5

Fig. 4.13: Evaluation of e (n) at a particular state.

Olmin :1 Max

Node

Bmax =1 Min
B Node

Max
C E Node

e(n) = 1 2 3
Pass - 1

Fig.4.14: Two-ply move of the MAXIMIZER with computed e(n) at the
fringe nodes: C, D, E; backed up values at node B and A and
setting of Olmax and PBrmin values at nodes A and B respectively.



Based on the above discussion, we now present the main steps in the o-f
search algorithm.

1) Create a new node, if it is the beginning move, else expand the
existing tree by depth first manner. To make a decision about the
selection of a move at depth d, the tree should be expanded at least
up to a depth (d + 2).

ii) Compute e(n) for all leave (fringe) nodes n in the tree.

iii) Compute O min (for max nodes) and B max values (for min nodes) at
the ancestors of the fringe nodes by the following guidelines.
Estimate the minimum of the values (¢ or o) possessed by the
children of a MINIMIZER node N and assign it its PBma value.
Similarly, estimate the maximum of the values (e or B) possessed
by the children of a MAXIMIZER node N and assign it its O min

value.
Olmin :l
A
Bmax =1
B Bmax = '1 F
C E
e(n) = 1 2 3 -1
Pass - 11

Fig. 4.15: A thinks of the alternative move F, and also mentally generates
the next ply move G; e(G) =-1;50 Pumax atF is —1. Now, PBumax
at F is less than Ounin of A. Thus there is no need to search below
F. G may be pruned from the search space.



Olmin :1

Bmax =1

B Bmax = '1 F

Olmin =2 C

e(n) = 2 -1 Pass 1 TII -1

Fig. 4.16: The node G has been pruned; The nodes C, D and E have been
expanded;The e(n) is estimated atn =H, I, J and K and the Otmin
values are evaluated at nodes C, D and E. Since the Oty value of
C is greater than the Bum.. value of B and Olmin value of D = B
value of B, there is no need to search below nodes C and D.

iv) If the MAXIMIZER nodes already possess Oimin values, then their
current Olmin value = Max (Omin Value, o min); on the other hand, if the
MINIMIZER nodes already possess Pmax values, then their current
Brmax value = Min (Bmax value, B max).



V) If the estimated B value of a MINIMIZER node N is less than the
Omin value of its parent MAXIMIZER node N then there is no need
to search below the node MINIMIZER node N. Similarly, if the
Olmin Value of a MAXIMIZER node N is more than the B, value of
its parent node N then there is no need to search below node N.

The above steps are continued until the game is over. If we call these five
steps together a pass, then the first three passes are shown in fig. 4.14-4.16.
The interested reader may on his own work out the tic-tac-toe game using the
definition of e (n) and the last 5 steps. We could not present it here because of
the page size of this book, which cannot accommodate large trees.

4.5 Conclusions

We presented a large number of search algorithms in this chapter. We started
with the breadth first and the depth first search algorithms and analysed their
complexities. It is clear from the analysis that the breadth first search is not
appropriate for large state space as the memory requirement is excessively
high. The depth first search algorithm works well for most of the typical Al
problems. Sometimes, we may not be interested to explore below a given
depth. The iterative deepening search is useful under this context. Recently,
the iterative deepening algorithm has been formulated in A* fashion and is
called the IDA* algorithm. The IDA* algorithm has a great future, as it has
been seriously studied by many researchers for realization on parallel
architecture [4]. We shall take up these issues in chapter 22.

Among the heuristic search algorithms presented in the chapter, the
most popular are A* and AO* algorithm. A* is used on a OR graph, while
AO* is employed in an AND-OR graph. The A* is applied in problems to
find the goal and its optimal path from the starting state in a state space,
while the AO* determines the optimal paths to realize the goal. Heuristic
search, since its inception, has remained an interesting toolbox for the
researchers working in Al. Recently, Sarkar et al. [8] extended the A*
algorithm for machine learning by strengthening the heuristic information at
the nodes of the state-space. We, however, do not have much scope to discuss
their work here.

Besides the search algorithms presented in the chapter, there exist a few
more problem solving techniques we introduced in chapter 1. These are
constraint satisfaction techniques, means and ends analysis and problem



reductions. Constraint satisfaction techniques, being an emerging research
area, will be presented in detail in chapter 19. Means and ends analysis and
problem reduction techniques, on the other hand, are available in most text
books [7] and we omit these for lack of space.

Exercises

1. Using the Euclidean distance of a node (x, y) from a fixed node (2, 2),
ie.,

h=[(x-2"+(y-2°1"

solve the water-jug problem by paper and pencil by A* algorithm. Does
this heuristic function return an optimal path? Consequently, can you call
it an admissible heuristic?

The 8-puzzle problem is similar to the 4-puzzle problem we discussed in
chapter 1. The only difference is that there exist 9 cells and 8 tiles instead
of the 4 cells and 3 tiles of a 4-puzzle problem. Can you select a heuristic
function for the 8-puzzle problem? Solve the 8-puzzle problem by the A*
algorithm with your selected heuristic function.

Show the computation for the first 3 ply moves in a tac-tac-toe game using
the o-B cut-off algorithm.

Consider a room whose floor space is partitioned into equal sized blocks.
Suppose there is a mobile robot (MR) in one block, and we want to move
to a distant block. Some of the blocks are occupied with obstacles. The
robot has to plan its trajectory so that it reaches the goal position from a
given initial position without touching the obstacles. Can you design a
heuristic function for the problem? If yes, solve the problem using the A*
algorithm on a graph paper. Assume the location of the obstacles and the
starting and the goal positions.
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The Logic of
Propositions and
Predicates

The chapter presents various tools and techniques for representation of
knowledge by propositions and predicates and demonstrates the scope of
reasoning under the proposed framework of knowledge representation. It
begins with the syntax and semantics of the logic of propositions, and then
extends them for reasoning with the logic of predicates. Both the logic of
propositions and predicates require the formulation of a problem in the form
of a logical theorem and aim at proving it by the syntactic and the semantic
tools, available in their framework. The ‘resolution principle’ is the most
common tool that is employed for reasoning with these logics. To prove a
goal, complex sentences are first represented in ‘clause forms’ and the
principle of resolution is employed to resolve the members of a given set,
comprising of the axiomatic rules (clauses) and the negated goal. One main
drawback of the predicate logic lies in its semi-decidablity that fails to
disprove a statement that does not really follow from the given statements.
The chapter discusses all these in detail along with the formal proofs of
‘soundness’ and ‘completeness’ of the resolution principle.



5.1 Introduction

Production systems, covered in chapter 3, has been successfully used for
reasoning in many intelligent systems [1],[6]. Because of its inherent
simplicity, it has been widely accepted as a fundamental tool to knowledge
representation. The efficiency of production systems, however, degrades with
the increase in complexity of knowledge in real world problems. For instance,
a production system does not support simple rules like if (X is a son of Y )
OR ( X is a daughter of Y)) then (Y is a father of X). The logic of
propositions (also called propositional logic) is an alternative form of
knowledge representation, which overcomes some of the weakness of
production systems. For instance, it can join simple sentences or clauses by
logical connectives to represent more complex sentences. Due to the usage of
logical connectives, propositional logic is sometimes called logical calculus.
However, it needs mention that such logic has no relevance with Calculus, the
popularly known branch of mathematics. This chapter will be devoted to
representing knowledge with propositional logic. Generally, the reasoning
problems in propositional logic are formulated in the form of mathematical
theorems. For instance, given two facts : i) Birds fly, ii) Parrot is a bird, and
one has to infer that parrot flies. This can be formally stated in the form of a
theorem: given the premises birds fly and parrot is a bird, prove that parrot
flies. We can now employ tools of propositional logic to prove (or disprove)
the theorem. The chapter presents various tools and techniques for theorem
proving by propositional logic.

Predicate Logic (also called first order predicate logic or simply first
order logic or predicate calculus) has similar formalisms like the propositional
logic. It is more versatile than the propositional counterpart for its added
features. For instance, it includes two quantifiers, namely, the essential
quantifier (V) and the existential quantifier (3) that are capable of handling
more complex knowledge.

The chapter is organized as follows. It starts with a set of formal
definitions and presents the methodology of knowledge representation by
propositional logic. It then covers the semantic and syntactic methods of
theorem proving by propositional logic. Next predicate logic is introduced
from the first principles, and a method to represent large sentences in clause
form is described. Later two fundamental properties of predicate calculus: the
unification algorithm and the resolution principle, which are useful for
theorem proving, are introduced. The issues of soundness and completeness
are discussed briefly in the chapter.



5.2 Formal Definitions

The following definitions, which will be referred to occasionally in the rest of
the book, are in order.

Definition 5.1: A connective is a logical operator that connects simple
statements for constructing more complex statements.

The list of connectives in propositional logic and their meaning is tabulated
below.

Table 5.1: Connectives in propositional logic

Operators Notations
AND A

OR v
Negation -, ~

If p then q p—>q
If pthen q and

if q then p peq
Implication =

Bi-directional
Implication (IFF) <

Identity

Logical entailment |
|>

Derivability

It should be noted that AND and OR operators are sometimes
referred to as conjunction and disjunction respectively. It may further be
added that the provability and implication symbols have been used in an
interchangeable manner in this book. The author, however, has a strong
reservation to use implication symbol in place of if-then operator and vice
versa [3]. The symbol “x |-y ” implies that y has been derived from x by
Jollowing a proof procedure. The logical entailment relation: “x 'y ” on
the other hand means that y logically follows from x.



Definition 5.2: A proposition is a statement or its negation or a group of
statements and/or their negations, connected by AND, OR and If-Then
operators.

For instance,

p )

it-is-hot, the-sky-is-cloudy ,
it-ischot A the-sky-is-cloudy,
it-is-hot — the-sky-is-cloudy

are all examples of propositions.

Definition 5.3: When a statement cannot be logically broken into smaller
statements, we call it atomic.

For example, p, q, the-sky-is-cloudy are examples of atomic propositions.

Definition 5.4: A proposition can assume a binary valuation space, i.c.,
for a proposition p, its valuation space v (p) € {0,1}.

Definition 5.5: Let r be a propositional formula, constructed by
connecting atomic propositions p, q, s, etc. by operators. An interpretation
for r is a function that maps v (p), v (q) and v (s) into true or false values that
together keep r true.

For example, given the formula: p A q. The possible interpretation is
v(p) = true and v (q) =true. It may be noted that for any other values of p and
q the formula is false.

There may be more than one interpretation of a formula. For instance,
the formula: — p V q has three interpretations given below.

Interpretations:
{v (p) = true, v (q) = true}, {v (p) = false, v (q) = false}, and
{v (p) = false, v (q) = true}.

Definition 5.6: A propositional formula is called satisfiable if its value is
true for some interpretation [2].

For example the propositional formula p \VV q is satisfiable as it is true
for some interpretations {v (p) = true, v (q) = true}, {v (p) = false, v (q) =
true} and {v(p) = true, v (q) =false}.

Generally, we use | p to denote that p is satisfiable.



Definition 5.7: A propositional formula is unsatisfiable or contradictory
if it is not satisfiable, i.e., for no interpretation it is true.

Definition 5.8: A propositional formula is called valid or tautology,
when it is true for all possible interpretations.

For example, (pAq)Ar= pA (qA r)is a tautology, since it is
true for all possible v (p), v (q) and v (r) € { 0,1}. Here we have 8 possible
interpretations for the propositional formula, for which it is true.

The sub-sethood relationship of all formulas, and satisfiable and valid
formulas is presented in Venn diagram 5.1

All formula

Satisfiable

Valid c Satisfiable, Satisfiable < All formula,
Unsatisfiable = All formula — Satisfiable.

Fig. 5.1: Sub-sethood relationship of valid, satisfiable and all formulas.
5.3 Tautologies in Propositional Logic

The tautologies [1] may be directly used for reasoning in propositional logic.
For example, consider the following statements.

p1 = the-sky-is-cloudy, p, = it-will-rain, and p; =if (the-sky-is-
cloudy) then (it-will-rain) = p; — pa.

“p1” and “p,” above represent premise and conclusion respectively for the if-
then clause. It is obvious from common sense that p, directly follows from p;



and ps. However to prove it automatically by a computer, one requires help of
the following tautology, the proof of which is also given here.

ps = p1 = P2
=—(p1 A —p2), since p; true and p, false cannot occur together.

=—-p V2 (by De Morgan’s law)

However, to prove p, from p; and p; we have to wait till example 5.1.
List of tautologies in propositional logic

- p=p
pAg=qA p

pVq= qVp

- (PA q)Ar= pA (@A 1)
.pVqQVr= pV(qVr)

.pPA (QVr)= pA @QV(pA T
-pV(@@A D= PVYA (pVr)
(P AQ@=-pV—q

- (pVg=-pA-gq

.pV p=rp

-PA p=p

-pPAq—p

.pPAq—q

I N

[
A WO = O

.p—> pVq
.q—> pVq

—_
(9]

5.4 Theorem Proving by Propositional Logic

We present here two techniques for logical theorem proving in propositional
logic. These are i) Semantic and ii) Syntactic methods of theorem proving.



5.4.1 Semantic Method for Theorem Proving

The following notation will be used to represent a symbolic theorem, stating
that conclusion “c” follows from a set of premises pi ,pz2, ..., Pn

P, P2, . Pn=C or Pi, P25 -5 Pn |: C

In this technique, we first construct a truth table representing the relationship
of p; through p, with “c”. Then we test the validity of the theorem by
checking whether both the forward and backward chaining methods, to be
presented shortly, hold good. The concept can be best illustrated with an
example.

Example 5.1: Let us redefine p;= the-sky-is-cloudy, p, = it-will-rain and
ps = p1— p2 to be three propositions. We now form a truth table of py, p2
and ps, and then attempt to check whether forward and backward chaining
holds good for the following theorem:

P, P3 = P2

Table 5.2: Truth Table of pi, p2, and p1 — p>.

p1 P2 Pps Epi— P2

= plVp2
0 0 1
0 1 1
1 0 0
111

Forward chaining: When all the premises are true, check whether the

conclusion is true. Under this circumstance, we say that forward chaining
holds good.



In this example, when p; and ps are true, check if p, is true. Note that in
the last row of the truth table, py = 1, p; = 1 yield p, = 1. So, forward
chaining holds good. Now, we test for backward chaining

Backward chaining: When all the consequences are false, check whether at
least one of the premises is false.

In this example p, = 0 in the first and third row. Note that when p, = 0,
then p; = 0 in the first row and p; = 0 in the third row. So, backward chaining
holds good.

As forward and backward chaining both are satisfied together, the
theorem: pi, ps = p- also holds good.
Example 5.2: Show that for example 5.1, ps, ps =/> pi.

It is clear from the truth table 5.2 that when p,;=0, then p,=0 (first row ) and
ps = 1 (first row), backward chaining holds good. But when p,= p; =1, p;=0
(second row), forward chaining fails. Therefore, the theorem does not hold
good.

5.4.2 Syntactic Methods for Theorem Proving

Before presenting the syntactic methods for theorem proving in propositional
logic, we state a few well-known theorems [4], which will be referred to in the
rest of the chapter.

Standard theorems in propositional logic

Assuming p, q and r to be propositions, the list of the standard theorems is
presented below.

ppq=pAgq

p,p 2 q = q (Modus Ponens)
-p, pVq=4q

—q, p—>q = —p (Modus Tollens)
pVqp—orngor=r

p— q, q =>r = p—> r (Chaining)

O o A

P, p—>q q—>r=1 (Modus Ponens & Chaining)



8. pV (@ A —-q & p

9. pA (V=9 p

10. p>q&e —-pVgq

. =(p—> 9= pA —q
12.peqe (p—>9 A@—p)
13.pegqe AV (=p Aq)
14. pr— @ ne P Ag-or

15. p>q & —q— —p (contraposition theorem)

The syntactic approach for theorem proving can be done in two ways,
namely, i) by the method of substitution and ii) by Wang’s algorithm.

5.4.2.1 Method of Substitution

By this method, left-hand side (or right-hand side) of the statement to be
proved is chosen and the standard formulas, presented above, are applied
selectively to prove the other side of the statement.

Example 5. 3: Prove the contraposition theorem.

The contraposition theorem can be stated as follows. When p and q are two
propositions, the theorem takes the form of p>q& —q— —p.

Now, L.HS. = p—>gq
=-pV q [by(10)]
= q V=p
=29V ap

Analogously, starting with the R.H.S, we can easily reach the L.H.S. Hence,
the theorem bi-directionally holds good.

Example 5.4: Prove theorem (14) by method of substitution.

Proof: LHS. = p—> (q— 1)



= p=> (= qV n [by(10)]

=-pV(=qVn [by(10)]
= (=wpV=qVr [since this is a tautology by (5)]

= a(pArqQVr [by De Morgan’s law]
= (A1  [by(10)]

= RHS.

Analogously, the L.H.S. can be equally proved from the R.H.S. Hence, the
theorem follows bi-directionally. i

5.4.2.2 Theorem Proving by Using Wang’s Algorithm

Any theorem of propositional logic is often represented in the following form:
Pi,P2, -« Pn = q1, 92, -5 (m

where pi and q; represent propositions. The comma in the L.H.S. represents
AND operator, while that in the R.H.S. represents OR operator. Writing
symbolically,

PPAPA AP = q V@ V.. Vg

This kind of theorem can be easily proved using Wang’s algorithm [10]. The
algorithm is formally presented below.

Wang’s algorithm

Begin
Step I: Starting condition: Represent all sentences, involving only A, V
and — operators.

Step II: Recursive procedure: Repeat steps (a), (b) or (c) whichever is
appropriate until the stopping condition, presented in step III,
occurs.

a) Negation Removal: In case negated term is present at any side
(separated by comma) bring it to the other side of implication symbol
without its negation symbol.

c.g., p,q, 0 I = 8

Fp, g = 1,58



b) AND, OR Removal: 1f the L.H.S. contains A operator,
replace it by a comma. On the other hand if R.H.S. contains V
operator, also replace it by a comma.

e.g., pATILrLs = sVt

|=p,rasz> Sst

¢) Theorem splitting: 1f the L.H.S. contains OR operator, then
split the theorem into two sub-theorems by replacing the OR
operator. Alternatively, if the R.H.S. contains AND operator, then
also split the theorem into two sub-theorems.

eg, pVr= st
= p_:> s, t & 1r = s, t . Sub-theorems
eg, pr = s At

-pr=s & pr= t . Sub-theorems

Step III: Stopping Condition: Stop theorem proving process if either of (a)
or (b), listed below, occurs.

a) If both L.H.S. and R.H.S. contain common atomic terms,
then stop.

b) If L.H.S. and R.H.S. have been represented as a collection of
atomic terms, separated by commas only and there exist no
common terms on both sides, then stop.

End.

In case all the sub-theorems are stopped, satisfying condition III (a), then
the theorem holds good. We would construct a tree structure to prove theorems
using Wang’s algorithm. The tree structure is necessary to break each theorem
into sub-theorems.

Example 5. 5: Prove the chaining rule with Modus Ponens using Wang’s
algorithm.



Proof: The chaining rule with Modus Ponens can be described as

p, P49 q>r =1

where p, q and r are propositions (atomic).

We now construct the tree. A node in the tree denotes one propositional
expression. An arc in the tree denotes the step of Wang’s algorithm, which is
applied to produce the next step. The bold symbols in both the left- and right-
hand side of the implication symbol describe the termination of the sub-tree

by step 111 (a).

p, P> q q2r =1

By I

P, pVv(Qq HqQVIr=r

By Il (¢)

Byll(c)

p, °pv(q nq=r1

p, °pvq r=r

Byll(¢)

By Il (c) By III (a)

p, 7p, °q=T71

p, o 7q=7r1

By II (a)

p, /9= p,

T

By Ili(a)

Fig. 5.2: Tree used to prove a propositional theorem by Wang’s algorithm.

By Il (a)

p.q = q, T

By III(a)



Since all the terminals of the tree have been stopped by using III (a), the
theorem holds good. O

5.5 Resolution in Propositional Logic

The principle of resolution in propositional logic can be best described by the
following theorem [7].

Resolution theorem: For any three clauses p, q and r,
pv I, qv—ar = pvq.
Proof: The theorem, which can be proved by Wang’s algorithm, is left as an

exercise for the students. m]

The resolution theorem can also be used for theorem proving and hence
reasoning in propositional logic. The following steps should be carried out in
sequence to employ it for theorem proving.

Resolution algorithm

Input: A set of clauses, called axioms and a goal.
Output: To test whether the goal is derivable from the axioms.

Begin
1. Construct a set S of axioms plus the negated goal.

2. Represent each element of S into conjunctive normal form (CNF) by the
following steps:
a) Replace ‘if-then’ operator by NEGATION and OR operation by
theorem 10.

b) Bring each modified clause into the following form and then drop
AND operators connected between each square bracket. The clauses
thus obtained are in conjunctive normal form (CNF). It may be
noted that p; may be in negated or non-negated form.

[ Pt V P2V ... Vpln]/\

[Pz VvV p22v..... ... V P ] A



3. Repeat

a) Select any two clauses from S, such that one clause contains a
negated literal and the other clause contains its corresponding
positive (non-negated) literal.

b) Resolve these two clauses and call the resulting clause the
resolvent. Remove the parent clauses from S.

Until a null clause is obtained or no further progress can be made.
4. If anull clause is obtained, then report: “goal is proved”.

The following example illustrates the use of resolution theorem for reasoning
with propositional logic.

Example 5.6: Consider the following knowledge base:

1. The-humidity-is-high v the-sky-is-cloudy.
2. If the-sky-is-cloudy then it-will-rain

3. If the-humidity-is-high then it-is-hot.

4. it-is-not-hot

and the goal : it-will-rain.

Prove by resolution theorem that the goal is derivable from the knowledge
base.

Proof: Let us first denote the above clauses by the following symbols.

p = the-humidity-is-high, q = the-sky-is-cloudy, r = it-will-rain, s = it-
1s-hot.
The CNF form of the above clauses thus become

l.pvgq
2. aqvr
3.apvs
4. s

and the negated goal = — 1. Set S thus includes all these 5 clauses. Now by
resolution algorithm, we construct the graph of fig. 5.3. Since it terminates
with a null clause, the goal is proved.



pvq

—qQVvr

pvr

1 pVvs

Fig. 5.3: The resolution tree to prove that it-will-rain.

5.6 Soundness and Completeness

Soundness and completeness are two major issues of the resolution algorithm.
While soundness refers to the correctness of the proof procedure, completeness
implicates that all the possible inferences can be derived by using the
algorithm. Formal definitions of these are presented here for convenience.

Definition 5.9: A proof process is called sound, if any inference o has
been proved from a set of axioms S by a proof procedure, i.c., Sta,

follows logically from S, i.e., SFa.

0




Definition 5.10: A proof process is called complete, if for any inference
o, that follows logically from a given set of axioms S, i..e., S o, the proof
procedure can prove Q. i.e., Sko.

Theorem 5.1: The resolution theorem is sound.

Proof: Given a set of clauses S and a goal o.. Suppose we derived o from S
by the resolution theorem. By our usual notation, we thus have S F o.. We
want to prove that the derivation is logically sound, i.e., S |- .. Let us prove
the theorem by the method of contradiction. So, we presume that the
consequent S |- o is false, which in other words means S |- — o. Thus — o is
satisfiable. To satisfy it, we assign truth values (true / false) to all
propositions that are used in . We now claim that for such assignment,
resolution of any two clauses from S will be true. Thus the resulting clause
even after exhaustion of all clauses through resolution will not be false. Thus
S + a is a contradiction. Hence, the assumption S |- — « is false, and
consequently S |- a is true. This is all about the proof [5]. O

Theorem 5.2: The resolution theorem is complete.

Proof: Let o be a formula, such that from a given set of clauses S, we have
S |- a, i.e., o can be logically proved from S. We have to show there exists a
proof procedure for ., i.e., S - o

We shall prove it by the method of contradiction, i.e. let S+ a not
follow, i.e., S F —o.. In words o is not derivable by a proof procedure from S.
Therefore, S| = S U o is unsatisfiable. We now use an important theorem,
called the ground resolution theorem, that states “if a set of ground clauses
(clauses with no variables) is unsatisfiable, then the resolution closure of those
clauses contains the ‘false’ clause. Thus as S; is unsatisfiable, the resolution
closure of S; yields the null clause, which causes a contradiction to S I o.
Thus the assumption is wrong and hence S |- o is true. O

We now prove the ground resolution theorem, stated below.

Theorem 5.3: If a set of ground clauses S is unsatisfiable, then the
resolution closure T of those clauses contains the false clause.

Proof: We prove the theorem by the method of contradiction. So, we
presume that resolution closure T does not contain false clause and will
terminate the proof by showing that S is satisfiable.



Let As = {Ay, Az, ..... ,An} be the set of atomic sentences occurring in S.
Note that A, must be finite. We now pick up an assignment (true / false) for
each atomic sentence in As in some fixed order {A,, A, ....Ax} such that

1) if a clause in T contains — A, with all its other literals connected
through OR being false, then assign A; to be false.
ii) Otherwise, assign A; to be true.

We can easily show that with this assignment, S is satisfiable, if the closure
T of S does not contain false clause [9]. O

5.7 Predicate Logic

Predicate logic (also called first order predicate logic) has a similar formalism
like propositional logic. However, the capability of reasoning and knowledge
representation using predicate logic is higher than propositional logic. For
instance, it includes two more quantifiers, namely, the essential quantifier (V)
and the existential quantifier (). To illustrate the use of the quantifiers, let us
consider the following pieces of knowledge.

Knowledge 1 : All boys like sweets.

Using predicate logic, we can write the above statement as

V X (Boy (X) — Likes (X, sweets))
Knowledge 2 : Some boys like flying kites.

Using predicate logic, the above statement can be represented as

JX (Boy (X) —» Likes (X, Flying-kites))

Before describing predicate logic (PL) or first order logic (FOL) in a
formal manner, we first present the alphabets of FOL.

Alphabets of FOL
The alphabets of FOL are of the following types:



1. Constants: a, b, ¢

2. Variables: X,Y,Z

3. Functions: f, g h

4. Operators: A,v,—,—
5. Quantifiers: V , 3

6. Predicate: P, Q,R

Definition 5.11: A term is defined recursively as being a constant,
variable or the result of application of a function to a term.

e.g., a,Xx, t(x), t(g(x)) are all terms.

To illustrate the difference between functions and predicates, we give their
formal definitions with examples.

Definition 5.12: Function denotes relations defined on a domain D. They
map n elements (n >0) to a single element of the domain. “father-of”, “age-of”
represent function symbols. An n-ary function is written as f(ti, t,.., t.) where
ti s represent terms. A O-ary function is a constant [7].

Definition 5.13: Predicate symbols denote relations or functional
mappings from the elements of a domain D to the values true or false. Capital
letters such as P,Q, MARRIED, EQUAL are used to represent predicates. P(t,
t2, ..., ta) represents an n-ary predicate where t; are terms. A O-ary predicate is a
proposition, that is a constant predicate.

Definition 5.14: The sentences of FOL are well-formed-formulas (WFF),
defined as follows:

1. If P(t,t, ..., t) is an n-ary predicate, then P is an atomic formula.

2. An atomic formula is a well-formed formula (WFF).

3. IfPand Q are WFFthenP A Q,Pv Q,—P, P — Q are all WFF.
Note that VX R (X) is also an WFF.



4. IfPis a WFF and X is not a quantified variable in P, then P remains a
WFF even after quantification

e.g., VX P or IX P are WFF.
Example 5.7: Rewrite the following sentences in FOL.
Coconut-crunchy is a biscuit.

Mary is a child who takes coconut-crunchy.

John loves children who take biscuits.
John loves Mary.

EESOS I Sl

The above statements can be represented in FOL using two quantifiers
X & Y.

1. Biscuit (coconut-crunchy)

2. Child (mary) A Takes (mary, coconut-crunchy)

3. VX ((Child (X) A3JY (Takes (X, Y) A Biscuit (Y ))) —>Loves
(john, X)

4. Loves (john, mary)

5.8 Writing a Sentence into Clause Forms

We now present a technique for representing a complex sentence into
simple sentences. The technique is described below. As an example, we
consider statement 3 for conversion into clause forms. The resulting
expressions after application of each step are presented following the step.

Algorithm for representing a sentence into clauses

Step I: Elimination of if-then operator: Replace “—” operator by —
& v operator.

By replacing ‘if-then’ operator by negation and OR operator, in expression (3)
above, we find:

V X (= (Child (X) A Y (Takes (X, Y) A Biscuit (Y))) v Loves (john, X)

Step II: Reduction of the scope of negation: Replace — sign by choosing
any of the following:

a)—|(P VQ):—|P /\—|Q

b) —|(P/\Q):—|P \4 —|Q



C) —|(—|P):P

In the present context, we rewrite the sentence as
V X (= Child (X) v = (Y (Takes (X, Y) A Biscuit (Y))) v Loves (john, X))

=VX (= Child (X) v VY (= Takes (X,Y)v —Biscuit(Y))v Loves
(john, X))

Step III: Renaming the variables within the scope of quantifiers:
Rename 3X by 3 Y when {3 X} is a subset/ proper subset of {V X}. In
the present context, since X and Y are distinct, the above operation cannot be
carried out.

Step IV: Moving of quantifiers in the front of the expression: Bring all
quantifiers at the front of the expression.

Applying this on the example yields:

=V XV Y — Child (X) v — Takes (X,Y) v — Biscuit (Y) v Loves (john, X)

Step V: Replacing existential quantifier as Skolem function of essential
quantifiers: When an existential quantifier (Y) precedes an essential quantifier
(X), replace Y as S (X), where S is the Skolem function [3]. In this example,
since Y is not a subset of X, such a situation does not arise. Also the essential
quantifier is dropped from the sentence.

Step VI: Putting the resulting expression in conjunctive normal form
(CNF): For example, if the original expression is in the form P v (Q A R),
then replace it by (P v Q) A (P v R).

In the present context, the resulting expression corresponding to

expression (3) being in CNF, we need not do any operation at this step.

Step VII: Writing one clause per line: If the original expression is of the
following CNF, then rewrite each clause/ line, as illustrated below.



original expression:
(—|P1| VvV = P]z ...\/—|P1n\/Q11 \/Q|2.... VQ]m)/\

(—| P21 VvV = P22 . V.7 Pzn \Y Q21 \Y sz . V sz) A

(wPav=aPo.. vaPuavQuVv Qg.. VvV Qum).

After writing one clause per line, the resulting expressions become as follows.
P11, Pia,..; Pia = Qui, Quz,ee ,.Qim

P21, P, yPon = Qai, Qz,eee, Qom

Py, Po,..., Pu— Qu, Qu,..... , Qum

With reference to the above, we get the following line as the final expression.
Child (X), Takes (X, Y), Biscuit (Y) — Loves (john, X).

It may be noted that the resulting expression, derived above, is not much
different from the expression (3). This, however, is not the case for all
complex sentences. For example, let us consider the following complex
sentence and the clause forms corresponding to that.

Expression: V X ( Loves (john, X) - Female (X))
Ad X (= Loves (X, Brother-of (X) A Female (X)))

The clause forms for the above expression are:

a) Loves (john, X) — Female (X)
b) Loves (s(X), Brother-of (s (X))), Female (X) »> |

where the meaning of the first clause is obvious, while the second clause
means that it is impossible that there exists a female X, who loves her
brother. The inverted T is called a Falsum operator, which is opposite to
Truam (T), meaning that the expression is true [2]. The symbol s(X) denotes a
Skolem function of X, which may be read as some of X.



5.9 Unification of Predicates

Two predicates P (t,ts,..., ta) and Q (si, Sa,..., S») can be unified if terms t;
can be replaced by s; or vice-versa.

Loves (mary, Y) and Loves (X, Father-of (X)) , for instance, can be unified by
the substitution S ={ mary / X, Father-of (mary)/Y }.

Conditions of Unification:

i)  Both the predicates to be unified should have an equal number of terms.

ii) Neither t; nor s; can be a negation operator, or predicate or functions of
different variables, or if t; = term belonging to s; or if s; = term belonging
to t; then unification is not possible.

The Unification Algorithm

Input: Predicates P(ti, tz,..., t) and Q(s1,S2,...,5m)
Output: Decision whether the predicates P and Q are unifiable
and a set S that includes the possible substitution.
Procedure Unification (P, Q, S, unify)
Begin
S:= Null;
While P and Q contain a Next-symbol do
Begin
Symbl: = Next-symbol (P);
Symb2: = Next-symbol (Q);
If Symbl # Symb2 Then do
Begin Case of
Symb1 or Symb2 = Predicate: Unify: = fail;
Symbl = constant and symb2 = different-constant: Unify: = fail;
Symbl1 or Symb2 = — : Unify: = fail;
Symb1 and Symb2 = function: Unify: = fail;
Symbl=variable and Symb2 =term and variable € term: Unify: = fail;
Symb2=variable and Symbl=term and variable € term: Unify: = fail;
Else If Symbl = variable or constant and Symb2 =term Then do
Begin
S: =S v {variable or constant / term};
P: = P[variable or constant / term];
End;
Else If Symb2 = variable or constant and Symb1 =term Then do
Begin



S: =S v {variable or constant / term};
Q: = P[variable or constant / term];
End;
End Case of;
End while;
If P or Q contain a Next-symbol Then Unify: = fail
Else Unify: = Success;
End.

5.10 Robinson’s Inference Rule

Consider predicates P, Q;, Q, and R. Let us assume that with appropriate
substitution S, Q;[S] = Q2 [S].

Then (P v Qi) A (Q2v R) with Q,; [S] = Q2 [S] yields (P v R)[S].

Symbolically, PV Qu—-Qav R Q[S] =Q, [S]
(Pv R)I[S]

The above rule is referred to as Robinson’s inference rule [8]. It is also
referred to as the resolution principle in predicate logic. The following
example illustrates the rule.

Let P = Loves (X, father-of (X)),

Q= Likes (X, mother-of (X))),

Q, = Likes( john, Y),

R = Hates (X, Y).
After unifying Q, and Q,, we have
Q= Q, = Q, =Likes (john, mother-of (john))
Where the substitution S is given by
S= { john /X, mother-of (X) / Y}
= {john / X, mother-of (john) / Y}.

The resolvent (P v R) [s] is, thus, computed as follows.
(PVvR)[S]
=Loves (john, father-of (john)) v hates (john, mother-of(john)).



5.10.1 Theorem Proving in FOL with Resolution Principle

Suppose, we have to prove a theorem Th from a set of axioms. We denote it
by

{ A, Ay, ..., An} Th
Let

A, = Biscuit (coconut-crunchy)
A, = Child (mary) A Takes (mary, coconut-crunchy)

A;=V X (Child(X) A 3Y (Takes (X,Y) A Biscuit (Y))) —
Loves (john, X)

and Th = Loves (john, mary) = A, (say).

Now, to prove the above theorem, we would use Robinson’s inference
rule. First of all, let us express A; through A4 in CNF. Expressions A; and A4
are already in CNF. Expression A, can be converted into CNF by breaking it
into two clauses:

Child (mary) and
Takes (mary, coconut-crunchy).

