
TEAM LinG - Live, Informative, Non-cost and Genuine!

A NETWORKING APPROACH
TO GRID COMPUTING

ffirs.qxd 10/11/2004 3:44 PM Page i

TEAM LinG - Live, Informative, Non-cost and Genuine!

ffirs.qxd 10/11/2004 3:44 PM Page ii

TEAM LinG - Live, Informative, Non-cost and Genuine!

A NETWORKING APPROACH
TO GRID COMPUTING

DANIEL MINOLI
Managing Director
Leading-Edge Networks Incorporated

A JOHN WILEY & SONS, INC., PUBLICATION

ffirs.qxd 10/11/2004 3:44 PM Page iii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 0-471-68756-1

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

ffirs.qxd 10/11/2004 3:44 PM Page iv

TEAM LinG - Live, Informative, Non-cost and Genuine!

http://www.copyright.com

For Anna, Emma, Emile, Gabrielle, Gino, Angela, and Peter

ffirs.qxd 10/11/2004 3:44 PM Page v

TEAM LinG - Live, Informative, Non-cost and Genuine!

ffirs.qxd 10/11/2004 3:44 PM Page vi

TEAM LinG - Live, Informative, Non-cost and Genuine!

Contents

About the Author xiii

Preface xv

Acknowledgments xvii

1 Introduction 1

1.1 What Is Grid Computing And What Are The Key Issues? 1
1.2 Potential Applications and Financial Benefits of Grid Computing 10
1.3 Grid Types, Topologies, Components, and Layers— 13

A Preliminary View
1.4 Comparison with Other Approaches 21
1.5 A First Look at Grid Computing Standards 24
1.6 A Pragmatic Course of Investigation 27

2 Grid Benefits and Status of Technology 31

2.1 Motivations for Considering Computational Grids 31
2.2 Brief History of Computing, Communications, and Grid Computing 38

Communication 44
Computation 46
Grid Technology 47

2.3 Is Grid Computing Ready for Prime Time? 47
2.4 Early Suppliers and Vendors 51
2.5 Possible Economic Value 53

2.5.1 Possible Economic Value: One State’s Positioning 53
2.5.2 Possible Economic Value: Extrapolation 56

2.6 Challenges 56

3 Components of Grid Computing Systems and Architectures 63

3.1 Overview 63
3.2 Basic Constituent Elements—A Functional View 71

Portal/User Interface Function/Functional Block 85
The Grid Security Infrastructure: User Security 75

Function/Functional Block

vii

ftoc.qxd 10/11/2004 3:48 PM Page vii

TEAM LinG - Live, Informative, Non-cost and Genuine!

Node Security Function/Functional Block 76
Broker Function/Functional Block and Directory 76
Scheduler Function/Functional Block 77
Data Management Function/Functional Block 78
Job Management And Resource Management 78

Function/Functional Block
User/Application Submission Function/Functional Block 79
Resources 79
Protocols 80

3.3 Basic Constituent Elements—A Physical View 81
Networks 81
Computation 84
Storage 85
Scientific Instruments 90
Software and licenses 91

3.4 Basic Constituent Elements—Service View 91

4 Standards Supporting Grid Computing: OGSI 101

4.1 Introduction 104
4.2 Motivations for Standardization 109
4.3 Architectural Constructs 113

4.3.1 Definitions 113
4.3.2 Protocol Perspective 115
4.3.3 Going From “Art” To “Science” 123

4.4 What is OGSA/OGSI? A Practical View 125
4.5 OGSA/OGSI Service Elements and Layered Model 129

4.5.1 Key Aspects 129
4.5.2 Ancillary Aspects 132
4.5.3 Implementations of OGSI 136

4.6 What is OGSA/OGSI? A More Detailed View 139
4.6.1 Introduction 139
4.6.2 Setting the Context 140
4.6.3 The Grid Service 145
4.6.4 WSDL Extensions and Conventions 145
4.6.5 Service Data 146
4.6.6 Core Grid Service Properties 149
4.6.7 Other Details 151

4.7 A Possible Application of OGSA/OGSI to Next-Generation 151
Open-Source Outsourcing

4.7.1 Opportunities 151
4.7.2 Outsourcing Trends 151

5 Standards Supporting Grid Computing: OGSA 155

5.1 Introduction 156
5.2 Functionality Requirements 158

viii CONTENTS

ftoc.qxd 10/11/2004 3:48 PM Page viii

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2.1 Basic Functionality Requirements 159
5.2.2 Security Requirements 160
5.2.3 Resource Management Requirements 161
5.2.4 System Properties Requirements 162
5.2.5 Other Functionality Requirements 163

5.3 OGSA Service Taxonomy 164
5.3.1 Core Services 166
5.3.2 Data Services 168
5.3.3 Program Execution 169
5.3.4 Resource Management 173

5.4 Service Relationships 173
5.4.1 Service Composition 174
5.4.2 Service Orchestration 175
5.4.3 Types of Relationships 176
5.4.4 Platform Services 176

5.5 OGSA Services 177
5.5.1 Handle Resolution 177
5.5.2 Virtual Organization Creation and Management 178
5.5.3 Service Groups and Discovery Services 178
5.5.4 Choreography, Orchestrations and Workflow 180
5.5.5 Transactions 180
5.5.6 Metering Service 181
5.5.7 Rating Service 182
5.5.8 Accounting Service 182
5.5.9 Billing and Payment Service 182
5.5.10 Installation, Deployment, and Provisioning 183
5.5.11 Distributed Logging 183
5.5.12 Messaging and Queuing 184
5.5.13 Event 186
5.5.14 Policy and Agreements 187
5.5.15 Base Data Services 188
5.5.16 Other Data Services 190
5.5.17 Discovery Services 191
5.5.18 Job Agreement Service 192
5.5.19 Reservation Agreement Service 192
5.5.20 Data Access Agreement Service 193
5.5.21 Queuing Service 193
5.5.22 Open Grid Services Infrastructure 193
5.5.23 Common Management Model 195

5.6 Security Considerations 196
5.7 Examples of OGSA Mechanisms in Support of VO Structures 197

6 Grid System Deployment Issues, Approaches, and Tools 201

6.1 Generic Implementations: Globus Toolkit 201
6.1.1 Globus Toolkit tools and APIs 203

CONTENTS ix

ftoc.qxd 10/11/2004 3:48 PM Page ix

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.1.2 Details on Key Tookit Protocols 207
6.1.3 Globus Toolkit Version 3 213
6.1.4 Applications 216

6.2 Grid Computing Environments 217
6.2.1 Introduction 217
6.2.2 Portal Services 219

6.3 Basic Grid Deployment and Management Issues 220
6.3.1 Products Categories 221
6.3.2 Business Grid Types 221
6.3.3 Deploying a Basic Computing Grid 223
6.3.4 Deploying More Complex Computing Grids 224
6.3.5 Grid Networking Infrastucture Required for Deployment 226
6.3.6 Grid Operation—Basic Steps 230
6.3.7 Deployment Challenges and Approaches 231

6.4 Grid Security Details—Deployment Peace of Mind 234
6.4.1 Basic Approach and Mechanisms 234
6.4.2 Additional Perspectives 236
6.4.3 Conclusion 249

7 Grid System Economics 251

7.1 Introduction 252
7.2 Grid Economic Services Architecture 255

7.2.1 Introduction 255
7.2.2 Overview 256
7.2.3 The Chargeable Grid Service (CGS) 258
7.2.4 The Grid Payment System 267
7.2.5 GPSHold Service 274
7.2.6 The Grid CurrencyExchange Service 275
7.2.7 An Example 277
7.2.8 Security Considerations 280

8 Communication Systems for Local Grids 281

8.1 Introduction and Positioning 281
8.2 SAN-Related Technology 284

8.2.1 Fibre Channel Technology—Native Mode 285
8.2.2 Fibre Channel Technology—Tunneled Modes 298

8.3 LAN-Related Technology 303
8.3.1 Standards 303
8.3.2 Key concepts 307

9 Communication Systems for National Grids 313

9.1 Multilink Frame Relay 313
9.1.1 Motivations and Scope 315
9.1.2 Multilink Frame Relay Basics 319

x CONTENTS

ftoc.qxd 10/11/2004 3:48 PM Page x

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2 MPLS Technology 321
9.2.1 Approaches 322
9.2.2 MPLS Operation 324
9.2.3 Key Mechanisms Supporting MPLS 328
9.2.4 Service Availability 332

10 Communication Systems for Global Grids 333

10.1 The Basics of Layer 2 and layer 3 VPNs 334
10.2 The Layer 3 Approach 334
10.3 Layer 2 MPLS VPNs-A Different Philosophy 336
10.4 Which Works Better Where? 337
10.5 A Grid Computing Application 338

References 339

Glossary 353

Index 365

CONTENTS xi

ftoc.qxd 10/11/2004 3:48 PM Page xi

TEAM LinG - Live, Informative, Non-cost and Genuine!

ftoc.qxd 10/11/2004 3:48 PM Page xii

TEAM LinG - Live, Informative, Non-cost and Genuine!

About the Author

Daniel Minoli has many years of IT, telecom, and networking experience for end
users and carriers, including work at AIG, ARPA think tanks, Bell Telephone Lab-
oratories, ITT, Prudential Securities, Bell Communications Research (Bellcore/Tel-
cordia), and AT&T (1975–2001). Recently, he also played a founding role in the
launching of two networking companies through the high-tech incubator Leading
Edge Networks Inc., which he ran in the early 2000s: Global Wireless Services, a
provider of broadband, hotspot mobile Internet and hotspot VoIP (Vo Wi-Fi) ser-
vices to high-end marinas; and, InfoPort Communications Group, an optical and
Gigabit Ethernet metropolitan carrier supporting data center/SAN/channel exten-
sion and grid computing network access services (2001–2003). Mr. Minoli’s grid
computing work goes back to 1987.

An author of a number of textbooks on information technology, telecommunica-
tions, and data communications, he has also written columns for ComputerWorld,
NetworkWorld, and Network Computing (1985–1995). He has taught at New York
University, Rutgers University, Stevens Institute of Technology, Carnegie Mellon
University, and Monmouth University (1984–2003). Also, he was a Technology
Analyst At-Large, for Gartner/DataPro (1985–2001); based on extensive hands-on
work at financial firms and carriers, he tracked technologies and wrote around fifty
distinct CTO/CIO-level technical/architectural scans in the area of telephony and
data systems, including topics on security, disaster recovery, IT outsourcing, net-
work management, LANs, WANs (ATM and MPLS), wireless (LAN and public
hotspot), VoIP, network design/economics, carrier networks (such as metro Ether-
net and CWDM/DWDM), and e-commerce. Over the years, he has advised venture
capitalists for investments of $150M in a dozen high-tech companies, and has acted
as expert witness in a (won) $11B lawsuit regarding a wireless air-to-ground com-
munication system.

xiii

fbetw.qxd 10/11/2004 3:51 PM Page xiii

TEAM LinG - Live, Informative, Non-cost and Genuine!

fbetw.qxd 10/11/2004 3:51 PM Page xiv

TEAM LinG - Live, Informative, Non-cost and Genuine!

Preface

In February 1974 this author, as a math major at the Polytechnic Institute of Brook-
lyn, (co)invented a now well-rooted but computationally complex concept of “hy-
perperfect numbers” and he used an early form of grid computing—also known as
utility computing—to study this concept (see pages 83 and 86). His interest in grid
computing that grew out of this 1970s work lasted throughout the late 1980s and
into the early 2000s.

This is the first book that takes a comprehensive view of grid computing technol-
ogy from a networking perspective. Grid computing seamlessly integrates resources
and services across distributed, heterogeneous, dynamic “virtual organizations” that
span disparate administrative entities within a single enterprise and/or external enti-
ties or service providers. The past decade has seen a significant level of government
funding directed at grid-related projects at NASA, national laboratories, supercom-
puter centers, and academic institutions.

Up to now, grid computing has been largely of interest to researchers at mathe-
matics and computer science departments, national laboratories, informatics insti-
tutes, and government-funded research laboratories, but it turns out that this tech-
nology can be of value to Fortune 500 Companies looking to reduce their
run-the-engine costs. A fair number of such companies are already availing them-
selves of the clear financial benefits; others may soon follow.

Commoditization of any sort of resource works to the clear advantage of the user
and it affords at-large macroeconomics benefits. In recent years, we have seen the
aggressive commoditization of all sorts of consumer entertainment electronics, per-
sonal computers, and personal communication devices such as cellular telephones
and Personal Digital Assistants. This has resulted in a precipitous decrease in prices
(and costs) of these products.

During the past ten years or so, a similar commoditization has been experienced
in computing hardware platforms that support information technology applications
at businesses of all sizes. Some writers have encapsulated this rapidly occurring
phenomenon with the phrase “IT doesn’t matter.” This price-disrupting predica-
ment affords new opportunities for organizations, although it also has conspicuous
process- and people-dislocating consequences.

xv

fpref.qxd 10/11/2004 3:54 PM Page xv

TEAM LinG - Live, Informative, Non-cost and Genuine!

The commoditization thrust of computing hardware has been captured under the
auspices of grid computing, which is viewed by proponents as the “next big thing.”
Grid computing is perceived as having as much potential for changing the way
companies do business as the Internet did. Grid computing can be considered as a
network of computation. It supports the concept of “utility computing,” with which
users can get “on-demand” “machine cycles off a grid” without having to own the
physical assets or infrastructure. It includes mechanisms and protocols for coordi-
nated resource sharing and problem solving among pooled assets distributed across
the globe, such as PCs, servers, mainframes, supercomputers, and data stores.

This author was advocating the concept of grid computing as far back as 1987.
In Bellcore Special Report SR-NPL-000790 in a section called “Network for a
Computing Utility” we stated in part:

The proposed service provides the entire apparatus to make the concept of the Com-
puting Utility possible. This includes as follows: (1) the physical network over which
the information can travel, and the interface through which a guest PC/workstation can
participate in the provision of machine cycles and through which the service re-
questers submit jobs; (2) a load sharing mechanisms to invoke the necessary servers to
complete a job; (3) a reliable security mechanism; (4) an effective accounting mecha-
nism to invoke the billing system; and, (5) a detailed directory of servers. . . . Security
is one of the major issues for this service, particularly if the PC is not fully dedicated
to this function, but also used for other local activities. Virus threats, infiltration and
corruption of data, and other damage must be appropriately addressed and managed by
the service; multi-task and robust operating systems are also needed for the servers to
assist in this security process . . . protocols and standards will be needed to connect
servers and users, as well as for accounting and billing. These protocols will have to
be developed before the service can be established. . . .

Evolving grid computing standards can also be used to facilitate “open-source out-
sourcing services” as a way for corporations to implement portability (“open
source”) in their outsourced operations.

A lot of the requisite infrastructure and mechanisms have become available in
recent years. This book explores practical advantages of grid computing and what is
needed by an organization to migrate to this new computing paradigm, but it does
so with a degree of emphasis on the communication apparatus. The book is intend-
ed for practitioners and decision makers in organizations who want to explore the
overall opportunities afforded by this new technology. The text follows in the tradi-
tion of the author of exploring the practical utility of the technology, with a mini-
mum of theoretical or research-level exposition. The book is principally targeted to
the user community, specifically, information technology departments at Fortune
500 companies that want a systematized summary of the state of the business, with-
out having to digest extensive files of research material.

xvi PREFACE

fpref.qxd 10/11/2004 3:54 PM Page xvi

TEAM LinG - Live, Informative, Non-cost and Genuine!

Acknowledgments

The author would like to thank Dr. Robert B. Cohen and Dr. Edward Feser, for use
of a high-value table (Chapter 2) and a high-value graph (Chapter 7).

The author would also like to thank Tim Wu and Andy Walden for material for
Chapter 10 on VPNs.

xvii

flast.qxd 10/11/2004 3:56 PM Page xvii

TEAM LinG - Live, Informative, Non-cost and Genuine!

flast.qxd 10/11/2004 3:56 PM Page xviii

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 1
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 1

Introduction

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES?

Grid computing (or, more precisely a “grid computing system”) is a virtualized dis-
tributed computing environment. Such an environment aims at enabling the dynam-
ic “runtime” selection, sharing, and aggregation of (geographically) distributed au-
tonomous resources based on the availability, capability, performance, and cost of
these computing resources, and, simultaneously, also based on an organization’s
specific baseline and/or burst processing requirements. When people think of a
grid, the idea of an interconnected system for the distribution of electricity, espe-
cially a network of high-tension cables and power stations, comes to mind. In the
mid-1990s the grid metaphor was applied to computing, by extending and advanc-
ing the 1960s concept of “computer time sharing.” The grid metaphor strongly il-
lustrates the relation to, and the dependency on, a highly interconnected networking
infrastructure.

This book is a survey of the grid computing field as it applies to corporate envi-
ronments and it focuses on what are the potential advantages of the technology in
these environments. The book is a synthesis of the state of the industry and takes a
balanced view of the field, but at the same time serves as a familiarization vehicle
for the interested information technology (IT) professional. It should be noted at the
outset, however, that no claim is made herewith that there is a single or unique so-
lution to a given computing problem; grid computing is one of a number of avail-
able solutions in support of optimized distributed computing. Corporate IT profes-
sionals, for whom this text is intended, will have to perform appropriate functional,
economic, business-case, and strategic analyses to determine which computing ap-
proach ultimately is best for their respective organizations. Furthermore, it should
be noted that grid computing is an evolving field and, so, there is not always one
canonical, normative, universally accepted, or axiomatically derivable view of
“everything grid related,” and it follows that we occasionally present multiple
views, multiple interpretations, or multiple perspectives on a topic, as they might be
perceived by different stakeholders or communities of interest.

This introductory chapter begins the discussion by providing a sample of what a
number of stakeholders define grid computing to be, along with an assay of the in-
dustry. The precise definition of what exactly this technology encompasses is still
evolving and there is not a globally accepted normative definition that is perfectly

c01.qxd 8/24/2004 10:10 AM Page 1

TEAM LinG - Live, Informative, Non-cost and Genuine!

nonoverlapping with other related technologies. Grid computing emphasizes (but
does not mandate) geographically distributed, multiorganization, utility-based, out-
sourcer-provided, networking-reliant computing methods.

In its basic form, the concept of grid computing is straightforward: with grid
computing an organization can transparently integrate, streamline, and share dis-
persed, heterogeneous pools of hosts, servers, storage systems, data, and networks
into one synergistic system, in order to deliver agreed-upon service at specified lev-
els of application efficiency and processing performance. Additionally, or, alterna-
tively, with grid computing an organization can simply secure commoditized “ma-
chine cycles” or storage capacity from a remote provider, “on-demand,” without
having to own the “heavy iron” to do the “number crunching.” Either way, to an
end-user or application this arrangement (ensemble) looks like one large, cohesive,
virtual, transparent computing system [91, 102]. A grid mechanism is an enabling
technology for online collaboration and for discovery and access to distributed re-
sources. A grid mechanism is basically a middleware; it is a distributed computing
technology. Broadband networks play a fundamental enabling role in making grid
computing possible and this is the motivation for looking at this technology from
the perspective of communication.

According to IBM’s definition [118, 128],

[A] grid is a collection of distributed computing resources available over a local or
wide area network that appear to an end user or application as one large virtual com-
puting system. The vision is to create virtual dynamic organizations through secure,
coordinated resource-sharing among individuals, institutions, and resources. Grid
computing is an approach to distributed computing that spans not only locations but
also organizations, machine architectures, and software boundaries to provide unlimit-
ed power, collaboration, and information access to everyone connected to a grid. . . .
[T]he Internet is about getting computers to talk together; grid computing is about get-
ting computers to work together. Grid will help elevate the Internet to a true comput-
ing platform, combining the qualities of service of enterprise computing with the abil-
ity to share heterogeneous distributed resources—everything from applications, data,
storage and servers.

Another definition, this one from The Globus Alliance (a research and develop-
ment initiative focused on enabling the application of grid concepts to scientific and
engineering computing), is as follows [129]:

The grid refers to an infrastructure that enables the integrated, collaborative use of
high-end computers, networks, databases, and scientific instruments owned and man-
aged by multiple organizations. Grid applications often involve large amounts of data
and/or computing and often require secure resource sharing across organizational
boundaries, and are thus not easily handled by today’s Internet and Web infrastruc-
tures.

Yet another industry-formulated definition of grid computing is as follows [96,
103]:

2 INTRODUCTION

c01.qxd 8/24/2004 10:10 AM Page 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

A computational grid is a hardware and software infrastructure that provides depend-
able, consistent, pervasive, and inexpensive access to high-end computational capabil-
ities. A grid is concerned with coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations. The key concept is the ability to ne-
gotiate resource-sharing arrangements among a set of participating parties (providers
and consumers) and then to use the resulting resource pool for some purpose. The
sharing that we are concerned with is not primarily file exchange but rather direct ac-
cess to computers, software, data, and other resources, as is required by a range of col-
laborative problem-solving and resource-brokering strategies emerging in industry,
science, and engineering. This sharing is, necessarily, highly controlled, with resource
providers and consumers defining clearly and carefully just what is shared, who is al-
lowed to share, and the conditions under which sharing occurs. A set of individuals
and/or institutions defined by such sharing rules form what we call a virtual organiza-
tion (VO).

Whereas the Internet is a network of communication, grid computing is seen as a
network of computation: the field provides tools and protocols for resource sharing
of a variety of IT resources. Grid computing approaches are based on coordinated
resource sharing and problem solving in dynamic, multiinstitutional VOs. A (short)
list of examples of possible VOs include: application service providers, storage ser-
vice providers, machine-cycle providers, and members of industry-specific consor-
tia. These examples, among others, represent an approach to computing and prob-
lem solving based on collaboration in data-rich and computation-rich environments
[3, 91]. The enabling factors in the creation of grid computing systems in recent
years have been the proliferation of broadband (optical-based) communications, the
Internet, and the World Wide Web infrastructure, along with the availability of low-
cost, high-performance computers using standardized (open) operating systems [94,
96, 104]. The role of communications as a fundamental enabler will be emphasized
throughout the chapters of this textbook.

Prior to the deployment of grid computing, a typical business application had a
dedicated platform of servers and an anchored storage device assigned to each indi-
vidual server. Applications developed for such platforms were not able to share re-
sources, and, from an individual server’s perspective, it was not possible, in gener-
al, to predict, even statistically, what the processing load would be at different
times. Consequently, each instance of an application needed to have its own excess
capacity to handle peak usage loads. This predicament typically resulted in higher
overall costs than would otherwise need to be the case [130]. To address these lacu-
nae, grid computing aims at exploiting the opportunities afforded by the synergies,
the economies of scale, and the load smoothing that result from the ability to share
and aggregate distributed computational capabilities, and deliver these hardware-
based capabilities as a transparent service to the end-user.1 To reinforce the point,
the term “synergistic” implies “working together so that the total effect is greater

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES? 3

1As implied in the opening paragraphs, a number of solutions in addition to grid computing (e.g., virtual-
ization) can be employed to address this and other computational issues; grid computing is just one ap-
proach.

c01.qxd 8/24/2004 10:10 AM Page 3

TEAM LinG - Live, Informative, Non-cost and Genuine!

than the sum of the individual constituent elements.” From a service-provider per-
spective, grid computing is somewhat akin to an application service provider (ASP)
environment, but with a much-higher level of performance and assurance [131].
Specialized ASPs, known as grid service providers (GSPs) are expected to emerge
to provide grid-based services, including, possibly, “open-source outsourcing ser-
vices.”

Grid computing started out as the simultaneous application of the resources of
many networked computers to a single (scientific) problem [96]. Grid computing
has been characterized as the “massive integration of computer systems” [97].
Computational grids have been used for a number of years to solve large-scale
problems in science and engineering. The noteworthy fact is that, at this juncture,
the approach can already be applied to a mix of mainstream business problems.
Specifically, grid computing is now beginning to make inroads into the commercial
world, including financial services operations, making the leap forward from such
scientific venues as research labs and academic settings [130].

The possibility exists, according to the industry, that with grid computing,
companies can save as much as 30% of certain key line items of the operations
budget (in an ideal situation), which is typically a large fraction of the total IT
budget [98]. Companies spend, on the average, 6%2 of their top line revenues
yearly on IT services; for example, a $10 B/yr Fortune 500 company might spend
$600 M/yr on IT. Industry vendors make the assertion that cluster computing (ag-
gregating processors in parallel-based configurations), yield reductions in IT costs
and costs of operations that are expected to reach 15% by 2005 and 30% by
2007–8 in most early-adopter sectors. Use of enterprise grids (middleware-based
environments to harvest unused “machine cycles,” thereby displacing otherwise-
needed growth costs), is expected to result in a 15% savings in IT costs by the
year 2007–8, growing to a 30% savings by 2010 to 2012 [111]. This potential sav-
ings is what this book is all about.

In 1994, this author published the book Analyzing Outsourcing, Reengineering
Information and Communication Systems (McGraw-Hill), calling attention to the
possibility that companies could save 15–20% or more of their IT costs by consid-
ering outsourcing, and the trends of the mid-2000s have, indeed, validated this
(then) timely assertion [120]. At this juncture, we call early attention to the fact that
the possibility exists for companies to save as much as 15–30% of certain key line
items of the IT operations (run-the-engine) budget by using grid computing and/or
related computing/storage virtualization technologies. In effect, grid computing,
particularly the utility computing aspect, can be seen as another form of outsourc-
ing. Perhaps utility computing will be the next phase of outsourcing and be a major
trend in the 2010 decade. As we discuss later in the book, the evolving grid comput-
ing standards can be used by companies to deploy a next-generation kind of “open
source outsourcing” that has the advantage of offering portability, enabling compa-
nies to easily move their business among a variety of pseudocommodity providers.

This book explores practical advantages of grid computing and what is needed by
an organization to migrate to this new computing paradigm, if it so chooses. The

4 INTRODUCTION

2The range is typically 2% to 10%; for example, see, among others [120].

c01.qxd 8/24/2004 10:10 AM Page 4

TEAM LinG - Live, Informative, Non-cost and Genuine!

book is intended for practitioners and decision makers in organizations (not neces-
sarily software programmers) who want to explore the overall business opportunities
afforded by this new technology. At the same time, the importance of the underlying
networking mechanism is emphasized. For any kind of new technology, corporate
and business decision makers typically seek answers to questions such as these
(which are the theme of this book): (i) “What is this stuff?”; (ii) “How widespread is
its present/potential penetration?”; (iii) “Is it ready for prime time?”; (iv) “Are there
firm standards?”; (v) “Is it secure?”; (vi) “How do we bill it, since it’s new?”; (vii)
“Tell me how to deploy it (at a macro level)”; and (viii) “Give me a self-contained
reference—make it understandable and as simple as possible.” Table 1.1 summarizes
these and other questions that decision makers, CIOs, CTOs, and planners may have
about grid computing that are addressed in this book. Table 1.2 lists some of the con-
cepts embodied in grid computing and other related technologies.

Grid computing is also known by a number of other names (although some of
these terms have slightly different connotations), such as “grid” (the term “the grid”
was coined in the mid-1990s to denote a proposed distributed computing infrastruc-
ture for advanced science and engineering [40]), “computational grid,” “computing-
on-demand,” “on-demand computing,” “just-in-time computing,” “platform com-
puting,” “network computing,” “computing utility” (the term used by this author in
the late 1980s [6]), “utility computing,” “cluster computing,” and “high-perfor-
mance distributed computing.” With regard to nomenclature, in this text, besides
the term Grid Computing, we will also interchangeably use the terms grid and com-
putational grid. In this text, we use the term grid technology to describe the entire
collection of grid computing elements, middleware, networks, and protocols.

To deploy a grid, a commercial organization needs to assign computing re-
sources to the shared environment and deploy appropriate grid middleware on these
resources, enabling them to play various roles that need to be supported in the grid
that are covered in this book (scheduler, broker, etc.). Some (minor) application re-
tuning and/or parallelization may, in some instances, be required; data accessibility
will also have to be taken into consideration. A security framework will also be re-
quired. If the organization subscribes to the service-provider model, then grid de-
ployment would mean establishing adequate access bandwidth to the provider, un-
dertaking some possible application retuning, and establishing security policies (the
assumption being that the provider will itself have a reliable security framework).

The concept of providing computing power as a utility-based function is general-
ly attractive to end users requiring fast transactional processing and “scenario mod-
eling” capabilities. The concept may also be attractive to IT planners looking to
control costs and reduce data center complexity. The ability to have a cluster, an en-
tire data center, or other resources spread across an area connected by the Internet
(and/or, alternatively, connected by an intranet or extranet), operating as a single
transparent virtualized system that can be managed as a service, rather than as indi-
vidual constituent components, likely will, over time, increase business agility, re-
duce complexity, streamline management processes, and lower operational costs
[130]. Grid technology allows organizations to utilize numerous computers to solve
problems by sharing computing resources. The problems to be solved might involve
data processing, network bandwidth, data storage, or a combination thereof.

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES? 5

c01.qxd 8/24/2004 10:10 AM Page 5

TEAM LinG - Live, Informative, Non-cost and Genuine!

6 INTRODUCTION

Table 1.1 Issues of interest and questions that CIOs/CTOs/planners have about
grid computing

What is grid computing and what are the key issues?
Grid benefits and status of technology
Motivations for considering computational grids
Brief history of grid computing
Is grid computing ready for prime time?
Early suppliers and vendors
Challenges
Future directions

What are the components of grid computing systems/architectures?
Portal/user interfaces
User security
Broker function
Scheduler function
Data management function
Job management and resource management

Are there stable standards supporting grid computing?
What is OGSA/OGSI?
Implementations of OGSI
OGSA services
Virtual organization creation and management
Service groups and discovery services
Choreography, orchestration, and workflow
Transactions
Metering service
Accounting service
Billing and payment service
Grid system deployment issues and approaches
Generic implementations: Globus Toolkit

Security considerations—Can grid computing be trusted?

What are the grid deployment/management issues?
Challenges and approaches
Availability of products by categories
Business grid types
Deploying a basic computing grid
Deploying more complex computing grid
Grid operation

What are the economics of grid systems?
The chargeable grid service
The grid payment system

How does one pull it all together? Communication and networking infrastructure
Communication systems for local grids
Communication systems for national grids
Communication systems for global grids

c01.qxd 8/24/2004 10:10 AM Page 6

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES? 7

Table 1.2 Definition of some key terms

Grid Computing
� (Virtualized) distributed computing environment that enables the dynamic “runtime” se-

lection, sharing, and aggregation of (geographically) distributed autonomous (autonomic)
resources based on the availability, capability, performance, and cost of these computing
resources, and, simultaneously, also based on an organization’s specific baseline and/or
burst processing requirements.

� Enables organizations to transparently integrate, streamline, and share dispersed, hetero-
geneous pools of hosts, servers, storage systems, data, and networks into one synergistic
system, in order to deliver agreed-upon service at specified levels of application efficien-
cy and processing performance.

� An approach to distributed computing that spans multiple locations and/or multiple orga-
nizations, machine architectures, and software boundaries to provide power, collabora-
tion, and information access.

� Infrastructure that enables the integrated, collaborative use of computers, supercomput-
ers, networks, databases, and scientific instruments owned and managed by multiple or-
ganizations.

� A network of computation: namely, tools and protocols for coordinated resource sharing
and problem solving among pooled assets. Allows coordinated resource sharing and
problem solving in dynamic, multiinstitutional virtual organizations.

� Simultaneous application of the resources of many networked computers to a single prob-
lem. Concerned with coordinated resource sharing and problem solving in dynamic, mul-
tiinstitutional virtual organizations.

� Decentralized architecture for resource management, and a layered hierarchical architec-
ture for implementation of various constituent services.

� Combines elements such as distributed computing, high-performance computing, and
disposable computing, depending on the application.

� Local, metropolitan, regional, national, or international footprint. Systems may be in the
same room, or may be distributed across the globe; they may be running on homogenous
or heterogeneous hardware platforms; they may be running on similar or dissimilar oper-
ating systems; and they may owned by one or more organizations.

� Types. (i) Computational grids: machines with set-aside resources allocated to “number-
crunch” data or provide coverage for other intensive workloads. (ii) Scavenging grids:
commonly used to locate and exploit machine cycles on idle servers and desktop comput-
ers for use in resource-intensive tasks. (iii) Data grids: a unified interface for all data
repositories in an organization, through which data can be queried, managed, and secured.

� Computational grids can be local enterprise grids (also called intragrids), and Internet-
based grids (also called intergrids.) Enterprise grids are middleware-based environments
used to harvest unused “machine cycles,” thereby displacing otherwise needed growth
costs.

� Other terms (some with slightly different connotations): “computational grid,” “comput-
ing-on-demand,” “on-demand computing,” “just-in-time computing,” “platform comput-
ing,” “network computing,” “computing utility,” “utility computing,” “cluster comput-
ing,” and “high-performance distributed computing.”

Virtualization
� An approach that allows several operating systems to run simultaneously on one (large)

computer (e.g., IBM’s z/VM operating system lets multiple instances of Linux coexist on
the same mainframe computer). (continued)

c01.qxd 8/24/2004 10:10 AM Page 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

In a grid environment, the ensemble of resources is able to work together cohe-
sively because of defined protocols that control connectivity, coordination, resource
allocation, resource management, security, and chargeback. Generally, the proto-
cols are implemented in the middleware. The systems “glued” together by a compu-
tational grid may be in the same room, or may be distributed across the globe; they

8 INTRODUCTION

Table 1.2 Continued

Virtualization (cont.)
� More generally, it is the practice of making resources from diverse devices accessible to

a user as if they were a single, larger, homogenous resource that appears to be locally
available.

� Dynamically shifting resources across platforms to match computing demands with avail-
able resources: the computing environment can become dynamic, enabling autonomic
shifting of applications between servers to match demand.

� The abstraction of server, storage, and network resources in order to make them available
dynamically for sharing, both internal to and external to an organization. In combination
with other server, storage, and networking capabilities, virtualization offers customers the
opportunity to build more efficient IT infrastructures. Virtualization is seen by some as a
step on the road to utility computing.

Clusters
� Aggregating of processors in parallel-based configurations, typically in a local environ-

ment (within a data center); all nodes work cooperatively as a single unified resource.
� Resource allocation is performed by a centralized resource manager and scheduling system.
� Comprised of multiple interconnected independent nodes that cooperatively work togeth-

er as a single unified resource; unlike grids, cluster resources are typically owned by a
single organization.

� All users of clusters have to go through a centralized system that manages allocation of
resources to application jobs. Cluster management systems have centralized control,
complete knowledge of system state and user requests, and complete control over indi-
vidual components.

(Basic) Web Services (WS)
� Web services provide standard infrastructure for data exchange between two different

distributed applications (grids provide an infrastructure for aggregation of high-end re-
sources for solving large-scale problems).

� Web services are expected to play a key constituent role in the standardized definition of
grid computing since they have emerged as a standards-based approach for accessing net-
work applications.

Peer-to-peer (P2P)
� P2P is concerned with the same general problem as grid computing, namely, the organi-

zation of resource sharing within virtual communities.
� Grid communities focus on aggregating distributed high-end machines such as clusters,

whereas the P2P community concentrates on sharing low-end systems such as PCs con-
nected to the Internet.

� Like P2P, grid computing allows users to share files (many-to-many sharing). With grid
computing, the sharing is not only in reference to files, but also other IT resources.

c01.qxd 8/24/2004 10:10 AM Page 8

TEAM LinG - Live, Informative, Non-cost and Genuine!

may be running on homogenous or heterogeneous hardware platforms; they may be
running on similar or dissimilar operating systems; and they may owned by one or
more organizations. The goal of grid computing is to provide users with a single
view and/or single mechanism that can be utilized to support any number of com-
puting tasks: the grid leverages its extensive informatics capabilities to support the
“number crunching” needed to complete the task and all the user perceives is, es-
sentially, a large virtual computer undertaking his or her work [90].

In recent years, there have been an increasing roster of published articles, confer-
ences, tutorials, resources, and tools related to this topic [90]. Distributed virtual-
ized grid computing technology, as we define it today, is still fairly new, being only
a decade in the making. However, as already implied, a number of the basic con-
cepts of grid computing go back as far as the mid 1960s and early 1970s. Recent ad-
vances, such as ubiquitous high-speed networking in both private and public venues
(e.g., high-speed intranets and high-speed Internet), make the technology more de-
ployable at the practical level, particularly when looking at corporate environments.

As far back as 1987, this researcher was advocating the concept of grid comput-
ing in internal Bell Communications Research White Papers (e.g., in Special Re-
ports SR-NPL-000790, an extensive plan written by the author listing progressive
data services that could be offered by local telcos and RBOCs, entitled “A Collec-
tion of Potential Network-Based Data Services” [6]). In a section called “Network
for a Computing Utility,” it was stated by us:

The proposed service provides the entire apparatus to make the concept of the
Computing Utility possible. This includes as follows: (1) the physical network over
which the information can travel, and the interface through which a guest PC/worksta-
tion can participate in the provision of machine cycles and through which the service re-
questers submit jobs; (2) a load sharing mechanism to invoke the necessary servers to
complete a job; (3) a reliable security mechanism; (4) an effective accounting mecha-
nism to invoke the billing system; and, (5) a detailed directory of servers. . . . Security
is one of the major issues for this service, particularly if the PC is not fully dedicated to
this function, but also used for other local activities. Virus threats, infiltration and cor-
ruption of data, and other damage must be appropriately addressed and managed by the
service; multi-task and robust operating systems are also needed for the servers to assist
in this security process. . . . The Computing Utility service is beginning to be ap-
proached by the Client/Server paradigm now available within a Local Area Network
(LAN) environment. . . . This service involves capabilities that span multiple 7-layer
stacks. For example, one stack may handle administrative tasks, another may invoke the
service (e.g., Remote Operations), still another may return the results (possibly a file),
and so on. . . . Currently no such service exists in the public domain. Three existing ana-
logues exist, as follows: (1) timesharing service with a centralized computer; (2) highly
parallel computer systems with hundreds or thousands of nodes (what people now call
cluster computing), and (3) gateways or other processors connected as servers on a
LAN. The distinction between these and the proposed service is the security and ac-
counting arenas, which are much more complex in the distributed, public (grid) envi-
ronment. . . . This service is basically feasible once a transport and switching network
with strong security and accounting (chargeback) capabilities is deployed, as shown in
Figure. . . . A high degree of intelligence in the network is required . . . a physical net-

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES? 9

c01.qxd 8/24/2004 10:10 AM Page 9

TEAM LinG - Live, Informative, Non-cost and Genuine!

work is required . . . security and accounting software is needed . . . protocols and stan-
dards will be needed to connect servers and users, as well as for accounting and billing.
These protocols will have to be developed before the service can be established. . . .

1.2 POTENTIAL APPLICATIONS AND FINANCIAL BENEFITS OF
GRID COMPUTING

Grid proponents take the position that grid computing represents a “next step” in
the world of computing, and that grid computing promises to move the Internet evo-
lution to the next logical level. According to some ([92, 171, 172] among others),
“utility computing is a positive, fundamental shift in computing architecture,” and
many businesses will be completely transformed over the next decade by using
grid-enabled services as they integrate not only applications across the Internet but
also raw computer power and storage. Furthermore, proponents prognosticate that
infrastructure will appear that will be able to connect multiple regional and national
computational grids, creating a universal source of pervasive and dependable com-
puting power that will support new classes of applications [93].

Most researchers, however, see grid computing as an evolution, not a revolution.
In fact, grid computing can be seen as the latest and most complete evolution of
more familiar developments such as distributed computing, the Web, peer-to-peer
(P2P) computing, and virtualization technologies [43]. Some applications of grid
computing, particularly in the scientific and engineering arenas, include, but are not
limited to, the following [105]:

� Distributed supercomputing/computational science

� High-capacity/throughput computing: large-scale simulation/chip design and
parameter studies

� Content sharing, for example, sharing digital content among peers (e.g., Nap-
ster)

� Remote software access/renting services: ASPs and web services

� Data-intensive computing: drug design, particle physics, stock prediction

� On-demand, real-time computing: medical instrumentation and mission-criti-
cal initiatives

� Collaborative computing (e-science, e-engineering): collaborative design,
data exploration, education, e-learning

� Utility computing/service-oriented computing: new computing paradigm,
new applications, new industries, and new business

The benefits gained from grid computing can translate into competitive advan-
tages in the marketplace. For example, the potential exists for grids to [43, 94]

� Enable resource sharing

� Provide transparent access to remote resources

10 INTRODUCTION

c01.qxd 8/24/2004 10:10 AM Page 10

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Make effective use of computing resources, including platforms and data sets

� Reduce significantly the number of servers needed by (25–75%)

� Allow on-demand aggregation of resources at multiple sites

� Reduce execution time for large-scale data processing applications

� Provide access to remote databases and software

� Provide load smoothing across a set of platforms

� Provide fault tolerance

� Take advantage of time zone and random diversity (in peak hours, users can
access resources in off-peak zones)

� Provide the flexibility to meet unforeseen emergency demands by renting ex-
ternal resources for a required period instead of owning them

� Enable the realization of a virtual data center

(Naturally there also are challenges associated with a grid deployment—this field
being new and evolving.) As implied by the last bulleted point, there is a discern-
able IT trend afoot toward virtualization and on-demand services. Virtualization3

(and supporting technology) is an approach that allows several operating systems to
run simultaneously on one (large) computer. For example, IBM’s z/VM operating
system lets multiple instances of Linux coexist on the same mainframe computer.
More generally, virtualization is the practice of making resources from diverse de-
vices accessible to a user as if they were a single, larger, homogenous, resource that
appears to be locally available. Virtualization supports the concept of dynamically
shifting resources across platforms to match computing demands with available re-
sources: the computing environment can become dynamic, enabling autonomic
shifting of applications between servers to match demand [170]. There are well-
known advantages in sharing resources, as a routine assessment of the behavior of
the M/M/1 queue (memoryless/memoryless/1 server queue) versus the M/M/m
queue (memoryless/memoryless/n servers queue) demonstrates: a single more pow-
erful queue is more efficient than a group of discrete queues of comparable aggre-
gate power. Grid computing represents a development in virtualization: as we have
stated, it enables the abstraction of distributed computing and data resources such as
processing, network bandwidth, and data storage to create a single system image;
this grants users and applications seamless access (when properly implemented) to
a large pool of IT capabilities. Just as an Internet user views a unified instance of
content via the Web, a grid computing user essentially sees a single, large virtual
computer [43]. “Virtualization”—the driving force behind grid computing—has
been a key factor since the earliest days of electronic business computing.

Studies have shown that when problems can be parallelized, such as in the cases
of data mining, records analysis, and billing (as may be the case in a bank, securities
company, financial services company, credit card company, insurance company,
etc.), then significant savings are achievable. Specifically, whereas a classical mod-

1.2 POTENTIAL APPLICATIONS AND FINANCIAL BENEFITS OF GRID COMPUTING 11

3Virtualization can be achieved without grid computing; but many view virtualization as a step toward
the goal of deploying grid computing infrastructures.

c01.qxd 8/24/2004 10:10 AM Page 11

TEAM LinG - Live, Informative, Non-cost and Genuine!

el may require, say, $100 K to process 100 K records, a grid-enabled environment
may take as little as $20 K to process the same number of records. Hence, the bot-
tom line is that Fortune 500 companies have the potential to save 30% or more in
run-the-engine costs on the appropriate line item of their IT budget.

Grid computing can also be seen as part of a larger rehosting initiative and un-
derlying IT trend at many companies (where alternatives such as Linux® or possibly
Windows Operating Systems could, in the future, be the preferred choice over the
highly reliable, but fairly costly UNIX solutions). Although each organization is
different and the results vary, the directional cost trend is believable. Vendors en-
gaged in this space include (but are not limited to) IBM, Hewlett-Packard, Sun
Microsystems, and Oracle. IBM uses “on-demand” to describe its initiative, HP has
its Utility Data Center (UDC) products, Sun Microsystems has its N1 Data-center
Architecture, and Oracle has the 10g family of “grid-aware” products. Several soft-
ware vendors also have a stake in grid computing, including but not limited to Mi-
crosoft, Computer Associates, Veritas Software, and Platform Computing [100].

Commercial interest in grid computing is on the rise, according to market re-
search published by Gartner. The research firm estimated that 15% of corporations
adopted a utility (grid) computing arrangement in 2003, and the market for utility
services in North America would increase from US$8.6 billion in 2003 to more than
US$25 billion in 2006. By 2006, 30% of companies would have some sort of utility
computing arrangement, according to Gartner [100]. Based on published state-
ments, IBM expects the sector to move into “hypergrowth” in 2004, with “tech-
nologies . . . moving ‘from rocket science to business service’”, and the company
had a target of doubling its grid revenue during that year [169]. According to econ-
omists, proliferation of high-performance cluster and grid computing and web ser-
vices (WSs) applications will yield substantial productivity gains in the United
States and worldwide over the next decade [111].

A recent report from research firm IDC concluded that 23% of IT services will
be delivered from offshore centers by 2007 [112]. Grid computing may be a mecha-
nism to enable companies to reduce costs, yet keep jobs, intellectual capital, and
data from migrating abroad. Whereas distributed computing does enable the idea of
“remoting” functions, with grid computing this “remoting” can be done to some in-
country regional rather than third world location (just like electric and water grids
have regional or near-countries scope, rather than having far-flung third world re-
mote scope.) The migration of IT jobs abroad has, in the opinion of this researcher,
national security/homeland security risk implications in the long term, particularly
if terabytes of data about U.S. citizens and our government become the resident
ownership of politically unstable third world countries.

Although there are advantages to grids (e.g., potential reduction in the number of
servers from 25 to 50% and related run-the-engine costs), some companies have
reservations about immediately implementing the technology. Some of this hesita-
tion relates to the fact that the technology is new, and in fact may be overhyped by
the potential provider of services. Other issues may be related to “protection of
turf”: eliminating vast arrays of servers implies reduction in data center space, re-
duction in management span of control, reduction in operational staff, reduction in

12 INTRODUCTION

c01.qxd 8/24/2004 10:10 AM Page 12

TEAM LinG - Live, Informative, Non-cost and Genuine!

budget, etc. This is the same issue that was faced in the 1990s regarding outsourc-
ing (e.g., see [120]). Other reservations may relate to the fact that infrastructure
changes are needed, and this may have a short-term financial disbursement implica-
tion. Finally, not all situations, environments, and applications are amenable to a
grid paradigm.

1.3 GRID TYPES, TOPOLOGIES, COMPONENTS, AND LAYERS—A
PRELIMINARY VIEW

Grid computing embodies a combination of a decentralized architecture for resource
management and a layered hierarchical architecture for implementation of various
constituent services [101]. A grid computing system can have local, metropolitan, re-
gional, national, or international footprints. In turn, the autonomous resources in the
constituent ensemble can span a single organization, multiple organizations, or a ser-
vice provider space. Grids can be focused on the pooled assets of one organization or
span virtual organizations that use a common suite of protocols to enable grid users
and applications to run services in a secure, controlled manner [91]. Furthermore, re-
sources can be logically aggregated for a long period of time (say, months or years),
or for a temporary period of time (say, minutes, days, or weeks).

Grid computing often combines elements such as distributed computing, high-
performance computing, and disposable computing, depending on the application
of the technology and the scale of the operation. Grids can, in practical terms, create
a virtual supercomputer out of existing servers, workstations, and even PCs, to de-
liver processing power not only to a company’s own stakeholders and employees,
but also to its partners and customers. This metacomputing environment is achieved
by treating such IT resources as processing power, memory, storage, and network
bandwidth as pure commodities. Like an electricity or water network, computation-
al power can be delivered to any department or any application where it is needed
most at any given time, based on specified business goals and priorities. Further-
more, grid computing allows charge-back on a per-usage basis rather than for a
fixed infrastructure cost [130].

Present-day grids encompass the following types [90]:

� Computational grids, in which machines with set-aside resources allocated to
“number crunch” data or provide coverage for other intensive workloads

� Scavenging grids, commonly used to find and harvest machine cycles from
idle servers and desktop computers for use in resource-intensive tasks (scav-
enging is usually implemented in a way that is unobtrusive to the owner/user
of the processor)

� Data grids, which provide a unified interface for all data repositories in an or-
ganization, and through which data can be queried, managed, and secured

As already noted, no claim is made herein that there is a single solution to a giv-
en problem; grid computing is one of the available solutions. For example, although

1.3 GRID TYPES, TOPOLOGIES, COMPONENTS, AND LAYERS—A PRELIMINARY VIEW 13

c01.qxd 8/24/2004 10:10 AM Page 13

TEAM LinG - Live, Informative, Non-cost and Genuine!

some of the machine-cycle inefficiencies can be addressed by virtual servers/rehost-
ing (e.g., VMWare, MS VirtualPC, VirtualServer, LPARs from IBM, and partitions
from Sun and HP, which do not require a grid infrastructure), one of the possible ap-
proaches to this inefficiency issue is, indeed, grid computing. Grid computing does
have an emphasis on geographically distributed, multiorganization, utility-based
(outsourced), networking-reliant methods, whereas clustering and rehosting have a
more (but not exclusively) datacenter-focused, single-organization-oriented ap-
proach. Organizations will need to perform appropriate functional, economic, and
strategic assessments to determine which approach is, in final analysis, best for their
specific environment. (This text is on grid computing; hence, our emphasis is on this
approach, rather than other possible approaches, such as virtualization.)

Figures 1.1, 1.2, and 1.3 provide a pictorial view of some grid computing envi-
ronments. Figure 1.1 depicts the traditional computing environment in which a mul-
titude of often-underutilized servers support a disjoint set of applications and data
sets. As implied by this figure, the typical IT environment prior to grid computing
operated as follows. A business-critical application runs on a designated server. Al-
though the average utilization may be relatively low, during peak cycles the server
in question can get overtaxed. As a consequence of this instantaneous overtaxation,
the application can slow down, experience a halt, or even stall. In this traditional in-

14 INTRODUCTION

Figure 1.1 Standard computing environment.

c01.qxd 8/24/2004 10:10 AM Page 14

TEAM LinG - Live, Informative, Non-cost and Genuine!

stance, the large data set that this application is analyzing exists only in a single data
store (note that although multiple copies of the data could exist, it would not be easy
with the traditional model to synchronize the databases if two programs indepen-
dently operated aggressively on the data at the same time.) Server capacity and ac-
cess to the data store place limitations on how quickly desired results can be re-
turned. Machine cycles on other servers are unable to be constructively utilized, and
available disk capacity remains unused [43].

Figure 1.2 depicts an organization-owned computational grid. Here, a middle-
ware application running on a grid-computing broker manages a small(er) set of
processors and an integrated data store. A computational grid is a hardware and
software infrastructure that provides dependable, consistent, pervasive, and inex-
pensive access to high-end computational capabilities. In a grid environment, work-
load can be broken up and sent in manageable pieces to idle server cycles. Not all
applications are necessarily instantly migratable to a grid environment without at
least some redesign. Although legacy business applications may, a priori, fit such a
class of applications, a number of Fortune 500 companies are indeed looking into
how such legacy applications can be modified and/or retooled such that they can be
made to run on grid-based infrastructures.

A scheduler sets rules and priorities for routing jobs on a grid-based infrastruc-
ture. When servers and storage are enabled for grid computing, copies of the data
can be stored in formerly unused space and can easily be made available [43]. A

1.3 GRID TYPES, TOPOLOGIES, COMPONENTS, AND LAYERS—A PRELIMINARY VIEW 15

Figure 1.2 Grid computing environment (local implementation).

c01.qxd 8/24/2004 10:10 AM Page 15

TEAM LinG - Live, Informative, Non-cost and Genuine!

grid also provides mechanisms for managing the distributed data in a seamless way
[96, 106]. A grid middleware provides facilities to allow use of the grid for applica-
tions and users. Middleware such as Globus [107], Legion [108], and UNICORE
(UNiform Interface to Computer Resources) [109] provide software infrastructure
to handle various challenges of computational and data grids [106].

Figure 1.3 depicts the utility-oriented implementation of a computational grid.
This concept is analogous to an electric power network (grid) in which power gen-
erators are distributed but the users are able to access electric power without con-
cerning themselves about the source of energy and its pedestrian operational man-
agement [110].

As suggested by Figures 1.1 to 1.3, grid computing aims to provide seamless and
scalable access to distributed resources. Computational grids enable the sharing, se-
lection, and aggregation of a wide variety of geographically distributed computa-
tional resources (such as supercomputers, computing clusters, storage systems, data
sources, instruments, and developers) and presents them as a single, unified re-
source for solving large-scale computing- and data-intensive applications (e.g.,
molecular modeling for drug design, brain activity analysis, and high-energy
physics). An initial grid deployment at a company can be scaled over time to bring
in additional applications and new data. This allows gains in speed and accuracy
without significant cost increases. Several years ago, this author coined the phrase
“the corporation is the network” [95]. Grid computing supports this concept very
well: with grid computing, all a corporation needs to run its IT apparatus is a reli-

16 INTRODUCTION

Figure 1.3 Grid computing environment (remote implementation).

c01.qxd 8/24/2004 10:10 AM Page 16

TEAM LinG - Live, Informative, Non-cost and Genuine!

able high-speed network to connect it to the distributed set of virtualized computa-
tional resources not necessarily owned by the corporation itself.

Grid computing started out as mechanism for sharing computational resources
distributed all over the world for basic science applications, as illustrated pictorially
by Figure 1.4 [96, 106]. But other types of resources, such as licenses or specialized
equipment, can now also be virtualized in a grid computing environment. For ex-
ample, if an organization’s software license agreement limits the number of users
that can be utilizing the license simultaneously, license management tools operating
in grid mode could be employed to keep track of how many concurrent copies of
the software are active. This will prevent the number from exceeding the allowed
number, as well as schedule jobs according to priorities defined by the automated
business policies. Specialized equipment that is remotely deployed on the network
could also be managed in a similar way, thereby reducing the need for the organiza-
tion to purchase multiple devices, in much the same way today that people in the
same office share Internet access or a printing resources across a LAN [130].

Some grids focus on data federation and availability; other grids focus on com-
puting power and speed. Many grids involve a combination of the two. For end
users, all infrastructure complexity stays hidden [43]. Data (data base) federation
makes disparate corporate databases look like the constituent data is all in the same
database. Significant gains can be secured if one can work on all the different data
bases, including selects, inserts, updates, and deletes, as if all the tables existed in a
single data base.4 Almost every organization has significant unused computing ca-

1.3 GRID TYPES, TOPOLOGIES, COMPONENTS, AND LAYERS—A PRELIMINARY VIEW 17

Figure 1.4 Pictorial view of World Wide InterGrid.

Grid information
service

Grid information
service

Grid information
service

Application

Application

Grid resource broker

Grid resource broker

Grid resource broker

4The “federator” system operates on the tables in the remote systems called the “federatees.” The remote
tables appear as virtual tables in the “federator” data base. Client application programs can perform op-
erations on the virtual tables in the “federator” data base, but the real persistent storage is in the remote
data base. Each “federatee” views the “federator” as just another data base client connection. The “feder-
atee” is simply servicing client requests for data base operations. The “federator” needs client software
to access each remote data base. Client software for IBM Informix®, Sybase, Oracle, and so on would
need to be installed to access each type of federatee [126].

c01.qxd 8/24/2004 10:10 AM Page 17

TEAM LinG - Live, Informative, Non-cost and Genuine!

pacity, widely distributed among a tribal arrangement of PCs, midrange platforms,
mainframes, and supercomputers. For example, if a company has 10,000 PCs, at an
average computing power of 333 MIPS, this equates to an aggregate 3 tera (1012)
floating-point operations per second (TFLOPS) of potential computing power. As
another example, in the United States there are an estimated 300 million computers.
At an average computing power of 333 MIPS, this equates to a raw computing pow-
er of 100,000 TFLOPS. Mainframes are generally idle 40% of the time; Unix
servers are actually “serving” something less than 10% of the time; most PCs do
nothing for 95% of a typical day [43]. This is an inefficient situation for customers.
TFLOPS speeds that are possible with grid computing enable scientists to address
some of the most computationally intensive scientific tasks, from problems in pro-
tein analysis that will form the basis for new drug designs, to climate modeling, to
deducing the content and behavior of the cosmos from astronomical data [97].

Many scientific applications are also data intensive, in addition to being compu-
tationally intensive. By 2006, several physics projects will produce multiple
petabytes (1015 bytes) of data per year. This has been called “peta-scale” data. PCs
now ship with up to 100 gigabytes (GB) of storage (as much as an entire 1990 su-
percomputer center) [113]: one petabyte would equate to 10,000 of these PCs, or to
the PC base of a “smaller” Fortune 500 company. Data grids also have some imme-
diate commercial applications. Grid-oriented solutions are the way to manage this
sort of storage requirement, particularly from a data access perspective (more than
just from a physical storage perspective.) As time evolved, the management of
“peta-scale” data became burdensome. The confluence and combination of large
data set size, geographic distribution of users and resources, and computationally
intensive scientific analyses, prompted the development of data grids, as noted ear-
lier [106, 115]. Here, a data middleware (usually part of general-purpose grid mid-
dleware), provides facilities for data management. Various research communities
have developed successful data middleware such as Storage Resource Broker
(SRB) [116], Grid Data Farm [117], and European Data Grid Middleware. These
middleware tools have been effective in providing a framework for managing high
volumes of data but they are often incompatible.

The key components of grid computing include the following [90]:

� Resource management: the grid must be aware of what resources are avail-
able for different tasks

� Security management: the grid needs to take care that only authorized users
can access and use the available resources

� Data management: data must be transported, cleansed, parceled, and
processed

� Services management: users and applications must be able to query the grid in
an effective and efficient manner

More specifically, grid computing can be viewed as being comprised of a number
of logical hierarchical layers. Figure 1.5 depicts a first view of the layered architec-

18 INTRODUCTION

c01.qxd 8/24/2004 10:10 AM Page 18

TEAM LinG - Live, Informative, Non-cost and Genuine!

19

F
ig

ur
e

1.
5

O
ne

 v
ie

w
 o

f
gr

id
 c

om
pu

ti
ng

 la
ye

rs
.

C
om

m
er

ci
al

, s
ci

en
tif

ic
, e

ng
in

ee
rin

g
ap

pl
ic

at
io

ns

La
ng

ua
ge

s,
 li

br
ar

ie
s,

 c
om

pi
le

rs
, p

ar
al

le
liz

at
io

n
to

ol
s

Sc
he

du
lin

g
se

rv
ic

es
 a

nd
 re

so
ur

ce
 m

an
ag

em
en

t

Au
th

en
tif

ic
at

io
n

an
d

se
cu

re
 c

om
m

un
ic

at
io

n

N
et

w
or

ks
, s

of
tw

ar
e,

 d
at

ab
as

es
, P

C
s,

 w
or

ks
ta

tio
ns

, c
lu

st
er

s

Jo
b

m
an

ag
em

en
t,

st
or

ag
e

ac
ce

ss
, a

cc
ou

nt
in

g

c01.qxd 8/24/2004 10:10 AM Page 19

TEAM LinG - Live, Informative, Non-cost and Genuine!

ture of a grid environment. At the base of the grid stack, one finds the grid fabric,
namely, the distributed resources that are managed by a local resource manager
with a local policy; these resources are interconnected via local-, metropolitan-, or
wide-area networks. The grid fabric includes and incorporates networks; computers
such as PCs and processors using operating systems such as Unix, Linux, or Win-
dows; clusters using various operating systems; resource management systems;
storage devices; and data bases. The security infrastructure layer provides secure
and authorized access to grid resources. Above this layer, the core grid middleware
provides uniform access to the resources in the fabric—the middleware designed to
hide complexities of partitioning, distributing, and load balancing. The next layer,
the user-level middleware layer, consists of resource brokers or schedulers respon-
sible for aggregating resources. The grid programming environments and tools lay-
er includes the compilers, libraries, development tools, and so on, that are required
to run the applications (resource brokers manage execution of applications on dis-
tributed resources using appropriate scheduling strategies and grid development
tools to grid-enable applications). The top layer consists of grid applications them-
selves [94].

Building on this intuitive idea of layering, it would be advantageous if industry
consensus were reached on the series of layers. Architecture standards are now
under development by the Global Grid Forum (GGF).5 The GGF is an industry
advocacy group; it supports community-driven processes for developing and doc-
umenting new standards for grid computing. The GGF is a forum for exchanging
information and defining standards relating to distributed computing and grid
technologies. GGF is fashioned after the Grid Forum, the eGrid European Grid
Forum, and the Grid Community in the Asia-Pacific region. GGF is focusing on
open grid architecture standards [119]. Technical specifications are being devel-
oped for architecture elements, for example, security, data, resource management,
and information. Grid architectures are being built based on Internet protocols and
services (e.g., communication, routing, name resolution, etc.) The layering ap-
proach is used to the extent possible because it is advantageous for higher-level
functions to use common lower-level functions. The GGF’s approach has been to
propose a set of core services as basic infrastructure, as shown in Figure 1.6.
These core services are used to construct high-level, domain-specific solutions.
The design principles are: keep participation cost low, enable local control, sup-
port adaptation, and use the “IP hourglass” model of many applications using a
few core services to support many fabric elements (e.g., operating systems). In the
meantime, Globus Toolkit™ has emerged as the de facto standard for several im-
portant connectivity, resource, and collective protocols. The toolkit, having a
“middleware plus” capability, addresses issues of security, information discovery,
resource management, data management, communication, fault detection, and
portability (see Chapter 6) [33].

20 INTRODUCTION

5GGF members include Cisco Systems, Hewlett-Packard, IBM, Microsoft, Qwest Communications,
Silicon Graphics, Sun Microsystems, Oracle, Level(3), and BellSouth, among 46 participants at press
time.

c01.qxd 8/24/2004 10:10 AM Page 20

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.4 COMPARISON WITH OTHER APPROACHES

It is important to note that certain IT computing constructs are not grids, as we dis-
cuss next. In some instances, these technologies are the optimal solution for an or-
ganization’s problem; in other cases, grid computing is the best solution, particular-
ly if in the long term one is especially interested in supplier-provided utility
computing.

The distinction between clusters and grids relates to the way resources are man-
aged. In the case of clusters (aggregations of processors in parallel-based configura-
tions), the resource allocation is performed by a centralized resource manager and
scheduling system. Also, nodes cooperatively work together as a single unified re-
source. In the case of grids, each node has its own resource manager and does not
aim at providing a single system view [131]. A cluster is comprised of multiple in-
terconnected independent nodes that cooperatively work together as a single unified
resource. This means all users of clusters have to go through a centralized system
that manages the allocation of resources to application jobs. Unlike grids, cluster re-
sources are almost always owned by a single organization. Actually, many grids are
constructed by using clusters or traditional parallel systems as their nodes, although
this is not a requirement. An example of a grid that contains clusters as its nodes is
the NSF TeraGrid [101]; another example is the World Wide Grid, which has many
nodes that are clusters located in organizations such as NRC Canada, AIST-Japan,
N*Grid Korea, and the University of Melbourne. Although cluster management
systems such as Platform’s Load Sharing Facility, Veridian’s Portable Batch Sys-
tem, or Sun’s Sun Grid Engine can deliver enhanced distributed computing ser-
vices, they are not grids themselves; these cluster management systems have cen-
tralized control, complete knowledge of system state and user requests, and
complete control over individual components (such features tend not to be charac-
teristic of a grid proper) [103].

1.4 COMPARISON WITH OTHER APPROACHES 21

Internet P
rotocol A

rchitecture

“Coordinating multiple resources”:
ubiquitous infrastructure services,
app-specific distributed services

“Sharing single resources”:
negotiating access, controlling use

“Talking to things”: communication
(Internet protocols) & security

“Controlling things locally”: Access
to, & control of, resources

Figure 1.6 Layered grid architecture, Global Grid Forum. This material is licensed for use
under the terms of the Globus Toolkit Public License. See http://www.globus.org/toolkit/
download/license.html for the full text of this license.

c01.qxd 8/24/2004 10:10 AM Page 21

TEAM LinG - Live, Informative, Non-cost and Genuine!

Grid computing also differs from basic Web services, although it now makes use
of these services. Web services have become an important component of distributed
computing applications over the Internet [173]. The World Wide Web is not yet in
itself a grid, its open, general-purpose protocols support access to distributed re-
sources but not the coordinated use of those resources to deliver negotiated qualities
of service [103]. So, whereas the Web is mainly focused on communication, grid
computing enables resource sharing and collaborative resource interplay toward
common business goals. Web services provide standard infrastructure for data ex-
change between two different distributed applications, whereas grids provide an in-
frastructure for aggregation of high-end resources for solving large-scale problems
in science, engineering, and commerce. While most Web services involve static
processing and moveable data, many grid computing mechanisms involve static
data (on large databases) and moveable processing. However, there are similarities
as well as dependencies. First, similar to the case of the World Wide Web, grid
computing keeps complexity hidden—multiple users experience a single, unified
experience. Second, Web services are utilized to support grid computing mecha-
nisms. These Web services will play a key constituent role in the standardized defi-
nition of grid computing, since Web services have emerged in the past few years as
a standards-based approach for accessing network applications. The recent trend is
to implement grid solutions using web services technologies, for example, the
Globus Toolkit 3.0 middleware. In this context, low-level grid services are in-
stances of Web services (a grid service is a Web service that conforms to a set of
conventions that provide for controlled, fault-resilient, and secure management of
services) [31, 101].

Both peer-to-peer computing and grid computing are concerned with the same
general problem, namely, the organization of resource sharing within VOs. As is
the case with P2P environments, grid computing allows users to share files; but un-
like P2P, grid computing allows many-to-many sharing. Furthermore, with grid
computing the sharing is not only in reference to files but other resources as well.
The grid community generally focuses on aggregating distributed high-end ma-
chines such as clusters, whereas the P2P community concentrates on sharing low-
end systems such as PCs connected to the Internet [94]. Both disciplines take the
same general approach to solving this problem, namely, the creation of overlay
structures that coexist with, but need not correspond in structure to underlying orga-
nizational structures. Each discipline has made technical advances in recent years,
but each also has, in current instantiations, a number of limitations: there are com-
plementary aspects regarding the strengths and weaknesses of the two approaches
that suggests that the interests of the two communities are likely to grow closer over
time [121]. P2P networks can amass computing power, as does the SETI@home
project, or share content, as Napster and Gnutella have done in the recent past. Giv-
en the number of grid and P2P projects and forums that began worldwide at the turn
of the decade, it is clear that interest in the research, development, and commercial
deployment of these technologies is burgeoning [94]. (This topic is revisited at the
end of Chapter 2.)

Grid computing also differs from virtualization. Resource virtualization is the
abstraction of server, storage, and network resources in order to make them avail-

22 INTRODUCTION

c01.qxd 8/24/2004 10:10 AM Page 22

TEAM LinG - Live, Informative, Non-cost and Genuine!

able dynamically for sharing, both inside and outside an organization. Virtualiza-
tion is a step along the way on the road to utility computing (grid computing) and,
in combination with other server, storage, and networking capabilities, offers cus-
tomers the opportunity to build, according to advocates, an IT infrastructure “with-
out” hard boundaries or fixed constraints [162]. Virtualization has somewhat more
of an emphasis on local resources, whereas grid computing has more of an empha-
sis on geographically distributed interorganizational resources. The universal prob-
lem that virtualization is solving in a data center is that of dedicated resources.
While this approach does address performance, this method lacks fine granularity.
Typically, IT managers take an educated guess as to how many dedicated servers
they will need to handle peaks, purchase extra servers, and then later find out that a
significant number of these servers are significantly underutilized. A typical data
center has a large amount of idle infrastructure, bought and set up online to handle
peak traffic for different applications. Virtualization offers a way of moving re-
sources from one application to another dynamically. However, specifics of the de-
sired virtualizing effect depend on the specific application deployed [161]. Three
representative products are HP’s Utility Data Center, EMC’s VMware, and Plat-
form Computing’s Platform LFS. With virtualization, the logical functions of the
server, storage, and network elements are separated from their physical functions
(e.g., processor, memory, I/O, controllers, disks, switches). In other words, all
servers, storage, and network devices can be aggregated into independent pools of
resources. Some elements may even be further subdivided (server partitions, stor-
age LUNs) to provide an even more granular level of control. Elements from these
pools can then be allocated, provisioned, and managed, manually or automatically,
to meet the changing needs and priorities of one’s business. Virtualization can span
the following domains [162]:

1. Server virtualization for horizontally and vertically scaled server environ-
ments. Server virtualization enables optimized utilization, improved service
levels, and reduced management overhead.

2. Network virtualization, enabled by intelligent routers, switches, and other
networking elements supporting virtual LANs. Virtualized networks are
more secure and more able to support unforeseen spikes in customer and user
demand.

3. Storage virtualization (server, network, and array-based). Storage virtualiza-
tion technologies improve the utilization of current storage subsystems, re-
duce administrative costs, and protect vital data in a secure and automated
fashion.

4. Application virtualization enables programs and services to be executed on
multiple systems simultaneously. This computing approach is related to hori-
zontal scaling, clusters, and grid computing, in which a single application is
able to cooperatively execute on a number of servers concurrently.

5. Data center virtualization, whereby groups of servers, storage, and network
resources can be provisioned or reallocated on the fly to meet the needs of a
new IT service or to handle dynamically changing workloads [162].

1.4 COMPARISON WITH OTHER APPROACHES 23

c01.qxd 8/24/2004 10:10 AM Page 23

TEAM LinG - Live, Informative, Non-cost and Genuine!

Grid computing deployment, although potentially related to a rehosting initia-
tive, is not just rehosting. As Figure 1.7 depicts, rehosting implies the reduction of
typically a large number of servers (possibly using some older and/or proprietary
OS) to a smaller set of more powerful and more modern servers (possibly running
on open-source OSs). This is certainly advantageous from the operations, physical
maintenance, and power and space perspectives. There are savings associated with
rehosting. However, applications are still assigned specific servers. Grid comput-
ing, on the other hand, permits the true virtualization of the computing function, as
seen in Figure 1.7. Here, applications are not preassigned a server, but the “run-
time” assignment is made based on real-time considerations. (Note: in the bottom
diagram, the hosts could be colocated or spread all over the world. When local
hosts are aggregated in tightly coupled configurations, they tend to generally be of
the cluster parallel-based computing type; such processors, however, can also be
nonparallel-computing-based grids, for example, by running the Globus Toolkit.
When geographically dispersed hosts are aggregated in distributed computing con-
figurations, they tend to generally be of the grid computing type and not run in a
clustered arrangement. Figure 1.7 does not show geography and the reader should
conclude that the hosts are arranged in a grid computing arrangement.)

In summary, like clusters and distributed computing, grids bring computing re-
sources together. Unlike clusters and distributed computing, which need physical
proximity and operational homogeneity, grids can be geographically distributed and
heterogeneous. Like virtualization technologies, grid computing enables the virtual-
ization of IT resources. Unlike virtualization technologies, which virtualize a single
system, grid computing enables the virtualization of broad-scale and disparate IT
resources [43]. Scientific-community deployments, such as the distributed data
processing system being deployed internationally by “data grid” projects (e.g.,
GriPhyN, PPDG, EU DataGrid), NASA’s Information Power Grid, the Distributed
ASCI Supercomputer system that links clusters at several Dutch universities, the
DOE Science Grid and DISCOM Grid that link systems at DOE laboratories, and
the TeraGrid mentioned above being constructed to link major U.S. academic sites,
are all bona-fide examples of grid computing. A multisite scheduler such as Plat-
form’s MultiCluster can reasonably be called (first-generation) grids. Other exam-
ples of grid computing include the distributed computing systems provided by Con-
dor, Entropia, and United Devices, which make use of idle desktops; peer-to-peer
systems such as Gnutella, which support file sharing among participating peers; and
a federated deployment of the Storage Resource Broker, which supports distributed
access to data resources [103].

1.5 A FIRST LOOK AT GRID COMPUTING STANDARDS

One of the challenges of any computing technology is getting the various compo-
nents to communicate with each other. Nowhere is this more critical than when try-
ing to get different platforms and environments to interoperate. It should, therefore,
be immediately evident that the grid computing paradigm requires standard, open,

24 INTRODUCTION

c01.qxd 8/24/2004 10:10 AM Page 24

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.5 A FIRST LOOK AT GRID COMPUTING STANDARDS 25

Figure 1.7 A Comparison with rehosting.

c01.qxd 8/24/2004 10:10 AM Page 25

TEAM LinG - Live, Informative, Non-cost and Genuine!

general-purpose protocols and interfaces. Standards for grid computing are now be-
ing defined and are beginning to be implemented by the vendors [90, 122]. To make
the most effective use of the computing resources available, these environments
need to utilize common protocols [123]. Standards are the “holy grail” of grid com-
puting (see Chapters 4 and 5).

Regarding this issue, proponents make the case that we are now indeed entering
a new phase of grid computing in which standards will define grids in a consistent
way by enabling grid systems to become easily built “off-the-shelf” systems. Stan-
dard-based grid systems have been called by some “third-generation grids” or 3G
grids. First-generation or “1G grids” involved local “metacomputers” with basic
services such as distributed file systems and site-wide single sign-on, upon which
early-adopters developers created distributed applications with custom communica-
tions protocols. Test beds extended 1G grids across distances, and attempts to cre-
ate “metacenters” explored issues of interorganizational integration. 1G grids were
totally custom-made proofs of concept [122]. 2G grid systems began with projects
such Condor, I-WAY (the origin of Globus), and Legion (origin of Avaki), in which
underlying software services and communications protocols could be used as a ba-
sis for developing distributed applications and services. 2G grids offered basic
building blocks, but deployment involved significant customization and filling in
many gaps. Independent deployments of 2G grid technology today involve enough
customized extensions that interoperability is problematic, and interoperability
among 2G grid systems is rather difficult. This is why the industry needs 3G grids
[122].

By introducing standard technical specifications, 3G grid technology will have
the potential to allow both competition and interoperability not only among applica-
tions and toolkits, but among implementations of key services. The goal is to mix
and match components, but this potential will only be realized if the grid communi-
ty continues to work at defining standards [122]. The Global Grid Forum communi-
ty is applying lessons learned from 1G and 2G grids and from Web services tech-
nologies and concepts to create 3G architectures [122].

GGF has driven initiatives such as the Open Grid Services Architecture
(OGSA). OGSA is a set of specifications and standards that integrate and leverage
the worlds of Web services and grid computing (Web services are viewed by some
as the “biggest technology trend” in the last five years [75]). With this architecture,
a set of common interface specifications supports the interoperability of discrete,
independently developed services. OGSA brings together Web standards such as
XML (eXtensible Markup Language), WSDL (Web Service Definition Language),
UDDI (Universal Description, Discovery, and Integration), and SOAP (Simple Ob-
ject Access Protocol), with the standards for grid computing developed by the
Globus Project [102]. The Globus Project is a joint effort on the part of researchers
and developers from around the world that is focused on grid research, software
tools, testbeds, and applications. As TCP/IP (Transmission Control Protocol/Inter-
net Protocol) forms the backbone for the Internet, the OGSA is the backbone for
grid computing. The recently-released Open Grid Services Infrastructure (OGSI)
service specification is the keystone in this architecture [122].

26 INTRODUCTION

c01.qxd 8/24/2004 10:10 AM Page 26

TEAM LinG - Live, Informative, Non-cost and Genuine!

In addition to making progress on the standards front, grid computing as a ser-
vice needs to address various issues and challenges. Besides standardization, some
of these issues and challenges include security, true scalability, autonomy, hetero-
geneity of resource access interfaces, policies, capabilities, pricing, data locality,
dynamic variation in availability of resources, and complexity in creation of appli-
cations [101].

1.6 A PRAGMATIC COURSE OF INVESTIGATION

In order to identify possible benefits to their organizations, planners should under-
stand grid computing concepts and the underlying networking mechanisms. Practi-
tioners interested in grid computing are asking basic questions [90]: What do we do
with all of this stuff? Where do we start? How do the pieces fit together? What
comes next? As implied by the introductory but rather encompassing discussion
above, grid computing is applicable to enterprise users at two levels:

1. Obtaining computing services over a network from a remote computing ser-
vice provider

2. Aggregating an organization’s dispersed set of uncoordinated systems into
one holistic computing apparatus

As noted, with grid computing organizations can optimize computing and data
resources, pool such resources to support large-capacity workloads, share the re-
sources across networks, and enable collaboration [43]. Grid technology allows the
IT organization to consolidate and numerically reduce the number of platforms that
need to be kept operating.

This book focuses on networking as not only the best way to understand what
grid computing is, but, more importantly, the best way to understand why and how
grid computing is important to IT practitioners (rather than “just another hot tech-
nology” that gets researchers excited but never has much effect on what network
professionals see in the real world). The goals of this book are three-fold:

1. Describe the basic concepts and technical components of grid computing

2. Describe possible benefits of grid computing

3. Describe the networking apparatus required to support grid computing in an
efficient manner

This introductory chapter looked at grid computing technology from a general-
ized perspective and offers some motivational and advocacy information. The rest
of the book looks at specific technical issues, focusing on standards and networking
issues. A number of books that focus strictly on the IT and/or software side are
available to the interested reader; the present text has networking as a major sub-
theme. In the paragraphs that follow, we highlight some additional subthemes of
this course of investigation and survey the field.

1.6 A PRAGMATIC COURSE OF INVESTIGATION 27

c01.qxd 8/24/2004 10:10 AM Page 27

TEAM LinG - Live, Informative, Non-cost and Genuine!

One can build and deploy a grid in a variety of sizes and types: for large or small
firms, for a single department or the entire enterprise, and for enterprise business
applications or scientific endeavors. Like many other recent technologies, however,
grid computing runs the risk of being overhyped. CIOs need to be careful not to be
to oversold on grid computing. A sound, reliable, conservative economic analysis
is, therefore, required that encompasses the true total cost of ownership (TCO) and
assesses the true risks associated with this approach. This is a subtheme of this text.

Like the Internet, grid computing has its roots in the scientific and research com-
munities. After about a decade of research, open systems are poised to enter the
market. Coupled with a rapid drop in the cost for communication bandwidth, com-
mercial-grade opportunities are emerging for Fortune 500 IT shops searching for
new ways to save money. All of this has to be properly weighted against the com-
moditization of machine cycles (just buy more processors and retain the status quo),
and against reduced support cost by way of subcontinent outsourcing of said IT
support and related application development (just move operations abroad, but oth-
erwise retain the status quo). During the past ten years or so, a tour-de-force com-
moditization has been experienced in computing hardware platforms that support
IT applications at businesses of all sizes. Some have encapsulated this rapidly oc-
curring phenomenon with the phrase “IT doesn’t matter.” The price-disrupting
predicament brought about by commoditization affords new opportunities for orga-
nizations, although it also has conspicuous process- and people-dislocating conse-
quences. Grid computing is but one way to capitalize on this Moore’s Law driven
commoditization. This is yet another subtheme of this text.

We have noted already that at its core grid computing is, and must be, based on
an open set of standards and protocols that enable communication across heteroge-
neous, geographically dispersed environments. Therefore, planners should track the
work that the standards groups are doing. In this book, we are going to look at the
significance of standards in grid computing, how they affect capabilities and facili-
ties, what standards exist, and how they can be applied to the problems of distrib-
uted computation [123]. This is yet another subtheme of this text.

There is effort involved with resource management and scheduling in a grid en-
vironment. When enterprises need to aggregate resources distributed within their
organization and prioritize allocation of resources to different users, projects, and
applications based on their quality of service (QoS) requirements (call these ser-
vice-level agreements), they need to be concerned about resource management and
scheduling. The user QoS-based allocation strategies enhance the value delivered
by the utility. The need for QoS-based resource management becomes significant
whenever more than one competing application or user needs to utilize shared re-
sources [101]. This is yet another subtheme of this text.

Regional economies may benefit significantly from grid computing technolo-
gies, as suggested earlier in the chapter, assuming that two activities occur [111].
First, the broadband infrastructure needed to support grid computing and Web ser-
vices must be developed in a timely fashion (this being the underlying theme of this
text). Second, states and regions must attract (or grow from within) a sufficient pool
of skilled computer and communications professionals to fully deploy and utilize

28 INTRODUCTION

c01.qxd 8/24/2004 10:10 AM Page 28

TEAM LinG - Live, Informative, Non-cost and Genuine!

the new technologies and applications. This is another motivation to become famil-
iar with the technology and to read the literature on it.

The approach we are taking in this text is: What has been learned in the past 10
years related to grids that can be taken forward? What valid approaches will we
make normative going forward? What is required to make it good enough for the
commercial market? What is economically viable for the commercial market? What
is sufficient to convey the value of grid technology to a prospective end user? What
are the performance levels for businesses: tera (FLOPS, bps, B) or mega (FLOPS,
bps, B)? Tera or giga? Peta or exa? What are the requisite networking mechanisms
without which grid computing cannot happen?

1.6 A PRAGMATIC COURSE OF INVESTIGATION 29

c01.qxd 8/24/2004 10:10 AM Page 29

TEAM LinG - Live, Informative, Non-cost and Genuine!

c01.qxd 8/24/2004 10:10 AM Page 30

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 31
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 2

Grid Benefits and Status of Technology

This chapter examines the potential business benefits for considering grid technolo-
gy in a corporate environment, while at the same time looking at some of the chal-
lenges to be faced and addressed. A quick assessment of the maturity of the tech-
nology (“is it ready for prime-time?”) is provided, along with a high-level view of
some of the key players. The chapter also briefly looks at the history of grid com-
puting.1

2.1 MOTIVATIONS FOR CONSIDERING COMPUTATIONAL GRIDS

This subsection identifies some possible reasons and opportunities for commercial
organizations to look into the technology and consider planning its eventual deploy-
ment. The main points of this subsection are that the potential for savings exists, the
grid computing industry is developing rapidly, and people are “doing it.” As we
have seen in Chapter 1, grids are persistent environments that enable software ap-
plications to integrate instruments, displays, and computational and information re-
sources that are managed by diverse organizations in widespread locations [129].
Grid computing allows organizations to share computing power, databases, and
other tools securely across corporate, institutional, and geographic boundaries with-
out sacrificing local autonomy [124]. Grid computing enables people from different
organizations and locations to work together to solve a specific problem, such as
design collaboration. Grid computing software platforms allow resource discovery,
resource sharing, and collaboration in a distributed environment [119]. Although
grid computing has been used within the academic and scientific community for
about a decade, grid standards, grid toolkits, grid products, and enabling technolo-
gies (such as ubiquitous broadband networking), are now becoming available that
allow businesses to increasingly use and reap the advantages of this form of “out-
sourced” computing [125].

The benefits of grid computing, according to the industry, will be greater pro-
ductivity gained through greater flexibility and speed of deployment, access to mas-
sive computing power, collaboration, and cost savings [102]. The overarching busi-

1Although some of this information is time-dependent, the information serves the purpose of validating
that the technology is already “ready for prime time,” and can only be more so in the future.

c02.qxd 8/24/2004 10:12 AM Page 31

TEAM LinG - Live, Informative, Non-cost and Genuine!

ness goal is to save IT money because IT budgets are always under pressure due to
increasing demand for new services and technologies. Organizations spend as much
as 10% of their top-line revenue on IT-related projects, with 6% being typical. Ser-
vice-oriented businesses tend to be at the higher end of this scale. These costs have
remained somewhat fixed over the years, as shown in [127]. A new opportunity
now exists to address these cost components. Some of these savings can be
achieved by replacing a technology with another. Other savings can be achieved by
technology simplification (such as virtualization). We have already cited anecdotal
information in Chapter 1 pointing to nontrivial potential savings with grid comput-
ing. One researcher stated that “Service providers that are not planning to invest in a
portfolio of IT utility services will be under increasing pressure to show they can
still provide flexible, cost-effective IT infrastructure services supporting ever-
changing business applications and processes” [34]. And another wrote that “Utility
Computing will drive major change in system architecture, system management, IT
product/service packaging, and pricing. The investments, however, will be relative-
ly modest in 2004. Leading vendors will sharpen the message—from a marketing
cloud to implementation road-maps for business problems. Also, the perceived
leadership in the market place could change” [27].

According to proponents [163], virtualization (a step along the way to full grid
computing) brings

. . . [A]cross-the-board increases in infrastructure efficiency and flexibility, companies

. . . stand to see dramatic reductions in overall operational costs—50% or more. . . .
Areas where . . . customers may achieve potential savings [are as follows]:

� Deployment costs reduced 30% to 80%
� Capacity planning costs reduced 5% to 40%
� Self-adapting technologies reduce management costs 80% to 100%
� Security costs reduced 20% to 30%
� Usage metering costs reduced from 4% to 30%
� Upgrading and migration costs reduced 20% to 40%

Clearly, these numbers are very optimistic and may not be achievable in all
cases, or even most cases. But they do represent a “stake-in-the-ground” regarding
economics by vendors (such as HP in this case).

Another user reported on these advantages:

Grid computing has enabled Digex to reduce the time taken to resolve a system perfor-
mance problem from one hour to just 15 minutes, cutting customer response time by
75%. Grid computing’s ease of use and built-in monitoring features enable junior data
center staff to undertake tasks for which database administrators (DBAs) were previ-
ously required. This allows us to increase the databases managed by each DBA from
40 to 68, an increase of 70%, and grow our business without increasing our resources.
[86]

To highlight the potential of grid computing, one only needs to look at today’s
typical enterprise computing environment. Despite conspicuous decreases in

32 GRID BENEFITS AND STATUS OF TECHNOLOGY

c02.qxd 8/24/2004 10:12 AM Page 32

TEAM LinG - Live, Informative, Non-cost and Genuine!

the cost of processing power, storage capacity, and network bandwidth, the bulk
of a firm’s IT budget is still tied up in operations and maintenance costs.
Administrators are managing in the range of 30–50 server systems each, and these
systems may be typically utilizing only a small fraction (e.g., 5–25%) of their re-
sources [130]. Some companies have thousands of discrete production-level
servers deployed. Virtualization clearly addresses these issues directly. Grid com-
puting is emerging as a viable technology that businesses can use to get more
profits and productivity out of IT resources. Grid computing is a promising tech-
nology for three reasons [96]:

1. Its ability to make more cost-effective use of a given amount of computer re-
sources

2. As a way to solve problems that cannot be approached without a significant
amount of computing power

3. The fact that the resources of many computers can be cooperatively and per-
haps synergistically harnessed and managed in collaboration toward a com-
mon objective

The argument is made that what these companies need is not more hardware, but
more efficient use of existing hardware. Companies need a way to tie all of these
underutilized machines together into a number-crunching pool, manage those re-
sources, and provide secure and reliable access to the thus virtualized resources
[91]. Without large-scale end-user retraining or a huge investment in new technolo-
gy infrastructure, promoters of grid computing envision a more productive work-
force [130].

According to published reports, firms that have implemented grid architectures
have reported measurable improvements. For illustrative purposes, some report that
processor utilization rates have grown by 80%, while costs have dropped in some
cases by as much as 90%. As an illustrative example, the National Institute for En-
vironmental Health Services (NIEHS) has implemented a grid that helps them
achieve a 95% reduction in total elapsed execution time on key research projects
[130]. Firms have found that Intel-based Linux servers, often used in grid deploy-
ments, can be between 1 to 10% of the total cost of “heavy iron” machines like
mainframes or high-end UNIX servers [130]. It is also cheaper to simply add the
smaller Linux servers (or computing blades) as needed to incrementally grow the
amount of processing power as opposed to adding much more expensive high-end
machines.2 With organizations trying to reduce their IT budgets and hardware being
the second-highest expenditure after compensation for operations and maintenance,
the strategy can make sense, at face value [130]. IT planners should evaluate the
ways they can grid-enable the organization’s applications.

A pragmatic approach is to start small. For example, an organization can build
and deploy a grid at the departmental level. After analyzing the results and out-

2.1 MOTIVATIONS FOR CONSIDERING COMPUTATIONAL GRIDS 33

2An additional advantage to such commodity hardware is that they are considered disposable by some.
“Low-end” US$2,500 Linux devices are more likely to be replaced than repaired.

c02.qxd 8/24/2004 10:12 AM Page 33

TEAM LinG - Live, Informative, Non-cost and Genuine!

comes of such limited (controlled) deployment, the corporate planners can enlarge
the scope of the initiative. Toolkits such as the Globus Toolkit can be useful in this
context [102]. A computer language such as Java is not sufficient by itself to run ef-
fective grids. Although Java provides useful technology for portable, object-orient-
ed application development, it does not address many of the problems that arise
when one tries to achieve high-performance execution in heterogeneous distributed
environments (for example, Java does not help one run programs on different types
of supercomputers, discover the policy elements that apply at a particular site,
achieve single sign-on authentication, perform high-speed transfer across wide-area
networks, etc.) A grid middleware (such as the Globus Toolkit) addresses some of
these concerns and uses Java to provide portable clients [129].

According to published reports, grid computing technology has already been
used in areas such as finance, defense research, medicine discovery, decision mak-
ing, and collaborative design. There is industry-wide interest on grid computing
from research and industry, including IBM, Platform, Avaki, Entropia, Sun Mi-
crosystems, and, HP, among others. Table 2.1 provides a short list of grid-related
resources. A typical advocacy bulletin from a provider reads as follows:

[Does] Grid Computing unleash the power of existing systems? What if you could an-
alyze huge data sets instantaneously? Run scenarios not hundreds but thousands of
times? Bring teams together to radically reduce time-to-market? All while increasing
productivity? You might think you owned a supercomputer. And in today’s on de-
mand world, it can feel like you need one, just to get the detailed results—always
faster, always more accurately—that make you competitive in the marketplace. The
good news: IT components you may already own—mainframes, Unix servers, Intel
Servers, databases, storage systems, even desktop computers and workstations—har-
bor enormous, untapped processing and storage power. Power you can easily start
pulling together and dedicating to your most pressing business problems. [43]

34 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.1 Grid consortiums and open forums
(partial list)

Asia Pacific Grid
Australian Grid Forum
Content Alliance: About Content Peering
Distributed.net
eGrid: European Grid Computing Initiative
EuroTools SIG on Metacomputing
Global Grid Forum
Global Grid Forum (GGF)
Grid Computing Info Centre
GridForum Korea
IEEE Task Force on Cluster Computing
New Productivity Initiative (NPI)
Peer-to-Peer (P2P) Working Group
SETI@home
The Distributed Coalition

c02.qxd 8/24/2004 10:12 AM Page 34

TEAM LinG - Live, Informative, Non-cost and Genuine!

Even if only a fraction of these benefits are actually realizable in “real life”, it is
still worth the effort to investigate and pursue grid computing technologies.

Many application domains in which large processing problems can easily be di-
vided into subproblems and solved independently are already taking advantage of
grid computing (the Internet has facilitated access to untapped computing power).
In the scientific world, these include, among others, Monte Carlo simulations, drug
design, operations research, and e-Science projects like the Genome project and
ecological modeling [156, 157]. Some examples of the new scientific and engineer-
ing applications enabled by grid environments include [129]:

� “Smart instruments.” These are advanced scientific instruments (e.g., electron
microscopes, particle accelerators, and wind tunnels), adjoined with remote
supercomputers, databases, and users, all with the goal to enable interactive
use (rather than batch approaches), online scenario comparisons, and collabo-
rative data analysis.

� “Teraflop desktops.” These support applications such as chemical modeling,
symbolic algebra, and other tasks that transfer computationally intensive op-
erations to capability rich remote resources.

� “Collaborative engineering” (also known as, teleimmersion). These applica-
tions entail high-bandwidth access to shared virtual spaces that support inter-
active manipulation of shared datasets and management of complex simula-
tions, to support collaborative design of high-end systems.

� “Distributed supercomputing.” These are large virtual supercomputers logi-
cally assembled to solve problems too large to fit on any single computer.

� “Parameter studies.” These are rapid, large-scale parametric studies in which
a single program is run many times in order to explore a multidimensional pa-
rameter space.

A number of university consortia, corporations, professional groups, and other
stakeholders have developed and/or are developing frameworks and software for
managing grid computing projects. The European Community, for example, is
sponsoring a project for grid-based high-energy physics, earth observation, and bi-
ology applications. In the United States, the National Center for Supercomputing
Applications at the University of Illinois at Urbana–Champaign has demonstrated a
prototype of a national computational grid called the National Technology Grid;
this grid enables the science and engineering community to reap the benefits of
high-performance computing and communications technologies and makes these
developments available to broad sectors of society [96]. Table 2.2 identifies some
of the grid/P2P initiatives.

As already noted, grids are not just addressing unused or underutilized process-
ing power across existing computers. Another type of grids is a data grid, which can
be used to aggregate underused or unused storage into a larger virtual data store;
these storage configurations lead to improved performance and reliability over that
of any single machine [130]. Table 2.2 also identifies some of the data grid initia-
tives.

2.1 MOTIVATIONS FOR CONSIDERING COMPUTATIONAL GRIDS 35

c02.qxd 8/24/2004 10:12 AM Page 35

TEAM LinG - Live, Informative, Non-cost and Genuine!

36 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.2 Key (scientific) grid/P2P initiatives of recent years
(partial list)

Grid Applications
Access Grid
APEC Cooperation for Earthquake Simulation
Australian Computational Earth Systems Simulator
Australian Virtual Observatory
Cellular Microphysiology
DataGRID—WP9: Earth Observation Science Application
Distributed Proofreaders
DREAM Project: Evolutionary Computing and Agents Applications
EarthSystemGrid
Fusion Collaboratory
Geodise: Aerospace Design Optimisation
Globus Applications
GRid seArch & Categorization Engine (GRACE)
HEPGrid: High Energy Physics and the Grid Network
Italian Grid (GRID.IT) Applications
Japanese BioGrid
Knowledge Grid
Molecular Modelling for Drug Design
NC BioGrid
NEESgrid: Earthquake Engineering Virtual Collaboratory
Neuro Science—Brain Activity Analysis
NLANR Distributed Applications
OpenMolGrid
Particle Physics Data Grid
The International Grid (iGrid)
UK Grid Apps Working Group
US Virtual Observatory

P2P Integrated Systems and Applications
Bayanihan Computing Group
Cetacean acoustic communication study
DALiWorld
Distributed Particle Accelerator Design
Distributed.net
Evolutionary@Home
FightAIDS@Home
Folderol—Bringing the Human Genome Project to the Desktop
Folding@home
Genome@home
Great Internet Mersenne Prime Search (GIMPS)
Life Mapper
Moneybee: Stock forecasts
SaferMarkets.org—Understanding and Predicting Market Volatility
Server-less Video on Demand
SETI@home: Search for Extraterrestrial Intelligence at Home
XPulsar@home

c02.qxd 8/24/2004 10:12 AM Page 36

TEAM LinG - Live, Informative, Non-cost and Genuine!

Our emphasis going forward is on commercial, IT, and data center applications
of grid computing. As implied by the discussion above, in the past it was science
that drove interest in grid computing. For example, in the United Kingdom, interest
in grid computing eventually led to the government’s creation of an e-science pro-
gram focusing on the use of computer technology to share resources and collaborate
on approaches. In due course, however, it became clear that industry leaders would
need to play a role in realizing the vision of utility computing; for example, it was
realized that there were business-centric deficiencies in the grid model, specifically
related to database interoperability [7]. Vendors now are actively engaged in devel-
oping business-centric grid solutions, products brought forth by commercial soft-
ware and database suppliers to facilitate mainstream deployment of grid computing
services.

Early adopter commercial customers are reportedly turning to grid technologies
to help them improve the utilization and responsiveness and reduce the cost of their
IT assets. For example, with the advances in grid computing, many data-mining,
pattern-detection, and scenario-modeling processes of interest to banks, credit card
companies, and financial institutions can be implemented more readily. The neces-
sity of such advanced information-based approaches is driven by the increase in fi-
nancial transaction flow, the need to better understand customer profitability, and
the pressure to more effectively manage risks. Sophisticated risk modeling done in
real time, such as Bayesian knowledge-based analysis, fuzzy logic, and Monte Car-
lo simulations are now commonplace in financial firms [130].

Financial services companies have traditionally built their own distributed-pro-
cessing environments and looked at parallel computing as a way to avoid the pur-
chase of supercomputers. However, up to now these companies have been limited
to solutions tailored to specific products or specific business lines; they have, in
general, not been able to take advantage of the full potential of a virtualized solu-
tion. The potential promise of grid computing includes higher resource utilization,
multifold increase in processing power and throughput, lower costs, and faster time
to deployment of products and services. Reportedly, grid products from providers
such as IBM, Sun Microsystems, Oracle, EMC/VMWare, and Platform Computing,
among others, have been tested and deployed by a number of Fortune 500 compa-
nies. Firms that were once taking a low-tech approach to parallel computing now

2.1 MOTIVATIONS FOR CONSIDERING COMPUTATIONAL GRIDS 37

Table 2.2 Continued

Data Grid Initiatives
Datacentric Grid
DIDC Data Grid Work
EU DataGrid
GridPP
GriPhyN (Grid Physics Network)
HEPGrid (High Energy Physics and Grid Networks)
Particle Physics Data Grid (PPDG)
Virtual Laboratory: Tools for Data Intensive Science on Grid

c02.qxd 8/24/2004 10:12 AM Page 37

TEAM LinG - Live, Informative, Non-cost and Genuine!

can avail themselves of grid middleware. With these evolving grid computing tools,
companies are no longer required to manually subdivide algorithms (needed to
solve some business problems) via some preconditioning process, to run these algo-
rithms on separate machines, and then to manually merge and integrate the results
[130].

Some illustrative examples of actual commercial grid deployments are provided
in Table 2.3. The examples, and others like them, provide just some of the motiva-
tions and commercial precedents for exploring the opportunities afforded to For-
tune 500 companies by grid computing. As the grid matures, standard technologies
are emerging for basic grid operations. In particular, the community-based, open-
source Globus Toolkit is being utilized by most major grid projects [43, 113]. It is
expected that in the next few years the grid computing industry will continue to in-
troduce higher levels of standardization, virtualization, and automation, all of which
will not only increase utilization of existing physical resources but also, and more
importantly, simplify the management of a firm’s IT infrastructure [130].

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND
GRID COMPUTING

The implication was already given that grid computing is not fundamentally a new
concept. It has been in use for a number of years at scientific research and develop-
ment organizations for the most computer-intensive applications, such as, but not
limited to, aerospace simulation, circuit design, and human DNA sequencing. Serv-
er farms and parallel processing are early precursors to today’s modern grid tech-
nology; however, grid computing capabilities are available today for commercial
use based on more powerful enabling technologies such as network bandwidth,
faster processors, and advances in grid middleware software, all at reasonable costs
to the end users [130].

As we stated in Chapter 1, grid computing could properly be called “network
computing.” As this term would imply, the discipline deals with communications
and with computing. Figure 2.1 depicts some key phases in recent developments in
networking and computing. Figure 2.2 calls out some discrete milestones leading to
the emergence of peer-to-peer networks and computational grids. Compared to the
history of the electrical power grid, which spans more than two centuries, the com-
putational grid, or rather, the entire computer communication infrastructure, the In-
ternet—has a history of less than half a century [94]. Our emphasis in this book be-
ing on the commercial side, we forgo here a full bibliographic study of the
academic research over the past decade that has led to developments in grid com-
puting, but refer the interested reader to other references for this information (the
resources of Table 2.1 and Table 2.2 are a place to start, among other resources).

A review of recent history shows that standards provide major impetus for wide-
spread acceptance and deployment of a technology. The state of grid computing to-
day may remind one of the early days of the Web, or even of the emergence of
XML (eXtensible Markup Language) and Web services; things began slowly, but

38 GRID BENEFITS AND STATUS OF TECHNOLOGY

c02.qxd 8/24/2004 10:12 AM Page 38

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND GRID COMPUTING 39

Table 2.3 Commercial grid product deployments (partial list)

Grid Middleware Condor
Cosm P2P Toolkit
Globus Toolkit
Grid Datafarm
Gridbus
GridSim: Toolkit for Grid Resource Modeling and Scheduling

Simultation
Jxta Peer to Peer Network
Legion: A Worldwide Virtual Computer
PUNCH
Simgrid

Grid Systems Amica
Bayanihan
Compute Power Market
CrossGrid
DAMIEN
DIET
Echelon: Agent Based Grid Computing
Global Operating Systems
GridLab
Harness Parallel Virtual Machine Project
JAVELIN: Java-Based Global Computing
Management System for Heterogeneous Networks
MetaNEOS
MILAN: Metacomputing In Large Asynchronous Networks
MOBIDICK
MultiCluster
NeuroGrid
Poland Metacomputing
PUNCH—Network Computing Hub
XtremWeb

Grid Schedulers AppLeS
Computing Centre Software (CCS)
Condor/G
DISCWorld
NetSolve
Nimrod/G Grid Resource Broker
SILVER Metascheduler
ST-ORM

Grid Portals ActiveSheets
Enginframe
G-Monitor
Grid Enabled Desktop Environments
Gridscape
Interactive Control and Debugging of Distribution- IC2D
Lecce GRB Portal (continued)

c02.qxd 8/24/2004 10:12 AM Page 39

TEAM LinG - Live, Informative, Non-cost and Genuine!

40 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.3 Continued

Grid Portals (cont.) NLANR Grid Portal Development Kit
SDSC GridPort Toolkit
UNICORE—Uniform Interface to Computing Resources

Grid Programming Albatross: Wide Area Cluster Computing
Environments Cactus Code

GAF3J—Grid Application Framework for Java
GrADS: Grid Application Development Software Project
Jave-based CoG Kit
MetaMPI—Flexible Coupling of Heterogenous MPI Systems
Nimrod—A tool for distributed parametric modeling
Ninf
ProActive PDC
REDISE—Remote and Distributed Software Engineering
Virtual Distributed Computing Environment

Grid Performance NetLogger
Monitoring and Network Weather Service
Forecasting Remos

Grid Testbeds and Alliance Grid Technologies
Developments Asia Pacific Bioinformatics Network

EuroGrid
GrangeNet
G-WAAT
I-Grid
Internet Movie Project
Irish Computational Grid (ICG)
Kerala Education Grid
LHC Grid
Micro Grid
N*Grid Korea
NASA Information Power Grid (IPG)
Nordic Grid
NPACI: Metasystems
OurGrid
Polder Metacomputer
TeraGrid
ThaiGrid
The Alliance Virtual Machine Room
The Distributed ASCI Supercomputer (DAS)
World Wide Grid (WWG)

Grid and P2P Avaki
Commercial Companies CapCal

Centrata
DataSynapse
Distributed Science
Elepar
EMC/VMWare

c02.qxd 8/24/2004 10:12 AM Page 40

TEAM LinG - Live, Informative, Non-cost and Genuine!

once standards and tools appeared and coalesced, growth quickly ensued [90]. Until
recently, all grid computing systems have been situation specific. If one installed
the distributed.net client, one could process or access work from the SETI@Home
grid. One could not deploy a United Devices client solution without also using their
distribution and management system [123]. Fortunately, grid standards, frame-
works, open implementations, and off-the-shelf applications are now evolving
rapidly. Recently, grid computing has started to leverage Web services to define

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND GRID COMPUTING 41

Table 2.3 Continued

Grid and P2P (cont.) Entropia.com
Commercial Companies Grid Frastructure

GridSystems
Groove Networks
HP
IBM
Intel
Jivalti
Mind Electric
Mithral
Mojo Nation
NewsToYou.com
NICE, Italy
Noemix, Inc.
Oracle
Parabon
Platform Computing
Popular Power
Powerllel
ProcessTree
Sharman Networks Kazza
Sun Gridware
Sysnet Solutions
Ubero
United Devices
Veritas
Xcomp

Figure 2.1 Major phases in computing and communications.

Time evolution

c02.qxd 8/24/2004 10:12 AM Page 41

TEAM LinG - Live, Informative, Non-cost and Genuine!

standard interfaces for business services like business process outsourcing. (Web
services have emerged in the past few years as a standards-based approach for ac-
cessing network applications.)

Mainframes appeared in the 1960s. They were (and still are) massive computa-
tional devices that were (and continue to be) the purview of large corporations, gov-
ernment agencies, and university labs. The origins of grid computing are grounded in
these early days of computing, when using the “spare” machine cycles was seen as an
efficient and cost-effective way of getting the most out of what was then very expen-
sive hardware. SInce mainframes cost hundreds of thousands of dollars (millions, in
today’s dollars), every second had to be accounted for, and those otherwise “wasted”
cycles could be used to get the most out of the cost [123]. Table 2.4 provides, for per-
spective purposes, an excerpt from a quite visionary document of 1970.

The idea of network-based computing has advanced over the years, from the
1970s to the present day. For example, in 1987 this researcher was advocating the
concept of grid computing, stating:

The proposed service provides the entire apparatus to make the concept of the Com-
puting Utility possible. This includes as follows: (1) the physical network over which

42 GRID BENEFITS AND STATUS OF TECHNOLOGY

| | | | | | | | |
1965 1970 1975 1980 1985 1990 1995 2000 2005

Computing

Networking

� Unix
� Time-sharing

� Maintframes
� Minicomputers � PCs

� Unix commercialized
� Crays

� MPPs� Work station
clusters

� PC clusters

� DSIRM
Standards

� Linux

� Windows

� Work stations
� HTC

� Linux Alliance

� Term “Open Source”
coined

� PDAs
� P2P � One-millionth

Linux license

� OGSI/OGSA

� 3G Grids

� 2G Grids

� 1G Grids

� Glotus
Project

� W3C
� WLANs

� Web services

� XML

� Gigabit Ethernet

� DWDM
� Fibre Channel

� Internet
era

� WWW era

� HTML

� Optics/SONET
� Broadband

� Wireless

� IETF
� SGML

� Bell
System
Divestiture

� TCP/IP

� LANS\
Ethernet

� Email

� ARPAnet

� Packet
switching

Figure 2.2 Recent history of computing and communications.

c02.qxd 8/24/2004 10:12 AM Page 42

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND GRID COMPUTING 43

Table 2.4 Grid computing had an illustrious start in the networking space

Dave Walden, A Note on Interprocess Communication in a Resource Sharing Computer
Network, Request for Comments: 61 Bolt Beranek and Newman, Network Working Group,
July 17, 1970

The attached note is a draft of a study I am still working on. It may be of general interest to
network participants.

