

Course Number: 2389A

Released: 10/2001

Delivery Guide

Programming with ADO.NET
(Prerelease)

Part Number: X08-58142

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other appropriate product names or titles.
The publications specialist replaces this example list with the list of trademarks provided by the
copy editor. Microsoft, MS-DOS, Windows, and Windows NT are listed first, followed by all
other Microsoft trademarks listed in alphabetical order. > are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

<The publications specialist inserts mention of specific, contractually obligated to, third-party
trademarks, provided by the copy editor>

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Course Number: 2389A
Part Number: X08-58142
Released: 10/2001

 Programming with ADO.NET (Prerelease) iii

Contents

Introduction
Course Materials ..2
Prerequisites...3
Course Outline ...4
Microsoft Certified Professional Program ...6
Facilities...8
Module 1: Data-Centric Applications and ADO .NET
How to Teach This Module ...v
Overview..1
Lesson: Design of Data-Centric Applications..2
Lesson: ADO .NET Architecture...10
Lesson: ADO .NET and XML ...22
Review ...24
Lab 1: Data-Centric Applications and ADO .NET ..26
Module 2: Connecting to Data Sources
How to Teach This Module ... iv
Overview..1
Lesson: Choosing a .NET Data Provider ...2
Lesson: Defining a Connection..6
Lesson: Managing a Connection..14
Lesson: Handling Exceptions...20
Lesson: Connection Pooling ..29
Review: Connecting to Data Sources...37
Lab2 : Connecting to Data Sources..38
Module 3: Performing Connected Database Operations
How to Teach This Module ... iv
Overview..1
Lesson: Building Command Objects ...2
Lesson: Executing Command Objects That Return a Single Value.......................14
Lesson: Executing Commands That Return Rows...21
Lesson: Executing Multiple SQL Statements ..28
Lesson: Using Data Definition Language..34
Lesson: Manipulating Data Using Data Manipulation Language..........................39
Lesson: Using Transactions ...47
Review ...56
Lab 3: Performing Connected Database Operations..57

iv Programming with ADO.NET (Prerelease)

Module 4: Buidling DataSets
How to Teach This Module ... iv
Overview... 1
Lesson: Building DataSets and DataTables .. 2
Lesson: Binding a DataSet to a Windows Application Control............................ 14
Lesson: Creating a Custom DataSet.. 19
Lab 4.1: Building, Binding, Opening, and Saving DataSets................................. 23
Lesson: Defining Data Relationships.. 33
Lesson: Modifying Data in a DataTable ... 40
Lesson: Using a DataView.. 51
Review .. 57
Lab 4.2: Manipulating DataSets and Modifying Data .. 58
Module 5: Using XML with ADO .NET
How to Teach This Module ... iv
Overview... 1
Lesson: Creating XSD Schemas ... 2
Lesson: Creating a Strongly-Typed DataSet... 14
Lesson: Writing XML from a DataSet.. 23
Lesson: Using the XmlDataDocument Object .. 31
Review .. 44
Lab 5: Working with XML Data in ADO .NET ... 46
Module 6: Building DataSets from Existing Data Sources
How to Teach This Module ... iv
Overview... 1
Lesson: Configuring a DataAdapter to Retrieve Information 2
Lesson: Populating a DataSet by Using a DataAdapter.. 12
Lab 6.1: Retrieving Data into a Disconnected Application................................... 26
Lesson: Configuring a DataAdapter to Update the Underlying Data Source 44
Lesson: Persisting Changes to a Data Source ... 57
Lesson: How to Handle Conflicts ... 70
Review .. 80
Lab 6.2: Retrieving and Updating Customers and Orders Data............................ 82
Module 7: Building and Consuming a Web Service That Uses ADO .NET
How to Teach This Module ... iv
Overview... 1
Lesson: Building and Consuming a Web Service That Returns Data..................... 2
Review .. 13
Lab 7: Troubleshooting an ADO .NET Application ... 14
Appendix A: Best Practices for Writing SQL Statements and Stored
Procedures
Overview... 1
Lesson: Retrieving Data from a Database... 2
Lesson: Combining Data from Multiple Tables.. 11
Lesson: Modifying Data.. 17
Lesson: Using Stored Procedures.. 26
Review .. 30
Lab A: Best Practices for Writing SQL Statements and Stored Procedures 33

 Programming with ADO.NET (Prerelease) v

Appendix B: ADO and ADO.NET Comparison
Appendix C: Additional Resources
Appendix D: Microsoft .NET Framework Overview
Overview..1
Lesson: .NET Framework Architecture ...2
Lesson: .NET Namespaces ..10
Review ...17

 Programming with ADO.NET (Prerelease) vii

About This Course
This section provides you with a brief description of the course, audience,
suggested prerequisites, and course objectives.

Description

Audience

Student Prerequisites
This course requires that students meet the following prerequisites:

!
!
!

Course Objectives
After completing this course, the student will be able to:

!
!
!

viii Programming with ADO.NET (Prerelease)

Course Timing
The following schedule is an estimate of the course timing. Your timing may
vary.

Day 1
Start End Module

9:00 9:30 Introduction

 Module x: Title

 Break

 Lab x: Title

 Lunch

 Lab x: Title (continued)

 Break

 4:00

Day 2
Start End Module

9:00 9:30 Day 1 review

 Break

 Lunch

 Break

 4:00

 Programming with ADO.NET (Prerelease) ix

Day 3
Start End Module

9:00 9:30 Day 2 review

 Break

 Lunch

 Break

 4:00

Day 4
Start End Module

9:00 9:30 Day 3 review

 Break

 Lunch

 Break

 4:00

Day 5
Start End Module

9:00 9:30 Day 4 review

 Break

 Lunch

 Break

 4:00

x Programming with ADO.NET (Prerelease)

Trainer Materials Compact Disc Contents
The Trainer Materials compact disc contains the following files and folders:

! Autorun.exe. When the compact disc is inserted into the compact disc drive,
or when you double-click the Autorun.exe file, this file opens the compact
disc and allows you to browse the Student Materials or Trainer Materials
compact disc.

! Autorun.inf. When the compact disc is inserted into the compact disc drive,
this file opens Autorun.exe.

! Default.htm. This file opens the Trainer Materials Web page.
! Readme.txt. This file explains how to install the software for viewing the

Trainer Materials compact disc and its contents and how to open the Trainer
Materials Web page.

! 2389a_ms.doc. This file is the Manual Classroom Setup Guide. It contains
the steps for manually installing the classroom computers.

! 2389a_sg.doc. This file is the Automated Classroom Setup Guide. It
contains a description of classroom requirements, classroom configuration,
instructions for using the automated classroom setup scripts, and the
Classroom Setup Checklist.

! Errorlog. This folder contains an error log.
! Powerpnt. This folder contains the PowerPoint slides that are used in this

course.
! Pptview. This folder contains the PowerPoint Viewer, which is used to

display the PowerPoint slides.
! Setup. This folder contains the files that install the course and related

software to computers in a classroom setting.
! StudentCD. This folder contains the Web page that provides students with

links to resources pertaining to this course, including additional reading,
review and lab answers, lab files, multimedia presentations, and course-
related Web sites.

! Tools. This folder contains files and utilities used to complete the setup of
the instructor computer.

! Webfiles. This folder contains the files that are required to view the course
Web page. To open the Web page, open Windows Explorer, and in the root
directory of the compact disc, double-click Default.htm or Autorun.exe.

 Programming with ADO.NET (Prerelease) xi

Student Materials Compact Disc Contents
The Student Materials compact disc contains the following files and folders:

! Autorun.exe. When the compact disc is inserted into the CD-ROM drive, or
when you double-click the Autorun.exe file, this file opens the compact
disc and allows you to browse the Student Materials compact disc.

! Autorun.inf. When the compact disc is inserted into the compact disc drive,
this file opens Autorun.exe.

! Default.htm. This file opens the Student Materials Web page. It provides
students with resources pertaining to this course, including additional
reading, review and lab answers, lab files, multimedia presentations, and
course-related Web sites.

! Readme.txt. This file explains how to install the software for viewing the
Student Materials compact disc and its contents and how to open the
Student Materials Web page.

! 2389a_ms.doc. This file is the Manual Classroom Setup Guide. It contains a
description of classroom requirements, classroom setup instructions, and the
classroom configuration.

! Addread. This folder contains additional reading pertaining to this course.
! Appendix. This folder contains appendix files for this course.
! Flash. This folder contains the installer for the Macromedia Flash 5.0

browser plug-in.
! Fonts. This folder contains fonts that are required to view the Microsoft

PowerPoint® presentation and Web-based materials.
! Jobaids. This folder contains the job aids pertaining to this course.
! Labfiles. This folder contains files that are used in the hands-on labs. These

files may be used to prepare the student computers for the hands-on labs.
! Media. This folder contains files that are used in multimedia presentations

for this course.
! Mplayer. This folder contains the setup file to install Microsoft Windows

Media� Player.
! Sampapps. This folder contains the sample applications associated with this

course.
! Sampcode. This folder contains sample code that is accessible through the

Web pages on the Student Materials compact disc.
! Webfiles. This folder contains the files that are required to view the course

Web page. To open the Web page, open Windows Explorer, and in the root
directory of the compact disc, double-click Default.htm or Autorun.exe.

! Wordview. This folder contains the Word Viewer that is used to view any
Word document (.doc) files that are included on the compact disc.

xii Programming with ADO.NET (Prerelease)

Document Conventions
The following conventions are used in course materials to distinguish elements
of the text.

Convention Use

"""" Indicates an introductory page. This symbol appears next

to a topic heading when additional information on the topic
is covered on the page or pages that follow it.

bold Represents commands, command options, and syntax that
must be typed exactly as shown. It also indicates
commands on menus and buttons, dialog box titles and
options, and icon and menu names.

italic In syntax statements or descriptive text, indicates argument
names or placeholders for variable information. Italic is
also used for introducing new terms, for book titles, and
for emphasis in the text.

Title Capitals Indicate domain names, user names, computer names,
directory names, and folder and file names, except when
specifically referring to case-sensitive names. Unless
otherwise indicated, you can use lowercase letters when
you type a directory name or file name in a dialog box or
at a command prompt.

ALL CAPITALS Indicate the names of keys, key sequences, and key
combinations � for example, ALT+SPACEBAR.

monospace Represents code samples or examples of screen text.

[] In syntax statements, enclose optional items. For example,
[filename] in command syntax indicates that you can
choose to type a file name with the command. Type only
the information within the brackets, not the brackets
themselves.

{ } In syntax statements, enclose required items. Type only the
information within the braces, not the braces themselves.

| In syntax statements, separates an either/or choice.

! Indicates a procedure with sequential steps.

... In syntax statements, specifies that the preceding item may
be repeated.

.

.

.

Represents an omitted portion of a code sample.

Contents

Introduction 1

Course Materials 2

Prerequisites 3

Course Outline 4

Microsoft Certified Professional Program 6

Facilities 8

Introduction
(Prerelease)

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other appropriate product names or titles.
The publications specialist replaces this example list with the list of trademarks provided by the
copy editor. Microsoft, MS-DOS, Windows, and Windows NT are listed first, followed by all
other Microsoft trademarks listed in alphabetical order. > are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

<The publications specialist inserts mention of specific, contractually obligated to, third-party
trademarks, provided by the copy editor>

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Introduction (Prerelease) iii

Instructor Notes
The Introduction module provides students with an overview of the course
content, materials, and logistics for this course.

To teach this course, you need the following materials:

! Delivery Guide
! Trainer Materials compact disc

To prepare for this course, you must:

! Complete the Course Preparation Checklist that is included with the trainer
course materials.

Presentation:
30 Minutes

Required Materials

Preparation Tasks

iv Introduction (Prerelease)

How to Teach This Module
This section contains information that will help you to teach this module.

Welcome students to the course and introduce yourself. Provide a brief
overview of your technical background and your interest in the subject of the
course to establish credibility and rapport.

Ask students to introduce themselves and to describe their background, product
experience, and expectations of the course.

Record the expectations of students on a whiteboard or flip chart so that you
can refer to them later.

Tell students that everything they will need for this course is provided at their
desk.

Tell student to write their names on both sides of the name card.

Describe the contents of the student workbook and the Student Materials
compact disc.

Tell students where they can send comments and feedback on this course.

To demonstrate how to open the Web page for the course open Default.htm
located on the Trainer Materials compact disc in the StudentCD folder.

Describe prerequisites for this course. Try to determine whether your students
either exceed or do not meet the prerequisites.

Briefly describe each module and what students will learn.

For each chapter relate the terminal objective to student expectations for the
course.

Describe the classroom setup. Cover the following aspects of the classroom
setup:

! Go over the location of course files. Prompt students to create a desktop
shortcut to their course files. If you performed a default installation of the
course files, they will be installed in C:\Program Files\Msdntrain\2500.

! Describe the lab file structure in terms of start files and solution files
! Tell students whether they have Internet access.
! Describe the computer naming convention used in the classroom
! Describe whatever passwords are in place for the operating system and for

SQL Server.
! Read the required software list to students. Distinguish between software

titles that are available through retail channels versus those freely
downloadable from the Web. Make sure that students understand what is
needed to reproduce the classroom environment.

Briefly describe the Microsoft Certified Professional (MCP) program. Contrast
the MCP against other Microsoft certification options.

Introduction

Course Materials

Prerequisites

Course Outline

Setup

Microsoft Certified
Professional Program

 Introduction (Prerelease) v

Explain the following:

! Start and end time for regular classroom activities
! Any extended hours for working on labs
! Estimated time and duration of meals and stretch breaks
! Restroom location
! Parking facilities and policies
! Location and availability of telephones and Internet messaging facilities
! Local policies regarding smoking
! Availability of recycling facilities

Facilities

 Introduction (Prerelease) 1

Introduction
IntroductionIntroduction

! Name
! Company or Organization Affiliation
! Title and Job Function
! Job Responsibility
! Development Experience
! Experience with XML and Related Technologies
! Expectations for the Course

*****************************ILLEGAL FOR NON-TRAINER USE******************************

2 Introduction (Prerelease)

Course Materials
Course MaterialsCourse Materials

! Name Card
! Student Workbook
! Student Materials Compact Disc
! Course Evaluation

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The following materials are included with your kit:

! Name card. Write your name on both sides of the name card.
! Student workbook. The student workbook contains the material covered in

class, in addition to the hands-on lab exercises.
! Student Materials compact disc. The Student Materials compact disc

contains the Web page that provides you with links to resources pertaining
to this course, including additional readings, review and lab answers, lab
files, multimedia presentations, and course-related Web sites.

To open the Web page, insert the Student Materials compact disc into
the CD-ROM drive, and then in the root directory of the compact disc,
double-click Autorun.exe or Default.htm.

! Course evaluation. To provide feedback on the instructor, course design or
materials, or software product, send e-mail to mstrain@microsoft.com. Be
sure to type Course 2389A in the subject line. Your comments will help us
improve future courses.
To provide additional comments or inquire about the Microsoft Certified
Professional program, send e-mail to mcp@msprograms.com.

Note

 Introduction (Prerelease) 3

Prerequisites
PrerequisitesPrerequisites

! Database Basic Concepts
! XML Concepts and Implementation
! Visual Basic
! Distributed Application Architecture
! User Interface Design

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This course requires that you meet the following prerequisites:

! Understanding of Database Basics: Table, Row, Column, Primary Keys,
Foreign Keys, Constraints, Views)

! Concepts including SELECT, INS, UPD, DEL from tables.
! Exposure to XML documents, stylesheets, and schema
! Visual Basic.NET, Visual Basic for Applications, or previous version of

Visual Basic
! Describe distributed application architecture
! Building UI � Web applications or Windows applications

4 Introduction (Prerelease)

Course Outline
Course OutlineCourse Outline

! Module 1: Data-Centric Applications and ADO .NET
! Module 2: Connecting to Data Sources
! Module 3: Performing Connected Database Operations
! Module 4: Building DataSets
! Module 5: Reading and Writing XML with ADO .NET
! Module 6: Building Data Sources from Existing Data
! Module 7: Building and Consuming a Web Service that

Uses ADO .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Module 1: Data-Centric Applications and ADO .NET - After completing this
module, you will be able to diagram the architecture of data-centric
applications, give examples of storage options, choose a connected or
disconnected environment based on application requirements, diagram the
ADO .NET object model, use the System.Data namespaces in applications,
analyze typical business scenarios, and describe the use of XML in ADO .NET.

Module 2: Connecting to Data Sources - After completing this module, you will
be able to choose a .NET data provider, connect to SQL Server, connect to OLE
DB data sources. manage a connection, handle common connection exceptions,
and implement and control connection pooling.

Module 3: Performing Connected Database Operations - After completing this
module, you will be able to build a command object, execute a command that
returns a single value, execute a command that returns a set of rows, and
process the result, execute a command that returns multiple results, and process
the results, execute a command that defines data by using the data definition
language (DDL), execute a command that modifies data by using the data
manipulation language (DML), and use transactions.

Module 4: Building DataSets - After completing this module, you will be able
to build a DataSet and a DataTable, bind a DataSet to a DataGrid, create a
custom DataSet by using inheritance, define a data relationship, modify data in
a DataTable, find and select rows in a DataTable, and sort and filter a
DataTable by using a DataView.

 Introduction (Prerelease) 5

Module 5: Reading and Writing XML with ADO .NET - After completing this
module, you will be able to generate an XSD Schema from a DataSet by using
graphical tools, identify the purpose and uses of the XmlDataDocument object,
save a DataSet structure to an XSD Schema file, create and populate a
DataSet from an XSD Schema and XML data, load data and schema
simultaneously into a DataSet, save DataSet data as XML, write and load
changes by using a DiffGram, and manipulate data in an XmlDataDocument
object.

Module 6: Building DataSets from Existing Data Sources - After completing
this module, you will be able to configure a DataAdapter to retrieve
information, populate a DataSet by Using a DataAdapter, configure a
DataAdapter to modify information, persist data changes to a server, and
manage data conflicts

Module 7: Building and Consuming a Web Service That Uses ADO .NET -
After completing this module, you will be able to build and consume a Web
service, and troubleshoot errors in an ADO .NET application.

6 Introduction (Prerelease)

Microsoft Certified Professional Program
Microsoft Certified Professional ProgramMicrosoft Certified Professional Program

! Microsoft Certified Systems Engineer (MCSE)
! Microsoft Certified Database Administrator (MCDBA)
! Microsoft Certified Solution Developer (MCSD)
! Microsoft Certified Professional + Site Building

(MCP + Site Building)
! Microsoft Certified Professional (MCP)
! Microsoft Certified Trainer (MCT)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Microsoft Certified Professional program includes the following
certifications:

! Microsoft Certified Systems Engineer (MCSE)
! Microsoft Certified Database Administrator (MCDBA)
! Microsoft Certified Solution Developer (MCSD)
! Microsoft Certified Professional + Site Building (MCP + Site Building)
! Microsoft Certified Professional (MCP)
! Microsoft Certified Trainer (MCT)

See the Microsoft Training and Certification Web site at
http://www.microsoft.com/trainingandservices/

You can also send e-mail to mcp@msprograms.com if you have specific
certification questions.

For More Information

 Introduction (Prerelease) 7

Preparing for an MCP Exam
MSDN Training curriculum helps you prepare for Microsoft Certified
Professional (MCP) exams. However, no one-to-one correlation exists between
MSDN Training courses and MCP exams. Microsoft does not expect or intend
for MSDN Training to be the sole preparation tool for passing an MCP exam.
Practical product knowledge and experience is also necessary to pass an MCP
exam.

To help prepare for the MCP exams, you can use the preparation guides that are
available for each exam. Each Exam Preparation Guide contains exam-specific
information, such as a list of the topics on which you will be tested. These
guides are available on the Microsoft Certified Professional Web site at
http://www.microsoft.com/trainingandservices/

8 Introduction (Prerelease)

Facilities
FacilitiesFacilities

RecyclingRecycling

SmokingSmoking

MessagesMessagesParkingParking P
Rest RoomsRest Rooms

MealsMeals

Class HoursClass Hours

PhonesPhonesBuilding HoursBuilding Hours

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Contents

Overview 1

Lesson: Design of Data-Centric Applications 2

Lesson: ADO .NET Architecture 10

Lesson: ADO .NET and XML 22

Review 24

Lab 1: Data-Centric Applications and
ADO .NET 26

Module 1: Data-Centric
Applications and ADO
.NET (Prerelease)

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, Windows, Windows NT, <plus other appropriate product
names or titles. The publications specialist replaces this example list with the list of trademarks
provided by the copy editor. Microsoft is listed first, followed by all other Microsoft trademarks
in alphabetical order. > are either registered trademarks or trademarks of Microsoft Corporation
in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) iii

Instructor Notes
This course contains code samples in two languages, Microsoft Visual Basic
and Microsoft Visual C#. This is to accommodate students who are currently
Visual Basic programmers and who might be considering working with C#, and
C# programmers who do not have Visual Basic experience. All of the Lab
exercises have solutions in both languages. Most examples are also in two
languages, except when the example differs in two languages in only the most
minor ways.

You access the examples by clicking on the example links at the bottom of the
PowerPoint slides for the topics containing the examples. The examples are
displayed in Internet Explorer. The examples for each module are contained in a
single .htm file for that module. The files have internal links for navigating
within the example files.

This module teaches students about the architecture of the .NET Framework
and of ADO .NET. In addition, this module teaches students the differences
between connected and disconnected environments.

After completing this module, students will be able to:

! Diagram the architecture of data-centric applications.
! Give examples of storage options.
! Choose a connected or disconnected environment based on application

requirements.
! Diagram the ADO .NET object model.
! Use the System.Data namespaces in applications.
! Analyze typical business scenarios.
! Describe the use of XML in ADO .NET.

To teach this module, you need the following materials:

" Microsoft® PowerPoint® file 2389A_01.ppt
" Module 1, Data-centric Applications and ADO .NET., ��
" Lab 1.1,
" Lab 1.2
To prepare for this module:

" Read all of the materials for this module.
" Complete the practices and labs.
" Read the latest .NET Development news at

http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28000519

Presentation
45 Minutes
Lab:
30 Minutes

Required materials

Preparation tasks

iv Module 1: Data-Centric Applications and ADO .NET (Prerelease)

The information in this section provides setup instructions that are required to
prepare the instructor computer or classroom configuration for a lab.

! To prepare for the lab
1. Make sure that Internet Information Server (IIS) is set up properly.
2. You must have the solution project files for this lab.
3. You must have the Northwind Traders database, Northwind.mdb, installed.

Classroom setup

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) v

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Evolution of Data of Data-Centric Applications
This section describes the instructional methods for teaching each topic in this
lesson.

Technical Notes:
" This module focuses on defining how data-centric applications have evolved

from simple one-tier applications to complex, distributed n-tier applications.
In addition, this module also defines several common types of data storage.

Now that you have seen several examples of how logic can be divided in
different types of data-centric applications, you can explain how the logic
divided in an application that you know.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

The first practice in this module asks students to draw a diagram that shows the
separation and relationship of the logical layers of a database application that
they have designed oar worked on.. This practice helps discern the experience
levels of your students. If students have not designed or worked on a database
application, you can provide a simple application example for them to work
with.

Personalize the following question to the background of the students in your
class.
! Which data storage models do you need to access?

Write the list on a whiteboard and refer back to it when discussing the .NET
Data Providers.

 Now that you have seen several examples of how logic can be divided in
different types of data-centric applications, you can explain how the logic
divided in an application that you know.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Questions for discussion after the practice:

" What lessons did you learn during the practice exercise?
" What did you discover as you created the DataSet, DataTable, and

DataColumns?

Design of Data-Centric
Applications

Transition to Practice
Exercise

Practices

Practice/Discussion
Questions

Transition to Practice

After the practice

vi Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Lesson: Choosing a Connected or Disconnected Application
Environment

This section describes the instructional methods for teaching each topic in this
lesson.

The lesson introduces connected and disconnected scenarios. ADO.NET is
primarily a set of tools for creating applications for disconnected scenarios.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

Transition to Practice Exercise:

The point of this is to discuss the design and architecture of the solution, to start
the students thinking about the problems that ADO.NET needs to solve, so they
will understand why ADO.NET works the way it does.

Decide whether to use a connected or disconnected application architecture in
each of the following scenarios. Also, describe some of the design issues that
might arise in each case.

1. Northwind Traders needs to produce a report using data from two sources.
Customer and order information is held in a SQL Server 2000 database.
Financial and accounting information is held in an Access database.
Not enough information is given to decide between a connected or a
disconnected application.
The application will have to combine data from two different sources
though. One approach would be to import the data from one source
into the other before running the reports. Another approach would be
to use a higher level tool that can pull from the two sources and merge
the data in a third format. This approach might also indicate a
disconnected solution.

2. A Northwind Traders salesperson needs to update information about
customers and orders while on the road.
Create a disconnected application, which provides access to the data
when the salesperson is on the road. Some temporary data format is
required to hold the data, and to capture any changes the salesperson
makes to the data.
The application enables the salesperson to merge data changes when
reconnected to the server, and handle any conflicts that might occur,
such as concurrency errors, constraint errors, and so on.

Connected versus
disconnected
environments

Practice

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) vii

3. Northwind Traders needs to have its SQL Server 2000 data persisted as
XML, in order to transfer the data to a Web application. The XML data
must be regenerated once a day, to ensure reasonably up-to-date information
in the Web application.
Create a connected application that runs on the Web server or
application server. Open a connection to the database. Execute a SQL
query to get the required data. Loop through the returned rows,
generate an XML string that can be persisted to an XML document on
the Web server.

SQL Server 2000 enables you to retrieve a query result directly in
XML format. Use the FOR XML clause in the SELECT statement.

4. Northwind Traders requires a Web application to display information about
available products. The database might contain millions of product records.
The application must enable the user to scroll through the results one page at
a time.
Create a disconnected Web application. When the user requests
product information, open a connection to the database and retrieve the
requested information into a cache on the web server. Then close the
database connection.
You can display the cached data on a web page. Provide buttons or
some other Web control, to enable the user to page through the product
records in the collection. The next time you request the same products,
use the cache on the web server to generate a page for the user, without
requiring a round-trip to the database server.

Note

viii Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Lesson: ADO.NET Architecture
This section describes the instructional methods for teaching each topic in this
lesson.

As application development has evolved, new applications have become loosely
coupled based on the Web application model. An increasing number of
applications use XML to encode data to be passed over network connections.
ADO.NET provides a programming model that incorporates features of both
XML and ADO within the .NET Framework.

Instructor Demonstration:

In some ways you can think of ADO.NET as a marketing term that covers the
classes in the System.Data namespace.

Transition to Practice Exercise:

Practice Solution:

Questions for discussion after the practice:

The ADO.NET object model consists of two major parts, the DataSet classes
and the .NET data provider classes.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

The DataSet object modelThe DataSet class has a Tables property, which gets
a collection of DataTable objects in the DataSet, and a Relations property,
which gets a collection of the DataRelation objects in the DataSet.

Discussion Questions: Personalize the following question to the background of
the students in your class.

Technical Notes:
Discussion Questions: Personalize the following questions to the background
of the students in your class.

Describe which ADO.NET classes you would use in the following scenarios:

1. You want to execute an existing stored procedure in SQL Server 7.
Create a SqlConnection object, to connect to the database. Use a
SqlCommand object to execute the stored procedure.

2. You want to execute an existing stored procedure in an Oracle database.
Create an OleDbConnection object, to connect to the database. Use an
OleDbCommand object to execute the stored procedure.

3. You want to list all of the records in a SQL Server 2000 table.
Create a SqlConnection object, to connect to the database. Use a
SqlCommand object to execute the SQL query. Use a SqlDataReader to
iterate through the results quickly and efficiently.

Business use case

What is ADO.NET

After the practice

The ADO.NET object
model

The .NET Data Provider
object model

Practice

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) ix

4. You want to list all of the records in a SQL Server 6.5 table.
Create an OleDbConnection object, to connect to the database. Use an
OleDbCommand object to execute the SQL query. Use an
OleDbDataReader to iterate through the results.

5. You want to display data for an existing SQL Server 2000 table as a grid.
Create a SqlConnection object, to connect to the database. Create a
SqlDataAdapter object containing a SqlCommand object, to query the
database.
Use the SqlDataAdapter to fill a DataSet with the query result. Bind the
DataSet to a DataGrid, to display the data to the user.

6. You want to update a SQL Server 2000 data source with changes in a grid.
Create a SqlConnection object, to connect to the database. Create a
SqlDataAdapter object with four SqlCommands objects. The
SqlCommand objects specify SQL SELECT, INSERT, DELETE, and
UPDATE statements.
Use the SqlDataAdapter to fill a DataSet with the query result. Bind the
DataSet to a DataGrid, to display the data to the user.
To update the data source, use the SqlCommand objects in the
SqlDataAdapter object.

7. You want to create an XML Web service to query and update a SQL Server
2000 database. You want client applications to use XML to represent data
passed to and from the XML Web services.
In the XML Web service, create a SqlConnection object to connect to
the database. Create a SqlDataAdapter object with four SqlCommand
objects. The SqlCommand objects specify SQL SELECT, INSERT,
DELETE, and UPDATE statements.
Use the SqlDataAdapter to fill a DataSet with the query result. Extract
the data in XML format, and send the XML data to the client
application.
When the XML Web service receives updated XML data, load the data
back into the DataSet. Use the SqlDataAdapter to reconcile the
differences in the data, and to execute appropriate SQL statements to
update the database.

The data-related namespaces are provided by the .NET Framework class library
to make available the classes, interfaces, enumerations, and delegates for
performing disconnected data management.

XML is a rich and portable way of representing data in an open and platform-
independent way. An important characteristic of XML data is that it is text-
based. This makes it easier to pass XML data between applications and
services, rather than passing binary data such as ADO.NET recordsets.

What are the data-
related namespaces?

ADO.NET and XML
integration

x Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Discussion Questions: Personalize the following questions to the background
of the students in your class.

" You can use either the DataRelation constructor or the Add method. Why
would you use one or the other? What is the difference in results between
the two?

Transition to Practice Exercise:

Practice Solution:

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 1

Overview

Overview of Module 1

" Design of Data-Centric Applications

Data storage

Application architecture

" ADO .NET Architecture

ADO .NET namespaces

ADO .NET object models

" ADO .NET and XML

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Design data-centric applications, describe the ADO .NET architecture, and the
integration between ADO .NET and XML.
After completing this module, you will be able to:

! Diagram the architecture of data-centric applications.
! Give examples of storage options.
! Choose a connected or disconnected environment based on application

requirements.
! Diagram the ADO .NET object model.
! Use the System.Data namespaces in applications.
! Analyze typical business scenarios.
! Describe the use of XML in ADO .NET.

Objectives

2 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Lesson: Design of Data-Centric Applications

" Data Storage

From flat files to relational databases

" Connected and Disconnected Environments

" Data Access Application Models

From monolithic to N-tier

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes the design of data-centric application architecture and
data storage options.

After completing this lesson, you will be able to:

! Give examples of common types of data storage.
! Choose between a connected and disconnected application environment.
! Diagram how data access application models have evolved.

Introduction

Lesson objectives

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 3

Data Storage

Data Storage
" Relational data

SQL Server, Oracle, Access
" XML data

XML Web service
" Structured, non-hierarchical data

Comma Separated Value (CSV) files, Microsoft Excel
spreadsheets

Microsoft Exchange Active Directory

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Data storage is a method of storing specific items that together constitute a unit
of information. Individual data items themselves are of little use; they become
value resources only when put into context with other data items.

The following table describes different methods of data storage.

Type Characteristics Examples

Unstructured Data has no logical order. Simple memo

Structured, non-
hierarchical

Data is separated into units,
but the units are organized
strictly by their order.

