¥)WILEY

A NETWORKING APPROACH TOJ

RID COMPUTING .

G

.“\\
e
D A Nl Sesletllls] N O L |

R i e

A NETWORKING APPROACH
TO GRID COMPUTING

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

A NETWORKING APPROACH
TO GRID COMPUTING

DANIEL MINOLI

Managing Director
Leading-Edge Networks Incorporated

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

TEAM LinG - Live, Informative, Non-cost and Genuine!

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 0-471-68756-1
Printed in the United States of America.

10987654321

TEAM LinG - Live, Informative, Non-cost and Genuine!

http://www.copyright.com

For Anna, Emma, Emile, Gabrielle, Gino, Angela, and Peter

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

=mmm Contents

About the Author

Preface

Acknowledgments

1 Introduction

1.1
1.2
1.3

1.4
1.5
1.6

What Is Grid Computing And What Are The Key Issues?
Potential Applications and Financial Benefits of Grid Computing
Grid Types, Topologies, Components, and Layers—

A Preliminary View

Comparison with Other Approaches

A First Look at Grid Computing Standards

A Pragmatic Course of Investigation

2 Grid Benefits and Status of Technology

2.1
2.2

23
24
25

2.6

Motivations for Considering Computational Grids

Brief History of Computing, Communications, and Grid Computing
Communication

Computation

Grid Technology

Is Grid Computing Ready for Prime Time?

Early Suppliers and Vendors

Possible Economic Value

2.5.1 Possible Economic Value: One State’s Positioning
2.5.2 Possible Economic Value: Extrapolation
Challenges

3 Components of Grid Computing Systems and Architectures

3.1
3.2

TEAM

Overview

Basic Constituent Elements—A Functional View

Portal/User Interface Function/Functional Block

The Grid Security Infrastructure: User Security
Function/Functional Block

xiii
XV

xvii

10
13

21
24
27

31

31
38
44
46
47
47
51
53
53
56
56

63

63
71
85
75

vii

LinG - Live, Informative, Non-cost and Genuine!

viii CONTENTS

33

34

Node Security Function/Functional Block

Broker Function/Functional Block and Directory

Scheduler Function/Functional Block

Data Management Function/Functional Block

Job Management And Resource Management
Function/Functional Block

User/Application Submission Function/Functional Block

Resources

Protocols

Basic Constituent Elements—A Physical View

Networks

Computation

Storage

Scientific Instruments

Software and licenses

Basic Constituent Elements—Service View

4 Standards Supporting Grid Computing: OGSI

4.1
4.2
43

4.4
45

4.6

4.7

Introduction

Motivations for Standardization

Architectural Constructs

4.3.1 Definitions

4.3.2 Protocol Perspective

4.3.3 Going From “Art” To “Science”

What is OGSA/OGSI? A Practical View
OGSA/OGSI Service Elements and Layered Model
4.5.1 Key Aspects

4.5.2 Ancillary Aspects

4.5.3 Implementations of OGSI

What is OGSA/OGSI? A More Detailed View
4.6.1 Introduction

4.6.2 Setting the Context

4.6.3 The Grid Service

4.6.4 WSDL Extensions and Conventions
4.6.5 Service Data

4.6.6 Core Grid Service Properties

4.6.7 Other Details

A Possible Application of OGSA/OGSI to Next-Generation

Open-Source Outsourcing

4.7.1 Opportunities
4.7.2 Outsourcing Trends

5 Standards Supporting Grid Computing: OGSA

5.1
52

Introduction
Functionality Requirements

76
76
77
78
78

79
79
80
81
81
84
85
90
91
91

101

104
109
113
113
115
123
125
129
129
132
136
139
139
140
145
145
146
149
151
151

151
151

155

156
158

TEAM LinG - Live, Informative, Non-cost and Genuine!

CONTENTS ixX

5.2.1 Basic Functionality Requirements 159

5.2.2 Security Requirements 160

5.2.3 Resource Management Requirements 161
5.2.4 System Properties Requirements 162

5.2.5 Other Functionality Requirements 163

5.3 OGSA Service Taxonomy 164
5.3.1 Core Services 166
5.3.2 Data Services 168

5.3.3 Program Execution 169
5.3.4 Resource Management 173

5.4 Service Relationships 173
5.4.1 Service Composition 174
5.4.2 Service Orchestration 175

5.4.3 Types of Relationships 176
5.4.4 Platform Services 176

5.5 OGSA Services 177
5.5.1 Handle Resolution 177
5.5.2 Virtual Organization Creation and Management 178

5.5.3 Service Groups and Discovery Services 178
5.5.4 Choreography, Orchestrations and Workflow 180

5.5.5 Transactions 180

5.5.6 Metering Service 181
5.5.7 Rating Service 182
5.5.8 Accounting Service 182
5.5.9 Billing and Payment Service 182
5.5.10 Installation, Deployment, and Provisioning 183
5.5.11 Distributed Logging 183
5.5.12 Messaging and Queuing 184
5.5.13 Event 186
5.5.14 Policy and Agreements 187
5.5.15 Base Data Services 188
5.5.16 Other Data Services 190
5.5.17 Discovery Services 191
5.5.18 Job Agreement Service 192
5.5.19 Reservation Agreement Service 192
5.5.20 Data Access Agreement Service 193
5.5.21 Queuing Service 193
5.5.22 Open Grid Services Infrastructure 193
5.5.23 Common Management Model 195

5.6 Security Considerations 196
5.7 Examples of OGSA Mechanisms in Support of VO Structures 197
6 Grid System Deployment Issues, Approaches, and Tools 201
6.1 Generic Implementations: Globus Toolkit 201
6.1.1 Globus Toolkit tools and APIs 203

TEAM LinG - Live, Informative, Non-cost and Genuine!

X

6.3

CONTENTS

6.2

6.1.2 Details on Key Tookit Protocols
6.1.3 Globus Toolkit Version 3

6.1.4 Applications

Grid Computing Environments

6.2.1 Introduction

6.2.2 Portal Services

Basic Grid Deployment and Management Issues

6.4

6.3.1 Products Categories

6.3.2 Business Grid Types

6.3.3 Deploying a Basic Computing Grid

6.3.4 Deploying More Complex Computing Grids
6.3.5 Grid Networking Infrastucture Required for Deployment
6.3.6 Grid Operation—Basic Steps

6.3.7 Deployment Challenges and Approaches
Grid Security Details—Deployment Peace of Mind
6.4.1 Basic Approach and Mechanisms

6.4.2 Additional Perspectives

6.4.3 Conclusion

Grid System Economics

7.1
7.2

Introduction

Grid Economic Services Architecture

7.2.1 Introduction

7.2.2 Overview

7.2.3 The Chargeable Grid Service (CGS)
7.2.4 The Grid Payment System

7.2.5 GPSHold Service

7.2.6 The Grid CurrencyExchange Service
7.2.7 An Example

7.2.8 Security Considerations

Communication Systems for Local Grids

8.1
8.2

8.3

Introduction and Positioning

SAN-Related Technology

8.2.1 Fibre Channel Technology—Native Mode
8.2.2 Fibre Channel Technology—Tunneled Modes
LAN-Related Technology

8.3.1 Standards

8.3.2 Key concepts

Communication Systems for National Grids

9.1

Multilink Frame Relay
9.1.1 Motivations and Scope
9.1.2 Multilink Frame Relay Basics

207
213
216
217
217
219
220
221
221
223
224
226
230
231
234
234
236
249

251

252
255
255
256
258
267
274
275
277
280

281

281
284
285
298
303
303
307

313

313
315
319

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2 MPLS Technology
9.2.1 Approaches
9.2.2 MPLS Operation
9.2.3 Key Mechanisms Supporting MPLS
9.2.4 Service Availability

10 Communication Systems for Global Grids

10.1 The Basics of Layer 2 and layer 3 VPNs

10.2 The Layer 3 Approach

10.3 Layer 2 MPLS VPNs-A Different Philosophy
10.4 Which Works Better Where?

10.5 A Grid Computing Application

References
Glossary

Index

CONTENTS

xi

321
322
324
328
332

333

334
334
336
337
338

339

353

365

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

=mmm About the Author

Daniel Minoli has many years of IT, telecom, and networking experience for end
users and carriers, including work at AIG, ARPA think tanks, Bell Telephone Lab-
oratories, ITT, Prudential Securities, Bell Communications Research (Bellcore/Tel-
cordia), and AT&T (1975-2001). Recently, he also played a founding role in the
launching of two networking companies through the high-tech incubator Leading
Edge Networks Inc., which he ran in the early 2000s: Global Wireless Services, a
provider of broadband, hotspot mobile Internet and hotspot VoIP (Vo Wi-Fi) ser-
vices to high-end marinas; and, InfoPort Communications Group, an optical and
Gigabit Ethernet metropolitan carrier supporting data center/SAN/channel exten-
sion and grid computing network access services (2001-2003). Mr. Minoli’s grid
computing work goes back to 1987.

An author of a number of textbooks on information technology, telecommunica-
tions, and data communications, he has also written columns for ComputerWorld,
NetworkWorld, and Network Computing (1985-1995). He has taught at New York
University, Rutgers University, Stevens Institute of Technology, Carnegie Mellon
University, and Monmouth University (1984-2003). Also, he was a Technology
Analyst At-Large, for Gartner/DataPro (1985-2001); based on extensive hands-on
work at financial firms and carriers, he tracked technologies and wrote around fifty
distinct CTO/CIO-level technical/architectural scans in the area of telephony and
data systems, including topics on security, disaster recovery, IT outsourcing, net-
work management, LANs, WANs (ATM and MPLS), wireless (LAN and public
hotspot), VoIP, network design/economics, carrier networks (such as metro Ether-
net and CWDM/DWDM), and e-commerce. Over the years, he has advised venture
capitalists for investments of $150M in a dozen high-tech companies, and has acted
as expert witness in a (won) $11B lawsuit regarding a wireless air-to-ground com-
munication system.

xiii

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

=mmm Preface

In February 1974 this author, as a math major at the Polytechnic Institute of Brook-
lyn, (co)invented a now well-rooted but computationally complex concept of “hy-
perperfect numbers” and he used an early form of grid computing—also known as
utility computing—to study this concept (see pages 83 and 86). His interest in grid
computing that grew out of this 1970s work lasted throughout the late 1980s and
into the early 2000s.

This is the first book that takes a comprehensive view of grid computing technol-
ogy from a networking perspective. Grid computing seamlessly integrates resources
and services across distributed, heterogeneous, dynamic “virtual organizations” that
span disparate administrative entities within a single enterprise and/or external enti-
ties or service providers. The past decade has seen a significant level of government
funding directed at grid-related projects at NASA, national laboratories, supercom-
puter centers, and academic institutions.

Up to now, grid computing has been largely of interest to researchers at mathe-
matics and computer science departments, national laboratories, informatics insti-
tutes, and government-funded research laboratories, but it turns out that this tech-
nology can be of value to Fortune 500 Companies looking to reduce their
run-the-engine costs. A fair number of such companies are already availing them-
selves of the clear financial benefits; others may soon follow.

Commoditization of any sort of resource works to the clear advantage of the user
and it affords at-large macroeconomics benefits. In recent years, we have seen the
aggressive commoditization of all sorts of consumer entertainment electronics, per-
sonal computers, and personal communication devices such as cellular telephones
and Personal Digital Assistants. This has resulted in a precipitous decrease in prices
(and costs) of these products.

During the past ten years or so, a similar commoditization has been experienced
in computing hardware platforms that support information technology applications
at businesses of all sizes. Some writers have encapsulated this rapidly occurring
phenomenon with the phrase “IT doesn’t matter.” This price-disrupting predica-
ment affords new opportunities for organizations, although it also has conspicuous
process- and people-dislocating consequences.

XV

TEAM LinG - Live, Informative, Non-cost and Genuine!

XVi PREFACE

The commoditization thrust of computing hardware has been captured under the
auspices of grid computing, which is viewed by proponents as the “next big thing.”
Grid computing is perceived as having as much potential for changing the way
companies do business as the Internet did. Grid computing can be considered as a
network of computation. It supports the concept of “utility computing,” with which
users can get “on-demand” “machine cycles off a grid” without having to own the
physical assets or infrastructure. It includes mechanisms and protocols for coordi-
nated resource sharing and problem solving among pooled assets distributed across
the globe, such as PCs, servers, mainframes, supercomputers, and data stores.

This author was advocating the concept of grid computing as far back as 1987.
In Bellcore Special Report SR-NPL-000790 in a section called “Network for a
Computing Utility” we stated in part:

The proposed service provides the entire apparatus to make the concept of the Com-
puting Ultility possible. This includes as follows: (1) the physical network over which
the information can travel, and the interface through which a guest PC/workstation can
participate in the provision of machine cycles and through which the service re-
questers submit jobs; (2) a load sharing mechanisms to invoke the necessary servers to
complete a job; (3) a reliable security mechanism; (4) an effective accounting mecha-
nism to invoke the billing system; and, (5) a detailed directory of servers. . . . Security
is one of the major issues for this service, particularly if the PC is not fully dedicated
to this function, but also used for other local activities. Virus threats, infiltration and
corruption of data, and other damage must be appropriately addressed and managed by
the service; multi-task and robust operating systems are also needed for the servers to
assist in this security process . .. protocols and standards will be needed to connect
servers and users, as well as for accounting and billing. These protocols will have to
be developed before the service can be established. . . .

Evolving grid computing standards can also be used to facilitate “open-source out-
sourcing services” as a way for corporations to implement portability (“open
source”) in their outsourced operations.

A lot of the requisite infrastructure and mechanisms have become available in
recent years. This book explores practical advantages of grid computing and what is
needed by an organization to migrate to this new computing paradigm, but it does
so with a degree of emphasis on the communication apparatus. The book is intend-
ed for practitioners and decision makers in organizations who want to explore the
overall opportunities afforded by this new technology. The text follows in the tradi-
tion of the author of exploring the practical utility of the technology, with a mini-
mum of theoretical or research-level exposition. The book is principally targeted to
the user community, specifically, information technology departments at Fortune
500 companies that want a systematized summary of the state of the business, with-
out having to digest extensive files of research material.

TEAM LinG - Live, Informative, Non-cost and Genuine!

mmmm Acknowledgments

The author would like to thank Dr. Robert B. Cohen and Dr. Edward Feser, for use
of a high-value table (Chapter 2) and a high-value graph (Chapter 7).

The author would also like to thank Tim Wu and Andy Walden for material for
Chapter 10 on VPNs.

Xvii

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

I CHAPTER 1

Introduction

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES?

Grid computing (or, more precisely a “grid computing system”) is a virtualized dis-
tributed computing environment. Such an environment aims at enabling the dynam-
ic “runtime” selection, sharing, and aggregation of (geographically) distributed au-
tonomous resources based on the availability, capability, performance, and cost of
these computing resources, and, simultaneously, also based on an organization’s
specific baseline and/or burst processing requirements. When people think of a
grid, the idea of an interconnected system for the distribution of electricity, espe-
cially a network of high-tension cables and power stations, comes to mind. In the
mid-1990s the grid metaphor was applied to computing, by extending and advanc-
ing the 1960s concept of “computer time sharing.” The grid metaphor strongly il-
lustrates the relation to, and the dependency on, a highly interconnected networking
infrastructure.

This book is a survey of the grid computing field as it applies to corporate envi-
ronments and it focuses on what are the potential advantages of the technology in
these environments. The book is a synthesis of the state of the industry and takes a
balanced view of the field, but at the same time serves as a familiarization vehicle
for the interested information technology (IT) professional. It should be noted at the
outset, however, that no claim is made herewith that there is a single or unique so-
lution to a given computing problem,; grid computing is one of a number of avail-
able solutions in support of optimized distributed computing. Corporate IT profes-
sionals, for whom this text is intended, will have to perform appropriate functional,
economic, business-case, and strategic analyses to determine which computing ap-
proach ultimately is best for their respective organizations. Furthermore, it should
be noted that grid computing is an evolving field and, so, there is not always one
canonical, normative, universally accepted, or axiomatically derivable view of
“everything grid related,” and it follows that we occasionally present multiple
views, multiple interpretations, or multiple perspectives on a topic, as they might be
perceived by different stakeholders or communities of interest.

This introductory chapter begins the discussion by providing a sample of what a
number of stakeholders define grid computing to be, along with an assay of the in-
dustry. The precise definition of what exactly this technology encompasses is still
evolving and there is not a globally accepted normative definition that is perfectly

A Networking Approach to Grid Computing. By Daniel Minoli 1
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine!

2 INTRODUCTION

nonoverlapping with other related technologies. Grid computing emphasizes (but
does not mandate) geographically distributed, multiorganization, utility-based, out-
sourcer-provided, networking-reliant computing methods.

In its basic form, the concept of grid computing is straightforward: with grid
computing an organization can transparently integrate, streamline, and share dis-
persed, heterogeneous pools of hosts, servers, storage systems, data, and networks
into one synergistic system, in order to deliver agreed-upon service at specified lev-
els of application efficiency and processing performance. Additionally, or, alterna-
tively, with grid computing an organization can simply secure commoditized “ma-
chine cycles” or storage capacity from a remote provider, “on-demand,” without
having to own the “heavy iron” to do the “number crunching.” Either way, to an
end-user or application this arrangement (ensemble) looks like one large, cohesive,
virtual, transparent computing system [91, 102]. A grid mechanism is an enabling
technology for online collaboration and for discovery and access to distributed re-
sources. A grid mechanism is basically a middleware; it is a distributed computing
technology. Broadband networks play a fundamental enabling role in making grid
computing possible and this is the motivation for looking at this technology from
the perspective of communication.

According to IBM’s definition [118, 128],

[A] grid is a collection of distributed computing resources available over a local or
wide area network that appear to an end user or application as one large virtual com-
puting system. The vision is to create virtual dynamic organizations through secure,
coordinated resource-sharing among individuals, institutions, and resources. Grid
computing is an approach to distributed computing that spans not only locations but
also organizations, machine architectures, and software boundaries to provide unlimit-
ed power, collaboration, and information access to everyone connected to a grid. . . .
[TThe Internet is about getting computers to talk together; grid computing is about get-
ting computers to work together. Grid will help elevate the Internet to a true comput-
ing platform, combining the qualities of service of enterprise computing with the abil-
ity to share heterogeneous distributed resources—everything from applications, data,
storage and servers.

Another definition, this one from The Globus Alliance (a research and develop-
ment initiative focused on enabling the application of grid concepts to scientific and
engineering computing), is as follows [129]:

The grid refers to an infrastructure that enables the integrated, collaborative use of
high-end computers, networks, databases, and scientific instruments owned and man-
aged by multiple organizations. Grid applications often involve large amounts of data
and/or computing and often require secure resource sharing across organizational
boundaries, and are thus not easily handled by today’s Internet and Web infrastruc-
tures.

Yet another industry-formulated definition of grid computing is as follows [96,
103]:

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES? 3

A computational grid is a hardware and software infrastructure that provides depend-
able, consistent, pervasive, and inexpensive access to high-end computational capabil-
ities. A grid is concerned with coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations. The key concept is the ability to ne-
gotiate resource-sharing arrangements among a set of participating parties (providers
and consumers) and then to use the resulting resource pool for some purpose. The
sharing that we are concerned with is not primarily file exchange but rather direct ac-
cess to computers, software, data, and other resources, as is required by a range of col-
laborative problem-solving and resource-brokering strategies emerging in industry,
science, and engineering. This sharing is, necessarily, highly controlled, with resource
providers and consumers defining clearly and carefully just what is shared, who is al-
lowed to share, and the conditions under which sharing occurs. A set of individuals
and/or institutions defined by such sharing rules form what we call a virtual organiza-
tion (VO).

Whereas the Internet is a network of communication, grid computing is seen as a
network of computation: the field provides tools and protocols for resource sharing
of a variety of IT resources. Grid computing approaches are based on coordinated
resource sharing and problem solving in dynamic, multiinstitutional VOs. A (short)
list of examples of possible VOs include: application service providers, storage ser-
vice providers, machine-cycle providers, and members of industry-specific consor-
tia. These examples, among others, represent an approach to computing and prob-
lem solving based on collaboration in data-rich and computation-rich environments
[3, 91]. The enabling factors in the creation of grid computing systems in recent
years have been the proliferation of broadband (optical-based) communications, the
Internet, and the World Wide Web infrastructure, along with the availability of low-
cost, high-performance computers using standardized (open) operating systems [94,
96, 104]. The role of communications as a fundamental enabler will be emphasized
throughout the chapters of this textbook.

Prior to the deployment of grid computing, a typical business application had a
dedicated platform of servers and an anchored storage device assigned to each indi-
vidual server. Applications developed for such platforms were not able to share re-
sources, and, from an individual server’s perspective, it was not possible, in gener-
al, to predict, even statistically, what the processing load would be at different
times. Consequently, each instance of an application needed to have its own excess
capacity to handle peak usage loads. This predicament typically resulted in higher
overall costs than would otherwise need to be the case [130]. To address these lacu-
nae, grid computing aims at exploiting the opportunities afforded by the synergies,
the economies of scale, and the load smoothing that result from the ability to share
and aggregate distributed computational capabilities, and deliver these hardware-
based capabilities as a transparent service to the end-user.! To reinforce the point,
the term “synergistic” implies “working together so that the total effect is greater

!As implied in the opening paragraphs, a number of solutions in addition to grid computing (e.g., virtual-
ization) can be employed to address this and other computational issues; grid computing is just one ap-
proach.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4 INTRODUCTION

than the sum of the individual constituent elements.” From a service-provider per-
spective, grid computing is somewhat akin to an application service provider (ASP)
environment, but with a much-higher level of performance and assurance [131].
Specialized ASPs, known as grid service providers (GSPs) are expected to emerge
to provide grid-based services, including, possibly, “open-source outsourcing ser-
vices.”

Grid computing started out as the simultaneous application of the resources of
many networked computers to a single (scientific) problem [96]. Grid computing
has been characterized as the “massive integration of computer systems” [97].
Computational grids have been used for a number of years to solve large-scale
problems in science and engineering. The noteworthy fact is that, at this juncture,
the approach can already be applied to a mix of mainstream business problems.
Specifically, grid computing is now beginning to make inroads into the commercial
world, including financial services operations, making the leap forward from such
scientific venues as research labs and academic settings [130].

The possibility exists, according to the industry, that with grid computing,
companies can save as much as 30% of certain key line items of the operations
budget (in an ideal situation), which is typically a large fraction of the total IT
budget [98]. Companies spend, on the average, 6%? of their top line revenues
yearly on IT services; for example, a $10 B/yr Fortune 500 company might spend
$600 M/yr on IT. Industry vendors make the assertion that cluster computing (ag-
gregating processors in parallel-based configurations), yield reductions in IT costs
and costs of operations that are expected to reach 15% by 2005 and 30% by
2007-8 in most early-adopter sectors. Use of enterprise grids (middleware-based
environments to harvest unused “machine cycles,” thereby displacing otherwise-
needed growth costs), is expected to result in a 15% savings in IT costs by the
year 2007-8, growing to a 30% savings by 2010 to 2012 [111]. This potential sav-
ings is what this book is all about.

In 1994, this author published the book Analyzing Outsourcing, Reengineering
Information and Communication Systems (McGraw-Hill), calling attention to the
possibility that companies could save 15-20% or more of their IT costs by consid-
ering outsourcing, and the trends of the mid-2000s have, indeed, validated this
(then) timely assertion [120]. At this juncture, we call early attention to the fact that
the possibility exists for companies to save as much as 15-30% of certain key line
items of the IT operations (run-the-engine) budget by using grid computing and/or
related computing/storage virtualization technologies. In effect, grid computing,
particularly the utility computing aspect, can be seen as another form of outsourc-
ing. Perhaps utility computing will be the next phase of outsourcing and be a major
trend in the 2010 decade. As we discuss later in the book, the evolving grid comput-
ing standards can be used by companies to deploy a next-generation kind of “open
source outsourcing” that has the advantage of offering portability, enabling compa-
nies to easily move their business among a variety of pseudocommodity providers.

This book explores practical advantages of grid computing and what is needed by
an organization to migrate to this new computing paradigm, if it so chooses. The

2The range is typically 2% to 10%,; for example, see, among others [120].

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES? 5

book is intended for practitioners and decision makers in organizations (not neces-
sarily software programmers) who want to explore the overall business opportunities
afforded by this new technology. At the same time, the importance of the underlying
networking mechanism is emphasized. For any kind of new technology, corporate
and business decision makers typically seek answers to questions such as these
(which are the theme of this book): (i) “What is this stuff?”; (ii) “How widespread is
its present/potential penetration?”; (iii) “Is it ready for prime time?”’; (iv) “Are there
firm standards?”; (v) “Is it secure?”; (vi) “How do we bill it, since it’s new?”; (vii)
“Tell me how to deploy it (at a macro level)”; and (viii) “Give me a self-contained
reference—make it understandable and as simple as possible.” Table 1.1 summarizes
these and other questions that decision makers, CIOs, CTOs, and planners may have
about grid computing that are addressed in this book. Table 1.2 lists some of the con-
cepts embodied in grid computing and other related technologies.

Grid computing is also known by a number of other names (although some of
these terms have slightly different connotations), such as “grid” (the term “the grid”
was coined in the mid-1990s to denote a proposed distributed computing infrastruc-
ture for advanced science and engineering [40]), “computational grid,” “computing-
on-demand,” “on-demand computing,” “just-in-time computing,” “platform com-
puting,” “network computing,” “computing utility” (the term used by this author in
the late 1980s [6]), “utility computing,” “cluster computing,” and “high-perfor-
mance distributed computing.” With regard to nomenclature, in this text, besides
the term Grid Computing, we will also interchangeably use the terms grid and com-
putational grid. In this text, we use the term grid technology to describe the entire
collection of grid computing elements, middleware, networks, and protocols.

To deploy a grid, a commercial organization needs to assign computing re-
sources to the shared environment and deploy appropriate grid middleware on these
resources, enabling them to play various roles that need to be supported in the grid
that are covered in this book (scheduler, broker, etc.). Some (minor) application re-
tuning and/or parallelization may, in some instances, be required; data accessibility
will also have to be taken into consideration. A security framework will also be re-
quired. If the organization subscribes to the service-provider model, then grid de-
ployment would mean establishing adequate access bandwidth to the provider, un-
dertaking some possible application retuning, and establishing security policies (the
assumption being that the provider will itself have a reliable security framework).

The concept of providing computing power as a utility-based function is general-
ly attractive to end users requiring fast transactional processing and “scenario mod-
eling” capabilities. The concept may also be attractive to IT planners looking to
control costs and reduce data center complexity. The ability to have a cluster, an en-
tire data center, or other resources spread across an area connected by the Internet
(and/or, alternatively, connected by an intranet or extranet), operating as a single
transparent virtualized system that can be managed as a service, rather than as indi-
vidual constituent components, likely will, over time, increase business agility, re-
duce complexity, streamline management processes, and lower operational costs
[130]. Grid technology allows organizations to utilize numerous computers to solve
problems by sharing computing resources. The problems to be solved might involve
data processing, network bandwidth, data storage, or a combination thereof.

ER RT3
9 <

ELINT3

TEAM LinG - Live, Informative, Non-cost and Genuine!

6 INTRODUCTION

Table 1.1 Issues of interest and questions that CIOs/CTOs/planners have about
grid computing

What is grid computing and what are the key issues?
Grid benefits and status of technology
Motivations for considering computational grids
Brief history of grid computing
Is grid computing ready for prime time?

Early suppliers and vendors
Challenges
Future directions

What are the components of grid computing systems/architectures?
Portal/user interfaces
User security
Broker function
Scheduler function
Data management function
Job management and resource management

Are there stable standards supporting grid computing?
What is OGSA/OGSI?
Implementations of OGSI
OGSA services
Virtual organization creation and management
Service groups and discovery services
Choreography, orchestration, and workflow
Transactions
Metering service
Accounting service
Billing and payment service
Grid system deployment issues and approaches
Generic implementations: Globus Toolkit

Security considerations—Can grid computing be trusted?

What are the grid deployment/management issues?
Challenges and approaches
Availability of products by categories
Business grid types
Deploying a basic computing grid
Deploying more complex computing grid
Grid operation

What are the economics of grid systems?
The chargeable grid service
The grid payment system

How does one pull it all together? Communication and networking infrastructure
Communication systems for local grids
Communication systems for national grids
Communication systems for global grids

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES? 7

Table 1.2 Definition of some key terms

Grid Computing

® (Virtualized) distributed computing environment that enables the dynamic “runtime” se-
lection, sharing, and aggregation of (geographically) distributed autonomous (autonomic)
resources based on the availability, capability, performance, and cost of these computing
resources, and, simultaneously, also based on an organization’s specific baseline and/or
burst processing requirements.

® Enables organizations to transparently integrate, streamline, and share dispersed, hetero-
geneous pools of hosts, servers, storage systems, data, and networks into one synergistic
system, in order to deliver agreed-upon service at specified levels of application efficien-
cy and processing performance.

® An approach to distributed computing that spans multiple locations and/or multiple orga-
nizations, machine architectures, and software boundaries to provide power, collabora-
tion, and information access.

® Infrastructure that enables the integrated, collaborative use of computers, supercomput-
ers, networks, databases, and scientific instruments owned and managed by multiple or-
ganizations.

® A network of computation: namely, tools and protocols for coordinated resource sharing
and problem solving among pooled assets. Allows coordinated resource sharing and
problem solving in dynamic, multiinstitutional virtual organizations.

® Simultaneous application of the resources of many networked computers to a single prob-
lem. Concerned with coordinated resource sharing and problem solving in dynamic, mul-
tiinstitutional virtual organizations.

® Decentralized architecture for resource management, and a layered hierarchical architec-
ture for implementation of various constituent services.

® Combines elements such as distributed computing, high-performance computing, and
disposable computing, depending on the application.

® [ocal, metropolitan, regional, national, or international footprint. Systems may be in the
same room, or may be distributed across the globe; they may be running on homogenous
or heterogeneous hardware platforms; they may be running on similar or dissimilar oper-
ating systems; and they may owned by one or more organizations.

® Types. (i) Computational grids: machines with set-aside resources allocated to “number-
crunch” data or provide coverage for other intensive workloads. (ii) Scavenging grids:
commonly used to locate and exploit machine cycles on idle servers and desktop comput-
ers for use in resource-intensive tasks. (iii) Data grids: a unified interface for all data
repositories in an organization, through which data can be queried, managed, and secured.

® Computational grids can be local enterprise grids (also called intragrids), and Internet-
based grids (also called intergrids.) Enterprise grids are middleware-based environments
used to harvest unused “machine cycles,” thereby displacing otherwise needed growth
costs.

® Other terms (some with slightly different connotations): “computational grid,” “comput-
ing-on-demand,” “on-demand computing,” “just-in-time computing,” “platform comput-
ing,” “network computing,” “computing utility,” “utility computing,” “cluster comput-
ing,” and “high-performance distributed computing.”

9

29 29 29

Virtualization

® An approach that allows several operating systems to run simultaneously on one (large)
computer (e.g., IBM’s z/VM operating system lets multiple instances of Linux coexist on
the same mainframe computer). (continued)

TEAM LinG - Live, Informative, Non-cost and Genuine!

8

INTRODUCTION

Table 1.2 Continued

Virtualization (cont.)

More generally, it is the practice of making resources from diverse devices accessible to
a user as if they were a single, larger, homogenous resource that appears to be locally
available.

Dynamically shifting resources across platforms to match computing demands with avail-
able resources: the computing environment can become dynamic, enabling autonomic
shifting of applications between servers to match demand.

The abstraction of server, storage, and network resources in order to make them available
dynamically for sharing, both internal to and external to an organization. In combination
with other server, storage, and networking capabilities, virtualization offers customers the
opportunity to build more efficient IT infrastructures. Virtualization is seen by some as a
step on the road to utility computing.

Clusters

Aggregating of processors in parallel-based configurations, typically in a local environ-
ment (within a data center); all nodes work cooperatively as a single unified resource.

® Resource allocation is performed by a centralized resource manager and scheduling system.
® Comprised of multiple interconnected independent nodes that cooperatively work togeth-

er as a single unified resource; unlike grids, cluster resources are typically owned by a
single organization.

All users of clusters have to go through a centralized system that manages allocation of
resources to application jobs. Cluster management systems have centralized control,
complete knowledge of system state and user requests, and complete control over indi-
vidual components.

(Basic) Web Services (WS)

Web services provide standard infrastructure for data exchange between two different
distributed applications (grids provide an infrastructure for aggregation of high-end re-
sources for solving large-scale problems).

Web services are expected to play a key constituent role in the standardized definition of
grid computing since they have emerged as a standards-based approach for accessing net-
work applications.

Peer-to-peer (P2P)

P2P is concerned with the same general problem as grid computing, namely, the organi-
zation of resource sharing within virtual communities.

Grid communities focus on aggregating distributed high-end machines such as clusters,
whereas the P2P community concentrates on sharing low-end systems such as PCs con-
nected to the Internet.

Like P2P, grid computing allows users to share files (many-to-many sharing). With grid
computing, the sharing is not only in reference to files, but also other IT resources.

In a grid environment, the ensemble of resources is able to work together cohe-

sively because of defined protocols that control connectivity, coordination, resource
allocation, resource management, security, and chargeback. Generally, the proto-
cols are implemented in the middleware. The systems “glued” together by a compu-
tational grid may be in the same room, or may be distributed across the globe; they

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.1 WHAT IS GRID COMPUTING AND WHAT ARE THE KEY ISSUES? 9

may be running on homogenous or heterogeneous hardware platforms; they may be
running on similar or dissimilar operating systems; and they may owned by one or
more organizations. The goal of grid computing is to provide users with a single
view and/or single mechanism that can be utilized to support any number of com-
puting tasks: the grid leverages its extensive informatics capabilities to support the
“number crunching” needed to complete the task and all the user perceives is, es-
sentially, a large virtual computer undertaking his or her work [90].

In recent years, there have been an increasing roster of published articles, confer-
ences, tutorials, resources, and tools related to this topic [90]. Distributed virtual-
ized grid computing technology, as we define it todays, is still fairly new, being only
a decade in the making. However, as already implied, a number of the basic con-
cepts of grid computing go back as far as the mid 1960s and early 1970s. Recent ad-
vances, such as ubiquitous high-speed networking in both private and public venues
(e.g., high-speed intranets and high-speed Internet), make the technology more de-
ployable at the practical level, particularly when looking at corporate environments.

As far back as 1987, this researcher was advocating the concept of grid comput-
ing in internal Bell Communications Research White Papers (e.g., in Special Re-
ports SR-NPL-000790, an extensive plan written by the author listing progressive
data services that could be offered by local telcos and RBOC:s, entitled “A Collec-
tion of Potential Network-Based Data Services” [6]). In a section called “Network
for a Computing Utility,” it was stated by us:

The proposed service provides the entire apparatus to make the concept of the
Computing Utility possible. This includes as follows: (1) the physical network over
which the information can travel, and the interface through which a guest PC/worksta-
tion can participate in the provision of machine cycles and through which the service re-
questers submit jobs; (2) a load sharing mechanism to invoke the necessary servers to
complete a job; (3) a reliable security mechanism; (4) an effective accounting mecha-
nism to invoke the billing system; and, (5) a detailed directory of servers. . . . Security
is one of the major issues for this service, particularly if the PC is not fully dedicated to
this function, but also used for other local activities. Virus threats, infiltration and cor-
ruption of data, and other damage must be appropriately addressed and managed by the
service; multi-task and robust operating systems are also needed for the servers to assist
in this security process. ... The Computing Utility service is beginning to be ap-
proached by the Client/Server paradigm now available within a Local Area Network
(LAN) environment. . . . This service involves capabilities that span multiple 7-layer
stacks. For example, one stack may handle administrative tasks, another may invoke the
service (e.g., Remote Operations), still another may return the results (possibly a file),
and so on. . . . Currently no such service exists in the public domain. Three existing ana-
logues exist, as follows: (1) timesharing service with a centralized computer; (2) highly
parallel computer systems with hundreds or thousands of nodes (what people now call
cluster computing), and (3) gateways or other processors connected as servers on a
LAN. The distinction between these and the proposed service is the security and ac-
counting arenas, which are much more complex in the distributed, public (grid) envi-

ronment. . . . This service is basically feasible once a transport and switching network
with strong security and accounting (chargeback) capabilities is deployed, as shown in
Figure. . . . A high degree of intelligence in the network is required . . . a physical net-

TEAM LinG - Live, Informative, Non-cost and Genuine!

10 INTRODUCTION

work is required . . . security and accounting software is needed . . . protocols and stan-
dards will be needed to connect servers and users, as well as for accounting and billing.
These protocols will have to be developed before the service can be established. . . .

1.2 POTENTIAL APPLICATIONS AND FINANCIAL BENEFITS OF
GRID COMPUTING

Grid proponents take the position that grid computing represents a “next step” in
the world of computing, and that grid computing promises to move the Internet evo-
lution to the next logical level. According to some ([92, 171, 172] among others),
“utility computing is a positive, fundamental shift in computing architecture,” and
many businesses will be completely transformed over the next decade by using
grid-enabled services as they integrate not only applications across the Internet but
also raw computer power and storage. Furthermore, proponents prognosticate that
infrastructure will appear that will be able to connect multiple regional and national
computational grids, creating a universal source of pervasive and dependable com-
puting power that will support new classes of applications [93].

Most researchers, however, see grid computing as an evolution, not a revolution.
In fact, grid computing can be seen as the latest and most complete evolution of
more familiar developments such as distributed computing, the Web, peer-to-peer
(P2P) computing, and virtualization technologies [43]. Some applications of grid
computing, particularly in the scientific and engineering arenas, include, but are not
limited to, the following [105]:

® Distributed supercomputing/computational science
® High-capacity/throughput computing: large-scale simulation/chip design and
parameter studies

® Content sharing, for example, sharing digital content among peers (e.g., Nap-
ster)

® Remote software access/renting services: ASPs and web services

® Data-intensive computing: drug design, particle physics, stock prediction

® On-demand, real-time computing: medical instrumentation and mission-criti-
cal initiatives

® (Collaborative computing (e-science, e-engineering): collaborative design,
data exploration, education, e-learning

e Utility computing/service-oriented computing: new computing paradigm,
new applications, new industries, and new business

The benefits gained from grid computing can translate into competitive advan-
tages in the marketplace. For example, the potential exists for grids to [43, 94]

® Enable resource sharing
® Provide transparent access to remote resources

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.2 POTENTIAL APPLICATIONS AND FINANCIAL BENEFITS OF GRID COMPUTING 11

® Make effective use of computing resources, including platforms and data sets
® Reduce significantly the number of servers needed by (25-75%)

® Allow on-demand aggregation of resources at multiple sites

® Reduce execution time for large-scale data processing applications

® Provide access to remote databases and software

® Provide load smoothing across a set of platforms

® Provide fault tolerance

® Take advantage of time zone and random diversity (in peak hours, users can
access resources in off-peak zones)

® Provide the flexibility to meet unforeseen emergency demands by renting ex-
ternal resources for a required period instead of owning them

® FEnable the realization of a virtual data center

(Naturally there also are challenges associated with a grid deployment—this field
being new and evolving.) As implied by the last bulleted point, there is a discern-
able IT trend afoot toward virtualization and on-demand services. Virtualization?
(and supporting technology) is an approach that allows several operating systems to
run simultaneously on one (large) computer. For example, IBM’s z/VM operating
system lets multiple instances of Linux coexist on the same mainframe computer.
More generally, virtualization is the practice of making resources from diverse de-
vices accessible to a user as if they were a single, larger, homogenous, resource that
appears to be locally available. Virtualization supports the concept of dynamically
shifting resources across platforms to match computing demands with available re-
sources: the computing environment can become dynamic, enabling autonomic
shifting of applications between servers to match demand [170]. There are well-
known advantages in sharing resources, as a routine assessment of the behavior of
the M/M/1 queue (memoryless/memoryless/1 server queue) versus the M/M/m
queue (memoryless/memoryless/n servers queue) demonstrates: a single more pow-
erful queue is more efficient than a group of discrete queues of comparable aggre-
gate power. Grid computing represents a development in virtualization: as we have
stated, it enables the abstraction of distributed computing and data resources such as
processing, network bandwidth, and data storage to create a single system image;
this grants users and applications seamless access (when properly implemented) to
a large pool of IT capabilities. Just as an Internet user views a unified instance of
content via the Web, a grid computing user essentially sees a single, large virtual
computer [43]. “Virtualization”—the driving force behind grid computing—has
been a key factor since the earliest days of electronic business computing.

Studies have shown that when problems can be parallelized, such as in the cases
of data mining, records analysis, and billing (as may be the case in a bank, securities
company, financial services company, credit card company, insurance company,
etc.), then significant savings are achievable. Specifically, whereas a classical mod-

3Virtualization can be achieved without grid computing; but many view virtualization as a step toward
the goal of deploying grid computing infrastructures.

TEAM LinG - Live, Informative, Non-cost and Genuine!

12 INTRODUCTION

el may require, say, $100 K to process 100 K records, a grid-enabled environment
may take as little as $20 K to process the same number of records. Hence, the bot-
tom line is that Fortune 500 companies have the potential to save 30% or more in
run-the-engine costs on the appropriate line item of their IT budget.

Grid computing can also be seen as part of a larger rehosting initiative and un-
derlying IT trend at many companies (where alternatives such as Linux® or possibly
Windows Operating Systems could, in the future, be the preferred choice over the
highly reliable, but fairly costly UNIX solutions). Although each organization is
different and the results vary, the directional cost trend is believable. Vendors en-
gaged in this space include (but are not limited to) IBM, Hewlett-Packard, Sun
Microsystems, and Oracle. IBM uses “on-demand” to describe its initiative, HP has
its Utility Data Center (UDC) products, Sun Microsystems has its N/ Data-center
Architecture, and Oracle has the /0g family of “grid-aware” products. Several soft-
ware vendors also have a stake in grid computing, including but not limited to Mi-
crosoft, Computer Associates, Veritas Software, and Platform Computing [100].

Commercial interest in grid computing is on the rise, according to market re-
search published by Gartner. The research firm estimated that 15% of corporations
adopted a utility (grid) computing arrangement in 2003, and the market for utility
services in North America would increase from US$8.6 billion in 2003 to more than
US$25 billion in 2006. By 2006, 30% of companies would have some sort of utility
computing arrangement, according to Gartner [100]. Based on published state-
ments, IBM expects the sector to move into “hypergrowth” in 2004, with “tech-
nologies . . . moving ‘from rocket science to business service’”, and the company
had a target of doubling its grid revenue during that year [169]. According to econ-
omists, proliferation of high-performance cluster and grid computing and web ser-
vices (WSs) applications will yield substantial productivity gains in the United
States and worldwide over the next decade [111].

A recent report from research firm IDC concluded that 23% of IT services will
be delivered from offshore centers by 2007 [112]. Grid computing may be a mecha-
nism to enable companies to reduce costs, yet keep jobs, intellectual capital, and
data from migrating abroad. Whereas distributed computing does enable the idea of
“remoting” functions, with grid computing this “remoting” can be done to some in-
country regional rather than third world location (just like electric and water grids
have regional or near-countries scope, rather than having far-flung third world re-
mote scope.) The migration of IT jobs abroad has, in the opinion of this researcher,
national security/homeland security risk implications in the long term, particularly
if terabytes of data about U.S. citizens and our government become the resident
ownership of politically unstable third world countries.

Although there are advantages to grids (e.g., potential reduction in the number of
servers from 25 to 50% and related run-the-engine costs), some companies have
reservations about immediately implementing the technology. Some of this hesita-
tion relates to the fact that the technology is new, and in fact may be overhyped by
the potential provider of services. Other issues may be related to “protection of
turf”: eliminating vast arrays of servers implies reduction in data center space, re-
duction in management span of control, reduction in operational staff, reduction in

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3 GRID TYPES, TOPOLOGIES, COMPONENTS, AND LAYERS—A PRELIMINARY VIEW 13

budget, etc. This is the same issue that was faced in the 1990s regarding outsourc-
ing (e.g., see [120]). Other reservations may relate to the fact that infrastructure
changes are needed, and this may have a short-term financial disbursement implica-
tion. Finally, not all situations, environments, and applications are amenable to a
grid paradigm.

1.3 GRID TYPES, TOPOLOGIES, COMPONENTS, AND LAYERS—A
PRELIMINARY VIEW

Grid computing embodies a combination of a decentralized architecture for resource
management and a layered hierarchical architecture for implementation of various
constituent services [101]. A grid computing system can have local, metropolitan, re-
gional, national, or international footprints. In turn, the autonomous resources in the
constituent ensemble can span a single organization, multiple organizations, or a ser-
vice provider space. Grids can be focused on the pooled assets of one organization or
span virtual organizations that use a common suite of protocols to enable grid users
and applications to run services in a secure, controlled manner [91]. Furthermore, re-
sources can be logically aggregated for a long period of time (say, months or years),
or for a temporary period of time (say, minutes, days, or weeks).

Grid computing often combines elements such as distributed computing, high-
performance computing, and disposable computing, depending on the application
of the technology and the scale of the operation. Grids can, in practical terms, create
a virtual supercomputer out of existing servers, workstations, and even PCs, to de-
liver processing power not only to a company’s own stakeholders and employees,
but also to its partners and customers. This metacomputing environment is achieved
by treating such IT resources as processing power, memory, storage, and network
bandwidth as pure commodities. Like an electricity or water network, computation-
al power can be delivered to any department or any application where it is needed
most at any given time, based on specified business goals and priorities. Further-
more, grid computing allows charge-back on a per-usage basis rather than for a
fixed infrastructure cost [130].

Present-day grids encompass the following types [90]:

® Computational grids, in which machines with set-aside resources allocated to
“number crunch” data or provide coverage for other intensive workloads

® Scavenging grids, commonly used to find and harvest machine cycles from
idle servers and desktop computers for use in resource-intensive tasks (scav-
enging is usually implemented in a way that is unobtrusive to the owner/user
of the processor)

® Data grids, which provide a unified interface for all data repositories in an or-
ganization, and through which data can be queried, managed, and secured

As already noted, no claim is made herein that there is a single solution to a giv-
en problem; grid computing is one of the available solutions. For example, although

TEAM LinG - Live, Informative, Non-cost and Genuine!

14 INTRODUCTION

some of the machine-cycle inefficiencies can be addressed by virtual servers/rehost-
ing (e.g., VMWare, MS VirtualPC, VirtualServer, LPARs from IBM, and partitions
from Sun and HP, which do not require a grid infrastructure), one of the possible ap-
proaches to this inefficiency issue is, indeed, grid computing. Grid computing does
have an emphasis on geographically distributed, multiorganization, utility-based
(outsourced), networking-reliant methods, whereas clustering and rehosting have a
more (but not exclusively) datacenter-focused, single-organization-oriented ap-
proach. Organizations will need to perform appropriate functional, economic, and
strategic assessments to determine which approach is, in final analysis, best for their
specific environment. (This text is on grid computing; hence, our emphasis is on this
approach, rather than other possible approaches, such as virtualization.)

Figures 1.1, 1.2, and 1.3 provide a pictorial view of some grid computing envi-
ronments. Figure 1.1 depicts the traditional computing environment in which a mul-
titude of often-underutilized servers support a disjoint set of applications and data
sets. As implied by this figure, the typical IT environment prior to grid computing
operated as follows. A business-critical application runs on a designated server. Al-
though the average utilization may be relatively low, during peak cycles the server
in question can get overtaxed. As a consequence of this instantaneous overtaxation,
the application can slow down, experience a halt, or even stall. In this traditional in-

Job Request 1 Server & -
—_——
-_—___é_,.-—:' Data Set 1
Uzer 1 Resul 1 Itilization: 33%
Job Request 2 Server B
Diata Set 2
Result 2 Lhilization: 45%
zer 2
Job Request 3 Server C) Dete 5et 3
+— a
L=
Iy ttilization: 20
Fesult 3
Uzer 3
Server D
Jok Reguest 4 Dete Set 4
a
Py Utiization: 52%
Fesult 4
Uzer 4

Figure 1.1 Standard computing environment.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3 GRID TYPES, TOPOLOGIES, COMPONENTS, AND LAYERS—A PRELIMINARY VIEW 15

stance, the large data set that this application is analyzing exists only in a single data
store (note that although multiple copies of the data could exist, it would not be easy
with the traditional model to synchronize the databases if two programs indepen-
dently operated aggressively on the data at the same time.) Server capacity and ac-
cess to the data store place limitations on how quickly desired results can be re-
turned. Machine cycles on other servers are unable to be constructively utilized, and
available disk capacity remains unused [43].

Figure 1.2 depicts an organization-owned computational grid. Here, a middle-
ware application running on a grid-computing broker manages a small(er) set of
processors and an integrated data store. A computational grid is a hardware and
software infrastructure that provides dependable, consistent, pervasive, and inex-
pensive access to high-end computational capabilities. In a grid environment, work-
load can be broken up and sent in manageable pieces to idle server cycles. Not all
applications are necessarily instantly migratable to a grid environment without at
least some redesign. Although legacy business applications may, a priori, fit such a
class of applications, a number of Fortune 500 companies are indeed looking into
how such legacy applications can be modified and/or retooled such that they can be
made to run on grid-based infrastructures.