Further, the CNF of expression Aj; is
—Child (X) v —Takes (X,Y) v —Biscuit (Y) v Loves (john, X)

It can now be easily shown that the negation of the theorem (goal) if
resolved with the CNF form of expressions A; through Aj, the resulting
expression would be a null clause for a valid theorem. To illustrate this, we
will now form pairs of clauses, one of which contains a positive predicate,
while the other contains the same predicate in negated form. Thus by
Robinson’s rule, both the negated and positive predicates will drop out and
the value of the variables used for unification should be substituted in the
resulting expression. The principle of resolution is illustrated below (fig. 5.4)
to prove the goal that Loves (john, mary).

5.11 Different Types of Resolution

The principle of resolution can be extended to different forms. But an over-
extension may cause fatal errors. This section illustrates the diversified use of
the resolution principle with the necessary precautions to avoid the scope of
mistakes by the beginners.



— Loves (john, mary) —Child (X) v —Takes
(X,Y) v —Biscuit (Y) v
Loves (john, X)

N

—Child ( mary ) v
—Takes (mary, Y) v Biscuit (coconut-
—Biscuit (Y) crunchy)

N

—Child (mary) v
—Takes ( mary, Child (mary )
coconut-crunchy)

N

—Takes (mary, Takes (mary,
coconut-crunchy) coconut-crunchy)

0

Fig 5.4: A resolution graph to prove that Loves (john, mary).

5.11.1 Unit Resulting Resolution

Typical resolutions, where two clauses of the form (p v — q) and (q v 1) are
resolved to generate ( p v r), are called binary resolutions. The definition,



though illustrated with propositions, is equally valid for predicates. On the
other hand, when more than two clauses are resolved simultaneously to
generate a unit clause, we call it a unit resolution. Under this circumstance,
all excluding one input clause are unit clauses, and the remnant clause has as
many literals as the number of unit clauses plus one. For example, consider
the following clauses:

Father (Y, Z) v —Married ( X, Y) v — Mother (X, Z)

—Father (a, b).

Married (c, a)

Resolving these three clauses simultaneously yields the unit clause:

—Mother (c, b), where the set of instantiation S is given by
S={a/Y,c/X, b/Z}.

5.11.2 Linear Resolution

Suppose two clauses Cl,, Cl, are resolved to generate Cls, then Cl; and Cl, are
called the parents of Cl;. Now, for i = 1 to n, if Cl; is the parent of Cl;. |,
then the resolution process by which Cl, + ; is generated is called linear
resolution. When one of the parents in linear resolution comes from the given
set of CNF clauses, we call it linear input resolution [7].

5.11.3 Double Resolution: A Common Mistake

Sometimes more than one literal is present with opposite signs in two CNF
clauses. For instance consider the following two clauses.

pv-oqvVvr
and —-pVv qVvs.

Resolving the above clauses twice, we may derive r v s, which is
incorrect. To understand the implication of this, let us represent these rules in
the following format:

qopvr
and p— qVs.

Replacing p in the first clause by the second clause, we have

q— qVvsvVv r,



which implies that if q is true then either q or r or s is true, but this does not
mean (q v 1) only is true.

A simpler but interesting example that illustrates the scope of mistakes
in double resolution is given below. Let us consider the following clauses:

—pVvq
and —qVvDp

Resolving these twice yields a null clause, which is always false. But
the above system comprising of { p— q, q—p} implicates p—p and q — q
by chain rule, which in no way supports the falsehood of the resulting clause
after resolution [3].

5.12 Semi-decidability

A logic is called decidable if there exists a method by which we can correctly
say whether a given formula is valid or invalid. Readers may remember that
validity of a formula o means satisfiability of the formula for all possible
interpretations. A sound and complete proof method is able to prove the
validity of a formula [3]. But if the formula is invalid, the proof procedure (by
resolution principle or otherwise) will never terminate. This is called semi-
decidablity. FOL is semi-decidable, as it is unable to prove the invalidity of a
formula.

5.13 Soundness and Completeness

The issues of soundness and completeness of the resolution principle for
propositional logic have already been discussed in a previous section. This
section discusses these issues for predicate logic. To prove the completeness
of the resolution theorem of predicate logic, the following definitions and
theorems are presented in order.

Definition 5.15: The Herbrand Universe (Hs) for a given set of clauses S
is defined as the set of all possible ground terms, constructed by replacing the
variables in arguments of functions by the same or other functions or
constants, so that they remain grounded (free from variables) after substitution.
It is to be noted that Hs is an infinite set [9].

For example, suppose that there exists a single clause in S, given by

QX, fX,a))AP(X,a) » R(X,b)



where {a, b} is the set of constants, {X} is a set of variables, {f} is a set of
functions, {P, Q, R} is a set of predicates. Here Hs = {a, b, f(a, a), f (b, a),
f(a, f(a, a), f(a,f(a,b))...... } 1s an infinite set.

Definition 5.16: Let S be a set of clauses and P be the set of ground
terms. Then P (S), the saturation of S with respect to P, is defined [9] as the
set of all ground clauses obtained by applying all possible consistent
substitutions for variables in S with the ground terms in P.

For example, let P = {a, b, f(a, b)} and S= {Q (X, f (X, a)) A P( X, a) —>
R (X, b)}. Then P (S) is computed as follows.

P (S)={Q(a, f(a,a)) AP(a,a) > R (a, b),
Q(, f(b,a)) A P(b,a) > R (b, b),
Q(f(a, b), f(f(a, b), a)) A P(f(a, b), a) > R (f(a, b), b)}

Definition 5.17: The saturation of S, a set of clauses with respect to the
Herband universe Hs, is called the Herbrand base Hs (S).

For example, with S= {Q (X, f(X,a)) AP(X,a) > R (X, b) }, Hs = {a
’b?
f(a, a), f (a, b), f (f (a, a), a), f (f (a, b), a).....}, we find Hg (S) as follows.

Hs (S)= {Q(a, f(a, a)) AP(a,a) > R (a, b),
Q(b, f(b,a)) A P(b,a) > R (b, b),
Q(f(a,b), f(f(a, b),a)) A P(f(a, b),a) > R (f (a, b), b),

Q (f(f(a, b), a), f(f(f(a, b), a), a)) A P(f(f(a, b), a), a) >
R (f(f (a, b), a), b)}
It may further be noted that Hs (S) too is an infinite set.

The following two theorems will be useful to prove the completeness of the
resolution theorem. The proofs of these theorems are beyond the scope of this
book and are thus excluded.

Herbrand’s Theorem: If a set of clauses S is unsatisfiable, then there
must exist a finite subset of Herband base Hs (S) that too is unsatisfiable [ 5].

Lifting Lemma: Given that C; and C; are two clauses with no shared
variables. Further given that C, and C, are the ground instances of C; and
C; respectively. If C_ is a resulting clause due to resolution of C; and C,
then there exists a clause C that satisfies the following criteria:



i) C is resulting clause due to resolution of Cl and C2, and
ii) C_ is a ground instance of C [9].

For example, let

Ci=QX, f(X,a) AP(X,c) > R(X, D)
C,=W(f(f(a,b),a),Z)—>P(f(a,Y),2Z)
Ci=Q(f(a,b),f(f(a,b),a)) AP(f(a,b),c) >R (f(a,b),b)
C=W(f(f(a,b)a),c)—>P(f(a,b),c)

Now, C=Q (f(a, Y), f(X,a) AW (f(f(a,b),a),Z) - R(f(a, Y),b)
and C =Q(f(a,b), f(f(a,b),a)) AW(f(f(a,b),a),c) - R(f(a,b),b)
Thus we found C_ as a ground instance of C.

Let us now prove the completeness theorem of predicate logic.

Theorem 5.4: The resolution theorem of predicate logic is complete.

Proof: Given a set of clauses S and a formula o such that S l-o.. We have

to prove that S F o, i.e. there exists a logical proof of oo from S. We shall
prove it by the method of contradiction. Thus let S+ — o, i.e., S is not

logically provable from S. Thus S; =S U {— o}, all expressed in clause form
is unsatisfiable. So, by Herbrand’s theorem, there must exist a Herbrand base
Hs(S)) that is also unsatisfiable. Now, by ground resolution theorem, we find
that the resolution closure of Hs (Si) contains the clause ‘false’. Now, by
lifting the lemma, if the false clause occurs in the resolution closure of Hs (S))
then that must also appear in the resolution closure of S;. Now, the resolution
closure of S; containing the false clause is a contradiction to the assumption
that S+ — o is wrong and hence S + o follows. O

Now, we narrate the proof of soundness of the resolution theorem in predicate
logic.

Theorem 5.5: The resolution principle of predicate logic is sound.
Proof: To prove the soundness, we first look at the proof procedure for a

particular problem that proves a formula o from a given set of clauses S, i.e.,
S | a. Let it be a linear resolution. It can be shown that if the soundness can



be proved for linear resolution, it can be proved for other resolutions (like
unit resolution) as well. To prove the soundness of the resolution theorem,
we use the following three steps:

Step 1: After the proof procedure terminates, back substitute the constants by
variables in the tree.

Step 2: Now instantiate these clauses with all possible constants. We thus get
the Herbrand base corresponding to the clauses that participated in the proof
procedure.

Step 3: The resolution theorem of propositional logic is now applied to that
subset of the Herbrand base. Note that the propositional resolution theorem,
employed here, is sound.

Since the elements of Herbrand base also include the clauses that participated
in the resolution proof of predicate logic, the proof procedure of the resolution
theorem in predicate logic is also sound [2]. O

5.14 Conclusions

The chapter presented the syntax and semantics of propositional and predicate
logics and demonstrated their applications in logical theorem proving. Many
Al problems, which can be represented as theorem proving problems, thus can
be handled with the concept outlined in the chapter. The resolution theorem,
being the fundamental theorem under the proposed framework of knowledge,
its soundness and completeness have been discussed in detail. The semi-
decidablity of FOL has also been covered briefly. The shortcomings of double
resolution, as a common mistake, have also been pointed out. This will help
the students to properly identify the use of the resolution theorem.

Exercises

1. Prove that for the atomic propositions p, ¢, r and s
a) pmq =>r=p=gq, r and
b) p,q=—-r18 =p,q, r=s

Could you remember the use of the above tautologies in Wang’s algorithm? If
yes, in which steps did you use them?

2. Verify the following theorems by Wang’s algorithm.

a pvVqp—orngqor=r



b)p> @ ne Aot
) pP=>PA @—p & PA 99V (—=p A —q)

[Note: For (b) and (c ), prove the theorems first from left to right and then
from right to left.]

3. Apply resolution theorem to prove the following theorem:

4.

pVqgporngqor = r.

[Hints: Here, goal is r ; so resolve — r with the CNF form of premise
clauses to prove a resulting null clause.]

For a triangle ABC, it is given that the sum of the interior angles: ZA +
/B + ZC =180 degrees. Show by resolution theorem that the exterior
angle is the sum of the opposite interior angles.

[Hints: We denote the exterior angle ZA by EXTZA. Use the following
predicates:
Equal (sum (LA, B, £C) ,180)
Equal (sum (LA, EXT(ZLA), 180)
and rules
Equal (X, Y), Equal(Z, Y) ->Equal (X, Z)
Equal (sum (X, Y), sum (X, Z)) —»Equal (Y, Z).
Equal (Y, Z) —» Equal (Z, Y).

The rest of the proof is obvious.]
Represent the following sentences into clause form:

a) On(X,Y)A (Above (Y,Z)vOn(Y,Z)) AOn(Z, W) — On (X, W)
b) V X Fly (X) A 3 X Has-wings (X) —Bird(X) v Kite(X)
¢) V XMan (X)A VY (Child (Y) v Woman (Y)) — —Dislikes (X, Y)

Prove that Dog (fido) follows from the following statements by the
resolution theorem.

a) V X Barks (X) — Dog (X).

b) V XV Y 3Z Has-master (X, Y) A Likes (X, Y) A Unprecedented-
situation (Z) — Barks (X).

¢) Unprecedented-situation (noise).

d) Likes (fido, jim).

e) Has-master (fido, jim).



7.

Show that the following formula is valid.
AX)VB(Y)) > CZ)=(—-AX) Ar=BX)) Vv C2)
where X, Y and Z are variables and A, B and C are predicates.

List all the satisfiability relations in a tabular form with four columns A,
B, C and the entire formula (say, Y) for the last formula.

Given X € {al, a2}, Y e {bl, b2} and Z ¢ {cl, c2}, and S = {A(X) v
B(Y)) > C(Z) = (= AX) A = B(Y)) v C(2)}, find the Herbrand
universe and the Herbrand base.

10. Illustrate the lifting lemma with the following parameters.

(1]

(3]

Ci=PX fX)AQ(Y,c)— R(XDb)
C:=W(f(Y),Z)>Q(Y,Z)
Ci=P(a f(a)AQ(b,c)— R(a,b)

C=W(f(®),c)—=>Q(b,c)
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Principles
in Logic
Programming

This chapter is an extension of chapter 5 to study in detail a specialized class
of Predicate Logic based reasoning programs, called Logic Programs.
PROLOG, which is an acronym of PROgramming in LOGic, is commonly
used for handling this class of reasoning problems. Various issues of Logic
Programming have been narrated in this chapter with special emphasis on
the syntax and semantics of PROLOG programming language. It may be
mentioned here that besides PROLOG, another well-known programming
language, called LISP (LISt Processing language), is also used for
programming in Artificial Intelligence. However, LISP is well suited for
handling lists, whereas PROLOG is designed for Logic Programming.

6.1 Introduction to PROLOG
Programming

To introduce readers to the syntax and semantics of logic programming, we
first take a look at a few examples. Let us, for instance, consider the problem



of a ‘classroom scene’ interpretation We assume that the scene has been passed
through various stages of low and medium level image processing [7] and the
objects in the scene thus have been recognized [8] and labeled by a computing
machine. The data (clauses) received from the scene and the knowledge used to
analyze it are presented in both English and Predicate Logic below.

Database:

Object (board)

Writes-on (john, board, classhour)
Sits-on (mita, bench, classhour)
Sits-on (rita, bench, classhour)
Person (john)

Person (rita)

Person (mita)

The above are called clauses in PROLOG.

Fig. 6.1: A classroom scene, where John, the teacher, writes on
the board and Mita and Rita, the students, sit on a bench.

Knowledge base:

1. A board (blackboard) is an object, where teachers used to write in
classhours.

In Predicate Logic, the above sentence can be written as



Object (board) A Writes-on ( X, board, Time ) A Teacher (X)
—Equal (Time, classhour).

2. A Teacher is a person who writes on a board during classhour.
In Predicate Logic, the above sentence is written as

V X ( Person(X) A Writes-on (X, board, classhour) — Teacher (X))

3. A student is a person who sits on a bench during classhour.
In Predicate Logic, the above sentence can be written as

VY (Person (Y) A Sits-on (Y, bench, Time) A Equal (Time, classhour) —
Student (Y) )

4. If at least one person sits on a bench in classhour and a second person
writes on the board at the same time then time = classhour.

In Predicate Logic, the above expression can be described by

3Y ((Person (Y) A Sits-on (Y, bench, classhour )) A
3 X (Person (X) A Writes-on (X, board, Time)) — Equal (Time, classhour) )

The above 4 statements can be written in PROLOG language as follows:

1. Equal (Time, classhour) :-
Object (board),
Writes-on (X, board, Time),
Teacher (X).

2. Teacher (X) :-
Person (X),
Writes-on (X, board, classhour).

3. Student (Y) :-
Person (Y),
Sits-on (Y, bench, Time),
Equal (Time, classhour).

4. Equal (Time, classhour) :-
Person (Y),



Sits-on (Y, bench, classhour),
Person (X),
Writes-on (X, board, Time).

It may be added that the above pieces of knowledge are also called clauses in
PROLOG.

6.2 Logic Programs - A Formal Definition

We are now in a position to formally define Logic Programs. We first define
a Horn clause, the constituents of a logic program

Definition 6.1: A clause consists of two parts: the head and the body. One
side of the clause to which the arrowhead (if-then operator) points to is called
the head and the other side of it is called the body. A Horn clause contains at
most one literal (proposition / predicate) at the head of the clause [6].

Example 6.1: The following are two examples of Horn clauses.
NP (X),Q(Y)— W (XY)
iR X Y),Q(Y)— ?

In (i) W (X, Y) is the head and P (X), Q (Y) is the body. In (ii) R(X, Y),
Q(Y) is the body and the head comprises of a null clause (sub-clause). In fact
(i1) represents a query, asking whether R (X, Y), Q (Y) is true, or what are the
set of instantiations for X and Y, which makes R (X, Y) A Q (Y) true.

Definition 6.2: A Logic Program is a program, comprising of Horn
clauses.
The following example illustrates a logic program.

Example 6.2: Consider the following two sentences in Predicate Logic with
one head clause in each sentence.

Father (X, Y) < Child (Y, X), Male (X).
Son (Y, X ) « Child (Y, X), Male (Y).

The above two clauses being horn clauses are constituents of a Logic
Program. Let us now assume that along with the above knowledge, we have
the following three data clauses:

Child (ram, dasaratha).

Male (ram).



Male (dasaratha).

Suppose that the above set of clauses is properly structured in PROLOG
and the program is then compiled and executed. If we now submit the
following queries (goals), the system responds correctly as follows.

1. Goal: Father (X, Y)?

Response: Father (dasaratha, ram).

2. Goal: Son (Y, X)?

Response: Son (ram, dasaratha).

But how does the system respond to our queries? We shall discuss it
shortly. Before that let us learn a little bit of syntax of PROLOG programs. We
take up the scene interpretation problem as an example to learn the syntax of
PROLOG programming.

6.3 A Scene Interpretation Program

/* PROLOG PROGRAM FOR SCENE INTERPRETATION */

Domains
Time, X, Y, Z, W, board, classhour, bench = symbol

Predicates

Teacher (X)

Writes-on (X, board, Time )

Equal (Time, classhour)

Person (X) Person (Y) Person (Z) Person (W)
Sits-on (Y, bench, Time) Sits-on (Z, bench, Time)
Student (Y)

Student (Z)

Object (W)

Clauses
Object (board). 1

Writes-on (john, board, classhour). 2



Sits-on (mita, bench, classhour). 3

Sits-on (rita, bench, classhour). 4
Person (john). 5
Person (mita). 6
Person (rita). 7
Equal (Time, classhour):- 8
Object (board),
Writes-on (X, board, Time),
Teacher (X).
Equal (Time, classhour):- 9
Person (Y),
Sits-on (Y, bench, classhour),
Person (X),

Writes-on (X, board, Time).

Teacher (X):- 10
Person (X),
Writes-on (X, board, classhour).

Student (Y) :- 11
Person (Y),
Sits-on (Y, bench, Time),
Equal (Time, classhour).

This is all about the program. Readers may note that we mentioned no
procedure to solve the problem of scene interpretation; rather we stated the
facts only in the program. Here lies the significance of a logic program.

Now, suppose, the user makes a query:

Goal: Teacher (X)?

System prompts: Teacher (john).
Further, if the user asks:

Goal: Equal (Time, classhour) ?

System prompts: Yes.



6.4 Illustrating Backtracking by
Flow of Satisfaction Diagrams

To explain how the system answers these queries, we have to learn a very
useful phenomenon, called backtracking.

Let us now concentrate on the query: Teacher (X)?
Since
Teacher (X) «
Person (X),
Writes-on (X, board, classhour). (10)

to satisfy the Goal: Teacher (X), one has to satisfy the sub-goals: Person (X),
Writes-on (X, board, classhour). Now, PROLOG searches a sub-goal Person( )
for the predicate Person (X). At clause 5, it finds a match and X is instantiated
to john (fig. 6.2 (a)). PROLOG puts a marker at clause 5. Now, it continues
searching Writes-on (john, board, classhour) in the remaining clauses. But it
fails to find so, since Writes-on (john, board, classhour) is at o position in
the list of clauses (fig. 6.2 (b)). So, it has to trace back above the marker place
(fig. 6.2(c)) and then ultimately it finds Writes-on (john, board, classhour)
(fig. 6.2(d)). Since the sub-goals are succeeded, the goal also succeeds,
yielding a solution: Teacher (john). The concept of backtracking is illustrated
below with the help of flow of satisfaction diagrams [2] fig. 6.2(a) to (d)).

v

Teacher (X)

X = john, by (5)

! A

Person (X)

Writes-on (X, board, classhour)

Fig. 6.2 (a): Unification of the first sub-goal.



v

Teacher (X)

Person (X)

Y

Writes-on (X, board, classhour)

Sub-goal fails

X= john, by (5)
—

Fig. 6.2 ( b): Unification of the second sub-goal is not possible
inthe clauses following the marked unified clauses.

v

Teacher (X)

Pointer moves up

*4

Person (X)

Writes-on (X, board, classhour)

above the marked
place.

Person (john) (5)

Writes-on (john,
board, classhour)

@

Fig. 6.2 (¢ ): Back-tracking in the set of clauses.



|
v

Teacher (X)

v

Person (X) X = john

Writes-on (X, board, classhour)

v

Fig.6. 2( d): Successful goal: Teacher (john).

For answering the query Equal (Time, classhour), a number of
backtracking is required. We omit this for space constraints and ask the reader
to study it herself. The next important issue that we will learn is SLD (Select
Linear Definite clauses) resolution.

6.5 The SLD Resolution

We start this section with a few definitions and then illustrate the SLD
resolution with examples.

Definition 6.3: A definite program clause [1] is a clause of the form
A «<Bj, Bs,..., By

which contains precisely one atom (viz. A) in its consequent (head) and a null,
one or more literals in its body (viz. B; or B, or ... or B,).

Definition 6.4: A definite program is a finite set of definite program
clauses.



Definition 6.5: A definite goal is a clause of the form

<« BI1, B2, .., Bn
i.e., a clause with an empty consequent.

Definition 6.6: SLD resolution stands for SL resolution for definite
clauses, where SL stands for resolution with linear selection function.

Example 6.3: This example illustrates the linear resolution. Consider the
following OR clauses, represented by a set-like notation.

Let S = {A1, Ao, As, A, A1 = {P(X), Q (X)},  As= { P(X), = Q(X)},
As={=P(X), QX)}, As={=P(X), = Q(X)} and Goal = — P(X).

{Q(X)} As

{=PX)} {P(X)}

5

¢

Fig. 6.3: The linear selection of clauses in the resolution tree.



The resolution tree for linear selection is presented in fig. 6.3. It is clear
that two clauses from the set S; = S U { — Goal} are first used for resolution
and the resolvent is next used for resolution with a third clause from the same
set Si. The process is continued until a null clause is generated. In the linear
selection process, one clause, however, can be used more than once for
resolution.

An alternative way to represent the resolution process in a tree with
linear selection is presented below. Such trees are generally referred to as SLD
trees. Let us now consider the following Logic program and draw the SLD
tree for the program.

Example 6.4: The Logic program built with definite clauses and the goal
are presented below.

.LP(X,Z) < QX Y), P(Y,2)
2.P (X, X) «
3.Q(a, b) «

Goal: « P(X,b)

For the construction of the SLD tree, we would match the head of a
clause with the same consequent clause in another's body, during the process
of resolution of two clauses. This, however, in no way imposes restriction in
the general notion of resolution. Rather, it helps the beginners to mechanically
realize the resolution process. The SLD tree of a Logic Program becomes infi-
nite, if one uses the same rule many times. For instance using rule 1 many
times, we find an infinite SLD tree like fig. 6.4 for the current example.

6.6 Controlling Backtracking by CUT

Since a PROLOG compiler searches for the solution using a “depth first
search” strategy, the leftmost sub-tree in fig. 6.4 being infinite does not yield
any solution of the system. Such a problem, however, can be taken care of by
appropriately positioning “CUT” statements in the Logic Program. Since
depth first search in PROLOG programs are realized by stack, an infinitely
large SLD tree results in a stack overflow.



Example 6.5, presented below, illustrates how unnecessary search in SLD trees
can be avoided by placing CUT statements in the Logic Program.

«— P (X, b)

A

«— QX Y),P(Y,b) ()
(X=b) Success

— Q(X,Y), Q(Y,U), PU,Db) «— Q(X,b) \3

1 2

¢
(X=a)
Success

<Q X, Y),Q(Y,U),Q(U, V), P(V,b) < QX,Y),Q(Y.b)

infinite

Fig. 6.4: An infinite SLD tree.

Example 6.5: Consider the Logic Program, where “!” denotes the CUT
predicate.

) AeB,C
4) B&D,E
7)D «

and Goal: « A



The SLD tree for the above Logic Program is presented in fig. 6.5. Let
us now explain the importance of the CUT predicate in fig. 6.5. For all
predicates preceding CUT, if unifiable with other clauses, then CUT is
automatically satisfied. Further, if any of the predicates preceding CUT are not
unifiable, then backtracking occurs to the parent of that clause for finding
alternative paths. However, suppose all predicates preceding CUT are unifiable
and any of the predicates following CUT in the clause are not unifiable. Under
this circumstance, backtracking occurs to the root of the SLD tree and the
control attempts to find alternative solutions from the root.

«— A

1

When CUT is encountered
on backtracking, search is
resumed here.

< E,C This part of sub-tree with root
< B,C is not searched because

of the CUT.
Failed
Sub-tree

Literals preceding CUT are unifiable with the same literals in the head of other clauses. So, ! is
automatically satisfied. Since < E, C cannot be resolved with any more clauses, the control
returns to the root of the tree «<— A for generating alternative solution.

Fig. 6.5: Controlling backtracking by using CUT.



6.6.1 Risk of Using CUT

It is to be noted that while expanding a node in the SLD tree, the PROLOG
compiler attempts to unify the clause, representing the node with the
subsequently labeled clauses in order. Thus, if we have an additional clause,
say clause number 10, given by B « D, it will not be used to unify with
«B,C. So, due to failure of the sub-tree with root <~ E, C (fig. 6.5) the
control returns to the second alternative of the sub-tree with root <— A, thereby
keeping the option to lose a possible solution. Controlling backtracking in an
SLD tree, thus, undoubtedly saves computational time, but an improper use of
it is risky for it may lose solutions.

6.6.2 CUT with FAIL Predicate

FAIL is another built-in predicate, often used in conjunction with CUT in
order to intentionally cause a failure of the root clause and force the control to
backtrack to the root for finding alternative solutions, if available. In CUT-
FAIL combination, if all predicates preceding CUT are unifiable, then a failure
occurs, thereby initiating backtracking to the root. In the Taxpayer problem,
listed below, two successive possible paths leading from the root are forced to
fail by CUT-FAIL combinations and finally the third path yields a solution.

Example 6.6: Consider the following Logic Program.
1.  Taxpayer (X) <
Foreigner (X), !, fail.
2. Taxpayer (X) <
Spouse (X, Y), Annual-Inc (Y, Earnings),
Earnings > 40,000, !, fail.
3.  Taxpayer (X) < Annual-Inc (X, Earnings),
30000 < Earnings, 50000 > Earnings.
4. Foreigner (ram) <

5. Spouse (ram, mita) <



6. Annual-Inc (mita, Earnings) <

7. Earnings = 45,000 «

8. Annual -Inc ( lakshman, 35,000) <
Query : « Taxpayer (X)

The SLD tree for the above Logic Program is presented in fig. 6.6.

«Taxpayer ( X)
1

2
« Foreigner (X), / < Spouse (X,Y <Annual-Inc
1, fail. J/ Annual-Inc(Y, Earnings), (X, Earnings),
" Earnings > 40000, !, 4 30000< Earnings,
. fail. i 50000> Earnings.
4 7 5 H 8
! fail. i
< Annual-Inc (mita, Earnings), ,-"'. «30000< 35000,
i Earnings > 40000, !, K 50000> 35000.
7 fail.
fail. 6
; « 50000 >
< Earnings > 40000, ;’5
1, fail. i
7 _;"' )
«— Lfail _,.-": (X =lakshman)
fail. /

Fig. 6.6: CUT-FAIL combination forces the control to backtrack to the root
from the left two sub-trees and generate alternative paths (rightmost
sub-tree) for solutions.



In the SLD tree for the Taxpayer problem, the control first attempts to
find solutions from the leftmost sub-tree. On getting the fail predicate
following CUT, it backtracks to the root node and attempts to generate the
second alternative solution. Then expanding the second sub-tree, it finds FAIL
following CUT predicate and returns to the root. Finally, the third sub-tree
yields the solution: X = lakshman.

6.7 The NOT Predicate

An alternative of the CUT-FAIL combination in PROLOG is the NOT
predicate, defined below:

1. NOT (P) € CALL (P), !, FAIL.
2. NOT (P) ¢

In the above definition of NOT predicate, a CALL predicate has been
used. The CALL predicate simply treats its argument as a goal and attempts to
satisfy it. The first rule of the NOT predicate is applicable, if P can be shown
and the second rule is applicable otherwise. As a matter of fact, if PROLOG
satisfies CALL (P), it abandons satisfying NOT goal. If P is not provable,
CALL (P) fails, thus forcing the control to backtrack to the root from CALL
(P). Consequently, PROLOG uses the second definition of NOT predicate and
it succeeds, signifying that P is not provable.

Example 6.7: Consider the definition of income through a pension of
persons using a CUT-FAIL combination, which can be re-written using a NOT
predicate as follows:

Rule using CUT-FAIL combination
Annual-Inc (X, Y) < Receives-Pension (X, P),

P < 30,000,

!, fail.

Annual-Inc (X,Y) < Receives-Pension (X, P), Y =P.
The same rule using NOT predicate

Annual-Inc (X, Y) < Receives-Pension (X, P),

NOT (P <30,000),

Y=P.



6.8 Negation as a Failure in Extended

Logic Programs
It is evident from our background in Predicate Logic that negated clauses have
a significant role in representing knowledge. Unfortunately, however, the
HORN-clause based programs do not allow negated clauses in their body. To
facilitate the users with more freedom of knowledge representation, recently,
Logic programs have been extended to include negated atomic clauses in the
body of a non-Horn clause, presented below:

p < qr, —s,t

where p, q, 1, s and t are atomic propositions or predicates.

The principle of negation as failure [9] states: For a given formula P, if one
cannot prove P, then it is reasonable to deduce that — P is true.

For illustrating the principle consider the following extended logic program:
1. Subset (A, B) « — Non-subset (A, B).
2. Non-subset (A, B) < Member (X | A), = member (X | B).
Goal: Subset ( (2, 4, nil), (1, 2, 3, 4, nil)) >
To prove the above goal, we resolve the goal clause with clause (1) and get
< — Non-subset ((2,4, nil), (1, 2, 3, 4, nil)).
Now, by negation as a failure, we want to satisfy the sub-goal
< Non-subset ((2,4, nil), (1,2,3,4, nil)).
Now, by (2) we find that
Member (X | 2 ,4,nil) , = Member (X | 1,2,3,4, nil)

fails, which consequently proves that non-subset ((2,4, nil), (1,2,3,4,nil)) fails
and thus Subset ((2, 4, nil), (1, 2, 3, 4, nil)) is a valid inference.



6.9 Fixed Points in Non-Horn
Clause Based Programs

A non-Horn clause based program can have many minimal (least) fixed
points [3], i.e., many possible models / interpretations exist for a given
program. For instance, for the following logic program:

there exist two interpretations (P is true, Q is false) and (P is false and Q is
true). For determining minimal fixed points, one generally has to assign
values to a minimum set of literals so that the given clauses are consistent.
However, here none of the above models are smaller than the other and thus
determining the fixed points for such non-Horn programs is difficult.

One approach to evaluate fixed points for such programs is to write each
clause in a stratified [4-5] manner as follows.

P «

- Q.

The independent ground literals in the body of clauses are then assigned
Boolean values so that the head is true. The process is applied recursively to
all clauses until the set of clauses is exhausted. The interpretation, thus
obtained, will be minimal and the Boolean values of the minimal set of
literals together form fixed points. By this method, the fixed point for the
above clause is (P is true).

6.10 Constraint Logic Programming

Logic programming has recently been employed in many typical problems,
like game scheduling in a tournament, examination scheduling, flowshop
scheduling etc., where the goal is to find a solution by satisfying a set of
logical constraints. Such logic programs include a set of constraints in the
body of clauses and are called constraint logic programs (CLP). The
structure of a typical Horn clause based CLP is presented below:

P (t) <« Qi (), Q2(1),......,Qm(t),Ci(1),Cs (1),...... ,Cal1),

where P, Q; are predicate symbols, C; are constraints and t denotes a list of
terms, which need not be the same for all literals. In a constraint logic



program, all constraints are equally useful for finding viable solutions for the
problem. However, there exist situations, when no solution is found that
satisfies all the constraints. For handling these type of problems, the strengths
Si of the constraints C; are attached with them in the program clauses as
presented below:

P (1) &« Qi (1), Qa(t),......Qu(1), SICi(1),8:C5 (D),......,SuCult).

Logic programs built with such type of clauses are called Hierarchical
Constraint Logic Programs (HCLP) [11].

We now illustrate the formulation of an HCLP and the approach to its
solution for the problem of editing a table on a computer screen in order to
keep it visually appealing.

Here, the spacing between two successive lines is a variable, whose
minimum value, for obvious reason, is greater than zero. However, we want it
to be less than 10. We also prefer that the table fit on a single page of 30
lines. Further, there could be a default space of 5 lines, i.e., if other
constraints are satisfiable, then one may attempt to satisfy the default
constraint.

Let us define the strength of the constraints into following 4 levels,

essential,

strongly preferred,
preferred,

default.

The logic program for the above problem is presented below.

Table (page-length, type-size, no-of-lines, space) <
essential (space + type-size) * no-of-lines = page-length,
essential space >0,

strongly preferred space < 10,

preferred page-length <= 30,

default space =5.

For solving HCLP, one has to first find solutions satisfying the
essential constraints and then filter those solutions that satisfy the next labeled
constraints. The process is thus continued recursively until all the constraints
are satisfied or the solution converges to a single set of values for the
variables, whichever occurs earlier.



6.11 Conclusions

The main advantage of logic programming lies in the declarative formulation
of the problem without specifying an algorithm for its solution. Non-Horn
clause based logic programs are currently gaining significance for their inherent
advantage of representing negated antecedents. These programs have many
interpretations and determination of the least interpretation requires
stratification of the clauses. For the real world applications, the constraints of
a specific problem are also added with the classical definition of the problem.
These programs are referred to as CLP. When the constraints have unequal
weights, we call the logic programs HCLP. In HCLP, if solutions satisfying
all the constraints are not available, then the solutions that satisfy some of the
hierarchically ordered constraints are filtered. Logic programming has been
successfully used in many commercial applications including prediction of
the share market fluctuations [5] and scheduling teams of players in
tournaments [5].

Exercises

1. Draw the flow of satisfaction diagram to show that the clause: Equal
(Time, classhour) is true for the Scene interpretation program.

2. Design a logic program to verify the truth table of the CMOS Inverter,
presented below (fig. 6.7) with the given properties of channel conduction
with gate triggering.

Properties of the MOSFETS: When the Gate (G) is high for n-channel
MOSFET, the Drain (D) and the Source (S) will be shorted, else they are
open (no connection). Conversely, when the gate of a p-channel MOSFET
is low, its drain and source will be shorted, else they are open.