Comma Separated Value files or
tab-separated files, Microsoft
Excel spreadsheets, Microsoft
Exchange Active Directory�,
Indexed Sequential Access
Method (ISAM) files

Hierarchical Data is organized in a tree
structure, with nodes that
contain other nodes.

XML data document

Relational Data is organized in tables,
with columns containing a
specific type of data and rows
containing a single record.
Tables can be related over
columns with identical data.

Microsoft SQL Server� and
Microsoft Access databases,
Oracle databases

ADO .NET supports all of these data formats.

Definition of data
storage

Types of data storage

ADO .NET Support

4 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

What Is a Connected Environment?

" What is a connected environment?

One in which users are directly connected to a server or
data source

*****************************ILLEGAL FOR NON-TRAINER USE******************************

For much of the history of computers, the only environment available was the
connected environment.

A connected environment is one in which a user or an application is directly
connected to a data source.

A connected scenario offers the following advantages:

! An easier to secure environment.
! Easier control over locking.
! Data is more likely to be current than in other scenarios.

A connected scenario has the following disadvantages:

• Must have a constant network connection.

An airline passenger check-in system requires a constant, always up-to-date
connection to a central database.

Introduction

Definition

Advantages

Disadvantages

Example

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 5

What Is a Disconnected Environment?

" The Internet is a disconnected environment

User gathers data from data source
User modifies data locally,
not connected to data source

User updates data to data source

*****************************ILLEGAL FOR NON-TRAINER USE******************************

With the advent of the Internet, disconnected work scenarios have become
commonplace, and with the increasing use of handheld devices, disconnected
scenarios are becoming universal. Laptop, notebook, and other portable
computers allow you to use applications when you are disconnected from
servers or databases.

A web application is primarily a disconnected application that makes use of
freshly designed, ad-hoc tools for managing data.

A disconnected environment is one in which a user or an application is not
directly connected to a server for a source of data or for a middle-tier service.
Mobile users who work with laptop computers are the primary users in
disconnected environments. Users can take part of the set of application objects
with them on a disconnected computer, and then merge changed versions back
into the central store. Alternatively, users can simply download the data they
need and take it with them on a disconnected computer wherever they go.

A disconnected environment provides the following advantages:

! You can work at any time that is convenient for you, and can connect to a
server or a database at any time to process requests.

! A connection is freed for other users.
! Improves the scalability of Web applications.

A disconnected environment has the following disadvantages:

! Data is not always up-to-date.
! Change conflicts can occur and must be resolved.

Introduction

Definition

Advantages

Disadvantages

6 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Decide whether to use a connected or disconnected architecture in each of the
following scenarios and describe some of the design issues that might arise.

1. Northwind Traders needs to produce a report using data from two sources.
Customer and order information is held in a SQL Server 2000 database.
Financial and accounting information is held in an Access database.
Not enough information is given to decide between a connected or a
disconnected application.
The application will have to combine data from two different sources
though. One approach would be to import the data from one source
into the other before running the reports. Another approach would be
to use a higher level tool that can pull from the two sources and merge
the data in a third format. This approach might also indicate a
disconnected solution.

2. A Northwind Traders salesperson needs to update information about
customers and orders while on the road.
Create a disconnected application, which provides access to the data
when the salesperson is on the road. Some temporary data format is
required to hold the data, and to capture any changes the salesperson
makes to the data.
The application enables the salesperson to merge data changes when
reconnected to the server, and handle any conflicts that might occur,
such as concurrency errors, constraint errors, and so on.

3. Northwind Traders needs to have its SQL Server 2000 data persisted as
XML, in order to transfer the data to a Web application. The XML data
must be regenerated once a day, to ensure reasonably up-to-date information
in the Web application.
Create a connected application that runs on the Web server or
application server. Open a connection to the database. Execute a SQL
query to get the required data. Loop through the returned rows,
generate an XML string that can be persisted to an XML document on
the Web server.

SQL Server 2000 enables you to retrieve a query result directly in
XML format. Use the FOR XML clause in the SELECT statement.

Practice

Note

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 7

4. Northwind Traders requires a Web application to display information about
available products. The database might contain millions of product records.
The application must enable the user to scroll through the results one page at
a time.
Create a disconnected Web application. When the user requests
product information, open a connection to the database and retrieve the
requested information into a cache on the web server. Then close the
database connection.
You can display the cached data on a web page. Provide buttons or
some other Web control, to enable the user to page through the product
records in the collection. The next time you request the same products,
use the cache on the web server to generate a page for the user, without
requiring a round-trip to the database server.

8 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Data Access Application Models

Evolution of data access

1-Tier
(monolithic)

2-Tier

3-Tier N-Tier and Internet
(will be a build slide)

�Fat� Client

�Thin� ClientClient logic
Business logic
Data storage

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Data access models have evolved with the evolution of computers, from highly
localized to highly distributed. As the number of users and the amount of data
increased, data access models evolved from a single-user on a single computer
to multiple users on the Internet. The latest development in this evolution is the
XML Web service model.

Within a data access model, a tier is logical level or layer at which the logical
components of an application reside, not a physical tier. Tiers can reside on one
or more computers. The number of tiers refers to the number of levels, not the
number of physical computers, into which services are divided. These levels
typically include the following:

! Client tier, also known as the presentation or user services layer. This tier
contains the user interface.

! Business logic tier, which contains the logic that interacts with the source of
data. This �middle� tier contains the part of the application that interacts
with the data, for example, creating a connection to the source of the data.

! Data services tier, which contains the data that the business logic uses in the
applications.

! Interoperability tier, which contains the logic that allows interaction
between applications on different operating systems, or different types of
data.

The major advantage of adding tiers is the ability to scale applications. Each
additional tier allows you to add more users and isolate a level of application
logic. Isolating the logic enables you to make changes to a specific area of an
application without requiring changes to the other tiers.

For example, in a 1-tier application, a change to any level of logic requires that
the entire application be recompiled and redistributed.

Introduction

Definition of tier

Benefits of tiers

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 9

The following table compares the different types of data access models.

Model Description Advantages Disadvantages

1-tier, or Monolithic This model typically

involves a single user and
all three layers on a single
computer. For example, an
old-style Microsoft Access
database with a single user.

Because everything is in
one place, all components
are easily accessible.

Program update requires
source code to be
modified, recompiled, and
redistributed for every
user. This model provides
no real ability to scale.

2-tier � client/server The user layer and
business logic layer reside
in one tier, data services on
another. Typically involves
two or more machines. For
example, a business
personnel database. Often
the business logic is split
between the two tiers:
some logic in the client
application, and some as
stored procedures in the
data tier.

Provides some separation
of functions.

Difficult to scale. The
client is a �Fat Client� that
contains both the
presentation and business
logic layers.

3-tier Each service is in a
separate layer. Business
logic moves into a new
�Middle tier.�

Good separation of
functions. The client layer
is a �thin client� that
contains only the client
logic, or presentation layer.

More complex to manage.
Security, is not as
scalable/flexible as n-tier

N-tier within an
organization

An enterprise-level
personnel database where
several clients access a
single application server.
New tiers can be added as
new logical needs occur.

Allows different
applications on different
operating systems to
interact with both the user
and the data.

Security

N-tier with Web interface

Services are distributed
among Internet and
intranet, with additional
tier and additional servers
dedicated to the network.

Zero client deployment
costs. Only updates are to
web/application servers.

Security

1. Think of a database application that you have developed in the past.
2. Draw a diagram showing the data access application model it used.
3. Draw the data storage formats you needed to access.

Did the architecture use a connected or disconnected environment?

Evolution of access
models

Practice

10 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Lesson: ADO .NET Architecture

ADO .NET Architecture

" What Is ADO .NET?

" What Are the Data-Related Namespaces?

" The ADO .NET Object Model

The DataSet Object Model

The .NET Data Provider Classes

The XxxDataAdapter Object Model

" Evolution of ADO to ADO .NET

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces ADO .NET and establishes its place in the .NET
Framework.

After completing this lesson, you will be able to:

! Explain how to use ADO .NET.
! Describe how ADO .NET is divided into namespaces.
! Diagram the ADO .NET object model.

Introduction

Lesson objectives

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 11

What Is ADO .NET?

What Is ADO .NET?
" An evolutionary, more flexible successor to ADO

" A system designed for disconnected environments

" A programming model with advanced XML support

" A set of classes, interfaces, structures, and
enumerations that manage data access from within the
.NET Framework

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO .NET is the next step in the evolution of Microsoft ActiveX Data Objects
(ADO). It does not share the same programming model, but shares much of the
functionality.

ADO .NET is a set of classes for working with data.

As application development has evolved, new applications have become loosely
coupled based on the Web application model. An increasing number of
applications use XML to encode data to be passed over network connections.
ADO .NET provides a programming model that incorporates features of both
XML and ADO .NET within the .NET Framework.

ADO .NET provides these advantages over other data access models and
components:

! Interoperability. ADO .NET uses XML as the format for transmitting data
from a data source to a local in-memory copy of the data.

! Maintainability. When an increasing number of users work with an
application, the increased use can strain resources. By using n-tier
applications, you can spread application logic across additional tiers. ADO
.NET architecture uses local in-memory caches to hold copies of data,
making it easy for additional tiers to trade information.

! Programmability. The ADO .NET programming model uses strongly-typed
data. Strongly typed data makes code more concise and easier to write
because Visual Studio .NET provides statement completion.

! Performance. ADO .NET helps you to avoid costly data type conversions
because of its use of strongly typed data.

! Scalability. The ADO .NET programming model encourages programmers
to conserve system resources for applications that run over the Web.
Because data is held locally in in-memory caches, there is no need to retain
database locks or maintain active database connections for extended
periods.

Introduction

Definition

Business use case

Benefits

12 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

What Are the Data-Related Namespaces?

" The data-related namespaces include:

System.Data

System.Data.Common

System.Data.SqlClient

System.Data.OleDb

System.Data.SqlTypes

System.Xml

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework divides functionality into logical namespaces, and ADO
.NET is no exception. ADO .NET is implemented primarily in the System.Data
namespace hierarchy, which physically resides in the System.Data.dll
assembly. Some parts of ADO .NET are part of the System.Xml namespace
hierarchy, for example the XmlDataDocument class.

The following table describes the data-related namespaces.

Namespace Description

System.Data The core of ADO .NET. Includes classes that make up

the disconnected part of the ADO .NET architecture, for
example, the DataSet classes

System.Data.Common Utility classes and interfaces that are inherited and
implemented by .NET data providers

System.Data.SqlClient The SQL Server .NET Data Provider

System.Data.OleDb The OLE DB .NET Data Provider

System.Data.SqlTypes Classes and structures for native SQL Server data types; a
safer, faster alternative to other data types

System.Xml Classes, interfaces, and enumerations that provide
standards-based support for processing XML. For
example, the XmlDataDocument class.

Introduction

The data-related
namespaces

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 13

The ADO .NET Object Model

DataSet

SQL Server .NET
Data Provider

OLE DB .NET
Data Provider

SQL Server 7.0
(and higher)

OLE DB sources
(SQL Server 6.5)

The ADO .NET Object Model

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ADO .NET object model consists of two major parts, the DataSet classes
and the .NET data provider classes.

The DataSet classes allow the storage and management of data in a
disconnected cache. The DataSet is independent of any underlying data source,
so its features are available to all applications, regardless of where the
applications data originated.

The .NET data provider classes are specific to a data source. The .NET data
providers must therefore be written specifically for a data source, and will work
only with that data source. The .NET data provider classes provide the ability to
connect to a data source, retrieve data from the data source, and perform
updates on the data source.

Introduction

The DataSet classes

The .NET data provider
classes

14 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

The DataSet Object Model

The DataSet Object Model

Tables (collection of DataTable objects)

Relations (collection of DataRelation objects)

DataSet

DataRow

DataColumn

DataTable

DataRelation Constraints

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataSet class has a Tables property, which gets a collection of DataTable
objects in the DataSet, and a Relations property, which gets a collection of the
DataRelation objects in the DataSet.

A DataTable object contains several collections that describe the data in the
table and to cache the data in memory. The following table describes the most
important collections.

Collection name Type of object
in collection

Description of object in collection

Columns DataColumn Contains metadata about a column in the table,

such as the column name, data type, and whether
rows can contain a NULL value in this column.

Rows DataRow Contains a row of data in the table. A DataRow
object also maintains the original data in the row,
before any changes were made by the application.

Constraints Constraint Represents a constraint on one or more
DataColumn objects. Constraint is an abstract
class. There are two concrete subclasses:
UniqueConstraint and ForeignKeyConstraint.

ChildRelations DataRelation Represents a relationship to a column in another
table in the dataset. Use DataRelation objects to
create links between primary keys and foreign
keys in your tables.

If a DataSet has multiple tables, some of the tables might contain related data.
You create DataRelation objects to describe these relationships to the DataSet.
A DataSet can contain a collection of DataRelation objects.

You can use DataRelation objects to programmatically fetch related child
records for a parent record, or a parent record from a child record.

Tables in a DataSet

Relations between
tables in a DataSet

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 15

The Northwind database in SQL Server contains a Products table. This table
contains information for each product, such as its product ID, product name,
and supplier ID. The following table shows some data in the Products table.

ProductID Product Name Supplier ID

1 Chai 1

2 Chang 1

3 Aniseed Syrup 1

4 Chef Anton's Cajun
Seasoning

2

The Northwind database also contains a Suppliers table. This table contains
information about companies that supply products to Northwind Traders. The
following table shows some data in the Suppliers table.

SupplierID CompanyName City

1 Exotic Liquids London

2 New Orleans Cajun
Delights

New Orleans

3 Grandma Kelly�s
Homestead

Ann Arbor

You can create a DataSet object that contains copies of both these tables,
including both structure and data. You can also create a DataRelation object, to
describe the relationship between the tables through the SupplierID column.
This enables you to get the supplier details for a particular product. You can
also get a list of all products supplied by a particular supplier.

DataSets can be bound to most controls in Windows Forms or Web Forms so
they make building data-related user interfaces easy.

The schema (structure) of a DataSet can be defined programmatically using the
DataSet object model, for example, by writing code to create DataTable and
DataRelation objects, or by using an XSD (XML Schema Definition) file. XSD
files are covered in Module 5: Using XML With ADO .NET.

Example of using the
DataSet object model

Data Binding

DataSet Schema

16 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

The .NET Data Provider Classes

The .NET Data Provider Classes

" XxxConnection, for example, SqlConnection

XxxTransaction, for example, SqlTransaction

XxxError, for example, SqlError

" XxxCommand, for example, SqlCommand

XxxParameter, for example, SqlParameter

" XxxDataReader, for example, SqlDataReader

" XxxDataAdapter, for example, SqlDataAdapter

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO .NET uses the .NET data providers to connect to a data source, retrieve
data, manipulate data, and update the data source. The .NET data providers are
designed to be lightweight. They create a minimal layer between your code and
the data source, to increase performance without sacrificing functionality.

The .NET Framework includes the following two data providers.

Data provider Description

SQL Server .NET Provides optimized access to SQL Server 2000 and SQL Server

7.0 databases.

OLE DB .NET Provides access to SQL Server versions 6.5 and earlier. Also
provides access to other databases, such as Oracle, Sybase,
DB2/400, and Microsoft Access.

In addition, Microsoft will provide an ODBC .NET Data Provider for access to
other data sources. This data provider will be available as a publicly accessible
Web release download.

To use the SQL Server .NET Data Provider, you will need to include the
System.Data.SqlClient namespace in your applications. This provider is more
efficient that using the OLE DB .NET Data Provider because it does not pass
through an OLE DB or ODBC layer.

To use the OLE DB .NET Data Provider, you will need to include the
System.Data.OleDb namespace in your applications.

ADO .NET exposes a common object model for .NET data providers. The
following table describes the four core classes that make up a .NET data
provider.

In the SQL Server .NET Data Provider, the class names begin with the prefix
Sql. For example, the connection class is called SqlConnection.

In the OLE DB .NET Data Provider, the class names begin with the prefix
OleDb. For example, the connection class is called OleDbConnection.

Introduction

Definition

SQL Server .NET Data
Provider

OLE DB .NET Data
Provider

Data provider classes

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 17

In the future, more .NET data providers will be written with other prefixes. In
the following table, these different prefixes are indicated with Xxx.

Class Description

XxxConnection Establishes a connection to a specific data source. For example,

the SqlConnection class connects to SQL Server data sources.

XxxCommand Executes a command from a data source. For example, the
SqlCommand class can execute stored procedures in a SQL
Server data source.

XxxDataReader Reads a forward-only, read-only stream of data from a data
source. For example, the SqlDataReader class can read rows
from tables in a SQL Server data source. It is returned by the
ExecuteReader method of the XxxCommand class, typically
as a result of a SELECT SQL statement.

XxxDataAdapter Uses XxxCommand objects to populate a DataSet, and
resolves updates with the data source. For example, the
SqlDataAdapter class can manage the interaction between a
DataSet and the underlying data in a SQL Server data source.

The XxxDataReader class provides forward-only, read-only access to data in a
data source. For example, to use a SqlDataReader to read data from a SQL
Server database:

1. Create a SqlConnection object, to connect to the SQL Server database.
2. Create a SqlCommand object, containing a SQL SELECT statement to

query the database.
3. Create a SqlDataReader object.
4. Execute the SqlCommand object using the ExecuteReader method, and

assign the results to the SqlDataReader object.
5. Use the Read method of the SqlDataReader to iterate forward through the

data, and process the rows.

Example of using an
XxxDataReader

18 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

The XxxDataAdapter Object Model

The XxxDataAdapter Object Model

sp_SELECT

XxxCommand

SelectCommand UpdateCommand InsertCommand DeleteCommand
XxxDataAdapter

XxxCommand XxxCommand XxxCommand

XxxConnection

sp_UPDATE sp_INSERT sp_DELETE

XxxDataReader

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The XxxDataAdapter class provides easy to manage disconnected functionality.
It is used to populate datasets, and then update the underlying data source with
any changes made to the dataset.

You can use a data adapter to populate a DataSet, and to send data updates
back to the data source. For example, to use a DataSet with a SQL Server .NET
Data Provider:

1. Create a SqlConnection object, to connect to a SQL Server database.
2. Create a SqlDataAdapter object. The object contains properties that can

point to four SqlCommand objects. These objects specify SQL statements
to SELECT, INSERT, DELETE, and UPDATE data in the database.

3. Create a DataSet object that contains one or more tables.
4. Use the SqlDataAdapter object to fill a DataSet table by calling the Fill

method. The SqlDataAdapter implicitly executes the SqlCommand object
that contains a SELECT statement.

5. Modify the data in the DataSet. You can do this programmatically, or by
binding the DataSet to a user interface control such as a DataGrid and then
changing the data in the grid.

6. When you are ready to send the data updates to the database, use the
SqlDataAdapter to call the Update method. The SqlDataAdapter object
implicitly uses its SqlCommand objects to execute INSERT, DELETE, and
UPDATE statements on the database.

Introduction

Example of using a data
adapter

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 19

Evolution of ADO to ADO .NET

Evolution of ADO to ADO .NET

Connection

AD
O

ADO .NET

Command

Recordset

XxxConnection

XxxCommand

DataSet

XxxTransaction

XxxDataReader

XxxDataAdapter

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There have been many changes between ADO and ADO .NET. Most of the
changes are as a response to studies of how developers use (and misuse) ADO.
The other changes are to make ADO .NET more flexible, more powerful, more
scalable, and better performing than ADO.

Not all .NET data providers will provide transactional functionality, so ADO
.NET moves that functionality into a separate class. This also means that the
new ADO .NET connection object is lighter-weight than the old ADO
connection object.

The ADO Recordset was a huge object in ADO. It provided the ability to
support multiple types of cursor, from a fast, light-weight �firehose� cursor, to a
disconnected client-side cursor that supported change tracking, optimistic
locking, and automatic batch updates of a central database. However, all this
functionality was hard (or impossible) to customize.

ADO .NET breaks the functionality of the old ADO Recordset into multiple
classes, thereby allowing a focused approach to developing code. The data
reader is the equivalent of a �firehose� cursor. The dataset provides
disconnected data cache with tracking and control binding functionality. The
data adapter provides the ability to completely customize how the central data
store is updated with the changes to a dataset.

See Appendix B for more on the reasons for the changes between ADO and
ADO .NET.

Introduction

Divide and Conquer

Reference

20 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Describe which ADO .NET classes you would use in the following scenarios:

1. You want to execute an existing stored procedure in SQL Server 7.
Create a SqlConnection object, to connect to the database. Use a
SqlCommand object to execute the stored procedure.

2. You want to execute an existing stored procedure in an Oracle database.
Create an OleDbConnection object, to connect to the database. Use an
OleDbCommand object to execute the stored procedure.

3. You want to list all of the records in a SQL Server 2000 table.
Create a SqlConnection object, to connect to the database. Use a
SqlCommand object to execute the SQL query. Use a SqlDataReader to
iterate through the results quickly and efficiently.

4. You want to list all of the records in a SQL Server 6.5 table.
Create an OleDbConnection object, to connect to the database. Use an
OleDbCommand object to execute the SQL query. Use an
OleDbDataReader to iterate through the results.

5. You want to display data for an existing SQL Server 2000 table as a grid.
Create a SqlConnection object, to connect to the database. Create a
SqlDataAdapter object containing a SqlCommand object, to query the
database.
Use the SqlDataAdapter to fill a DataSet with the query result. Bind the
DataSet to a DataGrid, to display the data to the user.

6. You want to update a SQL Server 2000 data source with changes in a grid.
Create a SqlConnection object, to connect to the database. Create a
SqlDataAdapter object with four SqlCommands objects. The
SqlCommand objects specify SQL SELECT, INSERT, DELETE, and
UPDATE statements.
Use the SqlDataAdapter to fill a DataSet with the query result. Bind the
DataSet to a DataGrid, to display the data to the user.
To update the data source, use the SqlCommand objects in the
SqlDataAdapter object.

Practice

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 21

7. You want to create an XML Web service to query and update a SQL Server
2000 database. You want client applications to use XML to represent data
passed to and from the XML Web services.
In the XML Web service, create a SqlConnection object to connect to
the database. Create a SqlDataAdapter object with four SqlCommand
objects. The SqlCommand objects specify SQL SELECT, INSERT,
DELETE, and UPDATE statements.
Use the SqlDataAdapter to fill a DataSet with the query result. Extract
the data in XML format, and send the XML data to the client
application.
When the XML Web service receives updated XML data, load the data
back into the DataSet. Use the SqlDataAdapter to reconcile the
differences in the data, and to execute appropriate SQL statements to
update the database.

22 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Lesson: ADO .NET and XML

" ADO .NET is tightly integrated with XML

2 SQL query
XML Web Services

XML4 DataSet Results3

Data Source

" Using XML in a connected ADO .NET application

Load XML into a DOM tree, or use a forward-only reader

5 Updated XML DataSet 6 SQL updates

Request data1
Client

" Using XML in a disconnected ADO .NET application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO .NET is tightly integrated with XML. The ADO .NET object model has
been designed with XML at the core, rather than as an added extra, as in ADO
2.x. ADO .NET makes it easy for you to convert relational data into XML
format. You can also convert data from XML into a collection of tables and
relations.

XML is a rich and portable way of representing data in an open and platform-
independent way. An important characteristic of XML data is that it is text-
based. This makes it easier to pass XML data between applications and
services, rather than passing binary data such as ADO Recordsets.

You need to write an application that processes XML data. The XML data may
come from an external business via an XML Web service, email, BizTalk
Server, or many other sources.

The ADO .NET object model includes extensive support for XML. Consider
the following facts and guidelines when using the XML support in ADO .NET:

! You can read data from a dataset in XML format. This is useful if you want
to pass data between applications or services in a distributed environment.

! You can fill a dataset with XML data. This is useful if you receive XML
data from another application or service, and want to update a database
using this data.

! You can create an XML Schema for the XML representation of the data in a
dataset. You can use the XML Schema to perform tasks such as serializing
the XML data to a stream or file.

Introduction

Importance

Scenario

Definition

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 23

! You can load XML data into a Document Object Model (DOM) tree, from a
stream or file. You can then manipulate the data as XML or as a dataset. To
do this, you must have an XML Schema to describe the structure of the data
to the dataset.

! You can create typed datasets. A typed dataset is a subclass of DataSet,
with added properties and methods to expose the structure of the dataset.
Visual Studio generates an equivalent XML Schema definition for the
typed dataset, to describe the XML representation of the dataset.

This example describes how to use XML in a disconnected ADO .NET
application. You can XML to pass data between the different parts of the
system as follows:

1. The client application invokes an XML Web service, to request data from a
database.

2. The XML Web service queries a data source, to obtain the requested data.
3. The XML Web service loads the results into a dataset.
4. The XML Web service translates the data into XML format, and returns the

XML data to the client application.
5. The client application processes the XML data in some way. For example,

the client can load the XML data into a dataset, and bind it to user-interface
controls such as a DataGrid. When the client application is ready, it
invokes an XML Web service to update the data source with the data
changes.

6. The XML Web service loads the new XML data into a dataset, and uses the
new data to update the data source.

Module 5: ADO .NET and XML, includes more detail about the integration
between ADO .NET and XML.

There are also some other MOC courses if you are interested in XML.

! 1905B: Building XML-Based Applications.
! 1913A: Exchanging and Transforming Data Using XML and XSLT.
! 2500A: Introduction to XML and the .NET Platform.
! 2503A: XML within the .NET Framework.
! 2091A: Building XML-Enabled Applications using Microsoft SQL Server

2000.

Example of using XML in
a disconnected ADO
.NET application

Reference

24 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Review

Review of Module 1

" What are the characteristics of a connected architecture?

" What are the characteristics of a disconnected architecture?

" What are the features and advantages of a distributed public XML
Web Service architecture?

" How does ADO .NET increase the interoperability and scalability
of disconnected systems?

" What is a dataset, and why is it important in ADO .NET?

" Which .NET data providers are included in the .NET Framework?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. What are the characteristics of a connected architecture? Describe some
scenarios where a connected architecture is appropriate.
A connected architecture is one where an application can connect
directly to a data source, to query and modify the stored data.
A connected architecture is appropriate for in-house applications that
access a data source over a Local Area Network. Another example is an
ASP .NET Web Application that queries a database to generate a read-
only report of the data.

2. What are the characteristics of a disconnected architecture? Describe a
scenario where a disconnected architecture is appropriate.
A disconnected architecture is one where an application does not
connect directly to a data source. ADO .NET provides extensive
support for building disconnected applications, to meet the needs of
modern-day distributed systems.
A disconnected architecture is appropriate for mobile workers. At the
start of the day, a private copy of customers and products data can be
downloaded from the database. During the day, the worker uses and
modifies this copy of the data. At the end of the day, the worker posts
the data changes back to the database. XML Web services have an
important role to play in this style of application.

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 25

3. What are the features and advantages of the XML Web service architecture?
Business services are made available to disconnected users. XML Web
services can retrieve private copies of data from a data source to enable
users to work with the data remotely. XML Web services also allow the
user to post data updates back to the data source when required.

4. How does ADO .NET increase the interoperability and scalability of
disconnected systems?
XML makes interoperability possible. Data from a data source can be
expressed in XML format, which makes it easier to exchange the data
between application tiers and across organizational boundaries. XML
is tightly integrated into the design and philosophy of ADO .NET.
Scalability is achieved by enabling data to be cached locally in in-
memory caches. This reduces the number of active connections and
database locks required, which means that more users can be supported
at the same time.

5. What is a dataset, and why is it important in ADO .NET?
The DataSet class is the most fundamental concept in the design of the
ADO .NET disconnected architecture. A dataset is an in-memory cache
of data tables, relations, and constraints. You can populate a dataset
from a SQL query, an XML document, or by creating tables, relations,
and constraints programmatically.
You can manipulate a dataset in a disconnected application. You can
also write out the contents of a dataset in XML format, and pass it to
other applications and services.

6. Which .NET data providers are included in the .NET Framework?
The .NET Framework includes two data providers: the SQL Server
.NET Data Provider, and the OLE DB .NET Data Provider.
The SQL Server .NET Data Provider gives optimized access to SQL
Server 2000 and SQL Server 7.0 databases.
The OLE DB .NET Data Provider gives access to SQL Server 6.5 (and
earlier), Oracle, Sybase, and other databases.

26 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Lab 1: Data-Centric Applications and ADO .NET

" Exercise 1: Adding ADO .NET Objects to an
ASP .NET Web Application

" Exercise 2: Executing a Query and
Displaying the Results

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

" Identify the architecture of data-centric applications and storage options.
" Decide when to use different classes in the ADO .NET object model.
" Identify and use the System.Data namespaces and assemblies.
" Choose a connected or disconnected environment, based on application

requirements.
" Propose an ADO .NET application architecture for typical business

scenarios.

Before working on this lab, you must have:

" The solution project files for this lab.
" The Northwind database installed.

Objectives

Prerequisites

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 27

Northwind Traders needs to provide its customers and suppliers with an up-to-
date product list. The company decides to develop a Web application to make
this information available to as many users as possible.

The product data is held in a SQL Server 2000 database. The Web application
will use the SQL Server .NET Data Provider because it provides optimized
access to SQL Server 2000.

The Web application will use a disconnected architecture. Each time a user
requests product data, the application performs the following tasks:

1. Open a connection to the database by using a SqlConnection object.
2. Query the database by using a SqlCommand object.
3. Create a SqlDataReader object, to read the results as efficiently as possible.

The SqlDataReader object provides forward-only, read-only access to the
data, and is the fastest way to process data in ADO .NET. Speed is an
important design issue in Web applications, where demand can peak
sharply.

4. Bind a DataGrid to the SqlDataReader object. This will cause the
SqlDataReader object to loop through the data, and populate the DataGrid
with that data.

5. Close the SqlDataReader object.
6. Close the SqlConnection object.

This design ensures that the database connection is kept open for the shortest
possible time. Releasing database connections quickly is an important
requirement in many applications.

You will create a new ASP .NET Web application in the folder
<install folder>\Labs\Lab01\Starter.

A Visual Basic solution is provided in the folder <install folder>\
Labs\Lab01\Solution\VB.

A Visual C# solution is provided in the folder <install folder>\Labs\
Lab01\Solution\CS.

Scenario

Starter and solution files

Estimated time to
complete this lab: 30
minutes

28 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Exercise 1
Adding ADO .NET Objects to an ASP .NET Web Application

In this exercise, you will select specific data from tables in the Northwind
database.

! To create an ASP.NET Web application
In this procedure, you will create a new ASP .NET Web application in Visual
Studio .NET. You will examine the data-related assemblies that are referenced
by default in the project.
1. Start Visual Studio .NET.
2. On the File menu, point to New, and then click Project.
3. In the New Project dialog box, select the following options, and then click

OK.

Option Selection

Project Types Visual Basic Projects (or Visual C# Projects if you prefer)

Templates ASP .NET Web Application

Name MyWebApplication

Location http://localhost/2389/Labs/Lab01/Starter

4. In the Solution Explorer, expand the References folder. Notice that the
System.Data and System.XML assemblies are already referenced in the
project, in addition to other core assemblies.

! To add a SqlConnection object to the application
In this procedure, you will add a SqlConnection object to your application.
You will set its connection string to the Northwind database in SQL Server
2000.
1. In the Toolbox, select the Data tab.

What data-related controls are available in this tab?

2. Drop a SqlConnection object onto the design surface of WebForm1.aspx.
This action causes a SqlConnection object named SqlConnection1 to
appear beneath the form.

3. Right-click SqlConnection1, and then select Properties.
4. In the Properties window, select the ConnectionString property. In the

drop-down list for this property, select <New Connection�>.