Resource Sharing Computer Network

“A resource sharing computer network is defined to be a set of autonomous, independent
computer systems, interconnected so as to permit each computer system to utilize all of the
resources of each other computer system. That is, a program running in one computer sys-
tem should be able to call on the resources of the other computer systems much as it would
normally call a subroutine.” This definition of a network and the desirability of such a net-
work is expounded upon by Roberts and Wessler.1

The actual act of resource sharing can be performed in two ways: in a pairwise ad hoc man-
ner between all pairs of computer systems in the network or according to a systematic net-
work wide standard. This paper develops one possible network wide system for resource
sharing.

I believe it is natural to think of resources as being associated with processes2 and therefore
view the fundamental problem of resource sharing to be the problem of interprocess com-
munication. I also share with Carr, Crocker, and Cerf the view that interprocess communica-
tion over a network is a subcase of general interprocess communication in a multipro-
grammed environment.

These views pervade this study and have led to a two part study. First, a model for a time-
sharing system having capabilities particularly suitable for enabling interprocess communi-
cation is constructed. Next, it is shown that these capabilities can be easily used in a general-
ized manner which permits interprocess communication between processes distributed over
a computer network.

This note contains ideas based on many sources. Particularly influential were 1) an early
sketch of a Host protocol for the ARPA Network1,2,3 by W. Crowther of Bolt Beranek and
Newman Inc. (BBN) and S. Crocker of UCLA; 2) Ackerman and Plummer’s paper on the
MIT PDP-1 time sharing system5; and 3) discussion with R. Kahn of BBN about Host pro-
tocol, message control, and routing for the ARPA Network. Hopefully, there are also some
original ideas in this note. . . .

1L. Roberts and B. Wessler, Computer Network Development to achieve Resource Sharing, Proceedings
1970 SJCC.
2V. Vyssotsky, F. F. Corbato, and R. Graham, Structure of the MULTICS Supervisor, Proceedings 1965
FJCC.
3C. Carr, S. Crocker, and V. Cerf, Host/Host Communication Protocol in the ARPA Network, Proceed-
ings 1970 SJCC.
4F. Heart, et al, The Interface Message Processor for the ARPA Computer Network, Proceedings 1970
SJCC.
5W. Ackerman and W. Plummer, An Implementation of Multi-processing Computer System, Proceed-
ings Gatlinburg Symposium on Operating System Principles.

c02.qxd 8/24/2004 10:12 AM Page 43

TEAM LinG - Live, Informative, Non-cost and Genuine!

the information can travel, and the interface through which a guest PC/workstation can
participate in the provision of machine cycles and through which the service re-
questers submit jobs; (2) a load sharing mechanisms to invoke the necessary servers to
complete a job; (3) a reliable security mechanism; (4) an effective accounting mecha-
nism to invoke the billing system; and, (5) a detailed directory of servers. Currently no
such service exists in the public domain . . . security and accounting . . . are much
more complex in the distributed, public (grid) environment. . . . This service is basi-
cally feasible once a transport and switching network with strong security and ac-
counting (chargeback) capabilities is deployed. A high degree of intelligence in the
network is required . . . a physical network is required . . . security and accounting
software is needed . . . protocols and standards will be needed to connect servers and
users, as well as for accounting and billing. These protocols will have to be developed
before the service can be established. . . .

The 1970s and 1980s saw the emergence of minicomputers, microcomputers,
and desktop machines that gave computing power to an expanding community of
people at work and in their homes. This was followed by the client–server comput-
ing model in the early 1990s that placed some amount of the functionality (e.g., pre-
sentation services) at the distributed endpoints; specifically, at the clients. Network-
ing technologies and protocols to interconnect all these machines together and
allow them to communicate saw major deployments throughout the 1980s and early
1990s. The 1990s saw the rise of commercialized Internet; the Internet expanded
our ability to communicate and share files and data with any networked machine,
regardless of physical location. Now we are turning the corner on the next thing:
grid computing. Advocates claim it has as much potential for changing the way we
do business as the Internet did [143].

Communication

The de-facto computational grid’s (scientific grid’s) communication infrastructure
is the Internet. The Internet began as a research network supported by the U.S. De-
partment of Defense’s Advanced Research Projects Agency (DARPA). (For corpo-
rate-oriented grids, high-capacity high-quality extranets and/or private networks
can be utilized, particularly, for more secure applications and real-time, high-per-
formance applications.) In 1969, the ARPAnet consisted of four nodes: the Univer-
sity of California, Los Angeles; Stanford Research Institute; University of Califor-
nia, Santa Barbara; and the University of Utah. By the mid-1970s, ARPAnet’s
reach encompassed over 30 universities, military sites, and government contractors,
and its user base had expanded to include the computer science research communi-
ty at large. By the way, in 1974 the Transmission Control Protocol was introduced,
which later (1978) was split into TCP/IP [94]. In 1983, the ARPAnet consisted of
several hundred computers.

In the 1980s, the National Science Foundation created the NSFnet. NSFnet was a
communications network intended to give scientific researchers easy access to the
NSF’s supercomputer centers. In 1985, NSF arranged with DARPA to support a

44 GRID BENEFITS AND STATUS OF TECHNOLOGY

c02.qxd 8/24/2004 10:12 AM Page 44

TEAM LinG - Live, Informative, Non-cost and Genuine!

collaboration of supercomputing centers and computer science researchers across
ARPAnet. Very quickly, one network after another linked in, and the result was the
Internet as we now know it [97]. In 1986, the Internet Engineering Task Force
(IETF) formed as a loosely self-organized group of people who contributed to the
engineering and evolution of Internet technologies. In 1989, responsibility for and
management of ARPAnet officially passed from military interests to the academi-
cally oriented NSF.

The World Wide Web—developed in the late 1980s by Tim Berners-Lee and his
team as a way to share information—energized a major revolution in computing.
HyperText Markup Language (HTML) (based on the Standard Generalized Markup
Language, developed in the mid 1980s), provided a standard-based means of creat-
ing and organizing documents; HyperText Transfer Protocol (HTTP), browsers,
and servers provide a mechanism to link these documents and access them online
transparently, regardless of their location. The World Wide Web Consortium,
formed in 1994, develops new standards for information interchange. For example,
initiatives related to XML aim to provide a framework for developing software that
can be delivered as a utility service via the Internet [94].

SONET/DWDM (Synchronous Optical Network/Dense Wavelength Division
Multiplexing) optical technology deployed in many industrialized nations in the
late 1990s and early 2000s now provides broadband connectivity and services at a
reasonable price. Some corporate Wide-Area Networks (WANs) now already oper-
ate at 155 Mbps, three orders of magnitude faster than the state-of-the-art 56 kbps
that connected U.S. supercomputer centers in the mid 1980s. OC-48 rings (2.4
Gbps) have been deployed by some Fortune 50 companies since the mid 1990s.
This bandwidth availability is now a key driver (enabler) of grid computing. But to
work with labs across the world on petabyte data sets, scientists now require even
more—in the range of tens of gigabits per second (Gbps) [113].

During the past few years, the theoretical performance of wide-area networks
has doubled every 12 months or so, supported by innovations in optoelectronic
technologies (this equates with a potential to increase by two orders of magnitude
every five years; however, the user-affordable, commercially available bandwidth
has grown at a much slower rate). The NSFnet network, which, as noted, connects
the National Science Foundation supercomputer centers in the United States, exem-
plifies this trend. In the mid-1980s, NSFnet’s backbone operated at a DS0 rate (56
Kbps); now, the centers are connected by the 40 Gbps TeraGrid network [113].
Communication speed will likely continue to increase over time and costs will con-
tinue to decrease. But planners need to realize that quality high-speed bandwidth
will never be free. At some point in the future, there may be an attractive fixed price
like $99.99 per month for all you can use up to 10 Mbps, or $199.99 per month for
all you can use up to 100 Mbps, or $399.99 per month up to 1 Gbps. This is theoret-
ical, because, although, one can go from 32 lambdas to 64 lambdas to 128 lambdas
in a Dense Wavelength Division Multiplexer product, this bandwidth is not general-
ly available to the typical user. An economically viable model needs to be devel-
oped by the carriers to dispense bandwidth. (This author did not conceive in the ear-
ly 1970s that bottled water would ever become the business that it did in the United

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND GRID COMPUTING 45

c02.qxd 8/24/2004 10:12 AM Page 45

TEAM LinG - Live, Informative, Non-cost and Genuine!

States, and that a liter of water would cost up to $2 retail. In order to maintain a sup-
ply, a business needs to be profitable.)

Computation

The concept of sharing distributed resources is not new. Since the late 1960s, much
work has been devoted to developing distributed systems, but with mixed success.
In 1965, MIT’s Fernando Corbató and the other designers of the Multics operating
system envisioned a computer facility operating “like a power company or water
company”; and in the 1968 article “The Computer as a Communications Device,” J.
C. R. Licklider and Robert W. Taylor foresaw grid-like scenarios [56, 58, 113].
Hence, the idea of harnessing unused machine cycles emerged in the late 1960s and
early 1970s, when computers were first linked by data communication networks.
ARPAnet supported early experiments with distributed computing.

In 1973, the Xerox Palo Alto Research Center developed a worm program that
roamed among about 100 Ethernet-connected computers, replicating itself in each
machine’s memory. Each worm used idle resources to perform a computation and
could reproduce and transmit clones to other nodes of the network. With the worms,
developers distributed graphic images and shared computations for rendering realis-
tic computer graphics [94].

Since the1990s, distributed computing has reached a new, global level, as briefly
described in the previous sections. The availability of powerful PCs and workstations
and high-speed networks (such as Gigabit Ethernet) as commodity components has
led to the emergence of clusters for high-performance computing. The availability of
such clusters within many organizations has fostered a growing interest in aggregat-
ing distributed resources to solve large-scale problems of multiinstitutional interest.
Computational grids and peer-to-peer computing are the results of these initiatives.

In 2002, the National Science Foundation installed hardware for the TeraGrid, a
transcontinental supercomputer system that is expected to do for computing power
what the Internet did for documents. To start with, clusters of high-end microcom-
puters were set up at four sites: the National Center for Supercomputing Applica-
tions at the University of Illinois at Urbana–Champaign; the U.S. Department of
Energy’s Argonne National Laboratory near Chicago; Caltech in Pasadena, CA;
and the San Diego Supercomputer Center at the University of California, San
Diego. These four clusters are to be networked together so tightly that they will be-
have as a single entity. This virtual computer will work through problems at up to
13.6 TFLOPS, eight times faster than the most powerful academic supercomputer
available at the time of this writing [97].

Today, a combination of technology trends, technical advances, and standardiza-
tion makes it feasible to start to realize the grid vision, for both commercial as well
as scientific applications. In scientific circles, researchers hope to put in place a new
international scientific infrastructure with tools that, in aggregate, can meet the
challenging demands of 21st-century science. Numerous government-funded R&D
projects are variously developing core technologies, deploying production grids,
and applying grid technologies to challenging applications [113].

46 GRID BENEFITS AND STATUS OF TECHNOLOGY

c02.qxd 8/24/2004 10:12 AM Page 46

TEAM LinG - Live, Informative, Non-cost and Genuine!

Grid Technology

The “modern” history of grid computing goes back to the 1996–1999 time period. In
this phase, one saw extensive application experimentation and the development of
some core grid protocols. Globus Toolkit 1.0 represented the “state of the art” in grid
computing at that time. Data grids appeared starting in 1999 with Globus Toolkit
2.0+. This phase afforded medium-scale data management and analysis. The next
phase came with the Open Grid Services Architecture, starting in 2001. This phase is
represented by the Globus Toolkit 3.0 product; it saw the integration with Web ser-
vices and resource virtualization (Web services support a standards-based approach
for accessing network applications.) This phase also brought forth a number of high-
er-level services. The problem with grids that had emerged in recent years related to
a lack of systemization; namely, lack of a common vocabulary, lack of common in-
terfaces or APIs, lack of common intercommunication protocols, and lack of a com-
mon infrastructure formulation. Newly emerging open grid services establish a com-
mon vocabulary and a systemization of concepts. At the same time it was realized
that there are natural similarities with Web services at the “lower layers,” and, hence,
standardization efforts sought to avoid reinvention at these layers. The latest phase
(from 2003 forward) is characterized by more extensive standardization, ubiquitous
computing (including wireless transport and sensors). This last phase is the one that
will define the true commercialization of grid computing. However, some conserva-
tive players do not expect full ubiquitous grid technology deployment on a broad
scale in corporate America until the decade of the 2010s. Figure 2.3 shows an evolu-
tion path for the technology.

2.3 IS GRID COMPUTING READY FOR PRIME TIME? 47

Figure 2.3 Evolution of grids over time.

Time

Performance
(and QoS)

Partner
Grids

Global
Grid

Enterprise
Cluster/Grid

Personal
Device

Local
Data
Grids

SMPs or
Super

Computers

Local
Cluster

Computing

EARLY SECOND THIRD
STAGE STAGE STAGE

1990s early 2000s mid 2000s late 2000s

c02.qxd 8/24/2004 10:12 AM Page 47

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 IS GRID COMPUTING READY FOR PRIME TIME?

In the previous sections, we highlighted the status of grid computing as a discipline.
This section looks at the readiness of the technology for mainstream corporate appli-
cations, by citing some examples of currently available products and/or initiatives.

Some market research firms indicate that there is substantial data pointing to ac-
celeration in the grid computing market, with commercialization heading toward an
inflection point [1]. The period 2005–2006 is seen by industry stakeholders as a
critical period of market development for grid computing technologies. Over this
period, the commercial viability of the technology is expected to mature and early
adopter customers are expected to give way to broader adaptation of grids for enter-
prise applications both at single-site and multisite installations. The nature of com-
petition is expected to mature as vendors integrate grid computing technologies into
existing offerings and strategies ranging from utility computing to Web services
[1]. In a 2003, according to a Gartner European survey, 50% of respondents were
aware of the IT utility model for outsourcing that promotes IT infrastructure ser-
vices from service providers as a commodity. Once market maturity is reached, the
IT utility model is likely to support organizations looking to respond with agility to
emerging market demands. The utility model has been in existence for quite a few
years now. The big companies have utilized this model in conjunction with the off-
shore service providers; this has resulted in documented reduced costs of operations
for these companies. In the meantime, though, customers remain unsure about is-
sues such as cost, security, and integration with existing IT systems [34].

The industry has generally expressed views such as these: “With Grid Comput-
ing, businesses can optimize computing and data resources, pool them for large ca-
pacity workloads, share them across networks, and enable collaboration” [43]. And,
“It’s called grid, utility, or on-demand, but it’s all about the same thing: Creating
computing infrastructures that can dynamically change tasks as processing needs
ebb and flow. It’s a grand vision, but getting there won’t be easy” [100]. The oppor-
tunity exists to virtualizing one’s computing environment, automate it, and inte-
grate the business processes and information, so that one will have an on-demand
operating environment that can transform one’s business [90]. However, the obser-
vation at the conclusion of the previous section should also be kept in mind as a ref-
erence point.

As a counterbalance to the (hopefully not Pollyannaish) arguments made by the
proponents, the following observation is worth noting, particularly the concluding
punchline:

IBM . . . is taking an interesting tack in the battle to provide customers the tools to
move to more nimble business practices. . . . IBM’s holistic approach is refreshing. It
gives customers a number of options in terms of where to start in creating what it calls
an “on demand” environment. While it does not dictate specific technology, it focuses
on positioning technology as the tool and business process as the enabler. . . . Howev-
er, even more important is the need for technology (the tool) to not be overly complex,
proprietary, or costly. Put simply, it cannot be in the way. Therefore, the heteroge-
neous platforms, multiple form factors, diverse applications, and different manage-
ment tools already installed in customer sites cannot be barriers. They must be brought

48 GRID BENEFITS AND STATUS OF TECHNOLOGY

c02.qxd 8/24/2004 10:12 AM Page 48

TEAM LinG - Live, Informative, Non-cost and Genuine!

together efficiently. Customers are clear on a few points. They need to become more
efficient, and they need to maintain innovation. . . . Although the messaging around
initiatives is improving, the problems are as complex and varied as ever. Looking for-
ward, this will be the yardstick for all of these sorts of utility-like initiatives: How cost
effectively and efficiently were my business problems addressed? Everything else is
just technology. [87].

Leading customers in the financial services, banking, telecommunications and
education industries are deploying grid computing to address their mission-critical
business challenges [43]. Table 2.5 identifies recent business applications of grid
technology [111]. Figure 2.4, synthesized from a number of sources, including but
limited to [111], depicts possible penetration trajectories.

Corporate IT planners can build an enterprise grid infrastructure at this time.
Planners can use both open-source and vendors’ proprietary tools and products.
Over time, as the grid standards solidify, one can expect vendors to enable their
tools to comply with the new standards, making it easier for the planner to combine
components that will work together [90]. The first step in creating a grid is to trans-
form individual computers, network elements, and storage systems into an aggre-
gated and virtual pool of resources that can be allocated and monitored automatical-
ly, and whose usage can be metered accordingly. Provisioning of defined business
services running on the grid would then take place according to specified goals and
priorities. Business requirements are further used to develop and automate policies
and service-level objectives that will manage the applications and the resources
they need across the network [130]. Grid tools now available can be classified into
these general categories [90]:

� Infrastructure. Infrastructure components include file systems, schedulers, re-
source managers, messaging systems, security applications, certificate au-
thorities, and file transfer mechanisms (e.g., GridFTP) (see Chapter 6).

� Middleware. Software plug-ins that facilitate the use of grid technology. For
example, the open source Globus Toolkit 3.0, a mature set of tools useful for
building a grid, is the first full-scale implementation of the OGSI standard. It
has the basic facilities for implementing a simple yet world-spanning, grid
[147]. The tool’s strength is a good security model with a mechanism for hier-
archically collecting data about the grid. The toolkit was developed by the
Globus Project, a research and development project focused on enabling the
application of grid concepts to scientific and engineering computing. The
toolkit is a set of services and software libraries to support grids and grid ap-
plications. The Globus Toolkit 3.0 includes software for security, information
infrastructure, resource management, data management, communication,
fault detection, and portability [90].

� Directory services. Applications and systems on a grid system must be capa-
ble of discovering what services are available to them; specifically, in order to
share and collaborate, grid systems must be able to define (and monitor) the
grid’s topology. Grid director`y services implementations are generally based
on the Lightweight Directory Access Protocol (LDAP) and Domain Name
Server (DNS).

2.3 IS GRID COMPUTING READY FOR PRIME TIME? 49

c02.qxd 8/24/2004 10:12 AM Page 49

TEAM LinG - Live, Informative, Non-cost and Genuine!

Table 2.5 Examples of recent applications of grid technology

Type of Business Broadband Networking
Grid Purpose Impacts Investment Impacts Examples

Data Grid “Transport link” Significant savings Large investment � Eli Lilly—Data Grid
—connects databases in finding in broadband links between Sphinx Labs in
at different locations information. to connect data NC and other R&D labs.
in a single company. Efficiency gains due centers that are in � AstraZeneca—connects
Can be built behind to shortening the different locations. R&D centers in Sweden,
a Web services time R&D or design UK and US.
portal (access point). staff need to find � Bank of America—built

information. links between data
storage centers to support
its free checking over the
Internet.

Cluster “Processing power” Big saving in No initial impact � Pratt & Whitney saved
Computing/ —harnesses power processing time. on broadband until 50% in engineering time
Computational of computer to Adds to efficiency cluster computing on engine projects
Grid achieve high by providing for evolves to an (Platform Computing)

computing speed. greater output. enterprise grid. � Novartis speeded drug
Savings on R&D lead identification by a
and design costs. factor of 10.

� Oxford University—
anthrax screen of billions
of possible drug
compounds in 24 days.

Enterprise “Processing power + Efficiency due to Investment in � AstraZeneca—Sweden,
Grid transport” within a processing power broadband links— UK and US.

single firm—links plus access to data. can require very � GM, Daimler Chrysler,
R&D centers at Savings on R&D high speeds due to Ford—links to
different time and time to large amount of engineering groups for
geographical market. Upside in data transmitted. design, mostly in Europe.
locations. terms of greater

output/sales.

Partner Grid “Processing power Savings in design Significant � GM, Daimler Chrysler,
+ transport” for time and R&D time, investment in Ford—links to
more than one firm. plus time to market. secure, high- engineering groups at

Permits more performance, partner firms for design,
efficient collabora- broadband links mostly in Europe.
tion between between two or
partners, often in more firms.
supply chain
relationship.

Web Services Provide secure Big gains in Large amount of � Bank of America’s
Internet access to productivity. Big spending on banking over the Internet
new services for savings in the cost broadband to link that relies on Web
consumers and of offering services data centers. services has resulted in
businesses. Seem to and time to bring Significant linking a significant
develop closely with new services to spending on number of data centers.
cluster computing market. Requires software and
and data grids. building a “data integration

grid-like” structure services.
to provide rapid
updating of
information.

Source: Grid Computing—Projected Impact on North Carolina’s Economy and Broadband Use Through 2010
[111].

c02.qxd 8/24/2004 10:12 AM Page 50

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Schedulers and load balancers. One of the main benefits of a grid is maximiz-
ing efficiency. Schedulers and load balancers provide this function along with
other functions. Schedulers ensure that jobs are completed in some desired or-
der (priority, deadline, urgency, for instance) and load balancers distribute
tasks and data management across systems to decrease the chance of bottle-
necks.

� Developer tools. Tools for developers of grid-enabled applications focus on
different aspects (file transfer, communications, environment control), and
range from utilities to application programming interfaces (APIs.)

� Security. Security covers authentication and authorization, intended to control
who/what can access a grid’s resources. Additionally, security includes mes-
sage integrity and message confidentiality; these capabilities are crucial to in-
dustry segments such as financial and healthcare.

2.4 EARLY SUPPLIERS AND VENDORS

The following discussion is intended to illustrate the state of affairs at press time;
this discussion does not sanction one vendor and/or approach. Table 2.6 provides a
synopsis of major players and products/strategies. (Although this information is a

2.4 EARLY SUPPLIERS AND VENDORS 51

Figure 2.4 Possible penetration of grids in the financial services industry.

Thick line = Aggressive estimate
Thin line = Conservative estimate

2004 2007 2010

P
er

ce
nt

 P
en

et
ra

tio
n

in
Fi

na
nc

ia
l S

er
vi

ce
s

In
d

us
tr

y

100%

75%

50%

25%

Web Services

Partner Grid

Data Grid

Grid
Enterprise

c02.qxd 8/24/2004 10:12 AM Page 51

TEAM LinG - Live, Informative, Non-cost and Genuine!

press-time snapshot, one can safely assume that the companies listed will continue
to pursue grid computing initiatives in the future; as time goes by, an augmented set
of capabilities and products is expected to emerge.) Figure 2.5 depicts a published
taxonomy of grid computing that can be used to organize some of the commercial
grid applications that are emerging ([171, 172]).

IBM, a major force in the market, announced a “go-to-market” strategy built
around “focus areas” that address the needs of the aerospace, automotive, financial
markets, government, life science, agricultural chemical, electronics, higher educa-
tion, and petroleum industries [43]. These grid offerings are designed to operate in a
heterogeneous environment and will incorporate OGSA. IBM Global Services
plans to support all elements of a grid implementation with both IBM and non-IBM
hardware and software.

By press time, Oracle had introduced grid-enabled enterprise products such as
the Oracle Database 10g and the Oracle Application Server 10g [48]. Oracle Data-
base 10g includes management and clustering capabilities that enable the data base
to be used in an enterprise grid computing environment [8, 48]. According to the
vendor, the Oracle Application Server 10g provides a complete middleware layer

52 GRID BENEFITS AND STATUS OF TECHNOLOGY

Figure 2.5 The Yankee Group’s utility computing taxonomy. Source: The Yankee Group,
2004 [171, 172].

Infrastructure Layer

Network, servers, storage, clients,
peripherals, environment, content

Virtualization Layer

Pooling, sharing, sourcing

Business Process Layer

Applications Layer

Management Layer

Vertical processes: sourcing, internal value-add, customer
Horizontal processes: accounting, HR, e-mail

Vertical applications: SCM, ERP, CRM
Horizontal applications: accounting, HR, e-mail

Policy-based automation, service management, Web services,
provisioning, security services, metering/billing services, grid services

P
ric

e

A
p

p
lic

at
io

n
of

 p
ric

in
g

sh
em

a
ac

ro
ss

 t
he

 e
nt

er
p

is
e

en
vi

ro
nm

en
t

to
 m

ax
im

iz
e

m
ut

ua
l v

al
ue

c02.qxd 8/24/2004 10:12 AM Page 52

TEAM LinG - Live, Informative, Non-cost and Genuine!

“that transforms a middle-tier infrastructure into a low-cost, efficient, easy-to-man-
age computing grid.” Incorporated into the application server are several new ser-
vices that allow an administrator to “virtualize” all middle-tier services and re-
sources, managing them from a single console as if they were one.

Sun Microsystems offers Grid Engine software. Described as a distributed re-
source management tool, Grid Engine allows engineers to pool the computer cycles
on up to 100 workstations at a time (some, however, view this more like a cluster
and less like a grid [103]). Hewlett-Packard reportedly plans on including grid-en-
abled software such as the Globus Toolkit and new SGA standard version 3.0 into
its servers and storage devices, of course, but also consumer products such as hand-
helds, PCs, and printers [141]. In Chapter 1, we also (briefly) discussed HP’s UDC
approach to virtualization.

A more inclusive press-time list of grid products include (but are not limited to)
those shown in Table 2.6.

2.5 POSSIBLE ECONOMIC VALUE

Recently, a very valuable study was undertaken by Cohen and Feser to evaluate the
possible macroeconomic value of the introduction of grid computing [111]. We
highlight a few results here to reinforce the opportunities that may exist and make a
rough extrapolation to the national macroeconomic potential. The study is focused
on North Carolina, but the results are applicable nationwide.

2.5.1 Possible Economic Value: One State’s Positioning

The study [111] estimates that, given adequate access to broadband infrastructure
and sufficient IT workforce, the deployment of high-performance grid computing
and Web services applications would contribute the following gains to North Car-
olina’s economy over 2010 baseline growth forecasts:3

� An additional $10.1 billion in output

� An additional 1.5% in aggregate labor productivity

� An additional $7.2 billion in personal income

� An additional 24,000 jobs, the net result of 55,700 new jobs created from in-
creased industrial growth and 31,700 jobs lost due to the adoption of new grid
and Web services technologies and downsizing

� An additional $1.2 billion in expenditures for communications services, with
80 to 90% of the new spending devoted to the purchase of broadband access

Several key structural changes in North Carolina’s economy can be expected as
a result of the adoption of cluster and grid computing and Web services technolo-

2.5 POSSIBLE ECONOMIC VALUE 53

3The remainder of this section is quoted directly from [111].

c02.qxd 8/24/2004 10:12 AM Page 53

TEAM LinG - Live, Informative, Non-cost and Genuine!

54 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.6 A press-time snapshot of products and activities of key suppliers

HP Utility Data Center (UDC). Focuses on resource management across its server.

IBM On Demand. By press time, IBM and its partners were offering 19 grid solutions
in nine vertical industries (automotive, financial markets, government, and others).
The strategy is to grid-enable all of its products. The company states that it will
continue to incorporate virtualization technologies into its server software products
and plan to incorporate autonomic capabilities into DB2 and associated content-
management products. They state they are emphasizing an OGSA compliance ap-
proach based on partnering via On Demand Innovation Centers (centers allow
users and developers to test their products on IBM’s existing On Demand prod-
ucts). The company states that it will continue to incorporate virtualization tech-
nologies into its server software products and plans to incorporate autonomic capa-
bilities into DB2 and associated content-management products [43].

Microsoft Virtual Server is a virtual machine solution for application migration and server
consolidation. With Virtual Server, a Windows Server 2003-based server can run
multiple operating systems concurrently. The goal is to make it easier to migrate
legacy applications. Virtual Server aims at reducing capital expenditures through
the use of fewer servers. Virtual Server does not require custom drivers and it does
not use any proprietary protocols.

Oracle 10g family of “grid-aware” products focuses on databases. Architects see this as
Oracle’s own brand of grid computing: a database system that comprises multiple
nodes and lets IT planners shift database resources between them. Oracle 10g grid-
computing functionality is essentially the latest version of the company’s database
clustering technology [170].

Platform Products provide support for Linux on the zSeries mainframe. These include
Computing Platform LSF, which is designed to provide on-demand access to an organization’s

global computing resources and balances workloads across the entire organization;
Platform JobScheduler, a software solution that accelerates batch processing by in-
tegrating, automating, and grid-enabling silos of applications, jobs, and process
flows across distributed computing clusters; and Platform MultiCluster, which al-
lows enterprises to create a single, cohesive computing environment with easy-to-
manage resource-sharing policies across geographies.

Sun N1 Data-center Architecture. Approach based on clusters (Sun Grid Engine).
Microsystems N1 is Sun Microsystems’ architecture, products, and services for supporting net-

work computing. The marketing angle of the company is that N1 allows “manag-
ing n computers as 1.” The N1 grid system provides the services for managing het-
erogeneous environments and eliminating the underlying IT complexity through
technical means. Ultimately, N1 Grid will encompass multiple organizations [99].
At press time, the company was reportedly shifting focus from technical or high-
performance computing markets to the commercial markets; the company was
working on technology that better virtualizes desktops by pushing computing pow-
er and management capabilities out of the data center and down to blade servers
that can better mange desktop computing cycles [166].

EMC’s/ VMWare. Virtualization technology that aims at lowering the cost of Intel
VMWare server farms. Converts the workloads of all of a specified set of servers to run as a

single hardware pool without dropping any application

c02.qxd 8/24/2004 10:12 AM Page 54

TEAM LinG - Live, Informative, Non-cost and Genuine!

gies. First, the impact of the adoption of cluster and grid computing and Web ser-
vices will ripple through multiple sectors, contributing to shifts in the state’s indus-
try mix. Significant growth generated by investment in clusters, grids and Web ser-
vices by five early adopter industries will contribute to gains in a number of other
sectors, with the largest impacts accruing to industries that directly support the de-
ployment of computer applications. Spending will increase for software by $1.13
billion, for computers by $681 million, for professional services by $575 million,
and for communications equipment by $432 million over baseline forecasts. That
spending, in turn, will lead to the expansion of other industries, such as office
equipment, which would post revenues 19% higher than a baseline forecast pre-
dicts. At the same time, some industries will be negatively impacted. The estimated
output impact of $10.1 billion by 2010 represents $10.9 billion in gains and $800
million in losses across sectors.

Second, increased demand for grids and Web services will be a catalyst for inno-
vation among telecommunications service providers. Firms using grids and Web
services will call on telecommunications service providers to develop new services
and capabilities, including higher levels of performance and security, and possibly
advanced services for customer billing and electronic commerce support. Appropri-
ate innovative responses by service providers will give both the firms they service
and the state as a whole a competitive advantage in gaining new business and in at-
tracting the sorts of firms that require those new services and capabilities. That will
strengthen North Carolina’s position as an early leader in development of leading
edge information and communication technologies.

Third, increases in labor productivity derived from the deployment of grid com-
puting and Web services, particularly in early adopter sectors, will reduce firms’
business costs and improve efficiency, freeing up capital for spending on new plant
and equipment, employee training, and research and development. That will im-
prove the long-run competitiveness of North Carolina industry, in addition to set-
ting off a dynamic wave of expansion and business growth.

Fourth, prices for goods and services are likely to rise much more slowly in an
economy where many firms are using grid computing and Web services to improve
productivity, making some industries more competitive than might otherwise be ex-
pected. Price impacts could be particularly important for the apparel, textiles, and
furniture sectors. Industry executives in those industries believe that nearly all firms
will have some form of electronic transactions system within four years, involving
order entry via an electronic catalog that minimizes color, fabric, and size selection
errors, reducing production and retailing costs by 11 and 15%, respectively, by
2005. The cost savings will increase as firms link more of their operations to net-
works that permit the tracking of every phase in the process of getting a product to
the consumer. Although few industries have such networks in place today, some
firms in the U.S. and overseas are beginning to build the outline of such systems.
One European retailer has used an electronic network to cut the time from design to
delivery to 15 days.

Fifth, business practices will change significantly in certain industries, particu-
larly in early adopter sectors. When the new technologies are initially adopted, they

2.5 POSSIBLE ECONOMIC VALUE 55

c02.qxd 8/24/2004 10:12 AM Page 55

TEAM LinG - Live, Informative, Non-cost and Genuine!

are largely time and resource saving. Nevertheless, as firms begin to use them, they
begin to consider how the capabilities offered by highly innovative computer and
software technologies might provide other benefits. A number of firms have begun
to transform business processes in order to develop products more efficiently. For
instance, auto assemblers and drug companies have begun to test new products with
more sophisticated modeling techniques and very detailed data bases. Some firms
are looking at ways they can use the huge increases in computing power that cluster
and grid computing and Web services provide to offer far more effective access to
corporate data bases. Thus, in drug discovery, pharmaceutical firms are becoming
hypercomputerized, using computers and programmed chips to analyze how specif-
ic proteins will react with the human body, thus minimizing the need for wet labs.
Further down the road, firms using grids expect to begin outsourcing more work to
their suppliers, binding those partners even more intimately to their own operations.

Sixth, rural areas will be even more challenged by inadequate access to broad-
band services. Beyond the need to enhance competitiveness, the very survival of
many textile, apparel, and furniture firms is threatened by their location in rural
areas of North Carolina where broadband services may be inadequate. In addition,
many other rural firms act as suppliers to the large retailers and manufacturers (e.g.,
Wal-Mart, The Gap, and Ford Motor Company) that are moving to implement grid
computing and Web services. Some rural businesses are dealers and distributors for
those companies. As the larger firms adopt more sophisticated computer-based sup-
ply chains, large retailers and manufacturers are demanding that all businesses they
interact with upgrade their Internet access speed and acquire the skills to support
new technologies. That will be particularly challenging for many rural companies.

2.5.2 Possible Economic Value: Extrapolation

In Table 2.7, based on modeling, shows that grid computing could add around $382
billion of economic output to the U.S. economy by 2010 and create about 900,000
net new jobs. State economic data based on Bureau of Economic Analysis data
were used to make a rough model by normalizing all numbers to the Cohen/Feser
study for North Carolina [111]. Straight linearity with regard to IT sizing and ensu-
ing grid services opportunities was assumed. Although this is definitely a crude,
first pass at calculating potential national-level numbers, it is first start. Generally,
worldwide numbers for IT and telecom are around twice the U.S. numbers (includ-
ing the U.S.). In Table 2.8, we perform the extrapolation based not on ratios of eco-
nomic output, but by ratio of high-tech jobs. The results are effectively identical.

2.6 CHALLENGES

Despite the potential advantages of grid computing, it should be noted that the uti-
lization of this technology in the general corporate environment is just nascent. To
begin with, like other technologies, a certain amount of hype is inevitable (for ex-
ample, proponents talk about computer grids, data grids, science grids, access grids,

56 GRID BENEFITS AND STATUS OF TECHNOLOGY

c02.qxd 8/24/2004 10:12 AM Page 56

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.6 CHALLENGES 57

Table 2.7 First-pass estimate of economic value of grid computing*

2,001 Additional
Economic Additional Additional telecom
data (latest output ($B) Jobs expenditures
available) Percentage in 2010 in 2010 ($B) in 2010

New England 549,472 5.89% $22.52 53,508 $2.68
Connecticut 152,985 1.64% $6.27 14,898 $0.74
Maine 34,020 0.36% $1.39 3,313 $0.17
Massachusetts 265,722 2.85% $10.89 25,876 $1.29
New Hampshire 45,270 0.48% $1.86 4,408 $0.22
Rhode Island 33,451 0.36% $1.37 3,257 $0.16
Vermont 18,048 0.19% $0.74 1,758 $0.09

Mideast 1,741,057 18.65% $71.35 169,546 $8.48
Delaware 35,745 0.38% $1.46 3,481 $0.17
District of Columbia 56,077 0.60% $2.30 5,461 $0.27
Maryland 175,256 1.88% $7.18 17,067 $0.85
New Jersey 332,897 3.57% $13.64 32,418 $1.62
New York 766,526 8.21% $31.41 74,645 $3.73
Pennsylvania 374,500 4.01% $15.35 36,469 $1.82

Great Lakes 1,434,052 15.36% $58.77 139,649 $6.98
Illinois 441,797 4.73% $18.11 43,023 $2.15
Indiana 178,184 1.91% $7.30 17,352 $0.87
Michigan 297,475 3.19% $12.19 28,968 $1.45
Ohio 349,331 3.74% $14.32 34,018 $1.70
Wisconsin 167,299 1.79% $6.86 16,292 $0.81

Plains 604,905 6.48% $24.79 58,906 $2.95
Iowa 86,968 0.93% $3.56 8,469 $0.42
Kansas 80,680 0.86% $3.31 7,857 $0.39
Minnesota 175,371 1.88% $7.19 17,078 $0.85
Missouri 167,370 1.79% $6.86 16,299 $0.81
Nebraska 53,563 0.57% $2.20 5,216 $0.26
North Dakota 17,757 0.19% $0.73 1,729 $0.09
South Dakota 23,165 0.25% $0.95 2,256 $0.11

Southeast 1,994,577 21.37% $81.74 194,234 $9.71
Alabama 112,026 1.20% $4.59 10,909 $0.55
Arkansas 63,701 0.68% $2.61 6,203 $0.31
Florida 446,482 4.78% $18.30 43,479 $2.17
Georgia 273,876 2.93% $11.22 26,670 $1.33
Kentucky 110,074 1.18% $4.51 10,719 $0.54
Louisiana 125,295 1.34% $5.13 12,201 $0.61
Mississippi 61,527 0.66% $2.52 5,992 $0.30
North Carolina 246,291 2.64% $10.09 23,984 $1.20
South Carolina 106,485 1.14% $4.36 10,370 $0.52
Tennessee 168,412 1.80% $6.90 16,400 $0.82
Virginia 241,539 2.59% $9.90 23,521 $1.18
West Virginia 39,012 0.42% $1.60 3,799 $0.19

(continued)

c02.qxd 8/24/2004 10:12 AM Page 57

TEAM LinG - Live, Informative, Non-cost and Genuine!

knowledge grids, bio grids, sensor grids, cluster grids, campus grids, tera grids, and
commodity grids [103].) A degree of healthy skepticism is warranted. Although
vendors make all sorts of claims, many of these claims are just marketing angles.
Just deploying a scheduler LAN does not create a “cluster grid,” anymore that a
workstation with a processor, memory, disk, and network card, is a grid.

At the technical level, although many firms have a keen interest in “virtualiza-
tion,” there are obstacles to full realization of grid computing benefits at this time.
Some of these include [44, 130]:

� Applications requiring computing power that rises to the level supported by
grid computing generally do not exist in medium-size companies.

� Cost and time needed to rewrite and test applications.

� Enabling resource sharing across distinct institutions. One wants to facilitate
coordinated use of diverse resources, including infrastructure resources (cer-
tificate authorities, information services). These are expensive to run. Ad-

58 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.7 Continued

2,001 Additional
Economic Additional Additional telecom
data (latest output ($B) Jobs expenditures
available) Percentage in 2010 in 2010 ($B) in 2010

Southwest 992,959 10.64% $40.69 96,695 $4.83
Arizona 153,684 1.65% $6.30 14,966 $0.75
New Mexico 54,930 0.59% $2.25 5,349 $0.27
Oklahoma 85,948 0.92% $3.52 8,370 $0.42
Texas 698,547 7.48% $28.63 68,025 $3.40

Rocky Mountain 299,089 3.20% $12.26 29,126 $1.46
Colorado 159,308 1.71% $6.53 15,514 $0.78
Idaho 36,832 0.39% $1.51 3,587 $0.18
Montana 20,708 0.22% $0.85 2,017 $0.10
Utah 63,933 0.68% $2.62 6,226 $0.31
Wyoming 18,254 0.20% $0.75 1,778 $0.09

Far West 1,719,594 18.42% $70.47 167,456 $8.37
Alaska 24,490 0.26% $1.00 2,385 $0.12
California 1,260,041 13.50% $51.64 122,704 $6.14
Hawaii 38,839 0.42% $1.59 3,782 $0.19
Nevada 69,538 0.74% $2.85 6,772 $0.34
Oregon 124,847 1.34% $5.12 12,158 $0.61
Washington 202,470 2.17% $8.30 19,717 $0.99

Total 9,335,705 100% $382.59 909,121 $45.46

Estimated GDP 2010 at 3.33% CAGR: $12,536,751

*State raw economic data based on Bureau of Economic Analysis (http://www.bea.doc.gov/bea/news-
rel/gdp303p.pdf). All numbers are normalized to the Cohen/Feser study for North Carolina [111]. As-
sumption made of straight linearity with regards to IT sizing and ensuing grid services opportunities.

c02.qxd 8/24/2004 10:12 AM Page 58

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.6 CHALLENGES 59

Table 2.8 U.S. Department of Labor, Bureau of Labor Statistics: High Tech Jobs (code
15-0000 Computer and Mathematical Science Occupations) Occupational Employment and
Wages, 2002

State Occupation code Total employees Percentage

Alabama 15-0000 29,120
Alaska 15-0000 3,210
Arizona 15-0000 45,630
Arkansas 15-0000 13,530
California 15-0000 366,250
Colorado 15-0000 75,940
Connecticut 15-0000 42,030
Delaware 15-0000 10,010
District of Columbia 15-0000 26,130
Florida 15-0000 127,820
Georgia 15-0000 92,630
Guam 15-0000 380
Hawaii 15-0000 6,610
Idaho 15-0000 9,650
Illinois 15-0000 122,930
Indiana 15-0000 37,810
Iowa 15-0000 20,790
Kansas 15-0000 27,180
Kentucky 15-0000 23,770
Louisiana 15-0000 16,480
Maine 15-0000 7,420
Maryland 15-0000 90,000
Massachusetts 15-0000 103,340
Michigan 15-0000 77,560
Minnesota 15-0000 69,140
Mississippi 15-0000 8,450
Missouri 15-0000 54,050
Montana 15-0000 4,700
Nebraska 15-0000 20,280
Nevada 15-0000 10,150
New Hampshire 15-0000 11,800
New Jersey 15-0000 115,990
New Mexico 15-0000 12,290
New York 15-0000 169,750
North Carolina 15-0000 75,140 2.70%
North Dakota 15-0000 4,030
Ohio 15-0000 94,370
Oklahoma 15-0000 22,110
Oregon 15-0000 32,630
Pennsylvania 15-0000 103,960
Puerto Rico 15-0000 6,950
Rhode Island 15-0000 9,300
South Carolina 15-0000 19,970

(continued)

c02.qxd 8/24/2004 10:12 AM Page 59

TEAM LinG - Live, Informative, Non-cost and Genuine!

dressing security and policy concerns of resource owners and users. Resource
discovery, access, reservation, allocation; authentication, authorization, poli-
cy; communication; fault detection and notification; and so on. Addressing
security and policy concerns of resource owners and users.

� Existing systems are performing adequately and no business case (positive net
present value) has been developed (which itself could take time and effort).

� Grid operations management challenges. Users, resources, and owners are ge-
ographically distributed. Resources, users, and applications are heteroge-
neous. Resource availability and capabilities vary with time. Policies and
strategies are heterogeneous and decentralized. Quality of service (service-
level agreements) are heterogeneous. Costs and prices vary based on re-
sources, users, time, and demand [105].

� Grid systems have input/output bandwidth to storage devices dependencies.

� Grid systems have network bandwidth dependencies.

� Grid systems have network latency dependencies.

� Grid systems may suffer from synchronization protocol inefficiencies.

60 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.8 Continued

State Occupation code Total employees Percentage

South Dakota 15-0000 5,110
Tennessee 15-0000 36,000
Texas 15-0000 209,500
Utah 15-0000 25,210
Vermont 15-0000 5,220
Virgin Islands 15-0000 230
Virginia 15-0000 139,860
Washington 15-0000 83,870
West Virginia 15-0000 7,280
Wisconsin 15-0000 44,760
Wyoming 15-0000 1,860
Total 2,780,180

Note: This major group comprises the following occupations: Computer and Information Scientists, Re-
search; Computer Programmers; Computer Software Engineers, Applications; Computer Software Engi-
neers, Systems Software; Computer Support Specialists; Computer Systems Analysts; Database Admin-
istrators; Network and Computer Systems Administrators; Network Systems and Data Communications
Analysts; Actuaries; Mathematicians; Operations Research Analysts; Statisticians; Mathematical Tech-
nicians; and residual, “All Other,” occupations in this major group.

Key observation. Note that the percentage of high-tech jobs in North Carolina is 2.70% on a national
basis. Interestingly, this is practically the same ratio (likely, by pure chance) of the total economic output
of North Carolina in reference to national GDP (see Table 2.7). This means that an extrapolation based
on state economic output to country economic output or based on in-state high-tech jobs to country high-
tech jobs leads to the same outcome in terms of the total extrapolated economic value. However, the
state-by-state values could be different than reported in the previous table, although we do not undertake
that state-by-state extrapolation in this table (which could easily be done).

c02.qxd 8/24/2004 10:12 AM Page 60

TEAM LinG - Live, Informative, Non-cost and Genuine!

� It is unlikely that any commercially sustainable grid infrastructure will be
provided by any nonresearch (nongovernment funded) organization without
financial compensation for the use of resources by external users. For grid
services to be provided on demand (i.e., to deliver the utility infrastructure
that is the ultimate goal of grid computing) “donor” organizations will want
to be paid for providing the resources.

� Lack of desire to bring in outside help as code is proprietary (especially true
at hedge funds and buy-side firms).

� Lack of in-house technical expertise, especially at smaller to medium-size
companies.

� Many firms find that they need to optimize the performance of applications
so that they can be properly allocated to jobs running on different machines.
This requires a different approach to programming and, therefore, it is not
necessarily true that no software changes will be required in order to lever-
age grid computing, and the existing setup and investment cannot be main-
tained.

� National security. Perhaps number crunching is fine, but to give away sensi-
tive database information (data grids) to a third-world country could be prob-
lematic. A local utility is fine, just like with electric power utilities, but one
would not want their electric power to be generated by a third-world country.
Some countries (e.g., European countries) have strict privacy laws about
transborder data flow.

� Need to find ways to operate efficiently when dealing with large amounts of
data and computation. Need for shared infrastructure services to avoid repeat-
ed development and installation (e.g., one port/service/protocol for remote ac-
cess to computing, not one per tool/application).

� The so-called programming problem: how does the planner develop robust,
secure, long-lived, well-performing applications for dynamic, heterogeneous
grids?

� There are a number of new approaches to problem solving in addition to grid
computing (in competition with), including cluster computing (especially for
supercomputer applications), distributed computing, peer-to-peer, data grids,
and collaboration (scavenging) grids.

� There are challenges in structuring and writing programs: parallelizing of ap-
plications code in an effective manner can be difficult, even though it is ad-
vantageous (for certain type of problems) to do so if/when possible.

� There is a need for interoperability when different groups want to share re-
sources (diverse components, policies, mechanisms; e.g., standard notions of
identity, means of communication, resource descriptions).

� There is a need to facilitate the development of sophisticated applications, in-
cluding code sharing. To address this programming problem, one needs stable
programming environments (such as APIs, SDKs).

� Use of third-party applications makes parallelizing code difficult.

2.6 CHALLENGES 61

c02.qxd 8/24/2004 10:12 AM Page 61

TEAM LinG - Live, Informative, Non-cost and Genuine!

In particular, challenges often exist to perfect scalability. In a perfectly scalable
environment, if a job running on a 1 GFLOPS machine required 10 seconds to com-
plete satisfactorily, then it would need 1 second if it ran in a parallelized version on
ten 1 GFLOPS machines (and/or 1 second if it ran on one 10 GFLOPS machine).
One challenge relates to the algorithms used for splitting the application to run
among many processors: if the application processes can only be split into a limited
number of independently running parts, then this predicament forms a scalability
barrier. Another challenge arises if the resulting microjobs are not completely inde-
pendent (for example, if all of the microjobs need to read and write from one com-
mon file or database, the access limits of that file or database will become the limit-
ing factor in the application’s scalability. Other types of interjob contention in a
parallel grid application include message communications latencies among the jobs,
network communication capacities, synchronization protocols, input–output band-
width to devices and storage devices, and latencies interfering with real-time re-
quirements) [47]. Not all applications can be made to run in parallel on a grid and
achieve scalability and there are no all-encompassing utilities for transforming
generic applications to a morphed version that can exploit the parallel capabilities
of a grid. A limited number of tools exist that skilled designers can use to write a
parallel grid application but tools for automatic parallelization of generic applica-
tions are not yet available.

Another challenge is that up to now grid computing has been mostly the purview
of a handful of researchers at mathematics and computer science departments, na-
tional laboratories, informatics institutes, and government-funded research. It turns
out, as we have indicated, that this technology can be of value to Fortune 500 com-
panies looking to reduce their run-the-engine costs. One of the challenges of grid
computing (which this book aims at addressing) is to graduate the technology be-
yond the purely academic orbit it has preponderantly held in the recent past and
near present.

62 GRID BENEFITS AND STATUS OF TECHNOLOGY

c02.qxd 8/24/2004 10:12 AM Page 62

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 63
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 3

Components of Grid Computing
Systems and Architectures

Chapters 1 and 2 provided an overview of a number of areas that relate to grid com-
puting. This chapter continues the basic discussion that was started in these chap-
ters. We revisit some of the key grid technology issues and then we drill down on
the major architectural components of a grid. It should be noted that there is no uni-
versal consensus, as of yet, on what the canonical components of a grid should be
(given that there are several types of grids from a functional perspective). However,
there is general agreement of what some of the high-level fundamental building
blocks are. These fundamental building blocks are discussed in this chapter. The
chapter provides three views of the components: a functional view, a physical view,
and a service view. A planner wishing to use grid principles and wishing to deploy
a grid mechanism in his/her Fortune 500 company, will have to deploy and support
a number of these components, perhaps all, depending on the application and situa-
tion. As standards solidify, a more canonical view of the constituent elements will
emerge.

3.1 OVERVIEW

In Chapter 1, it was noted that grid computing embodies a combination of a decen-
tralized architecture for resource management, and a layered hierarchical architec-
ture for implementation of various constituent services [101]. Sharing issues, as
they apply to distributed processing, are not adequately addressed by existing tech-
nologies because there are complicated user requirements such as “run program X
at site Y subject to community policy P, providing access to data at Z according to
policy Q.” Many “peta-scale” problems or science problems have high performance
requirements with unique demands for advanced and high-performance systems.
This drives towards the development of grid technology [45]. A grid goes beyond
client–server linkage in that it provides distributed data analysis, computation, and
collaboration.

A grid allows flexible, secure, coordinated resource sharing among dynamic col-
lections of individuals, institutions, and resources. A grid enables communities
(“virtual organizations,” which are community overlays on classic organization

c03.qxd 8/24/2004 10:14 AM Page 63

TEAM LinG - Live, Informative, Non-cost and Genuine!

structures) to share geographically distributed resources as they pursue common
goals, postulating the absence of a central location, and/or central control, and/or
omniscience, and/or existing trust relationships [103]. Resource sharing in a grid
context applies to networks, computers, storage, and sensors. Sharing, however, is
always conditional; conditionality issues relate to trust, policy, negotiation, and
payments (particularly, unit cost payments). Grids support coordinated problem
solving. Grids support dynamic, multiinstitutional virtual organizations; these com-
munities can be large or small, static or dynamic. The grid can be defined at three
levels [119]: enterprise (enterprise grid), partner (partner grid), and service (ser-
vice/utility grid).

Table 3.1 encapsulates the definition of a grid [103]. The three primary types of
grids that were introduced in Chapter 1 are summarized in Table 3.2 [125]; it should
be noted, however, that there are no restrictive boundaries between these grid types
since grids may often be a combination of these basic types. According to Phillip
Gill, vendors position grid computing as follows:

A typical middle tier in today’s enterprise is a jumble of expensive hardware and de-
vices running Java 2 Platform, Enterprise Edition (J2EE) application servers, HTTP
servers, Web caches, portals, and so on. These resources are usually configured for
maximum performance but rarely used to maximum efficiency; they often come from
different vendors and with different operating systems, making them costly to install,
configure, manage, and maintain. Perhaps most importantly, the middle-tier servers
lack the flexibility to adapt rapidly to changing business needs. grid computing brings
order to this chaos in the middle tier. Originally used for large-scale scientific and re-

64 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Table 3.1 Definition of grid, according to Ian Foster [103]

1. Coordinates resources A grid integrates and coordinates resources and users
that are not subject to that exist within different control domains (for example,
centralized control . . . the user’s desktop versus central computing; different adminis-

trative units of the same company versus different companies)
and also addresses the issues of security, policy, payment, and
membership, that arise in these settings. (Otherwise, one would
be dealing with a local management system.)

2. . . . using standard, A grid is built from multipurpose protocols and interfaces that
open, general-purpose address such issues as authentication, authorization, resource
protocols and discovery, and resource access. It is crucial that these protocols
interfaces . . . and interfaces be standard and open. (Otherwise, one would be

dealing with an application-specific system.)

3. . . . to deliver nontrivial A grid allows its constituent resources to be used in a
qualities of service. coordinated fashion to deliver various qualities of service (re-

lating, for example, to response time, throughput, availability,
security, and/or co-allocation of multiple resource types to
meet complex user demands), so that the utility of the com-
bined system is significantly greater than the sum of its parts.

c03.qxd 8/24/2004 10:14 AM Page 64

TEAM LinG - Live, Informative, Non-cost and Genuine!

search computing, the grid computing model increases reliability, scalability, and
manageability in the middle tier, all while reducing costs. A grid computing infra-
structure turns IT resources—computers, storage, and applications—into a single vir-
tual system that, like a utility—power, water, gas, phone—can be tapped at will,
whenever needed. [86]

Grids can be built ranging from just a few processors to large groups of proces-
sors organized as a hierarchy that spans a continent or the globe. The simplest grid
consists of just a few processors, all of which have the same hardware architecture
and utilize the same operating system. These processors are connected in a data
center on a LAN or storage area network (SAN); see Figure 3.1, top. (It should be
noted, however, that some people would call this arrangement a “cluster” imple-
mentation rather than a bonafide “grid.”) Because this type of grid utilizes homoge-
neous systems, generally there are relatively few considerations beyond properly
deploying the grid-support software. Also, given the fact that the processors have
the same architecture and operating system, selecting application software for these
processors is usually a straightforward task [147]. Finally, for this “entry-level”
grid, the processors are usually in one department of a given organization; because
of this framework, the access to the grid may not require (in general) any special se-
curity procedures or usage policies.

A next level of complexity is reached when one includes heterogeneous proces-
sors in the grid ensemble. These grids are also referred to as an “intragrids” and/or
“enterprise grids.” As the term implies, processors participating in the enterprise
grid may include devices owned and maintained by multiple departments, but still
within one firm; see Figure 3.1, middle. The grid may span a number of geographic
locations, where computing facilities (e.g., servers) may be located. These larger
grids may have a hierarchical topology, although this is not a strict requirement. For
example, processors locally connected in a data center or server room form a “clus-
ter” of processors; in turn, the overall enterprise grid may be organized in a hierar-

3.1 OVERVIEW 65

Table 3.2 Grid types

Computational grid This grid is used to allocate resources specifically for computing pow-
er. In this situation, most of the processors are high-performance
servers. (Note that processors are sometimes called nodes, resources,
members, donors, clients, hosts, engines, or machines.)

Scavenging This grid is used to “locate processors–cycles”: grid nodes are
(computational) exploited for available machine cycles and other resources. Nodes
grid typically equate to desktop computers; a large numbers of processors

are generally involved. Owners of the desktop processors are usually
given control over when their resources are available to participate in
the grid.

Data grid This grid is used for housing and providing access to data across mul-
tiple organizations. Users are not focused on where this data is located
as long as they have access to the data.

c03.qxd 8/24/2004 10:14 AM Page 65

TEAM LinG - Live, Informative, Non-cost and Genuine!

66 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Figure 3.1 Grid types, arranged by complexity.

Cluster/Local Grid

IntraGrid

InterGrid

Organization 2
Organization 3

Organization 1

Layer 2 Switch,
e.g., GbE or 10 GbE

SAN

LAN
CM = Client Middleware

Middleware/
Cluster manager

Application/
User

Processor

Processor

Processor

Processor

Processor

Processor

Processor

CM

CM

CM

CM

CM

CM

CM
CM

CM
CM

CM

CMProcessor

Processor

Processor
Processor

Processor
Processor

Corporate
Intranet

Layer 2 Switch,
e.g., GbE or 10 GbE

SAN

Processor

Middleware/
Cluster manager

Application/
User

Middleware/
Cluster manager

SAN

Firewall/
VPN/Router

Firewall/
VPN/Router

Processor
Application/

User

Firewall/
VPN/Router

Internet,
Extranet, or
Other High-capacity
Network

c03.qxd 8/24/2004 10:14 AM Page 66

TEAM LinG - Live, Informative, Non-cost and Genuine!

chy consisting of clusters of clusters. Intranet transmission links (or other high-
quality, high-throughput, high-security communication services), are used to inter-
connect these nodal computing resources and the grid. We noted in Chapter 1 that
when local hosts are aggregated in tightly coupled configurations, they tend to gen-
erally be of the cluster parallel-based computing type; such processors, however,
can also be nonparallel-computing-based grids, e.g., by running the Globus Toolkit.
When geographically dispersed hosts are aggregated in distributed computing con-
figurations, they tend to generally be of the grid computing type and not running in
a clustered arrangement.

Enterprise grids are supported via the organization’s intranet. The intranet typi-
cally consists of a collection of dedicated frame relay, Asynchronous Transfer
Mode (ATM), MultiProtocol Label Switching (MPLS), or IP-based facilities or ser-
vices. A virtual private network (VPN) service over the Internet may also be used to
connect the remote sites of the organization, especially for international applica-
tions. In this configuration, additional types of resources are available to the appli-
cation and/or user besides just basic company-owned nodes; in particular, this grid
system will likely include scheduling components. File sharing may still be accom-
plished using networked file systems. In these enterprise grid environments, dedi-
cated grid processors may also be added by the organization to increase the service
levels achieved by the grid, rather than depending entirely on scavenged resources
[147]. When the grid expands to encompass discrete departments, operational poli-
cies are generally required operational procedures related to how the grid should be
used (e.g., what kinds of work is allowed on the grid and at what times). For exam-
ple, there may be a prioritization by department, or by kinds of applications that
should have access to grid resources. Furthermore, security typically becomes im-
portant when multiple departments are involved, because sensitive information be-
longing to one department may need to be protected from access by, and/or intru-
sion from jobs running for other departments.

Figure 3.1, bottom, depicts what some researchers call a pure grid, or an “inter-
grid.” Such a grid, by definition, crosses organization boundaries. Generally, an in-
tergrid may be used to collaborate on “large” projects of common scientific interest.
The most stringent levels of security are usually required in this environment. The
intergrid offers the opportunity for sharing, trading, or brokering resources over
widespread pools; computational “processor-cycle” resources may also be ob-
tained, as needed, from a utility for a specified fee. Figure 3.2 identifies a number of
well-known intergrids and Figures 3.3 and 3.4 depict some specific intergrids.

Table 3.3 summarizes the motivation for and/or purpose of various grids dis-
cussed above (partially based on [147].) Table 3.4 identifies some challenges asso-
ciated with grid computing (also see Chapter 2, Section 2.6).

Some see grid solutions at two levels: physical and logical [71]. A physical grid
refers to computer power and other hardware resources that can be shared over a
distributed network. A logical grid refers to software and application sharing, as
well as higher-level business-process sharing. Both kinds of grids can coexist in a
Grid Computing environment. A physical grid can be used as a component utilized
by multiple logical grids; a logical grid can be constructed by utilizing multiple
physical grids.

3.1 OVERVIEW 67

c03.qxd 8/24/2004 10:14 AM Page 67

TEAM LinG - Live, Informative, Non-cost and Genuine!

Figure 3.2 Well-known intergrids. Copyright © 2002 University of Chicago and The Uni-
versity of Southern California.

c03.qxd 8/24/2004 10:14 AM Page 68

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.1 OVERVIEW 69

Figure 3.3 The TeraGrid. Copyright © 2002 University of Chicago and The University of
Southern California. All rights reserved.

Figure 3.4 The iVDGL. Copyright © 2002 University of Chicago and The University of
Southern California.

c03.qxd 8/24/2004 10:14 AM Page 69

TEAM LinG - Live, Informative, Non-cost and Genuine!

70 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Table 3.3 Possible grid benefits and applications

Access to a A grid federates a large number of resources contributed by individual
plethora of IT resources into a functionally larger, logically virtual resource.
resources Compared to traditional closed or company-specific computing environ-

ments, a grid can provide access to a large(r) universe of resources and
possibly to special equipment, software, and other services. Scalability
can be supported in terms of additional quantity of such resources and/or
additional capacity for such resources.

Better utilization Processors, storage, and other resources on a grid are almost invariably
of underused better utilized than would otherwise be the case. Organizations typically
resources experience peaks of activity in their monthly, weekly, or daily IT work-

flow. When the applications are grid-enabled, during usage peaks, these
applications can be “moved” (assigned) to underutilized resources (e.g.,
processors). Furthermore, administrators can utilize grid-support tools to
assess usage demand; this, in turn, facilitates improved planning when
upgrading systems, increasing system capacity, or retiring end-of-life
computing resources.

Enterprise systems may also have unused storage capacity; data grids
can be employed to aggregate such unused storage into a larger virtual
data store (larger capacities than available on any single system). This
achieves improved performance and reliability compared to a single-
threaded processor. Files and databases can seamlessly span many sys-
tems; spanning has the potential to improve data transfer rates through
the use of striping techniques. Also, data resiliency can be achieved by
duplicating it at various points throughout the grid; this data replication
serves as a backup and can be hosted on or near the processors most like-
ly to need the data.

Improved An enterprise grid is inherently more resilient and enjoys higher
availability of availability than a traditional clustering arrangement. A grid frame-
computing work (such as Oracle’s Application Server 10g) is able to include a

tighter integration between the database and the application server from a
clustering/failover standpoint. For example, although the database cluster
may quickly fail over from one node to another, the middle tier does not
typically become aware of the change until a Transmission Control Pro-
tocol/Internet Protocol (TCP/IP) timeout triggers a reconnection to the
cluster; this timeout could take several minutes. In the grid environment,
the database tier notifies the middle tier of the failover, resulting in an
immediate reconnect and reducing the total downtime from minutes to
seconds [86].

Increased Compared to traditional environments, a grid provides increased
reliability of reliability. This is because the constituent nodes in a grid can be
computing relatively inexpensive and can be dispersed geographically. High relia-

bility often is achieved with a relatively high price investment when
high-end conventional computing systems are employed. Typically, this
hardware is constructed using chips with redundant circuits (these cir-
cuits “vote” on results), and the hardware contains additional logic cir-
cuitry to achieve graceful recovery from a number of hardware failures.

c03.qxd 8/24/2004 10:14 AM Page 70

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW

In this section, we identify, at a high level, the major components of a grid comput-
ing system from a functional perspective. Not all of the components discussed here-
in are needed all the time; depending on the grid design and its expected use, some
of these components may not be required, and in some instances these components
may be combined. A resource is an entity that is to be shared; this includes comput-
ers, storage, data, and software. A resource does not have to be a physical entity. A
resource is defined in terms of interfaces, not devices; for example, schedulers such

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 71

Table 3.3 Continued

Increased The systems also use duplicate processors that have hot-pluggability
reliability of capabilities; when a processor fails it can be replaced without turning the
computing other off. Grid computing, which in effect employs a RAIC-like
(cont.) (redundant array of inexpensive computers) mechanics, provides an al-

ternate approach to reliability that relies more on software technology
than expensive hardware.

Parallelization Many algorithms-based applications can be partitioned into
of processing independently running “microjobs.” A grid application can be thought of

as an aggregate of many smaller “microjobs,” each executing on a differ-
ent processor. For example, a perfectly scalable application will com-
plete 20 times faster if it uses 20 comparable processors.

Resource For applications that are grid-enabled, the grid infrastructure can offer
balancing a resource-balancing capability. This is accomplished by scheduling grid

jobs on processors with low utilization. An instantaneous/unplanned de-
mand peak can be handled by routing work requests to relatively idle
processors in the grid. If the resources in the grid are already fully uti-
lized, the lowest-priority work being performed on the grid can be tem-
porarily suspended (or even cancelled) to make way for the higher-priori-
ty work. (Without a grid infrastructure, such balancing decisions are
difficult to prioritize and execute.)

Simplified Compared to traditional environments, it may be easier to manage a
management of larger dispersed and logically virtualized infrastructure than a plethora
IT resources of “indigenous” systems. Grid middleware provides a uniform method to

handle heterogeneous systems.

Virtual resources Grid middleware and (open) standards allow heterogeneous systems
and virtual to work collaboratively to deliver the appearance of a large virtual
organizations computing environment, while offering a variety of virtual resources.
for The users of the grid can be organized dynamically into a number of
collaboration VOs, each with possibly different policy requirements. VOs can share

their resources collectively as a larger grid. Resources are “virtualized”
to give them a more uniform interoperability among heterogeneous grid
participants.

c03.qxd 8/24/2004 10:14 AM Page 71

TEAM LinG - Live, Informative, Non-cost and Genuine!

as Platform’s LSF and PBS define a compute resource. Open/close/read/write de-
fine access to a distributed file system, for example, NFS, AFS, DFS [3, 45].

In this section, we look at following grid components:

� Grid portal

� Security (grid security infrastructure)

� Broker (along with directory)

� Scheduler

� Data management

� Job and resource management

� Resources

Figures 3.5 and 3.6 provide a pictorial depiction of the concepts discussed in the
subsections that follow. Table 3.5 provides a more detailed listing of functions and

72 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Table 3.4 Partial list of current “drawbacks” of grid computing

Business case not Grid proponents need to provide a compelling business case [164].
always clear

Processes are to Vendors need to show whether the grid-based process can be
be defined effectively managed, including the chargeback model.

Security is to Security is a concern, particularly for intergrids.
be supported

Message/articulation Confusion still exists in industry between cluster computing,
must be crispier virtualization, enterprise grid, intergrids, and P2P. Sharper message

needed from vendors.

Proprietary Leading vendors (e.g., Hewlett-Packard, IBM, Microsoft, Platform
approaches should Computing, Sun Microsystems, Oracle, VMWare/EMC*) all still
be eliminated approach issue differently and incompatibly. Existing grid comput-

ing solutions tend to be limited to an individual vendor’s products
(IBM’s grid computing platform was operating with the largest
number of open standards compliance compared with other suppli-
ers at press time) [165].

Parochial focus should For example, IBM’s grid computing platform is focused primarily
be eliminated on virtualizing IBM hardware and data bases. Hence, if a firm has a

fairly homogenous data center (e.g., running mainly IBM eServers
or IBM DB2 data bases) it could benefit from the grid computing
solution (likely an enterprise/local grid); otherwise it may not.

Performance to be Grid computing systems need proper “partitioning” (“zoning”)
proven/monitored mechanisms to ensure that an application competing for computer

resources will not degrade the other applications also looking for
resources (particularly in the case of server virtualization).

*IBM, Sun Microsystems, and Hewlett-Packard were known as the “Big Three” in this space at
presstime [166].

c03.qxd 8/24/2004 10:14 AM Page 72

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 73

Virtual Computing
Resource

Virtual Computing
Resource

GSI

Virtual Computing
Resource

GSI

Portal

Portal

Broker Directory

Portal

Figure 3.5 Basic grid elements—a user’s view.

c03.qxd 8/24/2004 10:14 AM Page 73

TEAM LinG - Live, Informative, Non-cost and Genuine!

74 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Virtual Computing
Resource

GSI

Virtual Computing
Resource

Portal

Portal

Figure 3.6 Additional grid elements—a user’s view.

Virtual Computing
Resource

Portal

DirectoryBroker

GSI

Scheduler

Directory
Broker

Scheduler

DirectoryBroker

Scheduler

GSI

Data Management

Data Management

Management

Job

c03.qxd 8/24/2004 10:14 AM Page 74

TEAM LinG - Live, Informative, Non-cost and Genuine!

capabilities to be supported [45]. As a supplement, interested readers may also wish
to consult the document, “Anatomy of the Grid” by Ian Foster, Carl Kesselman, and
Steven Tuecke; the paper contains a description of a grid’s constituent parts and
what they do, with a focus is on grid architecture [3].

In the discussion below, we use the term “functional block.” This is a generic ar-
chitectural construct (applicable to any architecture). A functional block is a logical
aggregation of functions and capabilities that have an affinity, similarity, close rela-
tionship, or related purpose.

Portal/User Interface Function/Functional Block

A portal/user interface functional block usually exists in the grid environment. The
user interaction mechanism (specifically, the interface) can take a number of forms.
The interaction mechanism typically is application specific. In the simplest grid en-
vironment, the user access may be via a portal (see Figure 3.5, top). Such a portal
provides the user with an interface to launch applications. The applications make
transparent the use of resources and/or services provided by the grid. With this
arrangement, the user perceives the grid as a virtual computing resource.

The Grid Security Infrastructure: User Security
Function/Functional Block

A user security functional block usually exists in the grid environment and, as noted
above, a key requirement for grid computing is security. In a grid environment,
there is a need for mechanisms to provide authentication, authorization, data confi-
dentiality, data integrity, and availability, particularly from a user’s point of view;
see Figure 3.5, center. When a user’s job executes, typically it requires confidential
message-passing services. There may be on-the-fly relationships. But also, the user
of the grid infrastructure software (such as a specialized scheduler) may need to set
up a long-lived service; administrators may require that only certain users are al-
lowed to access the service. In each of these cases, the application must anticipate
and be designed to provide this required security functionality. The invoker of these

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 75

Table 3.5 Grid functionality to be supported

(Co-)reservation, workflow Monitoring
Accounting and payment Performance guarantees
Adaptation Remote data access
Authorization and policy Resource allocation
Distributed algorithms Resource characterization
Fault management Resource discovery
High-speed data transfer Resource management
Identity and authentication System evolution
Intrusion detection

c03.qxd 8/24/2004 10:14 AM Page 75

TEAM LinG - Live, Informative, Non-cost and Genuine!

applications must have an understanding of how to check if these security services
are available and how they can be invoked [72].

In grids (particularly intergrids), there is a requirement to support security across
organizational boundaries. This makes a centrally managed security system imprac-
tical; administrators want to support “single sign-on” for users of the grid, including
delegation of credentials for computations that involve multiple resources and/or
sites. The grid security infrastructure provides a single-sign-on, run-anywhere au-
thentication service, with support for local control over access rights and mapping
from global to local user identities [167]. The grid security infrastructure supports
uniform authentication, authorization, and message-protection mechanisms in mul-
tiinstitutional settings. Specifically, the grid security infrastructure provides, among
other services, single sign-on, delegation, and identity mapping using public key
technology (X.509 certificates) (this functionality is revisited in Chapter 6 as part of
the Globus Toolkit discussion).

Node Security Function/Functional Block

A node security functional block usually exists in the grid environment. Authentica-
tion and authorization is a “two-way street”; not only does the user need to be au-
thenticated, but also the computing resource. There is the need for secure (authenti-
cated and, in most instances, also confidential) communication between internal
elements of a computational grid. This is because a grid is comprised of a collection
of hardware and software resources whose origins may not be obvious to a grid
user. When a user wants to run on a particular processor, the user needs assurances
that the processor has not been compromised, making his or her proprietary applica-
tion, or data, subject to undesired exposure [72].

If a processor enrolls in a dynamic-rather than preadministered manner, then an
identification and authentication validation must be performed before the processor
can actually participate in the grid’s work, as we discussed earlier. A certificate au-
thority (CA) can be utilized to establish the identity of the “donor” processor, as
well as the users and the grid itself. Some grid systems provide their own log-in to
the grid, whereas other grid systems depend on the native operating systems for
user authentication.

Broker Function/Functional Block and Directory

A broker functional block usually exists in the grid environment. After the user is
authenticated by the user security functional block, the user is allowed to launch
an application. At this juncture, the grid system needs to identify appropriate and
available resources that can/should be used within the grid, based on the applica-
tion and application-related parameters provided by the user of the application.
This task is carried out by a broker function. The broker functionality provides in-
formation about the available resources on the grid and the working status of these
resources. Specifically, grid systems have a capability to define (and monitor) a
grid’s topology in order to share resources and support collaboration; this is typi-

76 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

c03.qxd 8/24/2004 10:14 AM Page 76

TEAM LinG - Live, Informative, Non-cost and Genuine!

cally accomplished via a directory mechanism (e.g., LDAP and/or DNS); see
Figure 3.5, bottom.

Scheduler Function/Functional Block

A scheduler functional block usually exists in the grid environment. If a set of
stand-alone jobs without any interdependencies needs to execute, then a scheduler
is not necessarily required. In the situation where the user wishes to reserve a spe-
cific resource or to ensure that different jobs within the application run concurrent-
ly, then a scheduler is needed to coordinate the execution of the jobs.

In a “trivial” environment, the user may select a processor suitable for running
the job and then execute a grid instruction that routes the job to the selected proces-
sor. In “nontrivial” environments, a grid-based system is responsible for routing a
job to a properly selected processor so that the job can execute. Here, the schedul-
ing software identifies a processor on which to run a specific grid job that has been
submitted by a user; see Figure 3.6, top. After available resources have been identi-
fied, the follow-on step is to schedule the individual jobs to run on these resources.
Schedulers are designed to dynamically react to grid load. They accomplish this by
utilizing measurement information relating to the current utilization of processors
to determine which ones are available before submitting a job.

In an entry-level case, the scheduler could assign jobs in a round-robin fashion to
the “next” processor matching the resource requirements. More commonly, the
scheduler automatically finds the most appropriate processor on which to run a giv-
en job. Some schedulers implement a job priority (queue) mechanism. In this envi-
ronment, as grid processors become available to execute jobs, the jobs are selected
from the highest-priority queues first. Policies of various kinds can be implemented
via the scheduler; for example, there could be a policy that restricts grid jobs from
executing at certain time windows.

In some more complex environments, there could be different levels of sched-
ulers organized in a hierarchy. For example, a metascheduler may submit a job to a
cluster scheduler or other lower-level scheduler rather than to an individual target
processor. As another example, a cluster could be represented as a single resource;
here, the cluster could have its own scheduler to manage the internal cluster nodes,
while a higher-level scheduler could be employed to schedule work to be supported
by the cluster in question as an ensemble.

Advanced schedulers monitor the progress of active jobs, managing the overall
workflow. If the jobs were to become lost due to system or network outages, a high-
end scheduler would automatically resubmit the job elsewhere. However, if a job
appears to be in an infinite loop and reaches a maximum timeout, then such jobs
will not be rescheduled. Typically, jobs have different kinds of completion codes.
This code determines if the job is suitable for resubmission or not [147]).

Some grids also have a “reservation system.” These systems allow one to reserve
resources on the grid. These are a calendar-based mechanism for reserving re-
sources for specific time periods, and preventing others from reserving the same re-
source at the same time.

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 77

c03.qxd 8/24/2004 10:14 AM Page 77

TEAM LinG - Live, Informative, Non-cost and Genuine!

In a “scavenging” grid environment, any processor that becomes idle reports its
idle status to the grid management node. The management node in turn assigns to
this processor the next job that is satisfied by the processor’s resources. If the
processor becomes busy with local nongrid work, the grid job is usually suspended
or delayed. This situation creates somewhat unpredictable completion times for grid
jobs, although it is not disruptive to the processors donating resources to the grid.
To create more predictable behavior, grid processors are often “dedicated” to the
grid and are not preempted by external work; this enables schedulers to compute the
approximate completion time for a set of jobs when their running characteristics are
known [147].

Data Management Function/Functional Block

A data management functional block usually exists in a grid environment. There
typically needs to be a reliable (and secure) method for moving files and data to
various nodes within the grid. This functionality is supported by the data manage-
ment functional block. Figure 3.6, middle, depicts a data management function
needed to support this data management function.

Job Management and Resource Management
Function/Functional Block

A job management and resource management functional block usually exists in a
grid environment. This functionality is also known as the grid resource allocation
manager (GRAM). The job management and resource management function (see
Figure 3.6, bottom) provides the services to actually launch a job on a particular re-
source, to check the job’s status, and to retrieve the results when the job is complete.
Typically, the management component keeps track of the resources available to the
grid and which users are members of the grid. This information is used by the sched-
uler to decide where grid jobs should be assigned. Also, typically, there are measure-
ment mechanisms that determine both the capacities of the nodes on the grid and their
current utilization levels at any given point in time; this information is used to sched-
ule jobs in the grid, to monitor the health of the grid (e.g., outages, congestion, over-
booking/overcommitment), and to support administrative tasks (e.g., determine
overall usage patterns and statistics, log and account for usage of grid resources, etc.)
Furthermore, advanced grid management software can automatically manage recov-
ery from a number of grid failures and/or outages (e.g., specifically identify alterna-
tives processors or setups to get the workload processed) [147].

With grid computing, administrators can “virtualize,” or pool, IT resources
(computers, storage, and applications) into a single virtual system whose resources
can be managed from a single administration console and can be allocated dynami-
cally, based on demand. The job management and resource management functional
block supports this simplified view of the enterprise-wide resources.

The work involved in managing the grid may be distributed hierarchically, in or-
der to increase the scalability of the grid. For example, a central job scheduler may

78 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

c03.qxd 8/24/2004 10:14 AM Page 78

TEAM LinG - Live, Informative, Non-cost and Genuine!

not schedule a submitted job directly, but instead, the job request is sent to a sec-
ondary scheduler that handles a specified set of processors (e.g., a cluster); the sec-
ondary scheduler handles the assignment to the specific processor. Hence, in this
instance, the grid operation, the resource data, and the job scheduling are distributed
to match the topology of the grid.

On the resource management side of this function, mechanisms usually exist to
handle observation, management, measurement, and correlation. It was noted above
that schedulers need to react to instantaneous loads on the grid. The donor software
typically includes “load sensors” that measure the instantaneous load and activity
on resources or processors. Such measurement information is useful not only for in-
stantaneous scheduling of tasks and work, but also for assessing (administratively)
overall grid usage patterns [147]. Observation, management, and measurement data
can be used, in aggregate, to support capacity planning and initiate deployment of
additional hardware. Furthermore, measurement information about specific jobs
can be collected and used to forecast the resource requirements of that job the next
time it executes. Some grid systems provide the means for implementing custom
load sensors for more than just processor or storage resources.

User/Application Submission Function/Functional Block

A user/application submission functional block usually exists. Typically, any mem-
ber of a grid can submit jobs to the grid and perform grid queries, but in some grid
systems, this function is implemented as a separate component installed on “sub-
mission nodes or clients” [147].

Resources

A grid would be of no value if it did not contribute resources to the ultimate user
and/or application. As noted, resources include processors, data storage, scientific
equipment, etc. Besides “physical presence” on the grid (by way of an interconnect-
ing network), there has to be “logical presence.” “Logical presence” is achieved by
installing grid-support software on the participating processors. After loading and
activating the software that manages the grid’s use of its affiliated resources, each
processor contributing itself or contributing ancillary resources to the grid needs to
properly enroll as a member of the grid.

As discussed in the previous subsections, a user accessing the grid to accomplish
a task submits a job for execution on the grid. The grid management software com-
municates with the grid donor software of the resource(s) logically present to for-
ward the job to an appropriate processor. The grid-support software on the proces-
sor accepts an executable job from the grid management system and executes it.
The grid software on the “donor” processor must be able to receive the executable
file (in some cases the executable copies preinstalled on the processor.) The soft-
ware is run and the output is sent back to the requester. More advanced implemen-
tations can dynamically adjust the priority of a running job, suspend a job and re-
sume it later, or checkpoint a job with the possibility of resuming its execution on a

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 79

c03.qxd 8/24/2004 10:14 AM Page 79

TEAM LinG - Live, Informative, Non-cost and Genuine!

different processor [147]. The grid system sends information about any available
resources on that processor to the resource management functional block described
in the previous subsection. The participating donor processor typically has a self-
monitoring capability that determines or measures how busy the processor is. This
information is “distributed” to the management software of the grid and it is utilized
to schedule the appropriate use of the resources. For example, in a scavenging sys-
tem, this utilization information informs the grid management software when the
processor is idle and available to accept work.

Protocols

After identifying the functional blocks, a generic architecture description proceeds
by defining the protocols to be employed between (specifically, on the active inter-
faces of the) functional blocks. To interconnect these functional blocks, we need
protocols, especially standardized protocols. Protocols are formal descriptions of
message formats and a set of rules for message exchange. The rules may define se-
quence of message exchanges. Protocols are generally layered. Figure 3.7 depicts
two examples of protocol stacks and network-enabled services.

The grid dénouement (call it vision) requires protocols that are not only open and
general purpose but also are vendor-independent and widely adopted standards.
Standards allows the grid to establish resource-sharing arrangements dynamically
with any interested party and thus to create something more than a plethora of
balkanized, incompatible, noninteroperable distributed systems; standards are also

80 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Figure 3.7 Example of protocol stacks and network-enabled services.

c03.qxd 8/24/2004 10:14 AM Page 80

TEAM LinG - Live, Informative, Non-cost and Genuine!

important as a means of enabling general-purpose services and tools [103]. Both
open source and commercial products can, then, interoperate effectively in this het-
erogeneous, multivendor grid world, thus providing the pervasive infrastructure
that will enable successful grid applications.

At this juncture, the Global Grid Forum is in the process of developing consen-
sus standards for grid environments. On the commercial side, nearly a decade of ex-
perience and refinement have resulted in a widely used de-facto standard in the
form of the open source Globus Toolkit. The Global Grid Forum has a major effort
underway to define the Open Grid Services Architecture (OGSA), which modern-
izes and extends Globus Toolkit protocols to address new requirements, while also
embracing Web services [103]. These topics are discussed in Chapters 4 and 5.

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW

This section looks at grid resources from a physical viewpoint. A grid is a collection
of networks, processors, storage, and other resources.

Networks

The networking mechanism is the most fundamental resource for the grid and also
is the theme of this book. In fact, without networking grid computing would not be
possible.

The recent growth in communication capacity makes grid computing practical,
compared to the limited bandwidth available when distributed computing was first
emerging. Transmission of content and job supervision within the grid are impor-
tant for sending jobs and the required data to points within the grid (some jobs re-
quire a large amount of data to be processed and it may not always reside on the
processor running the job.) Figure 3.8 depicts one example of an intergrid and the
kind of connectivity the particular grid has.

The bandwidth available for the subtending communications links can often be a
critical resource that can limit utilization of the grid. LAN connectivity now is in the
1–10 Gbps range, and practically affordable WAN/intranet connectivity for compa-
nies is in the 45–155 Mbps range. (Speeds in the 2.4–10 Gbps range are common-
place within the inner workings of carriers, but these kinds of speeds are not general-
ly affordable for Fortune 500 companies for ubiquitous deployment at this time. A
single fiber can now carry in the range of 1 Tbps using high-density DWDM, but
these speeds begin to be out of reach for all but the largest carriers, at least as of
2004). LANs can be utilized to support clusters (some clusters are implemented with
SANs or other channel technology) and local grids. High-capacity, high-quality in-
tranets support intragrids, and long-haul global connectivity (including internet-pro-
vided capacity) make intergrids possible. Processors on the intragrid may also have
connections to the Internet in addition to the connectivity among the grid processors.

We have already noted that without adequate networking grid computing would
not be possible. As discussed in the previous section, a grid typically includes soft-

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 81

c03.qxd 8/24/2004 10:14 AM Page 81

TEAM LinG - Live, Informative, Non-cost and Genuine!

ware to enable jobs to communicate with each other. For example, an application
may split itself into a large number of microjobs, each becoming a separate job in
the grid. An application is often comprised of algorithms that require that the micro-
jobs communicate some information among them; for example, the microjobs need
to be able to locate other specific microjobs, establish a communications connection
with them, and send the appropriate data. At the protocol level, a message passing
interface (MPI) is often included as part of the grid system in support of communi-
cations and networking, although it should be noted that SOAP (Simple Object Ac-
cess Protocol) could conceivably become the pervasive messaging protocol in the
future (SOAP is discussed in a section that follows). Redundant communication
paths are generally needed, but a well-designed intranet will already accommodate
this. A grid management system can monitor the topology of the grid and pinpoint
possible communication bottlenecks [147].

MPI may be a good protocol solution for long, massively parallel applications;
for short serial tasks, a system based on web services (SOAP) can be acceptable.
Any given functionality can appear at multiple levels. Conceivably, there could be a
back-end parallel computer running an MPI-based job; this could be conceivably
front-ended as a service by a middle-tier component running on a completely differ-
ent computer. One is able “interact” with this service at either level: a high-perfor-
mance I/O transfer at the parallel computing level, or with a “slower” middle-tier
protocol such as SOAP at the service level.

MPI is a de-facto open standard for message passing developed in the 1990s by a
committee of vendors (including IBM, Intel, Cray, and nCUBE), implementers, and

82 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Figure 3.8 Example of high-speed networking in an intergrid. Copyright © 2002 Universi-
ty of Chicago and The University of Southern California. All Rights Reserved.

c03.qxd 8/24/2004 10:14 AM Page 82

TEAM LinG - Live, Informative, Non-cost and Genuine!

users. MPI is widely available, with both free available and vendor-supplied imple-
mentations. The goal of MPI is to provide a standard for writing message-passing
programs. As such, the interface attempts to establish a practical, portable, efficient,
and flexible standard for message passing. MPI has been developed under the aus-
pices of the Message Passing Interface Forum (MPIF), with participation from over
40 organizations. MPIF worked in the early 1990s to define a set of accepted library
interface standards (the MPIF is not sanctioned or supported by any official stan-
dards organization). Version 1.0 of the standard was released in May 1994; MPI-2
was adopted in April 1997.

Much as been said of late about how the theoretical maximum communication
speed has been exceeding the rules of Moore’s law,1 and how that can be a catalyst
for grid deployment (e.g., see Figure 3.9). Although the availability of broadband
does drive the potential for grid deployment, two important points need to be kept
in mind.

Point 1. In general, the maximum available speeds are not affordable by anyone,
with the possible exception of either government-funded labs or supercomputer
centers. Whereas OC-3 (155 Mbps) is probably the typical speed for Fortune 100
applications, OC-12 (622 Mbps) is probably the typical current upper limit even for
high-end labs. Thus, OC-768 (about 40 Gbps) and multiples of OC-192 delivered
over DWDM (e.g., 256 beams, for a total of 0.3 Tbps) are technologically feasible
but not affordable by individual organizations. Figure 3.10 reinforces this point: it
shows the actual capacity and traffic of the Internet’s backbone over the years,
based on industry sources. Although the capacity has increased at a compound an-
nual growth rate of 150% per year over the 1997–2002 timeframe, the backbone ca-
pacity is about 0.5–1.0 Gbps; that is a relatively modest amount compared to an
OC-48, OC-192, or OC-768 optical-link system.

Point 2. before generalizing, one needs to determine if the problem at hand is
processor bound or I/O (storage/data) bound. For example this author cointroduced
the concept of hyperperfect numbers in the early 1970s (see Figure 3.11), a “nice”
generalization of the concept of a perfect number that is now part of number theory
(hyperperfect numbers are expected to have applications in cryptology and signal-
processing transforms). A grid computing apparatus could be used to number
crunch away and find all such numbers, say up to 1015 (currently these have been
identified only up to 1011). In this situation, there is very little I/O needed, just num-
ber crunching (in fact, the hyperperfect numbers up to 107 were found by running
an application on a 1960s-vintage, time-sharing, “grid-in-spirit” computing main-
frame environment). In other situations, for example, genome research, there in fact
may be a need to move a certain large amounts of data. Even then, though, the DNA
information could be copied and replicated on optical disks and sent offline (by reg-

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 83

1Gordon Moore made his well-known observation (now known as “Moore’s Law”) in 1965, just a few
years after the first ICs were developed. In his original paper [175], Moore observed an exponential
growth in the number of transistors per integrated circuit and predicted that this trend would continue.
Through technology advances, Moore’s Law, the doubling of transistors every couple of years, has been
maintained, and still holds true today. Industry stakeholders (such as Intel) expect that it will continue at
least through the end of this decade [168].

c03.qxd 8/24/2004 10:14 AM Page 83

TEAM LinG - Live, Informative, Non-cost and Genuine!

ular mail) to the dozen or so supercomputers that may need access to the informa-
tion in order to run a certain algorithm.

Computation

The next most common resource on a grid is obviously computing cycles provided
by the processors on the grid. The processors can vary in speed, architecture, soft-
ware platform, and storage apparatus. There are efforts underway to develop very
high-speed supercomputers. Whereas clustering is a common approach at the
TFLOPS speeds, grid computing can also play a role in these initiatives by refining
architectures that link remote computers into an assembly of loosely or tightly cou-
pled processors. At the business level, grid computing is expected by the industry to
be more practical than cluster-based supercomputing.

84 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

� Network versus computer performance

—Computer speed doubles every 18 months

—Network speed doubles every 9 months

—Difference = order of magnitude per 5 years

� 1986 to 2000

—Computers: × 500

—Networks: × 340,000

� 2001 to 2010

—Computers: × 60

—Networks: × 4000

| | | | | |
0 1 2 3 4 5

Number of Years

P
er

fo
rm

an
ce

 p
er

 D
ol

la
r

S
p

en
t

9 12 18

Doubling Time
(months)

Optical Fiber
(bits per second)

Silicon Computer Chips
(number of transistors) Data Storage

(bits per square inch)

Figure 3.9 Speed increase for “laboratory-level” networks. Copyright © 2002 University
of Chicago and The University of Southern California. All Rights Reserved.

fiber storage chips

c03.qxd 8/24/2004 10:14 AM Page 84

TEAM LinG - Live, Informative, Non-cost and Genuine!

Related to supercomputing, the High-End Computing Revitalization Task
Force’s program under the Defense Advanced Research Projects Agency recently
recommended that the United States acquire a multihundred-teraflops system as a
cornerstone of a new national supercomputing center [135] (Cray, IBM and Sun
Microsystems are working on building the first petaFLOPS computer with novel
hardware to be completed by 2010.)

Storage

The next most common resource used in a grid is data storage. In a grid environ-
ment, a file or data base can span several physical storage devices and processors,
bypassing size restrictions often imposed by file systems that are preembedded with
operating systems. Storage capacity available to an application can be increased by
making use of the storage on multiple processors with a unifying file system. Each
processor on the grid usually provides some quantity of storage for grid use. Stor-
age can be “primary storage,” “secondary storage,” or “tertiary storage.” Memory
directly attached to a processor has fast access capabilities but is volatile; this kind
of memory is used to cache data to serve as temporary storage for running applica-
tions. “Secondary storage” is generally implemented in hard disk drives, such as
with RAID (redundant array of inexpensive drives). “Tertiary storage” is generally
implemented in near-real-time accessible media such as tape or other permanent
storage media. Many grid systems use mountable networked file systems, such as
Network File System (NFS), Distributed File System (DFS), or General Parallel
File System (GPFS). Special grid database software can “federate” a group of indi-
vidual data bases and files to form a larger, more inclusive data base.

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 85

1997 1998 1999 2000 2001 2002 2003 2004

9

8

7

6

D
ec

im
al

 lo
g

of
 b

its
 p

er
 s

ec
on

d

Figure 3.10 Speed increase for the Internet backbone.

c03.qxd 8/24/2004 10:14 AM Page 85

TEAM LinG - Live, Informative, Non-cost and Genuine!

A k-hyperperfect number
(aka hyperperfect number)
(introduced in 1975 by Minoli
and Bear) is a number n for
satisfying the equality

n = 1 + k(� (n) – n – 1), where

� (n) is the divisor function
(i.e., the sum of all positive
divisors of n). A number is
perfect iff it is 1-hyperperfect.

The first few k-hyperperfect
numbers are 6, 21, 28, 301,
325, 496, ... , with the
corresponding values of k
being 1, 2, 1, 6, 3, 1, The
first few k-hyperperfect
numbers that are not perfect
are 21, 301, 325, 697,

It can be shown that if k > 1 is
an odd integer and p = (3k +
1) / 2 and q = 3k + 4 are prime
numbers, then p²q is k-
hyperperfect; McCraine has
conjectured that all k-
hyperperfect numbers for odd
k > 1 are of this form, but the
hypothesis has not been
proven so far. Furthermore, it

can be proven that if p � q
are odd primes and k is an
integer such that k(p + q) = pq
– 1, then pq is k-hyperperfect.
It is also possible to show that
if k > and p = k + 1 is prime,
then for all i > 1 such that q =
p

i – p + 1 is prime, n = p
i - 1

q is
k-hyperperfect (see
examples.)

k Values of i

16 11, 21, 127, 149, 469, ...

22 17, 61, 445, ...

28 33, 89, 101, ...

36 67, 95, 341, ...

42 4, 6, 42, 64, 65, ...

46 5, 11, 13, 53, 115, ...

52 21, 173, ...

58 11, 117, ...

72 21, 49, ...

88 9, 41, 51, 109, 483, ...

96 6, 11, 34, ...

100 3, 7, 9, 19, 29, 99, 145, ...

k
Known k-hyperperfect numbers

1 6, 28, 496, 8128, 33550336, ...

2
21, 2133, 19521, 176661,
129127041, ...

3 325, ...

4 1950625, 1220640625, ...

6
301, 16513, 60110701,
1977225901, ...

10 159841, ...

11 10693, ...

12
697, 2041, 1570153, 62722153,
10604156641, 13544168521, ...

18
1333, 1909, 2469601,
893748277, ...

19 51301, ...

30 3901, 28600321, ...

31 214273, ...

35 306181, ...

40 115788961, ...

48 26977, 9560844577, ...

59 1433701, ...

60 24601, ...

66 296341, ...

75 2924101, ...

78 486877, ...

91 5199013, ...

100 10509080401, ...

108 275833, ...

126 12161963773, ...

132 96361, 130153, 495529, ...

136 156276648817, ...

138 46727970517, 51886178401, ...

140 1118457481, ...

168 250321, ...

174 7744461466717, ...

180 12211188308281, ...

190 1167773821, ...

192 163201, 137008036993, ...

198 1564317613, ...

206
626946794653,
54114833564509, ...

222 348231627849277, ...

228
391854937, 102744892633,
3710434289467, ...

252 389593, 1218260233, ...

276 72315968283289, ...

282 8898807853477, ...

296 444574821937, ...

342 542413, 26199602893, ...

348 66239465233897, ...

350 140460782701, ...

360 23911458481, ...

366 808861, ...

372 2469439417, ...

396 8432772615433, ...

402
8942902453, 813535908179653,
...

408 1238906223697, ...

414 8062678298557, ...

430 124528653669661, ...

438 6287557453, ...

480 1324790832961, ...

522
723378252872773,
106049331638192773, ...

546 211125067071829, ...

570
1345711391461,
5810517340434661, ...

660 13786783637881, ...

672 142718568339485377, ...

684 154643791177, ...

774 8695993590900027, ...

810 5646270598021, ...

814 31571188513, ...

816 31571188513, ...

820 1119337766869561, ...

968 52335185632753, ...

972 289085338292617, ...

978 60246544949557, ...

1050 64169172901, ...

1410 80293806421, ...

2772 95295817, 124035913, ...

3918
61442077, 217033693,
12059549149, 60174845917, ...

9222
404458477, 3426618541,
8983131757, 13027827181, ...

9828
432373033, 2797540201,
3777981481, 13197765673, ...

14280
848374801, 2324355601,
4390957201, 16498569361, ...

23730
2288948341, 3102982261,
6861054901, 30897836341, ...

31752
4660241041, 7220722321,
12994506001, 52929885457,
60771359377, ...

55848
15166641361, 44783952721,
67623550801, ...

67782
18407557741, 18444431149,
34939858669, ...

92568
50611924273, 64781493169,
84213367729, ...

100932 50969246953, 53192980777,

Figure 3.11 Example of a computationally intensive mathematical problem that can be ad-
dressed with grid computing.

86

c03.qxd 8/24/2004 10:14 AM Page 86

TEAM LinG - Live, Informative, Non-cost and Genuine!

More advanced file systems on a grid can automatically duplicate sets of data to
provide redundancy, increased reliability, and improved performance. Certain ap-
plications may require synchronous replication of data files; in this case, the “speed
of light,” namely, the propagation delay to/from the data storage device, may ad-
versely impact the functioning of the application. This situation can be addressed
and/or ameliorated by placing the data closer to the processing point. An intelligent
grid scheduler can select the appropriate storage devices to hold a job’s data, based,
for example, on usage patterns or replication needs. Jobs can then be scheduled
closer to the data, preferably on the processors that have direct SAN access to the
storage devices holding the requisite data [147].

Storage2 is increasingly recognized as a distinct resource, one that is best thought
of separately from the computer systems (hosts) that are its consumers and benefi-
ciaries. Such storage is often shared by multiple hosts and is acquired and managed
independently from them. This is in contrast to the historical view (host-attached
storage) that storage is an intrinsic part of a computer system, that is, a “peripheral.”
This trend toward shared storage recognizes the critical value of the information en-
trusted to the storage system, as well as the fact that storage represents a significant
portion of the investment in a typical computing environment.

Through much of the history of computing, storage has been seen as an intrinsic
part of computer systems. Although storage once was regarded as a “peripheral,”
more recently, it has come to be thought of as a storage subsystem, but still uniquely
associated with a computer. The principal exceptions to this have been mainframe
computer complexes and computer clusters in which a modest number of cooperat-

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 87

Figure 3.11 Continued.

2The rest of this subsection is loosely based on the Storage Networking Industry Association (SNIA)
SNIA Shared Storage Model [140], used with permission of SNIA.

Articles on Hyperperfect Numbers

Books with Hyperperfect Numbers Information

c03.qxd 8/24/2004 10:14 AM Page 87

TEAM LinG - Live, Informative, Non-cost and Genuine!

ing computer systems share a common set of storage devices. The key enabling tech-
nology for shared storage is networking technology that can provide high bandwidth,
reliable connectivity, and significant geographic scope at a cost that makes shared
storage an attractive alternative to the historical host-attached storage model.

Because the traditional computing model associates storage uniquely with a
computer system, a computing environment with many computer systems has many
storage and storage management environments to maintain and operate—one per
computer system.

As business has become more dependent upon computing, it has also become
more dependent upon data. Although a failed processor can usually be replaced and
operations continued almost immediately after the replacement, a failed storage re-
source requires replacement, typically followed by time-consuming restoration of
data, all too often with some loss of recent changes to that data, which requires re-
covery action before operations can continue. As a result, storage and the disci-
plines of caring for data and the storage media on which it resides have gown in vis-
ibility and importance.

In addition, the fraction of the purchase price of a computer system that is repre-
sented by the storage component has grown over time to the point that now the cost
of the storage component of a computer system is often in the vicinity of half of the
total price. Beyond the purchase price of storage, the total cost of owning storage
has become a significant part of the cost of maintaining the computing environ-
ment. In other words, the acquisition cost is a small portion of the total cost of own-
ership of storage over its lifetime.

In responding to these trends, the IT community has come to view storage as a
resource that should be purchased and managed independently of the computer sys-
tems that it serves. The IT community has also increasingly come to view storage as
a resource that should be shared among computer systems. These changes allow
more focused attention on storage that is expected to lead to reduced costs, higher
levels of service, and more flexibility through the sharing of the storage resource.

Although shared storage environments can bring many benefits, they also pre-
sent a number of challenges, particularly, interworking. The Storage Network In-
dustry Association (SNIA) Technical Council has developed a framework that cap-
tures the functional layers and properties of a storage system, regardless of the
underlying design, product, or installation. Much like the Open Systems Intercon-
nection (OSI) 7-layer model in conventional networking, the SNIA Shared Storage
Model may be used to describe common storage architectures graphically, while
exposing what services are provided, where interoperability is required, and the
pros and cons of each potential architecture; see Figure 3.12. SNIA was formed to
communicate the benefits of this new paradigm, and to provide a forum for comput-
er vendors, storage vendors, and the IT community to address its challenges togeth-
er.

The SNIA Shared Storage Model supports the following kinds of components:

� Interconnection network—the network infrastructure that connects the ele-
ments of the shared storage environment. This network may be a network that

88 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

c03.qxd 8/24/2004 10:14 AM Page 88

TEAM LinG - Live, Informative, Non-cost and Genuine!

is primarily used for storage access, or one that is also shared with other uses.
The important requirement is that it must provide an appropriately rich, high-
performance, scalable connectivity upon which a shared storage environment
can be based. The physical-layer network technologies that are used (or have
been used) for this function include Fibre Channel, Fast- and Gigabit-Ether-
net, Myrinet, the VAX CI network, and ServerNet. Network protocols that
are used at higher layers of the protocol stack also cover a wide range, includ-
ing SCSI FCP, TCP/IP, VI, CIFS, and NFS. Redundancy in the storage net-
work allows communication to continue despite the failure of various compo-
nents; different forms of redundancy protect against different sorts of failures.
Redundant connections within an interconnect may enable it to continue to
provide service by directing traffic around a failed component. Redundant
connections to hosts and/or storage enable the use of multipath I/O to tolerate
interface and connection failures; multipath I/O implementations may also
provide load balancing among alternate paths to storage. An important topol-

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 89

The SNIA Shared Storage Model is a layered one. The
figure shows a picture of the stack with a numbering
scheme for the layers. Roman numerals are used to avoid
confusion with the ISO and IETF networking stack
numbers. The layers are as follows:

� IV. Application
� III. File/record layer

� IIb. Database
� IIa. File system

� II. Block aggregation layer, with three
function placements:

� IIc. Heat
� IIb. Network
� IIa. Device

� I. Storage devices

Figure 3.12 The SNIA Shared Storage Model. Copyright © 2001, 2003 Storage Network-
ing Industry Association. Used with permission of SNIA.

c03.qxd 8/24/2004 10:14 AM Page 89

TEAM LinG - Live, Informative, Non-cost and Genuine!

ogy for multi-path I/O uses two completely separate networks to ensure that
any failure in one network cannot directly affect the other.

� Host computer—a computer system that has some or all of its storage needs
supplied by the shared storage environment. In the past, such hosts were often
viewed as external to the shared storage environment, but we take the opposite
view. A host typically attaches to a storage network with a host–bus adapter
(HBA) or network interface card (NIC). These are typically supported by asso-
ciated drivers and related software; both hardware and software may be con-
sidered part of the shared storage environment. The hosts attached to a shared
storage environment may be largely unaware of each other, or they may ex-
plicitly cooperate in order to exploit shared storage environment resources.
Most commonly, this occurs across subsets of the hosts (“clusters”). One of the
advantages of separating hosts from their storage devices in a shared storage
world is that the hosts may be of arbitrary and differing hardware architecture
and run different versions and types of operating system software.

� Physical storage resource—a nonhost element that is part of the shared stor-
age environment, and attached to the storage network. Examples include disk
drives, disk arrays, storage controllers, array controllers, tape drives and tape
libraries, and a wide range of storage appliances. (Hosts are not physical stor-
age resources.) Physical storage resources often have a high degree of redun-
dancy, including multiple network connections, replicated functions, and data
redundancy via RAID and other techniques, all to provide a highly available
service.

� Storage device—a special kind of physical-storage resource that persistently
retains data.

� Logical storage resource—a service or abstraction made available to the
shared storage environment by physical storage resources, storage manage-
ment applications, or combination thereof. Examples include volumes, files,
and data movers.

� Storage management—functions that observe, control, report, or implement
logical storage resources. Typically, these functions are implemented by soft-
ware that executes in a physical storage resource or host.

These storage constructs can avail themselves of grid technology, especially
when the storage needs to reside in distinct locations (for example, for administra-
tive, business continuity, or disaster recovery reasons.)

Scientific Instruments

Grids, particularly an intergrid, can provide shared access to expensive scientific
equipment or interconnect dispersed equipment into a larger overall scientific tool.
We will not discuss this issue further, since our emphasis is on commercial applica-
tions.

90 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

c03.qxd 8/24/2004 10:14 AM Page 90

TEAM LinG - Live, Informative, Non-cost and Genuine!

Software and Licenses

Two issues are of interest to organizations: application software and licensed soft-
ware.

Regarding application software, the most basic approach is to use the grid envi-
ronment to allow the application to run on an available processor on the grid (rather
than running locally.) Further along the transition trajectory, one can modify the ap-
plication to segment its work in such a way that the separate parts can execute in
parallel on different grid processors. As noted in Table 3.3, “scalability” is a mea-
sure of how efficiently the multiple processors on a grid are used. However, there
may be limits to scalability.

Regarding licensed software, there may be software of interest to the organiza-
tion that may be too expensive to install on a large set of processors. For example, a
Fortune 500 company might have, say, 1500 servers; replicating the software on all
these servers may be way too expensive and/or inefficient from a budgetary stand-
point. In a grid environment, specific business software may be installed on a few
designated grid processors. In this instance, the jobs requiring this software are
routed to the particular processors on which this software happens to be installed.
When the licensing fees are significant line items in the IT budget, this approach
can save significant expenses for the organization.

Some software license arrangements permit the software to be physically in-
stalled on all of the processors an organization may own, but may limit the number
of sites that can simultaneously use the software. With a grid-based license manage-
ment software, the grid system keeps track of how many concurrent copies of the
software are being used and ascertains that no more than that number of copies are
executing at any given time.