A scheduler sets rules and priorities for routing jobs on a grid-based infrastruc-
ture. When servers and storage are enabled for grid computing, copies of the data
can be stored in formerly unused space and can easily be made available [43]. A

Job Request1 7 Enterprise Grid
? I and/or InterGrid
| Midldlenware
User 1 Resutt 1 | |
| : ServerMainframe &
Joh Request 2 : LAN
:—-P ! {e.g., GbE) Dt
Resuttz | ; Joh Requests
Uzer 2 | Job Recuests Utilization; §39%
| I Job Requests
Job Request 3 | |
| Job Reouests
1 Job Reguests
| t o
Litilization: 55%
Result 3 .
User 3 | : _ SAN (e.g., FC,iFCP)
| Zerveridsinframe B
Job Reguest 4| |
1
; :: B
L
Result 4
Grid Comguting
Uszer 4
LAN Resource Broker
{e.q., GbE)

Figure 1.2 Grid computing environment (local implementation).

TEAM LinG - Live, Informative, Non-cost and Genuine!

16 INTRODUCTION

grid also provides mechanisms for managing the distributed data in a seamless way
[96, 106]. A grid middleware provides facilities to allow use of the grid for applica-
tions and users. Middleware such as Globus [107], Legion [108], and UNICORE
(UNiform Interface to Computer Resources) [109] provide software infrastructure
to handle various challenges of computational and data grids [106].

Figure 1.3 depicts the utility-oriented implementation of a computational grid.
This concept is analogous to an electric power network (grid) in which power gen-
erators are distributed but the users are able to access electric power without con-
cerning themselves about the source of energy and its pedestrian operational man-
agement [110].

As suggested by Figures 1.1 to 1.3, grid computing aims to provide seamless and
scalable access to distributed resources. Computational grids enable the sharing, se-
lection, and aggregation of a wide variety of geographically distributed computa-
tional resources (such as supercomputers, computing clusters, storage systems, data
sources, instruments, and developers) and presents them as a single, unified re-
source for solving large-scale computing- and data-intensive applications (e.g.,
molecular modeling for drug design, brain activity analysis, and high-energy
physics). An initial grid deployment at a company can be scaled over time to bring
in additional applications and new data. This allows gains in speed and accuracy
without significant cost increases. Several years ago, this author coined the phrase
“the corporation is the network” [95]. Grid computing supports this concept very
well: with grid computing, all a corporation needs to run its IT apparatus is a reli-

Job Reguest1 © — 7
|

\

i Fesut 1 :Middl'fware "Grid Provider 'in the netwark™
| : Virtualized View ServerMainframe 2
Joh Recuest 2
| 0 |
1
,.:; - Data
Resutz | B[g Job Reguests Utilization; 53%
Lzer 2 I -E =@ loh Reguests
= -1 Job Requests SAN {e.g
= = 0 he-Y-
Job Recuest 3 | E | E iy FC, IFCP]
I = Joh Recuests
[E Job Reguests —
| T e e R Litilization: §5%
Result 3 |
U=er 3 | [o
| ServerMainframe B
Job Reguest 4 |
p 1
L
Rezult 4
User 4 Gric) Computing

Resource Broker

Figure 1.3 Grid computing environment (remote implementation).

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3 GRID TYPES, TOPOLOGIES, COMPONENTS, AND LAYERS—A PRELIMINARY VIEW 17

Grid information
service *

Grid resource broker

Grid resource broker

Grid information
service

Figure 1.4 Pictorial view of World Wide InterGrid.

able high-speed network to connect it to the distributed set of virtualized computa-
tional resources not necessarily owned by the corporation itself.

Grid computing started out as mechanism for sharing computational resources
distributed all over the world for basic science applications, as illustrated pictorially
by Figure 1.4 [96, 106]. But other types of resources, such as licenses or specialized
equipment, can now also be virtualized in a grid computing environment. For ex-
ample, if an organization’s software license agreement limits the number of users
that can be utilizing the license simultaneously, license management tools operating
in grid mode could be employed to keep track of how many concurrent copies of
the software are active. This will prevent the number from exceeding the allowed
number, as well as schedule jobs according to priorities defined by the automated
business policies. Specialized equipment that is remotely deployed on the network
could also be managed in a similar way, thereby reducing the need for the organiza-
tion to purchase multiple devices, in much the same way today that people in the
same office share Internet access or a printing resources across a LAN [130].

Some grids focus on data federation and availability; other grids focus on com-
puting power and speed. Many grids involve a combination of the two. For end
users, all infrastructure complexity stays hidden [43]. Data (data base) federation
makes disparate corporate databases look like the constituent data is all in the same
database. Significant gains can be secured if one can work on all the different data
bases, including selects, inserts, updates, and deletes, as if all the tables existed in a
single data base.* Almost every organization has significant unused computing ca-

“The “federator” system operates on the tables in the remote systems called the “federatees.” The remote
tables appear as virtual tables in the “federator” data base. Client application programs can perform op-
erations on the virtual tables in the “federator” data base, but the real persistent storage is in the remote
data base. Each “federatee” views the “federator” as just another data base client connection. The “feder-
atee” is simply servicing client requests for data base operations. The “federator” needs client software
to access each remote data base. Client software for IBM Informix®, Sybase, Oracle, and so on would
need to be installed to access each type of federatee [126].

TEAM LinG - Live, Informative, Non-cost and Genuine!

18 INTRODUCTION

pacity, widely distributed among a tribal arrangement of PCs, midrange platforms,
mainframes, and supercomputers. For example, if a company has 10,000 PCs, at an
average computing power of 333 MIPS, this equates to an aggregate 3 tera (10'%)
floating-point operations per second (TFLOPS) of potential computing power. As
another example, in the United States there are an estimated 300 million computers.
At an average computing power of 333 MIPS, this equates to a raw computing pow-
er of 100,000 TFLOPS. Mainframes are generally idle 40% of the time; Unix
servers are actually “serving” something less than 10% of the time; most PCs do
nothing for 95% of a typical day [43]. This is an inefficient situation for customers.
TFLOPS speeds that are possible with grid computing enable scientists to address
some of the most computationally intensive scientific tasks, from problems in pro-
tein analysis that will form the basis for new drug designs, to climate modeling, to
deducing the content and behavior of the cosmos from astronomical data [97].

Many scientific applications are also data intensive, in addition to being compu-
tationally intensive. By 2006, several physics projects will produce multiple
petabytes (10'3 bytes) of data per year. This has been called “peta-scale” data. PCs
now ship with up to 100 gigabytes (GB) of storage (as much as an entire 1990 su-
percomputer center) [113]: one petabyte would equate to 10,000 of these PCs, or to
the PC base of a “smaller” Fortune 500 company. Data grids also have some imme-
diate commercial applications. Grid-oriented solutions are the way to manage this
sort of storage requirement, particularly from a data access perspective (more than
just from a physical storage perspective.) As time evolved, the management of
“peta-scale” data became burdensome. The confluence and combination of large
data set size, geographic distribution of users and resources, and computationally
intensive scientific analyses, prompted the development of data grids, as noted ear-
lier [106, 115]. Here, a data middleware (usually part of general-purpose grid mid-
dleware), provides facilities for data management. Various research communities
have developed successful data middleware such as Storage Resource Broker
(SRB) [116], Grid Data Farm [117], and European Data Grid Middleware. These
middleware tools have been effective in providing a framework for managing high
volumes of data but they are often incompatible.

The key components of grid computing include the following [90]:

® Resource management: the grid must be aware of what resources are avail-
able for different tasks

® Security management: the grid needs to take care that only authorized users
can access and use the available resources

® Data management: data must be transported, cleansed, parceled, and
processed

® Services management: users and applications must be able to query the grid in
an effective and efficient manner

More specifically, grid computing can be viewed as being comprised of a number
of logical hierarchical layers. Figure 1.5 depicts a first view of the layered architec-

TEAM LinG - Live, Informative, Non-cost and Genuine!

SIBISN[O ‘SUOHBISHIOM ‘SO ‘SISEQBIEP ‘BIBMIOS ‘SHIOMIN —m=

UOIBOIUNWUIOD 81NJ8S PUB UoiEdjuayINy —#=

Buiunoaoe ‘ssaooe abelo)s ‘uswabeuew qOp ——fme-

Juswabeuew 82In0Sal pue S8dIIBS BulNpaydg —m=

$|00} uolez|ja|esed ‘sig|idwod ‘salelqi ‘sabenfue] —— e

suoneoldde Bunissuibus

3

‘s10Ae] Sunndwos puS Jo MIIA UQ §°T 9N

QUYNUBIDS ‘[BIOISWIIOY ——fm=m suopeo|dde puo

suonedddy 7 |00

19

TEAM LinG - Live, Informative, Non-cost and Genuine!

20 INTRODUCTION

ture of a grid environment. At the base of the grid stack, one finds the grid fabric,
namely, the distributed resources that are managed by a local resource manager
with a local policy; these resources are interconnected via local-, metropolitan-, or
wide-area networks. The grid fabric includes and incorporates networks; computers
such as PCs and processors using operating systems such as Unix, Linux, or Win-
dows; clusters using various operating systems; resource management systems;
storage devices; and data bases. The security infrastructure layer provides secure
and authorized access to grid resources. Above this layer, the core grid middleware
provides uniform access to the resources in the fabric—the middleware designed to
hide complexities of partitioning, distributing, and load balancing. The next layer,
the user-level middleware layer, consists of resource brokers or schedulers respon-
sible for aggregating resources. The grid programming environments and tools lay-
er includes the compilers, libraries, development tools, and so on, that are required
to run the applications (resource brokers manage execution of applications on dis-
tributed resources using appropriate scheduling strategies and grid development
tools to grid-enable applications). The top layer consists of grid applications them-
selves [94].

Building on this intuitive idea of layering, it would be advantageous if industry
consensus were reached on the series of layers. Architecture standards are now
under development by the Global Grid Forum (GGF).> The GGF is an industry
advocacy group; it supports community-driven processes for developing and doc-
umenting new standards for grid computing. The GGF is a forum for exchanging
information and defining standards relating to distributed computing and grid
technologies. GGF is fashioned after the Grid Forum, the eGrid European Grid
Forum, and the Grid Community in the Asia-Pacific region. GGF is focusing on
open grid architecture standards [119]. Technical specifications are being devel-
oped for architecture elements, for example, security, data, resource management,
and information. Grid architectures are being built based on Internet protocols and
services (e.g., communication, routing, name resolution, etc.) The layering ap-
proach is used to the extent possible because it is advantageous for higher-level
functions to use common lower-level functions. The GGF’s approach has been to
propose a set of core services as basic infrastructure, as shown in Figure 1.6.
These core services are used to construct high-level, domain-specific solutions.
The design principles are: keep participation cost low, enable local control, sup-
port adaptation, and use the “IP hourglass” model of many applications using a
few core services to support many fabric elements (e.g., operating systems). In the
meantime, Globus Toolkit™ has emerged as the de facto standard for several im-
portant connectivity, resource, and collective protocols. The toolkit, having a
“middleware plus” capability, addresses issues of security, information discovery,
resource management, data management, communication, fault detection, and
portability (see Chapter 6) [33].

SGGF members include Cisco Systems, Hewlett-Packard, IBM, Microsoft, Qwest Communications,
Silicon Graphics, Sun Microsystems, Oracle, Level(3), and BellSouth, among 46 participants at press
time.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.4 COMPARISON WITH OTHER APPROACHES 21

\ Application \ _

3

“Coordinating multiple resources”: l g
ubiquitous infrastructure services, ‘ Collective | o
app-specific distributed services éu
“Sharing single resources”: g
negotiating access, controlling use | Resource ‘ ;’:
“Talking to things”: communication = §
(Internet protocols) & security ‘ ConnECtlwty ‘ §
“Controlling things locally”: Access %

to, & control of, resources

Figure 1.6 Layered grid architecture, Global Grid Forum. This material is licensed for use
under the terms of the Globus Toolkit Public License. See http://www.globus.org/toolkit/
download/license.html for the full text of this license.

1.4 COMPARISON WITH OTHER APPROACHES

It is important to note that certain IT computing constructs are not grids, as we dis-
cuss next. In some instances, these technologies are the optimal solution for an or-
ganization’s problem; in other cases, grid computing is the best solution, particular-
ly if in the long term one is especially interested in supplier-provided utility
computing.

The distinction between clusters and grids relates to the way resources are man-
aged. In the case of clusters (aggregations of processors in parallel-based configura-
tions), the resource allocation is performed by a centralized resource manager and
scheduling system. Also, nodes cooperatively work together as a single unified re-
source. In the case of grids, each node has its own resource manager and does not
aim at providing a single system view [131]. A cluster is comprised of multiple in-
terconnected independent nodes that cooperatively work together as a single unified
resource. This means all users of clusters have to go through a centralized system
that manages the allocation of resources to application jobs. Unlike grids, cluster re-
sources are almost always owned by a single organization. Actually, many grids are
constructed by using clusters or traditional parallel systems as their nodes, although
this is not a requirement. An example of a grid that contains clusters as its nodes is
the NSF TeraGrid [101]; another example is the World Wide Grid, which has many
nodes that are clusters located in organizations such as NRC Canada, AIST-Japan,
N*Grid Korea, and the University of Melbourne. Although cluster management
systems such as Platform’s Load Sharing Facility, Veridian’s Portable Batch Sys-
tem, or Sun’s Sun Grid Engine can deliver enhanced distributed computing ser-
vices, they are not grids themselves; these cluster management systems have cen-
tralized control, complete knowledge of system state and user requests, and
complete control over individual components (such features tend not to be charac-
teristic of a grid proper) [103].

TEAM LinG - Live, Informative, Non-cost and Genuine!

22 INTRODUCTION

Grid computing also differs from basic Web services, although it now makes use
of these services. Web services have become an important component of distributed
computing applications over the Internet [173]. The World Wide Web is not yet in
itself a grid, its open, general-purpose protocols support access to distributed re-
sources but not the coordinated use of those resources to deliver negotiated qualities
of service [103]. So, whereas the Web is mainly focused on communication, grid
computing enables resource sharing and collaborative resource interplay toward
common business goals. Web services provide standard infrastructure for data ex-
change between two different distributed applications, whereas grids provide an in-
frastructure for aggregation of high-end resources for solving large-scale problems
in science, engineering, and commerce. While most Web services involve static
processing and moveable data, many grid computing mechanisms involve static
data (on large databases) and moveable processing. However, there are similarities
as well as dependencies. First, similar to the case of the World Wide Web, grid
computing keeps complexity hidden—multiple users experience a single, unified
experience. Second, Web services are utilized to support grid computing mecha-
nisms. These Web services will play a key constituent role in the standardized defi-
nition of grid computing, since Web services have emerged in the past few years as
a standards-based approach for accessing network applications. The recent trend is
to implement grid solutions using web services technologies, for example, the
Globus Toolkit 3.0 middleware. In this context, low-level grid services are in-
stances of Web services (a grid service is a Web service that conforms to a set of
conventions that provide for controlled, fault-resilient, and secure management of
services) [31, 101].

Both peer-to-peer computing and grid computing are concerned with the same
general problem, namely, the organization of resource sharing within VOs. As is
the case with P2P environments, grid computing allows users to share files; but un-
like P2P, grid computing allows many-to-many sharing. Furthermore, with grid
computing the sharing is not only in reference to files but other resources as well.
The grid community generally focuses on aggregating distributed high-end ma-
chines such as clusters, whereas the P2P community concentrates on sharing low-
end systems such as PCs connected to the Internet [94]. Both disciplines take the
same general approach to solving this problem, namely, the creation of overlay
structures that coexist with, but need not correspond in structure to underlying orga-
nizational structures. Each discipline has made technical advances in recent years,
but each also has, in current instantiations, a number of limitations: there are com-
plementary aspects regarding the strengths and weaknesses of the two approaches
that suggests that the interests of the two communities are likely to grow closer over
time [121]. P2P networks can amass computing power, as does the SETI@home
project, or share content, as Napster and Gnutella have done in the recent past. Giv-
en the number of grid and P2P projects and forums that began worldwide at the turn
of the decade, it is clear that interest in the research, development, and commercial
deployment of these technologies is burgeoning [94]. (This topic is revisited at the
end of Chapter 2.)

Grid computing also differs from virtualization. Resource virtualization is the
abstraction of server, storage, and network resources in order to make them avail-

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.4 COMPARISON WITH OTHER APPROACHES 23

able dynamically for sharing, both inside and outside an organization. Virtualiza-
tion is a step along the way on the road to utility computing (grid computing) and,
in combination with other server, storage, and networking capabilities, offers cus-
tomers the opportunity to build, according to advocates, an IT infrastructure “with-
out” hard boundaries or fixed constraints [162]. Virtualization has somewhat more
of an emphasis on local resources, whereas grid computing has more of an empha-
sis on geographically distributed interorganizational resources. The universal prob-
lem that virtualization is solving in a data center is that of dedicated resources.
While this approach does address performance, this method lacks fine granularity.
Typically, IT managers take an educated guess as to how many dedicated servers
they will need to handle peaks, purchase extra servers, and then later find out that a
significant number of these servers are significantly underutilized. A typical data
center has a large amount of idle infrastructure, bought and set up online to handle
peak traffic for different applications. Virtualization offers a way of moving re-
sources from one application to another dynamically. However, specifics of the de-
sired virtualizing effect depend on the specific application deployed [161]. Three
representative products are HP’s Utility Data Center, EMC’s VMware, and Plat-
form Computing’s Platform LFS. With virtualization, the logical functions of the
server, storage, and network elements are separated from their physical functions
(e.g., processor, memory, I/O, controllers, disks, switches). In other words, all
servers, storage, and network devices can be aggregated into independent pools of
resources. Some elements may even be further subdivided (server partitions, stor-
age LUNSs) to provide an even more granular level of control. Elements from these
pools can then be allocated, provisioned, and managed, manually or automatically,
to meet the changing needs and priorities of one’s business. Virtualization can span
the following domains [162]:

1. Server virtualization for horizontally and vertically scaled server environ-
ments. Server virtualization enables optimized utilization, improved service
levels, and reduced management overhead.

2. Network virtualization, enabled by intelligent routers, switches, and other
networking elements supporting virtual LANs. Virtualized networks are
more secure and more able to support unforeseen spikes in customer and user
demand.

3. Storage virtualization (server, network, and array-based). Storage virtualiza-
tion technologies improve the utilization of current storage subsystems, re-
duce administrative costs, and protect vital data in a secure and automated
fashion.

4. Application virtualization enables programs and services to be executed on
multiple systems simultaneously. This computing approach is related to hori-
zontal scaling, clusters, and grid computing, in which a single application is
able to cooperatively execute on a number of servers concurrently.

5. Data center virtualization, whereby groups of servers, storage, and network
resources can be provisioned or reallocated on the fly to meet the needs of a
new IT service or to handle dynamically changing workloads [162].

TEAM LinG - Live, Informative, Non-cost and Genuine!

24 INTRODUCTION

Grid computing deployment, although potentially related to a rehosting initia-
tive, is not just rehosting. As Figure 1.7 depicts, rehosting implies the reduction of
typically a large number of servers (possibly using some older and/or proprietary
0OS) to a smaller set of more powerful and more modern servers (possibly running
on open-source OSs). This is certainly advantageous from the operations, physical
maintenance, and power and space perspectives. There are savings associated with
rehosting. However, applications are still assigned specific servers. Grid comput-
ing, on the other hand, permits the true virtualization of the computing function, as
seen in Figure 1.7. Here, applications are not preassigned a server, but the “run-
time” assignment is made based on real-time considerations. (Note: in the bottom
diagram, the hosts could be colocated or spread all over the world. When local
hosts are aggregated in tightly coupled configurations, they tend to generally be of
the cluster parallel-based computing type; such processors, however, can also be
nonparallel-computing-based grids, for example, by running the Globus Toolkit.
When geographically dispersed hosts are aggregated in distributed computing con-
figurations, they tend to generally be of the grid computing type and not run in a
clustered arrangement. Figure 1.7 does not show geography and the reader should
conclude that the hosts are arranged in a grid computing arrangement.)

In summary, like clusters and distributed computing, grids bring computing re-
sources together. Unlike clusters and distributed computing, which need physical
proximity and operational homogeneity, grids can be geographically distributed and
heterogeneous. Like virtualization technologies, grid computing enables the virtual-
ization of IT resources. Unlike virtualization technologies, which virtualize a single
system, grid computing enables the virtualization of broad-scale and disparate IT
resources [43]. Scientific-community deployments, such as the distributed data
processing system being deployed internationally by “data grid” projects (e.g.,
GriPhyN, PPDG, EU DataGrid), NASA’s Information Power Grid, the Distributed
ASCI Supercomputer system that links clusters at several Dutch universities, the
DOE Science Grid and DISCOM Grid that link systems at DOE laboratories, and
the TeraGrid mentioned above being constructed to link major U.S. academic sites,
are all bona-fide examples of grid computing. A multisite scheduler such as Plat-
form’s MultiCluster can reasonably be called (first-generation) grids. Other exam-
ples of grid computing include the distributed computing systems provided by Con-
dor, Entropia, and United Devices, which make use of idle desktops; peer-to-peer
systems such as Gnutella, which support file sharing among participating peers; and
a federated deployment of the Storage Resource Broker, which supports distributed
access to data resources [103].

1.5 AFIRST LOOK AT GRID COMPUTING STANDARDS

One of the challenges of any computing technology is getting the various compo-
nents to communicate with each other. Nowhere is this more critical than when try-
ing to get different platforms and environments to interoperate. It should, therefore,
be immediately evident that the grid computing paradigm requires standard, open,

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.5 AFIRST LOOK AT GRID COMPUTING STANDARDS 25

Application 1 ——== Host 1 Current
Environment
Application 2 - =
Host 2
Application 3 —— =
b Host 3
Application 4 _—
Host 4
Application § —= Host 5
Application & _—
Host B
Applicstion? ——————=
L Host 7

_— =

Application 1 —-\% Re-hosted

Environmerit
Application 2 ——== Host 1

Application 3 J

Application 4

Host 2
spplcation s —————— = -
Application & _/_\;
Application 7
Host 3
_—
Application 1 —_
e Grid Computing
Application 2 = | | Host 1 Environment
Application 3 - E
Application 4

Application s —=

Application & —ﬁ

Applicationy —mM=

Host 2

%

Grid Middleware

p—

Figure 1.7 A Comparison with rehosting.

TEAM LinG - Live, Informative, Non-cost and Genuine!

26 INTRODUCTION

general-purpose protocols and interfaces. Standards for grid computing are now be-
ing defined and are beginning to be implemented by the vendors [90, 122]. To make
the most effective use of the computing resources available, these environments
need to utilize common protocols [123]. Standards are the “holy grail” of grid com-
puting (see Chapters 4 and 5).

Regarding this issue, proponents make the case that we are now indeed entering
a new phase of grid computing in which standards will define grids in a consistent
way by enabling grid systems to become easily built “off-the-shelf” systems. Stan-
dard-based grid systems have been called by some “third-generation grids” or 3G
grids. First-generation or “1G grids” involved local “metacomputers” with basic
services such as distributed file systems and site-wide single sign-on, upon which
early-adopters developers created distributed applications with custom communica-
tions protocols. Test beds extended 1G grids across distances, and attempts to cre-
ate “metacenters” explored issues of interorganizational integration. 1G grids were
totally custom-made proofs of concept [122]. 2G grid systems began with projects
such Condor, I-WAY (the origin of Globus), and Legion (origin of Avaki), in which
underlying software services and communications protocols could be used as a ba-
sis for developing distributed applications and services. 2G grids offered basic
building blocks, but deployment involved significant customization and filling in
many gaps. Independent deployments of 2G grid technology today involve enough
customized extensions that interoperability is problematic, and interoperability
among 2G grid systems is rather difficult. This is why the industry needs 3G grids
[122].

By introducing standard technical specifications, 3G grid technology will have
the potential to allow both competition and interoperability not only among applica-
tions and toolkits, but among implementations of key services. The goal is to mix
and match components, but this potential will only be realized if the grid communi-
ty continues to work at defining standards [122]. The Global Grid Forum communi-
ty is applying lessons learned from 1G and 2G grids and from Web services tech-
nologies and concepts to create 3G architectures [122].

GGF has driven initiatives such as the Open Grid Services Architecture
(OGSA). OGSA is a set of specifications and standards that integrate and leverage
the worlds of Web services and grid computing (Web services are viewed by some
as the “biggest technology trend” in the last five years [75]). With this architecture,
a set of common interface specifications supports the interoperability of discrete,
independently developed services. OGSA brings together Web standards such as
XML (eXtensible Markup Language), WSDL (Web Service Definition Language),
UDDI (Universal Description, Discovery, and Integration), and SOAP (Simple Ob-
ject Access Protocol), with the standards for grid computing developed by the
Globus Project [102]. The Globus Project is a joint effort on the part of researchers
and developers from around the world that is focused on grid research, software
tools, testbeds, and applications. As TCP/IP (Transmission Control Protocol/Inter-
net Protocol) forms the backbone for the Internet, the OGSA is the backbone for
grid computing. The recently-released Open Grid Services Infrastructure (OGSI)
service specification is the keystone in this architecture [122].

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.6 A PRAGMATIC COURSE OF INVESTIGATION 27

In addition to making progress on the standards front, grid computing as a ser-
vice needs to address various issues and challenges. Besides standardization, some
of these issues and challenges include security, true scalability, autonomy, hetero-
geneity of resource access interfaces, policies, capabilities, pricing, data locality,
dynamic variation in availability of resources, and complexity in creation of appli-
cations [101].

1.6 A PRAGMATIC COURSE OF INVESTIGATION

In order to identify possible benefits to their organizations, planners should under-
stand grid computing concepts and the underlying networking mechanisms. Practi-
tioners interested in grid computing are asking basic questions [90]: What do we do
with all of this stuff? Where do we start? How do the pieces fit together? What
comes next? As implied by the introductory but rather encompassing discussion
above, grid computing is applicable to enterprise users at two levels:

1. Obtaining computing services over a network from a remote computing ser-
vice provider

2. Aggregating an organization’s dispersed set of uncoordinated systems into
one holistic computing apparatus

As noted, with grid computing organizations can optimize computing and data
resources, pool such resources to support large-capacity workloads, share the re-
sources across networks, and enable collaboration [43]. Grid technology allows the
IT organization to consolidate and numerically reduce the number of platforms that
need to be kept operating.

This book focuses on networking as not only the best way to understand what
grid computing is, but, more importantly, the best way to understand why and how
grid computing is important to IT practitioners (rather than “just another hot tech-
nology” that gets researchers excited but never has much effect on what network
professionals see in the real world). The goals of this book are three-fold:

1. Describe the basic concepts and technical components of grid computing
2. Describe possible benefits of grid computing

3. Describe the networking apparatus required to support grid computing in an
efficient manner

This introductory chapter looked at grid computing technology from a general-
ized perspective and offers some motivational and advocacy information. The rest
of the book looks at specific technical issues, focusing on standards and networking
issues. A number of books that focus strictly on the IT and/or software side are
available to the interested reader; the present text has networking as a major sub-
theme. In the paragraphs that follow, we highlight some additional subthemes of
this course of investigation and survey the field.

TEAM LinG - Live, Informative, Non-cost and Genuine!

28 INTRODUCTION

One can build and deploy a grid in a variety of sizes and types: for large or small
firms, for a single department or the entire enterprise, and for enterprise business
applications or scientific endeavors. Like many other recent technologies, however,
grid computing runs the risk of being overhyped. CIOs need to be careful not to be
to oversold on grid computing. A sound, reliable, conservative economic analysis
is, therefore, required that encompasses the true total cost of ownership (TCO) and
assesses the true risks associated with this approach. This is a subtheme of this text.

Like the Internet, grid computing has its roots in the scientific and research com-
munities. After about a decade of research, open systems are poised to enter the
market. Coupled with a rapid drop in the cost for communication bandwidth, com-
mercial-grade opportunities are emerging for Fortune 500 IT shops searching for
new ways to save money. All of this has to be properly weighted against the com-
moditization of machine cycles (just buy more processors and retain the status quo),
and against reduced support cost by way of subcontinent outsourcing of said IT
support and related application development (just move operations abroad, but oth-
erwise retain the status quo). During the past ten years or so, a tour-de-force com-
moditization has been experienced in computing hardware platforms that support
IT applications at businesses of all sizes. Some have encapsulated this rapidly oc-
curring phenomenon with the phrase “IT doesn’t matter.” The price-disrupting
predicament brought about by commoditization affords new opportunities for orga-
nizations, although it also has conspicuous process- and people-dislocating conse-
quences. Grid computing is but one way to capitalize on this Moore’s Law driven
commoditization. This is yet another subtheme of this text.

We have noted already that at its core grid computing is, and must be, based on
an open set of standards and protocols that enable communication across heteroge-
neous, geographically dispersed environments. Therefore, planners should track the
work that the standards groups are doing. In this book, we are going to look at the
significance of standards in grid computing, how they affect capabilities and facili-
ties, what standards exist, and how they can be applied to the problems of distrib-
uted computation [123]. This is yet another subtheme of this text.

There is effort involved with resource management and scheduling in a grid en-
vironment. When enterprises need to aggregate resources distributed within their
organization and prioritize allocation of resources to different users, projects, and
applications based on their quality of service (QoS) requirements (call these ser-
vice-level agreements), they need to be concerned about resource management and
scheduling. The user QoS-based allocation strategies enhance the value delivered
by the utility. The need for QoS-based resource management becomes significant
whenever more than one competing application or user needs to utilize shared re-
sources [101]. This is yet another subtheme of this text.

Regional economies may benefit significantly from grid computing technolo-
gies, as suggested earlier in the chapter, assuming that two activities occur [111].
First, the broadband infrastructure needed to support grid computing and Web ser-
vices must be developed in a timely fashion (this being the underlying theme of this
text). Second, states and regions must attract (or grow from within) a sufficient pool
of skilled computer and communications professionals to fully deploy and utilize

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.6 A PRAGMATIC COURSE OF INVESTIGATION 29

the new technologies and applications. This is another motivation to become famil-
iar with the technology and to read the literature on it.

The approach we are taking in this text is: What has been learned in the past 10
years related to grids that can be taken forward? What valid approaches will we
make normative going forward? What is required to make it good enough for the
commercial market? What is economically viable for the commercial market? What
is sufficient to convey the value of grid technology to a prospective end user? What
are the performance levels for businesses: tera (FLOPS, bps, B) or mega (FLOPS,
bps, B)? Tera or giga? Peta or exa? What are the requisite networking mechanisms
without which grid computing cannot happen?

TEAM LinG - Live, Informative, Non-cost and Genuine!

TEAM LinG - Live, Informative, Non-cost and Genuine!

I CHAPTER 2

Grid Benefits and Status of Technology

This chapter examines the potential business benefits for considering grid technolo-
gy in a corporate environment, while at the same time looking at some of the chal-
lenges to be faced and addressed. A quick assessment of the maturity of the tech-
nology (“is it ready for prime-time?”) is provided, along with a high-level view of
some of the key players. The chapter also briefly looks at the history of grid com-
puting.!

2.1 MOTIVATIONS FOR CONSIDERING COMPUTATIONAL GRIDS

This subsection identifies some possible reasons and opportunities for commercial
organizations to look into the technology and consider planning its eventual deploy-
ment. The main points of this subsection are that the potential for savings exists, the
grid computing industry is developing rapidly, and people are “doing it.” As we
have seen in Chapter 1, grids are persistent environments that enable software ap-
plications to integrate instruments, displays, and computational and information re-
sources that are managed by diverse organizations in widespread locations [129].
Grid computing allows organizations to share computing power, databases, and
other tools securely across corporate, institutional, and geographic boundaries with-
out sacrificing local autonomy [124]. Grid computing enables people from different
organizations and locations to work together to solve a specific problem, such as
design collaboration. Grid computing software platforms allow resource discovery,
resource sharing, and collaboration in a distributed environment [119]. Although
grid computing has been used within the academic and scientific community for
about a decade, grid standards, grid toolkits, grid products, and enabling technolo-
gies (such as ubiquitous broadband networking), are now becoming available that
allow businesses to increasingly use and reap the advantages of this form of “out-
sourced” computing [125].

The benefits of grid computing, according to the industry, will be greater pro-
ductivity gained through greater flexibility and speed of deployment, access to mas-
sive computing power, collaboration, and cost savings [102]. The overarching busi-

!Although some of this information is time-dependent, the information serves the purpose of validating
that the technology is already “ready for prime time,” and can only be more so in the future.

A Networking Approach to Grid Computing. By Daniel Minoli 31
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine!

32 GRID BENEFITS AND STATUS OF TECHNOLOGY

ness goal is to save IT money because IT budgets are always under pressure due to
increasing demand for new services and technologies. Organizations spend as much
as 10% of their top-line revenue on IT-related projects, with 6% being typical. Ser-
vice-oriented businesses tend to be at the higher end of this scale. These costs have
remained somewhat fixed over the years, as shown in [127]. A new opportunity
now exists to address these cost components. Some of these savings can be
achieved by replacing a technology with another. Other savings can be achieved by
technology simplification (such as virtualization). We have already cited anecdotal
information in Chapter 1 pointing to nontrivial potential savings with grid comput-
ing. One researcher stated that “Service providers that are not planning to invest in a
portfolio of IT utility services will be under increasing pressure to show they can
still provide flexible, cost-effective IT infrastructure services supporting ever-
changing business applications and processes” [34]. And another wrote that “Utility
Computing will drive major change in system architecture, system management, [T
product/service packaging, and pricing. The investments, however, will be relative-
ly modest in 2004. Leading vendors will sharpen the message—from a marketing
cloud to implementation road-maps for business problems. Also, the perceived
leadership in the market place could change” [27].

According to proponents [163], virtualization (a step along the way to full grid
computing) brings

... [A]cross-the-board increases in infrastructure efficiency and flexibility, companies
... stand to see dramatic reductions in overall operational costs—50% or more. . . .
Areas where . . . customers may achieve potential savings [are as follows]:

Deployment costs reduced 30% to 80%

Capacity planning costs reduced 5% to 40%

Self-adapting technologies reduce management costs 80% to 100%
Security costs reduced 20% to 30%

Usage metering costs reduced from 4% to 30%

Upgrading and migration costs reduced 20% to 40%

Clearly, these numbers are very optimistic and may not be achievable in all
cases, or even most cases. But they do represent a “stake-in-the-ground” regarding
economics by vendors (such as HP in this case).

Another user reported on these advantages:

Grid computing has enabled Digex to reduce the time taken to resolve a system perfor-
mance problem from one hour to just 15 minutes, cutting customer response time by
75%. Grid computing’s ease of use and built-in monitoring features enable junior data
center staff to undertake tasks for which database administrators (DBAs) were previ-
ously required. This allows us to increase the databases managed by each DBA from
40 to 68, an increase of 70%, and grow our business without increasing our resources.
[86]

To highlight the potential of grid computing, one only needs to look at today’s
typical enterprise computing environment. Despite conspicuous decreases in

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.1 MOTIVATIONS FOR CONSIDERING COMPUTATIONAL GRIDS 33

the cost of processing power, storage capacity, and network bandwidth, the bulk
of a firm’s IT budget is still tied up in operations and maintenance costs.
Administrators are managing in the range of 30-50 server systems each, and these
systems may be typically utilizing only a small fraction (e.g., 5-25%) of their re-
sources [130]. Some companies have thousands of discrete production-level
servers deployed. Virtualization clearly addresses these issues directly. Grid com-
puting is emerging as a viable technology that businesses can use to get more
profits and productivity out of IT resources. Grid computing is a promising tech-
nology for three reasons [96]:

1. Its ability to make more cost-effective use of a given amount of computer re-
sources

2. As a way to solve problems that cannot be approached without a significant
amount of computing power

3. The fact that the resources of many computers can be cooperatively and per-
haps synergistically harnessed and managed in collaboration toward a com-
mon objective

The argument is made that what these companies need is not more hardware, but
more efficient use of existing hardware. Companies need a way to tie all of these
underutilized machines together into a number-crunching pool, manage those re-
sources, and provide secure and reliable access to the thus virtualized resources
[91]. Without large-scale end-user retraining or a huge investment in new technolo-
gy infrastructure, promoters of grid computing envision a more productive work-
force [130].

According to published reports, firms that have implemented grid architectures
have reported measurable improvements. For illustrative purposes, some report that
processor utilization rates have grown by 80%, while costs have dropped in some
cases by as much as 90%. As an illustrative example, the National Institute for En-
vironmental Health Services (NIEHS) has implemented a grid that helps them
achieve a 95% reduction in total elapsed execution time on key research projects
[130]. Firms have found that Intel-based Linux servers, often used in grid deploy-
ments, can be between 1 to 10% of the total cost of “heavy iron” machines like
mainframes or high-end UNIX servers [130]. It is also cheaper to simply add the
smaller Linux servers (or computing blades) as needed to incrementally grow the
amount of processing power as opposed to adding much more expensive high-end
machines.? With organizations trying to reduce their IT budgets and hardware being
the second-highest expenditure after compensation for operations and maintenance,
the strategy can make sense, at face value [130]. IT planners should evaluate the
ways they can grid-enable the organization’s applications.

A pragmatic approach is to start small. For example, an organization can build
and deploy a grid at the departmental level. After analyzing the results and out-

2An additional advantage to such commodity hardware is that they are considered disposable by some.
“Low-end” US$2,500 Linux devices are more likely to be replaced than repaired.

TEAM LinG - Live, Informative, Non-cost and Genuine!

34 GRID BENEFITS AND STATUS OF TECHNOLOGY

comes of such limited (controlled) deployment, the corporate planners can enlarge
the scope of the initiative. Toolkits such as the Globus Toolkit can be useful in this
context [102]. A computer language such as Java is not sufficient by itself to run ef-
fective grids. Although Java provides useful technology for portable, object-orient-
ed application development, it does not address many of the problems that arise
when one tries to achieve high-performance execution in heterogeneous distributed
environments (for example, Java does not help one run programs on different types
of supercomputers, discover the policy elements that apply at a particular site,
achieve single sign-on authentication, perform high-speed transfer across wide-area
networks, etc.) A grid middleware (such as the Globus Toolkit) addresses some of
these concerns and uses Java to provide portable clients [129].

According to published reports, grid computing technology has already been
used in areas such as finance, defense research, medicine discovery, decision mak-
ing, and collaborative design. There is industry-wide interest on grid computing
from research and industry, including IBM, Platform, Avaki, Entropia, Sun Mi-
crosystems, and, HP, among others. Table 2.1 provides a short list of grid-related
resources. A typical advocacy bulletin from a provider reads as follows:

[Does] Grid Computing unleash the power of existing systems? What if you could an-
alyze huge data sets instantaneously? Run scenarios not hundreds but thousands of
times? Bring teams together to radically reduce time-to-market? All while increasing
productivity? You might think you owned a supercomputer. And in today’s on de-
mand world, it can feel like you need one, just to get the detailed results—always
faster, always more accurately—that make you competitive in the marketplace. The
good news: IT components you may already own—mainframes, Unix servers, Intel
Servers, databases, storage systems, even desktop computers and workstations—har-
bor enormous, untapped processing and storage power. Power you can easily start
pulling together and dedicating to your most pressing business problems. [43]

Table 2.1 Grid consortiums and open forums
(partial list)

Asia Pacific Grid

Australian Grid Forum

Content Alliance: About Content Peering
Distributed.net

eGrid: European Grid Computing Initiative
EuroTools SIG on Metacomputing
Global Grid Forum

Global Grid Forum (GGF)

Grid Computing Info Centre

GridForum Korea

IEEE Task Force on Cluster Computing
New Productivity Initiative (NPI)
Peer-to-Peer (P2P) Working Group
SETI@home

The Distributed Coalition

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.1 MOTIVATIONS FOR CONSIDERING COMPUTATIONAL GRIDS 35

Even if only a fraction of these benefits are actually realizable in “real life”, it is
still worth the effort to investigate and pursue grid computing technologies.

Many application domains in which large processing problems can easily be di-
vided into subproblems and solved independently are already taking advantage of
grid computing (the Internet has facilitated access to untapped computing power).
In the scientific world, these include, among others, Monte Carlo simulations, drug
design, operations research, and e-Science projects like the Genome project and
ecological modeling [156, 157]. Some examples of the new scientific and engineer-
ing applications enabled by grid environments include [129]:

® “Smart instruments.” These are advanced scientific instruments (e.g., electron
microscopes, particle accelerators, and wind tunnels), adjoined with remote
supercomputers, databases, and users, all with the goal to enable interactive
use (rather than batch approaches), online scenario comparisons, and collabo-
rative data analysis.

® “Teraflop desktops.” These support applications such as chemical modeling,
symbolic algebra, and other tasks that transfer computationally intensive op-
erations to capability rich remote resources.

® “Collaborative engineering” (also known as, teleimmersion). These applica-
tions entail high-bandwidth access to shared virtual spaces that support inter-
active manipulation of shared datasets and management of complex simula-
tions, to support collaborative design of high-end systems.

® “Distributed supercomputing.” These are large virtual supercomputers logi-
cally assembled to solve problems too large to fit on any single computer.

® “Parameter studies.” These are rapid, large-scale parametric studies in which
a single program is run many times in order to explore a multidimensional pa-
rameter space.

A number of university consortia, corporations, professional groups, and other
stakeholders have developed and/or are developing frameworks and software for
managing grid computing projects. The European Community, for example, is
sponsoring a project for grid-based high-energy physics, earth observation, and bi-
ology applications. In the United States, the National Center for Supercomputing
Applications at the University of Illinois at Urbana—Champaign has demonstrated a
prototype of a national computational grid called the National Technology Grid;
this grid enables the science and engineering community to reap the benefits of
high-performance computing and communications technologies and makes these
developments available to broad sectors of society [96]. Table 2.2 identifies some
of the grid/P2P initiatives.

As already noted, grids are not just addressing unused or underutilized process-
ing power across existing computers. Another type of grids is a data grid, which can
be used to aggregate underused or unused storage into a larger virtual data store;
these storage configurations lead to improved performance and reliability over that
of any single machine [130]. Table 2.2 also identifies some of the data grid initia-
tives.

TEAM LinG - Live, Informative, Non-cost and Genuine!

36 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.2 Key (scientific) grid/P2P initiatives of recent years
(partial list)

Grid Applications
Access Grid
APEC Cooperation for Earthquake Simulation
Australian Computational Earth Systems Simulator
Australian Virtual Observatory
Cellular Microphysiology
DataGRID—WP9: Earth Observation Science Application
Distributed Proofreaders
DREAM Project: Evolutionary Computing and Agents Applications
EarthSystemGrid
Fusion Collaboratory
Geodise: Aerospace Design Optimisation
Globus Applications
GRid seArch & Categorization Engine (GRACE)
HEPGrid: High Energy Physics and the Grid Network
Italian Grid (GRID.IT) Applications
Japanese BioGrid
Knowledge Grid
Molecular Modelling for Drug Design
NC BioGrid
NEESgrid: Earthquake Engineering Virtual Collaboratory
Neuro Science—Brain Activity Analysis
NLANR Distributed Applications
OpenMolGrid
Particle Physics Data Grid
The International Grid (iGrid)
UK Grid Apps Working Group
US Virtual Observatory

P2P Integrated Systems and Applications
Bayanihan Computing Group
Cetacean acoustic communication study
DALiWorld
Distributed Particle Accelerator Design
Distributed.net
Evolutionary@Home
FightAIDS@Home
Folderol—Bringing the Human Genome Project to the Desktop
Folding@home
Genome@home
Great Internet Mersenne Prime Search (GIMPS)
Life Mapper
Moneybee: Stock forecasts
SaferMarkets.org—Understanding and Predicting Market Volatility
Server-less Video on Demand
SETI@home: Search for Extraterrestrial Intelligence at Home
XPulsar@home

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.1 MOTIVATIONS FOR CONSIDERING COMPUTATIONAL GRIDS 37

Table 2.2 Continued

Data Grid Initiatives
Datacentric Grid
DIDC Data Grid Work
EU DataGrid
GridPP
GriPhyN (Grid Physics Network)
HEPGrid (High Energy Physics and Grid Networks)
Particle Physics Data Grid (PPDG)
Virtual Laboratory: Tools for Data Intensive Science on Grid

Our emphasis going forward is on commercial, IT, and data center applications
of grid computing. As implied by the discussion above, in the past it was science
that drove interest in grid computing. For example, in the United Kingdom, interest
in grid computing eventually led to the government’s creation of an e-science pro-
gram focusing on the use of computer technology to share resources and collaborate
on approaches. In due course, however, it became clear that industry leaders would
need to play a role in realizing the vision of utility computing; for example, it was
realized that there were business-centric deficiencies in the grid model, specifically
related to database interoperability [7]. Vendors now are actively engaged in devel-
oping business-centric grid solutions, products brought forth by commercial soft-
ware and database suppliers to facilitate mainstream deployment of grid computing
services.

Early adopter commercial customers are reportedly turning to grid technologies
to help them improve the utilization and responsiveness and reduce the cost of their
IT assets. For example, with the advances in grid computing, many data-mining,
pattern-detection, and scenario-modeling processes of interest to banks, credit card
companies, and financial institutions can be implemented more readily. The neces-
sity of such advanced information-based approaches is driven by the increase in fi-
nancial transaction flow, the need to better understand customer profitability, and
the pressure to more effectively manage risks. Sophisticated risk modeling done in
real time, such as Bayesian knowledge-based analysis, fuzzy logic, and Monte Car-
lo simulations are now commonplace in financial firms [130].

Financial services companies have traditionally built their own distributed-pro-
cessing environments and looked at parallel computing as a way to avoid the pur-
chase of supercomputers. However, up to now these companies have been limited
to solutions tailored to specific products or specific business lines; they have, in
general, not been able to take advantage of the full potential of a virtualized solu-
tion. The potential promise of grid computing includes higher resource utilization,
multifold increase in processing power and throughput, lower costs, and faster time
to deployment of products and services. Reportedly, grid products from providers
such as IBM, Sun Microsystems, Oracle, EMC/VMWare, and Platform Computing,
among others, have been tested and deployed by a number of Fortune 500 compa-
nies. Firms that were once taking a low-tech approach to parallel computing now

TEAM LinG - Live, Informative, Non-cost and Genuine!

38 GRID BENEFITS AND STATUS OF TECHNOLOGY

can avail themselves of grid middleware. With these evolving grid computing tools,
companies are no longer required to manually subdivide algorithms (needed to
solve some business problems) via some preconditioning process, to run these algo-
rithms on separate machines, and then to manually merge and integrate the results
[130].

Some illustrative examples of actual commercial grid deployments are provided
in Table 2.3. The examples, and others like them, provide just some of the motiva-
tions and commercial precedents for exploring the opportunities afforded to For-
tune 500 companies by grid computing. As the grid matures, standard technologies
are emerging for basic grid operations. In particular, the community-based, open-
source Globus Toolkit is being utilized by most major grid projects [43, 113]. It is
expected that in the next few years the grid computing industry will continue to in-
troduce higher levels of standardization, virtualization, and automation, all of which
will not only increase utilization of existing physical resources but also, and more
importantly, simplify the management of a firm’s IT infrastructure [130].

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND
GRID COMPUTING

The implication was already given that grid computing is not fundamentally a new
concept. It has been in use for a number of years at scientific research and develop-
ment organizations for the most computer-intensive applications, such as, but not
limited to, aerospace simulation, circuit design, and human DNA sequencing. Serv-
er farms and parallel processing are early precursors to today’s modern grid tech-
nology; however, grid computing capabilities are available today for commercial
use based on more powerful enabling technologies such as network bandwidth,
faster processors, and advances in grid middleware software, all at reasonable costs
to the end users [130].

As we stated in Chapter 1, grid computing could properly be called “network
computing.” As this term would imply, the discipline deals with communications
and with computing. Figure 2.1 depicts some key phases in recent developments in
networking and computing. Figure 2.2 calls out some discrete milestones leading to
the emergence of peer-to-peer networks and computational grids. Compared to the
history of the electrical power grid, which spans more than two centuries, the com-
putational grid, or rather, the entire computer communication infrastructure, the In-
ternet—has a history of less than half a century [94]. Our emphasis in this book be-
ing on the commercial side, we forgo here a full bibliographic study of the
academic research over the past decade that has led to developments in grid com-
puting, but refer the interested reader to other references for this information (the
resources of Table 2.1 and Table 2.2 are a place to start, among other resources).

A review of recent history shows that standards provide major impetus for wide-
spread acceptance and deployment of a technology. The state of grid computing to-
day may remind one of the early days of the Web, or even of the emergence of
XML (eXtensible Markup Language) and Web services; things began slowly, but

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND GRID COMPUTING 39

Table 2.3 Commercial grid product deployments (partial list)

Grid Middleware

Grid Systems

Grid Schedulers

Grid Portals

Condor

Cosm P2P Toolkit

Globus Toolkit

Grid Datafarm

Gridbus

GridSim: Toolkit for Grid Resource Modeling and Scheduling
Simultation

Jxta Peer to Peer Network

Legion: A Worldwide Virtual Computer

PUNCH

Simgrid

Amica

Bayanihan

Compute Power Market

CrossGrid

DAMIEN

DIET

Echelon: Agent Based Grid Computing

Global Operating Systems

GridLab

Harness Parallel Virtual Machine Project

JAVELIN: Java-Based Global Computing

Management System for Heterogeneous Networks

MetaNEOS

MILAN: Metacomputing In Large Asynchronous Networks

MOBIDICK

MultiCluster

NeuroGrid

Poland Metacomputing

PUNCH—Network Computing Hub

XtremWeb

AppLeS

Computing Centre Software (CCS)
Condor/G

DISCWorld

NetSolve

Nimrod/G Grid Resource Broker
SILVER Metascheduler

ST-ORM

ActiveSheets

Enginframe

G-Monitor

Grid Enabled Desktop Environments

Gridscape

Interactive Control and Debugging of Distribution- IC2D

Lecce GRB Portal (continued)

TEAM LinG - Live, Informative, Non-cost and Genuine!