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 29

5. The Data Link Properties dialog box appears. Enter the following
information in this dialog box, and then click OK:

Field in dialog box Enter this information

Server name (local)

Information to log on to server Use Windows NT Integrated Security

Database on the server Northwind

6. In the Properties window, examine the new value of the ConnectionString
property.

! To add a SqlCommand object to the application
In this procedure, you will add a SqlCommand object to your application. You
will configure the object to execute a SQL query, by using the database
connection held in SqlConnection1.
1. In the Toolbox, select the Data tab, and then drop a SqlCommand object

onto your web form. This action creates a new object named
SqlCommand1 in your application.

2. In the Properties window, set the following properties for SqlCommand1.
(Set the properties in the order shown; you can use the Query Builder or
type the SQL statement manually)

Property Value

Connection SqlConnection1

CommandText SELECT ProductName, UnitPrice FROM Products

3. When prompted, choose Yes to regenerate the parameters collection.

! To examine the code generated by the Web Form Designer
When you add objects to your Web form, the Web Form Designer generates
code to create and configure these objects in your application. In this procedure,
you will examine the code that is generated for the SqlConnection1 and
SqlCommand1 objects.
1. Right-click WebForm1.aspx, and then select View Code.
2. In the code editor, expand the gray box labeled Web Form Designer

Generated Code.
3. Examine the code that the Web Form Designer has generated for the

SqlConnection1 and SqlCommand1 objects. In the next few modules you
will learn in detail how this code works.

4. Verify that this code corresponds to the properties that you have set in the
Properties window.

Do not modify the generated code in any way. You will lose these
modifications the next time you view the form in the Web Form Designer.
You must use the Web Form Designer to make any changes to this code.

Caution

30 Module 1: Data-Centric Applications and ADO .NET (Prerelease)

Exercise 2
Executing a Query and Displaying the Results

In this exercise, you will add a button and a DataGrid to your form.

When the user clicks the button, you will query the Northwind database by
using the SqlConnection and SqlCommand objects that you created in
Exercise 1. You will use a SqlDataReader object to copy the retrieved data
into the DataGrid.

! To add a button and a DataGrid to the form
1. In the Web Form Designer, view your form.
2. In the Toolbox, select the Web Forms tab, and then drop a Button onto

your form.
3. Set the following properties for the Button object.

Property Value

(ID) btnQuery

Text Query

4. Drop a DataGrid object onto your form.
5. Set the following property for the DataGrid object.

Property Value

(ID) dgResult

! To execute a query and display the results in the DataGrid
1. In the Web Form Designer, double-click the button. This adds a method

named btnQuery_Click, to handle the button-click event.
2. In the btnQuery_Click method, add the following Visual Basic or Visual

C# code to open a connection to the Northwind database:
' Visual Basic
SqlConnection1.Open()

// Visual C#
sqlConnection1.Open();

 Module 1: Data-Centric Applications and ADO .NET (Prerelease) 31

3. Add the following code to query the database, and then create a
SqlDataReader object to read the results:
' Visual Basic
Dim Reader As System.Data.SqlClient.SqlDataReader
Reader = SqlCommand1.ExecuteReader()

// Visual C#
System.Data.SqlClient.SqlDataReader Reader;
Reader = sqlCommand1.ExecuteReader();

4. Add the following code to bind the DataGrid to the SqlDataReader object.
The SqlDataReader object will iterate through the data, and the DataGrid
will display the data on the screen.
' Visual Basic
dgResult.DataSource = Reader
dgResult.DataBind()

// Visual C#
dgResult.DataSource = Reader;
dgResult.DataBind();

5. Add the following code to close the SqlDataReader and SqlConnection
objects:
' Visual Basic
Reader.Close()
SqlConnection1.Close()

// Visual C#
Reader.Close();
sqlConnection1.Close();

6. Build the project, and fix any compiler errors that might occur.
7. Run the project. When your Web form appears in Internet Explorer, click

the Query button. A DataGrid appears in the Web form, showing the
values of the ProductName and UnitPrice of every product in the Northwind
database.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Choosing a .NET Data Provider 2

Lesson: Defining a Connection 6

Lesson: Managing a Connection 14

Lesson: Handling Exceptions 20

Lesson: Connection Pooling 29

Review: Connecting to Data Sources 37

Lab2 : Connecting to Data Sources 38

Module 2: Connecting
to Data Sources
(Prerelease)

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other appropriate product names or titles.
The publications specialist replaces this example list with the list of trademarks provided by the
copy editor. Microsoft is listed first, followed by all other Microsoft trademarks in alphabetical
order. > are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 2: Connecting to Data Sources (Prerelease) iii

Instructor Notes
This module explains the concepts and procedures necessary to create and
manage a Microsoft® ADO .NET connection to Microsoft SQL Server� or
other data sources.

After completing this module, students will be able to:

! Build a DataSet and a DataTable.
! Bind a DataSet to a DataGrid.
! Create a custom DataSet by using inheritance.
! Define a data relationship.
! Modify data in a DataTable.
! Sort and filter a DataTable by using a DataView.

To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2389A_02.ppt
! Module 2, �Connecting to Data Sources�
! Lab 2, Connecting to Data Sources

To prepare for this module:

! Read all of the materials for this module.
! Complete the practices and labs.
! Read the latest .NET Development news at

http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28000519

Presentation:
60 Minutes

Lab:
60 Minutes

Required materials

Preparation tasks

iv Module 2: Connecting to Data Sources (Prerelease)

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Choosing a .NET Data Provider
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.

What Are .NET Data
Providers?

Which .NET Data
Provider Should You
Use?

 Module 2: Connecting to Data Sources (Prerelease) v

Lesson: Defining a Connection
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following questions to the background
of the students in your class.
! When would you use Windows authentication and when would you use

Mixed Mode?

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

Here are the solutions to the practice above. Changes have been highlighted in
bold.

Exercise 1

The name of the provider was wrong, and the database path is specified using
the Data Source parameter, not the Initial Catalog:

Use OLE DB .NET Data Provider
Provider=Microsoft.Jet.OLEDB.4.0;Data Source=\MyDB\MyDB.mdb;

Exercise 2

We should be using Windows Authentication, not SQL standard security:

Use SQL Server .NET Data Provider
Data Source=ProdServ01;Initial Catalog=Pubs;Integrated
Security=SSPI;

Exercise 3

The names of the SQL Server and database should be swapped:

Use SQL Server .NET Data Provider
Data Source=ProdServ01;Initial Catalog=Pubs;User
ID=JohnK;Password=JohnK;

Database Security

Setting a Connection
String

vi Module 2: Connecting to Data Sources (Prerelease)

Exercise 4

The SQL Server .NET Data Provider will not work with SQL Server 6.5; use
the OLE DB .NET Data Provider instead:

Use OLE DB .NET Data Provider
Provider=SQLOLEDB;Data Source=ProdServ01;Initial
Catalog=Pubs;Integrated Security=True;

Exercise 5

This one was correct, no changes required:

Use SQL Server .NET Data Provider
Data Source=ProdServ02;Initial Catalog=Northwind;Integrated
Security=SSPI;

Exercise 6

We should be using Windows Authentication, not SQL standard security:

Use SQL Server .NET Data Provider
DataSource=ProdServ02;Initial Catalog=Pubs;Integrated
Security=SSPI;

Exercise 7

The connection timeout is measured in seconds, not minutes:

Use SQL Server .NET Data Provider
Data Source=ProdServ01;Initial Catalog=Pubs;Integrated
Security=True;Connection Timeout=60;

Exercise 8

This one was correct, because 15 seconds is the default timeout, so no changes
required:

Use SQL Server .NET Data Provider
Data Source=ProdServ01;Initial Catalog=Pubs;Integrated
Security=True;

Exercise 9

Add an additional option to save the password in the connection string:

Use SQL Server .NET Data Provider
Data Source=ProdServ02;Initial Catalog=Pubs;User
ID=JohnK;Password=JohnK;Persist Security Info=True;

 Module 2: Connecting to Data Sources (Prerelease) vii

Lesson: Managing a Connection
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.
Instructor Demonstration: Programmatically demonstrate how to handle the
StateChange event.

Opening and Closing a
Connection

Handling Connection
Events

viii Module 2: Connecting to Data Sources (Prerelease)

Lesson: Handling Exceptions
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.
Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

What is Structured
Exception Handling?

How to Handle Multiple
Types of Exceptions

Communicating Errors
to Users

 Module 2: Connecting to Data Sources (Prerelease) ix

Lesson: Connection Pooling
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.

Discussion Questions: Personalize discussion questions to the background of
the students in your class.

What is Connection
Pooling?

Controlling OLE DB
Connection Pooling

Controlling SQL Server
Connection Pooling

 Module 2: Connecting to Data Sources (Prerelease) 1

Overview

! Choosing a .NET Data Provider

! Managing a Connection

! Handling Exceptions

! Connection Pooling

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module explains the concepts and procedures necessary to create and
manage a Microsoft® ADO .NET connection to Microsoft SQL Server� or
other data sources.

After completing this module, you will be able to:

! Choose a .NET data provider.
! Connect to SQL Server.
! Connect to OLE DB data sources.
! Manage a connection.
! Handle common connection exceptions.
! Implement and control connection pooling.

Introduction

Objectives

2 Module 2: Connecting to Data Sources (Prerelease)

Lesson: Choosing a .NET Data Provider

! This lesson describes:

" What are .NET data providers?

" Which .NET data provider should you use?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When connecting to a data source, you must first choose a .NET data provider.
The data provider includes classes that enable you to connect to the data source,
read data efficiently, modify and manipulate data, and update the data source.

This lesson explains the various types of data providers and enables you to
choose the appropriate provider for your application.

After completing this lesson, you will be able to:

! Describe the different .NET data providers.
! Choose a data provider.

Introduction

Lesson Objectives

 Module 2: Connecting to Data Sources (Prerelease) 3

What Are .NET Data Providers?

! Types of .NET Data Providers

" SQL Server .NET Data Provider

" OLE DB .NET Data Provider

" ODBC .NET Data Provider

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET data providers are a core component within the ADO .NET
architecture that enable communication between a data source and a
component, an XML Web service, or an application. A data provider allows
you to connect to a data source, retrieve and manipulate data, and update the
data source.

The following .NET data providers are included with the release of the .NET
Framework:

! SQL Server .NET Data Provider
! OLE DB .NET Data Provider

Other .NET data providers will be made available for other data sources.
Microsoft will make the following provider available as a World Wide Web
release download:

• Open Database Connectivity (ODBC) .NET Data Provider

Each of these data providers includes implementations of the generic ADO
.NET classes so that you can programmatically communicate with different data
sources in a similar way.

Definition

Types of .NET Data
Providers

4 Module 2: Connecting to Data Sources (Prerelease)

Which .NET Data Provider Should You Use?

! SQL Server .NET Data Provider

! OLE DB .NET Data Provider

! ODBC .NET Data Provider

! Guidelines for choosing a .NET data provider

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Choosing the appropriate .NET data provider for your application depends on
the type of data source that is being accessed.

Use the Visual Studio .NET Solution Explorer to manage references to
assemblies that implement .NET data providers.

The System.Data.dll assembly (physically a single DLL file) implements the
SQL Server .NET Data Provider and the OLE DB .NET Data Provider in the
System.Data.SqlClient and System.Data.OleDb namespaces.

The System.Data.Odbc.dll assembly implements the ODBC .NET Data
Provider. This assembly is not part of the Visual Studio .NET installation. You
can download the assembly from the Microsoft web site. You can then
manually reference it in your project to use the ODBC .NET Data Provider.

The SQL Server .NET Data Provider establishes a thin layer of communication
between an application and Microsoft SQL Server. Because the SQL Server
.NET Data Provider uses its own protocol, Tabular Data Stream (TDS), to
communicate with SQL Server, it is lightweight and accesses SQL Server
directly without any additional layers. This results in improved performance
and scalability.

It is also recommended that you use the SQL Server .NET Data Provider for
single-tier applications that use the Microsoft Data Engine (MSDE), because
MSDE is based on the SQL Server engine.

Introduction

How To Reference a
.NET Data Provider

SQL Server .NET Data
Provider

 Module 2: Connecting to Data Sources (Prerelease) 5

The OLE DB .NET Data Provider uses native OLE DB and COM
interoperability to connect and communicate with a data source. Because of
this, you must use an OLE DB provider to use the OLE DB .NET Data
Provider.

To use the OLE DB .NET Data Provider you must indicate the provider type in
the connection string. The Provider keyword in a connection string indicates the
type of OLE DB data source you will connect to; for example,
�Provider=MSDAORA� to connect to an Oracle database. You do not need to
include a Provider keyword in a connection string when using the SQL Server
.NET Data Provider because the data source is assumed to be Microsoft SQL
Server version 7.0 or later.

Data source Example connection string parameters

SQL Server 6.5 Provider=SQLOLEDB;Data Source=London;Initial

Catalog=pubs;User ID=sa;Password=2389;

Oracle Server Provider=MSDAORA;Data
Source=ORACLE8I7;User
ID=OLEDB;Password=OLEDB;

Microsoft Access database Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=c:\bin\LocalAccess40.mdb;

The OLE DB .NET Data Provider does not work with the OLE DB Provider for
ODBC (MSDASQL). To access data sources by using ODBC, use the ODBC
.NET Data Provider.

The ODBC .NET Data Provider uses native ODBC application programming
interface (API) calls to connect and communicate with a data source.

The ODBC .NET Data Provider has been implemented as a separate assembly
called System.Data.Odbc.dll. It is not selected by default in project templates,
and must be manually referenced.

Data source Provider/driver Example connection string parameters

Oracle Server ORA ODBC Driver={Microsoft ODBC for Oracle};

Server=ORACLE8I7; UID=OLEDB;
PWD=OLEDB;

Microsoft Access
database

Jolt OLEDB Driver={Microsoft Access Driver (*.mdb)};
DBQ=c:\bin\localaccess40.mdb;

The following table lists general guidelines for choosing a .NET data provider.

If your data source is Then choose
Microsoft SQL Server 7.0 or Microsoft
SQL Server 2000

SQL Server .NET Data Provider

Microsoft SQL Server version 6.5 or
earlier

OLE DB .NET Data Provider

Any heterogeneous data source that can be
accessed by using an OLE DB provider

OLE DB .NET Data Provider

Any heterogeneous data source that can be
accessed by using an ODBC driver

ODBC .NET Data Provider

OLE DB .NET Data
Provider

Warning!

ODBC .NET Data
Provider

Guidelines for Choosing
a .NET Data Provider

6 Module 2: Connecting to Data Sources (Prerelease)

Lesson: Defining a Connection

! This lesson describes how to:

" Database security

" Setting a connection string

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A connection string is an essential part of connecting to a data source. The
ConnectionString property of a connection object provides information for
that connection object. This lesson describes what a connection string is and
how to use one.

After completing this lesson, you will be able to:

! Describe SQL Server database security options.
! Set a connection string property.

Introduction

Lesson Objectives

 Module 2: Connecting to Data Sources (Prerelease) 7

Database Security

Database Security

! Using SQL Server security

" Using Windows authentication

" Using Mixed Mode (Windows authentication and SQL
Server authentication)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you build an application that accesses data by using ADO .NET, you will
usually have to connect to secure databases. To do so, security information such
as username and password will need to be passed to the database before a
connection can be made. The database security that is available depends on the
database that is accessed.

SQL Server can operate in one of two authentication modes: Windows
authentication and Mixed Mode (Windows authentication and SQL Server
authentication).

Windows authentication allows a user to connect through a Windows user
account. Network security attributes for the user are established at network
login time, and are validated by a Windows domain controller.

When a network user tries to connect, SQL Server verifies that the user is who
they say they are, and then permits or denies login access based on that network
user name alone, without requiring a separate login name and password.

Windows authentication provides:

! Secure validation and encryption of passwords.
! Auditing.
! Password expiration.
! Minimum password length.
! Account lockout after multiple invalid login requests.

Because Windows users and groups are maintained only by Windows, SQL
Server reads information about a user�s group membership when the user
connects. If changes are made to the accessibility rights of a connected user, the
changes become effective the next time the user connects to an instance of SQL
Server or logs on to Windows (depending on the type of change).

Introduction

Using SQL Server
Security

Using Windows
Authentication

Benefits of Using
Windows Authentication

Warning!

8 Module 2: Connecting to Data Sources (Prerelease)

Mixed Mode authentication allows users to connect to an instance of SQL
Server by using either Windows authentication or SQL Server authentication.
Users who connect through a Windows NT 4.0 or Windows 2000 user account
can use trusted connections in either Windows Authentication Mode or Mixed
Mode.

When a user connects by using a specified login name and password from a
non-trusted connection, SQL Server performs the authentication itself by
checking to see if a SQL Server login account has been set up and if the
specified password matches the one that was previously recorded. If SQL
Server does not have a login account set, authentication fails and the user
receives an error message.

If a user attempts to connect to an instance of SQL Server by providing a blank
login name, SQL Server uses Windows authentication. Additionally, if a user
attempts to connect to an instance of SQL Server configured for Windows
authentication Mode by using a specific login, the login is ignored and
Windows authentication is used.

SQL Server authentication is provided primarily for backward compatibility
because applications written for SQL Server version 7.0 or earlier may require
the use of SQL Server logins and passwords. Additionally, SQL Server
authentication is required when an instance of SQL Server is running on
Windows 98 because Windows Authentication Mode is not supported on
Windows 98. Therefore, SQL Server uses Mixed Mode when running on
Windows 98 (but supports only SQL Server authentication).

Using Mixed Mode
(Windows
Authentication and SQL
Server Authentication)

Warning!

Mixed Mode is primarily
for backwards
compatibility

 Module 2: Connecting to Data Sources (Prerelease) 9

Setting a Connection String

! Setting a Connection String

" Provider (OLE DB only)

" Data Source

" Initial Catalog

" Integrated Security

" User ID/Password

" Persist Security Info

! Demo and Practice

Visual Basic Example C# Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

To move data between a data store and your application, you must first have a
connection to the data store. You can create and manage a connection by using
one of the connection objects that ADO .NET makes available, including the
SqlConnection object and the OleDbConnection object.

You can set the ConnectionString property only when the connection is
closed. To reset a connection string, you must close and reopen the connection.

The ConnectionString property provides the information that defines a
connection to a data store.

Introduction

Note

Definition

10 Module 2: Connecting to Data Sources (Prerelease)

The values that you include in a connection string depend on which of the
connection objects you use. The following table describes several common
parameters of connection strings. The table contains only a partial list of the
values, and not all of these are needed to establish a connection.

Parameter Description

Provider Use this property to set or return the name of the provider

for the connection, used only for OleDbConnection
objects.

Connection Timeout or
Connect Timeout

Length of time in seconds to wait for a connection to the
server before terminating the attempt and generating an
error. 15 is the default.

Initial Catalog The name of the database.

Data Source The name of the SQL Server to be used when a
connection is open.

Password Logon password for the SQL Server account.

User ID The SQL Server login account.

Integrated Security or
Trusted Connection

Determines whether or not the connection is to be a
secure connection. True, False, and SSPI are the
possible values. (SSPI is the equivalent of True)

Persist Security Info When set to False, security-sensitive information, such as
the password, is not returned as part of the connection if
the connection is open or has ever been in an open state.
Setting this property to True can be a security risk. False
is the default.

The following examples show connection strings that contain commonly used
properties. Note that not all connection strings contain the same properties.

The following is an example of connecting to a SQL Server 2000 database
using a SqlConnection and Visual Basic.

Product Microsoft SQL Server 2000
Server name London
Database name Northwind

Security Mixed mode
Username sa
Password 2389
Timeout 1 minute

Dim cnNorthwind as New _
 System.Data.SqlClient.SqlConnection()

cnNorthwind.ConnectionString = _
 "User ID=sa;" & _
 "Password=2389;" & _
 "Initial Catalog=Northwind;" & _
 "Data Source=London;" & _
 "Connection TimeOut=60;"

Syntax

Examples

 Module 2: Connecting to Data Sources (Prerelease) 11

The following is an example of connecting to a Microsoft Access database
using an OleDbConnection and Visual Basic.

Product Microsoft Access 2000
Database location \MyDB\MyDB.mdb

Dim cnNorthwind as New _
 System.Data.OleDb.OleDbConnection()

cnNorthwind.ConnectionString = _
 �Provider=Microsoft.Jet.OLEDB.4.0;� & _
 �Data Source=\MyDB\MyDB.mdb;�

The following is an example of connecting to a SQL Server 6.5 database using
an OleDbConnection and Visual C#.

Product Microsoft SQL Server 6.5
Server name ProdServ01

Database name Pubs
Security Windows authentication

System.Data.OleDb.OleDbConnection cnNorthwind = new
 System.Data.OleDb.OleDbConnection();

cnNorthwind.ConnectionString =
 "Provider=SQLOLEDB;� +
 �Data Source=ProdServ01;� +
 �Initial Catalog=Pubs;� +
 �Integrated Security=SSPI;";

The easiest method of setting a connection string is to use the Visual Studio
.NET development environment. Drag and drop a connection object from the
Toolbox and use the Property Window to set the connection string.

For each of the following examples, determine if the .NET data provider and
connection string that follow each example, are valid; if not, correct them.

Product Microsoft Access 2000

Database location \MyDB\MyDB.mdb

Use OLE DB .NET Data Provider
Provider=Microsoft.Access;Initial Catalog=\MyDB\MyDB.mdb;

Product Microsoft SQL Server 2000
Server name ProdServ01
Database name Pubs
Security Windows authentication

Use SQL Server .NET Data Provider
Data Source=ProdServ01;Initial Catalog=Pubs;User
ID=JohnK;Password=JohnK;

Demo

Practice

Exercise 1

Exercise 2

12 Module 2: Connecting to Data Sources (Prerelease)

Product Microsoft SQL Server 2000

Server name ProdServ01
Database name Pubs
Security Mixed Mode
Username JohnK

Password JohnK

Use SQL Server .NET Data Provider
Data Source=Pubs;Initial Catalog=ProdServ01;User
ID=JohnK;Password=JohnK;

Product Microsoft SQL Server 6.5
Server name ProdServ01
Database name Pubs
Security Windows authentication

Use SQL Server .NET Data Provider
Data Source=ProdServ01;Initial Catalog=Pubs;Integrated
Security=True;

Product Microsoft SQL Server 7.0
Server name ProdServ02
Database name Northwind
Security Windows authentication

Use SQL Server .NET Data Provider
Data Source=ProdServ02;Initial Catalog=Northwind;Integrated
Security=SSPI;

Product Microsoft SQL Server 7.0
Server name ProdServ02
Database Name Pubs
Security Windows authentication

Use SQL Server .NET Data Provider
DataSource=ProdServ02;Initial Catalog=Pubs;User
ID=AmyJ;Password=AmyJ;

Product Microsoft SQL Server 2000
Server name ProdServ01
Database name Pubs
Security Windows authentication
Timeout 1 minute

Use SQL Server .NET Data Provider
Data Source=ProdServ01;Initial Catalog=Pubs;Integrated
Security=True;Connection Timeout=1;

Exercise 3

Exercise 4

Exercise 5

Exercise 6

Exercise 7

 Module 2: Connecting to Data Sources (Prerelease) 13

Product Microsoft SQL Server 2000
Server name ProdServ01
Database name Pubs
Security Windows authentication
Timeout 15 seconds

Use SQL Server .NET Data Provider
Data Source=ProdServ01;Initial Catalog=Pubs;Integrated
Security=True;

Product Microsoft SQL Server 2000
Server name ProdServ02
Database name Pubs
Security Mixed Mode
Username JohnK
Password JohnK (visible if connection

string is read)

Use SQL Server .NET Data Provider
Data Source=ProdServ02;Initial Catalog=Pubs;User
ID=JohnK;Password=JohnK;

Exercise 8

Exercise 9

14 Module 2: Connecting to Data Sources (Prerelease)

Lesson: Managing a Connection

! This lesson describes how to:

" Open and close a connection

" Handle connection events

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Once you have defined the ConnectionString property of a connection object
you use the Open and Close methods to manage the connections current state.
This lesson describes how to use these methods, and how to respond to
connection events.

After completing this lesson, you will be able to:

! Open and close a connection.
! Handle connection events (such as StateChange, InfoMessage).

Introduction

Lesson Objectives

 Module 2: Connecting to Data Sources (Prerelease) 15

Opening and Closing a Connection

! Opening and closing a connection

" Using the Open and Close methods to determine the
state of the connection

" Opening and closing connections explicitly

" Opening and closing connections implicitly

" Using the Dispose method

" Using multiple connections

C# Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can open and close connections either implicitly, by calling methods on an
object that uses the connection, or explicitly, by calling the Open and Close
methods.

The two primary methods for connections are Open and Close.

! The Open method uses the information in the ConnectionString property
to contact the data source and establish an open connection.

! The Close method shuts down the connection.

Closing connections is essential, because most data sources support only a
limited number of open connections, and open connections take up valuable
system resources.

Opening and closing connections explicitly is the recommended approach,
because it:

! Makes for cleaner, more readable code.
! Helps you debug.
! Is more efficient.

You can open a database connection by using the Open method, and with the
values specified by the ConnectionString. Conversely, you can close a
database connection by using the Close method.

If you work with data adapters, you do not have to explicitly open and close a
connection. When you call a method of these objects (for example, the
DataAdapter�s Fill or Update method), the method checks whether the
connection is already open. If not, the DataAdapter opens the connection,
performs its logic, and then closes the connection.

Introduction

Opening and Closing
Connections Explicitly

Opening and Closing
Connections Implicitly

16 Module 2: Connecting to Data Sources (Prerelease)

If you are filling multiple tables in a DataSet from the same database you will
have multiple data adapters, one for each table, but only one connection. When
filling the connection will open and close multiple times if you use connections
implicitly. It is better to explicitly open the connection, call the Fill methods of
the multiple data adapters, and then explicitly close the connection.

To open a connection, you use the Open method on the connection object you
are working with, OleDbConnection or SqlConnection. The Open method
opens a database connection with the property settings that you have specified
in the ConnectionString.

You must always close the connection when you have finished using it. To do
this, you can use either the Close or Dispose methods of the connection object.
Connections are not released implicitly when the connection object falls out of
scope or is reclaimed by garbage collection.

The Close method rolls back any pending transaction. It then closes the
connection, or releases the connection to the connection pool if pooling is
enabled. An application can call the Close method more than one time.

When you close a connection, the flow to and from the data source closes, but
unmanaged resources used by the connection object have not been released.
Both the SqlConnection object and the OleDbConnection object have a
Dispose method to release the unmanaged resources.

The following Visual Basic example shows how to create a SqlConnection
object, open the connection with the Open method, and then release the
resources used by the connection by calling the Dispose method and then
setting the object to Nothing.

Dim cnNorthwind As New _
 System.Data.SqlClient.SqlConnection()

cnNorthwind.ConnectionString = _
 �Data Source=(local);� & _
 �Initial Catalog=Northwind;� & _
 �Integrated Security=SSPI;�

cnNorthwind.Open()

' perform some database task

cnNorthwind.Close()

cnNorthwind.Dispose()

cnNorthwind = Nothing

Best Practice

Opening a Connection

Closing a Connection

Using the Dispose
Method

Example of Using the
Dispose Method

 Module 2: Connecting to Data Sources (Prerelease) 17

Handling Connection Events

! Handling connection events by using the StateChange
event

! The specific arguments for the StateChange event are
determined by the type of .NET data provider that you
use.
" SqlConnection.StateChange event for a SqlConnection object

" OleDbConnection.StateChange event for an OleDbConnection
object

" The State property is read-only.

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

The StateChange event occurs whenever the connection state changes; from
closed to open or from open to closed. To handle any event, you must have an
event handler, which is a method with a signature defined by the class that
defines the event you want to handle. Different events have slightly different
event handlers. The event handler for the StateChange event is a method that
must have an argument of the type StateChangeEventArgs. This argument
contains data related to this event.

The specific arguments for the StateChange event are determined by the type
of .NET data provider that you use.

! SqlConnection.StateChange event for a SqlConnection object
! OleDbConnection.StateChange event for an OleDbConnection object

Remember that all events in the .NET Framework have two parameters.

! sender (of type Object)
! e (of type XxxEventArgs)

For the StateChange event, e is of type StateChangeEventArgs.

The event handlers for the two events receive the same type of argument,
StateChangeEventArgs, that contains data related to this event. The following
table describes the properties of the StateChangeEventArgs class.

Property Description

CurrentState Gets the new state of the connection. The connection object will

already be in the new state when the event is fired.

OriginalState Gets the original state of the connection.

Introduction

The StateChange Event

Definition

18 Module 2: Connecting to Data Sources (Prerelease)

The following example shows code for creating a StateChangeEventHandler
delegate using Visual Basic and Visual C#. Note the different ways of handling
events in Visual Basic and Visual C#.

' Visual Basic

Private Sub cnNorthwind_StateChange(_
 ByVal sender As Object, _
 ByVal e As System.Data.StateChangeEventArgs _
) Handles cnNorthwind.StateChange

 ' Display current and original state
 ' in a message box whenever
 ' the connection state changes

 MessageBox.Show(_
 "CurrentState: " & e.CurrentState.ToString & vbCrLf & _
 "OriginalState: " & e.OriginalState.ToString, _
 "cnNorthwind.StateChange", _
 MessageBoxButtons.OK, _
 MessageBoxIcon.Information)

End Sub

// Visual C#

// the following code is usually added to the constructor
// for the class so that the function is linked to the
// appropriate event

this.cnNorthwind.StateChange += new
 System.Data.StateChangeEventHandler(
 this.cnNorthwind_StateChange);

private void cnNorthwind_StateChange(
 object sender,
 System.Data.StateChangeEventArgs e)
{
 MessageBox.Show(
 "CurrentState: " & e.CurrentState.ToString +
 "OriginalState: " & e.OriginalState.ToString,
 "cnNorthwind.StateChange",
 MessageBoxButtons.OK,
 MessageBoxIcon.Information);
}

Example of a
StateChange Event
Handler

 Module 2: Connecting to Data Sources (Prerelease) 19

Create a new Windows application using Visual Basic that has two buttons that
open and close a SqlConnection to the Northwind database. Disable the close
button initially.

Write code to handle the StateChange event by checking the current state, and
enabling or disabling the two buttons appropriately.

Notice the environment allows the event to be picked from the drop down lists
in the Code Editor.

Repeat the demonstration using Visual C#. Note the event handling code must
be written manually.

Demo

20 Module 2: Connecting to Data Sources (Prerelease)

Lesson: Handling Exceptions

! This lesson describes how to handle connection
exceptions, including:

" What is structured exception handling?

" How to handle multiple types of exceptions

" Communicating errors to users

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson describes how to handle connection exceptions in a .NET
environment. Visual Basic programmers will find that exception handling in the
.NET environment is different from previous versions of Visual Basic. The
familiar On Error style error handling is supported but not recommended for
the .NET Framework.

In the past, each language had a different method of handling errors. All .NET
languages use the Common Language Runtime, and must be able to interact
closely with each other. This means that the languages that use the .NET
Framework need to support the new, standardized style of error handling, called
structured exception handling.

Structured exception handling provides more specific information when an
error occurs. A class can define its own custom exceptions with additional
information that is specific to the task the class was written to perform, such as
the name of a stored procedure, a line number or an error, or a Server name.
You can create your own exception classes by deriving classes from the
appropriate base exception.

After completing this lesson, you will be able to:

! Describe what structured exception handling is.
! Handle multiple types of exceptions.
! Handle connection exceptions.

Introduction

Lesson Objectives

 Module 2: Connecting to Data Sources (Prerelease) 21

What Is Structured Exception Handling?

! What is structured exception handling?