[Hints: Inverter (In, Out) «
Pwr (P),
Gnd (Q),
Ptrans (P, In, Out),
Ntrans (Out, In, Q).

Ntrans ( X, 1, X) « .

Ntrans (X, 0, Y) « .



Ptrans (X, 0, X) «.
Ptrans (X, 1, Y) «.

Goal: Inverter (1, Out) —
Inverter (0, Out) — ]

In —

n-channel

S

LTI T

|
GND.
Fig. 6.7: The CMOS Inverter.

3. Show how astack helps backtracking in PROLOG respectto the

Taxpayer program.

[ Hints: As you go down the SLD tree, go on pushing the address of
the parent nodenin the stack. On failure or success, when the control has

to move up the tree, popthe stack.]

4. Designan HCLP to get change for a US $500. Preferred atleast two
currency of US $50. Strongly preferred one currency of US $10.

[Hints: US$ (Xi00, Xso, X20, X10, X5, X2, X1)é—

essential 100* Xjo0 +50*X 50+
strongly preferred X,p >=1,

1 *X; =500,



(1]

(2]

(3]

(4]

(3]

(6]

[7]

(8]

(9]

(10]

[11]

preferred Xso>=12,
default X]oo <= 4,

where Xj denotes the number of currency of value j.]
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Default and
Non-Monotonic
Reasoning

This chapter briefly outlines the scope of automated reasoning in the absence
of complete knowledge about the world. The incompleteness of facts or
knowledge may appear in a reasoning system in different forms. There is no
general notion to treat the different types of incompleteness of data and
knowledge (clauses) by a unified approach. In this chapter, we cover 4
distinct techniques, all of which, however, may not be applicable to a
common problem. The techniques are popularly known as default logic, non-
monotonic logic, circumscription and auto-epistemic logic. Informally,
default logic infers a consequent, when its pre-conditions are consistent with
the world knowledge. The non-monotonic logic works with two modal
operators and can continue reasoning in the presence of contradictory
evidences. Circumscription is an alternative form of non-monotonic
reasoning, which attempts to minimize the interpretations of some predicates
and thus continues reasoning even in the presence of contradictions. The
auto-epistemic logic that works on the belief of the reasoning system,
occasionally changes inferences, as new evidences refute the existing belief.



7.1 Introduction

Predicate Logic is monotonic [3] in the sense that a derived theorem never
contradicts the axioms or already proved theorems [4], from which the former
theorem is derived. Formally, if a theorem T, is deduced from a set of axioms
A = {ay, a, a3,...,an}, 1.6., A |- T, then a theorem T,, derived from (A U T))
(i.e., (A U T)) |- T2), never contradicts T;. In other words T; and T, are
consistent. Most of the mathematical theorem provers work on the above
principle of monotonicity. The real world, however, is too complex and there
exist situations, where T, contradicts T,. This called for the development of
non-monotonic logic.

7.2 Monotonic versus Non-Monotonic Logic

The monotonicity of Predicate Logic can be best described by the following
theorem.

Theorem 7.1: Given two axiomatic theory T and S, which includes a set of
axioms (ground clauses) and a set of first order logical relationships like
Modus Ponens, Modus Tollens, etc. If T is a subset (or proper subset of) S
then Th(T) is also a subset (or proper subset) of Th(S), where Th(T) (or
TH(S)) means the theorems derivable from T (or S) [4].

An interpretation of the above theorem is that adding new axioms to an
axiomatic theory preserves all theorems of the theory. In other words, any
theorem of the initial theory is a theorem of the enlarged theory as well.
Because of default assumptions in reasoning problems, the monotonicity
property does not hold good in many real world problems. The following
example is used to illustrate this phenomenon.

Example 7.1: Let us consider the following information about birds in an
axiomatic theory T :

Bird (tweety)
Ostrich (clide)
V X Ostrich (X) — Bird (X) A — Fly (X).
Further, we consider the default assumption R, which can be stated as

R: ((T|~Bird (X)),

(T~ = FlyX)) = (T |~ Fly (X))



where |~ denotes a relation of formal consequence in extended Predicate
Logic and |~/ denotes its contradiction. The assumptions stated under R can be
presented in language as follows: R: “If it cannot be proved that the bird
under consideration cannot fly, then infer that it can fly.”

Now, the non-monotonic reasoning is started in the following manner.

1. Bird ( tweety)

2. T |~/ = Fly (tweety)

3. Monotonicity fails since T U{ Fly (tweety)} |-/ falsum

4. From default assumption R and statement (2) above, it follows that T |~
Fly (tweety).

A question then naturally arises: can |~ be a first order provability
relation |- ? The answer, of course, is in the negative, as discussed below.

The First Order Logic being monotonic, we have

{Tc S — Th(T)c< Th (S)} (Theorem 7.1)

Let
T |- Fly (tweety)
(7.1)
and S=T U { = Fly (tweety)}.
(7.2)

Now, since Fly (tweety) is a member of T, from (7.1) and (7.2) above, we
find

S |- Fly (tweety).
(7.3)

Again, by definition (vide expression (7.2)),

S|- = Fly (tweety).
(7.4)

Expression (7.3) and (7.4) shows a clear mark of contradiction, and thus
it fails to satisfy Th (T) € Th (S). This proves all about the impossibility to
replace |~ by first order relation |-.

7.3 Non-Monotonic Reasoning Using NML I

In this section, we will discuss the formalisms of a new representational
language for dealing with non-monotonicity. McDermott and Doyle [8]



proposed this logic and called it non-monotonic logic I (NML I). The logic,
which is an extension of Predicate Logic, includes a new operator, called the
consistency operator, symbolized by 4. To illustrate the importance of the
operator, let us consider the following statement.

V X Bird (X) » @ Fly (X) — Fly (X)

which means that if X is a bird and if it is consistent that X can fly then infer
that X will fly.

It is to be noted that NML I has the capability to handle default
assumptions. Thus the Default Logic of Reiter [11], to be presented shortly, is
a special case of NML 1.

Let us now attempt to represent the notion of the non-monotonic infer-
encing mechanism by the consistency operator. We will consider that

T~ = A
=>T|~ € A,
which means that if — A is not non-monotonically derivable from the

axiomatic theory T, then infer that A is consistent with any of the theorems
provable from T.

7.4 Fixed Points in Non-Monotonic Reasoning

To understand the concept on fixed points (also called fixpoints), let us
consider an example, following McDermott and Doyle [8].

Example 7.2: Let T be an axiomatic theory, which includes

Formally, T={4®P—> —-Q ,® Q— — P},

which means that if P is consistent with the statements of the axiomatic
theory T then—Q and if Q is consistent with the statements in T then — P.
McDermott and Doyle called the system having two fixed points ( P, — Q)

and (—P, Q). On the other hand, if T = { € P— — P}, then there is no
fixed points in the system.



Davis [4], however, explained the above phenomena as follows.

and {® P—> — P} |~ falsum.

Problems encountered in NML I

McDermott and Doyle identified two basic problems in connection with
reasoning with NML I. These are

i) @ A cannot be inferred from 4 (A A B)

i) T={®P > Q, =Q} |~ falsum,

which means that the axiomatic theory T is inconsistent in NML L.

7.5 Non-Monotonic Reasoning Using NML II

In order to overcome the above difficulties, McDermott and Doyle recast non-
monotonic logic with the help of another modal [4] operator like consistency,
called the necessitation operator and symbolized by . This operator is related
to modal operator 4 by the following manner:

oP = —|’—|P
or ¢ P= -0~ P

where the former notation denotes that P is necessary could be described
alternatively as negation of P is not consistent. The second definition
implicates that P is consistent could be written alternatively as the negation of
P is not necessary.

The significance of the necessitation operator can be understood from the
following example.

Example 7.3: Given that T |~ € A, i.e., A is consistent with the derived
consequences from T. Then it can be inferred that

T~ 0= A,

which means that it is not necessary to assume that — A is derivable from T.
This is all about the example.



We now present a few modal properties, as presented in NML II.
1.4 P=—0— P (bydefinition) (property 1)
2. (P> Q)= (OP - 0Q), (property 2)

which means, if it is necessary that P — Q, then infer that if P is necessary
then Q is necessary.

3. oP= P, (property 3)

which may be read as if P is necessary, then infer P.

4. OP= 0OOP, (property 4)

which is to be read as if P is necessary then imply that it is necessary that P
is necessary.

How the basic two limitations of NML I could have been overcome in NML II
are presented next.

Example 7.4: Show that® (AAB)= @ A

Proof: The proof consists of the following 6 steps.
Step 1: By Predicate Logic

Step 2: Preceding with necessitation operator in (7.5), we have

0(—A = — (A A B)) (7.6)

Step 3: Now by identity (2), we have

Step 4: Now, from (7.6) and (7.7) by Modus Ponens, we find

Step 5: Now by applying the contraposition theorem of Propositional Logic,
we find expression (7.9).



Step 6: Now, replacing — O — P by 4 P in expression (7.9), we get the
desired expression (7.10)

® (AAB) = €A (7.10)

The second difficulty of NML I can also be overcome in NML II, as
demonstrated by the following example.

Example 7.5: Given an axiomatic theory T, where T = {® P = Q, = Q}.
Prove that — P follows from T using NML II.

Proof: Given the expressions (7.11) and (7.12)

Step 1: = Q (7.11)
Step 2: € P = Q (7.12)
Step 3: =O0—= P = Q, by property 1 (7.13)
Step 4: = Q = O — P, by contraposition theorem (7.14)
Step 5: O— P, from (7.11) and (7.14) by Modus Ponens (7.15)
Step 6: 00—~ P= — P, by property 3 (7.16)
Step 7: — P, from (7.15) and (7.16) by Modus Ponens (7.17)

This is all about the proof.

In the next section, we discuss about a practical system for non-monotonic
reasoning.

7.6 Truth Maintenance System

Doyle’s truth maintenance system (TMS) [5] is one of the most practical
systems for non-monotonic reasoning. The TMS works with an expert or
decision support system and helps the reasoning system to maintain the
consistency among the inferences generated by it. The TMS itself, however,
does not generate any inferences. The functional architecture of an expert
reasoning system that employs a TMS for maintaining the consistency among
the generated inferences is presented in fig. 7.1.
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Fig. 7.1: Architecture of a reasoning system that includes a TMS.

In fig. 7.1, the inference engine (IE) in an expert reasoning system
interprets the database based on the available pieces of knowledge, stored in
the knowledge base. Since both the database and knowledge base are dynamic,
the process of reasoning would be continued as long as new data or knowledge
are entered into the system from the external world. The TMS asks the
inference engine about the current inferences that it derives and attempts to
resolve the inconsistency between the old and current inferences, after the
inference engine delivers the derived inferences to the TMS. The TMS then
groups the set of consistent information and reports the same to the IE [10].

The current status of all inferences/information is labeled by the TMS by
IN or OUT nodes. IN nodes mean that the nodes (information) are active,
while OUT nodes signify that the nodes have to be retracted from the current



reasoning space. It needs emphasizing that the dependency of the information
in the reasoning space is represented by a dependency-directed graph, where the
nodes in the graph denote information, while the arcs stand for cause-effect
dependency relation among the nodes. Justification records maintained for the
nodes are also attached with the nodes in the graph (network). There are two
types of justification, namely support list (SL) and conditional proofs (CP).
The data structure for these two justifications is discussed below:

(SL <in-nodes> <out-nodes>)
(CP <consequent> <in-hypotheses> <out-hypotheses>)

To illustrate the reasoning process carried out by the TMS, we take the
following example.

Example 7.6: Mita likes to accompany her husband when buying some
household items in the market place, located at Gariahat in Calcutta. Further,
she prefers to visit the market next Monday evening, since the crowd is
normally less on Monday evenings. However, on Saturday it was learnt that
the market offers a special rebate on a few items, starting next Monday. So,
Mita revised her decision not to go to the market this Monday and selects the
next Monday for her visit. Later it was found that her husband had an official
emergency meeting on the next Monday evening and accordingly Mita had to
postpone her visit on that evening. Later, the time of the emergency meeting
was shifted to an early date and Mita happily agreed to visit the market with
her husband the next Monday evening.

Let us attempt to resolve this kind of non-monotonicity by TMS. The
knowledge base for this system consists of the following production rules
(PR).

PR1: Crowd-is (large, at-market, at-time-T) —
—Visits ( Wife, market, at-time-T).

PR2: Visits (Wife, market-at-time-T) —

Accompanies (Husband, Wife, at-time-T).

PR3: Offers (market, rebate, at-time -T) —
Crowd-is (large, at-market, at-time-T).

PR4: Has-Official-meeting (Husband, at-time-T) —
Unable-to-accompany (Husband, Wife, at-time-T).



PRS5: —Visits (Wife, market, Monday-evening) —
Visits (Wife, market, next-Monday-evening).

Further, the database includes the following data:

1. Offers (market, rebate, Monday-evening)
2. Has-Official-meeting (Husband, next-Monday-evening)
3. Meeting-shifted (from, next-Monday-evening)
The TMS, now, resolves inconsistency in the following manner.

Node Status Meaning SL / CP

nl IN  Offers (mar, reb, mon-eve) (SL(O) ()
n2 IN Crowd-is (lar, at-mar, mon-eve) (SL(nl) ())
n3 IN —Visits (mita, mar, mon-eve) (SL (n2) ()
n4 IN Visits (mita, mar, next-mon-eve) (SL (n3) ()
ns IN Has-meeting (ram, next-mon-eve) (SL()())

né6 IN Unable-to-Acc. (ram, mita, next-mon-eve) (SL (n5) ())

n7 IN Accompanies (ram, mita, next-mon-eve) (SL (n4) (n6))
ng IN contradiction (SL (n6, n7) ())
n9 IN no-good n7 (CP n8 (n6, n7) ()

Now with a new data item 3

nl0 IN Meeting-shifted (from, next-mon-eve)  (SL ( ) (n5))
nll IN contradiction (SL (n5, n10) ())
nl2  IN no-good n5 (CP nl1 (n5, nl0) ())

n5 OUT (SL (n12) ()




The dependency-directed backtracking scheme, invoked by the TMS for the
above problem, is illustrated below.

IN (nl)

IN (n3) IN (n5)

IN (n4) IN  (n6)

IN (n9)

IN (nj) denotes node nj is IN. Sign against an arc denotes positive / negative
consequences of input antecedents.

Fig 7.2: A section of dependency graph, demonstrating the working
principles of the TMS.



IN (n2)
+ (nl1) retracts (n5)
OUT (n5) <
IN (n3) IN (n5)
+ + -
IN (n4) (n6) IN (n10)

IN  (n7) IN (nll)

IN (n8) IN (n12) >
+

IN (n9)

OUT (nj) denotes node nj is out.

Fig.7.3: The dependency directed graph, after receiving data 3.

Fig. 7.2 represents a dependency graph, where the nodes denote the
events and the arcs denote the causal relationship. The abbreviation used in the
figures is self-explanatory, and thus requires no explanation. A positive arc
from node Ni to node Nj represents that Ni causes Nj, whereas a negative arc
from Ni to Nj represents that Ni refutes Nj. The reasoning in fig. 7.2 is



based on the first two data: Offers (market, rebate, Monday-evening), Has-
Official-meeting (Husband, next-Monday-evening). When the third data:
Meeting-shifted (from, next-Monday-evening) is added to the reasoning
system, it starts backtracking and finally changes the status of node n5 (fig.
7.3) from IN-node to OUT-node. The TMS thus always maintains consistency
among the inferences derived by the inference engine.

7.7  Default Reasoning

Reiter’s default logic [11] is an alternative form of non-monotonic logic,
which includes a few First Order statements along with one or more default
assumptions. Formally, let Del be a set of statements, including a set of
axioms W and a set of Default statements D, i.e.,

Del = {D, W}

where the elements of D are of the form:

P: Q1, Q2,...,Qn
R

which may be read as: Given P is true, as long as Q; through Q, are
consistent with P, one may infer that R holds. Further, when P is absent from
the above statement, i.e.,

:Q1, Q2 ...,Qn
R

it means that as long as Q; through Q, are consistent with known beliefs, it
may be inferred that R holds.

Another special case of a Default statement is of the form

R

which means that “ if P is true, one may infer that R is true”. The last
statement is different from P — R, which means “if P is true then R is true”,
i.e, when P holds R must hold. But in the previous case “when P holds, R



may hold (and not must hold). An example, illustrating the concept of default
logic, is presented below.

Example 7.7: Let Del = { D, W} where
W = { Bird (parrot), Bird (penguin),
Bird (Penguin) — — has-aeronautical-prowess (penguin)}

Bird (X) : has-aeronautical-prowess (X)

D=
Fly (X)

The inference derived by the system is: Fly (parrot). Since has-aeronautical-
prowess (Penguin) is inconsistent with Bird (penguin), the default rule D
blocks Fly (Penguin) to be an inference.

Types of Default Theories: There exist varieties of Default theories.
Among them, i) Normal, ii) Semi-normal, iii) Ordered and iv) Coherent
theories need special mention.

Definition 7.1: Any Default knowledge of the form

A: B
Deli={——} , Del, being a subset of Del,
B

is called normal. Even when “A” is absent from the statement Del;, the
default knowledge remains normal.

Definition 7.2: Any default knowledge of the form

A: BAC
Del, = { }, Del; being a subset of Del,
B

is said to be Semi-normal.



The concept of Ordered Default Theory requires a detailed formalization of
“precedence relation” << and <<=, where the first and second relation are
referred to as strong and weak precedence relations. For example, in the
default knowledge:

BAa-=C

A
Deli = {
B
B has strong precedence over C, denoted by C<< B.

Definition 7.3: A semi-normal Default theory is said to be ordered if
there is no literal y, such that y <<y. For example, in the Default knowledge
base D, given by

:AA—= B : B A=C . C A=A
A B C

B << A, C<< B and A << C and consequently A << A and thus the
default theory is not ordered.

Definition 7.4: A Default theory that has at least one extension, i.e., that
can infer at least one inference, is called Coherent.

It is to be noted that an ordered semi-normal default theory has at least one
extension and thus is coherent.

Stability of Default Theory: The notion of stability in Default theory
is a significant issue for it helps partitioning the knowledge base under Del
into stable (time-invariant) fragments, if possible. For understanding the
concept of stability informally, let us consider the following example.

Example 7.8: Let Del = { D, W } where

A:BA=C A:CA = B
D-{Delhi=——, Deb=—}
B C

and W= {A}.

It is clear from common sense that both {Del;, W} and {Del,, W} are
consistent and stable extensions of the given default theory Del.



The resulting stable consequences that follow from the above extensions are
{A, B} and {A, C} respectively. The Default theory need not always yield
stable consequences. The following example illustrates this concept.

Example 7.9: Consider the Default theory Del = { D, W} where

= A
D=

yand W={ }.

The default statement under Del means as long as — A is consistent with the
known beliefs, infer that A holds good. However, from common sense
reasoning it follows that “A” cannot be inferred when — A is consistent with
known beliefs. Thus the Default theory itself is incoherent and the derived
consequence {A} is not stable (unstable).

7.8  The Closed World Assumption

The readers by this time can understand that non-monotonicity mainly creeps
into a reasoning system because of incompleteness of information. Thus for
reasoning in a non-monotonic domain, one has to presume either a closed
world assumption or add new facts and knowledge to continue reasoning.
The phrase “closed world assumption” means that the ground predicates not
given to be true are assumed to be false. For instance, consider the following
clauses.

Bird (X) A = Abnormal (X) — Fly (X)
Bird (parrot).

Suppose we want to derive whether Fly (parrot) is true. However, we cannot
derive any inference about Fly (parrot), unless we know — Abnormal (parrot).

The closed world assumption (CWA), in the present context, is the
assumption of the negated predicate: = Abnormal (parrot). In fact, the closed
world assumption requires the ground instances of the predicate to be false,
unless they are found to be true from the supplied knowledge base.

Thus the CWA of the following clauses:
Bird (X) A = Abnormal (X) — Fly (X)
Bird (parrot)

—Abnormal (parrot)

infers: Fly (parrot).



The following two points are noteworthy in connection with the closed world
assumption:

1) The CWA makes a reasoning system complete. For instance, given
the set of clauses {Bird (parrot), Bird (penguin), Bird(X) — Fly
(X)}, the Modus Ponens is not complete as neither Fly (penguin) or
— Fly (penguin) can be derived by Modus Ponens. But we can make
the Modus Ponens complete by adding — Fly (penguin) in the set.

ii) The augmented knowledge base, constructed by CWA, is
inconsistent. For instance, consider the following clause: Bird
(penguin) v Ostrich (penguin). Since none of the ground literal of the
clause is derivable, we add:

—Bird (penguin) and
— Ostrich (penguin)

to the reasoning space by CWA. But the reasoning system,
comprising of {Bird (penguin) v Ostrich (penguin), —Bird
(penguin), — Ostrich (penguin)} is inconsistent, as there exists no
interpretation for which Bird (penguin) or Ostrich (penguin) is true. It
may, however, be noted that if the knowledge base comprises of
Horn clauses and is consistent, then closed world extension is
consistent [10].

7.9 Circumscription

Circumscription [7] is the third main type of non-monotonic reasoning
following NMLs and default logic. Developed by John McCarthy,
circumscription attempts to minimize the interpretation of specific predicates,
thus reducing the scope of non-monotonicity. For instance, suppose that a
child knows only two kinds of birds: parrot and sparrow. Formally, we can
write this as

Bird (parrot) v Bird (sparrow).
So, he defines a rule:
V X Bird (X) — Bird (parrot) v Bird (sparrow).

The expression of the form: X = parrot v X = sparrow is called a predicate
expression. It is so named, because it seems to replace the predicate Bird (X).



In this example, we call y = Bird (parrot) v Bird (sparrow) a formula and X
is a distinguished variable [2]. We can now formalize circumscription as
follows.

CIR (KB: Bird)
=KBA[V Y KB (y) AV Xy (X)— Bird (X) )]

-V X ( Bird (X) - (X))

where KB denotes the set of the given pieces of knowledge, connected by
AND operator; KB (y) denotes a knowledge base, where every occurrence of
Bird is replaced by y [10].

It is to be noted that y has been quantified in the circumscription
schema above, thereby making it a second order formula.

The semantic interpretation that circumscription constructs a minimal
follows directly from the last example. We, for instance, found that

V X Bird (X) — (X = parrot v X = sparrow),
which is equivalent to

V X (( = X = parrot v X = sparrow) — — Bird (X)).

The last expression implicates there exists no interpretation of Bird(X), where
X is not a parrot or sparrow.

7.10 Auto-epistemic Logic

The word ‘auto-epistemic’ means reflection upon self-knowledge [9].
Developed by Moore in the early 80’s this logic attempts to derive inferences
based on the belief of the speaker. For instance, consider the sentence: “Are the
Olympics going to be held in Japan next year?" The answer to this: No,
otherwise I must have heard about it. Now, suppose, the next morning I found
in the newspaper that the Olympics will be held in Japan next year. Now, my
answer to the above question will be: yes. But it is to be noted that my long-
term knowledge that ‘if something is going to be held in my neighborhood,
then I will know about it” is still valid.



Generally, auto-epistemic expressions are denoted by L. For instance, to
represent that ‘I know that a tiger is a ferocious animal,” we would write it in
auto-epistemic logic by

V X L (Tiger (X) —Ferocious (X))
where L denotes the modal operator, meaning ‘I know’.
Some of the valid auto-epistemic formula are:

L@,LL®P)LEL@, (=L (=pv L)) wherp, q and r are
predicates or propositions. But what do they mean? L (L (p)), for example,
means that I know that I know p. The other explanations can be made
analogously.

One important aspect of auto-epistemic logic is stability. A deductively
closed set E of auto-epistemic formula is called stable, iff

1) pe E=LopeE
ii) o ¢E =-LoeE

The concept of stability reflects introspection of the auto-epistemic
reasoning. For instance, if A is in my knowledge, then I know A, or I know
that I know A. In other words, if I do not know B then I know that I do not
know B, i.e.,

Auto-epistemic formula are defined as the smallest set that satisfy the
following:

1) All closed FOL formula is an auto-epistemic formula.

i1) If ¢ is an auto-epistemic formula, then L ¢ will also remain as an
auto-epistemic formula.

1ii) If ¢ and y are auto-epistemic formula, then —@, (¢ v W), (¢ VvV V)
(¢ — ) are all auto-epistemic formula.

An auto-epistemic theory is a set of auto-epistemic formula.
7.11 Conclusions

The chapter presented four different types of non-monotonic reasoning and
illustrated each of the reasoning methodologies by examples. The most



important factor in non-monotonic reasoning is ‘stability’. Much importance
has been given to determine stability of many non-monotonic programs. The
closed world assumption seems to be a powerful tool for non-monotonic
reasoning. Circumscription and auto-epistemic theory are two different
extensions of the closed world assumption. There exists ample scope to unify
the theories by a more general purpose theory. We hope for the future when the
general purpose theory for non-monotonic reasoning will take shape. Further,
in the short run Logic Programming and Non-monotonic Logics will merge
together to provide users with a uniform theory for automated reasoning [1],

[6].

Exercises

1. Represent the following sentences by default logic. Also mention the sets D
and W.

a) Typically molluscs are shell-bearers [2].
b) Cephalopods are molluscs.
¢) Cephalopods are not shell-bearers.

[Hints: W = {Cephalopod (X) — Molluscs(X)} and
Molluscs (X): Shell-bearer(X)

D={ 4]
Shell-bearer(X)

2. Represent the following sentences by default logic.
a) John is a high school leaver.
b) Generally, high school leavers are adults.
¢) Generally, adults are employed.

Now, determine the extension of the default theory. Do you think that the
extension is logically rational?

3. Replace rule (c ) in the last problem by the following rule.

Adult(X): Employed(X) A— School-leaver (X)

Employed(X)

What do you gain by doing so? Can you hence identify the limitations of
‘normal defaults’?



4. Test whether the following default theory is ordered:

f: =P Agq fiaqAr fiar A

q r p

5. Test whether the following default theory is ordered.

= QAP(a) = RAQ .= P(b) AR

P(a) Q R

[Hints: Q < P(a), R< Q, P(b) < Q; No circularity and hence ordered.]

6. Find the stable extensions for the following default theory.
Given Del ={W, D} where

W = {a, b} and
a: cAb b: bAa—=c

D= { , }
¢ b

[Ans. {a, b, c} and {a, b}]
7. Show that € P — Q, = Q = — P by using the following axiomatic theory
[4].
a) (6P->Q)= P> (®P—Q),
b) P> (®P—>Q)=(P—>®P)—> (P —Q) and
c) P— &P
[Hints: With given € P — Q and (a) by Modus Ponens get (P — (@ P
— Q)). Next with this result and (b ) by Modus Ponens derive (P — 4 P)
— (P — Q), which with (¢ ) by Modus Ponens yields P — Q. Now given
— Qand P — Q, we derive — P by Modus Tollens.]

8. Show by definition that the ground instances of the following statements
generate an auto-epistemic theory.



a) Boy(X) A = L — Likes (X, chocolates) —Likes (X, chocolates)

b) Boy (ram)

¢) Boy (john)
[Hints: Get 4 formulas: Boy (ram), Boy (john) and the ground instances of
(a) with X = ram and X= john. Since these are closed first order formula,
these must be auto-epistemic formula. Then the collection of these formula
is the auto-epistemic theory (see text for the definition).]

9. Add the following fact and knowledge with Mita’s marketing visit problem
and show with the dependence graph: how the TMS works.

Fact: Carries-Influenza (mita, next-Monday-evening).

Knowledge: Carries-Influenza (X, Day) — — Visits (X, market, Day).
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Structured Approach
to Knowledge
Representation

The chapter addresses various structured models for knowledge
representation and reasoning. It starts with semantic nets and provides in
detail its scope in reasoning with monotonic, non-monotonic and default
knowledge bases. The principles of defeasible reasoning by semantic nets
have been introduced. The concept of partitioned semantic nets to represent
complex knowledge including quantifiers has been illustrated with examples.
Among the other structured approaches special emphasis has been given to
frames. The principles of single and multiple inheritance have been elucidated
for frame structures. The rest of the chapter includes discussions on
conceptual dependency graphs, scripts and Petri nets.

8.1 Introduction

This chapter provides an alternative approach for knowledge representation
and reasoning by structured models. Such models have immense significance
over the non-structured models by the following counts. Firstly, the
knowledge base can be easily represented by modular fashion, thus ensuring a



compartmentalization of the related chunks of knowledge for efficient access.
Secondly, explanation tracing in knowledge based systems becomes easier
with structured models. Thirdly, a structured model offers provision for
representing monotonic, non-monotonic and default logic on a common
platform. Fourthly, the fragments of a piece of knowledge can be accessed
concurrently by many modules, thereby providing the reasoning systems a
scope for sharing of resources. Such sharing of resources call for minimal
structure and consequently less hardware / software devices for realization of
the knowledge bases. Finally, many modules of the structural models can be
made active concurrently, thus providing a scope for massive parallelism in
the reasoning process. The time efficiency of the inference engines thus can
be improved with structured models.

In this chapter, a number of structured models for knowledge
representation will be covered. Among these structures, some include very
rigid dependence relationships among the events. These structured models are
called strong filler and slot methods. Conceptual dependencies and scripts are
ideal examples of such structured models. The other type of structural models
does not impose much restrictions on the dependence relationships among
events and is hence called weak filler and slot methods. This includes
semantic nets and frames. The next section will explore the reasoning
mechanism with semantic nets.

8.2. Semantic Nets

Semantic nets at the time of its origin were used mainly in understanding
natural language, where the semantics (meaning) of the associated words in a
sentence was extracted by employing such nets. Gradually, semantic nets
found a wider application in reasoning of knowledge based systems. A
semantic net consists of two elementary tuples: events denoted by nodes and
relationship between events, denoted by links / arcs. Generally, a linguistic
label is attached to each link to represent the association between the events.
A simple semantic net that describes a binary predicate: Likes (X, Y) is
presented in fig 8.1.

: Likes :

Fig.8.1: A semantic net corresponding to the predicate Likes(X, Y).

Readers should not confuse from the last figure that a semantic net  can
represent only a binary predicate, i.e., a predicate having two arguments. It
can represent non-binary predicates as well. For instance, consider the unary



predicate boy (jim). This can be represented by a binary predicate Instance-of
(jim, Boy) and consequently can be represented by fig 8.2.

Instance-of

Fig 8.2: Representation of instance-of (jim, Boy).

Further, predicates having more than two arguments can also be
represented by semantic nets [6]. For example, consider the ternary predicate:
Gave (john, the-beggar, 10$). This can be represented by semantic nets, vide
fig 8.3.

Agent Instance-of

Object

Beneficiary

Fig. 8.3: A semantic net, representing a ternary predicate.

It is thus clear fro fig 8.3 that a predicate of arity >2 can be
represented by a number of predicates, each of arity 2, and then the resulting
predicates can be represented by a semantic net. For instance, the ternary



predicate Gave(john, the-beggar, 10$) has been represented in fig 8.3. as a
collection of 4 predicates given by

Agent (john, event)
Beneficiary (the-beggar, event)
Object (108, event)
Instance-of (give, event).

It may be added here that the representation of a higher-arity predicate in
binary form is not unique; consequently, the semantic net of predicates of
arity > 2 is also not unique.

- ~<

4
Consequent ~

Instance-of

........................................ Instance-of

Fig 8.4: A semantic net to represent Instance-of (X, Child) A
Instance-of (Y, sweet) — Likes (X, Y) .

Another important issue of discussion on semantic nets is its capability
of representation of quantifiers. For example, suppose we like to represent
FOL based sentence:

VX 3Y (Child (X) A Sweet(Y) > Likes(X,Y)).

This can be transformed into the following forms of binary predicates:

VX 3Y (Instance-of (X, child) A Instance-of (Y, sweet)
- Likes (X, Y)).



Consequently, we represent the above clause by a semantic net (vide fig 8.4).

The semantic net shown in fig 8.4 describes a mapping from
relationships Instance-of (X, child) and Instance-of (sweet, Y) to relationships
Likes (X, Y). To represent the given clause by an alternative form of semantic
nets, we, for example, first express it in CNF. The CNF of VX 3Y (Instance-

of (X, child) A Instance-of (Y, sweet)> Likes (X, Y)) is VX 3Y ( —Instance-
of (X, child) v —Instance-of (Y, sweet) v likes(X, Y)).

Fig . 8.5: A representation of — Instance -of ( X, Child ) V
— Instance- of (Y, Sweet) V Likes (X, Y).

Semantic nets can be partitioned into modules, where one or more
modules are subsets of the others. Such modular structure helps reasoning in a
hierarchical fashion and thus is more time efficient. For instance, consider the
semantic net of fig. 8.6, where node ‘g’ corresponds to the assertion given in
the above problem, whereas GS is a general statement. In other words, g is a
special instance of GS. The form of node g, and VX, are also shown clearly in

fig. 8.6. It is to be further noted that the entire semantic net is now partitioned
into two modules, one called SI, while the entire space is called SA. The
spaces in a partitioned semantic net [3] are associated with each other by a
subsethood hierarchical relation. For instance, space SI in fig. 8.6 is included
in space SA. The search in a partitioned semantic net thus can be done from
inner to outer space; searching variables or arcs in an opposite direction (i.e.,
from outer to inner space) is not allowed [9].



8.3 Inheritance in Semantic Nets

A binary relation x <y is a partial order if i) x </ x (i.e., x < x fails
unconditionally) and ii ) when x <y and y <z, we have x <z, i.e., transitive
relationship holds good. If the concept in a semantic net has a partial order,
we call the net an inheritance system. While drawing the net, we, however,
always omit the arc representing transitive inheritance, i.e., if there is a
directed edge from node u to v and v to w, the edge u to w is obvious and thus
omitted.

Fig. 8.6: Induction of VX in the semantic net of fig 8.5.

Example 8.1: In this example, we demonstrate an inheritance relationship
among various biological species connected through Is-a relationship. It is
clear from fig 8.7 that since bacteria is-a protozoa, and protozoa is an
invertebrate, therefore, bacteria is an invertebrate. By reasoning in the same
line, it further can be shown that bacteria is a biological mass.

8.4 Manipulating Monotonic and Default
Inheritance in Semantic Nets

In this section we present a uniform notion to handle both the FOL and default
inheritance in semantic nets. The following nomenclatures will be used to
discuss these issues.



Biological
mass

Living
organism

Nonliving
organism

Vertebrate

Fig. 8.7: The Is-a hierarchy of biological species.

i ) The monotonic / absolute links will be denoted by ‘>’ , whereas
default links will be denoted by * ------ >

ii ) Nodes in the graph denote either constants / predicates. No links
should point towards a constant. The monotonic edges and their
negations may point away from a constant.

iii) A link p—q denotes the predicate Q(p), when p is constant; otherwise
it denotes

VX (p(X)> q(X))



when p and q are predicates.
iv) Consequently, a link p /=>q denotes —Q(p) when p is a constant and
VX (p(X) /=2q(X)),
when p and q are predicates. Further,
VX (p(X) /2q(X)), VX (p(X)>—q(X)) and
VX (=p(X)>—q(X))
are equivalent.