40 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.3 Continued

Grid Portals (cont.)

Grid Programming
Environments

Grid Performance
Monitoring and
Forecasting

Grid Testbeds and
Developments

Grid and P2P

Commercial Companies

NLANR Grid Portal Development Kit
SDSC GridPort Toolkit
UNICORE—Uniform Interface to Computing Resources

Albatross: Wide Area Cluster Computing

Cactus Code

GAF3J—Grid Application Framework for Java

GrADS: Grid Application Development Software Project
Jave-based CoG Kit

MetaMPI—Flexible Coupling of Heterogenous MPI Systems
Nimrod—A tool for distributed parametric modeling
Ninf

ProActive PDC

REDISE—Remote and Distributed Software Engineering
Virtual Distributed Computing Environment

NetLogger
Network Weather Service
Remos

Alliance Grid Technologies

Asia Pacific Bioinformatics Network
EuroGrid

GrangeNet

G-WAAT

I-Grid

Internet Movie Project

Irish Computational Grid (ICG)
Kerala Education Grid

LHC Grid

Micro Grid

N*Grid Korea

NASA Information Power Grid (IPG)
Nordic Grid

NPACI: Metasystems

OurGrid

Polder Metacomputer

TeraGrid

ThaiGrid

The Alliance Virtual Machine Room
The Distributed ASCI Supercomputer (DAS)
World Wide Grid (WWG)

Avaki

CapCal

Centrata
DataSynapse
Distributed Science
Elepar
EMC/VMWare

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND GRID COMPUTING 41

Table 2.3 Continued

Grid and P2P (cont.) Entropia.com
Commercial Companies Grid Frastructure
GridSystems
Groove Networks
HP
IBM
Intel
Jivalti
Mind Electric
Mithral
Mojo Nation
NewsToYou.com
NICE, Italy
Noemix, Inc.
Oracle
Parabon
Platform Computing
Popular Power
Powerllel
ProcessTree
Sharman Networks Kazza
Sun Gridware
Sysnet Solutions
Ubero
United Devices
Veritas
Xcomp

once standards and tools appeared and coalesced, growth quickly ensued [90]. Until
recently, all grid computing systems have been situation specific. If one installed
the distributed.net client, one could process or access work from the SETI@Home
grid. One could not deploy a United Devices client solution without also using their
distribution and management system [123]. Fortunately, grid standards, frame-
works, open implementations, and off-the-shelf applications are now evolving
rapidly. Recently, grid computing has started to leverage Web services to define

_ | Computing
Communications: Information: The Grid
. The Intemet & | The Web
Netwrarking: the e-mall era

TCPAP

4
Time evolution

Figure 2.1 Major phases in computing and communications.

TEAM LinG - Live, Informative, Non-cost and Genuine!

42 GRID BENEFITS AND STATUS OF TECHNOLOGY

® |inux Alliance

® Linux ® Term “Open Source”

* DSIRM

coined
* Minicomputers Standards o HTC * P2P i
e Maintframes P ®* PCs e Work stations e PDAs * One-millionth
Computing - e Time-sharing ¢ Unix commercialized Glotus Linux license
< Urin Craye -+ Windows

* MPPs¢ \work station ® 2G Grids
clusters ® 1G Grids
® PC clusters

L.
Y

I I I I I I I I I
1965 1970 1975 1980 1985 1990 1995 2000 2005

e W3C

e IETF ®* WWWera © WLANs
* TCP/IP ° ML

® Packet e Email SG * HTML

Networking g\ itching *Bell e Optics/SONET
o ARPAnet ©®LANS\ ~ System * Broadband *® XML
Ethernet Divestiture * Wireless e Gigabit Ethernet

® Internet o HwDM
era * Fibre Channel

® \Web services

Figure 2.2 Recent history of computing and communications.

standard interfaces for business services like business process outsourcing. (Web
services have emerged in the past few years as a standards-based approach for ac-
cessing network applications.)

Mainframes appeared in the 1960s. They were (and still are) massive computa-
tional devices that were (and continue to be) the purview of large corporations, gov-
ernment agencies, and university labs. The origins of grid computing are grounded in
these early days of computing, when using the “spare” machine cycles was seen as an
efficient and cost-effective way of getting the most out of what was then very expen-
sive hardware. SInce mainframes cost hundreds of thousands of dollars (millions, in
today’s dollars), every second had to be accounted for, and those otherwise “wasted”
cycles could be used to get the most out of the cost [123]. Table 2.4 provides, for per-
spective purposes, an excerpt from a quite visionary document of 1970.

The idea of network-based computing has advanced over the years, from the
1970s to the present day. For example, in 1987 this researcher was advocating the
concept of grid computing, stating:

The proposed service provides the entire apparatus to make the concept of the Com-
puting Ultility possible. This includes as follows: (1) the physical network over which

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND GRID COMPUTING 43

Table 2.4 Grid computing had an illustrious start in the networking space

Dave Walden, A Note on Interprocess Communication in a Resource Sharing Computer
Network, Request for Comments: 61 Bolt Beranek and Newman, Network Working Group,
July 17, 1970

The attached note is a draft of a study I am still working on. It may be of general interest to
network participants.

Resource Sharing Computer Network

“A resource sharing computer network is defined to be a set of autonomous, independent
computer systems, interconnected so as to permit each computer system to utilize all of the
resources of each other computer system. That is, a program running in one computer sys-
tem should be able to call on the resources of the other computer systems much as it would
normally call a subroutine.” This definition of a network and the desirability of such a net-
work is expounded upon by Roberts and Wessler.!

The actual act of resource sharing can be performed in two ways: in a pairwise ad hoc man-
ner between all pairs of computer systems in the network or according to a systematic net-
work wide standard. This paper develops one possible network wide system for resource
sharing.

I believe it is natural to think of resources as being associated with processes? and therefore
view the fundamental problem of resource sharing to be the problem of interprocess com-
munication. I also share with Carr, Crocker, and Cerf the view that interprocess communica-
tion over a network is a subcase of general interprocess communication in a multipro-
grammed environment.

These views pervade this study and have led to a two part study. First, a model for a time-
sharing system having capabilities particularly suitable for enabling interprocess communi-
cation is constructed. Next, it is shown that these capabilities can be easily used in a general-
ized manner which permits interprocess communication between processes distributed over
a computer network.

This note contains ideas based on many sources. Particularly influential were 1) an early
sketch of a Host protocol for the ARPA Network!?3 by W. Crowther of Bolt Beranek and
Newman Inc. (BBN) and S. Crocker of UCLA; 2) Ackerman and Plummer’s paper on the
MIT PDP-1 time sharing system®; and 3) discussion with R. Kahn of BBN about Host pro-
tocol, message control, and routing for the ARPA Network. Hopefully, there are also some
original ideas in this note. . . .

IL. Roberts and B. Wessler, Computer Network Development to achieve Resource Sharing, Proceedings
1970 SJCC.

2V. Vyssotsky, F. F. Corbato, and R. Graham, Structure of the MULTICS Supervisor, Proceedings 1965
FJCC.

3C. Carr, S. Crocker, and V. Cerf, Host/Host Communication Protocol in the ARPA Network, Proceed-
ings 1970 SJCC.

“F. Heart, et al, The Interface Message Processor for the ARPA Computer Network, Proceedings 1970
SJCC.

SW. Ackerman and W. Plummer, An Implementation of Multi-processing Computer System, Proceed-
ings Gatlinburg Symposium on Operating System Principles.

TEAM LinG - Live, Informative, Non-cost and Genuine!

44 GRID BENEFITS AND STATUS OF TECHNOLOGY

the information can travel, and the interface through which a guest PC/workstation can
participate in the provision of machine cycles and through which the service re-
questers submit jobs; (2) a load sharing mechanisms to invoke the necessary servers to
complete a job; (3) a reliable security mechanism; (4) an effective accounting mecha-
nism to invoke the billing system; and, (5) a detailed directory of servers. Currently no
such service exists in the public domain . .. security and accounting . .. are much
more complex in the distributed, public (grid) environment. . . . This service is basi-
cally feasible once a transport and switching network with strong security and ac-
counting (chargeback) capabilities is deployed. A high degree of intelligence in the
network is required . .. a physical network is required . .. security and accounting
software is needed . . . protocols and standards will be needed to connect servers and
users, as well as for accounting and billing. These protocols will have to be developed
before the service can be established. . . .

The 1970s and 1980s saw the emergence of minicomputers, microcomputers,
and desktop machines that gave computing power to an expanding community of
people at work and in their homes. This was followed by the client—server comput-
ing model in the early 1990s that placed some amount of the functionality (e.g., pre-
sentation services) at the distributed endpoints; specifically, at the clients. Network-
ing technologies and protocols to interconnect all these machines together and
allow them to communicate saw major deployments throughout the 1980s and early
1990s. The 1990s saw the rise of commercialized Internet; the Internet expanded
our ability to communicate and share files and data with any networked machine,
regardless of physical location. Now we are turning the corner on the next thing:
grid computing. Advocates claim it has as much potential for changing the way we
do business as the Internet did [143].

Communication

The de-facto computational grid’s (scientific grid’s) communication infrastructure
is the Internet. The Internet began as a research network supported by the U.S. De-
partment of Defense’s Advanced Research Projects Agency (DARPA). (For corpo-
rate-oriented grids, high-capacity high-quality extranets and/or private networks
can be utilized, particularly, for more secure applications and real-time, high-per-
formance applications.) In 1969, the ARPAnet consisted of four nodes: the Univer-
sity of California, Los Angeles; Stanford Research Institute; University of Califor-
nia, Santa Barbara; and the University of Utah. By the mid-1970s, ARPAnet’s
reach encompassed over 30 universities, military sites, and government contractors,
and its user base had expanded to include the computer science research communi-
ty at large. By the way, in 1974 the Transmission Control Protocol was introduced,
which later (1978) was split into TCP/IP [94]. In 1983, the ARPAnet consisted of
several hundred computers.

In the 1980s, the National Science Foundation created the NSFnet. NSFnet was a
communications network intended to give scientific researchers easy access to the
NSF’s supercomputer centers. In 1985, NSF arranged with DARPA to support a

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.2 BRIEF HISTORY OF COMPUTING, COMMUNICATIONS, AND GRID COMPUTING 45

collaboration of supercomputing centers and computer science researchers across
ARPAnet. Very quickly, one network after another linked in, and the result was the
Internet as we now know it [97]. In 1986, the Internet Engineering Task Force
(IETF) formed as a loosely self-organized group of people who contributed to the
engineering and evolution of Internet technologies. In 1989, responsibility for and
management of ARPAnet officially passed from military interests to the academi-
cally oriented NSF.

The World Wide Web—developed in the late 1980s by Tim Berners-Lee and his
team as a way to share information—energized a major revolution in computing.
HyperText Markup Language (HTML) (based on the Standard Generalized Markup
Language, developed in the mid 1980s), provided a standard-based means of creat-
ing and organizing documents; HyperText Transfer Protocol (HTTP), browsers,
and servers provide a mechanism to link these documents and access them online
transparently, regardless of their location. The World Wide Web Consortium,
formed in 1994, develops new standards for information interchange. For example,
initiatives related to XML aim to provide a framework for developing software that
can be delivered as a utility service via the Internet [94].

SONET/DWDM (Synchronous Optical Network/Dense Wavelength Division
Multiplexing) optical technology deployed in many industrialized nations in the
late 1990s and early 2000s now provides broadband connectivity and services at a
reasonable price. Some corporate Wide-Area Networks (WANSs) now already oper-
ate at 155 Mbps, three orders of magnitude faster than the state-of-the-art 56 kbps
that connected U.S. supercomputer centers in the mid 1980s. OC-48 rings (2.4
Gbps) have been deployed by some Fortune 50 companies since the mid 1990s.
This bandwidth availability is now a key driver (enabler) of grid computing. But to
work with labs across the world on petabyte data sets, scientists now require even
more—in the range of tens of gigabits per second (Gbps) [113].

During the past few years, the theoretical performance of wide-area networks
has doubled every 12 months or so, supported by innovations in optoelectronic
technologies (this equates with a potential to increase by two orders of magnitude
every five years; however, the user-affordable, commercially available bandwidth
has grown at a much slower rate). The NSFnet network, which, as noted, connects
the National Science Foundation supercomputer centers in the United States, exem-
plifies this trend. In the mid-1980s, NSFnet’s backbone operated at a DSO rate (56
Kbps); now, the centers are connected by the 40 Gbps TeraGrid network [113].
Communication speed will likely continue to increase over time and costs will con-
tinue to decrease. But planners need to realize that quality high-speed bandwidth
will never be free. At some point in the future, there may be an attractive fixed price
like $99.99 per month for all you can use up to 10 Mbps, or $199.99 per month for
all you can use up to 100 Mbps, or $399.99 per month up to 1 Gbps. This is theoret-
ical, because, although, one can go from 32 lambdas to 64 lambdas to 128 lambdas
in a Dense Wavelength Division Multiplexer product, this bandwidth is not general-
ly available to the typical user. An economically viable model needs to be devel-
oped by the carriers to dispense bandwidth. (This author did not conceive in the ear-
ly 1970s that bottled water would ever become the business that it did in the United

TEAM LinG - Live, Informative, Non-cost and Genuine!

46 GRID BENEFITS AND STATUS OF TECHNOLOGY

States, and that a liter of water would cost up to $2 retail. In order to maintain a sup-
ply, a business needs to be profitable.)

Computation

The concept of sharing distributed resources is not new. Since the late 1960s, much
work has been devoted to developing distributed systems, but with mixed success.
In 1965, MIT’s Fernando Corbaté and the other designers of the Multics operating
system envisioned a computer facility operating “like a power company or water
company”’; and in the 1968 article “The Computer as a Communications Device,” J.
C. R. Licklider and Robert W. Taylor foresaw grid-like scenarios [56, 58, 113].
Hence, the idea of harnessing unused machine cycles emerged in the late 1960s and
early 1970s, when computers were first linked by data communication networks.
ARPAnet supported early experiments with distributed computing.

In 1973, the Xerox Palo Alto Research Center developed a worm program that
roamed among about 100 Ethernet-connected computers, replicating itself in each
machine’s memory. Each worm used idle resources to perform a computation and
could reproduce and transmit clones to other nodes of the network. With the worms,
developers distributed graphic images and shared computations for rendering realis-
tic computer graphics [94].

Since the1990s, distributed computing has reached a new, global level, as briefly
described in the previous sections. The availability of powerful PCs and workstations
and high-speed networks (such as Gigabit Ethernet) as commodity components has
led to the emergence of clusters for high-performance computing. The availability of
such clusters within many organizations has fostered a growing interest in aggregat-
ing distributed resources to solve large-scale problems of multiinstitutional interest.
Computational grids and peer-to-peer computing are the results of these initiatives.

In 2002, the National Science Foundation installed hardware for the TeraGrid, a
transcontinental supercomputer system that is expected to do for computing power
what the Internet did for documents. To start with, clusters of high-end microcom-
puters were set up at four sites: the National Center for Supercomputing Applica-
tions at the University of Illinois at Urbana—Champaign; the U.S. Department of
Energy’s Argonne National Laboratory near Chicago; Caltech in Pasadena, CA;
and the San Diego Supercomputer Center at the University of California, San
Diego. These four clusters are to be networked together so tightly that they will be-
have as a single entity. This virtual computer will work through problems at up to
13.6 TFLOPS, eight times faster than the most powerful academic supercomputer
available at the time of this writing [97].

Today, a combination of technology trends, technical advances, and standardiza-
tion makes it feasible to start to realize the grid vision, for both commercial as well
as scientific applications. In scientific circles, researchers hope to put in place a new
international scientific infrastructure with tools that, in aggregate, can meet the
challenging demands of 21st-century science. Numerous government-funded R&D
projects are variously developing core technologies, deploying production grids,
and applying grid technologies to challenging applications [113].

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 IS GRID COMPUTING READY FOR PRIME TIME? 47

Grid Technology

The “modern” history of grid computing goes back to the 1996—1999 time period. In
this phase, one saw extensive application experimentation and the development of
some core grid protocols. Globus Toolkit 1.0 represented the “state of the art” in grid
computing at that time. Data grids appeared starting in 1999 with Globus Toolkit
2.0+. This phase afforded medium-scale data management and analysis. The next
phase came with the Open Grid Services Architecture, starting in 2001. This phase is
represented by the Globus Toolkit 3.0 product; it saw the integration with Web ser-
vices and resource virtualization (Web services support a standards-based approach
for accessing network applications.) This phase also brought forth a number of high-
er-level services. The problem with grids that had emerged in recent years related to
a lack of systemization; namely, lack of a common vocabulary, lack of common in-
terfaces or APIs, lack of common intercommunication protocols, and lack of a com-
mon infrastructure formulation. Newly emerging open grid services establish a com-
mon vocabulary and a systemization of concepts. At the same time it was realized
that there are natural similarities with Web services at the “lower layers,” and, hence,
standardization efforts sought to avoid reinvention at these layers. The latest phase
(from 2003 forward) is characterized by more extensive standardization, ubiquitous
computing (including wireless transport and sensors). This last phase is the one that
will define the true commercialization of grid computing. However, some conserva-
tive players do not expect full ubiquitous grid technology deployment on a broad
scale in corporate America until the decade of the 2010s. Figure 2.3 shows an evolu-
tion path for the technology.

Performance
(and QoS) Global
Grid
Partner
Grids
Enterprise
Cluster/Grid
Local
Data
Local Grids
SMPs or Cluster
Super Computin
Personal computers
Device

EARLY SECOND THIRD
STAGE STAGE STAGE
1990s early 2000s mid 2000s late 2000s

Figure 2.3 Evolution of grids over time.

TEAM LinG - Live, Informative, Non-cost and Genuine!

48 GRID BENEFITS AND STATUS OF TECHNOLOGY
2.3 IS GRID COMPUTING READY FOR PRIME TIME?

In the previous sections, we highlighted the status of grid computing as a discipline.
This section looks at the readiness of the technology for mainstream corporate appli-
cations, by citing some examples of currently available products and/or initiatives.

Some market research firms indicate that there is substantial data pointing to ac-
celeration in the grid computing market, with commercialization heading toward an
inflection point [1]. The period 2005-2006 is seen by industry stakeholders as a
critical period of market development for grid computing technologies. Over this
period, the commercial viability of the technology is expected to mature and early
adopter customers are expected to give way to broader adaptation of grids for enter-
prise applications both at single-site and multisite installations. The nature of com-
petition is expected to mature as vendors integrate grid computing technologies into
existing offerings and strategies ranging from utility computing to Web services
[1]. In a 2003, according to a Gartner European survey, 50% of respondents were
aware of the IT utility model for outsourcing that promotes IT infrastructure ser-
vices from service providers as a commodity. Once market maturity is reached, the
IT utility model is likely to support organizations looking to respond with agility to
emerging market demands. The utility model has been in existence for quite a few
years now. The big companies have utilized this model in conjunction with the off-
shore service providers; this has resulted in documented reduced costs of operations
for these companies. In the meantime, though, customers remain unsure about is-
sues such as cost, security, and integration with existing IT systems [34].

The industry has generally expressed views such as these: “With Grid Comput-
ing, businesses can optimize computing and data resources, pool them for large ca-
pacity workloads, share them across networks, and enable collaboration” [43]. And,
“It’s called grid, utility, or on-demand, but it’s all about the same thing: Creating
computing infrastructures that can dynamically change tasks as processing needs
ebb and flow. It’s a grand vision, but getting there won’t be easy” [100]. The oppor-
tunity exists to virtualizing one’s computing environment, automate it, and inte-
grate the business processes and information, so that one will have an on-demand
operating environment that can transform one’s business [90]. However, the obser-
vation at the conclusion of the previous section should also be kept in mind as a ref-
erence point.

As a counterbalance to the (hopefully not Pollyannaish) arguments made by the
proponents, the following observation is worth noting, particularly the concluding
punchline:

IBM ... is taking an interesting tack in the battle to provide customers the tools to
move to more nimble business practices. . . . IBM’s holistic approach is refreshing. It
gives customers a number of options in terms of where to start in creating what it calls
an “on demand” environment. While it does not dictate specific technology, it focuses
on positioning technology as the tool and business process as the enabler. . . . Howev-
er, even more important is the need for technology (the tool) to not be overly complex,
proprietary, or costly. Put simply, it cannot be in the way. Therefore, the heteroge-
neous platforms, multiple form factors, diverse applications, and different manage-
ment tools already installed in customer sites cannot be barriers. They must be brought

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 IS GRID COMPUTING READY FOR PRIME TIME? 49

together efficiently. Customers are clear on a few points. They need to become more
efficient, and they need to maintain innovation. . . . Although the messaging around
initiatives is improving, the problems are as complex and varied as ever. Looking for-
ward, this will be the yardstick for all of these sorts of utility-like initiatives: How cost
effectively and efficiently were my business problems addressed? Everything else is
just technology. [87].

Leading customers in the financial services, banking, telecommunications and
education industries are deploying grid computing to address their mission-critical
business challenges [43]. Table 2.5 identifies recent business applications of grid
technology [111]. Figure 2.4, synthesized from a number of sources, including but
limited to [111], depicts possible penetration trajectories.

Corporate IT planners can build an enterprise grid infrastructure at this time.
Planners can use both open-source and vendors’ proprietary tools and products.
Over time, as the grid standards solidify, one can expect vendors to enable their
tools to comply with the new standards, making it easier for the planner to combine
components that will work together [90]. The first step in creating a grid is to trans-
form individual computers, network elements, and storage systems into an aggre-
gated and virtual pool of resources that can be allocated and monitored automatical-
ly, and whose usage can be metered accordingly. Provisioning of defined business
services running on the grid would then take place according to specified goals and
priorities. Business requirements are further used to develop and automate policies
and service-level objectives that will manage the applications and the resources
they need across the network [130]. Grid tools now available can be classified into
these general categories [90]:

® Infrastructure. Infrastructure components include file systems, schedulers, re-
source managers, messaging systems, security applications, certificate au-
thorities, and file transfer mechanisms (e.g., GridFTP) (see Chapter 6).

® Middleware. Software plug-ins that facilitate the use of grid technology. For
example, the open source Globus Toolkit 3.0, a mature set of tools useful for
building a grid, is the first full-scale implementation of the OGSI standard. It
has the basic facilities for implementing a simple yet world-spanning, grid
[147]. The tool’s strength is a good security model with a mechanism for hier-
archically collecting data about the grid. The toolkit was developed by the
Globus Project, a research and development project focused on enabling the
application of grid concepts to scientific and engineering computing. The
toolkit is a set of services and software libraries to support grids and grid ap-
plications. The Globus Toolkit 3.0 includes software for security, information
infrastructure, resource management, data management, communication,
fault detection, and portability [90].

® Directory services. Applications and systems on a grid system must be capa-
ble of discovering what services are available to them; specifically, in order to
share and collaborate, grid systems must be able to define (and monitor) the
grid’s topology. Grid director'y services implementations are generally based
on the Lightweight Directory Access Protocol (LDAP) and Domain Name
Server (DNS).

TEAM LinG - Live, Informative, Non-cost and Genuine!

Table 2.5 Examples of recent applications of grid technology

Type of Business Broadband Networking
Grid Purpose Impacts Investment Impacts Examples
Data Grid “Transport link” Significant savings Large investment @ Eli Lilly—Data Grid
—connects databases in finding in broadband links between Sphinx Labs in
at different locations information. to connect data NC and other R&D labs.
in a single company. Efficiency gains due centers that arein ~ ® AstraZeneca—connects
Can be built behind to shortening the different locations. R&D centers in Sweden,
a Web services time R&D or design UK and US.
portal (access point). staff need to find ® Bank of America—built
information. links between data
storage centers to support
its free checking over the
Internet.
Cluster “Processing power” Big saving in No initial impact ~ ® Pratt & Whitney saved
Computing/ —harnesses power processing time. on broadband until 50% in engineering time
Computational of computer to Adds to efficiency cluster computing on engine projects
Grid achieve high by providing for evolves to an (Platform Computing)
computing speed. greater output. enterprise grid. ® Novartis speeded drug
Savings on R&D lead identification by a
and design costs. factor of 10.
® Oxford University—
anthrax screen of billions
of possible drug
compounds in 24 days.
Enterprise “Processing power + Efficiency due to Investment in ® AstraZeneca—Sweden,
Grid transport” within a processing power broadband links— UK and US.
single firm—Ilinks plus access to data. can require very ® GM, Daimler Chrysler,
R&D centers at Savings on R&D high speeds due to Ford—Ilinks to
different time and time to large amount of engineering groups for
geographical market. Upside in ~ data transmitted. design, mostly in Europe.
locations. terms of greater
output/sales.
Partner Grid “Processing power Savings in design Significant ® GM, Daimler Chrysler,

Web Services

+ transport” for
more than one firm.

Provide secure
Internet access to
new services for
consumers and
businesses. Seem to
develop closely with
cluster computing
and data grids.

time and R&D time,
plus time to market.
Permits more
efficient collabora-
tion between
partners, often in
supply chain
relationship.

Big gains in
productivity. Big
savings in the cost
of offering services
and time to bring
new services to
market. Requires
building a “data
grid-like” structure
to provide rapid
updating of
information.

investment in
secure, high-
performance,
broadband links
between two or
more firms.

Large amount of
spending on
broadband to link
data centers.
Significant
spending on
software and
integration
services.

Ford—Iinks to
engineering groups at
partner firms for design,
mostly in Europe.

® Bank of America’s
banking over the Internet
that relies on Web
services has resulted in
linking a significant
number of data centers.

Source: Grid Computing—Projected Impact on North Carolina’s Economy and Broadband Use Through 2010

[111].

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.4 EARLY SUPPLIERS AND VENDORS 51

“100%
Web Services

e J
cx 75%
5 é Enterprise
z = Grid

[%]
=]
2 g Data Grid
$ [0
£y £
% o) 50% 4
[Sls]
5

=

25% 1 Partner Grid
&
T
1 1 1) L] L] L] L] L |
2004 2007 2010

Thick line = Aggressive estimate
Thin line = Conservative estimate

Figure 2.4 Possible penetration of grids in the financial services industry.

® Schedulers and load balancers. One of the main benefits of a grid is maximiz-
ing efficiency. Schedulers and load balancers provide this function along with
other functions. Schedulers ensure that jobs are completed in some desired or-
der (priority, deadline, urgency, for instance) and load balancers distribute
tasks and data management across systems to decrease the chance of bottle-
necks.

® Developer tools. Tools for developers of grid-enabled applications focus on
different aspects (file transfer, communications, environment control), and
range from utilities to application programming interfaces (APIs.)

® Security. Security covers authentication and authorization, intended to control
who/what can access a grid’s resources. Additionally, security includes mes-
sage integrity and message confidentiality; these capabilities are crucial to in-
dustry segments such as financial and healthcare.

2.4 EARLY SUPPLIERS AND VENDORS
The following discussion is intended to illustrate the state of affairs at press time;

this discussion does not sanction one vendor and/or approach. Table 2.6 provides a
synopsis of major players and products/strategies. (Although this information is a

TEAM LinG - Live, Informative, Non-cost and Genuine!

52 GRID BENEFITS AND STATUS OF TECHNOLOGY

press-time snapshot, one can safely assume that the companies listed will continue
to pursue grid computing initiatives in the future; as time goes by, an augmented set
of capabilities and products is expected to emerge.) Figure 2.5 depicts a published
taxonomy of grid computing that can be used to organize some of the commercial
grid applications that are emerging ([171, 172]).

IBM, a major force in the market, announced a “go-to-market” strategy built
around “focus areas” that address the needs of the acrospace, automotive, financial
markets, government, life science, agricultural chemical, electronics, higher educa-
tion, and petroleum industries [43]. These grid offerings are designed to operate in a
heterogeneous environment and will incorporate OGSA. IBM Global Services
plans to support all elements of a grid implementation with both IBM and non-IBM
hardware and software.

By press time, Oracle had introduced grid-enabled enterprise products such as
the Oracle Database 10g and the Oracle Application Server 10g [48]. Oracle Data-
base 10g includes management and clustering capabilities that enable the data base
to be used in an enterprise grid computing environment [8, 48]. According to the
vendor, the Oracle Application Server 10g provides a complete middleware layer

Business Process Layer

Vertical processes: sourcing, internal value-add, customer
Horizontal processes: accounting, HR, e-mail

Y

Applications Layer

Vertical applications: SCM, ERP, CRM
Horizontal applications: accounting, HR, e-mail

Y

Management Layer

Policy-based automation, service management, Web services,
provisioning, security services, metering/billing services, grid services

Y

Virtualization Layer

Pooling, sharing, sourcing

Price
Application of pricing shema across the enterpise
environment to maximize mutual value

Y

Infrastructure Layer

Network, servers, storage, clients,
peripherals, environment, content

Figure 2.5 The Yankee Group’s utility computing taxonomy. Source: The Yankee Group,
2004 [171, 172].

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.5 POSSIBLE ECONOMIC VALUE 53

“that transforms a middle-tier infrastructure into a low-cost, efficient, easy-to-man-
age computing grid.” Incorporated into the application server are several new ser-
vices that allow an administrator to “virtualize” all middle-tier services and re-
sources, managing them from a single console as if they were one.

Sun Microsystems offers Grid Engine software. Described as a distributed re-
source management tool, Grid Engine allows engineers to pool the computer cycles
on up to 100 workstations at a time (some, however, view this more like a cluster
and less like a grid [103]). Hewlett-Packard reportedly plans on including grid-en-
abled software such as the Globus Toolkit and new SGA standard version 3.0 into
its servers and storage devices, of course, but also consumer products such as hand-
helds, PCs, and printers [141]. In Chapter 1, we also (briefly) discussed HP’s UDC
approach to virtualization.

A more inclusive press-time list of grid products include (but are not limited to)
those shown in Table 2.6.

2.5 POSSIBLE ECONOMIC VALUE

Recently, a very valuable study was undertaken by Cohen and Feser to evaluate the
possible macroeconomic value of the introduction of grid computing [111]. We
highlight a few results here to reinforce the opportunities that may exist and make a
rough extrapolation to the national macroeconomic potential. The study is focused
on North Carolina, but the results are applicable nationwide.

2.5.1 Possible Economic Value: One State’s Positioning

The study [111] estimates that, given adequate access to broadband infrastructure
and sufficient IT workforce, the deployment of high-performance grid computing
and Web services applications would contribute the following gains to North Car-
olina’s economy over 2010 baseline growth forecasts:?

® An additional $10.1 billion in output
® An additional 1.5% in aggregate labor productivity
® An additional $7.2 billion in personal income

® An additional 24,000 jobs, the net result of 55,700 new jobs created from in-
creased industrial growth and 31,700 jobs lost due to the adoption of new grid
and Web services technologies and downsizing

® An additional $1.2 billion in expenditures for communications services, with
80 to 90% of the new spending devoted to the purchase of broadband access

Several key structural changes in North Carolina’s economy can be expected as
a result of the adoption of cluster and grid computing and Web services technolo-

3The remainder of this section is quoted directly from [111].

TEAM LinG - Live, Informative, Non-cost and Genuine!

54 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.6 A press-time snapshot of products and activities of key suppliers

HP
IBM

Microsoft

Oracle

Platform
Computing

Sun
Microsystems

EMC’s/
VMWare

Utility Data Center (UDC). Focuses on resource management across its server.

On Demand. By press time, IBM and its partners were offering 19 grid solutions
in nine vertical industries (automotive, financial markets, government, and others).
The strategy is to grid-enable all of its products. The company states that it will
continue to incorporate virtualization technologies into its server software products
and plan to incorporate autonomic capabilities into DB2 and associated content-
management products. They state they are emphasizing an OGSA compliance ap-
proach based on partnering via On Demand Innovation Centers (centers allow
users and developers to test their products on IBM’s existing On Demand prod-
ucts). The company states that it will continue to incorporate virtualization tech-
nologies into its server software products and plans to incorporate autonomic capa-
bilities into DB2 and associated content-management products [43].

Virtual Server is a virtual machine solution for application migration and server
consolidation. With Virtual Server, a Windows Server 2003-based server can run
multiple operating systems concurrently. The goal is to make it easier to migrate
legacy applications. Virtual Server aims at reducing capital expenditures through
the use of fewer servers. Virtual Server does not require custom drivers and it does
not use any proprietary protocols.

10g family of “grid-aware” products focuses on databases. Architects see this as
Oracle’s own brand of grid computing: a database system that comprises multiple
nodes and lets IT planners shift database resources between them. Oracle 10g grid-
computing functionality is essentially the latest version of the company’s database
clustering technology [170].

Products provide support for Linux on the zSeries mainframe. These include
Platform LSF, which is designed to provide on-demand access to an organization’s
global computing resources and balances workloads across the entire organization;
Platform JobScheduler, a software solution that accelerates batch processing by in-
tegrating, automating, and grid-enabling silos of applications, jobs, and process
flows across distributed computing clusters; and Platform MultiCluster, which al-
lows enterprises to create a single, cohesive computing environment with easy-to-
manage resource-sharing policies across geographies.

N1 Data-center Architecture. Approach based on clusters (Sun Grid Engine).

N1 is Sun Microsystems’ architecture, products, and services for supporting net-
work computing. The marketing angle of the company is that N1 allows “manag-
ing n computers as 1.” The N1 grid system provides the services for managing het-
erogeneous environments and eliminating the underlying IT complexity through
technical means. Ultimately, N1 Grid will encompass multiple organizations [99].
At press time, the company was reportedly shifting focus from technical or high-
performance computing markets to the commercial markets; the company was
working on technology that better virtualizes desktops by pushing computing pow-
er and management capabilities out of the data center and down to blade servers
that can better mange desktop computing cycles [166].

VMWare. Virtualization technology that aims at lowering the cost of Intel
server farms. Converts the workloads of all of a specified set of servers to run as a
single hardware pool without dropping any application

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.5 POSSIBLE ECONOMIC VALUE 55

gies. First, the impact of the adoption of cluster and grid computing and Web ser-
vices will ripple through multiple sectors, contributing to shifts in the state’s indus-
try mix. Significant growth generated by investment in clusters, grids and Web ser-
vices by five early adopter industries will contribute to gains in a number of other
sectors, with the largest impacts accruing to industries that directly support the de-
ployment of computer applications. Spending will increase for software by $1.13
billion, for computers by $681 million, for professional services by $575 million,
and for communications equipment by $432 million over baseline forecasts. That
spending, in turn, will lead to the expansion of other industries, such as office
equipment, which would post revenues 19% higher than a baseline forecast pre-
dicts. At the same time, some industries will be negatively impacted. The estimated
output impact of $10.1 billion by 2010 represents $10.9 billion in gains and $800
million in losses across sectors.

Second, increased demand for grids and Web services will be a catalyst for inno-
vation among telecommunications service providers. Firms using grids and Web
services will call on telecommunications service providers to develop new services
and capabilities, including higher levels of performance and security, and possibly
advanced services for customer billing and electronic commerce support. Appropri-
ate innovative responses by service providers will give both the firms they service
and the state as a whole a competitive advantage in gaining new business and in at-
tracting the sorts of firms that require those new services and capabilities. That will
strengthen North Carolina’s position as an early leader in development of leading
edge information and communication technologies.

Third, increases in labor productivity derived from the deployment of grid com-
puting and Web services, particularly in early adopter sectors, will reduce firms’
business costs and improve efficiency, freeing up capital for spending on new plant
and equipment, employee training, and research and development. That will im-
prove the long-run competitiveness of North Carolina industry, in addition to set-
ting off a dynamic wave of expansion and business growth.

Fourth, prices for goods and services are likely to rise much more slowly in an
economy where many firms are using grid computing and Web services to improve
productivity, making some industries more competitive than might otherwise be ex-
pected. Price impacts could be particularly important for the apparel, textiles, and
furniture sectors. Industry executives in those industries believe that nearly all firms
will have some form of electronic transactions system within four years, involving
order entry via an electronic catalog that minimizes color, fabric, and size selection
errors, reducing production and retailing costs by 11 and 15%, respectively, by
2005. The cost savings will increase as firms link more of their operations to net-
works that permit the tracking of every phase in the process of getting a product to
the consumer. Although few industries have such networks in place today, some
firms in the U.S. and overseas are beginning to build the outline of such systems.
One European retailer has used an electronic network to cut the time from design to
delivery to 15 days.

Fifth, business practices will change significantly in certain industries, particu-
larly in early adopter sectors. When the new technologies are initially adopted, they

TEAM LinG - Live, Informative, Non-cost and Genuine!

56 GRID BENEFITS AND STATUS OF TECHNOLOGY

are largely time and resource saving. Nevertheless, as firms begin to use them, they
begin to consider how the capabilities offered by highly innovative computer and
software technologies might provide other benefits. A number of firms have begun
to transform business processes in order to develop products more efficiently. For
instance, auto assemblers and drug companies have begun to test new products with
more sophisticated modeling techniques and very detailed data bases. Some firms
are looking at ways they can use the huge increases in computing power that cluster
and grid computing and Web services provide to offer far more effective access to
corporate data bases. Thus, in drug discovery, pharmaceutical firms are becoming
hypercomputerized, using computers and programmed chips to analyze how specif-
ic proteins will react with the human body, thus minimizing the need for wet labs.
Further down the road, firms using grids expect to begin outsourcing more work to
their suppliers, binding those partners even more intimately to their own operations.
Sixth, rural areas will be even more challenged by inadequate access to broad-
band services. Beyond the need to enhance competitiveness, the very survival of
many textile, apparel, and furniture firms is threatened by their location in rural
areas of North Carolina where broadband services may be inadequate. In addition,
many other rural firms act as suppliers to the large retailers and manufacturers (e.g.,
Wal-Mart, The Gap, and Ford Motor Company) that are moving to implement grid
computing and Web services. Some rural businesses are dealers and distributors for
those companies. As the larger firms adopt more sophisticated computer-based sup-
ply chains, large retailers and manufacturers are demanding that all businesses they
interact with upgrade their Internet access speed and acquire the skills to support
new technologies. That will be particularly challenging for many rural companies.

2.5.2 Possible Economic Value: Extrapolation

In Table 2.7, based on modeling, shows that grid computing could add around $382
billion of economic output to the U.S. economy by 2010 and create about 900,000
net new jobs. State economic data based on Bureau of Economic Analysis data
were used to make a rough model by normalizing all numbers to the Cohen/Feser
study for North Carolina [111]. Straight linearity with regard to IT sizing and ensu-
ing grid services opportunities was assumed. Although this is definitely a crude,
first pass at calculating potential national-level numbers, it is first start. Generally,
worldwide numbers for IT and telecom are around twice the U.S. numbers (includ-
ing the U.S.). In Table 2.8, we perform the extrapolation based not on ratios of eco-
nomic output, but by ratio of high-tech jobs. The results are effectively identical.

2.6 CHALLENGES

Despite the potential advantages of grid computing, it should be noted that the uti-
lization of this technology in the general corporate environment is just nascent. To
begin with, like other technologies, a certain amount of hype is inevitable (for ex-
ample, proponents talk about computer grids, data grids, science grids, access grids,

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.6 CHALLENGES 57

Table 2.7 First-pass estimate of economic value of grid computing*

2,001 Additional
Economic Additional Additional telecom
data (latest output ($B) Jobs expenditures
available) Percentage in 2010 in2010 ($B)in 2010
New England 549,472 5.89% $22.52 53,508 $2.68
Connecticut 152,985 1.64% $6.27 14,898 $0.74
Maine 34,020 0.36% $1.39 3,313 $0.17
Massachusetts 265,722 2.85% $10.89 25,876 $1.29
New Hampshire 45,270 0.48% $1.86 4,408 $0.22
Rhode Island 33,451 0.36% $1.37 3,257 $0.16
Vermont 18,048 0.19% $0.74 1,758 $0.09
Mideast 1,741,057 18.65% $71.35 169,546 $8.48
Delaware 35,745 0.38% $1.46 3,481 $0.17
District of Columbia 56,077 0.60% $2.30 5,461 $0.27
Maryland 175,256 1.88% $7.18 17,067 $0.85
New Jersey 332,897 3.57% $13.64 32,418 $1.62
New York 766,526 8.21% $31.41 74,645 $3.73
Pennsylvania 374,500 4.01% $15.35 36,469 $1.82
Great Lakes 1,434,052 15.36% $58.77 139,649 $6.98
Illinois 441,797 4.73% $18.11 43,023 $2.15
Indiana 178,184 1.91% $7.30 17,352 $0.87
Michigan 297,475 3.19% $12.19 28,968 $1.45
Ohio 349,331 3.74% $14.32 34,018 $1.70
Wisconsin 167,299 1.79% $6.86 16,292 $0.81
Plains 604,905 6.48% $24.79 58,906 $2.95
Iowa 86,968 0.93% $3.56 8,469 $0.42
Kansas 80,680 0.86% $3.31 7,857 $0.39
Minnesota 175,371 1.88% $7.19 17,078 $0.85
Missouri 167,370 1.79% $6.86 16,299 $0.81
Nebraska 53,563 0.57% $2.20 5,216 $0.26
North Dakota 17,757 0.19% $0.73 1,729 $0.09
South Dakota 23,165 0.25% $0.95 2,256 $0.11
Southeast 1,994,577 21.37% $81.74 194,234 $9.71
Alabama 112,026 1.20% $4.59 10,909 $0.55
Arkansas 63,701 0.68% $2.61 6,203 $0.31
Florida 446,482 4.78% $18.30 43,479 $2.17
Georgia 273,876 2.93% $11.22 26,670 $1.33
Kentucky 110,074 1.18% $4.51 10,719 $0.54
Louisiana 125,295 1.34% $5.13 12,201 $0.61
Mississippi 61,527 0.66% $2.52 5,992 $0.30
North Carolina 246,291 2.64% $10.09 23,984 $1.20
South Carolina 106,485 1.14% $4.36 10,370 $0.52
Tennessee 168,412 1.80% $6.90 16,400 $0.82
Virginia 241,539 2.59% $9.90 23,521 $1.18
West Virginia 39,012 0.42% $1.60 3,799 $0.19
(continued)

TEAM LinG - Live, Informative, Non-cost and Genuine!

58

GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.7 Continued

2,001 Additional
Economic Additional Additional telecom
data (latest output ($B) Jobs expenditures
available) Percentage in 2010 in2010 ($B)in 2010
Southwest 992,959 10.64% $40.69 96,695 $4.83
Arizona 153,684 1.65% $6.30 14,966 $0.75
New Mexico 54,930 0.59% $2.25 5,349 $0.27
Oklahoma 85,948 0.92% $3.52 8,370 $0.42
Texas 698,547 7.48% $28.63 68,025 $3.40
Rocky Mountain 299,089 3.20% $12.26 29,126 $1.46
Colorado 159,308 1.71% $6.53 15,514 $0.78
Idaho 36,832 0.39% $1.51 3,587 $0.18
Montana 20,708 0.22% $0.85 2,017 $0.10
Utah 63,933 0.68% $2.62 6,226 $0.31
Wyoming 18,254 0.20% $0.75 1,778 $0.09
Far West 1,719,594 18.42% $70.47 167,456 $8.37
Alaska 24,490 0.26% $1.00 2,385 $0.12
California 1,260,041 13.50% $51.64 122,704 $6.14
Hawaii 38,839 0.42% $1.59 3,782 $0.19
Nevada 69,538 0.74% $2.85 6,772 $0.34
Oregon 124,847 1.34% $5.12 12,158 $0.61
Washington 202,470 2.17% $8.30 19,717 $0.99
Total 9,335,705 100% $382.59 909,121 $45.46

Estimated GDP 2010 at 3.33% CAGR: $12,536,751

*State raw economic data based on Bureau of Economic Analysis (Attp://www.bea.doc.gov/bea/news-
rel/gdp303p.pdf). All numbers are normalized to the Cohen/Feser study for North Carolina [111]. As-
sumption made of straight linearity with regards to IT sizing and ensuing grid services opportunities.

knowledge grids, bio grids, sensor grids, cluster grids, campus grids, tera grids, and
commodity grids [103].) A degree of healthy skepticism is warranted. Although
vendors make all sorts of claims, many of these claims are just marketing angles.
Just deploying a scheduler LAN does not create a “cluster grid,” anymore that a
workstation with a processor, memory, disk, and network card, is a grid.

At the technical level, although many firms have a keen interest in “virtualiza-
tion,” there are obstacles to full realization of grid computing benefits at this time.
Some of these include [44, 130]:

® Applications requiring computing power that rises to the level supported by
grid computing generally do not exist in medium-size companies.

® Cost and time needed to rewrite and test applications.

® Enabling resource sharing across distinct institutions. One wants to facilitate
coordinated use of diverse resources, including infrastructure resources (cer-
tificate authorities, information services). These are expensive to run. Ad-

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.6 CHALLENGES 59

Table 2.8 U.S. Department of Labor, Bureau of Labor Statistics: High Tech Jobs (code
15-0000 Computer and Mathematical Science Occupations) Occupational Employment and
Wages, 2002

State Occupation code Total employees Percentage
Alabama 15-0000 29,120
Alaska 15-0000 3,210
Arizona 15-0000 45,630
Arkansas 15-0000 13,530
California 15-0000 366,250
Colorado 15-0000 75,940
Connecticut 15-0000 42,030
Delaware 15-0000 10,010
District of Columbia 15-0000 26,130
Florida 15-0000 127,820
Georgia 15-0000 92,630
Guam 15-0000 380
Hawaii 15-0000 6,610
Idaho 15-0000 9,650
Illinois 15-0000 122,930
Indiana 15-0000 37,810
Iowa 15-0000 20,790
Kansas 15-0000 27,180
Kentucky 15-0000 23,770
Louisiana 15-0000 16,480
Maine 15-0000 7,420
Maryland 15-0000 90,000
Massachusetts 15-0000 103,340
Michigan 15-0000 77,560
Minnesota 15-0000 69,140
Mississippi 15-0000 8,450
Missouri 15-0000 54,050
Montana 15-0000 4,700
Nebraska 15-0000 20,280
Nevada 15-0000 10,150
New Hampshire 15-0000 11,800
New Jersey 15-0000 115,990
New Mexico 15-0000 12,290
New York 15-0000 169,750
North Carolina 15-0000 75,140 2.70%
North Dakota 15-0000 4,030
Ohio 15-0000 94,370
Oklahoma 15-0000 22,110
Oregon 15-0000 32,630
Pennsylvania 15-0000 103,960
Puerto Rico 15-0000 6,950
Rhode Island 15-0000 9,300
South Carolina 15-0000 19,970
(continued)

TEAM LinG - Live, Informative, Non-cost and Genuine!

60 GRID BENEFITS AND STATUS OF TECHNOLOGY

Table 2.8 Continued

State Occupation code Total employees Percentage
South Dakota 15-0000 5,110
Tennessee 15-0000 36,000
Texas 15-0000 209,500
Utah 15-0000 25,210
Vermont 15-0000 5,220
Virgin Islands 15-0000 230
Virginia 15-0000 139,860
Washington 15-0000 83,870
West Virginia 15-0000 7,280
Wisconsin 15-0000 44,760
Wyoming 15-0000 1,860
Total 2,780,180

Note: This major group comprises the following occupations: Computer and Information Scientists, Re-
search; Computer Programmers; Computer Software Engineers, Applications; Computer Software Engi-
neers, Systems Software; Computer Support Specialists; Computer Systems Analysts; Database Admin-
istrators; Network and Computer Systems Administrators; Network Systems and Data Communications
Analysts; Actuaries; Mathematicians; Operations Research Analysts; Statisticians; Mathematical Tech-
nicians; and residual, “All Other,” occupations in this major group.

Key observation. Note that the percentage of high-tech jobs in North Carolina is 2.70% on a national
basis. Interestingly, this is practically the same ratio (likely, by pure chance) of the total economic output
of North Carolina in reference to national GDP (see Table 2.7). This means that an extrapolation based
on state economic output to country economic output or based on in-state high-tech jobs to country high-
tech jobs leads to the same outcome in terms of the total extrapolated economic value. However, the
state-by-state values could be different than reported in the previous table, although we do not undertake
that state-by-state extrapolation in this table (which could easily be done).

dressing security and policy concerns of resource owners and users. Resource
discovery, access, reservation, allocation; authentication, authorization, poli-
cy; communication; fault detection and notification; and so on. Addressing
security and policy concerns of resource owners and users.
® Existing systems are performing adequately and no business case (positive net
present value) has been developed (which itself could take time and effort).
® @rid operations management challenges. Users, resources, and owners are ge-
ographically distributed. Resources, users, and applications are heteroge-
neous. Resource availability and capabilities vary with time. Policies and
strategies are heterogeneous and decentralized. Quality of service (service-
level agreements) are heterogeneous. Costs and prices vary based on re-
sources, users, time, and demand [105].
Grid systems have input/output bandwidth to storage devices dependencies.
Grid systems have network bandwidth dependencies.
Grid systems have network latency dependencies.