" Syntax of the Try� Catch� Finally statement

" Syntax of a Throw statement

" What are generic exceptions?

Visual Basic Syntax Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

An exception is an error condition or unexpected behavior that is encountered
by an executing program from the program itself or from the run-time
environment.

Earlier versions of Visual Basic had only one error, with a limited amount of
information about the error; therefore you had to check the number property on
the Err object to determine what problem had occurred. You would typically
write a Select Case statement to branch to different chunks of code in order to
deal with those specific errors. Today, instead of having one error object, you
have the option of handling more specific errors, now known as exceptions.

Exception handling in ADO .NET is similar to a game of catch: code in the
application throws an exception, and exception handling in your code catches it.

Structured exception handling is code designed to detect and respond to errors
during program execution by combining a control structure with exceptions,
protected blocks of code, and filters. In the .NET Framework, the control
structure is the Try�Catch�Finally statement. If an error occurs in the Try
block, code in the Catch block handles the error.

Introduction

Definition of Structured
Exception Handling

22 Module 2: Connecting to Data Sources (Prerelease)

The following example shows the syntax for the Try�Catch�Finally
statement in Visual Basic. One Try block can have many Catch blocks.

Try
 [tryStatements]
[Catch1 [exception1 [As type1]] [When expression1]
 catchStatements1
[Exit Try]
Catch2 [exception2 [As type2]] [When expression2]
 catchStatements2
[Exit Try]
...
Catchn [exceptionn [As typen]] [When expressionn]
 catchStatementsn]
[Exit Try]
[Finally
 [finallyStatements]]
End Try

Dim cnNorthwind As System.Data.SqlClient.SqlConnection

Try

 cnNorthwind = New System.Data.SqlClient.SqlConnection()

 cnNorthwind.ConnectionString = _
 �Data Source=(local);� & _
 �Initial Catalog=Northwind;� & _
 �Integrated Security=SSPI;�

 cnNorthwind.Open()

 ' perform some database task

Catch XcpNullRef As System.NullReferenceException

 MessageBox.Show(�Failed to create connection object�)

Catch Xcp As System.Exception

 MessageBox.Show(Xcp.ToString())

Finally

 cnNorthwind.Close()

 cnNorthwind.Dispose()

 cnNorthwind = Nothing

End Try

A program indicates that an exception condition has occurred by executing a
Throw statement. Exceptions thrown by the Throw statement can be caught in
a Try statement. A Throw statement creates an exception within a procedure.

Syntax for the
Try�Catch�Finally
Statement

Visual Basic Example

Definition of a Throw
Condition

 Module 2: Connecting to Data Sources (Prerelease) 23

Throw New Exception

The following Visual Basic example shows a Throw statement:

Throw New FileNotFoundException(_
 "data.txt not in c:\dev directory", e)

The System.Exception class applies to all exceptions in the .NET environment.
The properties that all exceptions share include the following:

! Message. This is a read-only property that you can use to display a
description of the cause of the exception in a message box.

! InnerException. This read-only property refers to the cause of the current
exception. When InnerException is a non-null value (non-Nothing value in
Visual Basic), this property refers to the exception that ultimately caused the
current exception.

! HelpLink. This property gets or sets a link to a Help file that you associate
with the current exception. The return value is a Uniform Resource Name
(URN) or Uniform Resource Locator (URL) that you associate with the
Help file.

Create a new Windows application using Visual Basic that has two buttons that
open and close a SqlConnection to the Northwind database. Add exception
handling code.

The Visual Studio .NET documentation lists the specific exceptions that can
occur for a specific method call. Look up the exceptions that can occur when
calling the Open and ChangeDatabase methods of the
System.Data.SqlClient.SqlConnection class.

Syntax of a Throw
Statement

Example of a Throw
Statement

What Are Generic
Exceptions?

Demo

Practice

24 Module 2: Connecting to Data Sources (Prerelease)

How to Handle Multiple Types of Exceptions

! How to handle multiple types of exceptions

" Write the code to execute inside a Try block

" Write a Catch statement for each specific exception
that you want to catch

" Write a generic Catch statement for all other exceptions

" Write a Finally statement to run the code no matter
what happens

" End the exception handler with an End Try block

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you write an exception handler that uses a Try�Catch�Finally block,
you can use as many Catch blocks as you feel are necessary. Write a Finally
block to run the code unconditionally.

For multiple exceptions, you must start with the most specific exceptions and
then proceed to the least specific, which is the System.Exception class, the
generic exception.

You want to call a method on one of your objects, such as opening a file.
Although opening a file is one method call, multiple problems can occur when
the call is made. You cannot assume that there will be only one problem. You
must be able to handle multiple exceptions.

The exception handler in the following procedure handles a series of exceptions
that might occur when code in an application tries to open a text file. These are
low-level errors that a user can fix and then try again to execute the file-opening
code. The exceptions are in the Catch blocks that are provided by the .NET
Framework.

Introduction

Scenario

Procedure

 Module 2: Connecting to Data Sources (Prerelease) 25

! To handle multiple types of exceptions
1. Write the code to execute inside a Try block.

' This code simply opens a text file and gets its size

Try
 s = File.Open(txtFileName.Text, FileMode.Open)
 IngSize = s.Length
 s.Close()

2. Write a Catch statement for each exception that you want to catch.

' These statements specify different exceptions that might
' need to be caught and provides an action for each
' exception. Each statement creates an exception object
that ' can provide specific information.

Catch e As ArgumentException
 MessageBox.Show(_
 �You specified an invalid file name.�)
Catch e As FileNotFoundException
 MessageBox.Show(_
 �The file you specified can�t be found.�)
Catch e As ArgumentNullException
 MessageBox.Show(_
 �You passed in a null argument.�)
Catch e As AccessException
 MessageBox.Show(_
 �You specified a folder name.�)
Catch e As DirectoryNotFoundException
 MessageBox.Show(_
 �You specified a folder that does not exist.�)
Catch e As SecurityException
 MessageBox.Show(_
 �You don�t have sufficient access.�)
Catch e As IOException
 MessageBox.Show(_
 �The drive you selected is not ready.�)

26 Module 2: Connecting to Data Sources (Prerelease)

3. Write a generic Catch statement for all other exceptions. If in a class that
will be called, then throw the exception up to the calling code. Otherwise, if
your code is part of the presentation tier, display a warning message to the end
user.

' This statement handles all non-specific exceptions
Catch e As System.Exception

' For a Windows application you might use a MessageBox...
MessageBox.Show(�An unknown error occurred.�)

' ...for a Web application you might write to the page...
Response.Write(�An unknown error occurred.�)

' ...for an exception within a custom class you would Throw
' the exception up to the calling code to handle.
Throw e

4. Write a Finally block after the Catch blocks.
Finally
 ' Run this code no matter what else happens
 s = Nothing

5. End the Try block.
 ' This statement ends the Try block
 End Try

 Module 2: Connecting to Data Sources (Prerelease) 27

Communicating Errors to Users

! Communicating errors to users

" Using SqlError severity levels

" What is the InfoMessage event?

" When do you use InfoMessage?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Many different problems can occur when you work with databases. Because
some problems are more serious than others, you can apply severity levels to
them. For less serious problems, exceptions might not even be thrown. Instead,
an event might be triggered. For example, the InfoMessage event of the
SqlConnection object is triggered when the database server needs to
communicate potentially important information to the user.

The SqlException class contains the exception that is thrown when SQL Server
returns a warning or error. This class is created whenever the SQL Server .NET
Data Provider encounters a situation that it cannot handle. The class always
contains at least one instance of SqlError. You can use the severity level to
help determine the content of a message that an exception displays.

The following table describes severity levels of the SqlException class.

Severity Description Action

1-10 Informational, indicating

problems caused by mistakes
in information that a user has
entered

SqlConnection remains open, so
you can continue working.

11-16 Generated by user Can be corrected by user.

17-19 Software or hardware errors You can continue working, but
might not be able to execute a
particular statement. SqlConnection
remains open.

20-25 Software or hardware errors Server closes SqlConnection. User
can reopen connection.

There are InfoMessage events for both the SqlConnection and the
OleDbConnection classes. These events occur when the provider sends a
warning or an information message.

Introduction

The SqlException Class

What Is The
InfoMessage Event?

28 Module 2: Connecting to Data Sources (Prerelease)

Use the InfoMessage event when you add an information message to an error-
handling routine. When an InfoMessage event is triggered, an argument
containing a SqlErrorCollection is passed to the event handler. The handler
can then loop through all of the SqlError objects and retrieve detailed
information about the messages.

The solution for this practice is located here
<install folder>\Practices\Mod02\Lesson4\HandlingInfoMessage\

Add code to handle the InfoMessage event of the connection, and use a
message box to display a description and the class (severity level) of each
SqlError contained in the InfoMessage.

The Northwind Traders IT Director would like all applications developed by his
team to provide better feedback to enable the Help Desk staff to track issues. In
a previous lesson you learned how to write code to handle the StateChange
event. In this practice you will write code to handle the InfoMessage event.

1. Create a new Windows Application solution using Visual Studio .NET
named HandlingInfoMessage.

2. Add two button controls from the Toolbox, with captions Open and Close,
and name them btnOpen and btnClose.

3. Add a SqlConnection control from the Toolbox and name it cnNorthwind.
4. Set the ConnectionString property of cnNorthwind to connect to the

Northwind database in your local SQL Server using integrated security.
5. Add code to the Open button that opens the connection.
6. Add code to the Close button that closes and disposes of the connection.
7. Add code to handle the InfoMessage event by looping through all the

SqlError objects in the Errors collection of the
SqlInfoMessageEventArgs object and showing the message.
' Visual Basic
Dim se As SqlClient.SqlError
For Each se In e.Errors
 MessageBox.Show(se.Message, "InfoMessage", _
 MessageBoxButtons.OK, MessageBoxIcon.Information)
Next

// Visual C#
foreach (SqlClient.SqlError se in e.Errors)
{
 MessageBox.Show(se.Message, "InfoMessage", _
 MessageBoxButtons.OK, MessageBoxIcon.Information);
}

8. Run and test the application.

How many SqlErrors are generated when a connection is made to a SQL Server
database?

When Do You Use
InfoMessage?

Practice

 Module 2: Connecting to Data Sources (Prerelease) 29

Lesson: Connection Pooling

! This lesson describes:

" What is connection pooling?

" How SQL Server connection pooling works

" Controlling OLE DB connection pooling

" Controlling SQL Server connection pooling

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Each time you establish a connection to a data source, cycles and memory are
used. Because applications often require multiple connections with multiple
users, connecting to a data source can be resource-intensive. By pooling
connections, you can keep connections available for reuse, which enhances
application performance and scalability.

This lesson describes how to implement connection pooling with SQL Server
and OLE DB data sources in ADO .NET.

After completing this lesson, you will be able to:

! Describe what connection pooling is and how it works.
! Control OLE DB connection pooling.
! Control SQL Server connection pooling.

Introduction

Lesson Objectives

30 Module 2: Connecting to Data Sources (Prerelease)

What Is Connection Pooling?

! What is connection pooling?

" Definition of connection pooling

" How connection pooling works

" Example of connection pooling

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

Connection pooling is the process of keeping connections active and pooled so
that they can be efficiently reused. Connections with identical connection
strings are pooled together and can be reused without reestablishing the
connection.

A connection pool is created when one or more connections share a unique
connection string, and connection-pooling functionality has been requested. If
any one parameter of the new connection string is not identical to the first
string, the new connection will be placed in its own pool.

Applications often require many of the same connections for different purposes.
By pooling these connections and reusing them:

! Application performance is improved.
! Scalability is enhanced.

Connection pooling is the ability of SQL Server or an OLE DB data source to
reuse connections for a particular user or security context.

Connection pooling occurs on the computer where the database is installed.
When the database is installed, memory is allocated for its processes, including
connections. The ADO .NET connection string specifies different parameters
for connection pooling.

When the connection to the data source is attempted, the security context and
the Pooling parameter are examined. If the Pooling parameter is set to �false�,
then connection pooling will not occur. However, if pooling is enabled (it is set
to �true� by default), connection pooling will occur.

Definition

How Connection Pooling
Works

 Module 2: Connecting to Data Sources (Prerelease) 31

A security context is a unique combination of parameter values in the
connection string. The security context is checked to see if it is valid and if it is
identical to other connection strings. If two connections have the same
connection string parameters, then those connections have the same security
context. Connections that have the same security context are pooled together. If
any part of a connection string is not identical to another connection string, a
new pool is created.

When a connection is closed, the connection is returned to the pool and ready
for reuse. When a connection is released, the connection is deleted from
memory. It is not returned to the pool and is not available for reuse. When the
last connection in a connection pool is deleted, the pool is also deleted from
memory.

Out of the three connection strings below, the first two connection strings
match exactly, and because connection pooling is enabled by default, they
would be pooled together. For the third connection string, the initial catalog (the
default database that is accessed upon connection) is different than the initial
catalog in the first two connection strings. A separate pool would be created for
the third connection, and any connections identical to it would be added to that
pool.

Connection 1

Dim myConnection as New SqlClient.SqlConnection()
myConnection.ConnectionString = "User ID=sa;� & _
 �Password=me2I81sour2;� & _
 �Initial Catalog=Northwind;� & _
 �Data Source=mySQLServer;� & _
 �Connection TimeOut=30;"

Connection 2

Dim myConnection as New SqlClient.SqlConnection()
myConnection.ConnectionString = "User ID=sa;� & _
 �Password=me2I81sour2;� & _
 �Initial Catalog=Northwind;� & _
 �Data Source=mySQLServer;� & _
 �Connection TimeOut=30;"

Connection 3

Dim myConnection as New SqlClient.SqlConnection()
myConnection.ConnectionString = "User ID=sa;� & _
 �Password=me2I81sour2;� & _
 �Initial Catalog=Pubs;� & _
 �Data Source=mySQLServer;� & _
 �Connection TimeOut=30;"

Example of Connection
Pooling

32 Module 2: Connecting to Data Sources (Prerelease)

Multimedia: How SQL Server Connection Pooling Works

! This animation describes how connection
pooling works with Microsoft SQL Server
2000

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This animation describes connection pooling and shows how connection
pooling works with Microsoft SQL Server 2000. Understanding connection
pooling will help you to plan, design, and deploy your ADO .NET applications
for enhanced performance, security, and scalability.

Introduction

 Module 2: Connecting to Data Sources (Prerelease) 33

Controlling OLE DB Connection Pooling

Disabling OLE DB connection pooling

Dim cnNorthwind As New OleDbConnection()

cnNorthwind.ConnectionString = _

�Provider=SQLOLEDB;� & _

�Data Source=London;� & _

�Integrated Security=SSPI;� & _

�OLE DB Services=-4;� & _

�Initial Catalog=Northwind;�)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you connect to an OLE DB data source, connection pooling is automatic.
The OLE DB .NET Data Provider uses OLE DB session pooling by default.

You can control OLE DB connection pooling from your application by:

! Disabling pooling in individual connection strings.
! If you write directly to the OLE DB API, controlling pooling through the

properties you set when connecting to the database.

To disable pooling in a connection string that uses the OLE DB .NET Data
Provider, specify �OLE DB Services=-4� in your connection string.

Introduction

34 Module 2: Connecting to Data Sources (Prerelease)

Controlling SQL Server Connection Pooling

! Connection string keywords for connection pooling
" Connection Lifetime
" Connection Reset
" Enlist
" Max Pool Size
" Min Pool Size
" Pooling

! Examples of controlling SQL Server connection
pooling

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can control several elements of connection pooling when you connect to
SQL Server by using the SQL Server .NET Data Provider. You can control how
long the connection exists, whether the database connection is reset when the
connection is removed from the pool, how many connections are allowed and
maintained in the pool, and whether pooling is enabled.

The following keywords are specified in the connection string in order to
control connection pooling.

Connection String
Keyword

Default

Description

Connection Lifetime 0 When a connection is returned to the pool, its

creation time is compared with the current time,
and the connection is destroyed if that time span
(in seconds) exceeds the value specified by
connection lifetime. This is useful in clustered
configurations to force load balancing between
a running server and a server that was just
brought online.

Introduction

Connection String
Keywords

 Module 2: Connecting to Data Sources (Prerelease) 35

(continued)
Connection String
Keyword

Default

Description

Connection Reset True Determines whether the database connection is

reset when the connection is removed from the
pool. Setting this to False prevents an additional
server round-trip when obtaining a connection,
but you must be aware that the connection state,
such as database context, is not being reset. This
default option makes the connection change
back to its original database context
automatically when it is reused. This costs an
extra (potentially unnecessary) call to the
server. If database contexts will not be changed,
set this parameter to False. Use the
ChangeDatabase method rather than the SQL
USE command to enable ADO .NET to
automatically reset connections when they are
returned to the pool.

Enlist True When set to True, the pooler automatically
enlists the connection in the current transaction
context of the creation thread if a transaction
context exists.

Max Pool Size 100 The maximum number of connections allowed
in the pool.

Min Pool Size 0 The minimum number of connections
maintained in the pool.

Pooling True When set to True, the SqlConnection object is
drawn from the appropriate pool, or if
necessary, is created and added to the
appropriate pool.

The following code samples show how you can control connection pooling by
using the parameters of a SQL Server connection string.

To disable connection pooling:

Dim cnNorthwind as New SqlClient.SqlConnection()

cnNorthwind.ConnectionString = "User ID=sa;� & _
 �Password=me2I81sour2;� & _
 �Initial Catalog=Northwind;� & _
 �Data Source=mySQLServer;� & _
 �Connection TimeOut=30;� & _
 �Pooling=False;�

Examples of Controlling
SQL Server Connection
Pooling

36 Module 2: Connecting to Data Sources (Prerelease)

To specify the minimum pool size:

cnNorthwind.ConnectionString = "User ID=sa;� & _
 �Password=me2I81sour2;� & _
 �Initial Catalog=Northwind;� & _
 �Data Source=mySQLServer;� & _
 �Connection TimeOut=30;� & _
 �Min Pool Size=5;"

To specify the connection lifetime:

cnNorthwind.ConnectionString = "User ID=sa;� & _
 �Password=me2I81sour2;� & _
 �Initial Catalog=Northwind;� & _
 �Data Source=mySQLServer;� & _
 �Connection TimeOut=30;� & _
 �Connection Lifetime=120;"

 Module 2: Connecting to Data Sources (Prerelease) 37

Review: Connecting to Data Sources

! Choosing a .NET Data Provider

! Implementing Security

! Managing a Connection

! Handling Exceptions

! Connection Pooling

*****************************ILLEGAL FOR NON-TRAINER USE******************************

38 Module 2: Connecting to Data Sources (Prerelease)

Lab2 : Connecting to Data Sources

! Exercise 1: Creating a Connection to
Microsoft SQL Server

! Exercise 2: Handling Common Connection
Exceptions

! Exercise 3: Monitoring and Managing
Connection Pooling with SQL Server

! Exercise 4 (Optional): Creating a
Connection to an OLE DB Data Source

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Objectives
After completing this lab, you will be able to:

! Create a connection to an OLE DB data source.
! Create a connection to SQL Server.
! Handle common connection exceptions.
! Monitor and manage connection pooling.

Scenario
Northwind Traders, an international company that imports and exports specialty
food, stores data in many different locations and different data sources. In order
to build needed applications, the company needs to establish connections to the
different data sources.

This lab allows you to practice connecting to multiple types of data sources and
practice handling common problems, by using the Northwind Traders sample
databases that are included with Microsoft SQL Server 2000.

Estimated time to
complete this lab: 60
minutes

 Module 2: Connecting to Data Sources (Prerelease) 39

Exercise 0
Lab Setup

To complete this lab, you must:

! To create SQL Server login accounts
1. Open and execute <install folder>\Labs\Lab02\createusers.sql by using SQL

Server Query Analyzer. The instructor will demonstrate if you do not know
how.Use SQL Server Enterprise Manager to confirm that the following
two SQL Server login accounts were created.

3. Look in the Security � Logins folder to find the accounts. You may need to
refresh the folder.

Account name Password Default database

JohnK JohnK Northwind

AmyJ AmyJ Northwind

40 Module 2: Connecting to Data Sources (Prerelease)

Exercise 1
Creating a Connection to Microsoft SQL Server

Microsoft Visual Studio .NET includes a native .NET data provider for
Microsoft SQL Server versions 7.0 and later. This native provider gives better
performance and functionality when connecting to SQL Server than using the
OLE DB .NET Data Provider to connect to SQL Server.

Scenario
Northwind Traders needs to build an application that accesses customer and
sales data. The company uses a variety of different data sources, including SQL
Server 2000. When building a data-related application, you begin by connecting
to the data source.

In this exercise, you will create a connection to read from a SQL Server 2000
database by using the SQL Server .NET Data Provider within a Windows
application. The connections that you make will be used in future exercises.

! To open an existing Visual Studio .NET solution
The path is <install folder>\Labs\Lab02\Starter\VB\
ConnectingToDataSources.sln or
<install folder>\Labs\Lab02\Starter\CS\
ConnectingToDataSources.sln

! To declare a new connection object
1. Declare a new connection object that can respond to events by using the

SQL Server .NET Data Provider.

Variable attributes Values

Name cnSQLNorthwind

! To create a connection string
In the Exercises 1 and 2 group box, create a connection string on the Open
button. You will be adding exception handling in Exercise 3. It is not necessary
to write any exception handling during this exercise.

1. Build the connection string by using the information provided in the
controls in the Exercises 1 and 2 group box.

Connection parameter Control and property

Data Source txtServer.Text

Initial Catalog txtSQLDatabase.Text

Connection Timeout txtTimeout.Text

Integrated Security chkIntegratedSecurity.Checked

User ID txtUsername.Text

Password txtPassword.Text

2. Write code to open the connection.

 Module 2: Connecting to Data Sources (Prerelease) 41

! To close the connection
• Write code to dispose of the connection by adding code to the Close button.

! To trace the application events
1. Start Microsoft SQL Profiler.
2. Create a new trace by using the following information.

Connect to SQL Server Values

SQL Server . (Local)

Authentication Windows

Events Values

Security Audit Audit Login

Audit Logout

Audit Login Failed

Sessions Existing Connection

Data columns Values

Columns EventClass

TextData

ApplicationName

LoginName

LoginSID

SPID

StartTime

3. Run the trace.
4. Run the ConnectingToDataSources solution.
5. When the solution starts, enter 2389 as the password for the sa login

account, and then click the Open button in the Exercise 2 group box.
6. Switch to SQL Profiler and verify that a successful Audit Login occurred.
7. Switch to the running solution and click the Close button.
8. Switch to SQL Profiler and verify that a successful Audit Logout occurred.
9. Switch to the running solution. In the Exercises 1 and 2 group box, enter an

invalid database name in the Database text box, and then click the Open
button.

10. Switch to SQL Profiler and verify that an Audit Login Failed occurred.
11. Stop the SQL Profiler.

42 Module 2: Connecting to Data Sources (Prerelease)

! To explore connection timeouts
1. Run the ConnectingToDataSources solution within the Visual Studio

.NET environment.
2. When the ConnectingToDataSources solution starts, change the server

name to Alpha, and then click the Open button in the Exercises 1 and 2
group box.
How long do you have to wait before an error is displayed?
15 seconds.

3. Click the Exit button to stop the application.
4. Modify the connection string to time out after 5 seconds.
5. Repeat steps 1 through 4.

How long do you have to wait before an error is displayed?
Optional: test the application�s ability to log on to a SQL Server using
Integrated Security.
5 seconds.

 Module 2: Connecting to Data Sources (Prerelease) 43

Exercise 2
Handling Common Connection Exceptions

There are many situations in which errors can occur, including:

! An invalid connection string; for example:

• Wrong or missing database name or location

• Wrong or missing security information
! Network problems (for example, slow or down)
! Server problems (for example, overloaded, over license limit, or

unavailable)

Scenario
Although Northwind Traders uses a robust Windows networking environment,
there could be situations where unexpected errors occur. Northwind Traders is a
rapidly growing company, and increased network usage may impact network
latency. To handle these and other situations, you must implement exception
handling in the Northwind Traders data application.

In this exercise, you will handle common errors that can occur when connecting
to a data source.

! To open an existing Visual Studio .NET solution
• The path is <install folder>\Labs\Lab02\Solution\Ex1\VB\

ConnectingToDataSources.sln or
<install folder>\Labs\Lab02\Solution\Ex1\CS\
ConnectingToDataSources.sln

44 Module 2: Connecting to Data Sources (Prerelease)

! To code the Open and Close buttons
• In the Exercises 1 and 2 group box, add code to the Open and Close

buttons (for the SQL Server connection) to handle the following common
exceptions.

Action Exception Result

Attempt to close
connection before the
connection has been
opened

System.
NullReferenceException

Show a message box with a
message that tells the user
that he or she must open
the connection first.

Attempt to open
connection with an
invalid connection string

System.
Data.
SqlClient.
SqlException

Check the exception
number and display a
message as follows:

17: invalid server name

18452: invalid user name

18456: invalid password

4060: invalid database

Unexpected problem
when attempting to open
or close the connection

System.
Exception

Show a message box with a
message that includes a
description of the
exception.

! To handle the InfoMessage event
Handle the InfoMessage event for the SqlConnection by displaying a message
box for each error that occurs.

1. Add an event handler for the InfoMessage event on SqlConnection.
2. Declare a variable of the type SqlError to act as an enumerator for the

Errors collection of the SqlInfoMessageEventArgs object.
3. Write a For Each loop to enumerate through the members of the Errors

collection.
4. Inside the loop, use a message box to show the information contained in

each SqlError object.

 Module 2: Connecting to Data Sources (Prerelease) 45

! To test the exception and event handling code
1. Run the ConnectingToDataSources solution within the Visual Studio

.NET environment.
2. When the Lab02 solution starts, attempt to close connection before the

connection has been opened.
Does your code handle the error?

3. Enter valid connection information and attempt to open the connection.
Do you receive InfoMessage events?

4. Change the server name to Alpha, and then click the Open button in the
Exercises 1 and 2 group box.
Does your code handle the error?

5. Enter other invalid connection information like an invalid username or
password.
Does your exception handling code differentiate between error types?

46 Module 2: Connecting to Data Sources (Prerelease)

Exercise 3
Monitoring and Managing Connection Pooling with SQL Server

Because applications often require multiple connections with multiple users,
connecting to a data source can be resource-intensive. By pooling connections,
you can keep connections available for reuse, which will enhance application
performance and scalability.

Scenario
The number of employees at Northwind Traders is rapidly growing, and as a
result more applications are connecting to data sources. The company needs to
optimize server resources by pooling connections.

In this exercise, you will monitor SQL Server connection pooling and modify
connections based on the connection string settings and security context.

! To examine the Pooling Monitor application
1. Open <install folder>\Labs\Lab02\Pooling Monitor\PoolingMonitor.vbproj

with Visual Studio .NET.
2. Examine LaunchConnection.vb. Note that the btnNew_Click procedure

creates a new instance of the OpenNewConnection class, and sets the title
bar of the new form with a supplied string.

3. Examine OpenNewConnection.vb. Note the following points:
4. The btnOpenSQL_Click procedure builds a connection string and attempts

to connect to SQL Server.
5. The btnCloseSQL_Click procedure closes the current connection but does

not release resources.
6. The btnRelease_Click procedure releases connection resources and closes

the current window.
7. Compile the application. Note the path of the executable e.g.

<install folder>\Labs\Lab02\PoolingMonitor\bin\PoolingMonitor.exe.
8. Create a shortcut to the executable on the desktop.

 Module 2: Connecting to Data Sources (Prerelease) 47

! To create a SQL Profiler trace to monitor connection activity
1. Start SQL Profiler.
2. Create a new trace by using the following information.

Connect to SQL Server Values

SQL Server . (Local)

Authentication Windows

Events Values

Security Audit Audit Login

Audit Logout

Sessions Existing Connection

Data columns Values

Columns EventClass

TextData

ApplicationName

LoginName

ClientProcessID

SPID

Start Time

3. Run the trace.

! To examine non-pooled connections
In this procedure, you will examine connection activity by using SQL Profiler.

You must run the PoolingMonitor.exe program executable rather
than running the program from within Visual Studio.

1. Run PoolingMonitor.exe by using the desktop shortcut you created
previously.

2. Create a connection by using the following information. Use the default
value for any unspecified information.

Parameter Value

Connection Name JohnK1

Database Northwind

User Name JohnK

Password JohnK

Enable Pooling Cleared

3. Examine the activity in SQL Profiler.
What is the SPID (server process identifier) of this connection?
Answers will vary.

Important

48 Module 2: Connecting to Data Sources (Prerelease)

4. Leave the JohnK1 connection form running and switch back to the Launch
Connection form.

5. Create another connection by using the following information. Use the
default value for any unspecified information.

Parameter Value

Connection Name JohnK2

User Name JohnK

Password JohnK

6. Examine the activity in SQL Profiler.
What is the SPID of this connection?
Answers will vary.

7. Leave the JohnK2 connection form running and switch back to the Launch
Connection form.

8. Create another connection by using the following information. Use the
default value for any unspecified information.

Parameter Value

Connection Name AmyJ1

User Name AmyJ

Password AmyJ

9. Examine the activity in SQL Profiler.
What is the SPID of this connection?
Answers will vary.
How is SQL Server responding to requests for new connections? Why?
SQL Server creates a new connection for each request. Pooling is
disabled through the connection string.

10. Close and release the JohnK1, JohnK2, and AmyJ1 connections.
11. Examine the trace.
12. Close PoolingMonitor.exe and stop the trace.

 Module 2: Connecting to Data Sources (Prerelease) 49

! To examine pooling by setting the Pooling Parameter
In this procedure, you will examine pooling behavior when specifying Pooling
in the connection string. Examine the trace after each step.

1. Start the trace.
2. Run Pooling monitor.exe by using the desktop shortcut you created

previously.
3. Create a connection by using the following information. Use the default

value for any unspecified information.

Parameter Value

Connection Name JohnK1

User Name JohnK

Password JohnK

Enable Pooling Checked

How many connections are created for this user? Why?
Two connections are created. When pooling is enabled and the min pool
size is 0, SQL Server creates a connection in the pool in order to
optimize performance for the next request.

4. Close and release the JohnK1 connection.
5. Create a new connection named JohnK2 by using the same set of

information.
How many connections are created for this user? Why?
No new connections are created. A connection is retrieved from the
pool.

6. Close and release the JohnK2 connection.
What activity does the trace show? Why?
No activity on SQL Server. A connection is released to the pool.

7. Close the Pooling Monitor application.
What activity does the trace show? Why?
All connections are released when the client application is closed.

8. Stop the trace.

50 Module 2: Connecting to Data Sources (Prerelease)

! To manage pooling by using security context
In this procedure, you will examine pooling behavior when specifying various
security contexts in the connection string. Examine the trace after each step.

1. Start the trace.
2. Run Pooling monitor.exe by using the desktop shortcut you created

previously.
3. Create a connection by using the following information. Use the default

value for any unspecified information.

Parameter Value

Connection Name JohnK1

Database Pubs

User Name JohnK

Password JohnK

Enable Pooling Checked

How many connections are created for this user? Why?
Two connections are created because pooling is enabled.

4. Create a new connection named JohnK2 by using the following
information.

Parameter Value

Connection Name JohnK2

Database Northwind

User Name JohnK

Password JohnK

Enable Pooling Checked

How many connections are created for this user? Why?
Two additional connections in a new pool are created. Because the
database parameter is different, JohnK cannot use a connection from
the first pool.

5. Close and release the JohnK1 and JohnK2 connections.
6. Close the Pooling Monitor application.
7. Stop the trace.

 Module 2: Connecting to Data Sources (Prerelease) 51

! To manage the pool size
In this procedure, you will examine pooling behavior when specifying Pool
Size in the connection string. Examine the trace after each step.