The following rules of inference may be used for reasoning with ‘>~
operator.

i) Symmetry: If p/->q, where p is not a constant then q />p .
The proof of the above is simple as follows.
p/=q
I=p = —q (by definition )
|=—p Vv —q (by rule of implication)
J==qV—p

~q>—p

~q/>p
ii ) Positive domains: If p> q> r> s then p>s.

The proof follows directly from the elementary definition of inheritance.

iii ) Negative link: If p; = p, 2p; 2ps — 2 p and ;2> —— >

and py /> qu then p; / 2qi, provided q; is not a constant.



Example 8.2: This example illustrates that the /= links have definitely

some significance. The knowledge base of fig 8.8 represented in FOL is given
by

Green-bird (parrot)
Singer-bird (cuckoo)
Bird (Green-bird)
Bird(Singer-bird)
Avis (Bird)
—Singer-bird (parrot)

—Green-bird (cuckoo)

Fig. 8.8: A semantic net used to illustrate ‘—’and ‘/—’ operation.

The validity of the system inferential rules (i) — (iii) is illustrated here in
this example. For instance, since parrot /= singer-bird is existent in fig 8.8,
by inferential rule (i) we may add Singer-bird /- parrot as well.

Secondly, since
Parrot = green-bird = bird - avis,

we may add a link parrot = avis by inferential rule (ii).
Lastly, we have in fig. 8.8,



Parrot 2 green-bird - bird = avis
cuckoo > singer-bird - bird = avis,
parrot /> singer-bird and

cuckoo /> green-bird.

Now, suppose we add one extra rule: green-bird /- singer-bird. Let p, =
green-bird, g, = singer-bird, p; = parrot and q; = cuckoo; thus, we have

P12Pn 1>, P2/ D Q.

So, by inference rule (iii), we derive: p; /= qy, i.e., parrot /= cuckoo.

So far in our discussion, we have considered only monotonic inheritance
system. Now, we will consider the significance of ----> and --/--> operators.

One point that needs mention in this regard is the following observation:

P-/->q
= (> p)

which is in contrast to the well-known property

p/=>q
= q/2p

property

Instance-of

property

Has-
wings(X)

Instance-of

Fig. 8.9: A semantic net showing contradictions: Tweety(X) = Fly (X)
and Tweety (X) /= Fly (X).



A common question that may be raised is why to use --> and /-->
operators, when there exist monotonic = and /- operators. The answer to
this is that the --> and -/--> operators can avoid contradiction, which is not
possible with 2 and /> .

The following example illustrates how the contradiction that arises due
to use of > and /- only can be avoided by employing ---> and -/-->.

Example 8.3: Consider the symantic net shown in fig 8.9. Here, by
inheritance we have
Tweety(X) = Bird(X)—> Has-wings(X) = Fly(X) and thus
Tweety(X) = Fly(X).
Next, we have
Tweety(X) = Diseased (X) /2>Fly(X)
i.e., Tweety(X) /2>Fly(X).
So, we find a contradiction:
Tweety(X)~> Fly(X) and
Tweety(X) />Fly(X) .
This contradiction, however, can be avoided if we use ---> operator as
shown in fig 8.10. Here, Has-wings(X) --> Fly(X) denotes that it is a default

property that anyone having wings should fly. But the specialized property
states that

Diseased(X) /> Fly(X)

or, Diseased(X) > —Fly(X).

Since specialized property should be given importance, we infer

Tweety(X) 2> —Fly(X).



Fig .8.10: A modified semantic net that includes Has- wings(X) --->
Flv(X) instead of Has-winegs(X) — FIv(X).

8.5 Defeasible Reasoning in Semantic Nets

The last example demonstrates whenever we have inconsistent inferences like
Fly(X) and —Fly(X), we resolve it by giving favour to the “more restrictive”

rules. But how to determine which rule is more restrictive? This section
presents a principle, by which one will be able to select a better inference,
even when the reasoning is constrained with contradictions.

Rules em ploying --> type of im plications are called defeasible rules
[71-[8]. Rules using > are called absolute / monotonic. Rules using -/--> are
called ‘defeaters’ [2]. For reasoning with defeasible and defeater rules we
now present the following principle. We define three possible kinds of
derivations [1], 1) monotonic / absolute derivation, 2) defeasible derivation
and 3) defeating.

1) Monotonic / absolute derivation: If p>q is in the knowledge and p
is a conjunction of literals pi,ps,ps, --- , pa , all of which are either
available or absolutely derivable, then q is absolutely derivable.

Formally,  pi,p2-—-,pn > q
P, <
P, &

€



q is true.

2) Defeasible derivation: It has already been mentioned that defeasible
rules employ --> type of implication.

Given that, the knowledge base includes p -->q, where p is a conjunction
of literals py, p, ---,pn- Now q is defeasibly derivable if

a) q is absolutely derivable by another absolute rule r= q, where r is
either available in the knowledge base or absolutely derivable.

or b) py, p2, ---, Pn all are defeasibly derivable, if p = q is not defeated, i.e.,
p /-->— q s guaranteed.

or ¢) p --->q is not defeated, when py, py, -- ,pn all are defeasibly derivable
literals.

3) Defeating: An absolute rule p>q can be defeated by an absolute
contradictory rule or fact. A defeasible rule p--> q can also be defeated by
a defeasible rule r---> —q or r -/--> q, if p is not ‘more restrictive’ than r.

The definition of ‘more restrictiveness’ will be presented under c(ii).

A rule p—>q is defeated by (a) and (b) below, while a rule p---> q is
defeated by (a), (b) and (c) below.

(a) —qis available in the knowledge base.

(b) r>—q is present in the knowledge base, where r is a conjunction of
defeasibly derivable literals [1].

(c) ris aconjunction of defeasibly derivable literals 1j , so that

i) r-->—qorr --/-->q isin the knowledge base.

ii) One or more 1j is not absolutely derivable from p; ps, .., p, and
the absolutely derivable rules in the knowledge base.

The principles stated above are illustrated with the following example.

Example 8. 4: Consider the following knowledge base:

Rulel: Person(X) ---> Mortal(X)
Rule2: Poet(X) -/--> Mortal(X)
Rule3: Person (tagore).

Rule4: Poet (tagore).



In the example, we illustrate the concept of defeating by c(i) and c(ii),
presented above. Here rule 1 is defeated by rule 2 as c(i) and c(ii) are both
satisfied. c(i) is satisfied by rule 2 of the example and c(ii) is satisfied as Poet
(tagore) (= 1}, say) is not absolutely derivable from Person (tagore) (= py, say)
from the rules in the knowledge base.

It is to be noted from this example that both the p |, p», -- ,p, and the rules
in the knowledge base should be used to prove that one of the rjs is not
absolutely derivable.

8.6 Frames

A frame [4] is defined as a structure that contains a number of slots, where the
attributes of the frame are sorted. Usually the slots in a frame are filled with
values, but it may contain a frame as well. Two important issues in a frame
are 1) containment and ii) specialization.

Containment: It means that a slot in the frame contains another frame. For
example, the ‘seat arrangement’ slot of frame B contains the default frame C
and the ‘preferential arrangement’ slot of frame C contains the default frame
D (fig. 8.11). It is to be noted that default containment is denoted by ---> . A
solid arrow (=) , on the other hand, corresponds to specialization of frame,
presented below.

Specialization: The frame B, describing an examination hall of Jadavpur
University, is a specialization of the frame A, representing a generic
examination hall (fig. 8.11). Here, the frame B has some specialized
properties, where it may override the elementary properties of frame A, but
otherwise it will maintain the property of frame A. For instance, the slot of
question paper is inherited in frame B from A, while the slot of answer scripts
is specialized in B and is thus different from A.

8.7 Inheritance in Tangled Frames

In fig 8.12, we presented a hierarchical frame, where a node ‘Tweety’ has
more than one parent. Such a directed acyclic structure is called a tangled
hierarchy. The most important issue for tangled hierarchy is how to inherit
the features of parents. For inference, should Tweety inherit the features of a
Bird or ‘Bird having lost aeronautical powers’?
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Seat
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Invigilators
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Question

Paper : 1Qu/
Candidate
Answer

Scripts:
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Fig. 8.11: A frame describing an examination hall.
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Has- wings: 2

Broken -wings: 1

Fig. 8.12: Illustrating reasoning in a frame.

This is resolved here through a principle called “follow minimal inferential
distance path” [11]. Since ‘>’ type of implication is more specific than the
default ‘--->’ type of implication , we prefer

Tweety = Birds, having lost acronautical prowess

with respect to

Tweety ---> Birds.

The former rule being predominant, the reasoning goes in favor of Birds
having lost aeronautical power ----/--> Fly.

So, finally we have
Tweety --/--> Fly as the conclusion.

8.8 Petri Nets

Another structured model that is gaining popularity currently is Petri nets. A
Petri net is a directed bipartite graph consisting of places and transitions. It is
getting popular for its capability of reasoning in a parallel and distributed
manner. In this section we limit our discussion on FOL based reasoning with



Petri nets [5]. It, however, does not mean that Petri nets can be used as an
automated tool for FOL based reasoning only. In fact, Petri nets can be used
for reasoning with a rule based system or (and) can be extended to handle
uncertainties modeled with stochastic and fuzzy techniques. A separate
chapter on fuzzy Petri nets thus has been covered in the book, keeping in mind
its increasing demand in knowledge engineering. Let us now represent the
following FOL clauses by a Petri net.

FOL clauses

Rulel: Father (X,Y)—> Son (Y,X) v Daughter (Y,X).
Rule2: Daughter (Y,X) A Female (X) = Mother (X,Y).

The Petri net of 8.13 describes the above rules. It is to be noted that the
variables are recorded against the arc. The argument of the valid predicate
recorded against the arc is called an arc function. The input arc functions of a
transition are positive, while the output arc functions are negative.

Reasoning: For reasoning, one has to assign the atomic clauses in the Petri
net. For instance let us assume that we are given the following clauses:

Rule3: Father (d, 1) €
Rule4: —Son (r, d) €

Rule5: —Mother (k, 1) €
Rule6: Female (k) €

The arguent of the above clauses along with the sign of the predicates
is assigned as tokens (inside places) in the Petri net (vide fig. 8.14). The
following rules of transition firing are then used to derive the resulting
instances.

1. A transition is enabled in the forward direction, if all its input places
and all but one of its output places possess properly signed tokens with
‘consistent variable bindings’. Consistent variable bindings are checked
by the following procedure:

i) The value of signed variables in the arc function is bound with the
signed tokens of the associated places.

i) The above process is repeated for all the arc functions associated with
the transition.



iii) The common value of each (sign-free) variable is then identified. The
value of the set of variables, thus obtained, for each transition is called
consistent bindings.

2. A transition is enabled in the backward direction, if all its output places and
all but one of its input places possess consistent bindings.

Son
—~(Y.X)

< A place
Father *Y)

A transition

Pl P3

try
—(Y, X) (Y, X)

/ Daughter

An arc function
X)
tr,

Female Ps

P4

Mother

An arc function at the output (input) arc of a transition is negative (positive).

Fig. 8.13: A Petri net representing FOL clauses.

An enabled transition fires by generating tokens following the arc function
but with opposite sign of the arc functions and saves it at appropriate places,
associated with the transition. However, a multiple copy of the same token is
not kept at a given place.

With reference to fig. 8.14, we find for transition tr; two set of bindings

X=d,Y=r (see place p; and the associated arc function)
and —Y=-r,-X=-d (seeplace p, and the associated arc function).

The resulting consistent binding for tr; is thus X=d & Y=r.



Since p; and p, contain tokens and the variable bindings for transition tr;
are consistent, try is enabled and thus fires, resulting in a new token <r, d> in
place ps, following the opposite sign of the arc function —(Y,X).

Analogously, for transition tr,, the bound value of variables is
—X=-=k, =YY=l (see token at place p, and the associated arc function)
X=k (see token at place ps and the associated arc function)

-~.the consistent bindings are X=k , Y=1.

X) tr2

Mother
Female

Fig. 8.14: A Petri net of fig. 8.13 with tokens.

Since the output place ps and one of the two input places ps contains
consistent bindings, transition tr, fires, resulting in a new token at place ps.
The value of the token is —<I, k>, following the opposite sign of the arc
function (Y, X). So, at place p; we have two resulting tokens —<I, k> and <r,

d>. It may be noted that these two tokens can be generated concurrently.
Chapter 22 covers in detail the concurrent realization of the Petri net models.

8.9 Conceptual Dependency

Conceptual dependency, abbreviated as CD, is a specialized structure that
describes sentences of natural languages in a symbolic manner. One
significant feature of CD is its structural independence on the languages in



which it is expressed. The basic difference between semantic nets and CD lies
in the naming of the connecting links. In semantic nets, one may name the
connecting links between events according to its relevance to the context and
consequently the name differs for different users. A CD, on the other hand,
requires a standard assignment of a dependence relationship and is, therefore,
independent of the users. An English sentence and its corresponding CD
representation is presented below to visualize the issues discussed above.
Consider the sentence ‘She gave me a flower’. This is represented below in
fig. 8.15.

to
HI
P 0 R
She < ATRANS € flower< I
from
> She

Fig 8.15: Representation of 'She gave me a flower' in CD .

In the last figure, R denotes a recipient case relation, o denotes an object
case relation, p denotes past tense, € denotes a two way link between the
actor and action and ATRANS stands for transfer of possession. It is called a
primitive action. The set of primitive actions in CD, proposed by Schank and
Abelson [10], is presented below.

Primitive actions

PTRANS: Transfer of physical location by an object ( like move )
ATRANS: Transfer of abstract relationship ( like give )

MOVE: Movement of a pair of one’s body ( like stretch )

PROPEL: Application of force to an object ( like pull )

GRASP: Catching hold of an object ( like clutch )

INGEST: Ingestion of food by animals

EXPEL: Expulsion of material from the physique of an animal ( like cry )
MBUILD: Building information from existing information ( like decide )
MTRANS: Transfer of mental ideas ( like say )

ATTEND: Activating sensory organ toward stimulus ( like listen )
SPEAK: Generation of sounds ( like say )



For building dependency structures, we also require 4 primitive conceptual
categories.

Conceptual categories:

Conceptual categories Meaning
ACTs Actions
PPs Picture
PAs Picture aiders
AAs Action aiders

Schank defined a set of conceptual tenses also, as presented below [9].

Conceptual Tenses Meaning
p past
f future
t transition
t, start transition
te finish transition
continuing
? interrogative
/ negative
nil present
c conditional
delta timeless

Schank listed 14 typical dependencies, the details of which are
explained in [9]. We here illustrate a few to make the readers aware of the
concept.

In the dependencies, presented below, ‘o’ stands for object. The rest of
the notations in the above dependencies being obvious are not discussed
further.

Like any representations CDs too have merits and demerits from the
point of view of reasoning. The following points support knowledge
representation by CD [9].



i) A few inferential rules are required, when knowledge is represented by CD.
This, however, is not feasible when other forms of knowledge
representation are used.

ii) Inferences, in many circumstances, are directly available in the
representation itself.

iii ) The initial structure of CD that corresponds to one sentence must have
many holes (gap), which will be used as an attention focusser in the
program that recognizes the subsequent sentences.

CD notation Application Meaning

1.PP&ACT Birds <»PTRANS Birds fly.

2.PP<PP John &child John is a child.
0 p 0

3.ACT € PP John & PROPEL < door John pushed the door.

4. PP Flower A Beautiful flower

PA beautiful
5. PP Parrot

poss-by Jim’s parrot
PP Jim
jim
i p 1 ¢ Jim ate rice

6. ACT €¢ Jim <:> INGEST < with a spoon

*0 do
rice T 0

spoon

Fig. 8.16: Samples of CD.



The most significant drawback of CDs is that it can merely represent the
events but there exists other information in complex programs, which CDs fail
to represent.

8.10 Scripts

Scripts represent stereotyped sequence of events in a particular context. For
instance, it can represent scenes in a restaurant, marketplace or examination
hall. A script of a restaurant includes the scenes of ordering the waiter, to
bring the menu card, then ordering him to bring desired food, then taking up
the food items, paying the bill and leaving the restaurant. In each scene there
exists a sequence of operations. For example, when the waiter is ordered, he
keeps the ordered item in his memory; then moves to the cook; the cook
serves him items; he brings the items to the table, where from the order was
placed and finally places the dishes on the table.

A script consists of a number of components, as defined below:

i) Entry conditions: The conditions that must be satisfied before the
events described in the script occur.

ii) Scenes: The sequences of events that occur. The events are
described following the formalisms of CDs.

ii) Roles: These are slots representing people / actors involved in the
events.

iv) Props: Slots used for objects involved in the events of a script.

V) Track: It stands for ‘specific variations on a more general pattern

that is represented by a particular script [9].

vi) Results: The consequences after the events in the script have
occurred.

A script of an examination hall is represented in fig. 8.17. These are 8
scenes altogether; each is clearly defined. The components of the scripts are
illustrated in the left side margin.



Script: Example
Track: Hall no.1
Props:

Seats (S)

Questions (Q)
Answer Scripts (AS)
Desk

Stapler

Roles:

C= Candidates
H= Helping Staff
I = Invigilator

Scenel: Candidates entering the hall

C PTRANS C into hall

C ATTENDS his seat

C PTRANS C towards his seat
C MOVES his body part to sit

Entry Conditions:

C has the seat no. in the
particular hall.

I has duty in the
particular hall.

Results: AS filled with
Writing and returned.

Q exhausted.

Scene2: Invigilator enters the hall

IPTRANS I into hall
T ATTENDS his seat
TPTRANS I towards his seat
I MOVES his body part to sit

Scene 3: Answer scripts distributed

I GRASPS AS
TPTRANS I to each seat
I MOVES hand down to place the AS to seat

Scene 4: Question papers distributed

TGRASPS Q
TPTRANST to each seat
I MOVES hand down to place Q to seat

Scene 5: Invigilator verifies candidature

TPTRANS to each seat
TATTENDS AS

Scene 6: Candidates writing and submitting
scripts after writing

C ATRANS AS , C GRASPS AS, C PTRANS
AStol

Scene 7: Candidates leaving out of the hall

C PTRANS C out of the hall

Scene 8: Invigilator leaving out of the hall

TPTRANS I out of the hall

Fig. 8.17: A script of an examination hall.




Once a script structure for a given context is desired, answering queries for a
particular incident that can be mapped to the given script is possible.

For instance, suppose we have the examination script of fig 8.17. We are now
told a story as follows:

“ Jim entered the examination hall and came out with a question paper .”
Now, if we ask, “Did Jim appear at the examination?”
We immediately answer “Yes”.

A program that realizes a script can also answer such queries. One
important issue that we do not discuss here is that the capacity of inheritance
of the slots in a script. A script is a collection of slots. So, it also supports the
capability of inheritance like a frame.

8.11 Conclusions

The chapter covered a wide range of structured models, including semantic
nets, frames, Petri nets, scripts and conceptual dependency graphs (CDs).
Semantic nets are useful for their application in monotonic, non-monotonic
and defeasible reasoning. CDs are more powerful tools for knowledge
representation, but have limited use in monotonic systems. Scripts are
mainly useful to represent complex scenes, which by other means are too
difficult to be realizable. The work of Schank and his group in building a
Script Applier Mechanism (SAM) system at Yale University, in this regard,
needs special mention. The above system reads a text and reasons with it to
understand stories.

Among the recently developed structured models, Petri nets are the
most popular for their parallel and distributed architecture. They can also
handle the inexactness of data and knowledge by fuzzy or stochastic tools.
However, if someone wants to use binary logic only, then semantic nets and
their inheritance in the presence of defeasible reasoning should be adopted.
There exists an ample scope of work on defeasible reasoning and its
realization on different structured models. A unified model that can handle all
typical kinds of reasoning has yet to be developed.

Exercises

1. Represent each of the the following pieces of knowledge by a semantic
net. (a) Loves (mary, john), (b) Loves (mary, john) A Hates (john, mita),

(c) Loves (mary, john) —Hates (mita, john).



(1]

(2]

(3]

(4]

(5]

Draw a partitioned semantic net to represent the knowledge: VX Adult
(X) —Loves (X, children).

Draw a script to represent a restaurant, explaining the entry at the
restaurant, ordering of items, waiting for the items, serving the items,
enjoying the meals, collecting the bills for payment and exiting from the
site.

Represent the following statements by a Petri net: (a) Graduate-
Student(X) — Married (X), (b) Employed (X) — Married (X), (c¢)
Married(X) — Has-son (X) v Has-daughter (X).

Adding the data clauses (a ) —Has-daughter (john) <, (b) Graduate-
student (john) «, (c ) —Has-son (john) <« to the previous clauses, can we
derive —Employed (john) and —Married (john)?— justify. Clearly show

the forward and / or the backward firing of the transitions. Does more
than one transition fire concurrently here?

Construct examples to illustrate the cases when a given rule is defeated.
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Dealing with
Imprecision and
Uncertainty

In the various methods of knowledge representation, discussed in the last few
chapters, it has been presumed that the database consists of precise data
elements and the knowledge base contains no uncertainty among its
constituents. Such an assumption restricts the scope of application of the
proposed techniques. In fact, for many real world problems, imprecision of
data and uncertainty of knowledge are, by nature, part of the problem itself
and continuing reasoning in their presence without proper modeling tools
may lead to generating inaccurate inferences. This chapter discusses the tools
and techniques required for handling the different forms of inexactness of
data and knowledge. We here cover the stochastic techniques including
Pearl’s evidential reasoning and the Dempster-Shafer theory, the certainty
factor based schemes and the fuzzy relational algebra for modeling
imprecision and uncertainty of data and knowledge respectively. Examples
have been given to illustrate the principles of reasoning by these techniques.

9.1 Introduction

This chapter covers various tools for reasoning in the presence of imprecision
of facts and uncertainty of knowledge. Before formally presenting the



techniques, we first introduce the notion of imprecision and uncertainty and
their possible sources with examples. Consider a problem of medical
diagnosis. Here, the pieces of knowledge in the knowledge base describe a
mapping from symptom space to disease space. For example, one such piece
of knowledge, represented by production rules, could be

Rule: IF Has-fever (Patient) AND
Has-rash (Patient) AND
Has-high-body-ache (Patient)

THEN Bears-Typhoid (Patient).

Now, knowing that the patient has fever, rash and high body pain, if the
diagnostic system infers that the patient is suffering from typhoid, then the
diagnosis may be the correct one (if not less) in every hundred cases. A
question then naturally arises: is the knowledge base incomplete? If so, why
don’t we make it complete? In fact, the above piece of knowledge suffers from
the two most common forms of incompleteness: firstly, there is a scope of
many diseases with the same symptoms, and secondly, the degree or level of
the symptoms is absent from the knowledge. To overcome the first problem,
the knowledge engineer should design the knowledge base with more specific
rules (i.e., rules with maximum number of antecedent clauses, as far as
practicable; see the specificity property in chapter 3). For rules with identical
symptoms (antecedent clauses), some sort of measures of coupling between the
antecedent and the consequent clauses are to be devised. This measure may
represent the likelihood of the disease, as depicted in the rule among its
competitive disease space. Selection of the criteria for this coupling may
include many issues. For example, if the diseases are seasonal, then the
disease associated with the most appropriate season may be given a higher
weightage, which, in some ways should be reflected in the measure of
coupling. The second problem, however, is more complex because the setting
of the threshold level at the symptoms to represent their strength is difficult
even for expert doctors. In fact, the doctors generally diagnose a disease from
the relative strength of the symptoms but quantification of the relative levels
remains a far cry to date. Besides the above two problems of incompleteness /
inexactness of knowledge, the database too suffers from the following kinds of
problems. Firstly, due to inappropriate reporting of facts (data) the inferences
may be erroneous. The inappropriate reporting includes omission of facts,
inclusion of non-happened fictitious data, and co-existence of inconsistent
data, collected from multiple sources. Secondly, the level or strength of the
facts submitted may not conform to their actual strength of happening, either
due to media noise of the communicating sources of data or incapability of the
sources to judge the correct level/ strength of the facts. Further, the observed
data in many circumstances do not tally with the antecedent clauses of the
knowledge base. For example, consider the following piece of knowledge and



the observed data. The degree of the data is quantified by the adjective “very”.
How can we design an inference engine that will match such data with clauses
of the knowledge to infer: IS-Very-Ripe (banana)?

Rule: IF IS-Yellow (banana)

THEN IS-Ripe(banana).

Data: IS-Very-Yellow (banana).

Inference: IS-Very-Ripe (banana).

The last problem discussed is an important issue, which will be

analyzed in detail in this chapter.

For reasoning in an expert system in the presence of the above forms of

inexactness of data and knowledge, the following methodologies are presented
in order.

)

2

3)

Probabilistic techniques, which have been developed by
extending the classical Bayes’ theorem for application to a specialized
network model of knowledge, representing the cause-effect relationship
[4] among the evidences. An alternative form of probabilistic reasoning
using the Dempster-Shafer theory is also included in this section.

Certainty factor-based reasoning is one of the oldest
techniques for reasoning, used in MYCIN experiments of Stanford
University. This is a semi-probabilistic approach, where the formalisms
are defined in a more or less ad hoc basis, which do not conform to the
notion of probability.

Fuzzy techniques, which are comparatively new techniques, based
on the definition of Fuzzy sets and Logic, proposed by Zadeh. Both
Probabilistic and Fuzzy techniques are stochastic in the sense that each
variable in the system has a finite valuation space and for each value of
the variable, we attach a probability or fuzzy membership value (to be
discussed shortly).

9.2 Probabilistic Reasoning

Probabilistic techniques, generally, are capable of managing imprecision of
data and occasionally uncertainty of knowledge. To illustrate how the degree



of precision of data and certainty of knowledge can be modeled with the
notion of probability, let us consider example 9.1.

Example 9.1: Consider the following production rule PR;.

PR;: {IF (the-observed-evidences-is-rash) (x),
AND  (the-observed-evidences-is-fever) o),
AND  (the-observed-evidences-is-high-pain) (z ),
THEN (the-patient-bears-German-Measles)}! (CF)

where X, y, z denote the degree of precision / beliefs / conditional probabilities
that the patient bears a symptom, assuming he has German Measles. On the
other hand, CF represents the degree of certainty of the rule or certainty factor/
probability that the patient bears German Measles, assuming the prior
occurrence of the antecedent clauses. It is, now, clear that the same problem
can be modeled by many of the existing techniques; of course, for the purpose
of reasoning by a technique we need a particular kind of parameter.

9.2.1 Bayesian Reasoning

Under this context, we are supposed to compute P( H;/ Ej) or P ( Hi / Ey, Es,
. En) where H; represent a hypothesis and E; represents observed evidences
where 1 £j<m. With respect to a medical diagnosis problem, let H; and E;
denote the i-th disease and j-th symptoms respectively. It is to be noted that
under Bayesian reasoning we have to compute the inverse probability [P (H;/
E; )], rather than the original probability, P(E; /H;). Before describing the
Bayesian reasoning, let us revise our knowledge on conditional probabilities.

Definition 9.1: Conditional probability [1] P (H/ E) is given by
P(H/E)=P(H N E)/ P(E) = P(H & E) / P(E),

where H and E are two events and P (H N E) denotes the joint occurrence of
the events H & E. Analogously,

P(E/H)=P(E & H)/P(H) .
Now, since P(E & H) = P(H & E), we find

P(E& H)= P(E/H).P (H) = P(H/E).P (E)



P(E/H).P H)
So,P(H/E) = 9.1
P (E)

which is known as Bayes’ theorem.

Example 9.2: Consider the following problem to illustrate the concept of
joint probability of mutually independent events and dependent events.

A box contains 10 screws, out of which 3 are defective. Two screws are
drawn at random. Find the probability that none of the two screws are
defective using a) sampling with replacement and b) sampling without
replacement.

Let A: First drawn screw is non-defective.

B: Second drawn screw is non-defective.

a) Sampling with replacement
P(A) =7/10
P(B) = 7/10
P(A n B) = P(A).P(B) = 0.49
b) Sampling without replacement
P(A)=7/10
PB/A)=6/9=2/3

P(A N B)=P(A).P (B/A)=14/30 = 0.47

Now, for reasoning under uncertainty, let us concentrate on the well-known
Bayes’ theorem. With reference to our medical diagnosis problem,

P(D/S)= P (S/D).PD) /P(S) 9.2)



where D and S stand for disease and symptoms respectively. Normally, P(S)
is unknown. So to overcome the difficulty the following formalism is used in
practice.

We compute: P(—= D/ S)=P(S/— D). P(— D)/P(S). 9.3)
Now from expressions (9.2) and (9.3) we find,
P(MD/S) P (S/D) P(D)

X

P(=D/S) P(S/~D) P(=D)

ie,0(/S)=L(S/D)x O (D) (9.4)

where O and L denotes the odds of an event and the likelihood ratio [1].

However, in some circumstances, where P (S) is known, we can directly
use the Bayes’ theorem.

In our formal notations, consider the set H and E to be partitioned into
subsets, vide fig. 9.1.

(a) (b)
Fig. 9.1: (a) Partitioned Hj, 1< j < n and (b) Partitioned E;, 1<1 < m.

The expression (9.1) can now be extended to take into account the joint
occurrence of E; with all Hj for 1 < j<n.

P (E)

=PEMNH)+PEN H)+..+P(E N Hy

=P ((E/H)xPMH,)+P(E/H)xP (H)+... +P(Ei/Hy) x P (Hy)
9.5)



It may be noted that some of the probability of joint occurrences [ P (E; & H;)]
may be zero. It follows from expression (9.5) and expression (9.1) that

P (Ei/ Hj) x P (H)
P (H;/E) = (9.6)
X P(Ei/Hx)xP (Hx)
1€k<n

In the real world, however, the hypothesis H; depends on a number of E; s.
Thus,

P (H;/Ey, Es, ..., En)
P { (E., Es,..., Eu) / H} x P (H))

= 9.7)
2P {(EyE2, ..., En) / Hx} x P (Hx)
1€k <n

However, the conditional probability of the joint occurrences of E,,
E,,...., E, when H; has happened, in many real life problems, is unknown. So
E; is considered to be statistically independent, which unfortunately is never
true in practice.

When E;s are independent, we can write
P (Ei, Es,..., Em / Hj)

=P (E|/HJ)XP(E2/HJ)X XP(Em/HJ)
m

= II1 P (Ei/H) (9.8)
i=1

Substituting the right-hand side of expression (9.8) in (9.7) we find,

m
{I1 P(E/H)}xP(H)
i=1
P (H;/ E4, Es,..., Em) = 9.9)
n m
2{IIP(E/H)} xP (Hy)
k=1 i=1




To illustrate the reasoning process using expression (9.9), let us consider the
following example.

Example 9.3: Consider the hypothesis space and the evidence space for a
medical diagnosis problem. The rules, representing the cause-effect
relationship between the evidence space and the hypothesis space, are also
given along with the conditional probabilities.

Determine the probable disease that the patient bears.

T CP
02/ GM \ 0.5 F HBA R
0.3
T = Typhoid F = Fever
GM = German Measles R =Rash
CP = Chicken Pox HBA = High Body Ache
Hypothesis space Evidence Space

Fig. 9.2: The hypothesis and the evidence space for example 9.3.

Here,

P(T) =0.2,
P (CP) =0.5,
P (GM)=0.3

where P (X) denotes the probability that a patient has disease X.

Set of Rules

Rule 1: IF symptoms are
F  (P((F/T)=10Y9),
HBA (P (HBA / T) = 0.6)
THEN the Patient hopefully bears T.

Rule 2: [F symptoms are
F (P(F/ GM) = 0.8),
R(P(R/GM)=0.7),
HBA (P (HBA/GM) = 0.8)
THEN the patient hopefully bears GM.



Rule 3: IF symptoms are
F(P((F/CP)=0.56),
R (P (R/CP)=10.9),
HBA (P (HBA/CP) =0.8)
THEN the patient hopefully bears CP.

We compute P(CP/ R, F, HBR), P(T / F, HBA) and P(GM /R, F, HBA) and
then find the highest among them and hence draw a conclusion in favor of the
disease with the highest probability. Now,

P (CP) P (R/ CP) P (F / CP) P (HBA / CP)
P (CP /R, F, HBA) =

Y P (F/x) P(HBA /x) P (x) {P (RIGM) +
P(R/CP)}
x € {CP,GM, T}

(9.10)

Analogously, we can compute P(GM / R, F, HBA) and P(T / F, HBA).
It is to be noted that the denominator of (9.10) is common to the three
conditional probabilities. So, evaluation of their numerators only is adequate
for comparison.

Now, P (CP) .P (R/CP). P (F/CP). P(HBA/CP)
= 05x09x0.6x0.7=0.189
P (GM). P (R/GM). P (F/GM). P(HBA/GM) = 0.134
and P (T). P (F/T).P (HBA/T)=0.108
From the above results it is clear that the patient bears CP. The system
would respond to the user in the following manner. “/¢ is highly probable that

the patient bears CP for P (CP/ conditional events) is the highest among the
competitive conditional probabilities for other diseases.”

Limitation of Bayesian reasoning
n
1. Since X P (H;) = 1, if a new hypothesis is discovered,
j=1

P(H;) for all 1 £ j < n+1 then have to be redefined by an expert
team.



2. It might happen that none of the H; has happened. This, in general,
does not occur in a conventional Bayesian system, unless we
intentionally put a Hy in the Hypothesis set with a given
probability.

3. That observed evidences, which are considered to be statistically
independent, do not behave so in realistic situations.

9.2.2 Pearl’s Scheme for Evidential Reasoning

A Bayesian belief network [2]-[3] is represented by a directed acyclic graph or
tree, where the nodes denote the events and the arcs denote the cause-effect
relationship between the parent and the child nodes. Each node, here, may
assume a number of possible values. For instance, a node A may have n
number of possible values, denoted by Aj,A,,...,A,. For any two nodes, A
and B, when there exists a dependence A—B, we assign a conditional
probability matrix [P (B/A)] to the directed arc from node A to B. The
element at the j" row and i" column of P(B/A), denoted by P(B; /A),
represents the conditional probability of B; assuming the prior occurrence of
A,;. This is described in fig. 9.3.

P (B/A) °

Fig. 9.3: Assigning a conditional probability matrix in the
directed arc connected from A to B.

Given the probability distribution of A, denoted by [P(A:) P(A,) ..... P(A)]"
we can compute the probability distribution of event B by using the following
expression:
P(B) = [P(B)) P(B2) ....P(Bu)]"m u
= [P(B/A)]mxn [P(A) P(A2) ....P(An)]"nx1

= [P(B/A)]m xn X [P(A)]n x 1.

We now illustrate the computation of P(B) with an example.



Example 9.4: Consider a Bayesian belief tree describing the possible causes
of a defective car.

Car does not
start

e

Battery Fuel system Switches
defective defective defective
B C D
Battery Battery Fuel ngition Power-on
loose exhausted Exhausted switch relay
defective defective
E F G
H I

Fig. 9.4: A diagnostic tree for a car.

Here, each event in the tree (fig. 9.4) can have two possible values: true or
false. Thus the matrices associated with the arcs will have dimensions (2 x 2).
Now, given P(A) = [P(A = true) P(A = false)]”, we can easily compute P(B),
P(C), P(D), P(E), ...,P(I) provided we know the transition probability
matrices connected with the links. As an illustrative example, we compute
P(B) with P(B/A) and P(A).