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW

Of late, a service view of grid computing has taken hold. Figures 1.5 and 1.6 in
Chapter 1 depicted a relatively simple and intuitive view of a layered model that
can help the reader understand the basic underlying concepts. Naturally, a standard-
ized layered model, like the well-known and widely used Open Systems Intercon-
nection Reference Model, is needed if interoperable systems are to be built. Stan-
dards such as the OGSA provide the necessary stable framework. OGSA is a
proposed grid service architecture based on the integration of grid and Web services
concepts and technologies. The OGSI specification is a companion specification to
OGSA that defines the interfaces and protocols to be used between the various ser-
vices in a grid environment; it is the mechanism that provides the interoperability
between grids designed using OGSA. Key constructs for the architecture are func-
tional blocks, protocols, (network-enabled) grid services (by implementing end-to-
end protocols), APIs, and software development kits (SDKs). Web services have
emerged in the past few years as a standards-based approach for developing and ac-
cessing network applications. The service view and OGSA will be discussed in de-
tail in Chapters 4 and 5. This section provides some basic supporting information.

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 91

c03.qxd 8/24/2004 10:14 AM Page 91

TEAM LinG - Live, Informative, Non-cost and Genuine!

Some concepts that should be understood are:

� Service-oriented architectures (SOA)

� Simple Object Access Protocol (SOAP)

� Web services standards

� Web Services Description Language (WSDL)

� Web Services Inspection Language (WSIL)

� Universal Description, Discovery, and Integration (UDDI)

� .NET

� Web Services Resource Framework (WSRF)

The fundamental concept behind OGSA is that it is a service-oriented architecture
comprised of constituent grid services, that are defined as special Web services
(more on this below) that provide a set of well-defined interfaces that follow specif-
ic conventions [119]. A SOA, defines how two computing entities interact to enable
one entity to perform a unit of work on behalf of another entity. The unit of work is
referred to as a service, and the service interactions are defined using a description
language. Each interaction is self-contained and loosely coupled, so that each inter-
action is independent of any other interaction [15]. Business applications are typi-
cally designed to automate business processes, but often without necessarily em-
bodying in them the ability to adapt themselves to changing business needs;
modifying and/or updating business processes and information flows in this envi-
ronment is rather challenging. This is because business applications have tradition-
ally been written as single, monolithic, and all-inclusive aggregates, making up-
dates and changes to these applications expensive and time-consuming. In a SOA
environment, applications are assembled as a collection of services, each of which
represents separate and discrete functions or features. As business needs change,
services can be added, deleted, or updated as needed, to evolve as the business
needs it [86].

The protocol independence of SOA means that different consumers can use ser-
vices by communicating with the service in different ways. Ideally, there should be
a management layer between the providers and consumers to ensure flexibility in
reference to implementation protocols [15]. It should be noted that many early Web
services projects focused on repurposing already-proven request/response Web ar-
chitectures, in which transactional support was either explicitly coded into the ap-
plication layer using classic Web techniques such as HTTP sessions or cookies, or
explicitly avoided by having the application simply provide read-only access to
back-end business systems [75]. Chapter 4 expands on these concepts.

Preston Gralla explains SOA as follows [38]. In a SOA environment, software
components can be exposed as services on the network, and so can be reused for
different applications and purposes. In SOA, developing new applications can be a
matter of mix-and-match: decide on the application that one needs, find out the ex-
isting components that can help build that application, glue them all together, and
one is done. SOA is an increasingly popular concept, but it has been around since

92 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

c03.qxd 8/24/2004 10:14 AM Page 92

TEAM LinG - Live, Informative, Non-cost and Genuine!

the mid-1980s. SOA has really not taken off because there has been no standard
middleware or application programming interfaces that would allow it to take root.
There were attempts to build them, such as the Distributed Computing Environment
(DCE) and Common Object Request Broker Architecture (CORBA), but neither
caught on, and SOA languished as an interesting concept, but with no significant
real-world applications. Then Web services (see below) came along and gave SOA
a new opportunity. The Web services underlying architecture works well with the
concept of SOA, so much so, in fact, that some analysts and software makers be-
lieve that the future of Web services rests with SOA. SOA is an architecture that
publishes services in the form of an XML interface; it is really no different from a
traditional Web service architecture in which Universal Description, Discovery and
Integration is used to create a searchable directory of Web services. In fact, UDDI
is the solution of choice for enterprises that want to make available software com-
ponents as services internally on their networks, using the SOA paradigm. Most
Web services implementations are point-to-point, where one has an intimate knowl-
edge of the platform to which one is interested in connecting. That means that the
Web service is not made available publicly on the network, and cannot be “discov-
ered”; in a sense, it is hard-coded in the point-to-point connection. In an SOA im-
plementation, information about the Web service and how to connect to it is pub-
lished in a UDDI-built directory, so that Web service can be easily discovered and
used in other applications and implementations. But although the basic Web ser-
vices architecture fits into the SOA concept, there are still roadblocks to setting
them up. Notable among them are security, identity management issues, and man-
agement problems—having software that will be able to track and manage hun-
dreds or dozens of Web services and their development and deployment. Software
is just becoming available to do that. On the security side, the issues still have not
been solved.

Web services (sometimes called application services or simply services) refers to
a developing distributed computing environment that has a foundation on simple
Internet-based standards to enable heterogeneous distributed computing. Web ser-
vices define a technique for describing software components to be accessed, meth-
ods for accessing these components, and discovery methods that enable the identifi-
cation of relevant service providers. Web services are programming-language-,
programming-model-, and system-software-neutral [114]. A Web service compris-
es content, or process, or both, with an open programmatic interface. Some exam-
ples include currency converters, stock quotes, and dictionaries. More complex ex-
amples include travel planners and procurement workflow systems. A Web service
has the following characteristics [85]:

� It is an Internet-based application that performs a specific task and complies
with a standard specification.

� It is an executable that can be expressed and accessed using XML and XML
messaging.

� It can be published, discovered, and invoked dynamically in a distributed
computing environment.

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 93

c03.qxd 8/24/2004 10:14 AM Page 93

TEAM LinG - Live, Informative, Non-cost and Genuine!

� It is platform- and language-independent.
Web services have created a new communication pathway between applica-

tions, enabling them to talk to each other and exchange information in a platform-
neutral, language-independent way. Originally, these services were designed to re-
duce costs and facilitate application integration. Web services have now also
become a new platform for information providers. Extensive data is now available
through Web services, from real-time stock quotes to information about local ve-
hicular traffic. The constituent technologies of Web services—SOAP and
WSDL—have been implemented in production environments for several years
and the tools to build, test, and deploy Web services have matured significantly.
In-depth knowledge of these key technologies was a prerequisite in early days; to-
day, with advanced developer tools, a Web service can be created/accessed very
rapidly by developers without needing a background in Web services technologies
such as SOAP or WSDL [18].

Web services standards are being defined within the W3C and other standards
bodies and form the basis for major new industry initiatives such as IBM
(Dynamic e-Business), Microsoft (.NET), and Sun Microsystems (Sun ONE).
Web services are small units of code that are independent of operating systems
and programming languages. They are designed to handle a limited set of tasks.
Web services make it easy to communicate between discrete applications; appli-
cations are able to access Web services via standard Web formats with no need to
know how the Web service itself is implemented. They also make it possible for
developers to reuse existing capabilities and services instead of writing new ones.
Web services utilize XML-based communicating protocols. Web services use the
standard web protocols Hypertext Transfer Protocol, XML (eXtensible Markup
Language3), SOAP, WSDL, and UDDI. HTTP is the World Wide Web standard
for communication over the Internet. HTTP is standardized by the World Wide
Web Consortium (W3C). XML is a well-known standard for storing, carrying, and
exchanging data. XML is standardized by the W3C. SOAP-based Web services
are becoming the most common implementation of SOA (however, there also are

94 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

3XML provides an essential mechanism for transferring data between services in an application- and
platform-neutral format. However, it is not well suited to large datasets with repetitive structures, such as
large arrays or tables. Furthermore, many legacy systems and valuable data sets exist that do not use the
XML format. The GGF was working at press time to define an XML-based language, the Data Format
Description Language (DFDL), for describing the structure of binary and character-encoded
(ASCII/Unicode) files and data streams so that their format, structure, and metadata can be exposed.
DFDL endeavors to describe existing formats in an actionable manner that makes the data in its current
format accessible through generic mechanisms. The DFDL description [which is saved in a (logically)
separate file from the data itself] provides a hierarchical description that structures and semantically la-
bels the underlying bits. It plans to capture how bits are to be interpreted as parts of low-level data types
(integers, floating point numbers, strings); how low-level types are assembled into scientifically relevant
forms such as arrays; how meaning is assigned to these forms through association with variable names
and metadata such as units; and how arrays and the overall structure of the binary file are parameterized
based on array dimensions, flags specifying optional file components, etc. Further, if the data file con-
tains repetitive structures, such as large arrays or tables, such a description can be very concise [33]. IT
planners should track future developments in this arena.

c03.qxd 8/24/2004 10:14 AM Page 94

TEAM LinG - Live, Informative, Non-cost and Genuine!

non-Web implementations) [15]. SOAP is a lightweight platform- and language-
neutral communication protocol that allows programs to communicate via stan-
dard Internet HTTP. SOAP is standardized by the W3C. WSDL is an XML-based
language used to define Web services and to describe how to access them. WSDL
is a suggestion by Ariba, IBM, and Microsoft for describing services for the W3C
XML activity on XML protocols. UDDI is a directory service with which busi-
nesses can register and search for Web services. UDDI is a public registry, where
one can publish and inquire about Web services [16].

Web services are services (normally including some combination of program-
ming and data, but possibly including human resources as well) that are made avail-
able from a business’s Web server for Web users or other Web-connected pro-
grams. Providers of Web services are generally known as application service
providers (ASPs). Web services range from such major services as storage manage-
ment and customer relationship management down to much more limited services
such as the furnishing of a stock quote and the checking of bids for an auction item.
The accelerating creation and availability of these services is a major Web trend.
Users can access some Web services through a P2P arrangement rather than by go-
ing to a central server. Some services can communicate with other services and this
exchange of procedures and data is generally enabled by a class of software known
as middleware. Besides the standardization and wide availability to users and busi-
nesses of the Internet itself, Web services are also increasingly enabled by the use
of XML as a means of standardizing data formats and exchanging data. As Web
services proliferate, concerns include the overall demands on network bandwidth
and, for any particular service, the effect on performance as demands for that ser-
vice rise. A number of new products have emerged that enable software developers
to create or modify existing applications that can be “published” (made known and
made accessible) as Web services [15]. In its use of Web services, grid services
equate PortType to class; operation to method; service to object instance. Grid ser-
vices add properties, PortType inheritance (via an extension to WSDL), Factory
pattern for creation of new objects and services, and a base set of classes.

As noted, SOAP, WSDL, WS-Inspection, and UDDI are of particular import to
OGSA/OGSI [114]; see Figure 3.13. These protocols and constructs are also revis-
ited in the chapters that follow, particularly Chapter 4.

SOAP provides a mechanism of messaging between a service requestor and a
service provider. It is a mechanism for formatting a Web service invocation, a sim-
ple enveloping process for XML payloads that defines a remote procedure call con-
vention and a messaging convention. SOAP payloads are independent of the under-
lying transport protocol and can be carried on HTTP, File Transfer Protocol (FTP),
or Java Messaging Service (JMS).

SOAP is a way for a program running in one kind of operating system (such as
Windows 2003) to communicate with a program in the same or another kind of an
operating system (such as Linux) by using the World Wide Web’s HTTP/XML as
the mechanisms for information exchange. Because Web protocols are installed and
available for use by all major operating system platforms, HTTP and XML provide
a solution to the question of how programs running under different operating sys-

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 95

c03.qxd 8/24/2004 10:14 AM Page 95

TEAM LinG - Live, Informative, Non-cost and Genuine!

tems in a network can communicate with each other. SOAP specifies how to encode
an HTTP header and an XML file so that a program in one computer can invoke a
program in another computer and transact information. It also specifies how the
called program can return a response. SOAP was developed by Microsoft, Develop-
Mentor, and Userland Software and has been proposed as a standard interface to the
IETF. A point of consideration is that SOAP-based programs typically can readily
get through firewall servers that filter out packet sequences (requests) other than
those for known applications (through the designated-port mechanism); otherwise,
some firewall script changes may be needed. Since HTTP requests are usually al-
lowed through firewalls, programs using SOAP are able to communicate with pro-
grams anywhere [15].

The Web Services Description Language is an XML mechanism for describing
Web services as a set of endpoints operating on messages. These messages contain
either document-oriented (messaging) or remote procedure call payloads. Service
interfaces are defined abstractly in terms of message structures and sequences of

96 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Server host Server host Client (host)
Web service C, D Web service A, B

SOAP/HTTP

Client
Application

SOAP
proxy

UDDI
registry

Discover

Register
Well-known host

B

A
C

D

WSDL

WSDL

A Web service is a software system identified by a URI
whose public interfaces and bindings are defined and described
using XML. Its definition can be discovered by other
software systems. These other systems may then interact with the
Web service in a manner prescribed by its definition, using
XML-based messages conveyed by Internet protocols.
The Web Services Description Language (WSDL) is the
de-facto XML-based standard for describing Web services.
The Simple Object Access Protocol (SOAP) over HTTP is
the XML-based standard network protocol for exchanging
messages between Web services (W3C-given definitions).

Figure 3.13 Relationship among key protocols and constructs.

c03.qxd 8/24/2004 10:14 AM Page 96

TEAM LinG - Live, Informative, Non-cost and Genuine!

message exchanges. Service interfaces are bound to a tangible network protocol and
data-encoding format to define an endpoint. Related endpoints are bundled to de-
fine services. WSDL is extensible to allow description of endpoints and the con-
crete representation of their messages for a variety of different message formats and
network protocols.

The Web Services Inspection Language consists of the XML language along
with related conventions for locating service descriptions published by a service
provider. A WSIL document can contain a collection of service descriptions (e.g., a
URL to a WSDL document) and links (e.g., a URL to another WISL document) to
other sources of service descriptions. A service provider creates a WSIL document
and makes the document network accessible. Service requestors use standard Web-
based access mechanisms (e.g., HTTP GET) to retrieve this document and discover
what services the service provider advertises.

UDDI is an XML-based registry for businesses worldwide to list themselves on
the Internet. UDDI’s ultimate goal is to streamline online transactions by enabling
companies to find one another on the Web and make their systems interoperable
for e-commerce. UDDI is often compared to a telephone book’s white, yellow,
and green pages. The registry allows businesses to list themselves by name, prod-
uct, location, or the Web services they offer. Microsoft, IBM, and Ariba spear-
headed UDDI. The registry now includes 100 companies. The UDDI specification
utilizes World Wide Web Consortium (W3C) and IETF standards such as XML,
HTTP, and Domain Name System (DNS) protocols. It has also adopted early ver-
sions of the proposed SOAP messaging guidelines for cross-platform program-
ming. UDDI entered its public beta-testing phase in late 2000. Each of the three
founder companies now operates a registry server that is interoperable with
servers from other members. As information goes into a registry server, it is
shared by servers in the other businesses (additional companies were expected to
be acting as operators of the UDDI Business Registry at a future time.) UDDI reg-
istration is open to companies worldwide, regardless of their size [15].

Above, we also mentioned .NET. .NET is Microsoft’s Internet and Web strategy
launched in 2000. .NET is an Internet- and Web-based infrastructure that delivers
software as Web services and is a framework for universal services. It is a server-
centric computing model. Initially, Windows 2000 and Windows XP comprised the
backbone of .NET; as time goes by the .NET infrastructure was expected to be inte-
grated into all Microsoft operating systems and desktop and server products (the
.NET plan includes a new version of the Windows operating system, a new version
of Office, and a variety of new development software for programmers to build
Web-based applications) [16]. .NET is based on Web standards such as HTTP, the
communication protocol between Internet applications; XML, the format for ex-
changing data between Internet applications; SOAP, the standard format for re-
questing Web services; and UDDI (described above), the standard to search and
discover Web services. Web services provide data and services to other applica-
tions. The .NET framework is a common environment for building, deploying, and
running Web services and Web applications. The .NET framework contains com-
mon class libraries like ADO.NET, ASP.NET, and Windows Forms to provide ad-

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 97

c03.qxd 8/24/2004 10:14 AM Page 97

TEAM LinG - Live, Informative, Non-cost and Genuine!

vanced standard services that can be integrated into a variety of computer systems.
The .NET framework is language-neutral. Currently, it supports C++, C#, Visual
Basic, JScript (the Microsoft version of JavaScript), and COBOL. Web services are
the main building blocks in the Microsoft .NET programming model [16].

We also made reference to the Web Services Resource Framework (WSRF). The
effective merging of grid and Web services that occurred in the early 2000s has lead
to the WSRF, a series of OASIS-developed4 specifications for performing grid
computing on top of Web services [173]. The purpose of the WSRF Technical
Committee (“TC”) in OASIS is to define a generic and open framework for model-
ing and accessing stateful resources using Web services. This includes mechanisms
to describe views on the state, to support management of the state through proper-
ties associated with the Web service, and to describe how these mechanisms are
extensible to groups of Web Services [174]. WSRF includes the WS-ResourceProp-
erties, WS-ResourceLifetime, WS-BaseFaults, and WS-ServiceGroup specifica-
tions (see Table 3.6 [174]). WSRF.NET is a project at the University of Virginia
that allows the creation of WSRF-compliant Web services using the Microsoft
.NET platform [173].

WSRF defines the means by which [174]:

� Web services can be associated with one or more stateful resources (named,
typed, state components).

� Service requestors access stateful resources indirectly through Web services
that encapsulate the state and manage all aspects of Web-service-based access
to the state.

� Stateful resources can be destroyed through immediate or time-based destruc-
tion.

� The type definition of a stateful resource can be associated with the interface
description of a Web service to enable well-formed queries against the re-
source via its Web service interface.

� The state of the stateful resource can be queried and modified via Web service
message exchanges.

98 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

4OASIS (Organization for the Advancement of Structured Information Standards) is a nonprofit, interna-
tional consortium whose goal is to promote the adoption of product-independent standards for informa-
tion formats such as Standard Generalized Markup Language (SGML), XML, and HTML. Currently,
OASIS (formerly known as SGML Open) is working to bring together competitors and industry stan-
dards groups with conflicting perspectives to discuss using XML as a common Web language that can be
shared across applications and platforms. OASIS sponsors XML.org , a nonprofit XML Web portal. The
goal of OASIS is not to create structured information standards for XML, but to provide a forum for dis-
cussion, to promote the adoption of interoperability standards, and to recommend ways members can
provide better interoperability for their users. OASIS has worked with the United Nations to sponsor
ebXML, a global initiative for electronic business data exchange. EbXML, whose goal is to make it eas-
ier for companies of all sizes and locations to conduct business on the Internet, is currently focusing on
the specific needs of business-to-business and Internet security as it relates to XML (http://searchwebser-
vices.techtarget.com/gDefinition/0,294236,sid26_gci527425,00.html).

c03.qxd 8/24/2004 10:14 AM Page 98

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Endpoint references to Web services that encapsulate stateful resources can
be renewed when they become invalid; for example, due to a transient failure
in the network.

� Stateful resources can be aggregated for domain-specific purposes.

Additional related specifications have been developed that will be considered by
OASIS for the WSRF. These were developed by Computer Associates, Fujitsu,
Globus Alliance, Hewlett-Packard, IBM, and the University of Chicago. The moti-
vation for these specifications is that whereas Web service implementations typical-
ly do not maintain state information during their interactions, their interfaces must
frequently allow for the manipulation of state, that is, data values that persist across
and evolve as a result of Web service interactions [174]. For example, an online air-
line reservation system must maintain state concerning flight status, reservations
made by specific customers, and the system itself: its current location, load, and

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 99

Table 3.6 WSRF specifications

WS-ResourceProperties
This defines how the data associated with a stateful resource can be queried and changed us-
ing Web services technologies. This allows a standard means by which data associated with
a WS-Resource can be accessed by clients. The declaration of the WS-Resource’s properties
represents a projection of or a view on the WS-Resource’s state. This projection represents
an implied resource type which serves to define a basis for access to the resource properties
through Web service interfaces.

WS-ResourceLifetime
This defines two ways of destroying a WS-Resource: immediate and scheduled. This allows
designers flexibility to design how their Web services applications can clean up resources
no longer needed.

WS-BaseFaults
This defines an XML schema type for a base fault, along with rules for how this fault type is
used by Web services. A designer of a Web services application often uses interfaces de-
fined by others. Managing faults in such an application is more difficult when each interface
uses a different convention for representing common information in fault messages. Support
for problem determination and fault management can be enhanced by specifying Web ser-
vices fault messages in a common way. When the information available in faults from vari-
ous interfaces is consistent, it is easier for requestors to understand faults. It is also more
likely that common tooling can be created to assist in the handling of faults.

WS-ServiceGroup
This defines a means by which Web services and WS-Resources can be aggregated or
grouped together for a domain-specific purpose. In order for requestors to form meaningful
queries against the contents of the ServiceGroup, membership in the group must be con-
strained in some fashion. The constraints for membership are expressed by intension using a
classification mechanism. Further, the members of each intension must share a common set
of information over which queries can be expressed.

c03.qxd 8/24/2004 10:14 AM Page 99

TEAM LinG - Live, Informative, Non-cost and Genuine!

performance. Web service interfaces that allow requestors to query flight status,
make reservations, change reservation status, and manage the reservation system
must necessarily provide access to this state. In the Web Services Resource Frame-
work, we model state as stateful resources and codify the relationship between Web
services in terms of an implied resource pattern.

The concepts introduced in this section will be revisited and used in the chapters
that follow.

100 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

c03.qxd 8/24/2004 10:14 AM Page 100

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 101
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 4

Standards Supporting
Grid Computing: OGSI

In recent years, grid computing has attracted the attention of the technical com-
munity with the evolution of on-demand and autonomic computing, as discussed
earlier in the book. The business community is also starting to consider its poten-
tial merits at this juncture. For any kind of new technology, corporate and busi-
ness decision makers typically seek answers to a set of questions, including “Are
there firm standards to support the technology and its widespread deployment?”
As the reader is well aware by now, grid computing is a process of coordinated re-
source sharing and problem solving in dynamically established, multiinstitutional,
virtual organizations, and/or in a computing utility environment [3, 49]. The grid
computing paradigm based on open standards can also be utilized to define a
“portable” form of outsourcing (call it “open source outsourcing”), in which ser-
vice providers can be painlessly replaced “at will.” A vision for grid computing is
as follows:

IBM’s ultimate vision for Grid is a utility model over the Internet, where clients draw
on computer power much as they do now with electricity. With more than 60% of IT
budgets dedicated to maintenance and integration—a percentage that continues to
rise—the need to reduce complexity and management demands is a pressing one.
[118]

Quite a bit more remains to be done at the technical level, however, to make this
vision a true reality. We noted in the preceding chapters that the absence of stan-
dards has been a retarding factor in the recent past with regard to widespread com-
mercial deployment of grid computing. The following quote is representative of the
recent situation:

Much of Grid Computing is undiscovered country, and many groups are turning their
attention to the emerging open standards. In many ways, the discussions about Grid
Services parallel those around Internet and XML standards in the mid-1990s. [143]

The fundamental purpose of a computing grid is to make use of broadly distrib-
uted computing power across any kind of network (including a company’s own

c04.qxd 8/24/2004 10:15 AM Page 101

TEAM LinG - Live, Informative, Non-cost and Genuine!

computing power); but without standards, one is actually limiting, rather than ex-
tending, one’s ability to “harvest” and utilize spare computer power on remote com-
puters [73]. An array of heterogeneous resources comprise a grid, and, hence, it is
nearly a mandatory necessity that these resources interact and behave in a well-de-
fined and consistent manner [50]. Without industry-wide standards, it is a technical
challenge to achieve highly effective interactions among resources, especially when
these belong to different (virtual) organizations.

In 1987, in a Bellcore/Telcordia Special Report, in a section called “Network for
a Computing Utility,” we stated that protocols and standards were critical:

The proposed service provides the entire apparatus to make the concept of the Com-
puting Utility possible. . . . [S]ecurity and accounting . . . are much more complex in
the distributed, public (grid) environment. . . . This service is basically feasible once a
transport and switching network with strong security and accounting (chargeback) ca-
pabilities is deployed. A high degree of intelligence in the network is required . . . a
physical network is required . . . security and accounting software is needed . . . proto-
cols and standards will be needed to connect servers and users, as well as for account-
ing and billing. These protocols will have to be developed before the service can be
established. . . . [6]

Lately, the Global Grid Forum has indeed started a number of architecture stan-
dardization efforts in order to provide the required improved software interoperabil-
ity, security (confidentiality, integrity, and availability), resource definition, re-
source discovery, policy, and grid manageability. The Global Grid Forum is a
community-initiated forum of researchers and practitioners working on grid com-
puting, and a number of working groups are producing technical specs, document-
ing user experiences, and writing implementation guidelines. The need for open
standards that define these interactions and foster interoperability between compo-
nents supplied from different sources has been the motivation for the Open Grid
Service Architecture/Open Grid Services Infrastructure (OGSA/OGSI) milestone
documentation published by the Forum [50]. The OGSI documentation was pub-
lished in 2002 and a draft version of the OGSA was published late in 2003. As of
press time, both OGSA and OGSI were still “works in progress.” Efforts are also
underway in the GGF to document “best practices,” implementation guidelines, and
ancillary standards for grid technologies. More than two dozen working groups at
the GGF were defining grid standards in areas such as applications and program-
ming models, data management, security, performance, scheduling, and resource
management. The Globus Toolkit™ is an open architecture, open standards, com-
mercial-grade tool for building computational grids; it is a widely cited, solid refer-
ence implementation of the OGSA/OGSI standards.

As noted in Chapter 3, OGSA is a service-oriented architecture (SOA). OGSI
defines mechanisms for creating, managing, and exchanging information among
grid services. A grid service is a Web service that conforms to a set of conventions
(interfaces and behaviors) that define how a client interacts with a grid capability
(Web services were also briefly discussed in Chapter 3) [84]. Specifically, the

102 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:15 AM Page 102

TEAM LinG - Live, Informative, Non-cost and Genuine!

OGSI specifications define the standard interfaces and behaviors of a grid service,
building on a Web services base [36]. This approach provides a common and open
standards-based mechanism to access various grid services using existing industry
standards such as SOAP, XML, and WS-Security [17].

In this chapter, we drill down on grid standards and standardization activities. At
press time, there was only a short list of grid computing standards: the just-cited
draft Open Grid Services Architecture, along with its companion implementation
standard, the Open Grid Services Infrastructure. Here, we first take a high-level
view of OGSI (and OGSA, by implication), and then we proceed with a more de-
tailed assessment; because of the relationship between the two documents, OGSA
also gets some coverage in this chapter. In Chapter 5, we focus more extensively on
OGSA itself1. For a more comprehensive description of these concepts, the reader
should consult the key references listed in Table 4.1. The purpose of this chapter is
to highlight the standardization progress and not to provide a comprehensive speci-
fication and/or description. Also, note that some of the details may change over
time (but one hopes that the overall framework is stable, after these many years of
research and funding); hence, the reader should always consult the latest GGF doc-
umentation, after acquiring a basic understanding through the material presented
herewith.

In Chapter 3, we also made reference to WSRF. The recent practical confluence
of grid and Web services that occurred in the early 2000s led to the development by
OASIS of WSRF, which is a specification for performing grid computing on top of
Web services [173]. This is another level of useful standardization that will further
foster the introduction of “open-source” grid computing services on the part of
GSPs.

STANDARDS SUPPORTING GRID COMPUTING: OGSI 103

1This ordering is dictated by the chronological development of these documents; pedagogically, the re-
verse order is ostensively better.

Table 4.1 OGSA/OGSI documents

� Anatomy of the Grid. This architecture white paper by Ian Foster et al. defines the field of
grid computing. The document includes a description all of a grid’s constituent parts and
what they do.

� Physiology of the Grid. This white paper by Ian Foster et al. explains how grid comput-
ing can be supported using Web services. It presents details about OGSA and grid se-
mantics (i.e., services). Along with the Anatomy of the Grid, these two papers provide a
detailed overview of grid computing, and are inputs to the OGSA and OGSI specifica-
tions.

� Open Grid Services Architecture (OGSA), GWD-R (draft-ggf-ogsa-ogsa-011), Draft. Ed-
itors: I. Foster et al., September 23, 2003.

� Open Grid Services Infrastructure (OGSI), Version 1.0, Editors: S. Tuecke et al., June
27, 2003.

c04.qxd 8/24/2004 10:15 AM Page 103

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.1 INTRODUCTION

The architecture for grid computing is defined in the Open Grid Services Architec-
ture that describes the overall structure and the services to be provided in grid envi-
ronments [17]. Figure 4.1 depicts the network’s role in supporting a (standardized)
grid. Figure 4.2 is the reference diagram that illustrates the OGSA. The companion
implementation standard, the OGSI, is a formal specification of the concepts de-
scribed by the OGSA; it specifies a set of service primitives that define a nucleus of
behavior common to all Grid Services [17]. OGSI, in effect, is the base infrastruc-
ture on which the OGSA is built, as illustrated pictorially in Figure 4.3.

As just noted, OGSA is a distributed interaction and computing architecture that
is based around the grid service concept, assuring interoperability on heterogeneous
systems. As a result, different types of systems can communicate and share infor-
mation. OGSA allows system composition to perform a specific task, or solve a
challenging problem, by using distributed resources over the interconnecting net-
work [119]. The grid architecture is now being developed based on Internet proto-
cols (for example, communication, routing, file transfer, name resolution, etc.) and
services. The grid architecture defined in OGSA leverages the emerging Web ser-
vices to define the WSDL interfaces that are relevant to the grid environment [119].
We introduced WSDL in Chapter 3; as noted there, WSDL is an XML-based lan-
guage used to describe the services that a business offers, and to provide a mecha-
nism for individuals and businesses to access these services in an on-line fashion
(WSDL is derived from Microsoft’s SOAP and IBM’s Network Accessible Service
Specification Language). WSDL is used in the context of UDDI. As noted in Chap-
ter 3, UDDI is an XML-based global registry for businesses that enables these busi-
nesses to list themselves and their services on the Internet (additional details are

104 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Figure 4.1 Networking role.

Provider 2

Provider 1

OGSI—Open Grid Services Infrastructure

OGSA Architected Services

Web services

Requestor

Network Services

OGSI—Open Grid Services Infrastructure

OGSA Architected Services

Web services

OGSA Architected Services

Web services

OGSI—Open Grid Services Infrastructure

c04.qxd 8/24/2004 10:15 AM Page 104

TEAM LinG - Live, Informative, Non-cost and Genuine!

provided later in the chapter). These conventions and other OGSI mechanisms asso-
ciated with grid service creation and discovery provide for the controlled, fault-re-
silient, and secure management of the distributed and often long-lived “state” that is
commonly required in advanced distributed applications2 [84]. Building on Web
services standards (see relevant footnotes in Chapter 3), OGSA takes the view that a
grid service is simply a Web service that conforms to a particular set of conven-
tions; that is, grid services are defined in terms of standard WSDL with some (mi-
nor) extensions. With this approach, OGSA is driving the hosting environment to
accept modifications or additions for supporting the repertoire of grid services
[119]. To further clarify what a grid service is, note that an OGSI-compliant grid
service defines a subclass of Web services whose ports all inherit capabilities from
a standard grid service port (so a grid service is a Web service that conforms to a set

4.1 INTRODUCTION 105

Grid applications
layer

OGSA
architected grid
services layer

Web services
layer

Physical and
logical
resources layer

Standards-
based

Middleware

Users

Business Applications

Open Grid Services Architecture (OGSA)
OGSA Architected Services

Local, metro, national,

Servers

Web services

OGSI—Open Grid Services Infrastructure

StorageOGSA
Enabled

Workflow Database Messaging SecurityDirectoryFile Systems

OGSA EnabledOGSA Enabled

OGSA
Enabled

Figure 4.2 Basic functional model for grid environment.

Figure 4.3 OGSA reliance on OGSI.

OGSA Architected Services

Web services

OGSI—Open Grid Services Infrastructure

2“State” is “service data,” that is a collection of XML elements encapsulated as service data elements

Discovery Lifecycle State Mgt.
Service
Groups

Handle MapNotificationFactory

A
ut

on
om

ic
 C

ap
ab

ili
tie

s

P
ro

fe
ss

io
na

l S
er

vi
ce

s

OGSA
Enabled

OGSA
Enabled

OGSA
Enabled

OGSA
Enabled

OGSA
Enabled

c04.qxd 8/24/2004 10:15 AM Page 105

TEAM LinG - Live, Informative, Non-cost and Genuine!

of conventions that provide for controlled, fault-resilient, and secure management
of stateful services) [31].

The running of an individual service (for example, an information query) is
called a service instance. Services and service instances can be “lightweight” and
transient, or they can be long-term tasks that require “heavy-duty” support from the
grid. Services and service instances can be dynamic or interactive, or they can be
batch processed. Service can run at scheduled times, or they can run at arbitrary
times [143]. As seen in Figure 4.3, grid services include:

� Discovery

� Lifecycle

� State management

� Service groups

� Factory

� Notification

� Handle map

These are defined later on in the chapter, in Section 4.5.
A “layering” approach is used to the extent possible in the definition of a grid ar-

chitecture because it is advantageous for higher-level functions to use common
lower-level functions [44]. With standards, IT staff at Fortune 500 companies will
have a predictable way to find, identify, and utilize new grid services as they be-
come available. Additionally, OGSA will provide for interoperability between grids
that may have been built using different underlying tools [17]. Hence, the going-
forward grid-deployment “formula” is as follows: open standards and protocols
lead to the development of services, and services are the foundation blocks of the
grid. Services allow users to carry out tasks on the grid. Grid functionality can in-
clude the following, among others [143]: information queries, network bandwidth
allocation, data management/extraction, processor requests, managing data ses-
sions, and balance workloads.

As noted, the GGF is comprised of a set of working groups that are developing
standards and best practices for distributed computing (“grids” and “metacomput-
ing”) efforts, including those specifically aimed at very large data sets, high-perfor-
mance computing, and P2P. GGF represents a merger of three technical communi-
ties: those in North America (originally called “Grid Forum”), Asia–Pacific, and
the European Grid Forum (eGrid). GGF has become a key point of coordination, in-
formation exchange, and collaboration for staff involved in large-scale R&D pro-
grams in the U.S., Europe, Canada, and Asia–Pacific. Major industry players are
getting involved in the Global Grid Forum and we are seeing increasing and signif-
icant collaboration with industry groups such as the Peer-to-Peer Working Group
and the New Productivity Initiative. The GGF creates an opportunity to reduce the
costs of these programs, to accelerate their progress, and to promote and ensure
common practices and interoperability between large-scale “metacomputing” or
“grid” systems [33]. IBM and other industry leaders, researchers, and representa-

106 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:15 AM Page 106

TEAM LinG - Live, Informative, Non-cost and Genuine!

tives from a variety of grid software vendors are actively involved in the work of
the GGF [17]. The development of OGSA specifications receives support from
IBM, the U.S. Department of Energy, the National Science Foundation, and
NASA’s Information Power Grid program, among others [36]. It is hoped that the
OGSI will form the basis of a number of open and more functional grid implemen-
tations. GGF sponsors the Global Grid Forum Workshop. By press time, nine work-
shops had been held.3 OGSA-related GGF groups include (also see Table 4.2) [36]:

� The Open Grid Services Architecture Working Group (OGSA-WG)

� The Open Grid Services Infrastructure Working Group (OGSI-WG)

� The Open Grid Service Architecture Security Working Group (OGSA-SEC-
WG)

� Database Access and Integration Services Working Group (DAIS-WG)

Table 4.3 identifies key documents and/or specifications that have been pro-
duced by the GGF. Since OGSA builds on Web services, it likely will incorporate

4.1 INTRODUCTION 107

3For example, the 11th Global Grid Forum Workshop (GGF11, June 2004) was held in Honolulu.
GGF10 took place in Berlin in March 2004. GGF8 (June 2003) was held in Seattle, Washington, June
24–27, 2003. The meeting gathered about 700 grid stakeholders, practitioners, and experts. The 7th
Global Grid Forum Workshop (GGF7, March 2003) GGF7 was held in Tokyo, Japan, March 4–7, 2003.
The meeting gathered about 780 grid stakeholders, practitioners, and experts for the first GGF held in the
Asia–Pacific region.

Table 4.2 GGF groups

Group Status*

Grid Policy Architecture Approved RG
IPv6 Approved WG
Open Grid Service Architecture Authorization Approved WG
Authority Recognition Approved RG
Job Submission Description Language Approved WG
Grid File System Pending WG

Proposed New Groups

Astronomy—RG Pending BOF
Business Grid—RG Pending BOF
CDOLM—WG Pending BOF
Grid API—WG Pending BOF
Grid Federations—RG Pending BOF
Metadata Management—WG Pending BOF
Persistent Archives Pending BOF
Ubiqutous Computing—RG Pending BOF
Workflow Management—WG Pending BOF

*Group status as of press date.
RG = Research Group.
WG = Working Group.

c04.qxd 8/24/2004 10:15 AM Page 107

TEAM LinG - Live, Informative, Non-cost and Genuine!

108 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Table 4.3 Recent GGF documents

Document Title Document type Group Author(s)

GFD.1 GGF Document Series Community practice GFSG C. Catlett
GFD.2 GGF Structure Community practice GFSG C. Catlett, I. Foster,

W. Johnston
GFD.3 GGF Management Community practice GFSG C. Catlett, I. Foster,

W. Johnston
GFD.4 Ten Actions When Informational SRM J. Schopf

Superscheduling
GFD.5 Advanced Reservation Experimental SRM V. Sander, A. Roy

API
GFD.6 Attributes for Informational SRM U. Schwiegelshohn,

Communication R. Yahyapour
between Scheduling
Instances

GFD.7 A Grid Monitoring Informational ISP B. Tierney, R. Aydt,
Architecture D. Gunter, W.

Smith, M. Swany,
V. Taylor,
R. Wolski

GFD.8 A Simple Case Study of Informational ISP R. Aydt, D. Gunter,
a Grid Performance W. Smith, M.
System Swany, B. Tierney,

V. Taylor
GFD.9 Overview of Grid Informational APME G. Fox, M. Pierce,

Computing D. Gannon,
Environments M. Thomas

GFD.10 Grid User Services Informational APME J. Towns,
Common Practices J. Ferguson,

D. Frederick,
G. Myers

GFD.11 Grid Scheduling Informational SRM M. Roehrig,
Dictionary of Terms W. Ziegler,
and Keywords P. Wieder

GFD.12 Security Implications Informational SEC M. Humphrey,
of Typical Grid M. Thompson
Computing Usage
Scenarios

GFD.13 Grid Database Access Informational DATA M. P. Atkinson, V.
and Integration: Dialani, L. Guy,
Requirements and I. Narang, N.W.
Functionalities Paton, D. Pearson,

T. Storey, P.
Watson

GFD.14 Services for Data Informational DATA V. Raman, I. Narang,
Access and Data C. Crone, L. Haas,
Processing on Grids S. Malaika, T.

Mukai, D.
Wolfson, C. Baru

c04.qxd 8/24/2004 10:15 AM Page 108

TEAM LinG - Live, Informative, Non-cost and Genuine!

specifications defined within the W3C, IETF, OASIS, and other standards organi-
zations. A first (prototype) grid service implementation that follows GGF specs was
demonstrated in early 2002, at the Globus Toolkit tutorials held at Argonne Nation-
al Laboratory; the Globus Toolkit Version 3.0 is based on the OGSI standard. Other
commercial products are also under development.

In the material that follows, we provide some (additional) motivations for stan-
dardization. We then look at architectural elements. Following this discussion, we
look at OGSA/OGSI from a pragmatic perspective, and then from a more formal
perspective.

4.2 MOTIVATIONS FOR STANDARDIZATION

We opened this chapter by noting the reasons for pursuing industry and/or regulato-
ry (de jure) standards. In this area, most standards are of the “industry type.” When

4.2 MOTIVATIONS FOR STANDARDIZATION 109

Table 4.3 Continued

Document Title Document type Group Author(s)

GFD.15 Open Grid Services Recommendation ARCH S. Tuecke, K.
Infrastructure Czajkowski, I.

Foster, J. Frey,
S. Graham,
C. Kesselman,
T. Maguire,
T. Sandholm,
D. Snelling,
P. Vanderbilt

GFD.16 Global Grid Forum Community practice SEC R. Butler, T.
Certificate Policy Genovese
Model

GFD.17 CA-based Trust Issues Informational SEC M. Thompson, D.
for Grid Olson, R. Cowles,
Authentication and S. Mullen, M.
Identity Delegation Helm

GFD.18 An Analysis of the Informational SEC T.Goss-Walter,
UNICORE Security R.Letz, T.
Modal Kentemich, H.-C

Hoppe
GFD.19 Job Description for Informational GFSG J. Schopf, P. Clarke,

GGF Steering Group B. Nitzberg, C.
Members Catlett

GFD.20 GridFTP: Protocol Recommendation DATA W. Allcock
Extensions to FTP
for the Grid

GFD.21 GridFTP Protocol Experimental DATA I. Mandrichenko
Improvements

c04.qxd 8/24/2004 10:15 AM Page 109

TEAM LinG - Live, Informative, Non-cost and Genuine!

we use the word standard throughout this book, we mean, multivendor, public-fo-
rum, or accredited-standard-organization-based agreements.4 The lack of standards
has meant that companies, developers, and organizations have had to develop and
support grid technology using proprietary techniques and solutions, thereby limit-
ing its deployment potential. An effective grid relies on making use of computing
power, whether via a LAN, over an extranet, or through the Internet. To use com-
puting power efficiently, one needs to support a gamut of computing platforms;
also; one needs a flexible mechanism for distributing and allocating the work to in-
dividual clients [73].

The time is now ripe for grid standards. Telecommunications standards were de-
veloped (in critical-mass fashion) in the 1980s, Internet standards were developed
(in critical-mass fashion) in the 1990s, and, hopefully, grid computing standards
will developed (in critical-mass fashion) in the 2000s.

A closed, proprietary environment limits the ease with which one can distribute
work, who can become a service provider, who can be a service requester, and how
one can find out about the available grid resources. The reader can grasp the limita-
tions of a nonstandard approach by considering any of the better-known grid com-
puting projects on the Internet. For example, consider distributed.net. This organi-
zation is a “loosely knit” group of computer users located all over the world, that
takes up challenges and run projects that require a lot of computing power. It solves
these by utilizing the combined idle processing cycles of their members’ comput-
ers.5 To illustrate the point about standards, to become a service provider for the
distributed.net grid, one must download a specific client that is capable of process-
ing the work units from the corresponding servers. However, with a distributed.net
client installed, one can only process work units supplied by distributed.net [73].
Furthermore, distributed.net service providers can only process those work units
supplied by distributed.net. For example, if distributed.net wanted to allow their
service providers (those people with the distributed.net client installed) to process
SETI@Home work units, it would be problematic. distributed.net would have to re-

110 STANDARDS SUPPORTING GRID COMPUTING: OGSI

4The fact that a company such as Cisco (as an example) may have an internal “standard” to paint their
boxes teal is not what we are focusing on here.
5Distributed.net (Distributed Computing Technologies Inc.) was founded in 1997. Now the project has
grown to encompass thousands of users around the world. distributed.net’s computing power has grown
to become equivalent to that of more than 160,000 PII 266 MHz computers working 24 hours a day, 7
days a week, 365 days a year. Distributed.net counts five victories so far. Their first victory was an-
nounced on October 19, 1997, indicating that they had found the correct solution for RSA Labs’ RC5-
32/12/7 56-bit secret-key challenge. Confirmed by RSA Labs, the key 0x532B744CC20999 presented
the plaintext message for which they had been searching for 250 days. Their second victory was an-
nounced on February 24, 1998, confirming that they had found the correct solution for the RSA Labs’
DES-II-1 56-bit secret-key challenge. The solution key was 76 9E 8C D9 F2 2F 5D EA and was found
after 40 days of work. Their third victory was on January 19, 1999, when they found the correct key to
the RSA Labs DES-III contest, with the help of the Electronic Frontier Foundation’s “Deep Crack” cus-
tomized DES cracker. The correct key was 92 2C 68 C4 7A EA DF F2. Their fourth victory was on 16
January 2000 when they received the winning key for the CSC contest from a SPARC in the United
States after searching for 62 days. Their fifth victory was on July 14, 2002 when they completed the
RC5-64 project, after 1,757 days of working. The key was 0x63DE7DC154F4D039. (From the distrib-
uted.net FAQ.)

c04.qxd 8/24/2004 10:15 AM Page 110

TEAM LinG - Live, Informative, Non-cost and Genuine!

deploy their service provider functionality. They would also have to redesign many
of their discovery and distribution systems to allow different work units to be de-
ployed to service providers, and they would need to update their statistical analysis
on completed units to track it all properly [73].

As this example illustrates, standards are critical to making the computing utility
concept a reality. On the other hand, a corporate user just looking to secure better
utilization of its platforms and internal resources could start with a vendor-based
solution and then move up to a standards-based solution in due course. Some spe-
cific areas where a lack of grid standards limit deployment are [73]:

� Data management. For a grid to work effectively, there is a need to store in-
formation and distribute it. Without a standardized method for describing the
work and how it should be exchanged, one quickly encounters limits related
to the flexibility and interoperability of the grid.

� Dispatch management. There are a number of approaches that can be used
to handle brokering of work units and to distribute these work units to client
resources. Again, not having a standard method for this restricts the service
providers that can connect to the grid and accept units of work from the grid;
this also restricts the ability of grid services users to submit work.

� Information services. Metadata6 about the grid service helps the system to
distribute information. The metadata is used to identify requesters (grid
users), providers, and their respective requirements and resource availability.
Again, without a standard, one can only use specific software and solutions to
support the grid applications.

� Scheduling. As covered in Chapter 3, work must be scheduled across the ser-
vice providers to ensure they are kept busy. To accomplish this, information
about remote loads must be collected and administered. A standardized
method of describing the grid service enables grid implementations to specify
how work is to be scheduled.

� Security. Without a standard for the security of a grid service and for the se-
cure distribution of work units, one runs the risk of distributing information to
the “wrong” clients. Although proprietary methods can provide a level of se-
curity, they limit accessibility.

� Work unit management. Grid services require management of the distribu-
tion of work units to ensure that the work is uniformly distributed over the

4.2 MOTIVATIONS FOR STANDARDIZATION 111

6Metadata is a definition or description of data. In data processing, metadata is definitional data that pro-
vides information about, or documentation of, other data managed within an application or environment.
For example, metadata would document data about data elements or attributes (name, size, data type,
etc.), data about records or data structures (length, fields, columns, etc.), and data about data (where it is
located, how it is associated, ownership, etc.). Metadata may include descriptive information about the
context, quality, condition, or characteristics of the data. For example, the data of a newspaper story is
the headline and the story, whereas the metadata describes who wrote it, when and where it was pub-
lished, and what section of the newspaper it appears in. Metadata can help us determine who content is
for and where, how, and when it should appear. (This footnote based on [82]; also see [83].)

c04.qxd 8/24/2004 10:15 AM Page 111

TEAM LinG - Live, Informative, Non-cost and Genuine!

service providers. Without a standard way of advertising and managing this
process, efficiencies are degraded.

Looking from the perspective of the grid applications developer, a closed envi-
ronment is similarly problematic because to make use of the computing resources
across a grid, the developer must utilize a specific tool kit or environment to build,
distribute, and process work units. The closed environment limits the choice of
grid-resident platforms on which work units can be executed and, at the same time,
also limits how one uses and distributes work and/or requests to the grid [73]. It also
means that one cannot combine or adopt other grid solutions for use within an orga-
nization’s grid without redeploying the grid software.

The generic advantages of the standardized approach are well known, since they
apply across any number of disciplines. In the context of grid computing, they all
reduce to one basic advantage: the extension and expansion of the resources avail-
able to the user for grid computing. From an end user’s perspective, standardization
translates into the ability to purchase middleware and grid-enabled applications
from a variety of suppliers in an off-the-shelf, shrink-wrapped fashion. Figure 4.4
depicts an example of the environment that one aims to achieve.

For example, standard APIs enable application portability; without standard
APIs, application portability is difficult to accomplish (different platforms access
protocols in different ways). Standards enable cross-site interoperability; without
standard protocols, interoperability is difficult to achieve. Standards also enable the
deployment of a shared infrastructure [44].7 Use of the OGSI standard, therefore,
provides the following benefits [73]:

112 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Figure 4.4 Example of a service-oriented architecture.

7This material is licensed for use under the terms of the Globus Toolkit Public License.

Secure Messaging Secure Messaging

Grid Service

Standard Interface
� Multiple Bindings
� Multiple Implementations

Linux Platform

Secure Messaging

Secure Messaging

Secure Messaging
Secure
Messaging

Grid Service

Standard Interface
� Multiple Bindings
� Multiple Implementations

Windows Platform

Grid Service

Standard Interface
� Multiple Bindings
� Multiple Implementations

Unix Platform

Grid Service

Standard Interface
� Multiple Bindings
� Multiple Implementations

Mainframe Platform

c04.qxd 8/24/2004 10:15 AM Page 112

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Increased effective computing capacity. When the resources utilize the
same conventions, interfaces, and mechanisms, one can transparently switch
jobs among grid systems, both from the perspective of the server as well as
from the perspective of the client. This allows grid users to use more capacity
and allows clients a more extensive choice of projects that can be supported
on the grid. Hence, with a gamut of platforms and environments supported,
along with the ability to more easily publish the services available, there will
be an increase in the effective computing capacity.

� Interoperability of resources. Grid systems can be more easily and effi-
ciently developed and deployed when utilizing a variety of languages and a
variety of platforms. For example, it is desirable to mix service-provider com-
ponents, work-dispatch tracking systems, and systems management; this
makes it easier to dispatch work to service providers and for service providers
to support grid services.

� Speed of application development. Using middleware (and/or toolkits)
based on a standard expedites the development of grid-oriented applications
supporting a business environment. Rather than spending time developing
communication and management systems to help support the grid system, the
planner can, instead, spend time optimizing the business/algorithmic logic re-
lated to the processing the data.

For useful applications to be developed, a rich set of grid services (the OGSA ar-
chitected services) need to be implemented and delivered by both open source ef-
forts (such as the Globus project) and by middleware software companies. In a way,
OGSI and the extensions it provides for Web services are necessary but insufficient
for the maturation of the service-oriented architecture; the next required step is that
these standards be fully implemented and truly observed (in order to provide porta-
bility and interoperability) [3, 33, 39, 50, 84, 114]. Figure 4.5 depicts a simple envi-
ronment to put the network-based services in context.

4.3 ARCHITECTURAL CONSTRUCTS

The previous section described the use of standards in a grid environment. This sec-
tion, based in part on reference [44], provides some basic machinery for the con-
struction of a grid-oriented architecture. The sections that follow actually describe
the OGSA/OGSI architecture itself.

4.3.1 Definitions

A service-oriented grid architecture is descriptive: it provides a common vocabu-
lary for use when describing grid systems. A grid architecture is normative: it
provides guidance and identifies key areas in which services are required. A grid ar-
chitecture is also prescriptive: it defines standard “Intergrid” protocols and appli-
cation programmer interfaces (APIs) to facilitate creation of interoperable grid sys-
tems and portable applications.

4.3 ARCHITECTURAL CONSTRUCTS 113

c04.qxd 8/24/2004 10:15 AM Page 113

TEAM LinG - Live, Informative, Non-cost and Genuine!

The challenge (also known in grid computing circles as The Programming Prob-
lem) is, how does the planner develop robust, secure, long-lived, well-performing
applications for dynamic, heterogeneous grids? “Grid applications” are diverse
(data, collaboration, computing, sensors, and so on); hence, it seems unlikely there
is one single solution to this problem. Most applications have been written “from
scratch,” with or without grid services. Application-specific libraries have been
shown to provide significant benefits. What is needed is [44]:

� Abstractions and models to add to speed and robustness of development

� Tools to ease application development and diagnose common problems

� Code/tool sharing to allow reuse of code components developed by others

The evolving grid architecture aims at addressing these and other issues. Some im-
portant definitions used in the development of the architecture definition are:

� Resource: An entity that is to be shared; e.g., computers, storage, data, soft-
ware

� Network protocol: A formal description of message formats and a set of rules
for message exchange across a variety of subsystems such as SANs, LANs,
MANs, WANs, and Global Area Networks (GANs)

� Network-enabled service: Implementation of protocols that define a set of ca-
pabilities

114 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Figure 4.5 Network-based grid services.

Number-cruncher/Storage

Number-cruncher/Storage

Number-cruncher/Storage

User

SOAP (over HTTP)
GridFTP
MDI

WSDL

UDDI

INTERNET/
INTRANET

User

HTTP

INTERNET

Web (file) Server
Web (file) Server

Web (file) Server

Web (file) Server

c04.qxd 8/24/2004 10:15 AM Page 114

TEAM LinG - Live, Informative, Non-cost and Genuine!

� API: A specification for a set of routines to facilitate application develop-
ment. Examples include GSS API (Generic Security Service API) and MPI
(Message Passing Interface). A protocol can have multiple APIs (e.g., TCP/IP
APIs include BSD sockets, Winsock, and System V streams). The protocol
provides interoperability: programs using different APIs can exchange infor-
mation and one does not need to know the remote APIs. An API can have
multiple protocols. For example, MPI provides portability: any correct pro-
gram compiles and runs on a platform. MPI does not provide interoperability:
all processes must link to same SDK (e.g., MPICH and LAM versions of
MPI).

� Software Development Kit (SDK): A particular instantiation of an API (it
may consists of libraries and tools). Examples of SDKs include MPICH and
Motif Widgets.

� Syntax: Rules for encoding information. Examples include XML, Condor
ClassAds, Globus RSL, X.509 certificate format [Request For Comments
(RFC) 2459], Cryptographic Message Syntax (RFC 2630), and ASN.1. Syn-
taxes are distinct from protocols in the sense that a syntax may be used by
many protocols (e.g., XML), and be useful for other purposes. Syntaxes may
be layered (e.g., Condor ClassAds uses XML, which uses ASCII.)

4.3.2 Protocol Perspective

A protocol-oriented view of a grid architecture emphasizes the following [44]:

� Development of grid protocols and services

� Protocol-mediated access to remote resources

� New services, for example, resource brokering

� Mostly (extensions to) existing protocols

� Development of grid APIs and SDKs

� Interfaces to grid protocols and services

� Facilitate application development by supplying higher-level abstractions

� The model is the Internet, which has been hugely successful

A protocol and a service have a complementary, dualistic relationship. A well-de-
fined protocol provides a clearly defined service; a well-defined service can be sup-
ported by a clearly defined protocol. Protocols, services, APIs, and SDKs will, ide-
ally, be largely self-contained.

Some key upper-layer protocols and constructs of interest that were described in
the previous chapter are included in Table 4.4 [43]. The GGF’s approach has been
to propose a set of core services as basic infrastructure. These core services have
been used to construct high-level, domain-specific solutions. The design principles
are: keep participation cost low, enable local control, provide support for adapta-
tion, and use the “IP hourglass” model of many applications using a few core ser-
vices to support many fabric elements (e.g., OSs). Figure 1.6 in Chapter 1 provided

4.3 ARCHITECTURAL CONSTRUCTS 115

c04.qxd 8/24/2004 10:15 AM Page 115

TEAM LinG - Live, Informative, Non-cost and Genuine!

a working model used by the Globus Project. Figure 4.6 expands on this by show-
ing the APIs and SDKs involved. As the figure shows, protocols, services, and APIs
occur at each level. Middleware such as Globus Toolkit can help planners move in
the direction of standards. Globus Toolkit has emerged as the de facto standard for
several important connectivity, resource, and collective protocols, as shown in Fig-
ure 4.6. It should be noted, however, that the going-forward graphical representa-
tion of the functional hierarchy is the one shown in Figure 4.2.

The guiding principle is that that each distinct programming environment should
not be required to implement the grid-supporting protocols and services from
scratch. Rather, such environments should be able to share common code that im-
plements core functionality. The code ought to be robust, well-architected, and self-
consistent. Also, the code ought to be “open source,” with broad industry input. The
emerging OGSA architecture enhances Web services to accommodate requirements
of the grid. OGSA defines the semantics of a grid service instance including service
instance creation, naming, lifetime management, and communication protocols.
The services that are included in the standardization are: Discovery, Lifecycle, State
Management, Service Groups, Factory, Notification, and Handle Map (these are
discussed in Section 4.5.)

Web services address discovery and invocation of persistent services. Web ser-
vices provide interface to persistent states of entire enterprises. In grid environ-
ments, one must also support transient service instances that are created/destroyed
dynamically; hence, there is a need for interfaces to the states of distributed activi-
ties. It follows that there are crucial implications for how services are managed,
named, discovered, and used. The creation of a new grid service instance involves
the creation of a new process in the hosting environment that has the primary re-

116 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Table 4.4 Key protocols/constructs of interest (upper layers)

SOAP (Simple Object Transport mechanism that is independent of the underlying
Access Protocol) platform and protocol. For example, two disparate processes can

communicate without the intimate knowledge of systems and
platforms on which both of them are running.

UDDI (Universal Repository that stores the descriptions of Web services.
Description, Discovery
and Integration)

WSDL (Web Services A language that provides a way of describing the specific
Definition Language) interfaces of Web services and APIs, and is used by UDDI.

XML (eXtensible A meta-language used to describe grammatical descriptions of
Markup Language) objects and describing data structures in an open manner. It is

similar in appearance to HTML, is platform-neutral, and can be
used to represent both documents and data.

WSIL (WS-Inspection An XML-based format utilized to facilitate the discovery and
Language) aggregation of Web service descriptions in a simple and

extensible fashion.

c04.qxd 8/24/2004 10:15 AM Page 116

TEAM LinG - Live, Informative, Non-cost and Genuine!

sponsibility for ensuring that the services it supports adhere to defined grid service
semantics. Multiple grid service instances may correspond to the same grid service
interface [119]. OGSA enables application programs and application users to create
transient services, as well as to discover and evaluate the properties of
existing/available grid services. The OGSA Factory, Registry, Grid Service, and
Handle Map interfaces address the creation of transient grid service instances, the
service discovery, and characterization in a VO [119].

In a typical grid-enabled environment, one needs to capture users’ inputs, dis-
cover a grid service (or several services, as needed), create a grid service instance,
invoke the grid service instance, and display the results. Often, this is facilitated
with tool kits, such as the Globus Toolkit (also see Chapter 6). Tool kits are imple-
mentations of the OGSA Development Framework (OGSADF). OGSADF is a
mechanism to actualize the grid service definition of OGSA (interface) through the
run-time hosting environment.

We expand below some of the concepts that we introduced in Chapter 3.

WSDL Use For Web Services. The material that follows in this subsection pro-
vides a short tutorial on WSDL; this subsection is based on reference [16].

WSDL is a language that provides a way of describing the specific interfaces of
Web services and APIs. Practically, WSDL can be perceived as a document written
in XML. The WSDL document describes a Web service; it specifies the location of
the service and the operations (or methods) the service exposes. In other words, it is
an XML language for describing the syntax of Web service interfaces and their lo-
cations. The WSDL specification calls it “an XML format for describing network
services as a set of endpoints operating on messages containing either document-

4.3 ARCHITECTURAL CONSTRUCTS 117

Figure 4.6 Protocols, services, and APIs occur at each level.

c04.qxd 8/24/2004 10:15 AM Page 117

TEAM LinG - Live, Informative, Non-cost and Genuine!

oriented or procedure-oriented information.” WSDL 1.1 was submitted as a W3C
Note by Ariba, IBM, and Microsoft for describing services for the W3C XML Ac-
tivity on XML Protocols in early 2001 (a W3C Note is made available by the W3C
for discussion only; publication of a Note by W3C indicates no endorsement by
W3C or the W3C Team, or any W3C Members). The first Working Draft of WSDL
1.2 was released by W3C in 2002.

A WSDL document defines a Web Service using these major elements:

Element Defines

<portType> The operations performed by the Web service. An abstract set of operations
supported by one or more endpoints.

<message> The messages used by the Web service. An abstract definition of the data
being communicated.

<types> The data types used by the Web service. Provides information about any
complex data types used in the WSDL document. When simple types are
used, the WSDL document does not need this section.

<binding> The communication protocols used by the Web service. Describes how the
operation is invoked by specifying concrete protocol and data format
specifications for the operations and messages.

<port> Specifies a single endpoint as an address for the binding, thus defining a
single communication endpoint.

<service> Specifies the port address(es) of the binding. The service is a collection of
network endpoints or ports.

A WSDL document has a definitions element that contains the types, message,
portType, binding, and service elements as described in the table above. The main
structure of a WSDL document looks like this:

<definitions>
<types>

definition of types . . .
</types>

<message>
definition of a message . . .

</message>

<portType>
definition of a port . . .

</portType>

<binding>
definition of a binding . . .

</binding>

</definitions>

118 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:15 AM Page 118

TEAM LinG - Live, Informative, Non-cost and Genuine!

A WSDL document can also contain other elements such as extension elements
and a service element that makes it possible to group together the definitions of sev-
eral Web services in one single WSDL document.

WSDL Services. A service definition element supports the following attributes
(it defines one or more services):

� Name is optional.

� targetNamespace is the logical namespace for information about this service.
WSDL documents can import other WSDL documents, and setting target-
Namespace to a unique value ensures that the namespaces do not clash.

� xmlns is the default namespace of the WSDL document, and it is set to
http://schemas.xmlsoap.org/wsdl/. All the WSDL elements such as <defini-
tions>, <types> and <message> reside in this namespace.

� xmlns:xsd and xmlns:soap are standard namespace definitions that are used
for specifying SOAP-specific information as well as data types.

� xmlns:tns stands for this namespace.

WSDL Ports. The <portType> element is the most important WSDL element. It
defines a Web service, the operations that can be performed, and the messages that
are involved. The <portType> element can be compared to a function library (or a
module or class) in a traditional programming language.

WSDL Messages. The <message> element defines the data elements of an oper-
ation. Each message can consist of one or more parts. The parts can be compared to
the parameters of a function call in a traditional programming language.

WSDL Types. The <types> element defines the data type that are used by the
Web service. For maximum platform neutrality, WSDL uses XML Schema syntax
to define data types.

WSDL Bindings. Binding is an operation that occurs when the service requestor
invokes or initiates an interaction with the service at runtime, using the binding de-
tails in the service description to locate, contact, and invoke the service [43]. The
<binding> element defines the message format and protocol details for each port.

WSDL Example. Below is a simplified fraction of a WSDL document. In this ex-
ample the “portType” element defines “glossaryTerms” as the name of a “port,”
and “getTerm” as the name of an “operation.” The “getTerm” operation has an “in-
put message” called “getTermRequest” and an “output message” called “get-
TermResponse.” The “message” elements define the “parts” of each message and
the associated data types. Compared to traditional programming, “glossaryTerms”
is a function library, “getTerm” is a function with “getTermRequest” as the input
parameter, and “getTermResponse” as the return parameter.

4.3 ARCHITECTURAL CONSTRUCTS 119

c04.qxd 8/24/2004 10:15 AM Page 119

TEAM LinG - Live, Informative, Non-cost and Genuine!

<message name=“getTermRequest”>
<part name=“term” type=“xs:string”/>

</message>

<message name=“getTermResponse”>
<part name=“value” type=“xs:string”/>

</message>
<portType name=“glossaryTerms”>

<operation name=“getTerm”>
<input message=“getTermRequest”/>
<output message=“getTermResponse”/>

</operation>
</portType>

Web Services Inspection Language (WSIL). WSIL is a simple, lightweight
mechanism for Web service discovery. WSIL is an XML document format de-
signed to facilitate the discovery and aggregation of Web service descriptions in a
simple and extensible fashion. Created by IBM and Microsoft and released in late
2001, WSIL is notable because of its simpler document-based approach; compared
with UDDI, it is more lightweight and leverages existing Web architectures better.
WSIL’s model is a decentralized one that is document-based, and leverages the ex-
isting Web infrastructure already in place (e.g., WSDL) [153].

According to the introduction to the specification [149, 152], WSIL provides an
XML format for assisting in the inspection of a site for available services and a set
of rules for how inspection-related information should be made available for con-
sumption. A WISL document provides a means for aggregating references to preex-
isting service-description documents that have been authored in any number of for-
mats. These inspection documents are then made available at the point of offering
for the service as well as through references that may be placed within a content
medium such as HTML. Specifications have been proposed to describe Web ser-
vices at different levels and from various perspectives. It is the goal of WSDL to de-
scribe services at a functional level. What has not yet been provided by these pro-
posed standards is the ability to tie together, at the point of offering for a service,
these various sources of information in a manner that is simple to create and to use;
the WSIL specification addresses this need by defining an XML grammar that facil-
itates the aggregation of references to different types of service-description docu-
ments, and then provides a well-defined pattern of usage for instances of this gram-
mar. By doing this, the WSIL specification provides a means by which to inspect
sites for service offerings. Repositories already exist in which descriptive informa-
tion about Web services has been gathered together. The WS-Inspection specifica-
tion provides mechanisms with which these existing repositories can be referenced
and utilized, so that the information contained in them need not be duplicated if
such a duplication is not desired [149, 152].

Universal Description, Discovery, and Integration (UDDI). UDDI is a
standard Web service description format and Web service discovery protocol. A

120 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:15 AM Page 120

TEAM LinG - Live, Informative, Non-cost and Genuine!

UDDI registry can contain metadata for any type of service, with “best practices”
already defined for services described by WSDL. By organizing Web services into
groups associated with categories or business processes, UDDI allows more effi-
cient search and discovery of Web services. The UDDI specification defines a four-
tier hierarchical XML schema that provides a model for publishing, validating, and
invoking information about Web services [85]. XML was chosen because it offers a
platform-neutral view of data and allows hierarchical relationships to be described
in a natural way. UDDI uses standards-based technologies, such as common Inter-
net protocols (TCP/IP and HTTP), XML, and SOAP. There are two types of UDDI
registries: public UDDI registries that serve as aggregation points for a variety of
businesses to publish their services, and private UDDI registries that serve a similar
role within organizations.

It should be noted that UDDI implements a service discovery using a centralized
model of one or more repositories containing information on multiple business enti-
ties and the services they provide. An analogy for UDDI would be the telephone
Yellow Pages: multiple businesses are grouped and listed with a description of the
goods or services they offer and how to contact them. The specification provides a
high level of functionality through SOAP by specifically requiring an infrastructure
to be deployed with substantial overhead and costs associated to its use. The UDDI
schema aims at providing a more business-centric perspective (as noted, UDDI de-
scribes an online electronic registry that provides an information structure where
various business entities register themselves and the services they offer through
their WSDL definitions) [149, 152]. On the other hand, WSIL approaches service
discovery in a decentralized fashion—service description information can be dis-
tributed to any location using a simple extensible XML document format. Unlike
UDDI, it does not concern itself with business-entity information, nor does it speci-
fy a particular service-description format. WSIL works under the assumption that
one is already familiar with the service provider, and relies on other service-de-
scription mechanisms such as the WSDL, discussed above [153]. WSIL comple-
ments, rather then competes with, UDDI.

A UDDI registry consists of the following data structure types [85]:

� businessEntity. The top-level XML element in a business UDDI entry. busi-
nessEntity captures the data partners require to find information about a busi-
ness service, including its name, industry or product category, geographic lo-
cation, and optional categorization and contact information. It includes
support for “yellow pages” taxonomies to search for businesses by industry,
product, or geography.

� businessService. The logical child of a businessEntity data structure as well
as the logical parent of a bindingTemplate structure. businessService contains
descriptive business service information about a group of related technical
services, including the group name, a brief description, technical service de-
scription information, and category information.

� bindingTemplate. The logical child of a businessService data structure.
bindingTemplate contains data that is relevant for applications that need to in-

4.3 ARCHITECTURAL CONSTRUCTS 121

c04.qxd 8/24/2004 10:15 AM Page 121

TEAM LinG - Live, Informative, Non-cost and Genuine!

voke or bind to a specific Web service. This information includes the Web
service URL and other information describing hosted services, routing and
load balancing facilities, and references to interface specifications.

� tModel. Descriptions of specifications for Web services or taxonomies that
form the basis for technical fingerprints. tModel’s role is to represent the
technical specification of the Web service, making it easier for Web service
consumers to find Web services that are compatible with a particular techni-
cal specification. Web service consumers can easily identify other compatible
Web services based on the descriptions of the specifications for Web Services
in the tModel structure. For example, to send a business partner’s Web ser-
vice an RFP, the invoking service must know not only the location/URL of
the service, but what format the RFP should be sent in, what protocols are ap-
propriate, what security is required, and what form of a response will result
after sending the RFP.

Simple Object Access Protocol (SOAP). SOAP is a lightweight, XML-based
protocol for exchanging information in a decentralized, distributed environment.
SOAP supports different styles of information exchange, including:8

� Information exchange modeled after the Remote Procedure Call. This type
of exchange allows for request–response processing, in which an endpoint
receives a procedure-oriented message and replies with a correlated re-
sponse message.

� Information exchange modeled on a message-oriented mechanism. This type
of exchange supports organizations and applications that need to exchange
business or other types of documents; a message is sent but the sender may
not expect or wait for an immediate response.

SOAP has the following features:

� Protocol independence

� Language independence

� Platform and operating system independence

� Support for SOAP XML messages incorporating attachments (using the mul-
tipart MIME structure)

A SOAP message consists of (i) a SOAP envelope that encloses two data struc-
tures, (ii) the SOAP header and the SOAP body, and, (iii) information about the
namespaces used to define them. The header is optional; when present, it conveys
information about the request defined in the SOAP body. For example, it might
contain transactional, security, contextual, or user profile information. The body
contains a Web service request or reply to a request in XML format.

122 STANDARDS SUPPORTING GRID COMPUTING: OGSI

8The rest of this short section is based on reference [85].

c04.qxd 8/24/2004 10:15 AM Page 122

TEAM LinG - Live, Informative, Non-cost and Genuine!

The SOAP specification provides a standard way to encode requests and re-
sponses. SOAP messages, when used to carry Web service requests and responses,
can conform to the WSDL definition of available Web services. WSDL can define
the SOAP message used to access the Web services, the protocols over which such
SOAP messages can be exchanged, and the Internet locations where these Web ser-
vices can be accessed. The WSDL descriptors can reside in UDDI or other directo-
ry services, and they can also be provided via configuration or other means such as
in the body of SOAP request replies.

The specification describes the structure and data types of message payloads us-
ing XML schema. The way that SOAP is used for the message and response of a
Web service is:

� The SOAP client uses an XML document that conforms to the SOAP specifi-
cation and that contains a request for the service.

� The SOAP client sends the document to a SOAP server, and the SOAP servlet
running on the server handles the document using, for example, HTTP or
HTTPS.

� The Web service receives the SOAP message, and dispatches the message as
a service invocation to the application providing the requested service.

� A response from the service is returned to the SOAP server, again using the
SOAP protocol, and this message is returned to the originating SOAP client.

SOAP provides a way to leverage the industry investment in XML. Also, since
SOAP is typically defined over “firewall-friendly” protocols such as HTTP and
SMTP, the industry investment in firewall technology is leveraged as well. Thus, by
defining SOAP as an essential part of Web services, the industry will likely enjoy
volume production use of Web services far sooner than if other strategies had been
employed.

4.3.3 Going From “Art” To “Science”

At press time, there was an effort to move grid technology from “art” to “science”
in order to achieve widespread commercialization of the technology. The material
that follows describes the “art” (various grid solutions) from which proponents are
now in the process of building out a “science” (OGSA/OGSI). The following mech-
anisms are needed (also refer to Figure 4.7) [44]:

� Fabric Layer Protocols and Services. This mechanism includes the plethora
of resources that may be shared (discrete computers, file systems, archives,
metadata catalogs, networks, sensors, etc.) The goal is to impose few con-
straints on low-level technology within a grid; namely, connectivity and re-
source-level protocols form the “neck of the hourglass”—there are many ap-
plications on top, many resources at the bottom, and a few key specifications
in the middle.

4.3 ARCHITECTURAL CONSTRUCTS 123

c04.qxd 8/24/2004 10:15 AM Page 123

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Connectivity Layer Protocols and Services. These mechanisms focus on com-
munications (Internet protocols: IP, DNS, routing, etc.), and on security. The
Globus Toolkit GSI is an example of “art” with uniform authentication, au-
thorization, and message-protection mechanisms in a multiinstitutional set-
ting. It provides single sign-on, delegation, and identity mapping using public
key technology, along with a Secure Sockets Layer (SSL), X.509, and GSS-
API [167].

124 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Figure 4.7 Examples of (a) high-throughput computing system and (b) data grid architec-
ture.

(b)

(a)

c04.qxd 8/24/2004 10:15 AM Page 124

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Resource Layer Protocols and Services. These address the following:

� Remote allocation, reservation, monitoring, and control of compute re-
sources. The Globus Toolkit Grid Resource Allocation Management
(GRAM) is an example.

� High-performance data access and transport. The Globus Toolkit GridFTP
protocol (FTP extensions) is an example.

� Access to structure and state information. The Globus Toolkit Grid Re-
source Information Service (GRIS) is an example.

� Collective Layer Protocols and Services. These address the following:

� Index servers (also known as metadirectory services) that provide custom
views on dynamic resource collections assembled by a community

� Resource brokers for resource discovery and allocation (e.g., Condor
Matchmaker)

� Replica catalogs

� Replication services

� Coreservation and coallocation services

� Workflow management services

Table 4.5 depicts some examples of grid programming technologies that comprise
the “art” of grid as we seek to move up to the “science” [44].

4.4 WHAT IS OGSA/OGSI? A PRACTICAL VIEW

As should be clear by now, OGSA aims at addressing standardization (for interop-
erability) by defining the basic framework of a grid application structure. Some of
the mechanisms employed in the standards formulation of grid computing were de-
scribed in the previous section and in Chapter 3. In essence, the OGSA standard de-
fines what grid services are, what they should be capable of, and what technologies
they are based on. OGSA, however, does not go into specifics of the technicalities
of the specification; instead, the aim is to help classify what is and is not a grid sys-
tem [73]. It is called an architecture because it is mainly about describing and
building a well-defined set of interfaces from which systems can be built, based on
open standards such as WSDL [143].

The objectives of OGSA are to [3, 33, 39, 50, 84, 114]:

� Manage resources across distributed heterogeneous platforms.

� Support QoS-oriented Service Level Agreements (SLAs). The topology of
grids is often complex; the interactions between/among grid resources are al-
most invariably dynamic. It is critical that the grid provide robust services
such as authorization, access control, and delegation.

� Provide a common base for autonomic management. A grid can contain a
plethora of resources, along with an abundance of combinations of resource

4.4 WHAT IS OGSA/OGSI? A PRACTICAL VIEW 125

c04.qxd 8/24/2004 10:15 AM Page 125

TEAM LinG - Live, Informative, Non-cost and Genuine!

configurations, conceivable resource-to-resource interactions, and a litany of
changing state and failure modes. Intelligent self-regulation and autonomic
management of these resources is highly desirable.

� Define open, published interfaces and protocols for the interoperability of di-
verse resources. OGSA is an open standard managed by a standards body.

126 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Table 4.5 Examples of grid programming technologies

MPICH-G2: Grid-enabled message passing (Message Passing Interface)
� CoG Kits, GridPort: Portal construction, based on N-tier architectures
� Condor-G: workflow management
� Legion: object models for grid computing
� Cactus: Grid-aware numerical solver framework

Portals
� N-tier architectures enabling thin clients, with middle tiers using grid functions

� Thin clients = web browsers
� Middle tier = e.g., Java Server Pages, with Java CoG Kit, GPDK, GridPort utilities
� Bottom tier = various grid resources

� Numerous applications and projects, e.g.,
� Unicore, Gateway, Discover, Mississippi Computational Web Portal, NPACI Grid

Port, Lattice Portal, Nimrod-G, Cactus, NASA IPG Launchpad, Grid Resource
Broker

High-Throughput Computing and Condor
� High-throughput computing

� Processor cycles/day (week, month, year?) under nonideal circumstances
� “How many times can I run simulation X in a month using all available machines?”

� Condor converts collections of distributively owned workstations and dedicated clus-
ters into a distributed high-throughput computing facility

� Emphasis on policy management and reliability

Object-Based Approaches
� Grid-enabled CORBA

� NASA Lewis, Rutgers, ANL, others
� CORBA wrappers for grid protocols
� Some initial successes

� Legion
� University of Virginia
� Object models for grid components (e.g., “vault” = storage, “host” = computer)

Cactus: Modular, portable framework for parallel, multidimensional simulations

Construct codes by linking
� Small core: management services
� Selected modules: Numerical methods, grids and domain decomps, visualization and

steering, etc.
� Custom linking/configuration tools
� Developed for astrophysics, but not astrophysics specific

c04.qxd 8/24/2004 10:16 AM Page 126

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Exploit industry standard integration technologies and leverage existing solu-
tions where appropriate. The foundation of OGSA is rooted in Web services,
for example, SOAP and WSDL, are a major part of this specification.

OGSA’s companion OGSI document consists of specifications on how work is
managed, distributed, and how service providers and grid services are described. The
Web services component is utilized to facilitate the distribution and the management
of work across the grid. Because Web services offer a transparent method of com-
munication between hosts (irrespective of the underlying language or platform), one
can utilize these services to transfer work, to describe resources and configuration in-
formation, and to communicate and dispatch grid information. WSDL provides a
simple method of describing and advertising the Web services that support the grid’s
application [73]. Summarizing these observations, OGSA is the blueprint, OGSI is a
technical specification, and Globus Toolkit is an implementation of the framework.

OGSA describes and defines a Web-services-based architecture composed of a set
of interfaces and their corresponding behaviors to facilitate distributed resource shar-
ing and accessing in heterogeneous dynamic environments. A set of services based
on open and stable protocols can hide the complexity of service requests by users or
by other elements of a grid. Grid services enable virtualization; virtualization, in
turn, can transform computing into a ubiquitous infrastructure that is more akin to an
electric or water utility, as envisioned in the opening paragraph of this chapter [143].

OGSA relies on the definition of grid services in WSDL, which, as noted, de-
fines, for this context, the operations names, parameters, and their types for grid
service access [119]. Based on the OGSI specification, a grid service instance is a
Web service that conforms to a set of conventions expressed by the WSDL as ser-
vice interfaces, extensions, and behaviors [49]. Because the OGSI standard is based
on a number of existing standards (XML, Web services, WSDL), it is an open and
standards-based solution. This implies that, in the future, grid services can be built
that are compatible with the OGSI standard, even though they may be based on a
variety of different languages and platforms [73].

Specifically, the grid service interface (see Table 4.6 and [84, 114]) is described
by WSDL, which defines how to use the service. A new tag, gsdl, has been added to
the WSDL document for grid service description. The UDDI registry and WSIL
document are used to locate grid services. The transport protocol SOAP is used to
connect data and applications for accessing grid services. All services adhere to
specified grid service interfaces and behaviors. Grid service interfaces correspond
to portTypes in WSDL used in current Web services solutions [119].

The interfaces of grid services address discovery, dynamic service-instance cre-
ation, lifetime management, notification, and manageability; the conventions of
grid services address naming and upgrading issues. The standard interface of a grid
service includes multiple bindings and implementations (“implementations” in-
clude Java and procedural/object-oriented computer programming languages). Grid
services, such as the ones just cited, can, therefore, be deployed on different hosting
environments, even different operating systems. OGSA also provides a grid securi-
ty mechanism to ensure that all the communications between services are secure.

4.4 WHAT IS OGSA/OGSI? A PRACTICAL VIEW 127

c04.qxd 8/24/2004 10:16 AM Page 127

TEAM LinG - Live, Informative, Non-cost and Genuine!

The definition of standard service interfaces and the identification of the protocol(s)
are addressed in current OGSA specifications [119].

Service capabilities (that is, the services offered by a particular company or or-
ganization) are widely used in existing Web services solutions. Likewise, grid ser-
vices are characterized by the capabilities they afford. A grid service capability
could be comprised of computational resources, storage resources, networks, pro-
grams, databases, and so on. A grid service implements one or more interfaces,
where each interface defines a set of method operations that is invoked by con-
structing a method call through, method signature adaptation using SOAP [119].

Like the majority of Web services, OGSI services use WSDL as a service de-
scription mechanism. There are two fundamental requirements for describing Web
services based on the OGSI [49]:

1. The ability to describe interface inheritance—a basic concept with most of
the distributed object systems.

2. The ability to describe additional information elements with the interface de-
finitions.

128 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Table 4.6 Proposed OGSA grid service interfaces*

Port type Operation Description

GridService FindServiceData Query a variety of information about the grid service
instance, including basic introspection information
(handle, reference, primary key, home handle map:
terms to be defined), richer per-interface information,
and service-specific information (e.g., service in-
stances known to a registry). Extensible support for
various query languages.

SetTermination Time Set (and get) termination time for grid service
instance

Destroy Terminate grid service instance.

Notification- SubscribeTo- Subscribe to notifications of service-related events,
Source NotificationTopic based on message type and interest statement. Allows

for delivery via third-party messaging services.

Notification- Deliver Notification Carry out asynchronous delivery of notification
Sink messages.

Registry RegisterService Conduct soft-state registration of grid service handles.
UnregisterService Deregister a grid service handle.

Factory CreateService Create new grid service instance.

Handle Map FindByHandle Return grid service reference currently associated
with supplied grid service handle.

*Interfaces for authorization, policy management, manageability, and likely other purposes remain to be
defined.

c04.qxd 8/24/2004 10:16 AM Page 128

TEAM LinG - Live, Informative, Non-cost and Genuine!

The WSDL 1.1 specification lacks the two abilities just enumerated in its definition
of portType. Hence, at press time, OGSI was utilizing an extension WSDL called
GWSDL (Grid-extension to WSDL); however, there was a consensus among OGSI
Work Group members to eventually use the WSDL 1.2 specification (when WSDL
1.2 reaches the recommendation stage, it may eliminate the need to use GWSDL)
[49]. The WSDL 1.2 working group has agreed to support the just-listed features
through portType inheritance and an open content model for portTypes. As an inter-
im decision, OGSI has developed a new schema for portType definition (extended
from normal WSDL 1.1 schema portType Type) under the new GWSDL name-
space definition. Another noteworthy aspect of OGSI is the naming convention
adopted for the portType operations and the lack of support for operator overload-
ing. In these cases, OGSI follows the same conventions as described in the suggest-
ed WSDL 1.2 specification [49].

From a near-term implementation perspective, the Globus Toolkit is the primary
solution that supports the new standards of the OGSA/OGSI system (we cover
some details of this in Chapter 6.) IBM is also deploying a version of WebSphere,
the Web development platform, that makes use of grid technology to help spread
the load of requests for a Web application [73].

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL

4.5.1 Key Aspects

This section provides a more detailed view of OGSA/OGSI. Keep in mind that the
key principle of OGSA is that all grid resources—both logical and physical—are
modeled as services. There are two main logical components of OGSA: (i) the
Web-services-plus-OGSI layer, and (ii) the OGSA-architected services layer. Four
main layers comprise the OGSA architecture, as shown in Figure 4.2 [3, 33, 39, 50,
84, 114]:

� Grid applications layer. This layer is the user-visible layer. It supports user
applications. Eventually, a “rich” set of grid-architected services is expected
to be developed.

� OGSA-architected grid services layer. Services in this layer include: Dis-
covery, Lifecycle, State management, Service Groups, Factory, Notification,
and Handle Map. These services are based on the Web services layer. The
GGF was working at press time to define many of these architected grid ser-
vices in areas such as program execution, data services, and core services.
Some are already defined (and implementations have already appeared.)

� Web Services layer, plus the OGSI extensions that define grid services.
The OGSI specification defines grid services and builds on standard Web ser-
vices technology. OGSI exploits the mechanisms of Web services such as
XML and WSDL to specify standard interfaces, behaviors, and interaction for
all grid resources. OGSI extends the definition of Web services to provide ca-

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 129

c04.qxd 8/24/2004 10:16 AM Page 129

TEAM LinG - Live, Informative, Non-cost and Genuine!

pabilities for dynamic, stateful, and manageable Web services that are re-
quired to model the resources of the grid.

� Physical and logical resources layer. The concept of resources is central to
OGSA and to grid computing in general. Resources, as discussed in Chapter
3, comprise the capabilities of the grid. Physical resources include servers,
storage, and network. Above the physical resources are logical resources.
Logical resources provide additional function by virtualizing and aggregating
the resources in the physical layer. General-purpose middleware such as file
systems, database managers, directories, and workflow managers provide
these abstract services on top of the physical grid.

The GGF OGSA working group found it necessary to augment core Web services
functionality to address grid services requirements. OGSI extends Web services by
introducing interfaces and conventions in two main areas [3, 33, 39, 50, 84, 114]:

1. “Interfaces.” One needs to take into consideration the dynamic and potential-
ly transient nature of services in a grid: particular service instances may come
and go as work is dispatched, as resources are configured and provisioned,
and as system state changes. Therefore, grid services need interfaces to man-
age the creation, destruction, and life-cycle management of these dynamic
services.

2. “State.” Grid services typically have attributes and data associated with them.
This is similar in concept to the traditional structure of objects in object-ori-
ented programming: objects have behavior and data. Likewise, Web services
were found to be in need of being extended to support state data associated
with grid services. Basic Web services are stateless (e.g., add, subtract). Most
real-world applications involve stateful transactions [e.g., query (sd2), get-
data (row3-row17)]. State is linked to a “handle” or sessionID as a parameter.
Protocols such as SOAP, SMTP, and FTP use state mechanisms (sessionID,
packet headers, TCP sockets, respectively).

Consistent with these two observations, OGSI introduces an interaction model
for grid services. The interaction model provides a uniform way for software devel-
opers to model and interact with grid services by providing interfaces for discovery,
life cycle, state management, creation and destruction, event notification, and refer-
ence management (these services were depicted in Figure 4.3.) Below, we list inter-
faces and conventions that OGSI introduces [3, 33, 39, 50, 84, 114].

� Factory. A mechanism (interface) that provides a way to create new grid ser-
vices. Factories may create temporary instances of limited function, such as a
scheduler creating a service to represent the execution of a particular job; or
they may create longer-lived services such as a local replica of a frequently
used data set. Not all grid services are created dynamically; for example,
some services might be created as the result of an instance of a physical re-
source in the grid, such as a processor, storage, or network device.

130 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:16 AM Page 130

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Life cycle. A mechanism architected to prevent grid services from consuming
resources indefinitely without requiring a large-scale distributed “garbage
collection” scavenger. Every grid service has a termination time set by the
service creator or factory. Because grid services may be transient, grid service
instances are created with a specified lifetime. The lifetime of any particular
service instance can be negotiated and extended, as required, by components
that are dependent on or manage that service. In turn, a client with appropriate
authorization can use termination time information to check the availability
(lease period) of the service; the client can also request to extend the current
lease time by sending a keep-alive message to the service with a new termina-
tion time. If the service accepts this request, the lease time can be extended to
the new termination time requested by the client. This soft-state life cycle is
controlled by appropriate security and policy decisions of the service, and the
service has the authority to control this behavior (for example, a service can
arbitrarily terminate a service or can extend its termination time even while
the client holds a service reference) [49].

� State management. As previously noted, grid services can have “state.”
OGSI specifies a framework for representing this state, called service data,
and a mechanism for inspecting or modifying that state, named Find/SetSer-
viceData. Furthermore, OGSI requires a minimal amount of state in service
data elements that every grid service must support, and requires that all ser-
vices implement the Find/SetServiceData portType.

� Service groups. Service groups are collections of grid services that are in-
dexed (using service data described above) for some specific purpose. For ex-
ample, they might be used to collect all the services that represent the re-
sources in a particular cluster node within the grid.

� Notification. Services interact with one another by exchanging messages
based on service invocation. The state information (the service data described
above) that is modeled for grid services changes as the system runs. Many in-
teractions between grid services require dynamic monitoring of changing
state. Notification applies a traditional publish/subscribe paradigm to this
monitoring. Grid services support an interface (NotificationSource) to permit
other grid services (NotificationSink) to subscribe to changes. The internal
state of a grid service can keep track that this grid service has received one or
zero messages. This reliable message delivery mechanism guaranteed by the
internal state can build business-oriented transactions [119]. In a transient
stateful service, OGSA provides a mechanism to capture the state information
associated with any operation that fails. If an operation fails, the keep-alive
messages cease if there is no service client for invoking this running service
instance. Then the grid service instance automatically times out and frees the
computing resources associated with this service instance [119].

� Handle Map. This deals with service identity. When Factories are used to
create a new instance of a Grid Service, the Factory returns the identity of the
newly instantiated service. This identity is composed of two parts: a Grid Ser-
vice Handle (GSH) and a Grid Service Reference (GSR). A GSH provides a

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 131

c04.qxd 8/24/2004 10:16 AM Page 131

TEAM LinG - Live, Informative, Non-cost and Genuine!

reference the grid service indefinitely; GSR can change within the grid ser-
vices lifetime. The Handle Map interface provides a way to obtain a GSR giv-
en a GSH. The user application invokes create Grid Service requests on the
Factory interface to create a new service instance. The newly created service
instance associated with the grid service interface will be automatically allo-
cated computing resources. Meanwhile, an initial lifetime of the instance can
be specified before the service instance is created. The newly created service
instance will keep the user credentials for performing further interactions
with other systems over the Internet. The newly created grid service instance
will be automatically assigned a globally unique name called the GSH, which
is used to distinguish this specific service instance from other grid service in-
stances [119].

These enhancements are specified in OGSI. As the OGSI specification was fi-
nalized and implementations began to appear, some standards organizations be-
came interested in incorporating a portion of the functionality outlined in OGSI
within appropriate Web services standards; hence, over time, it is expected that
much of the OGSI functionality will be incorporated in Web services standards [3,
33, 39, 50, 84, 114].

4.5.2 Ancillary Aspects

Drilling down an additional level of detail, one can further categorize grid-archi-
tected services into four categories, as shown in Figure 4.8:

� Grid core services

� Grid program execution services

� Grid data services

� Domain-specific services

132 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Figure 4.8 The structure of OGSA architected services.

Extended Web Services (WSDL 1.X)

Grid Core Services
Grid Program

Execution Services
Grid Data Services

Domain
Specific Service

Domain
Specific Service

Domain
Specific Service

Domain
Specific Service

c04.qxd 8/24/2004 10:16 AM Page 132

TEAM LinG - Live, Informative, Non-cost and Genuine!

Grid Core Services. Figure 4.9 shows that the grid core services are composed
of four main types of services:

1. Service management

2. Service communication

3. Policy management

4. Security

Unlike the OGSI functions that are largely implemented as extensions to basic Web
Services protocols and an interaction model, these core services are actually imple-
mented as grid services (upon the OGSI base). These services are considered core
primarily because it is expected that they will be broadly exploited by most higher-
level services implemented either in support of program execution or data access, or
as domain-specific services [3, 33, 39, 50, 84, 114].

Service management. Service management provides functions that manage the
services deployed in the distributed grid. It automates a variety of installation,
maintenance, monitoring, and troubleshooting tasks within a grid system. Service
management includes functions for provisioning and deploying the system compo-

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 133

Figure 4.9 Grid core services.

� Policy Service Manager
� Policy Agent
� Policy Transformation Service
� Policy Resolution Service
� Policy Validation Service
� Policy Administration Services and Negotiation Framework

Service Management

Grid Core Services
Grid Program

Executive Services

� Registries and Discovery Services
—Attribute Propagation and Query
—Service Domain

� Service Orchestration
� Metering & Accounting

—Installation & Deployment

� Managing and Queuing Services
� Event Services
� Distributed Secure Logging Service

� Authentication
� Authorization & Access Control
� Credential Validation & Transformation

Service Communication Policy ManagementSecurity

Grid Data Services

c04.qxd 8/24/2004 10:16 AM Page 133

TEAM LinG - Live, Informative, Non-cost and Genuine!

nents; it also includes functions for collecting and exchanging data about the opera-
tion of the grid. This data is used for both “online” and “offline” management oper-
ations, and includes information about faults, events, problem determination, audit-
ing, metering, accounting, and billing [3, 33, 39, 50, 84, 114].

Service communication. This includes a gamut of functions that support the ba-
sic methods for grid services to communicate with each other. These functions sup-
port several communication models that may be composed to enable effective inter-
service communication, including queued messages, publish–subscribe event
notification, and reliable distributed logging [3, 33, 39, 50, 84, 114]. As previously
noted, grid services can be published to a UDDI registry, or WSIL documents; the
UDDI registry becomes a central place to store such information about and loca-
tions for grid services that enables publishing and searching of trading partners’
businesses and their grid services. Also, as previously noted, there are two types of
UDDI registries: private and public. Application developers and/or service
providers can publish the grid services to the public UDDI registries operated by
IBM, Microsoft, HP, or SAP. If one wants to publish one’s own private or confi-
dential grid services, one can use a private UDDI registry. As an alternative, for
testing purposes or for small-scale integration, a developer can publish the compa-
ny’s grid services to WSIL documents, since WSIL enables grid services discovery,
deployment, and invocation without the need for a UDDI registry. WSIL provides
the means for aggregating references of preexisting service description documents
that have been authored in any number of formats; these inspection documents are
then made available on a Web site [119]. Figure 4.10 illustrates an example grid
service deployment and publishing diagram. The Remote Procedure Call servlet of
SOAP and the real implementation of the grid services can be deployed on an appli-
cation server. All the invocation messages will be captured by the SOAP Remote
Procedure Call servlet that routes the messages to the corresponding grid service
[119].

Policy services. These create a general framework for creation, administration,
and management of policies and agreements for system operation. Policy services
include policies governing security, resource allocation, and performance, as well
as an infrastructure for “policy-aware” services to use policies to govern their op-
eration. Policy and agreement documents provide a mechanism for the representa-
tion and negotiation of terms between service providers and their clients (either
user requests or other services); terms include specifications, requirements, and
objectives for function, performance, and quality that the suppliers and consumers
exchange and that they can then use to influence their interactions [3, 33, 39, 50,
84, 114].

Security services. Security services support, integrate, and unify popular security
models, mechanisms, protocols, and technologies in a way that enables a variety of
systems to interoperate securely. These security services enable and extend core

134 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:16 AM Page 134

TEAM LinG - Live, Informative, Non-cost and Genuine!

Web services security protocols and bindings and provide service-oriented mecha-
nisms for authentication, authorization, trust policy enforcement, credential trans-
formation, and so on [3, 33, 39, 50, 84, 114].

Grid Program Execution Services. Grid program execution services are de-
picted in Figure 4.11. Mechanisms for job scheduling and workload management
implemented as part of this class of services are central to grid computing and the
ability to virtualize processing resources. Although OGSI and core grid services are
generally applicable to any distributed computing system, the grid program execu-
tion service class is unique to the grid model of distributed task execution that sup-
ports high-performance computing, parallelism, and distributed collaboration [3,
33, 39, 50, 84, 114].

Grid Data Services. Grid data services are also depicted in Figure 4.11. These
interfaces support the concept of data virtualization and provide mechanisms relat-
ed to distributed access to information of many types including databases, files,
documents, content stores, and application-generated streams. Services that com-
prise the grid data services class complement the computing virtualization conven-
tions specified by program execution services (OGSA placing data resources on an
equivalent level with computing resources). Grid data services will exploit and vir-

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 135

Figure 4.10 An example grid service deployment and publishing diagram.

c04.qxd 8/24/2004 10:16 AM Page 135

TEAM LinG - Live, Informative, Non-cost and Genuine!

tualize data using placement methods like data replication, caching, and high-per-
formance data movement to give applications required QoS access across the dis-
tributed grid. Methods for federating multiple disparate, distributed data sources
may also provide integration of data stored under differing schemas such as files
and relational databases [3, 33, 39, 50, 84, 114].

Domain-Specific Services. The three categories discussed above (grid core
services, grid program execution services, and grid data services) represent areas of
active work by GGF research or working groups. Over time, as these services ma-
ture, domain-specific services can also be specified. Domain-specific services will
make use of the functionality that these services supply. It is critical that the GGF
working groups are concentrating on specifying a broad set of useful grid services
that software vendors and developers can then begin to implement.

4.5.3 Implementations of OGSI

As the core of the grid service architecture, OGSI needs to be hosted on a delivery
platform that supports Web services. Vendors probably will not compete by offer-
ing a wide range of implementations of OGSI. Instead, as part of the “fabric” of
Web services implementations, vendors that offer OGSI implementations will like-
ly directly use existing open source implementations provided by organizations like
Globus, and/or they will integrate implementations with their hosting platform
products like WebSphere, WebLogic, Apache, or .NET [50]. However, grid-archi-

136 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Figure 4.11 Grid program execution services and grid data services.

Expanded Web Services

(WSDL 1.X)

Grid Core Services
Grid Program

Execution Services
Grid Data Services

Domain
Specific Service

Domain
Specific Service

Domain
Specific Service

Domain
Specific Service

� Data Access Services
� Data Transformation & Federation Services
� Data Replication Service
� Data Caching Service
� MetaData Catalog Services

� Job Scheduler & Queuing Services
� Resource Reservation Services
� Workload Managers and Micro-

Scheduling Services

c04.qxd 8/24/2004 10:16 AM Page 136

TEAM LinG - Live, Informative, Non-cost and Genuine!

tected services provide some opportunities for vendors and organizations to com-
pete and differentiate themselves. This competition will create an “economy” of
grid software providers whose innovation will help drive the acceptance of stan-
dards like OGSI/OGSA, and this will allow customers to build systems out of inter-
operable components. Areas of functionality in grid program execution and data
services will require innovation and novel approaches, and these may well speed
the market acceptance of grid solutions and provide market opportunities for ven-
dors. In Figure 4.12, one notices that grid core services are likely to see a mix of
open source reference implementations and vendor-provided “value added” imple-
mentations. The bulk of technologies in this area will likely be commoditized, but
areas like policy and security could provide vendors a chance to differentiate them-
selves [3, 33, 39, 50, 84, 114]. Implementations in grid program execution and data
services are expected to consist largely of value-added products. These areas repre-
sent business opportunities for vendors to integrate leading middleware offerings
within the OGSA framework and allow a rich “ecosystem” of grid solutions to de-
velop. Although OGSI/OGSA is novel in the respect that it extends Web Services,
it is not clear that software vendors will be able to differentiate themselves based on

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 137

Figure 4.12 Grid program execution and data services hosting.

Grid data services
Grid program

execution services

Domain-Specific
Service

Domain-Specific
Service

Data Synapse WebSphere Platform Computing
United Devices Avaki

The Globus Project

Web services

OGSI—Open Grid Services Infrastructure

United Devices

Platform Computing

Value-added middleware

WebSphere Avaki
Tivoli Data Synapse

The Globus Project
DB2

The Globus Project

Grid core services

Domain-Specific
Service

c04.qxd 8/24/2004 10:16 AM Page 137

TEAM LinG - Live, Informative, Non-cost and Genuine!

the quality of their core services implementations; such differention will likely be
based on the business creativity and/or import of their domain-specific implementa-
tions [50].

For OGSA to grow in acceptance it needs to be implemented on multiple host-
ing platforms. The Globus Toolkit 3 (GT3) historically was the first full-scale im-
plementation of the OGSI standard (see Chapter 6 for a more extensive discussion
of this topic). GT3 was developed by the Globus Project, a research and develop-
ment project focused on enabling the application of grid concepts to scientific, en-
gineering, and commercial computing. It is expected that many of the OGSI im-
plementations will be delivered via the open source development model and that
existing reference implementations (GT3) will be used unmodified in appropriate
hosting environments [50]. GT3 is written in Java language using the J2EE frame-
work; however, nothing limits OGSI from being implemented in other program-
ming languages and hosted in other environments (the term “hosting environ-
ment” is used to denote the server in which one or more grid service
implementations run). Figure 4.13 shows that a Java implementation of OGSI can
be hosted on any of several J2EE environments (such as JBOSS, WebSphere, or
BEA Weblogic). However, alternative platforms such as a traditional C or C++
environment or C# and Microsoft .NET are other possible hosting environments
[50]. Ideally, a small number of core implementations of OGSI (perhaps one per
hosting platform) will be jointly developed by the industry and used in many
products [50].

138 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Figure 4.13 OGSI and web services hosting.

Web services

Discovery Lifecycle State Mgt.
Service
Groups

Handle MapNotificationFactory

The Globus Project
� Open source
� Reference

implementation

OGSI—Open Grid Services Infrastructure

OGSA Architected Services

Hosting platform
(environments)

Microsoft
Globus (C/C++)
(Python)

Hosting platform
(Java)

WebSphere
BEA
Jboss
Oracle

c04.qxd 8/24/2004 10:16 AM Page 138

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW

This section9 provides a more detailed view of OGSI based on the OGSI specifica-
tion itself. For a more comprehensive description of these concepts, the reader
should consult the specification.

4.6.1 Introduction

The OGSA [114] integrates key grid technologies [3, 96] (including the Globus
Toolkit) with Web services mechanisms [148] to create a distributed system frame-
work based on the OGSI. A grid service instance is a (potentially transient) service
that conforms to a set of conventions, expressed as WSDL interfaces, extensions,
and behaviors, for such purposes as lifetime management, discovery of characteris-
tics, and notification. Grid services provide for the controlled management of the
distributed and often long-lived state that is commonly required in sophisticated
distributed applications. OGSI also introduces standard factory and registration in-
terfaces for creating and discovering grid services.

OGSI defines a component model that extends WSDL and XML schema defini-
tion to incorporate the concepts of

� Stateful Web services

� Extension of Web services interfaces

� Asynchronous notification of state change

� References to instances of services

� Collections of service instances

� Service state data that augment the constraint capabilities of XML schema de-
finition

The OGSI specification (V1.0 at press time) defines the minimal, integrated set of
extensions and interfaces necessary to support definition of the services that will
compose OGSA. The OGSI V1.0 specification proposes detailed specifications for
the conventions that govern how clients create, discover, and interact with a grid
service instance. That is, it specifies (1) how grid service instances are named and
referenced; (2) the base, common interfaces (and associated behaviors) that all grid
services implement; and (3) the additional (optional) interfaces and behaviors asso-
ciated with factories and service groups. The specification does not address how
grid services are created, managed, and destroyed within any particular hosting en-
vironment. Thus, services that conform to the OGSI specification are not necessari-
ly portable to various hosting environments, but any client program that follows the

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 139

9This section is based on Open Grid Services Infrastructure (OGSI) [84], copyright © Global Grid Fo-
rum (2003). This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works

c04.qxd 8/24/2004 10:16 AM Page 139

TEAM LinG - Live, Informative, Non-cost and Genuine!

conventions can invoke any grid service instance conforming to the OGSI specifi-
cation (of course, subject to policy and compatible protocol bindings).

The term hosting environment is used in the OGSI specification to denote the
server in which one or more grid service implementations run. Such servers are typ-
ically language or platform specific; examples include native Unix and Windows
processes, J2EE application servers, and Microsoft .NET.

4.6.2 Setting the Context

GGF calls OGSI the “base for OGSA.” Specifically, there is a relationship between
OGSI and distributed object systems and also a relationship between OGSI and the
existing (and evolving) Web services framework. One needs to examine both the
client-side programming patterns for grid services and a conceptual hosting envi-
ronment for grid services. The patterns described in this section are enabled but not
required by OGSI.

4.6.2.1 Relationship to Distributed Object Systems. A given grid service
implementation is an addressable and potentially stateful instance that implements
one or more interfaces described by WSDL portTypes. Grid service factories can be
used to create instances implementing a given set of portType(s). Each grid service
instance has a notion of identity with respect to the other instances in the distributed
grid. Each instance can be characterized as state coupled with behavior published
through type-specific operations. The architecture also supports introspection in
that a client application can ask a grid service instance to return information de-
scribing itself, such as the collection of portTypes that it implements.

Grid service instances are made accessible to (potentially remote) client applica-
tions through the use of a grid service handle and a grid service reference (GSR).
These constructs are basically network-wide pointers to specific grid service in-
stances hosted in (potentially remote) execution environments. A client application
can use a grid service reference to send requests, represented by the operations de-
fined in the portType(s) of the target service description directly to the specific in-
stance at the specified network-attached service endpoint identified by the grid ser-
vice reference.

In many situations, client stubs and helper classes isolate application program-
mers from the details of using grid service references. Some client-side infrastruc-
ture software assumes responsibility for directing an operation to a specific instance
that the GSR identifies.

The characteristics introduced above (stateful instances, typed interfaces, global
names, etc.) are frequently also cited as fundamental characteristics of distributed
object-based systems. There are, however, also various other aspects of distributed
object models (as traditionally defined) that are specifically not required or pre-
scribed by OGSI. For this reason, OGSI does not adopt the term distributed object
model or distributed object system when describing these concepts, but instead uses
the term “open grid services infrastructure,” thus emphasizing the connections that
are established with both Web services and grid technologies.

140 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:16 AM Page 140

TEAM LinG - Live, Informative, Non-cost and Genuine!

Among the object-related issues that are not addressed within OGSI are imple-
mentation inheritance, service instance mobility, development approach, and hosting
technology. The grid service specification does not require, nor does it prevent, im-
plementations based upon object technologies that support inheritance at either the
interface or the implementation level. There is no requirement in the architecture to
expose the notion of implementation inheritance either at the client side or at the ser-
vice provider side of the usage contract. In addition, the grid service specification
does not prescribe, dictate, or prevent the use of any particular development approach
or hosting technology for grid service instances. Grid service providers are free to im-
plement the semantic contract of the service description in any technology and host-
ing architecture of their choosing. OGSI envisions implementations in J2EE, .NET,
traditional commercial transaction management servers, traditional procedural Unix
servers, and so forth. It also envisions service implementations in a wide variety of
both object-oriented and nonobject-oriented programming languages.

4.6.2.2 Client-Side Programming Patterns. Another important issue is
how OGSI interfaces are likely to be invoked from client applications. OGSI ex-
ploits an important component of the Web services framework: the use of WSDL to
describe multiple protocol bindings, encoding styles, messaging styles (RPC versus
document oriented), and so on, for a given Web service. The Web Services Invoca-
tion Framework (WSIF) and Java API for XML RPC (JAX-RPC) are among the
many examples of infrastructure software that provide this capability.

Figure 4.14 depicts a possible (but not required) client-side architecture for
OGSI. In this approach, a clear separation exists between the client application and

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 141

Figure 4.14 Possible client-side runtime architecture.