1. Start the trace.
2. Run Pooling monitor.exe by using the desktop shortcut you created

previously.
3. Create a connection by using the following information. Use the default

value for any unspecified information.

Parameter Value

Connection Name JohnK1

User Name JohnK

Password JohnK

Min Pool Size 5

Enable Pooling Checked

How many connections are created for this user? Why?
SQL Server creates five connections. Minimum pool size is 5.

4. Create a new connection named JohnK2 by using the same set of
information.
How many connections are created for this user? Why?
SQL Server does not create any additional connections. A connection is
retrieved from the pool.

5. Close and release the JohnK1 and JohnK2 connections.
What activity does the trace show? Why?
No activity. Connections are released to the pool.

6. Close the Pooling Monitor application.
What activity does the trace show? Why?
All connections are released.

7. Restart the Pooling Monitor application.

52 Module 2: Connecting to Data Sources (Prerelease)

8. Create a connection by using the following information. Use the default
value for any unspecified information.

Parameter Value

Connection Name JohnK1

User Name JohnK

Password JohnK

Max Pool Size 3

Enable Pooling Checked

9. Create three more connections named JohnK2, JohnK3, and JohnK4 by
using the same set of information.
What happens when the fourth connection is attempted? Why?

10. Close the Pooling Monitor application.
11. Stop the trace.

 Module 2: Connecting to Data Sources (Prerelease) 53

Exercise 4 (optional)
Creating a Connection to an OLE DB Data Source

Scenario
Northwind Traders uses a variety of different data sources, including Microsoft
SQL Server 6.5, Microsoft Access, and Microsoft Excel.

In this exercise, you will create an OLE DB connection to read from an Access
database by using the OLE DB .NET Data Provider within a Microsoft
Windows® application.

! To open an existing Microsoft Visual Studio .NET solution
The path is <install folder>\Labs\Lab02\Starter\VB\
ConnectingToDataSources.sln or
<install folder>\Labs\Lab02\Starter\CS\
ConnectingToDataSources.sln

• Open the class module Form1 and review the code that is provided.
Note that the Integrated Security check box and the Exit button have
existing code that handles their click events. You will write code to
complete the functionality for this application.

! To declare a new connection object
• Use the OLE DB .NET Data Provider to declare a new connection object

that can respond to events.

Variable attributes Values

Name cnOleDbNorthwind

! To create the new connection
Create a connection on the Open button in the Exercise 4 group box.

1. Add code to handle the Click event of the Open button.
2. Build the connection string using the values in the following text boxes.

Connection parameter Text box

Provider txtProvider

Data Source txtOleDbDatabase

3. Write code to open the connection.

! To close the connection
1. Close the connection by adding code to the Close button in the Exercise 4

group box.
2. Write code to dispose the connection.

54 Module 2: Connecting to Data Sources (Prerelease)

! To handle the StateChange event for the connection
1. Add an event handler for the StateChange event for the

cnOleDbNorthwind connection object.
2. Use a message box to show the current and original state of the connection.

! To run and test the connection
1. Run the ConnectingToDataSources solution.
2. Click the Open button.

Is a successful connection made?
Yes.

3. Click the Close button.
Is the connection closed?
Yes.

4. Click the Close button again.
What happens?
An exception occurs.
Why?
The OleDbConnection object has been released from memory and
therefore cannot respond to the Close method call.

5. Click the Open button twice.
What happens?
No exceptions occur.
Why?
The first connection goes out of scope and is removed from memory
automatically when the cnOleDbConnection variable is pointed to the
second object instance.

! To test for exceptions
1. In Windows Explorer, move the database file to a different location

(the initial database path is \Program Files\Microsoft
Office\Office10\Samples\Northwind.mdb). Or, to save time, change the path
specified in the text box on the form of the solution.

2. Run the ConnectingToDataSources solution.
3. Click the Open button.

Does an exception occur?
Yes.
Why?
The Data Source parameter of the connection string is referencing a
missing file.

4. In Windows Explorer, move the database file back to its original location.

 Module 2: Connecting to Data Sources (Prerelease) 55

5. Use Microsoft Access to open the database file exclusively.
Hint: The Open dialog box in Microsoft Access has an Open button with
multiple options if you click the drop-down arrow part of the button.

6. Run the ConnectingToDataSources solution.
7. Click the Open button.

Does an exception occur?
Yes.
Why?
Although the Data Source parameter of the connection string
references an existing file, the file has already been opened exclusively
by another application.

8. Close Microsoft Access.

! To add exception handling
• In the Exercise 4 group box, add exception handling to the Open and Close

buttons (for example, for the OLE DB .NET Data Provider).
Use the .NET Framework documentation to find the list of exceptions that
occur for the OLE DB .NET Data Provider.

Contents

Overview 1

Lesson: Building Command Objects 2

Lesson: Executing Command Objects That
Return a Single Value 14

Lesson: Executing Commands That Return
Rows 21

Lesson: Executing Multiple SQL
Statements 28

Lesson: Using Data Definition Language 34

Lesson: Manipulating Data Using Data
Manipulation Language 39

Lesson: Using Transactions 47

Review 56

Lab 3: Performing Connected Database
Operations 57

Module 3: Performing
Connected Database
Operations (Prerelease)

Information in this document is subject to change without notice. The names of companies,
products, people, characters, and/or data mentioned herein are fictitious and are in no way intended
to represent any real individual, company, product, or event, unless otherwise noted. Complying
with all applicable copyright laws is the responsibility of the user. No part of this document may
be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Microsoft Corporation. If, however, your only
means of access is electronic, permission to print one copy is hereby granted.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, BackOffice, MS-DOS, Windows, Windows NT, <plus other appropriate product
names or titles. The publications specialist replaces this example list with the list of trademarks
provided by the copy editor. Microsoft is listed first, followed by all other Microsoft trademarks
in alphabetical order. > are either registered trademarks or trademarks of Microsoft Corporation
in the U.S.A. and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

 Module 3: Performing Connected Database Operations (Prerelease) iii

Instructor Notes
In many situations, you will design your data-access strategy around using a
DataSet. In other situations, however, you might find it useful or necessary to
bypass DataSets and use data commands to communicate directly with the data
source (typically, a database). This module teaches student how to use ADO
.NET command objects to access a database.

After completing this module, students will be able to:

! Build a command object.
! Execute a command that returns a single value.
! Execute a command that returns a set of rows, and process the result.
! Execute a command that returns multiple results, and process the results.
! Execute a command that defines data by using the data definition language

(DDL).
! Execute a command that modifies data by using the data manipulation

language (DML).

To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2389A_03.ppt
! Module 3, �Performing Connected Database Operations�
! Lab 3, Performing Connected Database Operations

To prepare for this module:

! Read all of the materials for this module.
! Complete the practices and labs.
! Read the latest .NET Development news at

http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28000519

Presentation:
60 Minutes

Lab:
60 Minutes

Required materials

Preparation tasks

iv Module 3: Performing Connected Database Operations (Prerelease)

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Building Command Objects
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Instructor Demonstration

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

What is a Command
Object?

How to Create a Stored
Procedure

How to Create a
Command Object

What are Command
Parameters?

How to Create
Parameters for a
Command Object

 Module 3: Performing Connected Database Operations (Prerelease) v

Lesson: Executing Command Objects That Return a Single Value
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Discussion Questions: Personalize questions to the background of the students
in your class.

Why Return a Single
Value in a Command?

How to Execute a
Command That Returns
a Single Value

How to Retrieve Output
and Return Values

vi Module 3: Performing Connected Database Operations (Prerelease)

Lesson: Executing Commands That Return Rows
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

!

Returning Rows

DataReader Properties
and Methods

How to Use the
DataReader to Process
Rows

 Module 3: Performing Connected Database Operations (Prerelease) vii

Lesson: Executing Multiple SQL Statements
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Why Use Multiple SQL
Statements?

How to Process Multiple
SQL Statements

viii Module 3: Performing Connected Database Operations (Prerelease)

Lesson: Using Data Definition Language
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

What is Data Definition
Language?

How to Execute a Data
Definition Language
Command

 Module 3: Performing Connected Database Operations (Prerelease) ix

Lesson: Manipulating Data Using Data Manipulation Language
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

!

Discussion Questions: Personalize questions to the background of the students
in your class.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

What is Data
Manipulation Language?

How to Execute a Data
Manipulation Language
Command

Troubleshooting Data
Modification

 Module 3: Performing Connected Database Operations (Prerelease) 1

Overview

! Building Command Objects
! Executing Command Objects That Return a Single

Value
! Executing Command Objects That Return a Result Set
! Executing Command Objects Composed of Multiple

SQL Statements
! Defining Data by Using Data Definition Language
! Manipulating Data by Using Data Manipulation

Language
! Using Transactions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In many situations, you will design your data-access strategy around using a
DataSet. In other situations, however, you might find it useful or necessary to
bypass DataSets and use data commands to communicate directly with the data
source (typically, a database). These situations include:

! Performing queries on data intended to be read-only in your application.
This might include executing a command that performs a database lookup.

! Designing data access in an Active Server Page (ASP) .NET Web
application that only requires a single pass through data, such as displaying
the results of a search.

! Executing a query that returns a single value, such as a calculation or the
result of an aggregate function.

! Creating and modifying database structures, such as tables and stored
procedures.

When you create tables and stored procedures, or otherwise execute logic that
does not return a result set, you cannot use a DataSet and must use data
commands.

After completing this module, you will be able to:

! Build a command object.
! Execute a command that returns a single value.
! Execute a command that returns a set of rows, and process the result.
! Execute a command that returns multiple results, and process the results.
! Execute a command that defines data by using the data definition language

(DDL).
! Execute a command that modifies data by using the data manipulation

language (DML).
! Use transactions.

Introduction

Objectives

2 Module 3: Performing Connected Database Operations (Prerelease)

Lesson: Building Command Objects

! This lesson describes:

" What Is a Command Object?

" How to Create a Command Object

" What Are Command Parameters?

" How to Create Parameters for a Command Object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Command objects allow you to access data directly in the database in a
connected environment.

You can use a command object to perform the following tasks:

! Execute SELECT statements that return a result directly, rather than loading
it into a DataSet. This reduces memory usage, and is an efficient way of
loading read-only data into a control such as a Web Forms DataList or
DataGrid.

! Execute DDL statements to create, edit, and remove tables, stored
procedures, and other database structures. You need the required
permissions to perform these actions.

! Execute statements to get database catalog information.
! Execute DML statements to update, insert, or delete records, rather than

updating DataSet records and then copying changes to the database.
! Execute commands that return a scalar value (that is, a single value), such as

the results of a credit-card authentication lookup or a calculated value.
! Execute commands that return data from a Microsoft® SQL Server�

database (version 7.0 or later) in XML format. A typical use is to execute a
query and get back data in XML format, apply an XSLT transformation to
convert the data to HTML format, and then send the results to a browser
such as Microsoft Internet Explorer.

After completing this lesson, you will be able to:

! Create a command object.
! Configure the properties in a command object.
! Set parameters in a command object.

Introduction

Lesson objectives

 Module 3: Performing Connected Database Operations (Prerelease) 3

What Is a Command Object?

! A command object is a reference to a SQL statement or
stored procedure

! Properties
" (Name), Connection, CommandType, CommandText,

Parameters
! Methods

" ExecuteScalar, ExecuteNonQuery,
ExecuteReader, ExecuteXmlReader

! Code example: Creating a SqlCommand object
Dim cmCategories As SqlCommand = New SqlCommand(_

"SELECT * FROM Categories", cnNorthwind)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A command object contains a reference to a SQL statement or stored procedure
that you can execute directly. The two command classes are described in the
following table.

Command class Description

System.Data.SqlClient.SqlCommand SQL Server .NET Data Provider command

System.Data.OleDb.OleDbCommand OLE DB .NET Data Provider command

The properties of a command object contain all of the information necessary to
execute a statement against a database. This information includes:

! Connection. The command object references a connection object, which it
uses to communicate with the database.

! CommandType. One of: Text, StoredProcedure, TableDirect.
! CommandText. The command object includes the text of a SQL statement,

or the name of a stored procedure to execute.
! Parameters. The command object may include zero or more parameters.

Introduction

Properties of a
command object

4 Module 3: Performing Connected Database Operations (Prerelease)

The following example creates a SqlCommand object. The SqlCommand
object specifies a query that returns a list of categories from the Northwind
database assuming an existing connection object named cnNorthwind.

Dim cmCategories As SqlCommand = New SqlCommand(_
 "SELECT * FROM Categories", cnNorthwind)

The following example creates an OleDbCommand object. The
OleDbCommand object specifies a stored procedure that returns a list of all
categories from the Northwind database.

Dim cmCategories As OleDbCommand = New OleDbCommand(_
 "dbo.AllCategories", cnNorthwind)

cmCategories.CommandType = CommandType.StoredProcedure

After configuring the properties for a command object, you call one of the
following methods to execute the command. The method that you call depends
on the statement or procedure being executed, and the results that you expect to
be returned.

Method in XxxCommand class Description

ExecuteScalar Executes a command that returns a single value.

ExecuteReader Executes a command that returns a set of rows.

ExecuteXmlReader Executes a command that returns an XML result.
This capability is supported by SQL Server
version 7.0 or later.

ExecuteNonQuery Executes a command that updates the database or
changes the database structure. This method
returns the number of rows affected.

Examples

Methods of a command
object

 Module 3: Performing Connected Database Operations (Prerelease) 5

How to Create a Stored Procedure

! Server Explorer

" View, Server Explorer (Ctrl+Alt+S)

" Create data connection

" New Stored Procedure

" Insert SQL

! Demonstration

" Creating a stored procedure

" Testing a stored procedure

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft Visual Studio® .NET includes tools to help you create a stored
procedure.

! To use the Server Explorer create a stored procedure
1. Show the Server Explorer by choosing Server Explorer from the View

menu or pressing Ctrl+Alt+S.
2. Create a connection to the database you in which you wish to create the

stored procedure by right-clicking the Data Connections folder and
choosing Add Data Connection.

3. Expand the new connection and the Stored Procedures folder.
4. Right-click the Stored Procedures folder and choose New Stored

Procedure.
5. Enter the SQL script. You may right-click and choose Insert SQL to use

the graphical Query Editor to help you.
6. Close and save the stored procedure.

Introduction

Creating a stored
procedure

6 Module 3: Performing Connected Database Operations (Prerelease)

! To use the Server Explorer to create a stored procedure
In this practice, you will create a project and a stored procedure in the SQL
Server Northwind database. The stored procedure will return the number of
orders made by a specified customer when passed a customer ID value as a
parameter.

1. Start the Visual Studio .NET development environment.
2. View the Server Explorer.
3. Expand your data connections, or create a new connection to the local SQL

Server and the Northwind sample database.
4. Expand the Northwind database.
5. Right-click the Stored Procedures folder, and then choose New Stored

Procedure.
6. Change the name of the stored procedure to dbo.CountOrders.
7. Delete the comment characters and edit the parameter area to declare the

following two parameters using this code:
@CustomerID nchar(5),
@CompanyName nvarchar(40) OUTPUT

8. Delete the /* SET NOCOUNT ON */ comment.
9. Declare a local variable using this code:

DECLARE @OrdersCount int

10. On a new line, right-click and choose Insert SQL.
11. Add the Customers and Orders tables.
12. In the Customers table, select the CustomerID and CompanyName fields.
13. In the Orders table, select the OrderID field.
14. Disable the output of the CustomerID field.
15. Set the CustomerID Criteria column to =@CustomerID.
16. Right-click the Query Editor and choose Group By.
17. Change the OrderID Group By column to Count.
18. Close the Query Builder and click Yes to save changes.
19. Edit the SELECT line to look like the following:

SELECT @CompanyName = Customers.CompanyName, @OrdersCount =
COUNT(Orders.OrderID)

20. Return the count of orders from the stored procedure as follows:
RETURN @OrdersCount

21. Save the stored procedure.
22. To test, in the editor, right-click the stored procedure and choose Step Into

Stored Procedure.

Demonstration

 Module 3: Performing Connected Database Operations (Prerelease) 7

23. For the CustomerID, type ALFKI. For the CompanyName, type
<NULL> (change it from <DEFAULT>).

24. The yellow active line marker should point to the SELECT statement.
Hover over the parameters and the local variable to see their values. The
@CompanyName and @OrdersCount should both be NULL.

25. Step into the line to execute it, and hover over the parameters and the local
variable to see their values. The @CompanyName and @OrdersCount
should be set to Alfreds Futterkiste and 6, respectively.

26. Stop debugging the stored procedure.

Hint: N' means Unicode.

8 Module 3: Performing Connected Database Operations (Prerelease)

How to Create a Command Object

! Server Explorer

" View, Server Explorer (Ctrl+Alt+S)

" Drag �n drop stored procedure

! Toolbox

" Use SqlConnection or OleDbConnection

" Use SqlCommand or OleDbCommand

! Demonstration

" Creating a command object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft Visual Studio® .NET includes tools to help you create a command
object in your form or component. You can create a SqlCommand object or an
OleDbCommand object, depending on the type of your data source.

! To add a command object to a form or component using Toolbox
1. If you do not already have a connection object available on the form or

component, add one.
2. From the Data tab of the Toolbox, drag a SqlCommand or

OleDbCommand onto your form or component.
3. Set the following properties for the command object.

Property Description

(Name) The name by which you want to refer to the command object in

your code.

Connection A reference to a connection object that the command will use to
communicate with the database. You can select an existing
connection from the drop-down list, or create a new connection.

CommandType A value specified by the CommandType enumeration,
indicating what type of command you want to execute:

• Text. A SQL statement.

• StoredProcedure. A stored procedure.

• TableDirect. A way of fetching the entire contents of a
table. (This option is available only for
OleDbCommand objects.)

Introduction

Creating a command
object

 Module 3: Performing Connected Database Operations (Prerelease) 9

(continued)
Property Description

CommandText The command to execute. The command text you specify

depends on the value of the CommandType property:

• Text. Enter the SQL statement to execute.

• StoredProcedure. Enter the name of the stored procedure.

• TableDirect. Enter the name of the table to fetch.

Parameters A collection of objects of the type SqlParameter or
OleDbParameter. You use this collection to pass parameters
into the command, and to retrieve output parameters from the
command. You will learn more about parameters in the next
lesson.

The SQL Server .NET Data Provider does not support the question mark
(?) placeholder for parameters in a SQL statement. Instead, you must use a
named parameter. For example, SELECT * FROM Products WHERE
ProductID = @ProdID

! To use the Server Explorer to create a command object
In this practice, you will use a stored procedure that will return the number of
orders made by a specified customer when passed a customer ID value as a
parameter.

1. Start the Visual Studio .NET development environment.
2. View the Server Explorer.
3. Expand your data connections.
4. Expand the Northwind database and the Stored Procedures folder.
5. Drag the stored procedure named CountOrders onto the form.
6. View the code written by the designer.

Note

Demonstration

10 Module 3: Performing Connected Database Operations (Prerelease)

What Are Command Parameters?

! Introduction

" SQL statements and stored procedures can have input
and output parameters, and a return value

" Command parameters allow these parameters to be set
and retrieved

" SqlParameter, OleDbParameter

! Properties

" ParameterName, DbType, Size, Direction

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

SQL statements and stored procedure can specify both input parameters and
output parameters. A stored procedure can also specify a separate return value.

You must configure your command object so that it deals correctly with these
input parameters, output parameters, and the return value.

SqlCommand and OleDbCommand have a Parameters collection. This
collection specifies a set of SqlParameter or OleDbParameter objects, which
represent the input parameters, output parameters, and return value for the
command.

Before you execute a command, you must set a value for every input parameter
in the command. After execution, you can retrieve the output parameters and
the return value from the command.

Introduction

Definition

 Module 3: Performing Connected Database Operations (Prerelease) 11

The following stored procedure returns information about a particular category
of products in the Northwind database.

The @CatID input parameter specifies the required category. The stored
procedure assigns the name of the category to the @CatName output parameter,
and returns the number of products in the category.

/* Stored procedure with an input parameter named @CatID,
 an output parameter named @CatName, and a return value */

CREATE PROCEDURE dbo.CountProductsInCategory
 (
 @CatID int,
 @CatName nvarchar(15) OUTPUT
)
AS
 DECLARE @ProdCount int

 SELECT @CatName = Categories.CategoryName,
 @ProdCount = COUNT(Products.ProductID)
 FROM Categories INNER JOIN Products
 ON Categories.CategoryID = Products.CategoryID
 WHERE (Categories.CategoryID = @CatID)
 GROUP BY Categories.CategoryName

 RETURN @ProdCount

Example

12 Module 3: Performing Connected Database Operations (Prerelease)

How to Create Parameters for a Command Object

! How to Define Parameters Programmatically

" Code Example
Dim p1 As SqlParameter = New _

SqlParameter(�@CatName�, _

SqlDbType.NChar, 15)

p1.Direction = ParameterDirection.Output

cmdCountProds.Parameters.Add(p1)

! How to Define Parameters Using the Visual Studio .NET
Graphical Tools

! Practice

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are two ways to create parameters for a command object:

! Programmatically create XxxParameter objects, and then add these objects
to the Parameters collection in the command object.

! Set the Parameters property automatically, by using the Properties window.

Follow these steps to define a parameter programmatically:

1. Create a new SqlParameter object or OleDbParameter object.
2. Set the properties for the parameter object. The following table describes the

most commonly used properties.

Property Description

ParameterName The name of the parameter, such as "@CatID".

DbType, SqlDbType,
or OleDbType

The data type of the parameter. The DbType property is
linked to the SqlDbType or OleDbType property, depending
on which data provider you are using.

Size The maximum size, in bytes, of the data in the parameter.

Direction A value specified by the ParameterDirection enumeration.
Use one of the following values:
• ParameterDirection.Input (default value)

• ParameterDirection.InputOutput

• ParameterDirection.Output

• ParameterDirection.ReturnValue

3. Call the Add method on the Parameters collection for the command object.
If the command calls a stored procedure that returns a result, you must add
the ParameterDirection.ReturnValue parameter before any other
parameters. The order of the other parameters is insignificant.

Introduction

How to define
parameters
programmatically

 Module 3: Performing Connected Database Operations (Prerelease) 13

The following example creates three parameters for the
CountProductsInCategory stored procedure, which was introduced on the
previous page. The parameters are added to a SqlCommand object named
cmdCountProductsInCategory.

Dim p1, p2, p3 As SqlParameter

p1 = New SqlParameter("@RETURN_VALUE", SqlDbType.Int, 4)
p1.Direction = ParameterDirection.ReturnValue

p2 = New SqlParameter("@CatID", SqlDbType.Int, 4)
p2.Direction = ParameterDirection.Input

p3 = New SqlParameter("@CatName", SqlDbType.NChar, 15)
p3.Direction = ParameterDirection.Output

cmdCountProductsInCategory.Parameters.Add(p1)
cmdCountProductsInCategory.Parameters.Add(p2)
cmdCountProductsInCategory.Parameters.Add(p3)

To define parameters automatically, use the Visual Studio .NET developer
environment as follows:

1. Drag a SqlCommand or OleDbCommand object from the Toolbox and
drop it onto your form or component.

2. In the Properties window, set the Connection, CommandType, and
CommandText properties for the command object.

3. When you set the CommandText property, you are asked if you want to
regenerate the parameters for the command. Choose Yes.

4. The Visual Studio .NET developer environment generates the code to create
the parameters for your command object.

! To build command objects and parameters
1. Create a new Windows Application project named

BuildingCommandObjects.
2. Create a stored procedure in the Northwind database named CountOrders.

CREATE PROCEDURE dbo.CountOrders
(@CustomerID nchar(5), @CompanyName nvarchar(40) OUTPUT) AS
DECLARE @OrdersCount int
SELECT @CompanyName = Customers.CompanyName,
 @OrdersCount = COUNT(Orders.OrderID)
FROM Customers INNER JOIN Orders
 ON Customers.CustomerID = Orders.CustomerID
WHERE (Customers.CustomerID = @CustomerID)
 GROUP BY Customers.CompanyName
RETURN @OrdersCount

3. Drag CountOrders from the Server Explorer onto Form1.
4. Right-click the form and choose View Code. Expand and examine the

Windows Form Designer generated code that creates the connection and
command objects, and initializes the command parameters.

Example

How to define
parameters using the
Visual Studio .NET
graphical tools

Practice

14 Module 3: Performing Connected Database Operations (Prerelease)

Lesson: Executing Command Objects That Return a
Single Value

! This lesson describes:

" Why Return a Single Value in a Command?

" How to Execute a Command that Returns a Single
Value

" How to Retrieve Output and Return Values

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have built a command object, you are ready to execute the command
against the database. The SqlCommand and OleDbCommand classes provide
four different ways to execute a command, depending on the nature of the SQL
statement or stored procedure.

In this lesson, you will learn how to execute a command that returns a single
value. You will also learn how to set input parameters before you execute the
command, and how to retrieve output parameters and the return value after
execution.

After completing this lesson, you will be able to:

! Execute a command that returns a single value.
! Pass input parameters into a command.
! Retrieve output parameters and a return value from the command.

Introduction

Lesson objectives

 Module 3: Performing Connected Database Operations (Prerelease) 15

Why Return a Single Value in a Command?

! Introduction

" ADO .NET is more efficient than in ADO, where a
complete record set is returned

! Examples

" Units in stock for a particular product

" How many products?

" COUNT, MAX, MIN, AVERAGE

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Occasionally, you may want to execute a database command or function that
returns a single value � that is, a scalar value. Because you are returning only
one value, this type of command is typically not performed with DataSets.
Instead, you execute the statement by using a command object.

The following are example scenarios of situations where you might want to
return a single value in a command:

! You want to find the units in stock for a particular product. To do this, write
a SQL statement that returns the UnitsInStock field for the product.

! You want to find out how many products are in the Northwind database. To
do this, you write a SQL statement that uses the COUNT() function to
count the products.

! You want to find out how many products there are in a particular category,
and also obtain the name of that category. To do this, you can write a stored
procedure that uses the category ID as an input parameter, and sets the
category name as an output parameter. The stored procedure can also return
the product count.

The SqlCommand and OleDbCommand classes provide the ExecuteScalar
method, to execute a command and obtain a scalar result. The method returns
the value of the first column of the first row in the record set.

If the SQL statement or stored procedure returns a complete record set, the
extra columns or rows are ignored. This behavior in ADO .NET is more
efficient than in ADO, where the complete record set is returned.

Introduction

Examples

Definition

16 Module 3: Performing Connected Database Operations (Prerelease)

How to Execute a Command that Returns a Single Value

! Introduction

" ExecuteScalar returns a value of type Object

! Code Example
cmProducts.Parameters("@ProdID").Value = 42

cnNorthwind.Open()

Dim qty As Integer = _

CType(cmProducts.ExecuteScalar(), Integer)

cnNorthwind.Close()

! Practice

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ExecuteScalar method allows you to execute a SQL statement or stored
procedure that returns a scalar result. The ExecuteScalar method returns a
value using the Object data type so you will usually want to convert the value
to a more efficient data type.

! To use the ExecuteScalar method
1. Add a command object to your form or component and set the properties

and parameters if necessary.
2. Write code to open the database connection.
3. Write code to call the ExecuteScalar method of the command. Assign the

return value to a variable of the appropriate data type.
4. Write code to close the database connection.

Introduction

Guidelines for using the
ExecuteScalar method

 Module 3: Performing Connected Database Operations (Prerelease) 17

The following example uses a command object to execute a SQL statement that
returns a scalar value. The statement queries the Products table. It takes the
product ID as a parameter, and returns an integer value indicating the quantity
in stock for that product. In this example, there is no aggregate function (for
example, SUM), because the quantity in stock is stored as a column value in the
Products table.

Dim sql As String = "SELECT UnitsInStock FROM Products " & _
 "WHERE ProductID = @ProdID"

Dim cmProducts As SqlCommand = _
 New SqlCommand(sql, cnNorthwind)

Dim param As SqlParameter = cmProducts.Parameters.Add(_
 New SqlParameter("@ProdID", SqlDbType.Int, 4))

cmProducts.Parameters("@ProdID").Value = 42

cnNorthwind.Open()

Dim qty As Integer = _
 CType(cmProducts.ExecuteScalar(), Integer)

cnNorthwind.Close()

MessageBox.Show("Quantity in stock: " & qty.ToString())

! To use the ExecuteScalar method
1. Start the Visual Studio .NET development environment.
2. Create a new Windows Application project named ScalarValues.
3. Use the Server Explorer to create a new stored procedure in the Northwind

database named CountCustomers with the following statement:
SELECT COUNT(*) from Customers

4. Drag the CountCustomers stored procedure onto Form1.
5. Add a label and a button to the form.
6. Define a click event handler for the button, and write some code to perform

the following tasks:
a. Open the connection.

Me.SqlConnection1.Open()

b. Execute the command, and display the result in the label.
Me.Label1.Text = _
 Me.SqlCommand1.ExecuteScalar() & _
 " customers"

c. Close the connection.
Me.SqlConnection1.Close()

7. Run and test the program.

Example

Practice

18 Module 3: Performing Connected Database Operations (Prerelease)

How to Retrieve Output and Return Values

! How to Get Output Parameters from a Command
cmd.Parameters("@CatName").Value

! How to Get the Return Value from a Stored Procedure
cmd.Parameters("@RETURN_VALUE").Value

! Code Examples

Stored Procedure and Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

SQL statements and stored procedures often pass values back to the application
that called them. They can do so by assigning a value to an output parameter. In
addition, stored procedures can also specify a distinct return value.

! To get values returned by procedures
To get an output parameter from a command object, follow these steps:

1. Configure the Parameters collection in the command object. For each output
parameter, define a Parameter object with the Direction property set to
ParameterDirection.Output. If a parameter is used to both receive and
send values, set the Direction to ParameterDirection.InputOutput.

2. Ensure that the data type of each parameter matches the expected data type
in the stored procedure.

3. After executing the procedure, read the Value property of the parameter that
is being passed back.

If you use the Designer to create the connection and command
objects, the parameters are configured automatically. You only need to write
code to retrieve the parameter values after executing the command.

Introduction

How to get output
parameters from a
command

Note

 Module 3: Performing Connected Database Operations (Prerelease) 19

! To get the return value of a procedure
1. Configure the Parameters collection for the stored procedure. The first

parameter in the collection must have a Direction property set to
ParameterDirection.ReturnValue.

2. Ensure that the data type of this parameter matches the data type that is
returned from the stored procedure. Note that INSERT, UPDATE, and
DELETE statements return an integer value, which indicates the number of
records affected by the statement.

3. After executing the procedure, read the Value property of the parameter that
is being passed back.

If you use the Designer to create the connection and command
objects, the parameters are configured automatically. The default name of
the return parameter is @RETURN_VALUE.

The following example uses the CountProductsInCategory stored procedure.

/* Stored procedure with an input parameter named @CatID,
 an output parameter named @CatName, and a return value */

CREATE PROCEDURE dbo.CountProductsInCategory
 (
 @CatID int,
 @CatName nvarchar(15) OUTPUT
)
AS
 DECLARE @ProdCount int

 SELECT @CatName = Categories.CategoryName,
 @ProdCount = COUNT(Products.ProductID)
 FROM Categories INNER JOIN Products
 ON Categories.CategoryID = Products.CategoryID
 WHERE (Categories.CategoryID = @CatID)
 GROUP BY Categories.CategoryName

 RETURN @ProdCount

The stored procedure receives an input parameter named @CatID, and assigns
an output parameter named @CatName. The stored procedure also returns a
count of the products in this category.