Grid systems may suffer from synchronization protocol inefficiencies.

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.6 CHALLENGES 61

It is unlikely that any commercially sustainable grid infrastructure will be
provided by any nonresearch (nongovernment funded) organization without
financial compensation for the use of resources by external users. For grid
services to be provided on demand (i.e., to deliver the utility infrastructure
that is the ultimate goal of grid computing) “donor” organizations will want
to be paid for providing the resources.

Lack of desire to bring in outside help as code is proprietary (especially true
at hedge funds and buy-side firms).

Lack of in-house technical expertise, especially at smaller to medium-size
companies.

Many firms find that they need to optimize the performance of applications
so that they can be properly allocated to jobs running on different machines.
This requires a different approach to programming and, therefore, it is not
necessarily true that no software changes will be required in order to lever-
age grid computing, and the existing setup and investment cannot be main-
tained.

National security. Perhaps number crunching is fine, but to give away sensi-
tive database information (data grids) to a third-world country could be prob-
lematic. A local utility is fine, just like with electric power utilities, but one
would not want their electric power to be generated by a third-world country.
Some countries (e.g., European countries) have strict privacy laws about
transborder data flow.

Need to find ways to operate efficiently when dealing with large amounts of
data and computation. Need for shared infrastructure services to avoid repeat-
ed development and installation (e.g., one port/service/protocol for remote ac-
cess to computing, not one per tool/application).

The so-called programming problem: how does the planner develop robust,
secure, long-lived, well-performing applications for dynamic, heterogeneous
grids?

There are a number of new approaches to problem solving in addition to grid
computing (in competition with), including cluster computing (especially for
supercomputer applications), distributed computing, peer-to-peer, data grids,
and collaboration (scavenging) grids.

There are challenges in structuring and writing programs: parallelizing of ap-
plications code in an effective manner can be difficult, even though it is ad-
vantageous (for certain type of problems) to do so if/when possible.

There is a need for interoperability when different groups want to share re-
sources (diverse components, policies, mechanisms; e.g., standard notions of
identity, means of communication, resource descriptions).

There is a need to facilitate the development of sophisticated applications, in-
cluding code sharing. To address this programming problem, one needs stable
programming environments (such as APIs, SDKs).

Use of third-party applications makes parallelizing code difficult.

TEAM LinG - Live, Informative, Non-cost and Genuine!

62 GRID BENEFITS AND STATUS OF TECHNOLOGY

In particular, challenges often exist to perfect scalability. In a perfectly scalable
environment, if a job running on a 1 GFLOPS machine required 10 seconds to com-
plete satisfactorily, then it would need 1 second if it ran in a parallelized version on
ten 1 GFLOPS machines (and/or 1 second if it ran on one 10 GFLOPS machine).
One challenge relates to the algorithms used for splitting the application to run
among many processors: if the application processes can only be split into a limited
number of independently running parts, then this predicament forms a scalability
barrier. Another challenge arises if the resulting microjobs are not completely inde-
pendent (for example, if all of the microjobs need to read and write from one com-
mon file or database, the access limits of that file or database will become the limit-
ing factor in the application’s scalability. Other types of interjob contention in a
parallel grid application include message communications latencies among the jobs,
network communication capacities, synchronization protocols, input—output band-
width to devices and storage devices, and latencies interfering with real-time re-
quirements) [47]. Not all applications can be made to run in parallel on a grid and
achieve scalability and there are no all-encompassing utilities for transforming
generic applications to a morphed version that can exploit the parallel capabilities
of a grid. A limited number of tools exist that skilled designers can use to write a
parallel grid application but tools for automatic parallelization of generic applica-
tions are not yet available.

Another challenge is that up to now grid computing has been mostly the purview
of a handful of researchers at mathematics and computer science departments, na-
tional laboratories, informatics institutes, and government-funded research. It turns
out, as we have indicated, that this technology can be of value to Fortune 500 com-
panies looking to reduce their run-the-engine costs. One of the challenges of grid
computing (which this book aims at addressing) is to graduate the technology be-
yond the purely academic orbit it has preponderantly held in the recent past and
near present.

TEAM LinG - Live, Informative, Non-cost and Genuine!

I CHAPTER 3

Components of Grid Computing
Systems and Architectures

Chapters 1 and 2 provided an overview of a number of areas that relate to grid com-
puting. This chapter continues the basic discussion that was started in these chap-
ters. We revisit some of the key grid technology issues and then we drill down on
the major architectural components of a grid. It should be noted that there is no uni-
versal consensus, as of yet, on what the canonical components of a grid should be
(given that there are several types of grids from a functional perspective). However,
there is general agreement of what some of the high-level fundamental building
blocks are. These fundamental building blocks are discussed in this chapter. The
chapter provides three views of the components: a functional view, a physical view,
and a service view. A planner wishing to use grid principles and wishing to deploy
a grid mechanism in his/her Fortune 500 company, will have to deploy and support
a number of these components, perhaps all, depending on the application and situa-
tion. As standards solidify, a more canonical view of the constituent elements will
emerge.

3.1 OVERVIEW

In Chapter 1, it was noted that grid computing embodies a combination of a decen-
tralized architecture for resource management, and a layered hierarchical architec-
ture for implementation of various constituent services [101]. Sharing issues, as
they apply to distributed processing, are not adequately addressed by existing tech-
nologies because there are complicated user requirements such as “run program X
at site Y subject to community policy P, providing access to data at Z according to
policy Q.” Many “peta-scale” problems or science problems have high performance
requirements with unique demands for advanced and high-performance systems.
This drives towards the development of grid technology [45]. A grid goes beyond
client—server linkage in that it provides distributed data analysis, computation, and
collaboration.

A grid allows flexible, secure, coordinated resource sharing among dynamic col-
lections of individuals, institutions, and resources. A grid enables communities
(“virtual organizations,” which are community overlays on classic organization

A Networking Approach to Grid Computing. By Daniel Minoli 63
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine!

64 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

structures) to share geographically distributed resources as they pursue common
goals, postulating the absence of a central location, and/or central control, and/or
omniscience, and/or existing trust relationships [103]. Resource sharing in a grid
context applies to networks, computers, storage, and sensors. Sharing, however, is
always conditional; conditionality issues relate to trust, policy, negotiation, and
payments (particularly, unit cost payments). Grids support coordinated problem
solving. Grids support dynamic, multiinstitutional virtual organizations; these com-
munities can be large or small, static or dynamic. The grid can be defined at three
levels [119]: enterprise (enterprise grid), partner (partner grid), and service (ser-
vice/utility grid).

Table 3.1 encapsulates the definition of a grid [103]. The three primary types of
grids that were introduced in Chapter 1 are summarized in Table 3.2 [125]; it should
be noted, however, that there are no restrictive boundaries between these grid types
since grids may often be a combination of these basic types. According to Phillip
Gill, vendors position grid computing as follows:

A typical middle tier in today’s enterprise is a jumble of expensive hardware and de-
vices running Java 2 Platform, Enterprise Edition (J2EE) application servers, HTTP
servers, Web caches, portals, and so on. These resources are usually configured for
maximum performance but rarely used to maximum efficiency; they often come from
different vendors and with different operating systems, making them costly to install,
configure, manage, and maintain. Perhaps most importantly, the middle-tier servers
lack the flexibility to adapt rapidly to changing business needs. grid computing brings
order to this chaos in the middle tier. Originally used for large-scale scientific and re-

Table 3.1 Definition of grid, according to lan Foster [103]

1. Coordinates resources A grid integrates and coordinates resources and users
that are not subject to that exist within different control domains (for example,
centralized control . .. the user’s desktop versus central computing; different adminis-
trative units of the same company versus different companies)
and also addresses the issues of security, policy, payment, and
membership, that arise in these settings. (Otherwise, one would
be dealing with a local management system.)

2. ... using standard, A grid is built from multipurpose protocols and interfaces that
open, general-purpose address such issues as authentication, authorization, resource
protocols and discovery, and resource access. It is crucial that these protocols

interfaces . . . and interfaces be standard and open. (Otherwise, one would be

dealing with an application-specific system.)

3. ...to deliver nontrivial A grid allows its constituent resources to be used in a
qualities of service. coordinated fashion to deliver various qualities of service (re-
lating, for example, to response time, throughput, availability,
security, and/or co-allocation of multiple resource types to
meet complex user demands), so that the utility of the com-
bined system is significantly greater than the sum of its parts.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.1 OVERVIEW 65

Table 3.2 Grid types

Computational grid This grid is used to allocate resources specifically for computing pow-
er. In this situation, most of the processors are high-performance
servers. (Note that processors are sometimes called nodes, resources,
members, donors, clients, hosts, engines, or machines.)

Scavenging This grid is used to “locate processors—cycles”: grid nodes are
(computational) exploited for available machine cycles and other resources. Nodes
grid typically equate to desktop computers; a large numbers of processors

are generally involved. Owners of the desktop processors are usually
given control over when their resources are available to participate in
the grid.

Data grid This grid is used for housing and providing access to data across mul-
tiple organizations. Users are not focused on where this data is located
as long as they have access to the data.

search computing, the grid computing model increases reliability, scalability, and
manageability in the middle tier, all while reducing costs. A grid computing infra-
structure turns IT resources—computers, storage, and applications—into a single vir-
tual system that, like a utility—power, water, gas, phone—can be tapped at will,
whenever needed. [86]

Grids can be built ranging from just a few processors to large groups of proces-
sors organized as a hierarchy that spans a continent or the globe. The simplest grid
consists of just a few processors, all of which have the same hardware architecture
and utilize the same operating system. These processors are connected in a data
center on a LAN or storage area network (SAN); see Figure 3.1, top. (It should be
noted, however, that some people would call this arrangement a “cluster” imple-
mentation rather than a bonafide “grid.”) Because this type of grid utilizes homoge-
neous systems, generally there are relatively few considerations beyond properly
deploying the grid-support software. Also, given the fact that the processors have
the same architecture and operating system, selecting application software for these
processors is usually a straightforward task [147]. Finally, for this “entry-level”
grid, the processors are usually in one department of a given organization; because
of this framework, the access to the grid may not require (in general) any special se-
curity procedures or usage policies.

A next level of complexity is reached when one includes heterogeneous proces-
sors in the grid ensemble. These grids are also referred to as an “intragrids” and/or
“enterprise grids.” As the term implies, processors participating in the enterprise
grid may include devices owned and maintained by multiple departments, but still
within one firm; see Figure 3.1, middle. The grid may span a number of geographic
locations, where computing facilities (e.g., servers) may be located. These larger
grids may have a hierarchical topology, although this is not a strict requirement. For
example, processors locally connected in a data center or server room form a “clus-
ter” of processors; in turn, the overall enterprise grid may be organized in a hierar-

TEAM LinG - Live, Informative, Non-cost and Genuine!

66

Cluster/Local Grid

COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Layer 2 Switch,
Processor [CM e.g., GbE or 10 GbE
Processor
Processor Application/
C) v User
Processor Middleware/
LAN Cluster manager
Processor CM
- CM = Client Middleware
(o
'- SAN
a_
IntraGrid

Layer 2 Switch,
e.g., GbE or 10 GbE

Processor [CcM

Corporate
Intranet

‘ Processor

Processor
a.

SAN -
g

. Organization 1

(o)

Processor

InterGrid

| Cj Application/
i User
Middleware/
Cluster manager
Processor
......................... Internet,

Processor(CM Firewall/ . Extranet, or
VPN Router‘_‘_'_‘_..v' . Other High-capacity
a . Network
Processor .
Firewall e Firewall
VPN/Router -VPN/Router
Processor Application/
User
SAN Middleware/

o)

Organization 2

Processor

Cluster manager
' Organization 3

Processor

Figure 3.1 Grid types, arranged by complexity.

TEAM LinG - Live, Informative,

Non-cost and Genuine!

3.1 OVERVIEW 67

chy consisting of clusters of clusters. Intranet transmission links (or other high-
quality, high-throughput, high-security communication services), are used to inter-
connect these nodal computing resources and the grid. We noted in Chapter 1 that
when local hosts are aggregated in tightly coupled configurations, they tend to gen-
erally be of the cluster parallel-based computing type; such processors, however,
can also be nonparallel-computing-based grids, e.g., by running the Globus Toolkit.
When geographically dispersed hosts are aggregated in distributed computing con-
figurations, they tend to generally be of the grid computing type and not running in
a clustered arrangement.

Enterprise grids are supported via the organization’s intranet. The intranet typi-
cally consists of a collection of dedicated frame relay, Asynchronous Transfer
Mode (ATM), MultiProtocol Label Switching (MPLS), or IP-based facilities or ser-
vices. A virtual private network (VPN) service over the Internet may also be used to
connect the remote sites of the organization, especially for international applica-
tions. In this configuration, additional types of resources are available to the appli-
cation and/or user besides just basic company-owned nodes; in particular, this grid
system will likely include scheduling components. File sharing may still be accom-
plished using networked file systems. In these enterprise grid environments, dedi-
cated grid processors may also be added by the organization to increase the service
levels achieved by the grid, rather than depending entirely on scavenged resources
[147]. When the grid expands to encompass discrete departments, operational poli-
cies are generally required operational procedures related to how the grid should be
used (e.g., what kinds of work is allowed on the grid and at what times). For exam-
ple, there may be a prioritization by department, or by kinds of applications that
should have access to grid resources. Furthermore, security typically becomes im-
portant when multiple departments are involved, because sensitive information be-
longing to one department may need to be protected from access by, and/or intru-
sion from jobs running for other departments.

Figure 3.1, bottom, depicts what some researchers call a pure grid, or an “inter-
grid.” Such a grid, by definition, crosses organization boundaries. Generally, an in-
tergrid may be used to collaborate on “large” projects of common scientific interest.
The most stringent levels of security are usually required in this environment. The
intergrid offers the opportunity for sharing, trading, or brokering resources over
widespread pools; computational “processor-cycle” resources may also be ob-
tained, as needed, from a utility for a specified fee. Figure 3.2 identifies a number of
well-known intergrids and Figures 3.3 and 3.4 depict some specific intergrids.

Table 3.3 summarizes the motivation for and/or purpose of various grids dis-
cussed above (partially based on [147].) Table 3.4 identifies some challenges asso-
ciated with grid computing (also see Chapter 2, Section 2.6).

Some see grid solutions at two levels: physical and logical [71]. A physical grid
refers to computer power and other hardware resources that can be shared over a
distributed network. A logical grid refers to software and application sharing, as
well as higher-level business-process sharing. Both kinds of grids can coexist in a
Grid Computing environment. A physical grid can be used as a component utilized
by multiple logical grids; a logical grid can be constructed by utilizing multiple
physical grids.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Name

URL & Sponsors

Focus

Access Grid

www.mcs.anl.gov/FL/
accessgrid; DOE, NSF

Create & deploy group collaboration
systems using commeadity technologies

BlueGrid IBM Grid testbed linking IBM laboratories
DISCOM www.cs.sandia.gov/ Create operational Grid providing access
discom to resources at three U.S, DOE weapons
DOE Defense Programs| laboratories
DOE Science sciencegrid.org Create operational Grid providing access
Grid DOE Office of Science | to resources & applications at U.S. DOE
science laboratories & partner universitieg
Earth System earthsystemgrid.org Delivery and analysis of large climate
Grid (ESG) DOE Office of Science | model datasets for the climate res=arch
community
European au-datagrid.org Create & apply an operational grid for
Union (EU) European Union applications in high energy physics,
DataGrid environmental science, bioinformatics

EuroGrid, Grid
Interoperability
{GRIP)

eurcgrid.org
European Union

Create tech for remote access to
supercomp resources & simulation codes;
in GRIP, integrate with Globus Toolkit™

Fusion
Collaboratory

fusiongrid.org
DOE Off, Science

Create a national computational
collaboratory for fusion research

Globus Project™

globus.org

DARFA, DOE,
NSF, NASA, Msoft

Research on Grid technologies;
development and support of Globus
Toolkit™: application and deployment

GridLab gridlab.org Grid technologies and applications
European Union
GridPP gridpp.ac.uk Create & apply an operational grid within

U.K. eScience

the U.K, for particle physics research

Grid Research
Integration Dev. &
Support Center

grids-center.org
NSF

Integration, deployment, support of the
NSF Middleware Infrastructure for
research & education

Grid Application
Dev. Softwars

hipersoft.rice.edu/
grads; NSF

Research into program development
technologies for Grid applications

Grid Physics griphyn.org Technology R&D for data analysis in
Network NSF physics expts: ATLAS, CMS, LIGO, SD5S
Information Power |ipg.nasa.gov Create and apply a production Grid for
Grid NASA aerosciences and other NASA missions
International ivdgl.org Create international Data Grid to enable
Virtual Data Grid NSF large-scale experimentation on Grid
Laboratory technologies & applications

MNetwork for

neesgrid.org

Create and apply a production Grid for

Earthquake Eng. NSF earthquake engineering

Simulation Grid

Particle Physics ppdg.net Create and apply production Grids for

Data Grid DOE Science data analysis in high energy and nuclear
physics experiments

TeraGrid teragrid.org U.5. science infrastructure linking four

NSF

major resource sites at 40 Gh/s

UK Grid Support
Center

grid-support.ac.uk
U.K. eScience

Support center for Grid projects within
the U.K.

Unicore

BMBFT

Technologies for remote access to
supercomputers

Figure 3.2 Well-known intergrids. Copyright © 2002 University of Chicago and The Uni-
versity of Southern California.

TEAM LinG - Live, Informative, Non-cost and Genuine!

Site Resources

3.1 OVERVIEW

Site Resources

External
Metwarks

Argonne

% External
% . 5 Metwarks
Caltech
External

External

Metwworks.,

Site Resources

Metwarks

69

Site Resources

Figure 3.3 The TeraGrid. Copyright © 2002 University of Chicago and The University of

Southern California. All rights reserved.

A‘\‘

5 [Jr "ili
32w

i Tier0/1 facility

Tier2 facility

m Tier3 facility
1 Ghips link
e 2.5 Gihps link
— 622 Ivlhps link

Figure 3.4 The iVDGL. Copyright © 2002 University of Chicago and The University of

Southern California.

TEAM LinG - Live, Informative, Non-cost and Genuine!

70 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Table 3.3 Possible grid benefits and applications

Access to a
plethora of IT
resources

Better utilization
of underused
resources

Improved
availability of
computing

Increased
reliability of
computing

A grid federates a large number of resources contributed by individual
resources into a functionally larger, logically virtual resource.

Compared to traditional closed or company-specific computing environ-
ments, a grid can provide access to a large(r) universe of resources and
possibly to special equipment, software, and other services. Scalability
can be supported in terms of additional quantity of such resources and/or
additional capacity for such resources.

Processors, storage, and other resources on a grid are almost invariably
better utilized than would otherwise be the case. Organizations typically
experience peaks of activity in their monthly, weekly, or daily IT work-
flow. When the applications are grid-enabled, during usage peaks, these
applications can be “moved” (assigned) to underutilized resources (e.g.,
processors). Furthermore, administrators can utilize grid-support tools to
assess usage demand; this, in turn, facilitates improved planning when
upgrading systems, increasing system capacity, or retiring end-of-life
computing resources.

Enterprise systems may also have unused storage capacity; data grids
can be employed to aggregate such unused storage into a larger virtual
data store (larger capacities than available on any single system). This
achieves improved performance and reliability compared to a single-
threaded processor. Files and databases can seamlessly span many sys-
tems; spanning has the potential to improve data transfer rates through
the use of striping techniques. Also, data resiliency can be achieved by
duplicating it at various points throughout the grid; this data replication
serves as a backup and can be hosted on or near the processors most like-
ly to need the data.

An enterprise grid is inherently more resilient and enjoys higher
availability than a traditional clustering arrangement. A grid frame-

work (such as Oracle’s Application Server 10g) is able to include a
tighter integration between the database and the application server from a
clustering/failover standpoint. For example, although the database cluster
may quickly fail over from one node to another, the middle tier does not
typically become aware of the change until a Transmission Control Pro-
tocol/Internet Protocol (TCP/IP) timeout triggers a reconnection to the
cluster; this timeout could take several minutes. In the grid environment,
the database tier notifies the middle tier of the failover, resulting in an
immediate reconnect and reducing the total downtime from minutes to
seconds [86].

Compared to traditional environments, a grid provides increased
reliability. This is because the constituent nodes in a grid can be
relatively inexpensive and can be dispersed geographically. High relia-
bility often is achieved with a relatively high price investment when
high-end conventional computing systems are employed. Typically, this
hardware is constructed using chips with redundant circuits (these cir-
cuits “vote” on results), and the hardware contains additional logic cir-
cuitry to achieve graceful recovery from a number of hardware failures.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 71

Table 3.3 Continued

Increased
reliability of
computing
(cont.)

Parallelization
of processing

Resource
balancing

Simplified
management of
IT resources

Virtual resources
and virtual
organizations

for

collaboration

The systems also use duplicate processors that have hot-pluggability
capabilities; when a processor fails it can be replaced without turning the
other off. Grid computing, which in effect employs a RAIC-like
(redundant array of inexpensive computers) mechanics, provides an al-
ternate approach to reliability that relies more on software technology
than expensive hardware.

Many algorithms-based applications can be partitioned into
independently running “microjobs.” A grid application can be thought of
as an aggregate of many smaller “microjobs,” each executing on a differ-
ent processor. For example, a perfectly scalable application will com-
plete 20 times faster if it uses 20 comparable processors.

For applications that are grid-enabled, the grid infrastructure can offer

a resource-balancing capability. This is accomplished by scheduling grid
jobs on processors with low utilization. An instantaneous/unplanned de-
mand peak can be handled by routing work requests to relatively idle
processors in the grid. If the resources in the grid are already fully uti-
lized, the lowest-priority work being performed on the grid can be tem-
porarily suspended (or even cancelled) to make way for the higher-priori-
ty work. (Without a grid infrastructure, such balancing decisions are
difficult to prioritize and execute.)

Compared to traditional environments, it may be easier to manage a
larger dispersed and logically virtualized infrastructure than a plethora
of “indigenous” systems. Grid middleware provides a uniform method to
handle heterogeneous systems.

Grid middleware and (open) standards allow heterogeneous systems

to work collaboratively to deliver the appearance of a large virtual
computing environment, while offering a variety of virtual resources.
The users of the grid can be organized dynamically into a number of
VOs, each with possibly different policy requirements. VOs can share
their resources collectively as a larger grid. Resources are “virtualized”
to give them a more uniform interoperability among heterogeneous grid
participants.

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW

In this section, we identify, at a high level, the major components of a grid comput-
ing system from a functional perspective. Not all of the components discussed here-
in are needed all the time; depending on the grid design and its expected use, some
of these components may not be required, and in some instances these components
may be combined. A resource is an entity that is to be shared; this includes comput-
ers, storage, data, and software. A resource does not have to be a physical entity. A
resource is defined in terms of interfaces, not devices; for example, schedulers such

TEAM LinG - Live, Informative, Non-cost and Genuine!

72 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Table 3.4 Partial list of current “drawbacks” of grid computing

Business case not
always clear

Processes are to
be defined

Security is to
be supported

Message/articulation
must be crispier

Proprietary
approaches should
be eliminated

Parochial focus should
be eliminated

Performance to be
proven/monitored

Grid proponents need to provide a compelling business case [164].

Vendors need to show whether the grid-based process can be
effectively managed, including the chargeback model.

Security is a concern, particularly for intergrids.

Confusion still exists in industry between cluster computing,
virtualization, enterprise grid, intergrids, and P2P. Sharper message
needed from vendors.

Leading vendors (e.g., Hewlett-Packard, IBM, Microsoft, Platform
Computing, Sun Microsystems, Oracle, VM Ware/EMC*) all still
approach issue differently and incompatibly. Existing grid comput-
ing solutions tend to be limited to an individual vendor’s products
(IBM’s grid computing platform was operating with the largest
number of open standards compliance compared with other suppli-
ers at press time) [165].

For example, IBM’s grid computing platform is focused primarily
on virtualizing IBM hardware and data bases. Hence, if a firm has a
fairly homogenous data center (e.g., running mainly IBM eServers
or IBM DB2 data bases) it could benefit from the grid computing
solution (likely an enterprise/local grid); otherwise it may not.

Grid computing systems need proper “partitioning” (“zoning”)
mechanisms to ensure that an application competing for computer
resources will not degrade the other applications also looking for
resources (particularly in the case of server virtualization).

*IBM, Sun Microsystems, and Hewlett-Packard were known as the “Big Three” in this space at

presstime [166].

as Platform’s LSF and PBS define a compute resource. Open/close/read/write de-
fine access to a distributed file system, for example, NFS, AFS, DFS [3, 45].
In this section, we look at following grid components:

® Grid portal

Scheduler

Resources

Security (grid security infrastructure)
Broker (along with directory)

Data management
Job and resource management

Figures 3.5 and 3.6 provide a pictorial depiction of the concepts discussed in the
subsections that follow. Table 3.5 provides a more detailed listing of functions and

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 73

Virtual Computing
Resource

Virtual Computing
Resource

Broke

Virtual Computing
Resource

Figure 3.5 Basic grid elements—a user’s view.

TEAM LinG - Live, Informative, Non-cost and Genuine!

74 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Scheduler

Virtual Computing
Resource

|Brok

Virtual Computing
Resource

Virtual Computing
Resource

anagement

Figure 3.6 Additional grid elements—a user’s view.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 75

Table 3.5 Grid functionality to be supported

(Co-)reservation, workflow Monitoring

Accounting and payment Performance guarantees
Adaptation Remote data access
Authorization and policy Resource allocation
Distributed algorithms Resource characterization
Fault management Resource discovery
High-speed data transfer Resource management
Identity and authentication System evolution

Intrusion detection

capabilities to be supported [45]. As a supplement, interested readers may also wish
to consult the document, “Anatomy of the Grid” by lan Foster, Carl Kesselman, and
Steven Tuecke; the paper contains a description of a grid’s constituent parts and
what they do, with a focus is on grid architecture [3].

In the discussion below, we use the term “functional block.” This is a generic ar-
chitectural construct (applicable to any architecture). A functional block is a logical
aggregation of functions and capabilities that have an affinity, similarity, close rela-
tionship, or related purpose.

Portal/User Interface Function/Functional Block

A portal/user interface functional block usually exists in the grid environment. The
user interaction mechanism (specifically, the interface) can take a number of forms.
The interaction mechanism typically is application specific. In the simplest grid en-
vironment, the user access may be via a portal (see Figure 3.5, top). Such a portal
provides the user with an interface to launch applications. The applications make
transparent the use of resources and/or services provided by the grid. With this
arrangement, the user perceives the grid as a virtual computing resource.

The Grid Security Infrastructure: User Security
Function/Functional Block

A user security functional block usually exists in the grid environment and, as noted
above, a key requirement for grid computing is security. In a grid environment,
there is a need for mechanisms to provide authentication, authorization, data confi-
dentiality, data integrity, and availability, particularly from a user’s point of view;
see Figure 3.5, center. When a user’s job executes, typically it requires confidential
message-passing services. There may be on-the-fly relationships. But also, the user
of the grid infrastructure software (such as a specialized scheduler) may need to set
up a long-lived service; administrators may require that only certain users are al-
lowed to access the service. In each of these cases, the application must anticipate
and be designed to provide this required security functionality. The invoker of these

TEAM LinG - Live, Informative, Non-cost and Genuine!

76 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

applications must have an understanding of how to check if these security services
are available and how they can be invoked [72].

In grids (particularly intergrids), there is a requirement to support security across
organizational boundaries. This makes a centrally managed security system imprac-
tical; administrators want to support “single sign-on” for users of the grid, including
delegation of credentials for computations that involve multiple resources and/or
sites. The grid security infrastructure provides a single-sign-on, run-anywhere au-
thentication service, with support for local control over access rights and mapping
from global to local user identities [167]. The grid security infrastructure supports
uniform authentication, authorization, and message-protection mechanisms in mul-
tiinstitutional settings. Specifically, the grid security infrastructure provides, among
other services, single sign-on, delegation, and identity mapping using public key
technology (X.509 certificates) (this functionality is revisited in Chapter 6 as part of
the Globus Toolkit discussion).

Node Security Function/Functional Block

A node security functional block usually exists in the grid environment. Authentica-
tion and authorization is a “two-way street”; not only does the user need to be au-
thenticated, but also the computing resource. There is the need for secure (authenti-
cated and, in most instances, also confidential) communication between internal
elements of a computational grid. This is because a grid is comprised of a collection
of hardware and software resources whose origins may not be obvious to a grid
user. When a user wants to run on a particular processor, the user needs assurances
that the processor has not been compromised, making his or her proprietary applica-
tion, or data, subject to undesired exposure [72].

If a processor enrolls in a dynamic-rather than preadministered manner, then an
identification and authentication validation must be performed before the processor
can actually participate in the grid’s work, as we discussed earlier. A certificate au-
thority (CA) can be utilized to establish the identity of the “donor” processor, as
well as the users and the grid itself. Some grid systems provide their own log-in to
the grid, whereas other grid systems depend on the native operating systems for
user authentication.

Broker Function/Functional Block and Directory

A broker functional block usually exists in the grid environment. After the user is
authenticated by the user security functional block, the user is allowed to launch
an application. At this juncture, the grid system needs to identify appropriate and
available resources that can/should be used within the grid, based on the applica-
tion and application-related parameters provided by the user of the application.
This task is carried out by a broker function. The broker functionality provides in-
formation about the available resources on the grid and the working status of these
resources. Specifically, grid systems have a capability to define (and monitor) a
grid’s topology in order to share resources and support collaboration; this is typi-

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 77

cally accomplished via a directory mechanism (e.g., LDAP and/or DNS); see
Figure 3.5, bottom.

Scheduler Function/Functional Block

A scheduler functional block usually exists in the grid environment. If a set of
stand-alone jobs without any interdependencies needs to execute, then a scheduler
is not necessarily required. In the situation where the user wishes to reserve a spe-
cific resource or to ensure that different jobs within the application run concurrent-
ly, then a scheduler is needed to coordinate the execution of the jobs.

In a “trivial” environment, the user may select a processor suitable for running
the job and then execute a grid instruction that routes the job to the selected proces-
sor. In “nontrivial” environments, a grid-based system is responsible for routing a
job to a properly selected processor so that the job can execute. Here, the schedul-
ing software identifies a processor on which to run a specific grid job that has been
submitted by a user; see Figure 3.6, top. After available resources have been identi-
fied, the follow-on step is to schedule the individual jobs to run on these resources.
Schedulers are designed to dynamically react to grid load. They accomplish this by
utilizing measurement information relating to the current utilization of processors
to determine which ones are available before submitting a job.

In an entry-level case, the scheduler could assign jobs in a round-robin fashion to
the “next” processor matching the resource requirements. More commonly, the
scheduler automatically finds the most appropriate processor on which to run a giv-
en job. Some schedulers implement a job priority (queue) mechanism. In this envi-
ronment, as grid processors become available to execute jobs, the jobs are selected
from the highest-priority queues first. Policies of various kinds can be implemented
via the scheduler; for example, there could be a policy that restricts grid jobs from
executing at certain time windows.

In some more complex environments, there could be different levels of sched-
ulers organized in a hierarchy. For example, a metascheduler may submit a job to a
cluster scheduler or other lower-level scheduler rather than to an individual target
processor. As another example, a cluster could be represented as a single resource;
here, the cluster could have its own scheduler to manage the internal cluster nodes,
while a higher-level scheduler could be employed to schedule work to be supported
by the cluster in question as an ensemble.

Advanced schedulers monitor the progress of active jobs, managing the overall
workflow. If the jobs were to become lost due to system or network outages, a high-
end scheduler would automatically resubmit the job elsewhere. However, if a job
appears to be in an infinite loop and reaches a maximum timeout, then such jobs
will not be rescheduled. Typically, jobs have different kinds of completion codes.
This code determines if the job is suitable for resubmission or not [147]).

Some grids also have a “reservation system.” These systems allow one to reserve
resources on the grid. These are a calendar-based mechanism for reserving re-
sources for specific time periods, and preventing others from reserving the same re-
source at the same time.

TEAM LinG - Live, Informative, Non-cost and Genuine!

78 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

In a “scavenging” grid environment, any processor that becomes idle reports its
idle status to the grid management node. The management node in turn assigns to
this processor the next job that is satisfied by the processor’s resources. If the
processor becomes busy with local nongrid work, the grid job is usually suspended
or delayed. This situation creates somewhat unpredictable completion times for grid
jobs, although it is not disruptive to the processors donating resources to the grid.
To create more predictable behavior, grid processors are often “dedicated” to the
grid and are not preempted by external work; this enables schedulers to compute the
approximate completion time for a set of jobs when their running characteristics are
known [147].

Data Management Function/Functional Block

A data management functional block usually exists in a grid environment. There
typically needs to be a reliable (and secure) method for moving files and data to
various nodes within the grid. This functionality is supported by the data manage-
ment functional block. Figure 3.6, middle, depicts a data management function
needed to support this data management function.

Job Management and Resource Management
Function/Functional Block

A job management and resource management functional block usually exists in a
grid environment. This functionality is also known as the grid resource allocation
manager (GRAM). The job management and resource management function (see
Figure 3.6, bottom) provides the services to actually launch a job on a particular re-
source, to check the job’s status, and to retrieve the results when the job is complete.
Typically, the management component keeps track of the resources available to the
grid and which users are members of the grid. This information is used by the sched-
uler to decide where grid jobs should be assigned. Also, typically, there are measure-
ment mechanisms that determine both the capacities of the nodes on the grid and their
current utilization levels at any given point in time; this information is used to sched-
ule jobs in the grid, to monitor the health of the grid (e.g., outages, congestion, over-
booking/overcommitment), and to support administrative tasks (e.g., determine
overall usage patterns and statistics, log and account for usage of grid resources, etc.)
Furthermore, advanced grid management software can automatically manage recov-
ery from a number of grid failures and/or outages (e.g., specifically identify alterna-
tives processors or setups to get the workload processed) [147].

With grid computing, administrators can “virtualize,” or pool, IT resources
(computers, storage, and applications) into a single virtual system whose resources
can be managed from a single administration console and can be allocated dynami-
cally, based on demand. The job management and resource management functional
block supports this simplified view of the enterprise-wide resources.

The work involved in managing the grid may be distributed hierarchically, in or-
der to increase the scalability of the grid. For example, a central job scheduler may

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2 BASIC CONSTITUENT ELEMENTS—A FUNCTIONAL VIEW 79

not schedule a submitted job directly, but instead, the job request is sent to a sec-
ondary scheduler that handles a specified set of processors (e.g., a cluster); the sec-
ondary scheduler handles the assignment to the specific processor. Hence, in this
instance, the grid operation, the resource data, and the job scheduling are distributed
to match the topology of the grid.

On the resource management side of this function, mechanisms usually exist to
handle observation, management, measurement, and correlation. It was noted above
that schedulers need to react to instantaneous loads on the grid. The donor software
typically includes “load sensors” that measure the instantaneous load and activity
on resources or processors. Such measurement information is useful not only for in-
stantaneous scheduling of tasks and work, but also for assessing (administratively)
overall grid usage patterns [147]. Observation, management, and measurement data
can be used, in aggregate, to support capacity planning and initiate deployment of
additional hardware. Furthermore, measurement information about specific jobs
can be collected and used to forecast the resource requirements of that job the next
time it executes. Some grid systems provide the means for implementing custom
load sensors for more than just processor or storage resources.

User/Application Submission Function/Functional Block

A user/application submission functional block usually exists. Typically, any mem-
ber of a grid can submit jobs to the grid and perform grid queries, but in some grid
systems, this function is implemented as a separate component installed on “sub-
mission nodes or clients” [147].

Resources

A grid would be of no value if it did not contribute resources to the ultimate user
and/or application. As noted, resources include processors, data storage, scientific
equipment, etc. Besides “physical presence” on the grid (by way of an interconnect-
ing network), there has to be “logical presence.” “Logical presence” is achieved by
installing grid-support software on the participating processors. After loading and
activating the software that manages the grid’s use of its affiliated resources, each
processor contributing itself or contributing ancillary resources to the grid needs to
properly enroll as a member of the grid.

As discussed in the previous subsections, a user accessing the grid to accomplish
a task submits a job for execution on the grid. The grid management software com-
municates with the grid donor software of the resource(s) logically present to for-
ward the job to an appropriate processor. The grid-support software on the proces-
sor accepts an executable job from the grid management system and executes it.
The grid software on the “donor” processor must be able to receive the executable
file (in some cases the executable copies preinstalled on the processor.) The soft-
ware is run and the output is sent back to the requester. More advanced implemen-
tations can dynamically adjust the priority of a running job, suspend a job and re-
sume it later, or checkpoint a job with the possibility of resuming its execution on a

TEAM LinG - Live, Informative, Non-cost and Genuine!

80 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

different processor [147]. The grid system sends information about any available
resources on that processor to the resource management functional block described
in the previous subsection. The participating donor processor typically has a self-
monitoring capability that determines or measures how busy the processor is. This
information is “distributed” to the management software of the grid and it is utilized
to schedule the appropriate use of the resources. For example, in a scavenging sys-
tem, this utilization information informs the grid management software when the
processor is idle and available to accept work.

Protocols

After identifying the functional blocks, a generic architecture description proceeds
by defining the protocols to be employed between (specifically, on the active inter-
faces of the) functional blocks. To interconnect these functional blocks, we need
protocols, especially standardized protocols. Protocols are formal descriptions of
message formats and a set of rules for message exchange. The rules may define se-
quence of message exchanges. Protocols are generally layered. Figure 3.7 depicts
two examples of protocol stacks and network-enabled services.

The grid dénouement (call it vision) requires protocols that are not only open and
general purpose but also are vendor-independent and widely adopted standards.
Standards allows the grid to establish resource-sharing arrangements dynamically
with any interested party and thus to create something more than a plethora of
balkanized, incompatible, noninteroperable distributed systems; standards are also

Client FTP Server
FTR/ Telnet FTR/ Telnet
GridFTP | Protocol GridFTP | Profocol
TCF Protoool — TCF Protoool
IP Protocol - IP Protocol
MNetwarl
Client Web Server
HTTF Protocol — HTTF Frotoool
TLS Protoool — TLS Protoool
TCP Protocal —s TCP Protoool
IF Protocol . IF Protocol
MNetwarl

Figure 3.7 Example of protocol stacks and network-enabled services.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 81

important as a means of enabling general-purpose services and tools [103]. Both
open source and commercial products can, then, interoperate effectively in this het-
erogeneous, multivendor grid world, thus providing the pervasive infrastructure
that will enable successful grid applications.

At this juncture, the Global Grid Forum is in the process of developing consen-
sus standards for grid environments. On the commercial side, nearly a decade of ex-
perience and refinement have resulted in a widely used de-facto standard in the
form of the open source Globus Toolkit. The Global Grid Forum has a major effort
underway to define the Open Grid Services Architecture (OGSA), which modern-
izes and extends Globus Toolkit protocols to address new requirements, while also
embracing Web services [103]. These topics are discussed in Chapters 4 and 5.

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW

This section looks at grid resources from a physical viewpoint. A grid is a collection
of networks, processors, storage, and other resources.

Networks

The networking mechanism is the most fundamental resource for the grid and also
is the theme of this book. In fact, without networking grid computing would not be
possible.

The recent growth in communication capacity makes grid computing practical,
compared to the limited bandwidth available when distributed computing was first
emerging. Transmission of content and job supervision within the grid are impor-
tant for sending jobs and the required data to points within the grid (some jobs re-
quire a large amount of data to be processed and it may not always reside on the
processor running the job.) Figure 3.8 depicts one example of an intergrid and the
kind of connectivity the particular grid has.

The bandwidth available for the subtending communications links can often be a
critical resource that can limit utilization of the grid. LAN connectivity now is in the
1-10 Gbps range, and practically affordable WAN/intranet connectivity for compa-
nies is in the 45—-155 Mbps range. (Speeds in the 2.4-10 Gbps range are common-
place within the inner workings of carriers, but these kinds of speeds are not general-
ly affordable for Fortune 500 companies for ubiquitous deployment at this time. A
single fiber can now carry in the range of 1 Tbps using high-density DWDM, but
these speeds begin to be out of reach for all but the largest carriers, at least as of
2004). LANSs can be utilized to support clusters (some clusters are implemented with
SANSs or other channel technology) and local grids. High-capacity, high-quality in-
tranets support intragrids, and long-haul global connectivity (including internet-pro-
vided capacity) make intergrids possible. Processors on the intragrid may also have
connections to the Internet in addition to the connectivity among the grid processors.

We have already noted that without adequate networking grid computing would
not be possible. As discussed in the previous section, a grid typically includes soft-

TEAM LinG - Live, Informative, Non-cost and Genuine!

82 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

[Cms
(i ~P B tes/ sec
I TIPS i approximately 25 000
/j -‘“"_- Online System ~100 MBytes/sec Specnt95 squivatents

Offling Processor Farm

There iz o Bunch srossing “every £ ¥ nsecs.
22201 TIP

Thare are 100 “triggers “per second ~100 MByles/sec

Eash triggered event iz ~f MBypte in iz
Tier 0 BN Com
~622 Mbits/sec e e
or Air Freight (deprecated

@ Fermilab ~m,

22 Mbits/sec

Tier 2 TierZ Centre “entre ¥ Centre ¥ Centre
~1 TIPS PS PS5 P35

ry "
ier 1 '
France Regional Q Sermany Regional b Italy Regional
Centre Centre

~622 Mbits/zec
Fhysicistzweork on mafsis chomel”

Tnstitute o= I
~0.25TIPS
Cash msl':fm‘s wilf hove -Jﬂp}:ysm:sfswrﬁmg o eNE oF more

1 #Bytes/ sec hannels; data for these k= should be 2 ashed by the
inskitulte server

Physics data coache

et
Physicist workstations

Figure 3.8 Example of high-speed networking in an intergrid. Copyright © 2002 Universi-
ty of Chicago and The University of Southern California. All Rights Reserved.

ware to enable jobs to communicate with each other. For example, an application
may split itself into a large number of microjobs, each becoming a separate job in
the grid. An application is often comprised of algorithms that require that the micro-
jobs communicate some information among them; for example, the microjobs need
to be able to locate other specific microjobs, establish a communications connection
with them, and send the appropriate data. At the protocol level, a message passing
interface (MPI) is often included as part of the grid system in support of communi-
cations and networking, although it should be noted that SOAP (Simple Object Ac-
cess Protocol) could conceivably become the pervasive messaging protocol in the
future (SOAP is discussed in a section that follows). Redundant communication
paths are generally needed, but a well-designed intranet will already accommodate
this. A grid management system can monitor the topology of the grid and pinpoint
possible communication bottlenecks [147].

MPI may be a good protocol solution for long, massively parallel applications;
for short serial tasks, a system based on web services (SOAP) can be acceptable.
Any given functionality can appear at multiple levels. Conceivably, there could be a
back-end parallel computer running an MPI-based job; this could be conceivably
front-ended as a service by a middle-tier component running on a completely differ-
ent computer. One is able “interact” with this service at either level: a high-perfor-
mance 1/O transfer at the parallel computing level, or with a “slower” middle-tier
protocol such as SOAP at the service level.

MPI is a de-facto open standard for message passing developed in the 1990s by a
committee of vendors (including IBM, Intel, Cray, and nCUBE), implementers, and

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 83

users. MPI is widely available, with both free available and vendor-supplied imple-
mentations. The goal of MPI is to provide a standard for writing message-passing
programs. As such, the interface attempts to establish a practical, portable, efficient,
and flexible standard for message passing. MPI has been developed under the aus-
pices of the Message Passing Interface Forum (MPIF), with participation from over
40 organizations. MPIF worked in the early 1990s to define a set of accepted library
interface standards (the MPIF is not sanctioned or supported by any official stan-
dards organization). Version 1.0 of the standard was released in May 1994; MPI-2
was adopted in April 1997.

Much as been said of late about how the theoretical maximum communication
speed has been exceeding the rules of Moore’s law,! and how that can be a catalyst
for grid deployment (e.g., see Figure 3.9). Although the availability of broadband
does drive the potential for grid deployment, two important points need to be kept
in mind.

Point 1. In general, the maximum available speeds are not affordable by anyone,
with the possible exception of either government-funded labs or supercomputer
centers. Whereas OC-3 (155 Mbps) is probably the typical speed for Fortune 100
applications, OC-12 (622 Mbps) is probably the typical current upper limit even for
high-end labs. Thus, OC-768 (about 40 Gbps) and multiples of OC-192 delivered
over DWDM (e.g., 256 beams, for a total of 0.3 Tbps) are technologically feasible
but not affordable by individual organizations. Figure 3.10 reinforces this point: it
shows the actual capacity and traffic of the Internet’s backbone over the years,
based on industry sources. Although the capacity has increased at a compound an-
nual growth rate of 150% per year over the 1997-2002 timeframe, the backbone ca-
pacity is about 0.5-1.0 Gbps; that is a relatively modest amount compared to an
0C-48, OC-192, or OC-768 optical-link system.

Point 2. before generalizing, one needs to determine if the problem at hand is
processor bound or I/O (storage/data) bound. For example this author cointroduced
the concept of hyperperfect numbers in the early 1970s (see Figure 3.11), a “nice”
generalization of the concept of a perfect number that is now part of number theory
(hyperperfect numbers are expected to have applications in cryptology and signal-
processing transforms). A grid computing apparatus could be used to number
crunch away and find all such numbers, say up to 10'> (currently these have been
identified only up to 10'"). In this situation, there is very little /O needed, just num-
ber crunching (in fact, the hyperperfect numbers up to 107 were found by running
an application on a 1960s-vintage, time-sharing, “grid-in-spirit” computing main-
frame environment). In other situations, for example, genome research, there in fact
may be a need to move a certain large amounts of data. Even then, though, the DNA
information could be copied and replicated on optical disks and sent offline (by reg-

!Gordon Moore made his well-known observation (now known as “Moore’s Law”) in 1965, just a few
years after the first ICs were developed. In his original paper [175], Moore observed an exponential
growth in the number of transistors per integrated circuit and predicted that this trend would continue.
Through technology advances, Moore’s Law, the doubling of transistors every couple of years, has been
maintained, and still holds true today. Industry stakeholders (such as Intel) expect that it will continue at
least through the end of this decade [168].

TEAM LinG - Live, Informative, Non-cost and Genuine!

84 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

Network versus computer performance
—Computer speed doubles every 18 months
—Network speed doubles every 9 months
—Difference = order of magnitude per 5 years
1986 to 2000

—Computers: x 500

—Networks: x 340,000

2001 to 2010

—Computers: x 60

—Networks: x 4000

Optical Fiber
Doubling Time ;
(months) (bits per second)
912 18
AN

fiber storage chips

Silicon Computer Chips
(number of transistors)

Data Storage
(bits per square inch)

Performance per Dollar Spent

Number of Years

Figure 3.9 Speed increase for “laboratory-level” networks. Copyright © 2002 University
of Chicago and The University of Southern California. All Rights Reserved.

ular mail) to the dozen or so supercomputers that may need access to the informa-
tion in order to run a certain algorithm.

Computation

The next most common resource on a grid is obviously computing cycles provided
by the processors on the grid. The processors can vary in speed, architecture, soft-
ware platform, and storage apparatus. There are efforts underway to develop very
high-speed supercomputers. Whereas clustering is a common approach at the
TFLOPS speeds, grid computing can also play a role in these initiatives by refining
architectures that link remote computers into an assembly of loosely or tightly cou-
pled processors. At the business level, grid computing is expected by the industry to
be more practical than cluster-based supercomputing.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 85

° Estimated _~
39 =

o 310 Mb/s -

» -

% Capacity . []
o ! -
[2] T

E ‘/ Estimated
9] e

[e)]

e

©

£

(3]

0]

[a)]

7 .

6% L] ' I T I I
1997 1998 1999 2000 2001 2002 2003 2004

Figure 3.10 Speed increase for the Internet backbone.

Related to supercomputing, the High-End Computing Revitalization Task
Force’s program under the Defense Advanced Research Projects Agency recently
recommended that the United States acquire a multihundred-teraflops system as a
cornerstone of a new national supercomputing center [135] (Cray, IBM and Sun
Microsystems are working on building the first petaFLOPS computer with novel
hardware to be completed by 2010.)

Storage

The next most common resource used in a grid is data storage. In a grid environ-
ment, a file or data base can span several physical storage devices and processors,
bypassing size restrictions often imposed by file systems that are preembedded with
operating systems. Storage capacity available to an application can be increased by
making use of the storage on multiple processors with a unifying file system. Each
processor on the grid usually provides some quantity of storage for grid use. Stor-
age can be “primary storage,” “secondary storage,” or “tertiary storage.” Memory
directly attached to a processor has fast access capabilities but is volatile; this kind
of memory is used to cache data to serve as temporary storage for running applica-
tions. “Secondary storage” is generally implemented in hard disk drives, such as
with RAID (redundant array of inexpensive drives). “Tertiary storage” is generally
implemented in near-real-time accessible media such as tape or other permanent
storage media. Many grid systems use mountable networked file systems, such as
Network File System (NFS), Distributed File System (DFS), or General Parallel
File System (GPFS). Special grid database software can “federate” a group of indi-
vidual data bases and files to form a larger, more inclusive data base.