Let P(A) = [P(A = true) P(A = false)]"

=[ 07 03 1

Bj—>
ANB =true B = false
P(B/A)=A =true | 0.8 0.2
A = false] 04 0.6

So, PB)= P(B/A).P(A)=[0.62 046]



One interesting property of Bayesian network is that we can compute the
probability of the joint occurrence easily with the help of the topology. For
instance, the probability of joint occurrence of A, B, C, D, E, F, G, H, I ( sce
fig. 9.4) is given by

P(A7 B’ C7 D’ E’ F’ G’ H’ I)
=P(A /B).P(A/ C).P(A / D).P(B /E, F).P(C / G).P(D / H, T) (9.11)

Further, if E and F are independent, and H and I are independent, the
above result reduces to

P(B/A).P(A/C).P(A/D).P(B/E).P(B/F).P(C/G).P(D/H).P(D/I).

Thus, given A,B,C,...,H all true except I, we would substitute the
conditional probabilities for P(B= true / A = true), P(A = true /C =
true).....and finally P(D = true / I = false) in the last expression to compute
P(A= true, B = true,....H = true, I = false).

Judea Pearl [2-3] proposed a scheme for propagating beliefs of evidence
in a Bayesian network. We shall first demonstrate his scheme with a Bayesian
tree like that in fig. 9.4. It may, however, be noted that like the tree of fig.
9.4, each variable, say A,B,...., need not have only two possible values. For
example, if a node in a tree denotes German Measles (GM), it could have three
possible values like severe-GM, little-GM, moderate-GM.

In Pearl’s scheme for evidential reasoning, he considered both the
causal effect and the diagnostic effect to compute the belief function at a
given node in the Bayesian belief tree. For computing belief at a node, say V,
he partitioned the tree into two parts: i) the subtree rooted at V and ii) the rest
of the tree. Let us denote the subset of the evidence, residing at the subtree of

V by e, and the subset of the evidence from the rest of the tree by e,”. We
denote the belief function of the node V by Bel(V), where it is defined as

Bel (V) =P (V/e, e )
=P (e,/V).P(V/e,) /o
=A(V) IT (V) (9.12)
where, A (V) = P(e,/V),

[1(V) = P(V/e,'), 9.13)



and o is a normalizing constant, determined by
o=, < (true, false) P(ev'/V). P(V/ev+) (914)
It seems from the last expression that v could assume only two values:

true and false. It is just an illustrative notation. In fact, v can have a number of
possible values.

Let node V have n offsprings, vide fig. 9.5. For computing A(V), we
divide e, into n disjoint subsets ez, 1< 1 <n, where Zi is a child of V.

So, M(V) = P(e,/V).
= P(ezf, sz_, ey eZn'/ V)

= P(ez1_/V). P(ezz—/V).... P(eZn"/V).

= Hnj:17LZi.(V) (915)
U
\'%
A (V) 7 /M(U)
Z1 Z2 Z3 Zn

Fig. 9.5: Propagation of As from the children to the parent
in an illustrative tree.

We now compute [1(V) using the message [Iv (U) = P(U|ev+) from the parent
U of V.
[1(V) = P(Ule,)
= Zue (true, false) P ( \'% | eV+, U= u) P(U =u |ev+)
= Zue (true, false) P(V |U = u). p(U =u | eer)
= Zue (true, false) P(Vl U= u). HV(U = u)

=[P(VIU)] 252 x [T1.(0) TL.(D]2u (9.16)



We now compute the messages that node V sends to its parents U and each of
its children Z,, Z,, ...,Z, to update their values. Each of these two messages is
a conditional probability, given that the condition holds and the probability
given that it does not.

Now, the message from V to parent U, denoted by A, (U), is computed as
}\’V(U) = ZVE(Irue, false) P(ev- |U, V= V) P(V =V | U)
= ZVg (true,false) P(ev- |,V: V) P (V =V |U)
= 2\/ e (true,false) P(V =V |U) 7\4 (V = V)
=[P(V]| U)lzx2 x [M0) O I (9.17)

Lastly, the message from V to its child Z; is given by

[Tz (V)
=P(V|es)

=P(Vl]e ez exr . .. ezii ez . ezn)
=B IL,i Plesi | V, &) P(V] &)

=B IT.P(e. | V) P(V e,

=B( [Tz (V) TI(V)

=BV Az(V)) TI(V)

=B Bel (V)/ Az(V) (9.18)
where [ is a normalizing constant computed similarly as o.

The belief updating process at a given node B (in fig. 9.4) has been
illustrated based on the above expressions for computing the A and [I
messages. We here assumed that at each node and link of the tree (fig. 9.4) we
have one processor [7]. We call these node and link processor respectively. The
functions of the node and the link processors are described in fig. 9.6.



A Node Processor A

[Is(A) Mg (A)
s

1.As (A)=[P (B/ A)] A (B), where
AB)=[A(B=B)),..A(B=B,)],

2. TIB)=[P B/ A)] IIs (A), where
[e(A) = [TT (A = A)), ...., [T(A= A,)]

Link Processor B

o f / /o

1. Bel (B) = A(B) [1(B), where
AB)= At (B) Ar (B)

2. TIz (B)=P Bel B)/As (B)
Bel (B)

3. IIr (B) =B Bel (B)/As (B)

Node Processor B

Iz B) \ I @
/xﬁ B) e (B)\ P (B

Link Link
processor E processor F
Node Node
E processor E Processor F F

Fig. 9.6: The computation and propagation of A and [] messages
from and to node B of fig. 9.4.



The main steps [8], [12] of the belief-propagation algorithm of Pearl are
outlined below.

1.

During initialization, we set all A and [] messages to 1 and set
IIs(A) messages from root to the prior probability [ P (A))
P(A,)....., P(An)]" and define the conditional probability matrices.
Then estimate the prior probabilities at all nodes, starting from the
children of the root by taking the product of transpose of the
conditional probability matrix at the link and the prior probability
vector of the parent. Repeat this for all nodes up to the leaves.

Generally the variables at the leaves of the tree are instantiated.
Suppose, the variable E= E, is instantiated. In that case, we set [7]

Ae B)=[0 100 0 0...0],
where the second element corresponds to instantiation of E = E,.

When a node variable is not instantiated, we calculate its A values
following the formula, outlined in fig. 9.6.

The A and [] messages are sent to the parents and the children of the
instantiated node. For the leaf node there is no need to send the ]
message. Similarly, the root node need not send the A message.

The propagation continues from the leaf to its parent, then from the
parent to the grandparent, until the root is reached. Then down
stream propagation starts from the root to its children, then from the
children to grandchildren of the root and so on until the leaves are
reached. This is called an equilibrium condition, when the A and []
messages do not change, unless instantiated further. The belief value
at the nodes now reflects the belief of the respective nodes for ‘the car
does not start’ ( in our example tree).

When we want to fuse the beliefs of more than one evidence, we can
submit the corresponding A messages at the respective leaves one
after another, and repeat from step 3, otherwise stop.

The resulting beliefs at each node now appear to be the fusion of the joint
effect of two or more observed evidences.

We presented Pearl’s scheme for evidential reasoning for a tree structure only.
However, the belief propagation scheme of Pearl can also be extended



to polytrees, i.c., graphs where the nodes can have more than one parent, but
there must be a single arc between each parent to a child and the graph should
not have any cycles [12]. We do not derive the formula for belief propagation
here, but only state it and illustrate with an example.

9.2.3 Pearl’s Belief Propagation Scheme on a Polytree

Let U and V be predecessors of node X, and Y and Z are the successors of
node X, as shown in fig. 9.7. Here, we denote the value of a variable, say V,
by lower case notations, say v. Let P(x/ u, v) be the fixed conditional
probability matrix that relates the variable to its parents u and v. Let Ilx (u)
be the current strength of the causal support, contributed by U to X. Let Av(x)
be the current strength of the diagnostic support contributed by Y to X. Causal
support represents evidence propagating forward from parents to children,
while diagnostic support represents feedback from children to their parents.

AN

/'
Ax () Ax (V)

g

Iy (x) o\ 2K

/ Ay (X) Az (X) \

Fig. 9.7: Propagation of belief through a piece of belief network.



Updating a node X thus involves updating not only its belief function (Bel
(x)) but also its A and IT functions. Belief updating is carried out by the
following formula.

Bel X) =0 Ay(X) Az (x) X P (x/u,v) IIx (u) IIx (v)
(9.19)

u, v
where o is a normalizing constant that makes Y Bel (x) = 1.
Vx

The process of A and IT updating is now presented below with reference to fig.
9.7.

M=o X[IxWXE Ay XAz (x)Px/u,v)]]
(9.20)
Vv X

Ny =0 Az(x)[XTx (u) Hx (V)P (x/u,v)]
9.21)
u v

For leaves in the network, A-values are set to one, while for roots (axioms)
in the network the Il-values are set equal to their prior probabilities.

Example 9.5: To illustrate the process of computing Bel (x) at a node X,
let us consider fig. 9.8.

GM CP

A g o

C e o D
Body-Temp. Rash

Fig. 9.8: A causal network, representing hypothesis (disease)
and evidence (symptom) relationship.



Let the possible value of the hypothesis and evidences be as follows.
GM = {high-GM, low-GM}
CP = {high-CP, little-CP}

Body-Temp = { BT <= 98°F, BT > = 100° F}
Rash = {round, oval-shaped}

The matrices that are associated with the links (arcs) of fig. 9.7 are presented
below.

1—
\BTS 98°F BT= 100° F
%
Let MAC =
high-GM 0.2 0.8
low-GM 0.7 0.3 = P (C/A)
i—
il BT<98°F BT2> 100°F
Mgpe =
High-CP 0.3 0.7
Low-CP 0.6 0.4 = P(C/B)
i—
. \ round oval-shaped
J
Map = high-GM 0.9 0.1

= P(D/A)

low-GM 0.8 0.2



i—

round  oval-shaped
id

and Mgp = high-CP 0.3 0.7

- P (D /B)
low-CP | 0.4 0.6

Suppose, we are interested to compute:

Bel (BT <98°F)

and Bel ( BT 2100° F).

Now, with reference to Pearl’s nomenclature, we thus assume the following
items in fig. 9.8:

st (high—GM) =0.6

Igr (IOW-GM) =0.1

IIgr (high-CP) = 0.25 and

ITgr (low-CP) =0.05

Here, Ay (body-temp) =1.0 and
Az (body-temp) = 1.0

Since body-temp (C) is a terminal node in fig, 9.8. the A values incoming to
it should be unity. Thus by expression (9.19), we find

Unnormalized Bel ( BT < 98° F)

= Msr (high-GM) x TTsr (high-CP) x P (BT < 98° F/ high-GM, high-CP)
+ gy (high-GM) x TTsr (low-CP) x P (BT <98° F / high-GM, low-CP)
+ Tgr (Iow-GM) x ITgr (high-CP) x P (BT < 98° F / low-GM, high-CP)
+sr (low-GM) x ITgr (low-CP) x P (BT < 98° F / low-GM, low-CP)



= (0.6x 0.25x 0.2x 0.3) + ( 0.6x 0.05x 0.2x 0.6) + ( 0.1x 0.25x 0.7x 0.3) +
(0.1x 0.05x 0.7x 0.6)

=0.01995

Suppose analogously, we find Bel (BT=100° F) = f3 (say).
Then oo =1/(0.01995 +B).

So, normalized Bel (BT £ 98°F)= o x 0.01995

and normalized Bel (BT = 100° F)=a x B

The A and IT messages can also be calculated by the formulas supplied.
According to Pearl [2], the belief computation in the polytree is done in an
asynchronous manner, and at some point of time, the beliefs at all nodes do
not change. We call it an equilibrium condition. The belief of the nodes in
the polytree at this condition is consistent with the theory of probability.

9.2.4 Dempster-Shafer Theory for
Uncertainty Management

The Bayesian formalism assigns a positive belief to a proposition, but it does
not take into account of the disbelief of the propositions. Dempster-Shafer
(DS) theory, on the other hand, allows information integration by considering
both their belief and disbelief. To illustrate this point, let us consider an
example. Suppose that one of the three terrorist groups: A, B and C planted a
bomb in an office building in a country. Further, suppose, we have adequate
evidence to believe that group C is the guilty one with a measure of belief
P(C) = 0.8, say. On the other hand, without any additional knowledge / fact,
we do not like to say that P(B)+ P(A) = 0.2. Unfortunately, we are forced to
say so using conventional probability theory as it presumes P(—=C) = 1- P(C)
=P(B) + P(A). This prompted Dempster and his follower Shafer to develop a
new theory, well known as the DS theory in the Al community.

In the DS theory, we often use a term, frame of discernment (FOD)
0.To illustrate this, let us consider an example of rolling a die. In rolling a
die, the set of outcomes could be described by a statement of the form: “the-
number-showing-is-i” for 1 < i < 6. The frame of discernment in the die
example is given by

FOD 6= {1,2,3,4,56}.



Formally, the set of all possible outcomes in a random experiment is called
the frame of discernment. Let n= |0 |, the cardinality of 0.  Then all the
2" subsets of theta are called the propositions in the present context. In the die
example, the proposition, “the-no-showing-i-is-even” is given by {2, 4, 6}.

In the DS theory, the probability masses are assigned to subsets of 0,
unlike Bayesian theory, where probability mass can be assigned to individual
elements (singleton subsets). When a knowledge-source of evidence assigns
probability masses to the propositions, represented by subsets of 6, the
resulting function is called a basic probability assignment (BPA).

Formally,a BPA is m

where m: 2° — [0,1]

where 0<m(.)<10, m(d

and ¥ m(x) = 1.0 (9.22)
xcCO

Definition 9.2: Subsets of 6, which are assigned nonzero probability
masses are called focal elements of 0.

Definition 9.3: A belief function [5-6] Bel (x), over 0, is defined by

Bel (x) = X m(Y) (9.23)
Yc X

For example, if the frame of discernment 0 contains mutually exclusive
subsets A, C and D, then

Bel ({A,C,D})

= m ({ ACD}) + m ({A, C}) + m ({A.D}) + m ({C,D}) + m ({a}) + m
({c}) + m ({d}).

In DS model, belief in a proposition is represented by the belief
interval. This is the unit interval [0,1], further demarcated by two points j and
k, k = j. Suppose that the belief interval describes proposition A. Then the
sub-interval [o, j) is called Belief (A) and the subinterval (k,1] is called the
disbelief (A) and the remainder [j, k] is called Uncertainty (A). Belief (A) is



the degree to which the current evidence supports A, the Disbelief (A) is the
degree to which the current evidence supports — A and Uncertainty (A) is the
degree to which we believe nothing one way or the other about proposition A.
As new evidences are collected, the remaining uncertainty will decrease [5],
and each piece of length that it loses will be given to Belief (A), or Disbelief
(A). The concept can be best described by fig. 9.9. We denote Belief (A),
Disbelief (A), Plausibility (A) and Uncertainty (A) by Bel (A), Disbel (A), Pl
(A) and U (A) respectively.

Further, PI (A) = Bel (A) + U (A)
and D (A) = Disbel (A) + U (A).

It can be easily shown that

i) Pl(A)=Bel (A)

ii) PI(A)+Pl(=A)>1

iii) Bel (A) + Bel (= A) <1.
Further, for A being a subset of B,

Bel (A) < Bel (B) and
PI (A) £ P1 (B).

0 ] k 1
| |
|--Belief------- |---Uncertainty--|--Disbelief--- |
(Bel) U) (Disbel)
|--m-mmm- Plausibility------------- |
(P1)
|-===mmm - Doubt--------------
(D)

Fig. 9.9: The belief interval.



The orthogonal summation of belief functions

Assume that two knowledge sources KB1 and KB2 submit two frames of
discerrnments 6, and 6, respectively. Let m, (.) and m; (.) be the BPA at the
subsets of 6, and 0, respectively. The new BPA, m (.) can be computed based
on m; (.) and m; (.) by using

mX) =K ¥ m (X).m (X) (9.24)
X= Xi M Xj

and K=1- ¥ m (X).m (X))
Xiij:(D

where X and X are focal elements of 0, and 0, respectively. We denote the
orthogonal summation operation, referred to above, by m=m; @ m.

To illustrate the orthogonal summation process, let us consider
the BPAs that are assigned by two knowledge sources through a image
recognition process.

Let us assume that knowledge source 1 (KS1) claims that an unknown object
in a scene could be

a chair with m;({C}) =0.3,

a table with m;({T}) = 0.1,

a desk with m;({D}) = 0.1,

a window with m;({w}) = 0.15,

a person with m;({P}) = 0.05,

and the frame 0, with m; ({6}) = 0.3.

The assignment of BPA = 0.3 to 6 means that knowledge source 1 knows
that something in 0 has occurred, but it does not know what it exactly is.
Analogously, knowledge source 2 (KS2) claims the same object in the scene
to be

a chair with my({C}) = 0.2,

a table with my({T}) = 0.05,

a desk with m,({D}) = 0.25,

a window with my({W}) = 0.1,

a person with my({P) = 0.2,

and the frame 6 with my({6}) = 0.2

Now, suppose, we are interested to compute “What is the composite belief of
the object to be a chair ?”



To compute this we construct the following table.

T 0
KS, (0.2)

P
(0.2)

W
(0.1)

D
(0.25)

T
(0.05)

C
(0.2)

C T D W P 0
0.3)  (0.1) (0.1) (0.15) (0.05) (0.03)

KSl—>

Fig. 9.10: Illustrating the principle of orthogonal summation.
Now, my, ({C})

mi ({C}). m2 ({C}) + mu ({6}). mo({C}) + mi({C}). m({6})

Sum of the area of the shaded blocks

02x03 +02x03+02x 0.3

0.555
=0.32

i.e., Bely( C) + Bel, (C ) = 0.32.



The orthogonal summation operations of more than two belief functions can
be computed in an analogous manner, by taking two belief functions, one at a
time. The major drawback of this technique is high time-complexity, which in
the worst case may be as high as p; x p,, where p; and p, represent the
hypothesis space of the two sources of evidences. Thus for combining belief
from n sources, the overall time-complexity in the worst case is p; X p2 X....
Ps, Where p; represents the number of hypothesis in the i-th knowledge source.
Summarizing, the above concept, the worst case time-complexity for n
composition of beliefs from n sources is O (p" ), where pi = p2 =.... pn = P,
say. This exponential time-complexity can be reduced [7], by performing
belief combinations on local families, instead of combining beliefs on the
entire frames.

9.3 Certainty Factor Based Reasoning

The Bayesian reasoning technique, though successfully applied in many areas
of science and technology, is not appropriate for applications in the domain
of problems, where the hypotheses are not mutually exclusive. An alternative
technique for evidential reasoning was, therefore, needed to meet the
crisis. In the early 1970°s, a new technique based on certainty factors was
developed under the aegis of the Heuristic Programming Project of
Stanford University [9], [11]. The context was the development of
computer-based medical consultation systems and in particular the MYCIN
project [94 ] which was concerned with replicating a consultant in the anti-
microbial therapy.

‘Certainty factor’ (CF) in the treatises [9-10] was considered to be
associated with a given priori hypothesis. This factor ranges from -1,
representing the statement ‘believed to be wholly untrue’, to +1, representing
the statement ‘believed to be wholly true’. Further, there is no assumption
like CF(i) =1 fori= 1 to n, where n is the number of the
hypotheses. Thus the method is not in any sense probabilistic in its origin or
basis. The CF itself is computed as the difference between two measures:
the current measure of belief (MB) and the current measure of disbelief
(MD):

CF (H:E)= MB(:E) -MD (H:E)

for each hypothesis H, given evidence E.



The belief and disbelief measures both range from 0 to 1. The belief updating
of a hypothesis supported by evidences El1 and E2, as reported in the
literature [95] is given by
MB (H: E1,E2)=MB (H: El1) + [ MB (H:E2) * {1 - MB (H :E1)}]

=MB (H: E1) + MB (H:E2) -MB (H:E1)* MB (H:E2).

This formula has a number of pragmatic attractions:

1) It is symmetric with respect to the accrual of evidence from different
sources. It does not matter whether we discover evidence El or
E2 first.

ii) It is a cumulative measure of beliefs for different evidences which

confirm the hypothesis and, therefore, accords both with intuition
and information theory.

We do not discuss much of certainty factor based reasoning as it is obsolete
nowadays. Interested readers may get it in any textbook [12], [1] or in
Shortliffe’s original works [9].

9.4 Fuzzy Reasoning

Fuzzy sets and logic is a relatively new discipline that has proved itself
successful in automated reasoning of expert systems. It is a vast area of
modern research in Artificial Intelligence. In this section, we briefly outline
this discipline and illustrate its application in reasoning with inexact data and
incomplete knowledge.

9.4.1 Fuzzy Sets

In conventional set theory an element (object) of a universal set U may (or
may not) belong to a given set S. In other words, the degree of membership of
an object in set S is either zero or one. As an example, let us consider the set
S of positive integers, formally defined as

S = { s : s = positive integer}.

Since the definition of positive integer is very clear, there exists no
doubt to identify which elements of the universal set of numbers U belong to
this set S. In case the universal set contains only positive and negative



integers, then we can definitely say that elements like -1, -2,...up to - o<, all
belong to set S with a membership value zero, while the elements 0, +1,
+2,..to + o Dbelong to set S with membership value one. We can express
this as follows.

S={0/1.0,+1/1.0,+2/1.0,+3 /1.0, ..., + .0,
0

o /1
-1/0.0, -2/ 0.0,-3/0.0, ..., - /0.0 }

EE)

where b in (a/ b) form in set S represents the degree of membership of “a
Unlike such sets where membership values could be either zero or one, fuzzy
sets represent sets, whose elements can possess degree of membership lying in
the closed interval of [0,1]. As an example, let us consider a set named AGE
which has a range from (0 - 120) years. Now, suppose one assumes the age of
a person by observation, since he (she) does not have a proof of age. We may
classify the person under subset: Young with certain degree of membership,
Old with other membership, Very-Old with a third membership value. For
example, if the age of the person seems to be between (20-22), say, then he
(she) is called young with a degree of membership = 0.9, say, old with a
degree of membership = 0.4, say, and very-old with a degree of membership =
0.2, say. It is to be noted that the sum of these three membership values need
not be one. Now, assume that in the universal set U we have only four ages:
10, 20, 30, 40. Under this circumstance, subsets Young, Old and Very-Old
might take the following form.

Young = { 10/0.1,20/0.9, 30/ 0.5, 40/ 0.3}
Old= {10/0.01,20/0.3,30/0.9,40/0.95 }

Very-Old = { 10 / 0.01, 20 / 0.1, 30 / 0.7, 40/ 0.9}

A question may be raised as to how to get the membership value of the
persons. To compute these from their respective ages, one can use the
membership distribution curves [14], generated intuitively from the
commonsense knowledge (fig. 9.11).

To represent the membership value of an object u in set (subset) A, we
use the notation: U (u). As an example, the membership value of a person
having age = 80 to belong to subset very-old = 0.7 can be represented as

W very-ola  (age = 80) = 0.7.



1.0 _]
_ Young
0.6 _|
02 | Very-old

| | | | | |
10 30 50 70 90 110

AGE —
Fig. 9.11: Membership distribution for subsets of AGE.

9.4.2 Fuzzy Relations

For modeling a physical system, whose variations of output parameters with
input parameters are known, one can use fuzzy relations. To illustrate this
point, let us consider a relational system that relates Fast-Runners with Young
by the following production rule PR1.

PR1: IF X-is Young
THEN X-is-a Fast-Runner.

Suppose the membership distribution of subset Young is given in the

following form:
Young = {10/0.1,20/0.6,30/0.8, 40 / 0.6},

where a / b in subset Young represents Age / membership value of having that
age. Further, let us consider the subset Fast-Runner, which can be stated as:

Fast-Runner = {5/0.1,8 /0.2, 10/ 0.4, 12/ 0.9}



where a / b in fast-runner subset represents [(speed of persons in meters /sec)
/(membership of having that speed)].

Now, to represent a system (fig. 9.12) whose input is the membership
value of a person being young, and output is the membership value of the

person being a fast-runner, we construct a fuzzy relational matrix by taking a
Cartesian product of the two subsets.

H Young (age = ai)

[l

FUZZY RELATIONAL

SYSTEM

T

W Fast-runner (speed = bj )

Fig. 9.12: A fuzzy system which relates L rast.rumer (Speed= b;)
t0 U youne (ag€ = aj).

The relation obtained through a Cartesian product can be denoted as
Ur(age,speed). To illustrate the Cartesian product operation we first consider
this example by forming the relational matrix [15].

Age —
10 20 30 40
Speed )
Ur (age, speed) = 5] 0.1*0.1 0.6*0.1 0.8*%0.1 0.6*0.1

8 0.1*0.2 0.6*0.2 0.8*0.2 0.6*0.2

10| 0.1*0.4 0.6*0.4 0.8*0.4 0.6*0.4
12| 0.1*0.9 0.6*0.9 0.8*0.9 0.6*0.9




The “*” operation in the above relational matrix could be realized by different
implication functions. For example, Zadeh used fuzzy AND (MIN) operation
[14] to represent the implication function. When “*” denotes fuzzy MIN
operator, we can formally write it as follows:

a; *bj=a;, if a; <b; and
=D ifbjSai.

Many researchers prefer a decimal multiplication operation to describe the “*”

operation [15]. Polish logician Lukasiewicz described the “*” operator as
follows:

a*by=Min [ 1, (I- a; + b))].

If we consider the “*” to be Zadeh’s fuzzy AND operator, then the above
relational matrix reduces to

Age—
10 20 30 40
Ur (age, speed) = speed |

5 0.1 0.1 0.1 0.1
8 0.1 02 0.2 0.2
10 0.1 04 04 04

12 0.1 0.6 0.8 0.6

Now, suppose that the measured distribution of a young person is as follows:
Young = { 10 /0.01,20/0.8,30 /0.7, 40 / 0.6}

which means that the same person has an age 10 with a membership value
0.01, age 20 with a membership value 0.8 and so on. Now, the fuzzy
membership distribution of the person being a Fast-Runner can be estimated
by post-multiplying the relational matrix by the Young vector. Thus,

HFasl»runner (Speed = b}) = I-LR (age, Speed) o l-LYoung (age = ai)



where the “0” denotes a fuzzy AND-OR composition operator, which is
executed in the same way, while computing product in matrix algebra, with
the replacement of addition and multiplication operators by fuzzy OR
(Maximum) and AND (Minimum) operations respectively.

The estimated membership distribution in the present context becomes

Wrast-runner (Speed =b;) = {5/0.1, 8/0.2,10/0.4, 12/0.7}.

Thus the person is a fast-runner having an estimated speed of 5 m / s
with a membership value of 0.1, 8 m / S with a membership value of 0.2 and
SO on.

9.4.3 Continuous Fuzzy Relational Systems

Consider the following set of rules, where x and y represent two variables and
Aj and B; denote fuzzy sets.

Rules:

IF x-is A; Then y-is B,.

IF x-is A; Then y-is B

IF x-is A, Then y-is B,.

In more specific cases, x and y, for example, could be age and speed,
while A; could be fuzzy subsets like Young, Old, Very-Old, etc. and B; could
be fuzzy sets like Slow-Runner, Medium-Fast-Runner, Fast-Runner, etc. It
may be noted that all rules, as stated above, are applicable to measure the
membership distribution of y-is B, given the distributions of x-is A;.
Suppose the measured distribution of x-is A; and y-is B; for 1< i < n is
known. With these known distributions we can design the fuzzy relations.
Then if we know the observed distribution of x-is A’ we would be able to
infer the distributions for y-is Bi’ for 1< 1 <n. Then to arrive at a final
decision about the distribution of y-is B’, we would OR the resulting
distributions of y-is B’ for 1<1 <n.



e () = V{dn (x y)Apa (x) }
Vxe A’

where Ui (X, ¥)=A { L a1 (X), Wei(y) }
VX e A]
Vye B1

We2 (y) = V {ltr (X, ¥) A la (%) }
Vxe A’
where U2 (X, ¥)=A { L a2 (X), Wpa(y) }

VXE Az
Vye Bz

Wen () = V {tra (X, ¥) A Ha (X) }
Vxe A
L | where Urn (X, ¥)=A {1 an(X), WBa(Y) }

Vx e A,
VyeB,

| Has ()

Fig. 9.13: Evaluation of g (y) from pa- (X).

We (y)



This may be formally written as

Wer () =V {uri(x, YA (%)}
Vx e A’

e (y) = V{us(y)}

Vi
where Uri(X, Y)= A {Hai(X), Usi(y)}
VXSAi
Vye Bi

The complete scheme for evaluation of W g- (y) from pa- (X) is presented in
fig. 9.13.

It is clear from fig. 9.13 that

e ()= V. {ri (X, y) A fai (X)}
Vx e X

=V [{ta N wsi (0N Har (0]
xe X

=V [{tai X" Har X))} " usi (y)]
xe X

=V it 0 "Har ®) F T2 usi (Y)
xe X

=a; N Wsi (y)

where ai= V {Uai (X) * Uar (X)}.
xe X

Finally, us (y)= V {use (y) }-
1< 1<n



The computation of us' (y) by the above expressions was proposed by
Togai and Watanabe [13], who first realized a fuzzy inference engine on
a VLSI chip. The architecture of their inference engine will be discussed now.

9.4.4 Realization of Fuzzy Inference Engine
on VLSI Architecture

Togai and Watanabe [13] considered a set of fuzzy production rules of the
following form.

Rule: IF x-is A;j Then y-is B;

where A; and B; each can assume 16 possible subsets, i.e. 1<= i <= 16.
Moreover, the membership distributions Wai (x) and Usi (y) can assume
membership values from the following set:

Membership set = { 0, 1/15, 2/15, 3/15,...., 14/15, 1},

the elements of which, if multiplied by a scale factor of 15, can be converted
to 4-bit binary numbers. Thus to represent [(ai (X) Haz (X) ..... Hate  (X)]
they used 64 bit registers, 4-bit each for one field depicting Wi (x), as
presented in fig. 9.14.

4 4

bits bits
L | |
Hat (X) Laz (X) ... Uats (X)
| 64 Dt ~-ecenenmmmnee |

Fig. 9.14: The 64-bit register to hold ;i (X).

For wsi (y) s, la (x) and us- (y) s, we also use 3 more registers, each of 64
bits. For computing o s, Togai and Watanabe used the computational scheme
(vide fig. 9.15).The fuzzy MIN boxes in fig. 9.15 determine the minimum of
the two input signals applied to them. The 4-bit shift register holds the



cumulative maximum of the two successive outputs of the MIN box. The o s
thus produced are ANDed with W g; (y) s to yield g (y) s, which finally are
ORed to produce the pg- (y) distribution. The 16-input OR function is carried
out with the help of an OR tree, shown in fig. 9.16. The system implemented
by Togai and Watanabe [13] has an execution speed of 80,000 fuzzy logical
inferences per second, when a 20.8 M-Hz crystal is used as a basic timing
unit.

Mai (X) Hais (X) Mar (X) Mais (X)

v v oy v
[T] ] [T L]

i# —v v

MIN MIN

B ‘i

v v

UB1(y) Us16(y)

v v

MIN MIN

MBI‘(Y)* + + + + Heie - (Y)

16:i'r.1[').ut OR function

v

us: (y)

Fig. 9.15: The logic architecture of the fuzzy inference engine.
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Fig. 9.16: The OR-tree realizing the 16-input OR function in the logic
architecture of fig. 9.15.

9.5 Comparison of the Proposed Models

We covered the Bayesian, Dempster-Shafer and fuzzy reasoning model based
on Zadeh’s implication function and also briefly outlined the certainty factor
based model for reasoning with incomplete data and knowledge. A common
question naturally arises: which model to use when? If we prefer a
mathematically sound model then one should prefer Pearl’s model or the
Dempster-Shafer theory. But it is to be noted that Pearl’s model requires a
number of conditional probabilities, which are difficult to extract for most of
the real world problems. The Dempster-Shafer theory, on the other hand,
requires only the Basic Probability Assignments to the propositions, which
can be done easily by a knowledge engineer for the problems of her domain.
But due to its exponential computational costs, it cannot be used on a large
frame of discernment. The certainty factor based reasoning has no formal
mathematical basis, and thus it should not be used nowadays, when other
models are available. The fuzzy models require defining the membership
functions only, which can be done from the intuitive knowledge of the
problem domains. Further, fuzzy computation is not at all costly. So, it has a
good potential in the next generation expert systems. So, what is the rule of
selecting the models? A simple thumb rule is presented below.



“If you can manage to evaluate the conditional probabilities, then use
Pearl’s model. If your frame of discernment is small or you can afford to
spend computational time, use the Dempster-Shafer theory. If you are happy
with less accurate but quick results, use fuzzy logic.”

Another important question that may appear to the readers: can we
use any of these models to any problem? The answer depends on whether we
can represent the problem by a given model. Shenoy and Shafer [7] in one of
their recent papers claim that Pearl’s model is a special case of their extended
model of local computations on a qualitative Markov tree. It is thus evident
that both Pearl’s model and the DS theory can perform the problem of data
fusion [2]. But the user has to determine the appropriate data sets required for
solving the problem by any of these methods. The same line of reasoning is
equally valid for fuzzy logic.

Exercises

1. List the set of parameters (conditional probabilities by name) and the
inputs (a priori probabilities and As at the instantiated leaf node) required
to apply the belief propagation scheme, when node E (in fig. 9.4) is
instantiated at E = E,.

2. After instantiation of node E (in fig. 9.4), compute manually the Bel

values, A and IT messages at the equilibrium state, based on your initial
assignments. Can you construct a program to realize this?

3. Suppose a crime was committed by either of three suspects A, B, or C.
There are two knowledge sources. The knowledge source 1 submits the
following data:

m{(A)} = 0.1, m;{(B)}= 0.3, m{(C)} =0.3 and m; {(0)} = 0.3.
The knowledge source 2 submits the following data:

m>{(A)}= 0.4, my{(B)} = 0.2, m>{(C)} = 0.2 and m,{(0)} =0.2.

Find m2{(A)}, m2{(B)} and m;»{(C)} and hence comment on the
culprit.

4. Find the relational matrices for the following systems:



(1]

(2]

(3]

(4]

(5]

(6]

a) when x, ye {10, 20, 30} and x = y;

b) when x, ye {10, 20, 30} and membership = 0.6, if x >y,
=0.3, if x <y and
= 1.0, if x =y.

Given pa (x)=[0.1 05 03]andps (y)=[0.7 08 04].
Compute

R (x,y) = [1a ] 0 [us ()]
Now, with R (x, y) and a given s (x) =[0.3 0.4 0.7], find ps (y).

Prove the closure of A> B & — B — — A by the Lukasiewicz
implication function f (a;, bj) = Min [1, (1 — a; + b;) ] for the implication
rule A— B.