How to get the return
value from a stored
procedure

Note

Example

20 Module 3: Performing Connected Database Operations (Prerelease)

This example assumes that the connection, command, and parameter objects
have already been configured. The following code shows how to set and
retrieve parameter values when you execute the stored procedure.

' Set input parameters, execute the stored procedure, then
' retrieve the output parameter and the return value
' Note: we could use any ExecuteX method, but
' ExecuteNonQuery is the most efficient

cmd.Parameters("@CatID").Value = 1
cnNorthwind.Open()
cmd.ExecuteNonQuery()
cnNorthwind.Close()

MessageBox.Show("Category name: " & _
 cmd.Parameters("@CatName").Value & _
 "Number of products in category: " & _
 cmd.Parameters("@RETURN_VALUE").Value)

 Module 3: Performing Connected Database Operations (Prerelease) 21

Lesson: Executing Commands That Return Rows

! This lesson describes:

" Returning rows

" DataReader Properties and Methods

" How to Use the DataReader Object to Process a Result
Set

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to execute a command that returns a result set.
This is a common requirement for applications that need to query a database, to
obtain data that matches specific criteria.

You will also learn how to iterate efficiently through the result set, by using a
DataReader object.

After completing this lesson, you will be able to:

! Execute a command that returns rows.
! Use a DataReader object to iterate through the rows.
! Access the fields in a row by using strongly typed methods in the

DataReader object.
! Describe scenarios where it is appropriate to use a DataReader object.

Introduction

Lesson objectives

22 Module 3: Performing Connected Database Operations (Prerelease)

Returning Rows

! DataReader

" Read-only, forward-only, stream of rows

! The ExecuteReader method

" Returns a DataReader

" For example, SqlDataReader, OleDbDataReader

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataReader is a fast, forward-only cursor through a stream of rows. The
DataReader only keeps one row in memory at a time. This increases application
performance, and reduces system overhead. A DataReader is a good choice
when you need to retrieve large amounts of data, because the data is not cached
in memory.

You can use a command object and the ExecuteReader method to return a
DataReader. You can execute any SELECT statement or a stored procedure that
contains a SELECT statement.

The DataReader provides strongly typed methods, to get the value of a specific
column in the current row. You can also obtain metadata about the rows, such
as the column name and the column data type.

When you process a result set with a DataReader, the associated connection is
kept busy until you close the DataReader. For this reason, you should close the
DataReader as soon as you finish processing the result set.

The following are examples of situations where you might want to use a
command object to return a DataReader.

! You want to obtain a single record from a table, such as the details for a
particular customer. To do this, you specify the customer ID, and get back a
single record containing the details for that customer.

! You want to obtain a set of records that you insert into a control on a form.
This is especially useful in Web Forms, which often display read-only
information such as search results or inventory lists.

Introduction

The ExecuteReader
method

Example

 Module 3: Performing Connected Database Operations (Prerelease) 23

DataReader Properties and Methods

! Read method

" Loads the next row

" Returns True if a row exists or False if at end of rows

! Close method

! Item property

! GetXxx methods, for example, GetString, GetInt32

! GetValues method

! IsDbNull method

*****************************ILLEGAL FOR NON-TRAINER USE******************************

SqlDataReader and OleDbDataReader contain properties and methods for
processing a result set retrieved by a command object. These properties and
methods enable you to:

! Iterate through the result set, one row at a time.
! Get the value of a specific column, or all columns, in the current row.
! Check whether a column contains a missing or non-existent value.
! Get metadata for a column, such as its name, ordinal position, and data type.

To iterate through a result set, call the Read method on the DataReader object.
The Read method reads the next row in the result set, by using the associated
connection object.

The Read method returns false when there are no more records to read. At this
point, you should call the Close method to close the DataReader and release the
connection object.

The following are various ways to get values for columns in the current row:

! The Item property gets the value of a column with a specified name or
ordinal position. The value is returned in its native format, so you might
need to cast the value before you can use it in your code.

In Microsoft Visual C#�, Item is the indexer for the DataReader
object. Use the syntax aReader["aColumnName"] or
aReader[columnPosition] to access the required column value.

! The DataReader has strongly typed accessor methods, such as
GetDateTime, GetDouble, GetGuid, and GetInt32. These methods return
.NET Framework data types, such as DateTime, Guid, and Int32. Use
these methods when you know the data types in the record set, to minimize
the amount of type conversion required in your code.

Introduction

Guidelines for iterating
through a result set

Guidelines for getting
column values

Note

24 Module 3: Performing Connected Database Operations (Prerelease)

The SQL Server .NET Data Provider also has methods such as
GetSqlDateTime, GetSqlDouble, and so on. These methods return SQL
Server data types such as SqlDateTime and SqlDouble. These types are
located in the System.Data.SqlTypes namespace.

! The GetValues method returns an array of objects containing all of the
column values for the current row. This can be more efficient than retrieving
each column individually.

When you design a database, you can specify whether a column is allowed to
contain a null value. You can also specify a default value for a column, if
appropriate.

To test whether a column value is null, use the IsDbNull method in the
DataReader object. IsDbNull returns true if the column value is null and there
is no default value for the column.

The following are various ways to get metadata for the result set:

! The GetName method returns the name of the column with a specified
ordinal position.

! The GetOrdinal method returns the ordinal position of the column with a
specified name.

! The GetSchemaTable method returns detailed schema information about
the current result set. GetSchemaTable returns a DataTable object, which
contains one row for each column in the result set. Each column of the
DataTable maps to a property of the column returned in the result set.

Note

Guidelines for checking
for missing column
values

Guidelines for getting
result set metadata

 Module 3: Performing Connected Database Operations (Prerelease) 25

How to Use a DataReader to Process Rows

! Using a DataReader object to process a result set

! Code example

! Practice

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You use a DataReader object to process the result set returned by the
ExecuteReader method in a command object.

! To use a DataReader object to process rows
1. Add a command object to your form or component and set the properties

and parameters if necessary.
2. Declare a SqlDataReader or OleDbDataReader variable, depending on

which data provider you are using.
3. Write code to open the database connection.
4. Call the ExecuteReader method on the command object, including the

option to close the connection immediately after the DataReader is closed.
Assign the return value to the DataReader variable.

5. Loop through the DataReader by using its Read method, until the method
returns False.

6. Close the DataReader.

Introduction

Using a DataReader
object to process rows

26 Module 3: Performing Connected Database Operations (Prerelease)

The following example executes a SELECT statement to get product details
from the Northwind database. The example iterates through the rows by using a
SqlDataReader, and gets the ProductName and UnitsInStock for each product.

Dim cmdProducts As SqlCommand = New SqlCommand(_
 "SELECT ProductName, UnitsInStock " & _
 "FROM Products", cnNorthwind)

cnNorthwind.Open()

Dim rdrProducts As SqlDataReader

rdrProducts = cmdProducts.ExecuteReader(_
 CommandBehavior.CloseConnection)

Do While rdrProducts.Read()

 ListBox1.Items.Add(rdrProducts.GetString(0) & _
 vbTab & rdrProducts.GetInt16(1))

Loop
rdrProducts.Close()

! To call the ExecuteReader method
1. Start the Visual Studio .NET development environment.
2. Create a new Windows Application project named

ProcessingMultipleRows.
3. In the Northwind database, create a stored procedure named AllCustomers

that returns all of the data in the Customers table, sorted by company name.
4. Add a list box and button to Form1.
5. Drag the AllCustomers stored procedure onto Form1.
6. Define a click event handler for the button, and write some code to perform

the following tasks:
a. Declare a SqlDataReader variable.

Dim rdrCustomers As SqlClient.SqlDataReader

b. Open the connection.
Me.SqlConnection1.Open()

c. Call the ExecuteReader method of the command object.
rdrCustomers = Me.SqlCommand1.ExecuteReader(_
 CommandBehavior.CloseConnection)

Example

Practice

 Module 3: Performing Connected Database Operations (Prerelease) 27

d. Loop through the rows in the result set.
Do While rdrCustomers.Read()

e. Inside the loop, add items to the list box by using the GetString method.
Me.ListBox1.Items.Add(rdrCustomers.GetString(1))

f. Outside the loop, close the DataReader.
Loop
rdrCustomers.Close()

28 Module 3: Performing Connected Database Operations (Prerelease)

Lesson: Executing Multiple SQL Statements

! This lesson describes:

" Why Use Multiple SQL Statements?

" How To Process Multiple SQL Statements

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A command object can specify more than one SQL statement. For example, a
stored procedure can execute multiple SELECT statements, and return multiple
result sets.

In this lesson, you will learn how to use a DataReader to process a command
object that executes multiple SQL statements.

After completing this lesson, you will be able to:

! Describe scenarios where you can use multiple SQL statements.
! Use a DataReader to process combined Data Manipulation Language

(DML) and SELECT statements.
! Use a DataReader to process multiple result sets.

Introduction

Lesson objectives

 Module 3: Performing Connected Database Operations (Prerelease) 29

Why Use Multiple SQL Statements?

! Performance
! Group related tasks
! Encapsulate business rules
! Code example

/* a stored procedure with multiple SQL statements */

CREATE PROCEDURE dbo.IncreasePrices

AS

UPDATE Products SET UnitPrice = UnitPrice * 1.02

SELECT ProductName, UnitPrice FROM Products

SELECT ProductName FROM Products

WHERE Discontinued = 0

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A stored procedure can contain any number of DML and SELECT statements.
This enables you to group related tasks into the same stored procedure, to
encapsulate business rules and improve run-time performance.

A retailer decides to increase the price of its products by 2 percent and produce
a report showing the new price for all products. To do this, the retailer uses a
stored procedure that uses an UPDATE statement to increase the price of all
products. The stored procedure can then use a SELECT statement to return the
new details for each product. The following example shows a stored procedure
that performs these tasks:

/* Create a stored procedure that executes an UPDATE statement
 and a SELECT statement */
CREATE PROCEDURE dbo.IncreasePrices
AS
 UPDATE Products SET UnitPrice = UnitPrice * 1.02
 SELECT ProductName, UnitPrice FROM Products

In the next example, a retailer needs a report showing which products have been
discontinued and which are still current. To do this, the retailer uses a stored
procedure that contains two SELECT statements. The first SELECT statement
returns details for discontinued products. The second SELECT statement
returns details for current products. The following example shows a stored
procedure that performs these tasks:

/* Create a stored procedure that executes two SELECT
 statements */
CREATE PROCEDURE dbo.ProductStatusReport
AS
 SELECT ProductName FROM Products WHERE Discontinued = 1
 SELECT ProductName FROM Products WHERE Discontinued = 0

Introduction

Examples

30 Module 3: Performing Connected Database Operations (Prerelease)

How to Process Multiple SQL Statements

! Each DML statement contributes a count to the
RecordsAffected property

! Each SELECT statement that returns at least one row
can be accessed using the NextResult method

! Code examples

! Practice

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

If a command contains a mixture of DML and SELECT statements, you can use
a DataReader to retrieve the following two pieces of information:

! The result set obtained by the first SELECT statement
! The total number of records affected by all of the DML statements

If a command contains multiple SELECT statements, you can use a DataReader
to iterate through each result set in turn. The DataReader has a NextResult
method, which allows you to move on to the next result set returned by the
command.

! To process combined DML and SELECT statements
1. Create a connection object and a command object, and configure these

objects for the command that you wish to execute.
2. Open the database connection.
3. Call ExecuteReader on the command, and assign the return value to a

DataReader variable.
4. Use the DataReader to loop through the rows in the first result set.
5. If there are multiple SELECT statements, call the NextResult method on

the DataReader, to advance to the next result set, then repeat step 4.
6. Close the DataReader and the database connection.
7. Use the RecordsAffected property in the DataReader, to find the total

number of records changed, inserted, or deleted during execution of the
command object.

RecordsAffected is not set until you have read all records in the
result set, and you have closed the DataReader object. Until then it returns
the value -1.

Introduction

To process combined
DML and SELECT
statements

Note

 Module 3: Performing Connected Database Operations (Prerelease) 31

The following example executes the IncreasePrices stored procedure.

CREATE PROCEDURE dbo.IncreasePrices
AS
 UPDATE Products SET UnitPrice = UnitPrice * 1.02
 SELECT ProductName, UnitPrice FROM Products
 WHERE Discontinued=0
 SELECT ProductName, UnitPrice FROM Products
 WHERE Discontinued=1

The following Visual Basic example code uses a SqlDataReader to display the
rows returned by the two SELECT statements in two list boxes. The example
then uses the RecordsAffected property to find out how many records were
affected by the UPDATE statement.

Dim cmdProducts As SqlCommand = New SqlCommand(_
 "dbo.IncreasePrices", cnNorthwind)

cmdProducts.CommandType = CommandType.StoredProcedure

Dim rdrProducts As SqlDataReader

cnNorthwind.Open()

rdrProducts = cmdProducts.ExecuteReader(_
 CommandBehavior.CloseConnection)

Do While rdrProducts.Read()

 lstProducts.Items.Add(rdrProducts.GetString(0) & _
 vbTab & rdrProducts.GetSqlMoney(1).ToDouble())

Loop

rdrProducts.NextResult()

Do While rdrProducts.Read()

 lstDiscontinued.Items.Add(rdrProducts.GetString(0) & _
 vbTab & rdrProducts.GetSqlMoney(1).ToDouble())

Loop

MessageBox.Show("Products affected: " & _
 rdrProducts.RecordsAffected)

rdrProducts.Close()

Example

32 Module 3: Performing Connected Database Operations (Prerelease)

! To retrieve multiple result sets
1. Start the Visual Studio .NET development environment.
2. Create a new Windows Application project named

ExecutingMultipleStatements.
3. Create a stored procedure named CategoriesAndProducts in the

Northwind database. Define a SELECT statement to return all of the
Categories, sorted by name. Define another SELECT statement to return all
of the Products, sorted by name. Define an UPDATE statement to increase
the unit price of the discontinued products by 10%.
CREATE PROCEDURE dbo.CategoriesAndProducts
AS
 SELECT * FROM Categories ORDER BY CategoryName
 SELECT * FROM Products ORDER BY ProductName
 UPDATE Products
 SET UnitPrice = UnitPrice * 1.1
 WHERE (Discontinued = 1)

4. Add two list boxes and a button to Form1.
5. Drag the CategoriesAndProducts stored procedure onto Form1.
6. Define a click event handler for the button, and add the following code:

a. Declare a data reader variable.
Dim rdr As SqlClient.SqlDataReader

b. Open the database connection.
Me.SqlConnection1.Open()

c. Call the ExecuteReader method, and assign the return value to a
SqlDataReader variable.
rdr = Me.SqlCommand1.ExecuteReader(_
 CommandBehavior.CloseConnection)

d. Use a loop to read the rows. Inside the loop, add items to the first list
box by using the GetString method of the SqlDataReader.
Do While rdr.Read()
 Me.ListBox1.Items.Add(rdr.GetString(1))
Loop

e. Outside the loop, call the NextResult method of the SqlDataReader.
rdr.NextResult()

f. Use another loop to read the rows in the second result set. Add items to
the second list box, by using the GetString method of the
SqlDataReader.
Do While rdr.Read()
 Me.ListBox2.Items.Add(rdr.GetString(1))
Loop

Practice

 Module 3: Performing Connected Database Operations (Prerelease) 33

g. Outside the loop, display the number of products updated.
MessageBox.Show(�Products updated: � & _
 rdr.RecordsAffected)

h. close the SqlDataReader.
rdr.Close()

34 Module 3: Performing Connected Database Operations (Prerelease)

Lesson: Using Data Definition Language

! This lesson describes:

" What is Data Definition Language?

" How to Execute a Data Definition Language Command

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Data Definition Language (DDL) enables you to create and manage database
structures, such as tables, views, and triggers. You can also use DDL to specify
security settings for a database.

In this lesson, you will learn how to execute DDL statements by using a
SqlCommand or OleDbCommand object.

After completing this lesson, you will be able to:

! Describe scenarios where DDL statements are used.
! Use a command object to execute a DDL statement.

Introduction

Lesson objectives

 Module 3: Performing Connected Database Operations (Prerelease) 35

What Is Data Definition Language?

! Definition

" Automate database administration tasks

! DDL statements

" CREATE, ALTER, DROP, GRANT, DENY, REVOKE

! Code example
CREATE PROCEDURE dbo.SummarizeProducts AS

CREATE TABLE ProductSummary

(ProductName nvarchar(40),

CategoryName nvarchar(15))

*****************************ILLEGAL FOR NON-TRAINER USE******************************

DDL enables you to automate database administration tasks in your application.
You can programmatically execute DDL statements to manage the structure of
the database. You can also grant or deny permissions for user accounts, to
control who can do what in the database.

The following table describes the DDL statements.

DDL statement Description

CREATE Create a new database object such as a table, view, index, stored

procedure, or trigger.

ALTER Alter an existing database object.

DROP Drop an existing database object.

GRANT Grant permissions to a user account, to allow the user to perform
specific actions on the current database.

DENY Deny permissions to a user account, to prevent the user from
performing specific actions on the current database.

REVOKE Revoke a previously granted or denied permission.

The following example shows a stored procedure that creates a new table
named ProductSummary. The table contains product and category names:

/* Stored procedure to create a new table */
CREATE PROCEDURE dbo.SummarizeProducts
AS
 CREATE TABLE ProductSummary
 (
 ProductName nvarchar(40),
 CategoryName nvarchar(15)
)

Introduction

Definition

Examples

36 Module 3: Performing Connected Database Operations (Prerelease)

The following example shows a stored procedure that grants or denies
permissions for all users to query the ProductSummary table:

/* Stored procedure to grant or deny permission to query
 the ProductSummary table */
CREATE PROCEDURE dbo.ManagePermission
 (
 @Allow int
)
AS
 IF @Allow = 1
 GRANT SELECT ON ProductSummary TO PUBLIC
 ELSE
 DENY SELECT ON ProductSummary TO PUBLIC

 Module 3: Performing Connected Database Operations (Prerelease) 37

How to Execute a Data Definition Language Command

! ExecuteNonQuery method

" Returns count of rows affected

! Code examples

! Practice

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

To execute a DDL statement in ADO .NET, you call the ExecuteNonQuery
method on a SqlCommand or OleDbCommand object.

When you use the ExecuteNonQuery method to execute DDL, the method
returns the number of rows affected.

! To execute a DDL command
1. Create a connection object and a command object, and configure these

objects for the DDL statement you wish to execute.
2. Open the database connection.
3. Call ExecuteNonQuery on the command.
4. Close the database connection.

The following example calls the SummarizeProducts stored procedure.

CREATE PROCEDURE dbo.SummarizeProducts
AS
 CREATE TABLE ProductSummary
 (
 ProductName nvarchar(40),
 CategoryName nvarchar(15)
)

Introduction

To execute a DDL
command

Example

38 Module 3: Performing Connected Database Operations (Prerelease)

The stored procedure uses DDL to create a new table named
ProductSummary.

Dim cmSummarizeProducts As SqlCommand = New SqlCommand(_
 "dbo.SummarizeProducts", cnNorthwind)

cmSummarizeProducts.CommandType = CommandType.StoredProcedure

cnNorthwind.Open()

Dim affected As Integer = _
 cmSummarizeProducts.ExecuteNonQuery()

cnNorthwind.Close()

MessageBox.Show("Rows affected: " & affected)

! To execute DDL statements
1. Start the Visual Studio .NET development environment.
2. Create a new Windows Application project named ExecutingDDL.
3. Create a stored procedure named CreateContactsTable in the Northwind

database. In the stored procedure, create a new table named Contacts as
follows:
CREATE PROCEDURE dbo.CreateContactsTable
AS
 CREATE TABLE Contacts
 (
 CustomerID nvarchar(5),
 EmployeeID int,
 Started datetime
)

4. Add a button to Form1.
5. Drag the CreateContactsTable stored procedure onto Form1.
6. Define a click event handler for the button, and add the following code:

a. Open the database connection.
b. Call the ExecuteNonQuery method on the command object.
c. Close the database connection.

7. Run the application, click the button on the form, and then close the
application.

8. Use the Server Explorer to verify that the Contacts table has been created in
the database.

Practice

 Module 3: Performing Connected Database Operations (Prerelease) 39

Lesson: Manipulating Data Using Data Manipulation
Language

! This lesson describes:

" What Is Data Manipulation Language?

" How to Execute a Data Manipulation Language
Command

" Troubleshooting Data Modification

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Data Manipulation Language (DML) enables you to modify data in a database.
ADO .NET provides the following two ways to modify data by using DML
statements:

! In a disconnected application, create a data adapter object that specifies a
SQL query. Use the data adapter to fill a DataSet object with data. Modify
the data in the DataSet, and use the data adapter to update the database with
the changes.

! In a connected application, use a data command object to execute DML
statements directly.

In this lesson, you will learn how to execute DML statements to modify data by
using a SqlCommand or OleDbCommand object.

After completing this lesson, you will be able to:

! Describe scenarios where DML modification statements are used.
! Use a command to execute a DML modification statement.
! Test whether the DML statement has executed successfully.

Introduction

Lesson objectives

40 Module 3: Performing Connected Database Operations (Prerelease)

What Is Data Manipulation Language?

! Definition
" Data modification statements

! DML Statements
" INSERT, UPDATE, DELETE

! Code example
CREATE PROCEDURE dbo.InsertRegion

(@RegID int,

@RegName nchar(50))

AS

INSERT INTO Region VALUES (@RegID, @RegName)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

DML includes statements that insert new rows, update existing rows, or delete
rows in a database.

The following table describes the DML statements that modify data in a
database.

DDL statement Description

INSERT Insert a new row into a table or view. To insert multiple rows from

another table or view, use the INSERT�SELECT statement.

UPDATE Update existing rows in a table or view. Use this statement to set
specific columns or parameter values.

DELETE Delete existing rows from a table or view.

For more information about DML modification statements, see Appendix
A, �Best Practices for Writing SQL Statements and Stored Procedures,� in
Course 2389A, Programming with ADO .NET.

The following stored procedure inserts a new row into the Region table in the
Northwind database. The stored procedure takes two input parameters, to
specify the values for the new row:

/* Insert a row into the Region table */
CREATE PROCEDURE dbo.InsertRegion
 (
 @RegID int,
 @RegName nchar(50)
)
AS
 INSERT INTO Region VALUES (@RegID, @RegName)

Introduction

Definition

Note

Examples

 Module 3: Performing Connected Database Operations (Prerelease) 41

The following stored procedure increases the unit price for all products in the
Products table. Each unit price is increased by 2 percent:

/* Update the UnitPrice for all products */
CREATE PROCEDURE dbo.IncreaseProductPrices
AS
 UPDATE Products SET UnitPrice = UnitPrice * 1.02

The following stored procedure deletes discontinued items from the Products
table:

/* Delete discontinued items from the Products table */
CREATE PROCEDURE dbo.DeleteDiscontinuedProducts
AS
 DELETE FROM Products WHERE Discontinued = 1

42 Module 3: Performing Connected Database Operations (Prerelease)

How to Execute a Data Manipulation Language Command

! To execute a DML statement
" ExecuteNonQuery method

! Code examples
! Practice

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

To execute a DML statement to modify data call the ExecuteNonQuery
method on a command object. The method returns an integer, to indicate the
number of rows affected.

! To execute a DML statement to modify data
1. Create a connection object and a command object, and configure these

objects for the DML statement that you wish to call.
2. Open the database connection.
3. Call ExecuteNonQuery on the command. Assign the return value to an

integer variable, to indicate the number of rows affected by the DML
statement.

4. Close the database connection.

The following example calls the IncreaseProductPrices stored procedure,
which was introduced earlier in this lesson. The stored procedure increases the
unit price of all products by 2 percent:

Dim cmd As SqlCommand = New SqlCommand(_
 "dbo.IncreaseProductPrices", cnNorthwind)

cmd.CommandType = CommandType.StoredProcedure

cnNorthwind.Open()

Dim affected As Integer = cmd.ExecuteNonQuery()

cnNorthwind.Close()

MessageBox.Show("Records affected: " & affected)

Introduction

To execute a DML
statement

Example

 Module 3: Performing Connected Database Operations (Prerelease) 43

! To execute a DML statement to insert a record into a table
1. Start the Visual Studio .NET development environment.
2. Create a new Windows Application project named ExecutingDML.
3. Create a stored procedure named InsertProduct in the Northwind database.

In the stored procedure, insert a new row into the Products table as follows:
/* Insert a product, and return the generated ProductID */
CREATE PROCEDURE dbo.InsertProduct
 (
 @ProductName nvarchar(40),
 @CategoryID int,
 @SupplierID int
)
AS
 INSERT INTO Products(ProductName, CategoryID, SupplierID)
 VALUES(@ProductName, @CategoryID, @SupplierID)
 RETURN @@IDENTITY

4. Add a text field and a button to Form1.
5. Drag the InsertProduct stored procedure onto Form1.
6. Define a click event handler for the button, and add the following code:

a. Open the database connection.
b. Set the @ProductName parameter in the command object, by using the

value in the text box.
c. Set the @CategoryID and @SupplierID parameters to the value 1.
d. Call the ExecuteNonQuery method on the command object. Assign the

return value to an integer variable.
e. Close the database connection.
f. Display the return value from the ExecuteNonQuery method.
g. Also display the @RETURN_VALUE parameter of the data command

object. The stored procedure assigns the generated ProductID to this
parameter.

7. Run and test the application.
8. Enter any product name in the text field, and then click the button on the

form. A message box should appear, indicating that one row has been
affected. The message box should also display the generated ProductID for
the inserted product.

9. Close the application.
10. Using the Server Explorer, verify that a new record has been inserted into

the Products table.

Practice

44 Module 3: Performing Connected Database Operations (Prerelease)

Troubleshooting Data Modification

! Common errors
" Incorrect object names
" Server unavailability
" Data integrity issues
" Using connection before it is open
" Invalid data types

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you execute a SQL statement against a database, many different types of
errors can occur, including the following:

! Errors due to programmer fault, such as a spelling mistake
! Errors due to run-time conditions, such as server unavailability
! Errors due to data integrity issues, such as inserting a record with a

duplicate primary key

The following are some of the common programming errors that can occur. To
resolve these errors, fix the code and rebuild the application.

! Forgetting to open a database connection before you execute the data
command.

! Specifying invalid SQL syntax in the command text
! Specifying an invalid name for a stored procedure
! Forgetting to set an input parameter in a data command
! Setting an inappropriate value or data type for an input parameter
! Forgetting to set a required column when you insert a new record into a

table

The following are some errors that can occur due to run-time conditions. To
deal with these errors, catch a SqlException in your code and handle the error
as appropriate:

! Unable to open a database connection
! Database connection broken during execution of the statement

Introduction

Common programming
errors

Common run-time errors

 Module 3: Performing Connected Database Operations (Prerelease) 45

The following are some data integrity errors that can occur. To deal with these
errors, catch a SqlException in your code:

! Inserting duplicate records into a table
! Inserting a record into a secondary table, but specifying a non-existent

record in the primary table
! Deleting a record from a primary table, where the record is still referenced

in a secondary table
! Attempting to create a table that already exists
! Attempting to drop a table that is referenced by a secondary table
! Attempting to execute a statement without sufficient user privileges

Even if a DML statement executes without any exceptions, this does
not necessarily mean that the DML statement had the desired effect. For
example, if you try to delete a non-existent record, the statement succeeds
but returns 0 to indicate that no records were deleted.

! To troubleshoot data modification errors
1. Open the project named ExecutingDML, which you created earlier in this

lesson, or open the solution provided in the Practices folder.
2. Create a stored procedure named DeleteProduct in the Northwind database.

In the stored procedure, delete a row from the Products table as follows:
/* Delete the product with the specified ProductID */
CREATE PROCEDURE dbo.DeleteProduct
 (
 @ProductID int
)
AS
 DELETE FROM Products WHERE ProductID = @ProductID

3. Add another text box and a button to Form1.
4. Drag the DeleteProduct stored procedure onto Form1.
5. Define a click event handler for the new button, and add the following code:

a. Open the database connection.
b. Set the @ProductID parameter in the new command object, by using the

value in the new text box.
c. Call the ExecuteNonQuery method on the new command object.

Assign the return value to an integer variable.
d. Close the database connection.
e. Display the return value from the ExecuteNonQuery method.

Common data integrity
errors

Note

Practice

46 Module 3: Performing Connected Database Operations (Prerelease)

6. Run and test the application.
7. Try to delete one of the products you added in the previous lesson

(ProductID > 77). You will be able to delete this product.
8. Try to delete the same product ID again. You will not get an error, but no

records will be deleted.
9. Try to delete an original product, such as ProductID = 1. You will get an

exception, because the record is referenced elsewhere in the database.
10. If time permits, modify the code in your application so that it catches any

exceptions that might occur.

 Module 3: Performing Connected Database Operations (Prerelease) 47

Lesson: Using Transactions

! This lesson describes:

" What Is a Transaction?

" How Are Transactions Managed?

" How to Perform a Transaction

" What Are Isolation Levels?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A transaction is a single unit of work. If a transaction is successful, all of the
data modifications made during the transaction are committed and become a
permanent part of the database. If a transaction encounters errors and must be
canceled or rolled back, then all of the data modifications are erased.

You can use transactions in ADO .NET, to ensure the consistency and integrity
of the database.

After completing this lesson, you will be able to:

! Describe why transactions are important.
! Begin a transaction.
! Specify an appropriate isolation level for a transaction.
! Commit or rollback a transaction.

Introduction

Lesson objectives

48 Module 3: Performing Connected Database Operations (Prerelease)

What Is a Transaction?

! Local and distributed transactions
! ACID properties

" Atomicity
" Consistency
" Isolation
" Durability

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A transaction is a set of related tasks that either succeed or fail as a unit. In
transaction processing terminology, the transaction either commits or aborts.
For a transaction to commit, all participants must guarantee that any change to
data will be permanent. Changes must persist despite system crashes or other
unforeseen events.

If even a single participant fails to make this guarantee, the entire transaction
fails. All changes to data within the scope of the transaction are rolled back to a
specific set point.

For an example of using transactions, consider the following scenario: An ASP
.NET page performs two tasks. First, it creates a new table in a database. Next,
it calls a specialized object to collect, format, and insert data into the new table.
These two tasks are related and even interdependent, such that you want to
avoid creating a new table unless you can fill it with data. Executing both tasks
within the scope of a single transaction enforces the connection between them.
If the second task fails, the first task is rolled back to a point before the new
table was created.

You can create local or distributed transactions:

! Local transactions
A local transaction is confined to a single data resource, such as a database
or message queue. It is common for these data resources to provide local
transaction capabilities. Controlled by the data resource, these transactions
are efficient and easy to manage.

! Distributed transactions
Transactions can also span multiple data resources. Distributed transactions
enable you to incorporate several distinct operations occurring on different
systems into a single pass or fail action.

Definition

Local and distributed
transactions

 Module 3: Performing Connected Database Operations (Prerelease) 49

The term ACID refers to the role transactions play in mission-critical
applications. Coined by transaction-processing pioneers, ACID stands for
atomicity, consistency, isolation, and durability.

These properties ensure predictable behavior, reinforcing the role of
transactions as all-or-none propositions designed to reduce the management
load when there are many variables.

! Atomicity
A transaction is a unit of work in which a series of operations occur between
the BEGIN TRANSACTION and END TRANSACTION statements of an
application. A transaction executes exactly once and is atomic; that is, all of
the work is done or none of it is.
Operations associated with a transaction usually share a common intent and
are interdependent. By performing only a subset of these operations, the
system could compromise the overall intent of the transaction. Atomicity
eliminates the chance of processing a subset of operations.