C
lie

nt
A

p
p

lic
at

io
n

Proxy

client
interface

Protocol 1
(binding)
specific Stub

Protocol 2
(binding)
specific Stub

Protocol 3
(binding)
specific Stub

Protocol 4
(binding)
specific Stub

Invocation
of Web
service

c04.qxd 8/24/2004 10:16 AM Page 141

TEAM LinG - Live, Informative, Non-cost and Genuine!

the client-side representation of the Web service (proxy), including components for
marshaling the invocation of a Web service over a chosen binding. In particular, the
client application is insulated from the details of the Web service invocation by a
higher-level abstraction: the client-side interface.

Various tools can take the WSDL description of the Web service and generate
interface definitions in a wide range of programming-language-specific constructs
(e.g., Java interfaces and C#). This interface is a front end to specific parameter
marshaling and message routing that can incorporate various binding options pro-
vided by the WSDL. Further, this approach allows certain efficiencies, for example,
detecting that the client and the Web service exist on the same network host, there-
fore avoiding the overhead of preparing for and executing the invocation using net-
work protocols.

Within the client application runtime, a proxy provides a client-side representa-
tion of remote service instance’s interface. Proxy behaviors specific to a particular
encoding and network protocol (binding, in Web services terminology) are encap-
sulated in a protocol-specific (binding-specific) stub. Details related to the binding-
specific access to the grid service instance, such as correct formatting and authenti-
cation mechanics, happen here; thus, the application is not required to handle these
details itself.

It is possible, but not recommended, for developers to build customized code
that directly couples client applications to fixed bindings of a particular grid service
instance. Although certain circumstances demand potential efficiencies gained by
this style of customization, this approach introduces significant inflexibility into a
system and therefore should only be used under extraordinary circumstances.

The developers of the OGSI specification expect the stub and client-side infra-
structure model that we describe to be a common approach to enabling client access
to grid services. This includes both application-specific services and common infra-
structure services that are defined by OGSA. Thus, for most software developers
using grid services, the infrastructure and application-level services appear in the
form of a class library or programming language interface that is natural to the
caller. WSDL and the GWSDL extensions provide support for enabling heteroge-
neous tools and enabling infrastructure software.

4.6.2.3 Client Use of Grid Service Handles and References. As noted, a
client gains access to a grid service instance through grid service handles and grid ser-
vice references. A grid service handle (GSH) can be thought of as a permanent net-
work pointer to a particular grid service instance. The GSH does not provide sufficient
information to allow a client to access the service instance; the client needs to “re-
solve” a GSH into a grid service reference (GSR). The GSR contains all the necessary
information to access the service instance. The GSR is not a “permanent” network
pointer to the grid service instance because a GSR may become invalid for various rea-
sons; for example, the grid service instance may be moved to a different server.

OGSI provides a mechanism, the HandleResolver to support client resolution of
a grid service handle into a grid service reference. Figure 4.15 shows a client appli-
cation that needs to resolve a GSH into a GSR.

142 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:16 AM Page 142

TEAM LinG - Live, Informative, Non-cost and Genuine!

The client resolves a GSH into a GSR by invoking a HandleResolver grid ser-
vice instance identified by some out-of-band mechanism. The HandleResolver can
use various means to do the resolution; some of these means are depicted in
Figure 4.15. The HandleResolver may have the GSR stored in a local cache. The
HandleResolver may need to invoke another HandleResolver to resolve the GSH.
The HandleResolver may use a handle resolution protocol, specified by the par-
ticular kind (or scheme) of the GSH to resolve to a GSR. The HandleResolver
protocol is specific to the kind of GSH being resolved. For example, one kind of

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 143

Client
Application

HandleResolver
Grid Service

Resolve this
GSH

GSR

HandleResolver
Grid

Service

cache

Handle Scheme
Specific resolver

protocol

Figure 4.15 Resolving a GSH.

HandleResolver
Grid

Service

c04.qxd 8/24/2004 10:16 AM Page 143

TEAM LinG - Live, Informative, Non-cost and Genuine!

handle may suggest the use of HTTP GET to a URL encoded in the GSH in order
to resolve to a GSR.

4.6.2.4 Relationship to Hosting Environment. OGSI does not dictate a
particular service-provider-side implementation architecture. A variety of ap-
proaches are possible, ranging from implementing the grid service instance direct-
ly as an operating system process to a sophisticated server-side component model
such as J2EE. In the former case, most or even all support for standard grid ser-
vice behaviors (invocation, lifetime management, registration, etc.) is encapsulat-
ed within the user process; for example, via linking with a standard library. In the
latter case, many of these behaviors are supported by the hosting environment.

Figure 4.16 illustrates these differences by showing two different approaches to
the implementation of argument demarshaling functions. One can assume that, as is
the case for many grid services, the invocation message is received at a network
protocol termination point (e.g., an HTTP servlet engine) that converts the data in
the invocation message into a format consumable by the hosting environment. The
top part of Figure 4.16 illustrates two grid service instances (the oval) associated
with container-managed components (e.g., EJBs within a J2EE container). Here,
the message is dispatched to these components, with the container frequently pro-
viding facilities for demarshaling and decoding the incoming message from a for-
mat (such as an XML/SOAP message) into an invocation of the component in na-
tive programming language. In some circumstances (the oval), the entire behavior
of a grid service instance is completely encapsulated within the component.

144 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Figure 4.16 Two approaches to the implementation of argument demarshaling functions in
a grid service hosting environment.

Protocol
termination

Protocol
termination

Protocol
termination

D
em

ar
sh

al
in

g/
D

ec
od

in
g/

R
ou

tin
g

Grid
service

implementation

Grid
service

implementaion

Grid
service

implementation

Container

c04.qxd 8/24/2004 10:16 AM Page 144

TEAM LinG - Live, Informative, Non-cost and Genuine!

In other cases (the oval), a component will collaborate with other server-side ex-
ecutables, perhaps through an adapter layer, to complete the implementation of the
grid service behavior. The bottom part of Figure 4.16 depicts another scenario
wherein the entire behavior of the grid service instance, including the demarshal-
ing/decoding of the network message, has been encapsulated within a single exe-
cutable. Although this approach may have some efficiency advantages, it provides
little opportunity for reuse of functionality between grid service implementations.

A container implementation may provide a range of functionality beyond simple
argument demarshaling. For example, the container implementation may provide
lifetime management functions, automatic support for authorization and authentica-
tion, request logging, intercepting lifetime management functions, and terminating
service instances when a service lifetime expires or an explicit destruction request
is received. Thus, one avoids the need to reimplement these common behaviors in
different grid service implementations.

4.6.3 The Grid Service

The purpose of the OGSI document is to specify the (standardized) interfaces and
behaviors that define a grid service. In brief, a grid service is a WSDL-defined ser-
vice that conforms to a set of conventions relating to its interface definitions and be-
haviors. Thus, every grid service is a Web service, though the converse of this state-
ment is not true. The OGSI document expands upon this brief statement by

� Introducing a set of WSDL conventions that one uses in the grid service spec-
ification; these conventions have been incorporated in WSDL 1.2 [150].

� Defining service data that provide a standard way for representing and query-
ing metadata and state data from a service instance

� Introducing a series of core properties of grid service, including:

� Defining grid service description and grid service instance, as organizing
principles for their extension and their use

� Defining how OGSI models time

� Defining the grid service handle and grid service reference constructs that
are used to refer to grid service instances

� Defining a common approach for conveying fault information from opera-
tions. This approach defines a base XML schema definition and associated
semantics for WSDL fault messages to support a common interpretation;
the approach simply defines the base format for fault messages, without
modifying the WSDL fault message model.

� Defining the life cycle of a grid service instance

4.6.4 WSDL Extensions and Conventions

As should be clear by now, OGSI is based on Web services; in particular, it uses
WSDL as the mechanism to describe the public interfaces of grid services. Howev-

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 145

c04.qxd 8/24/2004 10:16 AM Page 145

TEAM LinG - Live, Informative, Non-cost and Genuine!

er, WSDL 1.1 is deficient in two critical areas: lack of interface (portType) exten-
sion and the inability to describe additional information elements on a portType
(lack of open content). These deficiencies have been addressed by the W3C Web
Services Description Working Group [150]. Because WSDL 1.2 is a “work in
progress,” OGSI cannot directly incorporate the entire WSDL 1.2 body of work. In-
stead, OGSI defines an extension to WSDL 1.1, isolated to the wsdl:portType ele-
ment, which provides the minimal required extensions to WSDL 1.1. These exten-
sions to WSDL 1.1 match equivalent functionality agreed to by the W3C Web
Services Description Working Group. Once WSDL 1.2 [150] is published as a rec-
ommendation by the W3C, the Global Grid Forum is committed to defining a fol-
low-on version of OGSI that exploits WSDL 1.2, and to defining a translation from
this OGSI v1.0 extension to WSDL 1.2.

4.6.5 Service Data

The approach to stateful Web services introduced in OGSI identified the need for a
common mechanism to expose a service instance’s state data to service requestors
for query, update, and change notification. Since this concept is applicable to any
Web service including those used outside the context of grid applications, one can
propose a common approach to exposing Web service state data called “serviceDa-
ta.” The GGF is endeavoring to introduce this concept to the broader Web services
community.

In order to provide a complete description of the interface of a stateful Web ser-
vice (i.e., a grid service), it is necessary to describe the elements of its state that are
externally observable. By externally observable, one means that the state of the ser-
vice instance is exposed to clients making use of the declared service interface,
where those clients are outside of what would be considered the internal implemen-
tation of the service instance itself. The need to declare service data as part of the
service’s external interface is roughly equivalent to the idea of declaring attributes
as part of an object-oriented interface described in an object-oriented interface-defi-
nition language.

Service data can be exposed for read, update, or subscription purposes. Since
WSDL defines operations and messages for portTypes, the declared state of a ser-
vice must be externally accessed only through service operations defined as part of
the service interface. To avoid the need to define serviceData-specific operations
for each serviceData element, the grid service portType provides base operations
for manipulating serviceData elements by name.

Consider an example. Interface alpha introduces operations op1, op2, and op3.
Also assume that the alpha interface consists of publicly accessible data elements
of de1, de2, and de3. One uses WSDL to describe alpha and its operations. The
OGSI serviceData construct extends WSDL so that the designer can further define
the interface to alpha by declaring the public accessibility of certain parts of its
state de1, de2, and de3. This declaration then facilitates the execution of opera-
tions on the service data of a stateful service instance implementing the alpha in-
terface.

146 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:16 AM Page 146

TEAM LinG - Live, Informative, Non-cost and Genuine!

Put simply, the serviceData declaration is the mechanism used to express the el-
ements of the publicly available state exposed by the service’s interface. ServiceDa-
ta elements are accessible through operations of the service interfaces such as those
defined in this specification. The private internal state of the service instance is not
part of the service interface and is therefore not represented through a serviceData
declaration.

4.6.5.1 Motivation and Comparison to JavaBean Properties. The
OGSI specification introduces the serviceData concept to provide a flexible, prop-
erties-style approach to accessing state data of a Web service. The serviceData con-
cept is similar to the notion of a public instance variable or field in object-oriented
programming languages such as Java, Smalltalk, and C++. ServiceData is similar to
JavaBean™ properties. The JavaBean model defines conventions for method signa-
tures (getXXX/setXXX) to access properties, and helper classes (BeanInfo) to doc-
ument properties. The OGSI model uses the serviceData elements and XML
schema types to achieve a similar result.

The OGSI specification has chosen not to require getXXX and setXXX WSDL
operations for each serviceData element, although service implementers may
choose to define such safe get and set operations themselves. Instead, OGSI defines
extensible operations for querying (get), updating (set), and subscribing to notifica-
tion of changes in serviceData elements. Simple expressions are required by OGSI
to be supported by these operations, which allows for access to serviceData ele-
ments by their names, relative to a service instance. This by-name approach gives
functionality roughly equivalent to the getXXX and setXXX approach familiar to
JavaBean and Enterprise JavaBean programmers. However, these OGSI operations
may be extended by other service interfaces to support richer query, update, and
subscription semantics, such as complex queries that span multiple serviceData ele-
ments in a service instance.

The serviceDataName element in a GridService portType definition corresponds
to the BeanInfo class in JavaBeans. However, OGSI has chosen an XML (WSDL)
document that provides information about the serviceData, instead of using a serial-
izable implementation class as in the BeanInfo model.

4.6.5.2 Extending portType with serviceData. ServiceData defines a new
portType child element named serviceData, used to define serviceData elements, or
SDEs, associated with that portType. These serviceData element definitions are re-
ferred to as serviceData declarations, or SDDs. Initial values for those serviceData
elements (marked as “static” serviceData elements) may be specified using the stat-
icServiceDataValues element within portType. The values of any serviceData ele-
ment, whether declared statically in the portType or assigned during the life of the
Web service instance, are called serviceData element values, or SDE values.

4.6.5.3 serviceDataValues. Each service instance is associated with a collec-
tion of serviceData elements: those serviceData elements defined within the various
portTypes that form the service’s interface, and also, potentially, additional service-

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 147

c04.qxd 8/24/2004 10:16 AM Page 147

TEAM LinG - Live, Informative, Non-cost and Genuine!

Data elements added at runtime. OGSI calls the set of serviceData elements associ-
ated with a service instance its “serviceData set.” A serviceData set may also refer
to the set of serviceData elements aggregated from all serviceData elements de-
clared in a portType interface hierarchy.

Each service instance must have a “logical” XML document, with a root element
of serviceDataValues that contains the serviceData element values. An example of
a serviceDataValues element was given above. A service implementation is free to
choose how the SDE values are stored; for example, it may store the SDE values
not as XML but as instance variables that are converted into XML or other encod-
ings as necessary.

The wsdl:binding associated with various operations manipulating serviceData
elements will indicate the encoding of that data between service requestor and ser-
vice provider. For example, a binding might indicate that the serviceData element
values are encoded as serialized Java objects.

4.6.5.4 SDE Aggregation within a portType Interface Hierarchy.
WSDL 1.2 has introduced the notion of multiple portType extension, and one can
model that construct within the GWSDL namespace. A portType can extend zero or
more other portTypes. There is no direct relationship between a wsdl:service and
the portTypes supported by the service modeled in the WSDL syntax. Rather, the
set of portTypes implemented by the service is derived through the port element
children of the service element and binding elements referred to from those port el-
ements. This set of portTypes, and all portTypes they extend, defines the complete
interface to the service.

The serviceData set defined by the service’s interface is the set union of the ser-
viceData elements declared in each portType in the complete interface implement-
ed by the service instance. Because serviceData elements are uniquely identified by
QName, the set union semantic implies that a serviceData element can appear only
once in the set of serviceData elements. For example, if a portType named “pt1”
and portType named “pt2” both declare a serviceData named “tns:sd1,” and a port-
Type named “pt3” extends both “pt1 and “pt2,” then it has one (not two) serviceDa-
ta elements named “tns:sd1.”

4.6.5.5 Dynamic serviceData Elements. Although many serviceData ele-
ments are most naturally defined in a service’s interface definition, situations can
arise in which it is useful to add or move serviceData elements dynamically to or
from an instance. The means by which such updates are achieved are implementa-
tion specific; for example, a service instance may implement operations for adding
a new serviceData element.

The grid service portType illustrates the use of dynamic SDEs. This contains a
serviceData element named “serviceDataName” that lists the serviceData elements
currently defined. This property of a service instance may return a superset of the
serviceData elements declared in the GWSDL defining the service interface, allow-
ing the requestor to use the subscribe operation if this serviceDataSet changes, and
the findServiceData operation to determine the current serviceDataSet value.

148 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:16 AM Page 148

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6.6 Core Grid Service Properties

This subsection discusses a number of properties and concepts common to all grid
services.

4.6.6.1 Service Description and Service Instance. One can distinguish in
OGSI between the description of a grid service and an instance of a grid service:

� A grid service description describes how a client interacts with service in-
stances. This description is independent of any particular instance. Within a
WSDL document, the grid service description is embodied in the most de-
rived portType (i.e., the portType referenced by the wsdl:service element’s
port children, via referenced binding elements, describing the service) of the
instance, along with its associated portTypes (including serviceData declara-
tions), bindings, messages, and types definitions.

� A grid service description may be simultaneously used by any number of grid
service instances, each of which

� Embodies some state with which the service description describes how to
interact

� Has one or more grid service handles

� Has one or more grid service references to it

A service description is used primarily for two purposes. First, as a description of
a service interface, it can be used by tooling to automatically generate client interface
proxies, server skeletons, and so forth. Second, it can be used for discovery, for ex-
ample, to find a service instance that implements a particular service description, or
to find a factory that can create instances with a particular service description.

The service description is meant to capture both interface syntax and (in a very
rudimentary, nonnormative fashion) semantics. Interface syntax is described by
WSDL portTypes. Semantics may be inferred through the name assigned to the
portType. For example, when defining a grid service, one defines zero or more
uniquely named portTypes. Concise semantics can be associated with each of these
names in specification documents, and, perhaps in the future, through Semantic
Web or other more formal descriptions. These names can then be used by clients to
discover services with desired semantics, by searching for service instances and
factories with the appropriate names. The use of namespaces to define these names
also provides a vehicle for assuring globally unique names.

4.6.6.2 Modeling Time in OGSI. The need arises at various points throughout
this specification to represent time that is meaningful to multiple parties in the dis-
tributed Grid. For example, information may be tagged by a producer with time-
stamps in order to convey that information’s useful lifetime to consumers. Clients
need to negotiate service instance lifetimes with services, and multiple services may
need a common understanding of time in order for clients to be able to manage their
simultaneous use and interaction.

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 149

c04.qxd 8/24/2004 10:16 AM Page 149

TEAM LinG - Live, Informative, Non-cost and Genuine!

The GMT global time standard is assumed for grid services, allowing operations
to refer unambiguously to absolute times. However, assuming the GMT time stan-
dard to represent time does not imply any particular level of clock synchronization
between clients and services in the grid. In fact, no specific accuracy of synchro-
nization is specified or expected by OGSI, as this is a service-quality issue.

Grid service hosting environments and clients should utilize the Network Time
Protocol (NTP) or equivalent function to synchronize their clocks to the global
standard GMT time. However, clients and services must accept and act appropri-
ately on messages containing time values that are out of range because of inade-
quate synchronization, where “appropriately” may include refusing to use the in-
formation associated with those time values. Furthermore, clients and services
requiring global ordering or synchronization at a finer granularity than their clock
accuracies or resolutions allow for must coordinate through the use of additional
synchronization service interfaces, such as through transactions or synthesized
global clocks.

In some cases, it is required to represent both zero time and infinite time. Zero
time should be represented by a time in the past. However, infinite time requires an
extended notion of time. One therefore introduces the following type in the OGSI
namespace that may be used in place of xsd:dateTime when a special value of “in-
finity” is appropriate.

4.6.6.3 XML Element Lifetime Declaration Properties. Since serviceDa-
ta elements may represent instantaneous observations of the dynamic state of a ser-
vice instance, it is critical that consumers of serviceData be able to understand the
valid lifetimes of these observations. The client may use this time-related informa-
tion to reason about the validity and availability of the serviceData element and its
value, though the client is free to ignore the information.

One can define three XML attributes that together describe the lifetimes associ-
ated with an XML element and its subelements. These attributes may be used in any
XML element that allows for extensibility attributes, including the serviceData ele-
ment.

The three lifetime declaration properties are:

1. ogsi:goodFrom. Declares the time from which the content of the element is
said to be valid. This is typically the time at which the value was created.

2. ogsi:goodUntil. Declares the time until which the content of the element is
said to be valid. This property must be greater than or equal to the goodFrom
time.

3. ogsi:availableUntil. Declares the time until which this element itself is ex-
pected to be available, perhaps with updated values. Prior to this time, a client
should be able to obtain an updated copy of this element. After this time, a
client may no longer be able to get a copy of this element (while still observ-
ing cardinality and mutability constraints on this element). This property
must be greater than or equal to the goodFrom time.

150 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:16 AM Page 150

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6.7 Other Details

The above description is but a summary of the OGSI specification. The interested
reader should refer to reference [84] for a more inclusive discussion.

4.7 A POSSIBLE APPLICATION OF OGSA/OGSI TO NEXT-
GENERATION OPEN-SOURCE OUTSOURCING

4.7.1 Opportunities

This section looks briefly at the issue of outsourcing of IT services by an increasing
number of large and mid-size companies. In the early 1990s, we published an early
book on outsourcing [120] that attempted to make the point that analytics were
needed to make an informed and defensible decision. Up to then, a lot of the out-
sourcing deals were made on an emulation mode: “If leading company x in industry
A made such a choice, then we at company y in industry A should also follow suit.”
Now, if we were to write a book on this topic we would emphasize the desire and/or
advantage to use standards, in particular grid computing standards, to establish
“open-source outsourcing,” so that an organization can obtain services in a com-
pletely commoditized and competitive manner. Open standards enable a company
to easily port its business if it finds that an outsourcer is not delivering the service to
the stipulated SLA or financial levels. We invite the reader to read Chapter 5 from
the perspective of a pending outsourcing decision and to appreciate, while reading,
the opportunity that the grid computing standards afford in this context. Figure 4.17
depicts the target open-source-outsourcing architecture. According to press-time
market research, the worldwide outsourcing revenue was $120B in 2003 and was
expected to grow to $160B by 2006. Because IT costs usually equate to 6% of the
revenue line of companies, $120B equates to a revenue top line of $2T. This means
that this is equivalent in the aggregate to the top 30 companies in the United States
(Exxon Mobil, Wal-Mart, GM, Ford Motor, General Electric, ChevronTexaco,
Chrysler, IBM, Altria, HP, State Farm Insurance, and the next nineteen) outsourc-
ing their entire IT operations.

The material that follows focuses only on the current outsourcing trends/impera-
tives; we let the reader mentally apply the material of this chapter and the chapter(s)
that follow to the issue of outsourcing.

4.7.2 Outsourcing Trends

The material in this subsection, characterizing the market momentum toward out-
sourcing, is synthesized from Gartner Dataquest (Stamford, CT) sources.

40% of the Fortune 500 companies were expected to have outsourced offshore
by the end of 2004. More generally, by 2004, 70% of enterprises will selectively
outsource applications using a variety of ASPs, traditional outsourcers, niche appli-
cations vendors, and offshore providers. Enterprise buyers are demanding that IT
service providers offer a range of global sourcing alternatives, including on-site,

4.7 A POSSIBLE APPLICATION OF OGSA/OGSI 151

c04.qxd 8/24/2004 10:16 AM Page 151

TEAM LinG - Live, Informative, Non-cost and Genuine!

152

F
ig

ur
e

4.
17

O
pe

n
ou

ts
ou

rc
in

g
po

ss
ib

le
 w

it
h

st
an

da
rd

s.

c04.qxd 8/24/2004 10:16 AM Page 152

TEAM LinG - Live, Informative, Non-cost and Genuine!

domestic, nearshore (services delivered from an adjacent or nearby country) and
offshore capabilities. Press-time studies show that about 40% of customers reported
they are currently outsourcing some aspect of their network operations, typically
voice and data. By year-end 2004, one out of every 10 jobs within U.S.-based IT
vendors and IT service providers will move to emerging markets, as also will one of
every 20 IT jobs within user enterprises. Growth in offshore delivery is expected to
be continuous, but moderate compared with the “hype” around the concept in recent
years (the revenue growth just cited is a CAGR of 10%). An analysis of IT out-
sourcing contracts for the past 14 years has shown that the average value of an IT
outsourcing contract is $47 million, and the average length of a contract is six years.
Enterprises must use structured evaluation and selection criteria or run the risk of
engaging with the wrong ASP and/or offering the wrong level of service (here is
where open-source outsourcing can be of value).

Reflecting the industry’s price sensitivity, cost ranks higher in IT buyer’s deci-
sion making in financial services than in other industries. For many CIOs, the deci-
sion to outsource activities offshore is fiscally calculable: the cost, quality, value,
and process advantages are well proven through about 15–20 years of practice start-
ing in the late 1980s. According to observers, offshore outsourcing is becoming a
tool for improving service delivery and a source of qualified talent. Most of today’s
offshore business process outsourcing (BPO) opportunity remains at the level of
out-tasking a component of a business process rather than outsourcing an entire
business process, and is mostly relegated to back-office transaction processing (and
contact centers). In recent years, financial services penned at least 17 large deals, a
number also matched by government operations. The telecommunications industry
has undertaken 12 deals, transportation has 11, manufacturing and aerospace/de-
fense each have eight, and high-tech has seven.

Observers suggest that enterprises should consider including a 25% acquisition
clause into their contract that allows the enterprise to get out of the contract if the
service provider is more than 25% acquired by another company. The enterprise
should also include a competitive-pricing clause that forces an ASP hosting
provider to match a deal it gave to another enterprise if the enterprise with such a
clause in the contract could qualify for the volume commitments. Again, open-
source outsourcing can be of obvious value.

Enterprises around the world are attempting to focus their investments on their
core business processes and are increasingly looking at outsourcing noncore busi-
ness processes, such as IT with its never-ending overcomplexity. Early adopters of
BPO services, primarily large organizations, continue to expand their relationships
to include new process areas, and new technology and media are creating opportu-
nities for outsourcing entire lines of products and services, such as online payroll,
online benefits administration, online order management, and online transaction
processing.

An element in many of the outsourcing initiatives is a focus on IT infrastructure
and operations: many of the large initiatives involve substantial consolidation and
centralization of IT assets on a global basis. Outsourcing providers promise to meet
IT and business needs through new technology and new business models, particu-

4.7 A POSSIBLE APPLICATION OF OGSA/OGSI 153

c04.qxd 8/24/2004 10:16 AM Page 153

TEAM LinG - Live, Informative, Non-cost and Genuine!

larly the on-demand model (akin to the grid computing paradigm) that appears to
promise relief from fixed costs.

Although BPO has emerged as one of the fastest growing service opportunities
in the financial services market, BPO is not a new service area for financial ser-
vices: check-processing services have been around for decades, and payment pro-
cessing showed steady robust growth through the 1990s. What is different now is
that BPO is rapidly expanding into areas that were off limits to outsourcing just a
few years ago. Increasing acceptance is also driving expansion in the number and
scope of deals, which, in turn, increases the market size.

This survey material from Gartner Dataquest documents the market momentum
toward outsourcing. The use of an open-source approach, which greatly facilitates
portability, will prove to be very advantageous to companies. We encourage IT pro-
fessionals to explore these opportunities through the machinery afforded by
OGSA/OGSI.

154 STANDARDS SUPPORTING GRID COMPUTING: OGSI

c04.qxd 8/24/2004 10:16 AM Page 154

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 155
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 5

Standards Supporting
Grid Computing: OGSA

For any kind of new technology, corporate and business decision makers typically
seek answers to a set of questions, including “Are there firm standards to support
the technology and its widespread deployment?” Any experienced planner is keenly
aware of the financial implications of using a technology that does not have stan-
dards (or is at least based on a broad-reaching de facto industry standard). In the
previous chapter, we discussed OGSI in some detail, it being the original grid stan-
dard published by the Global Grid Forum (OGSI defines grid services and the basic
mechanisms for creating, managing, and exchanging information between them). A
second standard appeared a year later (and was still in initial draft form at press
time): the Open Grid Services Architecture (OGSA). As we have discussed up to
this point, standards are critical to the commercialization of the Intergrid, just like
Internet standards were critical to the commercialization of the Internet in the 1990s
(e.g., see [66–68]). These same standards can then be used for enterprise grids, just
like browsers are now used for intranet applications. Also, as noted, these standards
can be utilized to develop open outsourcing environments.

OGSA specifies the scope of important services required to support grid systems
and applications in both e-science and e-business. It identifies a core set of such ser-
vices that are perceived as being essential for many systems and applications, and it
specifies at a high level the functionalities required for and the interrelationships
among these core services. These same standards are also very useful in the enter-
prise grid (intragrid) context. OGSA is a special Web service that provides a set of
well-defined interfaces and follows specific conventions. The OGSA document
also lists existing technical standards and standard definition activities within GGF,
OASIS, W3C, and other standards bodies that speak to required OGSA functionali-
ty, and identifies priority areas for further work.

This chapter (based largely on [69]1) covers the OGSA documentation. Al-
though the OGSA continues to be revised, this write-up is intended to provide a

1Copyright © Global Grid Forum (2002, 2003). All Rights Reserved. This document and translations of
it may be copied and furnished to others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this paragraph are included
on all such copies and derivative works.

c05.qxd 8/24/2004 10:17 AM Page 155

TEAM LinG - Live, Informative, Non-cost and Genuine!

sense of where this work is going. The purpose of this chapter is to highlight the
standardization progress and not to provide a comprehensive normative specifica-
tion and/or tutorial. The reader should always consult the latest GGF documenta-
tion, after acquiring a basic understanding through the material presented herein.

Some of this material parallels some of the information of Chapter 4, but that is
the way the OGSI and OGSA documents have been produced by the GGF. Propo-
nents note that

. . . [I]n theory, utility computing gives managers greater utilization of data-center re-
sources at lower operating costs. At their disposal will be flexible computing, storage
and network capacity that can react automatically to changes in business priorities.
The data center of the future also will have self-configuring, self-monitoring and self-
healing features so managers can reduce today’s manual configuration and trou-
bleshooting chores, advocates say. The allure of utility computing is easy to see, but
there is no clear road map without a stable set of standards. Getting there requires an
open-source standards-based approach that encompasses network gear, servers, soft-
ware, services and IT governance. Vendors are working to create intelligent devices,
management tools and services for utility consumption. [63].

There is plenty of work to do, and standards are a critical initiative in this area, as
they are, in reality, in many other arenas (spanning the gamut from WWW to Ether-
net, DVDs to HDTV). Hence, our emphasis on this topic, and the motivation for
this chapter.

Successful realization of the OGSA vision of a broadly applicable and broadly
adopted framework for distributed system integration, virtualization, and manage-
ment requires the definition of a core set of interfaces, behaviors, resource models,
and bindings. The OGSA documentation, developed by the OGSA working group
within the GGF, provides a first (but preliminary and incomplete) version of this
OGSA definition. Throughout this book as well as in this chapter, the term “re-
source” is used in its most general sense and can include virtualized physical re-
sources such as processors, storage, memory, and/or virtual resources such as soft-
ware licenses or data.

5.1 INTRODUCTION

The OGSA, developed within the OGSI working group of the Global Grid Forum,
is a proposed enabling infrastructure for grid systems and applications, that is, sys-
tems and applications that are concerned with the integration, virtualization, and
management of services within distributed, heterogeneous, dynamic “virtual orga-
nizations” in industry, e-science, or e-business [58, 114]. Whether confined to a sin-
gle enterprise or extended to encompass external resource sharing and service
provider relationships, one finds that service integration, virtualization, and man-
agement in these contexts can be technically challenging because of the need to
achieve various end-to-end qualities of service when running on top of different na-
tive platforms.

156 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 156

TEAM LinG - Live, Informative, Non-cost and Genuine!

Work on OGSA seeks to address these challenges by defining an integrated set
of Web-service-based service definitions designed both to simplify the creation of
secure, robust grid systems, and to enable the creation of interoperable, portable,
and reusable components and systems via the standardization of key interfaces and
behaviors. The purpose of the OGSA document is to summarize current under-
standing of required OGSA functionality and the appropriate rendering of this func-
tionality into service definitions. More specifically, it presents functionality re-
quirements, a service taxonomy, relationships among the various services, and,
finally, more detailed descriptions of specific services.

Activities in OGSA both build on and are contributing to the development of the
growing collection of technical specifications that form the emerging Web services
architecture [51]. (Indeed, OGSA can be viewed as a particular profile for the appli-
cation of core WS standards.) Some grid functionality requirements are met by ex-
isting or proposed standards. In other cases, grid functionality requirements may re-
quire extensions to existing service definitions and/or entirely new service
definitions. Where this is the case, the document describes the current state of work
underway to define such extensions and/or definitions.

Although the OGSA vision is broad, work to date has focused on the definition
of a small set of core semantic elements. In particular, the OGSI specification (dis-
cussed in Chapter 4) defines, in terms of WSDL interfaces and associated conven-
tions, extensions and refinements of emerging Web services standards to support
basic grid behaviors [52]. OGSI-compliant Web services—what the GGF calls grid
services—are intended to form the components of grid infrastructure and applica-
tion stacks.

OGSI defines essential building blocks for distributed systems, including standard
interfaces and associated behaviors for describing and discovering service attributes,
creating service instances, managing service lifetime, and subscribing to and deliver-
ing notifications. However, it does not define all elements that arise when creating
large-scale systems. One may also need to address a wide variety of other issues, both
fundamental and domain specific, of which the following are just examples.

How do I establish identity and negotiate authentication?

How is policy expressed and negotiated?

How do I discover services?

How do I negotiate and monitor service-level agreements?

How do I manage membership of, and communication within, virtual organiza-
tions?

How do I organize service collections hierarchically so as to deliver reliable and
scalable service semantics?

How do I integrate data resources into computations?

How do I monitor and manage collections of services?

Without standardization in each of these (and other) areas, it is hard to build large-
scale systems in a standard fashion, achieve code reuse, and achieve interoperabili-

5.1 INTRODUCTION 157

c05.qxd 8/24/2004 10:17 AM Page 157

TEAM LinG - Live, Informative, Non-cost and Genuine!

ty among components—three distinct and important goals. Much of the OGSA doc-
ument is concerned with defining these services.

GGF’s understanding of what is required in OGSA is preliminary and incom-
plete by their admission. Both the understanding of OGSA’s purpose and form, and
the details of specific components, are likely to evolve; in the meantime, however,
the OGSA document provides a basis for debate and also can serve as input to dis-
cussions of priorities for OGSA specification development.

The Global Grid Forum’s OGSA Working Group (OGSA-WG) has the follow-
ing charter and scope:

1. To produce and document the use cases that drive the definition and prioriti-
zation of OGSA components, as well as document the rationale for our choic-
es.

2. To identify and outline requirements for, and a prioritization of, OGSA ser-
vices and components.

3. To identify and outline requirements for, and a prioritization of, hosting envi-
ronment and protocol bindings that are required for deployment of portable,
interoperable OGSA implementations.

4. To identify and outline requirements for, and a prioritization of, models for
resources and other important entities.2

5. To identify, outline, and prioritize interoperability requirements for the vari-
ous OGSA components.

6. To define standard OGSA profiles, i.e., sets of OGSA components that meet
specific requirements.

7. To define relationships between GGF and other standards bodies activities
such as W3C, OASIS, and WSI whose work touches upon OGSA-related is-
sues.

In some cases, work within OGSA-WG may result in the drafting of specifica-
tions for OGSA components. However, one expects that the task of completing
these specifications will be handled by other working groups.

The OGSA document is intended as a contribution to goals 2, 3, and 4. It is not,
in its current form, a final product. However, it does provide a base for understand-
ing grid-based systems and services; hence, our inclusion herein.

5.2 FUNCTIONALITY REQUIREMENTS

The development of the OGSA document has been based on a variety of use case
scenarios [55]. The use cases have not been defined with a view to expressing for-
mal requirements (and do not contain the level of detail that would be required for
formal requirements), but have provided useful input to the definition process.

158 STANDARDS SUPPORTING GRID COMPUTING: OGSA

2The resource services focus is the objective of the Common Management Models workgroup at GGF.

c05.qxd 8/24/2004 10:17 AM Page 158

TEAM LinG - Live, Informative, Non-cost and Genuine!

Analysis of the use cases, other input from OGSA-WG participants, and other stud-
ies of grid technology requirements lead the Working Group to identify important
and broadly relevant characteristics of grid environments and applications, along
with functionalities that appear to have general relevance to a variety of application
scenarios. Although this material does not represent a comprehensive or formal
statement of functionality requirements from our use cases, it does provide useful
input for subsequent development of OGSA functions. The case scenarios that have
been considered include [55]:

� National fusion collaboration

� IT infrastructure and management

� Commercial data centers

� Service-based distributed query processing

� Severe storm prediction

� Online media and entertainment

5.2.1 Basic Functionality Requirements

The following basic functions are universally fundamental:

� Discovery and brokering. Mechanisms are required for discovering and/or al-
locating services, data, and resources with desired properties. For example,
clients need to discover network services before they are used, service bro-
kers need to discover hardware and software availability, and service brokers
must identify codes and platforms suitable for execution requested by the
client [55].

� Metering and accounting. Applications and schemas for metering, auditing,
and billing for IT infrastructure and management use cases [55]. The meter-
ing function records the usage and duration, especially metering the usage of
licenses. The auditing function audits usage and application profiles on ma-
chines, and the billing function bills the user based on metering.

� Data sharing. Data sharing and data management are common as well as im-
portant grid applications. Mechanisms are required for accessing and manag-
ing data archives, for caching data and managing its consistency, and for in-
dexing and discovering data and metadata.

� Deployment. Data is deployed to the hosting environment that will execute
the job (or made available in or via a high-performance infrastructure). Also,
applications (executable) are migrated to the computer that will execute them.

� Virtual organizations (VOs). The need to support collaborative VOs intro-
duces a need for mechanisms to support VO creation and management, in-
cluding group membership services [58]. For the commercial data center use
case [55], the grid creates a VO in a data center that provides IT resources to
the job upon the customer’s job request. Depending on the customer’s re-
quest, the grid will negotiate with another grid on a remote commercial data

5.2 FUNCTIONALITY REQUIREMENTS 159

c05.qxd 8/24/2004 10:17 AM Page 159

TEAM LinG - Live, Informative, Non-cost and Genuine!

center and create a VO across the commercial data centers. Such a VO can be
used to achieve the necessary scalability and availability.

� Monitoring. A global, cross-organizational view of resources and assets for
project and fiscal planning, troubleshooting, and other purposes. The users
want to monitor their applications running on the grid. Also, the resource or
service owners need to surface certain states so that the user of those re-
sources or services may manage the usage using the state information.

� Policy. An error and event policy guides self-controlling management, in-
cluding failover and provisioning. It is important to be able to represent poli-
cy at multiple stages in hierarchical systems, with the goal of automating the
enforcement of policies that might otherwise be implemented as organiza-
tional processes or managed manually. There may be policies at every level
of the infrastructure: from low-level policies that govern how the resources
are monitored and managed, to high-level policies that govern how business
process such as billing are managed. High-level policies are sometimes de-
composable into lower-level policies.

5.2.2 Security Requirements

Grids also introduce a rich set of security requirements; some of these requirements
are:

� Multiple security infrastructures. Distributed operation implies a need to in-
teroperate with and manage multiple security infrastructures. For example,
for a commercial data center application, isolation of customers in the same
commercial data center is a crucial requirement; the grid should provide not
only access control but also performance isolation. For another example, for
an online media and entertainment use case, proper isolation between content
offerings must be ensured; this level of isolation has to be ensured by the se-
curity of the infrastructure.

� Perimeter security solutions. Many use cases require applications to be de-
ployed on the other side of firewalls from the intended user clients. Intergrid
collaboration often requires crossing institutional firewalls. OGSA needs
standard, secure mechanisms that can be deployed to protect institutions
while also enabling cross-firewall interaction.

� Authentication, Authorization, and Accounting. Obtaining application pro-
grams and deploying them into a grid system may require authentication/au-
thorization. In the commercial data center use case, the commercial data cen-
ter authenticates the customer and authorizes the submitted request when the
customer submits a job request. The commercial data center also identifies
his/her policies (including but not limited to SLA, security, scheduling, and
brokering policies).

� Encryption. The IT infrastructure and management use case requires encrypt-
ing of the communications, at least of the payload.

160 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 160

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Application and Network-Level Firewalls. This is a long-standing problem; it
is made particularly difficult by the many different policies one is dealing
with and the particularly harsh restrictions at international sites.

� Certification. A trusted party certifies that a particular service has certain se-
mantic behavior. For example, a company could establish a policy of only us-
ing e-commerce services certified by Yahoo.

5.2.3 Resource Management Requirements

Resource management is another multilevel requirement, encompassing SLA nego-
tiation, provisioning, and scheduling for a variety of resource types and activities:

� Provisioning. Computer processors, applications, licenses, storage, networks,
and instruments are all grid resources that require provisioning. OGSA needs
a framework that allows resource provisioning to be done in a uniform, con-
sistent manner.

� Resource virtualization. Dynamic provisioning implies a need for resource
virtualization mechanisms that allow resources to be transitioned flexibly to
different tasks as required; for example, when bringing more Web servers on
line as demand exceeds a threshold.

� Optimization of resource usage while meeting cost targets (i.e., dealing with
finite resources). Mechanisms to manage conflicting demands from various
organizations, groups, projects, and users and implement a fair sharing of re-
sources and access to the grid.

� Transport management. For applications that require some form of real-time
scheduling, it can be important to be able to schedule or provision bandwidth
dynamically for data transfers or in support of the other data sharing applica-
tions. In many (if not all) commercial applications, reliable transport manage-
ment is essential to obtain the end-to-end QoS required by the application.

� Access. Usage models that provide for both batch and interactive access to re-
sources.

� Management and monitoring. Support for the management and monitoring of
resource usage and the detection of SLA or contract violations by all relevant
parties. Also, conflict management is necessary; it resolves conflicts between
management disciplines that may differ in their optimization objectives
(availability goals versus performance goals, for example).

� Processor scavenging is an important tool that allows an enterprise or VO to
use to aggregate computing power that would otherwise go to waste. How can
OGSA provide service infrastructure that will allow the creation of applica-
tions that use scavenged cycles? For example, consider a collection of desk-
top computers running software that supports integration into processing
and/or storage pools managed via systems such as Condor, Entropia, and
United Devices. Issues here include maximizing security in the absence of
strong trust.

5.2 FUNCTIONALITY REQUIREMENTS 161

c05.qxd 8/24/2004 10:17 AM Page 161

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Scheduling of service tasks. Long recognized as an important capability for
any information processing system, scheduling becomes extremely important
and difficult for distributed grid systems. In general, dynamic scheduling is
an essential component [55]. Computer resources must be provisioned on-de-
mand to satisfy the need to complete a forecast on time.

� Load balancing. In many applications, it is necessary to make sure make sure
deadlines are met or resources are used uniformly. These are both forms of
load balancing that must be made possible by the underlying infrastructure.
For example, for the commercial data center use case, monitoring the job per-
formance and adjusting allocated resources to match the load and fairly dis-
tributing end users’ requests to all the resources are necessary. For the online
media and entertainment use case, the amount of workload is a direct result of
how many concurrent online game players are being hosted on a game server.
If the game server (server A) is responsible for a 20 square mile area in the
game world, and a battle occurred in that area, many players will rush to that
area, causing workload on that server to increase. As players enter that area
and leave other areas, other servers’ workloads will decrease. Hence, when
the workload of server A gets above certain threshold, a load balancing rou-
tine needs to be triggered to rebalance the resources (i.e., servers). That is,
workloads must be redistributed across servers with idle capacity.

� Advanced reservation. This functionality may be required in order to execute
the application on reserved resources. For example, for the commercial data
center use case, the grid decides when to start the request processing based on
the customer’s request. It interprets the job specification description language
in which the request is written and it checks to see if the customer has the
right to perform the request.

� Notification and messaging. Notification and messaging are critical in most
dynamic scientific problems. Notification and messaging are event driven.

� Logging. It may be desirable to log processes such as obtaining/deploying ap-
plication programs because, for example, the information might be used for
accounting. This functionality is represented as “metering and accounting.”

� Workflow management. Many applications can be wrapped in scripts or
processes that require licenses and other resources from multiple sources. Ap-
plications coordinate using the file system based on events.

� Pricing. Mechanisms for determining how to render appropriate bills to users
of a grid.

5.2.4 System Properties Requirements

A number of grid-related capabilities can be thought of as desirable system proper-
ties rather than functions:

� Fault tolerance. Support is required for failover, load redistribution, and other
techniques used to achieve fault tolerance. Fault tolerance is particularly im-

162 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 162

TEAM LinG - Live, Informative, Non-cost and Genuine!

portant for long running queries that can potentially return large amounts of
data, for dynamic scientific applications, and for commercial data center ap-
plications.

� Disaster recovery. Disaster recovery is a critical capability for complex dis-
tributed grid infrastructures. For distributed systems, failure must be consid-
ered one of the natural behaviors and disaster recovery mechanisms must be
considered an essential component of the design. Autonomous system princi-
ples must be embraced as one designs grid applications and should be reflect-
ed in OGSA. In case of commercial data center applications if the data center
becomes unavailable due to a disaster such as an earthquake or fire, the re-
mote backup data center needs to take over the application systems.

� Self-healing capabilities of resources, services and systems are required. Sig-
nificant manual effort should not be required to monitor, diagnose, and repair
faults. There is a need for the ability to integrate intelligent self-aware hard-
ware such as disks, networking devices, and so on.

� Strong monitoring for defects, intrusions, and other problems. Ability to mi-
grate attacks away from critical areas.

� Legacy application management. Legacy applications are those that cannot be
changed, but they are too valuable to give up or to complex to rewrite. Grid in-
frastructure has to be built around them so that they can continue to be used.

� Administration. Be able to “codify” and “automate” the normal practices used
to administer the environment. The goal is that systems should be able to self-
organize and self-describe to manage low-level configuration details based on
higher-level configurations and management policies specified by adminis-
trators.

� Agreement-based interaction. Some initiatives require agreement-based inter-
actions capable of specifying and enacting agreements between clients and
servers (not necessarily human) and then composing those agreements into
higher-level end-user structures.

� Grouping/aggregation of services. The ability to instantiate (compose) ser-
vices using some set of existing services is a key requirement. There are two
main types of composition techniques: selection and aggregation. Selection
involves choosing to use a particular service among many services with the
same operational interface. Aggregation involves orchestrating a functional
flow (workflow) between services. For example, the output of an accounting
service is fed into the rating service to produce billing records. One other ba-
sic function required for aggregation services is to transform the syntax
and/or semantics of data or interfaces.

5.2.5 Other Functionality Requirements

Although some use cases involve highly constrained environments (that may well
motivate specialized OGSA profiles), it is clear that in general grid environments
tend to be heterogeneous and distributed:

5.2 FUNCTIONALITY REQUIREMENTS 163

c05.qxd 8/24/2004 10:17 AM Page 163

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Platforms. The platforms themselves are heterogeneous, including a variety
of operating systems (Unixes, Linux, Windows, and, presumably, embedded
systems), hosting environments (J2EE, .NET, others), and devices (comput-
ers, instruments, sensors, storage systems, databases, networks, etc.).

� Mechanisms. Grid software can need to interoperate with a variety of distinct
implementation mechanisms for core functions such as security.

� Administrative environments. Geographically distributed environments often
feature varied usage, management, and administration policies (including
policies applied by legislation) that need to be honored and managed.

A wide variety of application structures are encountered and must be supported
by other system components, including the following:

� Both single-process and multiprocess (both local and distributed) applications
covering a wide range of resource requirements.

� Flows, that is, multiple interacting applications that can be treated as a single
transient service instance working on behalf of a client or set of clients.

� Workloads comprising potentially large numbers of applications with a num-
ber of characteristics just listed.

5.3 OGSA SERVICE TAXONOMY

As noted above, the purpose of OGSA is to define standard approaches to, and
mechanisms for, basic problems that are common to a wide variety of grid systems,
such as communicating with other services, establishing identity, negotiating autho-
rization, service discovery, error notification, and managing service collections.

As illustrated in Figure 5.1, the three principal elements of OGSA are the (i)
Open Grid Services Infrastructure, (ii) OGSA services, and (iii) OGSA models:

� Building on both grid and Web services technologies, the OGSI defines
mechanisms for creating, managing, and exchanging information among enti-
ties called grid services (this was discussed at length in the previous chapter).
A grid service is a Web service that conforms to a set of conventions (inter-
faces and behaviors) that define how a client interacts with a grid service.
These conventions, and other OGSI mechanisms associated with grid service
creation and discovery, provide for the controlled, fault-resilient, and secure
management of the distributed and often long-lived state that is commonly re-
quired in distributed applications.

� OGSA services build on OGSI mechanisms to define interfaces and associated
behaviors for various functions not supported directly within OGSI, such as
service discovery, data access, data integration, messaging, and monitoring.

� OGSA models support these interface specifications by defining models for
common resource and service types.

164 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 164

TEAM LinG - Live, Informative, Non-cost and Genuine!

The GGF anticipates that these OGSA components will be supplemented by a
set of environment-specific profiles addressing issues such as the following. The
specification mentions these here for completeness, but they are not discussed fur-
ther.

� Protocol bindings. Environment profiles enable interoperability among dif-
ferent grid services by defining common mechanisms for transport and au-
thentication. These issues are not addressed by OGSI, but rather defined as
binding properties, meaning that different service implementations may im-
plement them in different ways. For example, “SOAP over HTTP” is a useful
grid service transport profile. Another example of such a profile is the pro-
posed GSSAPI profile for security context establishment and message protec-
tion using WS-SecureConversation [59] and WS-Trust [60].

� Hosting environment bindings. Environment profiles of this sort enable porta-
bility of grid service implementations. For example, an “OGSA J2EE Profile”
might define standardized Java APIs that allow for portability of grid services
among OGSI-enabled J2EE systems. An “OGSA Desktop Grid Profile” could
allow for interoperability among systems that allow untrusted (and untrust-
ing) desktop computers to participate in distributed computations. An “OGSA
Scientific Linux Profile” could define standard execution environments for
computers that run scientific applications, specifying conventions for the lo-
cations of key executables and libraries, and for the names of certain environ-
ment variables

� Sets of domain-specific services. Profiles of this sort define interfaces and
models in addition to those defined within OGSA to address the needs of spe-
cific application domains. For example, an “OGSA Database Profile” might
define a set of interfaces and models for distributed database management; an
“OGSA eCommerce Profile” might define interfaces and models for e-com-
merce applications.

5.3 OGSA SERVICE TAXONOMY 165

OGSI

OGSA Platform services: registry,

authorization, monitoring, data

access, etc., etc.

TransportProtocolHosting EnvironmentHosting Environment

Host. Env. & Protocol Bindings

M
o

d
e

ls
 fo

r re
s
o

u
rc

e
s

&
 o

th
e
r e

n
titie

s

More specialized &

domain-specific

services
O

th
e

r

m
o
d
e
ls

Domain-

specific

profiles

Environment-

specific

profiles

OGSA

Platform

Figure 5.1 OGSA components (shaded) and related profiles (dashed lines).

c05.qxd 8/24/2004 10:17 AM Page 165

TEAM LinG - Live, Informative, Non-cost and Genuine!

The material that follows expands briefly upon each OGSA element. OGSA de-
fines services that occur within a wide variety of grid systems. One can divide these
functions into four broad groups: core services, data services, program execution
services, and resource management services.

5.3.1 Core Services

“Core” services are implementations of functions that are generally used by a wide
variety of higher-level services and that implement broadly useful capabilities. Al-
though dependencies between core services and noncore services (by higher-level
functions) are likely, there is no known requirement at this time that any particular
core service be present in order to implement a grid. The organization of these
“core” services into the areas further discussed below is for the convenience of ex-
planation and is not meant to imply dependencies among functions that are grouped
together.

5.3.1.1 Service Interaction. This category includes the following subser-
vices: VOs; service group and discovery services; service domain, composition, or-
chestration, and workflow; and transactions. These subservices are primarily in-
tended to provide interaction mechanisms for the collection of services in the grid.
These subservices provide means for services to be registered and to locate each
other; they also provide mechanisms for composing multiple lower-level services
into aggregations. These subservices also include functions for deploying the soft-
ware images that implement services in hosting environments and for collecting
data about their operation for management, accounting, and billing purposes.

5.3.1.2 Service Management. This category includes functions for manag-
ing deployed services. It includes the following subservices: metering and account-
ing; installation, deployment, and provisoning; fault management; and problem
determination. Service management automates and assists with a variety of installa-
tion, maintenance, monitoring, and troubleshooting tasks within a grid system. Ser-
vice management includes functions for provisioning and deploying the system
components; it also includes functions for collecting and exchanging data about the
operations of the grid. This data is used for both “on-line” and “off-line” manage-
ment operations and includes information about faults, events, problem determina-
tion, auditing, metering, accounting, and billing. Service management may also de-
pend on models and schema that describe dependency relationships between
different components, installation and provisioning steps and processes, and exter-
nal capabilities.

5.3.1.3 Service Communication. This service category includes the follow-
ing subservices: distributed logging, messaging and queueing, and event. These ser-
vices provide the basic methods for services to communicate and support several
interservice communication models.

166 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 166

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.3.1.4 Security. OGSA security architectural components aim to support, in-
tegrate, and unify available security models, mechanisms, protocols, platforms, and
technologies, in a way that enables a variety of systems to interoperate securely.
Specifically, the security of a grid environment must take into account the security
of various aspects involved in a grid service invocation, as depicted in Figure 5.2.
As discussed above, a grid service can be accessed over a variety of protocol bind-
ings; given that bindings deal with protocol and message formats, security functions
such as confidentiality, integrity, and authentication fall within the scope of bind-
ings and thus are outside the scope of OGSA proper. A supplementary GGF OGSA
Security Architecture deals with these goals in a manner consistent with the securi-
ty model that is currently being defined for the Web services framework; an associ-
ated OGSA Security Roadmap document enumerates the security related specifica-
tions that will be needed to ensure interoperable implementations of the OGSA
Security Architecture.

Each participating endpoint can express the policy it wishes to see applied when
engaging in a secure conversation with another endpoint. Policies can specify sup-
ported authentication mechanisms, required integrity and confidentiality protection,
trust policies, privacy policies, and other security constraints. When invoking grid

5.3 OGSA SERVICE TAXONOMY 167

Figure 5.2 Security services in a virtual organization setting.

Requestor
Application

VO
Domain

Credential
Validation

Service

Authorization
Service

Secure Conversation

Requestor's
Domain

Service Provider's
Domain

Audit/
Secure-Logging

Service

Attribute
Service

Trust
Service

Service
Provider

Application

Bridge
Service

Trust
Service

Authorization
Service

Attribute
Service

Credential
Validation

Service

WS-Stub WS-Stub

Audit/
Secure-Logging

Service

c05.qxd 8/24/2004 10:17 AM Page 167

TEAM LinG - Live, Informative, Non-cost and Genuine!

services dynamically, endpoints may need to discover the policies of a target ser-
vice and establish trust relationships dynamically. Once a service requestor and a
service provider have determined each other’s policies, they can establish a secure
channel over which subsequent operations can be invoked. Such a channel should
enforce the mutual agreed-on qualities of protection, including identification, confi-
dentiality, and integrity. The security model must provide a mechanism by which
authentication credentials from the service requestor’s domain can be translated
into the service provider’s domain and vice versa. This translation is required in or-
der for both ends to evaluate their mutual access policies based on the established
credentials and the quality of the established channel.

OGSA’s security model must address authentication, confidentiality, message
integrity, policy expression and exchange, authorization, delegation, single log-on,
credential life span and renewal, privacy, secure logging, assurance, manageability,
firewall traversal, and security at the OGSI layer. One can expect that existing and
evolving standards will be adopted or recognized in the grid security model. Figure
5.2 shows relationships between a requestor, service provider, and many of the se-
curity services. Note that both requester and service provider are always subject to
the security policies dictated by their respective administrative domains. Further-
more, a VO can have its own security policy that can enable the sharing of the sub-
mitted resources, but the associated rights will always be capped by the overruling
resource-local policy. For many grid applications, the resource owners and the indi-
vidual requesters will not “know” each other, as they live in different administrative
domains, while their interactions are dynamically discovered and brokered by
scheduler services and such. This implies that trust has to be dynamically estab-
lished through introductions, and the concept of the VO as bridge is seen as an im-
portant mechanism to build these dynamic trust relationships. All security inter-
faces used by a service requestor and service provider need to be standardized
within OGSA. Compliant implementations will be able to make use of existing ser-
vices and defined policies through configuration. Compliant implementations of a
particular security-related interface would be able to provide the associated and
possibly alternative security services.

5.3.2 Data Services

The scale, dynamism, autonomy, and distribution of data sources in grid environ-
ments can result in significant complexity in data access and management. A vari-
ety of interfaces need to be defined to assist developers and users in the manage-
ment of this complexity. In addition to basic data access interfaces and common
resource models for storage and data management systems, these interfaces also ad-
dress the need for transparency, heterogeneity, location, naming, distribution, repli-
cas, ownership, and data access costs. Data virtualization services aimed at provid-
ing these transparencies can include federated access to distributed data, dynamic
discovery of data sources based on content, dynamic migration of data for workload
balancing, and schema management. In implementing such services, one needs to
take into account the fact that different data types (e.g., flat file data, streaming me-

168 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 168

TEAM LinG - Live, Informative, Non-cost and Genuine!

dia, and relational data) require different approaches to management. Furthermore,
different applications require different forms of support; for example, some applica-
tions cannot be modified and require transparent access via file systems, whereas
other applications need explicit management of data locality and replication.

These considerations suggest a role for variety of potential data management in-
terfaces including:

� Interfaces for data caching (resolving a file handle to a flat file into a data
stream)

� Interfaces for data replication

� Interfaces for data access (via mechanisms for accessing a wide range of data
types, including flat files, RDBMS, and streaming media)

� Interfaces for file and DBMS services and, possibly, federated data manage-
ment services that are used as part of a vertical utility grid

� Interfaces for data transformation and filtering; interfaces for schema trans-
formation (allowing different data, service, and policy schema to be recon-
ciled so that the services can interact correctly)

� Interfaces for grid storage services that allow direct access to storage re-
sources/data throughout the grid

5.3.3 Program Execution

Program-execution services enable applications to have coordinated access to un-
derlying VO resources, regardless of their physical location or access mechanisms.
Figure 5.3 shows the grid services required for program execution. These services
include:

� Agreement Factory Service—create agreement services based on domain-
specific terms such as job, reservation, and data access terms

� Job Agreement Service—creates, monitors, and controls compute jobs

� Reservation Agreement Service—guarantees that resources are available for
running a job

� Data Access Agreement Service—stages the required application and data

� Queuing Service—provides a service that allows administrators to customize
and define scheduling policies at the VO level, and/or at the different resource
manager levels

� Index Service—allows for the propagation of information between resource
managers and the metascheduler

When an application utilizing the grid makes use of more than one physical re-
source during its execution, program-execution middleware maps the resource re-
quirements of the user application to the multiple physical resources that are re-
quired to run that application. Community schedulers are the key to making VO

5.3 OGSA SERVICE TAXONOMY 169

c05.qxd 8/24/2004 10:17 AM Page 169

TEAM LinG - Live, Informative, Non-cost and Genuine!

resources easily accessible to end users, by automatically matching the require-
ments of a grid application with the available resources while staying within the
conditions that the VO has specified with the underlying resource managers (RMs).

Interoperability is fundamental for a program-execution grid. In order to allow
the higher-order constructs (such as community schedulers) to work with the lower-
level resource managers, there must be agreement on how these entities will interact
with each other, even though the lower-level resource managers might be very dif-
ferent from each other, in function and in interface. In order to meet the requirement
for interoperability, standards are required that define the interfaces through which
resource managers are accessed and managed. Additionally, there is a requirement
that the services representing the resource managers act using standard semantics,
so that the behavior of the resource manager is predictable to the community sched-
uler.

OGSA-based grid environments may be composed of many different but inter-
acting grid services. Each such service may be subject to different policies govern-
ing how to manage the underlying resources. In order to deal with the complexities
of large collections of these services, there must be mechanisms for grid service

170 STANDARDS SUPPORTING GRID COMPUTING: OGSA

jo
b

, rs
v
, re

s
o

u
rc

e

in
fo

rm
a

tio
n

LSF

A
g

m
t-b

a
s
e

d

re
s
e

rv
a

tio
n

q
u

e
ry

A
g

m
t-b

a
s
e

d

jo
b

 o
p

s

q
u

e
ry

Job Service
Reservation

Service

Agmt

based

rsv

query

Index

Service

job, reservation

query

Index

Service

job/rsv

resource info

A
g

m
t-b

a
s
e

d

jo
b

q
u

e
ry Queuing

Service

su
bm

it
re

m
ov

e
jo

b
ct

r
de

ci
si

on
s

reservation

info

RM

Information

Agmt-based

reservation

query

Reservation

Service

Reservation

Agmt SvcJob Service

Job

Agmt Svc

job

agmt

svc

Reservation

Service

Reservation

Service

Data access

Agmt Svc

Agmt-based

data access

query

A
g

m
t-b

a
s
e

d

d
a

ta
 a

c
c
e

s
s

q
u

e
ry

Agmt-based

data access
query

rsv

agmt

svc

data

accs

agmt

svc

PBS

Index

Service

job, reservation

query

job

agmt

svc

rsv

agmt

svc

data

accs

agmt

svc

SGE

Index

Service

job, reservation

query

job

agmt

svc

rsv

agmt

svc

data

accs

agmt

svc

Agmt

Factory

Svc

Agmt

Factory

Svc

Agmt

Factory

Svc

Agmt

Factory

Svc

An end user, application,

or an Upper-level VO

Figure 5.3 Program execution architecture and services.

c05.qxd 8/24/2004 10:17 AM Page 170

TEAM LinG - Live, Informative, Non-cost and Genuine!

management and the allocation of resources for applications. One such mechanism
is defined through the proposed WS-Agreement interface [53]. The specification
document for WS-Agreement (refer to the specification) describes it as “. . . the
ability to create grid services and adjust their policies and behaviors based on orga-
nizational goals and application requirements.” WS-Agreement defines the Agree-
ment-based Grid Service Management model, which is specified as a set of OGSI-
compliant portTypes allowing clients to negotiate with management services in
order to manage grid services or other legacy applications. To put it in concrete
terms, if a user wishes to submit a computing job to run on a cluster, the user would
rely on the grid service client to contact a job management service and negotiate a
set of agreements that ensure that the user’s job has access to required processors,
memory, storage space, and so on.

WS-Agreement defines fundamental mechanisms based on Agreement services,
which represent an ongoing relationship between an agreement provider and an
agreement initiator. The agreements define the behavior of a delivered service with
respect to a service consumer. The agreement will most likely be defined in sets of
domain-specific agreement terms (defined in other specifications), since the WS-
Agreement specification is focused on defining the abstraction of the agreement
and the protocol for coming to agreement, rather than on defining sets of agreement
terms.

Referring back to the job submission example, the client might contact a job
management service that implements the AgreementFactory interface, with creation
parameters that might say, “My job has to have a software license for application X,
I would like to have 8 cpus, and I would like to have 4 GB of RAM.” If the job
management service could not provide the software license, the agreement terms
would be rejected; if it could provide all of the terms, an agreement service instance
representing the job resources would be created. If, because of available resource
constraints, the job management service could not fulfill the terms of the original
creation parameters, but could supply either 4 cpus and 4 GB of RAM, or 8 cpus
and 2 GB of RAM, the job management service could create an AgreementOffer
that included two potential agreements: “app X, 4cpus, 4GB” and “app X, 8cpus,
2GB”, one of which the client could choose (because cpus and memory were terms
subject to counteroffers). By defining various sets of terms for representing differ-
ent types of resources available within the VO, community schedulers can be writ-
ten that can negotiate with resource managers for the use of the underlying re-
sources on behalf of the user community.

Program-execution services utilize WS-Agreement portTypes both for its client
interface and its interface to underlying resources, with the goal of allowing hierar-
chical VO deployment. For example, one community scheduler talks to another
community-scheduler-based resource conglomeration. Another key aspect of
Agreement Service is to consider the constraints of the service provider based on
service-level agreements in a business context and their reflection in underlying re-
source manager policies. Not all constraints are related to availability or unavail-
ability of resources: some are management policy specified based on pricing, usage,
higher priorities, and so on.

5.3 OGSA SERVICE TAXONOMY 171

c05.qxd 8/24/2004 10:17 AM Page 171

TEAM LinG - Live, Informative, Non-cost and Genuine!

Program-execution services can be flexibly composed to offer a spectrum of
time-to-result QoS levels, ranging from online/interactive to batch, with specific (or
no) turn-around time requirements. Online/interactive jobs can be sent by the job
agreement service to the resource managers immediately, without getting queued.
Batch jobs will be queued by the queueing services and dispatched to resource man-
agers later. The jobs with specific turnaround times may use the available reserva-
tions made with the resource managers at specific times so that the deadlines can be
met. The jobs with no specific turnaround time can be queued at the VO level or the
back-end resource manager level until the required resources are available, or back-
filled with the existing reservations without delaying the start time of the more
time-critical jobs.

Workloads are composite entities and have multiple levels of “execution enti-
ties.” Workloads are made of jobs, which in turn are made of tasks, which in turn
are made of tasklets (see Figure 5.4). Each of these composite entities has a manag-
er. Workload realization (or execution) is the general set of use cases that take
workload requests and map them to appropriate resources within the grid that can
realize these workloads. Grid services manage and coordinate access and consump-
tion of geographically distributed resources by workloads realized on those re-
sources. Workload realization can be visualized as a mapping between “demand” in
the form of workloads and “supply” in the form of the available grid resources. In a
fundamental scenario, the system has to map the demand to the supply and provide
the mechanism to realize these workloads on the resources. This primary mode can
be augmented with other services, mechanisms, and capabilities that provide alter-
nate modes of interaction including optimization of the mapping and scheduling a
temporal and topological execution profile. In addition, other services manage and
enforce the service-level agreements with the user, and still other services tweak the
resources and manage the available capacity to ensure that a desired quality of ser-
vice is delivered.

Services that belong to the Resource Optimization Framework are focused on
the optimization of the supply side of the mapping. This can be done by admission

172 STANDARDS SUPPORTING GRID COMPUTING: OGSA

Figure 5.4 Workload, job, task, and tasklet.

Tasklets

Task

Job

Workload

c05.qxd 8/24/2004 10:17 AM Page 172

TEAM LinG - Live, Informative, Non-cost and Genuine!

control, resource utilization monitoring and metering, capacity projections, re-
source provisioning and load balancing across equivalent resources, and negotiation
with workload optimization and/or management services to migrate workloads onto
other resources so as to maximize resource utilization. Services that belong to the
Workload Optimization Framework are focused on the demand side of the map-
ping. These services may queue requests to prevent resource saturation, manage rel-
ative priorities in requests, and perform postbalancing by migrating workloads to
appropriate resources depending on the potential to violate or be rewarded for miss-
ing or exceeding SLAs, respectively. Services in the Resource Optimization Frame-
work are focused on resolving any contentions that the myopic views of the respec-
tive resource or workload optimization frameworks may create. These services
arbitrate and modulate the primary interactions either in an “in-band” or “out-of-
band” manner.

5.3.4 Resource Management

Grid services in this category include:

� Service orchestration. These interfaces provide ways to describe and manage
the choreography of a set of interacting services.

� Administration. Standard interfaces for such tasks as software deployment,
change management, and identity management.

� Provisioning and resource management. Negotiation of service-level agree-
ments and dynamic resource allocation and redistribution consistent with
SLA policy, including mechanisms that allow clients and workflows to ac-
quire access to resources and services at a particular (future) time.

� Reservation and Scheduling Services. Reservation services provide the mech-
anism to make resource reservatios at a particular time duration. Scheduling
services provide the mechanism to scheduling tasks according to their priori-
ties

� Deployment Services. Deploy necessary software (OS, middleware, applica-
tion) and data into the hosting environment.

5.4 SERVICE RELATIONSHIPS

Earlier in the chapter, services were classified according to a taxonomy in which
two services are related (i.e., put into the same category) if their purpose and func-
tionality are similar; however, this taxonomy does not show the relationships that
exist between the services when these services are used in practice. Therefore, one
can use a second categorization based on the perspective of a service provider, that
is, a person implementing or assembling the various components. Here, one can de-
fine types of relationships between services, and organize the services according to
these relationships. A new class of services, the platform services, is also intro-
duced.

5.4 SERVICE RELATIONSHIPS 173

c05.qxd 8/24/2004 10:17 AM Page 173

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4.1 Service Composition

A service composition is a grid service that provides a new set of functions that are
derived from, built on, extended from, and/or implemented using functions exposed
by other grid services. All services in the composition are first-class services (i.e.,
each individually provides distinct functionality and can, if required, be indepen-
dent of this service composition or other compositions). An instance of a service
composition (representing a specific set of functional and semantic behaviors) in-
cludes (or references) instances of all the services that make up this composition.
Each composition has an identity that is shared by the individual component ser-
vices. The instances may be tightly or loosely coupled to the composite service.

In a tightly coupled composition, the individual service instances are indistin-
guishable from the composite that they belong to and are completely subsumed and
hidden by the composite. All interactions with these “composed” services are only
performed with the composite service. Individual service instances in a tightly cou-
pled composition share the same lifetime and life-cycle characteristics of the com-
position. In a loosely coupled composition, the functionality of the loosely coupled
services can be accessed independently of the composite service they support.

Service compositions can be either pure or orchestrated. Services in a pure com-
position share well-defined common state and/or implement a given state in the
composite as an aggregate of the individual states in the services. A pure composi-
tion can be established either as an implementation composition, meaning that the
functionality of the individual services are embedded in a single implemented enti-
ty, or as a managed composition, meaning that the individual services in the com-
position are managed by well-defined internal protocols that provide for a shared
identity. In an orchestrated composition, a master service representing the compo-
sition exposes a functionality that is essentially derived by orchestrating a set of
loosely coupled services.

OGSA can designate special composite services and define their functions (and
the services they compose and compositional methods to be used) similar to other
more fundamental services definitions; these composites become first-class OGSA
services. In other cases, the composition is user defined.

Service compositions can be heterogeneous, meaning that services in the com-
position provide dissimilar functions, or homogeneous, meaning that services in the
composition are similar in function. A homogeneous composition can be an aggre-
gation of services that are managed as one (more capable) service compared with
the individual services. In some cases, the service representing the composition will
be the manager for this composite.

An example of a service composition is a job. A job may be composed of other
jobs or tasks. Since a job is a composition (i.e., a grid service) it can be managed
through well-defined interfaces that are exposed by the service. Another example of
service composition is an OGSA batch-job scheduler that provides the same func-
tionality as existing traditional schedulers for batch systems. Such OGSA sched-
ulers represents a combination of functionality like queuing, resource determina-
tion, reservation, resource allocation, and so on, where each of these functions can

174 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 174

TEAM LinG - Live, Informative, Non-cost and Genuine!

be implemented by specialized services targeted at these functions and can be
reused for other usage scenarios. As yet another example, a traditional distributed-
resource management cluster (e.g., PBS, LSF) can also be refactored using service
composition in which the traditional interfaces into such a cluster become the func-
tionality exposed by the composite service representing this cluster.

5.4.2 Service Orchestration

In addition to identifying specific common services, OGSA describes the common
behaviors, attributes, operations, and interfaces needed to allow services to interact
with others in a distributed, heterogeneous, grid-enabled environment:

� Choreography describes required patterns of interaction among grid services
(or, more generally, Web services) and templates for sequences (or more
structures) of interactions.

� Orchestration describes the ways in which business processes are constructed
from Web services and other business processes, and how these processes in-
teract.

� Workflow is a pattern of business process interaction, not necessarily corre-
sponding to a fixed set of business processes. All such interactions may be be-
tween services residing within a single data center or across a range of differ-
ent platforms and implementations anywhere.

(Note: For ease of language, in what follows the term “orchestration” refers to
“choreography, orchestration, and workflow.”)

In the OGSA environment, services, processes, and workflows may both be
managed by OGSA and may be vehicles by which management takes place. OGSI
capabilities for stateful Web service interaction have much in common with chore-
ography and business process management, but there are technical differences be-
tween them. Since one may want grid services to be part of flows, and the flows to
be used in grids, it will be important to resolve their relationship. This will enable
the GGF to take advantage of emerging work at the OASIS Web Services Distrib-
uted Management Group that is addressing both management of web services and
management using web services, as well as change management for web services.

OGSI service groups may also play a role in grouping or aggregating services in
ways that factor out common usages in grid service/business process interactions;
however, it would be best if such factoring took place directly in organizations such
as W3C and OASIS that are doing work on these concepts (the role of OGSA is to
determine places where existing work will not meet grid architecture needs, rather
than to create a competing standard).

For example, since a grid service is a specialized Web service with service data,
notifications, life cycles, and service groups, one might define ways in which these
concepts can/should be leveraged in grid service interactions that form flows, in-
cluding ways of monitoring and managing those flows (e.g., using service data and

5.4 SERVICE RELATIONSHIPS 175

c05.qxd 8/24/2004 10:17 AM Page 175

TEAM LinG - Live, Informative, Non-cost and Genuine!

notifications) as well as fault handling. However, there may be mismatches in the life
cycles of grid services and flows that will require thought; this is another reason why
convergence with mainstream Web service standards is highly desirable. For exam-
ple, business processes are typically thought to be long lasting, not transient, and are
not instance oriented, as grid services are. Grid services standardization people that
the view that it is better to cooperate with, rather than compete with, business process
industry groups. When addressing some concepts, including quality of service,
scheduling, and resource allocation and provisioning, GGF may want to consider
their relationships to business process management and service flows. OGSA should
have a role in coordinating how, where, and when these aspects get addressed.

Many OGSA services will be constructed using other services; scheduling is one
such example. SOAs are designed to permit invocations of services by other ser-
vices, so capabilities for services built from services are intrinsic to grid/Web ser-
vices. Whether additional compositional constructs are needed beyond invocations,
workflows/choreography, management, and the business transaction/coordina-
tion/context (all of which are being addressed by other bodies) has not yet been de-
termined. The notion of composition of stateful services with behavior extended
from the services from which the composition is derived is a very important area
and one that Web services so far has not fully addressed.

5.4.3 Types of Relationships

OGSA services can be related via “uses relationship,” and “extends relationship.”
In a “uses relationship,” a first service accesses the interface of a second service to
use the functionality provided by this second service. For instance, many services
use the handle-resolver service to convert GSHs to GSRs. In an “extends relation-
ship,” a first service extends the functionality provided by a second service by using
portType extensibility. A simple example of this relationship is an event service
that extends the OGSI notification functionality; another example is a registry ser-
vice that extends the service group functionality of OGSI.

5.4.4 Platform Services

OGSA introduces the term platform services to denote services that provide func-
tionalities that are basic. Platform services (i) provide underlying functionalities on
which other services build, (ii) provide functionalities that are common to (and used
by) several high-level services, and (iii) provide functionalities that are designed to
be used primarily through the “extends” relationship. The functionality provided by
a given platform service is, by definition, present (through extension) in several
high-level services; as a consequence, platform service functionalities permeate the
high-level services, being pervasive within OGSA. For this reason, they do not fit
into (and are not shown as part of) the taxonomy. Platform services form the lower
layer of the service relationships, as illustrated in Figure 5.5; however, a platform
service may use or extend other platform services (i.e., there is more than one layer
of platform services). As OGSA services are organized and categorized, and their

176 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 176

TEAM LinG - Live, Informative, Non-cost and Genuine!

functionality is defined in more detail, common functionalities among these ser-
vices will increasingly appear. These functionalities should/will be redefined as
platform services in order to simplify OGSA. As a consequence, as the work on the
definition of OGSA progresses, the number of platform services should increase.

The current set of OGSA platform services is as follows:

� OGSI: defines grid services and the basic mechanisms for creating, manag-
ing, and exchanging information between them.

� WS-Agreement: provides a set of interfaces that support the negotiation of
policies, service-level agreements, reservations, and so on, and maps the re-
lated agreements to grid services.

� Common Management Model (CMM): provides the manageability infrastruc-
ture for resources in OGSA. CMM defines the base behavioral model for all
resources and resource managers in the grid, plus management functionality
like relationships and life-cycle management.

� OGSA Data Services (or part of it): provides the basic functionality to man-
age data in a grid environment.

5.5 OGSA SERVICES

This section provides a more detailed description of required OGSA functionality.

5.5.1 Handle Resolution

As we saw in Chapter 4, OGSI defines a two-level naming scheme for grid service in-
stances based on abstract, long-lived grid service handles (GSHs) that can be mapped
by HandleMapper services to concrete, but potentially less long lived, grid service
references (GSRs). These constructs are basically network-wide pointers to specific
grid service instances hosted in (potentially remote) execution environments. A
client application can use a grid service reference to send requests (represented by the
operations defined in the interfaces of the target service) directly to the specific in-
stance at the specified network-attached service endpoint identified by that GSR.

5.5 OGSA SERVICES 177

OGSI

Platform

services

OGSA

services

Figure 5.5 The relationships between OGSI, OGSA platform services, and other OGSA
services.

c05.qxd 8/24/2004 10:17 AM Page 177

TEAM LinG - Live, Informative, Non-cost and Genuine!

The format of the GSH is a URL, where the schema directive indicates the nam-
ing scheme used to express the handle value. Based on the GSH naming scheme,
the application should find an associated naming-scheme-specific HandleMapper
service that knows how to resolve that name to the associated GSR. This allows dif-
ferent naming scheme implementations to coexist, and to provide different QoS
properties through their implementation. OGSI defines the basic GSH format and
portType for the HandleMapper service that resolve a GSH to a GSR.

The expectation is that different implementations of the two-level naming
scheme with the naming directive will enable features such as transparent service
instance migration, fault tolerance through transparent failover, high availability
through mirroring, and advanced security through fine-grained access control on
the name resolution. All these features come with an associated cost, and their ap-
plicability will, therefore, depend on the application itself.

The OGSI Working Group decided to leave the registration of GSHs and associ-
ated GSRs undefined for possible standardization elsewhere (the same applies to
the authorization of the naming resolution as well as the features that deal with scal-
ability and robustness.) Another unspecified issue is how the bootstrap mechanism
should work. In other words, given the handle of the very first service to contact,
how would a party find the associated resolution service? Currently, it is left to the
implementation, which may decide to use custom configuration data and external
naming services; for example, DNS or the Handle System. The handle resolutions
require service invocations and could, therefore, affect overall performance. This
issue could be addressed by local caching, or possibly by the definition of a generic
service that maintains caching information about the GSH–GSR mappings indepen-
dent from the handle resolution scheme.

5.5.2 Virtual Organization Creation and Management

VOs are a concept that supplies a “context” for operation of the grid that can be used
to associate users, their requests, and resources. VO contexts permit the grid resource
providers to associate appropriate policy and agreements with their resources. Users
associated with a VO can then exploit those resources consistent with those policies
and agreements. VO creation and management functions include mechanisms for as-
sociating users/groups with a VO, manipulation of user roles (administration, con-
figuration, use, etc.) within the VO, association of services (encapsulated resources)
with the VO, and attachment of agreements and policies to the VO as a whole or to
individual services within the VO. Finally, creation of a VO requires a mechanism by
which the “VO context” is referenced and associated with user requests (this is most
likely via a GSH, since a “service” is the likely embodiment of the VO).

5.5.3 Service Groups and Discovery Services

GSHs and GSRs together realize a two-level naming scheme, with HandleResolver
services mapping from handles to references; however, GSHs are not intended to

178 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 178

TEAM LinG - Live, Informative, Non-cost and Genuine!

contain semantic information and indeed may be viewed for most purposes as
opaque. Thus, other entities (both humans and applications) need other means for
discovering services with particular properties, whether relating to interface, func-
tion, availability, location, policy, or other criteria.

Traditionally, in distributed systems this problem is addressed by creating a
third-level “human-readable” or “semantic” name space that is then mapped
(bound) to abstract names (in this case, GSHs) via registry, discovery, metadata cat-
alog, or other similar services. It is important that OGSA defines standard functions
for managing such name spaces, otherwise services and clients developed by differ-
ent groups cannot easily discover each other’s existence and properties. These func-
tions must address the creation, maintenance, and querying of name mappings. Two
types of such semantic name spaces are common—naming by attribute, and naming
by path.

Attribute naming schemes associate various metadata with services and support
retrieval via queries on attribute values. A registry implementing such a scheme al-
lows service providers to publish the existence and properties of the services that
they provide, so that service consumers can discover them. One can envision spe-
cial-purpose registries being built on the base service group mechanisms provided
by the OGSI definition. In other words, an OGSA-compliant registry is a concrete
specialization of the OGSI service group.

A ServiceGroup is a collection of entries, where each entry is a grid service im-
plementing the ServiceGroupEntry interface. The ServiceGroup interface also ex-
tends the GridService interface. There is a ServiceGroupEntry for each service in
the group (i.e., for each group member). Each ServiceGroupEntry contains a ser-
viceLocator for the referred-to service and information (content) about that service.
The content element is an XML element advertising some information about the
member service. The type of the content element conforms to one of the QName el-
ements in the ContentModelType SDE of the ServiceGroup interface.

It is the content model of the service group definition that suggests the concrete
type and specific use of the registry being offered. The content model of the ser-
viceGroupEntry for a given service group is published in the service data of the ser-
vice group. The content model is the basis on which search predicates can be
formed and executed against the service group with the findServiceData operation.
In other words, it is the content model that forms the basis of the registry index
upon which registry searches can be executed. It is envisioned that many applica-
tion-specific, special-purpose registries will be developed.

It is also envisioned that many registries will inherit and implement the notifica-
tionSource interface so as to facilitate client subscription to register state changes.
Again, specific state change subscriptions will be possible through the advertise-
ment of the registry-specific service group content model of the service group on
which the registry is built.

As stated earlier, one can envision many application-specific registry implemen-
tations being defined. Whether or not one or more general-purpose registry types
should be defined and adopted as part of OGSA is to be determined.

5.5 OGSA SERVICES 179

c05.qxd 8/24/2004 10:17 AM Page 179

TEAM LinG - Live, Informative, Non-cost and Genuine!

Path naming or directory schemes (as used, for example, in file systems) rep-
resent an alternative approach to attribute schemes for organizing services into a
hierarchical name space that can be navigated. The two approaches can be com-
bined, as in LDAP. Directory path naming can be accomplished by defining a
PathName Interface that maps strings to GSHs. Thus, a string such as “/data/ge-
nomics_dbs/mouse” could map to a service (GSH) that might deliver portions of
the mouse genome, and perhaps also do BLAST searches against the mouse
genome. Similarly, “/applications/biology/genomics/BLAST” could map to a GSH
that has Interfaces for executing BLAST.

The interface will have methods to insert, look up, and delete <string, GSH>
pairs, and will in essence be a simple table. It is expected that path_name services
will be “chained” together, so that evaluation of a path may involve traversing sev-
eral path_name services, forming a directed graph. This can be used to link disjoint
namespaces into namespace cliques.

5.5.4 Choreography, Orchestration, and Workflow

Over these interfaces OGSA provides a rich set of behaviors and associated opera-
tions and attributes for business process management (additional work remains to
be done in this area):

� Definition of a job flow, including associated policies

� Assignment of resources to a grid flow instance

� Scheduling of grid flows (and associated grid services)

� Execution of grid flows (and associated grid services)

� Common context and metadata for grid flows (and associated services)

� Management and monitoring for grid flows (and associated grid services)

� Failure handling for grid flows (and associated grid services); more generally,
managing the potential transiency of grid services

� Business transaction and coordination services

5.5.5 Transactions

Transaction services are important in many grid applications, particularly in indus-
tries such as financial services and in application domains such as supply chain
management. However, transaction management in a widely distributed, high-la-
tency, heterogeneous RDBMS environment is more complicated than in a single
data center with a single vendor’s software. Traditional distributed transaction algo-
rithms, such as two-phase distributed commit, may be too expensive in a wide-area
grid, and other techniques such as optimistic protocols may be more appropriate. At
the same time, different applications often have different characteristics and re-
quirements that can be exploited when selecting a transaction technique to use.
Thus, it is unlikely that there will be a “one size fits all” solution to the transaction
problem.

180 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 180

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5.6 Metering Service

Different grid deployments may integrate different services and resources and fea-
ture different underlying economic motivations and models; however, regardless
of these differences, it is a quasiuniversal requirement that resource utilization can
be monitored, whether for purposes of cost allocation (i.e., charge back), capacity
and trend analysis, dynamic provisioning, grid-service pricing, fraud and intrusion
detection, and/or billing. OGSA must address this requirement by defining stan-
dard monitoring, metering, rating, accounting, and billing interfaces. These inter-
faces can use or extend those defined within the Common Management Model
(CMM) that provides access to basic resource performance and utilization instru-
mentation, exposed as serviceData. For example, an operating system might pub-
lish countervalues corresponding to the state of system activities such as processor
utilization, memory usage, disk and tape I/O activity, network usage, and so on.
Although interfaces do not provide the values needed for metering and accounting
directly (since, for instance, they are not directly related to the consumers), they
can provide basic monitoring data to be used by the metering and accounting ser-
vices.

We address metering in this subsection and rating, accounting, and billing in the
sections that follow.

A grid service may consume multiple resources and a resource may be shared
by multiple service instances. Ultimately, the sharing of underlying resources is
managed by middleware and operating systems. All modern operating systems
and many middleware systems have metering subsystems for measuring resource
consumption (i.e., monitored data) and for aggregating the results of those mea-
surements. For example, all commercial Unix systems have provisions for aggre-
gating prime-time and nonprime-time resource consumption by user and com-
mand.

A metering interface provides access to a standard description of such aggregat-
ed data (metering serviceData). A key parameter is the time window over which
measurements are aggregated. In commercial Unix systems, measurements are ag-
gregated at administrator-defined intervals (chronological entry), usually daily, pri-
marily for the purpose of accounting. On the other hand, metering systems that
drive active workload management systems might aggregate measurements using
time windows measured in seconds. Dynamic provisioning systems use time win-
dows somewhere between these two examples.

Several use cases require metering systems that support multitier, end-to-end
flows involving multiple services. An OGSA metering service must be able to me-
ter the resource consumption of configurable classes of these types of flows execut-
ing on widely distributed, loosely coupled server, storage, and network resources.
Configurable classes should support, for example, a departmental charge-back sce-
nario where incoming requests and their subsequent flows are partitioned into ac-
count classes determined by the department providing the service. The metering of
end-to-end flows in a grid environment is somewhat analogous to the metering of
individual processes in a traditional OS. Since traditional middleware and operating

5.5 OGSA SERVICES 181

c05.qxd 8/24/2004 10:17 AM Page 181

TEAM LinG - Live, Informative, Non-cost and Genuine!

systems do not support this type of metering, additional functions must be accom-
modated by OGSA. In addition to traditional accounting applications, it is anticipat-
ed that end-to-end resource consumption measurements will play an important role
in dynamic provisioning and pricing grid services.

Finally, in addition to metering resource consumption, metering systems must
also accommodate the measurement and aggregation of application-related (e.g., li-
censed) resources. For example, a grid service might charge consuming services a
per-use fee. The metering service must be able to support the measurement of this
class of service (resource) consumption. The GGF GESA-WG defines services that
use the metering service (we cover this issue in Chapter 7).

5.5.7 Rating Service

A rating interface needs to address two types of behaviors. Once the metered infor-
mation is available, it has to be translated into financial terms. That is, for each unit
of usage, a price has to be associated with it. This step is accomplished by the rating
interfaces, which provide operations that take the metered information and a rating
package as input and output the usage in terms of chargeable amounts. For exam-
ple, a commercial UNIX system indicates that 10 hours of prime-time resource and
10 hours on nonprime-time resource are consumed, and the rating package indicates
that each hour of prime-time resource is priced at 2 dollars and each hour of non-
prime-time resource is priced at 1 dollar, a rating service will apply the pricing indi-
cated in the rating package and translate the usage information into financial infor-
mation in the terms of 20 dollars of prime-time resource charge, and 10 dollars of
nonprime time resource charge.

Furthermore, when a business service is developed, a rating service is used to ag-
gregate the costs of the components used to deliver the service, so that the service
owner can determine the pricing, terms, and conditions under which the service will
be offered to subscribers.

5.5.8 Accounting Service

Once the rated financial information is available, an accounting service can manage
subscription users and accounts information, calculate the relevant monthly charges
and maintain the invoice information. This service can also generate and present in-
voices to the user. Account-specific information is also applied at this time. For ex-
ample, if a user has a special offer of a 20% discount for his usage of the commer-
cial UNIX system described above, this discount will be applied by the accounting
service to indicate a final invoiced amount of 24 dollars.

5.5.9 Billing and Payment Service

Billing and payment service refers to the financial service that actually carries out
the transfer of money; for example, a credit card authorization service.

182 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 182

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5.10 Installation, Deployment, and Provisioning

Computer processors, applications, licenses, storage, networks, and instruments are
all grid resources that require installation, deployment, and provisioning (other new
resource types will be invented and added to this list.) OGSA affords a framework
that allows resource provisioning to be done in a uniform, consistent manner.

5.5.11 Distributed Logging

Distributed logging can be viewed as a typical messaging application in which mes-
sage producers generate log artifacts, (atomic expressions of diagnostic informa-
tion) that may or may not be used at a later time by other independent message con-
sumers. OGSA-based logging can leverage the notification mechanism available in
OGSI as the transport for messages. However, it is desirable to move logging-spe-
cific functionality to intermediaries, or logging services. Furthermore, the secure
logging of events is required for the audit trails needed to fulfill judiciary and orga-
nizational policy requirements, to reconcile security-related inconsistencies, and to
provide for forensic evidence both after the fact and in real time. It is expected that
standards and implementations for secure logging should be able to considerably
leverage on the efforts associated with distributed logging.

Because the invocation of operations on service instances are well defined and
typed through their portType definitions, and because it is expected that most im-
plementations will have a model in which the run-time invocation module is gener-
ated independent of the application, it follows that there is the opportunity to trans-
parently provide logging of many natural logging-code points (see Figure 5.6). The
logging capability includes not only the logging of information about the invocation
of the actual service operations on both requestor and service provider, but also the
information about the transparent invocations to the all the supporting services that
were needed to enable the application service invocation (such as services for dis-
covery, registration, directory, access control, privacy, identity translation, etc.)
Most of the required logging and secure logging may be achieved transparent of the
application and outside of the application logic, which greatly facilitates an imple-
mentation that adheres to the local policy.

Logging services provide the extensions needed to deal with the following is-
sues:

� Decoupling. The logical separation of logging artifact creation from logging
artifact consumption. The ultimate usage of the data (e.g., logging, tracing,
management) is determined by the message consumer; the message producer
should not be concerned with this.

� Transformation and common representation. Logging packages commonly
annotate the data that they generate with useful common information such as
category, priority, time stamp, and location. An OGSA logging service
should not only provide the capability of annotating data, but also the capabil-
ity of converting data from a range of (legacy) log formats into a common,

5.5 OGSA SERVICES 183

c05.qxd 8/24/2004 10:17 AM Page 183

TEAM LinG - Live, Informative, Non-cost and Genuine!

standard canonical representation. Also, a general mechanism for transforma-
tion may be required.

� Filtering and aggregation. The amount of logging data generated can be
large, whereas the amount of data actually consumed can be small. Therefore,
it can be desirable to have a mechanism for controlling the amount of data
generated and for filtering out what is actually kept and where. Through the
use of different filters, data coming from a single source can be easily separat-
ed into different repositories, and/or “similar” data coming from different
sources can be aggregated into a single repository.

� Configurable persistency. Depending on consumer needs, data may have dif-
ferent durability characteristics. For example, in a real-time monitoring appli-
cation, data may become irrelevant quickly, but be needed as soon as it is
generated; data for an auditing program may be needed months or even years
after it was generated. Hence, there is a need for a mechanism to create differ-
ent data repositories, each with its own persistency characteristics. In addi-
tion, the artifact retention policy (e.g., determining which log artifacts to drop
when a buffer reaches its size limit) should be configurable.

� Consumption patterns. Consumption patterns differ according to the needs of
the consumer application. For example, a real-time monitoring application
needs to be notified whenever a particular event occurs, whereas a post-
mortem problem determination program queries historical data, trying to find
known patterns. Thus, the logging repository should support both synchro-
nous query- (pull-) based consumption and asynchronous push-based (event-
driven) notification. The system should be flexible enough that consumers
can easily customize the event mechanism—for example, by sending digests
of messages instead of each one—and maybe even provide some predicate
logic on log artifacts to drive the notifications.

These considerations lead to an architecture for OGSA logging services in which
producers talk to filtering and transformation services either directly, or indirectly
through adapters. Consumers also use this service to create custom message reposi-
tories (baskets) or look for existing producers and baskets; that is, this service
should also function as a factory (of baskets) and a registry (of producers and bas-
kets). There is also a need for a configurable storage and delivery service, with
which data from different filtering services is collected, stored, and, if required, de-
livered to interested consumers. Log service also implies the ability to access relat-
ed log entries (by context) in chronological sequence.

5.5.12 Messaging and Queuing

OGSA extends the scope of the base OGSI Notification Interface to allow grid ser-
vices to produce a range of event messages, not just notifications that a serviceData
element has changed. Several terms related to this work are:

184 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 184

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Event—Some occurrence within the state of the grid service or its environ-
ment that may be of interest to third parties. This could be a state change or it
could be environmental, such as a timer event.

� Message—An artifact of an event, containing information about an event that
some entity wishes to communicate to other entities.

� Topic—A “logical” communications channel and matching mechanism to
which a requestor may subscribe to receive asynchronous messages and pub-
lishers may publish messages.

A message is represented as an XML element with a namespace-qualified
QName, and an XML schema-defined complex type. A topic will be modeled as an
XML element, describing its internal details, including expected messages associat-
ed with the topic. TopicSpaces, or collections of topics will also be modeled. This
work also defines:

� An interface to allow any grid service to declare its ability to accept subscrip-
tions to topics and the topics its supports.

� An interface to describe a messaging intermediary (a message broker) that
supports anonymous publication and subscription on topics.

� An interface (or set of interfaces) that describe the interface to other messag-
ing services such as a queuing service.

5.5 OGSA SERVICES 185

Storage & Delivery Services

Filtering & Transformation Service

Message Producers Message Consumers

createService

deliverNotification

deliverNotification

NotificationSink

NotificationSink

Factory

findServiceData

GridService

GridService

NotificationSink

NotificationSource

NotificationSource

findServiceData

deliverNotification

subscribeToNotificationTopic

subscribeToNotificationTopic

Figure 5.6 Schematic of a messaging service architecture.

c05.qxd 8/24/2004 10:17 AM Page 185

TEAM LinG - Live, Informative, Non-cost and Genuine!

Note that queuing and message qualities of service such as reliability can be con-
sidered as both explicit services within an OGSA hosting environment and trans-
port details modeled by the wsdl:binding element in the service description.

5.5.13 Events

Events are generally used as asynchronous signaling mechanisms. The most com-
mon form is “publish/subscribe,” in which a service “publishes” the events that it
exports (makes available to clients). The service may publish the events as reliable
or best effort. Clients may then “subscribe” to the event, and when the event is
raised, a call-back or message is sent to the client. Once again, the client can usual-
ly request either reliable or best effort, though the service may not be able to accept
a reliable delivery request. There is also a distinction between the reliability of an
event being raised and its delivery to a client. A service my attempt to deliver every
occurrence of an event (reliable posting), but not be able to guarantee delivery
(best-effort delivery).

An event can be anything that the service decides it will be: a change in a state
variable, entry into a particular code segment, an exception such as a security vi-
olation or floating point overflow, or the failure of some other expected event to
occur.

A second form of event is carried with service method invocations [55]. The ba-
sic idea is simple: inside the SOAP message invoking a service method is an Event
Interest Set (EIS). The EIS specifies the events in which the caller is interested and
a callback associated with each event. If an event named in the EIS is raised during
the execution of the method—including outcalls on other grid services—the corre-
sponding call-back is invoked. The EIS is first class and can be thought of as a part
of the calling context (closure); as such, it can be modified by the callee and propa-
gated down the call chain. This allows the callee to express interest in different
events further down the call chain, add himself/herself to a list of subscribers inter-
ested in events further down the call chain, or “catch” events and keep them from
propagating further up the call chain.

As noted above, events share many properties with notifications in OGSI (see
Chapter 4, Section 4.5). However, OGSI notifications are designed to capture state
changes in SDE’s only, and are not designed as a general event mechanism. Fur-
thermore, notifications are not normally “edge triggered” since they are based on a
model that assumes a minimum and maximum time between notifications; for ex-
ample, notifications that may occur within the minimum time window will not be
sent to the client. A complete event framework would allow for event queuing or
batching to cover this kind of functionality. OGSA events will build on OGSI noti-
fications.

An event is a representation of an occurrence in a system or application compo-
nent that may be of interest to other parties. Standard means of representing, com-
municating, transforming, reconciling, and recording events are important for inter-
operability. Thus, the OGSA Core should define standard schema for at least
certain classes of OGSA events.

186 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 186

TEAM LinG - Live, Informative, Non-cost and Genuine!

A detailed set of services include:

� Standard interface(s) for communicating events with specified QoS. These
may be based directly on the Messaging interfaces.

� Standard interface(s) for transforming (mediating) events in a manner that is
transparent to the endpoints. This should include aggregation of multiple
events into a single event.

� Standard interface(s) for reconciling events from multiple sources.

� Standard interface(s) for recording events. These may be based directly on the
Message logging interface(s).

� Standard interface(s) for batching and queuing events.

It is possible that some forms of event services may be built directly on top of OGSI
notification interfaces, although more study is needed.

5.5.14 Policy and Agreements

These services create a general framework for creation, administration, and man-
agement of policies and agreements for system operation, security, resource alloca-
tion, and so on, as well as an infrastructure for “policy aware” services to use the set
of defined and managed policies to govern their operation. These services do not
actually enforce policies but permit policies to be managed and delivered to re-
source managers that can interpret and operate on them. Agreements (OGSI-Agree-
ment Specification) provide a mechanism for the representation and negotiation of
terms between service providers and their clients (either user requests or other ser-
vices). These terms include specifications of functional, performance, and quality
requirements/objectives that the suppliers and consumers exchange and that they
can then use to influence their interactions. The Agreement mechanism provides a
general expression framework for these terms but leaves the specification of partic-
ular terms to individual disciplines such as performance, security, data quality, and
so on. Agreements also contain information on priority, costs, penalties or conse-
quences associated with violation of the “contract” a negotiated agreement repre-
sents as well as information on how the service provider and consumer have decid-
ed to measure compliance with the agreement.

One can expect that many grid services will use policies to direct their actions.
Thus, grids need to support the definition, discovery, communication, and enforce-
ment of policies for such purposes as resource allocation, workload management,
security, automation, and qualities of services. Some policies need to be expressed
at the operational level, that is, at the level of the devices and resources to be man-
aged, whereas higher-level policies express business goals and SLAs within and
across administrative domains. Higher-level policies are hard to enforce without a
canonical representation for their meaning to lower-level resources. Thus, business
policies probably need to be translated into a canonical form that can then be used
to derive lower-level policies that resources can understand. Standard mechanisms

5.5 OGSA SERVICES 187

c05.qxd 8/24/2004 10:17 AM Page 187

TEAM LinG - Live, Informative, Non-cost and Genuine!

are also needed for managing and distributing policies from producers (e.g., admin-
istrators, autonomic managers, and SLAs) to endpoints that consume and enforce
them (i.e., devices and resources).

These services (interfaces) provide a framework for creating, managing, validat-
ing, distributing, transforming, resolving, and enforcing policies within a distrib-
uted environment. A detailed set of services include:

� A management control point for policy life cycle: the Policy Service Manager
interface

� An interface that policy consumers can use to retrieve required policies: the
Policy Service Agent interface

� A way to express that a service is “policy aware”: the Policy Enforcement
Point interface

� A way to effect change on a resource, for example, by using Common Man-
agement Models

The Policy Service Manager controls access to the policy repository. It also controls
when notifications of policy changes are sent out so that multiple updates can be
made and notifications are only sent after all updates are complete. The Policy Ser-
vice Agent is a management service that other “policy aware” services depend on
for delivery of their policies. The agent can provide additional services like under-
standing time-period conditions so it can inform policy consumers of when policies
become active or inactive. Services that consume policies will implement the Policy
Enforcement Point interface to allow them to be registered with policy agents, par-
ticipate in the subscription to and notification of policy changes, and to allow poli-
cies to be pushed down onto them when needed. These enforcement points will
need to interpret the policies and make the necessary configuration changes in the
resource(s) they manage by using the Common Management Model.

The OGSA Policy Service provides for a transformation service for this purpose
and includes a canonical representation of policy in the form of an information
model, grammar, and core XML schema (also see Figure 5.7).

A set of secondary validation interfaces can allow automated managers and ad-
ministrators to act on the same set of policies and validate consistency. An interface
is also required for translating policies to and from the canonical form so that con-
sumers that have their own policy formats can plug into the service. Finally, there is
a need for run-time resolution of policy conflicts that may require specific applica-
tion knowledge to determine the cost of violating an agreement and selecting the
policy that will have the appropriate impact.

5.5.15 Base Data Services

OGSA data interfaces are intended to enable a service-oriented treatment of data so
that data can be treated in the same way as other resources within the Web/grid ser-
vices architecture. Thus, for example, one can integrate data into registries and co-

188 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 188

TEAM LinG - Live, Informative, Non-cost and Genuine!

ordinate operations on data using service orchestration mechanisms. A service-ori-
ented treatment of data also allows us to use OGSI grid service handles as global
names for data, manage the lifetime of dynamically created data by using OGSI
lifetime management mechanisms, and represent agreements concerning data ac-
cess via WS-Agreement.

OGSA data services are intended to allow for the definition, application, and
management of diverse abstractions—what can be called data virtualizations—of
underlying data sources. A data virtualization is represented by, and encapsulated
in, a data service, an OGSI grid service with SDEs that describe key parameters of
the virtualization, and with operations that allow clients to inspect those SDEs, ac-
cess the data using appropriate operations, derive new data virtualizations from old,
and/or manage the data virtualization. For example, a file containing geographical
data might be made accessible as an image via a data service that implements a
“JPEG image” virtualization, with SDEs defining size, resolution, and color charac-
teristics, and operations provided for reading and modifying regions of the image.
Another virtualization of the same data could present it as a relational database of
coordinate-based information, with various specifics of the schema (e.g., table
names, column names, types) as SDEs, and SQL as its operations for querying and
updating the geographical data. In both cases, the data service implementation is re-
sponsible for managing the mapping to the underlying data source.

Four base data interfaces (WSDL portTypes) can be used to implement a variety
of different data service behaviors:

5.5 OGSA SERVICES 189

Policy

Service

Manager

Policy

Enforcement

Point

Policy

Service

Agent

Admin GUI /

Autonomic

Manager

Admin GUI /

Autonomic

Manager

XML

Repository

* 1

1..n 1

1

1

*

**

*

*

*
Canonical

Policies

Canonical

Policies

Policy Service CorePolicy Service Core

Policy

Transformation

Service

Policy

Validation

Service

Policy

Resolution

Service

Policy

Transformation

Service

Policy

Validation

Service

Policy

Resolution

Service

Common Resource Model

Device / Resource

Common Resource Model

Device / Resource

Non-Canonical

Producer of Policies

Consumer of Policies

Policy Component Requirements:
� A management control point for policy lifecycle (PSM)

� A canonical way to express policies (AC 4-tuple)

� A distribution point for policy dissemination (PSA)

� A way to express that a service is “policy aware” (PEP)

� A way to effect change on a resource (CRM)

Figure 5.7 A set of potential policy service components.

c05.qxd 8/24/2004 10:17 AM Page 189

TEAM LinG - Live, Informative, Non-cost and Genuine!

1. DataDescription defines OGSI service data elements representing key para-
meters of the data virtualization encapsulated by the data service.

2. DataAccess provides operations to access and/or modify the contents of the
data virtualization encapsulated by the data service.

3. DataFactory provides an operation to create a new data service with a data
virtualization derived from the data virtualization of the parent (factory) data
service.

4. DataManagement provides operations to monitor and manage the data ser-
vice’s data virtualization, including (depending on the implementation) the
data sources (such as database management systems) that underlie the data
service.

A data service is any OGSI-compliant Web service that implements one or more
of these base data interfaces.

5.5.16 Other Data Services

A variety of higher-level data interfaces can and must be defined on top of the base
data interfaces, to address functions such as:

� Data access and movement

� Data replication and caching

� Data and schema mediation

� Metadata management and looking

There are likely to be strong relationships to discovery, messaging, agreement, and
coordination functions. Basic data access interfaces allow clients to directly access
and manipulate data. A number of such interfaces are required, corresponding to
different data types, for example, files, directories, file systems, RDBMS, XML
data bases, object data bases, and streaming media. A “file access” service may ex-
port interfaces to read, write, or truncate. GridFTP, an existing data access service,
provides mechanisms to get and put files, and supports third-party transfers.

Data replication, data caching, and schema transformation subservices are de-
scribed below.

Data Replication. Data replication can be important as a means of meeting per-
formance objectives by allowing local computer resources to have access to local
data. Although closely related to caching (indeed, a “replica store” and a “cache”
may differ only in their policies), replicas may provide different interfaces. Services
that may consume data replication are group services for clustering and failover,
utility computing for dynamic resource provisioning, policy services ensuring vari-
ous qualities of service, metering and monitoring services, and also higher-level
workload management and disaster recovery solutions. Each may need to migrate
data for computation or to replicate state for a given service.

190 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 190

TEAM LinG - Live, Informative, Non-cost and Genuine!

Work is required to define an OGSA-compliant set of data replication services
that, through the use of “adapters,” can move data in and out of heterogeneous
physical and logical environments without any changes needed to the underlying
local data access subsystems. The adapters handle the native “reading” and “writ-
ing” of data and the replication software coordinates the run time (recoverability,
monitoring, etc.) associated with every data transfer. A central “monitor” sets up
and handles communication with the calling service or program and sets up a “sub-
scription–pair” relationship between capture and apply services on a per-replica-
tion-request basis to ensure reliability.

Data Caching. In order to improve performance of access to remote data items,
caching services will be employed. At the minimum, caching services for tradition-
al flat file data will be employed. Caching of other data types, such as views on
RDBMS data, streaming data, and application binaries, are also envisioned. Issues
that arise include (but are not limited to):

� Consistency—Is the data in the cache the same as in the source? If not, what
is the coherence window? Different applications have very different require-
ments.

� Cache invalidation protocols—How and when is cached data invalidated?