TEAM LinG - Live, Informative, Non-cost and Genuine!

A k-hyperperfect number
(aka hyperperfect number)
(introduced in 1975 by Minoli
and Bear) is a number n for
satisfying the equality
n=1+k(o(n)—-n-1), where
a(n) is the divisor function
(i.e., the sum of all positive
divisors of n). A number is
perfect iff it is 1-hyperperfect.

The first few k-hyperperfect
numbers are 6, 21, 28, 301,
325, 496, ..., with the
corresponding values of k
being 1,2,1,6,3,1,.... The
first few k-hyperperfect
numbers that are not perfect
are 21, 301, 325, 697,

It can be shown that if k> 1 is
an odd integer and p = (3k +
1)/2 and g = 3k + 4 are prime
numbers, then p?q is k-
hyperperfect; McCraine has
conjectured that all k-
hyperperfect numbers for odd
k > 1 are of this form, but the
hypothesis has not been
proven so far. Furthermore, it
can be proven that if p # g
are odd primes and k is an
integer such that k(p + q) = pq
— 1, then pq is k-hyperperfect.
It is also possible to show that
if k>and p =k + 1 is prime,
then for all i > 1 such that g =
p —p+1isprime,n=p" 'qis
k-hyperperfect (see

examples.)
k Values of i
16 11, 21, 127, 149, 469, ...
22 17, 61,445, ...
28 33,89, 101, ...
36 67, 95, 341, ...
42 4,6, 42,64, 65, ...
46 5,11, 13, 53, 115, ...
52 21,173, ...
58 11,117, ..
72 21,49, ...
88 9,41, 51,109, 483, ...
9% 6,11, 34, ..

100

19
30
31
35
40
48
59
60
66
75
78
91
100
108
126
132
136
138
140
168
174
180
190
192
198

206

222

228

252
276
282
296

3,7,9,19, 29, 99, 145, ...

Known k-hyperperfect numbers

6, 28, 496, 8128, 33550336, ...

21,2133, 19521, 176661,
129127041, ...

325, ...
1950625, 1220640625, ...

301, 16513, 60110701,
1977225901, ...

159841, ...
10693, ...

697, 2041, 1570153, 62722153,
10604156641, 13544168521, ...

1333, 1909, 2469601,
893748277, ...

51301, ...

3901, 28600321, ...
214273, ...

306181, ...

115788961, ...

26977, 9560844577, ...
1433701, ...

24601, ...

296341, ...

2924101, ...

486877, ...

5199013, ...
10509080401, ...
275833, ...
12161963773, ...
96361, 130153, 495529, ...
156276648817, ...

46727970517, 51886178401, ...

1118457481, ...

250321, ...
7744461466717, ...
12211188308281, ...
1167773821, ...

163201, 137008036993, ...
1564317613, ...

626946794653,
54114833564509, ...

348231627849277, ...

391854937, 102744892633,
3710434289467, ...

389593, 1218260233, ...
72315968283289, ...
8898807853477, ...
444574821937, ...

342

350
360
366
372
396

402

408
414

438
480

522

546

570

660
672
684
774
810
814
816
820
968
972
978
1050
1410
2772

3918

9222

9828

14280

23730

31752

55848

67782

92568

542413, 26199602893, ...
66239465233897, ...
140460782701, ...
23911458481, ...

808861, ...

2469439417, ...
8432772615433, ...
8942902453, 813535908179653,

1238906223697, ...
8062678298557, ...
124528653669661, ...
6287557453, ...
1324790832961, ...

723378252872773,
106049331638192773, ...

211125067071829, ...

1345711391461,
5810517340434661, ...

13786783637881, ...
142718568339485377, ...
154643791177, ...
8695993590900027, ...
5646270598021, ...
31571188513, ...
31571188513, ...
1119337766869561, ...
52335185632753, ...
289085338292617, ...
60246544949557, ...
64169172901, ...
80293806421, ...
95295817, 124035913, ...
61442077, 217033693,

12059549149, 60174845917, ...

404458477, 3426618541,
8983131757, 13027827181, ...

432373033, 2797540201,
3777981481, 13197765673, ...

848374801, 2324355601,
4390957201, 16498569361, ...

2288948341, 3102982261,
6861054901, 30897836341, ...

4660241041, 7220722321,
12994506001, 52929885457,
60771359377, ...

15166641361, 44783952721,
67623550801, ...

18407557741, 18444431149,
34939858669, ...

50611924273, 64781493169,
84213367729, ...

100932 50969246953, 53192980777,

Figure 3.11 Example of a computationally intensive mathematical problem that can be ad-

dressed with grid computing.

86

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 87

Articles on Hyperperfect Numbers

» Daniel Minoli, Robert Bear, Hyperperfect Numbers, PME Journal, Fall 1975, pp. 153-157.

» Daniel Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation.
Zaire, Section Mathem; Vol. 4, No. 2, Dec 1978, pp. 277-302.

» Daniel Minoli, Structural Issues For Hyperperfect Numbers, Fibonacci Quarterly, Feb. 1981, Vol. 19, No.
1, pp. 6-14.

» Daniel Minoli, Issues In Non-Linear Hyperperfect Numbers, Mathematics of Computation, Vol. 34, No.
150, April 1980, pp. 639-645.

» Daniel Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980,
Issue 6, Vol. 1, pp. 561.

= Daniel Minoli, W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980
IEEE International Conf. on Acoust., Speech and Signal Processing.

= Judson S. McCranie, 4 Study of Hyperperfect Numbers, Journal of Integer Sequences, Vol. 3 (2000),
http://www.math.uwaterloo.ca/JIS/VOL3/mccranie html

Books with Hyperperfect Numbers Information

= Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0071406158 (p.114-134)

Figure 3.11 Continued.

More advanced file systems on a grid can automatically duplicate sets of data to
provide redundancy, increased reliability, and improved performance. Certain ap-
plications may require synchronous replication of data files; in this case, the “speed
of light,” namely, the propagation delay to/from the data storage device, may ad-
versely impact the functioning of the application. This situation can be addressed
and/or ameliorated by placing the data closer to the processing point. An intelligent
grid scheduler can select the appropriate storage devices to hold a job’s data, based,
for example, on usage patterns or replication needs. Jobs can then be scheduled
closer to the data, preferably on the processors that have direct SAN access to the
storage devices holding the requisite data [147].

Storage? is increasingly recognized as a distinct resource, one that is best thought
of separately from the computer systems (hosts) that are its consumers and benefi-
ciaries. Such storage is often shared by multiple hosts and is acquired and managed
independently from them. This is in contrast to the historical view (host-attached
storage) that storage is an intrinsic part of a computer system, that is, a “peripheral.”
This trend toward shared storage recognizes the critical value of the information en-
trusted to the storage system, as well as the fact that storage represents a significant
portion of the investment in a typical computing environment.

Through much of the history of computing, storage has been seen as an intrinsic
part of computer systems. Although storage once was regarded as a “peripheral,”
more recently, it has come to be thought of as a storage subsystem, but still uniquely
associated with a computer. The principal exceptions to this have been mainframe
computer complexes and computer clusters in which a modest number of cooperat-

2The rest of this subsection is loosely based on the Storage Networking Industry Association (SNIA)
SNIA Shared Storage Model [140], used with permission of SNIA.

TEAM LinG - Live, Informative, Non-cost and Genuine!

88 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

ing computer systems share a common set of storage devices. The key enabling tech-
nology for shared storage is networking technology that can provide high bandwidth,
reliable connectivity, and significant geographic scope at a cost that makes shared
storage an attractive alternative to the historical host-attached storage model.

Because the traditional computing model associates storage uniquely with a
computer system, a computing environment with many computer systems has many
storage and storage management environments to maintain and operate—one per
computer system.

As business has become more dependent upon computing, it has also become
more dependent upon data. Although a failed processor can usually be replaced and
operations continued almost immediately after the replacement, a failed storage re-
source requires replacement, typically followed by time-consuming restoration of
data, all too often with some loss of recent changes to that data, which requires re-
covery action before operations can continue. As a result, storage and the disci-
plines of caring for data and the storage media on which it resides have gown in vis-
ibility and importance.

In addition, the fraction of the purchase price of a computer system that is repre-
sented by the storage component has grown over time to the point that now the cost
of the storage component of a computer system is often in the vicinity of half of the
total price. Beyond the purchase price of storage, the total cost of owning storage
has become a significant part of the cost of maintaining the computing environ-
ment. In other words, the acquisition cost is a small portion of the total cost of own-
ership of storage over its lifetime.

In responding to these trends, the IT community has come to view storage as a
resource that should be purchased and managed independently of the computer sys-
tems that it serves. The IT community has also increasingly come to view storage as
a resource that should be shared among computer systems. These changes allow
more focused attention on storage that is expected to lead to reduced costs, higher
levels of service, and more flexibility through the sharing of the storage resource.

Although shared storage environments can bring many benefits, they also pre-
sent a number of challenges, particularly, interworking. The Storage Network In-
dustry Association (SNIA) Technical Council has developed a framework that cap-
tures the functional layers and properties of a storage system, regardless of the
underlying design, product, or installation. Much like the Open Systems Intercon-
nection (OSI) 7-layer model in conventional networking, the SNIA Shared Storage
Model may be used to describe common storage architectures graphically, while
exposing what services are provided, where interoperability is required, and the
pros and cons of each potential architecture; see Figure 3.12. SNIA was formed to
communicate the benefits of this new paradigm, and to provide a forum for comput-
er vendors, storage vendors, and the IT community to address its challenges togeth-
er.

The SNIA Shared Storage Model supports the following kinds of components:

® Interconnection network—the network infrastructure that connects the ele-
ments of the shared storage environment. This network may be a network that

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 BASIC CONSTITUENT ELEMENTS—A PHYSICAL VIEW 89

Application

e
b
lla

Services

Block layer

The SNIA Shared Storage Model is a layered one. The
figure shows a picture of the stack with a numbering
scheme for the layers. Roman numerals are used to avoid
confusion with the ISO and IETF networking stack
numbers. The layers are as follows:
® |V. Application
e |ll. File/record layer
o llb. Database
o lla. File system
® |l. Block aggregation layer, with three
function placements:
o llc. Heat
o llb. Network
o lla. Device
® |. Storage devices

Figure 3.12 The SNIA Shared Storage Model. Copyright © 2001, 2003 Storage Network-
ing Industry Association. Used with permission of SNIA.

is primarily used for storage access, or one that is also shared with other uses.
The important requirement is that it must provide an appropriately rich, high-
performance, scalable connectivity upon which a shared storage environment
can be based. The physical-layer network technologies that are used (or have
been used) for this function include Fibre Channel, Fast- and Gigabit-Ether-
net, Myrinet, the VAX CI network, and ServerNet. Network protocols that
are used at higher layers of the protocol stack also cover a wide range, includ-
ing SCSI FCP, TCP/IP, VI, CIFS, and NFS. Redundancy in the storage net-
work allows communication to continue despite the failure of various compo-
nents; different forms of redundancy protect against different sorts of failures.
Redundant connections within an interconnect may enable it to continue to
provide service by directing traffic around a failed component. Redundant
connections to hosts and/or storage enable the use of multipath I/O to tolerate
interface and connection failures; multipath I/O implementations may also
provide load balancing among alternate paths to storage. An important topol-

TEAM LinG - Live, Informative, Non-cost and Genuine!

90

COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

ogy for multi-path I/O uses two completely separate networks to ensure that
any failure in one network cannot directly affect the other.

® Host computer—a computer system that has some or all of its storage needs

supplied by the shared storage environment. In the past, such hosts were often
viewed as external to the shared storage environment, but we take the opposite
view. A host typically attaches to a storage network with a host-bus adapter
(HBA) or network interface card (NIC). These are typically supported by asso-
ciated drivers and related software; both hardware and software may be con-
sidered part of the shared storage environment. The hosts attached to a shared
storage environment may be largely unaware of each other, or they may ex-
plicitly cooperate in order to exploit shared storage environment resources.
Most commonly, this occurs across subsets of the hosts (“clusters”). One of the
advantages of separating hosts from their storage devices in a shared storage
world is that the hosts may be of arbitrary and differing hardware architecture
and run different versions and types of operating system software.

Physical storage resource—a nonhost element that is part of the shared stor-
age environment, and attached to the storage network. Examples include disk
drives, disk arrays, storage controllers, array controllers, tape drives and tape
libraries, and a wide range of storage appliances. (Hosts are not physical stor-
age resources.) Physical storage resources often have a high degree of redun-
dancy, including multiple network connections, replicated functions, and data
redundancy via RAID and other techniques, all to provide a highly available
service.

Storage device—a special kind of physical-storage resource that persistently
retains data.

Logical storage resource—a service or abstraction made available to the
shared storage environment by physical storage resources, storage manage-
ment applications, or combination thereof. Examples include volumes, files,
and data movers.

Storage management—functions that observe, control, report, or implement
logical storage resources. Typically, these functions are implemented by soft-
ware that executes in a physical storage resource or host.

These storage constructs can avail themselves of grid technology, especially

when the storage needs to reside in distinct locations (for example, for administra-
tive, business continuity, or disaster recovery reasons.)

Scientific Instruments

Grids, particularly an intergrid, can provide shared access to expensive scientific
equipment or interconnect dispersed equipment into a larger overall scientific tool.
We will not discuss this issue further, since our emphasis is on commercial applica-

tions.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 91

Software and Licenses

Two issues are of interest to organizations: application software and licensed soft-
ware.

Regarding application software, the most basic approach is to use the grid envi-
ronment to allow the application to run on an available processor on the grid (rather
than running locally.) Further along the transition trajectory, one can modify the ap-
plication to segment its work in such a way that the separate parts can execute in
parallel on different grid processors. As noted in Table 3.3, “scalability” is a mea-
sure of how efficiently the multiple processors on a grid are used. However, there
may be limits to scalability.

Regarding licensed software, there may be software of interest to the organiza-
tion that may be too expensive to install on a large set of processors. For example, a
Fortune 500 company might have, say, 1500 servers; replicating the software on all
these servers may be way too expensive and/or inefficient from a budgetary stand-
point. In a grid environment, specific business software may be installed on a few
designated grid processors. In this instance, the jobs requiring this software are
routed to the particular processors on which this software happens to be installed.
When the licensing fees are significant line items in the IT budget, this approach
can save significant expenses for the organization.

Some software license arrangements permit the software to be physically in-
stalled on all of the processors an organization may own, but may limit the number
of sites that can simultaneously use the software. With a grid-based license manage-
ment software, the grid system keeps track of how many concurrent copies of the
software are being used and ascertains that no more than that number of copies are
executing at any given time.

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW

Of late, a service view of grid computing has taken hold. Figures 1.5 and 1.6 in
Chapter 1 depicted a relatively simple and intuitive view of a layered model that
can help the reader understand the basic underlying concepts. Naturally, a standard-
ized layered model, like the well-known and widely used Open Systems Intercon-
nection Reference Model, is needed if interoperable systems are to be built. Stan-
dards such as the OGSA provide the necessary stable framework. OGSA is a
proposed grid service architecture based on the integration of grid and Web services
concepts and technologies. The OGSI specification is a companion specification to
OGSA that defines the interfaces and protocols to be used between the various ser-
vices in a grid environment; it is the mechanism that provides the interoperability
between grids designed using OGSA. Key constructs for the architecture are func-
tional blocks, protocols, (network-enabled) grid services (by implementing end-to-
end protocols), APIs, and software development kits (SDKs). Web services have
emerged in the past few years as a standards-based approach for developing and ac-
cessing network applications. The service view and OGSA will be discussed in de-
tail in Chapters 4 and 5. This section provides some basic supporting information.

TEAM LinG - Live, Informative, Non-cost and Genuine!

92 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES
Some concepts that should be understood are:

® Service-oriented architectures (SOA)
Simple Object Access Protocol (SOAP)
Web services standards

Web Services Description Language (WSDL)

Web Services Inspection Language (WSIL)

Universal Description, Discovery, and Integration (UDDI)
NET

Web Services Resource Framework (WSRF)

The fundamental concept behind OGSA is that it is a service-oriented architecture
comprised of constituent grid services, that are defined as special Web services
(more on this below) that provide a set of well-defined interfaces that follow specif-
ic conventions [119]. A SOA, defines how two computing entities interact to enable
one entity to perform a unit of work on behalf of another entity. The unit of work is
referred to as a service, and the service interactions are defined using a description
language. Each interaction is self-contained and loosely coupled, so that each inter-
action is independent of any other interaction [15]. Business applications are typi-
cally designed to automate business processes, but often without necessarily em-
bodying in them the ability to adapt themselves to changing business needs;
modifying and/or updating business processes and information flows in this envi-
ronment is rather challenging. This is because business applications have tradition-
ally been written as single, monolithic, and all-inclusive aggregates, making up-
dates and changes to these applications expensive and time-consuming. In a SOA
environment, applications are assembled as a collection of services, each of which
represents separate and discrete functions or features. As business needs change,
services can be added, deleted, or updated as needed, to evolve as the business
needs it [86].

The protocol independence of SOA means that different consumers can use ser-
vices by communicating with the service in different ways. Ideally, there should be
a management layer between the providers and consumers to ensure flexibility in
reference to implementation protocols [15]. It should be noted that many early Web
services projects focused on repurposing already-proven request/response Web ar-
chitectures, in which transactional support was either explicitly coded into the ap-
plication layer using classic Web techniques such as HTTP sessions or cookies, or
explicitly avoided by having the application simply provide read-only access to
back-end business systems [75]. Chapter 4 expands on these concepts.

Preston Gralla explains SOA as follows [38]. In a SOA environment, software
components can be exposed as services on the network, and so can be reused for
different applications and purposes. In SOA, developing new applications can be a
matter of mix-and-match: decide on the application that one needs, find out the ex-
isting components that can help build that application, glue them all together, and
one is done. SOA is an increasingly popular concept, but it has been around since

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 93

the mid-1980s. SOA has really not taken off because there has been no standard
middleware or application programming interfaces that would allow it to take root.
There were attempts to build them, such as the Distributed Computing Environment
(DCE) and Common Object Request Broker Architecture (CORBA), but neither
caught on, and SOA languished as an interesting concept, but with no significant
real-world applications. Then Web services (see below) came along and gave SOA
a new opportunity. The Web services underlying architecture works well with the
concept of SOA, so much so, in fact, that some analysts and software makers be-
lieve that the future of Web services rests with SOA. SOA is an architecture that
publishes services in the form of an XML interface; it is really no different from a
traditional Web service architecture in which Universal Description, Discovery and
Integration is used to create a searchable directory of Web services. In fact, UDDI
is the solution of choice for enterprises that want to make available software com-
ponents as services internally on their networks, using the SOA paradigm. Most
Web services implementations are point-to-point, where one has an intimate knowl-
edge of the platform to which one is interested in connecting. That means that the
Web service is not made available publicly on the network, and cannot be “discov-
ered”; in a sense, it is hard-coded in the point-to-point connection. In an SOA im-
plementation, information about the Web service and how to connect to it is pub-
lished in a UDDI-built directory, so that Web service can be easily discovered and
used in other applications and implementations. But although the basic Web ser-
vices architecture fits into the SOA concept, there are still roadblocks to setting
them up. Notable among them are security, identity management issues, and man-
agement problems—having software that will be able to track and manage hun-
dreds or dozens of Web services and their development and deployment. Software
is just becoming available to do that. On the security side, the issues still have not
been solved.

Web services (sometimes called application services or simply services) refers to
a developing distributed computing environment that has a foundation on simple
Internet-based standards to enable heterogeneous distributed computing. Web ser-
vices define a technique for describing software components to be accessed, meth-
ods for accessing these components, and discovery methods that enable the identifi-
cation of relevant service providers. Web services are programming-language-,
programming-model-, and system-software-neutral [114]. A Web service compris-
es content, or process, or both, with an open programmatic interface. Some exam-
ples include currency converters, stock quotes, and dictionaries. More complex ex-
amples include travel planners and procurement workflow systems. A Web service
has the following characteristics [85]:

® |t is an Internet-based application that performs a specific task and complies
with a standard specification.

® |t is an executable that can be expressed and accessed using XML and XML
messaging.

® |t can be published, discovered, and invoked dynamically in a distributed
computing environment.

TEAM LinG - Live, Informative, Non-cost and Genuine!

94 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

® [t is platform- and language-independent.

Web services have created a new communication pathway between applica-
tions, enabling them to talk to each other and exchange information in a platform-
neutral, language-independent way. Originally, these services were designed to re-
duce costs and facilitate application integration. Web services have now also
become a new platform for information providers. Extensive data is now available
through Web services, from real-time stock quotes to information about local ve-
hicular traffic. The constituent technologies of Web services—SOAP and
WSDL—have been implemented in production environments for several years
and the tools to build, test, and deploy Web services have matured significantly.
In-depth knowledge of these key technologies was a prerequisite in early days; to-
day, with advanced developer tools, a Web service can be created/accessed very
rapidly by developers without needing a background in Web services technologies
such as SOAP or WSDL [18].

Web services standards are being defined within the W3C and other standards
bodies and form the basis for major new industry initiatives such as IBM
(Dynamic e-Business), Microsoft (NET), and Sun Microsystems (Sun ONE).
Web services are small units of code that are independent of operating systems
and programming languages. They are designed to handle a limited set of tasks.
Web services make it easy to communicate between discrete applications; appli-
cations are able to access Web services via standard Web formats with no need to
know how the Web service itself is implemented. They also make it possible for
developers to reuse existing capabilities and services instead of writing new ones.
Web services utilize XML-based communicating protocols. Web services use the
standard web protocols Hypertext Transfer Protocol, XML (eXtensible Markup
Language®), SOAP, WSDL, and UDDI. HTTP is the World Wide Web standard
for communication over the Internet. HTTP is standardized by the World Wide
Web Consortium (W3C). XML is a well-known standard for storing, carrying, and
exchanging data. XML is standardized by the W3C. SOAP-based Web services
are becoming the most common implementation of SOA (however, there also are

XML provides an essential mechanism for transferring data between services in an application- and
platform-neutral format. However, it is not well suited to large datasets with repetitive structures, such as
large arrays or tables. Furthermore, many legacy systems and valuable data sets exist that do not use the
XML format. The GGF was working at press time to define an XML-based language, the Data Format
Description Language (DFDL), for describing the structure of binary and character-encoded
(ASCII/Unicode) files and data streams so that their format, structure, and metadata can be exposed.
DFDL endeavors to describe existing formats in an actionable manner that makes the data in its current
format accessible through generic mechanisms. The DFDL description [which is saved in a (logically)
separate file from the data itself] provides a hierarchical description that structures and semantically la-
bels the underlying bits. It plans to capture how bits are to be interpreted as parts of low-level data types
(integers, floating point numbers, strings); how low-level types are assembled into scientifically relevant
forms such as arrays; how meaning is assigned to these forms through association with variable names
and metadata such as units; and how arrays and the overall structure of the binary file are parameterized
based on array dimensions, flags specifying optional file components, etc. Further, if the data file con-
tains repetitive structures, such as large arrays or tables, such a description can be very concise [33]. IT
planners should track future developments in this arena.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 95

non-Web implementations) [15]. SOAP is a lightweight platform- and language-
neutral communication protocol that allows programs to communicate via stan-
dard Internet HTTP. SOAP is standardized by the W3C. WSDL is an XML-based
language used to define Web services and to describe how to access them. WSDL
is a suggestion by Ariba, IBM, and Microsoft for describing services for the W3C
XML activity on XML protocols. UDDI is a directory service with which busi-
nesses can register and search for Web services. UDDI is a public registry, where
one can publish and inquire about Web services [16].

Web services are services (normally including some combination of program-
ming and data, but possibly including human resources as well) that are made avail-
able from a business’s Web server for Web users or other Web-connected pro-
grams. Providers of Web services are generally known as application service
providers (ASPs). Web services range from such major services as storage manage-
ment and customer relationship management down to much more limited services
such as the furnishing of a stock quote and the checking of bids for an auction item.
The accelerating creation and availability of these services is a major Web trend.
Users can access some Web services through a P2P arrangement rather than by go-
ing to a central server. Some services can communicate with other services and this
exchange of procedures and data is generally enabled by a class of software known
as middleware. Besides the standardization and wide availability to users and busi-
nesses of the Internet itself, Web services are also increasingly enabled by the use
of XML as a means of standardizing data formats and exchanging data. As Web
services proliferate, concerns include the overall demands on network bandwidth
and, for any particular service, the effect on performance as demands for that ser-
vice rise. A number of new products have emerged that enable software developers
to create or modify existing applications that can be “published” (made known and
made accessible) as Web services [15]. In its use of Web services, grid services
equate PortType to class; operation to method; service to object instance. Grid ser-
vices add properties, PortType inheritance (via an extension to WSDL), Factory
pattern for creation of new objects and services, and a base set of classes.

As noted, SOAP, WSDL, WS-Inspection, and UDDI are of particular import to
OGSA/OGSI [114]; see Figure 3.13. These protocols and constructs are also revis-
ited in the chapters that follow, particularly Chapter 4.

SOAP provides a mechanism of messaging between a service requestor and a
service provider. It is a mechanism for formatting a Web service invocation, a sim-
ple enveloping process for XML payloads that defines a remote procedure call con-
vention and a messaging convention. SOAP payloads are independent of the under-
lying transport protocol and can be carried on HTTP, File Transfer Protocol (FTP),
or Java Messaging Service (JMS).

SOAP is a way for a program running in one kind of operating system (such as
Windows 2003) to communicate with a program in the same or another kind of an
operating system (such as Linux) by using the World Wide Web’s HTTP/XML as
the mechanisms for information exchange. Because Web protocols are installed and
available for use by all major operating system platforms, HTTP and XML provide
a solution to the question of how programs running under different operating sys-

TEAM LinG - Live, Informative, Non-cost and Genuine!

96 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

I Well-known host
Register UDDI
registry
o »
Discover
{ = = \
/ J | B }
[A] Client
ILI Application
5 ¥
= e SOAP/HTTP SOAP
I - proxy
Server host Server host Client (host)
Web service C, D Web service A, B

A Web service is a software system identified by a URI

whose public interfaces and bindings are defined and described
using XML. Its definition can be discovered by other

software systems. These other systems may then interact with the
Web service in a manner prescribed by its definition, using
XML-based messages conveyed by Internet protocols.

The Web Services Description Language (WSDL) is the
de-facto XML-based standard for describing Web services.

The Simple Object Access Protocol (SOAP) over HTTP is

the XML-based standard network protocol for exchanging
messages between Web services (W3C-given definitions).

Figure 3.13 Relationship among key protocols and constructs.

tems in a network can communicate with each other. SOAP specifies how to encode
an HTTP header and an XML file so that a program in one computer can invoke a
program in another computer and transact information. It also specifies how the
called program can return a response. SOAP was developed by Microsoft, Develop-
Mentor, and Userland Software and has been proposed as a standard interface to the
IETF. A point of consideration is that SOAP-based programs typically can readily
get through firewall servers that filter out packet sequences (requests) other than
those for known applications (through the designated-port mechanism); otherwise,
some firewall script changes may be needed. Since HTTP requests are usually al-
lowed through firewalls, programs using SOAP are able to communicate with pro-
grams anywhere [15].

The Web Services Description Language is an XML mechanism for describing
Web services as a set of endpoints operating on messages. These messages contain
either document-oriented (messaging) or remote procedure call payloads. Service
interfaces are defined abstractly in terms of message structures and sequences of

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 97

message exchanges. Service interfaces are bound to a tangible network protocol and
data-encoding format to define an endpoint. Related endpoints are bundled to de-
fine services. WSDL is extensible to allow description of endpoints and the con-
crete representation of their messages for a variety of different message formats and
network protocols.

The Web Services Inspection Language consists of the XML language along
with related conventions for locating service descriptions published by a service
provider. A WSIL document can contain a collection of service descriptions (e.g., a
URL to a WSDL document) and links (e.g., a URL to another WISL document) to
other sources of service descriptions. A service provider creates a WSIL document
and makes the document network accessible. Service requestors use standard Web-
based access mechanisms (e.g., HTTP GET) to retrieve this document and discover
what services the service provider advertises.

UDDI is an XML-based registry for businesses worldwide to list themselves on
the Internet. UDDI’s ultimate goal is to streamline online transactions by enabling
companies to find one another on the Web and make their systems interoperable
for e-commerce. UDDI is often compared to a telephone book’s white, yellow,
and green pages. The registry allows businesses to list themselves by name, prod-
uct, location, or the Web services they offer. Microsoft, IBM, and Ariba spear-
headed UDDI. The registry now includes 100 companies. The UDDI specification
utilizes World Wide Web Consortium (W3C) and IETF standards such as XML,
HTTP, and Domain Name System (DNS) protocols. It has also adopted early ver-
sions of the proposed SOAP messaging guidelines for cross-platform program-
ming. UDDI entered its public beta-testing phase in late 2000. Each of the three
founder companies now operates a registry server that is interoperable with
servers from other members. As information goes into a registry server, it is
shared by servers in the other businesses (additional companies were expected to
be acting as operators of the UDDI Business Registry at a future time.) UDDI reg-
istration is open to companies worldwide, regardless of their size [15].

Above, we also mentioned .NET. .NET is Microsoft’s Internet and Web strategy
launched in 2000. .NET is an Internet- and Web-based infrastructure that delivers
software as Web services and is a framework for universal services. It is a server-
centric computing model. Initially, Windows 2000 and Windows XP comprised the
backbone of .NET; as time goes by the .NET infrastructure was expected to be inte-
grated into all Microsoft operating systems and desktop and server products (the
NET plan includes a new version of the Windows operating system, a new version
of Office, and a variety of new development software for programmers to build
Web-based applications) [16]. .NET is based on Web standards such as HTTP, the
communication protocol between Internet applications; XML, the format for ex-
changing data between Internet applications; SOAP, the standard format for re-
questing Web services; and UDDI (described above), the standard to search and
discover Web services. Web services provide data and services to other applica-
tions. The .NET framework is a common environment for building, deploying, and
running Web services and Web applications. The .NET framework contains com-
mon class libraries like ADO.NET, ASP.NET, and Windows Forms to provide ad-

TEAM LinG - Live, Informative, Non-cost and Genuine!

98 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

vanced standard services that can be integrated into a variety of computer systems.
The .NET framework is language-neutral. Currently, it supports C++, C#, Visual
Basic, JScript (the Microsoft version of JavaScript), and COBOL. Web services are
the main building blocks in the Microsoft .NET programming model [16].

We also made reference to the Web Services Resource Framework (WSRF). The
effective merging of grid and Web services that occurred in the early 2000s has lead
to the WSRF, a series of OASIS-developed* specifications for performing grid
computing on top of Web services [173]. The purpose of the WSRF Technical
Committee (“TC”) in OASIS is to define a generic and open framework for model-
ing and accessing stateful resources using Web services. This includes mechanisms
to describe views on the state, to support management of the state through proper-
ties associated with the Web service, and to describe how these mechanisms are
extensible to groups of Web Services [174]. WSRF includes the WS-ResourceProp-
erties, WS-ResourceLifetime, WS-BaseFaults, and WS-ServiceGroup specifica-
tions (see Table 3.6 [174]). WSRF.NET is a project at the University of Virginia
that allows the creation of WSRF-compliant Web services using the Microsoft
NET platform [173].

WSRF defines the means by which [174]:

® Web services can be associated with one or more stateful resources (named,
typed, state components).

® Service requestors access stateful resources indirectly through Web services
that encapsulate the state and manage all aspects of Web-service-based access
to the state.

® Stateful resources can be destroyed through immediate or time-based destruc-
tion.

® The type definition of a stateful resource can be associated with the interface
description of a Web service to enable well-formed queries against the re-
source via its Web service interface.

® The state of the stateful resource can be queried and modified via Web service
message exchanges.

4OASIS (Organization for the Advancement of Structured Information Standards) is a nonprofit, interna-
tional consortium whose goal is to promote the adoption of product-independent standards for informa-
tion formats such as Standard Generalized Markup Language (SGML), XML, and HTML. Currently,
OASIS (formerly known as SGML Open) is working to bring together competitors and industry stan-
dards groups with conflicting perspectives to discuss using XML as a common Web language that can be
shared across applications and platforms. OASIS sponsors XML.org , a nonprofit XML Web portal. The
goal of OASIS is not to create structured information standards for XML, but to provide a forum for dis-
cussion, to promote the adoption of interoperability standards, and to recommend ways members can
provide better interoperability for their users. OASIS has worked with the United Nations to sponsor
ebXML, a global initiative for electronic business data exchange. EbXML, whose goal is to make it eas-
ier for companies of all sizes and locations to conduct business on the Internet, is currently focusing on
the specific needs of business-to-business and Internet security as it relates to XML (http://searchwebser-
vices.techtarget.com/gDefinition/0,294236,sid26_gci527425,00.html).

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 BASIC CONSTITUENT ELEMENTS—SERVICE VIEW 99

Table 3.6 WSREF specifications

WS-ResourceProperties

This defines how the data associated with a stateful resource can be queried and changed us-
ing Web services technologies. This allows a standard means by which data associated with
a WS-Resource can be accessed by clients. The declaration of the WS-Resource’s properties
represents a projection of or a view on the WS-Resource’s state. This projection represents
an implied resource type which serves to define a basis for access to the resource properties
through Web service interfaces.

WS-ResourceLifetime

This defines two ways of destroying a WS-Resource: immediate and scheduled. This allows
designers flexibility to design how their Web services applications can clean up resources
no longer needed.

WS-BaseFaults

This defines an XML schema type for a base fault, along with rules for how this fault type is
used by Web services. A designer of a Web services application often uses interfaces de-
fined by others. Managing faults in such an application is more difficult when each interface
uses a different convention for representing common information in fault messages. Support
for problem determination and fault management can be enhanced by specifying Web ser-
vices fault messages in a common way. When the information available in faults from vari-
ous interfaces is consistent, it is easier for requestors to understand faults. It is also more
likely that common tooling can be created to assist in the handling of faults.

WS-ServiceGroup

This defines a means by which Web services and WS-Resources can be aggregated or
grouped together for a domain-specific purpose. In order for requestors to form meaningful
queries against the contents of the ServiceGroup, membership in the group must be con-
strained in some fashion. The constraints for membership are expressed by intension using a
classification mechanism. Further, the members of each intension must share a common set
of information over which queries can be expressed.

® Endpoint references to Web services that encapsulate stateful resources can
be renewed when they become invalid; for example, due to a transient failure
in the network.

o Stateful resources can be aggregated for domain-specific purposes.

Additional related specifications have been developed that will be considered by
OASIS for the WSRF. These were developed by Computer Associates, Fujitsu,
Globus Alliance, Hewlett-Packard, IBM, and the University of Chicago. The moti-
vation for these specifications is that whereas Web service implementations typical-
ly do not maintain state information during their interactions, their interfaces must
frequently allow for the manipulation of state, that is, data values that persist across
and evolve as a result of Web service interactions [174]. For example, an online air-
line reservation system must maintain state concerning flight status, reservations
made by specific customers, and the system itself: its current location, load, and

TEAM LinG - Live, Informative, Non-cost and Genuine!

100 COMPONENTS OF GRID COMPUTING SYSTEMS AND ARCHITECTURES

performance. Web service interfaces that allow requestors to query flight status,
make reservations, change reservation status, and manage the reservation system
must necessarily provide access to this state. In the Web Services Resource Frame-
work, we model state as stateful resources and codify the relationship between Web
services in terms of an implied resource pattern.

The concepts introduced in this section will be revisited and used in the chapters
that follow.

TEAM LinG - Live, Informative, Non-cost and Genuine!

I CHAPTER 4

Standards Supporting
Grid Computing: OGSI

In recent years, grid computing has attracted the attention of the technical com-
munity with the evolution of on-demand and autonomic computing, as discussed
earlier in the book. The business community is also starting to consider its poten-
tial merits at this juncture. For any kind of new technology, corporate and busi-
ness decision makers typically seek answers to a set of questions, including “Are
there firm standards to support the technology and its widespread deployment?”
As the reader is well aware by now, grid computing is a process of coordinated re-
source sharing and problem solving in dynamically established, multiinstitutional,
virtual organizations, and/or in a computing utility environment [3, 49]. The grid
computing paradigm based on open standards can also be utilized to define a
“portable” form of outsourcing (call it “open source outsourcing”), in which ser-
vice providers can be painlessly replaced “at will.” A vision for grid computing is
as follows:

IBM’s ultimate vision for Grid is a utility model over the Internet, where clients draw
on computer power much as they do now with electricity. With more than 60% of IT
budgets dedicated to maintenance and integration—a percentage that continues to
rise—the need to reduce complexity and management demands is a pressing one.
[118]

Quite a bit more remains to be done at the technical level, however, to make this
vision a true reality. We noted in the preceding chapters that the absence of stan-
dards has been a retarding factor in the recent past with regard to widespread com-
mercial deployment of grid computing. The following quote is representative of the
recent situation:

Much of Grid Computing is undiscovered country, and many groups are turning their
attention to the emerging open standards. In many ways, the discussions about Grid

Services parallel those around Internet and XML standards in the mid-1990s. [143]

The fundamental purpose of a computing grid is to make use of broadly distrib-
uted computing power across any kind of network (including a company’s own

A Networking Approach to Grid Computing. By Daniel Minoli 101
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine!

102 STANDARDS SUPPORTING GRID COMPUTING: OGSI

computing power); but without standards, one is actually limiting, rather than ex-
tending, one’s ability to “harvest” and utilize spare computer power on remote com-
puters [73]. An array of heterogeneous resources comprise a grid, and, hence, it is
nearly a mandatory necessity that these resources interact and behave in a well-de-
fined and consistent manner [50]. Without industry-wide standards, it is a technical
challenge to achieve highly effective interactions among resources, especially when
these belong to different (virtual) organizations.

In 1987, in a Bellcore/Telcordia Special Report, in a section called “Network for
a Computing Utility,” we stated that protocols and standards were critical:

The proposed service provides the entire apparatus to make the concept of the Com-
puting Utility possible. . . . [S]ecurity and accounting . . . are much more complex in
the distributed, public (grid) environment. . . . This service is basically feasible once a
transport and switching network with strong security and accounting (chargeback) ca-
pabilities is deployed. A high degree of intelligence in the network is required . . . a
physical network is required . . . security and accounting software is needed . . . proto-
cols and standards will be needed to connect servers and users, as well as for account-
ing and billing. These protocols will have to be developed before the service can be
established. . . . [6]

Lately, the Global Grid Forum has indeed started a number of architecture stan-
dardization efforts in order to provide the required improved software interoperabil-
ity, security (confidentiality, integrity, and availability), resource definition, re-
source discovery, policy, and grid manageability. The Global Grid Forum is a
community-initiated forum of researchers and practitioners working on grid com-
puting, and a number of working groups are producing technical specs, document-
ing user experiences, and writing implementation guidelines. The need for open
standards that define these interactions and foster interoperability between compo-
nents supplied from different sources has been the motivation for the Open Grid
Service Architecture/Open Grid Services Infrastructure (OGSA/OGSI) milestone
documentation published by the Forum [50]. The OGSI documentation was pub-
lished in 2002 and a draft version of the OGSA was published late in 2003. As of
press time, both OGSA and OGSI were still “works in progress.” Efforts are also
underway in the GGF to document “best practices,” implementation guidelines, and
ancillary standards for grid technologies. More than two dozen working groups at
the GGF were defining grid standards in areas such as applications and program-
ming models, data management, security, performance, scheduling, and resource
management. The Globus Toolkit™ is an open architecture, open standards, com-
mercial-grade tool for building computational grids; it is a widely cited, solid refer-
ence implementation of the OGSA/OGSI standards.

As noted in Chapter 3, OGSA is a service-oriented architecture (SOA). OGSI
defines mechanisms for creating, managing, and exchanging information among
grid services. A grid service is a Web service that conforms to a set of conventions
(interfaces and behaviors) that define how a client interacts with a grid capability
(Web services were also briefly discussed in Chapter 3) [84]. Specifically, the

TEAM LinG - Live, Informative, Non-cost and Genuine!

STANDARDS SUPPORTING GRID COMPUTING: OGS 103

Table 4.1 OGSA/OGSI documents

® Anatomy of the Grid. This architecture white paper by Ian Foster et al. defines the field of
grid computing. The document includes a description all of a grid’s constituent parts and
what they do.

® Physiology of the Grid. This white paper by Ian Foster et al. explains how grid comput-
ing can be supported using Web services. It presents details about OGSA and grid se-
mantics (i.e., services). Along with the Anatomy of the Grid, these two papers provide a
detailed overview of grid computing, and are inputs to the OGSA and OGSI specifica-
tions.

® Open Grid Services Architecture (OGSA4), GWD-R (draft-ggf-ogsa-ogsa-011), Draft. Ed-
itors: 1. Foster et al., September 23, 2003.

® Open Grid Services Infrastructure (OGSI), Version 1.0, Editors: S. Tuecke et al., June
27,2003.

OGSI specifications define the standard interfaces and behaviors of a grid service,
building on a Web services base [36]. This approach provides a common and open
standards-based mechanism to access various grid services using existing industry
standards such as SOAP, XML, and WS-Security [17].

In this chapter, we drill down on grid standards and standardization activities. At
press time, there was only a short list of grid computing standards: the just-cited
draft Open Grid Services Architecture, along with its companion implementation
standard, the Open Grid Services Infrastructure. Here, we first take a high-level
view of OGSI (and OGSA, by implication), and then we proceed with a more de-
tailed assessment; because of the relationship between the two documents, OGSA
also gets some coverage in this chapter. In Chapter 5, we focus more extensively on
OGSA itself!. For a more comprehensive description of these concepts, the reader
should consult the key references listed in Table 4.1. The purpose of this chapter is
to highlight the standardization progress and nof to provide a comprehensive speci-
fication and/or description. Also, note that some of the details may change over
time (but one hopes that the overall framework is stable, after these many years of
research and funding); hence, the reader should always consult the latest GGF doc-
umentation, after acquiring a basic understanding through the material presented
herewith.

In Chapter 3, we also made reference to WSRF. The recent practical confluence
of grid and Web services that occurred in the early 2000s led to the development by
OASIS of WSRF, which is a specification for performing grid computing on top of
Web services [173]. This is another level of useful standardization that will further
foster the introduction of “open-source” grid computing services on the part of
GSPs.

IThis ordering is dictated by the chronological development of these documents; pedagogically, the re-
verse order is ostensively better.

TEAM LinG - Live, Informative, Non-cost and Genuine!

104 STANDARDS SUPPORTING GRID COMPUTING: OGSI
4.1 INTRODUCTION

The architecture for grid computing is defined in the Open Grid Services Architec-
ture that describes the overall structure and the services to be provided in grid envi-
ronments [17]. Figure 4.1 depicts the network’s role in supporting a (standardized)
grid. Figure 4.2 is the reference diagram that illustrates the OGSA. The companion
implementation standard, the OGSI, is a formal specification of the concepts de-
scribed by the OGSA,; it specifies a set of service primitives that define a nucleus of
behavior common to all Grid Services [17]. OGSI, in effect, is the base infrastruc-
ture on which the OGSA is built, as illustrated pictorially in Figure 4.3.

As just noted, OGSA is a distributed interaction and computing architecture that
is based around the grid service concept, assuring interoperability on heterogeneous
systems. As a result, different types of systems can communicate and share infor-
mation. OGSA allows system composition to perform a specific task, or solve a
challenging problem, by using distributed resources over the interconnecting net-
work [119]. The grid architecture is now being developed based on Internet proto-
cols (for example, communication, routing, file transfer, name resolution, etc.) and
services. The grid architecture defined in OGSA leverages the emerging Web ser-
vices to define the WSDL interfaces that are relevant to the grid environment [119].
We introduced WSDL in Chapter 3; as noted there, WSDL is an XML-based lan-
guage used to describe the services that a business offers, and to provide a mecha-
nism for individuals and businesses to access these services in an on-line fashion
(WSDL is derived from Microsoft’s SOAP and IBM’s Network Accessible Service
Specification Language). WSDL is used in the context of UDDI. As noted in Chap-
ter 3, UDDI is an XML-based global registry for businesses that enables these busi-
nesses to list themselves and their services on the Internet (additional details are

Requestor Provider 1
OGSA Architected Services OGSA Architected Services
"OGSI—Open Grid Services Infrastructure" "OGSI—Open Grid Services Infrastructure"
Web services Web services

{

Network Services

Provider 2

OGSA Architected Services

"OGSI—Open Grid Services Infrastructure"

Web services

7

Figure 4.1 Networking role.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.1 INTRODUCTION 105

_ W — _Grid applications
| sers | layer
| Business Applications /[OGSA
=~ . .
Standards- | Open Grid Services Architecture (OGSA) | architected grid
based |8~ OGSA Architected Services £| services layer
Middleware |2 || OGSI—Open Grid Services Infrastructure || S| Web services
@« - 18| layer
T Web services & (S)
S 2| Physical and
5| [OGSA OGSA A OGSA GSA A1 |E| ogical
2| | Enabled | | Enabled Enabled Enabled Enabled Enabled | |2 |- lOQICa
S| |Workflow| |Database| |File Systems| | Directory | |Messaging| | Security 2| resources layer
o
OGSA Enabled OGSA Enabled =
OGSA
Servers Enabled Storage
| Local, metro, national, |
Figure 4.2 Basic functional model for grid environment.
OGSA Architected Services
OGSI—Open Grid Services Infrastructure
Discovery | Lifecycle | [State Mgt.| | gervice Factory | Notification | | Handle Map
roups
Web services

Figure 4.3 OGSA reliance on OGSI.

provided later in the chapter). These conventions and other OGSI mechanisms asso-
ciated with grid service creation and discovery provide for the controlled, fault-re-
silient, and secure management of the distributed and often long-lived “state” that is
commonly required in advanced distributed applications? [84]. Building on Web
services standards (see relevant footnotes in Chapter 3), OGSA takes the view that a
grid service is simply a Web service that conforms to a particular set of conven-
tions, that is, grid services are defined in terms of standard WSDL with some (mi-
nor) extensions. With this approach, OGSA is driving the hosting environment to
accept modifications or additions for supporting the repertoire of grid services
[119]. To further clarify what a grid service is, note that an OGSI-compliant grid
service defines a subclass of Web services whose ports all inherit capabilities from
a standard grid service port (so a grid service is a Web service that conforms to a set

2“State” is “service data,” that is a collection of XML elements encapsulated as service data elements

TEAM LinG - Live, Informative, Non-cost and Genuine!

106 STANDARDS SUPPORTING GRID COMPUTING: OGSI

of conventions that provide for controlled, fault-resilient, and secure management
of stateful services) [31].

The running of an individual service (for example, an information query) is
called a service instance. Services and service instances can be “lightweight” and
transient, or they can be long-term tasks that require “heavy-duty” support from the
grid. Services and service instances can be dynamic or interactive, or they can be
batch processed. Service can run at scheduled times, or they can run at arbitrary
times [143]. As seen in Figure 4.3, grid services include:

® Discovery
e Lifecycle
® State management

Service groups
Factory
Notification

Handle map

These are defined later on in the chapter, in Section 4.5.

A “layering” approach is used to the extent possible in the definition of a grid ar-
chitecture because it is advantageous for higher-level functions to use common
lower-level functions [44]. With standards, IT staff at Fortune 500 companies will
have a predictable way to find, identify, and utilize new grid services as they be-
come available. Additionally, OGSA will provide for interoperability between grids
that may have been built using different underlying tools [17]. Hence, the going-
forward grid-deployment “formula” is as follows: open standards and protocols
lead to the development of services, and services are the foundation blocks of the
grid. Services allow users to carry out tasks on the grid. Grid functionality can in-
clude the following, among others [143]: information queries, network bandwidth
allocation, data management/extraction, processor requests, managing data ses-
sions, and balance workloads.