! Consistency
A transaction is a unit of integrity because it preserves the consistency of
data, transforming one consistent state of data into another consistent state
of data.
Consistency requires that data bound by a transaction be semantically
preserved. Some of the responsibility for maintaining consistency falls to
the application developer, who must make sure that all known integrity
constraints are enforced by the application. For example, when developing
an application that transfers money, you should avoid arbitrarily moving
decimal points during the transfer.

! Isolation
A transaction is a unit of isolation; that is, it allows concurrent transactions
to behave as though each were the only transaction running in the system.
Isolation requires that each transaction appear to be the only transaction
manipulating the data store, even though other transactions may be running
at the same time. A transaction should never see the intermediate stages of
another transaction.
Transactions attain the highest level of isolation when they have the ability
to be serialized. At this level, the results obtained from a set of concurrent
transactions are identical to the results obtained by running each transaction
serially. Because a high degree of isolation can limit the number of
concurrent transactions, some applications reduce the isolation level in
exchange for better throughput.

! Durability
A transaction is also a unit of recovery. If a transaction succeeds, the system
guarantees that its updates will persist, even if the computer crashes
immediately after the commit. Specialized logging allows the system restart
procedure to complete unfinished operations, making the transaction
durable.

ACID properties

50 Module 3: Performing Connected Database Operations (Prerelease)

How to Manage Transactions Using SQL

! SQL transaction statements
" BEGIN TRANS, COMMIT TRANS, ROLLBACK TRANS

! Code example
/* Use a transaction to ensure consistency */

BEGIN TRANSACTION

INSERT INTO Account (AccountID, Amount, DebitCredit)

VALUES (1234, 100, 'debit')

INSERT INTO Account (AccountID, Amount, DebitCredit)

VALUES (5678, 100, 'credit')

IF (@@ERROR > 0)

ROLLBACK TRANSACTION

ELSE

COMMIT TRANSACTION

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Transactions can be managed at the database tier using SQL statements.

The following table describes the SQL statements for managing transactions.
You can use these statements in stored procedures, to control transactional
behavior in the data tier.

Transaction statement Description

BEGIN TRANSACTION Marks the beginning of the transaction. All

statements executed after the BEGIN
TRANSACTION statement are considered to be part
of the transaction.

COMMIT TRANSACTION Marks the end of a successful transaction, and
commits all changes made since the BEGIN
TRANSACTION statement.

SAVE TRANSACTION Sets a savepoint in a transaction. The savepoint
defines a location to which a transaction can return if
part of the transaction is conditionally canceled.

ROLLBACK TRANSACTION Rolls back a transaction to the beginning of the
transaction, or to a savepoint in the transaction.

The following example shows how to manage transactions by using Transact-
SQL. The example tries to debit money from one account, and credit the money
to another account. If any errors occur, the entire transaction is rolled back to
ensure consistency.

BEGIN TRANSACTION
INSERT INTO Account (AccountID, Amount, DebitCredit)
 VALUES (1234, 100, 'debit')
INSERT INTO Account (AccountID, Amount, DebitCredit)
 VALUES (5678, 100, 'credit')
IF (@@ERROR > 0) ROLLBACK TRANSACTION ELSE COMMIT TRANSACTION

Introduction

SQL transaction
statements

Example

 Module 3: Performing Connected Database Operations (Prerelease) 51

How to Manage Transactions Using ADO .NET

! XxxConnection, for example, SqlConnection
" BeginTransaction

! XxxTransaction, for example, SqlTransaction
" Commit
" Rollback
" Save (SqlTransaction only)

! Code examples
! Practice

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

ADO .NET allows you to manage transactions in a .NET Framework
application at the middle tier. This is an alternative to performing transactions
in the data tier.

The SqlConnection and OleDbConnection objects have a BeginTransaction
method, which returns a SqlTransaction or OleDbTransaction object. The
transaction object has methods named Commit, Save, and Rollback to manage
the transaction in your application.

! To perform a transaction using ADO .NET
1. Call the BeginTransaction method of the connection object. Assign the

return value to a SqlTransaction or OleDbTransaction variable.
2. For all commands that you want to execute within this transaction, set the

Transaction property to refer to the transaction object.
3. Execute the required command objects.
4. The SQL Server .NET Data Provider allows you to specify a savepoint for

the transaction. To set a savepoint, call the Save method at any time on the
SqlTransaction object.

5. If the commands complete satisfactorily, call the Commit method on the
transaction object. If any problems occur, call the Rollback method to roll
back to the original conditions or to a savepoint.

Introduction

To perform a transaction

52 Module 3: Performing Connected Database Operations (Prerelease)

The following example uses a transaction to coordinate multiple DELETE
statements in the Northwind database. The first DELETE statement deletes all
items in the Order Details table, for the ProductID 42. The second DELETE
statement deletes the product with ProductID 42 in the Products table. If any
errors occur, the transaction is rolled back and all deletions are canceled.

' Open the database connection, and begin a transaction.
' Execute two DELETE statements within the transaction.
' Commit or rollback the transaction, as appropriate

cnNorthwind.Open()

Dim trans As SqlTransaction = cnNorthwind.BeginTransaction()

Dim cmd As New SqlCommand()
cmd.Connection = cnNorthwind
cmd.Transaction = trans

Try

 cmd.CommandText = _
 "DELETE [Order Details] WHERE ProductID = 42"

 cmd.ExecuteNonQuery()

 cmd.CommandText = "DELETE Products WHERE ProductID = 42"

 cmd.ExecuteNonQuery()

 trans.Commit()

Catch e As Exception

 trans.Rollback()

Finally

 cn.Close()

End Try

Example

 Module 3: Performing Connected Database Operations (Prerelease) 53

What Are Isolation Levels?

! Example of concurrency problems
! Guidelines for setting the isolation level
! Code example

' Begin a transaction using the Serializable
isolation level

trans = cnNorthwind.BeginTransaction(_

IsolationLevel.Serializable)

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Isolation levels specify the transaction locking behavior for a connection.
Choose an appropriate isolation level as follows to prevent concurrency
problems when multiple transactions access the same data:

! At one extreme, you can allow transactions to have unimpeded access to the
database. This minimizes the wait time for statements in the transactions,
but increases the risk of data corruption due to concurrent access.

! At the other extreme, you can specify that transactions are completely
isolated from each other. The transactions are executed serially, one after
the other.

If several transactions access the same data at the same time, the following
concurrency errors may occur:

! Dirty reads
A dirty read occurs when a transaction selects a row that is currently being
updated by another transaction. The original transaction is reading data that
has not yet been committed, and the data may be changed by the other
transaction.

! Non-repeatable reads
A non-repeatable read occurs when a transaction reads committed data once,
then reads it again later and gets a different value. This happens if another
transaction has updated the data between the two read operations.

! Phantom reads
A phantom read occurs when a transaction reads data that is currently being
deleted by another transaction. If the original transaction reads the data
again, it will not see the deleted rows.

Introduction

Examples of
concurrency problems

54 Module 3: Performing Connected Database Operations (Prerelease)

The SqlTransaction and OleDbTransaction objects have a property named
IsolationLevel. You set this property when you call BeginTransaction on the
connection object.

The following table describes the allowable isolation levels, in order of
increasing isolation. These values are defined in the IsolationLevel
enumeration.

Isolation level Description

Chaos The pending changes from more highly isolated transactions

cannot be overwritten.

ReadUncommitted Transaction isolation is only sufficient to prevent corrupt data
from being read.

Dirty reads, non-repeatable reads, and phantom reads can occur.

ReadCommitted Shared locks are held while the data is being read, to prevent
dirty reads. However, the data can be changed before the end of
the transaction, causing non-repeatable reads or phantom reads.

This is the default isolation level.

RepeatableRead All data used in a query is locked. This prevents other users
from updating the data, and therefore prevents non-repeatable
reads. However, phantom reads can still occur.

Serializable Transactions are completely isolated from each other. This
prevents dirty reads, non-repeatable reads, and phantom reads.

Unspecified A different isolation level than the one specified is being used,
but the level cannot be determined

The following example shows how to begin a transaction by using the
Serializable isolation level. This ensures maximum protection against
concurrency errors, at the expense of run-time performance.

trans = cnNorthwind.BeginTransaction(_
 IsolationLevel.Serializable)

! To perform a transaction
1. Start the Visual Studio .NET development environment.
2. Create a new Windows Application project named ExecutingTransactions.
3. Add two text boxes and a button to Form1
4. Drag the InsertProduct stored procedure in the Northwind database onto

Form1.
5. Define a click event handler for the new button, and add the following code:

a. Open the database connection.
b. Create and assign a transaction to the command.
c. Set the @ProductName parameter of the command, to the value in the

first text box. Set the @CategoryID and @SupplierID parameters to 1.
d. Execute the command.
e. Set the @ProductName parameter to the value of the second text box.
f. Execute the command again.

Guidelines for setting
the isolation level

Example

Practice

 Module 3: Performing Connected Database Operations (Prerelease) 55

g. Display a message box, asking if the user wants to save the changes. If
the user selects Yes, commit the transaction. Otherwise, roll back the
transaction.

h. Close the database connection.
6. Run and test the application.
7. Enter two product names in the text boxes, and then click the button. When

you are asked if you want to commit the changes, select Yes. Use Server
Explorer to verify that two new records have been added to the Products
table.

8. Enter two different product names in the text boxes, and then click the
button. When you are asked if you want to commit the changes, select No.
Verify that neither record has been added to the Products table.

56 Module 3: Performing Connected Database Operations (Prerelease)

Review

! Building Command Objects
! Executing Command Objects That Return a Single

Value
! Executing Command Objects That Return a Result Set
! Executing Command Objects Composed of Multiple

SQL Statements
! Defining Data by Using Data Definition Language
! Manipulating Data by Using Data Manipulation

Language
! Using Transactions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1.
2.
3.
4.
5.
6.

 Module 3: Performing Connected Database Operations (Prerelease) 57

Lab 3: Performing Connected Database Operations

! Exercise 1: Executing Command Objects
That Return a Single Value

! Exercise 2: Executing a Command Object
That Returns Records

! Exercise 3: Executing a Command Object
That Returns Multiple Results

! Exercise 4: Executing a Command Object
That Modifies the Database

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

! Build a command object.
! Execute a command object that returns a single value.
! Execute a command object that processes multiple rows.
! Execute a command object that consists of multiple SQL statements.
! Define data by using Data Definition Language.
! Manipulate data by using Data Manipulation Language.
! Use transactions.

Before working on this lab, you must have:

! Visual Basic or Visual C# programming skills.
! Familiarity with the Visual Studio .NET development environment.

Search online help for the topic �Databases in Server Explorer�. Hint: use
quotes around the topic titles when searching the Visual Studio .NET online
documentation.

Northwind Traders has a corporate Local Area Network, which provides
employees with easy access to the Northwind database. Employees need to
access the information in this database, to make business decisions about which
products to stock and the pricing policy for these products.

These tasks are only performed by office workers. Mobile workers do not
perform these tasks. A connected Windows Application satisfies these
requirements.

Objectives

Prerequisites

For more information

Scenario

Estimated time to
complete this lab: 60
minutes

58 Module 3: Performing Connected Database Operations (Prerelease)

Exercise 0
Lab Setup

To complete this lab, you must �

!
2.
3.

 Module 3: Performing Connected Database Operations (Prerelease) 59

Exercise 1
Executing a Command Object that Returns a Single Value

In this exercise, you will create a new stored procedure in the Northwind
database. The stored procedure will return the number of products in the
database.

You will then open an existing Windows Application, and add a
SqlConnection object to connect to the Northwind database. You will also add
a SqlCommand object, to represent the new stored procedure. You will
execute the stored procedure by using the ExecuteScalar method, and display
the result in a message box.

The Northwind database contains information about all the products stocked by
Northwind Traders. Employees at Northwind Traders need to know how many
products are in a specified price range. Employees can access the database over
the corporate Local Area Network.

! To add a stored procedure to get the number of products
1. Start the Microsoft Visual Studio .NET development environment.
2. In the Server Explorer, select the Northwind database on your local

machine.
3. Add a new stored procedure to the Northwind database.
4. The required code for this stored procedure is provided in the file \Program

Files\MSDNTrain\2389\Labs\Lab03\Starter\CountProducts.sql. Copy this
code into the stored procedure in the Visual Studio .NET code editor.

5. Save the stored procedure.

! To add data objects to a Windows Application
1. In Visual Studio .NET, open one of the following starter solutions:

• If you wish to use Visual Basic, open the starter solution provided in
\Program Files\MSDNTrain\2389\Labs\Lab03\Starter\VB.

• If you wish to use Visual C#, open the starter solution provided in
\Program Files\MSDNTrain\2389\Labs\Lab03\Starter\CS.

2. Open the form named FormConnectedApp.
3. Add a SqlConnection control to the form, and name it cnNorthwind.
4. In the Properties window for cnNorthwind, click ConnectionString.

Create a New Connection with the following settings:

Property Value

Server name (local)

Information to log on to the server Use Windows NT Integrated security

Database on the server Northwind

Scenario

60 Module 3: Performing Connected Database Operations (Prerelease)

5. Add a SqlCommand to the form, and set the following properties:

Property Value

(Name) cmCountProducts

Connection cnNorthwind

CommandType StoredProcedure

CommandText dbo.CountProducts

When you set the CommandText property, Visual Studio .NET asks if you
want to regenerate the parameters collection for this command. Click Yes.

6. Review the code that was generated by Visual Studio .NET. Notice the code
that creates the parameters for the command.

! To execute the stored procedure
1. Add an event handler method for the Click event on the Count Products

button.
2. In the event handler method, get the text in the txtMinimumPrice and

txtMaximumPrice text boxes. Use the double.Parse method to convert
these strings to the double data type. Assign the double values to two local
double variables.

3. Use these values to set the @Min and @Max parameters in the
cmCountProducts stored procedure command.

4. Open a connection to the database.
5. Use the ExecuteScalar method to execute the cmCountProducts stored

procedure command. Assign the return value of the method to a local
integer variable.

6. Close the database connection.
7. Display a message box, to show the return value from the

cmCountProducts stored procedure command.

! To build and test the Windows Application
1. Build the application, and correct any build errors.
2. Run the application.
3. Enter values such as 10 and 100 for the minimum and maximum prices.
4. Click Count Products, and observe the result displayed in the message box.

 Module 3: Performing Connected Database Operations (Prerelease) 61

Exercise 2
Executing a Command Object that Returns Records

In this exercise, you will create another stored procedure in the Northwind
database. The stored procedure will execute a SQL query, to obtain all the
products in stock within a specified price range.

You will extend the Windows Application from Exercise 1, to call the stored
procedure by using the ExecuteReader method. You will loop through the
records using a SqlDataReader, and display the product details in a list box.

Note: you will extend the stored procedure in Exercise 3, to return the out-of-
stock records as well.

Employees at Northwind Traders need to obtain information about all the
products currently in stock, within a specified price range.

! To add a stored procedure to return products in stock
1. In the Server Explorer, select the Northwind database on your local

machine.
2. Add a new stored procedure to the Northwind database.
3. The required code for this stored procedure is provided in the file \Program

Files\MSDNTrain\2389\Labs\Lab03\Starter\GetProductsInRange.sql. Copy
this code into the new stored procedure in the Visual Studio .NET code
editor.

4. Save the stored procedure.

! To add a SqlCommand object to represent the new stored procedure
1. Open the solution you completed in the previous exercise.
2. Add a SqlCommand to the form, and set the following properties:

Property Value

(Name) cmGetProductsInRange

Connection cnNorthwind

CommandType StoredProcedure

CommandText dbo.GetProductsInRange

When you set the CommandText property, Visual Studio .NET asks if you
want to regenerate the parameters collection for this command. Click Yes.

Scenario

62 Module 3: Performing Connected Database Operations (Prerelease)

! To execute the stored procedure
3. Add an event handler method for the Click event on the Display Products

button.
4. Clear the contents of the lstInStock list box.
5. Using the values in txtMinimumPrice and txtMaximumPrice, set the

@Min and @Max parameters in the cmGetProductsInRange stored
procedure command.

6. Open a connection to the database.
7. Declare a local variable named reader, of type

System.Data.SqlClient.SqlDataReader.
8. Call the ExecuteReader method on the cmGetProductsInRange

command. Assign the result to the reader variable.
9. Use reader to loop through the product records. For each product record,

get the following column values:

Column Code to get this column value

ProductID reader.GetInt32(0)

ProductName reader.GetString(1)

UnitPrice reader.GetSqlMoney(2).ToDouble()

For each product, add an item containing this information to the lstInStock
list box.

10. Close reader.
11. Close the database connection.

! To build and test the Windows Application
1. Build the application, and correct any build errors.
2. Run the application.
3. Enter values such as 10 and 100 for the minimum and maximum prices.
4. Click Display Products.
5. Observe the information displayed in the in-stock list box. Note that out-of-

stock list box is still empty at this stage.

 Module 3: Performing Connected Database Operations (Prerelease) 63

Exercise 3
Executing a Command Object that Returns Multiple Results

In this exercise, you will extend the stored procedure from Exercise 2. The
stored procedure will now return two results: the products in stock, and the
products out of stock.

You will also extend the Windows Application from Exercise 2, to process the
multiple results. You will use the SqlDataReader to display the in-stock
products first. You will then call the NextResult method in SqlDataReader, to
advance the data reader to the second result. You will loop through this result,
to display the out-of-stock products.

Employees at Northwind Traders need to know which products are in stock,
and which products are out-of-stock. This enables employees to make business
decisions based on current stock levels.

! To return multiple results from a stored procedure
1. In the Server Explorer, select the Northwind database on your local

machine.
2. Open the dbo.GetProductsInRange stored procedure in the code editor.
3. Modify the stored procedure, so that it returns two results:

• The in-stock products (within the specified price range). Note: the
SELECT statement to do this already exists in the stored procedure.

• The out-of-stock products (within the specified price range).
The complete code for the stored procedure is provided in the file \Program
Files\MSDNTrain\2389\Labs\Lab03\Starter\GetMultipleResults.sql

4. Save the stored procedure.

! To process multiple results
1. Open the solution you completed in the previous exercise.
2. Find the event handler method for the Click event on the Display Products

button.
3. After the lstInStock list box has been populated with the first result, call the

NextResult method on the reader object.
4. Clear the contents of the lstOutOfStock list box.
5. Use reader to loop through the out-of-stock products. For each record, get

the following column values:

Column Code to get this column value

ProductID reader.GetInt32(0)

ProductName reader.GetString(1)

UnitPrice reader.GetSqlMoney(2).ToDouble()

For each product, add an item containing this information to the
lstOutOfStock list box.

Scenario

64 Module 3: Performing Connected Database Operations (Prerelease)

! To build and test the Windows Application
6. Build the application, and correct any build errors.
7. Run the application.
8. Enter values such as 10 and 100 for the minimum and maximum prices.
9. Click Display Products.
10. Observe which products are in stock, and which products are out-of-stock.

 Module 3: Performing Connected Database Operations (Prerelease) 65

Exercise 4
Executing a Command Object that Modifies the Database

In this exercise, you will write a stored procedure to create an OrderSummary
table in the Northwind database. The stored procedure will populate the table
with the total number of orders for each product.

You will also write a stored procedure to query the data in the OrderSummary
table.

In your Windows Application, you will use the ExecuteNonQuery method to
execute the first stored procedure. You will use the ExecuteQuery method to
execute the second stored procedure, and create a SqlDataReader to loop
through the result.

The Orders table in the Northwind database contains information for each
customer order. The details of each order are held in the Order Details table.
The Order Details table indicates the quantity required for each product in the
order.

Employees at Northwind Traders need a summary of the total number of orders
for each product. This information will help Northwind Traders identify its
most popular products, so that the company can offer the best possible service
to its customers.

! To add a stored procedure to create and fill the OrderSummary table
1. In the Server Explorer, select the Northwind database on your local

machine.
2. Add a new stored procedure to the Northwind database.
3. The required code for this stored procedure is provided in the file \Program

Files\MSDNTrain\2389\Labs\Lab03\Starter\SummarizeOrders.sql. Copy
this code into the new stored procedure in the Visual Studio .NET code
editor.

4. Save the stored procedure.

! To add a stored procedure to query the OrderSummary table
1. Add another new stored procedure to the Northwind database.
2. The required code for this stored procedure is provided in the file \Program

Files\MSDNTrain\2389\Labs\Lab03\Starter\GetOrderSummary.sql. Copy
this code into the new stored procedure in the Visual Studio .NET code
editor.

3. Save the stored procedure.

Scenario

66 Module 3: Performing Connected Database Operations (Prerelease)

! To add SqlCommand objects to represent the new stored procedures
1. Open the solution you completed in the previous exercise.
2. Add a SqlCommand to the form, and set the following properties:

Property Value

(Name) cmSummarizeOrders

Connection cnNorthwind

CommandType StoredProcedure

CommandText dbo.SummarizeOrders

When you set the CommandText property, Visual Studio .NET asks if you
want to regenerate the parameters collection for this command. Click Yes.

3. Add another SqlCommand to the form, and set the following properties:

Property Value

(Name) cmGetOrderSummary

Connection cnNorthwind

CommandType StoredProcedure

CommandText dbo.GetOrderSummary

When you set the CommandText property, Visual Studio .NET asks if you
want to regenerate the parameters collection for this command. Click Yes.

! To execute the stored procedures
1. In the Windows Form Designer, click the Product Orders tab on your form.
2. Add an event handler method for the click event on the Summarize Orders

button.
3. In the event handler method, clear the contents of the lstOrderSummary

list box.
4. Open a connection to the database.
5. Call the ExecuteNonQuery method on the cmSummarizeOrders

command.
6. Declare a local variable named reader, of type

System.Data.SqlClient.SqlDataReader.
7. Call the ExecuteReader method on the cmGetOrderSummary command.

Assign the result to the reader variable.
8. Use reader to loop through the records. For each record, get the following

column values:

Column Code to get this column value
Orders reader.GetInt32(0)

ProductName reader.GetString(1)

For each record, add an item containing this information to the
lstOrderSummary list box.

9. Close reader.
10. Close the database connection.

 Module 3: Performing Connected Database Operations (Prerelease) 67

! To build and test the Windows Application
1. Build the application, and correct any build errors.
2. Run the application.
3. Click the Product Orders tab on the form.
4. Click Summarize Orders.
5. Observe the total number of orders for each product.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Building DataSets and DataTables 2

Lesson: Binding a DataSet to a Windows
Application Control 14

Lesson: Creating a Custom DataSet 19

Lab 4.1: Building, Binding, Opening, and
Saving DataSets 23

Lesson: Defining Data Relationships 33

Lesson: Modifying Data in a DataTable 40

Lesson: Using a DataView 51

Review 57

Lab 4.2: Manipulating DataSets and
Modifying Data 58

Module 4: Buidling
DataSets (Prerelease)

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other appropriate product names or titles.
The publications specialist replaces this example list with the list of trademarks provided by the
copy editor. Microsoft is listed first, followed by all other Microsoft trademarks in alphabetical
order. > are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 4: Buidling DataSets (Prerelease) iii

Instructor Notes
This module teaches students how to build and manage DataSets, define data
relationships, modify data, and use DataViews. Because practices in this
module build on files built during Lesson 1, the starter file for Lesson 2 is the
solution file for Lesson 1. Lesson 3 and practices in other lessons also build
upon each other.

After completing this module, students will be able to:

! Build a DataSet and a DataTable.
! Bind a DataSet to a DataGrid.
! Create a custom DataSet by using inheritance.
! Define a data relationship.
! Modify data in a DataTable.
! Sort and filter a DataTable by using a DataView.

To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2389A_04.ppt
! Module 4, �Building DataSets�
! Lab 4.1, Building, Binding, Opening, and Saving DataSets
! Lab 4.2, Manipulating DataSets and Modifying Data

To prepare for this module:

! Read all of the materials for this module.
! Complete the practices and labs.
! Read the latest .NET Development news at

http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28000519

The information in this section provides setup instructions that are required to
prepare the instructor computer or classroom configuration for a lab.

! To prepare for the lab
1.
2.

Presentation:
60 Minutes

Lab:
60 Minutes

Required materials

Preparation tasks

Classroom setup

iv Module 4: Buidling DataSets (Prerelease)

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Building DataSets and DataTables
This section describes the instructional methods for teaching each topic in this
lesson.

Technical Notes:
! This module focuses on defining a DataSet programmatically by using the

object model. In the real world, developers are likely to spend more time
using XML Schema Definitions (XSD) to define the initial schema, and use
code for applications that need to be more dynamic. Using XSD to define
the initial schema is covered in Module 6, �NAME,� in Course 2389A,
Programming with ADO.NET.

Discussion Questions: Personalize the following questions to the background
of the students in your class.
! What type of application do you plan to create in which you can use

DataSets?
! Why are DataSets and the disconnected environment suited to that type of

application?

Technical Notes:
! Show students how to create a DataSet, a DataTable, and a DataColumn in

Microsoft Visual Basic® and Microsoft Visual C# by clicking on the Visual
Basic Example or C# Example buttons on the PowerPoint slide for this
topic.

! In the sample for creating DataColumns, point out the use of the GetType
statement in Visual Basic and the use of the typeof statement in C#. It is
possible to use System.Type.GetType("System.Int32") to do the same thing
in both languages if users want to be consistent, but the Microsoft Visual
Studio .NET tools will use the shorthand syntax.

! The System.Data.DbType enumeration can be used to list all of the data
types available for data columns and parameters.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! When creating ADO.NET objects, why might you want to separate the
declaration statement from the instantiation statement? When would you
want to combine these statements?

! What other exceptions might occur that you will have to control when
creating DataTables and DataColumns?

What Are DataSets,
DataTables, and
DataColumns?

How to Create a DataSet,
a DataTable, and a
DataColumn

 Module 4: Buidling DataSets (Prerelease) v

Transition to Practice Exercise: Now that you have seen several examples of
building DataSets and DataTables programmatically, you can now practice
creating a DataSet and a DataTable.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

1. In Visual Studio .NET, start a new Microsoft Windows® Application
project.

2. Drag a DataSet from the Data section of the Toolbox onto the form.
3. Use the Property Window to rename the DataSet. For the (Name) property,

use dsNorthwind. For the DataSetName property, use Northwind.
4. Use the collection builder to add a DataTable to the Tables property of the

DataSet.
5. For the (Name) property, use dtProducts. For the TableName property,

use Products.
6. Use the collection builder to add three DataColumns to the Columns

property of the DataTable.
7. For the (Name) property, use dcProductID. For the ColumnName

property, use ProductID.
8. For the DataType property, choose System.Int32.
9. Repeat steps 7 and 8 for the ProductName and UnitPrice fields.
10. Use the code editor to manually write code to create the fourth field. Hint:

Use the code that is automatically generated for the UnitPrice field as a
guide; you can also copy and paste the code and then edit it.

11. Return to the form view and use the Property Window to verify that the
designer recognizes the new code that you have added. If not, check that
you modified the call to the AddRange method for the DataTable that adds
references to the DataColumns.

Questions for discussion after the practice:

! What lessons did you learn during the practice exercise?
! What did you discover as you created the DataSet, DataTable, and

DataColumns?

After the practice

vi Module 4: Buidling DataSets (Prerelease)

Technical Notes:
! Visual Studio .NET Beta 2 contains a bug that prevents the interface from

writing the code for constraints. Therefore, you must write the code for
constraints manually.

! Although you can add code in the same place where the automatically
generated code would be generated, using the graphical tools again will
delete that code.

Transition to Practice Exercise: Using the example I just showed you as
reference, you can practice programmatically creating a unique constraint for
the Northwind DataSet.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

! In Visual Studio .NET, insert code in the Form1_Load event to create a
unique constraint for the product name column.

Quick solution:

Me.dcProductName.Unique = True

Recommended solution:

Me.dtProducts.Constraints.Add(_
New UniqueConstraint("UC_ProductName", Me.dcProductName))

Questions for discussion after the practice:

! Why do you think the recommended solution is preferred over the quick
solution?

! What lessons did you learn during the practice exercise?
! What did you discover as you created the unique constraint?
! How will you use unique constraints in your data applications?

Technical Notes:
! AutoIncrement columns cause problems when used with disconnected data

that needs to be merged with a central database, because conflicts are likely
to occur. The System.Guid and System.Data.SqlTypes.SqlGuid structures
can be used as an alternative if the underlying data source uses globally
unique identifiers (GUID) in the table.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! Why would AutoIncrement columns cause problems when multiple users
add new rows?

! How does the GUID data type solve these problems?
! What else could you do in your applications to prevent conflicts caused by

multiple users adding new rows?

Using Unique
Constraints

After the practice

Using AutoIncrement
Columns

 Module 4: Buidling DataSets (Prerelease) vii

Technical Notes:
! Custom expressions can reference other columns in the table. They can also

use summary functions such as Count and Sum that apply to all of the
values in the specified column. If a DataRelation for a parent table exists,
the summary functions can be grouped by parent row by using the Child
object; otherwise the entire table groups them. For example:
=Sum(Child.UnitPrice)
=Sum(UnitPrice)
In the first example, the UnitPrice values are grouped by the parent; in the
second they are grouped by the table.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What are some other examples of situations where an expression column
would be used?

! Could an expression column be used for concatenation of column values?
Transition to Practice Exercise: Using the syntax printed in the student
workbook, you can create a custom expression for the Northwind DataSet.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

1. In Visual Studio .NET, use the Property Window to add the new column to
the Products table,
�or�

2. Write code to add a fifth column with an expression, as shown in the
following example:
� Visual Basic

Dim dcStockValue As New System.Data.DataColumn(_
 "StockValue", GetType(System.Decimal))
dcStockValue.Expression = "UnitPrice*UnitsInStock"
dcStockValue.ReadOnly = True

Questions for discussion after the practice:

! What lessons did you learn during the practice exercise?
! How can you use expression columns in the applications that you are

building at your job?

Creating Custom
Expressions

After the practice

viii Module 4: Buidling DataSets (Prerelease)

Lesson: Binding a DataSet to a Windows Application Control
This section describes the instructional methods for teaching each topic in this
lesson.

Technical Notes:
! Almost all controls have a (DataBindings) property with an (Advanced)

sub-property that allows any column to be bound to any control property.
This is much more flexible than previous data access models that typically
only allowed the Caption or Text properties to be bound.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What is the advantage of being able to bind a DataSet to a Windows
control? Give an example of using this feature in an application.

Instructor Demonstration:

Demonstrate the programmatic and graphical procedures for creating a simple
data-bound control. You can choose to ask students to watch you demonstrate
this, or instruct them to follow the procedures on their computers as you talk
through the steps.

Technical Notes:
! Visual Studio .NET Beta 2 contains a bug that requires the DataGrid

control to be bound to a DataSet through a DataView rather than directly,
for reliable operation. Without an intermediate DataView, the DataGrid
cannot track the current filter and sort options set for the data, as well as
changes to the data.

How to Bind Data to a
Windows Control

How to Bind a DataSet
to a DataGrid

 Module 4: Buidling DataSets (Prerelease) ix

Transition to Practice Exercise:

Now that you have seen how to bind a DataSet to a DataGrid both
programmatically and by using the graphical tools, choose the method that you
would like to use, and turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

1. Open the Visual Studio .NET development environment and the project that
includes the Northwind DataSet.

2. Add five TextBox controls and a DataGrid control to the form.
3. Use the Property Window to set the DataBindings for the TextBox controls.

Bind the Text property of each box to the five columns in the Products
table in the Northwind DataSet.

Do not bind to the dtProducts variable. If you do, you will only see
the first record.

4. Set the DataSource for the DataGrid to the Northwind DataSet.
5. Set the DataMember of the DataGrid to the DataTable. Notice that the

TextBox controls display the same information as the currently selected row
in the DataGrid.

6. Notice that you cannot have two records with the same ProductName, but
that you can have two records with the same ProductID.