� Write through or write back? When are writes to the cache committed back to
the original data source?

� Security—How will access control to cached items be handled? Will access
control enforcement be delegated to the cache, or will access control be some-
how enforced by the original data source?

� Integrity of cached data—Is the cached data kept in memory or on disk? How
is it protected from unauthorized access? Is it encrypted?

How the cache service addresses these issues will need to available as service data.

Schema Transformation. Schema transformation interfaces support the trans-
formation of data from one schema to another. For example, XML transformations
as specified in XSLT.

5.5.17 Discovery Services

Discovery interfaces address the need to be able to organize and search for infor-
mation about various sorts of entities in various ways. In an OGSA environment,
it is normally recommended that entities of whatever type be named by GSHs;
thus, discovery services are concerned with mapping from user-specified criteria
to appropriate GSHs. Different interface definitions and different implementation
behaviors may vary according to how user requests are expressed, the information
used to answer requests, and the mechanisms used to propagate and access that in-
formation.

5.5 OGSA SERVICES 191

c05.qxd 8/24/2004 10:17 AM Page 191

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5.18 Job Agreement Service. The job agreement service is created by the
agreement factory service with a set of job terms, including command line, resource
requirements, execution environment, data staging, job control, scheduler direc-
tives, and accounting and notification terms. The job agreement service provides an
interface for placing jobs on a resource manager (i.e., representing a machine or a
cluster), and for interacting with the job once it has been dispatched to the resource
manager. The job agreement service provides basic matchmaking capabilities be-
tween the requirements of the job and the underlying resource manager available
for running the job. More advanced job agreement services take into account more
advanced job characteristics such as interactive execution, parallel jobs across re-
source managers, and jobs with requirements based on SLAs.

The interfaces provided by the job agreement service are:

� Manageability interface

� Supported job terms: defines a set of service data used to publish the job
terms supported by this job service, including the job definition (command
line and application name), resource requirements, execution environment,
data staging, job control, scheduler directives, and accounting and notifi-
cation terms.

� Workload status: total number of jobs, statuses such as number of jobs run-
ning or pending and suspended jobs.

� Job control: control the job after it has been instantiated. This would include
the ability to suspend/resume, checkpoint, and kill the job.

The job agreement service makes use of information in the form of policies that
are defined at the VO level, and resource information about available resource man-
agers, queues, host, and job status as provided by the Global Information Service.
The job agreement service uses the WS-Agreement Protocol with the underlying re-
source managers in order to submit jobs to the underlying resource managers, and
in order to control the running jobs and to access data.

5.5.19 Reservation Agreement Service

The reservation agreement service is created by the agreement factory service with
a set of terms including time duration, resource requirement specification, and au-
thorized user/project agreement terms. The reservation agreement service allows
end users or a job agreement service to reserve resources under the control of a re-
source manager to guarantee their availability to run a job. The service allows reser-
vations on any type of resource (e.g., hosts, software licenses, or network band-
width). Reservations can be specific (e.g., provide access to host “A” from noon to
5 PM), or more general (e.g., provide access to 16 Linux cpus on Sunday). Once a
reservation is made, a job service can send a job to a resource manager that is at-
tached to the provided reservation. Some of the policy decisions made by the reser-
vation service for use with a resource manager include notions of who can make
reservations (e.g., administrators only), how many hosts a particular user or user

192 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 192

TEAM LinG - Live, Informative, Non-cost and Genuine!

group can reserve at a time, when reservations can be made (i.e., define “blackout
periods”), and what types of hosts can be reserved.

The reservation agreement service provides one interface, manageability, which
defines a set of service data that describe the details of a particular reservation, in-
cluding resource terms, start time, end time, amount of the resource reserved, and
the authorized users.

The reservation service makes use of information about the existing resource
managers available and any policies that might be defined at the VO level, and will
make use of a logging service to log reservations. It will use the resource manager
adapter interfaces to make reservations and to delete existing reservations.

5.5.20 Data Access Agreement Service

The data access agreement service is created by the agreement factory service with
a set of terms, including (but not restricted to) source and destination file path,
bandwidth requirements, and fault-tolerance terms (such as retrial times). The data
access agreement service allows end users or a job agreement service to stage appli-
cation or required data.

5.5.21 Queuing Service

The queuing service provides scheduling capability for jobs. Given a set of policies
defined at the VO level, a queuing service will map jobs to resource managers
based on the defined policies. For example, a queuing service might implement a
fair-share policy that makes sure that all users within the VO get reasonable turn-
around time on their jobs, rather than being starved out by other users’ jobs ahead of
them in the queue.

The manageability interface defines a set of service data for accessing QoS terms
supported by the queuing services. QoS terms for the queuing service can include
whether the service supports on-line or batch capabilities, average turn-around time
for jobs, throughput guarantees, the ability to meet deadlines, and the ability to meet
certain economic constraints.

The following terms apply to the queuing service:

� Enqueue—add a job to a queue

� Dequeue—remove a job from a queue

5.5.22 Open Grid Services Infrastructure

As we now know, the OGSI defines fundamental mechanisms on which OGSA is
constructed. These mechanisms address issues relating to the creation, naming,
management, and exchange of information among entities called grid services. A
grid service instance is a (potentially transient) service that conforms to a set of
conventions (expressed as WSDL interfaces, extensions, and behaviors) for such
purposes as lifetime management, discovery of characteristics, and notification.

5.5 OGSA SERVICES 193

c05.qxd 8/24/2004 10:17 AM Page 193

TEAM LinG - Live, Informative, Non-cost and Genuine!

These conventions provide for the controlled management of the distributed and of-
ten long-lived state that is commonly required in distributed applications. OGSI
also introduces standard factory and registration interfaces for creating and discov-
ering grid services (OGSI was covered in detail in Chapter 4.) The following list re-
caps the key OGSI features and briefly discusses their relevance to OGSA.

� Grid Service descriptions and instances. OGSI introduces the twin concepts
of the grid service description and grid service instance as organizing princi-
ples of distributed systems. A grid service description comprises the WSDL
(with OGSI extensions) defining the grid service’s interfaces and service data
(see next item). A grid service instance is an addressable, potentially stateful,
and potentially transient instantiation of such a description. These concepts
provide the basic building blocks used to build OGSA-based distributed sys-
tems. Grid service descriptions define interfaces and behaviors, and a distrib-
uted system comprises a set of grid service instances that implement those be-
haviors, have a notion of identity with respect to the other instances in the
system, and can be characterized as state coupled with behavior published
through type-specific operations.

� Service state, metadata, and introspection. OGSI defines mechanisms for
representing and accessing (via both queries and subscriptions) metadata and
state data from a service instance (service data), as well as providing uniform
mechanisms for accessing state. These mechanisms support introspection, in
that a client application can ask a grid service instance to return information
describing itself, such as the collection of interfaces that it implements.

� Naming and name resolution. OGSI defines a two-level naming scheme for
grid service instances based on abstract, long-lived grid service handles that
can be mapped by HandleMapper services to concrete but potentially less-
long-lived grid service references. These constructs are basically network-
wide pointers to specific grid service instances hosted in (potentially remote)
execution environments. A client application can use a grid service reference
to send requests (represented by the operations defined in the interfaces of the
target service) directly to the specific instance at the specified network-at-
tached service endpoint identified by the grid service reference.

� Fault model. OGSI defines a common approach for conveying fault informa-
tion from operations.

� Life cycle. OGSI defines mechanisms for managing the life cycle of a grid
service instance, including both explicit destruction and soft-state lifetime
management functions for grid service instances, and grid service factories
that can be used to create instances implementing specified interfaces.

� Service groups. OGSI defines a means of organizing groups of service in-
stances.

OGSI does not address how grid services are created, managed, and destroyed
within a particular hosting environment. Thus, services that conform to the OGSI

194 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 194

TEAM LinG - Live, Informative, Non-cost and Genuine!

specification are not necessarily portable across various hosting environments, but
can be invoked by any client that conforms to this specification, subject, of course,
to policy and compatible protocol bindings.

Stateful instances, typed interfaces, and global names are frequently also cited
as fundamental characteristics of so-called distributed object-based systems.
However, various other aspects of distributed object models (as traditionally de-
fined) are specifically not required or prescribed by OGSI. For this reason, one
does not use the terms “distributed object model” or “distributed object system”
when describing this work, but instead uses the term “open grid services infra-
structure,” thus emphasizing the connections with both Web services and grid
technologies.

Among the object-related issues that are not addressed within OGSI are imple-
mentation inheritance, service mobility, development approach, and hosting tech-
nology. The grid service specification does not require, nor does it prevent, imple-
mentations based upon object technologies that support inheritance at either the
interface or the implementation level. There is no requirement in the architecture to
expose the notion of implementation inheritance either at the client side or the ser-
vice-provider side of the usage contract. In addition, the grid service specification
does not prescribe, dictate, or prevent the use of any particular development ap-
proach or hosting technology for the grid service. For example, there is nothing
about OGSI that is Java specific; one can implement OGSI behaviors in C, Python,
or other languages.

Grid service providers are free to implement the semantic contract of the service
in any technology and hosting architecture of their choosing. One can envision im-
plementations in J2EE, .NET, traditional commercial transaction management
servers, traditional procedural UNIX servers, and so on. One can also envision ser-
vice implementations in a variety of programming languages that would include
both object-oriented and nonobject-oriented alternatives.

5.5.23 Common Management Model

A fundamental requirement of grid management infrastructure is the ability to de-
fine the resources and resource management functions of the system in a standard
and interoperable way. The capabilities of the grid management infrastructure rely
on the ability to discover, compose, and interact with the resources and the re-
sources managers responsible for them.

The Common Management Model specification defines the base behavioral
model for all resources and resource managers in the grid management infrastruc-
ture. A mechanism is defined by which resource managers can make use of detailed
manageability information for a resource that may come from existing resource
models and instrumentation, such as those expressed in CIM, JMX, SNMP, and so
on, combined with a set of canonical operations introduced by base CMM inter-
faces. The result is a manageable resource abstraction that introduces OGSI-com-
pliant operations over an exposed underlying base-content model. CMM does not
define yet another manageability (resource information) model.

5.5 OGSA SERVICES 195

c05.qxd 8/24/2004 10:17 AM Page 195

TEAM LinG - Live, Informative, Non-cost and Genuine!

The CMM specification defines

� The base manageable resource interface, which a resource or resource manag-
er must provide to be manageable

� Canonical lifecycle states—the transitions between the states, and the opera-
tions necessary for the transitions that complement OGSI lifetime service
data

� The ability to represent relationships among manageable resources (instances
and types), including a canonical set of relationship types

� Life cycle metadata (XML attributes) common to all types of managed re-
sources for monitoring and control of service data and operations based on
life cycle state

� Canonical services factored out from across multiple resources or domain-
specific resource managers, such as an operational port type (start/stop/pause/
resume/quiesce)

Additional items that may come within the scope of the CMM specification are

� New data types or metadata to convey semantic meaning of manageability in-
formation, such as counter or gauge

� Versioning information

� Metadata to associate a metered usage (unit of measure) with manageability
information

� Classification of properties such as metric and configuration

� Registries and locating fine-grained resources

� Managed resource identifier

To summarize, CMM represents the proposed industry standard for representing
manageable resources and resource managers within the grid management infra-
structure. CMM interfaces are OGSI compliant and are used as the base abstract in-
terfaces from which specific manageable resource types are derived. Standardiza-
tion of the base management behavior is required in order to integrate the vast
number and types of resources and more limited set of resource managers intro-
duced by multiple vendors.

5.6 SECURITY CONSIDERATIONS

The OGSA specification defines requirements for interfaces, behaviors, and models
used to structure and achieve interactions among grid services and their clients. Al-
though it is assumed that such interactions must be secured, the details of security
are out of scope of the OGSA specification. Instead, security should be addressed in
related specifications that define how abstract interactions are bound to specific
communication protocols, how service behaviors are specialized via policy-man-

196 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 196

TEAM LinG - Live, Informative, Non-cost and Genuine!

agement interfaces, and how security features are delivered in specific program-
ming environments.

5.7 EXAMPLES OF OGSA MECHANISMS IN SUPPORT OF VO
STRUCTURES

Grid applications and users typically have a need to create transient services, to dis-
cover available services, and to determine the properties of these services. The Fac-
tory, Registry, GridService, and HandleMap interfaces support the creation of tran-
sient service instances and the discovery and characterization of the service
instances associated with a VO. Registry service is a service instance that supports
the Registry interface for registration; it also supports the GridService interface’s
FindServiceData operation for discovery.

These interfaces can be used to construct a variety of VO service structures, such
as (see Figure 5.8):

� Simple hosting environment. A basic grid environment is comprised of a set
of resources located within a single administrative domain and supporting na-
tive facilities for service management. These native facilities can include, for
example, a Linux cluster, a Microsoft .NET system, or a J2EE application
server. Each factory is recorded in the registry; this enables clients to discov-
er available factories. The user interface can be structured as a registry, one or
more factories, and a HandleMap service. When a factory receives a client re-
quest to create a grid service instance, the factory invokes hosting-specific ca-
pabilities to create the new instance. It then assigns the grid service instance a
handle, registers the instance with the registry, and makes the handle avail-
able to the HandleMap service. The implementations of these various services
map directly into local operations [114].

� Virtual hosting environment. In more complex environments, the resources
associated with a VO can span geographically distributed, heterogeneous
“hosting environments.” The “virtual hosting environment” can be made ac-
cessible to a client through the same interfaces that were used for the hosting
environment described above. In this situation, one can have one or more
“higher-level” factories that delegate creation requests to lower-level facto-
ries. Similarly, one has a higher-level registry that is aware of the higher-lev-
el factories and the service instances that these “higher-level” factories have
created. The higher-level registry is also aware of any VO-specific policies
that regulate the use of VO services. Clients can then utilize the VO registry
to discover factories and other service instances associated with the VO.
Clients then use the handles returned by the registry to communicate directly
with such service instances. The higher-level factories and registries imple-
ment standard interfaces; hence, from the perspective of the user, it follows
that higher-level factories are indistinguishable from any other factory or reg-
istry [114].

5.7 EXAMPLES OF OGSA MECHANISMS IN SUPPORT OF VO STRUCTURES 197

c05.qxd 8/24/2004 10:17 AM Page 197

TEAM LinG - Live, Informative, Non-cost and Genuine!

198 STANDARDS SUPPORTING GRID COMPUTING: OGSA

Simple hosting environment

Virtual hosting environment

Collective operations

Figure 5.8 Examples of VO structures.

c05.qxd 8/24/2004 10:17 AM Page 198

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Collective operations. One can also construct a “virtual hosting environment”
that provides VO members with more elaborate services. In these environ-
ments, the registry keeps track of factories that create higher-level service in-
stances. Such higher-level instances are implemented by utilizing lower-level
factories that create multiple service instances. The behaviors of the multiple
lower-level service instances are synthesized into that single, higher-level ser-
vice instance.

Figure 5.9 depicts, for illustrative purposes, the work flow (remote service invo-
cation, lifetime management, and notification) of a data-mining, grid-enabled com-
putation application. In the figure, the “R”s represent local registry services. There
will also be a VO registry service that provides information about the location of all
depicted services. Four stages are shown in the figure:

Stage 1. The environment encompasses (from left to right) five simple hosting
environments: one that runs the user application, a hosting environment that

5.7 EXAMPLES OF OGSA MECHANISMS IN SUPPORT OF VO STRUCTURES 199

Figure 5.9 Workflow example.

Storage

Database
service

R

Storage

Database
service

R

Storage

R

User
Application

R R

Mining
service

Storage
reservation

factory

Mining
service
factory

Stage 4

Status
Update

Storage
reservation

Query

Database
service

Storage

Database
service

R

Storage

Database
service

R

Storage

RR R

Mining
service

Storage
reservation

factory

Mining
service
factory

Stage 3

Status
Update
Notification

Storage
reservation

Query

Database
service

User
Application

Keepalive

Storage

Database
service

R

Storage

Database
service

R

Storage

RR

Mining
service

Storage
reservation

factory

Mining
service
factory

Stage 2

Create
Storage
Reservation

Storage
reservation

Database
service

Create
Mining
Service

Storage

Database
service

R

Storage

Database
service

R

Storage

RR

Mining
service

Storage
reservation

factory

Mining
service
factory

Stage 1

Storage
reservation

Database
service

User
Application

User
Application

� Client � � Grid Facilities � � Resources �

c05.qxd 8/24/2004 10:17 AM Page 199

TEAM LinG - Live, Informative, Non-cost and Genuine!

encapsulates computing and storage resources (and that supports two factory
services, one for creating storage reservations and the other for creating min-
ing services), and three that support database services.

Stage 2. The user application invokes “create grid service” requests on the two
factories in the second hosting environment, requesting the creation of a
“data-mining service” and an allocation of temporary storage resources. The
“data-mining service” performs the data-mining operation and the temporary
storage is utilized for use by that computation. Each request involves mutual
authentication of the user and the relevant factory followed by authorization
of the request. This is accomplished using an authentication mechanism de-
scribed in the factory’s service description. Each request is successful, result-
ing in the creation of a grid service instance with an initial lifetime span.

Stage 3. During Stage 2, the new data-mining service instances were also provid-
ed with delegated proxy credentials that allow them to perform further remote
operations on behalf of the user. In Stage 3, the newly created data-mining
service uses its proxy credentials to initiate the requests for data from the two
data base services. The intermediate results are placed in local storage. The
data mining service also uses notification mechanisms to provide the user ap-
plication with updates. Simultaneously, the user application generates routine
“keepalive” requests to the two grid service instances that it has created.

Stage 4. For some reason, the user application fails. The data-mining computa-
tion continues for awhile. Eventually, due to the application failure and to the
stoppage of the keep-alive messages, the two grid service instances time out
in due course and are terminated. This frees up the storage and computing re-
sources that the applications were consuming.

200 STANDARDS SUPPORTING GRID COMPUTING: OGSA

c05.qxd 8/24/2004 10:17 AM Page 200

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 201
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 6

Grid System Deployment Issues,
Approaches, and Tools

This chapter looks at number of issues related to grid deployment and highlights re-
lated relevant issues. Security is given particular emphasis. The chapter has two
major themes/sections: (i) implementation tools and issues; and (ii) security. We
open the chapter with a survey of the functionality and capabilities of Globus
Toolkit™, this being a usable grid implementation mechanism. We also cover grid
computing environments (GCE), management issues, and generic deployment con-
siderations. Then we cover security, it being a very critical issue. It is not the intent
of this chapter to be a checklist or a cookbook formula for deployment, but rather to
highlight some topics that play a role in such a process.

6.1 GENERIC IMPLEMENTATIONS: GLOBUS TOOLKIT

As we discussed in Chapters 4 and 5, the Open Grid Services Architecture was
modeled (developed) with Globus Toolkit as a point of reference and with Web ser-
vices as its building blocks. Whereas OGSA is an abstract conceptual architecture,
a “concrete” realization mechanism is also needed if one is to achieve widespread
penetration of standards-based grid services. One well-known example of the im-
plementation of OGSA/OGSI is the just-named Globus Toolkit maintained by the
Globus Alliance.1 The Globus Toolkit grid-enables a wide range of computing en-
vironments. It is a software tool kit addressing key technical issues in the develop-
ment of grid-enabled environments, services, and applications. As mentioned sever-
al times in the previous chapters, Globus Toolkit has been widely adopted as a grid
technology solution for scientific and technical computing. Globus Toolkit mecha-
nisms are in use at hundreds of sites and by dozens of major (scientific) grid pro-

1The Globus Alliance is a partnership of Argonne National Laboratory’s Mathematics and Computer
Science Division, the University of Southern California’s Information Sciences Institute, the University
of Chicago’s Distributed Systems Laboratory, the University of Edinburgh in Scotland, and the Swedish
Center for Parallel Computers. Major partners in the public sector currently include the National Compu-
tational Science Alliance, the NASA Information Power Grid project, the National Partnership for Ad-
vanced Computational Infrastructure, the University of Chicago, and the University of Wisconsin. Major
corporate partners currently include IBM and Microsoft.

c06.qxd 8/24/2004 10:17 AM Page 201

TEAM LinG - Live, Informative, Non-cost and Genuine!

jects worldwide [114]. The hope is that it will now, as it implements OGSA/OGSI
in a cost-effective manner, also stimulate commercial deployment of grid services.

The Globus Alliance is a research and development “project” (The Globus Pro-
ject™) focused on enabling the application of grid concepts to scientific and engi-
neering computing [129]. The Globus Project started in 1996. The Alliance has and
continues to develop fundamental technologies needed to build computational grids
with persistent environments that enable software applications to integrate instru-
ments, displays, and computational and information resources that are managed by
diverse organizations in widespread locations. Users around the world are building
grids and developing grid applications, and Globus Alliance’s research targets tech-
nical challenges that arise from these activities. Typical research areas include
resource management, data management and access, application development envi-
ronments, information services, and security. Globus Alliance software develop-
ment has resulted in the Globus Toolkit, a set of services and software libraries to
support grids and grid applications. The Globus Toolkit includes software for secu-
rity, information infrastructure, resource management, data management, commu-
nication, fault detection, and portability [129]. The tool kit’s open-source software
and services have transformed the way on-line resources are shared across organi-
zations [124]. The tool kit allows developers to concentrate (almost exclusively) on
the higher-level design of the grid service definitions without having to worry about
a specific hosting environment.

The Globus Toolkit is a community-based, open-architecture, open-source set of
services and software libraries (available under a liberal open-source license) that
supports grids and grid applications. Globus Toolkit has already gone through three
generations in the past few years, with the original version in the late 1990s, the
next version in early 2000s, and the third version in 2003. It is viewed as the refer-
ence software system for generic grid implementation (as contrasted to some do-
main-specific e-science implementations.) With the publication of OGSI and
OGSA, the Globus Toolkit is now moving even more fully toward implementation
of standard grid protocols and APIs. As noted, the Globus Toolkit influenced the
development of OGSA/OGSI and, in turn OGSA/OGSI is now influencing it [36,
44]. As we saw in previous chapters, OGSI specifies a set of “service primitives”
that, rather than stipulating precise services, establish a nucleus of behavior com-
mon to all grid/Web services that can be leveraged by meta- and system-level ser-
vices. Globus Toolkit 3.0 (GT3) uses this specification to provide tools for resource
monitoring, discovery, management, security, and file transfer [37, 124].

The official release of the GT3 took place in 2003 (there was an alpha release of
the toolkit approximately one year earlier; the release of the Open Grid Services Ar-
chitecture Development Framework, the core services of GT3, allowed early
adopters to start developing OGSA-based services immediately.) GT3 is the first
full-scale implementation of the OGSI Version 1.0 that the Globus Project played a
key role in defining [124]. Leading grid participants have previously committed to
use of GT3 and OGSA; companies include, but are not limited to, Avaki, Cray, En-
tropia, Hewlett-Packard, IBM, Oracle, Platform Computing, Silicon Graphics, Inc.,
Sun Microsystems, and Veridian. The introduction of the Globus Toolkit 3.0 with

202 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:17 AM Page 202

TEAM LinG - Live, Informative, Non-cost and Genuine!

the Open Grid Services Architecture is an important step in moving grid computing
beyond the laboratories of academia and research and through the doors of com-
mercial enterprises [124]. The Globus Project is also working with Microsoft to de-
velop a WindowsTM version of the Globus Toolkit. Beta versions for Windows
XP/2000 platform were released in 2002, with more work under way.

6.1.1 Globus Toolkit Tools and APIs

The Globus Toolkit offers a modular “basket of services and technologies” that en-
ables incremental development of grid-enabled tools and applications. These facili-
ties can be utilized, in the aggregate, to build grids and grid-enabled applications.
Globus Toolkit took a layered, modular approach early on; this approach is con-
ducive to openness and standardization. The toolkit defines grid protocols and
APIs.

Globus Toolkit provides protocol-mediated access to remote resources for inter-
grid environments. The Globus Toolkit integrated and extended existing standards
and developed a reference implementation. Client and server APIs, SDKs, services,
tools, and other capabilities have been defined [119]. As shown in Figure 6.1,

6.1 GENERIC IMPLEMENTATIONS: GLOBUS TOOLKIT 203

Figure 6.1 Principal Globus Toolkit mechanisms.

Other Services
(e.g., GridFTP)

Engage
other

service

Register
Create
process

User
process #2

Reporter
(Registry +
Discovery)

Proxy #2

Gatekeeper
(Factory)

Request
process
creation

User
process #1

Proxy #1

User

Authenticate &
create proxy

credential

Register with
discovery service

Grid Information
Index Server
(Discovery)

c06.qxd 8/24/2004 10:17 AM Page 203

TEAM LinG - Live, Informative, Non-cost and Genuine!

Globus Toolkit components provide the basic elements of an SOA, but with
less generality than encompassed in full OGSA. The Globus Toolkit is a set of
useful components that can be used either independently or together to develop
useful grid applications and programming tools as follows (also see Table 6.1)
[129]:

� The Globus Resource Allocation Manager (GRAM) provides resource alloca-
tion, process creation, monitoring, and management services. GRAM imple-
mentations map requests expressed in a resource specification language
(RSL) into commands to local schedulers and computers.

� The Grid Security Infrastructure (GSI) provides a single-sign-on, run-any-
where authentication service, with support for local control over access rights
and mapping from global to local user identities. Smartcard support increases
credential security.

� The Monitoring and Discovery Service (MDS)2 is an extensible grid informa-
tion service that combines data discovery mechanisms with the LDAP
(LDAP defines a data model, query language, and other related protocols).
MDS provides a uniform framework for providing and accessing system con-
figuration and status information such as computer server configuration, net-
work status, or the locations of replicated datasets.

� Global Access to Secondary Storage (GASS) implements a variety of auto-
matic and programmer-managed data movement and data access strategies,
enabling programs running at remote locations to read and write local data.

204 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

2MDS-2 supersedes MDS-1, which pioneered the use of GIS concepts but did not address all require-
ments of interest. MDS-2 provides a configurable information provider component called a Grid Re-
source Information Service (GRIS) and a configurable aggregate directory component called a Grid In-
dex Information Service (GIIS) [14].

Table 6.1 The Globus Toolkit capabilities

� A set of basic facilities needed for grid computing
� Security: GSI for single sign-on, authentication, authorization, and secure data transfer
� Resource management: remote job submission and management

� GRAM protocol and its “gatekeeper” service that provides for secure, reliable,
service creation and management (resource layer)

� Metadirectory service (MDS) that provides for information discovery through soft
state registration, data modeling, and a local registry (“GRAM reporter”)

� Data management: secure and robust data movement
� Data transfer: Grid File Transfer Protocol (GridFTP)

� Information services: directory services of available resources and their status
� Grid Resource Information Protocol (GRIP)

� Collective layer protocols
� APIs to the above facilities
� C bindings (header files) needed to build and compile programs

c06.qxd 8/24/2004 10:17 AM Page 204

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Nexus and globus_io provide communication services for heterogeneous en-
vironments, supporting multimethod communication, multithreading, and
single-sided operations.

� The Heartbeat Monitor (HBM) allows system administrators or ordinary
users to detect failure of system components or application processes.

For each component, an API written in the C programming language is provid-
ed for use by software developers. Command line tools are also provided for most
components, and Java classes are provided for the most important ones. Some
APIs make use of Globus servers running on computing resources. Table 6.2 iden-
tifies API specifications for software libraries distributed with the Globus Toolkit.
In addition to these core services, the Globus Alliance has developed prototypes
of higher-level components (resource brokers and resource coallocators) and ser-
vices.

In addition to these, other components are available that complement, or build on
top of, these facilities. For example, the Globus Toolkit provides a rapid-develop-
ment kit known as Commodity Grid (CoG) that supports technologies such as Java,
Python, Web Services, and CORBA. A GUI mechanism available with the Globus
Toolkit simplifies the developer’s effort for capturing users’ inputs, discovering a
grid service, creating a grid service instance, invoking a grid service instance, and
displaying results. The GUI framework can get a grid service reference (GSR) from
a grid service handle (GSH) (discussed in Chapters 4 and 5). Furthermore, the GUI
can be customized for supporting an organization’s specific grid application. A
WSIL document is an example grid service registry used in current Globus Toolkit.
The GUI framework can also publish the WSDL document to the grid service reg-
istry [119]. Next we compare the Globus Toolkit to two other well-known systems:
Condor and Legion.

Condor is a tool for harnessing the capacity of idle workstations for computa-
tional tasks [129]. It is well suited for parameter studies and high-throughput com-
puting, where microjobs generally do not need to communicate with each other.
Condor and Globus are complementary technologies, as demonstrated by Condor-
G, a Globus-enabled version of Condor that uses Globus to handle interorganiza-
tional problems like security, resource management for supercomputers, and exe-
cutable staging. Condor can be used to submit jobs to systems managed by Globus,
and Globus tools can be used to submit jobs to systems managed by Condor. The
Condor and Globus teams work closely with each other to ensure that the Globus
Toolkit and Condor software fit well together [129].

Legion is developing an object-oriented framework for grid applications. The
goal of the Legion project is to promote the principled design of distributed system
software by providing standard object representations for processors, data systems,
and so on. Legion applications are developed in terms of these standard objects.
The two technologies are in some respects complementary: Globus focuses on low-
level services and Legion on higher-level programming models. There are also sig-
nificant areas of overlap. It may be useful to note that the Globus Toolkit is being
used as the basis for numerous production grid environments (from modest collabo-

6.1 GENERIC IMPLEMENTATIONS: GLOBUS TOOLKIT 205

c06.qxd 8/24/2004 10:17 AM Page 205

TEAM LinG - Live, Informative, Non-cost and Genuine!

206 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

Table 6.2 API specifications for software libraries distributed with the Globus Toolkit

Security APIs globus_gss_assist—simplifies the use of the GSSAPI in the globus en-
vironment

GSS API—the Generic Security Service API C bindings (IETF draft)

Information OpenLDAP—an API for the LDAP protocol used by MDS (developed
Service APIs by the OpenLDAP Project)

Communication globus_io—provides high-performance I/O with integrated security and
APIs a socket-like interface

globus_nexus—provides multithreaded, asynchronous, thread-safe
multiprotocol communication facilities

globus_nexus_fd—provides NEXUS-based support for file descriptors
and timed events. (This API is obsolete as of release 1.1.2; recommend
use of globus_io instead.)

Data Access globus_ftp_control—provides low-level services for implementing FTP
APIs client and servers

globus_ftp_client—provides a convenient way of accessing files on re-
mote FTP servers

globus_gass_copy—provides a uniform interface for accessing files us-
ing a variety of protocols

globus_gass—provides clients with access to remote files

globus_gass_transfer—provides an API for clients and servers involved
in GASS data transfer

globus_gass_cache—manages the local GASS cache on a client system

globus_gass_server_ez—provides a simple set of GASS server capabil-
ities

globus_gass_server—provides GASS server functionality. (This API is
obsolete as of release 1.1.2; recommend use of globus_gass_transfer in-
stead.)

globus_gass_client—allows clients to get and put remote files via sev-
eral protocols. (This API is obsolete as of release 1.1.2; recommend use
of globus_gass_transfer instead.)

Data Management globus_replica_catalog—provides an interface to a catalog of data
APIs collections, logical files, and physical locations

globus_replica_management—allows clients to manage files within a
file replication system

Resource globus_gram_client—provides remote job submission and management
Management capabilities
APIs

globus_gram_myjob—provides a basic communication mechanism for
processes within a GRAM job

c06.qxd 8/24/2004 10:17 AM Page 206

TEAM LinG - Live, Informative, Non-cost and Genuine!

rative research projects to huge international scientific ventures), whereas Legion’s
community of users is smaller and more focused [129].

6.1.2 Details of Key Too Kit Protocols

As the discussion above points out, the Globus Toolkit is built around four key pro-
tocols: GSI, GRAM, GRIP, and GridFTP. The Globus Toolkit also utilizes existing
Web services technologies that were described in previous chapters, including
SOAP, WSDL, and WSIL, to support distributed state management, inspection, dis-
covery, invocation, and asynchronous notifications. Specifically, all the Grid ser-
vice interfaces are exposed in WSDL format [119]. Some additional information on
these protocols is included next; these protocols will continue to exist in GT3.

GSI. Globus Toolkit implements GSI protocols and APIs, to address grid security
functionality. GSI protocols extend existing standard public key protocols: ITU

6.1 GENERIC IMPLEMENTATIONS: GLOBUS TOOLKIT 207

Table 6.2 Continued

Resource globus_gram_jobmanager—provides a simple, consistent way to inter
Management act locally with a variety of schedulers such as LSF, LoadLeveler, PBS,
APIs Condor, etc.

globus_duroc—provides resource coallocation services for starting dis-
tributed jobs

Fault Detection globus_hbm_client—allows a client process to be monitored by a
APIs Heartbeat Monitor system

globus_hbm_datacollector—allows clients to monitor multiple process-
es and enables the notification of exceptions

Portability APIs globus_module—provides a mechanism for activating and deactivating
software modules

globus_libc—provides a portable implementation of libc

globus_thread—implements threads and synchronization mechanisms

globus_dc—provides cross-platform data conversion services

globus_utp—supports the use of timers for monitoring applications and
other programs

globus_list—support for linked lists

globus_fifo—supports first-in–first-out queues

globus_hashtable—supports hash tables

globus_url—supports URL strings

globus_error—provides an abstract error type for function return codes

globus_poll—supports polling on I/O channels

c06.qxd 8/24/2004 10:17 AM Page 207

TEAM LinG - Live, Informative, Non-cost and Genuine!

X.509 and IETF Transport Layer Security (TLS-RFC 2246) protocol (the follow-on
protocol to SSL). Extensions have been made to X.509 Proxy Certificates and Del-
egation. GSI also extends standard GSS-API (see below). Figure 6.2 depicts GSI-
based operations [44]. GSI utilizes X.509 certificates as the basis for user authenti-
cation and defines an X.509 Proxy Certificate to leverage X.509 public key
cryptographic techniques capabilities for supporting single sign-on and delegation.
GSI utilizes the TLS protocol for authentication.3

ITU-T X.509 is a well-accepted security protocol.4 Users of a public key need to
be confident that the associated private key is owned by the correct remote subject
(person or system) with which an encryption or digital signature mechanism will be
used. This confidence is obtained through the use of public key certificates, which
are data structures that bind public key values to subjects. The binding is asserted
by having a trusted CA digitally sign each certificate. The CA may base this asser-
tion upon technical means (this is also known as proof of possession through a chal-
lenge–response protocol), presentation of the private key, or on an assertion by the
subject. A certificate has a limited valid lifetime that is indicated in its signed con-
tents. Because a certificate’s signature and timeliness can be independently checked
by a client, certificates can be distributed via untrusted communications and server
systems, and the certificates can be cached in unsecured storage in certificate-using
systems.

208 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

User

Single sign-on via “grid-id”
& generation of proxy credential

Or: retrieval of proxy credential
from online repository

User Proxy
Proxy

credential

DittoAuthorize
Map to local id
Create process
Generate credentials

Remote process
creation requests*

Site B
(Unix)

GSI-enabled
GRAM server

Computer

Process
Local id

Restricted
proxy

Communication*

Remote file
access request*

Site A
(Kerberos)

Computer

Process
Local id

Restricted
proxy

Kerberos
ticket

GSI-enabled
GRAM server

*With mutual authentication Authorize
Map to local id
Access file

Site C
(Kerberos)

Storage
system

GSI-enabled
FTP server

Figure 6.2 GSI in action “Create processes at A and B that communicate and access files at
C.” Copyright © 2002 University of Chicago and The University of Southern California. All
Rights Reserved.

3Other public key-based authentication protocols can also be used with X.509 Proxy Certificates.
4These observations on X.509 in the rest of this subsection are based on [42].

c06.qxd 8/24/2004 10:18 AM Page 208

TEAM LinG - Live, Informative, Non-cost and Genuine!

ITU-T X.509 (formerly CCITT X.509) or ISO/IEC/ITU 9594-8, which was first
published in 1988 as part of the X.500 Directory set of recommendations, defines a
standard certificate format. The certificate format in the 1988 standard is called the
Version 1 (v1) format. When X.500 was revised in 1993, two more fields were
added, resulting in the Version 2 (v2) format (these two fields may be used to sup-
port directory access control). The Internet Privacy Enhanced Mail (PEM) RFCs,
published in 1993, include specifications for a public key infrastructure based on
X.509 v1 certificates. The experience gained in attempts to deploy RFC 1422 made
it clear that the v1 and v2 certificate formats are deficient in several respects. Most
importantly, more fields were needed to carry information that PEM design and im-
plementation experience has proven necessary. In response to these new require-
ments, ISO/IEC/ITU and ANSI X9 developed the X.509 Version 3 (v3) certificate
format. The v3 format extends the v2 format by adding provision for additional ex-
tension fields. Particular extension field types may be specified in standards or may
be defined and registered by any organization or community. In June 1996, stan-
dardization of the basic v3 format was completed. ISO/IEC/ITU and ANSI X9 have
also developed standard extensions for use in the v3 extensions field. These exten-
sions can convey such data as additional subject identification information, key at-
tribute information, policy information, and certification path constraints. However,
the ISO/IEC/ITU and ANSI X9 standard extensions are broad in their applicability
and in order to develop interoperable implementations of X.509 v3 systems for In-
ternet use it is necessary to specify a profile tailored for the Internet.

It is one goal of various RFCs to specify a profile for Internet WWW, electronic
mail, and IPsec applications. Environments with additional requirements may build
on this profile or may replace it. For example, the goal of the RFC 2459 specifica-
tion is to develop a profile to facilitate the use of X.509 certificates within Internet
applications for those communities wishing to make use of X.509 technology. Such
applications may include WWW, electronic mail, user authentication, and IPsec. In
order to relieve some of the obstacles to using X.509 certificates, one can define a
profile to promote the development of certificate management systems, develop-
ment of application tools, and interoperability determined by policy.

The primary goal of the TLS Protocol is to provide privacy and data integrity be-
tween two communicating applications [89]. The protocol is composed of two lay-
ers: the TLS Record Protocol and the TLS Handshake Protocol. At the lowest level,
layered on top of some reliable transport protocol (e.g., TCP), is the TLS Record
Protocol. The TLS Record Protocol provides connection security that has two basic
properties:

1. The connection is private. Symmetric cryptography is used for data encryp-
tion (e.g., DES, RC4, etc.) The keys for this symmetric encryption are gener-
ated uniquely for each connection and are based on a secret negotiated by an-
other protocol (such as the TLS Handshake Protocol). The TLS Record
Protocol can also be used without encryption.

2. The connection is reliable. Message transport includes a message integrity
check using a keyed MAC (message authentication code). Secure hash func-
tions (SHA, MD5, etc.) are used for MAC computations. The TLS Record

6.1 GENERIC IMPLEMENTATIONS: GLOBUS TOOLKIT 209

c06.qxd 8/24/2004 10:18 AM Page 209

TEAM LinG - Live, Informative, Non-cost and Genuine!

Protocol can operate without a MAC, but is generally only used in this mode
while another protocol is using the TLS Record Protocol as a transport for ne-
gotiating security parameters.

The TLS Record Protocol is used for encapsulation of various higher-level pro-
tocols. One such encapsulated protocol, the TLS Handshake Protocol, allows the
server and client to authenticate each other and to negotiate an encryption algorithm
and cryptographic keys before the application protocol transmits or receives its first
byte of data. The TLS Handshake Protocol provides connection security that has
three basic properties:

1. The peer’s identity can be authenticated using asymmetric, or public key,
cryptography (e.g., RSA, DSS, etc.). This authentication can be made option-
al, but is generally required for at least one of the peers.

2. The negotiation of a shared secret is secure: the negotiated secret is unavail-
able to eavesdroppers, and for any authenticated connection the secret cannot
be obtained, even by an attacker who can place himself in the middle of the
connection.

3. The negotiation is reliable: no attacker can modify the negotiation communi-
cation without being detected by the parties to the communication. One ad-
vantage of TLS is that it is application protocol independent. Higher-level
protocols can layer on top of the TLS Protocol transparently. The TLS stan-
dard, however, does not specify how protocols add security with TLS. The
decisions on how to initiate TLS handshaking and how to interpret the au-
thentication certificates exchanged are left up to the judgment of the design-
ers and implementors of protocols that run on top of TLS.

The Generic Security Service Application Program Interface (GSS-API), Ver-
sion 2, as defined in RFC 2743 (which supersedes RFC 2078), provides security
services to callers in a generic fashion, supportable with a range of underlying
mechanisms and technologies, and, hence, allowing source-level portability of ap-
plications to different environments. This specification defines GSS-API services
and primitives at a level independent of underlying mechanism and programming
language environment.

RFC 2743 is to be complemented by other, related specifications: (i) documents
defining specific parameter bindings for particular language environments, and (ii)
documents defining token formats, protocols, and procedures to be implemented in
order to realize GSS-API services atop particular security mechanisms.

A typical GSS-API caller is itself a communications protocol, calling on GSS-
API in order to protect its communications with authentication, integrity, and/or
confidentiality security services. A GSS-API caller accepts tokens provided to it by
its local GSS-API implementation and transfers the tokens to a peer on a remote
system. That peer passes the received tokens to its local GSS-API implementation
for processing. The security services available through GSS-API are implementable
(and have been implemented) over a range of underlying mechanisms based on se-

210 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 210

TEAM LinG - Live, Informative, Non-cost and Genuine!

cret-key and public-key cryptographic technologies. The GSS-API separates the
operations of initializing a security context between peers, achieving peer entity au-
thentication from the operations of providing per-message data origin authentica-
tion and data integrity protection for messages subsequently transferred in conjunc-
tion with that context [70]. Refer to RFC 2743 for additional information on
GSS-API.

The primary motivations behind the GSI are [129]:

� The need for secure (authenticated and, perhaps, confidential) communication
between elements of a computational grid

� The need to support security across organizational boundaries, thus making a
centrally managed security system impractical

� The need to support “single sign-on” for users of the grid, including delega-
tion of credentials for computations that involve multiple resources and/or
sites

GSI and its public-key-based mechanism provides single sign-on authentication,
communication protection, and some initial support for restricted delegation [114,
125]:

� Single sign-on allows a user to authenticate just once, and thus create a proxy
credential that a program can use to authenticate with any remote service on
the user’s behalf. Once a user is authenticated, a proxy certificate is created
and used when performing actions within the grid.

� Delegation allows for the creation and communication to a remote service of
delegated proxy credentials that the remote service can use to act on the
user’s behalf, possibly with various restrictions. This capability is important
for nested operations. For example, in a specific implementation one may use
the GSI sign-in to grant access to the portal, or one may have one’s own secu-
rity for the portal. The portal, in turn, is responsible for signing in to the grid,
either using the user’s credentials or using a generic set of credentials for au-
thorized users.

A remote delegation protocol of X.509 Proxy Certificates is layered onto TLS.
GGF drafts define the delegation protocol for remote creation of an X.509 Proxy
Certificate and GSS-API extensions that allow this API to be used effectively for
Grid Computing environments (TLS and GSS-API extensions were discussed
above). Restricted delegation, a capability of the X.509 Proxy Certificate Profile, is
important in that it allows one entity to delegate a subset of its total privileges to an-
other entity; these kinds of restrictions are needed to reduce the adverse effects of
either intentional or accidental misuse of the delegated credential [114].

A central concept in GSI authentication is the certificate. Every user and service
on the grid is identified via a certificate that contains information vital to identify-
ing and authenticating the user or service. A GSI certificate includes four primary
pieces of information [65]:

6.1 GENERIC IMPLEMENTATIONS: GLOBUS TOOLKIT 211

c06.qxd 8/24/2004 10:18 AM Page 211

TEAM LinG - Live, Informative, Non-cost and Genuine!

1. A subject name, which identifies the person or object that the certificate rep-
resents

2. The public key belonging to the subject

3. The identity of a CA (certificate authority) that has signed the certificate to
certify that the public key and the identity both belong to the subject

4. The digital signature of the named CA

Note that a third party (a CA) is used to certify the link between the public key
and the subject in the certificate. In order to trust the certificate and its contents, the
CA’s certificate must be trusted. The link between the CA and its certificate must
be established via some noncryptographic means, or else the system is not trustwor-
thy. GSI certificates are encoded in the X.509 certificate format, a standard data for-
mat for certificates established by the IETF. These certificates can be shared with
other public key-based software, including commercial web browsers (e.g., Internet
Explorer).

GRAM. The GRAM protocol and client API allow programs to be started and
managed on remote resources, even in the face of resource heterogeneity. GRAM
provides for the reliable, secure, remote creation and management of arbitrary com-
putations, what are known as transient service instances. GRAM employs GSI
mechanisms for authentication, authorization, and credential delegation to remote
computations. RSL is used to communicate requirements.5 A layered architecture
allows application-specific resource brokers and coallocators to be defined in terms
of GRAM services (integrated with Condor, MPICH-G2, and so on). Figure 6.3 de-
picts the resource management architecture [44]. A two-phase-commit protocol is
used for reliable invocation, based on techniques used in the Condor system. Ser-
vice creation is handled by a small, trusted “gatekeeper” process (a factory), while a
GRAM reporter monitors and publishes information about the identity and state of
local computations (registry) [114].

MDS-2 provides a framework (known as a discovery interface) for discovering
and accessing system configuration and status information. Status information in-
cludes, but is not limited to, server configuration, network status, and the locations
of replicated datasets. MDS-2 utilizes a soft-state protocol, the Grid Notification
Protocol, for lifetime management of published information [114].

GRIP. The Grid Information Protocol (GRIP) supports discovery and enquiry. A
user, program, or directory use GRIP to obtain information from an information

212 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

5The Globus Resource Specification Language (RSL) provides a common interchange language to de-
scribe resources. The various components of the Globus Resource Management architecture manipulate
RSL strings to perform their management functions in cooperation with the other components in the sys-
tem. The RSL provides the skeletal syntax used to compose complicated resource descriptions, and the
various resource management components introduce specific <attribute, value> pairings into this com-
mon structure. Each attribute in a resource description serves as a parameter to control the behavior of
one or more components in the resource management system (http://www.globus.org/gram/rsl_spec1.
html).

c06.qxd 8/24/2004 10:18 AM Page 212

TEAM LinG - Live, Informative, Non-cost and Genuine!

provider about the resources on which the provider has information.6 Discovery is
supported via a search capability. Given a set of “discovered resources,” enquiry
can then be used to refine the set of resources upon which a broker may schedule.
Enquiry corresponds to a direct lookup of information: the enquiry supplies the re-
source name and the provider returns the resource description. LDAP is used in the
GRIP context [14].

GridFTP. Data access and transfer is accomplished with GridFTP. GridFTP pro-
vides reliable, recoverable data transfers. GridFTP is an extended version of FTP,
developed specifically for grid data access and transfer. The protocol is secure, effi-
cient, reliable, flexible, extensible, parallel, and concurrent. It supports third-party
data transfers and partial file transfers. It handles parallelism and striping. (We pro-
vide some additional details on GridFTP later in the chapter.)

6.1.3 Globus Toolkit Version 3

Globus Toolkit Version 3 is the reference implementation for OGSA (although the
programming model from Version 2.2 was expected to change as part of the transi-

6.1 GENERIC IMPLEMENTATIONS: GLOBUS TOOLKIT 213

Figure 6.3 Resource management architecture. Copyright © 2002 University of Chicago
and The University of Southern California. All Rights Reserved.

6An information provider is defined as a service that supports GRIP and GRid Registration Protocol
(GRRP), to access information about entities and to notify aggregate directory services of the availabili-
ty of this information, respectively. An information provider can be in possession of information on
more than one entity. An aggregate directory is a service that uses GRRP and GRIP to obtain informa-
tion (from a set of information providers) about a set of entities, and then replies to queries concerning
those entities. These two protocols are the fundamental building blocks for the Globus Toolkit environ-
ment: for an entity to be known to VO participants, it must either speak these protocols directly (hence,
being its own information provider) or interact with some other entity that acts as an information
provider on its behalf [14].

c06.qxd 8/24/2004 10:18 AM Page 213

TEAM LinG - Live, Informative, Non-cost and Genuine!

tion, most of the actual APIs that are available with Globus Toolkit V2.2 will re-
main the same); see Figure 6.4 [32]. Globus Toolkit Version 3 provides a common
and open standards-based set of ways to access various grid services using stan-
dards such as SOAP, WSDL, WSIL, UDDI, and XML, and a standard way to find,
identify, and utilize new grid services as they become available [125]. Globus
Toolkit 3.0 implements OGSI, and, in addition, provides some OGSI-compliant
grid services that correspond to GT2 behaviors. It provides a set of grid services for
security, resource management, information access, and data management. As not-
ed, all major capabilities offered in GT2 (data transfer, replica management, job
submission and control, secure communication, and access to system information)
are offered in GT3; this observation is of interest to people who have already made
major investments in GT2. GT3 implements standards that are being adopted by the
e-science and e-business communities that are key to support intergrid interoper-
ability.

There is an understanding in the grid computing industry that successful deploy-
ment of large-scale interoperable OGSA implementations would benefit from the
definition of a small number of standard protocol bindings for grid service discov-
ery and invocation [114]. Just as the ubiquitous deployment of IP allows any two
entities to communicate, so ubiquitous deployment of such “intergrid” protocols
will allow any two services to communicate. Hence, clients (grid users) can be rela-
tively simple, since they need to know about only one set of protocols. Whether or
not such intergrid protocols can be defined and gain widespread acceptance remains
to be seen.

The Web services framework can be instantiated on a variety of different proto-
col bindings.7 One example is SOAP (using HTTP) along with TLS for security;

214 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

Figure 6.4 GT3 architecture.

GT3
Data

Services

GT3 Base Services

GT3 Core

File Transfer Service

Container Registry

Resource Management

Virtual Organization
Registry

Grid Service
Factory Notification

Registry Mapper

Data Management

Replica Management

Workload Management

DiagnosticsOther Grid
Services

7The rest of this section is based on [114]

c06.qxd 8/24/2004 10:18 AM Page 214

TEAM LinG - Live, Informative, Non-cost and Genuine!

other bindings can and have been defined. In selecting network protocol bindings8

within an OGSA context, there are four primary requirements:

1. Reliable transport. The grid services abstraction typically requires support
for reliable service invocation. One way to address this requirement is to in-
corporate appropriate support within the network protocol binding.

2. Authentication and delegation. The grid services abstraction typically re-
quires support for communication of proxy credentials to remote sites. One
way to address this requirement is to incorporate appropriate support within
the network protocol binding, as, for example, in TLS extended with proxy
credential support.

3. Ubiquity. The grid goal of enabling the dynamic formation of VOs from dis-
tributed resources means that, in principle, it must be possible for any arbi-
trary pair of services to interact.

4. Grid service reference (GSR) format. Grid service reference can take a bind-
ing-specific format. One possible GSR format that appears headed for com-
mercial acceptance is a WSDL document.

The abstractions and services made available through OGSI/OGSA provide
building blocks that can be used to implement a variety of higher-level grid ser-
vices. Stakeholders, including the GGF, are working closely with the community to
define and implement a wide variety of such services that will, collectively, address
the diverse requirements of e-business and e-science applications. These higher-
level services may include the following:

� Distributed data management services, supporting access to and manipula-
tion of distributed data, whether in data bases or files. Services of interest in-
clude data base access, data translation, replica management, replica location,
and transactions.

� Workflow services, supporting the coordinated execution of multiple applica-
tion tasks on multiple distributed grid resources.

� Auditing services, supporting the recording of usage data, secure storage of
that data, analysis of that data for purposes of fraud and intrusion detection,
and so forth.

� Instrumentation and monitoring services, supporting the discovery of “sen-
sors” in a distributed environment, the collection and analysis of information
from these sensors, the generation of alerts when unusual conditions are de-
tected, and so forth.

� Problem determination services for distributed computing, including dump,
trace, and log mechanisms with event tagging and correlation capabilities.

� Security protocol mapping services, enabling distributed security protocols to

6.1 GENERIC IMPLEMENTATIONS: GLOBUS TOOLKIT 215

8A binding is the process of associating protocol (or data format) information with an abstract entity such
as a message, an operation, or a portType (also see Glossary).

c06.qxd 8/24/2004 10:18 AM Page 215

TEAM LinG - Live, Informative, Non-cost and Genuine!

be transparently mapped onto native platform security services for participa-
tion by platform resource managers not implemented to support the distrib-
uted security authentication and access control mechanism.

It appears straightforward to reengineer the resource management, data transfer,
and information service protocols used within the current Globus Toolkit to build
GT3, based on these common mechanisms, as depicted in Figure 6.5.

6.1.4 Applications

The Globus Toolkit has become central to hundreds of science and engineering pro-
jects and the toolkit has been adopted for commercial offerings by major informa-
tion technology companies. The combination of open source and open standards af-
forded by Globus Toolkit is driving increased adoption by users seeking to share
resources seamlessly across distributed organizations [124]. A number of individu-
als, organizations, and projects have developed higher-level services, application
frameworks, and scientific/engineering applications using the Globus Toolkit. For
example, the Condor-G software provides a framework for high-throughput com-
puting (e.g., parameter studies) using the Globus Toolkit for inter-organizational re-
source management, data movement, and security [33]. Globus Toolkit users fall
into three principal classes: application framework developers, application develop-
ers, and grid builders [129]:

� Application framework developers are using Globus services to build soft-
ware frameworks that facilitate the development and execution of specific
types of applications. Examples include the CAVERNsoft framework for
tele-immersive applications (University of Illinois at Chicago Electronic Vi-
sualization Laboratory), Condor-G for high-throughput computations and pa-
rameter studies (University of Wisconsin), the HotPage Grid portal frame-
work (San Diego Supercomputer Center), the Linear Systems Analyzer
(Indiana University), the MPICH-G implementation of the MPI Message
Passing Interface (Northern Illinois University and Argonne National Labora-
tory), Nimrod-G for parameter studies (Monash University), the Parallel Ap-
plication WorkSpace (PAWS: Los Alamos National Lab), and WebFlow
(Syracuse University).

216 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

Figure 6.5 Globus Toolkit migration path. Left, some current Globus Toolkit protocols.
Right, a potential refactoring to exploit OGSA mechanisms.

IP

SOAP+TLS/GSI

Grid Services Abstraction

GRAM GridFTP MDS

IP

TLS/GSI

GRAM GridFTP MDS

Other Transports

HTTP FTP LDAP

c06.qxd 8/24/2004 10:18 AM Page 216

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Application developers use Globus services to construct innovative grid-based
applications, either directly or via grid-enabled tools. Application classes in-
clude remote supercomputing (e.g., astrophysics at Max Planck Institute,
Washington University), tele-immersion (e.g., NICE at EVL/University of
Illinois at Chicago), distributed supercomputing (e.g., OVERFLOW at NASA
Ames, SF-Express at Caltech), and supercomputer-enhanced scientific instru-
ments (e.g., Advanced Photon Source, Argonne National Laboratory).

� Grid builders are using Globus services to create production grid computing
environments. Major grid construction projects include NASA’s Information
Power Grid, two NSF grid projects (NCSA Alliance’s Virtual Machine Room
and NPACI), the European DataGrid Project, and the ASCI Distributed Re-
source Management Project.

6.2 GRID COMPUTING ENVIRONMENTS

6.2.1 Introduction

A Grid computing environment (GCE) is a set of tools and technologies that allow
users “easy” access to grid resources and applications. Often, a GCE appears to the
user as a Web portal that provides the user interface to a multitier grid application
development stack. A GCE may also be a grid shell that allows a user access to and
control over grid resources in the same way a conventional shell allows the user ac-
cess to the file system and process space of a regular operating system. GCEs
roughly describe the “user side” of a computing system; this is illustrated in Figure
6.6, where there is an overlapping division between GCE’s and what is called a “ba-
sic” grid in the figure. The latter would include access to the resources and manage-
ment of and interaction between them, security, and other such capabilities. The
OGSA describes these “basic” capabilities and the Globus Project is the best-
known “basic” software project. GCEs fulfill (at least) two functions [31]: (i) pro-
gramming the user side of the grid, and (ii) controlling user interaction—rendering
any output and allowing user input in some (Web) page. This includes aggregation
of multiple data sources in a single portal page.

As we saw earlier, the Globus Toolkit is the most widely used grid middleware
system, but it does not by itself provide “rich” support for building grid computing
environments. To support basic capabilities, Java, CORBA, Python, and Perl com-
modity grid interfaces to the Globus Toolkit have been developed. Commodity grid
toolkits (CoG kits), alluded to in Section 6.1.1, provide a mapping between comput-
ing languages, frameworks, environments, and grid services and fabric; a CoG Kit
defines and implements a set of general components that map grid functionality into
a commodity environment/framework [132]. The Grid Portal Development Toolkit
(GPDK) is a suite of JavaBeans suitable for Java-based environments. Combined,
the COG Kits and GPDK constitute the most widely used frameworks, at present,
for building GCEs that use the Globus Toolkit environment for basic grid services.
In turn, taken as an aggregated “basket” of capabilities, grid services, languages,
frameworks, and GCEs create an effective development tool for developing grid-
enhanced applications.

6.2 GRID COMPUTING ENVIRONMENTS 217

c06.qxd 8/24/2004 10:18 AM Page 217

TEAM LinG - Live, Informative, Non-cost and Genuine!

218

F
ig

ur
e

6.
6

G
ri

d
co

m
pu

ti
ng

 e
nv

ir
on

m
en

ts
.

D
at

ab
as

e
S

er
vi

ce
C

om
p

ut
in

g
S

er
vi

ce
C

om
p

ut
in

g
S

er
vi

ce

In
te

rf
ac

e:
W

S
D

L
D

ef
in

es
ho

w
 t

o
us

e
th

e
se

rv
ic

e

Tr
an

sp
or

t:
S

D
A

P
C

on
ne

ct
in

g
w

ith
ap

p
lic

at
io

ns
&

 d
at

a

D
ire

ct
or

y:
U

D
D

I
“Y

el
lo

w
 p

ag
es

”
se

rv
ic

e
lo

ca
tio

n

P
or

ta
l

H
ig

h-
sp

ee
d

ub
iq

ui
to

us
ne

tw
or

k

Grid Computing
Environments

Basic Grid

S
er

vi
ce

B
ro

ke
r

S
er

vi
ce

R
eq

ue
st

er
(C

lie
nt

)

G
rid

 F
ab

ric
(R

es
ou

rc
es

)

G
rid

 S
er

vi
ce

s
(M

id
d

le
w

ar
e)

P
ro

to
co

ls
A

ut
he

nt
ic

at
io

n,
P

ol
ic

y,
R

es
ou

rc
e

M
an

ag
.

D
is

co
ve

ry

A
p

p
lic

at
io

n
To

ol
ki

ts
D

at
a

G
rid

C
om

p
ut

in
g

G
rid

P
or

ta
l

A
p

p
lic

at
io

ns
B

us
in

es
s

S
ci

en
tif

ic

S
er

vi
ce

P
ro

vi
d

er
s

(S
er

ve
rs

)

D
at

ab
as

e
D

at
ab

as
e

D
at

ab
as

e

D
at

ab
as

e

M
as

si
ve

P
ar

al
le

l
P

ro
ce

ss
in

g/
C

lu
st

er

c06.qxd 8/24/2004 10:18 AM Page 218

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.2.2 Portal Services

Portal services control and render the user interface/interaction.9 Figure 6.7 shows a
key architectural idea emerging in this area. The assumption is made that all mater-
ial presented to the user originates from a Web service that is called here a content
provider. This content could come from a simulation, data repository, or stream
from an instrument. Each such Web service has resource or service facing ports
(RFIO in Figure 6.7), which are those used to communicate with other services.
Here, one is more concerned with the user-facing ports that produce content for the
user and accept input from the client devices. These user-facing ports use an exten-
sion of WSDL that is being standardized by the OASIS organization. This is called
Web Services for Remote Portals (WSRP). It implements the so-called portlet inter-
face that is being standardized in Java as part of a JCP (Java community process).

Most user interfaces need information from more than one content provider. For
example, a computing portal could feature separate panels for job submittal, job sta-
tus, visualization, and other services. One could integrate this in a custom applica-
tion-specific Web service but it is attractive to provide a generic aggregation ser-
vice. This allows the user and/or administrator to choose which content providers to
display and what portion of the display “real estate” they will occupy. In this model,
each content provider defines its own “user-facing document fragment” that is inte-
grated by a portal. Such aggregating portals are provided by the major computer
vendors. Portlets represent a component model for user interfaces in the same way
that Web services represent a middleware component model. Using this approach
has obvious advantages of reusability and modularity. One then has an elegant view
with workflow-integrating components (Web services representing nuggets) in the
middle tier and aggregating portals integrating them for the user interface.

OGSA/OGSI support GCE Portals. As noted earlier in the book, OGSA is a
framework that addresses architectural issues related to the requirements and inter-
relationships of Grid services. OGSA consists of a set of basic grid Web services
defined in terms of the OGSI specification (OGSI addresses detailed specifications
of the interfaces that a service must implement in order to fit into the OGSA frame-
work). As noted in Chapter 4, an OGSI-compliant grid service is a subclass of Web
services whose ports all inherit from a standard grid service port (so a grid service is
a Web service that conforms to a set of conventions that provide for controlled,
fault-resilient, and secure management of stateful services). Using this port, there
are standard ways that a remote portal can interrogate the service to discover such
things as the other port types the service implements, what operations can be made
on those ports, and the public internal state of the service. OGSI services can also
implement a simple event subscription and notification mechanism in a standard-
ized manner. OGSI also provides a mechanism for services to be group together
into service collections.

The simple and standard nature of OGSI makes it possible for us to build on-the-
fly compilers to generate portal portlet interfaces to any OGSI-compliant grid ser-

6.2 GRID COMPUTING ENVIRONMENTS 219

9This section is based in its entirety on [31].

c06.qxd 8/24/2004 10:18 AM Page 219

TEAM LinG - Live, Informative, Non-cost and Genuine!

vice. The basic services defined by OGSA include registries, directories and name-
space binding, security, resource descriptions and resource services, reservation and
scheduling, messaging and queuing, logging, accounting, data services (caches and
replica managers), transaction services, policy management services, and work
flow management and administration services. Each of these core services is ren-
dered as a grid Web service. Applications that are designed for an OGSA-compliant
grid can assume that these services are available and, with the proper authorization,
that they can be used.

6.2.3 Database Access

This section opened by noting the need for a set of tools and technologies that allow
users “easy” access to grid resources and applications. The same could be said with
regard to data, specifically data bases: the goal is to ease application development
through the provision of comparable components (services) [33]. Research and de-
velopment activities relating to the grid have generally focused on applications in
which data is stored in files; however, in many scientific and commercial domains,
data base management systems have a central role in data storage, access, organiza-
tion, authorization, and so on, for a large number of applications. The Data Access
and Integration Services (DAIS-WG) working group of the GGF is studying the is-
sue; the group seeks to promote standards for the development of grid database ser-
vices, focusing principally on providing consistent access to existing, autonomously
managed data bases (this is work in progress that should be tracked by IT planners).

6.3 BASIC GRID DEPLOYMENT AND MANAGEMENT ISSUES

In this section, we look at some basic deployment and management issues. This
section only scratches the surface of the topic at hand.

220 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

Figure 6.7 Portal providing aggregation service for document fragments produced by user-
facing ports of a content-providing Web service.

Other WS
User Facing
Ports

Portal
Aggregate

WS-User Facing
Fragments

Resource-facing
Ports

WSDL

Web Service

Content Provider

R
F
I

O

U
F
I

O

User-facing
Ports

Other WS

Render

c06.qxd 8/24/2004 10:18 AM Page 220

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.3.1 Product Categories

The earlier sections (e.g., Chapter 2 and also above) alluded to various products that
are available or are becoming available to support e-science and/or e-business ap-
plications. Naturally, companies looking to purchase products should ascertain that
these are open/standards compliant (as described in Chapters 4 and 5), are secure
(as discussed above), and are also easy to deploy and utilize (also as discussed
above). Grid products include the following categories:

� Grid middleware

� Grid performance monitoring and forecasting

� Grid portals

� Grid programming environments

� Grid schedulers

� Grid systems

� Grid testbeds and development systems

� P2P systems

Capabilities that need to be included in the products span some or all of these:

� Service management

� Service communication

� Policy management

� Middleware selection and deployment

� Applications retuning

� Service control

� SLAs

� Fault/accounting/performance management

� Security

The reality is that, currently, industrial-strength products are still being devel-
oped. Hence, the pragmatic recommendation at this time in the development of the
grid field is that organizations should begin by deploying small, limited grids first,
focusing on nonmission-critical applications. This allows the organization to learn
about grid behavior, peculiarities, challenges, installation idiosyncrasies, and man-
agement, before having to deal with more complicated and more extensive grid.
Clearly, a “local grid” will be less complex than an “intragrid,” which, in turn, is
less complex than an “intergrid.” Some of the deployment-related issues are cov-
ered in the sections that follow, at a very general level.

6.3.2 Business Grid Types

Figure 6.8 illustrates three kinds of business-oriented grid arrangements. The top
portion depicts a situation in which the organization has deployed a local grid and

6.3 BASIC GRID DEPLOYMENT AND MANAGEMENT ISSUES 221

c06.qxd 8/24/2004 10:18 AM Page 221

TEAM LinG - Live, Informative, Non-cost and Genuine!

222 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

Figure 6.8 Three possible business-oriented grid applications/environments.

Partners
&

Suppliers

Credit
Checking

Local Grid

SOAP/XML

SOAP/XML
Enterprise A
Local Grid

Partners
&

Suppliers
Shipping

Local Grid
(A) Business to Business

Grid Arrangement

Local Grid

SOAP/XML
SOAP/XML

SOAP/XML

Enterprise A
Local Grid

Local Grid

(B) Network-provided
Grid Arrangement

SOAP/XML

SOAP/XML
SOAP/XML

SOAP/XML

SOAP/XML

Grid 1

Grid 2

Grid 3

(C) Utility-style
Grid Arrangement

Enterprise A

Enterprise B

SOAP/XML

c06.qxd 8/24/2004 10:18 AM Page 222

TEAM LinG - Live, Informative, Non-cost and Genuine!

also has lined up partners and suppliers that either provide a business function or a
grid-based service (e.g., number crunching, storage, etc.). This kind of arrangement
can also be used in service outsourcing applications. The software needed by the
outsourcing customer to support the connectivity portion of this arrangement is a
connection adaptor handling the SOAP protocol (the number-crunching function
will of course require its own application-specific software).

The middle portion of Figure 6.8 shows a collaborative logical grid solution for
business process integration. In effect, the network-based grid is a business (similar
to the concept of an ASP) that can line up other businesses to provide certain services
to an enterprise (here, Enterprise A). One can refer to this logical grid as a “business
grid” in which every service can be deployed as a grid service; hence, each such ser-
vice can be accessed and used by other applications utilizing a standard OGSA/OGSI
protocol. In a business grid environment, the enterprise customer does not need to in-
stall complex software; instead, the enterprise customer can use a Web browser to
register with the business grid and subscribe to a specific business service (this is
similar to the situation in which an organization deals with an ASP). The business
grid connects to all the services “hosted” by the grid itself, or to service providers reg-
istered with the business grid. Application clients can utilize XML, SOAP over
HTTP, SMTP, FTP, MQ, and so on, to interact with the business grid. The business
grid also communicates with external legacy applications, Web services providers,
and so on. It takes care of interoperability for connecting to multiple parties using dif-
ferent transports, data formats, and business protocols by offering a membership
management service, data format translation service, business protocol translation
service, advanced discovery service, and business flow management service [71].

The bottom portion of Figure 6.8 depicts a pure utility environment in which
various enterprises can access grid resources (e.g., computing machine cycles) on a
pure commodity basis. In turn, the utility provider can use any number of “horizon-
tally based” grids, each of which may specialize to a given function.

As Figure 6.8 shows, grid service mechanisms can be employed to integrate dis-
tributed resources within internal commercial IT infrastructures as well as across
virtual multiorganizational boundaries. In either case, a collection of grid services
registered with appropriate discovery services can support functional capabilities
delivering QoS-based services spanning distributed resource pools. Applications
and middleware can utilize these services for distributed resource management
across heterogeneous platforms with complete local and remote transparency [114].

6.3.3 Deploying a Basic Computing Grid

An “entry-level” grid may be developed and deployed by a few programmers in rel-
atively little time. A certain fraction of applications can run with little or no modifi-
cation, simply by linking with a grid-enabled version of an appropriate program-
ming library. Even when appropriate high-level tools are not available, an
important feature of the Globus Toolkit is that grid-like capabilities can often be in-
corporated into an existing application incrementally, producing a series of increas-
ingly “grid-enabled” versions of the application [129]. More generally, applications

6.3 BASIC GRID DEPLOYMENT AND MANAGEMENT ISSUES 223

c06.qxd 8/24/2004 10:18 AM Page 223

TEAM LinG - Live, Informative, Non-cost and Genuine!

may need to be “retuned” and/or ported and/or modified to some degree. Also, the
scalability should be tested, as discussed earlier in this chapter. As the grid environ-
ment grows and gets larger, and as users become more dependent on it for mission-
critical work, a more cohesive approach is needed.

To create a grid infrastructure one can, for example, download the Globus
Toolkit and follow the instructions in the Globus Toolkit System Administrator’s
Guide. The documentation takes the planner through the process of building the
Globus Toolkit software, setting up a grid information service, setting up a CA or
using someone else’s CA, installing the Globus resource management tools on the
company’s (or department’s) servers, and installing Globus client tools and libraries
for users. Even after installing the Globus Toolkit’s grid services, each site within a
grid retains control over access to its resources. When Globus Toolkit services are
installed on a resource, the site administrator creates a Grid “mapfile” that contains
mappings from grid credentials to local account names. The only people who can
submit jobs to the organization’s resources are those whose grid credentials are
mapped to a valid local account. All job submissions are logged via syslog and an
optional gatekeeper log, so one can easily determine who has attempted to use one’s
system. To use resources on the grid but residing at other institutions, the organiza-
tion will need to have their grid credential added to the grid mapfile(s) at that site
and/or institution. The administrators at those sites will map the organization’s grid
credential to a local account so that the organization can use their resources. Ac-
quiring permission to use another site and requesting an entry in the site’s mapfile is
the responsibility of the organization [129].

Using the GT3 toolkit, or some generalized OGSA development toolkit, and/or,
some grid computing environment development utility, the deployment of a grid
service application involves the following main steps [71]:

1. Create a WSDL for the grid service definition

2. Generate Java proxies for the WSDL definition

3. Write server-side implementation code

4. Write client-side implementation code

5. Deploy and test grid service using the OGSA service browser

6.3.4 Deploying More Complex Computing Grids

The use of a grid is driven from a need for increased IT resources of some type
and/or to reduce run-the-engine costs by achieving increased utilization. Another
department, company, industry group, or even computing utility may have excess
capacity in the particular resource. This requires the establishment of a nontrivial
grid arrangement. As noted, complex grids will require a fair degree of effort. Tasks
include, but are not limited to the following (also see Table 6.3):

� Identifying/designating resources to be included

� Selecting middleware

224 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 224

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.3 BASIC GRID DEPLOYMENT AND MANAGEMENT ISSUES 225

Table 6.3 Key grid administrator tasks

Planning Solution architects and grid administrators need to understand the organi-
zation’s functional and nonfunctional requirements along with business
and systems needs, in order to be in a position to choose the appropriate
grid technology.

Technology A grid system suited to the needs at hand must be selected and procured.
selection This may possibly entail the release of an RFI/RFP.

Installation The selected grid system must be installed on a designated and appropri-
ately configured set of processors and/or resources.

Network Resources need to be interconnected using local, regional, or global net
planning works with sufficient bandwidth and appropriate latency.

Business Solution architects and grid administrators need to understand the failover
continuity scenarios for the grid system, to ensure that the grid can continue operating
planning even if some of the resources fail in some way. This includes processors,

data bases, and authentication information.

Configuration Grid software installed on donor machines or other resources may
need to be customized. This software may be provided to potential
donors on an FTP or equivalent server or be made available on physical
media.

Administrative Grid software may need to be configured; hence, grid administrator will
access require “root” access to these grid resources. In some grid systems, the ad-

ministrator will also need “root” access to the donor machines to install the
software on these devices.

Managing Grid administrator is required to manage the members of the grid
enrollment of (resources and users). Administrator is responsible for controlling the
donors and rights of the users in the grid.
users (ongoing)

Managing Identity of users and resources must be established and entered in the CA.
security The user and the user’s certificate credentials must be added to the sub-

scriber list. The CA (external or internal) is a critical element of the grid.
CA responsibilities include: positively identify entities requesting certifi-
cates; issuing, removing, and archiving certificates; protecting the CA
server; and logging activity.

Resource Administrator is expected to manage the resources of the grid; e.g., setting
management permissions for users, tracking resource usage, implementing a corre-

sponding accounting or billing system. Job schedulers typically have pro-
visions for enforcing priorities and policies. It is the responsibility of the
administrator to configure the schedulers to meet the goals of the overall
organization.

c06.qxd 8/24/2004 10:18 AM Page 225

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Selecting middleware management tools/procedures

� Undertaking applications retuning, if needed

� Installing, testing, tuning, and production-line-releasing the grid software and
the application(s)

� Establishing service control

� Establishing security control tools/procedures

� Establishing service management and SLA management tools/procedures

� Establishing fault/accounting/performance management techniques

� Establishing appropriate networking infrastructure

One of the first considerations is the hardware needed and/or available. An orga-
nization will need to decide if the grid is a “local grid,” an “intragrid,” or an “Inte-
grid,” more or less as implied in Figure 6.8 and Figures 1.1, 1.2, and 1.3 in Chapter
1. For business applications, the “local grid” and the “intragrid” are probably more
likely, but a utility-based arrangement has a flavor of an “intergrid.” “Local grids”
are generally connected via a LAN or SAN, whereas “intragrids” are generally con-
nected with a WAN intranet. (“Intergrids” often use the Internet or some other insti-
tutional network arrangement.) Note that the LANs just mentioned are typically in
the data center and dedicated to the cluster-support function; they are not user fac-
ing or for carrying user traffic.

Next, an organization may want to add additional hardware to augment the capa-
bilities of the grid. It is important to understand the applications to be used on the
grid because their characteristics can affect the decisions of how to best choose and
configure the hardware and its data connectivity [147]. Security needs to be proper-
ly planned for, as we have already stressed in this chapter and discuss further Sec-
tion 6.4.

In regard to installing grid software, we have already noted that the administrator
first installs the middleware, libraries, and so on, on the target resources (servers).
At this stage, users install the provided grid software on their own machines (the
user may optionally enroll his or her machine as a donor on the grid, and/or the
times that the machine is usable by the grid, and other policy-related constraints).
The grid user software may be automatically preconfigured by the grid manage-
ment system to know the communication address of the management nodes in the
grid and user or machine identification information; in less automated grid installa-
tions, the user may be asked to identify the grid’s management node and possibly
other configuration information [147]. After the installation procedure is complet-
ed, users are “enrolled” as legitimate grid users via the security apparatus (authenti-
cation via a CA).

6.3.5 Grid Networking Infrastucture Required for Deployment

In the bullet list provided in the previous subsection, we noted that the organization
also needs to establish an appropriate networking infrastructure in order to deploy a
grid. Networking can be perceived at two levels: lower layers, namely, the actual

226 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 226

TEAM LinG - Live, Informative, Non-cost and Genuine!

networks, links, transmission facilities, and so on; and at the upper layers, namely,
the communications services such as file transfer, directory, messaging, and so on.
Although the lower layers typically entail actual harware systems (e.g., routers,
switches, LANs, SANs), the upper layers are typically implemented via some sort
of end-system software/client. The lower layers of a grid networking system will be
addressed in Chapters 8, 9, and 10. In the suctions that follow, we look at a particu-
lar upper layer of interest, namely, file transfer (GridFTP), as well as some other re-
lated work.

Communication-Related Standardization Work Underway. This subsec-
tion looks at some of the press-time initiatives related to communications and net-
working. This entire subsection is based on GGF sources [33].

GridFTP (GridFTP-WG). The GridFTP protocol is discussed in more detail in the
section that follows. Here we examine some extension work under way. At press
time, the GridFTP-WG was focusing on improvements to the FTP and GridFTP
v1.0 protocols with the goal of producing bulk file transfer protocol suitable for grid
applications. The new protocol should be backward compatible with RFC 959 FTP
as much as possible, with new features added as (negotiable) extensions. Some de-
sired extensions that are to be included in the future GridFTP v2.0 include:

� Parallel transfers

� GSI authentication

� Striped transfers

Additional information on GridFTP is provided below.

IPv6 (IPv6-WG). IPv6 is now emerging as a significant factor in operational net-
works, and continued scaling up of the Internet (and thus of grids) will require the
additional address space and management features of IPv6. It is therefore important
that all GGF specifications work as well (or better) with IPv6 as with IPv4. The
goal of the IPv6-WG working group is to identify any GGF specifications that do
not meet this requirement, to provide appropriate guidelines for future specifica-
tions, and to communicate any issues discovered with IPv6 to the IETF, the Java
community, and so on. The scope is IP version dependencies in the output of all
working groups in all GGF areas. Any specification that involves the handling of
network I/O or IP addresses, or the processing or display of URLs, is likely to be af-
fected. Some of the possible deliverables are:

1. IP version dependencies in GGF specifications. Identification of each GGF
specification (approved or public draft) that contains dependencies on IPv4
(principally address format and length). It is intended to be used as a checklist
for planning the necessary document revisions by the WGs concerned.

2. Issues in IPv6 specifications or support. If the work on the above two deliver-
ables identifies any issues in the IETF specifications for IPv6, or in IPv6 sup-

6.3 BASIC GRID DEPLOYMENT AND MANAGEMENT ISSUES 227

c06.qxd 8/24/2004 10:18 AM Page 227

TEAM LinG - Live, Informative, Non-cost and Genuine!

port environments such as Java, additional deliverables describing these is-
sues will be created as informational liaison documents to be sent to the
IETF, the Java community, and so on.

Data Transport (DataTransport—Research Group). The goal of this group is to
provide a forum where parties interested in the secure, robust, high-speed, wide-
area transport of data and related technologies can discuss and coordinate issues
and develop standards to ensure interoperability of implementations.

Grid High-Performance Networking (GHPN—Research Group). The Grid
High-Performance Networking Research Group focuses on the relationship be-
tween network research and grid application and infrastructure development. The
objective of GHPN-RG is to bridge the gap between the networking and grid re-
search communities. It accomplishes its goal by serving as a forum for information
exchange on advances and requirements in both fields, as well as by providing a fo-
cal point for liaison activities between the GGF and the various networking stan-
dards bodies.

GridFTP. This subsection discusses the GridFTP protocol [2]. This protocol
builds on RFC 959 (the FTP RFC), RFC 2228 “FTP Security Extensions,” RFC
2389 “Feature Negotiation Mechanism for the File Transfer Protocol,” and the
IETF draft draft-ietf-ftpext-mlst-16 “FTP Extensions,” that are incorporated in
GridFTP by reference.

GridFTP is an application-layer protocol in the parlance of the Open System In-
terconnection Reference Model. Chapters 8–10 will focus on the lowest three layers
of the protocol stack: the physical layer, the data link layer, and the network layer.

In grid environments, access to distributed data is typically as important as ac-
cess to distributed computational resources. Distributed scientific and engineering
applications require:

� Transfers of large amounts of data (terabytes or petabytes) between storage
systems

� Access to large amounts of data (gigabytes or terabytes) by many geographi-
cally distributed applications and users for analysis, visualization, and so on.

Unfortunately, the lack of standard protocols for transfer and access of data in
the grid has led to a fragmented grid storage community. Users who wish to access
different storage systems are forced to use multiple protocols and/or APIs, and it is
difficult to efficiently transfer data between these different storage systems.

To addrss these issues, a common data transfer and access protocol called
GridFTP that provides secure, efficient data movement in grid environments has
been developed. This protocol, which extends the standard FTP protocol, provides a
superset of the features offered by the various grid storage systems currently in use.
GGF chose the FTP protocol because it is the most commonly used protocol for
data transfer on the Internet, and of the existing candidates from which to start it

228 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 228

TEAM LinG - Live, Informative, Non-cost and Genuine!

comes closest to meeting the grid’s needs. The GridFTP protocol includes the fol-
lowing features:

� GSI and Kerberos support

� Third-party control of data transfer

� Parallel data transfer (multiple TCP steams between two network endpoints)

� Striped data transfer (one or more TCP streams between m network endpoints
on the sending side and n network endpoints on the receiving side)

� Partial file transfer

� Manual/automatic control of TCP buffer/window sizes

� Support for reliable and restartable data transfer

� Integrated instrumentation

Motivation. There are already a number of storage systems in use by the grid com-
munity. These storage systems have been created in response to specific needs for
storing and accessing large data sets. They each focus on a distinct set of require-
ments and provide distinct services to their clients. For example, some storage sys-
tems (DPSS and HPSS) focus on high-performance access to data and utilize paral-
lel data transfer streams and/or striping across multiple servers to improve
performance. Other systems (DFS) focus on supporting high-volume usage and uti-
lize data set replication and local caching to divide and balance server load. The
SRB system connects heterogeneous data collections and provides a uniform client
interface to these repositories, and also provides metadata for use in identifying and
locating data within the storage system. Still other systems (HDF5) focus on the
structure of the data, and provide client support for accessing structured data from a
variety of underlying storage systems.

Unfortunately, most of these storage systems utilize incompatible and often un-
published protocols for accessing data, and therefore require the use of their own
client libraries to access data. The use of multiple incompatible protocols and client
libraries for accessing storage effectively partitions the data sets available on the
grid. Applications that require access to data stored in different storage systems
must either choose to only use a subset of storage systems, or must use multiple
methods to retrieve data from the various storage systems.

One approach to breaking down partitions created by these mutually incompati-
ble storage system protocols is to build a layered client or gateway that can present
the user with one interface, but that translates requests into the various storage sys-
tem protocols and/or client library calls. This approach is attractive to existing stor-
age system providers because it does not require them to adopt support for a new
protocol. But it also has significant disadvantages, including:

� Performance. Costly translations are often required between the layered client
and storage-system-specific client libraries and protocols. In addition, it can
be challenging to efficiently transfer a data set from one storage system to an-
other.

6.3 BASIC GRID DEPLOYMENT AND MANAGEMENT ISSUES 229

c06.qxd 8/24/2004 10:18 AM Page 229

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Complexity. Building and maintaining a client or gateway that supports nu-
merous storage systems entails considerable work. In addition, staying up to
date as each storage system independently evolves is very difficult. This is
further exacerbated by the need to provide support for multiple client lan-
guages, such as C/C++, Java, Perl, Python, shells, and so on.

It would be mutually advantageous to both storage providers and users to have a
common level of interoperability between all of these disparate systems: a common,
but extensible, underlying data transfer protocol. Storage providers would gain a
broader user base, because their data would be available to any client. Storage users
would gain access to a broader range of storage systems and data. In addition, these
benefits can be gained without the performance and complexity problems of the
layered client or gateway approach.

Terminology. Terms used in connection with GridFTP include:

� Parallel transfer. A data transfer between two network endpoints that uses
multiple TCP streams.

� Striped transfer. A data transfer between m network endpoints on the sending
side and n network endpoints on the receiving side. This could involve multi-
homed hosts or multiple hosts (a cluster).

� Data node. In a striped data transfer, a data node is one of the network end-
points returned in the SPAS command, or one of the network endpoints sent
in the SPOR command.

� DTP. The data transfer process (DTP) establishes and manages the data con-
nection. The DTP can be passive or active.

� PI (protocol interpreter). The user and server sides of the protocol have dis-
tinct roles implemented in a user PI and a server PI.

� Features. A response from a server indicating it supports a set of specified
functionality. This is in accordance with RFC 2389.

� Options. A command to a server defining alternative behavior. This is in ac-
cordance with RFC 2389.

6.3.6 Grid Operation—Basic Steps

In this section, we briefly look at grid operations (this only scratches the surface.)
To use the grid, the user typically needs to log on to a system utilizing an ID that

is enrolled in the grid. As discussed earlier in the chapter, the single log-on makes
this convenient for grid users by making the grid look more like one large virtual
computer rather than a collection of individual machines (e.g., the proxy log-in
model of Globus discussed above). After a validated log-in process, the user can
query the grid and submit jobs. The user may be able to perform queries (e.g., via a
GUI) to determine how busy the grid is, to monitor how his or her submitted jobs
are progressing, and to identify resources on the grid.

230 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 230

TEAM LinG - Live, Informative, Non-cost and Genuine!

Job submission usually consists of three phases (even if there is only one com-
mand required) [147]:

1. “Staging the input data.” Some input data and possibly the executable program
or execution script file are sent to the machine to execute the job (alternative-
ly, the data and program files may be preinstalled on the grid machines or ac-
cessible via a mountable networked file system). Note that when the grid con-
sists of heterogeneous machines, there may be multiple executable program
files, each compiled for the different machine platforms on the grid. Some grid
systems require that the program and input data be preprocessed in some way
by the grid system, to add protective execution controls around the application.

2. “Execution.” The job is executed on the grid machine. The grid software run-
ning on the donating machine executes the program in a process on the user’s
behalf. Some grid systems implement a protective “sandbox” around the pro-
gram so that it cannot cause any disruption to the donating machine if it en-
counters a problem during execution. Rights to access files and other resources
on the grid machine may be restricted. Note that the data accessed by the grid
jobs may be moved among resource elements in the grid system. However, de-
pending on its size and the number of jobs, this can potentially become a net-
work burden. Also, the latency involved may adversely impact the perfor-
mance of the application. Optimal deployment of data (if it requires caching
and/or duplication) is needed to minimize data movement on the grid. There
are many considerations in efficiently planning the distribution and sharing of
data on a grid: this analysis is a true “must” for large, mission-critical jobs.

3. “Output.” The results of the job are sent back to the submitter (in some imple-
mentations, intermediate results can be viewed by the user who submitted the
job).

Monitoring and recovery mechanisms are important, particularly for commercial
and/or mission-critical applications (such as in the financial services industry). It is
to be expected that the user should be able to query the grid system to determine
how the application (and possibly the constituent microjobs) are progressing toward
task completion. A grid system, particularly the job scheduler, needs to provide au-
tomatic monitoring and recovery of microjobs that happen to fail; failures may be
due to programming errors (including infinite loops) or hardware failures of various
kinds in the grid resources and/or networking system. The scheduler will attempt to
determine the reason for a job’s failure. Whenever possible, schedulers automati-
cally resubmit jobs. However, this is not always achievable and for this category of
problems, the user is informed about the failure and he/she must decide whether to
rerun the failed jobs.

6.3.7 Deployment Challenges and Approaches

Currently there are a number of practical challenges to deploying a robust mission-
critical grid. Grid systems have the goal of allowing applications to share, in an ef-

6.3 BASIC GRID DEPLOYMENT AND MANAGEMENT ISSUES 231

c06.qxd 8/24/2004 10:18 AM Page 231

TEAM LinG - Live, Informative, Non-cost and Genuine!

ficient manner, data and computing resources that belong to the organization, and,
when appropriate, to enable access to data and computing resources across multiple
organizations, also, of course, in an efficient manner. Grid services need to be de-
ployed on different hosting environments, even on different operating systems. The
Globus services discussed above that have been developed to date help organiza-
tions overcome some of the barriers to grid computing; however, many challenging
problems remain to be overcome before we can say that we have a fully functional
grid environment [129]. We identified a number of such challenges in Chapter 2.
Some additional information is presented herewith (security, one of the major chal-
lenges, is covered in the next section).

In particular, to facilitate the deployment of such distributed solutions, the IT
professional needs to be able to rely on standards. As covered in previous chap-
ters and alluded to earlier in this chapter, there is activity under way in this regard,
but more work in this space is required. It is imperative that a stable level of stan-
dardization be achieved in this industry (and its products) because we currently
are where data networks were in the late 1980s before standardization (and ensu-
ing expansion) was achieved by the Internet and Web protocols. For example, cur-
rent software-based grid solutions typically are installed behind an organization’s
firewall. These “local” grid solutions are not only platform dependent, but they
also typically utilize incompatible communication protocols. In addition, these
“local” grids offer limited integration mechanisms for communicating with other
“local” grids. Hence, due to proprietary interfaces, it is difficult to add new appli-
cations from different vendors to an existing “local” grid. Consistent interfaces to
the various services and grid resources are required [71]. The interfaces of grid
services need to address discovery, dynamic service instance creation, lifetime
management, notification, and manageability; the conventions of grid services
need to address naming and upgrading issues. A related challenge is to find ways
to quickly and easily integrate with external business processes and services pro-
vided by different “local” grids using a secure, low-cost, and manageable solution
[71].

Obviously, administrators need capabilities to control access to grid resources
and enable users or applications to access grid resources. There is a need for a grid
administration capability to handle resource provisioning. Resource provisioning
allows the administrator to make visible computing resources to a grid solution de-
veloper, but do so in a secure manner. There is also a need to register (publish) a
new grid service. For intragrids, a private UDDI registry is typically used for this
registration process.

Related challenges to be faced in deployment include, but are not limited to the
following:

� Activity/performance monitoring

� Administration of the grid

� Affordable networking bandwidth availability

� Application integration

232 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 232

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Application portability

� Comprehensive administration

� Data sharing and access

� Decision making with regard to, for example, virtualization and classical out-
sourcing solutions (are these alternatives easier/cheaper than going down the
path of grid enablement?), or open-source outsourcing based on grid/Web
services

� People/talent

� Policy-based grid management mechanisms

� Resource provisioning

� Right-sizing the technology for companies other than Fortune 500

Among the major research challenges that the industry is addressing in current
work are [129]:

� End-to-end resource management and adaptation techniques able to provide
application-level performance guarantees despite dynamic resource proper-
ties

� Automated techniques for negotiation of resource usage, policy, and account-
ing in large-scale grid environments

� High-performance communication methods and protocols

� Infrastructure and tool support for data-intensive applications and new prob-
lem-solving environment techniques

A key desideratum is to find scalable grid systems to integrate data and other
computing resources with applications in a distributed environment. We already
alluded in earlier chapters to the need for scalability, particularly in a linear fash-
ion. Assume that the typical number of transactions that a planner needs to run
is nt. This means that the IT planner, upon testing a grid system on a small batch
of transactions, say on n1 = 0.01 · nt and finding that it requires R1 resources,
and, further, that upon testing the grid system n2 = 0.05 · nt and finding that it re-
quires R2 resources, and, further, that upon testing the grid system n3 = 0.25 · nt

and finding that it requires R3 resources, that the following is true to a large ex-
tent:

0.01 · nt/R1 = 0.05 · nt/R2 = 0.25 · nt/R3

so that the prediction

Rt = R1/0.01 (that is, R1 = Rt · 0.01)

holds true, or something very similar to it.

6.3 BASIC GRID DEPLOYMENT AND MANAGEMENT ISSUES 233

c06.qxd 8/24/2004 10:18 AM Page 233

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND

6.4.1 Basic Approach and Mechanisms

Because of its critically, in this section we revisit the issue of security in some de-
tail. Computational grid infrastructure software (such as the Globus Toolkit) en-
ables a user to identify and use the available machine irrespective of location and
ownership, and can facilitate execution of a single computation across multiple ma-
chines. However, without adequate security both the grid user and the system ad-
ministrator who contributes resources to a grid can be at risk [72].

The security topic is extensive and could be the subject of a separate book. As
we noted in the previous chapter, OGSA’s security model must address authentica-
tion, confidentiality, message integrity, policy expression and exchange, authoriza-
tion, delegation, single log-on, credential life span and renewal, privacy, secure log-
ging, assurance, manageability, firewall traversal, and security at the OGSI layer.
The OGSA specification defines requirements for interfaces, behaviors, and models
used to structure and achieve interactions among grid services and their clients.
While it is assumed that such interactions must be secured, the details of security
are out of scope of the OGSA specification. Security is addressed in related specifi-
cations that define how abstract interactions are bound to specific communication
protocols, how service behaviors are specialized via policy-management interfaces,
and how security features are delivered in specific programming environments. One
can expect that existing and evolving standards will be adopted or recognized in the
Grid Security Model [69].

Below, we briefly revisit the basic mechanism used by the Globus Toolkit that
we introduced in Section 6.1 because many (if not all) of these techniques carry for-
ward (security mechanisms for grid computing are based on public key cryptogra-
phy). Then we look at some security guidelines based on the document “Security
Implications of Typical Grid Computing Usage Scenarios, GFD-I.12” [72].

Mutual Authentication.10 If two parties have certificates, and if both parties
trust the CAs that signed each other’s certificates, then the two parties can prove to
each other that they are who they say they are. This is known as mutual authentica-
tion. For example, the GT3 GSI uses SSL for its mutual authentication protocol (as
noted earlier, SSL is also known by a new IETF standard name: Transport Layer
Security, or TLS). Before mutual authentication can occur, the parties involved
must first trust the CAs that signed each other’s certificates. In practice, this means
that they must have copies of the CAs’ certificates, which contain the CAs’ public
keys, and that they must trust that these certificates really belong to the CAs.

To mutually authenticate, the first person (A) establishes a connection to the sec-
ond person (B). To start the authentication process, A gives B his certificate. The
certificate tells B who A is claiming to be (the identity), what A’s public key is, and
what CA is being used to certify the certificate. B will first make sure that the cer-

234 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

10The information provided in the next few paragraphs is based directly on [65].

c06.qxd 8/24/2004 10:18 AM Page 234

TEAM LinG - Live, Informative, Non-cost and Genuine!

tificate is valid by checking the CA’s digital signature to make sure that the CA ac-
tually signed the certificate and that the certificate has not been tampered with.
(This is where B must trust the CA that signed A’s certificate.)

Once B has checked out A’s certificate, B must make sure that A really is the
person identified in the certificate. B generates a random message and sends it to A,
asking A to encrypt it. A encrypts the message using his private key, and sends it
back to B. B decrypts the message using A’s public key. If this results in the origi-
nal random message, then B knows that A is who he says he is. Now that B trusts
A’s identity, the same operation must happen in reverse. B sends A her certificate,
A validates the certificate and sends a challenge message to be encrypted. B en-
crypts the message and sends it back to A, and A decrypts it and compares it with
the original. If it matches, then A knows that B is who she says she is.

At this point, A and B have established a connection to each other and are certain
that they know each others’ identities.

Confidential Communication. As an illustrative example, GT3 GSI does not
automatically establish confidential (encrypted) communication between parties.
Once mutual authentication is performed, the GSI gets out of the way so that com-
munication can occur without the overhead of constant encryption and decryption.
The GSI can easily be used to establish a shared key for encryption if confidential
communication is desired. Recently relaxed United States export laws now allow us
to include encrypted communication as a standard optional feature of the GSI.

A related security feature is communication integrity. Integrity means that an
eavesdropper may be able to read a communication between two parties but is not
able to modify the communication in any way. For example, the GT3 GSI provides
communication integrity by default (it can be turned off if desired). Communication
integrity introduces some overhead in communication, but it is not as large an over-
head as encryption.

Securing Private Keys. As an illustrative example, the core GSI software pro-
vided by the Globus Toolkit expects the user’s private key to be stored in a file in
the local computer’s storage. To prevent other users of the computer from stealing
the private key, the file that contains the key is encrypted via a password (also
known as a pass phrase). To use the GSI, the user must enter the pass phrase re-
quired to decrypt the file containing their private key. The Globus Project has also
prototyped the use of cryptographic smartcards in conjunction with the GSI. This
allows users to store their private key on a smartcard rather than in a filesystem,
making it still more difficult for others to gain access to the key.

Delegation and Single Sign-On. As an illustrative example, the GT3 GSI pro-
vides a delegation capability. Delegation is an extension of the standard SSL/TLS
protocol that reduces the number of times the user must enter his pass phrase. If a
grid computation requires that several grid resources be used (each requiring mutu-
al authentication), or if there is a need to have agents (local or remote) requesting
services on behalf of a user, the need to reenter the user’s pass phrase can be avoid-

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND 235

c06.qxd 8/24/2004 10:18 AM Page 235

TEAM LinG - Live, Informative, Non-cost and Genuine!

ed by creating a proxy. A proxy consists of a new certificate (with a new public key
in it) and a new private key. The new certificate contains the owner’s identity, mod-
ified slightly to indicate that it is a proxy. The new certificate is signed by the own-
er rather than a CA (see Figure 6.9). The certificate also includes a time notation af-
ter which the proxy should no longer be accepted by others. Proxies have limited
lifetimes.

The proxy’s private key must be kept secure, but because the proxy has a limited
lifetime, this key does not necessarily have to be kept as secure as the owner’s pri-
vate key. Hence, it is possible to store the proxy’s private key in a local storage sys-
tem without being encrypted, as long as the permissions on the file prevent anyone
else from looking at them easily. Once a proxy is created and stored, the user can
use the proxy certificate and private key for mutual authentication without entering
a password.

When proxies are used, the mutual authentication process differs slightly. The re-
mote party receives not only the proxy’s certificate (signed by the owner), but also
the owner’s certificate. During mutual authentication, the owner’s public key (ob-
tained from her certificate) is used to validate the signature on the proxy certificate.
The CA’s public key is then used to validate the signature on the owner’s certificate.
This establishes a chain of trust from the CA to the proxy through the owner.

Note that that at press time, the GSI (and software based on it—the Globus
Toolkit, GSI-SSH, and GridFTP) was the only software that supported the delega-
tion extensions to TLS. The Globus Project is working with the GGF and the IETF
to establish proxies as a standard extension to TLS so that GSI proxies may be used
with other TLS software.

6.4.2 Additional Perspectives

This section11 has the goal of providing some explicit perpectives related to the kind
of infrastructure that is required to support secure interactions between grid users
and services. This is accomplished through a number of use scenarios.

This discussion starts with some nomenclature. The term grid user or user refers
to the person who is attempting to access a resource. Principal is used to mean any

236 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

Figure 6.9 Proxies.

11The entire security section that follows is based directly on [72].

1

c06.qxd 8/24/2004 10:18 AM Page 236

TEAM LinG - Live, Informative, Non-cost and Genuine!

entity, either human or process, that has an identity associated with it and wants to
make use of or to provide resources. Stakeholders are people or organizations who
set the use policy for a resource. A grid gateway is a process that accepts remote re-
quests to use resources. A grid resource gateway is the process that actually con-
trols the use of the resource (this may be legacy code). A grid administrator is a
grid-aware person with responsibility for the overall functioning of the grid (note
that there will probably exist multiple grid administrators with nonoverlapping
realms of responsibility in a single grid). Site administrators are responsible for the
functioning of a single site. The user’s home organization is the administrative do-
main to which the user belongs that may have trust relationships or service agree-
ments with some of the resource providers.

Next, some assumptions are documented. A fundamental assumption that is
made is that each user and principal will have a grid-wide identity that all the other
grid principals can verify. Another assumption is that some local resource managers
will require legacy local user IDs for users of their resources, so there must be a
way to map from Grid IDs to local user IDs. Access control will be enforced both
by local resource managers, often using legacy access control mechanisms and by
grid-aware services that may want to use grid-centered access policies. In either
case, there must be simple ways for users to request access rights and allocations
and the stakeholders to grant them. The use of short-term proxy certificates in place
of the long-term grid ID is a desirable feature of a distributed system, since it limits
the exposure of long-term private keys. The delegation of rights and/or identity
from a user to the servers operating on his behalf is also required. Finally, a user
may want a way to specify security options for a session.

Most computing resources that are shared among a group of users require that a
user have established a unique ID and allocation before he can use the resource.
When using a grid, a person should have an ID that is unique within the grid and
recognized by all the local resource managers. As noted, Globus uses X.509 identi-
ty certificates that can either be issued by a grid-centric CA or by individual corpo-
rate CAs for grid identities. Legion has a similar capability to issue an unforgeable
“token” that a user can present to identify himself or herself as a Legion user. A CA
can require different levels of verification that the person requesting the certificate
(usually via e-mail) is in fact the person named in the certificate (such as showing
up in person, presenting various documents such as a driver’s license, passport,
and/or undergoing a background check). Currently, neither Globus nor Legion re-
quire or support certification beyond a rudimentary level. Both Globus and Legion
also support Grid IDs established through external means such as the enterprise-
wide Kerberos [155] installations that exist in certain national laboratories. A grid is
likely to have multiple CAs in place. If so, a crucial step is for the each CA to care-
fully establish a policy for its signed certificates, and for the CAs to cross-certify
each other if possible. That is, a CA must clearly identify what, if anything, another
CA’s certificates mean to it.

Once the grid ID is established, a user may request allocations on each machine
on which she might potentially execute a task. Some sites (such as supercomputer
centers) may require that each individual have a local user ID and allocation; other

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND 237

c06.qxd 8/24/2004 10:18 AM Page 237

TEAM LinG - Live, Informative, Non-cost and Genuine!

sites may allow group allocations or simply require that a user be permitted to use
the resource possibly in a constrained manner (e.g., only on weekends or late
nights). Establishing permissions and allocations on a resource depends on the re-
source owner’s policy and may require sending e-mail to the system administrator
of the resource in question. For each resource that requires local user IDs, the grid
system administrator on the resource must determine the mapping of grid ID (such
as brown@xyz.org) to local user ID (such as stebrown) into a grid-specific mecha-
nism such as the /etc/gridmap file in Globus.

The need for short-term proxy certificates arises from the fact that the client
tends to interact with grid services through a sequence of requests over the network
to various entities. During each of these transactions, the client must present his
grid ID and use his private key to verify his identity. In order to minimize the use of
long-term credentials, it is desirable to allow the user to set up a short-term (typical-
ly 12 hours) proxy credential to represent the user in interactions with the grid. This
short-lived keypair can be kept unencrypted by the local grid software and can be
used for signing, verifying, and (optionally) encryption. A second certificate is gen-
erated, signed by the long-lived keypair, stating that for the next 12 hours the public
key of the user is the public key of the short-lived pair. The Globus security infra-
structure software supports this through grid-proxy-init.

The last steps a user may take before interacting with services or resources on
the grid is to establish parameters that may be in place for the life of the session. For
example, a user may specify his or her specific role that he or she wants to assume,
such as system administrator for a particular resource or ordinary user. There are
different rights and responsibilities for each role. In addition, a user may also set se-
curity-related parameters, such as the hosts that are trusted, the level of message in-
tegrity and confidentiality that is required, and a limit to the amount of allocation
that can be used.

6.4.2.1 Use Scenarios. These scenarios are ordered by increasing complexity,
where complexity is loosely defined as the number of decisions that must be made
by the grid software, or the scope of those decisions. Six categories are described:
immediate job execution, job execution that requires advance scheduling, job con-
trol, accessing grid information services, setting or querying security parameters,
and auditing use of grid resources. The security implications of each scenario is dis-
cussed in turn.

6.4.2.1.1 Immediate Job Execution

6.4.2.1.1.1 RUN A JOB ON A SPECIFIED GRID COMPUTER; LOCAL I/O REQUIRED. In a
basic approach to remote job submission, the user specifies the execution host to be
used and submits a job for which either the code already exists on the target ma-
chine or else is uploaded as part of the request. The job uses only remote computa-
tion cycles and possibly temporary file storage. The input data is uploaded as part of
the job submission, and the output is returned through the connection that was es-

238 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 238

TEAM LinG - Live, Informative, Non-cost and Genuine!

tablished at job submission. The security requirements and implications in this grid
usage scenario are:

1. Mutual authentication of user and grid gateway on specified host

2. Grid gateway on specified host must map grid ID to local ID

3. Grid gateway must submit the request to resource gateway in a manner so
that the job will run as the authorized local user

In this scenario, authorization to use the target machine is performed by the grid
gateway. Although in general the resource gateway may be a separate entity from
the grid gateway, in this case it is likely that the resource gateway is the queuing
system on the target machine and does not need to perform a specific authorization
step. In this case, the target job does not have to be given a copy of the credential of
the user presented to the grid gateway as part of the mutual authentication step.

6.4.2.1.1.2 RUN A JOB ON A SPECIFIED GRID COMPUTER; NON-LOCAL FILE I/O RE-
QUIRED. As an extension of scenario 6.4.2.1.1.1, the remote job must access nonlo-
cal files, either by copying them from the remote site to the local site or by obtain-
ing the nonlocal data as needed during the execution of the job. In addition to the
security requirements and implications of Scenario 6.4.2.1.1.1,

1. If the model of execution is such that the grid gateway (or some other grid in-
frastructure process) performs the file transfer before execution, then this
process must be given authorization to obtain these files on behalf of the user.

2. If (1) is not true, then the job obtains the data directly from the files and there-
fore must be given the appropriate credentials upon startup to obtain the data.

3. If the remote job writes output to the local file server, and the file server is
AFS or DFS, then the remote job needs the user’s Kerberos ticket (which
may or may not be the same as the credentials used to authenticate to the grid
gateway).

4. If the output of the job is in the form of local files, and these files are required
to be copied back to the machine from which the user submitted the job, then
either the job itself or the grid process that does the copying must be given
the necessary credentials to be authorized with the grid gateway on the local
machine.

In contrast to Scenario 6.4.2.1.1.1, in this example delegation is necessary to ac-
cess services or information. In step (1), the grid gateway does not automatically
have permission to copy arbitrary files from the grid environment, so it must be giv-
en the explicit capability. Similarly, in step (4), the grid process needs the user’s
credentials to be granted access to copy the local files back to the machine on which
the job was submitted. In each of the delegation requirements, note that the specific
right to be delegated is different. Delegation is an extremely difficult problem that

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND 239

c06.qxd 8/24/2004 10:18 AM Page 239

TEAM LinG - Live, Informative, Non-cost and Genuine!

is the subject of current research, so the current approach is to solve these require-
ments with unlimited delegation.