[Hints: For a; —»b;, f=Min [1, (1 —a;+ b;) ]. Now, for = b; >— a;, f =
Min [ 1, (1-(1-bj) + (1-a))] = Min [1, (1 — a; + b;j) ]. Hence the result
follows.]
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10

Structured Approach
to Fuzzy Reasoning

Reasoning in expert systems in the presence of imprecision and inconsistency
of the database and uncertainty of a knowledge base, is itself a complex
problem, and becomes intractable when the knowledge base has an explicit
self-reference to itself. A self-referential knowledge base, if instantiated with
appropriate data elements, gives rise to formation of cycles in the reasoning
space. The chapter presents a structured approach to fuzzy reasoning using
Petri nets to handle all the above problems of inexactness of data and
knowledge by a unified approach.

A structural analysis of the model has been undertaken to examine its
properties with respect to 'reachability of places' in the network for
subsequent applications in the detection of cycles. A behavioral analysis of
the model, with special reference to stability, reciprocity and duality, has also
been presented. The results of the above analysis have been applied to fuzzy
reasoning of a diverse nature including Modus Ponens, Modus Tollens,
Abduction and non-monotonism.



10.1 Introduction

Databases associated with the real world problems are invariably
contaminated with imprecision and inconsistency of data. Besides, the
knowledge base is found to contain pieces of knowledge, with doubtful
certainty. A number of techniques have, of late, been developed for the
management of imprecision [12],[38],[2] and inconsistency [25],[4] of data
and uncertainty of knowledge[2], [6], [14],[39], [28] to facilitate reasoning in
expert systems (ES). However, none of them are adequate if one or more of
the above forms of incompleteness of data and knowledge coexist in a given
situation.

More recently, fuzzy logic has been successfully applied to a
specialized structure of knowledge, called Fuzzy Petri nets (FPN), [1],[3]-
[9], [19], [23], [37] for handling one or more of the above problems. The
concept of the management of imprecision of data with FPN was pioneered by
Looney [24], who considered an acyclic model of FPN, for estimating the
degree of truth of a proposition with a foreknowledge of its predecessors in
the network. Chen et al. [7] presented an alternative model and an interactive
algorithm for reasoning in the presence of both imprecision and uncertainty.
Bugarin and Barro [1] refined the underlying concept of the model in [9] and
extended it in the light of classical fuzzy logic [42]. The most challenging part
of their work was reasoning under incomplete specification of knowledge. Yu
improved the concept of structural mapping of knowledge onto FPN [40]
and presented a new formalism [41] for reasoning with a knowledge base,
comprising of fuzzy predicates [42], instead of fuzzy propositions [7].
Scarpelli et al. presented new algorithms for forward [36] and backward [35]
reasoning on FPN which is of much interest. A completely different type of
model of FPN using fuzzy t and s norms [13] was proposed by Pedrycz [29]
for applications in supervised learning problems. There exists an extensive
literature on FPN models [11], [1], [3], [8], which cannot be discussed here
for lack of space. However, to the best of the author’s knowledge, none of the
existing models of FPN can handle the complexities in a reasoning system
created by the coexistence of imprecision and inconsistency of data and
uncertainty of knowledge. The complexity of the reasoning system is further
complicated, when the knowledge base has an explicit self-reference to itself.
The chapter presents new models of FPN [20], pivoted around the work of
Looney, for dealing with the above problems by a unified approach.

In this chapter a FPN has been constructed first from a set of rules and
data, represented by predicates and clauses respectively. The FPN, so formed,
with a self-referential knowledge base under the instantiation space of
appropriate clauses, may contain cycles, which, when subjected to reasoning,
may result in sustained oscillation in the level of precision of the inferences
[16]. The detection of cycles in a FPN, if any, and the analysis of stability of
the model, which is of paramount importance, are discussed. Among other



significant issues discussed in the chapter are 'backward reasoning' and
'reciprocity under bi-directional IFF' type reasoning. Backward reasoning has
been carried out with the help of a new definition of inverse fuzzy relational
matrix, Q, which when pre- or post-composed with a given relational matrix,
R, yields a matrix which is closest to the identity matrix, I, in a global sense.
The condition of reciprocity, which ensures regaining of fuzzy tokens [26] at
all places of the FPN after n-forward steps followed by n-backward steps of
reasoning (and vice versa), has been derived. Since the condition of
reciprocity imposes relationships between the structure of the FPN and its
relational matrices, determination of the matrices for a given network
topology, therefore, is a design problem. Networks whose relational matrices
support reciprocity conditions can generate tokens at all places consistently,
when the tokens of only a few terminal or non-terminal places are given. Such
networks may ideally be used for diagnostic problems, where the tokens of the
terminal places, representing measurement points, are known and the tokens
of the independent starting places, representing defects, are to be evaluated.
Another problem of interest, considered in the chapter, is the transformation
of a given primal FPN into its dual form, using the classical modus tollens
property of predicate logic. The dual FPN is useful for estimation of the
degree of precision of the negated predicates, when the degree of precision of
one or more negated predicates is known. Lastly, the principle of management
of contradiction of data and knowledge, hereafter called non-monotonic
reasoning, has been presented briefly in the chapter.

In section 10.2 of the chapter, an algorithm for form ation of FPN is
presented along with an algorithm for detection of cycles in a FPN with the
help of reachability analysis. Section 10.3 is devoted to the state-space
formulation of the model and its stability analysis. Section 10.4 includes an
algorithm for forward reasoning. In section 10.5, the formulation of the
backward reasoning problem along with its solution with inverse fuzzy
relational matrix is presented. Reciprocity analysis under bi-directional IFF
type reasoning is presented in section 10.6. Details of primal to dual
transformation and its application are covered in section 10.7. The principles
of non-monotonic reasoning are presented in section 10.8. The conclusions
are summarized in section 10.9.

10.2 Structural Model of FPN and
Reachability Analysis

In this section, an algorithm for formation of FPN from a set of database and

knowledge base is presented. An analysis of reachability with special
reference to detection of cycles in a FPN is also included in this section.

Definition 10.1: A FPN is a directed bipartite graph with 9 tuples, formally
denoted by FPN= {P,D,N, Tr, t, th, I, O, R;} where P ={p;, p2 ..., Pn } 1S



a finite set of places, D= {d;, d; ..., d, } is a finite set of predicates, each d;
having a correspondence to each p; for ISi<n, N-={n, n,..,n,}isa
finite set of discrete fuzzy membership distributions, called belief
distributions, each distribution n; having correspondence to each predicate d;.
Tr = {tr; , tr2, ..., try, } is a finite set of transitions; PN Trn D =. "'t and
'th' represent respectively sets of fuzzy truth token (FTT) distribution and
thresholds, associated with each transition. I and O: Tr — P represent

mapping from transitions tr; to their input and output places. R;, associated
with each transition tr;, represents the certainty factor (CF) of a rule: I(tr; )
—O0 (tr; ) and is represented by a fuzzy relational matrix.

Example 10.1: To bring out the implications of the above definitions, let us
consider the following production rules and database.

Production Rules (PR)

PRI: Tall(x), Stout (x) —Fast-runner (x)
PR2: Fast-runner (x) —Has-nominal-pulse-rate (x), Stout (x).

Database: Tall (ram ), Stout (ram).

In the PR above, Tall (x), Stout (x), etc. denote predicates and the
comma in the left and right hand sides of the implication sign (—) denote
AND and OR operations respectively. Given the measured membership
distribution of Tall(x), Stout (x) and Fast-runner (x) in PR1, one can easily
construct a relational matrix, representing the CF of the rule for each possible
membership values of the antecedent and consequent predicates under the
rule. For example, let us consider the membership distribution of Tall (x),
Stout (x) and Fast-runner (x) as shown in fig. 10.1. The relational matrix for
the rule can be constructed first by ANDing the distribution of Tall (X) and
Stout (x) and then by using an implication function [30-32] over the derived
distribution and the distribution of Fast-runner (x).

u'tall(x) A ustout (X)

=[0.20.40.60.8]" A [0.10.20.90.2]=[0.10.20.60.2]".

Here T denotes the transposition operator and the ' A' operation between

two vectors has been computed by taking component-wise minimum of the
two vectors.

l(1 = [ u' tall (X) A "l' stnut(x)] V] “J' fast-runner (X)]T
=10.10.20.60.2]" o [0.10.20.60.9]



5 6 8 10 Speed (in m/S)
5'A40 kg 0.1 0.1 0.1 0.1
6'A50 kg 0.1 02 02 02
= 7'A60 kg 0.1 02 0.6 0.6
8'A80 kg 0.1 02 02 02

where 'o' denotes the fuzzy AND-OR composition operator [31]. This,
however, is not a unique method for estimation of Ry. In fact, Ry can be
constructed by several ways [21] by substituting appropriate operators in
place of the composition operator. A set of relational matrices is thus formed,
each corresponding to one rule.
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Fig. 10.1: Membership distribution of (a) tall(x), (b) stout (x) and
(c) fast runner (x).

With the given set of database and knowledge base, a Petri net (vide
fig.10.2) is now constructed. The algorithm for formation of the Petri net will
be presented shortly. However, before describing the algorithm, let us first
explain the problem under consideration. Assuming that the observed
membership distributions for Tall (ram) and Stout (ram) respectively are

W n(ram) =[0.6/5' 0.8/6' 0.9/7' 0.4/87" = n,
I sout (ram) = [0.2/40kg 0.9/50kg 0.6/ 60kg 0.3/80kg]" = n,

and the distribution of all other predicates to be null vectors, one can estimate
steady-state distribution [17] for all predicates. Such estimation requires
updating of FTT distributions t; and t; in parallel, followed by updating of
membership distribution at all places in parallel. This is termed a belief
revision cycle [16]. A number of such belief revision cycles may be repeated
until fuzzy temporal membership distributions at the places become either
time-invariant or demonstrate sustained oscillations. Details of these issues
will be covered in section 10.3.

The following parameters in the FPN in fig.10.2 are assumed for
illustration. P = {py, p», p3, ps}, D = {d;, d», d3, d4} where d;=Tall (ram),
d,=Stout (ram), d; = Fast-runner (ram), d, = Has-nominal-pulse-rate (ram). n;
=10.6 0.8 0.9 0.4]", n; =[0.2 0.9 0.6 0.3]", n3 = ng= null vector. It may be
added here that these belief vectors [33] are assigned at time t = 0 and may be
updated in each belief revision cycle. It is therefore convenient to include
time as argument of n;'s for 1<i < 4. For example, we could refer tom;att =0

by n; (0). Tr set in the present context is Tr = {tr;, trp}; t; and t, are FTT



vectors associated in the tr; and tr, respectively. Like n;'s, t;'s are also time
varying quantities and are denoted by t;(t). R; and R, are relational matrices
associated with tr; and tr, respectively. I(tr;) ={p1,p2}, I(trz) = {ps}, O(tr;)
={ps},0(tr2) ={p2,ps}.

dy

d; P4

P ° N Ps t
d;
.

p2 try
T

d,=Tall (Ram), d,=Stout (Ram), d;=Fast runner (Ram),
d,= Has-nominal-pulse-rate (Ram)

tr;

Fig. 10.2: An illustrative FPN.

10.2.1 Formation of FPN

Given the database in the form of clauses (Predicates with constant
arguments) and knowledge base in the form of if-then rules, comprising of
Predicates with variable arguments, one can easily construct a FPN by
satisfying the knowledge base with the data clauses.

Procedure FPN-Formation (DB-file, KB-file, FPN)
Begin
Repeat
While not EOF of KB-file do Begin // KB file consists of Rules //
Pick up a production rule;
If the Predicates in the antecedent part of the rule are
unifiable with clauses in the DB-file and instantiation of
all the variables is consistent (i.e., a variable in all the
predicates of the antecedent part of the rule assumes same value)
Then do Begin
Substitute the value of the variables in the predicates



present in the consequent part;
Augment the derived consequent predicates(clauses) in the DB-file;
For each of the antecedent and consequent clauses of the rule
If the place representing that clause is absent from the FPN
Then augment the place in the FPN;
End For;
Augment a transition tr; for that rule PR;, such that the antecedent
and consequent clauses of the rule are input and output places of
the transition tr;;,
End If;
End While;
Until augmentation of places or transitions in FPN is terminated,;
End.

Time-complexity: The estimated worst case time-complexity of the FPN-
formation algorithm is found to be

TFPN:(NprZ/z)[Pp-NPr/3+ Vz]

where N, P, and V represent the number of PR in the knowledge-base, the
maximum number of predicates per PR and the maximum number of
variables per PR respectively.

10.2.2 Reachability Analysis and Cycle Identification

While analyzing FPNs, reachability of places [7], [1] and reachability of
markings [28] are commonly used. In this chapter, the concept of reachability
of places, as defined below, is used for identifying cycles in the FPN.

Definition 10.2: If p; € I(tr,) and p; € O(tr,) then p; is immediately

reachable from p;. Again, if p; is immediately reachable from p; and py is
immediately reachable from p;, then py is reachable from p;. The reachability
property is the reflexive, transitive closure of the immediate reachability
property [9]. We would use IRS (p;) and RS (p;) operators to denote the set of
places immediately reachable and reachable from the place p; respectively.

Moreover, if p; € [IRS{IRS(IRS... k-times (p ;)}], denoted by IRS k (p),

then pj is reachable from p; with a degree of reachability k. For reachability
analysis two connectivity matrices [12] are defined.

Definition10.3: A place to transition connectivity (PTC) matrix Q is a
binary matrix whose elements qj = 1 if p, € I (tr; ), otherwise qjc = 0. If the
FPN has n places and m transitions, then the Q matrix is of (m X n)
dimension.



Definition 10.4: A transition to place connectivity (TPC) matrix P is a
binary matrix whose element p;; =1 if p; € O (trj), otherwise p;; = 0. With n

places and m transitions in the FPN, the P matrix is of (n X m) dimension.

Since the binary product (AND-OR composition) (P o Q) represents mapping
from places to their immediately reachable places, therefore, the presence of a
'one' in the matrix My = (P o Q) at position (j, i) represents that p; € IRS(p;).
Analogously, a 'one' at position (j, i) in matrix M, = (P o Q)" for positive
integer r represents p; € IRS' (py), i.e., pj is reachable from p; with a degree of
reachability r.

Definition 10.5: If an element m;; of matrix My = (P o Q)" is unity for
positive integer k, then p; and p; are called associative places with respect
to m;; .

Theorem 10.1: If the diagonal elements m;; of the matrix My = (P 0 Q)* are
unity, then the associative places p; for all i lie on cycles through k
transitions in each cycle.

Proof: The proof is presented in Appendix C.

Corollary 1: In a purely cyclic FPN [34], where all transitions and places lie
on a cycle, My, = (P o Q)* = I, where k is the number of transitions (places) in
the FPN.

For identifying cycles in a FPN, the matrix M, =(P 0 Q)* fork=1tom
is to be computed, where m is the number of transitions in the network. Then
by theorem 10.1, the associative places corresponding to the diagonal
elements of My will lie on a cycle with k transitions on each cycle. However,
if more than k number of diagonal elements are unity, then places lying on a
cycle are to be identified by finding immediate reachability of places on the
cycle using M; = (P o Q) matrix.

The algorithm for cycle-detection consists of several procedures.
Procedure Find-places-on-cycle determines the set of places Sy that lie on
cycles with k transitions. Procedure Find-IRS-places saves in Ly the
connectivity between pairs of immediately reachable set of places, lying on
cycles with k transitions. Procedure Find-connected-places-on-cycles
determines the list of places ordered according to their immediate reachability
on cycles with k transitions and saves them in Newlist,. Procedure Put-
transitions positions appropriate transitions in the list of places in Newlisty,
so that places preceding and following a transition in the modified list
Finallisty are its input and output places on a cycle with k-transitions. The
variable 'cycles' in procedure Cycle-detection denotes the list of cycles.



Procedure Cycle-detection (P, Q, m, cycles)
Begin
cycles := J;
For k := 1 to m do Begin // m = no. of transitions in the FPN //
Find-places-on-cycles( P, Q, k, Sy );
If Sy = & Then L, .= J;
Find-IRS-places (S, Ly);
Find-connected-places-on-cycles (Ly, Newlisty);
Put-transitions (Newlist,, Finallist);
cycles := cycles U Finallisty;
End For;
End.

Procedure Find-places-on-cycles ( P, Q, k, Sy)
Begin
Sk =0
M,:=(PoQ)";
For i:=1ton // n=no. of places in the FPN //
Forj:=1ton
If mj; in Mk =1
Then Sk = Sk v {pi};
End For;
End For;
End.

Procedure Find-IRS-places (S, Ly)
Begin
If Sy # Then do Begin
Ly:=@; M;: = PoQ ;End;
For all places p;,pj € Sk
If My pj in M] =1
/I'pi and p; are row & column indices in M, //
Then Ly := Ly U {p; = pi};
End For;
End ;
End.



Procedure Find-connected-places-on-cycle (Ly, Newlisty)
Begin
Newlisty := J;
While Ly # & do Begin
For all j, h do Begin
If {p; —=pn } € Ly Then do Begin

List, == {p; = pu}; Stringfirst:= p;;
End ;
If for some j, h {pj-—pn} is a terminal string in List
/1 e.g., In Py-—py—>pr = Pj—Dn, Pj-—>Pn is the terminal string//
Then do Begin
Temp := {h}; S:=D R:=O;
For w € Temp do Begin
For i:= 1 to n do Begin
augmentation :=0;
If {pw — pi} € L Then do Begin
Stringlast :=p;; Listy := Listy V {—p;};
// Vis an augmentation operator//
While (augmentation <(k-1)) do Begin
If (Stringfirst = Stringlast) Then do Begin
If (augmentation =(k-1)) Then do Begin
Newlist, := Newlist, UListy;
Save the string in Newlisty starting with p,,
where r is the minimum index among the

indices of places in the string;
End
Else List,.= Listy A{ —p; };//Ais the de-
augmentation operator//
Else do
Begin S:= {i}; R:=R US; Temp:=R;
End;
End While;
End ;
End For;
End For;
End ; Li: = Li-{pj  pn};
End For;
End While;
End.



Procedure Put-transition (Newlisty, Finallisty)
Begin
If Newlist, = & Then Finallist, := J;
For all i, j
If {p;/—p;} is in Newlist
Then for all tr, in Q
IfQ(try,pi))=P(pj,try)=1
/1 pi, pj, try are indices of P and Q //
Then replace {pi—p;} of Newlist, by {p;i—=>tr,—p;}
and re-write the entire string as many times as the
number of tr, 's in Finallist, ;
End For;
End.

The merits of the algorithm cycle detection stems from the Procedure
Find-places-on-cycles. In fact a priori identification of the set of places on
cycles significantly reduces the search time-complexity for detecting the
cycles. Quantitatively, with no foreknowledge about the places on cycle, the
worst case search complexity for identifying cycles with k transitions = k.n *.
Consequently, the overall complexity for 1< k < m becomes

Tkn’~0(m.n)>

However, when z number of places on cycles are identified, the overall search
complexity is reduced to O (m. z ) > = O (m?), since in most realistic cases z
<<m.

Example 10.2: The trace of the algorithm for cycle-detection is illustrated
with reference to the FPN of fig. 10.3. The P and Q matrices for the FPN are
first identified from fig. 10.3 and My = (P o Q)" for k=1 to m (= 6, here) are
evaluated. The diagonal entries of My for k = 1 to 6 are presented in Table-
10.1 for quick reference. My = (P 0 Q) matrix is also presented below for
ready reference in connection with estimation of Ly in Procedure Find-IRS-
places.

From Trans. From places
To try try trs try trs trg To P1 P2 P3 P4 Ds
places Trans.
p1 010 110 try [ 1.0 0 0 O
P2 100 00O tp,[ 01 0 0 O
P= p; 000 O0O0°1 Q= ts| 01 1 0 O
P4 000 10O try [ 00 0 0 1
Ps 001 00O trs| 000 I O
trtg[ 000 1 O




Table 10.1: The diagonal entries of matrix M.

Iteration M (1, 1) M (2,2) M (3,3) M (4,4) Mk (5,5)
k

1 0 0 0 0 0
2 1 1 0 0 0
3 1 1 1 1 1
4 1 1 0 1 1
5 1 1 0 0 1
6 1 1 1 1 1
From places
To places P1 P2 P3 P4 Ps
pr |01 0 11
po[10 0 00O
M, = P3 00 0 10
ps {00 0 01
ps |01 1 0O
P1 |
trs
tre

C

Fig. 10.3: A FPN for illustrating the cycle detection.

P4




The trace of the algorithm cycle- detection is presented in table 10.2, where

cycles= U {finallisty }.
1£k<6
Table 10.2: Trace of the algorithm cycle-detection.
k Sk Ly Newlisty finallist;
1 %) %) %) %)
2 {p1.p2} | {p1—p2.p>—p1} {P1 —p2 —p1} {p1—>tr—>pr—>tn—
P}
3 [ Apip2s | {p1—=p2,p2—pl, | {Pi—=P2—=ps—Dpi, | {pi—otri—pa—otr—
ps ,p}4 > | p2—=Ps, P3—Ps, P3—> Ps—Pa—p3} | psta—p1,
bs Ps—Dp1, Pa—p3, p3—trz—=>ps—try—
Ps—P1, Ps—P4} P4—>tre—ps §
4 | {p1.p2, | {p1—=p2.p2—D1, {P1—=P2—Ps—P4 {p1otr =>pr—tr—
P4, Ps} P2—Ps, Pa—DP1» —p1} ps—try—ps—
Ps—P1.Ps—P4 } trs—p; }
5 {p1.p2, {P1—=DP2,p2—P1 » %) %)
Ps} P2—Ps ,ps—P1 |
6 | {p1.p2, same as for k=3 (%) %]
P3, P4,
ps}
10.3 Behavioral Model of FPN and
Stability Analysis

The dynamic behavior of a FPN is modeled by updating FTTs at transitions
and beliefs at places. In fact the enabling condition of transitions is first
checked. All enabled transitions are fireable; on firing of a transition, the FTT
distribution at its outgoing arcs [16] is estimated based on the belief
distribution of its input places and the relational matrix associated with the
transition. It may be noted that on firing of a transition, the belief distribution
of its input places are not destroyed like conventional Petri nets [26]. After
the FTTs at all transitions are updated concurrently, the belief distribution at
the places is also updated concurrently. The revised belief distribution at a
place pj is a function of the FTT of those transitions whose output place is p;.
The concurrent updating of FTT distribution at transitions followed by
concurrent updating of belief distribution at places is termed as a belief
revision cycle.




10.3.1 The Behavioral Model of FPN

Let us consider a transition tr;, where I(tr;)={px ,pm} and O(tr;) = {pu ,pv}-
Assume that th; is the threshold vector, associated with the transition. The
transition tr; is enabled if

Ri (0] (nkAnm)Z thl

An enabled transition fires, resulting in a change in the FTT vectors at
its output arcs. It is to be noted that the FTT vectors at all its output arcs are
equal. In case the transition tr; is not enabled, the FTT distribution at its output
arcs is set to null vector. The model of FPN, designed after Looney [24] and
based on the above considerations, is now formally presented.

HED=6O A[R; o (m () Any (1)) A
U[R; o (m(t) A ny (t))-th; | (10.1)

In expression (10.1), U denotes a unit step vector, each component of
which becomes one when its corresponding argument > 0 and becomes zero,
otherwise. In fact, the enabling condition of the transition tr; is checked by
this vector. Moreover, the A operation between two vectors is done
component-wise like column vector addition in conventional matrix algebra.
It may be noted that if tr; has m input places p; ,p,,...pm and k output places
Pm+1 >Pm+2 »---Pm+k (fig. 10.4) then expression (10.1) can be modified with the
replacement of

m

ni(t) A ny, () by An,(t).
w=1
After the FTT distribution at all the transitions in the FPN are updated

concurrently, the belief distribution at all places can be updated in parallel
following expression (10.2). Let us consider a place p; such that p; € [O(tr;)

NO(tr)N...NO(trs)] (fig.10.5). The updating of belief distribution n; at place
pj is given by

n; (t+1)

=nj(t) V [t; () V (2)V... V t,(t)]

S
=n; () V(V t.(1)). (10.2)
r=1
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Fig. 10.4: A transition tr; with m input and k output places.

t, (t+1)

I's
Fig. 10.5: A place p; that belongs to output places of s transitions.

10.3.2 State Space Formulation of the Model

For convenience of analysis and simplicity of realization of FPN by arrays,
instead of linked list structures, the dynamic behavior of the entire FPN is
represented by a single vector-matrix (state-space) equation. For the



formulation of the state space model, we first construct a belief vector N (t) of
dimension (z. n) X 1, such that

N@®) =[n; (®) nz(t) cna (O 1",

where each belief vector n; (t) has z components. Analogously, we construct a
FTT vector T and threshold vector Th of dimension (z. m) X1, such that

T@®) =[ t; ) t,(t) ..tw(t)] and Th=][thy thy ... thy]

where each t j(t) and th; have z components. We also form a relational matrix
R, given by

R, ) o - ¢
) R; o - 0
) ) R; (0

R = - - - -

q) q) (I) - lzm

where R; for 1 < i< m is the relational matrix associated with transition tr; and
@ denotes a null matrix of dimension equal to that of Rj's, with all elements =

0. It may be noted that position of a given R; on the diagonal in matrix R is
fixed. Moreover, extended P and Q matrices denoted by P'and Q'
respectively may be formed by replacing each unity and zero element in P and
Q by square identity and null matrices respectively of dimensions equal to the
number of components of t; and n; respectively. Now consider a FPN with n
places and m transitions. Omitting the U vector for brevity, the FTT updating
equation at a given transition tr; may now be described by expression (10.3)
n
t(t+tD)=t(t) AflRio( Any,(t))] (10.3)
Jw=1

n
=t;(t) A[R;0 { V0, ()} ]
dw=1

n
=t () A[Rio{Vq, {Vn',1®1}]
Y w=1



where the elements qw/ € {0, 1} and c over a vector denote the one’s
complements of its corresponding elements.

Combining the FTT updating equations for m transitions, we have

Tt+1)=T@®A[Ro(Q' oN ()] (10.4)

Similarly the belief updating equations for n places can now be combined
using expression (10.2) as follows:

N@+1)=N@®) V[P o T(t+1)]. (10.5)
Combining expressions (10.4) and (10.5) yields

N(t+1) = N) V[P' o {T) A{Ro(Q"oN“(1)}} ] (10.6)
Including the U vector in the expression (10.6), we have

N(t+1)=N () VP' o [{T(t) A {R 0 (Q'0 N° (1)) }}
AU{R o (Q 'o N (t))°- Th}]. (10.7)

Estimation of N(r) for r>1 from N(0) can be carried out by updating N(r)
iteratively r times using expression (10.7) .

10.3.3 Special Cases of the Model

In this section, two special cases of the above model, obtained by eliminating
state feedback [21] from FTT and beliefs, are considered. This renders the
belief that any given place is influenced by not only its parents [20], as in the
general model, but its global predecessors also [27].

Case I: In expression (10.1), the current value of FTT distribution is used for
estimation of its next value. Consequently, the FTT distribution t; (t+1) at a
given time (t+1) depends on the initial value of t;(0). Since t; (0) for any
arbitrary transition tr; in the FPN is not always available, it is reasonable to
keep t ;(t+1) free from t; (t). If t; (¢t) is dropped from expression (10.1), the
modified state space equation can be obtained by setting all components of
T(t) = 1 in the expressions (10.6) and (10.7). The revised form of expression
(10.6), which will be referred to frequently, is rewritten as expression (10.8).

N(t+1)=N(@®) V[P'o {Ro (Q' o N° (1))} A
{U {Ro(Q"'oN () -Th}}. (10.8)



Case II: A second alternative is to keep both t; (t+1) and nj (t+1), Vi,

independent of their last values. However when n; (t) is dropped from
expression (10.2), places with no input arcs, called axioms [35], cannot
restore their belief distribution, since t; (t) for r=1 to s in expression (10.2) are
zero. In order to set n; (t+1) = n; (t) for axioms, we consider self-loop around
each axiom through a virtual transition try , such that the Ry and thy are set to
identity matrix and null vector respectively. The P', Q' and R matrices are
thus modified and denoted by P'y,, Q ', and Ry, respectively. The state space
model for case II without U is thus given by

N(t+1) = P' 0 Rin 0 (Q'm 0 N (1))°. (10.9)

Example 10.3: In this example, the formation of P', Q' and R matrices
(vide fig. 10.6) and P' ,, Q'm, and R, matrices (vide fig.10.7) are
demonstrated for the models represented by expression (10.7) and (10.9)
respectively.

The P and Q matrices for the FPN of fig.10.6 are given by

From From

\ tr; try trs \ Pt P2 P3
To To

pi| 0 0 1 [0 1 0
P= p| 0 0 0 Q= tm |1 1 0
ps| 1 1 0 s |0 0 1

Assuming the n; and t; vectors of dimension (3x1) we construct the P' and Q'
matrix

®© o 1 ® I @
p'= ® @ |, Q = I 1 @
I @ ® @ I

where @ and I denote null and identity matrices each of dimension ( 3 x 3).

The relational matrix R in the present context is given by

R, ® @
R= b Rz D
® ® Ry

Further, N =[ n; n; n; ]T T=[t t, t3]T Th = [ th th, th; ]T. Expression
(10.7) can be used for updating N with the above parameters. For updating N
with expression (10.9), we , however, redraw the FPN with a virtual self loop
around place p, [ vide fig. 10.7] and reconstruct P, Q and consequently P'y,,



Q'  and Ry, matrices. It may be noted that the virtual transitions around place
p;j should be named tr; (j=2, here ) for satisfying equation (10.9 ) and
other transitions should be renamed distinctively.

<
trs

t
'y
$ try

Fig. 10.6: A FPN for illustrating the formation of P', Q'
and R matrices.

P1

try
P1

Fig. 10.7: The modified form of fig. 10.6 with self-loop around
place p, and renamed transitions.



10.3.4 Stability analysis

In this section, the analysis of the dynamic behavior of the proposed model
will be presented. A few definitions, which are used to understand the
analysis, are in order.

Definition 10.6: A FPN is said to have reached an equilibrium state (steady-
state) when N(t' +1) = N(t" ) for some time t= t*, where t is the minimum
time when the equality of the vectors is first attained. The t is called the
equilibrium time.

Definition 10.7: A FPN is said to have limit cycles if the fuzzy beliefs n;
of at least one place p; in the network exhibits periodic oscillations, described
by n; (t + k) =n; (t) for some positive integer k>1 and sufficiently large t,
numerically greater than the number of transitions in the FPN.

The results of stability analysis of the proposed models are presented in the
Theorems 10.2 through 10.4.

Theorem 10.2: The model represented by expression (10.1) is
unconditionally stable and the steady state for the model is attained only
after one belief revision step in the network.

Proof: Proof of the theorem is given in Appendix C.

Theorem 10.3: The model represented by expression (10.8) is
unconditionally stable and the non-zero steady state belief vector N * satisfies
the inequality (10.10).

N*2P'0{Ro(Q'oN*°)°},

when R o (Q o N° (1)) 2Th,V t20. (10.10)

Proof: Proof is given in Appendix C.

The following definitions will facilitate the analysis of the model represented
by expression (10.9) .

Definition 10.8: An arc tr; X p; iscalled dominant at time 7 if for p;e
(Fk NO(try )), t; (T ) > t (T ); alternatively, an arc py X tr, at time T is
dominant if Vw, p,el(try) ,n.(t ) < ny (r), provided R, o (Vw,

A ny )>Th,.



Definition 10.9: An arc is called permanently dominant if after becoming
dominant at time t = T, it remains so for all time t> T .

The limit cycle behavior of the model, represented by expression (10.9), is
stated in Theorem (10.4).

Theorem 10.4: If all the n number of arcs on any of the cycles of a FPN
remains dominant from r; -th to ry- th belief revision step, by using the model
represented by expression (10.9), then each component of the fuzzy belief
distribution at each place on the cycle would exhibit

i) at least 'a’ number of periodic oscillations, where a= integer part of

{(ry -r; )/n} and

ii) limit cycles with ry — ce.

Proof: Proof is available in [16] and omitted for space limitation.

The model represented by expression (10.9) also yields an equilibrium
condition, if none of the cycles have all their arcs permanently dominant. The
number of belief revision steps required to reach the equilibrium condition for
this model is estimated below.

Let1; = the worst number of belief revision steps required on the FPN for
transfer of fuzzy belief distribution from the axioms to all the places on the
cycles, which are directly connected to the axioms through arcs lying outside
the cycle,

l, = the worst number of belief revision steps required for the transfer of
fuzzy belief distribution from the places on the cycles to the terminal places in
the network,

n = number of transitions on the largest cycle,

I3 = the worst number of belief revision steps required for the transfer of
fuzzy belief distribution from the axioms to all the terminal places through the
paths, which do not touch the cycles.

Theorem 10.5: In case steady state is reached in a FPN, by using the model,
represented by the expression (10.9), then the total number of belief revision
steps required in the worst case to reach steady state is given by

T worss=Max {13 ,(l; + 1, +n-1)}. (10.11)

Proof: Proof is available in [16] and hence omitted for space limitations.



It may be added that the number of belief revision steps required for the
model, represented by (10.8), is the same as computed above.

10.4 Forward Reasoning in FPN

Forward reasoning is generally carried out in fuzzy logic by extending the
principle of generalized modus ponens (GMP) [36]. For illustration, consider
the following rule having fuzzy quantifiers and the observed antecedent.

Rule: if x-is-A AND y-is-B Then z-is-C
Observed antecedent: x-is-A' AND y-is-B'

Conclusion: z-is-C'

The conclusion z-is-C ' is inferred by the reasoning system based on
the observed level of quantifiers A' and B'. While representing the above
problem using FPN, we consider that two discrete membership distributions
are mapped at places p; and p, with proposition d; = x-is-A and d,= y-is-B
respectively. Further, let p; ,p, € I(tr;), then p; which corresponds to d; = z-is-
C is an element of O(tr; ). Here, the membership distribution of z-is-C' may be
estimated using the distribution of x-is-A' and y-is-B'.

Further, for representing chained  modus ponens, Petri net is an ideal
tool. For example, consider the second rule z-is-C— w-is-D and the observed

antecedent z-is-C'. We subsequently infer w-is-D'. This too can be realized by
adding one transition trj and a place p4 such that p; € I(trj) and ps € O(tr;).

The most coplex and yet unsolved problem of forward reasoning,
perhaps, is reasoning under self-reference. This problem too can be easily
modeled and solved by using FPN.

We, now, present an algorithm for forward reasoning that is applicable
to all the above kinds of problems independent of their structures of the FPNs.
Procedure forward reasoning is described below based on the state space
equation (10.8) , which is always stable.

Procedure forward-reasoning ( FPN,R,P',Q',N(0), Th )
Begin

N(®): =N(0) ;

While N(t+1) # N(t)

Temp:= Ro (Q'o N°(t)°;
N(t+1):=N({t) VP 'o [ Temp A U ( Temp - Th))];
N(t) := N(t+1);
End while;
End.



The procedure forward reasoning is used to compute the steady state
belief of N (t) from its initial value N(0). In application, like criminal
investigation [20], these steady state values of the predicates are used to
identify the culprit from a given set of suspects. After the culprit, described by
a terminal place of the FPN, is identified, procedure reducenet, presented
below, is invoked to find the useful part of the network for generating an
evidential explanation for the culprit.