As noted, the GGF is comprised of a set of working groups that are developing
standards and best practices for distributed computing (“grids” and “metacomput-
ing”) efforts, including those specifically aimed at very large data sets, high-perfor-
mance computing, and P2P. GGF represents a merger of three technical communi-
ties: those in North America (originally called “Grid Forum”), Asia—Pacific, and
the European Grid Forum (eGrid). GGF has become a key point of coordination, in-
formation exchange, and collaboration for staff involved in large-scale R&D pro-
grams in the U.S., Europe, Canada, and Asia—Pacific. Major industry players are
getting involved in the Global Grid Forum and we are seeing increasing and signif-
icant collaboration with industry groups such as the Peer-to-Peer Working Group
and the New Productivity Initiative. The GGF creates an opportunity to reduce the
costs of these programs, to accelerate their progress, and to promote and ensure
common practices and interoperability between large-scale “metacomputing” or
“grid” systems [33]. IBM and other industry leaders, researchers, and representa-

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.1 INTRODUCTION 107

Table 4.2 GGF groups

Group Status*
Grid Policy Architecture Approved RG
IPv6 Approved WG
Open Grid Service Architecture Authorization Approved WG
Authority Recognition Approved RG
Job Submission Description Language Approved WG
Grid File System Pending WG
Proposed New Groups

Astronomy—RG Pending BOF
Business Grid—RG Pending BOF
CDOLM—WG Pending BOF
Grid API—WG Pending BOF
Grid Federations—RG Pending BOF
Metadata Management—WG Pending BOF
Persistent Archives Pending BOF
Ubiqutous Computing—RG Pending BOF
Workflow Management—WG Pending BOF

*Group status as of press date.
RG = Research Group.
WG = Working Group.

tives from a variety of grid software vendors are actively involved in the work of
the GGF [17]. The development of OGSA specifications receives support from
IBM, the U.S. Department of Energy, the National Science Foundation, and
NASA'’s Information Power Grid program, among others [36]. It is hoped that the
OGSI will form the basis of a number of open and more functional grid implemen-
tations. GGF sponsors the Global Grid Forum Workshop. By press time, nine work-
shops had been held.> OGSA-related GGF groups include (also see Table 4.2) [36]:

® The Open Grid Services Architecture Working Group (OGSA-WG)

® The Open Grid Services Infrastructure Working Group (OGSI-WG)

® The Open Grid Service Architecture Security Working Group (OGSA-SEC-
WG)

® Database Access and Integration Services Working Group (DAIS-WG)

Table 4.3 identifies key documents and/or specifications that have been pro-
duced by the GGF. Since OGSA builds on Web services, it likely will incorporate

3For example, the 11th Global Grid Forum Workshop (GGF11, June 2004) was held in Honolulu.
GGF10 took place in Berlin in March 2004. GGF8 (June 2003) was held in Seattle, Washington, June
24-27, 2003. The meeting gathered about 700 grid stakeholders, practitioners, and experts. The 7th
Global Grid Forum Workshop (GGF7, March 2003) GGF7 was held in Tokyo, Japan, March 4-7, 2003.
The meeting gathered about 780 grid stakeholders, practitioners, and experts for the first GGF held in the
Asia—Pacific region.

TEAM LinG - Live, Informative, Non-cost and Genuine!

108

STANDARDS SUPPORTING GRID COMPUTING: OGSI

Table 4.3 Recent GGF documents

Document Title Document type Group Author(s)
GFD.1 GGF Document Series ~ Community practice GFSG C. Catlett
GFD.2 GGF Structure Community practice GFSG C. Catlett, 1. Foster,
W. Johnston
GFD.3 GGF Management Community practice GFSG C. Catlett, I. Foster,
W. Johnston
GFD.4 Ten Actions When Informational SRM J. Schopf
Superscheduling
GFD.5 Advanced Reservation Experimental SRM V. Sander, A. Roy
API
GFD.6 Attributes for Informational SRM U. Schwiegelshohn,
Communication R. Yahyapour
between Scheduling
Instances
GFD.7 A Grid Monitoring Informational ISP B. Tierney, R. Aydt,
Architecture D. Gunter, W.
Smith, M. Swany,
V. Taylor,
R. Wolski
GFD.8 A Simple Case Study of Informational ISP R. Aydt, D. Gunter,
a Grid Performance W. Smith, M.
System Swany, B. Tierney,
V. Taylor
GFD.9 Overview of Grid Informational APME G. Fox, M. Pierce,
Computing D. Gannon,
Environments M. Thomas
GFD.10 Grid User Services Informational APME]. Towns,
Common Practices J. Ferguson,
D. Frederick,
G. Myers
GFD.11 Grid Scheduling Informational SRM M. Roehrig,
Dictionary of Terms W. Ziegler,
and Keywords P. Wieder
GFD.12 Security Implications Informational SEC M. Humphrey,
of Typical Grid M. Thompson
Computing Usage
Scenarios
GFD.13 Grid Database Access Informational DATA M. P. Atkinson, V.
and Integration: Dialani, L. Guy,
Requirements and I. Narang, N.W.
Functionalities Paton, D. Pearson,
T. Storey, P.
Watson
GFD.14 Services for Data Informational DATA V. Raman, . Narang,

Access and Data
Processing on Grids

C. Crone, L. Haas,
S. Malaika, T.
Mukai, D.
Wolfson, C. Baru

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2 MOTIVATIONS FOR STANDARDIZATION 109

Table 4.3 Continued

Document Title Document type Group Author(s)
GFD.15 Open Grid Services Recommendation ARCH S. Tuecke, K.
Infrastructure Czajkowski, 1.
Foster, J. Frey,
S. Graham,
C. Kesselman,
T. Maguire,
T. Sandholm,
D. Snelling,
P. Vanderbilt
GFD.16 Global Grid Forum Community practice SEC R. Butler, T.
Certificate Policy Genovese
Model
GFD.17 CA-based Trust Issues Informational SEC M. Thompson, D.
for Grid Olson, R. Cowles,
Authentication and S. Mullen, M.
Identity Delegation Helm
GFD.18 An Analysis of the Informational SEC T.Goss-Walter,
UNICORE Security R.Letz, T.
Modal Kentemich, H.-C
Hoppe
GFD.19 Job Description for Informational GFSG . Schopf, P. Clarke,
GGF Steering Group B. Nitzberg, C.
Members Catlett
GFD.20 GridFTP: Protocol Recommendation DATA W. Allcock
Extensions to FTP
for the Grid
GFD.21 GridFTP Protocol Experimental DATA 1. Mandrichenko
Improvements

specifications defined within the W3C, IETF, OASIS, and other standards organi-
zations. A first (prototype) grid service implementation that follows GGF specs was
demonstrated in early 2002, at the Globus Toolkit tutorials held at Argonne Nation-
al Laboratory; the Globus Toolkit Version 3.0 is based on the OGSI standard. Other
commercial products are also under development.

In the material that follows, we provide some (additional) motivations for stan-
dardization. We then look at architectural elements. Following this discussion, we
look at OGSA/OGSI from a pragmatic perspective, and then from a more formal
perspective.

4.2 MOTIVATIONS FOR STANDARDIZATION

We opened this chapter by noting the reasons for pursuing industry and/or regulato-
ry (de jure) standards. In this area, most standards are of the “industry type.” When

TEAM LinG - Live, Informative, Non-cost and Genuine!

110 STANDARDS SUPPORTING GRID COMPUTING: OGSI

we use the word standard throughout this book, we mean, multivendor, public-fo-
rum, or accredited-standard-organization-based agreements.* The lack of standards
has meant that companies, developers, and organizations have had to develop and
support grid technology using proprietary techniques and solutions, thereby limit-
ing its deployment potential. An effective grid relies on making use of computing
power, whether via a LAN, over an extranet, or through the Internet. To use com-
puting power efficiently, one needs to support a gamut of computing platforms;
also; one needs a flexible mechanism for distributing and allocating the work to in-
dividual clients [73].

The time is now ripe for grid standards. Telecommunications standards were de-
veloped (in critical-mass fashion) in the 1980s, Internet standards were developed
(in critical-mass fashion) in the 1990s, and, hopefully, grid computing standards
will developed (in critical-mass fashion) in the 2000s.

A closed, proprietary environment limits the ease with which one can distribute
work, who can become a service provider, who can be a service requester, and how
one can find out about the available grid resources. The reader can grasp the limita-
tions of a nonstandard approach by considering any of the better-known grid com-
puting projects on the Internet. For example, consider distributed.net. This organi-
zation is a “loosely knit” group of computer users located all over the world, that
takes up challenges and run projects that require a lot of computing power. It solves
these by utilizing the combined idle processing cycles of their members’ comput-
ers.> To illustrate the point about standards, to become a service provider for the
distributed.net grid, one must download a specific client that is capable of process-
ing the work units from the corresponding servers. However, with a distributed.net
client installed, one can only process work units supplied by distributed.net [73].
Furthermore, distributed.net service providers can only process those work units
supplied by distributed.net. For example, if distributed.net wanted to allow their
service providers (those people with the distributed.net client installed) to process
SETI@Home work units, it would be problematic. distributed.net would have to re-

“The fact that a company such as Cisco (as an example) may have an internal “standard” to paint their
boxes teal is not what we are focusing on here.

>Distributed.net (Distributed Computing Technologies Inc.) was founded in 1997. Now the project has
grown to encompass thousands of users around the world. distributed.net’s computing power has grown
to become equivalent to that of more than 160,000 PII 266 MHz computers working 24 hours a day, 7
days a week, 365 days a year. Distributed.net counts five victories so far. Their first victory was an-
nounced on October 19, 1997, indicating that they had found the correct solution for RSA Labs’ RC5-
32/12/7 56-bit secret-key challenge. Confirmed by RSA Labs, the key 0x532B744CC20999 presented
the plaintext message for which they had been searching for 250 days. Their second victory was an-
nounced on February 24, 1998, confirming that they had found the correct solution for the RSA Labs’
DES-II-1 56-bit secret-key challenge. The solution key was 76 9E 8C D9 F2 2F 5D EA and was found
after 40 days of work. Their third victory was on January 19, 1999, when they found the correct key to
the RSA Labs DES-III contest, with the help of the Electronic Frontier Foundation’s “Deep Crack” cus-
tomized DES cracker. The correct key was 92 2C 68 C4 7A EA DF F2. Their fourth victory was on 16
January 2000 when they received the winning key for the CSC contest from a SPARC in the United
States after searching for 62 days. Their fifth victory was on July 14, 2002 when they completed the
RC5-64 project, after 1,757 days of working. The key was 0x63DE7DC154F4D039. (From the distrib-
uted.net FAQ.)

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2 MOTIVATIONS FOR STANDARDIZATION 111

deploy their service provider functionality. They would also have to redesign many
of their discovery and distribution systems to allow different work units to be de-
ployed to service providers, and they would need to update their statistical analysis
on completed units to track it all properly [73].

As this example illustrates, standards are critical to making the computing utility
concept a reality. On the other hand, a corporate user just looking to secure better
utilization of its platforms and internal resources could start with a vendor-based
solution and then move up to a standards-based solution in due course. Some spe-
cific areas where a lack of grid standards limit deployment are [73]:

® Data management. For a grid to work effectively, there is a need to store in-
formation and distribute it. Without a standardized method for describing the
work and how it should be exchanged, one quickly encounters limits related
to the flexibility and interoperability of the grid.

® Dispatch management. There are a number of approaches that can be used
to handle brokering of work units and to distribute these work units to client
resources. Again, not having a standard method for this restricts the service
providers that can connect to the grid and accept units of work from the grid,;
this also restricts the ability of grid services users to submit work.

¢ Information services. Metadata® about the grid service helps the system to
distribute information. The metadata is used to identify requesters (grid
users), providers, and their respective requirements and resource availability.
Again, without a standard, one can only use specific software and solutions to
support the grid applications.

® Scheduling. As covered in Chapter 3, work must be scheduled across the ser-
vice providers to ensure they are kept busy. To accomplish this, information
about remote loads must be collected and administered. A standardized
method of describing the grid service enables grid implementations to specify
how work is to be scheduled.

® Security. Without a standard for the security of a grid service and for the se-
cure distribution of work units, one runs the risk of distributing information to
the “wrong” clients. Although proprietary methods can provide a level of se-
curity, they limit accessibility.

® Work unit management. Grid services require management of the distribu-
tion of work units to ensure that the work is uniformly distributed over the

SMetadata is a definition or description of data. In data processing, metadata is definitional data that pro-
vides information about, or documentation of, other data managed within an application or environment.
For example, metadata would document data about data elements or attributes (name, size, data type,
etc.), data about records or data structures (length, fields, columns, etc.), and data about data (where it is
located, how it is associated, ownership, etc.). Metadata may include descriptive information about the
context, quality, condition, or characteristics of the data. For example, the data of a newspaper story is
the headline and the story, whereas the metadata describes who wrote it, when and where it was pub-
lished, and what section of the newspaper it appears in. Metadata can help us determine who content is
for and where, how, and when it should appear. (This footnote based on [82]; also see [83].)

TEAM LinG - Live, Informative, Non-cost and Genuine!

112 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Grid Service - =~

Standard Interface

/e Multiple Bindings Secure Messaging
® Multiple Implementations

Linux Platform

Secure / Secure M in
M. ging ; ging
v T _Secure Messaging ™.
Grid Service - Secure '9IN9 | Grid Service Secure Messaging |-, Grid Service
Standard Interface Standard Interface Standard Interface
® Multiple Bindings ® Multiple Bindings ® Multiple Bindings
® Multiple Implementations ® Multiple Implementations ® Multiple Implementations
Windows Platform Unix Platform Mainframe Platform

Figure 4.4 Example of a service-oriented architecture.

service providers. Without a standard way of advertising and managing this
process, efficiencies are degraded.

Looking from the perspective of the grid applications developer, a closed envi-
ronment is similarly problematic because to make use of the computing resources
across a grid, the developer must utilize a specific tool kit or environment to build,
distribute, and process work units. The closed environment limits the choice of
grid-resident platforms on which work units can be executed and, at the same time,
also limits how one uses and distributes work and/or requests to the grid [73]. It also
means that one cannot combine or adopt other grid solutions for use within an orga-
nization’s grid without redeploying the grid software.

The generic advantages of the standardized approach are well known, since they
apply across any number of disciplines. In the context of grid computing, they all
reduce to one basic advantage: the extension and expansion of the resources avail-
able to the user for grid computing. From an end user’s perspective, standardization
translates into the ability to purchase middleware and grid-enabled applications
from a variety of suppliers in an off-the-shelf, shrink-wrapped fashion. Figure 4.4
depicts an example of the environment that one aims to achieve.

For example, standard APIs enable application portability;, without standard
APIs, application portability is difficult to accomplish (different platforms access
protocols in different ways). Standards enable cross-site inferoperability;, without
standard protocols, interoperability is difficult to achieve. Standards also enable the
deployment of a shared infrastructure [44].7 Use of the OGSI standard, therefore,
provides the following benefits [73]:

7This material is licensed for use under the terms of the Globus Toolkit Public License.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 ARCHITECTURAL CONSTRUCTS 113

® Increased effective computing capacity. When the resources utilize the
same conventions, interfaces, and mechanisms, one can transparently switch
jobs among grid systems, both from the perspective of the server as well as
from the perspective of the client. This allows grid users to use more capacity
and allows clients a more extensive choice of projects that can be supported
on the grid. Hence, with a gamut of platforms and environments supported,
along with the ability to more easily publish the services available, there will
be an increase in the effective computing capacity.

® Interoperability of resources. Grid systems can be more easily and effi-
ciently developed and deployed when utilizing a variety of languages and a
variety of platforms. For example, it is desirable to mix service-provider com-
ponents, work-dispatch tracking systems, and systems management; this
makes it easier to dispatch work to service providers and for service providers
to support grid services.

® Speed of application development. Using middleware (and/or toolkits)
based on a standard expedites the development of grid-oriented applications
supporting a business environment. Rather than spending time developing
communication and management systems to help support the grid system, the
planner can, instead, spend time optimizing the business/algorithmic logic re-
lated to the processing the data.

For useful applications to be developed, a rich set of grid services (the OGSA ar-
chitected services) need to be implemented and delivered by both open source ef-
forts (such as the Globus project) and by middleware software companies. In a way,
OGSI and the extensions it provides for Web services are necessary but insufficient
for the maturation of the service-oriented architecture; the next required step is that
these standards be fully implemented and truly observed (in order to provide porta-
bility and interoperability) [3, 33, 39, 50, 84, 114]. Figure 4.5 depicts a simple envi-
ronment to put the network-based services in context.

4.3 ARCHITECTURAL CONSTRUCTS

The previous section described the use of standards in a grid environment. This sec-
tion, based in part on reference [44], provides some basic machinery for the con-
struction of a grid-oriented architecture. The sections that follow actually describe
the OGSA/OGSI architecture itself.

4.3.1 Definitions

A service-oriented grid architecture is descriptive: it provides a common vocabu-
lary for use when describing grid systems. A grid architecture is normative: it
provides guidance and identifies key areas in which services are required. A grid ar-
chitecture is also prescriptive: it defines standard “Intergrid” protocols and appli-
cation programmer interfaces (APIs) to facilitate creation of interoperable grid sys-
tems and portable applications.

TEAM LinG - Live, Informative, Non-cost and Genuine!

114 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Web (file) Server
Web (file) Server

C___(J

Web (file) Server

Web (file) Server

Number-cruncher/Storage

User p B A Number-cruncher/Storage

Number-cruncher/Storage

SOAP (over Hﬁ'P)
GridFTP
MDI

Figure 4.5 Network-based grid services.

The challenge (also known in grid computing circles as The Programming Prob-
lem) is, how does the planner develop robust, secure, long-lived, well-performing
applications for dynamic, heterogeneous grids? “Grid applications” are diverse
(data, collaboration, computing, sensors, and so on); hence, it seems unlikely there
is one single solution to this problem. Most applications have been written “from
scratch,” with or without grid services. Application-specific libraries have been
shown to provide significant benefits. What is needed is [44]:

® Abstractions and models to add to speed and robustness of development
® Tools to ease application development and diagnose common problems
® Code/tool sharing to allow reuse of code components developed by others

The evolving grid architecture aims at addressing these and other issues. Some im-
portant definitions used in the development of the architecture definition are:

® Resource: An entity that is to be shared; e.g., computers, storage, data, soft-
ware

® Network protocol: A formal description of message formats and a set of rules
for message exchange across a variety of subsystems such as SANs, LANSs,
MANSs, WANS, and Global Area Networks (GANSs)

® Network-enabled service: Implementation of protocols that define a set of ca-
pabilities

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 ARCHITECTURAL CONSTRUCTS 115

® API: A specification for a set of routines to facilitate application develop-
ment. Examples include GSS API (Generic Security Service API) and MPI
(Message Passing Interface). A protocol can have multiple APIs (e.g., TCP/IP
APIs include BSD sockets, Winsock, and System V streams). The protocol
provides interoperability: programs using different APIs can exchange infor-
mation and one does not need to know the remote APIs. An API can have
multiple protocols. For example, MPI provides portability: any correct pro-
gram compiles and runs on a platform. MPI does not provide interoperability:
all processes must link to same SDK (e.g., MPICH and LAM versions of
MPI).

® Software Development Kit (SDK): A particular instantiation of an API (it
may consists of libraries and tools). Examples of SDKs include MPICH and
Motif Widgets.

® Syntax: Rules for encoding information. Examples include XML, Condor
ClassAds, Globus RSL, X.509 certificate format [Request For Comments
(RFC) 2459], Cryptographic Message Syntax (RFC 2630), and ASN.1. Syn-
taxes are distinct from protocols in the sense that a syntax may be used by
many protocols (e.g., XML), and be useful for other purposes. Syntaxes may
be layered (e.g., Condor ClassAds uses XML, which uses ASCII.)

4.3.2 Protocol Perspective

A protocol-oriented view of a grid architecture emphasizes the following [44]:

® Development of grid protocols and services

O Protocol-mediated access to remote resources

O New services, for example, resource brokering

O Mostly (extensions to) existing protocols
® Development of grid APIs and SDKs

O Interfaces to grid protocols and services

O Facilitate application development by supplying higher-level abstractions
® The model is the Internet, which has been hugely successful

A protocol and a service have a complementary, dualistic relationship. A well-de-
fined protocol provides a clearly defined service; a well-defined service can be sup-
ported by a clearly defined protocol. Protocols, services, APIs, and SDKs will, ide-
ally, be largely self-contained.

Some key upper-layer protocols and constructs of interest that were described in
the previous chapter are included in Table 4.4 [43]. The GGF’s approach has been
to propose a set of core services as basic infrastructure. These core services have
been used to construct high-level, domain-specific solutions. The design principles
are: keep participation cost low, enable local control, provide support for adapta-
tion, and use the “IP hourglass” model of many applications using a few core ser-
vices to support many fabric elements (e.g., OSs). Figure 1.6 in Chapter 1 provided

TEAM LinG - Live, Informative, Non-cost and Genuine!

116 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Table 4.4 Key protocols/constructs of interest (upper layers)

SOAP (Simple Object Transport mechanism that is independent of the underlying

Access Protocol) platform and protocol. For example, two disparate processes can
communicate without the intimate knowledge of systems and
platforms on which both of them are running.

UDDI (Universal Repository that stores the descriptions of Web services.
Description, Discovery
and Integration)

WSDL (Web Services A language that provides a way of describing the specific
Definition Language) interfaces of Web services and APIs, and is used by UDDI.

XML (eXtensible A meta-language used to describe grammatical descriptions of

Markup Language) objects and describing data structures in an open manner. It is
similar in appearance to HTML, is platform-neutral, and can be
used to represent both documents and data.

WSIL (WS-Inspection An XML-based format utilized to facilitate the discovery and
Language) aggregation of Web service descriptions in a simple and
extensible fashion.

a working model used by the Globus Project. Figure 4.6 expands on this by show-
ing the APIs and SDKs involved. As the figure shows, protocols, services, and APIs
occur at each level. Middleware such as Globus Toolkit can help planners move in
the direction of standards. Globus Toolkit has emerged as the de facto standard for
several important connectivity, resource, and collective protocols, as shown in Fig-
ure 4.6. It should be noted, however, that the going-forward graphical representa-
tion of the functional hierarchy is the one shown in Figure 4.2.

The guiding principle is that that each distinct programming environment should
not be required to implement the grid-supporting protocols and services from
scratch. Rather, such environments should be able to share common code that im-
plements core functionality. The code ought to be robust, well-architected, and self-
consistent. Also, the code ought to be “open source,” with broad industry input. The
emerging OGSA architecture enhances Web services to accommodate requirements
of the grid. OGSA defines the semantics of a grid service instance including service
instance creation, naming, lifetime management, and communication protocols.
The services that are included in the standardization are: Discovery, Lifecycle, State
Management, Service Groups, Factory, Notification, and Handle Map (these are
discussed in Section 4.5.)

Web services address discovery and invocation of persistent services. Web ser-
vices provide interface to persistent states of entire enterprises. In grid environ-
ments, one must also support transient service instances that are created/destroyed
dynamically; hence, there is a need for interfaces to the states of distributed activi-
ties. It follows that there are crucial implications for how services are managed,
named, discovered, and used. The creation of a new grid service instance involves
the creation of a new process in the hosting environment that has the primary re-

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 ARCHITECTURAL CONSTRUCTS 117

Applications |

l

[Languages/Framewarks |

. . I

Collective Service Protocols

| Collective Services

| Resource APIs and SDKs

Resource Service Protocols

| Besource Services

| Connectivity APTs |

Connectivity Protocols Local Access API= and Protocols

Figure 4.6 Protocols, services, and APIs occur at each level.

sponsibility for ensuring that the services it supports adhere to defined grid service
semantics. Multiple grid service instances may correspond to the same grid service
interface [119]. OGSA enables application programs and application users to create
transient services, as well as to discover and evaluate the properties of
existing/available grid services. The OGSA Factory, Registry, Grid Service, and
Handle Map interfaces address the creation of transient grid service instances, the
service discovery, and characterization in a VO [119].

In a typical grid-enabled environment, one needs to capture users’ inputs, dis-
cover a grid service (or several services, as needed), create a grid service instance,
invoke the grid service instance, and display the results. Often, this is facilitated
with tool kits, such as the Globus Toolkit (also see Chapter 6). Tool kits are imple-
mentations of the OGSA Development Framework (OGSADF). OGSADF is a
mechanism to actualize the grid service definition of OGSA (interface) through the
run-time hosting environment.

We expand below some of the concepts that we introduced in Chapter 3.

WSDL Use For Web Services. The material that follows in this subsection pro-
vides a short tutorial on WSDL; this subsection is based on reference [16].

WSDL is a language that provides a way of describing the specific interfaces of
Web services and APIs. Practically, WSDL can be perceived as a document written
in XML. The WSDL document describes a Web service; it specifies the location of
the service and the operations (or methods) the service exposes. In other words, it is
an XML language for describing the syntax of Web service interfaces and their lo-
cations. The WSDL specification calls it “an XML format for describing network
services as a set of endpoints operating on messages containing either document-

TEAM LinG - Live, Informative, Non-cost and Genuine!

118 STANDARDS SUPPORTING GRID COMPUTING: OGSI

oriented or procedure-oriented information.” WSDL 1.1 was submitted as a W3C
Note by Ariba, IBM, and Microsoft for describing services for the W3C XML Ac-
tivity on XML Protocols in early 2001 (a W3C Note is made available by the W3C
for discussion only; publication of a Note by W3C indicates no endorsement by
W3C or the W3C Team, or any W3C Members). The first Working Draft of WSDL
1.2 was released by W3C in 2002.

A WSDL document defines a Web Service using these major elements:

Element Defines

<portType> The operations performed by the Web service. An abstract set of operations
supported by one or more endpoints.

<message> The messages used by the Web service. An abstract definition of the data
being communicated.

<types> The data types used by the Web service. Provides information about any
complex data types used in the WSDL document. When simple types are
used, the WSDL document does not need this section.

<binding> The communication protocols used by the Web service. Describes how the
operation is invoked by specifying concrete protocol and data format
specifications for the operations and messages.

<port> Specifies a single endpoint as an address for the binding, thus defining a
single communication endpoint.

<service> Specifies the port address(es) of the binding. The service is a collection of
network endpoints or ports.

A WSDL document has a definitions element that contains the types, message,
portType, binding, and service elements as described in the table above. The main
structure of a WSDL document looks like this:

<definitions>
<types>

definition of types . . .
</types>

<message>
definition of a message . . .
</message>

<portType>

definition of a port . . .
</portType>
<binding>

definition of a binding . . .
</binding>

</definitions>

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 ARCHITECTURAL CONSTRUCTS 119

A WSDL document can also contain other elements such as extension elements
and a service element that makes it possible to group together the definitions of sev-
eral Web services in one single WSDL document.

WSDL Services. A service definition element supports the following attributes
(it defines one or more services):

® Name is optional.

® targetNamespace is the logical namespace for information about this service.
WSDL documents can import other WSDL documents, and setting target-
Namespace to a unique value ensures that the namespaces do not clash.

® xmlns is the default namespace of the WSDL document, and it is set to
http://schemas.xmlsoap.org/wsdl/. All the WSDL elements such as <defini-
tions>, <types> and <message> reside in this namespace.

¢ xmlns:xsd and xmlns:soap are standard namespace definitions that are used
for specifying SOAP-specific information as well as data types.

® xmlns:tns stands for this namespace.

WSDL Ports. The <portType> element is the most important WSDL element. It
defines a Web service, the operations that can be performed, and the messages that
are involved. The <portType> element can be compared to a function library (or a
module or class) in a traditional programming language.

WSDL Messages. The <message> element defines the data elements of an oper-
ation. Each message can consist of one or more parts. The parts can be compared to
the parameters of a function call in a traditional programming language.

WSDL Types. The <types> element defines the data type that are used by the
Web service. For maximum platform neutrality, WSDL uses XML Schema syntax
to define data types.

WSDL Bindings. Binding is an operation that occurs when the service requestor
invokes or initiates an interaction with the service at runtime, using the binding de-
tails in the service description to locate, contact, and invoke the service [43]. The
<binding> element defines the message format and protocol details for each port.

WSDL Example. Below is a simplified fraction of a WSDL document. In this ex-
ample the “portType” element defines “glossaryTerms” as the name of a “port,”
and “getTerm” as the name of an “operation.” The “getTerm” operation has an “in-
put message” called “getTermRequest” and an “output message” called “get-
TermResponse.” The “message” elements define the “parts” of each message and
the associated data types. Compared to traditional programming, “glossaryTerms”
is a function library, “getTerm” is a function with “getTermRequest” as the input
parameter, and “getTermResponse” as the return parameter.

TEAM LinG - Live, Informative, Non-cost and Genuine!

120 STANDARDS SUPPORTING GRID COMPUTING: OGSI

<message name="getTermRequest”>
<part name="term” type="xs:string”/>
</message>

<message name="getTermResponse”>
<part name="value” type="xs:string”/>
</message>
<portType name="glossaryTerms”>
<operation name="getTerm”>
<input message="getTermRequest”/>
<output message="getTermResponse”/>
</operation>
</portType>

Web Services Inspection Language (WSIL). WSIL is a simple, lightweight
mechanism for Web service discovery. WSIL is an XML document format de-
signed to facilitate the discovery and aggregation of Web service descriptions in a
simple and extensible fashion. Created by IBM and Microsoft and released in late
2001, WSIL is notable because of its simpler document-based approach; compared
with UDDI, it is more lightweight and leverages existing Web architectures better.
WSIL’s model is a decentralized one that is document-based, and leverages the ex-
isting Web infrastructure already in place (e.g., WSDL) [153].

According to the introduction to the specification [149, 152], WSIL provides an
XML format for assisting in the inspection of a site for available services and a set
of rules for how inspection-related information should be made available for con-
sumption. A WISL document provides a means for aggregating references to preex-
isting service-description documents that have been authored in any number of for-
mats. These inspection documents are then made available at the point of offering
for the service as well as through references that may be placed within a content
medium such as HTML. Specifications have been proposed to describe Web ser-
vices at different levels and from various perspectives. It is the goal of WSDL to de-
scribe services at a functional level. What has not yet been provided by these pro-
posed standards is the ability to tie together, at the point of offering for a service,
these various sources of information in a manner that is simple to create and to use;
the WSIL specification addresses this need by defining an XML grammar that facil-
itates the aggregation of references to different types of service-description docu-
ments, and then provides a well-defined pattern of usage for instances of this gram-
mar. By doing this, the WSIL specification provides a means by which to inspect
sites for service offerings. Repositories already exist in which descriptive informa-
tion about Web services has been gathered together. The WS-Inspection specifica-
tion provides mechanisms with which these existing repositories can be referenced
and utilized, so that the information contained in them need not be duplicated if
such a duplication is not desired [149, 152].

Universal Description, Discovery, and Integration (UDDI). UDDI is a
standard Web service description format and Web service discovery protocol. A

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 ARCHITECTURAL CONSTRUCTS 121

UDDI registry can contain metadata for any type of service, with “best practices”
already defined for services described by WSDL. By organizing Web services into
groups associated with categories or business processes, UDDI allows more effi-
cient search and discovery of Web services. The UDDI specification defines a four-
tier hierarchical XML schema that provides a model for publishing, validating, and
invoking information about Web services [85]. XML was chosen because it offers a
platform-neutral view of data and allows hierarchical relationships to be described
in a natural way. UDDI uses standards-based technologies, such as common Inter-
net protocols (TCP/IP and HTTP), XML, and SOAP. There are two types of UDDI
registries: public UDDI registries that serve as aggregation points for a variety of
businesses to publish their services, and private UDDI registries that serve a similar
role within organizations.

It should be noted that UDDI implements a service discovery using a centralized
model of one or more repositories containing information on multiple business enti-
ties and the services they provide. An analogy for UDDI would be the telephone
Yellow Pages: multiple businesses are grouped and listed with a description of the
goods or services they offer and how to contact them. The specification provides a
high level of functionality through SOAP by specifically requiring an infrastructure
to be deployed with substantial overhead and costs associated to its use. The UDDI
schema aims at providing a more business-centric perspective (as noted, UDDI de-
scribes an online electronic registry that provides an information structure where
various business entities register themselves and the services they offer through
their WSDL definitions) [149, 152]. On the other hand, WSIL approaches service
discovery in a decentralized fashion—service description information can be dis-
tributed to any location using a simple extensible XML document format. Unlike
UDDI, it does not concern itself with business-entity information, nor does it speci-
fy a particular service-description format. WSIL works under the assumption that
one is already familiar with the service provider, and relies on other service-de-
scription mechanisms such as the WSDL, discussed above [153]. WSIL comple-
ments, rather then competes with, UDDI.

A UDDI registry consists of the following data structure types [85]:

® businessEntity. The top-level XML element in a business UDDI entry. busi-
nessEntity captures the data partners require to find information about a busi-
ness service, including its name, industry or product category, geographic lo-
cation, and optional categorization and contact information. It includes
support for “yellow pages” taxonomies to search for businesses by industry,
product, or geography.

® businessService. The logical child of a businessEntity data structure as well
as the logical parent of a bindingTemplate structure. businessService contains
descriptive business service information about a group of related technical
services, including the group name, a brief description, technical service de-
scription information, and category information.

® bindingTemplate. The logical child of a businessService data structure.
bindingTemplate contains data that is relevant for applications that need to in-

TEAM LinG - Live, Informative, Non-cost and Genuine!

122 STANDARDS SUPPORTING GRID COMPUTING: OGSI

voke or bind to a specific Web service. This information includes the Web
service URL and other information describing hosted services, routing and
load balancing facilities, and references to interface specifications.

® tModel. Descriptions of specifications for Web services or taxonomies that
form the basis for technical fingerprints. tModel’s role is to represent the
technical specification of the Web service, making it easier for Web service
consumers to find Web services that are compatible with a particular techni-
cal specification. Web service consumers can easily identify other compatible
Web services based on the descriptions of the specifications for Web Services
in the tModel structure. For example, to send a business partner’s Web ser-
vice an RFP, the invoking service must know not only the location/URL of
the service, but what format the RFP should be sent in, what protocols are ap-
propriate, what security is required, and what form of a response will result
after sending the RFP.

Simple Object Access Protocol (SOAP). SOAP is a lightweight, XML-based
protocol for exchanging information in a decentralized, distributed environment.
SOAP supports different styles of information exchange, including:®

® Information exchange modeled after the Remote Procedure Call. This type
of exchange allows for request-response processing, in which an endpoint
receives a procedure-oriented message and replies with a correlated re-
sponse message.

® Information exchange modeled on a message-oriented mechanism. This type
of exchange supports organizations and applications that need to exchange
business or other types of documents; a message is sent but the sender may
not expect or wait for an immediate response.

SOAP has the following features:

Protocol independence
® [anguage independence

Platform and operating system independence

Support for SOAP XML messages incorporating attachments (using the mul-
tipart MIME structure)

A SOAP message consists of (i) a SOAP envelope that encloses two data struc-
tures, (ii) the SOAP header and the SOAP body, and, (iii) information about the
namespaces used to define them. The header is optional; when present, it conveys
information about the request defined in the SOAP body. For example, it might
contain transactional, security, contextual, or user profile information. The body
contains a Web service request or reply to a request in XML format.

8The rest of this short section is based on reference [85].

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 ARCHITECTURAL CONSTRUCTS 123

The SOAP specification provides a standard way to encode requests and re-
sponses. SOAP messages, when used to carry Web service requests and responses,
can conform to the WSDL definition of available Web services. WSDL can define
the SOAP message used to access the Web services, the protocols over which such
SOAP messages can be exchanged, and the Internet locations where these Web ser-
vices can be accessed. The WSDL descriptors can reside in UDDI or other directo-
ry services, and they can also be provided via configuration or other means such as
in the body of SOAP request replies.

The specification describes the structure and data types of message payloads us-
ing XML schema. The way that SOAP is used for the message and response of a
Web service is:

® The SOAP client uses an XML document that conforms to the SOAP specifi-
cation and that contains a request for the service.

® The SOAP client sends the document to a SOAP server, and the SOAP servlet
running on the server handles the document using, for example, HTTP or
HTTPS.

® The Web service receives the SOAP message, and dispatches the message as
a service invocation to the application providing the requested service.

® A response from the service is returned to the SOAP server, again using the
SOAP protocol, and this message is returned to the originating SOAP client.

SOAP provides a way to leverage the industry investment in XML. Also, since
SOAP is typically defined over “firewall-friendly” protocols such as HTTP and
SMTP, the industry investment in firewall technology is leveraged as well. Thus, by
defining SOAP as an essential part of Web services, the industry will likely enjoy
volume production use of Web services far sooner than if other strategies had been
employed.

4.3.3 Going From “Art” To “Science”

At press time, there was an effort to move grid technology from “art” to “science”
in order to achieve widespread commercialization of the technology. The material
that follows describes the “art” (various grid solutions) from which proponents are
now in the process of building out a “science” (OGSA/OGSI). The following mech-
anisms are needed (also refer to Figure 4.7) [44]:

® Fabric Layer Protocols and Services. This mechanism includes the plethora
of resources that may be shared (discrete computers, file systems, archives,
metadata catalogs, networks, sensors, etc.) The goal is to impose few con-
straints on low-level technology within a grid; namely, connectivity and re-
source-level protocols form the “neck of the hourglass”—there are many ap-
plications on top, many resources at the bottom, and a few key specifications
in the middle.

TEAM LinG - Live, Informative, Non-cost and Genuine!

124

STANDARDS SUPPORTING GRID COMPUTING: OGSI

App | High Throughput Computing System
Collective 166 management,
(APP) |failover, staging
Collective N - -
(Generic) | Brokering, certificate authorities
| API
Resource | Access to data; access to computers, .. _ S?K
access to network performance data ~ . =
cCcess
Connect | Communication, service discovery (DNS), pr_ut;i'
authentication, authorization, delegation
Compute
Fabric | Storage systems, schedulers ESHIFEY
(@)
App ‘ Discipline-Specific Data Grid Application ‘
Collective | Coherency control, replica selection, task management,
(App) virtual data catalog, virtual data code catalog, ...
Collective | Replica catalog, replica management, co-allocation,
(Generic) | certificate authorities, metadata catalogs,
Access to data, access to computers, access to network
Resource
performance data, ...
Communication, service discovery (DNS),
Connect R . .
authentication, authorization, delegation
Fabric | Storage systems, clusters, networks, network caches, ...

Figure 4.7 Examples of (a) high-throughput computing system and (b) data grid architec-

ture.

® Connectivity Layer Protocols and Services. These mechanisms focus on com-
munications (Internet protocols: IP, DNS, routing, etc.), and on security. The
Globus Toolkit GSI is an example of “art” with uniform authentication, au-
thorization, and message-protection mechanisms in a multiinstitutional set-
ting. It provides single sign-on, delegation, and identity mapping using public
key technology, along with a Secure Sockets Layer (SSL), X.509, and GSS-
API [167].

TEAM LinG - Live, Informative, Non-cost and Genuine!

(b)

4.4 WHAT IS OGSA/OGSI? A PRACTICAL VIEW 125

® Resource Layer Protocols and Services. These address the following:

O Remote allocation, reservation, monitoring, and control of compute re-
sources. The Globus Toolkit Grid Resource Allocation Management
(GRAM) is an example.

O High-performance data access and transport. The Globus Toolkit GridFTP
protocol (FTP extensions) is an example.

O Access to structure and state information. The Globus Toolkit Grid Re-
source Information Service (GRIS) is an example.

® Collective Layer Protocols and Services. These address the following:

O Index servers (also known as metadirectory services) that provide custom
views on dynamic resource collections assembled by a community

O Resource brokers for resource discovery and allocation (e.g., Condor
Matchmaker)

Replica catalogs
Replication services
Coreservation and coallocation services

O O O O

Workflow management services

Table 4.5 depicts some examples of grid programming technologies that comprise
the “art” of grid as we seek to move up to the “science” [44].

4.4 WHAT IS OGSA/OGSI? A PRACTICAL VIEW

As should be clear by now, OGSA aims at addressing standardization (for interop-
erability) by defining the basic framework of a grid application structure. Some of
the mechanisms employed in the standards formulation of grid computing were de-
scribed in the previous section and in Chapter 3. In essence, the OGSA standard de-
fines what grid services are, what they should be capable of, and what technologies
they are based on. OGSA, however, does not go into specifics of the technicalities
of the specification; instead, the aim is to help classify what is and is not a grid sys-
tem [73]. It is called an architecture because it is mainly about describing and
building a well-defined set of interfaces from which systems can be built, based on
open standards such as WSDL [143].
The objectives of OGSA are to [3, 33, 39, 50, 84, 114]:

® Manage resources across distributed heterogeneous platforms.

® Support QoS-oriented Service Level Agreements (SLAs). The topology of
grids is often complex; the interactions between/among grid resources are al-
most invariably dynamic. It is critical that the grid provide robust services
such as authorization, access control, and delegation.

® Provide a common base for autonomic management. A grid can contain a
plethora of resources, along with an abundance of combinations of resource

TEAM LinG - Live, Informative, Non-cost and Genuine!

126 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Table 4.5 Examples of grid programming technologies

MPICH-G2: Grid-enabled message passing (Message Passing Interface)
® CoG Kits, GridPort: Portal construction, based on N-tier architectures
Condor-G: workflow management
Legion: object models for grid computing
Cactus: Grid-aware numerical solver framework

Portals
® N-tier architectures enabling thin clients, with middle tiers using grid functions
O Thin clients = web browsers
O Middle tier = e.g., Java Server Pages, with Java CoG Kit, GPDK, GridPort utilities
O Bottom tier = various grid resources
® Numerous applications and projects, e.g.,
O Unicore, Gateway, Discover, Mississippi Computational Web Portal, NPACI Grid
Port, Lattice Portal, Nimrod-G, Cactus, NASA IPG Launchpad, Grid Resource
Broker

High-Throughput Computing and Condor
® High-throughput computing
O Processor cycles/day (week, month, year?) under nonideal circumstances
O “How many times can I run simulation X in a month using all available machines?”
® Condor converts collections of distributively owned workstations and dedicated clus-
ters into a distributed high-throughput computing facility
® Emphasis on policy management and reliability

Object-Based Approaches

® Grid-enabled CORBA
O NASA Lewis, Rutgers, ANL, others
O CORBA wrappers for grid protocols
O Some initial successes

® [egion
O University of Virginia
O Object models for grid components (e.g., “vault” = storage, “host” = computer)

Cactus: Modular, portable framework for parallel, multidimensional simulations

Construct codes by linking
® Small core: management services
® Selected modules: Numerical methods, grids and domain decomps, visualization and
steering, etc.
® Custom linking/configuration tools
® Developed for astrophysics, but not astrophysics specific

configurations, conceivable resource-to-resource interactions, and a litany of
changing state and failure modes. Intelligent self-regulation and autonomic
management of these resources is highly desirable.

® Define open, published interfaces and protocols for the interoperability of di-
verse resources. OGSA is an open standard managed by a standards body.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.4 WHAT IS OGSA/OGSI? A PRACTICAL VIEW 127

® Exploit industry standard integration technologies and leverage existing solu-
tions where appropriate. The foundation of OGSA is rooted in Web services,
for example, SOAP and WSDL, are a major part of this specification.

OGSA'’s companion OGSI document consists of specifications on how work is
managed, distributed, and how service providers and grid services are described. The
Web services component is utilized to facilitate the distribution and the management
of work across the grid. Because Web services offer a transparent method of com-
munication between hosts (irrespective of the underlying language or platform), one
can utilize these services to transfer work, to describe resources and configuration in-
formation, and to communicate and dispatch grid information. WSDL provides a
simple method of describing and advertising the Web services that support the grid’s
application [73]. Summarizing these observations, OGSA is the blueprint, OGSl is a
technical specification, and Globus Toolkit is an implementation of the framework.

OGSA describes and defines a Web-services-based architecture composed of a set
of interfaces and their corresponding behaviors to facilitate distributed resource shar-
ing and accessing in heterogeneous dynamic environments. A set of services based
on open and stable protocols can hide the complexity of service requests by users or
by other elements of a grid. Grid services enable virtualization, virtualization, in
turn, can transform computing into a ubiquitous infrastructure that is more akin to an
electric or water utility, as envisioned in the opening paragraph of this chapter [143].

OGSA relies on the definition of grid services in WSDL, which, as noted, de-
fines, for this context, the operations names, parameters, and their types for grid
service access [119]. Based on the OGSI specification, a grid service instance is a
Web service that conforms to a set of conventions expressed by the WSDL as ser-
vice interfaces, extensions, and behaviors [49]. Because the OGSI standard is based
on a number of existing standards (XML, Web services, WSDL), it is an open and
standards-based solution. This implies that, in the future, grid services can be built
that are compatible with the OGSI standard, even though they may be based on a
variety of different languages and platforms [73].

Specifically, the grid service interface (see Table 4.6 and [84, 114]) is described
by WSDL, which defines how to use the service. A new tag, gsdl, has been added to
the WSDL document for grid service description. The UDDI registry and WSIL
document are used to locate grid services. The transport protocol SOAP is used to
connect data and applications for accessing grid services. All services adhere to
specified grid service interfaces and behaviors. Grid service interfaces correspond
to portTypes in WSDL used in current Web services solutions [119].

The interfaces of grid services address discovery, dynamic service-instance cre-
ation, lifetime management, notification, and manageability; the conventions of
grid services address naming and upgrading issues. The standard interface of a grid
service includes multiple bindings and implementations (“implementations” in-
clude Java and procedural/object-oriented computer programming languages). Grid
services, such as the ones just cited, can, therefore, be deployed on different hosting
environments, even different operating systems. OGSA also provides a grid securi-
ty mechanism to ensure that all the communications between services are secure.

TEAM LinG - Live, Informative, Non-cost and Genuine!

128 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Table 4.6 Proposed OGSA grid service interfaces*

Port type Operation Description

GridService FindServiceData Query a variety of information about the grid service
instance, including basic introspection information
(handle, reference, primary key, home handle map:
terms to be defined), richer per-interface information,
and service-specific information (e.g., service in-
stances known to a registry). Extensible support for
various query languages.

SetTermination Time Set (and get) termination time for grid service

instance
Destroy Terminate grid service instance.
Notification- SubscribeTo- Subscribe to notifications of service-related events,
Source NotificationTopic based on message type and interest statement. Allows

for delivery via third-party messaging services.

Notification- Deliver Notification Carry out asynchronous delivery of notification

Sink messages.

Registry RegisterService Conduct soft-state registration of grid service handles.
UnregisterService Deregister a grid service handle.

Factory CreateService Create new grid service instance.

Handle Map FindByHandle Return grid service reference currently associated

with supplied grid service handle.

*Interfaces for authorization, policy management, manageability, and likely other purposes remain to be
defined.

The definition of standard service interfaces and the identification of the protocol(s)
are addressed in current OGSA specifications [119].

Service capabilities (that is, the services offered by a particular company or or-
ganization) are widely used in existing Web services solutions. Likewise, grid ser-
vices are characterized by the capabilities they afford. A grid service capability
could be comprised of computational resources, storage resources, networks, pro-
grams, databases, and so on. A grid service implements one or more interfaces,
where each interface defines a set of method operations that is invoked by con-
structing a method call through, method signature adaptation using SOAP [119].

Like the majority of Web services, OGSI services use WSDL as a service de-
scription mechanism. There are two fundamental requirements for describing Web
services based on the OGSI [49]:

1. The ability to describe interface inheritance—a basic concept with most of
the distributed object systems.

2. The ability to describe additional information elements with the interface de-
finitions.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 129

The WSDL 1.1 specification lacks the two abilities just enumerated in its definition
of portType. Hence, at press time, OGSI was utilizing an extension WSDL called
GWSDL (Grid-extension to WSDL); however, there was a consensus among OGSI
Work Group members to eventually use the WSDL 1.2 specification (when WSDL
1.2 reaches the recommendation stage, it may eliminate the need to use GWSDL)
[49]. The WSDL 1.2 working group has agreed to support the just-listed features
through portType inheritance and an open content model for portTypes. As an inter-
im decision, OGSI has developed a new schema for portType definition (extended
from normal WSDL 1.1 schema portType Type) under the new GWSDL name-
space definition. Another noteworthy aspect of OGSI is the naming convention
adopted for the portType operations and the lack of support for operator overload-
ing. In these cases, OGSI follows the same conventions as described in the suggest-
ed WSDL 1.2 specification [49].

From a near-term implementation perspective, the Globus Toolkit is the primary
solution that supports the new standards of the OGSA/OGSI system (we cover
some details of this in Chapter 6.) IBM is also deploying a version of WebSphere,
the Web development platform, that makes use of grid technology to help spread
the load of requests for a Web application [73].

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL

4.5.1 Key Aspects

This section provides a more detailed view of OGSA/OGSI. Keep in mind that the
key principle of OGSA is that all grid resources—both logical and physical—are
modeled as services. There are two main logical components of OGSA: (i) the
Web-services-plus-OGSI layer, and (ii) the OGSA-architected services layer. Four
main layers comprise the OGSA architecture, as shown in Figure 4.2 [3, 33, 39, 50,
84, 114]:

® Grid applications layer. This layer is the user-visible layer. It supports user
applications. Eventually, a “rich” set of grid-architected services is expected
to be developed.

® OGSA-architected grid services layer. Services in this layer include: Dis-
covery, Lifecycle, State management, Service Groups, Factory, Notification,
and Handle Map. These services are based on the Web services layer. The
GGF was working at press time to define many of these architected grid ser-
vices in areas such as program execution, data services, and core services.
Some are already defined (and implementations have already appeared.)

® Web Services layer, plus the OGSI extensions that define grid services.
The OGSI specification defines grid services and builds on standard Web ser-
vices technology. OGSI exploits the mechanisms of Web services such as
XML and WSDL to specify standard interfaces, behaviors, and interaction for
all grid resources. OGSI extends the definition of Web services to provide ca-

TEAM LinG - Live, Informative, Non-cost and Genuine!

130 STANDARDS SUPPORTING GRID COMPUTING: OGSI

pabilities for dynamic, stateful, and manageable Web services that are re-
quired to model the resources of the grid.

® Physical and logical resources layer. The concept of resources is central to
OGSA and to grid computing in general. Resources, as discussed in Chapter
3, comprise the capabilities of the grid. Physical resources include servers,
storage, and network. Above the physical resources are logical resources.
Logical resources provide additional function by virtualizing and aggregating
the resources in the physical layer. General-purpose middleware such as file
systems, database managers, directories, and workflow managers provide
these abstract services on top of the physical grid.