6.4.2.1.1.3 RUN A JOB ON “BEST” GRID COMPUTER. Instead of mandating the spe-
cific grid computer in the request, a user may wish to run a job on the “best” com-
puter, defined to be the host that is “quickest” or “cheapest” according to some met-
ric. The choice is made by a third-party service, such as one of the emerging “super
schedulers” as exemplified by the default scheduler in Legion. The user may speci-
fy a specific group from which to choose, or the user may leave it to the super
scheduler to locate the set from which to choose. The additional security ramifica-
tions posed by this scenario are:

1. If the set of candidate hosts has not been identified by the user, the super
scheduler will need to interact with the information services component(s) of
the grid to identify the set of possible hosts. Since access to such information
is restricted, the super scheduler may need a delegated credential to act on be-
half of the user.

2. The super scheduler must determine if the target user is allowed to execute on
each of the target grid machines, and, if so, the remaining allocations of the
user in the particular role in which the user is acting. This information is deter-
mined by asking information services or querying each grid machine directly.
Again, the super scheduler may need a delegated credential from the user.

3. The super scheduler needs to query the grid hosts to determine available cy-
cles so that it can make an informed scheduling decision. Account informa-
tion is largely regarded as being important to keep secret, so it will probably
be the case that an arbitrary entity will not be allowed to ask information ser-
vices where a particular user can execute or how much allotment she has left.
Therefore, either the super scheduler, as a principal, must be granted broad
access to such information and trusted not to leak such information to any
one except the affected user, or the super scheduler must be explicitly granted
the right to ask on behalf of the user. In this scenario, the super scheduler
needs the rights to read information about a user’s access and allocations on
specific machines form the grid information service and possibly from the
grid hosts themselves.

6.4.2.1.1.4 RUN A JOB THAT REQUIRES RESOURCES AT MULTIPLE SITES. In a sce-
nario that many see as the defining contribution of grid computing technology, a
user may wish to combine resources from multiple sites into a single, coordinated
job. For example, a user could generate a large amount of data from a major shared
instrument (e.g., an accelerator or microscope study). This data needs to be up-
loaded to a large data store that in turn can be accessed by a powerful computing
engine. Once preliminary data analysis has taken place, intermediate data may need
to be saved and also passed on to a different computing engine for further analysis
such as visualization procedures. This scenario requires a remote job to start other

240 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 240

TEAM LinG - Live, Informative, Non-cost and Genuine!

remote jobs or access files on behalf of the original user. The significant new secu-
rity requirement of this scenario is that a controlling agent or each remote job in a
sequence has to be able to request resources on behalf of the user, perhaps through
subsequent calls to a super scheduler.

The controlling agent or each remote job must be given a delegated credential
from the user to further submit jobs on behalf of the user. If the agent has been
granted a credential with unlimited delegation, it can impersonate the user for any
purpose, such as a malicious activity. Thus, it is more desirable for the agent to have
a delegated credential that allows it to perform only limited tasks for a limited peri-
od of time. An issue that might arise here is the exact time during which the dele-
gated credential is valid. If it expires too soon, the agent cannot perform its intend-
ed action, but if the timeout is too long, it could be a potential point of compromise.
Another issue that can arise is how many levels of credential delegation should be
allowed. If the user is using application code that he did not write, he may not know
how many levels of servers and objects are going to be instantiated. Allowing un-
limited levels of delegation may be the only practical approach, but that exposes the
user’s credential to more possible misuse.

6.4.2.1.2 Job Execution that Requires Advance Scheduling

6.4.2.1.2.1 MAKE A RESERVATION FOR SIMULTANEOUS RESOURCES. If Scenario
6.4.2.1.1.4 involved the use of an instrument that produces a large data flow that must
be processed in real time, it will require the advance reservation of data storage, net-
work bandwidth, and, possibly, computing cycles. Advance reservations require:

1. Delegation of the user’s rights to a super scheduler and bandwidth broker to
make the reservations on behalf of the user.

2. Assurance that if a user has been granted a reservation for the future, she will
have access at the time the reservation is claimed.

3. Bandwidth reservations usually require service agreements for priority band-
width between ISPs and computing sites. This implies that a bandwidth bro-
ker needs to know at reservation time that user’s connection will come from
an authorized site. If the model of execution is such that the bandwidth broker
returns a claim ticket to the super scheduler, the transfer of the claim ticket
from the super scheduler to the user must be protected, and the claim ticket it-
self must be nonforgeable.

6.4.2.1.2.2 CLAIM THE RESERVATIONS. The execution of a job on reserved re-
sources can require multiple concurrent claiming procedures. In this model, a user
directly interacts with the individual resource gateways to claim the reservation. In
general, reservation claiming requires:

1. The user must be able to identify himself or herself as the entity that made the
reservation. The reservation may have been made on behalf of a group of
users, in which case the user has to prove himself or herself to be a member

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND 241

c06.qxd 8/24/2004 10:18 AM Page 241

TEAM LinG - Live, Informative, Non-cost and Genuine!

of the group. Another way of handling the situation where one person makes
a reservation and a different person wants to claim it is to allow the claim
tickets to be transferred. In this case, the resource gateway must be able to
verify that the claim has been legitimately transferred by the person who
made the original reservation to the current claimant.

2. The user should still have access to all the resources that he has reserved, ex-
cept in extreme cases, such as when the user is no longer associated with the
organization that is going to pay for the resource use, or the organization has
failed to pay its bills.

3. In the case of a user losing access to a resource, a check should be made of
advance reservations in his name, and the appropriate parties should be noti-
fied of the change.

This scenario contains two important requirements in grid computing: group
membership and nonrepudiation. Group membership is nontrivial because, whereas
individual users should be able to define groups, it is not clear how exactly to do
this. Nonrepudiation in this context refers to the requirement that the resource gate-
way should not be able to arbitrarily deny that it granted a reservation.

6.4.2.1.3 Job Control

6.4.2.1.3.1 ALLOW A USER TO MONITOR OR ATTACH TO A RUNNING JOB. A standard
requirement of people who start long-running remote jobs is to be able to discon-
nect from a job and then at a later time and possibly from a different location reat-
tach to it. The user may just want to monitor the progress of a job, or may want to
enter some steering information at specific points in the run. Monitoring a job’s
progress may be as simple as knowing where logging files are being written and
having the access to read them. Steering implies that the user has defined “entry
points” into the computation and has some way of controlling who may connect to
them. In the collaborative environment facilitated by the grid, a different user may
want to use the monitoring or attachment points as well. In this case,

1. The resource that is being protected is access to a running job created by a
user, who will set the access policy and later be granted access by that policy.
This can perhaps be most easily accomplished if the policy and code to en-
force access is part of the job.

2. The point of entry is probably directly to the computation itself as opposed to
through the grid gateway or the resource gateway, so the potential collabora-
tor must be able to authenticate to the computation itself. The user in this sce-
nario would probably rely on predefined libraries generated by security de-
velopers rather than creating an individual security solution. Utilizing
well-accepted libraries facilitates interoperability.

6.4.2.1.3.2 SYSTEM ADMINISTRATOR(S) TERMINATES OUT-OF-CONTROL JOB. Cer-
tainly, situations will occur in which a grid user has submitted a job and does not re-

242 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 242

TEAM LinG - Live, Informative, Non-cost and Genuine!

alize that the job is behaving abnormally and perhaps consuming more resources
that expected or allowed. Whereas the grid administrator(s) might be aware of an
out-of control job, only the system administrator of one or more physical resources
will have the rights to terminate the job. This scenario requires:

1. A system administrator must detect the out-of-control process and trace its
origin to a particular grid user. Alternatively, grid-monitoring software might
detect the out-of-control process and notify the system administrator.

2. The system administrator can optionally inform the grid administrators that
the process is about to be terminated. The grid administrators need this infor-
mation to coordinate the termination of this job across multiple grid sites.

3. The grid administrators either attempt to terminate the individual components
of the job by directly interacting with the job or by asking the system admin-
istrators to terminate those processes of the job that are on their respective
machines.

4. The job owner must be notified by the grid administrator that his job has been
terminated.

Although the steps described here are a function of the unique implementation
of the grid design, this scenario presents a number of interesting requirements.
First, resources of a grid are used both by “local” users and grid users, so it is not
necessarily obvious from where an out-of-control process originated. Therefore,
grid software must keep audit records, or at least provide a means by which this
determination can be made. Second, there will generally not be a single person
who has the power to kill a single “grid computation,” because it will span multi-
ple resources of multiple administrative domains. As such, ideally, a coordinated
effort must be made if a single job is to be prematurely terminated (note that this
is unlikely, at least in the near term). Third, the user must be told at the very least
that her job has been prematurely terminated, as opposed to the computation just
disappearing. The exact mechanism for doing this is not clear, nor are the securi-
ty implications.

6.4.2.1.4 Accessing Grid Information Services

6.4.2.1.4.1 READ/QUERY INFORMATION FROM ONE INFORMATION SERVER. The
ability to locate services and to determine the status and availability of those ser-
vices will be crucial in a well-functioning computational grid. In most computa-
tional grid architectures, there exist information services whose purpose is to be a
centralized repository for information about the many services in the grid. To
avoid being a single point of failure, information services can be replicated, orga-
nized hierarchically, or organized geographically. However, high availability does
not mean easily and uniformly accessible; many services require carefully con-
trolled access to information regarding the services they provide, their current sta-
tus, and who can use them. In general, when a grid user queries a single informa-
tion server,

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND 243

c06.qxd 8/24/2004 10:18 AM Page 243

TEAM LinG - Live, Informative, Non-cost and Genuine!

1. Mutual authentication should take place between the user and the information
services.

2. The information services should implement the access control policy as de-
sired by the service.

Although the information services require the user to authenticate, it is not strict-
ly necessary for information services to authenticate to the user, for example, if the
user subsequently authenticates to the service itself. The extra cost of mutual au-
thentication in general can be weighed against the potential effects of malicious in-
formation. With regard to the information services providing the actual information
requested, it could be the case that the individual services are allowing the informa-
tion services to determine an “appropriate” access policy. However, a more general
scenario is to allow each publisher to set the policy. In this case, the publisher and
the information services must agree on a policy language. Subsequently, the pub-
lisher must trust that the information services accurately implements the policy.

6.4.2.1.4.2 PUBLISH/UPLOAD INFORMATION TO AN INFORMATION SERVICE. Scenario
6.4.2.1.4.1 partially describes the implications of publishing information into a cen-
tralized repository from the perspective of the publisher. In order for a service to
upload the information that the information services is providing to others,

1. Mutual authentication must take place between the publisher and the infor-
mation services.

2. Confidentiality or message integrity on the communication from the publish-
er to the information services could be required by the publisher.

If there are no constraints on the information being provided by the publisher,
then neither (1) nor (2) are necessary. However, in most cases, the publisher cares
about who sees the information, making mutual authentication and confidentiality
and/or message integrity important.

6.4.2.1.4.3 QUERY ACROSS MULTIPLE INFORMATION SERVICES. The case in which a
user wishes to interact with multiple information services, receives noncontradicto-
ry information, and combines the information himself is a relatively straightforward
extension to Scenario 6.4.2.1.4.1. However, when the information services return
information that is not consistent with each other, if there is no obvious reason to
believe one piece of information over another, the determination of which informa-
tion to believe must be based on a trust relationship established with one of the in-
formation services.

Anytime an information service is accessed, the user must trust the information
being returned to a certain extent. It is important to note that authentication does not
directly address trust, as authentication merely ascertains that a particular entity is
who it claims to be, not that the entity is “doing the right thing.” In the case where
one information service contradicts another, the user needs to have his own policy
for establishing trust that could be based on who wrote each service, who deployed

244 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 244

TEAM LinG - Live, Informative, Non-cost and Genuine!

each service, where each service is executing, how useful the information has been
in the past from each of the information services, and so on. This policy is set by the
user and cannot be mandated by the grid administrator(s).

6.4.2.1.5 Setting or Querying Security Parameters

6.4.2.1.5.1 USER SETS MESSAGE INTEGRITY AND CONFIDENTIALITY PARAMETERS.
An individual grid user should have the capability to constrain the manner in which
she interacts with the collective grid services. One way in which to personalize a
user’s interaction with a grid is for the user to define message integrity and confi-
dentiality parameters. For example, a user can state that all communication between
grid services as a direct or indirect result of the user be encrypted stronger than a se-
lected minimum amount (e.g., encryption algorithm and key size). The implications
of this requirement are:

1. Message integrity implies supporting MAC algorithms

2. Confidentiality requires a key agreement protocol to be supported

3. Services must recognize the rationale for per-user security configuration and
be designed accordingly

4. There must exist an easy mechanism for users to specify such constraints

5. There must be a secure and efficient mechanism to propagate or otherwise
convey a particular user’s integrity and confidentiality parameters from the
user to the services

This scenario exemplifies one of the key challenges in constructing a grid, namely,
that there is a tension between support for heterogeneity and a requirement that ser-
vices implement some subset of shared functionality. Many users will implement
and deploy services for a grid, each with a different API and different functionality.
However, their utility will be significantly impeded if they mandate how users are
to interact with them, as opposed to how the users would like to interact with them.
Requirements for message integrity or confidentiality are an example of require-
ments that may be imposed across a class of applications from their perspective
users.

6.4.2.1.5.2 RESOURCE PROVIDER SETS MESSAGE INTEGRITY AND CONFIDENTIALITY

PARAMETERS. Resource providers can also set security requirements on a per-re-
source or per-site basis. An example requirement is that all traffic into and out of a
site be encrypted with a particular algorithm. The implications of this requirement
are:

1. Services must be aware of and adhere to the message integrity and confiden-
tiality rules of the resource provider on which they execute.

2. Users must be made aware of and adhere to the message integrity and confi-
dentiality rules of the resource provider on which the services that they in-
voke execute.

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND 245

c06.qxd 8/24/2004 10:18 AM Page 245

TEAM LinG - Live, Informative, Non-cost and Genuine!

Adhering to resource providers’ requirements in general is difficult, if only because
resource providers generally will not publish security requirements. Many resource
providers believe in “security through obscurity” and thus will not publish such in-
formation. Other resource providers do not have a single clear document that details
such security requirements, but rather the policy has been formed ad hoc in re-
sponse to individual events.

6.4.2.1.5.3 QUERYING INDIVIDUAL’S ACCESS TO A RESOURCE. There are several
scenarios in which one principal wants to know what his own or another’s access
rights are with respect to a resource:

1. A user may want to determine his access to a resource before attempting to
use or schedule use of the resource.

2. A stakeholder may want to see what access a user has.

3. A super scheduler may need to see what machines and resources a user has
access to.

In each case, either the resource gateway or an independent policy analyzer must
be able to determine a user’s access given the grid ID of the user and decide if the
principal asking the question has the right to see the answer.

6.4.2.1.5.4 STAKEHOLDERS SET AUTHORIZATION POLICY. A stakeholder for a re-
source on a remote machine may want to set or modify the policy for the use of a re-
source. He or she may want to see what the existing policy is before modifying it. In
this scenario, it is assumed that there is an authentication policy interpreter separate
from the resource itself. To determine if a request is authorized, the resource gives
the identity of the authenticated user and the authorization policy to the separate
policy interpreter and is returned a yes/no/maybe answer. The implications of this
scenario are:

1. For policy information stored on the resource gateway, the stakeholder must
be able to securely connect to the gateway machine (and subsequently hand-
edit a policy file) or authenticate himself to a server on the gateway machine
that can modify the policy information.

2. In the case in which the server maintains the authorization policy, the server
must be able to check that the stakeholder is authorized to change the infor-
mation.

3. In the case in which the server maintains the authorization policy, the server
can require message integrity or confidentiality when it reads the policy.

4. If the policy information can be stored locally to the stakeholder, the autho-
rization policy must be kept securely.

5. Policy information may need a validity period or a priority assigned to it if
the policy is intended to be temporary.

246 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 246

TEAM LinG - Live, Informative, Non-cost and Genuine!

A challenge in supporting this scenario is that that may be multiple stakeholders
that have jurisdiction over different usage rights of a single resource. Therefore, the
server that maintains the policy must carefully enforce the policy regarding each
stakeholder’s ability to change the access policy.

6.4.2.1.5.5 STAKEHOLDER WANTS TO REVOKE ACCESS IN A TIMELY FASHION. A
stakeholder may want to deny access to a user or set of users and have the ban take
effect promptly. Although the semantics of “timely” or “promptly” vary from case
to case, the general scenario is that an entity that was previously allowed access
should not be denied access. The implications of this requirement are:

1. Any caching of access rights must be short-lived and/or provide a way of be-
ing flushed.

2. If policy information is stored in distributed places or multiple copies are
kept, it must be linked together or indexed in some way so that all the copies
can be deleted.

3. If capabilities are used, they must be very short-lived or else kept in known
places from which they can be removed.

There are similar issues that a CA must address when a certificate must be re-
voked.

6.4.2.1.5.6 USER REQUIRES CONFIDENTIALITY ON STORED DATA. In an extension to
Scenario 6.4.2.1.5.1, a user may want to specify that certain files be encrypted or all
the data at a given site be encrypted. The user may also wish to specifically mandate
that a server that acts on her behalf store all data related to her encrypted. This sce-
nario implies:

1. There may exist a need to share an encryption key with the program or server
that is writing the file to storage.

2. The user and/or server will need long-term storage and escrow of encryption
keys.

3. A secure system is required to associate keys with particular files.

In general, proper key management is a requirement for many of the scenarios.
For example, certain administrative domains within a grid may require smart cards
for key management, as opposed to a password-based authentication scheme. The
requirements for key management must be properly conveyed to the users by the
grid administrators. Managing keys and understanding each of the individual key
management requirements will be a challenge for the user, as a grid may cross mul-
tiple administrative domains.

6.4.2.1.5.7 USER, SERVICE PROVIDER, OR ADMINISTRATOR SPECIFIES TRUSTED GRID

HOSTS. As part of a session-specific configuration or in a directed scheduling re-

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND 247

c06.qxd 8/24/2004 10:18 AM Page 247

TEAM LinG - Live, Informative, Non-cost and Genuine!

quest, a user may want to specify what hosts she is willing to use. If a job is going to
use several hosts, this information has to be passed along to the scheduler or the job
controller. Similarly, a service provider may mandate that requests for service must
arrive from a particular subset of hosts, perhaps because the other hosts are not
trusted or because of billing requirements (if the service is not free). Lastly, a grid
administrator may specify that no user or service is allowed to interact with users or
services from another administrative domain. For example, if NASA trusts DoD,
but DoD does not trust NASA, then the DoD grid administrator(s) might require
that DoD users cannot use NASA machines in DoD-related computations. To sup-
port the specification of trusted grid hosts or trusted grid domains,

1. Grid hosts must be able to authenticate and possibly prove membership in a
particular grid domain. This can be done through host TLS/SSL credentials
or secure DNS and IPSec.

2. Servers in this category require a protocol in which both the identity and lo-
cation/domain from which the request originated are authenticated. Clients
must be ready to provide this information.

3. Grid administrators must be able to enforce these requirements.

Implementation of these requirements can be problematic with regard to all enti-
ties that could specify a set of trusted grid hosts. For example, if the computation
scenario is such that there is a chaining of services (e.g., user asks server 1, server 1
asks server 2, server 2 asks server 3, . . . , server n returns information back to the
user), then the entire chain might be required to be authenticated before server n
performs the requested action and subsequently returns the information to the user.
Similarly, server n – 1 must realize the user’s restricted set of hosts before contact-
ing server n (if server n is not contained in the list of trusted hosts, then server n – 1
should not attempt to use server n). This is also not easy for the grid administrator to
enforce.

6.4.2.1.6 Auditing Use of grid Resources

6.4.2.1.6.1 SYSTEM ADMINISTRATOR WANTS TO CHECK A LIST OF PAST REQUESTS.
Ether a site system administrator or a grid administrator may need to monitor all ac-
cesses to a resource. This information may be used for accounting purposes, for a
routine security review, or for a real-time intrusion-detection procedure. The sys-
tem administrator may wish to check both the accesses allowed and the accesses re-
jected. This scenario implies:

1. The resource gateway server must keep an unforgeable log of all access, by
unique user identification and time of access.

2. The format of the entries to this log must be negotiated between the system
administrator and the resource gateway.

3. Access to this log should be carefully restricted.

248 GRID SYSTEM DEPLOYMENT ISSUES, APPROACHES, AND TOOLS

c06.qxd 8/24/2004 10:18 AM Page 248

TEAM LinG - Live, Informative, Non-cost and Genuine!

4. The system administrator must ask the resource gateway server to signal es-
pecially troublesome resource access requests via a mechanism separate from
this log.

The system administrator and the resource gateway server must agree upon both
the content and format of logged entries. Arbitrary servers running on a grid host
can also be required to do similar logging. How useful such a log file is will depend
on how trusted the server is. Presumably, it is trusted to some extent or else the lo-
cal system administrator would not allow it to run at all, but, by definition, it is not
a standard part of the grid services.

6.4.2.1.6.2 STAKEHOLDER WANTS TO CHECK WHO HAS BEEN ACCESSING RESOURCE.
Whereas in Scenario 6.4.2.1.6.1 the system administrator can require access to all
access logs for services on the system administrator’s machines, a stakeholder
should be able to only access the logs for which he has authorization. A stakeholder
may want the same information as in Scenario 6.4.2.1.6.1 but only for resources for
which he is the stakeholder. To meet this requirement,

1. Stakeholders should have limited access to the access logs.

2. There is a need to identify a stakeholder with a resource. A stakeholder may
wish to review the resource logs to determine the overall usefulness of the
service or to determine whether the service is oversubscribed.

6.4.3 Conclusion

This section provided some explicit scenarios to highlight to the kind of infrastruc-
ture that is required to support secure interactions between grid users and services.
These scenarios are indicative of actual dynamics and provide input to people who
are developing security mechanisms for grid applications. The section should pro-
vide organizations a certain comfort level by knowing that a nontrivial amount of
thought and effort are being expended in this direction.

6.4 GRID SECURITY DETAILS—DEPLOYMENT PEACE OF MIND 249

c06.qxd 8/24/2004 10:18 AM Page 249

TEAM LinG - Live, Informative, Non-cost and Genuine!

c06.qxd 8/24/2004 10:18 AM Page 250

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 251
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 7

Grid System Economics

This chapter looks at some macroeconomic issues related to grid computing. It fo-
cuses on mechanisms to support chargebacks in a virtualized data center/grid envi-
ronment that might be supported by a computing utility. Chargeback mechanisms
are fundamental to a commercial grid environment that aims at supporting, in a fi-
nancially viable and sustainable manner, coordinated resource sharing and problem
solving in dynamic, multiinstitutional VOs. These techniques can also be employed
to support “open outsourcing.”

We will not, out of pragmatic necessity, provide financial modeling that IT plan-
ners can utilize to calculate various total cost of ownership calculations. We have
already provided anecdotal information throughout the text that various savings in
run-the-engine costs can be achieved. For example, in Chapter 1 we quoted results
from [111] that reported that

Grid middleware vendors indicate that cluster computing yields reductions in informa-
tion technology costs and costs of operations that are expected to reach 15% by 2005
and 30% by 2007–8 in most early adopter sectors. Use of Enterprise Grids is expected
to result in a 15% savings in IT costs by the year 2007–8, growing to a 30% savings by
2010 to 2012.

See Figure 7.1.
In the text we also cited IBM studies that show that mainframes are generally

idle 40% of the time, that in many instances Unix servers are actually “serving”
something less than 10% of the time, and that most PCs are lightly used for 95% of
a typical day. This is an inefficient situation for organizations [43]. We noted that
(some) firms that have implemented grid architectures have observed measurable
changes: processor utilization rates have grown to 80%, while costs have dropped
in some cases by as much as 90% [130]. Firms have found that Intel-based Linux
servers, often used in grid deployments, can be between 1 to 10% of the total cost of
“heavy iron” machines like mainframes or high-end UNIX servers based on propri-
etary operating systems. For example, IBM reportedly worked with Hewitt Associ-
ates, the global outsourcing and HR consulting firm, to build a grid, Linux, and
WebSphere-based solution for the company’s pension modeling application. On the
grid, Hewitt reduced its transaction costs by some 90%, without rewriting their ap-

c07.qxd 8/24/2004 10:19 AM Page 251

TEAM LinG - Live, Informative, Non-cost and Genuine!

plications. And in [118] it was noted that “IBM’s ultimate vision for grid is a utility
model over the Internet . . . with more than 60% of IT budgets dedicated to mainte-
nance and integration . . . the need to reduce complexity and management demands
is a pressing one.” All of this leads to anecdotal inferences to potential savings with
grid computing.

At a higher level, grid researchers make the case that [105]:

� Grids exploit synergies that result from cooperation of autonomous entities and
a grid-based economy provides incentive needed for sustained cooperation.

� Grid technologies support the emergence and operation of virtual enterprises
(and/or virtual data centers).

� Grid service brokers allow users to dynamically lease grid services at run time
based on their quality, cost, availability, and users QoS/SLA requirements.

� Grids are enabling the emergence of a new service-oriented computing industry.

� Grid computing standards can become the foundation for “open-source out-
sourcing.”

The rest of the chapter focuses on chargeback mechanisms in grid environment
that can be used by the IT organization to pass costs back to the ultimate corporate
users, or by a computing utility. Chargeback models for enterprise IT computing
were developed starting in the late 1960s: enterprise IT chargeback models have
been discussed at the technical level in this arena in the past decade. Many of these
classical chargeback concepts carry over to the grid computing space.

252 GRID SYSTEM ECONOMICS

Figure 7.1 Efficiency gains from grids: 2002 to 2010. Reprinted from [111] by courtesy of
the publisher.

Efficiency Gains from Grids: 2002 to 2010

Enterprise Grid
Efficiency Gains

Cluster Grid
Efficiency Gains

15% Efficiency Gain
from Cluster Grids
in 2005

15% Efficiency Gains
from Enterprise Grids
in 2007–8

2002 2205 2010 Time

E
ff

ic
ie

nc
y

G
ai

ns
 o

r
R

ed
uc

tio
n

in
 IT

 C
os

ts

30%

25%

20%

15%

10%

5%

�

�

c07.qxd 8/24/2004 10:19 AM Page 252

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.1 INTRODUCTION

Intergrids (and also enterprise or intragrids) aim at exploiting synergies that result
from cooperation of autonomous distributed entities. As we noted in the opening
pages of this book, the term “synergistic” implies “working together so that the total
effect is greater than the sum of the individual constituent elements.” Synergies in-
clude, to list just a few, resource sharing (processors, data storage, software, sen-
sors, etc.), “on-demand” virtual enterprises creation, and on-demand aggregation of
resources. For e-science projects, the majority (if not all) of the funding is from
government sources of all types. For this cooperation to be sustainable, however,
especially in commercial settings, participants need to have an economic incentive.
It follows that, “incentive” mechanisms need be considered as one of the design/de-
velopment facets of grid computing.

We had noted in Chapter 2 that some of the challenges related to grid computing
dealt with the following predicament [105]: users, resources, and owners are geo-
graphically distributed. A challenge relates to the fact that resources, users, and ap-
plications are heterogeneous. Another challenge deals with the fact that resource
availability and capabilities vary with time. Furthermore, policies and strategies are
heterogeneous and decentralized. Quality of service (service-level agreements) are
also heterogeneous. Finally, cost and price vary based on resources, users, time, and
demand.

On this topic Buyya [10] argues that the heterogeneity and decentralization that
is present in a grid is very similar to that present in “standard human economies,”
where market-based mechanisms have been used successfully to manage them.
Therefore, “market-pricing” models for managing grid resources may be applicable
by treating their services as information and communication technologies (ICT)1

commodities/utilities. This approach provides a workable paradigm for managing
self-interested and self-regulating entities (resource owners and consumers). It
helps in regulating the supply and demand for resources: services can be priced in
such a way that equilibrium is maintained. The “market pricing” is understood by
the user (and is user-centric) as being a utility-oriented model. The approach is also
scalable since there is no need for a central coordinator (during negotiation) so re-
sources (sellers) and also users (buyers) can make their own decisions and try to
maximize utility and profit. It facilitates the offering of different QoS (SLAs) to dif-
ferent applications depending on the value users place on them. Market (commodi-
ty) pricing improves the utilization of resources, as one can see from the operation
of any stock or commodity market (for tangible as well as intangible assets).

Grid consumers are interested in executing jobs for solving problems of varying
size and complexity. The strategy is to minimize expenses. Grid users (service con-

7.1 INTRODUCTION 253

1The U.S. reader is more familiar with the term IT: information technologies. Information and communi-
cation technologies (ICT) covers those industries that facilitate processing, transmission and display of
information by electronic means. ICT is a term used in the rest of the world (ROW), for example, the Eu-
rostat Task Force on Information Society Statistics. It includes data operations/IT services, consultancy
services, software producers, producers/suppliers of data, radio and television equipment, telecommuni-
cations, multimedia and the Internet, and system integrators.

c07.qxd 8/24/2004 10:19 AM Page 253

TEAM LinG - Live, Informative, Non-cost and Genuine!

sumers) benefit by selecting and aggregating resources optimally. There is typically
a trade-off between response time (time frame) and cost. Grid providers contribute
(“idle”) resources for executing consumer jobs. The strategy is to maximize return
on investment. Hence, grid service providers benefit by maximizing resource uti-
lization. There is, typically, a trade-off between local utilization of the resources (to
meet local requirements, if any) and the market opportunity. Therefore, resource
owners deal with questions such as [10, 105]:

� How do I decide prices? (economic models?)

� How do I specify them?

� How do I translate price to resource allocation?

� How do I enforce them?

� How do I advertise and attract consumers?

� How do I do accounting and handle payments?

And resource consumers (users) deal with questions such as [10, 105]:

� How do I decide expenses?

� How do I express QoS requirements?

� How I trade between time frame and cost?

A number of models have been advanced to handle such questions. Table 7.1
summarizes, for illustrative purposes, proposals by Buyya [10].

254 GRID SYSTEM ECONOMICS

Table 7.1 Buyya’s economic models for trading grid services [10]

Pricing—based on supply, demand, value, and wealth of economic system:
� Commodity Market Model
� Posted Price Model
� Bargaining Model
� Tendering (Contract Net) Model
� Auction Models

� English auction (first-price sealed-bid or open bid),
� Vickrey auction (second-price sealed-bid)
� Dutch (consumer: low, high, rate; producer: high, low, rate),
� Continuous double auction

� Proportional Resource-Sharing Model

Mechanism (new components) of market-based grid systems:
� An information and market directory for publicizing grid services
� Models for establishing the value of resources
� Resource-pricing schemes and publishing mechanisms
� Economic models and negotiation protocols
� Mediators to act as a regulatory agency for establishing resource value, currency stan-

dards, and crisis handling
� Accounting, billing, and payment mechanisms
� Users’ QoS requirements driving brokering/scheduling systems

c07.qxd 8/24/2004 10:19 AM Page 254

TEAM LinG - Live, Informative, Non-cost and Genuine!

The Global Grid Forum has focused on the importance of these issues. Although
OGSA provides an infrastructure for virtualizing resources of many types (comput-
ing, storage, software, networking, etc.) into grid services, it is unlikely that any
sustainable commercial infrastructure will be provided by any nonresearch organi-
zation without financial compensation. Keep in mind, in this regard, the concept of
the commercialization of the Internet in the early 1990s. For grid services to be pro-
vided on demand (that is, to deploy the utility infrastructure that has been one of the
goals of grid technology), organizations will want to be paid for contributing these
resources to the grid. Because of these considerations, a Grid Economic Services
Architecture (GESA) is being developed within the GESA Working Group (GESA-
WG) to define the additional service data and ports needed to describe the econom-
ic grid services—the enabling infrastructure [30]. The next section will describe
GESA. GESA does not aim to describe the economic models themselves that will
be built on such an infrastructure, but rather the service data and ports to support
contributors’ financial compensation.

7.2 GRID ECONOMIC SERVICES ARCHITECTURE

7.2.1 Introduction2

The ability to virtualize any resource as a service through a standard framework,
such the OGSA, will enable many different forms of interaction between these di-
verse service offerings. However, the provisioning of these services is currently de-
pendent on “best efforts” from the academic and research community. For grid ser-
vices compatible with the OGSA to be provided reliably to the users in a
community, the users must expect to fund these services in some manner. By inte-
grating the ability to charge for grid services within the core OGSA infrastructure,
one expects to enable new models of service provisioning such as utility computing.

One such effort to develop such an architecture is taking place in the United
Kingdom through the successful funding of the UK e-Science Core Programme
Project—A Market for Computational Services. As part of this activity, the GESA
Working Group of the GGF was developing at press time an infrastructure to enable
the trading of grid services as defined through the OGSA. GESA defines extensions
to the standard grid services that will enable the construction of such a marketplace.
By definition, any such marketplace must support interoperable protocols. GESA
interacts with other activities within the GGF, notably the Resource Usage Service
(RUS), the Grid Resource Allocation Agreement Protocol (GRAAP), OGSA,
OGSI, and the Usage Record (UR) Working Group. The mechanisms needed to
trade services are well established from initiatives in traditional economic areas;
therefore, GESA deliberately excludes the detailed mechanisms as how to price
these services (any such discussion is for illustrative purposes only). However,
GESA does focus on the static and dynamic metadata that needs to be generated
and maintained within the service data elements (SDEs) exposed through the rele-

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 255

2This section is based in its entirety on [30].

c07.qxd 8/24/2004 10:19 AM Page 255

TEAM LinG - Live, Informative, Non-cost and Genuine!

vant ports defined by the OGSI. It should be understood that this is work in
progress; specifically, there are a number of unresolved issues.

7.2.2 Overview

7.2.2.1 Architecture. A straw-man architecture of the Grid Economic Services
Architecture infrastructure is illustrated in Figure 7.2, showing how the grid service
that is to be sold as a Chargeable Grid Service (CGS) interacts with the grid pay-
ment system (GPS) and the resource usage service.

Early discussions identified one key requirement: that the underlying OGSA ser-
vice interface should not be changed, only extended, by the wrapping of a grid ser-
vice as a CGS. This would allow existing clients to interact with a CGS even if the
client interface had been generated for the underlying grid service. The service data
elements and service interface for the CGS is described in Section 7.2.3 and the
GPS in Section 7.2.4. A variant of the GPS, the GPSHold Service, which allows
“reservations” to be made on a user’s money is defined in Section 7.2.5. Section
7.2.6 describes a PortType for Currency Exchange. Section 7.2.7 contains a simple
example as to how a system using these protocols might work.

This basic architecture exploits the transient nature of a grid service to encapsu-
late the cost of using the service within its SDEs. All changes in state of the grid
service (from the initial advertisement, establishing the cost of its use, to the accep-
tance of this cost, through to its eventual use) are encapsulated through the creation
of new services (see Figure 7.3). This sequence shows how the user finds a service
and requests a price through the RequestPricing operation. The pricing is encapsu-
lated in a short-lived service (30 seconds in this example) that is not acceptable to
the user and the chosen economic model supports a second-round pricing request

256 GRID SYSTEM ECONOMICS

Figure 7.2 Computational grid service being sold as a Chargeable Grid Service (CGS).

Grid
User

Service Data Service Interface Grid Economic
Service Interface

Contract
Negotiation

Contract
Verification

Service
Charging

Economic
Service

Data

Record
Resource

Usage
OGSA Chargeable

Grid
ServiceOGSA Grid Service

Service Data Service Interface

OGSA Grid
Payment
System

OGSA
Resource

Usage
Service

c07.qxd 8/24/2004 10:19 AM Page 256

TEAM LinG - Live, Informative, Non-cost and Genuine!

that is triggered by the second call to the RequestPricing operation to produce a sec-
ond short-lived service. The user has only two choices: to reject the price and let the
service destroy itself after 30 seconds or to accept the pricing (acceptPricing opera-
tion), which produces a long-lived service specifically created for the user. The
pricing of this service may have two stages (as in this example), a single stage, or
many stages. The detailed protocols need to support this form of interaction is de-
scribed in the GESA document.

7.2.2.2 Definitions and Notational Conventions. Throughout GESA, the
term “user” is used as a generic term for a client to a CGS that may be an interactive
user client, a broker acting on the user’s behalf, or any other such entity. This speci-
fication uses namespace prefixes throughout; they are listed in Table 7.2. Note that
the choice of any namespace prefix is arbitrary and not semantically significant.

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 257

CGS
(L = long)RP

CGS
Pricing

(L = 30 s)RP

AP

CGS
Pricing

(L = 30 s)

AP

CGS
Contract
(L = long)

GS
Interact with

underlying grid service

Accept pricing

Model allows second
pricing request

Discover service &
request initial pricing

USER

Figure 7.3 Pricing model.

Table 7.2 Prefixes and namespaces used in GESA

Prefix Namespace

ogsi http://www.gridforum.org/namespaces/2003/03/OGSI
gwsdl http://www.gridforum.org/namespaces/2003/03/gridWSDLExtensions”
sd “http://www.gridforum.org/namespaces/2003/03/serviceData”
wsdl “http://schemas.xmlsoap.org/wsdl/”
http “http://www.w3.org/2002/06/wsdl/http”
xsd “http://www.w3.org/2001/XMLSchema”
xsi “http://www.w3.org/2001/XMLSchema-instance”
ur “http://www.gridforum.org/namespaces/2003/??/UR” ???
rus “http://www.gridforum.org/namespaces/2003/??/RUS” ???
gesa “http://www.gridforum.org/namespaces/2003/??/GESA” ???

c07.qxd 8/24/2004 10:19 AM Page 257

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.2.3 Scope. The remainder of GESA defines the structure of the CGS and
GPS, and how they interact with other services such as RUS. For each of these ser-
vices, one needs to define the:

� Service Data Elements: The additional SDEs that are needed within the grid
service to express the service’s economic meta-data.

� Service Interface Definition: The operations needed to support interaction
with the grid service.

� Implementation: Observations on implementing the operations.

� Other Issues: The goal is to build on the OGSI and related standards and spec-
ifications. In some areas, these may need clarification or further development.

GESA also defines subsidiary services that are needed to support these primary
services.

7.2.3 The Chargeable Grid Service (CGS)

The CGS represents the abstraction of a grid service that has been enabled to sup-
port economic interaction.

7.2.3.1 Service Data Elements. The SDEs provided by the CGS (see Table
7.3) are in addition to those defined within the OGSI Specification. These contain
static and dynamic metadata relating to the economic use of the service. This list of
SDEs is not exhaustive and should be expanded and adapted as the requirements
from the economic models develop. For instance, instead of using real currency
within the refund or compensation SDEs, a service may choose to give credit. This
could be represented as a currency exchangeable only with the services run by a
specific service provider. The SDEs constitute a service-specific advertising ele-
ment and some of these SDEs may only be relevant at different stages of the CGS
lifetime.

258 GRID SYSTEM ECONOMICS

Table 7.3 SDEs provided by the CGS

SDE Occurence Provided by Comment

pricing 1+ Service administrator Supported pricing mechanisms

usage 0/1 Static Service administrator A GSH to a trusted RUS

price 1 Service administrator Price generated through the pricing
mechanism

liability 0/1 Static Service administrator Route to “human compensation”

testimonial 0+ Dynamic Third party service A digitally signed declaration from a
grid entity as to the reliability of the
CGS

c07.qxd 8/24/2004 10:19 AM Page 258

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.3.1.1 Pricing. The primary purpose of a CGS is to let other grid entities
know how to obtain pricing information relating to the use of the service:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
. . .
</serviceData>

A CGS must support a pricing SDE for each pricing mechanism supported by
the service and these are differentiated by their different names and the service data
elements that they encompass. There may not be any difference between a pricing
mechanism named “DutchAuction” and one named “FixedPrice.” The service
provider may add attributes to the pricing service data to describe the mechanisms
used within the pricing mechanism. It is therefore possible to have pricing systems
named “FixedPrice” and “FixedPriceWithCompensation” that have different pric-
ing strategies as they offer different levels of compensation—some and none. The
presence of a pricing element implies that there is a pricing capability accessible
through the CGS::requestPricing operation that will, if invoked, produce a new ser-
vice instance containing pricing information within a price SDE. Within the pricing
element, we define the default and maximum lifetime of any quotation (i.e. the un-
derlying service) provided by the CGS.

A pricing SDE can contain a number of important subelements that are listed in
Table 7.4. These elements are now described in turn.

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 259

Table 7.4 Subelements of a pricing SDE

Element name Occurence Provided by Comment

pricingType 1 Service administrator Basic pricing mechanism that
will be used

duration 0/1 Service administrator Limits of/expected service
duration

currency 1 + Static Service administrator A declaration of the currencies
provided by a GSH that are
acceptable

paymentMechanism 1 + Static Service administrator Acceptable payment mechanisms

resources 0+ Service administrator The consumed resources that
will incur cost to the user

compensation 0 + Static Service administrator Pays a proportion of the survice
cost to the user if the service
fails to deliver

refund 0 + Static Service administrator Refunds a proportion of any paid
charges to the user if the
servicefails to deliver

product 0+ Service administrator

c07.qxd 8/24/2004 10:19 AM Page 259

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.3.1.1.1 PRICING TYPE. Within each pricing element the service provider must
provide precisely one element that characterizes the pricing method:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
<gesa:pricingType>
<gesa:FixedPrice />
</gesa:pricingType>
</serviceData>

The above example provides an example of how to describe a CGS’s pricing mech-
anism by using a fixed price, that is, one that is fixed after an AcceptPricing. The el-
ements used to classify the pricing mechanism (i.e., a very simple lightweight on-
tology) are given in Table 7.5. Further elements (obviously) need to be defined.

7.2.3.1.1.2 DURATION. As part of the pricing SDE, a service may specify infor-
mation about how long the service will last. Any combination of minimum, maxi-
mum, and default time (in seconds) may be defined:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
. . .

<gesa:Duration default=“3600” maximum=“3600” />
</serviceData>

7.2.3.1.1.3 CURRENCY. All transactions within a CGS will incur some “cost” on
a GPS for the resources that are consumed. This cost may be charged in real money
(through some later off-line reconciliation) or through some form of site/organiza-
tion-specific service tokens:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
. . .

<gesa:currency currencyName=“HeyPounds” email=“cash@hey.ac.uk” />
</serviceData>

The currencies that are usable within each CGS are declared through one or more
of the above elements. In order to complete a transaction, the service must “know
of” a GPS that supports this currency type (and the desired payment method) and
the grid entity requesting to use the service. A GPS that supports this currency

260 GRID SYSTEM ECONOMICS

Table 7.5 Elements used to classify pricing mechanisms

Element Definition

FixedPrice The price for the service is set in a single non-negotiable stage.
Auction Indicates that the price is set through a multi-stage action.
EnglishAuction Indicates a particular approach to setting a service price.

c07.qxd 8/24/2004 10:19 AM Page 260

TEAM LinG - Live, Informative, Non-cost and Genuine!

may be found by searching the service registry and its interface and SDEs are de-
fined later.

7.2.3.1.1.4 PAYMENT METHOD. Each transaction within a CGS will be resolved
using a specific underlying payment method. This element describes a particular
payment method:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
. . .

<gesa:paymentMethod paymentMethodName=“CreditCard” />
<gesa:paymentMethod paymentMethodName=“Invoice/Purchase Order” />
</serviceData>

As with currency above, the user must know of a GPS that supports this payment
method.

7.2.3.1.1.5 RESOURCES. Any service invocation will consume a plethora of re-
sources. However, a service provider may only be interested in a relatively small
subset of these resources for the purposes of deciding a price to charge for a service.
The Usage Records Working Group within the GGF have defined an initial subset
of base properties, such as:

� Network

� Disc

� Memory

� Wall clock time

� Processor Time

� Node count

� Processors

These could be used as part of the service pricing policy. The resources that the
CGS will charge for are specified in the gesa:pricing element. This element also
specifies if an estimate of this resource is required by the service to provide any
pricing for service use. The default value for the “estimateRequried” attribute is
false:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
. . .

<gesa:chargedResources >
<ur:memory />
</gesa:chargedResources>
<gesa:chargedResources estimateRequired=“true” >
<ur:cpuTime />
<ur:processors />

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 261

c07.qxd 8/24/2004 10:19 AM Page 261

TEAM LinG - Live, Informative, Non-cost and Genuine!

</gesa:chargedResources>
</serviceData>

7.2.3.1.1.6 COMPENSATION. A statement of compensation is required for any or-
ganization offering a service for monetary reward. The level and complexity of
compensation may vary from one organization to another and for different pricing
methods offered by the same organization or even the same service. For instance,
“GoldStarFixedPrice” might provide some specified compensation. Consider a sim-
ple case:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
. . .

<gesa:compensation percentage=“0” />
</serviceData>

This option allows the client is to refund to the client the agreed cost of invoking the
service, even if the server defaults on the delivery of the service before it is in-
voked. This element will, by default, have the amount contained within the “per-
centage” attribute refunded to the client on failure:

� percentage=“0” means that the client will receive no compensation for any
service failure.

� percentage=“100” means the client will receive in compensation the agreed-
upon cost of using the service even if the client has not yet paid for any part of
the service.

� percentage=“200” means the client will receive in compensation twice the
agreed-upon cost of using the service.

By default, the percentage value is set to zero, meaning the client will receive no
compensation for any service failure. Any nonzero positive value of this variable
will result in the service provider paying out to the client, with no income if the ser-
vice fails. (There is also a need to handle staged payments: 10% on reservation,
60% on job startup, 30% on completion of a job. This option is a work In progress.)

7.2.3.1.1.7 REFUND. A refund could be set up as

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
. . .

<gesa:compensationRefund percentage=“100” />
</serviceData>

This option allows the client to obtain a full refund of any money paid to the service
provider if it does not deliver the service. This element will have the amount con-
tained within the “percentage” attribute refunded to the client on failure:

262 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 262

TEAM LinG - Live, Informative, Non-cost and Genuine!

� percentage=“0” means that the client will receive no refund for any service
failure.

� percentage=“100” means the client will receive a full refund for any service
failure; that is, if money is deducted from the client’s account, it will be re-
funded.

� percentage=“200” means the client will receive a full refund in addition to an
equal amount of compensation for the money deducted.

By default, the percentage value is set to 100, meaning that if the service fails to
deliver, then, from a financial perspective, all cost transactions are rolled back.

7.2.3.1.1.8 PRODUCT. Although it is possible to encapsulate the “product” that is
being sold within the grid service itself, this does not always fully capture the be-
havior of the service being sold. For instance, the grid service may sell access to a
mechanism to download a product, for example, an operation that downloads an
MP3 track or retrieves an electronic book. One alternative to this approach is to en-
capsulate each product and pricing mechanism within a separate grid service:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
<gesa:Duration default=“3600” maximum=“3600” />
<gesa:chargedResources>
<ur:invocation/>
</gesa:chargedResources>
<gesa:product element=http://softwareprovider.com/schema.xml>
<sp:availablePlatforms name=“redhat-8.0” />
<sp:product name=“SicLib” version=“1.2”/>
<sp:duration time=“24h” />
</gesa:product />
<gesa:product element=http://softwareprovider.com/schema.xml>
<sp:availablePlatforms name=“solaris-2.8” />
<sp:product name=“SicLib” version=“1.2”/>
<sp:duration time=“24h” />
</gesa:product />
<gesa:currency currencyName=“SciPounds”
email=cash@softwareprovider.com />
<gesa:paymentMethod paymentMethodName=“CreditCard” />
<gesa:paymentMethod paymentMethodName=“Invoice/Purchase Order” />
. . .

</serviceData>

7.2.3.1.2 Usage. All invocations within a service are recorded in a resource us-
age service instance. This service is used to collect the resources consumed by a
service for the purposes of calculating a charge to the user for service use:

<serviceData name=“gesa:resourceUsage” GSH=“GSH for the RUS” />

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 263

c07.qxd 8/24/2004 10:19 AM Page 263

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.3.1.3 Price. Once the price has been generated by invoking the CGS::re-
questPricing operation, it needs to be displayed through a SDE within the new ser-
vice instance. This allows the user to hold several service instances that may be
used by the user and to examine the economic state of each:

<serviceData name=“gesa:price” currencyName=“HeyPounds”>
<gesa:sum>
<gesa:mult>
<gesa:const value=1.0 />
<gesa:totalUse name=“ur:WallDuration” units=“hour”/>
<gesa:maxUse name=“ur:processors” />
</gesa:mult>
<gesa:mult>
<gesa:const value=10.0 />
<gesa:maxUse name=“ur:memory” units=“GB”/>
</gesa:mult>
</gesa:sum>
</serviceData>

The price may be set for a particular resource by different measures. The con-
sumption of resources may be charged for at a rate (e.g., Mbps), total consumed re-
sources (e.g., number of processors), maximum value (e.g., temporary disk space),
and so on. The above example indicates that the cost for using the CPU will be
charged at 1 HeyPounds for each processor for each hour of the job’s duration.
There is an additional charge for memory at 10 HeyPounds per GB of memory,
based on the maximum memory usage.

7.2.3.1.4 Liability. Liability defines the organization responsible for providing
the service. This is an area in need of further exploration. Effectively, this is an in-
formational SDE element that a user agent may (or may not) search for and pro-
vides the required information if needed by the user:

<serviceData name=“gesa:liability”
organisationName=“London e-Science Centre”
email=“lesc-admin@doc.ic.ac.uk” >
Complaints Department
London e-Science Centre
180 Queen’s Gate
London, SW7 2AZ, UK
</serviceData>

Note: There may be an additional element with a certificate and digital signature al-
lowing this statement of liability to be authenticated in an automatic manner.

264 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 264

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.3.1.5 Testimonial. Many usage scenarios include some mechanism to
“rate” the “quality” of a service. This is from a technical context a fairly ill-defined
problem that could be resolved in several ways:

� Broker. The broker collects services instances, testing them and adding rating
information into the metadata before repackaging the service as one that they
can provide.

� Dynamic SDE. An alternative approach is to provide clients with the opportu-
nity to update the SDE with their views as to the service’s performance. This
could include text, a numerical rating, and a digital signature to provide cred-
ibility.

� Testimonial Server. Independent third-party service that maintains a list of
services and user-supplied comments (positive/negative).

Testimonial elements have not currently been defined.

7.2.3.1.6 Unresolved Issues. Items still to be resolved:

� Difference between compensation and refund is unclear.

� Need more work on pricing.

� The compensation and refund elements are activated on the “failure” of the
service to deliver on something (e.g., SLA). How is this failure detected?
Through resource monitoring provided by RUS?

� Resource-specific compensation mechanisms? Can resources be refunded?

� Is an insurance or warranty action needed beyond the compensation mecha-
nism? Is this an extension of the testimonial action?

� How is this linked into SLAs?

7.2.3.2 Service Interface Definition. It is proposed that the Grid Economic
Service Interface (GESI) should support a number of operations to facilitate the
GESA. The first of these is a factory operation to allow the creation of new instances
of this particular CGS. It is envisaged that many of these CGSs will have a multistage
process to define the final cost of the service to the user, for example, negotiation,
auctioning, and so on. To enable each mode of interaction, the initial act of any CGS
on being contacted by a user will be to create a new service instance to deal with the
requested interaction method.

7.2.3.2.1 CGS::requestPricing. The requestPricing is a service operation pro-
vided by the GESI that will create a new service instance containing information re-
lating to the price charged for using the service. This operation extends the Facto-
ry::createService operation. A service containing this operation has the ability to
provide a quotation for the use of the service. This quotation is encapsulated within
a new service instance created by this operation. The following is a list of inputs:

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 265

c07.qxd 8/24/2004 10:19 AM Page 265

TEAM LinG - Live, Informative, Non-cost and Genuine!

� TerminationTime (optional). The earliest initial termination time that is ac-
ceptable to the client. This is effectively the length of time that the client
wishes to retain the right to use the service. If not specified, then it defaults to
the duration in seconds specified by the gesa:defaultDuration element. After
this time, the service instance and, therefore, the right to use the service, will
be destroyed through the lifetime management provided by the container.

� EconomicParameters (optional). This factory-specific element contains data
used by the GESA Factory element to help instantiate a new service instance
and set the cost for its use. The EconomicParameters element must contain
the following child elements:

� PricingMechanism. This element specifies the pricing mechanism that is
to be used.

� Product (Optional/Required). If multiple product elements are specified
within the economic SDE, then one of these must be specified within the
pricing request.

� AllowedUser. This element specifies the distinguished name of the users
(or other user agents, e.g., brokers) that are allowed to access the created
service. Multiple elements are allowed.

� Currency. Specifies the currency that will be used to record payment. If
only one currency element is specified by the CGS, this element becomes
optional. If multiple currency elements are specified in the SDE, this be-
comes required.

� PaymentMethod. Specifies the mechanism by which currency will be
transferred. This needs to be specified here so that the CGS knows which
GPS to use. If only one mechanism is specified by the CGS, this element
becomes optional. If multiple mechanisms are specified in the SDE, this
becomes required.

� ConsumedResources. Elements specifying the estimated consumed re-
sources that the service invocation will use. This may be used by the CGS
to adjust the returned costing.

� ServiceTerminationTime. The time beyond which the user will no longer
require the service if they decide to make use of the service offering. This
element may need to include “goodUntil” and “goodFrom” to define an
advanced reservation.

The following addresses outputs and faults:

� The pricing for the service use is encapsulated in the new service instance
within the price element. The only mechanism for changing the price of a ser-
vice is through the creation of a new service instance within the requestPric-
ing element. Therefore, at any point in this process a GSH with a price ele-
ment within the SDE encapsulates the cost of using this service instance,
whereas a pricing element represents the presence of a requestPricing opera-

266 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 266

TEAM LinG - Live, Informative, Non-cost and Genuine!

tion and a means of creating a new price. This approach allows the “root” ser-
vice instance to declare how prices are to be set but to make the final price a
result of a multistage negotiation through a series of service instances.

� Any use of the underlying CGS interface must result in failure until the price
for using the service is explicitly accepted by invoking CGS::acceptPricing.

7.2.3.2.2 CGS::acceptPricing. This operation may only appear if a price ele-
ment is contained within the SDE. By invoking this operation, which extends the
Factory::createService operation, a new service instance is created, embedding the
terms and conditions in the new service. The existing service is destroyed as the
quotation it refers to is no longer valid because it has been accepted by a user. The
new service provides access to the underlying grid service to the specified user
community and will record the service invocations in RUS and calculate the result-
ing cost for recording in the GPS. This instance of the CGS, from a user perspec-
tive, is identical to the grid service it encapsulates. The overall lifetime of this new
service is set from the parameters used by the proceeding CGS::requestPricing call.
Within those constraints, it must support standard OGSI lifetime management inter-
faces to manage the service lifetime.

There are no inputs. For output one has:

� Contract. Returns a signed XML document consisting of the economic SDEs
signed by the service provider (i.e., the hosting environment or host certifi-
cate). This provides the user with a document (for offline storage) stating the
terms and conditions for using the grid service that cannot be denied by the
service provider at a later date.

Faults are as defined in the OGSI specification document.

7.2.4 The Grid Payment System

The GPS provides a service to a payment infrastructure that is itself defined outside
the GESA document. The purpose of this section is to define the interaction be-
tween the GPS and other entities within the GESA (e.g., the CGS, a user). No im-
plementation details are specified within the GESA. However, the GPS could be
implemented by any infrastructure with an account-based abstraction. This could
include systems based around electronic cash, credit cards, accountancy packages
with periodic reconciliation, prepaid accounts, service tokens, and so on. The “cur-
rency” used in these transactions need not be recognized or supported by a large
community. A currency could relate to service tokens allocated within a specific
service center or virtual organization. If the CGS is willing to accept more than one
currency to pay for service usage, then this may be specified within its economic
SDEs.

7.2.4.1 Service Data Elements. (See Table 7.6)

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 267

c07.qxd 8/24/2004 10:19 AM Page 267

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.4.1.1 Currency (1+). The currency is the greatest differentiator between dif-
ferent instances of a GPS. The “gesa::currency” element declared earlier should be
used to indicate the currency supported by this GPS. It is possible that multiple cur-
rencies can be handled by a single GPS:

<serviceData name=“gesa:currency” currencyName=“HeyPounds”
email=“cash@hey.ac.uk” />

7.2.4.1.2 Backer (1+). Each currency SDE should have a backer SDE associat-
ed with it, linked by the currencyName attribute:

<serviceData name=“gesa:backer” currencyName=“HeyPounds”
organisationName=“London e-Science Centre”
email=lesc-admin@doc.ic.ac.uk >
Banking Department
London e-Science Centre
180 Queen’s Gate
London, SW7 2AZ, UK
</serviceData>

Note: There should probably be an additional element with a certificate and digital
signature allowing this statement of liability to be authenticated in an automatic
manner.

7.2.4.1.3 PaymentMethod (1+). The payment method is the second greatest
differentiator between different instances of a GPS. It is possible that a single GPS
will be able to handle multiple payment methods. The “gesa::paymentMethod” ele-
ment declared earlier should be used to indicate the currency supported by this
GPS:

<serviceData name=“gesa:paymentMethod”
paymentMethodName=“CreditCard” />
<serviceData name=“gesa:paymentMethod”
paymentMethodName=“Invoice/Purchase Order” />

268 GRID SYSTEM ECONOMICS

Table 7.6 Service data elements

SDE Occurence Provided by Comment

Currency 1+ Service administrator Supported GESA currencies
Bakcer 1+ Service administrator Backers for currencies
Payment/Method 1+ Service administrator Supported payment mechanisms
TrustedUser 0+ Service administrator Declare trusted users
PrivilegedUser 0+ Service administrator Declare priviliged users

c07.qxd 8/24/2004 10:19 AM Page 268

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.4.1.4 TrustedUser (0+). This is an element that places the specified user
into the role of a trusted user:

<serviceData name=“gesa:TrustedUser”>
/C=UK/O=eScience/OU=Imperial/L=LeSC/CN=steven newhouse
</serviceData>

7.2.4.1.5 PrivilegedUser (0+). This is an element that places the specified user
into the role of a privileged user:

<serviceData name=“gesa:PrivilegedUser”>
/C=UK/O=eScience/OU=Imperial/L=LeSC/CN=steven newhouse
</serviceData>

7.2.4.2 Interface Definition. The GPS supports the following operations. As
the current authorization model for GridServices has yet to be defined, one uses the
following classification for these operations:

� Unprivileged. A normal GSI authenticated client connection is sufficient.

� Trusted. A GSI authenticated client whose DN is registered as an account
holder in the GPS or is contained in the TrustedUser SDE (defined earlier).

� Privileged. A GSI authenticated client whose DN is contained in the Privi-
legedUser SDE (defined earlier.)

In the above and the following, DN is defined as the Distinguished Name of the
X.509 certificate.

7.2.4.2.1 GPS::isDNAccountHolder. This operation determines if the speci-
fied DN has an account with this GPS instance. This is used by CGS and other enti-
ties to validate that the user exists. The input is:

� DN. String parameter containing the DN of the user. The presence of a user’s
account in a GPS should not be public information.

The output is:

� Result. Returns are true (the account exists) or false (the account does not ex-
ist).

The faults are:

� Fault. Any fault that occurred.

This is operation is available to trusted clients; for example, a client of a bank is
allowed to query the existence of other clients.

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 269

c07.qxd 8/24/2004 10:19 AM Page 269

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.4.2.2 GPS::creditCheck. Before agreeing to provide a service to a client, it
may be necessary to check that the client has the funds available to support the pro-
posed cost of the service invocation. The inputs are:

� DN. String parameter containing the DN of the user.

� Amount. The amount of the currency that the client is asking to be available.

The output is:

� FundsAvailable. Returns true if the funds are available and false if they are
not.

The faults are:

� NoDNFault. The user’s DN does not exist in the GPS.

� Fault. Any other fault.

This operation is only available to trusted clients.

7.2.4.2.3 GPS::getLastTransactions. This allows users to retrieve their recent
transactions or privileged users to view another user’s recent transactions. The in-
puts are:

� DN. String parameter containing the DN of the user.

� NumberOfTransactions. Specifies the number of transactions that should be
returned.

The output is:

� Statement. An XML document containing the details of each transaction.

The faults are:

� NoDNFault. The user’s DN does not exist in the GPS.

� Fault. Any other fault.

7.2.4.2.4 GPS::getTransactionsByDate. This allows users to retrieve their re-
cent transactions or privileged users to view another user’s recent transactions by
specifying a date range. The inputs are:

� DN. String parameter containing the DN of the user.

� StartDate. Specifies the date from which transactions should be viewed.

� EndDate (optional). Specifies the date before which transactions should be
viewed. If not specified this, is taken to be the current date.

270 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 270

TEAM LinG - Live, Informative, Non-cost and Genuine!

The output is:

� Statement. An XML document containing the details of each transaction.

The faults are:

� NoDNFault. The user’s DN does not exist in the GPS.

� Fault. Any other fault.

7.2.4.2.5 GPS::transferOut. This operation transfers money from one account
to another within the GPS. This is initiated by the user clients effectively “putting”
money from their accounts into someone else’s account. The inputs are:

� DN. String parameter containing the DN of the user account the money is to
be transferred to.

� Amount. The amount of the currency that the client is asking to be transferred.

The faults are:

� NoDestinationDNFault. The DN the money is to be transferred to does not
exist in the GPS.

� NoSourceDNFault. The DN the money is to be transferred from does not ex-
ist in the GPS.

� NoMoneyFault. Insufficient funds exist in the user’s account to complete the
transfer.

� Fault. Any other fault.

Only the holders of the accounts can initiate this operation. They are identified by
the GSI authenticated connection. This operation must either be originated from the
user (inconvenient) or allow a delegated proxy to perform the transaction (insecure?).

7.2.4.2.6 GPS::transferOutExternal. This operation transfers money from one
account to another account in another GPS. This is initiated by the user clients ef-
fectively “putting” money from their accounts into someone else’s. The inputs are:

� externalGPS. Handle to the external GPS.

� DN. String parameter containing the DN of the user account the money is to
be transferred to.

� Amount. The amount of the currency that the client is asking to be transferred.

The faults are:

� NoExternalGPSFault. The external GPS handle was not valid.

� NoDestinationDNFault. The DN the money is to be transferred to does not
exist in the GPS.

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 271

c07.qxd 8/24/2004 10:19 AM Page 271

TEAM LinG - Live, Informative, Non-cost and Genuine!

� NoSourceDNFault. The DN the money is to be transferred from does not ex-
ist in the GPS.

� NoMoneyFault. Insufficient funds exist in the user’s account to complete the
transfer.

� Fault. Any other fault.

Only the holders of the accounts can initiate this operation. They are identified
by the GSI authenticated connection. This operation must either be originated
from the user (inconvenient) or allow a delegated proxy to perform the transac-
tion.

7.2.4.2.7 GPS::transferIn. This operation transfers money from one account to
another within the GPS. The recipients are effectively “getting” money from some-
one’s account and placing it in their own. The inputs are:

� DN. String parameter containing the DN of the user account the money is to
be transferred from.

� Amount. The amount of the currency that the client is asking to be transferred.

The faults are:

� NoDestinationDNFault. The DN the money is to be transferred to does not
exist in the GPS.

� NoSourceDNFault. The DN the money is to be transferred from does not ex-
ist in the GPS.

� NoMoneyFault. Insufficient funds exist in the user’s account to complete the
transfer.

� Fault. Any other fault.

This operation is essential for third-party transactions but will expose the client
(and the GPS) to potential abuse unless a secure mechanism for the users approving
a transaction out of their accounts is achieved. The recipient of the money initiates
this operation.

7.2.4.2.8 GPS::transferInExternal. This operation transfers money from an ex-
ternal account in another GPS to the user’s account in “this” GPS. The recipients
are effectively “getting” money from someone’s account and placing it in their
own. The inputs are:

� externalGPS. Handle to the external GPS.

� DN. String parameter containing the DN of the user account the money is to
be transferred from.

� Amount. The amount of currency that the client is asking to be transferred.

272 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 272

TEAM LinG - Live, Informative, Non-cost and Genuine!

The faults are:

� NoExternalGPSFault. The external GPS handle was not valid.

� NoDestinationDNFault. The DN the money is to be transferred to does not
exist in the GPS.

� NoSourceDNFault. The DN the money is to be transferred from does not ex-
ist in the GPS.

� NoMoneyFault. Insufficient funds exist in the user’s account to complete the
transfer.

� Fault. Any other fault.

This operation is essential for third-party transactions but will expose the client
(and the GPS) to potential abuse unless a secure mechanism for the users approving
a transaction out of their accounts is achieved. The recipient of the money initiates
this operation.

7.2.4.2.9 GPS::createAccount. This operation creates an account for the spec-
ified user with the stated amount. The inputs are:

� DN. String parameter containing the DN of the user that the account is to be
created for.

� Amount. The initial amount of the currency that will be in the account.

The fault is:

� Fault. Any fault.

This operation is restricted to privileged users only.

7.2.4.2.10 GPS::deleteAccount. This operation removes the specified ac-
count. The input is:

� DN. String parameter containing the DN of the user whose account is to be
deleted.

The faults are:

� NoAccountFoundFault. The specified DN does not have an account in the
GPS.

� Fault. Any other fault.

This operation is restricted to privileged users. In reality, the account should
probably be disabled as opposed to purged from the GPS.

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 273

c07.qxd 8/24/2004 10:19 AM Page 273

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2.4.2.11 GPS::createHold. During a long-running execution, it may be de-
sirable to put a “hold” on a certain proportion of a user’s account to ensure that
there is money left to pay for the consumed resources on completion. This operation
creates a GPSHold instance that encapsulates the “reservation” on the specified
user’s account. This operation extends the Factory::createService operation. The in-
puts are:

� TerminationTime. The earliest initial termination time that is acceptable to the
client. This is effectively the length of time that the client wishes to retain a
“hold” on the money. Must be specified.

� HoldParameters. This factory-specific element contains data used by the
GPS Factory element to help instantiate a new service instance and set the
cost for its use. The HoldParameters element must contain the following child
elements:

� User. This element specifies the DN of the account from which the speci-
fied amount of currency will be held.

� Amount. Specifies the amount of money that is to be held.

The ouputs and faults are as defined in the OGSI specification document.

7.2.5 GPSHold Service

This service instance encapsulates the duration and amount of money being held on
behalf of the client. OGSI standard lifetime management tools can be used to ex-
tend the length of this service (perhaps to a defined maximum from the GPS SDE).
The hold on the currency ends when this service instance expires or is terminated
by the client. The service can only be terminated by the declared owner—the entity
requesting the hold.

7.2.5.1 Service Data Elements. The current OGSI specification does not
deal with any form of access control within SDEs. Therefore, how much of the state
encapsulated by the hold should be made public? If information were to be made
public, the SDE would be of the form:

<serviceData name=“gesa:GPSHold”>
<gesa:account>
/C=UK/O=eScience/OU=Imperial/L=LeSC/CN=steven newhouse</gesa:

account>
<gesa:amount>500</gesa:amount>
<gesa:currency name=“HeyPounds” email=“cash@hey.ac.uk” />
<gesa:owner>
/C=UK/O=eScience/OU=Imperial/L=LeSC/CN=LeSC Broker</gesa:owner>
</serviceData>

274 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 274

TEAM LinG - Live, Informative, Non-cost and Genuine!

In this example, the account is the Grid ID of the account holder, the owner of
the hold is the entity requesting (and therefore controlling) the hold, and the amount
is the amount of money (and in which currency) from that account that is to be held.

7.2.5.2 Interface Definition. This service’s primary function is to encapsulate
the “reservation” of money from a specified account. The amount encapsulated by
the reservation is immutable. Therefore, the only operations that may be performed
on the service instance are effectively related to the lifetime management of the
reservation (extended or terminated), and this may be restricted by the GPS during
service creation.

7.2.6 The Grid CurrencyExchange Service

The Grid CurrencyExchange Service (GCES) provides a service to a currency ex-
change infrastructure that is itself defined outside this document. Our purpose with-
in this section is to define the interaction between the GCES and other entities with-
in the GESA (e.g., the CGS, a user). No implementation details are specified within
this document; however, the GCES could be implemented by any infrastructure
with a currency-based abstraction. This could include systems based around elec-
tronic cash, credit cards, service tokens, and so on.

The “currency” used in these transactions need not be recognized or supported
by a large community. A currency could relate to service tokens allocated within a
specific service center or virtual organization.

7.2.6.1 Service Data Elements. (See Table 7.7).

7.2.6.1.1 exchangeRate (1+). The exchangeRate SDE contains the exchange
rates between the currencies supported by the GCES:

<serviceData name=“gesa:exchangeRate”>
<from>
<gesa:currency name=“HeyPounds” email=“cash@hey.ac.uk”/>
</from>
<to>
<gesa:currency name=“HeyDollars” email=“cash@hey.edu”/>

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 275

Table 7.7 Service data elements

SDE Occurence Provided by Comment

exchangeRate 1+ Service administrator Exchange rates between
different currencies

exchangeCommission 0/1 Service administrator A fixed charge when currency
exchanges take place

c07.qxd 8/24/2004 10:19 AM Page 275

TEAM LinG - Live, Informative, Non-cost and Genuine!

</to>
<rate>1.4</rate>
</serviceData>
<serviceData name=“gesa:exchangeRate”>
<from>
<gesa:currency name=“HeyDollars” email=“cash@hey.edu”/>
</from>
<to>
<gesa:currency name=“HeyPounds” email=“cash@hey.ac.uk”/>
</to>
<rate>0.7</rate>
</serviceData>
<serviceData name=“gesa:exchangeRate”>
<from>
<gesa:currency name=“HeyPounds” email=“cash@hey.ac.uk”/>
</from>
<to>
<gesa:currency name=“HeyDollars” email=“cash@hey.edu”/>
</to>
<rate>1.4</rate>
</serviceData>

7.2.6.1.2 exchangeCommission (0/1). Whenever a currency exchange takes
place, the GCES may charge a commission. If the exchangeCommission SDE does
not exist, then the GCES will not charge any commission:

<serviceData name=“gesa:exchangeCommission”>
<currency currencyName=“HeyPounds” email=“cash@hey.ac.uk”/>
<amount>3</amount>
</serviceData>

7.2.6.2 Interface

7.2.6.2.1 GCES:exchangeCurrency. Through this operation, a consumer may
convert one currency to another. The exchange rate to be used for the conversion is
advertised through the exchangeRate SDE. The GCES may charge commission for
the exchange rate. The amount to be charged is advertised through the ex-
changeCommission SDE. The inputs are:

� Amount. The amount to be converted.

� Currency. The currency to which the amount is to be converted.

The outputs are:

� Amount. The amount returned after the conversion.

� CommissionCharged. The currency and amount charged for commission.

276 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 276

TEAM LinG - Live, Informative, Non-cost and Genuine!

The faults are:

� ConversionNotSupported. Either the given currency or the requested currency
is not supported.

� Fault. Any other fault.

7.2.7 An Example

To illustrate the previous service definitions, we consider the simple economic use
of a service to purchase the use of a service by a client, to record the use of the ser-
vice within RUS, and to have the appropriate amount of money deducted from an
account within a grid payment system. The relationship between the client and the
service instances is defined below (see Figure 7.4). The protocol communication
passing between these entities is identified in the figure and expanded upon in the
following sections.

7.2.7.1 Economically Enabled Counter Service. The economically en-
abled counter service has the same basic interface as the counter service, with the
addition of an operation to support the pricing of the service. This is described
through the economic SDEs:

<serviceData name=“gesa:pricing” pricingName=“FixedPriceCharge” >
<gesa:Duration default=“30” maximum=“60” />
<gesa:PricingType>
<FixedPrice />
</gesa:PricingType>
<gesa:chargedResources>

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 277

Figure 7.4 Example.

RUS GBS

Counter
Service 3

Counter
Service 2

Counter
Service 1

Client

CGS::requestPricing

CGS::acceptPricing

CS::count

Long-lived
service advertisement

Short-lived pricing
quotation

User-requested
service duration

c07.qxd 8/24/2004 10:19 AM Page 277

TEAM LinG - Live, Informative, Non-cost and Genuine!

<ur:invocation/>
</gesa:chargedResources>
<gesa:currency
currencyName=“HeyPounds” email=“cash@hey.ac.uk” />
. . .
</serviceData>

These SDEs (expiry information has been ignored) describe the economic state
of the counter service. The service is being offered for a fixed price per invocation,
where the price in “HeyPounds” will by default be held open for 30 seconds before
expiry.

7.2.7.2 Requesting a Price. From this information, the clients are able to
compose a response describing the service invocation they require, and this is
passed to the requestPricing operation:

<gesa:requestPricing>
<gesa:pricingMechanism name=“FixedPriceCharge”>
<gesa:allowedUser>/C=UK/O=eScience/OU=Imperial/L=LeSC/CN=steven
Newhouse</gesa:allowedUser>
<gesa:allowedUser>/C=UK/O=eScience/OU=Imperial/L=LeSC/CN=anthony
mayer </gesa:allowedUser>
<gesa:currency name=“HeyPounds” email=“cash@hey.ac.uk” />
<gesa:consumedResources>
<gesa:resourceUsage name=“ur:invocation”>5</gesa:resourceUsage>
<gesa:consumedResurces>
<gesa:terminationTime duration=“180” />
</gesa:requestPricing>

This is a request to set up a service instance that is accessible by two users who es-
timate that they will use the service five times and are willing to pay in “Hey-
Pounds.” If this request is successful, then a new instance of the service is created
and a GSH is returned to the user. The service is expected to be used for 180 sec-
onds.

7.2.7.3 New Service Instance. The new service instance created by the pre-
vious activity results in a service instance with the following SDEs:

<serviceData name=“gesa:price” currencyName=“HeyPounds”>
<gesa:mult>
<gesa:const value=2.0 />
<gesa:totalUse name=“ur:invocation” />
</gesa:mult>
</serviceData>

278 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 278

TEAM LinG - Live, Informative, Non-cost and Genuine!

The standard SDE structure will provide information relating to the service’s ex-
piry. The SDEs provides all the information relating to the service use specifying
that 2 “HeyPounds” will be charged for each service invocation, which is only ac-
cessible to the two specified users.

In creating the service instance, there is an opportunity to perform several
checks. A GPS can be found for the specified currency and the proposed users
checked to ensure that they possess accounts and have sufficient funds to support
the proposed charge for the estimated number of invocations.

7.2.7.4 Accept Pricing. The user is able to browse the SDE and view the of-
fered service contract. This offer will be limited by the overall lifetime of the ser-
vice as defined in the SDE and as requested by the user. If the users wish to commit
to the pricing, they should invoke the CGS::acceptPricing operation. This will cre-
ate a new service instance for the users to interact with.

7.2.7.5 Grid Service Instance. This grid service instance is dedicated to the
use of the stated user community at the previously quoted price. The user interacts
with this service instance in the same manner as a non-GESA-enabled service using
the provided GSH.

7.2.7.6 Service Use. This uses the GSH to invoke operations in the grid ser-
vice encapsulated by the CGS, in this case the GS:count operation. On each invoca-
tion, the user access is checked against the allowed users.

7.2.7.7 Resource Use. The consumed resources are recorded in an instance of
the RUS. The consumed resources for this service would have the form:

<ur:UsageRecords>
<ur:UsageRecord>
<UserIdentity>
<ds:KeyInfo xmlns:ds=“http://www.w3.org/2000/09/xmldsig#”>
<X509Data>
<X509SubjectName>
/C=UK/O=eScience/OU=Imperial/L=LeSC/CN=anthony mayer
</X509SubjectName>
</X509Data>
</ds:KeyInfo>
</UserIdentity>
<MachineName>eric.mvc.mcc.ac.uk</MachineName>
<SubmitHost>eric.mvc.mcc.ac.uk</SubmitHost>
<ur:GlobalJobID>GSH of the invoking service</ur:GlobalJobID>
<ur:Resource name=“UseCount”>1</ur:Resource>
<ur:UsageRecord>
<ur:UsageRecords>

7.2 GRID ECONOMIC SERVICES ARCHITECTURE 279

c07.qxd 8/24/2004 10:19 AM Page 279

TEAM LinG - Live, Informative, Non-cost and Genuine!

This would be passed to the RUS::insertUsageRecords operation within the RUS
service instance defined within the gesa:resourceUsage element of the CGS SDE.

7.2.7.8 Service Charging. Following service invocation (or on service de-
struction or periodically), the service use has to be charged for. All records relating
to this service instance are retrieved from the RUS and the total cost for using the
service calculated from the total resource usage and the stated charging policy. This
cost is passed onto the CGS and any holds on the user’s accounts released.

Usage information would be extracted from the RUS through the RUS::extract-
UsageByGlobalJobID operation specifying the GSH of the service. The usage
record(s) returned by this search need to be aggregated and combined with the
charging information to define a cost for the service use. This cost is used within the
GPS::transferIn operation (invoked by the service provider) and specifying the DN
of the entity that created this instance of the CGS as the entity that is to be charged
for the use of the service.

7.2.8 Security Considerations

GESA assumes the availability of the security provisions from the OGSI. There is a
need to be able to specify access to services on a per-user basis.

280 GRID SYSTEM ECONOMICS

c07.qxd 8/24/2004 10:19 AM Page 280

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 281
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 8

Communication Systems
for Local Grids

The remainder of the book develops more explicitly our focus on networking. We
have mentioned a number of times the importance and role of the network
throughout the previous chapters. In the last three chapters, we describe key net-
working technologies to support and enable the deployment of grid computing
services at the local (Chapter 8), intragrid (Chapter 9), and intergrid (Chapter 10)
level. These technologies apply at the SAN, LAN, MAN, WAN, and GAN levels.
Motivations for looking at grids from a networking perspective include the fact
that grid systems have network bandwidth dependencies and network latency de-
pendencies, and also the fact that grid systems suffer from synchronization proto-
col inefficiencies. Network security is also an issue (although, host security is
even more critical). Hence, an appropriate networking infrastructure is required to
make grid computing a reality.

Our treatment is by necessity terse, but rather up-to-date. The interested reader
can consult a number of textbooks on telecommunications, including, but not limit-
ed to [77]. In 1987, in internal Bellcore/Telcordia Special Reports, in a section
called “Network for a Computing Utility,” we stated that networks were critical for
utility computing [6]:

The proposed service provides the entire apparatus to make the concept of the Com-
puting Utility possible. . . . This service is basically feasible once a transport and
switching network with strong security and accounting [chargeback] capabilities is de-
ployed. A high degree of intelligence in the network is required . . . a physical network
is required . . . security and accounting software is needed . . . protocols and standards
will be needed to connect servers and users, as well as for accounting and billing.
These protocols will have to be developed before the service can be established. . . .

8.1 INTRODUCTION AND POSITIONING

As we have seen, grid computing can be considered as a network of computation. It
supports the concept of “utility computing,” with which users can get “on-demand”
“machine cycles off a grid” without having to own the physical assets. Also it sup-

c08.qxd 8/24/2004 10:20 AM Page 281

TEAM LinG - Live, Informative, Non-cost and Genuine!

ports the concept of the enterprise grid (intragrid), with which organizations make
more synergistic use of often underutilized assets they already own. Grid comput-
ing is supported by tools and protocols for coordinated resource sharing and prob-
lem solving among pooled assets [91]. With grid computing, specialized equip-
ment, data stores, and computers that are remotely deployed on the network can be
managed as virtualized assets, thereby reducing the necessity of the organization to
purchase multiple devices, in much the same way today that people in the same of-
fice share Internet access or a printing resources across a LAN [130]. Ultimately,
organizations will be able to obtain computing services over a network from a re-
mote computing-service provider. Broadband networks play a key enabling role in
making grid computing possible. Transmission of content and control within the
grid are important for sending jobs and their required data to remote points within
the grid. Some jobs require a large amount of data to be processed that may not al-
ways reside on the processor running the job.

As we have also seen, OGSA is a standardized model for grid computing that
employs distributed resources over the interconnecting network [119]. OGSA facil-
itates the overall management of distributed computing resources available over a
local or wide-area network that appear to an end user or application as one large vir-
tual computing system. The networking mechanism is the most fundamental re-
source for the grid because, clearly, without networking grid computing would not
be possible. The growth in communication capacity in the recent past makes grid
computing practical, compared to the limited bandwidth available when distributed
computing was first emerging in the 1970s, 1980s, and 1990s.

Figure 3.7 in Chapter 3 provided an example of a protocol stack and network-
enabled services in a grid environment. Figure 8.1 amplifies this protocol stack by
identifying key networking technologies of interest at the “lower layers” of the
protocol model, namely, the physical, data link, and network layers. The band-
width available for the subtending communication links can often be a critical re-
source that can limit utilization of the grid. LANs and SANs support local clus-
ters; high-capacity, high-quality intranet support intragrids and long-haul global
connectivity (including Internet-provided capacity) make intergrids possible. LAN
connectivity now is in the 1–10 Gbps range, and practically affordable WAN/in-
tranet connectivity for companies is in the 45–155 Mbps range. As previously not-
ed, speeds in the 2.4–10 Gbps range are commonplace within the inner workings
of carriers, but these kinds of speeds are not generally affordable to Fortune 500
companies. A single fiber can now carry in the range of 0.5 Tbps using high-den-
sity DWDM, but these speeds begin to be out of reach for all but the largest car-
riers, at least as of 2004. Internet-based virtual private networks (VPNs) provide
bandwidths in the 1–10 Mbps range, but QoS continues to be an issue, particular-
ly given (i) the slowdown in deployment of telecom assets in the early 2000s, and
(ii) the growth in the early 2000s (as much as 50% a quarter) of bandwidth-
consuming e-mail spam.

Local grids rely on LANs and SANs. The availability of powerful workstations,
processors, servers, and “blade technology,” along with high-speed networks [such
as Gigabit Ethernet (GbE)], as commodity components has led to the emergence of

282 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

c08.qxd 8/24/2004 10:20 AM Page 282

TEAM LinG - Live, Informative, Non-cost and Genuine!

local clusters for high-performance computing. The availability of such clusters
within many organizations has fostered a growing interest in aggregating distrib-
uted resources to solve large-scale problems of multiinstitutional interest. As we
saw in Chapter 2, key networking, storage, and platform vendors are already work-
ing together to enable enhanced grid services for SAN-based environments. The
physical-layer network technologies that are used (or have been used) for this func-
tion include Fibre Channel (FC) and Fast and Gigabit Ethernet. Network protocols
that are used at higher layers of the protocol stack include Fibre Channel Protocol
for SCSI (SCSI FCP), TCP/IP, VI, CIFS, and NFS [140].

Intragrids rely on WANs. Supported by innovations in optics, the theoretical per-
formance of WANs has increased significantly in recent years. The “affordable”
bandwidth has also grown in the past 5–10 years. Furthermore, the integration of in-
telligent services into the network helps simplify data access across the grid and re-
source sharing and management [35] (this topic is treated in Chapter 9).

Intergrids often rely on the Internet. As Web services proliferate, concerns in-
clude the overall demands on network bandwidth and, for any particular service, the
effect on performance as demands for that service rise. Security becomes even more
critical in the Internet environment. A number of new products have emerged that
enable software developers to create or modify existing applications that can be
“published” as Web services [15] (this topic is covered in Chapter 10).

In the sections (and chapters) that follow, we cover some (but not all) of the
key technologies shown in Figure 8.1. We focus here on the lower layers. Services
such as Web services (HTTP, SOAP, WSDL, UDDI, etc.), are not discussed fur-
ther (refer to Chapters 3 and 4 for basic information on these protocols and capa-
bilities).

8.1 INTRODUCTION AND POSITIONING 283

Figure 8.1 Key high-speed networking technologies usable in grid environments.

Application

Collective

Resource

Connectivity

Fabric

GRAM GridFTP MDS

Grid Service Abstraction

SOAP+TLS/GSI Other Transports

L3VPNs

L2VPNs/MPLS

ATM/IMA/FRASI/MLF
TrLS (aka EPL)

SONET/SDH/OTN
ASON
DWDM/CWDM

SAN/FCIP/iFCP/FICON
GbE/10GbE

IP

OGSA/OGSI
Layer

Networking
Layer

c08.qxd 8/24/2004 10:20 AM Page 283

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2 SAN-RELATED TECHNOLOGY

SANs can be viewed as a subset of high-speed networks that support the networking
(extension) of the channel of a processor. A channel is generally a higher-speed port
than a communication port, although this distinction is becoming less of an issue of
late. A channel is generally a parallel communication link that needs to be serialized
before it can be transported at any distance greater that a few feet. Within the native
channel environment, data is known as “block-level data.” One can think of the chan-
nel as an extension of the processor’s internal bus (although there is a subtle differ-
ence for the purists). We emphasize, once again, that channel-level communication
is applicable to a number of instances (e.g., real-time mirroring), but the marketing
focus has been on storage. Hence, for all intents and purposes, SANs and channel-
based communication have lately been thought of as one and the same. (This author
wrote what is believed to be the first textbook treatment of WAN-based channel ex-
tension technologies, with extensive materials on this topic in the 1991 book,
Telecommunications Technology Handbook, now in its second edition [77].)

Channel-based communication has always been problematic, not only because it
is intrinsically a parallel-originated stream and is high-speed oriented, but, more
importantly, because the developers failed over the years to make use of available
telecom standards such as SONET in the wide area, and Ethernet in the local area.

Channel-oriented streams can be carried generally in four modes:

� Native over a channel-specific communication fiber (typically dark fiber), as
is the case of FICON and even FC (Fibre Channel)

� Mapped over a physical-layer service such as SONET, SDH, or the evolving
OTN/ASON

� Mapped over a data-link layer service such as ATM

� Tunneled over a network layer (that, is IP) service (most recently)

A service or protocol is “mapped” when it is carried by a service/protocol that
operates at the same protocol layer; it is “tunneled” when it is carried within the
payload of a protocol that operates at a layer(s) higher than the protocol in question.

Although native or mapped service is typically best from a bandwidth and laten-
cy perspective, it may be expensive to support and may be inflexible (by requiring
fiber or high-speed availability at various locations). Tunneled service makes the
assumption that IP networking is ubiquitously available as an intranet- or Internet-
delivered service, and, hence, channel communication based on it is more flexible.
Tunneled service, however, is faced with bandwidth and latency issues. Mid-range
applications (e.g., tape backup) can use tunneled services; higher-range applications
(e.g., real-time disk mirroring and scientific-data-intensive applications), may need
native or mapped services.

When storage is all within a data center, SANs can run the native FC medium;
when storage is remote, a native, mapped, or tunneled service is required. Another
approach is not to use channel-based communications to begin with, but to use the
communication port, specifically GbE or 10 GbE, instead. As mentioned, in the

284 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

c08.qxd 8/24/2004 10:20 AM Page 284

TEAM LinG - Live, Informative, Non-cost and Genuine!

past, the channel “port” of a processor, server, or storage system was faster that the
“communication” port; these days, both ports can operate at the same speed, hence,
the designer, in fact, has a choice.

8.2.1 Fibre Channel Technology—Native Mode

8.2.1.1 FC. This section looks at some basic concepts of Fibre Channel. “Fibre”
is a generic term used to cover all physical media supported by the FC protocols, in-
cluding optical fiber, twisted pair, and coaxial cable. Logically, FC is a bidirection-
al point-to-point serial data channel, designed for high-performance information
transport. Physically, FC is an interconnection of one or more point-to-point links.
Each link end terminates in a port that is specified in the Physical Interface (FC-PI)
specification and in the Framing and Signaling (FC-FS) specification. FC is defined
by a set of ANSI standards, including the following:

� Fibre Channel Framing and Signaling (FC-FS); ANSI INCITS*/Project 1331-
D; Draft Standard Rev. 1.9, Apr. 9, 2003

� Fibre Channel Physical and Signaling Interface (FC-PH); ANSI INCITS 230-
1994 (R1999), formerly ANSI X3.230-1994 (R1999), Nov. 14 1994

� ANSI X3.297:1997, Information Technology—Fibre Channel—Physical and
Signalling Interface-2 (FC-PH-2)

� ANSI X3.303:1998, Fibre Channel—Physical and Signalling Interface-3
(FC-PH-3).

� ANSI X3.272:1996, Information Technology—Fibre Channel—Arbitrated
Loop (FC-AL).

� ANSI NCITS 332-1999, Fibre Channel—Arbitrated Loop (FC-AL-2).

� Fibre Channel Switch Fabric—2 (FC-SW-2); ANSI INCITS 355-2001, 2001

� Fibre Channel Switch Fabric—3 (FC-SW-3); ANSI INCITS/Project 1508-D;
Draft Standard Rev. 6.3, Feb. 19 2003

� Fibre Channel Methodologies for Interconnects (FC-MI-2); ANSI INCITS/
Project 1599-DT; Draft Standard Rev 2.03, June 4 2003

FC is structured as a set of hierarchical and related functions, FC-0 through FC-3
(see Figure 8.2). Each of these functions is described as a level. FC does not restrict
implementations to specific interfaces between these levels. The Physical Interface
(FC-0) consists of transmission media, transmitters, receivers, and their interfaces.
The Physical Interface specifies a variety of media, and associated drivers and re-
ceivers capable of operating at various speeds. The Transmission Protocol (FC-1),
Signaling Protocol (FC-2), and Common Services Protocol (FC-3) are fully speci-
fied in FC-FS and FC-AL-2. Fibre Channel levels FC-1 through FC-3 specify the
rules and provide mechanisms needed to transfer blocks of information end to end,
traversing one or more links. An Upper Level Protocol mapping to FC-FS consti-

8.2 SAN-RELATED TECHNOLOGY 285

*INCITS: International Committee for Information Technology Standards (formerly NCITS).

c08.qxd 8/24/2004 10:20 AM Page 285

TEAM LinG - Live, Informative, Non-cost and Genuine!

tutes an FC-4 that is the highest level in the FC structure. FC-2 defines a suite of
functions and facilities available for use by an FC-4. A fibre channel node may sup-
port one or more N_Ports (the endpoints for fibre channel traffic) and one or more
FC-4s. Each N_Port contains FC-0, FC-1, and FC-2 functions. FC-3 optionally pro-
vides the common services to multiple N_Ports and FC-4s.

An encapsulated description of the FC functionality follows [78].2 Table 8.1 de-
fines some key terms needed to describe the concepts.

Fibre channel is a frame-based, serial technology designed for peer-to-peer com-
munication between devices at gigabit speeds and with low overhead and latency.
Figure 8.3 depicts the basic fibre channel environment.

The Fibre Channel Network. The fundamental entity in FC is the fibre channel
network. Unlike a layered network architecture, a fibre channel network is largely
specified by functional elements and the interfaces between them. As shown in Fig-
ure 8.4, these consist, in part, of the following:

1. N_PORTs. The endpoints for fibre channel traffic. In the FC standards,
N_PORT interfaces have several variants, depending on the topology of the
fabric to which they are attached. As used in this specification, the term ap-
plies to any one of the variants.

2. FC Devices. The fibre channel devices to which the N_PORTs provide ac-
cess.

3. Fabric Ports. The interfaces within a fibre channel network that provide at-
tachment for an N_PORT. The types of fabric port depend on the fabric
topology and are discussed later.

4. The network infrastructure for carrying frame traffic between N_PORTs.

286 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

Upper Level Protocols (ULP)

Mapping

Common Services

Signaling Protocol

Transmission Protocol
(Physical Coding)

Physical Interface (PI)

Framing and
Signaling (FC-FS)

Physical Interface
and Media (FC-PI)

FC-4

FC-3

FC-2

FC-1

FC-0

�
Figure 8.2 FC layers.

2The rest of this section is based on [78].

c08.qxd 8/24/2004 10:20 AM Page 286

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2 SAN-RELATED TECHNOLOGY 287

Table 8.1 Key FC and iFCP terms

Address-translation A mode of gateway operation in which the scope of N_PORT
mode fabric addresses for locally attached devices are local to the iFCP

gateway region in which the devices reside.

Address-transparent A mode of gateway operation in which the scope of N_PORT
mode fabric addresses for all fibre channel devices are unique to the

bounded iFCP fabric to which the gateway belongs.

B_Port A bridging function typically interfaces between FC switch fabrics
that provide an extension port for traffic that must be routed to a re-
mote destination, not part of the local switching domain. The bridg-
ing function identifies its connection endpoints as B_Ports, indicat-
ing its transparent behavior to the Fabric. A bridging function
delivers all frames except link service frames received on one port
transparently to its opposite and does not have responsibilities in
routing frames [177].

Bounded iFCP fabric The union of two or more gateway regions configured to interoper-
ate together in address-transparent mode.

DOMAIN_ID The value contained in the high-order byte of a 24-bit N_PORT fi-
bre channel address.

E_Port An expansion port on a switch used to link multiple switches to-
gether into a FC Fabric. A network built with two or more FC
switches is used to establish a consistent addressing scheme, ex-
change of routing information and name service information for
discovery and monitoring of devices.

F_Port The interface used by an N_PORT to access fibre channel switched
fabric functionality.

Fabric The entity that interconnects N_PORTs attached to it and is capable
of routing frames by using only the address information in the fibre
channel frame.

Fabric port The interface through which an N_PORT accesses a fibre channel
fabric. The type of fabric port depends on the fibre channel fabric
topology. In this specification, all fabric port interfaces are consid-
ered to be functionally equivalent.

FC-2 The fibre channel transport services layer described in [21].

FC-4 The fibre channel mapping of an upper layer protocol, such as [23],
the fibre channel to SCSI mapping.

Fibre channel device An entity implementing the functionality accessed through an FC-4
application protocol.

Fibre channel network A native fibre channel fabric and all attached fibre channel nodes.

Fibre channel node A collection of one or more N_PORTs controlled by a level above
the FC-2 layer. A node is attached to a fibre channel fabric by
means of the N_PORT interface described in [21].

(continued)

c08.qxd 8/24/2004 10:20 AM Page 287

TEAM LinG - Live, Informative, Non-cost and Genuine!

288 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

Table 8.1 Continued

G_Port Generic switch port that can be either an F_port or an E_port. Port
function is automatically determined during login [177]

Gateway region The portion of an iFCP fabric accessed through an iFCP gateway
by a remotely attached N_PORT. Fibre channel devices in the re-
gion consist of all those locally attached to the gateway.

iFCP The Internet Fibre Channel Protocol (iFCP). A gateway-to-gateway
protocol that supports FC Layer 4 FCP over TCP/IP.

iFCP frame A fibre channel frame encapsulated in accordance with the FC
Frame Encapsulation Specification and iFCP.

iFCP portal An entity representing the point at which a logical or physical iFCP
device is attached to the IP network. The network address of the
iFCP portal consists of the IP address and TCP port number to
which a request is sent when creating the TCP connection for an
iFCP session.

iFCP session An association comprised of a pair of N_PORTs and a TCP con-
nection that carries traffic between them. An iFCP session may be
created as the result of a PLOGI fibre channel login operation.

iSNS The server functionality and IP protocol that provide storage name
services in an iFCP network.

L_Port An arbitrated loop port.

Locally attached With respect to a gateway, a fibre channel device accessed through
device the fibre channel fabric to which the gateway is attached.

Logical iFCP device The abstraction representing a single fibre channel device as it ap-
pears in an iFCP network.

N_PORT An iFCP or fibre channel entity representing the interface to fibre
channel device functionality. This interface implements the fibre
channel N_PORT semantics specified in [21]. Fibre channel de-
fines several variants of this interface that depend on the fibre chan-
nel fabric topology. As used in this document, the term applies
equally to all variants.

N_PORT alias The N_PORT address assigned by a gateway to represent a remote
N_PORT accessed via the iFCP protocol.

N_PORT fabric The address of an N_PORT within the fibre channel fabric.
address

N_PORT ID The address of a locally attached N_PORT within a gateway re-
gion. N_PORT IDs are assigned in accordance with the fibre chan-
nel rules for address assignment specified in [21].

N_PORT network The address of an N_PORT in the iFCP fabric. This address
address consists of the IP address and TCP port number of the iFCP Portal

and the N_PORT ID of the locally attached fibre channel device.

Port login (PLOGI) The fibre channel Extended Link Service (ELS) that establishes an
iFCP session through the exchange of identification and operation

c08.qxd 8/24/2004 10:20 AM Page 288

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2 SAN-RELATED TECHNOLOGY 289

Figure 8.3 Fibre channel environment.

Figure 8.4 A fibre channel network.

Fibre
Channel
Network

Fibre
Channel
Network

FC Disks FC
Server

Fabric
and

Fabric Services

Fabric
Port

Fabric
Port

Fabric
Port

Fabric
Port

FC
Device

N_PORT

FC
Device

N_PORT

FC
Device

N_PORT

FC
Device

N_PORT

Table 8.1 Continued

parameters between an originating N_PORT and a responding
N_PORT.

Remotely attached With respect to a gateway, a fibre channel device accessed from the
device gateway by means of the iFCP protocol.

Unbounded iFCP The union of two or more gateway regions configured to
fabric interoperate together in address-translation mode.

5. Within a switched or mixed fabric (see below), a set of auxiliary servers, in-
cluding a name server for device discovery and network address resolution.
The types of service depend on the network topology.

The following subsections describe fibre channel network topologies and give an
overview of the fibre channel communications model.

c08.qxd 8/24/2004 10:20 AM Page 289

TEAM LinG - Live, Informative, Non-cost and Genuine!

Fibre Channel Network Topologies. The principal fibre channel network
topologies consist of the following:

1. Arbitrated Loop. A series of N_PORTs connected together in daisy-chain
fashion. In [21], loop-connected N_PORTs are referred to as NL_PORTs.
Data transmission between NL_PORTs requires arbitration for control of the
loop in a manner similar to a token ring network.

2. Switched Fabric. A network consisting of switching elements, as described
below.

3. Mixed Fabric. A network consisting of switches and “fabric-attached” loops.
A description can be found in [20]. A loop-attached N_PORT (NL_PORT),
is connected to the loop through an L_PORT and accesses the fabric by way
of an FL_PORT.

Depending on the topology, the N_PORT and its means of network attachment
may be one of the types listed in Table 8.2. The differences in each N_PORT vari-
ant and its corresponding fabric port are confined to the interactions between them.
To an external N_PORT, all fabric ports are transparent and all remote N_PORTs
are functionally identical.

SWITCHED FIBRE CHANNEL FABRICS. An example of a multiswitch fibre channel fab-
ric is shown in Figure 8.5. The interface between switch elements is either a propri-
etary or the standards-compliant E_PORT interface described by the FC-SW2 spec-
ification [24].

MIXED FIBRE CHANNEL FABRIC. A mixed fabric contains one or more arbitrated loops
connected to a switched fabric, as shown in Figure 8.6. As noted previously, the
protocol for communications between peer N_PORTs is independent of the fabric
topology, N_PORT variant, and type of fabric port to which an N_PORT is at-
tached.

FIBRE CHANNEL LAYERS AND LINK SERVICES. As noted, FC consists of the following
layers:

� FC-0. The interface to the physical media.

290 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

Table 8.2 N_PORT types

FC Network Topology Network Interface N_PORT Variant

Loop L_PORT NL_PORT

Switched F_PORT N_PORT

Mixed FL_PORT via L_PORT NL_PORT
F_PORT N_PORT

c08.qxd 8/24/2004 10:20 AM Page 290

TEAM LinG - Live, Informative, Non-cost and Genuine!

� FC-1. The encoding and decoding of data and out-of-band physical link con-
trol information for transmission over the physical media.

� FC-2. The transfer of frames, sequences, and exchanges comprising protocol
information units.

� FC-3. Common services.

8.2 SAN-RELATED TECHNOLOGY 291

Figure 8.5 Multiswitch fibre channel fabric.

FC Switch

Interswitch
Interface

Interswitch
Interface

FC
Device

N_PORT

FC
Device

N_PORT

Interswitch
Interface

Interswitch
Interface

F_PORT

FC
Switch

F_PORT

FC
Switch Fibre Channel

Fabric

Figure 8.6 Mixed fibre channel fabric.

FC Switch

Interswitch
Interface

Interswitch
Interface

FC
Device

N_PORT

FC
Device

NL_PORT

Interswitch
Interface

Interswitch
Interface

F_PORT

FC
Switch

FL_PORT

FC
Switch

FC Loop

FC
Device

NL_PORT
FC

Traffic

c08.qxd 8/24/2004 10:20 AM Page 291

TEAM LinG - Live, Informative, Non-cost and Genuine!

� FC-4. Application protocols such as the Fibre Channel Protocol for SCSI
(FCP). FCP is the ANSI SCSI serialization standard to transmit SCSI com-
mands, data, and status information between a SCSI initiator and SCSI target
on a serial link, such as a FC network (FC-2).

In addition to the layers defined above, FC defines a set of auxiliary operations
called link services, some of which are implemented within the transport layer fab-
ric. These are required to manage the fibre channel environment, establish commu-
nications with other devices, retrieve error information, perform error recovery, and
other similar services. Some link services are executed by the N_PORT. Others are
implemented internally within the fabric. These internal services are described in
the next subsection.

Fabric-Supplied Link Services. Servers internal to a switched fabric handle cer-
tain classes of Link Service requests and service-specific commands. The servers
appear as N_PORTs located at the “well-known” N_PORT fabric addresses speci-
fied in [21]. Service requests use the standard fibre channel mechanisms for
N_PORT-to-N_PORT communications.

All switched fabrics must provide the following services:

� Fabric F_PORT server. Services N_PORT requests to access the fabric for
communications.

� Fabric Controller. Provides state change information to inform other FC de-
vices when an N_PORT exits or enters the fabric (see below).

� Directory/Name Server. Allows N_PORTs to register information in a data
base, retrieve information about other N_PORTs, and discover other devices
as described below.

A switched fabric may also implement the following optional services:

� Broadcast Address/Server. Transmits single-frame, class 3 sequences to all
N_PORTs.

� Time Server. Intended for the management of fabric-wide expiration timers
or elapsed time values and not intended for precise time synchronization.

� Management Server. Collects and reports management information, such as
link usage, error statistics, link quality, and similar items.

� Quality of Service Facilitator. Performs fabric-wide bandwidth and latency
management.

FIBRE CHANNEL NODES. A fibre channel node has one or more fabric-attached
N_PORTs. The node and its N_PORTs have the following associated identifiers:

1. A worldwide unique identifier for the node.

2. A worldwide unique identifier for each N_PORT associated with the node.

3. For each N_PORT attached to a fabric, a 24-bit fabric-unique address having

292 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

c08.qxd 8/24/2004 10:20 AM Page 292

TEAM LinG - Live, Informative, Non-cost and Genuine!

the properties defined below. The fabric address is the address to which
frames are sent.

Each worldwide unique identifier is a 64-bit binary quantity having the format de-
fined in [21].

FIBRE CHANNEL DEVICE DISCOVERY. In a switched or mixed fabric, fibre channel de-
vices and changes in the device configuration may be discovered by means of ser-
vices provided by the fibre channel name server and fabric controller.

The name server provides registration and query services that allow a fibre chan-
nel device to register its presence on the fabric and discover the existence of other
devices. For example, one type of query obtains the fabric address of an N_PORT
from its 64-bit worldwide unique name. The full set of supported fibre channel
name server queries is specified in [22].

The fabric controller complements the static discovery capabilities provided by
the name server through a service that dynamically alerts a fibre channel device
whenever an N_PORT is added or removed from the configuration. A FC device re-
ceives these notifications by subscribing to the service as specified in [21].

FIBRE CHANNEL INFORMATION ELEMENTS. The fundamental element of information in
fibre channel is the frame. A frame consists of a fixed header and up to 2112 bytes
of payload having the structure described below. The maximum frame size that may
be transmitted between a pair of fibre channel devices is negotiable up to the pay-
load limit, based on the size of the frame buffers in each fibre channel device and
the path maximum transmission unit (MTU) supported by the fabric.

Operations involving the transfer of information between N_PORT pairs are per-
formed through “exchanges.” In an exchange, information is transferred in one or
more ordered series of frames referred to as sequences.

Within this framework, an upper layer protocol is defined in terms of transac-
tions carried by exchanges. Each transaction, in turn, consists of protocol informa-
tion units, each of which is carried by an individual sequence within an exchange.

FIBRE CHANNEL FRAME FORMAT. A fibre channel frame (see Figure 8.7) consists of a
header, payload, and 32-bit CRC bracketed by SOF and EOF delimiters. The head-
er contains the control information necessary to route frames between N_PORTs
and manage exchanges and sequences. Figure 8.7 gives a schematic view of the
frame.

The source and destination N_PORT fabric addresses embedded in the S_ID and
D_ID fields represent the physical addresses of originating and receiving
N_PORTs, respectively.

N_PORT Address Model. N_PORT fabric addresses (see Figure 8.8) are 24-bit
values having the following format defined by the fibre channel specification [21].

A FC device acquires an address when it logs into the fabric. Such addresses are
volatile and subject to change based on modifications in the fabric configuration. In
a fibre channel fabric, each switch element has a unique Domain ID assigned by the

8.2 SAN-RELATED TECHNOLOGY 293

c08.qxd 8/24/2004 10:20 AM Page 293

TEAM LinG - Live, Informative, Non-cost and Genuine!

principal switch. The value of the Domain ID ranges from 1 to 239 (0xEF). Each
switch element, in turn, administers a block of addresses divided into area and port
IDs. An N_PORT connected to a F_PORT receives a unique fabric address consist-
ing of the switch’s Domain ID concatenated with switch-assigned area and port IDs.

A loop-attached NL_PORT (see Figure 8.6) obtains the Port ID component of its
address during the loop initialization process described in [19]. The area and do-
main IDs are supplied by the fabric when the fabric login (FLOGI) is executed.

FIBRE CHANNEL TRANSPORT SERVICES. N_PORTs communicate by means of the fol-
lowing classes of service specified in the FC standard [21]:

� Class 1. A dedicated physical circuit connecting two N_PORTs.

� Class 2. A frame-multiplexed connection with end-to-end flow control and
delivery confirmation.

294 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

Bit 0 7 8 15 16 23

Domain ID Area ID Port ID

Figure 8.8 Fibre channel address format.

Figure 8.7 Fibre channel frame format.

Bit 0 31

Start-of-frame Delimiter

Destination N+PORT
Fabric Address (D_ID)
(24 bits)

Source N_PORT
Fabric Address (S_ID)
(24 bits)

Control information for
frame type, exchange
management, IU
segmentation, and
reassembly

Frame payload
(0–2112 bytes)

CRC

End-of-Frame Delimiter

Word 0

1

2

3
.
.
.

6

7
.
.
.
.
.