Procedure reducenet ( FPN, axioms, goal, parents );
Begin
nonaxioms:= goal;
Repeat
Find-parents (nonaxioms); //Find parents of non-axioms.//
Mark the generated parent place, hereafter called parents and
the transitions connected between parents and nonaxioms;
nonaxioms:=parents - axioms; //nonaxiom parents detection.//
Until parents € axioms;

trace the marked places and transitions;

End.

SR(r,s)
Ps
trg
M(r,s)
P7
> M(l,s)
P2 Q > tr, Ps

L{,r)
L =Loves, T = Tortures, SR = Strained-relationships-between ,
M = Murders, r= Ram, s= Sita, |= Lata

Fig.10.8: A FPN representing a murder history of a housewife 's' where
the husband 'r' and the girl friend 'l' of 't' are the suspects.



—>

np,np

No. of precedence of murder —

Shared hours of fun —

Fig. 10.9(a): Initial belief distribution Fig. 10.9(b): Steady-state distribution
of n; and n,. of ns and n;, denoted by
ns*, n;*.

The worst case time complexity of the Procedure Forward reasoning and
Procedure Reducenet are O (m ) and O (a . n ) respectively, where 'm' , 'n' and
'a’ denote the number of transitions, number of places before reduction of the
network and number of axioms respectively.

Example 10.4: In the FPN (fig. 10.8) the fuzzy belief distribution
corresponding to places p; and p, is shown in fig. 10.9(a). The initial belief
distribution of all other places are null vectors. Further, we assumed R = I.
The steady-state belief distribution at all places in the entire FPN is obtained
after 5 iterations using forward reasoning algorithm, and their distributions at
places ps and p; are shown in fig. 10.9(b). Since for all components, n; is
larger than ns, p; is marked as the concluding place and then Procedure
reducenet is invoked for tracing explanation for the problem.

10.5 Backward Reasoning in FPN

'Backward reasoning ' [33] in fuzzy logic is concerned with inferring the
membership distribution of the antecedent clauses, when the if-then rule and
the observed distribution of the consequents are available. For example, given
the rule and the observed consequent clause, the inference follows.

Rule: If x-is-A AND y-is-B THEN z-is-C
Observed evidence: z-is-C'

Inferred: x-is-A' AND y-is-B'




In the above example, A, B, and C are three fuzzy quantifiers. C' is an
observed quantifier of z and A'and B' are the inferred quantifiers of x and y
respectively. Here, given the membership (belief) distribution of z-is-C', one
has to estimate the distribution x-is-A' and y-is-B'.

The classical problem of fuzzy backward reasoning m ay be extended for
application in cycle-free FPNs. In this chapter, we consider the model,
described by expression (10.9). Given the observed distribution of the clauses,
corresponding to terminal places, the task is to estimate the membership
distribution of the predicates for axioms.

For solving the above problem , we have to estim ate the inverse of fuzzy
matrices with respect to fuzzy AND-OR composition operators. Before
describing the algorithm for estimation of fuzzy inverse matrices [34], let us
first highlight its significance. Given that

Nt+1) =P 'y [Rtm 0(Q"'tm 0 N(1)° | (10.9a)

where the suffix 'f" represents that the model corresponds to forward
reasoning.

Pre-multiplying both sides of the above equation by the fuzzy inverse(pre-
inverse to be specific [34] ) of P "¢y, denoted by P ' ¢ ', we find

P'im™ ON(t+) =Rin0(Q ' rm 0o N (1)"
After some elementary fuzzy algebra, we get
NO=[Q" tm ™ 0 {Rem™ 0 (P "m0 N(t+1)}°]". (10.12)

For estimation of the belief distribution of the axiom predicates, from the
known belief distribution of the concluding predicates, the following steps are
to be carried out in sequence.

1) All the concluding predicates at terminal places should have
self-loops through virtual transitions. This would help maintain
the initial belief distribution at these places. The threshold and
the relational matrices for the virtual transitions should be set to
null vector and identity matrices respectively to satisfy the
above requirement.

ii) The N(t+1) vector in expression (10.12) is to be initialized by
assigning non-zero vectors at the concluding places and null
vectors at all other places. Call this belief vector Njy;.



iii)  The expression (10.12) should be updated recursively in backward
time until N(t) =N(t+1).

The algorithm for backward reasoning may be formally stated as follows:

Procedure backward-reasoning ( FPN, P ', , Rem, Q 'tm > Nini)

Begin
t:=m // m=no. of transitions in the FPN //;
N(t+1) = Nini;

While N(t) # N(t+1) do Begin
N®:=[Q"tm” 0 {Rem™ (P o NI ;
N(t+1) : = N(t);
End while;
End.

The worst case time complexity of the procedure backward-reasoning is
proportional to O(m), where m denotes the number of transitions in the FPN.

It is apparent from the above procedure that for estimating N(t) from
N(t+1), the inverse of the fuzzy / binary matrices with respect to fuzzy
composition operators is to be computed. Now, we present an algorithm for
estimation of pre-inverse of a fuzzy matrix.

Definition 10.10: A matrix Q is called the pre-inverse of a fuzzy / binary
matrix R if Q o R =I'> I, where I is the identity matrix and I ' — I means I

is close enough to I in the sense of Euclidean distance.

Definition 10.11: Q. is called the best pre-inverse of R if ||(Qpest 0 R) -
I| < [/(Q o R) - I|| for all real matrix Q, with elements 0 < q;; < 1, where || 8 ||

means sum of square of the elements of matrix 8.

It may be added here that Q is called the post-inverse of matrix R, if R 0 Q
=I'>I. Analogously, Qp.s is called the best post-inverse of R if ||(R 0 Qpest) -

I|| < |(R 0 Q) - I]| for all real matrix Q, where 0 < q; < 1.

For estimation of Q, the pre-inverse matrices of R of dimension (n x n) let us
consider the k-th row and i-th column of (Q o R), given by

n
(QoR); = V(q; At).

j=1
For obtaining Q, one has to satisfy Q o R=1", sufficiently close to I, which
requires



n
V  (qkj.rjk)tobe close to 1 ( criterion 1)

j=1
n
and V (qjAaTji) tobe close to O ( criterion 2 )
j=Li#k

Criterion 1 may be satisfied, without much constraint, by choosing each of the
individual terms (qx A 11%), (Qk2 A 12k),-,(Qn A Ty) close to 1 [34]. Similarly,
the second criterion may be satisfied if each individual term (qu A 135 ), (Qe A
T2 ),(Qin Alni ) [1 k] is close to zero. Further, it can be proved, without

any loss of generality, that the choice of q ; may be confined to the set {rj;,
Tj2 5 «ooolji »eee 5 Tin § (vide a theorem in [38]) instead of the wide interval [0, 1]
which will result in significant saving in computational time. The choice of
qQuj» Vk, j from the set {rj; , 1j2 ,.....tjk, ..., Tjn } 18, therefore, governed by the
following two criteria

i) (qqg A1) is to be maximized.
i) (qi A rji) is to be minimized for 1 <Vi <n buti#k.

The above two criteria can be combined to a single criterion as depicted
below

n
(g Artik) -V (qq Ar) is to be maximized, where qij€ {rj1, Tj2, ....,Tjn }- !
i=lizk

Procedure pre-inverse is designed based on the last criterion.

Procedure Pre-inverse (Q, R);

Begin
Fork:=1ton
Forj:=1ton
Forw:=1ton n
compute O4: = (L Arx)- V (tjw A 150)
i=1,izk
End For;

" For post -inversion of R
n

(rjkA qj) -V (rix Aqyj) isto be maximized, where qij€ {rii, T2, T nk }-
i=1,i#



sort (o, ,Bw) || this procedure sorts the elements of the array o
and saves them in B, in descending order ||
For w:=1 to n-1

if Bl = Bw+l
ij‘ T Tw,
print qy;;
End For;
End For;
End For;
End.

It may be added that for identifying Q pe¢ among all the Qy's, one has
to estimate XX * for all j, for all I, where O is the (i, ] )th element of

((Qx 0 R) - 1) for each Qy. The Qy with the smallest ( (Qx o R) - 1) is declared
as the Qyest [34]. In case more than one Qi yields the smallest value of ( (Qk o
R) - I), any one of them may be picked up as the best.

Example 10.5: Consider a relational matrix R,

0.3 0.5 0.6
R =104 06 09
0.8 0.7 0.2

By using procedure pre-inverse ( Q, R), we find eight inverse matrices,
namely Q 1,Q ; through Qg for R. The best pre-inverse matrix, Q pest, is then
computed by the method described above. Here,

0.3 04 0.8
Qpst = (030402
0.6 0.9 0.2

The algorithm for backward reasoning is applied to a diagnostic reasoning
problem in example 10.6.

Example 10.6: Consider the problem of diagnosis of a 2-diode full wave
rectifier circuit. The expected rectifier output voltage is 12 volts, when the
system operates properly. Under defective condition, the output could be close
to 0 volts or 10 volts depending on the number of defective diodes. The
knowledge base of the diagnosis problem is extended into a FPN (vide fig.
10.10). The task here is to identify the possible defects: defective
(transformer) or defective(rectifier). Given the belief distribution of the
predicate close-to (rectifier-out, 0 v) and more-or-less (rectifier-out, 10 v)
(vide fig. 10. 11 and 10.12), one has to estimate the belief distribution of the
predicate: defective (transformer) and defective (rectifier). However, for this
estimation, one should have knowledge of the relational matrices

corresponding to input-output place pairs of each transition and the thresholds.



Let us assume for the sake of simplicity that the thresholds are zero and the
relational matrices for each input-output pair of transition tr; through tr; are
equal. So, for 1 <i1<7 let

0.3 0.5 0.6
04 0.6 0.9
0.8 0.7 0.2

z
I

be the same matrix, as chosen in the example 10. 5. The R; for 8<1i <9 will be

the identity matrix. Thus Rgy, in the present context will be a (27 x 27) matrix,
whose diagonal blocks will be occupied by R;. Further, since all the non-
diagonal block matrices are null matrix, the Ry can be constructed by
substituting R; in R, by R; 1 The P 'tm and Q ', in the present context are
also (27 x 27) matrices. Ny,; is a (27 x 1) vector, given by

Nini = [ 000 000 000 000 000 000 000 0.2 0.1 0.0 0.4 0.5 0.6 1"57,1

d1 d4
P4
P1 tl'l Q % try
d;
P2
'y
ds

P7

P > O—;

d,= defective (transformer), d, =close-to (primary, 230), d;=defective (rectifier), d;= Close-to
(trans-out, 0V), ds = Open (one half-of-secondary-coil), d¢ = Defective (one-diode), d; =
Defective (two-diodes), dg =Close-tp (rectifier-out, 0V), dy =More-or-less (rectifier-out, 0V)

r-

Fig. 10.10: A FPN representing diagnostic knowledge of a 2- diode full wave
rectifier.
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Fig. 10.12: Belief distribution of Close-to (rectifier-out, 0V).

The P '¢,, " and Q'tm 1 are now estimated and the algorithm for backward
reasoning is then invoked. The steady-state belief distribution obtained after 3
iterations is given by

Ngs =

[54.6 5.4.6.2.22.222645.64.5.2.2.2.2.100.456]"



It is evident from the above distribution that the steady-state values of each
component of n; is larger than the corresponding components of n;. The
reasoning system thus infers predicate d;: defective (rectifier) as the possible
defect for the system.

10.6 Bi-directional IFF Type Reasoning
and Reciprocity

In a classical bi-directional if and only if (IFF)[15] type reasoning, the
consequent part can be inferred when the antecedent part of the rule is
observed and vice versa. In a fuzzy IFF type reasoning, one can infer the
membership distribution of the one part of the rule, when the distribution of
the other part is given. This principle has been extended in this section to
estimate the belief distribution of all the predicates in the FPN, when the
belief distribution of the predicates corresponding to the terminal places or the
intermediate (non-terminal) places [16] are available. The bi-directional IFF
type reasoning in FPN has, therefore, a pragmatic significance.

Like backward reasoning, bi-directional IFF type reasoning too has
been modeled in this chapter for acyclic FPNs only by using the expression
(10.9). For convenience of analysis, let us reformulate two basic fragments of
expression (10.9), as

Ti(t+1) = Ripn 0 (Q 't 0 Nt (1)° (10.13)
Ne(t+1) =P ' ¢ 0 Te(t+1). (10.14)

The above two expressions together represent the forward reasoning
model of the IFF relation. An extra suffix (f) is attached to denote the
'forward' direction of reasoning. For backward (back-directed) reasoning
using IFF relation, however, one has to reverse the direction of the
arrowheads in the FPN and then update Ty, and N}, by using expression (10.15)
and (10.16) in sequence till convergence in Ny(t) is attained.

To(t+D) =R pm 0 (Q ' bm 0 Np* (1)) (10.15)

Ny (t+t1)= P 'y 0 Ty (t+1). (10.16)
The suffix 'b' in expression (10.15) and (10.16) stands for the backward

direction of reasoning. It may be noted that, once P 'g,, and Q "¢, are known,

P 'y and Q 'y, may be obtained using Theorem (10.6).

Theorem 10.6: P' o = (Q'tm ) and Q' ym =P 'tm )" .
Proof:  Proof is presented in Appendix A. O



When the belief distribution of the axiom predicates are given, one has
to use the forward reasoning model. On the other hand, when the belief
distribution of the predicates for the concluding places is known, one should
use the back-directed reasoning model of the IFF relation. Moreover, when
the belief distributions of the predicates at the non-terminal places are
available, one has to use both forward and back-directed reasoning models to
estimate the belief distribution of the predicates corresponding to respective
predecessors and successors of the given non-terminal places. However, under
this case, the estimated beliefs of the predicates may not be consistent. In
other words, after obtaining steady-state beliefs at all places, if one re-
computes beliefs of the non-axiom predicates with the known beliefs of the
axiom predicates, the computed beliefs may not tally with their initial values.
In order to overcome this problem, one requires a special relationship, called
reciprocity [26]. It may be noted that in a FPN that holds (perfect) reciprocity
property, n successive steps of forward (backward) reasoning followed by n
successive steps of backward (forward) reasoning restores the value of the
belief vector N(t).

Definition 10.12: A FPN is said to hold reciprocity property if updating
FTT (belief) vector in the forward direction followed by updating of FTT
(belief) vector in the backward direction restores the value of the FTT (belief)
vector.
Formally, we estimate Ty(t+1) from given N¢(t) and N¢(t) from Ty (t+1) in
succession,

ie., T(t+1) = R 0 (Q ' 1m0 Nt € (1))° (10.17)

and Ngi(t) = P 'y, 0 Te(t+1). (10.18)
Combining equations (10.17) and (10.18), we have
Ni(®) = P' pm0Rn 0 (Q' ¢t 0 Nt (1)°

= (Q'tm) 0Rm 0 (Q 'tm 0 Ne€(t)°. [by theorem 10.5] (10.19)

Further, from the definition 10.14, one may first estimate N¢ (t+1) from Ty
(t+1) and then Ty (t+1) from N¢(t+1). Formally

N¢(t+1) =P "¢, 0 Ty (t+1) (10.20)
and Ty(t+1) =Ry 0 (Q "pm 0 N;© (t+1)). (10.21)
Combining (10.20) and (10.21) we have

Te(t+1) =R 0 (Q 'pm 0 N (t+1))°



=Rpm0 ((P'¢m)" 0 NF(t+1))° [ by theorem10.5]

=Rpmo[(P'sm)" 0 (P fmo Te(t+1))°]°. (10.22)
Expression (10.19) and (10.22), which are identities of Ny and Ty
respectively, taken together is called a reciprocity relation. For testing

reciprocity conditions, one, however, has to use the results of Theorem 10.7.

Theorem 10.7: The condition of reciprocity in a FPN is given by

Q' m)" ORmo(Q"' fmoI) =1 (10.23 (a))
and  Rymo[(P'tm) 0P '1m)]° =1 (10.23(b))
Proof: Proof is presented in Appendix C. €

Example 10.7: Consider the FPN given in fig. 10.13. Given R ¢, = I and
Rpm = I, we want to test the reciprocity property of the FPN.

— &
< o

Here, P'sm = and Q' =

o - &

— e ©
o

< o =

R=a

—

P1 P2

tl'3 tr2

P3

Fig. 10.13: A FPN used to illustrate the reciprocity property.



where ¢ and I denote null and identity matrices of dimension (3 x 3)

respectively. With these values of P'y, and Q'sy, we found that the reciprocity
conditions 10.23(a) and (b) hold good.

It is clear from expressions 10.23(a) and (b) that the condition of
reciprocity depends on both the structure of the FPN and the relational
matrices associated with it. Thus for a given structure of an FPN,
identification of the relational matrices (R¢y » Rpm) satisfying the reciprocity
conditions is a design problem. In fact, rearranging expression 10.23 (a) and
(b) ,we find R¢, and Ry, as follows

Rim=[Q " tm) 1Mpre 0 [(Q "m0 I) ] post (10.24)
Roym= [P tm)" 0 (' rm) 3 1 post (10.25)

where the suffix 'pre' and 'post' denote pre-inverse and post-inverse of the
matrices.

Fig. 10.14: The FPN of fig. 10.10 with self-loop around axioms (and renamed
transitions) that supports reciprocity theorem.



Since such choice of Ry, and  Rpy, satisfy the reciprocity condition, it is
expected that the belief distribution at a given place of the FPN would retrieve
its original value after n-forward steps followed by n-backward steps of
reasoning in the network. Consequently the steady-state belief distribution at
all places in the FPN will be consistent independent of the order of forward
and backward computation. This, in fact, is useful when the initial belief
distribution of the intermediate [12] places only in the FPN is known.

Example 10.8: Consider the diagnosis problem, cited in example 10.7. We
assume that the bi-directional IFF relationship exists between the predicates
corresponding to input-output place pairs of the transitions in the network of
fig. 10.14. We also assume that the belief distribution at places p4 and ps only
is known and one has to estimate the consistent beliefs at all places in the
network. In the present context, we first estimate R¢ ,, and Ry, by using
expressions (10.24) and (10.25) and then carry out one step forward reasoning
followed by two steps back-directed reasoning using expression (10.13)
through (10.16). It has been checked that the steady-state belief vector, thus
obtained, is unique and remains unaltered if one carries out one step back-
directed reasoning followed by two steps forward and two steps back-directed
reasoning.

10.7 Fuzzy Modus Tollens and Duality

In classical modus tollens [15], for predicates A and B, given the rule A—>B
and the observed evidence — B, then the derived inference is —A. Thus the
contrapositive rule: (A—>B)< (— B— — A) follows. It is known that in fuzzy

logic the sum of the belief of an evidence and its contradiction is greater than
or equal to one [22]. So, if the belief of an evidence is known, the belief of its
contradiction cannot be easily ascertained. However, in many real world
problems, the belief of non-occurrence of an evidence is to be estimated,
when the belief of non-occurrence of its causal evidences is known. To tackle
such problems, the concept of classical modus tollens of Predicate logic is
extended here to Fuzzy logic for applications in FPN.

Before form ulation of the problem , let us first show that im plication
relations (A—B) and (—wB— —A) are identical in the fuzzy domain, under the

closure of Lukasiewciz implication function. Formally let a; , 1< i <n and by,
1< j <m be the belief distribution of predicates A and B respectively. Then
the (i, j)th element of the relational matrix Ry for the rule A—B by
Lukasiewciz implication function is given by

Ry (i,j) =Min { 1,(1-a+b;)} (10.26)



Again, the (i, j) th element of the relational matrix R, for the rule =B —» —A
using Lukasiewciz implication function is given by

R,(i,j)=Min[ 1, {1- (1-b;) +(I1-a)}]=Min {1, (1-a;+b;) } (1027

Thus it is clear from expressions (10.26) and (10.27) that the two
relational matrices Ry and R, are equal. So, classical modus tollens can be
extended to fuzzy logic under Lukasiewciz implication relation. Let us
consider a FPN (vide fig. 10.15(a)), referred to as the primal net, that is
framed with the following knowledge base

rule 1: d;.d, — d;

rule2: d, —d,
rule 3: d3,d4 %d]

The dual of this net can be constructed by reformulating the above
knowledge base using the contrapositive rules as follows:

rule 1: —d; — —d;, —d;
rule 2: —dy; — —d,
rule 3: —vd1 %—vd3, —|d4

Here the com m a in the R.H.S. of the if-then operator in the above rules
represent OR operation. It is evident from the reformulated knowledge base
that the dual FPN can be easily constructed by replacing each predicate’s d; by
its negation and reversing the directivity in the network. The dual FPN of fig.
10.15(a) is given in fig. 10.15(b).

Reasoning in the primal model of FPN may be carried out by invoking
the procedure: forward reasoning. Let R=R;, P' =P, and Q' = Q , denote the
matrices for the primal model in expression (10.8). Then for forward
reasoning in the dual FPN, one should initiate P' = (Qp)T and Q' = (Pp)T (vide
theorem 10.5), and R = R;, prior to invoking the procedure forward reasoning.
If the belief distributions at the concluding places are available, the belief
distribution at other places of the dual FPN may be estimated by invoking the
procedure backward-reasoning with prior assignment of Q' ¢, = (P, )T P im
=(Q,)" and Rim = R,.

Example 10.9: Consider the FPN of fig. 10.15(a),where d; = Loves (ram,
sita), d, = Girl-friend (sita, ram), d; = Marries (ram, sita) and d4 = Loves(sita,
ram). Suppose that the belief distribution of —loves (ram, sita) and
—Loves(sita, ram ) are given as in fig. 10.16(a) and (b) respectively. We are
interested to estimate the belief distribution of —girl-friend (sita, ram). For the
sake of simplicity in calculation, let us assume that Th =0 and R =1 and

estimate the steady-state belief distribution of the predicates in the network by
using forward reasoning. The steady-state belief vector is obtained only after



one step of belief revision in the network with the steady-state value of the
predicates —d, equalsto [0.850.9 0.95] ".

tl'3
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Fig. 10.15(a): The primal fuzzy Petri net.
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Fig. 10.15(b): The dual fuzzy Petri net corresponding to the primal
of fig. 10.15(a).

10.8 Non-Monotonic Reasoning in a FPN

Inconsistent information often enter into a FPN because of 1) the occurrence
of inconsistent data in the database, ii) presence of inconsistent rules in the



knowledge base and iii) imprecision of data in the database [16].
Inconsistencies are first detected by the reasoning system through consultation
with a list that contains pairs of inconsistent information. Once the
inconsistent pair of information are detected, the reasoning system attempts to
resolve inconsistency by eliminating one information from each contradictory
pair through voting. The voting in the present context is implemented by
opening the output arcs of the contradictory pairs, such that these information
cannot take part in the voting process and then continuing belief revision in
the entire network by using the model represented by expression (10.8) until
steady state is reached. The steady-state beliefs of the contradictory pairs are
compared. The one with higher steady-state belief is selected out of each pair
(for subsequent reasoning), while the belief of its contradiction is permanently
set to zero, so that it cannot influence the reasoning process. In case the
steady-state belief of both the contradictory pairs is equal, both of these are
discarded from the reasoning space, by setting their beliefs permanently to
zero. The arcs opened earlier are then re-established and the original beliefs of
each place are re-assigned to all places, excluding the places whose beliefs are
set to zero permanently [18].

In our prototype ES CRIMINVES [20], designed for criminal
investigation, we implemented the above scheme for non-monotonic
reasoning [16]. It may be mentioned here that reasoning of all possible types,
covered in the last few sections, can be similarly carried out in the presence of
contradictory evidences
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Fig. 10.16: Belief distribution of —Loves (ram, sita) and —Loves (sita, ram).



10.9 Conclusions

The chapter presented a new methodology for reasoning in ES, which is
contaminated with imprecision and inconsistency of database and uncertainty
of knowledge base. Most of the common types of first order logic tools, such
as modus ponens, modus tollens, and abduction, which are applicable to
monotonic systems only, have been extended in this chapter for inexact and
non-monotonic systems using FPN. Moreover, self reference in the
knowledge base, which was intractable so far, can be handled following the
techniques presented here.

The reasoning methodologies presented in this chapter have
applications to a wide range of real world problems. For example, fuzzy
modus ponens type of reasoning has been used for identifying criminals from
imprecise and inconsistent word description [20] of criminal history. The
fuzzy abductive reasoning scheme can be applied to diagnostic problems. For
instance, in medical diagnosis problems, the (steady-state) fuzzy belief of the
possible diseases, mapped at the axioms, can be computed if the initial fuzzy
beliefs of the observed evidences, mapped at the concluding places, are
supplied. The predicates corresponding to the axioms with the highest steady
state belief may be inferred as the possible disease for the given symptoms.
Since the fuzzy belief of an axiom predicate (a hypothesis) is computed from
the fuzzy belief of a number of concluding predicates (observed evidence), the
proposed scheme has analogy with data fusion [38] using Dempster-Shafer
theory.

The fuzzy Modus Tollens type of reasoning is applicable in systems,
where the fuzzy belief of the nonexistence of one or more facts is used for
computing the belief of non-existence of the other facts embedded in the
system. Suppose that in a criminal history one identifies four suspects and it
was found that one of the suspects, say A, cannot be a criminal. So, fuzzy
belief of A not being a criminal is known. In such circumstances, fuzzy
Modus Tollen type of reasoning can be used for computing the belief of not
being a criminal for any one of the remaining three persons. It may be pointed
out that Modus Tollen type of reasoning is useful in applications where
sensitivity analysis [15] of a system in fuzzy domain is required.

The reciprocity property has applications in estim ating consistent fuzzy
beliefs at all places from known beliefs of one or more predicates located at
the intermediate places.

The scheme for non-monotonic reasoning is used in an FPN for
deriving stable fuzzy inference in the presence of inconsistent / contradictory
evidences in a reasoning system. It may be noted that steady-state vector N
for such a system contains a stable fuzzy belief of each predicate with respect
to all others in the network, even in the presence of inconsistent predicates



like p and negation of p. The results of the reasoning process considered in
this chapter differ from that of McDermott's logic [25] on the following
considerations. In McDermott's logic, there exists two stable points in a
system represented by p— —q, and g——p, whereas the present method leads

to only one stable point, involving either p or q, depending on the initial fuzzy
beliefs of p, q and their supporting evidences.

Exercises

1. For the FPN given in fig. 10.3, identify the P, Q, Pm, Q'tm matrices.
Assuming that the relational matrices associated with the transitions to be
the identity matrix and an arbitrary belief vector N(0), compute N(2) by
an appropriate forward reasoning model. What guideline should you
suggest to identify the appropriate reasoning model for a given FPN?

2. Identify the cycle in the FPN of fig. 10.6 by using the algorithm for cycle
detection.

3. From the given belief vectors ns and n; in the FPN of fig. 10.8, determine
the belief vectors n; and n, by using the backward reasoning algorithm.
Assume that the relational matrices are 1.

4. Prove that for a purely cyclic net (P 0 Q) =1 when k = number of
transitions in the cycle.

5. Given that pre- and post-inverse of matrix I is I. Hence show that
reciprocity relations hold perfectly for a purely cyclic net. Also show that
Rim and Ry, for such net = 1.

6. Prove logically that a dual net can always be constructed by reversing the
arrowheads in a primal net.

7. Can you devise an alternative formulation of the fuzzy inversion of
matrices? [open ended problem]

8. Does the algorithm for computing fuzzy inverse apply to binary matrices?
If yes, can you use it for diagnostic applications in switching circuits?
[open ended problem] [32]-[33].
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11

Reasoning with
Space and Time

The chapter presents the models for reasoning with space and time. It begins
with spatial axioms and illustrates their applications in automated reasoning
with first order logic. Much emphasis has been given on the formalization of
the spatial relationships among the segmented objects in a scene. Fuzzy
spatial relationship among 2-D objects has been briefly outlined. The
application of spatial reasoning in navigational planning of mobile robots has
also been highlighted. The second half of the chapter deals with temporal
reasoning. The principles of temporal reasoning have been introduced from
the first principles by situation calculus and first ovder temporal logic. The
need for reasoning with both space and time concurrently in dynamic scene
interpretation is also outlined at the end of the chapter.

11.1 Introduction

The reasoning problems we came across till now did not involve space and
time. However, there exist many real world problems, where the importance
of space and time cannot be ignored. For instance, consider the problem of
navigational planning of a mobile robot in a given workspace. The robot has
to plan its trajectory from a pre-defined starting point to a given goal point. If



the robot knows its world map, it can easily plan its path so that it does not
touch the obstacles in its world map. Now, assume that the robot has no prior
knowledge about its world. In that case, it has to solely rely on the data it
receives by its sonar and laser sensors or the images it grabs by a camera and
processes these on-line. Representation of the space by some formalism and
developing an efficient search algorithm for matching of the spatial data, thus,
are prime considerations. Now, let us assume that the obstacles in the robot’s
world are dynamic. Under this circumstance, we require information about
both space and time. For example, we must know the velocity and
displacements of the obstacles at the last instance to determine the current
speed and direction of the robot. Thus there is a need for both spatial and
temporal representation of information. This is a relatively growing topic in
Al and we have to wait a few more years to get a composite representation of
both space and time.

Spatial reasoning problems can be handled by many of the known Al
techniques. For instance, if we can represent the navigational planning
problem of a robot by a set of spatial constraints, we can solve it by a logic
program or the constraint satisfaction techniques presented in chapter 19.
Alternatively, if we can represent the spatial reasoning problem by predicate
logic, we may employ the resolution theorem to solve it. But how can we
represent a spatial reasoning problem? One way of doing this is to define a set
of spatial axioms by predicates and then describe a spatial reasoning problem
as clauses of the spatial axioms. In this book we used this approach for
reasoning with spatial constraints.

The FOL based representation of a spatial reasoning problem
sometimes is ambiguous and, as a consequence, the ambiguity propagates
through the reasoning process as well. For example, suppose an object X is
not very close to object Y in a scene. Can we represent this in FOL? If we try
to do so then for each specific distance between two objects, we require one
predicate. But how simple is the representation in fuzzy logic! We need to
define a membership function of ‘Not-very-close’ versus distance, and can
easily obtain the membership value of Not-very-close (X, Y) with known
distance between X and Y. The membership values may later be used in
fuzzy reasoning. A section on fuzzy reasoning is thus introduced for spatial
reasoning problems.

Reasoning with time is equally useful like reasoning in space. How can
one represent that an occurrence of an event A at time t, and another event B
at time t+1, causes the event C to occur at time t+2? We shall extend the First
order logic to two alternative forms to reason with this kind of problem. First
one is called the situation calculus, after John McCarthy, the father of Al



The other one is an extension by new temporal operators; we call it
propositional temporal logic.

Section 11.2 describes the principles of spatial reasoning by using a set
of spatial axioms. The spatial relationship among components of an object is
covered in section 11.3. Fuzzy spatial representation of objects is presented in
section 11.4. Temporal reasoning by situation calculus and by propositional
temporal logic is covered in section 11.5 and 11.6 respectively. The
formalisms of interval temporal logic is presented in section 11.7. The
significance of the spatial and temporal reasoning together in a system is
illustrated in section 11.8.

11.2 Spatial Reasoning

Spatial reasoning deals with the problems of reasoning with space. Currently,
to the best of the author’s knowledge, there exist no well-organized
formalisms for such reasoning. So we consider a few elementary axioms
based on which such reasoning can be carried out. These axioms for spatial
reasoning we present here, however, are not complete and may be extended
for specific applications.

Axioms of Spatial Reasoning

Axiom 1: Consider the problems of two non-elastic objects O; , O; . Let the
objects be infinitesimally small having 2D co-ordinates (x;, y;) and (X;, y;)
respectively. From commonsense reasoning, we can easily state that

YO;, Oj > Xi #Xj and Yi#Yj -

Formally,
VO, O; Different (O;, O;) 2 —( Eq(x;, X)) A Eq (vi, ¥5) )-

An extension of the above principle is that no two non-elastic objects,
whatever may be their size, cannot occupy a common space. If S; and S; are
the spaces occupied by O; and O; respectively,

then Sin Sj:q),
=~ (SiNSj)=true

= =S, U —|Sj is true.



Formally,
VOi . Oj Si (O,) AN SJ(OJ) AN ﬂEq(Ol,OJ) > —|S,(Ol) =V SJ(OJ) .

In the above representation, the AND (A) and OR (V) operators stand for
intersection and union of surfaces or their negations (complements).

Further, VO, , O; means O;, O; €S, where S is the entire space that contains
O;, and O;, vide fig. 11.1.

S(0y)

Fig. 11.1: Space S containing object O; and O; having 2-D
surfaces S(O;) and S(O;).

In our formulation, we considered two dimensional spaces S , S(O;)
and S(O;). However, we can easily extend the principle to three dimensions.

Axiom 2: When an object O; enters the space S, S N S(O;) # ¢, which
implies
S A S(O)) is true .

Formally ,
VO; S(0;) A Enter(O;, S)=2S A S(O)).
Similarly, when an object O; leaves a space S, S N S(O;) = 0,
Or, = S v =S(0y) is true.
Formally, V O; S(O;) A Leaves (O;,S) 2> =S v =S(0;).

Axiom 3: When the intersection of the surface boundary of two objects is a
non-null set, it means either one is partially or fully embedded within the
other, or they touch each other. Further, when a two dimensional surface



touches another, the common points must form a 2-D line or a point.
Similarly, when a 3-dimensional surface touches another, the common points
must be a 3-D /2-D surface or a 3-D / 2-D line or a point. It is thus evident
that two objects touch each other, when their intersection of surface forms a
surface of at most their dimension. Formally,

VO, V Oj Less-than-or-Equal-to (dim( S(O;) A S(O;)), dim (S(Oy)) A
Less-than-or-Equal-to (dim(S(O;) A S(0j)), dim (S(O;)) — Touch (O;, Oy)

Where ‘dim’ is a function that returns the dimension of the surface of its
argument and dim (S(O;) A S(O;j)) represents the dimension of the two
intersecting surfaces: O; and O;. The A-operator between the predicates Less-
than-or-Equal-to denotes logical AND operation.

Axiom 4: Now, for two scenes if dij; and djj denote the shortest distance
between the objects O; and O; in scene 1 and 2 respectively, then if di<dj,
we can say the objects O; and O; are closer in scene 2 compared to that in
scene 1. Formally,

V O;, O Exists (O;, Oy, in-scenel) A Shortest -distance ( d;j; , Oi, Oj , in-
scenel ) A Exists ( O;, Oj, in -scene2) A Shortest -distance ( d; 2, O;, O;, in-
scene2) A smaller (d;j, , d;j; ) = Closer (O;, O;, in-scene2 , wrt-scene =1);

where the predicate Exists (O;,0; ,in-scene k ) means O; and O; exists in scene
k; Shortest distance (dj , O; , O; , in-scene k , wrt-scene =1 ) denotes that djj
is the shortest distance between O; , and O; in scene k with respect to scene 1.

The axioms of spatial reasoning presented above can be employed in
many applications. One typical application is the path planning of a mobile
robot. Consider, for example, the space S, where a triangular shaped mobile
robot has to move from a given starting to goal point, without touching the
obstacle O1, 02, 03,04, ...., O7.

We can construct a constraint logic program (CLP) to solve this
problem. We assume that the robot R can sense the obstacles from a distance
by ultrasonic sensors, located around the boundary of it. The CLP of this
problem is presented below.