The GGF OGSA working group found it necessary to augment core Web services
functionality to address grid services requirements. OGSI extends Web services by
introducing interfaces and conventions in two main areas [3, 33, 39, 50, 84, 114]:

1. “Interfaces.” One needs to take into consideration the dynamic and potential-
ly transient nature of services in a grid: particular service instances may come
and go as work is dispatched, as resources are configured and provisioned,
and as system state changes. Therefore, grid services need interfaces to man-
age the creation, destruction, and life-cycle management of these dynamic
services.

2. “State.” Grid services typically have attributes and data associated with them.
This is similar in concept to the traditional structure of objects in object-ori-
ented programming: objects have behavior and data. Likewise, Web services
were found to be in need of being extended to support state data associated
with grid services. Basic Web services are stateless (e.g., add, subtract). Most
real-world applications involve stateful transactions [e.g., query (sd2), get-
data (row3-row17)]. State is linked to a “handle” or sessionlID as a parameter.
Protocols such as SOAP, SMTP, and FTP use state mechanisms (sessionlID,
packet headers, TCP sockets, respectively).

Consistent with these two observations, OGSI introduces an interaction model
for grid services. The interaction model provides a uniform way for software devel-
opers to model and interact with grid services by providing interfaces for discovery,
life cycle, state management, creation and destruction, event notification, and refer-
ence management (these services were depicted in Figure 4.3.) Below, we list inter-
faces and conventions that OGSI introduces [3, 33, 39, 50, 84, 114].

® Factory. A mechanism (interface) that provides a way to create new grid ser-
vices. Factories may create temporary instances of limited function, such as a
scheduler creating a service to represent the execution of a particular job; or
they may create longer-lived services such as a local replica of a frequently
used data set. Not all grid services are created dynamically; for example,
some services might be created as the result of an instance of a physical re-
source in the grid, such as a processor, storage, or network device.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 131

¢ Life cycle. A mechanism architected to prevent grid services from consuming

resources indefinitely without requiring a large-scale distributed “garbage
collection” scavenger. Every grid service has a termination time set by the
service creator or factory. Because grid services may be transient, grid service
instances are created with a specified lifetime. The lifetime of any particular
service instance can be negotiated and extended, as required, by components
that are dependent on or manage that service. In turn, a client with appropriate
authorization can use termination time information to check the availability
(lease period) of the service; the client can also request to extend the current
lease time by sending a keep-alive message to the service with a new termina-
tion time. If the service accepts this request, the lease time can be extended to
the new termination time requested by the client. This soft-state life cycle is
controlled by appropriate security and policy decisions of the service, and the
service has the authority to control this behavior (for example, a service can
arbitrarily terminate a service or can extend its termination time even while
the client holds a service reference) [49].

State management. As previously noted, grid services can have “state.”
OGSI specifies a framework for representing this state, called service data,
and a mechanism for inspecting or modifying that state, named Find/SetSer-
viceData. Furthermore, OGSI requires a minimal amount of state in service
data elements that every grid service must support, and requires that all ser-
vices implement the Find/SetServiceData portType.

Service groups. Service groups are collections of grid services that are in-
dexed (using service data described above) for some specific purpose. For ex-
ample, they might be used to collect all the services that represent the re-
sources in a particular cluster node within the grid.

Notification. Services interact with one another by exchanging messages
based on service invocation. The state information (the service data described
above) that is modeled for grid services changes as the system runs. Many in-
teractions between grid services require dynamic monitoring of changing
state. Notification applies a traditional publish/subscribe paradigm to this
monitoring. Grid services support an interface (NotificationSource) to permit
other grid services (NotificationSink) to subscribe to changes. The internal
state of a grid service can keep track that this grid service has received one or
zero messages. This reliable message delivery mechanism guaranteed by the
internal state can build business-oriented transactions [119]. In a transient
stateful service, OGSA provides a mechanism to capture the state information
associated with any operation that fails. If an operation fails, the keep-alive
messages cease if there is no service client for invoking this running service
instance. Then the grid service instance automatically times out and frees the
computing resources associated with this service instance [119].

Handle Map. This deals with service identity. When Factories are used to
create a new instance of a Grid Service, the Factory returns the identity of the
newly instantiated service. This identity is composed of two parts: a Grid Ser-
vice Handle (GSH) and a Grid Service Reference (GSR). A GSH provides a

TEAM LinG - Live, Informative, Non-cost and Genuine!

132 STANDARDS SUPPORTING GRID COMPUTING: OGSI

reference the grid service indefinitely; GSR can change within the grid ser-
vices lifetime. The Handle Map interface provides a way to obtain a GSR giv-
en a GSH. The user application invokes create Grid Service requests on the
Factory interface to create a new service instance. The newly created service
instance associated with the grid service interface will be automatically allo-
cated computing resources. Meanwhile, an initial lifetime of the instance can
be specified before the service instance is created. The newly created service
instance will keep the user credentials for performing further interactions
with other systems over the Internet. The newly created grid service instance
will be automatically assigned a globally unique name called the GSH, which
is used to distinguish this specific service instance from other grid service in-
stances [119].

These enhancements are specified in OGSI. As the OGSI specification was fi-
nalized and implementations began to appear, some standards organizations be-
came interested in incorporating a portion of the functionality outlined in OGSI
within appropriate Web services standards; hence, over time, it is expected that
much of the OGSI functionality will be incorporated in Web services standards [3,
33, 39, 50, 84, 114].

4.5.2 Ancillary Aspects

Drilling down an additional level of detail, one can further categorize grid-archi-
tected services into four categories, as shown in Figure 4.8:

® Grid core services

® Grid program execution services
® @rid data services

® Domain-specific services

Domain Domain Domain Domain
Specific Service || Specific Service Specific Service Specific Service

Grid Program

Execution Services Grid Core Services il ke EElees

Extended Web Services (WSDL 1.X)

Figure 4.8 The structure of OGSA architected services.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 133

Grid Core Services. Figure 4.9 shows that the grid core services are composed
of four main types of services:

1. Service management
2. Service communication
3. Policy management

4. Security

Unlike the OGSI functions that are largely implemented as extensions to basic Web
Services protocols and an interaction model, these core services are actually imple-
mented as grid services (upon the OGSI base). These services are considered core
primarily because it is expected that they will be broadly exploited by most higher-
level services implemented either in support of program execution or data access, or
as domain-specific services [3, 33, 39, 50, 84, 114].

Service management. Service management provides functions that manage the
services deployed in the distributed grid. It automates a variety of installation,
maintenance, monitoring, and troubleshooting tasks within a grid system. Service
management includes functions for provisioning and deploying the system compo-

Grld_Prograr_n Grid Core Services Grid Data Services
Executive Services
Service Management | | Service Communication | | Security | | Policy Management

Registries and Discovery Services
—Attribute Propagation and Query
—Service Domain

Service Orchestration

Metering & Accounting
—Installation & Deployment

® Managing and Queuing Services
e Event Services
® Distributed Secure Logging Service

® Authentication
® Authorization & Access Control
® Credential Validation & Transformation

® Policy Service Manager

Policy Agent

Policy Transformation Service

Policy Resolution Service

Policy Validation Service

Policy Administration Services and Negotiation Framework

Figure 4.9 Grid core services.

TEAM LinG - Live, Informative, Non-cost and Genuine!

134 STANDARDS SUPPORTING GRID COMPUTING: OGSI

nents; it also includes functions for collecting and exchanging data about the opera-
tion of the grid. This data is used for both “online” and “offline”” management oper-
ations, and includes information about faults, events, problem determination, audit-
ing, metering, accounting, and billing [3, 33, 39, 50, 84, 114].

Service communication. This includes a gamut of functions that support the ba-
sic methods for grid services to communicate with each other. These functions sup-
port several communication models that may be composed to enable effective inter-
service communication, including queued messages, publish—subscribe event
notification, and reliable distributed logging [3, 33, 39, 50, 84, 114]. As previously
noted, grid services can be published to a UDDI registry, or WSIL documents; the
UDDI registry becomes a central place to store such information about and loca-
tions for grid services that enables publishing and searching of trading partners’
businesses and their grid services. Also, as previously noted, there are two types of
UDDI registries: private and public. Application developers and/or service
providers can publish the grid services to the public UDDI registries operated by
IBM, Microsoft, HP, or SAP. If one wants to publish one’s own private or confi-
dential grid services, one can use a private UDDI registry. As an alternative, for
testing purposes or for small-scale integration, a developer can publish the compa-
ny’s grid services to WSIL documents, since WSIL enables grid services discovery,
deployment, and invocation without the need for a UDDI registry. WSIL provides
the means for aggregating references of preexisting service description documents
that have been authored in any number of formats; these inspection documents are
then made available on a Web site [119]. Figure 4.10 illustrates an example grid
service deployment and publishing diagram. The Remote Procedure Call servlet of
SOAP and the real implementation of the grid services can be deployed on an appli-
cation server. All the invocation messages will be captured by the SOAP Remote
Procedure Call servlet that routes the messages to the corresponding grid service
[119].

Policy services. These create a general framework for creation, administration,
and management of policies and agreements for system operation. Policy services
include policies governing security, resource allocation, and performance, as well
as an infrastructure for “policy-aware” services to use policies to govern their op-
eration. Policy and agreement documents provide a mechanism for the representa-
tion and negotiation of terms between service providers and their clients (either
user requests or other services); terms include specifications, requirements, and
objectives for function, performance, and quality that the suppliers and consumers
exchange and that they can then use to influence their interactions [3, 33, 39, 50,
84, 114].

Security services. Security services support, integrate, and unify popular security

models, mechanisms, protocols, and technologies in a way that enables a variety of
systems to interoperate securely. These security services enable and extend core

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 135

Invocation Deployment

Request

SOAP RPC

Grid Service
Implementation

Real
Services
Gnd Service

Implementation

-EIB
-Jawa Class
-others

Grid Services

Interfaces
l l
Registry v
Grid Services = _
Private UDDI Public UDDI Grid Services

WSIL

Figure 4.10 An example grid service deployment and publishing diagram.

Web services security protocols and bindings and provide service-oriented mecha-
nisms for authentication, authorization, trust policy enforcement, credential trans-
formation, and so on [3, 33, 39, 50, 84, 114].

Grid Program Execution Services. Grid program execution services are de-
picted in Figure 4.11. Mechanisms for job scheduling and workload management
implemented as part of this class of services are central to grid computing and the
ability to virtualize processing resources. Although OGSI and core grid services are
generally applicable to any distributed computing system, the grid program execu-
tion service class is unique to the grid model of distributed task execution that sup-
ports high-performance computing, parallelism, and distributed collaboration [3,
33, 39, 50, 84, 114].

Grid Data Services. Grid data services are also depicted in Figure 4.11. These
interfaces support the concept of data virtualization and provide mechanisms relat-
ed to distributed access to information of many types including databases, files,
documents, content stores, and application-generated streams. Services that com-
prise the grid data services class complement the computing virtualization conven-
tions specified by program execution services (OGSA placing data resources on an
equivalent level with computing resources). Grid data services will exploit and vir-

TEAM LinG - Live, Informative, Non-cost and Genuine!

136 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Domain Domain Domain Domain
Specific Service || Specific Service Specific Service Specific Service

Grid Program

Execution Services Grid Core Services Sl Deliz ey ios

Expanded Web Services

(WSDL 1.X)
- - ® Data Access Services
* Job Scheduler & Qpeumg Serwces ¢ Data Transformation & Federation Services
® Resource Reservation Services e Data Replication Service
® Workload Managers and Micro- e Data Caching Service
Scheduling Services ® MetaData Catalog Services

Figure 4.11 Grid program execution services and grid data services.

tualize data using placement methods like data replication, caching, and high-per-
formance data movement to give applications required QoS access across the dis-
tributed grid. Methods for federating multiple disparate, distributed data sources
may also provide integration of data stored under differing schemas such as files
and relational databases [3, 33, 39, 50, 84, 114].

Domain-Specific Services. The three categories discussed above (grid core
services, grid program execution services, and grid data services) represent areas of
active work by GGF research or working groups. Over time, as these services ma-
ture, domain-specific services can also be specified. Domain-specific services will
make use of the functionality that these services supply. It is critical that the GGF
working groups are concentrating on specifying a broad set of useful grid services
that software vendors and developers can then begin to implement.

4.5.3 Implementations of OGSI

As the core of the grid service architecture, OGSI needs to be hosted on a delivery
platform that supports Web services. Vendors probably will not compete by offer-
ing a wide range of implementations of OGSI. Instead, as part of the “fabric” of
Web services implementations, vendors that offer OGSI implementations will like-
ly directly use existing open source implementations provided by organizations like
Globus, and/or they will integrate implementations with their hosting platform
products like WebSphere, WebLogic, Apache, or NET [50]. However, grid-archi-

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.5 OGSA/OGSI SERVICE ELEMENTS AND LAYERED MODEL 137

tected services provide some opportunities for vendors and organizations to com-
pete and differentiate themselves. This competition will create an “economy” of
grid software providers whose innovation will help drive the acceptance of stan-
dards like OGSI/OGSA, and this will allow customers to build systems out of inter-
operable components. Areas of functionality in grid program execution and data
services will require innovation and novel approaches, and these may well speed
the market acceptance of grid solutions and provide market opportunities for ven-
dors. In Figure 4.12, one notices that grid core services are likely to see a mix of
open source reference implementations and vendor-provided “value added” imple-
mentations. The bulk of technologies in this area will likely be commoditized, but
areas like policy and security could provide vendors a chance to differentiate them-
selves [3, 33, 39, 50, 84, 114]. Implementations in grid program execution and data
services are expected to consist largely of value-added products. These areas repre-
sent business opportunities for vendors to integrate leading middleware offerings
within the OGSA framework and allow a rich “ecosystem” of grid solutions to de-
velop. Although OGSI/OGSA is novel in the respect that it extends Web Services,
it is not clear that software vendors will be able to differentiate themselves based on

Value-added middleware
WebSphere Avaki
Tivoli Data Synapse
The Globus Project - -
DB2 United Devices
The Globus Project / Platform Computing

Domain-Specific | | Domain-Specific Domain-Specific
Service Service Service

Grid program

Grid data services i i . .
Grid core services || gyecution services

OGSI—Open Grid Services Infrastructure

Web services

/l

Data Synapse WebSphere Platform Computing
United Devices Avaki
The Globus Project

Figure 4.12 Grid program execution and data services hosting.

TEAM LinG - Live, Informative, Non-cost and Genuine!

138 STANDARDS SUPPORTING GRID COMPUTING: OGSI

the quality of their core services implementations; such differention will likely be
based on the business creativity and/or import of their domain-specific implementa-
tions [50].

For OGSA to grow in acceptance it needs to be implemented on multiple host-
ing platforms. The Globus Toolkit 3 (GT3) historically was the first full-scale im-
plementation of the OGSI standard (see Chapter 6 for a more extensive discussion
of this topic). GT3 was developed by the Globus Project, a research and develop-
ment project focused on enabling the application of grid concepts to scientific, en-
gineering, and commercial computing. It is expected that many of the OGSI im-
plementations will be delivered via the open source development model and that
existing reference implementations (GT3) will be used unmodified in appropriate
hosting environments [50]. GT3 is written in Java language using the J2EE frame-
work; however, nothing limits OGSI from being implemented in other program-
ming languages and hosted in other environments (the term “hosting environ-
ment” is used to denote the server in which one or more grid service
implementations run). Figure 4.13 shows that a Java implementation of OGSI can
be hosted on any of several J2EE environments (such as JBOSS, WebSphere, or
BEA Weblogic). However, alternative platforms such as a traditional C or C++
environment or C# and Microsoft .NET are other possible hosting environments
[50]. Ideally, a small number of core implementations of OGSI (perhaps one per
hosting platform) will be jointly developed by the industry and used in many
products [50].

The Globus Project

® Open source
OGSA Architected Services | e Reference

implementation

OGSI|—Open Grid Services Infrastructure z
|Discovery|| Lifecycle ||State Mgt.| | (S;:Qﬂgi | Factory || Notification | | Handle Map|

/ Web services \
[\

Hosting platform Hosting platform
(Java) (environments)
WebSphere Microsoft

BEA Globus (C/C++)
Jboss (Python)

Oracle

Figure 4.13 OGSI and web services hosting.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 139
4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW

This section® provides a more detailed view of OGSI based on the OGSI specifica-
tion itself. For a more comprehensive description of these concepts, the reader
should consult the specification.

4.6.1 Introduction

The OGSA [114] integrates key grid technologies [3, 96] (including the Globus
Toolkit) with Web services mechanisms [148] to create a distributed system frame-
work based on the OGSI. A grid service instance is a (potentially transient) service
that conforms to a set of conventions, expressed as WSDL interfaces, extensions,
and behaviors, for such purposes as lifetime management, discovery of characteris-
tics, and notification. Grid services provide for the controlled management of the
distributed and often long-lived state that is commonly required in sophisticated
distributed applications. OGSI also introduces standard factory and registration in-
terfaces for creating and discovering grid services.

OGSI defines a component model that extends WSDL and XML schema defini-
tion to incorporate the concepts of

o Stateful Web services

® Extension of Web services interfaces
Asynchronous notification of state change
References to instances of services
Collections of service instances

Service state data that augment the constraint capabilities of XML schema de-
finition

The OGSI specification (V1.0 at press time) defines the minimal, integrated set of
extensions and interfaces necessary to support definition of the services that will
compose OGSA. The OGSI V1.0 specification proposes detailed specifications for
the conventions that govern how clients create, discover, and interact with a grid
service instance. That is, it specifies (1) how grid service instances are named and
referenced; (2) the base, common interfaces (and associated behaviors) that all grid
services implement; and (3) the additional (optional) interfaces and behaviors asso-
ciated with factories and service groups. The specification does not address how
grid services are created, managed, and destroyed within any particular hosting en-
vironment. Thus, services that conform to the OGSI specification are not necessari-
ly portable to various hosting environments, but any client program that follows the

This section is based on Open Grid Services Infrastructure (OGSI) [84], copyright © Global Grid Fo-
rum (2003). This document and translations of it may be copied and furnished to others, and derivative
works that comment on or otherwise explain it or assist in its implementation may be prepared, copied,
published, and distributed, in whole or in part, without restriction of any kind, provided that the above
copyright notice and this paragraph are included on all such copies and derivative works

TEAM LinG - Live, Informative, Non-cost and Genuine!

140 STANDARDS SUPPORTING GRID COMPUTING: OGSI

conventions can invoke any grid service instance conforming to the OGSI specifi-
cation (of course, subject to policy and compatible protocol bindings).

The term hosting environment is used in the OGSI specification to denote the
server in which one or more grid service implementations run. Such servers are typ-
ically language or platform specific; examples include native Unix and Windows
processes, J2EE application servers, and Microsoft .NET.

4.6.2 Setting the Context

GGF calls OGSI the “base for OGSA.” Specifically, there is a relationship between
OGSI and distributed object systems and also a relationship between OGSI and the
existing (and evolving) Web services framework. One needs to examine both the
client-side programming patterns for grid services and a conceptual hosting envi-
ronment for grid services. The patterns described in this section are enabled but not
required by OGSI.

4.6.2.1 Relationship to Distributed Object Systems. A given grid service
implementation is an addressable and potentially stateful instance that implements
one or more interfaces described by WSDL portTypes. Grid service factories can be
used to create instances implementing a given set of portType(s). Each grid service
instance has a notion of identity with respect to the other instances in the distributed
grid. Each instance can be characterized as state coupled with behavior published
through type-specific operations. The architecture also supports introspection in
that a client application can ask a grid service instance to return information de-
scribing itself, such as the collection of portTypes that it implements.

Grid service instances are made accessible to (potentially remote) client applica-
tions through the use of a grid service handle and a grid service reference (GSR).
These constructs are basically network-wide pointers to specific grid service in-
stances hosted in (potentially remote) execution environments. A client application
can use a grid service reference to send requests, represented by the operations de-
fined in the portType(s) of the target service description directly to the specific in-
stance at the specified network-attached service endpoint identified by the grid ser-
vice reference.

In many situations, client stubs and helper classes isolate application program-
mers from the details of using grid service references. Some client-side infrastruc-
ture software assumes responsibility for directing an operation to a specific instance
that the GSR identifies.

The characteristics introduced above (stateful instances, typed interfaces, global
names, etc.) are frequently also cited as fundamental characteristics of distributed
object-based systems. There are, however, also various other aspects of distributed
object models (as traditionally defined) that are specifically not required or pre-
scribed by OGSI. For this reason, OGSI does not adopt the term distributed object
model or distributed object system when describing these concepts, but instead uses
the term “open grid services infrastructure,” thus emphasizing the connections that
are established with both Web services and grid technologies.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 141

Among the object-related issues that are not addressed within OGSI are imple-
mentation inheritance, service instance mobility, development approach, and hosting
technology. The grid service specification does not require, nor does it prevent, im-
plementations based upon object technologies that support inheritance at either the
interface or the implementation level. There is no requirement in the architecture to
expose the notion of implementation inheritance either at the client side or at the ser-
vice provider side of the usage contract. In addition, the grid service specification
does not prescribe, dictate, or prevent the use of any particular development approach
or hosting technology for grid service instances. Grid service providers are free to im-
plement the semantic contract of the service description in any technology and host-
ing architecture of their choosing. OGSI envisions implementations in J2EE, .NET,
traditional commercial transaction management servers, traditional procedural Unix
servers, and so forth. It also envisions service implementations in a wide variety of
both object-oriented and nonobject-oriented programming languages.

4.6.2.2 Client-Side Programming Patterns. Another important issue is
how OGSI interfaces are likely to be invoked from client applications. OGSI ex-
ploits an important component of the Web services framework: the use of WSDL to
describe multiple protocol bindings, encoding styles, messaging styles (RPC versus
document oriented), and so on, for a given Web service. The Web Services Invoca-
tion Framework (WSIF) and Java API for XML RPC (JAX-RPC) are among the
many examples of infrastructure software that provide this capability.

Figure 4.14 depicts a possible (but not required) client-side architecture for
OGSI. In this approach, a clear separation exists between the client application and

Protocol 1
(binding) Invocation
Proxy specific Stub of Web
service

Protocol 2
(binding)

specific Stub

Y

Client
Application

Protocol 3
(binding)
specific Stub

client Protocol 4

interface (binding)
- specific Stub

Figure 4.14 Possible client-side runtime architecture.

TEAM LinG - Live, Informative, Non-cost and Genuine!

142 STANDARDS SUPPORTING GRID COMPUTING: OGSI

the client-side representation of the Web service (proxy), including components for
marshaling the invocation of a Web service over a chosen binding. In particular, the
client application is insulated from the details of the Web service invocation by a
higher-level abstraction: the client-side interface.

Various tools can take the WSDL description of the Web service and generate
interface definitions in a wide range of programming-language-specific constructs
(e.g., Java interfaces and C#). This interface is a front end to specific parameter
marshaling and message routing that can incorporate various binding options pro-
vided by the WSDL. Further, this approach allows certain efficiencies, for example,
detecting that the client and the Web service exist on the same network host, there-
fore avoiding the overhead of preparing for and executing the invocation using net-
work protocols.

Within the client application runtime, a proxy provides a client-side representa-
tion of remote service instance’s interface. Proxy behaviors specific to a particular
encoding and network protocol (binding, in Web services terminology) are encap-
sulated in a protocol-specific (binding-specific) stub. Details related to the binding-
specific access to the grid service instance, such as correct formatting and authenti-
cation mechanics, happen here; thus, the application is not required to handle these
details itself.

It is possible, but not recommended, for developers to build customized code
that directly couples client applications to fixed bindings of a particular grid service
instance. Although certain circumstances demand potential efficiencies gained by
this style of customization, this approach introduces significant inflexibility into a
system and therefore should only be used under extraordinary circumstances.

The developers of the OGSI specification expect the stub and client-side infra-
structure model that we describe to be a common approach to enabling client access
to grid services. This includes both application-specific services and common infra-
structure services that are defined by OGSA. Thus, for most software developers
using grid services, the infrastructure and application-level services appear in the
form of a class library or programming language interface that is natural to the
caller. WSDL and the GWSDL extensions provide support for enabling heteroge-
neous tools and enabling infrastructure software.

4.6.2.3 Client Use of Grid Service Handles and References. As noted, a
client gains access to a grid service instance through grid service handles and grid ser-
vice references. A grid service handle (GSH) can be thought of as a permanent net-
work pointer to a particular grid service instance. The GSH does not provide sufficient
information to allow a client to access the service instance; the client needs to “re-
solve” a GSH into a grid service reference (GSR). The GSR contains all the necessary
information to access the service instance. The GSR is not a “permanent” network
pointer to the grid service instance because a GSR may become invalid for various rea-
sons; for example, the grid service instance may be moved to a different server.

OGSI provides a mechanism, the HandleResolver to support client resolution of
a grid service handle into a grid service reference. Figure 4.15 shows a client appli-
cation that needs to resolve a GSH into a GSR.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 143

Client
Application

GSR Resolve this

GSH

HandleResolver
Grid Service

Handle Scheme
Specific resolver
protocol

HandleResolver
Grid
Service

HandleResolver
Grid
Service

Figure 4.15 Resolving a GSH.

The client resolves a GSH into a GSR by invoking a HandleResolver grid ser-
vice instance identified by some out-of-band mechanism. The HandleResolver can
use various means to do the resolution; some of these means are depicted in
Figure 4.15. The HandleResolver may have the GSR stored in a local cache. The
HandleResolver may need to invoke another HandleResolver to resolve the GSH.
The HandleResolver may use a handle resolution protocol, specified by the par-
ticular kind (or scheme) of the GSH to resolve to a GSR. The HandleResolver
protocol is specific to the kind of GSH being resolved. For example, one kind of

TEAM LinG - Live, Informative, Non-cost and Genuine!

144 STANDARDS SUPPORTING GRID COMPUTING: OGSI

handle may suggest the use of HTTP GET to a URL encoded in the GSH in order
to resolve to a GSR.

4.6.2.4 Relationship to Hosting Environment. OGSI does not dictate a
particular service-provider-side implementation architecture. A variety of ap-
proaches are possible, ranging from implementing the grid service instance direct-
ly as an operating system process to a sophisticated server-side component model
such as J2EE. In the former case, most or even all support for standard grid ser-
vice behaviors (invocation, lifetime management, registration, etc.) is encapsulat-
ed within the user process; for example, via linking with a standard library. In the
latter case, many of these behaviors are supported by the hosting environment.

Figure 4.16 illustrates these differences by showing two different approaches to
the implementation of argument demarshaling functions. One can assume that, as is
the case for many grid services, the invocation message is received at a network
protocol termination point (e.g., an HTTP servlet engine) that converts the data in
the invocation message into a format consumable by the hosting environment. The
top part of Figure 4.16 illustrates two grid service instances (the oval) associated
with container-managed components (e.g., EJIBs within a J2EE container). Here,
the message is dispatched to these components, with the container frequently pro-
viding facilities for demarshaling and decoding the incoming message from a for-
mat (such as an XML/SOAP message) into an invocation of the component in na-
tive programming language. In some circumstances (the oval), the entire behavior
of a grid service instance is completely encapsulated within the component.

Container
Grid
Protocol - service
termination ~ implementaion
£y
sc?
59 &
[R=
FE
8 [a]
Protocol Grid
termination | SENIED
implementation
Grid
Protocol - service
termination “ \implementation

Figure 4.16 Two approaches to the implementation of argument demarshaling functions in
a grid service hosting environment.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 145

In other cases (the oval), a component will collaborate with other server-side ex-
ecutables, perhaps through an adapter layer, to complete the implementation of the
grid service behavior. The bottom part of Figure 4.16 depicts another scenario
wherein the entire behavior of the grid service instance, including the demarshal-
ing/decoding of the network message, has been encapsulated within a single exe-
cutable. Although this approach may have some efficiency advantages, it provides
little opportunity for reuse of functionality between grid service implementations.

A container implementation may provide a range of functionality beyond simple
argument demarshaling. For example, the container implementation may provide
lifetime management functions, automatic support for authorization and authentica-
tion, request logging, intercepting lifetime management functions, and terminating
service instances when a service lifetime expires or an explicit destruction request
is received. Thus, one avoids the need to reimplement these common behaviors in
different grid service implementations.

4.6.3 The Grid Service

The purpose of the OGSI document is to specify the (standardized) interfaces and
behaviors that define a grid service. In brief, a grid service is a WSDL-defined ser-
vice that conforms to a set of conventions relating to its interface definitions and be-
haviors. Thus, every grid service is a Web service, though the converse of this state-
ment is not true. The OGSI document expands upon this brief statement by

® Introducing a set of WSDL conventions that one uses in the grid service spec-
ification; these conventions have been incorporated in WSDL 1.2 [150].

® Defining service data that provide a standard way for representing and query-
ing metadata and state data from a service instance

® Introducing a series of core properties of grid service, including:

O Defining grid service description and grid service instance, as organizing
principles for their extension and their use

O Defining how OGSI models time

O Defining the grid service handle and grid service reference constructs that
are used to refer to grid service instances

O Defining a common approach for conveying fault information from opera-
tions. This approach defines a base XML schema definition and associated
semantics for WSDL fault messages to support a common interpretation;
the approach simply defines the base format for fault messages, without
modifying the WSDL fault message model.

O Defining the life cycle of a grid service instance
4.6.4 WSDL Extensions and Conventions

As should be clear by now, OGSI is based on Web services; in particular, it uses
WSDL as the mechanism to describe the public interfaces of grid services. Howev-

TEAM LinG - Live, Informative, Non-cost and Genuine!

146 STANDARDS SUPPORTING GRID COMPUTING: OGSI

er, WSDL 1.1 is deficient in two critical areas: lack of interface (portType) exten-
sion and the inability to describe additional information elements on a portType
(lack of open content). These deficiencies have been addressed by the W3C Web
Services Description Working Group [150]. Because WSDL 1.2 is a “work in
progress,” OGSI cannot directly incorporate the entire WSDL 1.2 body of work. In-
stead, OGSI defines an extension to WSDL 1.1, isolated to the wsdl:portType ele-
ment, which provides the minimal required extensions to WSDL 1.1. These exten-
sions to WSDL 1.1 match equivalent functionality agreed to by the W3C Web
Services Description Working Group. Once WSDL 1.2 [150] is published as a rec-
ommendation by the W3C, the Global Grid Forum is committed to defining a fol-
low-on version of OGSI that exploits WSDL 1.2, and to defining a translation from
this OGSI v1.0 extension to WSDL 1.2.

4.6.5 Service Data

The approach to stateful Web services introduced in OGSI identified the need for a
common mechanism to expose a service instance’s state data to service requestors
for query, update, and change notification. Since this concept is applicable to any
Web service including those used outside the context of grid applications, one can
propose a common approach to exposing Web service state data called “serviceDa-
ta.” The GGF is endeavoring to introduce this concept to the broader Web services
community.

In order to provide a complete description of the interface of a stateful Web ser-
vice (i.e., a grid service), it is necessary to describe the elements of its state that are
externally observable. By externally observable, one means that the state of the ser-
vice instance is exposed to clients making use of the declared service interface,
where those clients are outside of what would be considered the internal implemen-
tation of the service instance itself. The need to declare service data as part of the
service’s external interface is roughly equivalent to the idea of declaring attributes
as part of an object-oriented interface described in an object-oriented interface-defi-
nition language.

Service data can be exposed for read, update, or subscription purposes. Since
WSDL defines operations and messages for portTypes, the declared state of a ser-
vice must be externally accessed only through service operations defined as part of
the service interface. To avoid the need to define serviceData-specific operations
for each serviceData element, the grid service portType provides base operations
for manipulating serviceData elements by name.

Consider an example. Interface alpha introduces operations opl, op2, and op3.
Also assume that the alpha interface consists of publicly accessible data elements
of del, de2, and de3. One uses WSDL to describe alpha and its operations. The
OGSI serviceData construct extends WSDL so that the designer can further define
the interface to alpha by declaring the public accessibility of certain parts of its
state del, de2, and de3. This declaration then facilitates the execution of opera-
tions on the service data of a stateful service instance implementing the alpha in-
terface.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 147

Put simply, the serviceData declaration is the mechanism used to express the el-
ements of the publicly available state exposed by the service’s interface. ServiceDa-
ta elements are accessible through operations of the service interfaces such as those
defined in this specification. The private internal state of the service instance is not
part of the service interface and is therefore not represented through a serviceData
declaration.

4.6.5.1 Motivation and Comparison to JavaBean Properties. The
OGSI specification introduces the serviceData concept to provide a flexible, prop-
erties-style approach to accessing state data of a Web service. The serviceData con-
cept is similar to the notion of a public instance variable or field in object-oriented
programming languages such as Java, Smalltalk, and C++. ServiceData is similar to
JavaBean™ properties. The JavaBean model defines conventions for method signa-
tures (getXXX/setXXX) to access properties, and helper classes (BeanInfo) to doc-
ument properties. The OGSI model uses the serviceData elements and XML
schema types to achieve a similar result.

The OGSI specification has chosen not to require getXXX and setXXX WSDL
operations for each serviceData element, although service implementers may
choose to define such safe get and set operations themselves. Instead, OGSI defines
extensible operations for querying (get), updating (set), and subscribing to notifica-
tion of changes in serviceData elements. Simple expressions are required by OGSI
to be supported by these operations, which allows for access to serviceData ele-
ments by their names, relative to a service instance. This by-name approach gives
functionality roughly equivalent to the getXXX and setXXX approach familiar to
JavaBean and Enterprise JavaBean programmers. However, these OGSI operations
may be extended by other service interfaces to support richer query, update, and
subscription semantics, such as complex queries that span multiple serviceData ele-
ments in a service instance.

The serviceDataName element in a GridService portType definition corresponds
to the BeanInfo class in JavaBeans. However, OGSI has chosen an XML (WSDL)
document that provides information about the serviceData, instead of using a serial-
izable implementation class as in the BeanInfo model.

4.6.5.2 Extending portType with serviceData. ScrviceData defines a new
portType child element named serviceData, used to define serviceData elements, or
SDEs, associated with that portType. These serviceData element definitions are re-
ferred to as serviceData declarations, or SDDs. Initial values for those serviceData
elements (marked as “static” serviceData elements) may be specified using the stat-
icServiceDataValues element within portType. The values of any serviceData ele-
ment, whether declared statically in the portType or assigned during the life of the
Web service instance, are called serviceData element values, or SDE values.

4.6.5.3 serviceDataValues. Each service instance is associated with a collec-

tion of serviceData elements: those serviceData elements defined within the various
portTypes that form the service’s interface, and also, potentially, additional service-

TEAM LinG - Live, Informative, Non-cost and Genuine!

148 STANDARDS SUPPORTING GRID COMPUTING: OGSI

Data elements added at runtime. OGSI calls the set of serviceData elements associ-
ated with a service instance its “serviceData set.” A serviceData set may also refer
to the set of serviceData elements aggregated from all serviceData elements de-
clared in a portType interface hierarchy.

Each service instance must have a “logical” XML document, with a root element
of serviceDataValues that contains the serviceData element values. An example of
a serviceDataValues element was given above. A service implementation is free to
choose how the SDE values are stored; for example, it may store the SDE values
not as XML but as instance variables that are converted into XML or other encod-
ings as necessary.

The wsdl:binding associated with various operations manipulating serviceData
elements will indicate the encoding of that data between service requestor and ser-
vice provider. For example, a binding might indicate that the serviceData element
values are encoded as serialized Java objects.

4.6.5.4 SDE Aggregation within a portType Interface Hierarchy.
WSDL 1.2 has introduced the notion of multiple portType extension, and one can
model that construct within the GWSDL namespace. A portType can extend zero or
more other portTypes. There is no direct relationship between a wsdl:service and
the portTypes supported by the service modeled in the WSDL syntax. Rather, the
set of portTypes implemented by the service is derived through the port element
children of the service element and binding elements referred to from those port el-
ements. This set of portTypes, and all portTypes they extend, defines the complete
interface to the service.

The serviceData set defined by the service’s interface is the set union of the ser-
viceData elements declared in each portType in the complete interface implement-
ed by the service instance. Because serviceData elements are uniquely identified by
QName, the set union semantic implies that a serviceData element can appear only
once in the set of serviceData elements. For example, if a portType named “ptl”
and portType named “pt2” both declare a serviceData named “tns:sd1,” and a port-
Type named “pt3” extends both “ptl and “pt2,” then it has one (not two) serviceDa-
ta elements named “tns:sd1.”

4.6.5.5 Dynamic serviceData Elements. Although many serviceData ele-
ments are most naturally defined in a service’s interface definition, situations can
arise in which it is useful to add or move serviceData elements dynamically to or
from an instance. The means by which such updates are achieved are implementa-
tion specific; for example, a service instance may implement operations for adding
a new serviceData element.

The grid service portType illustrates the use of dynamic SDEs. This contains a
serviceData element named “serviceDataName” that lists the serviceData elements
currently defined. This property of a service instance may return a superset of the
serviceData elements declared in the GWSDL defining the service interface, allow-
ing the requestor to use the subscribe operation if this serviceDataSet changes, and
the findServiceData operation to determine the current serviceDataSet value.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.6 WHAT IS OGSA/OGSI? A MORE DETAILED VIEW 149

4.6.6 Core Grid Service Properties

This subsection discusses a number of properties and concepts common to all grid
services.

4.6.6.1 Service Description and Service Instance. One can distinguish in
OGSI between the description of a grid service and an instance of a grid service:

® A grid service description describes how a client interacts with service in-
stances. This description is independent of any particular instance. Within a
WSDL document, the grid service description is embodied in the most de-
rived portType (i.e., the portType referenced by the wsdl:service element’s
port children, via referenced binding elements, describing the service) of the
instance, along with its associated portTypes (including serviceData declara-
tions), bindings, messages, and types definitions.

® A grid service description may be simultaneously used by any number of grid
service instances, each of which
O Embodies some state with which the service description describes how to

interact

O Has one or more grid service handles
O Has one or more grid service references to it

A service description is used primarily for two purposes. First, as a description of
a service interface, it can be used by tooling to automatically generate client interface
proxies, server skeletons, and so forth. Second, it can be used for discovery, for ex-
ample, to find a service instance that implements a particular service description, or
to find a factory that can create instances with a particular service description.

The service description is meant to capture both interface syntax and (in a very
rudimentary, nonnormative fashion) semantics. Interface syntax is described by
WSDL portTypes. Semantics may be inferred through the name assigned to the
portType. For example, when defining a grid service, one defines zero or more
uniquely named portTypes. Concise semantics can be associated with each of these
names in specification documents, and, perhaps in the future, through Semantic
Web or other more formal descriptions. These names can then be used by clients to
discover services with desired semantics, by searching for service instances and
factories with the appropriate names. The use of namespaces to define these names
also provides a vehicle for assuring globally unique names.

4.6.6.2 Modeling Time in OGSI. The need arises at various points throughout
this specification to represent time that is meaningful to multiple parties in the dis-
tributed Grid. For example, information may be tagged by a producer with time-
stamps in order to convey that information’s useful lifetime to consumers. Clients
need to negotiate service instance lifetimes with services, and multiple services may
need a common understanding of time in order for clients to be able to manage their
simultaneous use and interaction.

TEAM LinG - Live, Informative, Non-cost and Genuine!

150 STANDARDS SUPPORTING GRID COMPUTING: OGSI

The GMT global time standard is assumed for grid services, allowing operations
to refer unambiguously to absolute times. However, assuming the GMT time stan-
dard to represent time does not imply any particular level of clock synchronization
between clients and services in the grid. In fact, no specific accuracy of synchro-
nization is specified or expected by OGSI, as this is a service-quality issue.

Grid service hosting environments and clients should utilize the Network Time
Protocol (NTP) or equivalent function to synchronize their clocks to the global
standard GMT time. However, clients and services must accept and act appropri-
ately on messages containing time values that are out of range because of inade-
quate synchronization, where “appropriately” may include refusing to use the in-
formation associated with those time values. Furthermore, clients and services
requiring global ordering or synchronization at a finer granularity than their clock
accuracies or resolutions allow for must coordinate through the use of additional
synchronization service interfaces, such as through transactions or synthesized
global clocks.

In some cases, it is required to represent both zero time and infinite time. Zero
time should be represented by a time in the past. However, infinite time requires an
extended notion of time. One therefore introduces the following type in the OGSI
namespace that may be used in place of xsd:dateTime when a special value of “in-
finity” is appropriate.

4.6.6.3 XML Element Lifetime Declaration Properties. Since serviceDa-
ta elements may represent instantaneous observations of the dynamic state of a ser-
vice instance, it is critical that consumers of serviceData be able to understand the
valid lifetimes of these observations. The client may use this time-related informa-
tion to reason about the validity and availability of the serviceData element and its
value, though the client is free to ignore the information.

One can define three XML attributes that together describe the lifetimes associ-
ated with an XML element and its subelements. These attributes may be used in any
XML element that allows for extensibility attributes, including the serviceData ele-
ment.

The three lifetime declaration properties are:

1. ogsi:goodFrom. Declares the time from which the content of the element is
said to be valid. This is typically the time at which the value was created.

2. ogsi:goodUntil. Declares the time until which the content of the element is
said to be valid. This property must be greater than or equal to the goodFrom
time.

3. ogsi:availableUntil. Declares the time until which this element itself is ex-
pected to be available, perhaps with updated values. Prior to this time, a client
should be able to obtain an updated copy of this element. After this time, a
client may no longer be able to get a copy of this element (while still observ-
ing cardinality and mutability constraints on this element). This property
must be greater than or equal to the goodFrom time.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.7 A POSSIBLE APPLICATION OF OGSA/OGSI 151

4.6.7 Other Details

The above description is but a summary of the OGSI specification. The interested
reader should refer to reference [84] for a more inclusive discussion.

4.7 A POSSIBLE APPLICATION OF OGSA/OGSI TO NEXT-
GENERATION OPEN-SOURCE OUTSOURCING

4.7.1 Opportunities

This section looks briefly at the issue of outsourcing of IT services by an increasing
number of large and mid-size companies. In the early 1990s, we published an early
book on outsourcing [120] that attempted to make the point that analytics were
needed to make an informed and defensible decision. Up to then, a lot of the out-
sourcing deals were made on an emulation mode: “If leading company x in industry
A made such a choice, then we at company y in industry A should also follow suit.”
Now, if we were to write a book on this topic we would emphasize the desire and/or
advantage to use standards, in particular grid computing standards, to establish
“open-source outsourcing,” so that an organization can obtain services in a com-
pletely commoditized and competitive manner. Open standards enable a company
to easily port its business if it finds that an outsourcer is not delivering the service to
the stipulated SLA or financial levels. We invite the reader to read Chapter 5 from
the perspective of a pending outsourcing decision and to appreciate, while reading,
the opportunity that the grid computing standards afford in this context. Figure 4.17
depicts the target open-source-outsourcing architecture. According to press-time
market research, the worldwide outsourcing revenue was $120B in 2003 and was
expected to grow to $160B by 2006. Because IT costs usually equate to 6% of the
revenue line of companies, $120B equates to a revenue top line of $2T. This means
that this is equivalent in the aggregate to the top 30 companies in the United States
(Exxon Mobil, Wal-Mart, GM, Ford Motor, General Electric, ChevronTexaco,
Chrysler, IBM, Altria, HP, State Farm Insurance, and the next nineteen) outsourc-
ing their entire IT operations.

The material that follows focuses only on the current outsourcing trends/impera-
tives; we let the reader mentally apply the material of this chapter and the chapter(s)
that follow to the issue of outsourcing.

4.7.2 Outsourcing Trends

The material in this subsection, characterizing the market momentum toward out-
sourcing, is synthesized from Gartner Dataquest (Stamford, CT) sources.

40% of the Fortune 500 companies were expected to have outsourced offshore
by the end of 2004. More generally, by 2004, 70% of enterprises will selectively
outsource applications using a variety of ASPs, traditional outsourcers, niche appli-
cations vendors, and offshore providers. Enterprise buyers are demanding that IT
service providers offer a range of global sourcing alternatives, including on-site,

TEAM LinG - Live, Informative, Non-cost and Genuine!

‘sprepue)s s d[qissod uromosino uadQ L' 3In31yg

_ HI0MIAU [BUISU|

afieiolg EIETET
PBIEUS VSO0 | BOISEUS VSO0
T
thunaag | | BuBessap Rieang || swasis s0d | | sseameg MOLRION,
1 PRI VEDO 1PEO=3 Y500
_
=~~~ =~ ~ Sdoiiss aom, _Eo.sauc_
1 paigeus
| L wsoo
FRNSARFRYL FIADE DD V290 - 1S90 _ _.“.
I R T, 1|
; (YS9O0) sumoslyay S8anas pus) _._mao |

Z 1921n0sIno ,,22ino§ uado,,

_ HI0MIBU [BUISIL|

afieiolg ol T . EIETN T |
PAIIEUZ wEO0 _ “ PaIEUZ WS OO0 _
vhunoeg | | Buiessay hiozaag || swasis s1d| | sseqmeg MBI, (18uwa) ‘osE)
1 PARUIVEDO | | IPEAEE VSO0 lauely3
u|
Deiipmene=-"— — — Iwmm_Emm GETTY Ni0Mmjau
1 poiess
1 wE00 L
SRMINAFBYLL BFTIIRE PUD 10 - 1520 |
- e L}
i ; T s o Ry spiepue)g
BIn12a]lyaly sadine gy Us
: YS90 e S PUD O ISO0NSD0

| J92inosing ,,221n0sg uado,,

SBOIASS O3

SRNGASRYL S3AMSE PLD UATD - 1320

SEUAIE PARKIELEN YED0

(¥S90) aimoayyary senneg pus usdg

s1asM

Auedwon

152

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.7 A POSSIBLE APPLICATION OF OGSA/OGSI 153

domestic, nearshore (services delivered from an adjacent or nearby country) and
offshore capabilities. Press-time studies show that about 40% of customers reported
they are currently outsourcing some aspect of their network operations, typically
voice and data. By year-end 2004, one out of every 10 jobs within U.S.-based IT
vendors and IT service providers will move to emerging markets, as also will one of
every 20 IT jobs within user enterprises. Growth in offshore delivery is expected to
be continuous, but moderate compared with the “hype” around the concept in recent
years (the revenue growth just cited is a CAGR of 10%). An analysis of IT out-
sourcing contracts for the past 14 years has shown that the average value of an IT
outsourcing contract is $47 million, and the average length of a contract is six years.
Enterprises must use structured evaluation and selection criteria or run the risk of
engaging with the wrong ASP and/or offering the wrong level of service (here is
where open-source outsourcing can be of value).

Reflecting the industry’s price sensitivity, cost ranks higher in IT buyer’s deci-
sion making in financial services than in other industries. For many CIOs, the deci-
sion to outsource activities offshore is fiscally calculable: the cost, quality, value,
and process advantages are well proven through about 15-20 years of practice start-
ing in the late 1980s. According to observers, offshore outsourcing is becoming a
tool for improving service delivery and a source of qualified talent. Most of today’s
offshore business process outsourcing (BPO) opportunity remains at the level of
out-tasking a component of a business process rather than outsourcing an entire
business process, and is mostly relegated to back-office transaction processing (and
contact centers). In recent years, financial services penned at least 17 large deals, a
number also matched by government operations. The telecommunications industry
has undertaken 12 deals, transportation has 11, manufacturing and aerospace/de-
fense each have eight, and high-tech has seven.

Observers suggest that enterprises should consider including a 25% acquisition
clause into their contract that allows the enterprise to get out of the contract if the
service provider is more than 25% acquired by another company. The enterprise
should also include a competitive-pricing clause that forces an ASP hosting
provider to match a deal it gave to another enterprise if the enterprise with such a
clause in the contract could qualify for the volume commitments. Again, open-
source outsourcing can be of obvious value.

Enterprises around the world are attempting to focus their investments on their
core business processes and are increasingly looking at outsourcing noncore busi-
ness processes, such as IT with its never-ending overcomplexity. Early adopters of
BPO services, primarily large organizations, continue to expand their relationships
to include new process areas, and new technology and media are creating opportu-
nities for outsourcing entire lines of products and services, such as online payroll,
online benefits administration, online order management, and online transaction
processing.

An element in many of the outsourcing initiatives is a focus on IT infrastructure
and operations: many of the large initiatives involve substantial consolidation and
centralization of IT assets on a global basis. Outsourcing providers promise to meet
IT and business needs through new technology and new business models, particu-

TEAM LinG - Live, Informative, Non-cost and Genuine!

154 STANDARDS SUPPORTING GRID COMPUTING: OGSI

larly the on-demand model (akin to the grid computing paradigm) that appears to
promise relief from fixed costs.

Although BPO has emerged as one of the fastest growing service opportunities
in the financial services market, BPO is not a new service area for financial ser-
vices: check-processing services have been around for decades, and payment pro-
cessing showed steady robust growth through the 1990s. What is different now is
that BPO is rapidly expanding into areas that were off limits to outsourcing just a
few years ago. Increasing acceptance is also driving expansion in the number and
scope of deals, which, in turn, increases the market size.

This survey material from Gartner Dataquest documents the market momentum
toward outsourcing. The use of an open-source approach, which greatly facilitates
portability, will prove to be very advantageous to companies. We encourage IT pro-
fessionals to explore these opportunities through the machinery afforded by
OGSA/OGSI.

TEAM LinG - Live, Informative, Non-cost and Genuine!