.

n

24-byte
Frame
Header

c08.qxd 8/24/2004 10:20 AM Page 294

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Class 3. A frame-multiplexed connection with no provisions for end-to-end
flow control or delivery confirmation.

� Class 4. A connection-oriented service, based on a virtual circuit model, pro-
viding confirmed delivery with bandwidth and latency guarantees.

� Class 6. A reliable multicast service derived from Class 1.

Class 2 and Class 3 are the predominant services supported by deployed FC storage
and clustering systems.

Class 3 service is similar to User Datagram Protocol (UDP) or IP datagram ser-
vice. FC storage devices using this class of service rely on the ULP implementation
to detect and recover from transient device and transport errors.

For Class 2 and Class 3 service, the FC fabric is not required to provide in-order
delivery of frames unless explicitly requested by the frame originator (and support-
ed by the fabric). If ordered delivery is not in effect, it is the responsibility of the
frame recipient to reconstruct the order in which frames were sent based on infor-
mation in the frame header.

LOGIN PROCESSES. The login processes are FC-2 operations that allow an N_PORT
to establish the operating environment necessary to communicate with the fabric,
other N_PORTs, and ULP implementations accessed via the N_PORT. Three login
operations are supported:

1. Fabric Login (FLOGI). An operation whereby the N_PORT registers its pres-
ence on the fabric, obtains fabric parameters such as classes of service sup-
ported, and receives its N_PORT address.

2. Port Login (PLOGI). An operation by which an N_PORT establishes com-
munication with another N_PORT.

3. Process Login (PRLOGI). An operation that establishes the process-to-
process communications associated with a specific FC-4 ULP, such as FCP-
2, the fibre channel SCSI mapping.

Since N_PORT addresses are volatile, an N_PORT originating a login (PLOGI)
operation executes a name server query to discover the fibre channel address of the
remote device. A common query type involves use of the worldwide unique name
of an N_PORT to obtain the 24-bit N_PORT fibre channel address to which the
PLOGI request is sent.

8.2.1.2 10GFC. The 10 Gigabit Fibre Channel Standard3 describes in detail ex-
tensions to fibre channel signaling and physical layer services introduced in FC-PH,
to support data transport at a rate in excess of 10 gigabits per second. This standard
was developed by Task Group T11 of Accredited Standards Committee INCITS
during 2000–2001. 10GFC describes the signaling and physical interface services
that may be utilized by an extended version of the FC-2 level to transport data at a

8.2 SAN-RELATED TECHNOLOGY 295

310GbE Alliance Tutorial Materials.

c08.qxd 8/24/2004 10:20 AM Page 295

TEAM LinG - Live, Informative, Non-cost and Genuine!

rate in excess of 10 gigabits per second over a family of FC-0 physical variants.
10GFC additionally introduces port management functions at the FC-3 level.

FC-3 General Description. The FC-3 level of 10GFC extends the FC-3 levels of
FC-FS and FC-AL-2 by adding a port management interface and register set and
low-level signaling protocol. The port management interface and register set pro-
vide an interconnection between manageable devices within a port and port man-
agement entities.

The link signaling sublayer (LSS) is used to signal low-level link and cable plant
management information during the Idle stream. The WAN interface sublayer
(WIS) is an optional sublayer that may be used to create a physical layer that is
data-rate and format compatible with the SONET STS-192c transmission format
defined by ANSI, as well as the SDH VC-4-64c container specified by ITU. The
purpose of the WIS is to support 10GFC data streams that may be mapped directly
to STS-192c or VC-4-64c streams at the PHY level, without requiring higher-layer
processing. The WIS specifies a subset of the logical frame formats in the SONET
and SDH standards. In addition, the WIS constrains the effective data throughput at
its service interface to the payload capacity of STS-192c/VC-4-64c, that is, 9.58464
Gbps. Multiplexed SONET/SDH formats are not supported.

FC-2 General Description. The FC-2 level of 10GFC extends the FC-2 levels of
FC-FS and FC-AL-2 to transport data at a rate of 10.2 Gbps over a family of FC-0
physical variants. 10GFC provides the specification of optional physical interfaces
applicable to the implementation of 10GFC Ports. These interfaces include the 10
Gigabit Media Independent Interface (XGMII) and the 10 Gigabit Attachment Unit
Interface (XAUI). One or both of these interfaces may typically be present within a
10GFC port.

XGMII, the 10 Gigabit Media Independent Interface, provides a physical instan-
tiation of a 10.2 Gbps parallel data and control transport within FC-2. Its implemen-
tation is typically an internal chip interconnect or chip-to-chip interconnect. The
XGMII supports 10.2 Gbps data transport through its 32-bit-wide data and 4-bit-
wide control transmit and receive paths.

XAUI, the 10 Gigabit Attachment Unit Interface, provides a physical instantia-
tion of a 10.2 Gbps four-lane serial data and control transport within FC-2 or be-
tween FC-2 and lower levels, including FC-1 and FC-0. The XAUI is defined as an
XGMII extender. Its implementation is typically a chip-to-chip interconnect includ-
ing chips within transceiver modules. The XAUI supports 10.2 Gbps data transport
through its four 8B/10B-based serial transmit and receive paths.

FC-1 General Description. The FC-1 level of 10GFC provides the ability to
transport data at a rate of 10.2 Gbps over a family of FC-0 physical variants. 10GFC
provides the following FC-1 functions and interfaces:

� Direct mapping of FC-1 signals to 10GFC ordered sets.

� 8B/10B transmission code that divides FC-2 data and ordered sets among four
serial lanes.

296 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

c08.qxd 8/24/2004 10:20 AM Page 296

TEAM LinG - Live, Informative, Non-cost and Genuine!

� 64B/66B transmission code that supports FC-2 data and ordered sets over a
single serial lane.

� An optional physical interface for use by single-lane serial FC-0 variants.
This interface is known as the 10 Gigabit Sixteen Bit Interface (XSBI).

FC-1 signals convey FC-2 data as well as frame delimiters and control informa-
tion to be encoded by FC-1 transmission code. The same conveyance exists in the
reverse direction.

8B/10B transmission code is the same as that specified in FC-FS. It is intended
for 10.2 Gbps data transport across printed circuit boards, through connectors, and
over four separate transmitters and receivers. These four transmitters and receivers
may be either optically multiplexed to and from a single fiber-optic cable or direct-
ly conveyed over four individual fibers.

64B/66B transmission code is intended for 10.2 Gbps data transport across a
single fiber-optic cable. The primary reason for the development of this code is to
provide minimal overhead above the 10.2 Gbps serial data rate to allow the use of
optoelectronic components developed for other high-volume 10 Gbps communica-
tions applications such as SONET OC-192.

The 10 Gigabit Sixteen Bit Interface provides a physical instantiation of a 16-bit-
wide data path that conveys 64B/66B encoded data to and from FC-0. The XSBI is
intended to support serial FC-0 variants.

FC-0 General Description. The FC-0 level of 10GFC describes the FC link. The
FC-0 level covers a variety of media and associated transmitters and receivers capa-
ble of transporting FC-1 data. The FC-0 level is designed for maximum flexibility
and allows the use of a large number of technologies to meet the broadest range of
fibre channel system cost and performance requirements.

The link-distance capabilities specified in 10GFC are based on ensuring interop-
erability across multiple vendors supplying the technologies (both transceivers and
cable plants) under the tolerance limits specified in 10GFC. Greater link distances
may be obtained by specifically engineering a link based on knowledge of the tech-
nology characteristics and the conditions under which the link is installed and oper-
ated. However, such link-distance extensions are outside the scope of 10GFC.

FC-PI describes the physical link, the lowest level, in the fibre channel system. It
is designed for flexibility and allows the use of several physical interconnect tech-
nologies to meet a wide variety of system application requirements.

Optical variants. Multiple optical serial physical full-duplex variants are speci-
fied to support the transport of encoded FC-1 data transport over fiber-optic medium.

Copper physical variant. A four-lane electrical serial full duplex physical variant
is specified to support the transport of encoded FC-1 data transport over copper
medium.

Ports, links, and paths. Each fiber set is attached to a transmitter of a port at one
link end and a receiver of another port at the other link end. When a fabric is present
in the configuration, multiple links may be utilized to attach more than one N_Port
to more than one F_Port. Patch panels or portions of the active fabric may function
as repeaters, concentrators, or fiber converters. A path between two N_Ports may be

8.2 SAN-RELATED TECHNOLOGY 297

c08.qxd 8/24/2004 10:20 AM Page 297

TEAM LinG - Live, Informative, Non-cost and Genuine!

made up of links of different technologies. For example, the path may have single
fiber multimode fiber links or parallel copper or fiber multimode links attached to
end ports but may have a single-fiber, single-mode fiber link in between.

FC-PI defines the optical signal characteristics at the interface connector recep-
tacle. Each conforming optical FC attachment must be compatible with this optical
interface to allow interoperability within an FC environment. FC links must not ex-
ceed the BER objective (10–12) under any conditions. The parameters specified in
FC-PI support meeting that requirement under all conditions, including the mini-
mum input power level.

The following physical variants are included:

� 850 nm Parallel (four-lane) Optics. Specified in this standard.

� 850 nm Serial. Fully specified in IEEE P802.3ae Clause 52.

� 850 nm WDM (four-wavelength). Specified in this standard.

� 1310 nm Serial. Fully specified in IEEE P802.3ae Clause 52.

� 1310 nm WDM (four-wavelength). Fully specified in IEEE P802.3ae Clause
53.

The 850 nm Parallel (four-lane) variant supports MM short wavelength (SW)
data links. The laser links operates at the 3.1875 GBd (gigabaud) rate. The specifi-
cations are intended to allow compliance to Class 1 laser safety. Reflection effects
on the transmitter are assumed to be small but need to be bounded. A specification
of maximum relative intensity noise (RIN) under worst-case reflection conditions is
included to ensure that reflections do not impact system performance. The receiver
must operate within a BER of 10–12 over the link’s lifetime and temperature range.

The 850 nm WDM (four wavelength) variant has the following four wavelengths
for the spectral specifications:

1. 771.5–784.5 nm

2. 793.5–806.5 nm

3. 818.5–831.5 nm

4. 843.5–856.5 nm

8.2.2 Fibre Channel Technology—Tunneled Modes

This section describes tunneled methods for handling of channel communication.
The jargon “IP storage” is being used to describe this set of approaches. A number
of transport protocol standards, specifically, Internet Small Computer Systems In-
terface (iSCSI), Fibre Channel over TCP/IP (FCIP), and The Internet Fibre Channel
Protocol (iFCP), have emerged of late. This affords organizations additional choic-
es for accessing data over IP networks. “IP storage products” are also appearing.

The benefits of the tunneled approach to channel communications (“IP storage
networking” in the new jargon) relate to leveraging the large installed base of Eth-
ernet and IP intranets, extranets, and the Internet. This facilitates storage to be ac-
cessed over LAN, MAN, or WAN environments, without needing to deal with na-

298 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

c08.qxd 8/24/2004 10:20 AM Page 298

TEAM LinG - Live, Informative, Non-cost and Genuine!

tive channel interfaces across the network itself. This is of interest in grid comput-
ing. Tunneling enables the rapid deployment of IP-based SANs linking to FC de-
vices. It allows the organization to implement enterprise-level solutions based on
existing applications that already communicate with the FCP layer, alluded to in the
previous section. These protocols enable scalable implementations using existing
FC storage products via TCP/IP networks of any distance, using standard GbE lay-
er 2 switches and layer 3 routers. They can also be used to facilitate grid deploy-
ment.

To facilitate the IP-based movement of block-level data that is stored as either
direct-attached storage (DAS) or on a FC SAN requires new tunneling (transport)
protocols. The tunneling protocols enable organizations to create and manage het-
erogeneous data storage environments (e.g., for backup, disaster recovery, and grid
computing) where DAS and FC SANs can be integrated over a common IP network
backbone.

Even without the full power of grid computing, these developments in IP storage
networking are being viewed by proponents as a storage virtualization that enables
managers to create virtual storage pools among geographically dispersed DAS,
NAS, and SAN data resources [46]. This is kind of an entry-level approach to a full-
fledged data grid.

The tunneling protocols that have emerged of late are:

� The Internet Small Computer Systems Interface (iSCSI). Defines the mecha-
nisms to transmit and receive block storage data over TCP/IP networks by en-
capsulating SCSI-3 commands into TCP and transporting them over the
LAN/intranet/extranet/Internet via IP (that is, iSCSI SANs can be deployed
within LAN, MAN, or WAN environments). TCP provides the required end-
to-end reliability. The iSCSI protocol runs on the host initiator and the receiv-
ing target device. ISCSI is being developed by the IETF.

� Fibre Channel over TCP/IP (FCIP). Provides a mechanism to “tunnel” FC
over IP-based networks. This enables the interconnection of SANs, with
TCP/IP used as the underlying reliable wide-area transport. FCIP is a protocol
for connecting FC SANs over IP networks. It provides the functionality and
speed of fibre channel with the ability to manage the networks using the same
tools used today [41]. FCIP is being developed by the IETF.

� The Internet Fibre Channel Protocol (iFCP). A gateway-to-gateway protocol
that supports FC Layer 4 FCP over TCP/IP. TCP/IP routing and switching
components complement, enhance, or replace the FC fabric. That is to say,
the iFCP specification defines a protocol for the implementation of a FC fab-
ric in which TCP/IP switching and routing elements replace FC components:
the lower-layer FC transport is replaced with IP-based networks (along with
TCP) and standard LANs, such as GbE. The protocol enables the attachment
of existing FC storage products to an IP network by supporting the fabric ser-
vices required by such devices. iFCP supports FCP. It replaces the transport
layer (FC-2) with an IP network (i.e., Ethernet), but retains the upper-layer
(FC-4) information, such as FCP. This is accomplished by mapping the exist-
ing FC transport services to IP [144].

8.2 SAN-RELATED TECHNOLOGY 299

c08.qxd 8/24/2004 10:20 AM Page 299

TEAM LinG - Live, Informative, Non-cost and Genuine!

These tunneling/IP storage networking protocols are different, but they all deal
with transporting block-level data over an IP network. These protocols enable end
users to [12]:

� Leverage existing storage devices (SCSI and FC) and networking infrastruc-
tures, such as GbE-based LANs and IP-based intranets.

� Optimize storage resources to be available to a larger pool of applications.

� Reduce the geographical limitations of DAS and SAN access.

� Extend the reach of existing storage applications (backup, disaster recovery,
and mirroring), without “upper-layer” modification.

� Manage storage networks with traditional IP tools.

� Provide enablements: the ease of deployment and management, support asso-
ciation, scalability, and flexibility that come with IP networking. This in turn,
is expected to provide impetus to grid-based solutions (as well as more tradi-
tional data center solutions).

iSCSI has been developed to enable access of the embedded base of DAS over
IP networks. The protocol enables block-level storage to be accessed from FC
SANs using IP-based networks. iSCSI defines the mechanisms to handle block stor-
age applications over TCP/IP networks. At the physical layer, iSCSI supports a Gi-
gabit Ethernet interface; this means that systems supporting iSCSI interfaces can be
directly connected to standard switches and/or IP routers. The iSCSI protocol is po-
sitioned above the physical and data-link layers and interfaces to the operating sys-
tem’s standard SCSI Access Method command set. iSCSI can be supported over
any physical media that supports TCP/IP, but the most typical implementations are
on GbE. iSCSI can run in software over a standard GbE network interface card
(NIC), or can be optimized in hardware for better performance on an iSCSI host bus
adapter (HBA). iSCSI also enables the access of block-level storage that resides on
fibre channel SANs over an IP network via iSCSI-to-fibre channel gateways such
as storage routers and switches. Initial iSCSI deployments are targeted at small to
medium-sized businesses and departments or branch offices of larger enterprises
that have not deployed fibre channel SANs [46] (see Figure 8.9, top).

By allowing greater access to DAS devices, possibly in a grid computing setting,
these storage resources can be optimally utilized. Applications such as remote back-
up, disaster recovery, storage virtualization, and grid computing can be supported.
The recent standardization efforts in this arena, the iSCSI-compliant products that
are becoming available, and the SNIA IP Storage Forum’s multivendor interoper-
ability validations enable users to rapidly deploy “plug-and-play” IP SAN environ-
ments.

FCIP encapsulates FC packets and transports them via IP. It is a tunneling proto-
col that uses TCP/IP as the transport, while keeping FC services transparent to the
end-user devices. FCIP relies on IP-based network services (e.g., alternate routing,
QoS, etc.), and on TCP for congestion control and end-to-end integrity (that is,
data-error and data-loss recovery). FCIP is intended to support the installed base of
FC SANs, as shown in Figure 8.9, middle, and the need to interconnect these SANs

300 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

c08.qxd 8/24/2004 10:20 AM Page 300

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2 SAN-RELATED TECHNOLOGY 301

Figure 8.9 Tunneling arrangements. Top: iSCSI permits SCSI-3 commands to tunneled
and delivered reliably over IP networks. Middle: FCIP permits multiple local FC SANs to
be interconnected over an IP network backbone. Bottom: IFCP permits FC SANs to be in-
terconnected via IP networkds of any length, using traditional IP network elements (e.g.,
routers).

FC FC

FC FC

Fibre Channel
SAN

FC FC

FC FC

Fibre Channel
SAN

IP network

iSCSI SCSI-3 commands encapsulated in TCP/IP

IP SAN

IP IP

IP

IP network

FCIP

Fibre Channel
SAN

FC

FC

FC

FC

FC Tape
Library

FC
Server

FC Disks

Map
FCP to an

IP Network

iFCP
Gateway

Device-to-Device
Session iFCP

Gateway

IP Network

c08.qxd 8/24/2004 10:20 AM Page 301

TEAM LinG - Live, Informative, Non-cost and Genuine!

over a geographic area to support mission-critical environments. This approach en-
ables applications that have been developed to run over SANs to be supported over
WANs. This same arrangement can be used to support data grids. SANs extensions
(SANs interconnections to meet the needs for remote storage access) provide the
high performance and reliability (diversified routing) required for business continu-
ity and disaster recovery, including remote backup/archiving and remote mirroring.
FCIP also provides centralized management. By combining IP networking, FCIP
allows an organization to extend the interconnectivity of SANs across regional and
national distances. FCIP provides the transport for traffic between SANs over
LANs, MANs, and WANs. It also enables organizations to leverage their current IP
infrastructure and management resources to interconnect and extend SANs.

iFCP is a TCP/IP-based protocol for interconnecting FC storage devices or FC
SANs using an IP infrastructure in conjunction with, or, better yet, in place of, FC
switching and routing elements. iFCP also has the capability to create fully au-
tonomous regions by interconnecting islands of existing FC hub- and switch-based
SANs, if present. iFCP represents an ideal customer solution for transitioning from
FC to native IP storage networks [41]. Like FCIP, the primary drivers for iFCP are
the large installed base of FC devices, combined with the broad availability of IP
networking. Through the use of TCP, iFCP can accommodate deployment in envi-
ronments in which the underlying IP network may not by itself be reliable. iFCP’s
primary advantage as a SAN gateway protocol is the mapping of FC transport ser-
vices over TCP, allowing networked, rather than point-to-point, connections be-
tween and among SANs without requiring the use of FC fabric elements. Existing
Fibre Channel Protocol (FCP)-based drivers and storage controllers can safely as-
sume that iFCP, also being FC-based, provides the reliable transport of storage data
between SAN domains via TCP/IP, without requiring any modification of those
products. iFCP is designed to operate in environments that may experience a wide
range of latencies [144]. iFCP maps FC transport services to an IP fabric as outlined
in Figure 8.9, bottom. Gateways are used to connect existing FC devices to an IP
network, and, as such, will include physical interfaces for both FC and IP. FC de-
vices (e.g., disk arrays, switches, and HBAs) connect to an iFCP gateway or switch.
Each FC session is terminated at the local gateway and converted to a TCP/IP ses-
sion. The remote gateway or switch receives the iFCP session and initiates a FC
session at the remote location. iFCP is a TCP/IP protocol that transports encapsulat-
ed FC-4 frame images between gateways. iFCP session endpoints are Fibre Chan-
nel N_Ports [144]. Table 8.3 compares iFCP and FC. Data center functionalities
such as centralized backup, remote mirroring, storage management, and storage vir-
tualization are supported within an iFCP environment due to the ability to create a
scalable, peer-to-peer fibre channel/IP storage network [46].

8.3 LAN-RELATED TECHNOLOGY

In recent years, there has been major progress in developing high-speed LAN sys-
tems to support in-building corporate enterprise connectivity and data center con-

302 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

c08.qxd 8/24/2004 10:20 AM Page 302

TEAM LinG - Live, Informative, Non-cost and Genuine!

nectivity. In the late 1990s, Ethernet operating at 1 Gbps was standardized; we refer
to these systems here as GbE. In the early 2000s, systems operating at 10 Gbps
were standardized; we refer to these here as 10GbE. There is work underway to in-
crease the speed to 40 and/or 100 Gbps.

This section provides some very basic information on LANs, GbE, and 10GbE.
A full treatment of Ethernet requires a (large) book of its own; below, we provide
just the most basic introduction to some topics of interest. The IEEE is the standard-
ization body (in conjunction with ISO/IEC) that handles LAN standardization. Fig-
ure 8.10 depicts the basic IEEE LAN protocol model that is consistent across all
LAN technologies.

8.3.1 Standards

Over the years, the IEEE has published a comprehensive set of International Stan-
dards for LANs employing Carrier Sense Multiple Access (CSMA/CD) as the ac-

8.3 LAN-RELATED TECHNOLOGY 303

Table 8.3 Comparison of iFCP and FC

iFCP FC

General services � IP based � Name services, security key distribution,
� Name services, security time services, zone management, fabric

key distribution, time configuration services, management
services, zoning services
� iSNS, TLS, etc. � Based on FC-GS2

� Time services
� /TBS/

Fabric services � Class 2, Class 3 � Class 1, Class 2, Class 3 per FC-FS

Routing � OSPF or any other IP � FSPF (Fabric Shortest Path First), a
routing protocol variant of OSPF

Figure 8.10 Basic IEEE LAN protocol model.

*Formerly IEEE Std 802.1A.

802.3
MEDIUM
ACCESS

802.3
PHYSICAL

802.12
MEDIUM
ACCESS

802.12
PHYSICAL

802.4
MEDIUM
ACCESS

802.4
PHYSICAL

802.5
MEDIUM
ACCESS

802.5
PHYSICAL

802.6
MEDIUM
ACCESS

802.6
PHYSICAL

802.11
MEDIUM
ACCESS

802.11
PHYSICAL

PHYSICAL
LAYER

DATA
LINK

LAYER

802.1 BRIDGING

802.2 LOGICAL LINK CONTROL

80
2.

1
M

AN
AG

EM
EN

T

80
2

O
VE

R
VI

EW
 &

 A
R

C
H

IT
EC

TU
R

E*

80
2.

10
 S

EC
U

R
IT

Y

c08.qxd 8/24/2004 10:20 AM Page 303

TEAM LinG - Live, Informative, Non-cost and Genuine!

cess method. These standards are embodied in the IEEE 802.3 family. CSMA/CD is
a low-complexity multiplexing scheme that allows multiple users to share the com-
mon medium (e.g., the four-wire bus that comprises the LAN); this is accomplished
using channel-contention schemes. More recently, switched configurations that
eliminate altogether the need for multiplexing and, hence, contention, have
emerged. A majority of installations now use these switched configurations operat-
ing at 10- or 100-Mbps speeds. LANs were invented in the 1970s. Digital Equip-
ment Corporation, Intel, and Xerox (DIX) brought out the first “standard” version
of a LAN, calling this version Ethernet. The formal standardization that followed in
the early 1980s by the IEEE was based on DIX-advanced technology.

IEEE 802.3 is intended to encompass several media types and techniques for sig-
nal rates from 1 Mbps to 10000 Mbps. The latest edition of the IEEE 802.3 standard
provides the necessary specifications for the following families of systems: a 1
Mbps baseband system, 10 Mbps baseband and broadband systems, a 100 Mbps
baseband system, a 1000 Mbps baseband system, and a 10000 Mbps baseband sys-
tem. In addition, it specifies a method for linearly incrementing a system’s data rate
by aggregating multiple physical links of the same speed into one logical link.

The IEEE Project 802 develops LAN and Metropolitan Area Network (MAN)
standards, mainly for the lowest two layers of the Reference Model for Open
Systems Interconnection (OSI). It coordinates with other national and internation-
al standards groups, with some standards now published by ISO as international
standards. There is strong international participation, and some meetings are held
outside the United States.4 The first meeting of the IEEE Computer Society
“Local Network Standards Committee (LMSC)”, Project 802, was held in
February of 1980. There was going to be one LAN standard. It was divided into
media or Physical layer (PHY), Media Access Control (MAC), and Higher Level
Interface (HILI). The access method was similar to that for Ethernet, as was the
bus topology. By the end of 1980, a token access method was added, and a year
later there were three MACs: CSMA/CD, Token Bus, and Token Ring. In the
years since, other MAC and PHY groups have been added, and one for LAN se-
curity as well. The unifying theme has been a common upper interface to the
Logical Link Control (LLC) sublayer, common data-framing elements, and some
commonality in media interfaces. The scope of work has grown to include MANs
and Wide Area Networks (WANs) and higher data rates have been added. An or-
ganizational change gave the team the “LAN/MAN Standards Committee” name
and more involvement in the standards sponsorship and approval process. Table
8.4 identifies the key standards that have been produced over the years.

Figure 8.11 depicts the various sublayers that comprise the MAC and PHY appa-
ratus. The basic IEEE 802.3 standard provides for two distinct modes of operation:
half duplex and full duplex. A given IEEE 802.3 instantiation operates in either
half- or full-duplex mode at any one time. The term “CSMA/CD MAC” is used
throughout the standard synonymously with “802.3 MAC,” and may represent an
instance of either half-duplex or full-duplex mode data terminal equipment (DTE),

304 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

4Overview And Guide To The IEEE 802 LMSC, July, 2002, http://grouper.ieee.org/groups/802/
overview_07_12_2002.pdf.

c08.qxd 8/24/2004 10:20 AM Page 304

TEAM LinG - Live, Informative, Non-cost and Genuine!

even though full-duplex mode DTEs do not implement the CSMA/CD algorithms
traditionally used to arbitrate access to shared-media LANs.

Half-Duplex Operation. In half-duplex mode, the CSMA/CD media access
method is the means by which two or more stations share a common transmission
medium. To transmit, a station waits (defers) for a quiet period on the medium (that
is, no other station is transmitting) and then sends the intended message in bit-serial
form. If, after initiating a transmission, the message collides with that of another
station, then each transmitting station intentionally transmits for an additional pre-
defined period to ensure propagation of the collision throughout the system. The

8.3 LAN-RELATED TECHNOLOGY 305

Table 8.4 Key IEEE LAN efforts

IEEE 802.1
The IEEE 802.1 Working Group is chartered to concern itself with and develop standards
and recommended practices in the following areas: 802 LAN/MAN architecture, internet-
working among 802 LANs, MANs and other wide-area networks, 802 overall network man-
agement, and protocol layers above the MAC and LLC layers.

Active Projects
802a—Ethertypes
802.1s—Multiple Spanning Trees
802.1y—802.1D Maintenance
802.1z—802.1Q Maintenance
802.1aa—802.1X Maintenance

Projects under Discussion
802.1AB—Station and Media Access Control Connectivity Discovery
802.1ac—Media Access Control Service revision

Archived Projects
802—Overview and Architecture
802.1D—MAC bridges
802.1G—Remote MAC bridging
802.1Q—Virtual LANs
802.1t—802.1D Maintenance
802.1u—802.1Q Maintenance
802.1v—VLAN Classification by Protocol and Port
802.1w—Rapid Reconfiguration of Spanning Tree
802.1x—Port Based Network Access Control

Withdrawn Projects
802.1r—GARP Proprietary Attribute Registration Protocol (GPRP)

IEEE 802.3 CSMA/CD (Ethernet)
The IEEE 802.3 Working Group develops standards for CSMA/CD- (Ethernet-) based
LANs. They have a number of active projects, as listed below:

P802.3ah—Ethernet in the First Mile
P802.3af—DTE Power via MDI
P802.3—Static Discharge in Copper Cables, ad hoc

c08.qxd 8/24/2004 10:20 AM Page 305

TEAM LinG - Live, Informative, Non-cost and Genuine!

station remains silent for a random amount of time (backoff) before attempting to
transmit again. Each aspect of this access method process is specified in detail in
subsequent clauses of the IEEE 802.3 standard. Half-duplex operation can be used
with all media and configurations.

Full-Duplex Operation. Full-duplex operation allows simultaneous communi-
cation between a pair of stations using point-to-point media (dedicated channel).
Full-duplex operation does not require that transmitters defer, nor do they monitor
or react to receive activity, as there is no contention for a shared medium in this
mode. Full-duplex mode can only be used when all of the following are true:

1. The physical medium is capable of supporting simultaneous transmission and
reception without interference.

2. There are exactly two stations connected with a full-duplex point-to-point
link. Since there is no contention for use of a shared medium, the multiple ac-
cess (i.e., CSMA/CD) algorithms are unnecessary.

3. Both stations on the LAN are capable of, and have been configured to use,
full-duplex operation.

The most common configuration envisioned for full-duplex operation consists of

306 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

Figure 8.11 LAN standard relationship to the ISO/IEC Opens Systems Interconnection
(OSI) reference model.

OSI
REFERENCE

MODEL
LAYERS

LAN
CSMA/CD
LAYERS

HIGHER LAYERS

APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

LLC—LOGICAL LINK CONTROL

MAC CONTROL (OPTIONAL)

MAC—MEDIAL ACCESS CONTROL

PLS RECONCILIATION

PLS

PMA

MII

AUI

MDI
MEDIUM

10 Mb/s

RECONCILIATION

PCS

PMD

MII

MDI

100 Mb/s

PMA

MEDIUM

RECONCILIATION

PCS

PMD

GMII

MDI

1000 Mb/s

PMA

MEDIUM

� PHY
PMA

MDI
MEDIUM

1 Mb/s, 10 Mb/s

AUI

MAU {

AUI = ATTACHMENT UNIT INTERFACE PLS = PHYSICAL LAYER SIGNALING
MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER
MII = MEDIA INDEPENDENT INTERFACE PMA = PHYSICAL MEDIUM ATTACHMENT
GMII = GIGABIT MEDIA INDEPENDENT INTERFACE PHY = PHYSICAL LAYER DEVICE
MAU = MEDIUM ATTACHMENT UNIT PMD = PHYSICAL MEDIUM DEPENDENT

c08.qxd 8/24/2004 10:20 AM Page 306

TEAM LinG - Live, Informative, Non-cost and Genuine!

a central bridge (also known as a switch) with a dedicated LAN connecting each
bridge port to a single device. Full-duplex operation constitutes a proper subset of
the MAC functionality required for half-duplex operation.

8.3.2 Key Concepts

Compatibility Interfaces. Five important compatibility interfaces are defined
within what is architecturally the Physical Layer.

1. Medium Dependent Interfaces (MDI). To communicate in a compatible man-
ner, all stations will adhere rigidly to the exact specification of physical-me-
dia signals defined in Clause 8 (and beyond) in the IEEE 802.3 standard, and
to the procedures that define correct behavior of a station. The medium-inde-
pendent aspects of the LLC sublayer and the MAC sublayer should not be
taken as detracting from this point; communication by way of the ISO/IEC
8802-3 (ANSI/IEEE Std 802.3) Local Area Network requires complete com-
patibility at the Physical Medium interface (that is, the physical cable inter-
face).

2. Attachment Unit Interface (AUI). It is anticipated that most DTEs will be lo-
cated some distance from their connection to the physical cable. A small
amount of circuitry will exist in the Medium Attachment Unit (MAU) di-
rectly adjacent to the physical cable, whereas the majority of the hardware
and all of the software will be placed within the DTE. The AUI is defined
as a second compatibility interface. Although conformance with this inter-
face is not strictly necessary to ensure communication, it is highly recom-
mended, since it allows maximum flexibility in intermixing MAUs and
DTEs. The AUI may be optional or not specified for some implementations
of the IEEE 802.3 standard that are expected to be connected directly to the
medium and so do not use a separate MAU or its interconnecting AUI ca-
ble. The Physical Layer Signaling (PLS) and Physical Medium Attachment
(PMA) are then part of a single unit, and no explicit AUI implementation is
required.

3. Media Independent Interface (MII). It is anticipated that some DTEs will be
connected to a remote PHY, and/or to different medium-dependent PHYs.
The MII is defined as a third compatibility interface. While conformance
with implementation of this interface is not strictly necessary to ensure com-
munication, it is highly recommended, since it allows maximum flexibility in
intermixing PHYs and DTEs. The MII is optional.

4. Gigabit Media Independent Interface (GMII). The GMII is designed to con-
nect a gigabit-capable MAC or repeater unit to a gigabit PHY. Although con-
formance with implementation of this interface is not strictly necessary to en-
sure communication, it is highly recommended, since it allows maximum
flexibility in intermixing PHYs and DTEs at gigabit speeds. The GMII is in-
tended for use as a chip-to-chip interface. No mechanical connector is speci-
fied for use with the GMII. The GMII is optional.

8.3 LAN-RELATED TECHNOLOGY 307

c08.qxd 8/24/2004 10:20 AM Page 307

TEAM LinG - Live, Informative, Non-cost and Genuine!

5. Ten-Bit Interface (TBI). The TBI is provided by the 1000BASE-X PMA sub-
layer as a physical instantiation of the PMA service interface. The TBI is
highly recommended for 1000BASE-X systems, since it provides a conve-
nient partition between the high-frequency circuitry associated with the PMA
sublayer and the logic functions associated with the PCS and MAC sublayers.
The TBI is intended for use as a chip-to-chip interface. No mechanical con-
nector is specified for use with the TBI. The TBI is optional.

Table 8.5 summarizes some key definitions used in the IEEE 802.3 standards.

Cabling. Over the years, a variety of cabling technologies have been used for
LANs, as defined below. Almost universally, nearly all enterprise networks today
use Category 5 cabling (data center cabling may be fiber-optic-based). Cabling can
be shielded or unshielded. Market surveys indicate that Category 5 balanced copper
cabling is the predominant installed intrabuilding, horizontal networking medium
today.

Unshielded Twisted-Pair Cable (UTP) is an electrically conducting cable, com-
prising one or more pairs, none of which is shielded. There may be an overall
shield, in which case the cable is referred to as unshielded twisted-pair with overall
shield.

Shielded Twisted-Pair (STP) Cable is an electrically conducting cable, compris-
ing one or more elements, each of which is individually shielded. There may be an
overall shield, in which case the cable is referred to as shielded twisted-pair cable
with an overall shield (from ISO/IEC 11801: 1995). Specifically for IEEE 802.3
100BASE-TX, 150 ohm balanced inside cable with performance characteristics
specified to100 MHz (i.e., performance to Class D link standards as per ISO/IEC
11801: 1995). In addition to the requirements specified in ISO/IEC 11801: 1995,
IEEE 802.3 Clauses 23 and 25 provide additional performance requirements for
100BASE-T operation over STP.

Category 3 Balanced Cabling. Balanced 100 ohms and 120 ohms cables and as-
sociated connecting hardware whose transmission characteristics are specified up to
16 MHz (i.e., performance meets the requirements of a Class C link as per ISO/IEC
11801: 1995). Commonly used by IEEE 802.3 10BASE-T installations. In addition
to the requirements outlined in ISO/IEC 11801: 1995, IEEE 802.3 Clauses 14, 23,
and 32 specify additional requirements for cabling when used with 10BASE-T,
100BASE-TX, and 1000BASE-T.

Category 4 Balanced Cabling. Balanced 100 ohm and 120 ohm cables and asso-
ciated connecting hardware whose transmission characteristics are specified up to
20 MHz as per ISO/IEC 11801: 1995. In addition to the requirements outlined in
ISO/IEC 11801: 1995, IEEE 802.3 Clauses 14, 23, and 32 specify additional re-
quirements for this cabling when used with 10BASE-T, 100BASE-T4, and
100BASE-T2, respectively.

308 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

c08.qxd 8/24/2004 10:20 AM Page 308

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.3 LAN-RELATED TECHNOLOGY 309

Table 8.5 Key definitions used in IEEE 802.3 standards

Concept Definition Clause

10BASE2 IEEE 802.3 Physical Layer specification for a 10 Described in IEEE
Mbps CSMA/CD local-area network over RG 58 802.3, Clause 10.
coaxial cable.

10BASE5 IEEE 802.3 Physical Layer specification for a 10 Mbps Described in IEEE
CSMA/CD local-area network over coaxial cable 802.3, Clause 8.
(i.e., thicknet).

10BASE-F IEEE 802.3 Physical Layer specification for a 10 Mbps Described in IEEE
CSMA/CD local-area network over fiber optic cable. 802.3, Clause 15.

10BASE-FB A port on a repeater that contains an internal Described in IEEE
port 10BASE-FB Medium Attachment Unit (MAU) that 802.3, Clause 9.

can connect to a similar port on another repeater.

10BASE-FB A fiber-optic link segment providing a point-to-point
segment connection between two 10BASE-FB ports on repeaters.

10BASE-FL A fiber-optic link segment providing point-to-point
segment connection between two 10BASE-FL Medium

Attachment Units (MAUs).

10BASE-FP A fiber-optic mixing segment, including one
segment 10BASE-FP Star and all of the attached fiber pairs.

10BASE-FP A passive device that is used to couple fiber pairs Described in IEEE
Star together to form a 10BASE-FP segment. Optical 802.3, 16.5.

signals received at any input port of the 10BASE-FP
Star are distributed to all of its output ports (including
the output port of the optical interface from which it
was received). A 10BASE-FP Star is typically
comprised of a passive-star coupler, fiber-optic
connectors, and a suitable mechanical housing.

10BASE-T IEEE 802.3 Physical Layer specification for a 10 Described in IEEE
Mbps CSMA/CD local-area network over two pairs of 802.3, Clause 14.
twisted-pair telephone wire.

100BASE-FX IEEE 802.3 Physical Layer specification for a 100 Described in IEEE
Mbps CSMA/CD local-area network over two optical 802.3, Clauses 24
fibers. and 26.

100BASE-T IEEE 802.3 Physical Layer specification for a 100 Described in IEEE
Mbps CSMA/CD local-area network. 802.3, Clauses 22

and 28.

100BASE-T2 IEEE 802.3 specification for a 100 Mbps CSMA/CD Described in IEEE
local-area network over two pairs of Category 3 or 802.3, Clause 32.
better balanced cabling.

100BASE-T4 IEEE 802.3 Physical Layer specification for a 100 Described in IEEE
Mbps CSMA/CD local-area network over four pairs 802.3, Clause 23.
of Categories 3, 4, and 5 unshielded twisted-pair
(UTP) wire. (continued)

c08.qxd 8/24/2004 10:20 AM Page 309

TEAM LinG - Live, Informative, Non-cost and Genuine!

310 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

Table 8.5 Continued

Concept Definition Clause

100BASE-TX IEEE 802.3 Physical Layer specification for a 100 Described in IEEE
Mbps CSMA/CD local-area network over two pairs of 802.3, Clauses 24
Category 5 unshielded twisted-pair (UTP) or shielded and 25.
twisted-pair (STP) wire.

100BASE-X IEEE 802.3 Physical Layer specification for a 100 Described in IEEE
Mbps CSMA/CD local-area network that uses the 802.3, Clause 24.
Physical Medium Dependent (PMD) sublayer and
Medium Dependent Interface (MDI) of the
ISO/IEC 9314 group of standards developed by
ASC X3T12 (FDDI).

1000BASE-CX 1000BASE-X over specialty shielded balanced Described in IEEE
copper jumper cable assemblies. 802.3, Clause 39.

1000BASE-LX 1000BASE-X using long-wavelength laser devices Described in IEEE
over multimode and single-mode fiber. 802.3, Clause 38.

1000BASE-SX 1000BASE-X using short-wavelength laser devices Described in IEEE
over multimode fiber. 802.3, Clause 38.

1000BASE-T IEEE 802.3 Physical Layer specification for a 1000 Described in IEEE
Mbps CSMA/CD LAN using four pairs of Category 5 802.3, Clause 40.
balanced copper cabling.

1000BASE-X IEEE 802.3 Physical Layer specification for a 1000 Described in IEEE
Mbps CSMA/CD LAN that uses a Physical Layer 802.3, Clause 36.
derived from ANSI X3.230-1994 (FC-PH).

10BROAD36 IEEE 802.3 Physical Layer specification for a 10 Described in IEEE
Mbps CSMA/CD local-area network over single road 802.3, Clause 11.
and cable.

1BASE5 IEEE 802.3 Physical Layer specification for a 1 Described in IEEE
Mbps CSMA/CD local-area network over two pairs 802.3, Clause 12.
of twisted-pair telephone wire.

4D-PAM5 The symbol encoding method used in 1000BASE-T. Described in IEEE
The four-dimensional quinary symbols (4D) received 802.3, Clause 40.
from the 8B1Q4 data encoding are transmitted using
five voltage levels (PAM5). Four symbols are
transmitted in parallel each symbol period.

8B/10B A dc-balanced, octet-oriented data encoding.
transmission
code

8B1Q4 For IEEE 802.3, the data encoding technique used by Described in IEEE
1000BASE-T when converting GMII data (8B-8 bits) 802.3, Clause 40.
to four quinary symbols (Q4) that are transmitted
during one clock (1Q4) period.

c08.qxd 8/24/2004 10:20 AM Page 310

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.3 LAN-RELATED TECHNOLOGY 311

Table 8.5 Continued

Concept Definition Clause

Attachment In 10 Mbps CSMA/CD, the interface between the Described in IEEE
Unit Interface Medium Attachment Unit (MAU) and the data 802.3, Clauses 7
(AUI) terminal equipment (DTE) within a data station. Note and 8.

that the AUI carries encoded signals and provides for
duplex data transmission.

bit time (BT) The duration of one bit as transferred to and from the
Media Access Control (MAC). The bit time is the
reciprocal of the bit rate. For example, for 100BASE-T
the bit rate is 10–8 s or 10 ns.

bridge A Layer 2 interconnection device that does not form Described in IEEE
part of a CSMA/CD collision domain but conforms Std 100-1996.
to the ISO/IEC 15802-3:1998 (ANSI/IEEE 802.1D,
1998 Edition) International Standard. A bridge does
not form part of a CSMA/CD collision domain but,
rather, appears as a Media Access Control (MAC) to
the collision domain.

collision A condition that results from concurrent transmissions
from multiple data terminal equipment (DTE) sources
within a single collision domain.

collision A single, half-duplex mode CSMA/CD network. If
domain two or more Media Access Control (MAC) sublayers

are within the same collision domain and both
transmit at the same time, a collision will occur.
MAC sublayers separated by a repeater are in the
same collision domain. MAC sublayers separated by
a bridge are within different collision domains.

collision A signal generated within the Physical Layer by an Described in IEEE
presence end station or hub to indicate that multiple stations 802.3, Clauses 8

are contending for access to the transmission medium. and 12.

Physical Within IEEE 802.3, a sublayer used in 100BASE-T, Described in IEEE
Coding 1000BASE-X, and 1000BASE-T to couple the Media 802.3, Clauses 36
Sublayer (PCS) Independent Interface (MII) or Gigabit Media and 40.

Independent Inter-face (GMII) and the Physical
Medium Attachment (PMA). The PCS contains the
functions to encode data its into code groups that can
be transmitted over the physical medium. Three PCS
structures are defined for 100BASE-T-one for
100BASE-X, one for 100BASE-T4, and one for
100BASE-T2 (described in IEEE 802.3, Clauses 23,
24, and 32). One PCS structure is defined for
1000BASE-X and one PCS structure is defined for
1000BASE-T. (continued)

c08.qxd 8/24/2004 10:20 AM Page 311

TEAM LinG - Live, Informative, Non-cost and Genuine!

Category 5 Balanced Cabling. Balanced 100 ohm and 120 ohm cables and asso-
ciated connecting hardware whose transmission characteristics are specified up to
100 MHz (i.e., cabling components meet the performance specified in ISO/IEC
11801:1995). In addition to the requirements outlined in ISO/IEC 11801:1995,
IEEE 802.3 Clauses 14, 23, 25, and 40 specify additional requirements for this ca-
bling when used with 10BASE-T and 100BASE-T.

312 COMMUNICATION SYSTEMS FOR LOCAL GRIDS

Table 8.5 Continued

Concept Definition Clause

Physical Layer Within IEEE 802.3, the portion of the Physical Layer Described in IEEE
entity (PHY) between the Medium Dependent Interface (MDI) and 802.3, Clauses

the Media Independent Interface (MII), or between 23-26, 32, 36, and
the MDI and GMII, consisting of the Physical Coding 40.
Sublayer (PCS), the Physical Medium Attachment
(PMA), and, if present, the Physical Medium
Dependent (PMD) sublayers. The PHY contains the
functions that transmit, receive, and manage the
encoded signals that are impressed on and recovered
from the physical medium.

Physical Within 802.3, that portion of the Physical Layer that Described in IEEE
Medium contains the functions for transmission, reception, 802.3, Clauses 7,
Attachment and (depending on the PHY) collision detection, 12, 14, 16, 17, 18,
(PMA) clock recovery, and skew alignment. 23, 24, 32, 36 and
sublayer 40.

Physical In 100BASE-X, that portion of the Physical Layer Described in IEEE
Medium responsible for interfacing to the transmission 802.3, Clause 24.
Dependent medium. The PMD is located just above the Medium
(PMD) Dependent Interface (MDI).
sublayer

repeater Within IEEE 802.3, a device as specified in Clauses 9 Described in IEEE
and 27 that is used to extend the length, topology, or 802.3, Clauses 9
interconnectivity of the physical medium beyond that and 27.
imposed by a single segment, up to the maximum
allowable end-to-end transmission line length.
Repeaters perform the basic actions of restoring signal
amplitude, waveform, and timing applied to the normal
data and collision signals. For wired star topologies,
repeaters provide a data distribution function. In
100BASE-T, a device that allows the interconnection
of 100BASE-T Physical Layer (PHY) network
segments using similar or dissimilar PHY
implementations (e.g., 100BASE-X to 100BASE-X,
100BASE-X to 100BASE-T4, etc.). Repeaters are
only for use in half-duplex mode networks.

c08.qxd 8/24/2004 10:20 AM Page 312

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 313
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 9

Communication Systems
for National Grids

In this chapter, we examine a small set of recently developed WAN technologies
that may be of importance for grid computing in the next few years. There is a
plethora of technologies that range from Time Division Multiplexing dedicated
lines based on SONET/SDH/OTN/ASON technology to Asynchronous Transfer
Mode (ATM). These services range in bandwidth from 1 to 10 Mbps at the “medi-
um end,” to 155 to 2400 Mbps at the “high end.” In this chapter, we look at two
baseline technologies: Frame Relay MultiLink Frame Service (MLF) and Multi-
Protocol Label Switching (MPLS).1 These technologies have applicability to the in-
tragrid environment.

9.1 MULTILINK FRAME SERVICE

This section covers what we perceive to be a possibly important service for future
intranet development with regard to communication support, particularly for inter-
connection of secondary locations to a main location, like a data center. These satel-
lite locations may well have available and underutilized servers, storage, and so on,
that can be put to use by a grid system. This service is standardized inverse multi-
plexing (imux) service. Inverse multiplexing allows several low-speed channels to
be combined transparently into one higher-speed channel. Typically, one combines
a few T1s into a 3.2 or 6.4 Mbps stream. Backbone nodes, say the data center, a
backup disaster recovery center, and, perhaps, some major gatewaying node, may
be typically interconnected by a high-capacity backbone network comprised, possi-
bly, of ATM or high-speed point-to-point SONET links. But secondary locations
are usually connected with T1 or frame relay links. This is even more the case for
international locations. This section looks at one promising inverse multiplexing
technology that can support graceful growth to higher speeds while keeping cost-ef-
fectiveness in mind.

Although there has been a lot of hype about gigabit (Ethernet) communications
in the metro environment, users continue to have plain and simple needs that hover
around the equivalent of a few T1s. The author has documented in other publica-

1This section is based on [77].

c09.qxd 8/24/2004 10:21 AM Page 313

TEAM LinG - Live, Informative, Non-cost and Genuine!

tions a quantitatively demonstrable end-user need for a typical office environment
of 6 Mbps at this time and around 66 Mbps in 5 years, based on traffic scenarios
[74]. This implies that while a T1 worth of speed is potentially limiting at this time,
user needs are not at the gigabit range but at the single-digit megabit range. There is
a large bandwidth, price, and availability gap between T1 and the next step up in
network access technology: fiber-based DS-3 (45 Mbps) facilities. These considera-
tions drive to “affordable” bandwidth. We already alluded to in Chapter 1 that the
IT budget of a company can range from 2 to 10% of the company’s top revenue
line, with 6% being the average. The networking portion of the IT budget is gener-
ally around 10% (with 30% of that 10% being for bandwidth, 30% for amortized
equipment expenses, and 40% for network operations). Hence, a $10B/yr company
may have a $60M/yr telecom/networking budget, and $18M/yr for transmission
costs. Very clearly, there is a strong desire to keep those costs in check.

One way to solve the DS1–DS3 gap is to bundle together multiple T1 lines into
one larger channel. Inverse multiplexing can be supported by a number of technolo-
gies, including point-to-point TDM equipment; it is more advantageous, however,
when it is used with a switched service like Frame Relay (FR) or ATM (see Figure
9.1). Inverse Multiplexed ATM (IMA) saw some deployment in the late 1990s. We
focus on Frame Relay because there is a significant embedded base of applications
and customers that may benefit from an upgrade. The MPLS/Frame Relay Forum
FRF.16.1, Multilink Frame Relay (MFR) UNI/NNI (User-to-Network Interface/
Network-to-Network Interface), that was ratified in 2002, provides economical mul-
tilink solutions for increasing bandwidth without using a higher bandwidth transmis-
sion facility.2 Customer premise equipment (CPE) devices and central office [CO,
also called point of presence (POP)] concentrators can be interoperable based on the
FRF.16 MFR specification. Users of MFR can increase their bandwidth without
making costly changes to their network and can move forward with confidence that
FRF.16-compliant equipment is interoperable. CO concentrators enable the carrier to
add Frame Relay services without changing the switch. Carrier tariffs make MFR an
attractive alternative to moving up the digital hierarchy to the next-faster access loop;
it is less expensive to add a few T1s than to move up to a DS3 facility. This is espe-
cially important to medium-sized hub sites and/or branch locations, and interest
seems greatest around 6 to 9 Mbps. These locations could have underutilized IT re-
sources that can be made part of a computational or data grid.

Done correctly, an NxT1 solution will enable network service providers to ad-
dress the emerging demand for multimegabit service while maximizing the return
on investment in the existing T1 infrastructure. After all, T1 lines are affordable and
readily available, tariffs already exist, and T1 provides guaranteed symmetrical
transport and “relatively” secure connectivity (high-quality encryption is the ulti-
mate key to network-oriented security). Existing bundled T1 solutions, however,
were developed for niche markets, are not interoperable, and were not intended for
the large-scale service deployment required for the Internet. Bit-interleaved inverse
multiplexing, for example, is a technology implemented in proprietary products that
typically make point-to-point connections between two routers at speeds faster than

314 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

2In 2004 MPLS/Frame Relay Forum and the ATM Forum merged operations, reflecting the convergence
of the technologies in the marketplace.

c09.qxd 8/24/2004 10:21 AM Page 314

TEAM LinG - Live, Informative, Non-cost and Genuine!

T1. Products that employ this proprietary technology do not support switching and
multipoint connectivity as shown in Figure 9.1. Load balancing, used in most
routers to intelligently direct packets down parallel paths, can provide higher-ca-
pacity WAN access for up to two T1s. However, this solution becomes less effi-
cient as more WAN circuits are used. Neither of these solutions is ideal for provid-
ing the type of scalable, standards-based solution that the market needs [5].

9.1.1 Motivations and Scope

The MPLS/Frame Relay Forum created Multilink Frame Relay as a standard for in-
verse multiplexing over traditional T1 or E1 circuits from the customer’s location to

9.1 MULTILINK FRAME SERVICE 315

Figure 9.1 Inverse multiplexing with various WAN technologies.

TDM DCS

WAN

e.g., TIs

WAN

e.g., TIs

Router Router

ATM
switch

WAN

e.g., TIs

Router Router

Frame
relay

switch

c09.qxd 8/24/2004 10:21 AM Page 315

TEAM LinG - Live, Informative, Non-cost and Genuine!

the FR service-provider POP. The Multilink Frame Relay implementation agree-
ments were created by the Forum in response to end users requests for a standards-
based solution to bridge the bandwidth gap that exists between T1/E1 and DS3/E3
[28].

The continued success of Frame Relay technology as a proven, low-latency, and
secure access service has driven customer demand for more flexibility in imple-
mentations. However, T1 local loops at those sites are not (always) fast enough to
meet the demands of growing traffic volume and new applications [25]. When the
T1/E1 is filled, it a major financial step to a T3/E3, even if these facilities are avail-
able where the user requires them. Changing the local loop to the next line rate up
the traditional digital hierarchy (56 Kbps to 1.5 Mbps to 45 Mbps), represents a
large cost increase, by a factor of almost 30. Many corporate planners cannot justify
the jump in the monthly recurring charge (MRC) for network access, particularly at
smaller branch locations. The three- to eight-time increase for the local loop is typi-
cal; higher port charges on the switch and other fees can raise the network access
portion of the monthly bill by as much as ten times. Monthly access charges for T1
have dropped below $300 or less in many locations around the United States. DS3
local access circuits, on the other hand, typically cost $4,000 or more per month,
and most business customers do not require the speed of a DS3. Moreover, local-ac-
cess DS3 circuits are unavailable to a nontrivial fraction of businesses (or, business
locations; there are approximately 750,000 commercial office buildings in the Unit-
ed States) and, where available, may take months to be provisioned [142]. Many of
today’s high-speed access solutions either do not address the T1–DS3 gap or are not
appropriate for business subscribers. ATM imposes a “cell tax” that can reduce cir-
cuit payload. Asymmetrical DSL (ADSL), with its low up-link speeds is aimed at
consumers.

Until recently, a second frame relay access line represented not just more band-
width, but added a separate network path. That approach, therefore, required
reengineering the traffic, assigning part to each local loop. An application was con-
fined to its assigned link, and could not burst to the top speed represented by the to-
tal of the links. If one link were idle, applications assigned to another link could not
use the bandwidth. If a router were involved, it would need another IP subnet. Ad-
dressing that specific part of the problem, carriers offer various proprietary forms of
physical layer inverse multiplexing based on multiple loops (56/64 Kbps or T1/E1).
These solutions, in practice, are difficult to order and slow to install. The handoff to
the user is a HSSI (high-speed serial interface), one of the more expensive router
cards that is typically low density (only one port per slot). Some forms of inverse
muxing do not load balance; that is, if one link fails, the entire aggregate goes
down. Conversely, adding an additional link to increase bandwidth involves taking
down and reprovisioning the aggregate on the inverse mux, and this causes a dis-
ruption in the service [25, 142].

Frame Relay connections at access speeds of 1.544 Mbps (T1) or 2.048 Mbps
(E1) are widely available from service providers today. Nevertheless, with applica-
tions such as storage backup, audio/video streaming, collaboration and conferenc-
ing, distributed software development, or possibly grid computing (particularly,

316 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

c09.qxd 8/24/2004 10:21 AM Page 316

TEAM LinG - Live, Informative, Non-cost and Genuine!

data grids), bandwidth requirements have grown, in many cases, beyond the capac-
ity of that single T1or E1 link. The obvious solution is to upgrade the customer’s
frame relay access link, into the “cloud,” to the next higher speed in the digital hier-
archy: DS3 (45 Mbps) for North America or E3 (34 Mbps) offered in Europe, South
America, and Asia. As noted, in many cases, these transmission facilities are too
expensive or may not be available in many small-to-medium metropolitan areas.
Assuming that these lines may be locally tariffed, the required bandwidth, from the
enterprise, may be far below DS3/E3 speeds and the link would, therefore, be un-
derutilized. Unless the telecommunications carrier is offering specific private line
services at speeds between T1/E1 and DS3/E3, which is rare, upgrading the link to
the higher speed is often not feasible, economically and logistically. Hence, there is
a gap in the continuity of speed solutions for FR access connections greater than T1
or E1 speeds but less than DS3/E3 [13]. Again, it might appear to government-
funded recipients that bandwidth ought not to be a “big deal”; but in commercial
settings, indeed it is.3

Figure 9.2 depicts an example of the use of MLF services to allow remote offices
to become part of a grid environment.

9.1 MULTILINK FRAME SERVICE 317

3Occasionally, bandwidth costs may take a second-row seat in favor of overreaching functionality. This
could well be indicated for the DoD’s “Global Information Grid” (GIG), described next, as an illustrative
example; but it never takes a second-row seat in commercial situations. The “Global Information Grid”
[9] is a globally interconnected end-to-end set of information capabilities, associated processes, and per-
sonnel for collecting, processing, storing, disseminating, and managing information on demand to war
fighters, policy makers, and support personnel. (GIG is not exactly a grid in the sense that we have dis-
cussed in this book; it is more a global ubiquitous communication apparatus, like a private Internet, a
“private label IP network,” although, in some sense it could also be seen as a grid.) Currently, the GIG
concept is supported by the Department of Defense Chief Information Office (DoD CIO) 1999 memo-
randum “Global Information Grid” [145]. The memorandum describes GIG as the globally interconnect-
ed, end-to-end set of information capabilities, associated processes, and personnel for collecting, pro-
cessing, storing, disseminating, and managing information on demand to war fighters, policy makers,
and support personnel. While the GIG is composed of various network technologies, major elements are
ATM, MPLS, and optical networks, which are the critical networking technologies for the GIG in the
near- to mid-term [9]. The GIG includes all owned and leased communications and computing systems
and services, software (including applications), data, security services, and other associated services nec-
essary to achieve information superiority. It also includes national security systems as defined in Section
5142 of the Clinger-Cohen Act of 1996. The GIG supports all DoD, national security, and related intelli-
gence community missions and functions (strategic, operational, tactical, and business), in war and in
peace. The GIG provides capabilities from all operating locations (bases, posts, camps, stations, facili-
ties, mobile platforms, and deployed sites). The GIG provides interfaces to coalition, allied, and non-
DoD users and systems [76]. As part of the GIG, the DoD operates many systems that transmit informa-
tion over commercial network infrastructures between enclaves. The network infrastructure contains
components, such as routers and switches, which direct the flow of information through the infrastruc-
tures. Today, commercial carriers provide over 95% of all the transmission service for all GIG commu-
nications. Additionally, many networks used by Government agencies within the GIG have outsourced
their network management services. On the other hand, commercial carriers view network security as a
business issue. They will not simply add security features without financial or market incentive. For
them, a business case must be made, and this begins with customers’ demand for these services. The
DoD is designing and deploying an enterprise-wide Information Assurance (IA) architectural overlay to
the GIG [146] that is consistent with the overall GIG Architecture and implements a defense-in-depth
strategy [9].

c09.qxd 8/24/2004 10:21 AM Page 317

TEAM LinG - Live, Informative, Non-cost and Genuine!

318

F
ig

ur
e

9.
2

E
nt

er
pr

is
e

gr
id

 c
om

pu
ti

ng
 e

nv
ir

on
m

en
t u

si
ng

 M
L

F
.

c09.qxd 8/24/2004 10:21 AM Page 318

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.1.2 Multilink Frame Relay Basics

The solution to achieving greater than T1/E1 bandwidth is to “bond” or “bundle”
up to eight parallel T1/E1 circuits and create a “logical” link” with a maximum
wire-line speed of 12 Mbps (T1) or 16 Mbps (E1). What is critical, though, is that
the technology does this in a vendor-independent manner. The MPLS Frame
Relay Forum has developed an implementation agreement for inverse multiplex-
ing over standard T1 or E1 circuits from the customer’s location to the FR ser-
vice-provider POP. This approach will allow CPE equipment and FR switch ven-
dors to all interoperate with the same N × T1/E1 inverse muxing protocol and
provide customers with an economical and more widely available high-bandwidth
solution alternative [13].

The MPLS/Frame Relay Forum standardized two forms of inverse multiplexing,
defined in implementation agreements (IAs) FRF.15 and FRF.16. Both IAs show
how to add increments of bandwidth to network access at a site while preserving the
ability of any application to burst to the aggregate speed of all the physical links (it
is still one logical channel):

� FRF.15 is a point-to-point method between CPE devices; the carrier does
not participate. That is, the end devices know that they are doing MFR, but
the carrier knows only that they are moving frames across the customer’s
links.

� FRF.16 is single-ended solution, between one site and the frame relay net-
work or at the NNI; MFR terminates on the serving switch.

Both of these IAs define how an enterprise user, alone or in cooperation with its
frame relay carrier, can increase the effective speed of the access link into a site—
exactly what is wanted. To accomplish this goal, MFR aggregates multiple physical
links into a single logical path.

FRF.15, the End-to-End Multilink Frame Relay Implementation Agreement,
and the original FRF.16, the Multilink Frame Relay UNI/NNI Implementation
Agreement, were published in 1999 and created the basis for the Multilink Frame
Relay (MFR) protocol. MFR specifies the procedures and frame format to be used
by CPE to offer an aggregated virtual circuit (AVC) service. AVC service allows
frame relay CPE to use multiple virtual circuits (VCs) for transport of a single
stream of sequenced frames. The UNI/NNI Implementation Agreement provides
physical interface emulation for frame relay devices that consists of one or more
physical links aggregated into a single bundle of bandwidth. The MFR standard
ensures that the multimegabit access solution for frame relay integrates seamless-
ly with existing network hardware, creating an aggregated path that looks and
feels like T1 to end users, but is faster. The bundle will be compatible with the
frame relay infrastructure, and will result in additional bandwidth and increased
transport resiliency by supporting distribution of data traffic over multiple under-
lying VCs. These circuits will not require load balancing or future maintenance to
get the most efficient use of each T1 circuit. Service Providers and business users

9.1 MULTILINK FRAME SERVICE 319

c09.qxd 8/24/2004 10:21 AM Page 319

TEAM LinG - Live, Informative, Non-cost and Genuine!

will be able deploy the MFR solution with minimal changes to their existing net-
work [142].

MFR connections add and drop links gracefully. During a change in the number
of constituents in an aggregate, frames flow without interruption. The ability to mi-
grate smoothly between links also creates at least a potential to shop for less expen-
sive or more reliable capacity. The real benefit (besides bandwidth) is resiliency:
the aggregate channel can change bandwidth “on the fly” without interrupting traf-
fic flow. Load balancing shifts traffic automatically from a failed link to active
links. MFR’s inherent load balancing across multiple paths provides resiliency that
recovers quickly from a lost link. For optimum protection, access links at both ends
will have diverse routing and, for FRF.15 end-to-end MFR, the backbone will have
diverse routing as well [25].

Individual frames may take any of the physical links; therefore, successive
frames could take different paths with different delays. The MFR function applies a
fragmentation header to ensure proper order of the frames on both sides of the ag-
gregate path. Due to the effect of fragmentation, each frame sees reduced latency as
well as increased bandwidth. The multilink solution adds some complexity that is
similar to adding an additional line without MFR. However, MFR preserves the
logical simplicity of a single virtual path, allowing traffic to burst to a speed that is
almost the total of all the constituent links. (The fragmentation headers in MFR re-
quire a modest amount of additional overhead.)

Adding bandwidth at a site using FRF.16 MFR at the UNI, means placing one or
more additional local loops between the serving frame relay switch and the CPE.
MFR software, in both the switch and CPE, combines a bundle of physical links
into one virtual or logical link. Any PVC the application sees in the CPE appears in
the backbone as the same single Permanent Virtual Connection (PVC). One can use
the MFR virtual link in any way one would employ a real link. Specifically, one can
add a PVC to the network without changing the MFR configuration. The arrange-
ment with the carrier—bundling the physical links into a logical link—is transpar-
ent to applications, which see normal but faster connections. This UNI access
arrangement (FRF.16) depends on carrier support in the serving switch that has
started to roll out but is not yet widespread. There will be a small premium for the
MFR termination service in the switch.

Opting for end-to-end MFR, and not involving the carrier, may have drawbacks
for some applications precisely because FRF.15 is a point-to-point connection. This
means that CPE at the remote site must also support MFR (FRF.15) to terminate
those PVCs as an aggregate. In contrast to FRF.15, FRF.16 at the UNI carries a
connection across the backbone on a single virtual circuit. When the carrier termi-
nates MFR, and deals with a single fast PVC, it more easily can:

� Route to any location, (including a site whose access link is fast enough not to
need MFR)

� Apply services like rerouting to an alternate data center

� Provision a connection to another frame relay carrier at an NNI

320 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

c09.qxd 8/24/2004 10:21 AM Page 320

TEAM LinG - Live, Informative, Non-cost and Genuine!

The logical bundling aspect of MFR can provide sites with more bandwidth, and the
resiliency aspect adds reliability. These two factors make MFR a very powerful ac-
cess option.

To ensure low latency within a virtual multimegabit access circuit, packets are
segmented into individual fragments, and each fragment is transported over a sepa-
rate member of the T1 bundle. The size of the packet fragments can be adjusted to
optimize bandwidth efficiency and latency. The fragments are reassembled at the
other end of the T1 link using MFR sequence numbers, thus ensuring packet order.
If a T1 circuit within a MFR connection fails, the bandwidth is downshifted but ser-
vice is not interrupted. When the T1 line comes back up, it is automatically added
back to the bundle. In addition, the T1 lines in a bundle can be connected to the
POP and CPE in any order, eliminating the risk of intrabundle wiring problems
throughout the network. Service can be made more robust by using T1 circuits from
different carriers. This enables continuous operation of the bundle if a carrier expe-
riences problems with its T1 circuits. Bundling multiple copper lines to create a vir-
tual multimegabit circuit may introduce differential delay between the different T1
links, particularly if different carriers are used within the bundle. The ability to han-
dle these delays and still deliver complete packets, in sequence, is built into MFR
protocols [142].

9.2 MPLS TECHNOLOGY

This section provides a short overview of MPLS-based technology and standards.
During the past 25 years, corporations have sought improved packet technologies to
support intranets, extranets, and public switched data networks such as the Internet.
The progression went from X.25 packet-switched technology to Frame Relay tech-
nology, and also, on a parallel track, cell relay/ATM technology. In the meantime,
throughout the 1980s and 1990s, IP-based connectionless packet services (a Layer 3
service) continued to make major inroads. IP, however, has limited QoS capabilities
by itself. Therefore, the late 1990s and early 2000s saw the development of MPLS
as a way to, perhaps, provide a better QoS framework based on improved packet
handling. MPLS is a hybrid Layer 2/Layer 3 service that attempts to bring together
the best of both worlds: Layer 2 and Layer 3, ATM and IP [79].

MPLS is a late-1990s set of specifications that provides a link-layer-independent
transport mechanism for IP. The specification-development work is carried out by
the IETF. MPLS protocols allow high-performance label switching of IP packets:
network traffic is forwarded using a simple label apparatus as described in
RFC3031 [136]. By combining the attributes of Layer 2 switching and Layer 3 rout-
ing into a single entity, MPLS provides [88] (i) enhanced scalability by way of
switching technology; (ii) support of Class of Service (CoS) and QoS-based ser-
vices (Differentiated Services/diffserv, as well as Integrated Services/intserv); (iii)
elimination of the need for an IP-over-ATM overlay model and its associated man-

9.2 MPLS TECHNOLOGY 321

c09.qxd 8/24/2004 10:21 AM Page 321

TEAM LinG - Live, Informative, Non-cost and Genuine!

agement overhead; and, (iv) enhanced traffic shaping and engineering capabilities.
In addition, MPLS provides a gamut of features in support of VPNs.

The basic idea of MPLS involves assigning short fixed-length labels to packets
at the ingress to an MPLS cloud (based on the concept of forwarding equivalence
classes). Throughout the interior of the MPLS domain, the labels attached to pack-
ets are used to make forwarding decisions (usually without recourse to the original
packet headers). A set of powerful constructs to address many critical issues in the
(eventually) emerging diffserv Internet can be devised from this relatively simple
paradigm. One of the most significant initial applications of MPLS is in traffic engi-
neering (TE). (It should be noted that even though the focus is on Internet back-
bones, the capabilities described in MPLS TE are equally applicable to Traffic En-
gineering in enterprise networks [4].)

The key MPLS RFCs are named next. IETF RFC 2702, Requirements for Traffic
Engineering over MPLS, identifies the functional capabilities required to imple-
ment policies that facilitate efficient and reliable network operations in an MPLS
domain; these capabilities can be used to optimize the utilization of network re-
sources and to enhance traffic-oriented performance characteristics [4]. IETF RFC
3031, Multiprotocol Label Switching Architecture, specifies the architecture of
MPLS [136]. IETF RFC 3032, MPLS Label Stack Encoding, specifies the encoding
to be used by a Label Switch Router (LSR) in order to transmit labeled packets on
Point-to-Point Protocol (PPP) data links, on LAN data links, and, possibly, on other
data links [137]. Also, this RFC specifies rules and procedures for processing the
various fields of the label stack encoding. An array of supplementary Internet
Drafts support the various aspects of MPLS.

9.2.1 Approaches4

As a packet of a traditional connectionless network-layer protocol travels from one
router to the next, each router makes an independent forwarding decision for that
packet. That is, each router analyzes the packet’s header, and each router runs a net-
work-layer routing algorithm. Each router independently chooses a next hop for the
packet, based on its analysis of the packet’s header and the results of running the
routing algorithm.

Packet headers contain considerably more information than is needed simply to
choose the next hop. Choosing the next hop can, therefore, be thought of as the
composition of two functions. The first function partitions the entire set of possible
packets into a set of “Forwarding Equivalence Classes (FECs).” The second maps
each FEC to a next hop. Insofar as the forwarding decision is concerned, different
packets that get mapped into the same FEC are indistinguishable. All packets that
belong to a particular FEC and that travel from a particular node will follow the
same path (or, if certain kinds of multipath routing are in use, they will all follow
one of a set of paths associated with the FEC).

In conventional IP forwarding, a particular router will typically consider two
packets to be in the same FEC if there is some address prefix X in that router’s rout-

322 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

4This subsection is based on [136].

c09.qxd 8/24/2004 10:21 AM Page 322

TEAM LinG - Live, Informative, Non-cost and Genuine!

ing tables such that X is the “longest match” for each packet’s destination address.
As the packet traverses the network, each hop in turn reexamines the packet and as-
signs it to a FEC.

In MPLS, the assignment of a particular packet to a particular FEC is done just
once, as the packet enters the network. The FEC to which the packet is assigned is
encoded as a short fixed-length value known as a “label.” When a packet is for-
warded to its next hop, the label is sent along with it; that is, the packets are “la-
beled” before they are forwarded. At subsequent hops, there is no further analysis
of the packet’s network-layer header. Rather, the label is used as an index into a
table that specifies the next hop, and a new label. The old label is replaced with the
new label, and the packet is forwarded to its next hop.

In the MPLS forwarding paradigm, once a packet is assigned to a FEC, no fur-
ther header analysis is done by subsequent routers; all forwarding is driven by the
labels. This has a number of advantages over conventional network layer forward-
ing:

� MPLS forwarding can be done by switches that are capable of doing label
lookup and replacement, but are either not capable of analyzing the network
layer headers or are not capable of analyzing the network layer headers at ad-
equate speed.

� Since a packet is assigned to a FEC when it enters the network, the ingress
router may use, in determining the assignment, any information it has about
the packet, even if that information cannot be gleaned from the network layer
header. For example, packets arriving on different ports may be assigned to
different FECs. Conventional forwarding, on the other hand, can only consid-
er information that travels with the packet in the packet header.

� A packet that enters the network at a particular router can be labeled different-
ly than the same packet entering the network at a different router, and, as a re-
sult, forwarding decisions that depend on the ingress router can be easily
made. This cannot be done with conventional forwarding, since the identity
of a packet’s ingress router does not travel with the packet.

� The considerations that determine how a packet is assigned to a FEC can be-
come ever more and more complicated, without any impact at all on the
routers that merely forward labeled packets.

� Sometimes, it is desirable to force a packet to follow a particular route which
is explicitly chosen at or before the time the packet enters the network, rather
than being chosen by the normal dynamic routing algorithm as the packet
travels through the network.5 This may be done as a matter of policy, or to
support traffic engineering. In conventional forwarding, this requires the
packet to carry an encoding of its route along with it (“source routing”). In
MPLS, a label can be used to represent the route, so that the identity of the ex-
plicit route need not be carried with the packet.

9.2 MPLS TECHNOLOGY 323

5For example, there may be policy reasons for doing so, such as law enforcement access for wiretaps at a
convenient location.

c09.qxd 8/24/2004 10:21 AM Page 323

TEAM LinG - Live, Informative, Non-cost and Genuine!

Some routers analyze a packet’s network-layer header not merely to choose the
packet’s next hop, but also to determine a packet’s “precedence” or “class of ser-
vice.” They may then apply different discard thresholds or scheduling disciplines to
different packets. MPLS allows (but does not require) the precedence or class of
service to be fully or partially inferred from the label. In this case, one may say that
the label represents the combination of a FEC and a precedence or class of service.

MPLS’s techniques are applicable to any network-layer protocol. In this discus-
sion; however, we focus on the use of IP as the network-layer protocol. A router
that supports MPLS is known as a “label switching router” or LSR. Table 9.1 iden-
tifies key terms used in MPLS.

9.2.2 MPLS Operation

MPLS runs over ATM, Frame Relay, Ethernet, and point-to-point packet-mode
links. MPLS-based networks use existing IP mechanisms for addressing of ele-
ments and for routing of traffic. MPLS adds a sort of connection-oriented capa-
bilities to the connectionless IP architecture. It is the industry-accepted manifesta-
tion of the “”Network Layer/Layer 3/Tag/IP Switching” technology that was
developed by various constituencies in the mid-to-late 1990s. MPLS integrates the
label-swapping forwarding paradigm with network-layer routing. In an MPLS en-
vironment, when a stream of data traverses a common path, a label-switched path
(LSP) can be established using MPLS signaling protocols. At the ingress LSR,
each packet is assigned a label and is transmitted downstream. At each LSR along
the LSP, the label is used to forward the packet to the next hop. To deliver reli-
able service, MPLS requires a set of procedures to provide protection of the traf-
fic carried on different paths. This requires that the LSRs support fault detection,
fault notification, and fault recovery mechanisms, and that MPLS signaling sup-
port the configuration of recovery [133]. QoS support is where MPLS can find its
sweet technical spot in supporting multimedia and voice applications. The im-
proved traffic management, the QoS capabilities, and the expedited packet for-
warding via the label mechanism can be a significant technical advantage in de-
lay-sensitive applications.

The LSRs know what label values to use because this information will have been
propagated by a label distribution protocol. (The MPLS architecture allows several
different methods and protocols for label distribution—we discuss this later.) In
essence, the label-switched path is established once all the LSRs have valid label
entries in their forwarding tables.

The packet flow across a network with an illustrative Ingress LSR1 and an
Egress LSR4 is as follows (see Figure 9.3):

1. An IP packet arrives at LSR1.

2. LSR1 examines the IP header and the IP destination address.

3. The IP packet is then labeled; the label value given to the packet is associated
with a label-switched path across the network to the egress point (LSR4).

324 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

c09.qxd 8/24/2004 10:21 AM Page 324

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2 MPLS TECHNOLOGY 325

Table 9.1 Key terms used in MPLS

DLCI A label used in Frame Relay networks to identify frame relay circuits

Forwarding A group of IP packets that are forwarded in the same manner (e.g., over
equivalence class the same path, with the same forwarding treatment).

Frame merge Label merging, when it is applied to operation over frame-based media,
so that the potential problem of cell interleave is not an issue.

Label A short fixed-length, physically contiguous identifier that is used to
identify a FEC, usually of local significance.

Label merging The replacement of multiple incoming labels for a particular FEC with a
single outgoing label.

Label stack An ordered set of labels.

Label swap The basic forwarding operation consisting of looking up an incoming la-
bel to determine the outgoing label, encapsulation, port, and other data
handling information.

Label swapping A forwarding paradigm allowing streamlined forwarding of data by us-
ing labels to identify classes of data packets that are treated indistin-
guishably when forwarding.

Label switched The hop between two MPLS nodes, on which forwarding is done using
hop labels.

Label switched The path through one or more LSRs at one level of the hierarchy
path followed by a packets in a particular FEC.

Label switching An MPLS node that is capable of forwarding native L3 packets
router

Layer 2 The protocol layer under Layer 3 (which, therefore, offers the services
used by Layer 3). Forwarding, when done by the swapping of short
fixed-length labels, occurs at Layer 2, regardless of whether the label be-
ing examined is an ATM VPI/VCI, a frame relay DLCI, or an MPLS la-
bel.

Layer 3 The protocol layer at which IP and its associated routing protocols oper-
ate; link layer synonymous with Layer 2.

Loop detection A method of dealing with loops in which loops are allowed to be set up,
and data may be transmitted over the loop, but the loop is later detected.

Loop prevention A method of dealing with loops in which data is never transmitted over a
loop.

Merge Point on a node at which label merging is done.

MPLS domain A contiguous set of nodes that operate MPLS routing and forwarding
and that are also in one routing or administrative domain.

MPLS edge node An MPLS node that connects an MPLS domain with a node that is out-
side of the domain, either because it does not run MPLS, and/or because
it is in a different domain. Note that if an LSR has a neighboring host
that is not running MPLS, that LSR is an MPLS edge node.

(continued)

c09.qxd 8/24/2004 10:21 AM Page 325

TEAM LinG - Live, Informative, Non-cost and Genuine!

4. Now that the packet has been labeled, the label associates the packet with a
particular path. There is no longer any need to look up the IP address inside
the network as the other LSRs can forward the labeled packet based on the la-
bel value.

5. A point to note is that the labels are rewritten at each switch.

6. When the packet reaches the last or egress LSR (LSR4), the label is stripped
(popped), thus exposing the IP packet.

7. LSR 4 can then deliver the IP packet to the destination using normal IP for-
warding.

Originally, the main benefit of label switching was facilitating high-speed
switching in Layer 3 devices. However, this is no longer perceived as the main ben-
efit of MPLS, since ASIC-based routers, can now perform line-speed routing on
most interfaces. Now, the major benefits of MPLS are perceived to be [26]:

326 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

Table 9.1 Continued

MPLS egress An MPLS edge node in its role of handling traffic as it leaves an MPLS
node domain.

MPLS ingress An MPLS edge node in its role of handling traffic as it enters an MPLS
node domain.

MPLS label A label that is carried in a packet header, and that represents the packet’s
FEC.

MPLS node A node that is running MPLS. An MPLS node will be aware of MPLS
control protocols, will operate one or more L3 routing protocols, and
will be capable of forwarding packets based on labels. An MPLS node
may optionally be also capable of forwarding native L3 packets.

Network layer Synonymous with Layer 3.

Stack Synonymous with label stack.

Switched path Synonymous with label switched path.

VC merge Label merging where the MPLS label is carried in the ATM VCI field
(or combined VPI/VCI field), so as to allow multiple VCs to merge into
one single VC.

Virtual circuit A circuit used by a connection-oriented Layer 2 technology such as
ATM or Frame Relay, requiring the maintenance of state information in
Layer 2 switches.

VP merge Label merging in which the MPLS label is carried in the ATM VPI field,
so as to allow multiple VPs to be merged into one single VP. In this
case, two cells would have the same VCI value only if they originated
from the same node. This allows cells from different sources to be dis-
tinguished via the VCI.

VPI/VCI A label used in ATM networks to identify circuits.

c09.qxd 8/24/2004 10:21 AM Page 326

TEAM LinG - Live, Informative, Non-cost and Genuine!

� Simplifying packet forwarding. Since the routing decision is made only once
at the edge of the network, the core could retain only minimal routing infor-
mation, thus reducing the overall complexity of the network (e.g., BGP could
be run at the edge only, but there would be no need for it in the core).

� Aggregation of Protocol Data Unit (PDU) Streams. In MPLS, the label stack-
ing mechanism can be used to perform the aggregation within Layer 2 itself.
Typically, when multiple streams have to be aggregated for forwarding into a
switched path, processing is required at both Layer 2 and Layer 3. The top la-
bel of the MPLS label stack is used to switch PDUs along the label-switched
path, whereas the rest of the label stack is “application specific.”

� Explicit/Improved Routes. MPLS supports explicit routes (a route that has not
been set up by normal IP hop-by-hop routing, but rather an ingress/egress
node has specified all or some of the downstream nodes of that route).

� Improved Performance. MPLS enables higher data transmission performance
due to simplified packet forwarding and switching mechanisms.

� Link Layer Independence. MPLS works with any type of link layer medium
such as ATM, Frame Relay, Packet-over-SONET, Ethernet, and so on.

� QoS Support. Using MPLS’ inherent mechanisms for traffic prioritization
and traffic path control, a service provider could create a network that deliv-

9.2 MPLS TECHNOLOGY 327

Figure 9.3 An MPLS network.

IP Pocket

Destination
228.7.230.12

MPLS NetworkLabel = 88

LSR 1

LSR 2

LSR 3 LSR 4

88

MPLS PKT

99

MPLS PKT

66

MPLS PKT

IP Pocket

Destination
228.7.230.12

1. IP Packet enter MPLS Network
2. IP Address examined

3. Packet Associated with path
4. Packet is labelled (88)

5. Packet forwarded to LSR 2
6. LSR 2 examines label

7. LSR 2 forwards packet based on
label value—writes new label value (99)

8. Packet reaches egress (LSR 4)
9. Strip label and deliver IP Packet

Time sequence

c09.qxd 8/24/2004 10:21 AM Page 327

TEAM LinG - Live, Informative, Non-cost and Genuine!

ers QoS, facilitates offering differentiated services to customers, and fulfills
the offered service-level agreements.

� Scalability of Network Layer Routing. A key MPLS desideratum was to
achieve an improved and more efficient transfer of PDUs in the current IP
networks. Combining the routing knowledge at Layer 3 with the ATM
Switching capability in ATM devices results in a better solution. In the MPLS
scenario, it is sufficient to have adjacencies with the immediate peers. The
edge LSRs interacts with the adjacent LSR and this is sufficient for the cre-
ation of LSPs for the transfer of data.

� Traffic Engineering. MPLS supports traffic engineering (a process of select-
ing the paths chosen by data traffic in order to balance the traffic load on the
various links, routers, and switches in the network). MPLS offers capabilities
to control the paths taken by different flows. Using these capabilities, traffic
could be rerouted to avoid congestion points in a network. Key performance
objectives of TE are (a) traffic-oriented: includes those aspects that enhance
the QoS of traffic streams; and (b) resource-oriented: includes those aspects
that pertain to the optimization of resource utilization.

� Virtual Private Network Support. VPN is an application that uses the label
stacking mechanisms. At the VPN ingress node, the VPN label is mapped
onto the MPLS label stack and packets are label-switched along the LSP
within the VPN until they emerge at the egress. At the egress node, the label
stack is used to determine further forwarding of the PDUs.

In particular, traffic engineering is concerned with performance optimization of
operational networks. In general, it encompasses the application of technology and
scientific principles to the measurement, modeling, characterization, and control of
Internet traffic, and the application of such knowledge and techniques to achieve
specific performance objectives. The aspects of traffic engineering that are of inter-
est concerning MPLS are measurement and control. A major goal of Internet traffic
engineering is to facilitate efficient and reliable network operations while simulta-
neously optimizing network resource utilization and traffic performance. Traffic
engineering has become an indispensable function in many large autonomous sys-
tems because of the high cost of network assets and the commercial and competi-
tive nature of the Internet. These factors emphasize the need for maximal opera-
tional efficiency [4]. Note that MPLS is not a routing protocol. In fact, MPLS needs
the reachability information provided by the current routing protocols in order to
calculate the paths that it uses. MPLS augments the functionality of the routing pro-
tocols, but does not replace them.

9.2.3 Key Mechanisms Supporting MPLS

MPLS requires a set of procedures for augmenting network layer packets with “la-
bel stacks,” thereby turning them into “labeled packets.” Routers that support
MPLS are known as “label-switching routers.” In order to transmit a labeled packet

328 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

c09.qxd 8/24/2004 10:21 AM Page 328

TEAM LinG - Live, Informative, Non-cost and Genuine!

on a particular data link, an LSR must support an encoding technique that, given a
label stack and a network layer packet, produces a labeled packet [137]. MPLS can
be logically and functionally partitioned into two elements to provide the label-
switching functionality:

1. MPLS forwarding/label-switching mechanism

2. MPLS label-distribution mechanism

MPLS Forwarding/Label-Switching Mechanism. The key mechanism of
MPLS is the forwarding/label-switching function. This is an advanced form of
packet forwarding that replaces the conventional longest-address-match-forwarding
with a more efficient label-swapping forwarding algorithm. The IP header analysis
is performed once at the Ingress of the LSP for the classification of PDUs. PDUs
that are forwarded via the same next hop are grouped into a FEC based on one or
more of the following parameters: Address Prefix; Host Address; and/or Host Ad-
dress and QoS.

The FEC to which the PDU belongs is encoded at the edge LSRs as a short
fixed-length value known as a “label.” When the PDU is forwarded to its next hop,
the label is sent along with it. At downstream hops, there is no further analysis of
the PDU’s network-layer header. Instead, the label is used as an index into a table;
the entry in the table specifies the next hop and a new label. The incoming label is
replaced with this outgoing label, and the PDU is forwarded to its next hop. Labels
usually have a local significance and are used to identify FECs based on the type of
the underlying network. For example, in ATM networks, the VPI and VCI are used
in generating the MPLS label; in Frame Relay networks, the Data Link Control
Identifier (DLCI) is used. In ATM environments, the labels assigned to the FECs
(PDUs) are the VPI/VCI of the virtual connections established as a part of the LSP.
In Frame Relay environments, the labels assigned to the FECs (PDUs) are the
DCLIs.

So an FEC is a class of packets that should be forwarded in the same manner
(i.e., over the same path) [26]. A FEC is not a packet, nor is it a label. A FEC is a
logical entity created by the router to represent a class (category) of packets. When
a packet arrives at the ingress router of an MPLS domain, the router parses the
packet’s headers, and checks to see if the packet matches a known FEC (class).
Once the matching FEC is determined, the path and outgoing label assigned to that
FEC are used to forward the packet. FECs are typically created based on the IP des-
tinations known to the router, so for each different destination a router might create
a different FEC, or if a router is doing aggregation, it might represent multiple des-
tinations with a single FEC (for example, if those destinations are reachable through
the same immediate next hop anyway). The MPLS framework, however, allows for
the creation of FECs using advanced criteria like source and destination address
pairs, destination address and TOS, and so on.

Label Switching has been designed to leverage the Layer 2 switching function
done in the current data link layers such as ATM and FR. It follows that the MPLS

9.2 MPLS TECHNOLOGY 329

c09.qxd 8/24/2004 10:21 AM Page 329

TEAM LinG - Live, Informative, Non-cost and Genuine!

Forwarding mechanism should be able to update the switching fabric(s) in ATM
and FR hardware in the LSR for the relevant sets of LSPs, that can be switched at
the hardware level [29]. In the Ethernet-based networks, the labels are short headers
placed between the data link headers and the data link layer PDUs.

MPLS Label-Distribution Mechanism. In an MPLS environment, the distrib-
ution of labels in MPLS is accomplished in two ways:

1. Utilizing the Resource ReSerVation Protocol (RSVP) signaling mechanism
to distribute labels mapped to the RSVP flows [138]

2. Utilizing the Label Distribution Protocol (LDP) [80]

Label Distribution Using RSVP. RSVP defines a ‘“session” to be a data flow
with a particular destination and transport-layer protocol [138]. From the early
1990s to the late 1990s, RSVP was being considered for QoS support in IP net-
works. When RSVP and MPLS are combined, a flow or session can be defined with
greater generality. The ingress node of an LSP can use a variety of means to deter-
mine which PDUs are assigned a particular label. Once a label is assigned to a set of
PDUs, the label effectively defines the “flow” through the LSP. Such an LSP is re-
ferred to as an “LSP tunnel” because the traffic flowing though it is “opaque” to in-
termediate nodes along the label-switched path. The label-request information for
the labels associated with RSVP flows will be carried as part of the RSVP Path
messages and the label-mapping information for the labels associated with RSVP
flows will be carried as part of the RSVP Resv messages [29]. The initial imple-
mentors of MPLS chose to extend RSVP into a signaling protocol to support the
creation of LSPs that could be automatically routed away from network failures and
congestion. An Internet Draft defines the extension to RSVP for establishing LSPs
in MPLS networks [139].

The use of RSVP as a signaling protocol for traffic engineering is different from
that envisioned by its original developers in the mid-1990s [11]:

� A number of extensions were added to the base RSVP specification (RFC
2205 and RFC 2209) to support the establishment and maintenance of explic-
itly routed LSPs.

� RSVP signaling takes place between pairs of routers (rather than pairs of
hosts) that act as the ingress and egress points of a traffic trunk. Extended
RSVP installs state that applies to a collection of flows that share a common
path and a common pool of shared network resources, rather than a single
host-to-host flow. By aggregating numerous host-to-host flows into each LSP
tunnel, extended RSVP significantly reduces the amount of RSVP state that
needs to be maintained in the core of a service provider’s network.

� RSVP signaling installs distributed state related to packet forwarding, includ-
ing the distribution of MPLS labels.

330 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

c09.qxd 8/24/2004 10:21 AM Page 330

TEAM LinG - Live, Informative, Non-cost and Genuine!

� The scalability, latency, and traffic overhead concerns regarding RSVP’s
soft-state model are addressed by a set of extensions that reduce the number
of refresh messages and the associated message processing requirements.

� The path established by RSVP signaling is not constrained by conventional
destination-based routing, so it is a good tool to establish traffic engineering
trunks [81].

The initial implementors of MPLS had a number of reasons to choose to extend
RSVP rather than design an entirely new signaling protocol to support traffic engi-
neering requirements [11]:

� By implementing the proposed extensions, RSVP provides a unified signaling
system that delivers everything that network operators need to dynamically
establish LSPs.

� Extended RSVP creates an LSP along an explicit route to support the traffic
engineering requirements of large service providers.

� Extended RSVP establishes LSP state by distributing label-binding informa-
tion to the LSRs in the LSP.

� Extended RSVP can reserve network resources in the LSRs along the LSP
(the traditional role of RSVP). Extended RSVP also permits an LSP to carry
best-effort traffic without making a specific resource reservation.

Hence, RSVP can serve a dual role in MPLS: for label distribution and for QoS
support.

Label Distribution Protocol. LDP is a set of procedures and messages by which
LSRs establish LSPs through a network by mapping network-layer routing infor-
mation directly to data-link layer-switched paths. These LSPs may have an end-
point at a directly attached neighbor (this being comparable to IP hop-by-hop for-
warding), or may have an endpoint at a network egress node, enabling switching via
all intermediary nodes. LDP associates an FEC with each LSP it creates. The FEC
associated with an LSP specifies which PDUs are “mapped” to that LSP. LSPs are
extended through a networks as each LSR “splices” incoming labels for an FEC to
the outgoing label assigned to the next hop for the given FEC.

The messages exchanged between the LSRs are classified into the four categories:

1. Discovery messages. Used to announce and maintain the presence of an LSR
in a network.

2. Session messages. Used to establish, maintain, and terminate sessions be-
tween LSP peers.

3. Advertisement messages. Used to create, change, and delete label mappings
for FECs.

4. Notification messages. Used to provide advisory information and to signal er-
ror information.

9.2 MPLS TECHNOLOGY 331

c09.qxd 8/24/2004 10:21 AM Page 331

TEAM LinG - Live, Informative, Non-cost and Genuine!

The LDP uses the TCP for session, advertisement, and notification messages.
TCP is utilized to provide reliable and sequenced messages. Discovery messages
are transmitted by using the UDP. These messages are sent to the LSP port at the
“all routers on this subnet” group multicast address.

Discovery messages provide a mechanism for the LSRs to indicate their pres-
ence in a network. LSRs send the Hello message periodically. When an LSR choos-
es to establish a session with another LSR discovered via the Hello message, it uses
the LDP initialization procedure (this is done using TCP). Upon successful comple-
tion of the initialization procedure, the two LSRs are LSP peers, and may exchange
advertisement messages. The LSR requests a label mapping from a neighboring
LSR when it needs one, and advertises a label mapping to a neighboring LSR when
it wishes the neighbor to use a label.

9.2.4 Service Availability

Almost every major Tier 1 communication provider in the United States has an-
nounced that they have or will be bringing out MPLS-based services. In the
midterm, it is expected that MPLS services will either replace or at least cap the
new deployment of ATM services. Clearly, MPLS has the potential of being superi-
or to ATM for data applications because it eliminates the “cell tax” and the need for
laborious IP frame segmentation and reassembly. We think the service will play a
role in future grid computing applications.

332 COMMUNICATION SYSTEMS FOR NATIONAL GRIDS

c09.qxd 8/24/2004 10:21 AM Page 332

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 333
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

CHAPTER 10

Communication Systems
for Global Grids

This chapter takes a rather limited look at the kinds of lower-layer networking tech-
nologies that can be deployed to support intergrids. It should be noted that any tra-
ditional network of sufficient capacity and security could be employed for this ap-
plication. However, the global nature of the GAN required makes it less likely that
users can employ a cost-effective dedicated, high-speed network to interconnect all
of the resources dispersed on a global scale. Therefore, the use of Internet-based
services, and in particular VPN, is likely to be the pragmatic solution of choice for
most (nongovernment funded) grids.

Given these observations, this final chapter looks at VPN technologies, also pro-
viding a comparison with emerging Layer 2 VPNs that are facilitated by MPLS
technology discussed in the previous chapter.

Traditionally, VPNs have been achieved by encapsulating encrypted Layer 3
packets (e.g., using IPSec) inside the payload of a regular IP packet that is then
transmitted through an IP-based network, such as the Internet. While VPN “tun-
nels” suffer from issues such as being point-to-point in nature, requiring encryption
key administration, and providing rather poor QoS through the Internet (in terms of
bandwidth, latency, and jitter, the service is strictly “best effort”), they are relative-
ly inexpensive. Cost and reach are the two key charactecteristics that make VPNs
popular.

Now, VPNs based on MPLS are also becoming practical. As we discussed
briefly in the previous chapter, MPLS has certain mechanisms that in theory can
assist in the administration of QoS, such as traffic engineering (TE). The question
is, when are MPLS VPNs better implemented at Layer 3, using BGP (Border
Gateway Protocol)-based VPNs, and when at Layer 2, using MPLS tunneling
technologies?

In the sections that follow,1 we explain what underlies the choice between Layer
2 and Layer 3 MPLS VPNs. Neither will always be the “right” choice for every net-
work. The nature of existing network architectures and desired applications and ser-
vices are what ultimately decide the matter. And, of course, some network operators
may deploy both types of VPN, or salutary combinations of the two technologies.

1The rest of this chapter is based on a White Paper by Tim Wu and Andy Walden, and included with
their permission [154].

c10.qxd 8/24/2004 10:22 AM Page 333

TEAM LinG - Live, Informative, Non-cost and Genuine!

Layer 3 MPLS VPNs will likely remain most appealing to Internet service
providers that already use BGP extensively and have already deployed high-end
IP/MPLS routing equipment at the edge. However, for carriers with existing Layer
2 VPN deployments or those accustomed to delivering transport services, Layer 2’s
MPLS “overlay” model should prove much more attractive. This follows because
such carriers are unlikely to be interested in the degree of IP routing and (more to
the point) high-end IP-equipment expenditures that Layer 3 VPNs call for. In addi-
tion, it is clear that where direct interoperability with existing Layer 2 VPN deploy-
ments is important, Layer 2 VPNs have the advantage.

MPLS interfaces on new equipment brought to market by routing vendors (par-
ticularly those developing edge devices) offer complete Layer 2 or Layer 3 VPN so-
lutions based on Martini-draft tunneling and RFC 2547-bis, and these companies
play a leading role in developing joint Layer 2/Layer 3 VPN solutions.

10.1 THE BASICS OF LAYER 2 AND LAYER 3 VPNs

It is easy to lose sight of the purpose of MPLS VPN technology in the first place.
The goal is simple: to build a network that, as much as possible, acts like an exten-
sion of the private corporate network on a service provider’s shared network infra-
structure. The result, ideally, is a fast and efficient means of making scattered
places seem just like local sites, from workers’ homes to branch offices.

MPLS, designed to scale IP networks, is a natural choice for virtual private net-
works. Supporting multiple private networks on a shared infrastructure suggests im-
mediate scaling problems for both Layer 3 and Layer 2 networks. On a Layer 3 net-
work, asking each router on the network to potentially support thousands of
different routing tables (one for each virtual private network, in addition to those of
the public network) is an interminable option. Layer 2 networks, on the other hand,
have a different scaling problem: they lack the scope of routed networks, limiting a
Layer 2 implementation to the confines of the transport medium. Certain link-layer
protocols, like Ethernet, also have scaling limits that reflect their LAN origins (i.e.,
the 4095 VLAN limit).

10.2 THE LAYER 3 APPROACH

The Layer 3 VPN MPLS implementation is an early leader. The BGP model is
based on an IETF Request for Comments (RFC) 2547, and these “2547 VPNs”
have already been implemented in several major carrier networks, including parts
of the IP/MPLS backbones of AT&T and Bell Canada, among others.

How does a RFC 2547 VPN work? As the RFC explains, “MPLS is used for for-
warding packets over the backbone, and BGP is used to distribute routes over the
backbone” (see Figure 10.1). Each RFC 2547 VPN is really a private IP network,
with modified private IP addresses for each of the provider edge (PE) routers imme-

334 COMMUNICATION SYSTEMS FOR GLOBAL GRIDS

c10.qxd 8/24/2004 10:22 AM Page 334

TEAM LinG - Live, Informative, Non-cost and Genuine!

diately connected to the customer site. The route to each of the sites on the private
network is distributed using the familiar BGP routing protocol.

The relationship between the PE router and the customer edge (CE) router is the
truly distinctive aspect of RFC 2547 VPNs. The CE router becomes a peer of the PE
router (and not a peer to the other CE routers). The CE router provides the PE router
with route information for the private network. The PE router, in turn, must be capa-
ble of storing multiple private routing tables—one for each customer connection—
along with the usual public Internet forwarding information (see Figure 10.2).

10.2 THE LAYER 3 APPROACH 335

Site 3 Site 1

Provider
Edge Router

Provider
Edge Router

10.0.0.3
Private

Address

10.0.0.3
Private

Address

Share IP/MPLS
Network

10.0.0.3
Private

Address

Provider
Edge Router

Site 2

Figure 10.1 A private BGP network with private IP addresses.

Figure 10.2 The provider edge/customer edge router relationship.

Provider
Core Router

Provider
Edge Router

Private Route
Information

LSP

Customer A

Customer B

Customer C

Customer
Edge Routers

Routing
Table A

Routing
Table B

Routing
Table C

Internet
Routing Table

c10.qxd 8/24/2004 10:22 AM Page 335

TEAM LinG - Live, Informative, Non-cost and Genuine!

MPLS handles the forwarding between the nodes on a RFC 2547 network
(in this respect, Layer 2 and 3 VPN approaches are identical). This MPLS for-
warding role is crucial because it means the routers in the core of the network
(“P” routers) need not know about the routes connecting the RFC 2547 private
network. A RFC 2547 network uses a two-level label stack—the ingress PE router
pushes both a Next-Hop BGP header (for the private network) and a Next-Hop
Interior Gateway Protocol (IGP) header (for the shared infrastructure) onto the
packet. After reaching the egress PE router via one or more MPLS label-switched
paths (LSPs), the PE pops the MPLS headers and delivers a normal IP packet to
the customer.

What is to be made of the RFC 2547 approach? It has great potential. It takes ad-
vantage of the ubiquity of IP networks and, like IP, runs over multiple transport net-
works. It also has strong automatic route discovery; this is important for dynamic
VPNs.

On the other hand, several comparative limitations are also clear. The RFC 2547
approach can be very demanding of provider edge routers. Although not all RFC
2547 deployments will necessarily require anything but a number of static routes,
the potential for overburdening the network exists. For 2547-bis to truly scale, the
next generation of routers will need to be ubiquitous.

10.3 LAYER 2 MPLS VPNs—A DIFFERENT PHILOSOPHY

A different philosophy underlies Layer 2 MPLS virtual private networks [also
known as transparent LAN services or virtual private LAN services (VPLS)]. The
goal is the extension, rather than replacement, of existing Layer 2 VPN services. In-
stead of building a separate, private IP network and running traffic across it, Layer
2 VPNs take existing Layer 2 traffic and sends it through point-to-point tunnels on
the MPLS network backbone.

Both Layer 2 and Layer 3 MPLS VPNs rely on MPLS transport through the
core. The principal difference lies in how PE-CE router relations are handled. In a
Layer 2 MPLS VPN, the PE router is not a peer to the CE router and does not main-
tain separate routing tables. Rather, it simply maps incoming Layer 2 traffic onto
the appropriate point-to-point tunnel. The result is best described as an “overlay”
model as opposed to the Layer 3 “peer” model.

Crucial to the Layer 2 VPN model is a method for establishing simple point-to-
point tunnels on an MPLS network that can handle various forms of Layer 2 traffic.
Today, the industry is standardizing on the Martini drafts (named after Luca Marti-
ni of Level 3 Communications) that define point-to-point encapsulation mecha-
nisms for Ethernet, frame relay, ATM, TDM, and PPP/HDLC traffic. Indeed, Mar-
tini interoperability between many MPLS vendors was conclusively demonstrated
starting in 2002. Still other Internet drafts have built on the Martini draft encapsula-
tions to define frame relay and ATM operations and to define Ethernet transparent
LAN services (VPLS).

336 COMMUNICATION SYSTEMS FOR GLOBAL GRIDS

c10.qxd 8/24/2004 10:22 AM Page 336

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.4 WHICH WORKS BETTER WHERE?

The Layer 3 approach, as stated above, is ideally suited to “classic” ISP networks
with existing core router deployments. It is a good fit for carriers serving large
VPNs with changing locations, making automatic route discovery useful. The Lay-
er 2 approach, on the other hand, is the preferred approach for networks that want to
extend and scale legacy Layer 2 VPN deployments, transport-oriented carriers in
general, or any situation with few VPN sites and static routes. Many carriers are al-
ready providing Layer 2 VPN services (over, say, frame relay or metro Ethernet)
and are interested in scaling such services. In that case, the SP does not want a
whole new VPN infrastructure, just a way to overlay Layer 2 traffic on MPLS/IP
networks. For this task, Layer 2 MPLS VPNs are ideal. See Figure 10.3.

Transport-oriented carriers also should prefer the Layer 2 approach. Again, the
main difference with Layer 2 VPNs is at the PE router. Among other things, the
Layer 2 approach eliminates the need to peer with CE routers and maintain multi-
ple routing tables. This approach suits carriers that traditionally offer transport ser-
vices and leave routing to the customer. VPN traffic is carried over an IP/MPLS
network, without upgrading to expensive and specialized core routers at the edge.
In addition, in a Layer 2 MPLS VPN, reachability is achieved in the data plane
through address learning, rather than in the control plane through BGP route ex-
change.

Finally, where routes are likely to be static and private networks simple, the
relative simplicity of the Layer 2 approach is appealing. In a metropolitan TLS
scenario, for example, a network usually needs only to interconnect a few sites; a
RFC 2547 MPLS VPN may be overkill, from both cost and complexity stand-
points.

In the end, as MPLS VPNs are deployed, it is likely that carriers will choose
Layer 2 and Layer 3 VPNs for many of the same reasons they decided to deploy

10.4 WHICH WORKS BETTER WHERE? 337

Figure 10.3 Using Layer 2 MPLS VPNs to scale existing Layer 2 VPNs.

MPLS/IP Ethernet

Frame Frame

Access Access

Ethernet Access

LSP

c10.qxd 8/24/2004 10:22 AM Page 337

TEAM LinG - Live, Informative, Non-cost and Genuine!

Layer 2 or Layer 3 networks. The question of Layer 2 or Layer 3 deployment is
likely to stay with networking for quite some time.

10.5 A GRID COMPUTING APPLICATION

Figure 10.4 depicts an application of the VPN concept to a grid environment. The
reader should be able to generalize this to his or her environment.

338 COMMUNICATION SYSTEMS FOR GLOBAL GRIDS

MPLS/IP Ethernet

Frame Frame

Access Access

Ethernet Access

LSP

Grid-supporting VPN ServiceData Center

Grid Resources
(processors, storage,
sensors, instruments)

Ethernet Access

Grid Resources
(processors, storage, sensors, instruments)

Grid Resources
(processors, storage, sensors, instruments)

Figure 10.4 Example of a computing grid using MPLS VPNs.

c10.qxd 8/24/2004 10:22 AM Page 338

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 339
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

References

1. 451 Group, Grids 2004: From Rocket Science To Business Service, Special Report,
2003, New York.

2. W. Allcock (Ed.), GWD-R (Recommendation): GridFTP Protocol Spec, GridFTP:
Protocol Extensions to FTP for the Grid, April 2002, Revised April 2003. Copyright ©
Global Grid Forum (2003). The Global Grid Forum, 9700 South Cass Avenue, Bldg.
221/A142, Lemont, IL, 60439, USA. All Rights Reserved. This document and transla-
tions of it may be copied and furnished to others, and derivative works that comment on
or otherwise explain it or assist in its implementation may be prepared, copied, pub-
lished and distributed, in whole or in part, without restriction of any kind, provided that
the above copyright notice and this paragraph are included on all such copies and deriv-
ative works.

3. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International Journal of High Performance Computing Appli-
cations, 15 (3), 200–222, 2001.

4. D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, “RFC 2702, MPLS
Traffic Engineering,” IETF, September 1999. Copyright © The Internet Society. All
Rights Reserved. This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or assist in its im-
plementation may be prepared, copied, published and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this para-
graph are included on all such copies and derivative works.