Move(R, Starting -position , goal -position ) : -
Move S(R) in S,
not Touch(S(R ), S (0))) V O..

Move(R, goal-position, goal-position).



The above program allows the robot R to wander around its
environment, until it reaches the goal-position. The program ensures that
during the robot’s journey it does not hit an obstacle. Now, suppose, we want
to include that the robot should move through a shortest path. To realize this
in the CLP we define the following nomenclature.

1. Next-position( R): It is a function that gives the next-position of a robot
R.

2. S (next-position (R)): It is a function, representing the space to be
occupied by the robot at the next-position of R.

Starting position

02
01
O

:ﬂ >
.

06

: Goal position A

Space S
Fig 11.2: Path planning of a robot R in space S.

It is to be noted that the robot should select arbitrary next position from
its current position and then would test whether the next-position touches any
object. If yes, it drops that next-position and selects an alternative one until a
next-position is found, where the robot does not touch any obstacle. If more
than one next-position is found, it would select that position, such that the
sum of the distances between the current and the next-position, and between
the next position and the goal, is minimum.

The CLP for the above problem will be presented next. A pseudo
Pascal algorithm is presented below for simplicity.



Procedure Move-optimal (R , Starting-position, goal-position)
Begin
Current-position (R ) := Starting-position (R );
While goal not reached do
Begin
Repeat
Find-next-position ( R) ;
j=1;
If S (next-position( R)) does not touch S(O;) Vi;
Then do
Begin
Save next-position (R ) in A[j] ;
=L
End ;
Until all possible next positions are explored;
Vj Find the next-position that has the minimum distance from the
current position of R and the goal; Call it A[k].
current-position(R) := A [k] ;
End while
End

We now present the CLP that takes care of the two optimizing constraints: i)
movement of the robot without touching the obstacles, and ii) traversal of an
optimal ( near- optimal) path.

Move-optimal (R, Starting-position, goal-position):-
Move S(R) in S,
Not Touch( S(R), S (0y)) V i,
Distance ( next-position (R ), current-position ( R)) +
Distance (next-position (R ) , goal-position)

is minimum V feasible next-position(R ),

current-position (R ) < next-position (R ),
Move-optimal (R, current-position, goal-position).

Move-optimal (R, goal-position, goal-position).

It is to be noted that here we need not explicitly define Touch (S (R ), S (O;))

as it is presumed to be available in the system as a standard predicate,
following axiom 3. Further, we can re-define the distance constraint in the last
program by axiom 4 as follows:

Closer (next-position (R ), current-position (R ), in-scene k, w.r.t scene # k),



Closer (next-position (R ), goal-position, in-scene k, w.r.t scene # k).

The significance of the spatial axioms now is clear. It helps in declaring the
problem specifications in simpler terms, rather than formulating the problem
from the grass-root level.

11.3 Spatial Relationships among
Components of an Object

Many physical and geometric objects can be recognized from the spatial
relationship among its components. For instance, let us define a chair as an
object consisting of two planes abef and cdef having an angle 6 between them,
where 6 <90°+0. and where 0< o <45°. Further, one of its plane is
perpendicular to at least 3 legs ( the 4™ one being hidden in the image). So,
we define:

Object(chair):-
Angle-between (planel, plane2, 90+a) ,
Greater-than(a, 0),
Less-than (o, 45) ,
Parallel (linel, line2, line3) ,
perpendicular (linel, planel),!

For actual realization of the small program presented above, one has to
define equation of lines and planes; then one has to check the criteria listed
in the logic program. It may be noted here that finding equation of a line in an
image is not simple. One approach to handle this problem is to employ a
stochastic filter, such as Kalman filtering [1] . We shall discuss this issue once
again in chapter 17 on visual perception. However, for the convenience of
interested readers, we say a few words on the practical issues.

A skeleton of a chair, which can be obtained after many elementary
steps of image processings is presented in fig. 11.3. Now, the equation of the
line segments is evaluated approximately from the set of 2-dimensional
image points lying on the lines. This is done by employing a Kalman filter. It
may be noted that the more the number of points presented to the filter, the
better would be accuracy of the equation of the 2-dimensional lines. These 2-
D lines are then transformed to 3-D lines by another stage of Kalman filtering.
Now, given the equation of the 3-D lines, one can easily evaluate the equation
of the planes framed by the lines by using analytical geometry. Lastly, the
constraints like the angles between the planes, etc. are checked by a logic
program, as described above. The graduate students of the ETCE department



at Jadavpur University verified this method of recognizing a 3-D planer object
from its skeletal model.

h

Fig. 11.3: Spatial relations among components of a skeleton chair.

11.4 Fuzzy Spatial Relationships among Objects

Consider the objects A and B in fig. 11.4 (a) and (b). We would say that B is
left to A. It , however, is to be noted that B and A have some overlap in (a)

but there is no overlap in (b).

(2) (b)

Fig. 11.4: Object B is left to object A: (a) with overlap, (b) without overlap.
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Fig. 11.5: Object B is down to object A: (a) exactly down, (b) down but right
shifted.

Now consider fig. 11.5 where in both (a) & (b) B is down to A; but in
(a) B is exactly down to A, whereas in (b) it is right shifted a little. To define
these formally, we are required to represent the spatial relationships between
the objects A and B by fuzzy logic.

Let us first define spatial relations between points A and B. We
consider four types of relations: right, left, above and below. Here following
Miyajima and Ralescu [4], we define the membership function as a square of
sine or cosine angles 0 (vide fig. 11.6), where 0 denotes the angle between
the positive X axis passing through point A and the line joining A and B. The
membership functions for the primitive spatial relations are now given as
follows:

W right (0)= cos’(8) , when -[T/2<0<T1/2,
= 0, otherwise.

W 1er(0)= cos’(0) , when -TI <0 <-[12,
and [I/2<6<]]
=0, otherwise.

Whelow (0)=sin’® , when 0<0<TI,
= 0, otherwise.



L above(B) =sin’®@ , when -[1<6<0,
= 0, otherwise.

A common question that now arises is why we select such functions. As
an example, we consider the ‘below membership function’. Let us compute
Ubelow(0) at a regular interval of 6 =[]/4 , in the graph 0 < 6 <[ . Fig. 11.5
presents the membership values for different 0. It is clear from the figure that
when B is exactly below A (fig. 11.6(¢)) Hpetow(® =[1/2)=1 , which is logically
appealing. Again when 6=[1/4 or 0=3[1/4 (fig. 11.6 (b) & (d)), the
membership value of Wyeow (0)=1/2 ; that too is logically meaningful. When
0 =0 (fig. 11.6(a)) or I, Uyeiow(0) =0 , signifying that B is not below A. The
explanation of other membership functions like Lignt(0), Miea(0) , Hapove(0) can
be given analogously.

0= 00, pvbelow(e) =0

()

0=""/4, Wpelow () =1/2

(b)



>
0
=2
Y
6="/2, Upelow (6) =1
(c)
A
>
0 X
)

B
0=3"/4, Upelow (6) =1/2

(@

Fig. 11.6: Illustrating significance of the Llpelow (0) function.
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Here in (a) and (b) computation of angles (w.r.t the horizontal axis) of the lines joining the
vertices of the rectangle to the vertices p and q of the triangle have been illustrated. Similar
computations have to be performed for the line joining the vertices of the rectangle to the vertex r
of the triangle. All 8 angles have not been shown in the figure for clarity.

Fig. 11.7: Demonstrating f (6) / (m .n) computation.



So far we discussed spatial relationship between two points by fuzzy
measure. Now, we shall discuss the spatial relationships between two objects.
Let A and B be two objects and {a;, 1 <i<n }, { b; , I<j<m } be the set of
points on the boundary A and B respectively. We first compute the angle 6;;
between each two points a; and b; . Since there are n a; points and m b; points,
the total occurrence of 8; will be (m X n). Now, for each type spatial relation
like b; below aj;, we estimate Upeiow(03j). Since 0;; has a large range of value [0,
IT ], we may find equal value of Wpeow(6;) for different values of 0. A
frequency count of Uyeiow(0) versus 6; is thus feasible. We give a generic
name f (0) to the frequency count. Since f (8) can have the theoretical largest
value (n. m), we divide f () by (m. n) to normalize it. We call that
normalized frequency f(6) = f (0) /(m .n). We now plot f(8) versus 6 and
find where it has the largest value. Now to find the spatial relationship
between A and B, put the values of 0 in 0w(0) where f(8) is the highest.

In fig. 11.7 we illustrate the method of measurement of the possible
0;s. Since abced is a rectangle and pqr is a triangle, considering only the
vertices, m .n =3. 4 =12. We thus have 12 possible values of 6;. So f(6) =
f(0)/12. It is appearing clear that £ (6) will have the largest value at around

45 degrees (fig. 11.8); consequently Wyeow(0=45 ) gives the membership of
pqr being below abcd.

1.00 —

F(®)

0 45° 90" 135 180
0 —»

Fig. 11.8: Theoretical £ (0) versus 0 for example cited in fig. 11.7.



11.5 Temporal Reasoning by
Situation Calculus

‘Temporal reasoning', as evident from its name, stands for reasoning with
time. The problems THE real world contain many activities that occur at a
definite sequence of time. Further there are situations, when depending upon
the result of occurrence of one element at a time t, a second event occurs at
some time greater than t. One simple way to model this is to employ ‘situation
calculus’ devised by John McCarthy [3].

The reasoning methodology of situation calculus is similar with first
order predicate logic. To understand the power of reasoning of situation
calculus, we are required to learn the following terminologies.

Definition 11.1: An event stands for an activity that occurs at some time.
Definition 11.2: A fluent is a fact that is valid at some given time frame but
becomes invalid at other time frames.

Definition 11.3: A situation is an interval of time during which there is no

change in events.
The following example illustrates the above definitions.

Example 11.1: Consider the following facts:
1.It was raining one hour ago.

2.People were moving with umbrellas in the street.
3.The rain has now ceased.

4.1t is now noon.

5.The sky is now clear.

6.The sun is now shining brightly.

7.Nobody now keeps an umbrella open.

Statement 1, 2, 3, 6 and 7 in this example stand for events, while all
statements 1-7 are fluent. Further, it is to be noted that we have two situations
here; one when it was raining and the other when the rain ceased.



11.5.1 Knowledge Representation and
Reasoning in Situation Calculus

To represent the statements 1-7 in situation calculus, we use a new predicate
‘Holds’. The predicate Holds(s, f) denotes that the fluent f is true in situation
s. Thus statement (1-7) can respectively be represented as:

Holds (0, it-was-raining) (1)

Holds (0, people-moving-with-umbrellas) (2)

Holds (now, rain-ceased) (3)

Holds (now, it-is-noon) (4)

Holds (now, the-sky-is-clear) (5)

Holds (now, the-sun-shining-brightly) (6)

Holds (Results (now, the-sun-shining-brightly),

not (anybody-keeps-umbrella-open)) (7)

The representation of the statements (1-6) in situation calculus directly
follows from the definition of predicate ‘Holds’. The representation of
statement (7), however, requires some clarification. It means that the result
(effect) of the sun shining brightly is the non-utilization of the umbrella.
Further, ‘not’ here is not a predicate but is treated as a term (function). In
other words, we cannot write not(anybody-keeps-umbrella-open) as
—(anybody-keeps-umbrella-open).

For reasoning with the above facts, we add the following rules:

If it rains, people move with umbrellas. (8)

If the rains ceased and it is now noon then the result of sun shining brightly
activates nobody to keep umbrella open. (9)

The above two rules in situation calculus are given by

Vs Holds(s, it-was-raining)—> Holds(s, people-moving-with-umbrellas) (8)

Vs Holds(s, rain-ceased) A Holds(s, it-is-noon) — Holds (result (s, sun-

shining-brightly), not (anybody-keeps-umbrella-open)) )

Reasoning: Let us now try to prove statement (7) from the rest of the facts
and knowledge in the statements (1-9). We here call the facts axioms. So, we
have:



Holds( now, rain-ceased) Axiom (3)
Holds (now, it-is-noon) Axiom (4)
Vs Holds(s, rain-ceased) A Holds(s, it-is-noon)
-> Holds (results (s, sun-shining-brightly), not(anybody-keeps-
umbrellas-open)) Rule (9)
For reasoning, we substitute s = now in (9) .
Thus we have
Vs, Holds (now, raining-ceased) A
Holds(now, it-is-noon) ->
Holds (Results (now, the-sun-shining-brightly),
not(anybody-keeps-umbrella-open)) (10)
Now, by modus ponens of (3) (4) and (10) ,
Holds(Results(now, the-sun-shining-brightly),
not(anybody-keeps-umbrella-open))

which is the desired inference.

11.5.2 The Frame Problem

The causal rules employed for reasoning in situation calculus specify the
changes that occur, but they do not highlight which fluent remains unchanged
from one frame (scene) to the next frame. For instance, the causal rule (9)
indicates that “if the rain ceases at time s and s is noon then the result of sun
shining causes nobody to keep their umbrella open." But it did not mention
that the people who were moving in the earlier frame continue moving (with
only closed umbrellas).

We can add one additional rule as follows to resolve this problem.

Vs, s; Holds(s), it-was-raining) A
Holds (s;, people-moving-with-umbrellas) A
Holds (s2, rain-ceased) = Holds(s2, people-moving-without-

umbrella).



11.5.3 The Qualification Problem

In many real world problems, we do not explicitly mention the conditions
under which a given event will have a particular consequent. The problem of
correctly stating the conditions in order to activate the consequent of an event
in situation calculus is called ‘qualification problem’ [3]. The problem can be
solved by an appropriate use of non-monotonic reasoning. To illustrate the
above problem and its possible solution, we present the following example.

Example 11.2: Suppose a computer is powered on. If we, now, press the
reset key, it will start booting.

We can represent this by the following statement.

Vs, Holds(s, on(power))—>

Holds (result (s, press-reset), booting) .

It is, however, presumed that there is no abnormality like malfunctioning
of the keyboard or the system ROM or the booting software. Thus the above
piece of knowledge will be more complete, if we say:

Vs, Holds(s, on(power)) A—abnormal (s, system)—>
Holds(result (s, press-reset), booting)

This obviously is a qualification over the last situation calculus
expression.

Further, suppose that there is no abnormality in the system at time s but
the stabilizer or the C.V.T. supplying power breaks down at time s. Thus we
can write:

Vs , —mabnormal (s, system) =

Holds (result (s, CVT-failure), not(booting)).

Suppose result (s, CVT-failure) =s’. We now want to identify the
minimal abnormal interpretations such that Holds(s’, not(booting)) is true.
The following two interpretations in this regard are feasible. It is to be noted
that s>>s and s’ and s are both integers.



Interpretation I Interpretation II
1.Holds (0,on(power)) 1.Holds (0,on(power))
2.—abnormal (0, system) 2.—abnormal (0, system)
3.Holds (1, press-reset) 3.Holds (1, press-reset)
4.Holds (1, no(CVT-failure)) 4.Holds (1, CVT-failure)
5.Holds (2, booting) 5.Holds (2, not(booting))

The facts embedded in the above two interpretations are all consistent
(true); however interpretation I and II are contradictory. For instance, the
inferences (4) and (5) in interpretation I and II are just opposite. A natural
question then arises: which one of the interpretations is to be followed. Since
abnormal predicate has the same status in both the interpretations, we can
choose either of them. But in case abnormal (s, evidence) follows from one
interpretation and abnormal (s, evidence) does not follow from the other
interpretation, then the second one should be preferred. For more detailed
treatment on this issue see Dean et al. [3].

11.6 Propositional Temporal Logic

In this section we will present an alternative form of extension of
propositional logic for handling temporal variations of events. In fact, we shall
use most of the formalisms of the propositional logic with two modal
operators, always (A) and sometimes (S) [5]. Some authors [2], [7] denote
always by [ and sometimes by 4 . But as we already used them in non-
monotonic reasoning for a different purpose, we intentionally use our own
notations for these two operations.

Some elementary axioms of propesitional temporal logic (PTL) are
presented below:

1. A(prg)=Ap) AA(Q)
2. AA@p)=Ap)
3. SAP)=A(S(p))
4 =S(P=S—-(
6. S(p)=—A(-p)
7. A 29>(AP)~> AW@)



11.6.1 State Transition Diagram
for PTL Interpretation

Consider a state transition graph where the nodes denote the temporal states
and the arc denotes the transition from one state to another through passage of
time. For instance, the state transition graph of fig. 11.9 describes the
transition of temporal states from s; to s, and sz, from s, to s; and s4, from s; to
s, and s4 to s, itself. Further, each state s; corresponds to a temporal value of
the propositions p and q. For brevity of representation, we use the positive or
negative literals like {p, q} or {—p, q} instead of {p= true, q= true} or {p=
false, g= true} respectively.

Now, suppose we want to evaluate the truth value of the formula
X =A(p) v A(q)

in each state.

In state s;, X 1is true as its next states s, and s; both satisfy X. X is also
true in s,, as its next state s; satisfies A. X is also found to be true in s; as its
next state s, supporting X. X is not true in s, as itself and its net state, which
too is s4, does not support A.

= T

S;

Fig. 11.9: A state transition graph representing PTL interpretation.

We now formally prove a few identities using the concept of the state
transition graphs.



Example 11.3: Prove that A(p) = =S(—p).

Proof- Let at state s, A(p) be true.
We write formally,

sEA@). (1

Let us suppose that

s ES (=p). by
Then there exists a state s’ , the next state of s such that
sk —p. 3)
However, since s FA(p),
S p. @)

Consequently, the supposition that s |= S(—p) is wrong, i.e. s |# S(—p) ,
Or, s F—=S(—p),
which yields

A(p) = —S(=p) - O

Example 11.4: Prove that A (p=>q) = (A(p) = A(q)).
Proof- Given that at state, say, s, A (p=>q),

ie,s FA(p>q (1)
also given s |= A(p) 2)
Let us assume that
i.e., A(q) does not follow from state s.
Further, as A(q) = =S —q. 4)
= AQ) =S —q. (5)
Substituting (5) in (3) we have
s ES—q.

If there exists a next state of s, say s’ , then



s” F—q. (6)

But by the first two assumptions,

s Fp>q (7)
and s” F p. (8)
So by Modes Ponens from (7) & (8)

s Fa. ©)

Now, (9) is a contradiction to (6).
Hence, the initial assumption s f — A(q) is false. Consequently s F A(q) is
true. Thus

A(p>9) > (Ap) > A@).

is a valid expression. O

11.6.2. The ‘Next-Time’ Operator

Normally, time in a computer system is discrete; i.e., if the current instant is
defined the third, next will be the fourth. This is due to the hardwired clocking
of the system resources including processor, memory and peripheral circuit
modules. Thus it makes sense to express the ‘next’ instant of time. The next
instant of time or next-time is denoted by the ‘O’ symbol. Thus to represent
that proposition p follows from the next instant of s; we write

si FOp.
From the meaning of the ‘O’ operator, it is thus clear that
EA(p) > Op and
FOp—>Sp.
Further, linear-time temporal logic is characterized by
Op F—O-p.
We now present a few elementary axioms using O operator.
i) fO(A>B)> (0OA>O0OB)
i) A(A>O0A)> (A>AA).
Further, for any proposition p
iii) FAp>Op
iv) fFOp>Sp.



11.6.3 Some Elementary Proofs in PTL

A few example proofs are presented below to make the readers familiar with

the proof procedures in PTL.

Example 11.5: Prove that

F O(pAq)=(Op A Oq)

Proof: |— PAQ2p (1) ( by propositional logic)
[ O(pAq) > Op )
F (pAq) > q (3) ( by propositional logic)
| O(pAq) > O(a) )
| O(pAa)> O(p) A O(q) (5

FO(p>—q)>(©Op>0-q (6)

-0pv—-0qvO —(p>-q) (7)

F—=Op v —Oqv =0

FOpA0q) >0 (g

F O(pAq) = Op A Oq. o
Example 11.6: Show that

F A A @) =Ap) A AdQ)

Proof: 1. | A(p A q) > Ap) A A(9)

2. FAP) AA(Q >O0pAaOgq

3. FA(p) AA(Q > O (p Ag)

4. |— A (p) AA(q) 2 A (pAq) by induction

5. FA(p A =A@p) AA@Q) . 0

Example 11.7: Show that
FA(p>q) > (Sp>Sq)
Proof: 1. F(p>q) > (—q > —p)
2. FA (p>q) >A(—q > —p)



3. F AP > @) > A=9)> A-p)
5. F A(p=> q) = (Sp > Sq). o

11.7 Interval Temporal Logic

For modeling physical processes, we often need to reason about the truth of
propositions over intervals of time. The propositions that correspond to the
attributes of the physical process or its world may change with time. For
instance, suppose when someone rings a calling bell, people inside the house
open the door, presuming some visitors have come. Once the visitors enter the
house, they close the door. So, the door is kept open for a small interval of
time. We may write this as follows:

Vi, (0<t<t) A (b =t) A (> ty) A closed (door, t) A rings (bell, t;)

- open (door, t,) A closed(door, t3)

The last expression means that if the door is closed in the interval 0< t
<t, and the bell rings at time t, then the door is open at t, > t; and closed at t;
> t, . In other words, the door is kept open for the interval of time t, t,<t<t;.
The above expression works well but we need formalization of the syntax.
Now, we present the formal definitions of the well-formed formulae (WFF)
under propositional interval logic. Let T" be a set of time point symbols, P be
a set of propositional symbols and I'v be a set of temporal variables. The
WFF here are defined inductively as follows.

LIf t;,t, € T UT'vand pe P, then t;<t, , t;<t;, and holds(t,, t,, t3) are
WEFEF.

2.If ¢; and ¢, are WFF , then ¢1A ¢2 and —¢1 also are WFFs.

3.If ¢ isa WFF and te I'v, then Vt, ¢ is a WFF.

The usual definitions of v , 2 , = and 3 are maintained in interval
temporal logic. The following transformations [3] are often useful to derive
logical proofs in interval temporal logic.

1. Holds (tl, t, q)]/\ ¢2 ) > HOldS(tl, t, ¢1) A hOldS(tl, t, ¢2) .
2. HOldS(tl, t, 4 (1)) 2> HOldS(tl, ta, q))



The second rule is generally called weak negation, which is in contrast to the
following rule, called strong negation.

Vt, (t <t) A (t2 2 t) A Holds(ty, t, = ¢) > — Holds(t, ¢) .
The weak and strong negation both support the following properties:

For weak negation,

F Holds(t;, t5, = — q)

F —Holds(t;, t2, = q)

|- ——Holds(t, t;, q)

F Holds (t;, ta, q).

For strong negation,

FVt,(t<t)A(t2t) A Holds(ty, th, = —p)

F Vi, (t<t)A(t=t) A= Holds(ty, ta, —p)

FVt,(tst)A(t2t) A——Holds(t, t, p)

F Vi, (ti<t) A (t,2t) A Holds(ty, t, p).

But there exists evidence of proving Holds(t;, t,, p) v Holds(t;, t, q) from
Holds(ty, t,, pvq), which is not feasible by strong negation [3].

11.8 Reasoning with Both Space and Time

We have discussed various schemes for reasoning with space and time
independently. However, there exist circumstances, when both are required
concurrently. A formalization of reasoning techniques in variation of both
spatial and temporal events is an open area of research till date. We here just
illustrate the justification of such reasoning with an example.

Example 11.8: Suppose one summer evening, a hot burst of wind moving in
the west causes a fire at the hill, which gradually started spreading in the
village (Fig. 11.10). A villager reports to the fire brigade station at time t;. A
fire brigade now has to plan the route, so that it can reach the village at the
earliest. There are only two roads, one the hillside road (road1l) that requires
longer time of traversal and the other road (road2) which requires crossing a
river through a bridge to reach the village. The pilot of the fire brigade car
thinks that it can reach E; end of the bridge within 15 minutes, but crossing
the river after 15 minutes will be difficult, as by that time many villagers too
will rush to cross it from other end E, of the bridge. But traversal through the
roadl will require 20 minutes more than the time required through road2 had



there been no rush. So, the main question that remains: will the villagers, who
reached the end E, of the bridge within 15 minutes of the breaking out of fire
in the village, vacate the village within 35 minutes? The decision of the pilot
in selecting the right road depends solely on this answer. To resolve this, the
fire brigade station-master observed the scenario in the village by moving up a
high tower and found a few villagers rushing towards E, and instructed his
men to go to the spot through road?2.

forest T T
«
’ wind€
flow
village
roadt,

Fire brigade station

Fig. 11.10: The topological map of a hillside village and its surroundings.

The above story requires a spatial representation of the map and then
reasoning about time. Here the spatial changes of the villagers and the fire
brigade must be taken into account at specific time slots. Readers may try to
formulate the (temporal part of the) problem by situation calculus and define
the spatial part as FOL clauses. So, spatial changes can be reflected in
different time frames. The non-monotonism in the problem can also be
resolved by the qualification method presented under situation calculus.



11.9 Conclusions

The chapter demonstrated the scope of the extension of the predicate logic
formalisms for reasoning with time and space. The principles of spatial
reasoning have been covered with FOL and fuzzy logic, whereas the temporal
reasoning is introduced with situation calculus and propositional temporal
logic. These are active research fields and we have to wait a few more years
for its complete formalization. Most important applications of spatio-temporal
reasoning include co-ordination and task planning of multiple robots for
handling a complex problem like machine repairing, where active
participation of a number of robots is required to share time and space. It
may be added here that some aspects of the co-ordination problems could
have been solved with timed Petri nets. We, however, will introduce timed
Petri nets and their application in co-ordination problems in chapter 24.
Another interesting topic, which we could not discuss here for lack of space,
is reasoning with shape [6]. This is important because, in any practical path
planning problems of mobile robots, knowing the 2-D and the 3-D shapes of
obstacles are useful for decision making. This also is an active area of
research and will require a few more years to take final shape.

Exercises

1. Write a logic program to describe the spatial relationships among the
components of a 4 legged table, assuming that at least three legs are
visible in the image.

2. Justify the definitions of g (8) by taking © = -90 °, 0°, 45 ° and 90 °.
Can you define it in an alternative manner?

3. Graphically compute the membership of a triangle below a rectangle
following the method presented in the text. Also plot the f (8).

4. Identify the events, fluents and the situations from the following
sentences: a) The teacher called John, the student, to the board. b) He
then handed over the chalk to John. ¢) He insisted John write what he
was talking to his classmates. d) Then he asked John to write what he was
teaching. ) John could not write anything but started trembling. f) The
teacher then advised John to leave the classroom.

5. Add the following rule to the previous facts and then show by situation
calculus that ‘the teacher advised John to leave the classroom’ directly
follows from the other facts.



(1]

(6]

(7]

Rule: If a student talks in the classroom at time t and cannot write what
the teacher was teaching at time t; (> t), he advises the student to leave the
classroom at time t, (> t;).

Draw a state transition diagram consisting of two states that describes the
facts: p A—q holds at time t;, g A—p holds at time t,; again: p A—q holds
at time t3, and q A—p holds at time t,. The process thus repeats infinitely.
Show that the formula A(—q v—p) is always true following the state
transition diagram.

Prove that A (p —q) = S (p —q).

Represent the ‘fire extinguishing problem’ presented in the last example
of the chapter by situation calculus and solve it to determine the right
road for the fire brigade.
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12

Intelligent
Planning

This chapter provides an exhaustive survey of the various planning strategies,
employed to complex decision-making problems. It begins with a formal
introduction to forward and backward chaining methods for planning. The
Jorward or backward chaining schemes exhibit exponential growth of the
search space and thus are of limited use. An alternative scheme for planning
based on the principles of ‘least commitment’ is then introduced. The abstract
classification of a planning problem by a hierarchical approach and its
possible expansion to primitive (elementary) plans is covered next in the
chapter. The chapter also provides a brief discussion on ‘multi-agent
planning’. The principles of heuristic planning have also been illustrated here
with a ‘flow-shop scheduling’ problem.

12.1 Introduction

The word ‘planning’ informally refers to the generation of the sequence of
actions to solve a complex problem. For instance, consider the problem of
placing the furniture in your new-built house, so that i) you can fully utilize
the available free space for common use and ii) the rooms look beautiful. An
analysis of the problem reveals that there exist many possible alternative
solutions to the problem. But finding even a single solution is not so easy.
Naturally, the question arises: why? Well, to understand this, we explore the
problem a little more.



Suppose, you started planning about the placement of the following
furniture in your drawing room:

a) one computer table
b) one TV trolley

c) one book case

d) one corner table

e) two sofa sets and
f) one divan

We also assume that you know the dimensions of your room and the
furniture. You obviously will not place the furniture haphazardly in the room
as it will look unimpressive and it will not provide you with much space for
utilization. But where is the real difficulty in such planning?

/ SB

A ]
C
TV Computer
Trolley T able
Divan
Book
Case
Corner table
Sofa Sofa
i B Set Set D

Fig.12.1: One possible plan regarding the placement of furniture in your
drawing room.

To answer this, let us try to place the corner table first. Since only two
corners B and D are free, you have to place it at either of the two locations. So
if you do not place it first, and fill both the corners with other furniture, you
will have to revise your plan. Fixing the position of your corner table at the
beginning does not solve the entire problem. For example, if you fix the
position of the corner table at B then the place left along AB allows you to
place the bookcase or one sofa set or the TV trolley or the computer table. But
as the switchboard (SB) is on the wall AC, you will prefer to keep your
computer table and TV trolley in front of it. Further, you like to keep the sofa



sets opposite to the TV. So they occupy the positions shown in fig. 12.1. The
bookcase thus is the only choice that could be placed along the wall AB;
consequently, the divan is placed along the wall CD. The following steps thus
represent the schedule of our actions:

Place the corner table at B.
Place the TV trolley and computer table along the wall AC.
Place the two sofa sets along the wall BD.

Place the bookcase along the wall AB.

A

Place the divan along the wall CD.

What do we learn from the above plan? The first and foremost, with
which all of us should agree, is minimizing the scope of options. This helps in
reducing the possible alternatives at the subsequent steps of solving the
problem. In this example, we realize it by placing the TV set and the computer
close to the switchboard. Another important point to note is the ‘additional
constraints imposed to subsequent steps by the action in the current step’. For
example, when we fix the position of the TV set, it acts as a constraint to the
placement of the sofa sets. There are, however, instances, when the new
constraints generated may require revising the previous schedule of actions.

The subsequent sections of the chapter will cover various issues of
planning. Section 12.2 will cover the different aspects of ‘linear planning’ [6]
by STRIPS approach [4], [9] using if-add-delete operators. In section 12.3 we
shall present the principle of ‘least commitment planning’ [2]. The issues of
‘hierarchical task network planning” will be presented in section 12.4. The
principles of ‘multi-agent planning’ will be presented in section 12.5. The
problems of scheduling are illustrated with the well-known ‘flow-shop
scheduling’ problem in section 12.6. Conclusions are summarized in section
12.7.

12.2 Planning with If-Add-Delete Operators

We consider the problem of blocks world, where a number of blocks are to be
stacked to a desired order from a given initial order. The initial and the goal
state of the problem is given similar to fig. 12.2 and 12.3. To solve this type of
problem, we have to define a few operators using the if-add-delete structures,
to be presented shortly.



Fig.12.2: The initial state of Blocks World problem.

Fig: 12.3: The goal state of Blocks World problem.

The database corresponding to the initial and the goal state can be represented as
follows:

The initial state:

On (A,B)
On (B, Table)
On (C, Table)
Clear (A)
Clear (C)
The goal state:
On (B, A)
On (C, B)
On (A, Table)
Clear (C)



where On (X, Y) means the object X is on object Y and clear (X) means there is
nothing on top of object X. The operators in the present context are given by the
following if-add-delete rules.

Initial state

On (A,B)
On (B, Table)
On (C, Table)
Clear (A)
Clear (C)

Rule 2 x—\
Y=B

On (A, Table)
On (B, Table) State S1
8{1((3’ Zable) Added: clear (B)
ear (A) Deleted: on (A,B)
Clear (B)
Clear (C)
X=B, Z=A Rule 3
4
On (B,A)
On (C, Table)
State S2
On (A, Table
Clee(lr ( C) ) Added: On (B, A)
Clear (B) Deleted: Clear (A), On (B, Table)
Rule 3
X=C,Z=B
On (B, A)
On (C, B)
Clear (C)
On (A, Table) Goal State
Added: On (C, B)
Deleted: Clear (B), On (C, Table)

Fig. 12.4: The breadth first search of the goal state.



Rule 1: If On (X, Y)
Clear (X)
Clear (Z)

Add List:  On (X, Z)
Clear (Y)

Delete List: On (X,Y)
Clear (X)

Rule 2: If On (X,Y)
Clear (X)

Add List: On (X, Table)
Clear (Y)

Delete List: On (X, Y)

Rule 3: If On (X, Table)
Clear (X)
Clear (Z)

Add List:  On(X, Z)

Delete List:  Clear (Z)
On (X, Table)

We can try to solve the above problem by the following sequencing of
operators. Rule 2 is applied to the initial problem state with an instantiation of X
=A and Y =B to generate state S1 (fig. 12.4). Then we apply Rule 3 with an
instantiation of X =B and Z =A to generate state S2. Next Rule 3 is applied once
again to state S2 with an instantiation of X =C and Z =B to yield the goal state.
Generating the goal from the given initial state by application of a sequence of
operators causes expansion of many intermediate states. So, forward reasoning is
not appropriate for such problems. Let us try to explore the problem through
backward reasoning.

12.2.1 Planning by Backward Reasoning

Much effort can be saved, if we generate a plan for the current problem by
backward reasoning. While planning through backward reasoning, we should
check the required preconditions to satisfy a given goal. Further, to satisfy
new sub-goals generated, we should check the existence of their preconditions
in the ADD-list of rules, which on firing generate the sub-goals. To illustrate



this, let us consider the last problem. Here, the goal is given by On (B, A) A
On (C, B) A On (A, Table) A Clear ( C).

Now to satisfy On (B, A) by Rule 3 we have three sub-goals:
Clear(A), On (B, Table) and Clear(B), out of which the first two are available
in the initial problem state. Further to satisfy the goal cause: On (C, B), we are
required to satisfy the sub-goals: Clear (C), Clear(B) and On (B, Table), the
first and third of which are available in the list. So, we are required to satisfy

On (A,B) | —P[Clear () Pon (B, A)
B, Tabl
On (B, Table) »On (B, Table) On(C.B)
On (C, Table) Clear (B)
g On (A, Table)
Clear (A) Add: On (B,A) —k ’
Clear (C) Del: Clear (A) »Clear ©
Initial state State 1 Goal
L—P On (A,B)
“»(Clear (A)
Add:
On (A, Table)
Clear (B)
Del: On (A,B) —‘ PClear(C)
PClear (B)
State 3 L »{0n (B, Table)
Add: On (C, B)

Del: Clear (B)

State 2

Fig 12.5: A solution by backward reasoning.



one new sub-goal: Clear(B). This can be achieved by employing rule 2. It may
be noted that in the Add-list of rule 2, we have Clear (Y), where we can
instantiate Y with B. The application of rule 2 in the present context gives rise
to On (A, Table) also, which is required to satisfy the goal state. The
dependence graph of states for the above problem is presented in fig. 12.6.
Here, in state 1 and state 2, we 