I CHAPTER 5

Standards Supporting
Grid Computing: OGSA

For any kind of new technology, corporate and business decision makers typically
seek answers to a set of questions, including “Are there firm standards to support
the technology and its widespread deployment?”” Any experienced planner is keenly
aware of the financial implications of using a technology that does not have stan-
dards (or is at least based on a broad-reaching de facto industry standard). In the
previous chapter, we discussed OGSI in some detail, it being the original grid stan-
dard published by the Global Grid Forum (OGSI defines grid services and the basic
mechanisms for creating, managing, and exchanging information between them). A
second standard appeared a year later (and was still in initial draft form at press
time): the Open Grid Services Architecture (OGSA). As we have discussed up to
this point, standards are critical to the commercialization of the Intergrid, just like
Internet standards were critical to the commercialization of the Internet in the 1990s
(e.g., see [66—68]). These same standards can then be used for enterprise grids, just
like browsers are now used for intranet applications. Also, as noted, these standards
can be utilized to develop open outsourcing environments.

OGSA specifies the scope of important services required to support grid systems
and applications in both e-science and e-business. It identifies a core set of such ser-
vices that are perceived as being essential for many systems and applications, and it
specifies at a high level the functionalities required for and the interrelationships
among these core services. These same standards are also very useful in the enter-
prise grid (intragrid) context. OGSA is a special Web service that provides a set of
well-defined interfaces and follows specific conventions. The OGSA document
also lists existing technical standards and standard definition activities within GGF,
OASIS, W3C, and other standards bodies that speak to required OGSA functionali-
ty, and identifies priority areas for further work.

This chapter (based largely on [69]') covers the OGSA documentation. Al-
though the OGSA continues to be revised, this write-up is intended to provide a

ICopyright © Global Grid Forum (2002, 2003). All Rights Reserved. This document and translations of
it may be copied and furnished to others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published and distributed, in whole or in part,
without restriction of any kind, provided that the above copyright notice and this paragraph are included
on all such copies and derivative works.

A Networking Approach to Grid Computing. By Daniel Minoli 155
ISBN 0-471-68756-1 © 2005 John Wiley & Sons, Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine!

156 STANDARDS SUPPORTING GRID COMPUTING: OGSA

sense of where this work is going. The purpose of this chapter is to highlight the
standardization progress and not to provide a comprehensive normative specifica-
tion and/or tutorial. The reader should always consult the latest GGF documenta-
tion, after acquiring a basic understanding through the material presented herein.

Some of this material parallels some of the information of Chapter 4, but that is
the way the OGSI and OGSA documents have been produced by the GGF. Propo-
nents note that

... [I]n theory, utility computing gives managers greater utilization of data-center re-
sources at lower operating costs. At their disposal will be flexible computing, storage
and network capacity that can react automatically to changes in business priorities.
The data center of the future also will have self-configuring, self-monitoring and self-
healing features so managers can reduce today’s manual configuration and trou-
bleshooting chores, advocates say. The allure of utility computing is easy to see, but
there is no clear road map without a stable set of standards. Getting there requires an
open-source standards-based approach that encompasses network gear, servers, soft-
ware, services and IT governance. Vendors are working to create intelligent devices,
management tools and services for utility consumption. [63].

There is plenty of work to do, and standards are a critical initiative in this area, as
they are, in reality, in many other arenas (spanning the gamut from WWW to Ether-
net, DVDs to HDTV). Hence, our emphasis on this topic, and the motivation for
this chapter.

Successful realization of the OGSA vision of a broadly applicable and broadly
adopted framework for distributed system integration, virtualization, and manage-
ment requires the definition of a core set of interfaces, behaviors, resource models,
and bindings. The OGSA documentation, developed by the OGSA working group
within the GGF, provides a first (but preliminary and incomplete) version of this
OGSA definition. Throughout this book as well as in this chapter, the term “re-
source” is used in its most general sense and can include virtualized physical re-
sources such as processors, storage, memory, and/or virtual resources such as soft-
ware licenses or data.

5.1 INTRODUCTION

The OGSA, developed within the OGSI working group of the Global Grid Forum,
is a proposed enabling infrastructure for grid systems and applications, that is, sys-
tems and applications that are concerned with the integration, virtualization, and
management of services within distributed, heterogeneous, dynamic “virtual orga-
nizations” in industry, e-science, or e-business [58, 114]. Whether confined to a sin-
gle enterprise or extended to encompass external resource sharing and service
provider relationships, one finds that service integration, virtualization, and man-
agement in these contexts can be technically challenging because of the need to
achieve various end-to-end qualities of service when running on top of different na-
tive platforms.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.1 INTRODUCTION 157

Work on OGSA seeks to address these challenges by defining an integrated set
of Web-service-based service definitions designed both to simplify the creation of
secure, robust grid systems, and to enable the creation of interoperable, portable,
and reusable components and systems via the standardization of key interfaces and
behaviors. The purpose of the OGSA document is to summarize current under-
standing of required OGSA functionality and the appropriate rendering of this func-
tionality into service definitions. More specifically, it presents functionality re-
quirements, a service taxonomy, relationships among the various services, and,
finally, more detailed descriptions of specific services.

Activities in OGSA both build on and are contributing to the development of the
growing collection of technical specifications that form the emerging Web services
architecture [51]. (Indeed, OGSA can be viewed as a particular profile for the appli-
cation of core WS standards.) Some grid functionality requirements are met by ex-
isting or proposed standards. In other cases, grid functionality requirements may re-
quire extensions to existing service definitions and/or entirely new service
definitions. Where this is the case, the document describes the current state of work
underway to define such extensions and/or definitions.

Although the OGSA vision is broad, work to date has focused on the definition
of a small set of core semantic elements. In particular, the OGSI specification (dis-
cussed in Chapter 4) defines, in terms of WSDL interfaces and associated conven-
tions, extensions and refinements of emerging Web services standards to support
basic grid behaviors [52]. OGSI-compliant Web services—what the GGF calls grid
services—are intended to form the components of grid infrastructure and applica-
tion stacks.

OGSI defines essential building blocks for distributed systems, including standard
interfaces and associated behaviors for describing and discovering service attributes,
creating service instances, managing service lifetime, and subscribing to and deliver-
ing notifications. However, it does not define all elements that arise when creating
large-scale systems. One may also need to address a wide variety of other issues, both
fundamental and domain specific, of which the following are just examples.

How do I establish identity and negotiate authentication?

How is policy expressed and negotiated?

How do I discover services?

How do I negotiate and monitor service-level agreements?

How do I manage membership of, and communication within, virtual organiza-
tions?

How do I organize service collections hierarchically so as to deliver reliable and
scalable service semantics?

How do I integrate data resources into computations?

How do I monitor and manage collections of services?

Without standardization in each of these (and other) areas, it is hard to build large-
scale systems in a standard fashion, achieve code reuse, and achieve interoperabili-

TEAM LinG - Live, Informative, Non-cost and Genuine!

158 STANDARDS SUPPORTING GRID COMPUTING: OGSA

ty among components—three distinct and important goals. Much of the OGSA doc-
ument is concerned with defining these services.

GGF’s understanding of what is required in OGSA is preliminary and incom-
plete by their admission. Both the understanding of OGSA’s purpose and form, and
the details of specific components, are likely to evolve; in the meantime, however,
the OGSA document provides a basis for debate and also can serve as input to dis-
cussions of priorities for OGSA specification development.

The Global Grid Forum’s OGSA Working Group (OGSA-WG) has the follow-
ing charter and scope:

1. To produce and document the use cases that drive the definition and prioriti-
zation of OGSA components, as well as document the rationale for our choic-
es.

2. To identify and outline requirements for, and a prioritization of, OGSA ser-
vices and components.

3. To identify and outline requirements for, and a prioritization of, hosting envi-
ronment and protocol bindings that are required for deployment of portable,
interoperable OGSA implementations.

4. To identify and outline requirements for, and a prioritization of, models for
resources and other important entities.?

5. To identify, outline, and prioritize interoperability requirements for the vari-
ous OGSA components.

6. To define standard OGSA profiles, i.e., sets of OGSA components that meet
specific requirements.

7. To define relationships between GGF and other standards bodies activities
such as W3C, OASIS, and WSI whose work touches upon OGSA-related is-
sues.

In some cases, work within OGSA-WG may result in the drafting of specifica-
tions for OGSA components. However, one expects that the task of completing
these specifications will be handled by other working groups.

The OGSA document is intended as a contribution to goals 2, 3, and 4. It is not,
in its current form, a final product. However, it does provide a base for understand-
ing grid-based systems and services; hence, our inclusion herein.

5.2 FUNCTIONALITY REQUIREMENTS

The development of the OGSA document has been based on a variety of use case
scenarios [55]. The use cases have not been defined with a view to expressing for-
mal requirements (and do not contain the level of detail that would be required for

formal requirements), but have provided useful input to the definition process.

2The resource services focus is the objective of the Common Management Models workgroup at GGF.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2 FUNCTIONALITY REQUIREMENTS 159

Analysis of the use cases, other input from OGSA-WG participants, and other stud-
ies of grid technology requirements lead the Working Group to identify important
and broadly relevant characteristics of grid environments and applications, along
with functionalities that appear to have general relevance to a variety of application
scenarios. Although this material does not represent a comprehensive or formal
statement of functionality requirements from our use cases, it does provide useful
input for subsequent development of OGSA functions. The case scenarios that have
been considered include [55]:

5.2.1

National fusion collaboration

IT infrastructure and management
Commercial data centers

Service-based distributed query processing
Severe storm prediction

Online media and entertainment

Basic Functionality Requirements

The following basic functions are universally fundamental:

Discovery and brokering. Mechanisms are required for discovering and/or al-
locating services, data, and resources with desired properties. For example,
clients need to discover network services before they are used, service bro-
kers need to discover hardware and software availability, and service brokers
must identify codes and platforms suitable for execution requested by the
client [55].

Metering and accounting. Applications and schemas for metering, auditing,
and billing for IT infrastructure and management use cases [55]. The meter-
ing function records the usage and duration, especially metering the usage of
licenses. The auditing function audits usage and application profiles on ma-
chines, and the billing function bills the user based on metering.

Data sharing. Data sharing and data management are common as well as im-
portant grid applications. Mechanisms are required for accessing and manag-
ing data archives, for caching data and managing its consistency, and for in-
dexing and discovering data and metadata.

Deployment. Data is deployed to the hosting environment that will execute
the job (or made available in or via a high-performance infrastructure). Also,
applications (executable) are migrated to the computer that will execute them.

Virtual organizations (VOs). The need to support collaborative VOs intro-
duces a need for mechanisms to support VO creation and management, in-
cluding group membership services [58]. For the commercial data center use
case [55], the grid creates a VO in a data center that provides IT resources to
the job upon the customer’s job request. Depending on the customer’s re-
quest, the grid will negotiate with another grid on a remote commercial data

TEAM LinG - Live, Informative, Non-cost and Genuine!

160 STANDARDS SUPPORTING GRID COMPUTING: OGSA

center and create a VO across the commercial data centers. Such a VO can be
used to achieve the necessary scalability and availability.

® Monitoring. A global, cross-organizational view of resources and assets for
project and fiscal planning, troubleshooting, and other purposes. The users
want to monitor their applications running on the grid. Also, the resource or
service owners need to surface certain states so that the user of those re-
sources or services may manage the usage using the state information.

® Policy. An error and event policy guides self-controlling management, in-
cluding failover and provisioning. It is important to be able to represent poli-
cy at multiple stages in hierarchical systems, with the goal of automating the
enforcement of policies that might otherwise be implemented as organiza-
tional processes or managed manually. There may be policies at every level
of the infrastructure: from low-level policies that govern how the resources
are monitored and managed, to high-level policies that govern how business
process such as billing are managed. High-level policies are sometimes de-
composable into lower-level policies.

5.2.2 Security Requirements

Grids also introduce a rich set of security requirements; some of these requirements
are:

® Multiple security infrastructures. Distributed operation implies a need to in-
teroperate with and manage multiple security infrastructures. For example,
for a commercial data center application, isolation of customers in the same
commercial data center is a crucial requirement; the grid should provide not
only access control but also performance isolation. For another example, for
an online media and entertainment use case, proper isolation between content
offerings must be ensured; this level of isolation has to be ensured by the se-
curity of the infrastructure.

® Perimeter security solutions. Many use cases require applications to be de-
ployed on the other side of firewalls from the intended user clients. Intergrid
collaboration often requires crossing institutional firewalls. OGSA needs
standard, secure mechanisms that can be deployed to protect institutions
while also enabling cross-firewall interaction.

® Authentication, Authorization, and Accounting. Obtaining application pro-
grams and deploying them into a grid system may require authentication/au-
thorization. In the commercial data center use case, the commercial data cen-
ter authenticates the customer and authorizes the submitted request when the
customer submits a job request. The commercial data center also identifies
his/her policies (including but not limited to SLA, security, scheduling, and
brokering policies).

® Encryption. The IT infrastructure and management use case requires encrypt-
ing of the communications, at least of the payload.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2 FUNCTIONALITY REQUIREMENTS 161

® Application and Network-Level Firewalls. This is a long-standing problem; it
is made particularly difficult by the many different policies one is dealing
with and the particularly harsh restrictions at international sites.

® Certification. A trusted party certifies that a particular service has certain se-
mantic behavior. For example, a company could establish a policy of only us-
ing e-commerce services certified by Yahoo.

5.2.3 Resource Management Requirements

Resource management is another multilevel requirement, encompassing SLA nego-
tiation, provisioning, and scheduling for a variety of resource types and activities:

® Provisioning. Computer processors, applications, licenses, storage, networks,
and instruments are all grid resources that require provisioning. OGSA needs
a framework that allows resource provisioning to be done in a uniform, con-
sistent manner.

® Resource virtualization. Dynamic provisioning implies a need for resource
virtualization mechanisms that allow resources to be transitioned flexibly to
different tasks as required; for example, when bringing more Web servers on
line as demand exceeds a threshold.

® Optimization of resource usage while meeting cost targets (i.c., dealing with
finite resources). Mechanisms to manage conflicting demands from various
organizations, groups, projects, and users and implement a fair sharing of re-
sources and access to the grid.

® Transport management. For applications that require some form of real-time
scheduling, it can be important to be able to schedule or provision bandwidth
dynamically for data transfers or in support of the other data sharing applica-
tions. In many (if not all) commercial applications, reliable transport manage-
ment is essential to obtain the end-to-end QoS required by the application.

® Access. Usage models that provide for both batch and interactive access to re-
sources.

® Management and monitoring. Support for the management and monitoring of
resource usage and the detection of SLA or contract violations by all relevant
parties. Also, conflict management is necessary; it resolves conflicts between
management disciplines that may differ in their optimization objectives
(availability goals versus performance goals, for example).

® Processor scavenging is an important tool that allows an enterprise or VO to
use to aggregate computing power that would otherwise go to waste. How can
OGSA provide service infrastructure that will allow the creation of applica-
tions that use scavenged cycles? For example, consider a collection of desk-
top computers running software that supports integration into processing
and/or storage pools managed via systems such as Condor, Entropia, and
United Devices. Issues here include maximizing security in the absence of
strong trust.

TEAM LinG - Live, Informative, Non-cost and Genuine!

162

STANDARDS SUPPORTING GRID COMPUTING: OGSA

® Scheduling of service tasks. Long recognized as an important capability for

any information processing system, scheduling becomes extremely important
and difficult for distributed grid systems. In general, dynamic scheduling is
an essential component [55]. Computer resources must be provisioned on-de-
mand to satisfy the need to complete a forecast on time.

® Load balancing. In many applications, it is necessary to make sure make sure

deadlines are met or resources are used uniformly. These are both forms of
load balancing that must be made possible by the underlying infrastructure.
For example, for the commercial data center use case, monitoring the job per-
formance and adjusting allocated resources to match the load and fairly dis-
tributing end users’ requests to all the resources are necessary. For the online
media and entertainment use case, the amount of workload is a direct result of
how many concurrent online game players are being hosted on a game server.
If the game server (server A) is responsible for a 20 square mile area in the
game world, and a battle occurred in that area, many players will rush to that
area, causing workload on that server to increase. As players enter that area
and leave other areas, other servers’ workloads will decrease. Hence, when
the workload of server A gets above certain threshold, a load balancing rou-
tine needs to be triggered to rebalance the resources (i.e., servers). That is,
workloads must be redistributed across servers with idle capacity.

® Advanced reservation. This functionality may be required in order to execute

the application on reserved resources. For example, for the commercial data
center use case, the grid decides when to start the request processing based on
the customer’s request. It interprets the job specification description language
in which the request is written and it checks to see if the customer has the
right to perform the request.

® Notification and messaging. Notification and messaging are critical in most

dynamic scientific problems. Notification and messaging are event driven.
Logging. It may be desirable to log processes such as obtaining/deploying ap-
plication programs because, for example, the information might be used for
accounting. This functionality is represented as “metering and accounting.”
Workflow management. Many applications can be wrapped in scripts or
processes that require licenses and other resources from multiple sources. Ap-
plications coordinate using the file system based on events.

Pricing. Mechanisms for determining how to render appropriate bills to users
of a grid.

5.2.4 System Properties Requirements

A number of grid-related capabilities can be thought of as desirable system proper-
ties rather than functions:

® Fault tolerance. Support is required for failover, load redistribution, and other

techniques used to achieve fault tolerance. Fault tolerance is particularly im-

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2 FUNCTIONALITY REQUIREMENTS 163

portant for long running queries that can potentially return large amounts of
data, for dynamic scientific applications, and for commercial data center ap-
plications.

® Disaster recovery. Disaster recovery is a critical capability for complex dis-
tributed grid infrastructures. For distributed systems, failure must be consid-
ered one of the natural behaviors and disaster recovery mechanisms must be
considered an essential component of the design. Autonomous system princi-
ples must be embraced as one designs grid applications and should be reflect-
ed in OGSA. In case of commercial data center applications if the data center
becomes unavailable due to a disaster such as an earthquake or fire, the re-
mote backup data center needs to take over the application systems.

® Self-healing capabilities of resources, services and systems are required. Sig-
nificant manual effort should not be required to monitor, diagnose, and repair
faults. There is a need for the ability to integrate intelligent self-aware hard-
ware such as disks, networking devices, and so on.

® Strong monitoring for defects, intrusions, and other problems. Ability to mi-
grate attacks away from critical areas.

® Legacy application management. Legacy applications are those that cannot be
changed, but they are too valuable to give up or to complex to rewrite. Grid in-
frastructure has to be built around them so that they can continue to be used.

® Administration. Be able to “codify” and “automate” the normal practices used
to administer the environment. The goal is that systems should be able to self-
organize and self-describe to manage low-level configuration details based on
higher-level configurations and management policies specified by adminis-
trators.

® Agreement-based interaction. Some initiatives require agreement-based inter-
actions capable of specifying and enacting agreements between clients and
servers (not necessarily human) and then composing those agreements into
higher-level end-user structures.

® Grouping/aggregation of services. The ability to instantiate (compose) ser-
vices using some set of existing services is a key requirement. There are two
main types of composition techniques: selection and aggregation. Selection
involves choosing to use a particular service among many services with the
same operational interface. Aggregation involves orchestrating a functional
flow (workflow) between services. For example, the output of an accounting
service is fed into the rating service to produce billing records. One other ba-
sic function required for aggregation services is to transform the syntax
and/or semantics of data or interfaces.

5.2.5 Other Functionality Requirements

Although some use cases involve highly constrained environments (that may well
motivate specialized OGSA profiles), it is clear that in general grid environments
tend to be heterogeneous and distributed:

TEAM LinG - Live, Informative, Non-cost and Genuine!

164 STANDARDS SUPPORTING GRID COMPUTING: OGSA

® Platforms. The platforms themselves are heterogeneous, including a variety
of operating systems (Unixes, Linux, Windows, and, presumably, embedded
systems), hosting environments (J2EE, .NET, others), and devices (comput-
ers, instruments, sensors, storage systems, databases, networks, etc.).

® Mechanisms. Grid software can need to interoperate with a variety of distinct
implementation mechanisms for core functions such as security.

® Administrative environments. Geographically distributed environments often
feature varied usage, management, and administration policies (including
policies applied by legislation) that need to be honored and managed.

A wide variety of application structures are encountered and must be supported
by other system components, including the following:

® Both single-process and multiprocess (both local and distributed) applications
covering a wide range of resource requirements.

® Flows, that is, multiple interacting applications that can be treated as a single
transient service instance working on behalf of a client or set of clients.

® Workloads comprising potentially large numbers of applications with a num-
ber of characteristics just listed.

5.3 OGSA SERVICE TAXONOMY

As noted above, the purpose of OGSA is to define standard approaches to, and
mechanisms for, basic problems that are common to a wide variety of grid systems,
such as communicating with other services, establishing identity, negotiating autho-
rization, service discovery, error notification, and managing service collections.

As illustrated in Figure 5.1, the three principal elements of OGSA are the (i)
Open Grid Services Infrastructure, (ii) OGSA services, and (iii) OGSA models:

® Building on both grid and Web services technologies, the OGSI defines
mechanisms for creating, managing, and exchanging information among enti-
ties called grid services (this was discussed at length in the previous chapter).
A grid service is a Web service that conforms to a set of conventions (inter-
faces and behaviors) that define how a client interacts with a grid service.
These conventions, and other OGSI mechanisms associated with grid service
creation and discovery, provide for the controlled, fault-resilient, and secure
management of the distributed and often long-lived state that is commonly re-
quired in distributed applications.

® (OGSA services build on OGSI mechanisms to define interfaces and associated
behaviors for various functions not supported directly within OGSI, such as
service discovery, data access, data integration, messaging, and monitoring.

® OGSA models support these interface specifications by defining models for
common resource and service types.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.3 OGSA SERVICE TAXONOMY 165

r-=—=-= 3
- - o
1 Domain- More specialized & =3
1 specific k-~ . - o >
O T |— — — — domain-specific s
I profiles A

Lo ———1 1 1 services
M [R =
T T T] 20 %
- ———a L— === G 2
OGSA Platform services: registry, S
OGSA bz P authorization, monitoring, data g _9:
Platform access, etc., etc. =No
Fe
» o
_______ o 0Gsl N

1 . 1

1 Enwronmen_t— 1 Host. Env.l & Protocol Binding

1 specific -

| profiles 1 ig Hosting Environment J'Protocol rt

Figure 5.1 OGSA components (shaded) and related profiles (dashed lines).

The GGF anticipates that these OGSA components will be supplemented by a
set of environment-specific profiles addressing issues such as the following. The
specification mentions these here for completeness, but they are not discussed fur-
ther.

® Protocol bindings. Environment profiles enable interoperability among dif-
ferent grid services by defining common mechanisms for transport and au-
thentication. These issues are not addressed by OGSI, but rather defined as
binding properties, meaning that different service implementations may im-
plement them in different ways. For example, “SOAP over HTTP” is a useful
grid service transport profile. Another example of such a profile is the pro-
posed GSSAPI profile for security context establishment and message protec-
tion using WS-SecureConversation [59] and WS-Trust [60].

® Hosting environment bindings. Environment profiles of this sort enable porta-
bility of grid service implementations. For example, an “OGSA J2EE Profile”
might define standardized Java APIs that allow for portability of grid services
among OGSI-enabled J2EE systems. An “OGSA Desktop Grid Profile” could
allow for interoperability among systems that allow untrusted (and untrust-
ing) desktop computers to participate in distributed computations. An “OGSA
Scientific Linux Profile” could define standard execution environments for
computers that run scientific applications, specifying conventions for the lo-
cations of key executables and libraries, and for the names of certain environ-
ment variables

® Sets of domain-specific services. Profiles of this sort define interfaces and
models in addition to those defined within OGSA to address the needs of spe-
cific application domains. For example, an “OGSA Database Profile” might
define a set of interfaces and models for distributed database management; an
“OGSA eCommerce Profile” might define interfaces and models for e-com-
merce applications.

TEAM LinG - Live, Informative, Non-cost and Genuine!

166 STANDARDS SUPPORTING GRID COMPUTING: OGSA

The material that follows expands briefly upon each OGSA element. OGSA de-
fines services that occur within a wide variety of grid systems. One can divide these
functions into four broad groups: core services, data services, program execution
services, and resource management services.

5.3.1 Core Services

“Core” services are implementations of functions that are generally used by a wide
variety of higher-level services and that implement broadly useful capabilities. Al-
though dependencies between core services and noncore services (by higher-level
functions) are likely, there is no known requirement at this time that any particular
core service be present in order to implement a grid. The organization of these
“core” services into the areas further discussed below is for the convenience of ex-
planation and is not meant to imply dependencies among functions that are grouped
together.

5.3.1.1 Service Interaction. This category includes the following subser-
vices: VOs; service group and discovery services; service domain, composition, or-
chestration, and workflow; and transactions. These subservices are primarily in-
tended to provide interaction mechanisms for the collection of services in the grid.
These subservices provide means for services to be registered and to locate each
other; they also provide mechanisms for composing multiple lower-level services
into aggregations. These subservices also include functions for deploying the soft-
ware images that implement services in hosting environments and for collecting
data about their operation for management, accounting, and billing purposes.

5.3.1.2 Service Management. This category includes functions for manag-
ing deployed services. It includes the following subservices: metering and account-
ing; installation, deployment, and provisoning; fault management; and problem
determination. Service management automates and assists with a variety of installa-
tion, maintenance, monitoring, and troubleshooting tasks within a grid system. Ser-
vice management includes functions for provisioning and deploying the system
components; it also includes functions for collecting and exchanging data about the
operations of the grid. This data is used for both “on-line” and “off-line” manage-
ment operations and includes information about faults, events, problem determina-
tion, auditing, metering, accounting, and billing. Service management may also de-
pend on models and schema that describe dependency relationships between
different components, installation and provisioning steps and processes, and exter-
nal capabilities.

5.3.1.3 Service Communication. This service category includes the follow-
ing subservices: distributed logging, messaging and queueing, and event. These ser-
vices provide the basic methods for services to communicate and support several
interservice communication models.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.3 OGSA SERVICE TAXONOMY 167

5.3.1.4 Security. OGSA security architectural components aim to support, in-
tegrate, and unify available security models, mechanisms, protocols, platforms, and
technologies, in a way that enables a variety of systems to interoperate securely.
Specifically, the security of a grid environment must take into account the security
of various aspects involved in a grid service invocation, as depicted in Figure 5.2.
As discussed above, a grid service can be accessed over a variety of protocol bind-
ings; given that bindings deal with protocol and message formats, security functions
such as confidentiality, integrity, and authentication fall within the scope of bind-
ings and thus are outside the scope of OGSA proper. A supplementary GGF OGSA
Security Architecture deals with these goals in a manner consistent with the securi-
ty model that is currently being defined for the Web services framework; an associ-
ated OGSA Security Roadmap document enumerates the security related specifica-
tions that will be needed to ensure interoperable implementations of the OGSA
Security Architecture.

Each participating endpoint can express the policy it wishes to see applied when
engaging in a secure conversation with another endpoint. Policies can specify sup-
ported authentication mechanisms, required integrity and confidentiality protection,
trust policies, privacy policies, and other security constraints. When invoking grid

Requestor's Service Provider's
Domain Domain
Attribute Authorization Authorization Attribute
Service Service Service Service
AN AN
Audit/ Audit/
Secure-Logging Trust Trust Secure-Logging
Service Service Service Service
Credential Credential
Validation Validation
Service Service
Bridge

Service

Requestor Service

Application

WS-Stub <‘I Secure Conversation [,> WS-Stub Provider

Application

Figure 5.2 Security services in a virtual organization setting.

TEAM LinG - Live, Informative, Non-cost and Genuine!

168 STANDARDS SUPPORTING GRID COMPUTING: OGSA

services dynamically, endpoints may need to discover the policies of a target ser-
vice and establish trust relationships dynamically. Once a service requestor and a
service provider have determined each other’s policies, they can establish a secure
channel over which subsequent operations can be invoked. Such a channel should
enforce the mutual agreed-on qualities of protection, including identification, confi-
dentiality, and integrity. The security model must provide a mechanism by which
authentication credentials from the service requestor’s domain can be translated
into the service provider’s domain and vice versa. This translation is required in or-
der for both ends to evaluate their mutual access policies based on the established
credentials and the quality of the established channel.

OGSA’s security model must address authentication, confidentiality, message
integrity, policy expression and exchange, authorization, delegation, single log-on,
credential life span and renewal, privacy, secure logging, assurance, manageability,
firewall traversal, and security at the OGSI layer. One can expect that existing and
evolving standards will be adopted or recognized in the grid security model. Figure
5.2 shows relationships between a requestor, service provider, and many of the se-
curity services. Note that both requester and service provider are always subject to
the security policies dictated by their respective administrative domains. Further-
more, a VO can have its own security policy that can enable the sharing of the sub-
mitted resources, but the associated rights will always be capped by the overruling
resource-local policy. For many grid applications, the resource owners and the indi-
vidual requesters will not “know” each other, as they live in different administrative
domains, while their interactions are dynamically discovered and brokered by
scheduler services and such. This implies that trust has to be dynamically estab-
lished through introductions, and the concept of the VO as bridge is seen as an im-
portant mechanism to build these dynamic trust relationships. All security inter-
faces used by a service requestor and service provider need to be standardized
within OGSA. Compliant implementations will be able to make use of existing ser-
vices and defined policies through configuration. Compliant implementations of a
particular security-related interface would be able to provide the associated and
possibly alternative security services.

5.3.2 Data Services

The scale, dynamism, autonomy, and distribution of data sources in grid environ-
ments can result in significant complexity in data access and management. A vari-
ety of interfaces need to be defined to assist developers and users in the manage-
ment of this complexity. In addition to basic data access interfaces and common
resource models for storage and data management systems, these interfaces also ad-
dress the need for transparency, heterogeneity, location, naming, distribution, repli-
cas, ownership, and data access costs. Data virtualization services aimed at provid-
ing these transparencies can include federated access to distributed data, dynamic
discovery of data sources based on content, dynamic migration of data for workload
balancing, and schema management. In implementing such services, one needs to
take into account the fact that different data types (e.g., flat file data, streaming me-

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.3 OGSA SERVICE TAXONOMY 169

dia, and relational data) require different approaches to management. Furthermore,
different applications require different forms of support; for example, some applica-
tions cannot be modified and require transparent access via file systems, whereas
other applications need explicit management of data locality and replication.

These considerations suggest a role for variety of potential data management in-
terfaces including:

® [Interfaces for data caching (resolving a file handle to a flat file into a data
stream)

® Interfaces for data replication

® Interfaces for data access (via mechanisms for accessing a wide range of data
types, including flat files, RDBMS, and streaming media)

® Interfaces for file and DBMS services and, possibly, federated data manage-
ment services that are used as part of a vertical utility grid

® Interfaces for data transformation and filtering; interfaces for schema trans-
formation (allowing different data, service, and policy schema to be recon-
ciled so that the services can interact correctly)

® [nterfaces for grid storage services that allow direct access to storage re-
sources/data throughout the grid

5.3.3 Program Execution

Program-execution services enable applications to have coordinated access to un-
derlying VO resources, regardless of their physical location or access mechanisms.
Figure 5.3 shows the grid services required for program execution. These services
include:

® Agreement Factory Service—create agreement services based on domain-
specific terms such as job, reservation, and data access terms

® Job Agreement Service—creates, monitors, and controls compute jobs

® Reservation Agreement Service—guarantees that resources are available for
running a job

® Data Access Agreement Service—stages the required application and data

® Queuing Service—provides a service that allows administrators to customize
and define scheduling policies at the VO level, and/or at the different resource
manager levels

® Index Service—allows for the propagation of information between resource
managers and the metascheduler

When an application utilizing the grid makes use of more than one physical re-
source during its execution, program-execution middleware maps the resource re-
quirements of the user application to the multiple physical resources that are re-
quired to run that application. Community schedulers are the key to making VO

TEAM LinG - Live, Informative, Non-cost and Genuine!

170

An end user, application,
or an Upper-level VO

X

STANDARDS SUPPORTING GRID COMPUTING: OGSA

Agmt-based
data acc:
Agmt-based query
reservation me—
>
Q uer
B 2 query
so| T
RM S°|8 Queuing
Information o /| Semice b
o reservatior| Agmt-based
S /@ info data access
e IS
P> @o R S query
N2 1l
Index job/rsv Job Agmt Reservation [l Data access Agmt
Service resource info Agmt Sve bagsed Agmt Sve Agmt Sve Factory
™ sy I I Sve
query T T
. i n n
= Q Q
EY] a 3’% a |83 o |53
ge s ISz 525 g[8
53 2 [Bg < g3 28
58 g $g BE
8 Y Y
,,,,, \ ¥ Y
:=|_| — — — —
; . data data . data
job rsv job rsv
i accs Index accs Index accs
: (] agmt agmt - - agmt agmt
Service agmt Service agmt Service agmt
- ill| sve sve z sve sve
% sve sve) sve
o X 4
N 1t N SO (S
G, IS
N Agmt N
. gmi .
% Agmt Factory > //O/; Agmt
Factory Sve Factory
Sve Sve

Figure 5.3 Program execution architecture and services.

resources easily accessible to end users, by automatically matching the require-
ments of a grid application with the available resources while staying within the
conditions that the VO has specified with the underlying resource managers (RMs).

Interoperability is fundamental for a program-execution grid. In order to allow
the higher-order constructs (such as community schedulers) to work with the lower-
level resource managers, there must be agreement on how these entities will interact
with each other, even though the lower-level resource managers might be very dif-
ferent from each other, in function and in interface. In order to meet the requirement
for interoperability, standards are required that define the interfaces through which
resource managers are accessed and managed. Additionally, there is a requirement
that the services representing the resource managers act using standard semantics,
so that the behavior of the resource manager is predictable to the community sched-
uler.

OGSA-based grid environments may be composed of many different but inter-
acting grid services. Each such service may be subject to different policies govern-
ing how to manage the underlying resources. In order to deal with the complexities
of large collections of these services, there must be mechanisms for grid service

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.3 OGSA SERVICE TAXONOMY 171

management and the allocation of resources for applications. One such mechanism
is defined through the proposed WS-Agreement interface [53]. The specification
document for WS-Agreement (refer to the specification) describes it as ... the
ability to create grid services and adjust their policies and behaviors based on orga-
nizational goals and application requirements.” WS-Agreement defines the Agree-
ment-based Grid Service Management model, which is specified as a set of OGSI-
compliant portTypes allowing clients to negotiate with management services in
order to manage grid services or other legacy applications. To put it in concrete
terms, if a user wishes to submit a computing job to run on a cluster, the user would
rely on the grid service client to contact a job management service and negotiate a
set of agreements that ensure that the user’s job has access to required processors,
memory, storage space, and so on.

WS-Agreement defines fundamental mechanisms based on Agreement services,
which represent an ongoing relationship between an agreement provider and an
agreement initiator. The agreements define the behavior of a delivered service with
respect to a service consumer. The agreement will most likely be defined in sets of
domain-specific agreement terms (defined in other specifications), since the WS-
Agreement specification is focused on defining the abstraction of the agreement
and the protocol for coming to agreement, rather than on defining sets of agreement
terms.

Referring back to the job submission example, the client might contact a job
management service that implements the AgreementFactory interface, with creation
parameters that might say, “My job has to have a software license for application X,
I would like to have 8 cpus, and I would like to have 4 GB of RAM.” If the job
management service could not provide the software license, the agreement terms
would be rejected; if it could provide all of the terms, an agreement service instance
representing the job resources would be created. If, because of available resource
constraints, the job management service could not fulfill the terms of the original
creation parameters, but could supply either 4 cpus and 4 GB of RAM, or 8 cpus
and 2 GB of RAM, the job management service could create an AgreementOffer
that included two potential agreements: “app X, 4cpus, 4GB” and “app X, 8cpus,
2GB”, one of which the client could choose (because cpus and memory were terms
subject to counteroffers). By defining various sets of terms for representing differ-
ent types of resources available within the VO, community schedulers can be writ-
ten that can negotiate with resource managers for the use of the underlying re-
sources on behalf of the user community.

Program-execution services utilize WS-Agreement portTypes both for its client
interface and its interface to underlying resources, with the goal of allowing hierar-
chical VO deployment. For example, one community scheduler talks to another
community-scheduler-based resource conglomeration. Another key aspect of
Agreement Service is to consider the constraints of the service provider based on
service-level agreements in a business context and their reflection in underlying re-
source manager policies. Not all constraints are related to availability or unavail-
ability of resources: some are management policy specified based on pricing, usage,
higher priorities, and so on.

TEAM LinG - Live, Informative, Non-cost and Genuine!

172 STANDARDS SUPPORTING GRID COMPUTING: OGSA

Program-execution services can be flexibly composed to offer a spectrum of
time-to-result QoS levels, ranging from online/interactive to batch, with specific (or
no) turn-around time requirements. Online/interactive jobs can be sent by the job
agreement service to the resource managers immediately, without getting queued.
Batch jobs will be queued by the queueing services and dispatched to resource man-
agers later. The jobs with specific turnaround times may use the available reserva-
tions made with the resource managers at specific times so that the deadlines can be
met. The jobs with no specific turnaround time can be queued at the VO level or the
back-end resource manager level until the required resources are available, or back-
filled with the existing reservations without delaying the start time of the more
time-critical jobs.

Workloads are composite entities and have multiple levels of “execution enti-
ties.” Workloads are made of jobs, which in turn are made of tasks, which in turn
are made of tasklets (see Figure 5.4). Each of these composite entities has a manag-
er. Workload realization (or execution) is the general set of use cases that take
workload requests and map them to appropriate resources within the grid that can
realize these workloads. Grid services manage and coordinate access and consump-
tion of geographically distributed resources by workloads realized on those re-
sources. Workload realization can be visualized as a mapping between “demand” in
the form of workloads and “supply” in the form of the available grid resources. In a
fundamental scenario, the system has to map the demand to the supply and provide
the mechanism to realize these workloads on the resources. This primary mode can
be augmented with other services, mechanisms, and capabilities that provide alter-
nate modes of interaction including optimization of the mapping and scheduling a
temporal and topological execution profile. In addition, other services manage and
enforce the service-level agreements with the user, and still other services tweak the
resources and manage the available capacity to ensure that a desired quality of ser-
vice is delivered.

Services that belong to the Resource Optimization Framework are focused on
the optimization of the supply side of the mapping. This can be done by admission

Workload

Job

Task

Tasklets

Figure 5.4 Workload, job, task, and tasklet.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 SERVICE RELATIONSHIPS 173

control, resource utilization monitoring and metering, capacity projections, re-
source provisioning and load balancing across equivalent resources, and negotiation
with workload optimization and/or management services to migrate workloads onto
other resources so as to maximize resource utilization. Services that belong to the
Workload Optimization Framework are focused on the demand side of the map-
ping. These services may queue requests to prevent resource saturation, manage rel-
ative priorities in requests, and perform postbalancing by migrating workloads to
appropriate resources depending on the potential to violate or be rewarded for miss-
ing or exceeding SLAs, respectively. Services in the Resource Optimization Frame-
work are focused on resolving any contentions that the myopic views of the respec-
tive resource or workload optimization frameworks may create. These services
arbitrate and modulate the primary interactions either in an “in-band” or “out-of-
band” manner.

5.3.4 Resource Management

Grid services in this category include:

® Service orchestration. These interfaces provide ways to describe and manage
the choreography of a set of interacting services.

® Administration. Standard interfaces for such tasks as software deployment,
change management, and identity management.

® Provisioning and resource management. Negotiation of service-level agree-
ments and dynamic resource allocation and redistribution consistent with
SLA policy, including mechanisms that allow clients and workflows to ac-
quire access to resources and services at a particular (future) time.

® Reservation and Scheduling Services. Reservation services provide the mech-
anism to make resource reservatios at a particular time duration. Scheduling
services provide the mechanism to scheduling tasks according to their priori-
ties

® Deployment Services. Deploy necessary software (OS, middleware, applica-
tion) and data into the hosting environment.

5.4 SERVICE RELATIONSHIPS

Earlier in the chapter, services were classified according to a taxonomy in which
two services are related (i.e., put into the same category) if their purpose and func-
tionality are similar; however, this taxonomy does not show the relationships that
exist between the services when these services are used in practice. Therefore, one
can use a second categorization based on the perspective of a service provider, that
is, a person implementing or assembling the various components. Here, one can de-
fine types of relationships between services, and organize the services according to

these relationships. A new class of services, the platform services, is also intro-
duced.

TEAM LinG - Live, Informative, Non-cost and Genuine!

174 STANDARDS SUPPORTING GRID COMPUTING: OGSA

5.4.1 Service Composition

A service composition is a grid service that provides a new set of functions that are
derived from, built on, extended from, and/or implemented using functions exposed
by other grid services. All services in the composition are first-class services (i.e.,
each individually provides distinct functionality and can, if required, be indepen-
dent of this service composition or other compositions). An instance of a service
composition (representing a specific set of functional and semantic behaviors) in-
cludes (or references) instances of all the services that make up this composition.
Each composition has an identity that is shared by the individual component ser-
vices. The instances may be tightly or loosely coupled to the composite service.

In a tightly coupled composition, the individual service instances are indistin-
guishable from the composite that they belong to and are completely subsumed and
hidden by the composite. All interactions with these “composed” services are only
performed with the composite service. Individual service instances in a tightly cou-
pled composition share the same lifetime and life-cycle characteristics of the com-
position. In a loosely coupled composition, the functionality of the loosely coupled
services can be accessed independently of the composite service they support.

Service compositions can be either pure or orchestrated. Services in a pure com-
position share well-defined common state and/or implement a given state in the
composite as an aggregate of the individual states in the services. A pure composi-
tion can be established either as an implementation composition, meaning that the
functionality of the individual services are embedded in a single implemented enti-
ty, or as a managed composition, meaning that the individual services in the com-
position are managed by well-defined internal protocols that provide for a shared
identity. In an orchestrated composition, a master service representing the compo-
sition exposes a functionality that is essentially derived by orchestrating a set of
loosely coupled services.

OGSA can designate special composite services and define their functions (and
the services they compose and compositional methods to be used) similar to other
more fundamental services definitions; these composites become first-class OGSA
services. In other cases, the composition is user defined.

Service compositions can be heterogeneous, meaning that services in the com-
position provide dissimilar functions, or homogeneous, meaning that services in the
composition are similar in function. A homogeneous composition can be an aggre-
gation of services that are managed as one (more capable) service compared with
the individual services. In some cases, the service representing the composition will
be the manager for this composite.

An example of a service composition is a job. A job may be composed of other
jobs or tasks. Since a job is a composition (i.e., a grid service) it can be managed
through well-defined interfaces that are exposed by the service. Another example of
service composition is an OGSA batch-job scheduler that provides the same func-
tionality as existing traditional schedulers for batch systems. Such OGSA sched-
ulers represents a combination of functionality like queuing, resource determina-
tion, reservation, resource allocation, and so on, where each of these functions can

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 SERVICE RELATIONSHIPS 175

be implemented by specialized services targeted at these functions and can be
reused for other usage scenarios. As yet another example, a traditional distributed-
resource management cluster (e.g., PBS, LSF) can also be refactored using service
composition in which the traditional interfaces into such a cluster become the func-
tionality exposed by the composite service representing this cluster.

5.4.2 Service Orchestration

In addition to identifying specific common services, OGSA describes the common
behaviors, attributes, operations, and interfaces needed to allow services to interact
with others in a distributed, heterogeneous, grid-enabled environment:

® Choreography describes required patterns of interaction among grid services
(or, more generally, Web services) and templates for sequences (or more
structures) of interactions.

® Orchestration describes the ways in which business processes are constructed
from Web services and other business processes, and how these processes in-
teract.

® JWorkflow is a pattern of business process interaction, not necessarily corre-
sponding to a fixed set of business processes. All such interactions may be be-
tween services residing within a single data center or across a range of differ-
ent platforms and implementations anywhere.

(Note: For ease of language, in what follows the term “orchestration” refers to
“choreography, orchestration, and workflow.”)

In the OGSA environment, services, processes, and workflows may both be
managed by OGSA and may be vehicles by which management takes place. OGSI
capabilities for stateful Web service interaction have much in common with chore-
ography and business process management, but there are technical differences be-
tween them. Since one may want grid services to be part of flows, and the flows to
be used in grids, it will be important to resolve their relationship. This will enable
the GGF to take advantage of emerging work at the OASIS Web Services Distrib-
uted Management Group that is addressing both management of web services and
management using web services, as well as change management for web services.

OGSI service groups may also play a role in grouping or aggregating services in
ways that factor out common usages in grid service/business process interactions;
however, it would be best if such factoring took place directly in organizations such
as W3C and OASIS that are doing work on these concepts (the role of OGSA is to
determine places where existing work will not meet grid architecture needs, rather
than to create a competing standard).

For example, since a grid service is a specialized Web service with service data,
notifications, life cycles, and service groups, one might define ways in which these
concepts can/should be leveraged in grid service interactions that form flows, in-
cluding ways of monitoring and managing those flows (e.g., using service data and

TEAM LinG - Live, Informative, Non-cost and Genuine!

176 STANDARDS SUPPORTING GRID COMPUTING: OGSA

notifications) as well as fault handling. However, there may be mismatches in the life
cycles of grid services and flows that will require thought; this is another reason why
convergence with mainstream Web service standards is highly desirable. For exam-
ple, business processes are typically thought to be long lasting, not transient, and are
not instance oriented, as grid services are. Grid services standardization people that
the view that it is better to cooperate with, rather than compete with, business process
industry groups. When addressing some concepts, including quality of service,
scheduling, and resource allocation and provisioning, GGF may want to consider
their relationships to business process management and service flows. OGSA should
have a role in coordinating how, where, and when these aspects get addressed.

Many OGSA services will be constructed using other services; scheduling is one
such example. SOAs are designed to permit invocations of services by other ser-
vices, so capabilities for services built from services are intrinsic to grid/Web ser-
vices. Whether additional compositional constructs are needed beyond invocations,
workflows/choreography, management, and the business transaction/coordina-
tion/context (all of which are being addressed by other bodies) has not yet been de-
termined. The notion of composition of stateful services with behavior extended
from the services from which the composition is derived is a very important area
and one that Web services so far has not fully addressed.

5.4.3 Types of Relationships

OGSA services can be related via “uses relationship,” and “extends relationship.”
In a “uses relationship,” a first service accesses the interface of a second service to
use the functionality provided by this second service. For instance, many services
use the handle-resolver service to convert GSHs to GSRs. In an “extends relation-
ship,” a first service extends the functionality provided by a second service by using
portType extensibility. A simple example of this relationship is an event service
that extends the OGSI notification functionality; another example is a registry ser-
vice that extends the service group functionality of OGSI.

5.4.4 Platform Services

OGSA introduces the term platform services to denote services that provide func-
tionalities that are basic. Platform services (i) provide underlying functionalities on
which other services build, (ii) provide functionalities that are common to (and used
by) several high-level services, and (iii) provide functionalities that are designed to
be used primarily through the “extends” relationship. The functionality provided by
a given platform service is, by definition, present (through extension) in several
high-level services; as a consequence, platform service functionalities permeate the
high-level services, being pervasive within OGSA. For this reason, they do not fit
into (and are not shown as part of) the taxonomy. Platform services form the lower
layer of the service relationships, as illustrated in Figure 5.5; however, a platform
service may use or extend other platform services (i.e., there is more than one layer
of platform services). As OGSA services are organized and categorized, and their

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 OGSA SERVICES 177

OGSA

L1 [
services
Platform
services

OGSl

Figure 5.5 The relationships between OGSI, OGSA platform services, and other OGSA
services.

functionality is defined in more detail, common functionalities among these ser-

vices will increasingly appear. These functionalities should/will be redefined as

platform services in order to simplify OGSA. As a consequence, as the work on the

definition of OGSA progresses, the number of platform services should increase.
The current set of OGSA platform services is as follows:

® OGSI: defines grid services and the basic mechanisms for creating, manag-
ing, and exchanging information between them.

® WS-Agreement: provides a set of interfaces that support the negotiation of
policies, service-level agreements, reservations, and so on, and maps the re-
lated agreements to grid services.

® Common Management Model (CMM): provides the manageability infrastruc-
ture for resources in OGSA. CMM defines the base behavioral model for all
resources and resource managers in the grid, plus management functionality
like relationships and life-cycle management.

® OGSA Data Services (or part of it): provides the basic functionality to man-
age data in a grid environment.

5.5 OGSA SERVICES

This section provides a more detailed description of required OGSA functionality.

5.5.1 Handle Resolution

As we saw in Chapter 4, OGSI defines a two-level naming scheme for grid service in-
stances based on abstract, long-lived grid service handles (GSHs) that can be mapped
by HandleMapper services to concrete, but potentially less long lived, grid service
references (GSRs). These constructs are basically network-wide pointers to specific
grid service instances hosted in (potentially remote) execution environments. A
client application can use a grid service reference to send requests (represented by the
operations defined in the interfaces of the target service) directly to the specific in-
stance at the specified network-attached service endpoint identified by that GSR.

TEAM LinG - Live, Informative, Non-cost and Genuine!

178 STANDARDS SUPPORTING GRID COMPUTING: OGSA

The format of the GSH is a URL, where the schema directive indicates the nam-
ing scheme used to express the handle value. Based on the GSH naming scheme,
the application should find an associated naming-scheme-specific HandleMapper
service that knows how to resolve that name to the associated GSR. This allows dif-
ferent naming scheme implementations to coexist, and to p