5. E. Hudson, “Multilink Frame Relay: Expanding the Limits of T1,” Tiara Networks,
FRF News, 4th Quarter 1999.

6. D. Minoli, A Collection of Potential Network-Based Data Services, Bellcore/Telcordia
Special Report, SR-NPL-000790, 1987, Piscataway, NJ.

7. B. Campbell, “Setting the Standards,” Oracle Magazine, November/December 2003.

8. Staff, “Briefs,” Oracle Magazine, November/December 2003.

9. G. Buda, D. Choi, R. F. Graveman, and C. Kubic, “Security Standards for the Global
Information Grid,” in Military Communications Conference, 2001. MILCOM 2001.
Communications for Network-Centric Operations: Creating Information Force. IEEE.
Booz Allen & Hamilton, Linthicum, MD.

10. R. Buyya, Economic-Based Distributed Resource Management and Scheduling for
Grid Computing, Ph.D Thesis, Monash University, Melbourne, Australia, April 12,
2002.

11. C. Semeria, “RSVP Signaling Extensions for MPLS Traffic Engineering,” White Pa-
per, Juniper Networks, Inc., 2000.

bref.qxd 8/24/2004 10:23 AM Page 339

TEAM LinG - Live, Informative, Non-cost and Genuine!

12. The Storage Networking Industry Association’s (SNIA) IP Storage Forum, “Clearing
the Confusion: A Primer on Internet Protocol Storage,” SNIA Archives and
Promotional Materials. SNIA was incorporated in December 1997 and is a registered
501-C6 nonprofit trade association. 500 Sansome Street, Suite #504, San Francisco,
CA 94111.

13. R. J. Ruby, FRF MFR (FRF.16) Interop Event Chairperson, Frame Relay Forum MFR
Event, “Giving Frame Relay Users Higher Speed On and Off Ramps to ‘The Cloud’,”
MPLS/Frame Relay Forum. The MPLS and Frame Relay Alliance is an industry-wide
association of networking and telecommunication companies focused on advancing the
deployment of multivendor, multiservice label-switching networks and associated ap-
plications. MPLS & Frame Relay Alliance, 39355 California Street #307, Fremont, CA
94538.

14. K. Czajkowski, S. Fitzgeraldz, I. Foster, and C. Kesselman, “Grid Information Services
for Distributed Resource Sharing,” in Proceedings 10th IEEE International Symposium
on High- Performance Distributed Computing (HPDC-10), IEEE Press, 2001.

15. http://searchwebservices.techtarget.com.

16. S. Hege, and J. E. Refsnes, “Glossary and Tutorials,” W3Schools, Web Developers Site
On The Net, http://www.w3schools.com.

17. developerWorks staff, “Start Here to Learn about Grid Computing,” IBM Developer-
Works, August 2003. developerWorks is IBM’s resource for developers offering a
range of tools, code, and education that enable developers to take full advantage of the
IBM tools and technical library. www.ibm.com/developmentworks

18. E. Balusamy, “Web Services Development Made Easy, Learn How to Easily Access
Web services Using Oracle JDeveloper 10g,” Oracle Magazine, November/December
2003.

19. ANSI INCITS, “Fibre Channel Arbitrated Loop (FC-AL-2),” revision 7.0, INCITS
Project 1133D, April 1999.

20. TR-20-199X, “Fibre Channel Fabric Loop Attachment (FC-FLA),” revision 2.7, IN-
CITS Project 1235-D, August 199.7

21. ANSI INCITS, “Fibre Channel Framing and Signaling (FC-FS),” Rev 1.70, INCITS
Project 1331D, Draft Standard, Rev. 1.9, April, 2003.

22. ANSI INCITS, “Fibre Channel Generic Services -3 (FC-GS3),” revision 7.01, INCITS
Project 1356-D, November 2000.

23. ANSI INCITS, “Fibre Channel Protocol for SCSI, Second Version,” revision 8, IN-
CITS Project 1144D, September 2002.

24. ANSI INCITS, “Fibre Channel Switch Fabric -2 (FC-SW2),” revision 5.2, INCITS
Project 1305-D, May 2001.

25. W. A. Flanagan, “The Case for Multilink Frame Relay Access, Outgrown Your T1, but
a T3 is Too Much? MFR Fills the Gap in Access Speeds, Adds Resiliency to Improve
Uptime,” MPLS/Frame Relay Forum Newsletter, Winter 2000. The MPLS and Frame
Relay Alliance is an industry-wide association of networking and telecommunication
companies focused on advancing the deployment of multivendor, multiservice label-
switching networks and associated applications. MPLS & Frame Relay Alliance, 39355
California Street #307, Fremont, CA 94538.

26. Promotional material from Foundry Networks, 2100 Gold Street, P.O. Box 649100,
San Jose, CA 95164-9100.

340 REFERENCES

bref.qxd 8/24/2004 10:23 AM Page 340

TEAM LinG - Live, Informative, Non-cost and Genuine!

27. Frank Gens, “IDC Predictions 2004: Top 10 Trends for the IT Industry,” IDC Execu-
tive Telebriefing, IDC, Boston, Mass. December 4, 2003. (IDC is a subsidiary of IDG.)

28. MPLS and Frame Relay Forum, “FRF.16 Standard.” The MPLS and Frame Relay Al-
liance is an industry-wide association of networking and telecommunication companies
focused on advancing the deployment of multivendor, multiservice label-switching net-
works and associated applications. MPLS & Frame Relay Alliance, 39355 California
Street #307, Fremont, CA 94538.

29. Future Software Limited, “MultiProtocol Label Switching White Paper,” Chennai, In-
dia, 2001.

30. S. Newhouse and J. MacLaren, Grid Economic Services Architecture (GESA), 2003.
Copyright © Global Grid Forum (2003). The Global Grid Forum, 9700 South Cass Av-
enue, Bldg. 221/A142, Lemont, IL, 60439, USA. All Rights Reserved. This document
and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared,
copied, published and distributed, in whole or in part, without restriction of any kind,
provided that the above copyright notice and this paragraph are included on all such
copies and derivative works.

31. G. Fox, M. Pierce, D. Gannon, and M. Thomas, Overview of Grid Computing Environ-
ments, GFD-I.9, Feb 2003. Copyright © Global Grid Forum (2002). The Global Grid
Forum, 9700 South Cass Avenue, Bldg. 221/A142, Lemont, IL, 60439, USA. This doc-
ument and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of
any kind, provided that the above copyright notice and this paragraph are included on
all such copies and derivative works.

32. OGSI Technology Preview Overview, The Globus Project™, Argonne National Labo-
ratory, USC Information Sciences Institute, 2002. This presentation is licensed for use
under the terms of the Globus Toolkit Public License. (See http://www.globus.org/
toolkit/download/license.html for the full text of this license.)

33. The Global Grid Forum, 9700 South Cass Avenue, Bldg. 221/A142, Lemont, IL,
60439, USA, http://www.ggf.org.

34. G. Tramacere, “Utility Model,” Gartner Research, Gartner, Inc., 56 Top Gallant Road,
Stamford, CT 06904, www.gartner.com.

35. Comments by Dr. Ian Foster, Globus Project leader, Argonne National Laboratory and
the University of Chicago. Mathematics and Computer Science, Argonne National
Laboratory, 9700 Cass Ave, Argonne, IL, 60439, Tel: 630 252-4619, Fax: 630 252-
5986, foster@mcs.anl.gov.

36. The Globus Alliance, “The Globus Alliance is a research and development project fo-
cused on enabling the application of Grid concepts to scientific and engineering com-
puting,” Press Releases, c/o Carl Kesselman, USC/Information Sciences Institute,
4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292-6695, Tel: 310 822-
1511 x338, Fax: 310 823-6714, carl@isi.edu, http://www.globus.org, info@globus.
org.

37. GWD-R (draft-ggf-ogsi-gridservice-33) “Globus: A Toolkit-Based Grid Architecture,”
June 27, 2003.

38. P. Gralla, “What Is Service-Oriented Architecture?” The Web Services Advisor, 06
May 2003, http://searchwebservices.techtarget.com.

REFERENCES 341

bref.qxd 8/24/2004 10:23 AM Page 341

TEAM LinG - Live, Informative, Non-cost and Genuine!

39. The Global Alliance, “The Globus Toolkit,” The Globus Alliance Press Release, c/o
Carl Kesselman, USC/Information Sciences Institute, 4676 Admiralty Way, Suite
1001, Marina del Rey, CA 90292-6695, Tel: 310 822-1511 x338, Fax: 310 823-6714,
carl@isi.edu, http://www.globus.org, info@globus.org.

40. Foster, I., and Kesselman, C., “Globus: A Toolkit-Based Grid Architecture,” in Foster,
I. and Kesselman, C. (eds.), The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 1999, pp. 259–278.

41. The Storage Networking Industry Association’s (SNIA), Press Releases, Promotional
Material, and Archives. SNIA was incorporated in December 1997 and is a registered
501-C6 non-profit trade association. 500 Sansome Street, Suite #504, San Francisco,
CA 94111.

42. R. Housley, W. Ford, W. Polk, and D. Solo, Internet X.509 Public Key Infrastructure
Certificate and CRL Profile, Request for Comments: 2459, January 1999. Copyright ©
The Internet Society (1999). This document and translations of it may be copied and
furnished to others, and derivative works that comment on or otherwise explain it or as-
sist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works.

43. IBM Press Releases. IBM Corporation, 1133 Westchester Avenue, White Plains, New
York 10604, www.ibm.com.

44. The Globus Project™, Introduction to Grid Computing, Argonne National Laboratory
USC Information Sciences Institute, 2002. This material is licensed for use under the
terms of the Globus Toolkit Public License. (See http://www.globus.org/toolkit/down-
load/license.html for the full text of this license.)

45. The Globus Project™, Introduction to Grid Computing, Argonne National Laboratory,
USC Information Sciences Institute. Copyright (c) 2002 University of Chicago and The
University of Southern California. All Rights Reserved. This presentation is licensed
for use under the terms of the Globus Toolkit Public License. (See http://www.
globus.org/toolkit/download/license.html for the full text of this license.)

46. J. Shurtleff, “IP storage: A review of iSCSI, FCIP, and iFCP,” iSCSI Storage/IP net-
work Storage Trend and News, iSCSI Storage Publications, P.O. Box 7317, Golden,
CO, 80304-0100, info@iscsistorage.com, http://www.iscsistorage.com.

47. Sun Microsystems, JavaTM API for XML-Based RPC (JAX-RPC). A Sun Developer
Network Site (code in all technical manuals herein, including articles, FAQs, samples)
is provided under this License, http://java.sun.com/xml/jaxrpc/docs.html. Sun Mi-
crosystems, Inc.; 4150 Network Circle; Santa Clara, CA 95054; Phone: US 1-800-555-
9SUN; International 1-650-960-1300.

48. J. Spicer, “In Search Of,” Oracle Magazine, November/December 2003.

49. J. Joseph, “A Developer’s Overview of OGSI and OGSI-Based Grid Computing Get an
In-Depth Look at the Open Grid Service Infrastructure,” IBM Archives, April 7, 2003.

50. J. Unger, and Matt Haynos, “A Visual Tour Of Open Grid Services Architecture: Ex-
amine The Component Structure of OGSA,” IBM Achives, August 2003, Updated Oc-
tober 2003.

51. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard, Web Services Architecture, W3C, Working Draft, 2003.

52. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman, Grid Ser-
vice Specification, 2002. Copyright © Global Grid Forum (2002). The Global Grid Fo-

342 REFERENCES

bref.qxd 8/24/2004 10:23 AM Page 342

TEAM LinG - Live, Informative, Non-cost and Genuine!

rum, 9700 South Cass Avenue, Bldg. 221/A142, Lemont, IL, 60439, USA. This docu-
ment and translations of it may be copied and furnished to others, and derivative works
that comment on or otherwise explain it or assist in its implementation may be pre-
pared, copied, published and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are included on all
such copies and derivative works.

53. F. Cabrera, G. Copeland, B. Cox, T. Freund, J. Klein, T. Storey, and S. Thatte, Web
Services Transaction (WS-Transaction), Microsoft Archives, 2002.

54. K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and M. Xu, Agreement-Based Grid Ser-
vice Management (WS-Agreement), Global Grid Forum, Draft, 2003. The Global Grid
Forum, 9700 South Cass Avenue, Bldg. 221/A142, Lemont, IL, 60439, USA. Copy-
right © Global Grid Forum. This document and translations of it may be copied and
furnished to others, and derivative works that comment on or otherwise explain it or as-
sist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works.

55. I. Foster, D. Gannon, H. Kishimoto, and J. Von Reich, Open Grid Services Architecture
Use Cases, Global Grid Forum OGSA-WG, Draft draft-ggf-ogsa-usecase-2, 2003.
Copyright © Global Grid Forum. The Global Grid Forum, 9700 South Cass Avenue,
Bldg. 221/A142, Lemont, IL, 60439, USA. This document and translations of it may be
copied and furnished to others, and derivative works that comment on or otherwise ex-
plain it or assist in its implementation may be prepared, copied, published and distrib-
uted, in whole or in part, without restriction of any kind, provided that the above copy-
right notice and this paragraph are included on all such copies and derivative works.

56. V. A. Vyssotsky, F. J. Corbató, and R. M. Graham, in “Structure of the Multics Super-
visor,” Fall Joint Computer Conference, AFIPS Conference Proceedings, vol. 27, 203
(1965).

57. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International Journal of Supercomputer Applications, 15 (3),
200–222. 2001.

58. J. C. R. Licklider and R. W. Taylor, “The Computer as a Communication Device,” Sci.
Technol., 21–31, April (1968).

59. IBM, Microsoft, RSA Security, and VeriSign, “Web Services Secure Conversation
Language (WS-SecureConversation) Version 1.0,” 2002.

60. IBM, Microsoft, RSA Security, and VeriSign, “Web Services Trust Language (WS-
Trust),” 2002.

61. P. V. Mockapetris and K. Dunlap, “Development of the Domain Name System,” in
SIGCOMM, 1988, ACM, 123-133.

62. “Kansai EPC Chooses IBM for Grid Computing Development, RBC Insurance, Royal
Dutch Shell and Kansai Electric Power Newest IBM Grid Customers,” IBM Press Re-
lease, 28 Apr 2003. IBM Corporation, 1133 Westchester Avenue, White Plains, New
York 10604, www.ibm.com.

63. A. Bednarz and D. Dubie, “How to: How to Get to Utility Computing,” Network
World, December 1, 2000.

64. “IBM and Partners Bring Grid Computing to Linux on the Mainframe,” IBM, Press Re-
lease, March 31, 2003, N.Y., IBM Corporation, 1133 Westchester Avenue, White
Plains, New York 10604, www.ibm.com.

REFERENCES 343

bref.qxd 8/24/2004 10:23 AM Page 343

TEAM LinG - Live, Informative, Non-cost and Genuine!

65. The Globus Alliance (a partnership of Argonne National Laboratory’s Mathematics
and Computer Science Division, the University of Southern California’s Information
Sciences Institute, the University of Chicago’s Distributed Systems Laboratory, the
University of Edinburgh in Scotland, and the Swedish Center for Parallel Computers.)
This material is licensed for use under the terms of the Globus Toolkit Public License.
(See http://www.globus.org/toolkit/download/license.html for the full text of this li-
cense.)

66. D. Minoli, Internet and Intranet Engineering, McGraw-Hill, 1997.

67. D. Minoli and E. Minoli, Web Commerce Handbook, McGraw-Hill, 1998.

68. D. Minoli and A. Schmidt, Internet Architectures, Wiley, 1999.

69. I. Foster, D. Gannon, and H. Kishimoto (Eds.), The Open Grid Services Architecture,
GWD-R (draft-ggf-ogsa-ogsa-011), September 23, 2003. Copyright © Global Grid
Forum (2002, 2003). All Rights Reserved. The Global Grid Forum, 9700 South Cass
Avenue, Bldg. 221/A142, Lemont, IL, 60439, USA. This document and translations of it
may be copied and furnished to others, and derivative works that comment on or other-
wise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works.

70. J. Linn, “Generic Security Service Application Program Interface (GSS-API),” Version
2, Update 1, (RFC2743), January 2000. Copyright © The Internet Society (2000). This
document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be
prepared, copied, published and distributed, in whole or in part, without restriction of
any kind, provided that the above copyright notice and this paragraph are included on
all such copies and derivative works.

71. L. J. Zhang, Q. Zhoum, and J.-Y. Chung, “Developing Grid Computing Applications,
Part 2, Introduction to a Grid Architecture and Toolkit for Building Grid Solutions,”
December 3, 2002, http://www-106.ibm.com/developerworks/views/grid/articles.jsp.

72. M. Humphrey and M. Thompson, Security Implications of Typical Grid Computing Us-
age Scenarios, GFD-I.12, October 2000. Copyright © Global Grid Forum (2003). The
Global Grid Forum, 9700 South Cass Avenue, Bldg. 221/A142, Lemont, IL, 60439,
USA. This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its implementation
may be prepared, copied, published and distributed, in whole or in part, without restric-
tion of any kind, provided that the above copyright notice and this paragraph are in-
cluded on all such copies and derivative works.

73. M. C. Brown, “Grid Computing—Moving to a Standardized Platform,” August 2003,
IBM archives, IBM Corporation, 1133 Westchester Avenue, White Plains, New York
10604, www.ibm.com.

74. D. Minoli, P. Johnson, and E. Minoli, SONET-Based Metro Area Networks, McGraw-
Hill, 2002.

75. M. Lehmann, “Who Needs Web Services Transactions?” Oracle Magazine,
http://otn.oracle.com/oraclemagazine, November/December 2003.

76. A. Miller, M. Jefferson, and J. Rogers, “Global Information Grid Architecture,” Mitre
White Papers, MITRE Corporation, 202 Burlington Road, Bedford, MA 01730-1420,
(781) 271-2000, http://www.mitre.org.

77. D. Minoli, Telecommunications Technology Handbook, 2nd ed., Artech House, 2003.

344 REFERENCES

bref.qxd 8/24/2004 10:23 AM Page 344

TEAM LinG - Live, Informative, Non-cost and Genuine!

78. C. Monia, R. Mullendore, F. Travostino, W. Jeong, and M. Edwards, “iFCP—A Proto-
col for Internet Fibre Channel Networking,” IP Storage Working Group December
2002, Internet Draft, draft-ietf-ips-ifcp-14.txt. Copyright © The Internet Society, De-
cember 2002. All Rights Reserved. This document and translations of it may be copied
and furnished to others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright no-
tice and this paragraph are included on all such copies and derivative works.

79. B. Davie, J. Lawrence, K. McCloghrie, Y. Rekhter, E. Rosen, G. Swallow, and P.
Doolan, “MPLS using LDP and ATM VC Switching,” RFC 3035, The Internet Society,
January 2001.

80. L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas, “LDP Specifica-
tion,” RFC 3036, The Internet Society, January 2001.

81. D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, “Requirements for
Traffic Engineering Over MPLS,” RFC 2702, The Internet Society, September 1999.

82. V. Lombardi, “Smarter Content Publishing,” Digital Web Magazine, August 6 2002.

83. B. Boiko, Content Management Bible, Wiley, 2001.

84. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T.
Sandholm, D. Snelling, and P. Vanderbilt, (Eds.), Open Grid Services Infrastructure
(OGSI), Version 1.0, Global Grid Forum, June 27, 2003. Copyright © Global Grid Fo-
rum (2003). All Rights Reserved. The Global Grid Forum, 9700 South Cass Avenue,
Bldg. 221/A142, Lemont, IL, 60439, USA. This document and translations of it may be
copied and furnished to others, and derivative works that comment on or otherwise ex-
plain it or assist in its implementation may be prepared, copied, published and distrib-
uted, in whole or in part, without restriction of any kind, provided that the above copy-
right notice and this paragraph are included on all such copies and derivative works.

85. Oracle Corporation, “Web Services Overview,” Programmatic Access to Web Sites
and Applications, June 2002. Oracle Corporation, World Headquarters, 500 Oracle
Parkway, Redwood Shores, CA 94065.

86. P. J. Gill, “Getting Down to Business with Enterprise Grid Computing,” Oracle Maga-
zine, November/December 2003.

87. C. Del Prete, “On Demand by IBM,” IDC Viewpoint, November 2003, IDC Corporate
Headquarters, 5 Speen Street, Framingham, MA 01701.

88. R. Pulley and P. Christensen, “A Comparison Of MPLS Traffic Engineering Initia-
tives,” A White Paper by NetPlane Systems, Inc., Southboro Office Park,120 Turnpike
Road, Southborough, MA 01772.

89. RFC 2246, The TLS Protocol Version 1.0 January 1999. Copyright © The Internet So-
ciety, 1999. All Rights Reserved. This document and translations of it may be copied
and furnished to others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright no-
tice and this paragraph are included on all such copies and derivative works.

90. developerWorks staff, “Start Here to learn about Grid Computing,” IBM Corporation,
1133 Westchester Avenue, White Plains, New York 10604, August 2003.

91. T. Myer, “Grid Computing: Conceptual Flyover for Developers,” IBM Corporation,
1133 Westchester Avenue, White Plains, New York 10604, May 2003.

REFERENCES 345

bref.qxd 8/24/2004 10:23 AM Page 345

TEAM LinG - Live, Informative, Non-cost and Genuine!

92. L.-J. Zhang, J.-Y. Chung, and Q. Zhou, “Developing Grid Computing Applications,
Part 1: Introduction of a Grid Architecture and Toolkit for Building Grid Solutions,”
Updated November 20, 2002, IBM Corporation, 1133 Westchester Avenue, White
Plains, New York 10604, October 1, 2002.

93. F. Berman, G. Fox, and A. J. Hey (Eds.), Grid Computing: Making the Global Infra-
structure a Reality, Wiley, 2003.

94. M. Chetty and R. Buyya, “Weaving Computational Grids: How Analogous Are They
With Electrical Grids?” IEEE Computing in Science and Engineering, July/August
2002.

95. D. Minoli and A. Schmidt, Client/Server Applications on ATM Networks, Prentice-
Hall/Manning, 1997.

96. I. Foster and C. Kesselman (Eds.), The Grid: Blueprint for a Future Computing Infra-
structure, Morgan Kaufmann Publishers, 1999.

97. M. Waldrop, “Hook Enough Computers Together and What Do You Get? A New Kind
of Utility that Offers Supercomputer Processing on Tap,” MIT Enterprise Technology
Review, May 2002. Technology Review, One Main Street, 7th Floor, Cambridge, MA,
02142, Tel: 617-475-8000, Fax: 617-475-8042.

98. Sun Networks Press Release, “Network Computing Made More Secure, Less Complex
With New Reference Architectures, Sun Infrastructure Solution,” September 17, 2003.
Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054, Phone: 1-800-
555-9SUN or 1-650-960-1300.

99. Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054, Phone: 1-800-
555-9SUN or 1-650-960-1300.

100. A. Bednarz and D. Dubie, “How To: How to Get to Utility Computing,” Network
World, December 1, 2003.

101. Grid Computing Info Centre (GRID Infoware), “Grid Computing, Answers to the En-
terprise Architect Magazine Query,” Enterprise Architect Magazine, http://www.cs.
mu.oz.au/~raj/GridInfoware/gridfaq.html.

102. M. McCommon, “Letter from the Grid Computing Editor: Welcome to the New devel-
operWorks Grid Computing Resource!” IBM Grid Computing Resource, April 7, 2003.

103. I. Foster, “What Is the Grid? A Three Point Checklist,” Argonne National Laboratory
and University of Chicago, July 20, 2002, Argonne National Laboratory, 9700 Cass
Ave, Argonne, IL, 60439, Tel: 630 252-4619, Fax: 630 252-5986, foster@mcs.anl.
gov.

104. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International Journal of High Performance Computer Applica-
tions, 15(3), 200 (2001).

105. R. Buyya, “Delivering Grid Services as ICT Commodities: Challenges and Opportuni-
ties,” Grid and Distributed Systems (GRIDS) Laboratory, Dept. of Computer Science
and Software Engineering, The University of Melbourne, Melbourne, Australia; also
presented at IST (Information Society Technologies) 2003, Milan, Italy.

106. P. Padala (Ed.), A Survey of Grid File Systems, GFS-WG (Grid File Systems Working
Group), Global Grid Forum, September 19, 2003. The Global Grid Forum, 9700 South
Cass Avenue, Bldg. 221/A142, Lemont, IL, 60439.

107. I. Foster and C. Kesselman. “Globus: A Metacomputing Infrastructure Toolkit.” The
International Journal of Supercomputer Applications and High Performance Comput-
ing, 11(2):115–128, 1997.

346 REFERENCES

bref.qxd 8/24/2004 10:23 AM Page 346

TEAM LinG - Live, Informative, Non-cost and Genuine!

108. A. S. Grimshaw, W. A. Wulf, and the Legion Team, “The Legion Vision of a World-
wide Virtual Computer,” Communications of the ACM, 40(1):39–45, January 1997.

109. V. Huber, “UNICORE: A Grid Computing Environment for Distributed and Parallel
Computing,” Lecture Notes in Computer Science, 2127, 258–266, 2001.

110. http://www.gridcomputing.com/.

111. R. B. Cohen and E. Feser, Grid Computing, Projected Impact in North Carolina’s
Economy and Broadband Use Through 2010, Rural Internet Access Authority, Septem-
ber 2003.

112. P. McDougall, “Offshore ‘Hiccups In An Irreversible Trend,” InformationWeek, CMP
Media Publishers, Manhasset, NY, Dec. 1, 2003.

113. I. Foster, “The Grid: A New Infrastructure for 21st Century Science,” Physics Today,
55 (2), 42–47, 2002.

114. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration, Globus Project, 2002.

115. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large Scien-
tific Data Sets,” Journal of Network and Computer Applications: Special Issue on Net-
work-Based Storage Services, 23, 3, 187–200, 2000.

116. C. Baru, R. Moore, A. Rajasekar, and M. Wan,. “The SDSC Storage Resource broker,”
in Proceedings of IBM Centers for Advanced Studies Conference, IBM, 1998.

117. O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, and S. Sekiguchi, “Grid datafarm Archi-
tecture for Petascale Data Intensive Computing,” H. E. Bal, K.-P. Lohr, and A. Reine-
feld (Eds.), Proceedings of the Second IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid2002), pp. 102–110, Berlin, Germany, 2002, IEEE
Computer Society.

118. T. Hawk, Remarks at Grid Computing Planet Conference and Expo, San Jose, 17 June
2002. Also quoted in Globus Alliance, Press Release, July 1, 2003.

119. L.-J. Zhang, J.-Y. Chung, and Q. Zhou, “Developing Grid Computing Applications,
Part 1: Introduction of a Grid Architecture and Toolkit for Building Grid Solutions,”
October 1, 2002, Updated November 20, 2002. IBM Corporation, 1133 Westchester
Avenue, White Plains, New York 10604, www.ibm.com (IBM’s developerworks/
views/ grid/articles archives).

120. D. Minoli, Analyzing Outsourcing, Reengineering Information and Communication
Systems, McGraw-Hill, 1994.

121. I. Foster and A. Iamnitchi, “On Death, Taxes, and the Convergence of Peer-to-Peer and
Grid Computing,” presented at 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03), February 2003, Berkeley, CA.

122. C. Catlett, “The Rise of Third-Generation Grids,” Grid Connections, Volume 1, 3, Fall
2003, The Global Grid Forum, 9700 South Cass Avenue, Bldg. 221/A142, Lemont, IL,
60439.

123. M. C. Brown, “Grid Computing—Moving to a Standardized Platform,” August 2003,
IBM’s Developerworks Grid Library, IBM Corporation, 1133 Westchester Avenue,
White Plains, New York 10604, www.ibm.com.

124. Globus Alliance, Press Release, “Globus Project Releases First Major Software Imple-
mentation Of Grid Services Architecture, Globus Toolkit 3.0 Reflects Community’s
Convergence on New, Open Grid Services Infrastructure Specification,” July 1, 2003.

REFERENCES 347

bref.qxd 8/24/2004 10:23 AM Page 347

TEAM LinG - Live, Informative, Non-cost and Genuine!

C/o Carl Kesselman, USC/Information Sciences Institute, 4676 Admiralty Way, Suite
1001, Marina del Rey, CA 90292-6695, Tel: 310 822-1511 x338, Fax: 310 823-6714,
carl@isi.edu, http://www.globus.org, info@globus.org.

125. B. Jacob, “Grid Computing: What are the Key Components? Taking Advantage of Grid
Computing for Application Enablement,” June 2003, IBM’s Developerworks Grid Li-
brary, IBM Corporation, 1133 Westchester Avenue, White Plains, New York 10604,
www.ibm.com.

126. M. Lurie, “The Federation—Database Interoperability, the Adventure Continues (Part
1),” International Business Machines Corporation. July 2003, IBM’s Developerworks
Grid Library, IBM Corporation, 1133 Westchester Avenue, White Plains, New York
10604, www.ibm.com.

127. D. Minoli, Broadband Network Design and Analysis, Artech House, 1993.

128. L.-J. Zhang, J.-Y. Chung, and Q. Zhou, “Developing Grid Computing Applications,
Part 1: Introduction of a Grid Architecture and Toolkit for Building Grid Solutions,”
October 1, 2002, Updated November 20, 2002, IBM’s Developerworks Grid Library,
IBM Corporation, 1133 Westchester Avenue, White Plains, New York 10604,
www.ibm.com.

129. Globus Alliance, Press Releases, c/o Carl Kesselman, USC/Information Sciences Insti-
tute, 4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292-6695, Tel: 310 822-
1511 x338, Fax: 310 823-6714, carl@isi.edu, http://www.globus.org, info@globus.org.

130. M. Haney, “Grid Computing: Making Inroads Into Financial Services,” IBM’s Devel-
operworks Grid Library, 24 April 2003, Issue No: Volume 4, Number 5, IBM Corpora-
tion, 1133 Westchester Avenue, White Plains, New York 10604, www.ibm.com.

131. R. Buyya, “Frequently Asked Questions, Grid Computing Info Centre,” GridComput-
ing Magazine. www.gridcomputing.com

132. G. von Laszewski, I. Foster, and J. Gawor, “CoG Kits: A Bridge Between Commodity
Distributed Computing and High Performance Grids,” Argonne National Laboratory
Archives, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439.

133. http://www.ietf.org/internet-drafts/draft-ietf-mpls-recovery-frmwrk-03.txt.

134. S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” Internet En-
gineering Task Force, RFC 2119, March 1997. Internet Engineering Task Force, a divi-
sion of the Internet Society, Internet Society, 1775 Wiehle Ave. Suite 102, Reston, VA
20190.

135. R. Merritt, “DARPA to Overhaul Supercomputing Benchmarks by 2006,” EE Times,
November 14, 2003.

136. E. Rosen, A. Viswanathan, and R. Callon, “RFC 3031: Multiprotocol Label Switching
Architecture,” IETF January 2001. Copyright © The Internet Society. All Rights Re-
served. IETF is a division of the Internet Society, Internet Society, 1775 Wiehle Ave.
Suite 102, Reston, VA 20190. This document and translations of it may be copied and
furnished to others, and derivative works that comment on or otherwise explain it or as-
sist in its implementation may be prepared, copied, published and distributed, in whole
or in part, without restriction of any kind, provided that the above copyright notice and
this paragraph are included on all such copies and derivative works.

137. E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li, and A. Conta,
“MPLS Label Stack Encoding,” RFC 3032, January 2001. Copyright © The Internet
Society. All Rights Reserved. IETF is a division of the Internet Society, Internet Soci-
ety, 1775 Wiehle Ave. Suite 102, Reston, VA 20190. This document and translations of

348 REFERENCES

bref.qxd 8/24/2004 10:23 AM Page 348

TEAM LinG - Live, Informative, Non-cost and Genuine!

it may be copied and furnished to others, and derivative works that comment on or oth-
erwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative
works.

138. B. Braden et al., “Resource ReSerVation Protocol (RSVP)—Version 1 Functional
Specification,” RFC-2205, September 1997. Copyright © The Internet Society. All
Rights Reserved. IETF is division of the Internet Society, Internet Society, 1775
Wiehle Ave. Suite 102, Reston, VA 20190. This document and translations of it may be
copied and furnished to others, and derivative works that comment on or otherwise ex-
plain it or assist in its implementation may be prepared, copied, published and distrib-
uted, in whole or in part, without restriction of any kind, provided that the above copy-
right notice and this paragraph are included on all such copies and derivative works.

139. D. O. Awduche et al., “Extensions to RSVP for LSP Tunnels,” work in progress, draft-
ietf-mpls-rsvp-lsp-tunnel-08.txt, February 2001. Copyright © The Internet Society. All
Rights Reserved. IETF is a division of the Internet Society, Internet Society, 1775
Wiehle Ave. Suite 102, Reston, VA 20190 This document and translations of it may be
copied and furnished to others, and derivative works that comment on or otherwise ex-
plain it or assist in its implementation may be prepared, copied, published and distrib-
uted, in whole or in part, without restriction of any kind, provided that the above copy-
right notice and this paragraph are included on all such copies and derivative works.

140. The Storage Networking Industry Association (SNIA), “SNIA Shared Storage Model,”
SNIA Archives and Promotional Materials, 500 Sansome Street, Suite #504, San Fran-
cisco, CA, 94111.

141. Staff, “HP Putting Grid In,” Grid Connections, 1, 3, Fall 2000.

142. E. Hudson, “Multilink Frame Relay: Expanding the Limits of T1,” Tiara Networks,
MPLS and Frame Relay Alliance News, 4th Quarter 1999. MPLS & Frame Relay Al-
liance, 39355 California Street #307, Fremont, CA 94538.

143. T. Myer, “Grid Computing: Conceptual Flyover for Developers,” May 2003, IBM’s
Developerworks Grid Library, IBM Corporation, 1133 Westchester Avenue, White
Plains, New York 10604, www.ibm.com.

144. SNIA IP Storage Forum White Paper, “Internet Fibre Channel Protocol (iFCP)—A
Technical Overview,” SNIA Archives and Promotional Materials, 500 Sansome Street,
Suite #504, San Francisco, CA, 94111.

145. DoD Chief Information Officer (CIO) Guidance and Policy Memorandum No. 8-8001,
“Global Information Grid,” March 31, 2000.

146. DoD Chief Information Officer (CIO), Guidance and Policy Memorandum No. 6-8510,
“Department of Defense Global Information Grid Information Assurance,” June16,
2000.

147. V. Berstis, “Fundamentals of Grid Computing,” Redbooks Paper, 2002, IBM Corpora-
tion, 1133 Westchester Avenue, White Plains, New York 10604, (ibm.com/redbooks).

148. S. Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura, and R. Neya-
ma, Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and
UDDI, Sams, 2001.

149. Robin C., The Cover Pages, Web Services Inspection Language (WSIL). The Cover
Pages is a comprehensive Web-accessible reference collection supporting the
SGML/XML family of (meta) markup language standards and their application. The

REFERENCES 349

bref.qxd 8/24/2004 10:23 AM Page 349

TEAM LinG - Live, Informative, Non-cost and Genuine!

principal objective in this public access knowledgebase is to promote and enable the
use of open, interoperable, standards-based solutions that protect digital information
and enhance the integrity of communication. A secondary objective of The Cover
Pages is to provide reference material on enabling technologies compatible with de-
scriptive markup language standards and applications: object modeling, semantic nets,
ontologies, authority lists, document production systems, and conceptual modeling.
xml.coverpages.org, OASIS, Tel. 978-665-5115.

150. “Web Services Description Language (WSDL) Version 1.2,” Published W3C Working
Draft, World Wide Web Consortium. www.w3.org, W3C at MIT/CSAIL, Massachu-
setts Institute of Technology (MIT), Computer Science and Artifical Intelligence Labo-
rator (CSAIL), 32 Vassar Street, Room 32-G515, Cambridge, MA 02139, USA. Tele-
phone: 1-617-253-2613; fax: 1-617-258-5999. Site manager: Alan Kotok;
administration: Susan Westhaver.

151. “Welcome to WSIF: Web Services Invocation Framework,” The Apache Software
Fundation, The Apache Software Foundation (www.apache.org) provides support for
the Apache community of open-source software projects. The Apache projects are
characterized by a collaborative, consensus-based development process, an open and
pragmatic software license, and a desire to create high-quality software that leads the
way in its field.

152. “Web Services Inspection Language (WS-Inspection) 1.0,” November 2001. IBM Cor-
poration, 1133 Westchester Avenue, White Plains, New York 10604.

153. T. Appnel, “An Introduction to WSIL,” O’Reilly OnJava.com, October 16, 2002.

154. T. Wu and A. Walden, “MPLS VPNs: Layer 2 or Layer 3? Understanding the Choice,”
River Stone Networks White Paper, Riverstone Networks, 5200 Great America Park-
way, Santa Clara, CA 95054, Tel. 408-878-6400, www.riverstonenet.com.

155. B. C. Neuman and T. Ts’o, “Kerberos: An Authentication Service for Computer Net-
works,” IEEE Communications Magazine, 32(9):33–38, September 1994.

156. D. Abramson, J. Giddy, and L. Kotler, “High-Performance Parametric Modeling with
Nimrod-G: Killer Application for the Global Grid?” in Proceedings of International
Parallel and Distributed Processing Symposium, IEEE Computer Society Press, 2000.

157. R. Buyya, K. Branson, J. Giddy, and D. Abramson, “The Virtual Laboratory: A Toolset
to Enable Distributed Molecular Modelling for Drug Design on the World-Wide Grid,”
Journal of Concurrency and Computation: Practice and Experience, 25, 2002; also
available as a technical report from Monash University, Melbourne, Australia.

158. A. Oram (Ed.), Peer-to-Peer: Harnessing the Power of Disruptive Technologies,
O’Reilly Press, Sebastopol, Calif., 2001.

159. I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International Journal of Supercomputer Applications, 15, 3,
2001.

160. R. Buyya et al., “Economic Models for Management of Resources in Peer-to-Peer and
Grid Computing,” in Proceedings SPIE International Conference on Commercial Ap-
plications for High-Performance Computing, SPIE, Bellingham, WA, 2001.

161. M. Smetanikov, “HP Virtualization a Step Toward Planetary Network,” Web Host In-
dustry Review (theWHIR.com) April 15, 2003. Web Host Industry Review, Inc. 552
Church Street, Suite 89, Toronto, Ontario, Canada M4Y 2E3, (phone) 416-925-7264,
(fax) 416-925-9421.

162. Hewlett-Packard Company, “HP Virtualization: Computing Without Boundaries or
Constraints, Enabling an Adaptive Enterprise,” HP white paper, 2002, Hewlett-Packard

350 REFERENCES

bref.qxd 8/24/2004 10:23 AM Page 350

TEAM LinG - Live, Informative, Non-cost and Genuine!

Company, 3000 Hanover Street, Palo Alto, CA 94304-1185, Phone: (650) 857-1501,
Fax: (650) 857-5518, www.hp.com.

163. Hewlett-Packard Company, “Virtual IT: Smarter, Faster, More Flexible with HP’s
UDC, mpulse Staff,” October 2003. Hewlett-Packard Company, 3000 Hanover Street,
Palo Alto, CA 94304-1185 USA, Phone: (650) 857-1501, Fax: (650) 857-5518,
www.hp.com.

164. P. Thibodeau, “Rivals See Cooperation As Key To Grid Computing Success: IBM, Sun
And HP All Want Grid Computing Standards,” ComputerWorld, July 21, 2003.

165. Nucleus Research Inc., “Grid Computing: More Questions Than Answers,” Research
Note D131, 2003. Nucleus Research Inc., 36 Washington Street, Wellesley MA 02481,
Phone: +1-781-416-2900, Fax: +1-781-416-5252, www.NucleusResearch.com.

166. E. Scannell and T. Sullivan, “Utility on Tap for 2004, Sun, IBM, HP to Build Out Util-
ity Computing Wares,” InfoWorld, January 05, 2004, InfoWorld Media Group, 501
Second Street, San Francisco, CA, 94107.

167. Grid Forum, now Global Grid Forum, Grid Security Infrastructure (GSI), The Global
Grid Forum, 9700 South Cass Avenue, Bldg. 221/A142, Lemont, IL, 60439, USA. All
Rights Reserved. This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or assist in its im-
plementation may be prepared, copied, published and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this para-
graph are included on all such copies and derivative works.

168. Intel, Promotional Materials, Intel, 2200 Mission College Blvd., Santa Clara, CA
95052.

169. W. Fellows, “IBM’S Grid Computing Push Continues,” Gridtoday, Daily News & In-
formation for for the Global Grid Community, 2, 40, October 6, 2003. Published by Ta-
bor Communications Inc, 8445 Camino Santa Fe, San Diego, California 92121, (858)
625-0070.

170. M. Otey, “Grading Grid Computing,” SQL Server Magazine, January 2004. Published
by Windows & .Net Magazine Network, a Division of Penton Media Inc., 221 E. 29th
St., Loveland, CO 80538.

171. Yankee Group, Enterprise Computing and Networking Report on Performance Man-
agement Road Map for Utility Computing, February 2004. Yankee Group, 31 St. James
Avenue Boston MA 02116, (617) 956-5000.

172. Yankee Group, Enterprise Computing and Networking Report on Utility Computing in
Next-Gen IT Architectures, August 2003, Yankee Group, 31 St. James Avenue, Boston
MA 02116, (617) 956-5000.

173. “Grid Computing using .NET and WSRF.NET Tutorial,” GGF11, Honolulu, June 6,
2004

174. OASIS, Post Office Box 455, Billerica, MA 01821, USA, +1 978 667 5115 Voice, +1
978 667 5114 Fax, http://www.oasis-open.org.

175. G. E. Moore, “Cramming More Components Onto Integrated Circuits, With Unit Cost
Falling as the Number of Components Per Circuit Rises, by 1975 Economics May Dic-
tate Squeezing as Many as 65,000 Components on a Single Silicon Chip,” Electronics,
38, 8, April 19, 1965.

176. Momentum Software Promotional Material, 4515 Seton Center Parkway, Suite 175,
Austin, TX 78759.

177. Morethan IP Promotional Materials, MorethanIP GmbH, An der Steinernen Bruecke 1,
D-85757 Karlsfeld, Germany.

REFERENCES 351

bref.qxd 8/24/2004 10:23 AM Page 351

TEAM LinG - Live, Informative, Non-cost and Genuine!

bref.qxd 8/24/2004 10:23 AM Page 352

TEAM LinG - Live, Informative, Non-cost and Genuine!

A Networking Approach to Grid Computing. By Daniel Minoli 353
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

Glossary

.NET Microsoft’s Internet and Web strategy. .NET is an Internet- and
Web-based infrastructure that delivers software as Web services
and is a framework for universal services. It is a server-centric
computing model.

1G Grids First-generation grids that involved local “Metacomputers” with
basic services such as distributed file systems and site-wide single
sign-on, upon which early adopter developers created distributed
applications with proprietary communications protocols.

2G Grids Second-generation grids that began with projects in which under-
lying software services and communications protocols are used as
a basis for developing distributed applications and services. 2G
grids offered basic building blocks, but deployment involved sig-
nificant customization and filling-in lacunae. Examples include
Condor, I-WAY (the origin of Globus), and Legion (the origin of
Avaki).

3G Grids Third-generation grids in which standards define grids in a consis-
tent way; this enables grid systems to become easily built “off-the-
shelf” systems. Grid architectures are defined by the Global Grid
Forum.

Autonomic Intelligent self-regulation of grid resources.
management

Binding A concrete protocol and data format specification for a particular
port type. In WSDL, the binding identifies a method for relating a
service interface to a service inplementation. It accomplishes this
by indentifying a transport binding, an invocation style, a SOAP
action, and a message encoding scheme. The binding is then used
by a collection of operations (port type) [176]

Broker A mechanism that identifies appropriate and available resources
function that can/should be used within the grid, based on the application

and application-related parameters provided by the user of the ap-
plication. The broker functionality provides information about the

bglos.qxd 8/24/2004 10:24 AM Page 353

TEAM LinG - Live, Informative, Non-cost and Genuine!

available resources on the grid and the working status of these re-
sources.

Clusters Aggregating of processors in parallel-based configurations, typi-
cally in local environment (within a data center); all nodes work
cooperatively as a single unified resource. Resource allocation is
performed by a centralized resource manager and scheduling sys-
tem. A cluster is comprised of multiple interconnected, indepen-
dent nodes that cooperatively work together as a single unified re-
source; unlike grids, cluster resources are typically owned by a
single organization.

Collaborative Applications that entail high-bandwidth access to shared virtual
engineering spaces, utilizing interactive manipulation of shared data sets and

management of complex simulations, in order to support collabo-
rative design of high-end systems.

Computational This grid is used to allocate resources specifically for computing
grid power. In this situation, most of the processors are high-perfor-

mance servers. (Processors are sometimes called nodes, resources,
members, donors, clients, hosts, engines, or machines.)

Data grid This grid is used for housing and providing access to data across
multiple organizations. Users are not focused on where this data is
located as long as they have access to the data.

Data A mechanism for reliable movement of files and data to various
management nodes within the grid.
function

Developer Tools for developers of grid-enabled applications focused on file
tools, grid tools transfer, communications, and environment control; they range

from utilities to APIs.

Directory Applications and systems on a grid must be capable of discovering
services grid what services are available to them; this is done via a directory
tools service. Typically based on the Lightweight Directory Access Pro-

tocol (LDAP).

EMC/ Virtualization technology that aims at lowering the cost of “Intel
VMWare’s server farms.” Converts the workloads of all of a specified set of
VMware servers to run as a single hardware pool without inhibiting any ap-

plication.

Global Grid An industry advocacy group; a forum for exchanging information
Forum (GGF) and defining standards relating to distributed computing and grid

technologies. GGF supports community-driven processes for de-
veloping and documenting new standards for grid computing.
GGF members include Cisco Systems, Hewlett-Packard, IBM,

354 GLOSSARY

bglos.qxd 8/24/2004 10:24 AM Page 354

TEAM LinG - Live, Informative, Non-cost and Genuine!

Microsoft, Qwest Communications, Silicon Graphics, Sun Mi-
crosystems, Oracle, Level(3), and BellSouth, among 46 partici-
pants at press time.

Globus Toolkit The de facto standard for several important connectivity, resource,
and collective protocols. The tool kit, a “middleware plus” capa-
bility, addresses issues of security, information discovery, re-
source management, data management, communication, fault de-
tection, and portability

Grid (Virtualized) distributed computing environment that enables the
computing dynamic “runtime” selection, sharing, and aggregation of (geo-

graphically) distributed autonomous (autonomic) resources based
on the availability, capability, performance, and cost of these com-
puting resources, and, simultaneously, also based on an organiza-
tion’s specific baseline and/or burst-processing requirements.

Enables organizations to transparently integrate, streamline, and
share dispersed, heterogeneous pools of hosts, servers, storage
systems, data, and networks into one synergistic system, in order
to deliver agreed-upon service at specified levels of application ef-
ficiency and processing performance.

An approach to distributed computing that spans multiple loca-
tions and/or multiple organizations, machine architectures, and
software boundaries to provide power, collaboration, and informa-
tion access.

Infrastructure that enables the integrated, collaborative use of
computers, supercomputers, networks, data bases, and scientific
instruments owned and managed by multiple organizations.

A network of computation, namely, tools and protocols for co-
ordinated resource sharing and problem solving among pooled as-
sets. Allows coordinated resource sharing and problem solving in
dynamic, multiinstitutional virtual organizations.

Like P2P, grid computing allows users to share files (many-to-
many sharing). With grid computing, the sharing is not only in ref-
erence to files, but also other IT resources.

Grid service A Web service that conforms to a set of conventions (interfaces
and behaviors) that define how a client interacts with a grid capa-
bility.

Grid synonyms Some with slightly different connotations: “computational grid,”
“computing-on-demand,” “on-demand computing,” “just-in-time
computing,” “platform computing,” “network computing,” “com-
puting utility,” “utility computing,” “cluster computing,” and
“high-performance distributed computing.”

Grid topologies Local, metropolitan, regional, national, or international footprint.

GLOSSARY 355

bglos.qxd 8/24/2004 10:24 AM Page 355

TEAM LinG - Live, Informative, Non-cost and Genuine!

Systems may be in the same room, or may be distributed across the
globe; they may running on homogenous or heterogeneous hard-
ware platforms; they may be running on similar or dissimilar oper-
ating systems; and, they may owned by one or more organizations.

Grid types (i) Computational grids: machines with set-aside resources stand
by to “number crunch” data or provide coverage for other inten-
sive workloads. (ii) Scavenging grids: commonly used to locate
and exploit CPU cycles on idle servers and desktop machines for
use in resource-intensive tasks. (iii) Data grids: a unified interface
for all data repositories in an organization, through which data can
be queried, managed, and secured.

Computational grids can be local enterprise grids (also called
intragrids) and Internet-based grids (also called intergrids). Enter-
prise grids are middleware-based environments used to harvest
unused “machine cycles,” thereby displacing otherwise-needed
growth costs.

Hewlett- Hewlett-Packard’s virtualization product family focusing on re-
Packard’s source management across its server.
Utility Data
Center (UDC)

IBM’s On IBM and its partners offer a number of grid solutions in several
Demand vertical industries (e.g., automotive, financial markets, govern-

ment, and others). IBM’s strategy is to grid-enable all of its prod-
ucts: the company states that they will continue to incorporate vir-
tualization technologies into its server software products and plans
to incorporate autonomic capabilities into DB2 and associated
content management products.

Infrastructure Grid subsystems that include file systems, schedulers and resource
grid tools managers, messaging systems, security applications, certificate

authorities, and file transfer mechanisms.

Intergrid A global Internet-based grid that spans multiple organizations and
geographic locations. Generally, an Intergrid may be used to col-
laborate on “large” projects of common scientific interest. The
stringiest levels of security are usually required in this environ-
ment.

Intragrid Also known as enterprise grid. A grid environment completely en-
closed within one organization.

Job Provides the services to actually launch a job on a particular re-
management source, to check the job’s status, and to retrieve the results when
and resource the job is complete. Typically, the management component keeps
management track of the resources available to the grid and which users are
function members of the grid.

356 GLOSSARY

bglos.qxd 8/24/2004 10:24 AM Page 356

TEAM LinG - Live, Informative, Non-cost and Genuine!

Metadata A definition or description of data. In IT, metadata is definitional
data that provides information about, or documentation of, other
data managed within an application or environment. For example,
metadata would document data about data elements or attributes,
(name, size, data type, etc.), data about records or data structures
(length, fields, columns, etc.), and data about data (where it is lo-
cated, how it is associated, ownership, etc.).

Microsoft’s Virtual Server is a virtual machine solution for application migra-
Virtual Server tion and server consolidation. With Virtual Server, a Windows

Server 2003-based server can run multiple operating systems con-
currently. The goal is to make it easier to migrate legacy applica-
tions. Virtual Server aims at reducing capital expenditures through
the use of fewer servers. Virtual Server does not require custom
drivers and it does not use any proprietary protocols.

Middleware Software plug-ins that facilitate the use of grid technology. For ex-
grid tools ample, the open-source Globus Toolkit 3.0, a mature set of tools

useful for building a grid, is the first full-scale implementation of
the OGSI standard. The toolkit was developed by the Globus Pro-
ject, a research and development project focused on enabling the
application of grid concepts to scientific and engineering comput-
ing.

Node security A mechanism that supports secure communication between inter-
function nal elements of a computational grid. A grid is comprised of a col-

lection of hardware and software resources whose origins may not
be obvious to a grid user; hence, strong security mechanisms are
required.

OGSA Services in this layer include discovery, life cycle, state manage-
architected ment, service groups, factory, notification, and handle map. These
grid services services are based on the Web Services layer.
layer

OGSA grid The user-visible layer. It supports user applications.
applications
layer

OGSA physical Resources comprise the capabilities of the grid. Physical resources
and logical include servers, storage, and network; logical resources provide
resources layer additional function by virtualizing and aggregating the resources

in the physical layer. General-purpose middleware such as file
systems, data base managers, directories, and workflow managers
provide these abstract services on top of the physical grid.

OGSA Web The specification defines grid services and builds on standard
Services Layer Web services technology. It exploits the mechanisms of Web ser-

GLOSSARY 357

bglos.qxd 8/24/2004 10:24 AM Page 357

TEAM LinG - Live, Informative, Non-cost and Genuine!

vices such as XML and WSDL to specify standard interfaces, be-
haviors, and interaction for all grid resources.

OGSI Factory A mechanism (interface) that provides a way to create new grid
services. Factories may create temporary instances of limited
function, such as a scheduler creating a service to represent the ex-
ecution of a particular job, or they may create longer-lived ser-
vices such as a local replica of a frequently used data set.

OGSI Deals with service identity. When factories are used to create a
Handle Map new instance of a grid service, the factory returns the identity of

the newly instantiated service. This identity is composed of two
parts, a grid service handle (GSH) and a grid service reference
(GSR). A GSH provides a reference the grid service indefinitely;
GSR can change within the grid services lifetime.

OGSI Life A mechanism architected to prevent grid services from consum-
cycle ing resources indefinitely without requiring a large scale distrib-

uted “garbage collection” scavenger. Every grid service has a ter-
mination time set by the service creator or factory. Because grid
services may be transient, grid service instances are created with a
specified lifetime.

OGSI Services interact with one another by exchanging messages based
Notification on service invocation. The state information that is modeled for

grid services changes as the system runs. Many interactions be-
tween grid services require dynamic monitoring of changing state.
Notification applies a traditional publish/subscribe paradigm to
this monitoring.

OGSI Service Service groups are collections of grid services that are indexed
Groups (using service data) for some specific purpose.

OGSI State A framework for representing grid services’ “state” along with a
Management mechanism for inspecting or modifying that state, named

Find/SetServiceData.

Open Grid Defines the standard architecture for grid computing. Describes
Services the overall structure and the services to be provided in grid envi-
Architecture ronments. A distributed interaction and computing architecture
(OGSA) that is based on the grid service concept, assuring interoperability

on heterogeneous systems and allowing different types of systems
to communicate and share information. Building on Web services
standards, OGSA takes the view that a grid service is simply a
Web service that conforms to a particular set of conventions.

OGSA manages resources across distributed heterogeneous
platforms. It supports QoS-oriented service-level agreements; pro-
vides a common base for autonomic management; defines open,
published interfaces and protocols for interoperability of diverse

358 GLOSSARY

bglos.qxd 8/24/2004 10:24 AM Page 358

TEAM LinG - Live, Informative, Non-cost and Genuine!

resources; exploits industry standard integration technologies, and
leverages existing solutions where appropriate. The foundation of
OGSA is rooted in Web services (e.g.. SOAP and WSDL).

Open Grid Defines the standard interfaces and behaviors of a grid service,
Services building on a Web services baseline. Defines mechanisms for cre-
Infrastructure ating, managing, and exchanging information among grid ser-
(OGSI) vices. Approach provides a common and open standards-based

mechanism to access various grid services using existing industry
standards such as SOAP, XML, and WS-Security.

Operation The equivalent to a function call. It is the command that is run
when invoked. Operations are given names, have input messages,
output messages, and potentially faults. Operations are identified
in the Port Type section of the WSDL document [176]

Oracle’s 10g 10g family of “grid-aware” products. Focuses on databases. Ora-
family cle’s own brand of grid computing: a database system that com-

prises multiple nodes and lets IT planners shift database resources
between them.

Peer-to-peer P2P is concerned with same general problem as grid computing,
(P2P) namely, the organization of resource shared within virtual com-

munities. The grid community focuses on aggregating distributed
high-end machines such as clusters, whereas the P2P community
concentrates on sharing low-end systems such as PCs connected
to the Internet.

Platform A company that supplies grid products and provides support for
Computing Inc. Linux on the zSeries mainframe.

Portal/User A possible access mechanism to a grid; it provides the user with
interface an interface to launch grid applications.

Resources Processors, data storage, scientific equipment, and so on. Physical
resources include servers, storage, and network. Above the physi-
cal resources are logical resources that provide additional function
by virtualizing and aggregating the resources in the physical layer.

Scavenging This grid is used to “locate processors–cycles.” Grid nodes are ex-
(computational) ploited for available CPU cycles and other resources. Nodes typi-
grid cally equate to desktop computers and a large number of proces-

sors are generally involved. Owners of the desktop processors are
usually given control over when their resources are available to
participate in the grid

Scheduler A grid-based system that is responsible for routing a job to a prop-
function erly selected processor to be executed. The scheduling software

identifies a processor on which to run a specific grid job that has
been submitted by a user. Schedulers, along with load balancers,

GLOSSARY 359

bglos.qxd 8/24/2004 10:24 AM Page 359

TEAM LinG - Live, Informative, Non-cost and Genuine!

provide a function to route jobs to available resources based on
SLAs, capabilities, and availability.

Security grid Security covers authentication, authorization, message integrity
tools and message confidentiality.

Service- Architecture that defines how two computing entities interact to
oriented enable one entity to perform a unit of work on behalf of another
architecture entity. The unit of work is referred to as a service, and the service
(SOA) interactions are defined using a description language. Each inter-

action is self-contained; each interaction is independent of any
other interaction environment software components can be ex-
posed as services on the network, and so can be reused for differ-
ent applications and purposes.

SOAP (Simple Transport mechanism that is independent of the underlying plat-
Object Access form and protocol. For example, two disparate processes can com-
Protocol) municate without the intimate knowledge of systems and plat-

forms on which both of them are running. SOAP provides a mech-
anism of messaging between a service requestor and a service
provider. It is a mechanism for formatting a Web service invoca-
tion: a simple enveloping process for XML payloads that defines a
remote procedure call convention and a messaging convention.

While SOAP is considered a protocol, it is viewed by some as a
protocol construction toolkit; this is because SOAP enables a de-
veloper (or other party) to define a protocol using a few basic
mechanisms. Mechanisms include (i) a format (as realized by the
SOAP envelope) and its associated processing model, (ii) roles
such as “sender,” “receiver,” and “intermediary,” and (iii) mes-
sage exchange patterns. SOAP assembles all of this information
into a “protocol binding”—a protocol binding is a way of saying
“this is how one uses the SOAP format in a certain way on top of
an underlying protocol, such as HTTP.” Protocol bindings also
have capabilities (known as Properties and Features) that allow
the developer to alter their settings; however, the binding does not
by itself provide a way to communicate these settings to remote
endpoints. To do that, one needs a description format such as
WSDL. One can think of WSDL as a protocol description format,
a way of defining a protocol without formal standardization
process.

Sun Approach based on clusters (Sun Grid Engine). N1 is Sun Mi-
Microsystems’ crosystems’ architecture, products and services for supporting net-
N1 Data-center work computing. The marketing angle of the company is that N1
Architecture allows “managing n computers as 1.”

Transport A specified method for taking some payload (like SOAP) and
Binding attaching (or embedding) it to a transport protocol. This enables an

360 GLOSSARY

bglos.qxd 8/24/2004 10:24 AM Page 360

TEAM LinG - Live, Informative, Non-cost and Genuine!

application to leverage a common transport protocol to move data
and then to accurately read or write some information (the pay-
load) in a consistent fashion by all participants.

Transport A network protocol (e.g., HTTP, SMTP) that has the capability of
Protocol transferring some payload from one node to another, thus provid-

ing some level of transparency from the underlying network.
Transport protocols are used as a mechanism to move payloads
around a network. Typically, a payload will have a transport bind-
ing associated with it. For example, SOAP (acting as a payload)
has a predetermined binding for HTTP (a transport protocol)
[176]. Some mechanisms (e.g., JMS, MQ, instant messaging pro-
tocols, JXTA, and others) cross layers in the OSI stack, that is,
they provide transport functionality but provide additional func-
tionality as well (such as session, reliability, etc.)

UDDI Repository that stores the descriptions of Web services. UDDI is
(Universal used to create a searchable directory of Web services. An XML-
Description, based registry for businesses worldwide to list themselves on the
Discovery and Internet.
Integration)

User security A mechanism to support security. Specifically, it provides authen-
function tication, authorization, data confidentiality, data integrity, and

availability, particularly from a user’s point of view.

Virtualization An approach that allows several operating systems to run simulta-
neously on one (large) computer. More generally, it is the practice
of making resources from diverse devices accessible to a user as if
they were a single, larger, homogenous, resource that appears to
be locally available.

Dynamically shifting resources across platforms to match com-
puting demands with available resources. The computing environ-
ment can become dynamic, enabling autonomic shifting applica-
tions between servers to match demand.

The abstraction of server, storage, and network resources in or-
der to make them available dynamically for sharing by IT ser-
vices, both internal to and external to an organization. In combina-
tion with other server, storage, and networking capabilities,
virtualization offers customers the opportunity to build more effi-
cient IT infrastructures. Virtualization is seen by some as a step on
the road to utility computing.

Web services Web Services define a technique for describing software compo-
(WS) nents to be accessed, methods for accessing these components,

and discovery methods that enable the identification of relevant
service providers. Web services are programming-language-, pro-

GLOSSARY 361

bglos.qxd 8/24/2004 10:24 AM Page 361

TEAM LinG - Live, Informative, Non-cost and Genuine!

gramming-model-, and system-software-neutral. In other words,
they are Internet-based services that provide standard infrastruc-
ture for data exchange between two different distributed applica-
tions. Web services are small units of code and are independent of
operating systems and programming languages. They are designed
to handle a limited set of tasks.

Web services are expected to play a key constituent role in the
standardized definition of grid computing, since Web services
have emerged as a standards-based approach for accessing net-
work applications (keeping in mind that grids provide an infra-
structure for aggregation of high-end resources for solving large-
scale problems).

Web services standards are being defined within the W3C and
other standards bodies and form the basis for major new industry
initiatives such as IBM’s Dynamic e-Business, Microsoft’s .NET,
and Sun’s Sun ONE.

WSDL (Web A language that provides a way of describing the specific inter-
services faces of Web services and APIs and is used by UDDI. An XML
definition mechanism for describing Web services as a set of endpoints oper-
language) ating on messages. These messages contain either document-ori-

ented (messaging) or remote procedure call payloads. Service in-
terfaces are defined abstractly in terms of message structures and
sequences of message exchanges.

WSDL The communication protocols used by the Web service. Describes
<binding> how the operation is invoked by specifying concrete protocol and

data format specifications for operations and messages.

WSDL The messages used by the Web service. An abstract definition of
<message> the data being communicated.

WSDL <port> Specifies a single endpoint as an address for the binding, thus
defining a single communication endpoint.

WSDL The operations performed by the Web service. An abstract set of
<portType> operations supported by one or more endpoints. A set of related

operations.

WSDL Specifies the port address(es) of the binding. The service is a col-
<service> lection of network endpoints or ports.

WSDL The data types used by the Web service. Provides information
<types> about any complex data types used in the WSDL document. When

simple types are used, the WSDL document does not need this
section.

WSIL (Web An XML-based format utilized to facilitate the discovery and ag-

362 GLOSSARY

bglos.qxd 8/24/2004 10:24 AM Page 362

TEAM LinG - Live, Informative, Non-cost and Genuine!

services gregation of Web service descriptions in a simple and extensible
inspection fashion. A simple, lightweight mechanism for Web service dis-
language) covery that complements UDDI. WSIL is an XML document for-

mat designed to facilitate the discovery and aggregation of Web
service descriptions in a simple and extensible fashion. Created by
IBM and Microsoft.

XML A meta-language used to describe grammatical descriptions of ob-
(eXtensible jects and describing data structures in an open manner. It is similar
markup in appearance to HTML, is platform-neutral, and can be used to
language) represent both documents and data.

GLOSSARY 363

bglos.qxd 8/24/2004 10:24 AM Page 363

TEAM LinG - Live, Informative, Non-cost and Genuine!

bglos.qxd 8/24/2004 10:24 AM Page 364

TEAM LinG - Live, Informative, Non-cost and Genuine!

Application virtualization, 23
Applications re-tuning, 221
Applications, Grid Computing, 20, 50
Architectural Constructs, 113
Architecture, Grid, 125
Argument Demarshaling, 144
ARPAnet, 44
ASP, 3
Asynchronous notification, 139
ATM (Asynchronous Transfer Mode), 284,

313
Attachment Unit Interface (AUI) , 307
Attribute naming, 179
Auction Models, 254
Auditing services, 215
Authentication, 208-209, 211, 215
Authentication, Authorization, and

Accounting, 160
Authorization, 239
Authorization policy, 246
Autonomic management, 125

Bandwidth, 81
Bandwidth reservations, 241
Barriers to Grid Computing, 231
Base Data Services, 188
Benefits of Grid Computing, 10, 31
BGP (Border Gateway Protocol), 333
Biding, 118
Billing and Payment Service, 182
Bindings, 119
Blades, servers, 33
Broadband, 3
Broker, 72, 76
Budget, IT, 4
Business Grid Types, 221, 222
Business process integration, 223
Business process outsourcing (BPO), 153

Index

.NET (Microsoft),92, 94
10 GbE, 285
10 Gigabit Fibre Channel standard, 295
10BASE-T, 100BASE-T, 1000BASE-T,

309, 310
10g family (Oracle products), 12, 54
10GFC, Fibre Channel, 295
3G grids, 26

Abstractions, 114
Access, 161
Accessing Grid Information Services, 243
Accounting Service, 182
Activity/performance monitoring, 232
Administration, 163, 173
Advance Scheduling, 241
Advanced Reservation, 162
Agreement-based iteration, 163
Analysis of Outsourcing, 4
ANSI X9 Security, 209
APIs, 51, 91, 115, 203-207
APIs, Communication, 206
APIs, Data Access, 206
APIs, Data Management, 206
APIs, Fault Detection, 207
APIs, Information Service, 206
APIs, Portability, 207
APIs, Resource Management, 206
APIs, Security, 206
Application Firewalls and Network-level

Firewalls, 161
Application framework development, 216
Application integration, 232
Application portability, 233
Application Programming Interfaces

(APIs), 51, 91, 206, 207
Application Service Provider (ASP), 3
Application Submission Function, 79

A Networking Approach to Grid Computing. By Daniel Minoli 365
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

bindex.qxd 8/24/2004 10:24 AM Page 365

TEAM LinG - Live, Informative, Non-cost and Genuine!

Business transaction and coordination
services, 180

CA (Certificate Authority), 76, 224, 234,
237

Cabling, 308
Cache invalidation protocols, 191
Cactus, 126
Calendar-based mechanism, 77
Canonical lifecycle states, 196
Capacity planning, 32
Carrier Sense Multiple Access/Collision

Detect (CSMA/CD), 303
Certificate Policy Model, 109
Certification, 161
CGS, 256, 257, 258
Chaining of services, 248
Chargeable Grid Service (CGS), 256, 257,

258
Choreography, 175, 180
Class of Service (CoS), 321
Client Use of Grid Service Handles, 142
Clients, 65
Client-Side Programming Patterns, 141
Cluster computing, 4,5, 8, 21, 50
CMM, 177
CoG Kits, 205, 217
Collaborative Computing, 10
Collaborative engineering, 35
Collaborative problem-solving, 3
Collective operations, 199
Collective protocols, 116, 124, 125
Commodity Grid (CoG), 205, 217
Commodity Market Models, 254
Common Management Model (CMM), 177,

195
Common Object Request Broker

Architecture (CORBA), 93
Communication APIs, 206
Communication infrastructure, 44
Communication integrity, 235
Communication Systems for global grids,

333
Communication Systems for local grids,

281
Communication systems for national grids,

313
Comparisons, 21
Compensation, Service pricing, 262

366 INDEX

Components of a grid, 63, 71
Compositions, heterogeneous, 174
Compositions, homogeneous, 174
Compositions, implementation, 174
Compositions, orchestrated, 174
Compositions, pure , 174
Computation, 84
Computational grid, 5, 7, 13, 50, 65
Computing blades, 33
Computing utility, 5, 9, 102
Computing-on-demand, 5
Condor, 39, 126, 205
Confidential Communication, 235
Confidentiality on stored data, 247
Configurable persistency, 184
Connectivity Layer protocols, 116, 124
Consumption patterns, 184
Content sharing, 10
Continuous Double Auction, 254
Coordinated resource sharing, 2
CORBA, 93, 126, 205, 217
Core services, 166
Cost components, 32
Costs, Run-the-engine, 12
Credential lifespan and renewal, 168
Currency, 266
Currency, service pricing, 260
Customer Edge equipment (CE), 335
Customer Premise Equipment (CPE), 314

DARPA, 44
Data access, 169
Data Access Agreement Service, 193
Data access and movement, 190
Data Access APIs, 206
Data and schema mediation, 190
Data caching, 169, 191
Data Center, 65
Data Center applications, 37
Data center virtualization, 23
Data Consistency, 191
Data federation, 17
Data Grid Initiatives, 37
Data grids, 7, 13, 24, 50, 65
Data Management, 18, 72, 78, 111
Data Management APIs, 206
Data mining, 11
Data replication, 190
Data replication and caching, 190

bindex.qxd 8/24/2004 10:24 AM Page 366

TEAM LinG - Live, Informative, Non-cost and Genuine!

Data services, 166, 189
Data Services Hosting, 137
Data sharing, 159
Data Transfer Process (DTP), 230
Data Transport, 228
data virtualizations, 189
DataAccess, 190
Database Access, 220
DataFactory, 190
DataManagement, 190
DBMS services, 169
DCE, 93
Decentralized architecture, 7
Decoupling, 183
Dedicated server platform, 3
Defense Advanced Research Projects

Agency (DARPA), 44
Definition of Grid, 64
Delegation, 211, 215, 235, 239
Dense Wavelength Division Multiplexing,

45, 81, 83
Deployment Challenges, 231
Deployment of grid, 159, 223, 224
Deployment Services, 173
Developer tools, 51
DFS, 85
Diffserv, QoS, 321
Digital Subscriber Line (DSL), 316
Directory, 72
Directory schemes, 180
Directory services, 49
Disaster Recovery, 162
Disc, service pricing, 261
Discovery and brokering, 159
Discovery Services, 157, 178, 191
Dispatch management, 111
Disposable computing, 13
Distributed computing, 7
Distributed Computing Environment

(DCE), 93
Distributed data management services, 215
Distributed File System (DFS), 85
Distributed Logging, 183
Distributed Object Systems, 140
Distributed Supercomputing, 10, 35
distributed.net, 41, 110
DNS, 49, 97
DoD’s Global Information Grid (GIG), 317
Domain Name Server (DNS), 49

INDEX 367

Domain-specific Services, 132, 136, 165
Donor software, 79
Donors, 65
Drawbacks” Of Grid Computing, 72
DTP (Data Transfer Process), 230
Duration, service pricing, 260
Dutch Auction, 254
DWDM, 45, 81, 83

Economic advantage of grid computing, 4,
28

Economic data, 56
Economic model, 258
Economic models, 254
Economic Parameters, Service pricing, 266
Economic Value, 53
Efficiency Gains from Grids, 252
EIS, 186
Elements – A Functional View, 71
Elements, grid, 73, 74
EMC’s VMWare, 14, 23, 54
Encrypted communication, 235
Encryption, 160
End-to-end resource management, 233
Engines, 65
English auction, 254
Enterprise computing environment, 32
Enterprise grid, 4, 7, 50, 65
Enterprise grid, Communication systems,

313, 318
Event, 185, 186
Event Interest Set (EIS), 186
Evolution Of Grids Over Time, 47
Execution of Grid flows, 180
Execution time reduction, 11
Extending portType, 147
eXtensible Markup Language (XML), 26,

94, 116
Extension of Web Services interfaces, 139
Extranet, 5

Fabric, 20
Fabric layer protocols, 123
Fabric, grid, 20
Factory, 130
Factory, gatekeeper process, 212
Fault Detection APIs, 207
Fault model, 194
Fault tolerance, 162

bindex.qxd 8/24/2004 10:24 AM Page 367

TEAM LinG - Live, Informative, Non-cost and Genuine!

Fault/accounting/performance management,
221

FCIP, 298, 299
Fibre Channel (FC), 283, 282
Fibre Channel (FC) Link Services, 291
Fibre Channel (FC) 10GFC, 295
Fibre Channel (FC) Device Discovery, 292
Fibre Channel (FC) Fabric, 287
Fibre Channel (FC) Fabric Port, 287
Fibre Channel (FC) FC-2, 287
Fibre Channel (FC) FC-4, 287
Fibre Channel (FC) layers, 286
Fibre Channel (FC) Layers and Link

Services, 291
Fibre Channel (FC) N_PORT, 288
Fibre Channel (FC) Network, 289
Fibre Channel (FC) Network Topologies,

289
Fibre Channel (FC) Nodes, 292
Fibre Channel over TCP/IP (FCIP), 298
Fibre Channel Protocol for SCSI (SCSI

FCP), 283
Fibre Channel Technology – Tunneled

Modes, 298
FICON, 284
Filtering and aggregation, 184
Financial services, 49
Financial Services companies, 37
Firewalls, 161
First class services, 174
Forwarding Equivalence Classes (FECs),

322
Frame Relay, 316
FTP, 95
Functional model, grid, 105

GANs, 114, 281
Gatekeeper process (a factory), 212
GbE , 46, 282, 285
GCE, 217
General Parallel File System (GPFS), 85
Generic Security Service Application

Program Interface (GSS-API), 115,
210

GESA, 255, 257
GGF, 20, 106, 156
GGF Documents, 108
GGF Working Groups, 107
Gigabit Ethernet (GbE), 46, 282, 285

368 INDEX

Gigabit Media Independent Interface
(GMII), 307

Global Access to Secondary Storage
(GASS), 204

Global Area Networks (GANs), 114
Global Grid Forum (GGF), 20, 26
Global Grids Communication Systems ,

333
Global Information Grid (GIG), 317
Globus Alliance, 3, 201, 202, 203
Globus Resource Allocation Manager

(GRAM), 204
Globus Tookit Protocols, 207
Globus Toolkit, 16, 20, 34, 47, 49, 201,

203, 213, 224
Globus Toolkit APIs, 203
Globus Toolkit applications, 216
Globus Toolkit Mechanisms, 203
GPDK, 217
GPFS, 85
GPS, 256, 257
GRAAP, 255
GRAM protocol, 78, 212
Grid administration, 233
Grid Administrative Access, 225
Grid administrator, 236, 243
Grid applications, 20, 36, 70
Grid applications layer, 129
Grid Benefits, 70
Grid benefits: Access to a plethora of IT

resources, 70
Grid benefits: Better utilization of

underused resources, 70
Grid benefits: Improved availability of

computing, 70
Grid benefits: Increased reliability of

computing, 70
Grid benefits: Parallelization of processing,

71
Grid benefits: Resource balancing, 71
Grid benefits: Simplified Management of IT

resources, 71
Grid benefits: Virtual resources and virtual

organizations for collaboration, 71
Grid Business Continuity Planning, 225
Grid challenges, 56
Grid Commercial Companies, 40
Grid Computing, 1, 2,7, 64, 84, 214
Grid Computing Drawbacks, 72

bindex.qxd 8/24/2004 10:24 AM Page 368

TEAM LinG - Live, Informative, Non-cost and Genuine!

Grid Computing Environment (Local
Implementation), 15

Grid Computing Environment (Remote
Implementation), 16

Grid Computing Environment(s) (GCE),
201, 217, 218

Grid Computing layers, 18, 19
Grid computing market, 12
Grid Computing standards, 24, 252
Grid computing taxonomy, 52
Grid Computing, processor utilization, 33
Grid Computing, savings, 32
Grid Configuration, 225
Grid Consortiums , 34
Grid Constituent Elements – Service View,

91
Grid core services, 132, 133
Grid Data Services, 135
Grid Data Transport, 228
Grid Definition , 64
Grid Deployment , 220, 223, 224
Grid Economic Service Interface, 265
Grid Economic Services Architecture, 255
Grid economics, 28
Grid elements, 73, 74
Grid gateway, 236
Grid High-Performance Networking

(GHPN), 228
Grid Information Protocol (GRIP), 212
Grid Installation, 225
Grid Management, 220
Grid market research, 48
Grid Middleware, 20, 39, 221
Grid Network Planning, 225
Grid Networking, 82, 226
Grid Networking Infrastructure, 226
Grid obstacles, 56
Grid Open Forums, 34
Grid Operation, 230
Grid Payment System, 267
Grid Payment System (GPS), 256
Grid Payment System, Service Data

Elements, 267
Grid Performance Monitoring and

Forecasting, 40, 221
Grid Planning, 225
Grid Portal Development Toolkit (GPDK),

217
Grid Portals, 39, 221

INDEX 369

Grid Program Execution, 137
Grid Program Execution Services, 132. 135
Grid Programming Environments, 20, 40,

221
Grid Programming Technologies, 126
Grid Resource Allocation Agreement

Protocol (GRAAP), 255
Grid Resource Allocation Management

(GRAM), 125
Grid Resource Allocation Manager

(GRAM), 78
Grid Resource Information Service (GRIS),

125
Grid Resource management, 225
Grid savings, 4
Grid Schedulers, 39, 221
Grid Security (also see security), 74, 234
Grid Security Infrastructure, 72
Grid Security Infrastructure (GSI), 204
Grid Service (s), 102, 145, 146
Grid Service Deployment, 135
Grid Service description , 149
Grid Service descriptions and instances, 194
Grid Service Handle (GSH) , 131, 142, 177,

205
Grid Service instance, 149
Grid Service Providers (GSPs), 4
Grid Service Reference (GSR), 131, 142,

177, 205
Grid Service Reference (GSR) Format, 215
Grid Services, Discovery, 106, 116
Grid Services, Factory, 106, 116
Grid Services, Handle Map, 106, 116
Grid services, interfaces, 128
Grid Services, Lifecycle, 106, 116
Grid Services, Notification, 106, 116
Grid Services, Service Groups, 106, 116
Grid Services, State Management, 106, 116
Grid Stack, 20
Grid Standards, 109, 110
Grid Suppliers, 51
Grid System Deployment Approaches, 201
Grid System Deployment Tools, 201
Grid System Economics, 251
Grid Systems, 39, 221
Grid Technology Selection, 225
Grid Testbeds and Development Systems,

40, 221
Grid Types, 13, 66

bindex.qxd 8/24/2004 10:24 AM Page 369

TEAM LinG - Live, Informative, Non-cost and Genuine!

Grid Vendors, 51
Grid, Issues Of Interest, 6
Grid, Managing enrollment of donors and

users, 225
Grid, Managing Security, 225
Grid, other approaches, 21
Grid/P2P Initiatives, 36
Grid’s health, 78
Grid-based applications, 216
GridFTP, 80, 109, 125, 204, 213, 227, 228,

236
GRIP (Grid Resource Information

Protocol), 212
Grouping/Aggregation of Services, 163
GSH, 131
GSH, Resolving, 143
GSI, 207. 234, 236
GSP, 4
GSR, 131
GSS-API (Generic Security Service API),

115, 124, 210
GT3 Architecture, 214

Handle Resolution, 177
HandleMap, 131
Health of grid, 78
Heartbeat Monitor (HBM), 204
heterogeneous compositions , 174
Heterogeneous systems, 5, 7
Hierarchical layers, Grid Computing , 18,

19
High performance distributed computing, 5
High-performance communication, 233
High-performance protocols, 233
High-speed networking, 82
High-Speed Networking Technologies

Usable In Grid Environments, 283
High-Throughput Computing, 126
History of Communications, 38, 42
History of Computing, 38, 42
History of Grid Computing, 38, 42
Homogeneous compositions , 174
Homogenous systems, 5
Host bus adapter (HBA), 300
Host computer, 90
Host-attached storage, 87
Hosting Environment, 144
Hosting environment bindings, 165
hosting environment(s), 197

370 INDEX

hosts, 65
HP’s Utility Data Center, 12, 23, 54
HTTP, 45, 80, 94
Hyperperfect numbers, 83, 86, 87
Hypertext Transfer Protocol (HTTP), 94

IBM, 3, 12, 48, 52, 54, 101, 134, 251
IBM On Demand, 12, 54
Identification, 157
IEEE 802 standards, 303
IEEE LAN Efforts, 305
IEEE LAN standards, 303
IETF, 44
iFCP, 287, 298, 299
Immediate Job Execution, 238
implementation composition, 174
Implementations of OGSI, 136
Increased effective computing capacity, 113
Information Service APIs, 206
Information services, 111
Infrastructure, 49
Infrastructure, security, 20
In-situ hardware, 33
Installation, Deployment, and Provisioning,

183
instances of services, 139
Instrumentation and monitoring services,

215
Interface syntax, 149
Interfaces, 130
Interfaces, grid services, 128
Intergrid, 7, 113
Intergrid, Communication Systems , 333
Internet, 333, 335
Internet Backbone, 85
Internet Engineering Task Force (IETF), 44
Internet Fibre Channel Protocol (iFCP), 298
Internet Privacy Enhanced Mail (PEM), 209
Internet Small Computer Systems Interface

(iSCSI), 298
Internet-based grids, 7
interoperability, 112, 170
Interoperability of resources, 113
Intragrid, Communication systems, 313
Intragrids , 7, 65
Intranet , 5
Inverse Multiplexed ATM (IMA), 314
Inverse multiplexing (imux) service, 313,

314, 315

bindex.qxd 8/24/2004 10:24 AM Page 370

TEAM LinG - Live, Informative, Non-cost and Genuine!

IP storage, 298
IP storage networking, 299, 302
IP-over-ATM overlay model, 321
IPv6, 227
iSCSI, 298, 299
Issues in Parallelization, 61
IT budgets, 4, 32
IT resources, 79
IT utility services, 32
IT workforce, 53
IT yearly spend, 4
ITU X.509, 207
iVDGL, 69

JavaBean, 147
Job, 172
Job Agreement service, 192
Job and Resource Management, 72
Job Control, 242
Job Execution, 238
Job flow, 180
Job Management , 78
Job priority, 77
Job submission, 171
Just-in-time computing, 5

Kerberos, 229, 237
Key Scientific Grid/P2P Initiatives, 36

Label Distribution Protocol (LDP), 330
Label Switch Router (LSR) , 322, 328
Label switched path, 324
LAN standards, 303
LAN, Full duplex operation, 307
LAN, Half duplex operation, 306
LANs, 65, 81, 114, 281, 303
Layer 2 VPNs, 334, 336
Layer 3 VPNs, 334
Layer 3 VPNs, FRC 2547, 334, 335
Layered Model, 129
Layers, Grid Computing, 18, 19
LDAP, 49, 204
Legacy application management, 163
Legacy business applications, 15
Legion, 16, 126, 205
Liability, Service pricing, 264
Licenses, Software, 90
Life cycle, 130, 194
Lifecycle metadata, 196

INDEX 371

Lightweight Directory Access Protocol
(LDAP) , 49

Linux servers, 12, 33
Load Balancing, 162
load sensors, 79
Load smoothing, 11
Local grids, 232
Local Grids, Communication Systems , 281
Log artifacts, 183
Logging, 162, 168
Logging services, 183
Logical storage resource, 90
Loosely-coupled composition, 174

MAC (message Authentication Code), 209
Machines, 65
Mainframes, 42
Manageability Interface, 192
Management and monitoring, 161
Management and monitoring for Grid

flows, 180
MANs, 114, 281, 304
Market for grid computing, 12, 48, 281
Market research, 48
Market-pricing, 253
MDS-2, 212
Media Access Control (MAC), 304
Media Independent Interface (MII) , 307
Medium Dependent Interfaces (MDI), 307
Members, 65
Memory, service pricing, 261
Message, 119
Message Authentication Code (MAC), 209
Message confidentiality parameters, 245
Message consumers, messaging

applications, 183
Message integrity parameters, 245
Message Passing Interface (MPI), 82, 115,

216
Message Passing Interface Forum (MPIF),

83
Message producers, messaging applications,

183
Message repositories, 184
Messages, 185
Messaging and Queuing, 184
Messaging applications, 183
Meta Directory Service (MDS), 204
Metadata, 111

bindex.qxd 8/24/2004 10:24 AM Page 371

TEAM LinG - Live, Informative, Non-cost and Genuine!

Metadata for Grid flows, 180
Metadata management, 190
Meta-scheduler, 77
Metering and accounting, 159
Metering Service, 181
Metropolitan Area Networks (MANs), 114,

281, 304
Microcomputers, 44
Microsoft, 54
Microsoft .NET, 92
Microsoft Virtual Server, 54
Middleware, 5, 18, 20, 49
Middleware selection and deployment, 221
Migration Path, 216
Minicomputers, 44
MLF, 313, 319
Modeling time, 149
Monitoring, 160
Monitoring and Discovery Service (MDS),

204
Moore’s Law, 83
MPI, 82, 115, 216
MPICH-G2, 126
MPLS, 313, 321
MPLS Forwarding, 329, 330
MPLS operation, 324, 327
MPLS VPNs, 333
MPLS, Label Distribution Protocol (LDP),

330
MPLS, Resource ReSerVation Protocol

(RSVP) signaling mechanism, 330
Multiple security infrastructures, 160
Multi-process applications, 164
Multi-Protocol Label Switching (MPLS),

313
Multi-Switch Fibre Channel Fabric, 290
Mutual Authentication, 234, 239

N1 Data-center Architecture, 12, 54
Naming and name resolution, 194
National grids, Communication systems,

313
National Science Foundation, 46
National Security, 61
Negotiating authentication, 157
Negotiation of resource usage, 233
Network, 81, 104
Network computing, 3, 5, 7, 38
Network File System (NFS), 85

Network for a Computing Utility, 9
Network interface card (NIC), 300
Network protocol, 114
Network Time Protocol (NTP), 150
Network virtualization, 23
Network, service pricing, 261
Network-based computing, 42
Network-based Grid Services, 114
Networked computers, 4
Networking, 226
Networking basis for Grid, 43
Next-Generation Open-Source Outsourcing,

151
NFS, 85
Nodes, 65
Notification, 131
NSFnet, 44, 45, 46

OASIS, 103, 175
OASIS (Organization for the Advancement

of Structured Information
Standards), 98

Object-Based Approaches, 126
Obstacles to grid deployment, 56
OC-12, 83
OC-3, 83
Offshoring, 12, 153
OGSA, 26, 91,102, 104, 127, 155, 202, 214,

234, 255, 282
OGSA architected Grid Services layer, 129
OGSA Components, 165
OGSA Models, 164
OGSA Service Taxonomy, 164
OGSA Services, 164, 177
OGSA/OGSI documents, 103
OGSA/OGSI Service Elements, 129
OGSI, 26, 91,101, 102, 104, 128, 139, 193,

194, 202, 255
OGSI specification, 139
On Demand (IBM), 54
on-demand (general) computing, 2, 5, 10
Open Forums, 34
Open Grid Services Architecture (OGSA),

26, 47, 81
Open Grid Services Infrastructure (OGSI),

26
Open source implementations, 137
Open Systems Interconnection Reference

Model (OSIRM), 304

372 INDEX

bindex.qxd 8/24/2004 10:24 AM Page 372

TEAM LinG - Live, Informative, Non-cost and Genuine!

Open-Source Outsourcing, 151
Open-Source Outsourcing, grid services,

151
Open-Source Outsourcing, standards, 152
Operations, 189
Optimization of computing, 48
Optimization of resource usage, 161
Oracle, 52, 54
Oracle’s 10g family, 12
Orchestrated composition, 174
Orchestration , 175, 180
Organization for the Advancement of

Structured Information Standards
(OASIS), 98

OTN/ASON, 284
Out-Of-Control Job, 242
Outsourcing, 4, 151
Outsourcing penetration, 152
Outsourcing savings, 4
Outsourcing, trends, 151

P2P, 8, 22, 106
P2P Commercial Companies, 40
P2P Systems, 36, 221
Palo Alto Research Center, 46
Parallel system, 21
Parallel transfer, 230
Parallelization, 61
Parametric studies, 35
Partner Grid, 50
Path naming schemes, 180
Payment Method, 266
Payment Method, service pricing, 261
PCs, 18
Peer-to-peer (P2P), 8,22
Penetration of Grids, financial services , 51
Perimeter security solutions, 160
Persistent Service, 116
Physical and logical resources layer, 130
Physical storage resource, 90
Platform Computing, 54
Platform computing (generic), 5
Platform services, 176, 177
Platforms, 112, 164
Point-to-Point Protocol (PPP), 322
Policy, 160
Policy and Agreements, 187
Policy Management, 133, 134, 221
Policy Service Components, 189

INDEX 373

Policy Service Manager, 188
Policy services, 134
Port, WSDL, 118
Portability, 112
Portability APIs, 207
Portal, 72, 75, 126
Portal Services, 219
Portals, Grid, 39, 221
portType, 119
PortType, Extending , 147
Pricing, 162
Pricing Mechanism, 266
Pricing Model, 256, 257
Pricing SDE, 259
Primary storage , 85
Priority, jobs, 77
Private Keys, 235
Problem determination services, 215
Processor scavenging, 161
Processor Time, service pricing, 261
Processor utilization, 33
Processor, service pricing, 261
Processor-cycles, 67
Processors, 84
Program Execution, 169, 170
program execution services, 166
Proportional Resource Sharing Model, 254
Protocol bindings, 165
Protocols, 80, 115, 117
Provider Edge (PE), 334
Provisioning, 161
Provisioning and resource management,

173
Proxies, 236
Proxy Certificates, 211
Publish/Upload Information, 244

QoS, 28
QoS/SLA (Quality of Service/Service Level

Agreements), 252, 253
Quality of Service (QoS), 28
Querying multiple information services,

244
Queuing service, 193

RAID (Redundant Array of Inexpensive
Drives), 85

Rating Service, 182
RDBMS, 180

bindex.qxd 8/24/2004 10:24 AM Page 373

TEAM LinG - Live, Informative, Non-cost and Genuine!

Redundant Array of Inexpensive Drives
(RAID), 85

Reengineering Communication Systems, 4
Reengineering Information Technology

Systems, 4
refund, Service pricing, 262
Registry, 212
Re-hosting, 24
Relational DBMS (RDBMS), 169
Relationships, Types, 176
Relay MultiLink Frame Service (MLF) ,

313
Reliable transport, 215
Remote software access, 10
Reservation, 241
Reservation Agreement Service, 169, 192
Reservation and Scheduling Services, 173
Reservation system, 77
Resolving a GSH, 143
Resource, 114
Resource Layer Protocols, 125
Resource Management, 18, 78, 161, 173
Resource Management APIs, 207
Resource management services., 166
resource management, End-to-end, 233
Resource protocols, 116
resource provisioning, 232
Resource ReSerVation Protocol (RSVP)

signaling mechanism, 330
Resource Specification Language (RSL),

204
Resource Usage Service (RUS), 255
Resource virtualization, 161
Resource-brokering, 3
Resources, 65, 72
Resources Utilization, 37
Resources, IT, 79
Return on investment, 253
Run-the-engine costs, 12
RUS, 255

SAN Technology, 284
SANs, 65, 81, 114, 281, 300
Savings, 31, 32
Savings with grid computing, 4
Scalability, 233
Scavenging grid, 7, 13, 65, 78
Scheduler, 72, 76
Schedulers and load balancers, 49

374 INDEX

Scheduling, 111
Scheduling and Reservation Services, 173
Scheduling of Grid flows, 180
Scheduling of service tasks, 162
Schema transformation, 191
Scientific Instruments, 90
SDE (service data element), 148
SDE Aggregation, 148
SDKs, 91, 115
Secondary storage , 85
Secure Sockets Layer (SSL), 124
Securing Private Keys, 235
Security, 51, 75, 111, 167, 191, 196, 221
Security (Grid Security Infrastructure), 72
Security APIs, 206
Security Architecture, 167
Security Infrastructures, 20, 160
Security management, 18
Security services in grids, 133, 134
Security, ANSI X9, 209
Security, Symmetric cryptography, 209
Self-healing capabilities, 162
Semantic name space, 179
Semantics, 149
Server reduction, 11
Server virtualization, 23
Servers, 11, 24
Servers, blades, 33
Service communication, 133, 134, 166, 221
Service Composition, 174
Service compositions, heterogeneous, 174
Service compositions, homogeneous, 174
Service compositions, orchestrated, 174
Service compositions, pure , 174
Service Control, 221
Service data, 145, 146
Service Data Elements (SDE), 148, 189,

190,255, 258
Service data elements DataDescription, 190
Service Data Elements, Grid Payment

System, 267
Service Description , 149
Service Groups , 131, 178, 194
Service instance(s), 106, 149
Service instances, Collections, 139
Service Interaction, 166
Service Interface Definition, 265
Service Level Agreements (SLAs), 28, 125
Service Management, 133, 166, 221

bindex.qxd 8/24/2004 10:24 AM Page 374

TEAM LinG - Live, Informative, Non-cost and Genuine!

Service Orchestration, 173, 175
Service pricing, compensation, 262
Service pricing, Currency, 261
Service pricing, Disc, 261
Service pricing, Duration, 261
Service pricing, Economic Parameters, 266
Service pricing, Liability, 264
Service pricing, Memory, 261
Service pricing, Network, 261
Service pricing, Payment Method, 261
Service pricing, Processor Time, 261
Service pricing, Processors, 261
Service pricing, product, 263
Service pricing, refund, 262
Service pricing, Testimonial, 265
Service pricing, usage, 263
Service Relationships, 173
Service state, metadata, and introspection,

194
Service Taxonomy, 164
Service-Oriented Architectures, 92, 112
Service-oriented grid architecture, 113
Services chaining , 248
Services discovery, 157
Services Interface, 265
Services management, 18
Services Problem determination, 215
Services, Auditing, 215
Services, Distributed data management

services, 215
Services, Instrumentation and monitoring,

215
Services, Types of Relationships, 176
Services, Workflow, 215
SETI@Home, 41
shared infrastructure, 112
Simple Object Access Protocol (SOAP), 26,

82, 92, 116
Single sign-on, 204, 211, 235
single-process applications, 164
SLAs, 28, 221
Smart instruments, 35
SNIA Shared Storage Model, 89
SOA, 92, 93, 102, 176
SOAP, 26, 82, 92, 94, 116, 122, 127, 134,

165, 214, 223
SOAP Client, 122
SOAP message, 122
Software Development Kit (SDK), 91, 115

INDEX 375

Software license agreement, 17
Software licenses, 90
SONET, 45, 284
Specifications, 20
Speed of application development, 113
Spend on IT, yearly, 4
SSL, 124, 207, 234
Stack, grid , 20
Standard Computing Environment, 14
Standards, 24, 80, 157, 187
Standards, Grid, 109, 110
State information, 130
State management, 131
Stateful Web Services, 146
Statefulness, 139
Storage, 85, 87
Storage Area Network (SAN), 65
Storage devices/systems, 90
Storage management, 90, 229
Storage Model, 89
Storage Network Industry Association

(SNIA), 87
Storage Resource Broker (SRB), 18
Storage virtualization, 23
Storage, Interconnection network, 88
Striped transfer, 230
Strong monitoring, 163
Structure of OGSA architected services,

132
Sun Microsystems, 12,54
Sun Microsystems’ N1 Data-center

Architecture, 12
Supercomputing, 10, 18, 85
Suppliers, Grid, 51
Switched Fibre Channel (FC) Fabrics, 290
Symmetric cryptography, 209
Synchronous Optical Network, 45
Syntax, 115
System administrator, 243

Task, 172
Tasklet, 172
Taxonomy, Services, 164
TCO, 28
TCP/IP, 44, 80, 115, 229, 283, 298
TE, 333
Technical specifications, 20
teleimmersion, 35
Tendering Models, 254

bindex.qxd 8/24/2004 10:24 AM Page 375

TEAM LinG - Live, Informative, Non-cost and Genuine!

Tera floating-point operations per second
(TFLOPS), 18

Teraflop desktops, 35
TeraGrid network, 45, 69
Termination of Out-Of-Control Job, 242
tertiary storage , 85
Testimonial, Service pricing, 265
TFLOPS, 84
tightly-coupled composition, 174
Time modeling, 149
TLS, 80, 236
Total Cost of Ownership (TCO), 28
Traditional parallel system, 21
Traffic engineering (TE) capabilities, 321,

328
Traffic shaping , 321
Transformation and common

representation, 183
Transformation service, 188
Transient service instances, 212
Transparent LAN Services aka Virtual

Private LAN Services (VPLS), 336
Transport Layer Security (TLS – RFC

2246), 207, 234
Transport management, 161
Trusted grid hosts, 247
Tunneled Modes, Fibre Channel

Technology , 298
Tunneling arrangements, 301
types, 119
Types of Relationships, services, 176

Ubiquity, 215
UDC, 12
UDDI, 26, 92, 95, 97, 104, 116, 120, 121
UDDI registries, 134
UNICORE (UNiform Interface to Computer

Resources), 16, 126
Universal Description, Discovery, and

Integration (UDDI), 26, 92, 95, 97,
104, 116, 120

UNIX servers, 33
Unshielded twisted-pair cable (UTP), 308
Unused “machine cycles”, 4
Unused computing capacity, 17
UR, 255
Usage metering, 32
Usage Record (UR), 255
Usage, Service pricing, 263

376 INDEX

User-level middleware, 20
User-to-Network Interface, 314
Utility computing, 5, 156
Utility computing taxonomy, 52
Utility Data Center (UDC), 12, 54
Utility-based function, 5
Utilization, resources, 37

Vendors, Grid, 51
Vickrey auction, 254
Virtual Circuit (VC), 319
Virtual Data Centers, 11, 252
Virtual hosting environment, 197
Virtual organization(s) (VO), 3, 4, 63, 159,

178
Virtual Private LAN Services (VPLS), 336
Virtual Private Networks (VPNs), 67, 282,

333
Virtualization, 7, 22, 32, 33, 127
Virtualized computing, 7
Virtualized storage, 87, 88
VO, 3, 4, 63, 159, 178
VPNs, 67, 282, 333
VPNs, MPLSs, 333

W3C, 175
WAN , 45, 8, 114, 281
Web Services , 8, 12,22, 50, 55, 92, 94, 95,

102, 105, 139, 164, 214
Web Services Definition Language

(WSDL), 26, 92, 116
Web Services for Remote Portals (WSRP),

219
Web Services Inspection Language (WSIL),

92, 120
Web Services Invocation Framework, 141
Web Services layer, 129
Web Services Resource Framework

(WSRF), 92, 98, 99
Well-known InterGrids, 68
Wide Area Networks (WANs), 45
Work unit management, 111
Workflow, 175, 180
Workflow management, 125, 162
Workflow services, 215
Workload, 164, 172
World Wide Web, 45
World Wide Web Consortium (W3C), 45,

94

bindex.qxd 8/24/2004 10:24 AM Page 376

TEAM LinG - Live, Informative, Non-cost and Genuine!

WS, 8, 92, 93
WSDL, 26, 92, 94, 95, 96, 104, 105, 116,

117, 127, 145, 194
WSDL (with OGSI extensions), 194
WSDL Bindings, 119
WSDL document, 118
WSDL extensions, 145
WSDL Messages, 119
WSDL port, 118, 119
WSDL portTypes, 190
WSDL service, 119
WSDL Types, 119
WSIL, 92, 116, 120

INDEX 377

WSIL documents, 134
WS-Inspection Language (WSIL), 116
WSRF (Web Services Resource

Framework), 92, 103
WSRP (Web Services for Remote Portals),

219

X.509, 124, 237
X.509 certificate, 76, 115, 208, 211
XML, 26, 45, 93, 94, 116, 121, 150, 179

Yearly spend on IT, 4

bindex.qxd 8/24/2004 10:24 AM Page 377

TEAM LinG - Live, Informative, Non-cost and Genuine!

	Contents
	About the Author
	Preface
	Acknowledgments
	1 Introduction
	1.1 What Is Grid Computing And What Are The Key Issues?
	1.2 Potential Applications and Financial Benefits of Grid Computing
	1.3 Grid Types, Topologies, Components, and Layers¡ªA Preliminary View
	1.4 Comparison with Other Approaches
	1.5 A First Look at Grid Computing Standards
	1.6 A Pragmatic Course of Investigation

	2 Grid Benefits and Status of Technology
	2.1 Motivations for Considering Computational Grids
	2.2 Brief History of Computing, Communications, and Grid Computing
	Communication
	Computation
	Grid Technology

	2.3 Is Grid Computing Ready for Prime Time?
	2.4 Early Suppliers and Vendors
	2.5 Possible Economic Value
	2.5.1 Possible Economic Value: One State¡¯s Positioning
	2.5.2 Possible Economic Value: Extrapolation

	2.6 Challenges

	3 Components of Grid Computing Systems and Architectures
	3.1 Overview
	3.2 Basic Constituent Elements¡ªA Functional View
	Portal/User Interface Function/Functional Block
	The Grid Security Infrastructure: User Security Function/Functional Block
	Node Security Function/Functional Block
	Broker Function/Functional Block and Directory
	Scheduler Function/Functional Block
	Data Management Function/Functional Block
	Job Management And Resource Management Function/Functional Block
	User/Application Submission Function/Functional Block
	Resources
	Protocols

	3.3 Basic Constituent Elements¡ªA Physical View
	Networks
	Computation
	Storage
	Scientific Instruments
	Software and licenses

	3.4 Basic Constituent Elements¡ªService View

	4 Standards Supporting Grid Computing: OGSI
	4.1 Introduction
	4.2 Motivations for Standardization
	4.3 Architectural Constructs
	4.3.1 Definitions
	4.3.2 Protocol Perspective
	4.3.3 Going From ¡°Art¡± To ¡°Science¡±

	4.4 What is OGSA/OGSI? A Practical View
	4.5 OGSA/OGSI Service Elements and Layered Model
	4.5.1 Key Aspects
	4.5.2 Ancillary Aspects
	4.5.3 Implementations of OGSI

	4.6 What is OGSA/OGSI? A More Detailed View
	4.6.1 Introduction
	4.6.2 Setting the Context
	4.6.3 The Grid Service
	4.6.4 WSDL Extensions and Conventions
	4.6.5 Service Data
	4.6.6 Core Grid Service Properties
	4.6.7 Other Details

	4.7 A Possible Application of OGSA/OGSI to Next-Generation Open-Source Outsourcing
	4.7.1 Opportunities
	4.7.2 Outsourcing Trends

	5 Standards Supporting Grid Computing: OGSA
	5.1 Introduction
	5.2 Functionality Requirements
	5.2.1 Basic Functionality Requirements
	5.2.2 Security Requirements
	5.2.3 Resource Management Requirements
	5.2.4 System Properties Requirements
	5.2.5 Other Functionality Requirements

	5.3 OGSA Service Taxonomy
	5.3.1 Core Services
	5.3.2 Data Services
	5.3.3 Program Execution
	5.3.4 Resource Management

	5.4 Service Relationships
	5.4.1 Service Composition
	5.4.2 Service Orchestration
	5.4.3 Types of Relationships
	5.4.4 Platform Services

	5.5 OGSA Services
	5.5.1 Handle Resolution
	5.5.2 Virtual Organization Creation and Management
	5.5.3 Service Groups and Discovery Services
	5.5.4 Choreography, Orchestrations and Workflow
	5.5.5 Transactions
	5.5.6 Metering Service
	5.5.7 Rating Service
	5.5.8 Accounting Service
	5.5.9 Billing and Payment Service
	5.5.10 Installation, Deployment, and Provisioning
	5.5.11 Distributed Logging
	5.5.12 Messaging and Queuing
	5.5.13 Event
	5.5.14 Policy and Agreements
	5.5.15 Base Data Services
	5.5.16 Other Data Services
	5.5.17 Discovery Services
	5.5.18 Job Agreement Service
	5.5.19 Reservation Agreement Service
	5.5.20 Data Access Agreement Service
	5.5.21 Queuing Service
	5.5.22 Open Grid Services Infrastructure
	5.5.23 Common Management Model

	5.6 Security Considerations
	5.7 Examples of OGSA Mechanisms in Support of VO Structures

	6 Grid System Deployment Issues, Approaches, and Tools
	6.1 Generic Implementations: Globus Toolkit
	6.1.1 Globus Toolkit tools and APIs
	6.1.2 Details on Key Tookit Protocols
	6.1.3 Globus Toolkit Version 3
	6.1.4 Applications

	6.2 Grid Computing Environments
	6.2.1 Introduction
	6.2.2 Portal Services

	6.3 Basic Grid Deployment and Management Issues
	6.3.1 Products Categories
	6.3.2 Business Grid Types
	6.3.3 Deploying a Basic Computing Grid
	6.3.4 Deploying More Complex Computing Grids
	6.3.5 Grid Networking Infrastucture Required for Deployment
	6.3.6 Grid Operation¡ªBasic Steps
	6.3.7 Deployment Challenges and Approaches

	6.4 Grid Security Details¡ªDeployment Peace of Mind
	6.4.1 Basic Approach and Mechanisms
	6.4.2 Additional Perspectives
	6.4.3 Conclusion

	7 Grid System Economics
	7.1 Introduction
	7.2 Grid Economic Services Architecture
	7.2.1 Introduction
	7.2.2 Overview
	7.2.3 The Chargeable Grid Service (CGS)
	7.2.4 The Grid Payment System
	7.2.5 GPSHold Service
	7.2.6 The Grid CurrencyExchange Service
	7.2.7 An Example
	7.2.8 Security Considerations

	8 Communication Systems for Local Grids
	8.1 Introduction and Positioning
	8.2 SAN-Related Technology
	8.2.1 Fibre Channel Technology¡ªNative Mode
	8.2.2 Fibre Channel Technology¡ªTunneled Modes

	8.3 LAN-Related Technology
	8.3.1 Standards
	8.3.2 Key concepts

	9 Communication Systems for National Grids
	9.1 Multilink Frame Relay
	9.1.1 Motivations and Scope
	9.1.2 Multilink Frame Relay Basics

	9.2 MPLS Technology
	9.2.1 Approaches
	9.2.2 MPLS Operation
	9.2.3 Key Mechanisms Supporting MPLS
	9.2.4 Service Availability

	10 Communication Systems for Global Grids
	10.1 The Basics of Layer 2 and layer 3 VPNs
	10.2 The Layer 3 Approach
	10.3 Layer 2 MPLS VPNs-A Different Philosophy
	10.4 Which Works Better Where?
	10.5 A Grid Computing Application

	References
	Glossary
	Index