Questions for discussion after the practice:

! How many of you used the graphical tools to bind the DataSet to the
DataGrid, and how many of you did it programmatically?

! What are the differences between binding a DataSet to a simple Windows
control and binding a DataSet to a DataGrid?

Caution

After the practice

x Module 4: Buidling DataSets (Prerelease)

Lesson: Creating a Custom DataSet
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following question to the background of
the students in your class.

! Name an example of a situation where you could use inheritance in your
applications.

Instructor Demonstration:

Demonstrate how to create a custom DataSet by using the Inherits statement in
Visual Basic and C#. Depending on the needs of your audience, you might only
need to demonstrate in one language. You can choose to ask students to watch
while you demonstrate, or instruct them to follow the procedures on their
computers as you talk through the steps.

Transition to Practice Exercise:

Now that you understand how to use the Inherits statement, you can use it to
create a custom DataSet. In this practice exercise, we are going to inherit from
an existing DataSet. First I�ll open that DataSet by using Notepad, so that we
can see what it contains.

Open the DataSet file located at <install
folder>\Practices\Mod04_1\catprodnone.ds. The Categories and Products tables
are both defined with their structures and data in this file.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook to create a custom DataSet based on inheritance from the
catprodnone DataSet.

Benefits of Inheritance

How to Create a Custom
DataSet by Using
Inheritance

 Module 4: Buidling DataSets (Prerelease) xi

Practice Solution:

1. Create a Windows Application project, and add a new class called
CatProdDataSet. Add the following code, changing the path to point to the
correct file:
Public Class CatProdDataSet
 Inherits System.Data.DataSet

 Public Sub New()
 Me.ReadXml(�<install
folder>\Practices\Mod04_1\catprodnone.ds�,
XMLReadMode.ReadSchema)
 End Sub
End Class

2. Add a DataGrid to the form. Add code to the Form1_Load event that

creates an instance of the CatProdDataSet class and then binds the
Categories table to the existing DataGrid.

3. Run and test the application. You should see a list of eight categories in the
grid, but no way to access the products.

Questions for discussion after the practice:

! Why is there no way to access the products? What do you need to do to
solve this problem?

! We will talk about DataSets and XML later in this course, but what do you
think the ReadXml method is doing in this example?

After the practice

xii Module 4: Buidling DataSets (Prerelease)

Lesson: Defining Data Relationships
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! When would you use the PrimaryKey property to define a primary key
versus using the unique constraint?

! Describe an example of a situation where two columns need to be defined as
a primary key.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! In what situations would you set the DeleteRule property to SetNull? When
would you set it to SetDefault?

! How would you handle the exception raised when an update is made and
you have set the DeleteRule property to None?

Discussion Questions: Personalize the following question to the background of
the students in your class.

! With the DeleteRule property set to None, what will happen if you try to
delete a customer who has orders in the Orders table? What would we need
to do in this situation?

Technical Notes:
! It is important to differentiate between a ForeignKeyConstraint (maintains

data integrity) and a DataRelation (provides navigation, grouping, and so
on).

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! How would a DataRelation be used with primary key and foreign key
constraints?

! Could you use primary key and foreign key constraints without using a
DataRelation? Why would you want to do this, or why not?

How to Create a Primary
Key Constraint

Using Foreign Key
Constraints to Restrict
Actions

How to Create a Foreign
Key Constraint

What Is a DataRelation
Object?

 Module 4: Buidling DataSets (Prerelease) xiii

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! You can use either the DataRelation constructor or the Add method. Why
would you use one or the other? What is the difference in results between
the two?

Transition to Practice Exercise: You can now choose to use either the
DataRelation constructor or the Add method and practice creating constraints
and a DataRelation object.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

In Visual Studio .NET, open the file that contains the DSCatProd DataSet, and
define the following relationships for the DSCatProd DataSet on the
Form1_Load event:

1. Create a PrimaryKey on the CategoryID column for the Categories table.
With ds.Tables("Categories")
 .Constraints.Add("PK_Categories", _
 .Columns("CategoryID"), True)
End With

2. Create a PrimaryKey on the ProductID column for the Products table.

With ds.Tables("Products")
 .Constraints.Add("PK_Products", _
 .Columns("ProductID"), True)
End With

3. Create a DataRelation and ForeignKeyConstraint between Categories and

Products. (Copy and paste code to create these DataTables.)
ds.Relations.Add("FK_CategoriesProducts", _
 ds.Tables("Categories").Columns("CategoryID"), _
 ds.Tables("Products").Columns("CategoryID"), _
 True)

Discussion Questions: Personalize the following question to the background of
the students in your class.

! How can you make use of navigating related DataTables when you begin to
modify data in a DataSet?

How to Create a
DataRelation Object

How to Navigate Related
DataTables

xiv Module 4: Buidling DataSets (Prerelease)

Lesson: Modifying Data in a DataTable
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What is the advantage of calling the Add method and passing an array of
values typed as Object?

! What would happen if you created a new record but did not add it to the
DataRowCollection?

Discussion Questions: Personalize the following question to the background of
the students in your class.

! Why do you think that navigation through records is managed by the data-
binding layer?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What is the difference between the EndEdit and CancelEdit methods?
! How could you programmatically use the BeginEdit and EndEdit methods

to modify multiple records?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! If you used the Delete method of the DataRow object and marked the row
for deletion, what would you then need to do to permanently delete the row?

! When would you use the Delete method of the DataRow object?
! What precautions might you want to take when using the Remove method

of the DataRowCollection object?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! How are handling DataTable events and setting the DeleteRule property on
the foreign key constraint different? When would you need to set the
DeleteRule property, and when would you need to handle a DataTable
event?

! Give a business use example of why you would want to programmatically
handle DataTable events in a business application.

How to Insert a New
Record

How to Position on a
Record

Modifying Data in a
Table

How to Delete a Record

How to Handle the
DataTable Events

 Module 4: Buidling DataSets (Prerelease) xv

Transition to Practice Exercise: Using the example I just showed you as
reference, you can practice handling the ColumnChanging DataTable event in
the Northwind DataSet.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

In Visual Studio .NET, handle the ColumnChanging DataTable event by
displaying a message box that shows the proposed new value of a modified row
in the Northwind DataSet Products DataTable.

1. Declare a DataTable variable and set it to the Products table in the DataSet
so that it can handle events.

2. Add the following code to the ColumnChanging event:
MessageBox.Show("From: " & e.Row.Item(e.Column) & _
", To: " & e.ProposedValue.ToString(), _
e.Column.ColumnName)

Questions for discussion after the practice:

! How would you change your code to handle the ColumnChanged event?
! How would you change your code to handle the RowChanging event?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What can you deduce about the row by using these properties?
! Can you think of any real-world situations where you might want to use the

RowState and RowVersion properties?

Discussion Questions: Personalize the following question to the background of
the students in your class.

! How will accepting or rejecting changes affect updating data in the data
source?

After the practice

What Are the RowState
and RowVersion
Properties?

How to Accept or Reject
Changes

xvi Module 4: Buidling DataSets (Prerelease)

Lesson: Using a DataView
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What might be some of the differences between a DataView and a view in
Microsoft SQL Server�?

! Give another example of a situation where a DataView would be useful in
your applications.

Discussion Questions: Personalize the following question to the background of
the students in your class.

! What data results would you see if you ran the code example for
programmatically creating a DataView?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! Give an example of a situation where you might want to filter based on the
version or state of a record? Can you sort based on the version or state of a
record?

! Why would you use the default DataView?

Transition to Practice Exercise: Using the examples I just showed you as a
reference, you can practice sorting and filtering by using a DataView.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

! Using the Visual Studio .NET development environment, build a DataView
for the Products DataTable in the Northwind DataSet.

Questions for discussion after the practice:

! What are some of the different DataViews that you created?
! Did any of you sort and filter the Products DataTable by using the

DataView? What kinds of filters did you create?

What Is a DataView?

How to Define a
DataView

How to Sort and Filter a
DataTable Using a
DataView

After the practice

 Module 4: Buidling DataSets (Prerelease) 1

Overview

! Building DataSets and DataTables

! Binding a DataSet to a Windows Application Control

! Creating a Custom DataSet

! Defining Data Relationships

! Modifying Data in a DataTable

! Using a DataView

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This module presents the concepts and procedures you need to create and use
DataSets and related objects. DataSets allow you to store, manipulate, and
modify data in a local cache while disconnected from the data source.

After completing this module, you will be able to:

! Build a DataSet and a DataTable.
! Bind a DataSet to a DataGrid.
! Create a custom DataSet by using inheritance.
! Define a data relationship.
! Modify data in a DataTable.
! Find and select rows in a DataTable.
! Sort and filter a DataTable by using a DataView.

Introduction

Objectives

2 Module 4: Buidling DataSets (Prerelease)

Lesson: Building DataSets and DataTables

! This lesson describes:

" What DataSets, DataTables, and DataColumns are

" How to create a DataSet, a DataTable, and a
DataColumn

" Using constraints

" Using AutoIncrement columns

" Creating custom expressions

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson explains what DataSets, DataTables, and DataColumns are, how
to create them programmatically, and how to include exception handling,
constraints, AutoIncrement columns, and custom expressions in your
Microsoft® ActiveX® Data Objects (ADO) .NET DataSet.

After completing this lesson, you will be able to:

! Explain what DataSets, DataTables, and DataColumns are.
! Create a DataSet and a DataTable.
! Use unique constraints.
! Create AutoIncrement columns.
! Create custom expressions.

Introduction

Lesson objectives

 Module 4: Buidling DataSets (Prerelease) 3

What Are DataSets, DataTables, and DataColumns?

Server Data Store

Database

Connection Stored
Procedure

DataSet

Data Table

Data Table

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In ADO .NET, DataSets, DataTables, and DataColumns allow you to
represent data in a local cache and provide a relational programming model for
the data regardless of its source.

The ADO .NET DataSet is an in-memory cache of data and functions as a
disconnected relational view of the data. The connection to the data source does
not need to be active to view and manipulate data in a DataSet. This
disconnected architecture enables greater scalability by using database server
resources only when reading from or writing to the data source.

DataSets store data similarly to the way data is stored in a relational database
with a hierarchical object model of tables, rows, and columns. Additionally,
you can define constraints and relationships for the data in the DataSet.

DataTable objects are used to represent the tables in a DataSet. A DataTable
represents one table of in-memory relational data; the data is local to the .NET
application in which it resides, but it can be populated from an existing data
source. A DataTable is composed of DataColumns.

A DataColumn is the building block for creating the schema of a DataTable.
Each DataColumn has a DataType property that determines the kind of data
that each DataColumn contains. For example, you can restrict the data type to
integers, strings, or decimals. Because data contained in the DataTable is
typically merged back into the original data source, you must match the data
types to those in the data source.

DataSets represent data in a relational view regardless of its source. However,
data in a DataSet can be represented in XML format. The integration of
DataSets with XML allows you to define the structure of a DataSet schema.
For more information about the relationship between DataSets and XML, see
Module 5, �Using XML With ADO .NET,� in Course 2389A, Programming
with ADO .NET.

Introduction

Definitions

DataSets and XML

4 Module 4: Buidling DataSets (Prerelease)

To create a DataSet or manipulate data in a DataSet, you use the following
classes in the System.Data namespace:

! System.Data.DataSet
! System.Data.DataTable
! System.Data.DataColumn
! System.Data.Constraint
! System.Data.DataRelation
! System.Data.DataRow
! System.Data.DataView

The System.Data
namespace

 Module 4: Buidling DataSets (Prerelease) 5

How to Create a DataSet, a DataTable, and a DataColumn

! Creating a DataSet
Dim myDataSet As DataSet
myDataSet = New DataSet(�CustomersDataSet�)

! Creating a DataTable
Dim workTable As New DataTable (�Customers�)

! Creating a DataColumn and adding it to a DataTable
Dim workCol As DataColumn = workTable.Columns.Add(_
�CustID�, GetType (System.Int32)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can create DataSets and DataTables in the following ways:

! Programmatically
! By using the graphical tools in the Microsoft Visual Studio® .NET

development environment
! By using a DataAdapter and filling the DataSet with data from a relational

data source
! By loading and persisting DataSet contents using XML

In this topic, you will learn how to create a DataSet and a DataTable
programmatically, and by using the graphical tools in the Visual Studio .NET
development environment.

For information about filling a DataSet by using a DataAdapter, see Module
6, �Building DataSets From Existing Sources,� in Course 2389A, Programming
with ADO .NET. For information about loading and persisting data in a DataSet
by using XML, see Module 5, �Using XML with ADO .NET,� in Course
2389A, Programming with ADO .NET.

To create a DataSet and a DataTable programmatically, you use the DataSet
constructor to initialize a new instance of the DataSet class, and use the
DataTable constructor to initialize a new instance of the DataTable class. You
can name the DataSet or, if the name is omitted, the name is set by default to
NewDataSet.

The DataSet must have a name to ensure that its XML representation always
has a name for the document element, which is the highest-level element in an
XML Schema definition.

You can create a DataTable object by using the DataTable constructor, or by
passing constructor arguments to the Add method of the DataSet object�s
Tables property, which is a DataTableCollection.

Introduction

The DataSet and
DataTable constructors

6 Module 4: Buidling DataSets (Prerelease)

You can set parameters for a DataTable or a DataColumn constructor at the
time that the DataTable or DataColumn is created. This is recommended
because you can create the DataTable and define parameters for it by using
only one line of code.

After you have added a DataTable as a member of the Tables collection of one
DataSet, you cannot add it to the collection of tables of any other DataSet. You
can use the Clone method of a DataTable to create a new DataTable with the
same structure (but no data), or you can use the Copy method to create a new
DataTable with the same structure and data.

The following example programmatically creates a DataSet named Northwind
with a variable called dsNorthwind that can be used to reference it.

Dim dsNorthwind As DataSet
dsNorthwind = New DataSet("Northwind")

The following example creates an instance of a DataTable object and assigns it
the name Customers.

Dim dtCustomers As New DataTable("Customers")

When creating most ADO .NET objects, you can separate the declaration
statement from the instantiation statement (as shown in the preceding DataSet
example) or combine the statements (as shown in the preceding DataTable
example).

Note that the DataTables created above are not yet associated with a DataSet.

! To add a DataTable to a DataSet programmatically
dsNorthwind.Tables.Add(dtCustomers)

The following example is the simplest way to create both a DataSet and an
associated DataTable. The code creates an instance of a DataTable by adding
it to the Tables collection of a newly created DataSet.

Dim dsNorthwind As New DataSet("Northwind")
Dim dtCustomers As DataTable = _
 dsNorthwind.Tables.Add("Customer")

You are not required to supply a value for the TableName property when you
create a DataTable. You can specify the TableName property at another time,
or you can leave it empty. However, when you add a table without a
TableName value to a DataSet, the table is given an incremental default name
of TableN, starting with �Table� for Table0.

When you first create a DataTable, it does not have a schema. To define the
table�s schema, you must create and add DataColumn objects to its Columns
collection.

You create DataColumn objects within a table by using the DataColumn
constructor or by calling the Add method of the table�s Columns property. The
Add method will either accept optional ColumnName, DataType, and
Expression arguments and create a new DataColumn as a member of the
collection, or it will accept an existing DataColumn object and add it to the
collection.

Example

Example

Creating a DataTable
programmatically

Creating DataColumns

 Module 4: Buidling DataSets (Prerelease) 7

The following examples add a column to a DataTable using Visual Basic and
Visual C#. Notice the use of the typeof statement in Visual C# and the
GetType statement in Visual Basic.

' Visual Basic
Dim colCustomerID As DataColumn = _
 dtCustomers.Columns.Add("CustomerID", _
 GetType(System.Int32))

colCustomerID.AllowDBNull = False
colCustomerID.Unique = True

// Visual C#
DataColumn colCustomerID =
 dtCustomers.Columns.Add("CustomerID",
 typeof(Int32));

colCustomerID.AllowDBNull = false;
colCustomerID.Unique = true;

You will need to programmatically control any exceptions that occur when
creating a DataSet and a DataTable. DataTable names must be unique, so that
an exception will be thrown when duplicate table names are used. The
following example shows how to handle duplicate name exceptions
programmatically.

Try
 dtCustomers = dsNorthwind.Tables.Add("Customers")

Catch DupXcp As System.Data.DuplicateNameException

 MessageBox.Show("A table called Customers already exists!")

...

End Try

Northwind Traders needs to build an application that includes data that is
related to its products. Use the Visual Studio .NET development environment
graphical tools to build a Windows Application solution.

1. Create a new Windows Application solution named CreateDataSets in the
following location.
<install folder>\Practices\Mod04_1\

2. Drag and drop a DataSet control from the toolbox to the form. Name it
Northwind.

3. Use the Property Window of the DataSet to build a DataTable called
Products with fields called ProductID, ProductName, and UnitPrice.

4. Give each of the fields appropriate data types.
5. Open the form in Code view and find the code that was written for you by

the design tools.
6. Use the automatically generated code as a guide to write some new code

that creates a fourth column named UnitsInStock programmatically.

Example

Handling exceptions

Practice

8 Module 4: Buidling DataSets (Prerelease)

7. Add a reference to your new column to the end of the call to the AddRange
method of dtProducts. This will allow the design tools to recognize your
new column.
Me.dtProducts.Columns.AddRange(...

8. Return the form to Designer view and use the Property Window to see that
the code you have written manually is recognized by the design tools.

The solution for this practice is located at <install folder>\
Practices\Mod04_1\Lesson1\CreateDataSets\.

 Module 4: Buidling DataSets (Prerelease) 9

Using Unique Constraints

! Unique constraints
! Example of creating a unique constraint

[Visual Basic]

ds.Tables("Product").Columns(�ProductName�).Uni
que = True

[C#]

ds.Tables("Product").Constaints.Add(

new UniqueConstraint(�UC_ProductName�,

ds.Tables("Product").Columns(�ProductName�)))
;

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A relational database must enforce data integrity to ensure the quality of the
data in the database. One way to maintain integrity in ADO .NET is by adding
constraints to the tables within a DataSet. A constraint is an automatic rule
applied to a column, or related columns, which determines what actions should
take place when the value of a row is modified.

There are two kinds of constraints in ADO .NET: the ForeignKeyConstraint
and the UniqueConstraint. When you add a DataRelation object, which creates
a relationship between two or more tables, both constraints can be created
automatically. Constraints are not enforced unless the EnforceConstraints
property of the DataSet is set to true. Foreign key constraints are primarily
intended for use with relationships to primary key columns, and will be
discussed later in this module.

The UniqueConstraint object, which can be assigned either to a single column
or to an array of columns in a DataTable, ensures that all data in the specified
column(s) is unique per row. You can create a unique constraint for a single
column by setting the Unique property of the column to true.

You can also create a unique constraint for a column or array of columns by
using the UniqueConstraint constructor and passing the UniqueConstraint
object to the Add method of the table�s Constraints property (which is a
ConstraintCollection). You use the Add method to add existing constraint
objects to the Constraints collection as well.

Additionally, defining a column or columns as the primary key for a table will
automatically create a unique constraint for the specified column(s).

A UniqueConstraint triggers an exception when attempting to set a value in a
column to a non-unique value.

Introduction

Unique constraints

10 Module 4: Buidling DataSets (Prerelease)

The following examples create a UniqueConstraint object for an existing
column by using two different techniques. In the first example, setting the
Unique property for a column creates a constraint automatically, but it will be
assigned a default name such as Constraint1. In the second example, the name
of the constraint can be specified as the first parameter of the Add method.

' Visual Basic
ds.Tables("Product").Columns(�ProductName�).Unique = True

// Visual C#
ds.Tables["Product"].Constraints.Add(
 new UniqueConstraint(�UC_ProductName�,
 ds.Tables["Product"].Columns[�ProductName�]));

Northwind Traders needs product names in their online catalog to be unique.

1. Open the solution you built for the previous practice, or open the solution at
the following location.
<install folder>\Practices\Mod04_1\Lesson1\CreateDataSets\

2. Open the form in Designer view and double-click the form to create a
handler for the Form1_Load event.

3. Write code to add a UniqueConstraint object to the Products DataTable
that prevents duplicate product names.

The solution for this practice is located at <install folder>\
Practices\Mod04_1\Lesson1\UsingUniqueConstraints\

Examples

Practice

 Module 4: Buidling DataSets (Prerelease) 11

Using AutoIncrement Columns

! Definition

! Example:
Dim myColumn As New DataColumn(�ID�,

GetType(System.Int32))

With myColumn

.AutoIncrement = True

.AutoIncrementSeed = 1000

.AutoIncrementStep = 10

End With

*****************************ILLEGAL FOR NON-TRAINER USE******************************

An AutoIncrement column automatically increments the value of the column
for new rows added to the table. AutoIncrement columns are often used as the
primary key for a table to help enforce referential integrity. The
AutoIncrement property is specified on the DataColumn object.

You can specify the starting value (AutoIncrementSeed property) and the
amount by which the value will increment each time a new row is added
(AutoIncrementStep property).

AutoIncrement columns can cause problems in situations where multiple users
are adding new rows, because of the likelihood of conflicts. In many situations,
a better solution is to use a column with a globally unique identifier (GUID)
data type; for example, the SqlTypes.SqlGuid data type.

The following example shows how to specify the AutoIncrement property.

Dim colEmployeeID As New _
 DataColumn(�EmployeeID�, GetType(System.Int32))

With colEmployeeID

 .AutoIncrement = True
 .AutoIncrementSeed = 1000
 .AutoIncrementStep = 10

End With

Definition

Example

12 Module 4: Buidling DataSets (Prerelease)

Creating Custom Expressions

Creating Custom Expressions

! Aggregate functions
! Using the DataColumn Expression property
! Syntax:

DataColumn.Expression =�Expression�

! Example:
Dim cPrice As New DataColumn(�Price�,

GetType(System.Decimal))

Dim cTax As New DataColumn(�Tax�, GetType(System.Decimal))

cTax.Expression = "Price * 0.0862"

Dim cTotal As New DataColumn(�Total�,
GetType(System.Decimal))

cTotal.Expression = "Price + Tax"

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Custom expressions are column values derived from calculations, rather than
values retrieved directly from the data source. A custom expression can be a
calculation on one column or multiple columns.

Syntax for a custom expression consists of standard arithmetic, Boolean, and
string operators and literal values. You can reference a data value by using its
column name (as you would in a SQL statement) and include aggregate
functions (such as Sum, Count, Min, Max, and others).

The Order Details table in the Northwind Traders database contains a column
called UnitPrice that tracks the price of each product that is sold, and a column
called Quantity that tracks the number of items that are sold. If you need to see
the total cost for the purchase of a particular product, multiply the UnitPrice and
the Quantity and then display the resulting value in its own column
(UnitPrice*Quantity) and name the new column TotalCost.

Calculated columns can also include aggregate functions such as Sum, Count,
Min, Max, and other functions available with the data source. Use aggregate
functions when creating an expression based on data that is related to data in
another table.

For example, suppose that you want to find the average unit price of products
per category. To do this, you need to access two DataTables: Categories and
Products. These tables are related because the CategoryID column of the
Products table is the child of the Categories table. Programmatically, the new
column that computes the average price of products per category would be:

Avg(Child.UnitPrice)

Definition

Example

Aggregate functions

 Module 4: Buidling DataSets (Prerelease) 13

The DataColumn Expression property gets or sets the expression that is used to
calculate values in a column or create an aggregate. The DataType of the
column determines the return type of an expression.

You can use the Expression property to:

! Create a calculated column.
! Create an aggregate column.
! Create expressions that include user-defined values.
! Concatenate a string.
! Reference parent and child tables in an expression.

The syntax for the Expression property of the DataColumn object is:

DataColumn.Expression = �Expression�

The following example creates three columns in a DataTable: a price column, a
tax column, and a total column. The second and third columns contain
expressions. The second column calculates tax by using a variable tax rate, and
the third column is the result of adding the tax amount to the price.

Dim colPrice As New _
 DataColumn(�Price�, GetType(System.Decimal))

Dim colTax As New _
 DataColumn(�Tax�, GetType(System.Decimal))

colTax.Expression = "Price * 0.0862"

Dim colTotal As New _
 DataColumn(�Total�, GetType(System.Decimal))

colTotal.Expression = "Price + Tax"

The Northwind Traders Sales Director would like to know the value of stock
being held for each product.

1. Open the solution you built for the previous practice, or open the solution at
the following location.

<install folder>\Practices\Mod04_1\Lesson1\UsingUniqueConstraints\

2. Open the form in Code view and find the code that creates the columns in
the Products DataTable.

3. Manually write code to add a fifth column named StockValue that should
be the result of the UnitPrice column multiplied by the UnitsInStock
column.

4. Use the design tools, for example the Property Window, to view the changes
you have made to the Northwind DataSet.

The solution for this practice is located at <install folder>\
Practices\Mod04_1\Lesson1\CreatingCustomExpressions\

Using the DataColumn
Expression property

Syntax

Example

Practice

14 Module 4: Buidling DataSets (Prerelease)

Lesson: Binding a DataSet to a Windows Application
Control

! This lesson describes:

" How to Bind Data to a Windows Control

" How to Bind a DataSet to a DataGrid

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have data cached in a DataSet, you must bind that DataSet to a
Microsoft Windows® form DataGrid control to display and manipulate or
modify the data.

After completing this lesson, you will be able to:

! Bind data to a Windows control.
! Bind a DataTable to a DataGrid.

Introduction

Lesson objectives

 Module 4: Buidling DataSets (Prerelease) 15

How to Bind Data to a Windows Control

! Simple Binding and Complex Binding

! Binding using graphical tools and programmatically

! Example:
TextBox1.DataBindings.Add(_

"Text", dsNorthwind, "Products.ProductID")

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Although an ADO .NET DataSet allows you to store data in a disconnected
cache, the DataGrid and other Windows controls visually display data in a
Windows Form and support selecting, sorting, and editing the data.

In Windows Forms, you can bind any property of any control to a data source.
In addition to binding the display property (such as the Text property of a
TextBox control) to the data source, you can also bind other properties. For
example, you may need to bind the graphic of an image control or set the size or
color properties of a control based on binding to the data source.

There are two ways to bind data to a Windows control.

Simple data binding is the ability of a control to bind to a single data element,
such as a value in a column in a DataSet table. This is typical for binding
TextBox or Label controls, or any control that displays a single value.

Complex data binding is the ability of a control to bind to more than one data
element, typically more than one record in a data source. Complex data binding
typically uses a DataGrid, ListBox, or ErrorProvider control. Binding a
DataSet to a DataGrid control will be covered later in this module.

Introduction

Types of data binding

16 Module 4: Buidling DataSets (Prerelease)

! To bind data to a Windows control graphically
1. In Visual Studio .NET, open a project form, select a control, and then

display the Properties window.
2. Expand the (DataBindings) property.
3. If the property you want to bind is not one of the commonly bound

properties, click the Ellipsis button (. . .) in the (Advanced) box to display
the Advanced Data Binding dialog box with a complete list of properties
for that control.

4. Click the arrow next to the property you want to bind.
5. Expand the data source to which you want to bind, until you find the single

data element you want. For example, if you are binding to a column value in
a table in a DataSet, expand the name of the DataSet, and then expand the
table name to display column names.

6. Click the name of the element to which you want to bind.
7. If you were working in the Advanced Data Binding dialog box, click Close

to return to the Properties window.

! To bind a control programmatically
Control.DataBindings.Add(_
 �Property�, DataSource, �Table.Column�)

For example:

TextBox1.DataBindings.Add(_
 "Text", dsNorthwind, "Products.ProductID")

Creating a simple data-
bound control

 Module 4: Buidling DataSets (Prerelease) 17

How to Bind a DataSet to a DataGrid

! Binding can be done graphically or programmatically

! To bind a DataSet to a DataGrid programmatically:
DataGrid1.SetDataBinding(dsNorthwind, �Suppliers�)

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Windows Forms DataGrid control displays data in a series of rows and
columns. The simplest use of this control is when the grid is bound to a data
source with a single table containing no relationships. In such a case, the data
appears in simple rows and columns, as in a spreadsheet.

If the DataGrid is bound to data with multiple related tables, and if navigation
is enabled on the grid, the grid will display expanders in each row. An expander
allows navigation from a parent table to a child table. Clicking a node displays
the child table, and clicking the Back button displays the original parent table.
In this way, the grid displays the hierarchical relationships between tables.

If the DataSet contains a series of related tables, you can use two DataGrid
controls to display the data in a relational format.

! To bind a DataSet to a DataGrid graphically
1. In a Visual Basic .NET project, drag a DataGrid control from the Windows

Forms tab of the Toolbox to your form.
2. Select the DataGrid control and set its DataSource property to a previously

created DataSet.
3. Set the DataMember property to the name of one of the tables. For

example, set the property to Suppliers.

Definition

Binding a DataSet to a
DataGrid

18 Module 4: Buidling DataSets (Prerelease)

! To bind a DataSet to a DataGrid programmatically
DataGrid1.SetDataBinding(dsNorthwind, "Suppliers")

Northwind Traders needs an application that allows the easy editing of product
information.

1. Open the solution you built for the previous practice, or open the solution at
the following location.
<install folder>\Practices\Mod04_1\Lesson1\CreatingCustomExpressions\

2. Open the form in Designer view.
3. Add five TextBox controls and a DataGrid control to the form.
4. Use the Property window to set the DataBindings for the TextBox

controls. Bind the Text property of each box to the five columns in the
Products table in the Northwind DataSet.

Do not bind to the dtProducts variable. If you do, you will only see
the first record.

5. Set the DataSource for the DataGrid to the Northwind DataSet.
6. Set the DataMember of the DataGrid to the DataTable.
7. Run the application.
8. Enter several products into the DataGrid. Enter any values you like for the

columns. Notice that the StockValue column is read only and calculated
automatically. Notice that the numeric fields do not accept alphabetic
values. Notice that you cannot have two records with the same
ProductName, but that you can have two records with the same ProductID

9. Use your mouse to select the first product row. Notice that the TextBox
controls display the same information as the currently selected row in the
DataGrid.
The solution for this practice is located at <install folder>\
Practices\Mod04_1\Lesson2\DataBinding\

Practice

Caution

 Module 4: Buidling DataSets (Prerelease) 19

Lesson: Creating a Custom DataSet

! This lesson describes:

" Benefits of Inheritance

" How to Create a Custom DataSet by Using Inheritance

*****************************ILLEGAL FOR NON-TRAINER USE******************************

By using inheritance in Visual Studio .NET, you can create a custom DataSet
based on an existing DataSet. This allows for faster application development
by reusing code and data.

After completing this lesson, you will be able to:

! Describe the benefits of inheritance.
! Create a custom DataSet by using inheritance.

Introduction

Lesson objectives

20 Module 4: Buidling DataSets (Prerelease)

Benefits of Inheritance

! Complex applications more rapidly

! Code reuse

! Example
Object

MarshalByValueComponent

DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Object-oriented programming allows you to reuse code and data together
through inheritance. By inheriting from existing or predefined objects, you can
construct complex applications more quickly. Because new code may contain
bugs, reusing tested code minimizes the probability of introducing additional
bugs into the application.

A common example of effective code reuse is in connection with libraries that
manage data structures. Object-oriented programming is a development method
in which developers create objects that cooperate with one another to form a
system. Because the objects are independent, they can be reused in different
applications.

A class inherits the members of its direct base class. Inheritance means that a
class implicitly contains all members of its direct base class, except for the
instance constructors, static constructors, and destructors of the base class.

Inheritance is transitive. For example, if class C is derived from class B, and
class B is derived from class A, then class C inherits the members declared in
class B as well as the members declared in class A.

A derived class extends its direct base class. A derived class can add new
members to the classes that it inherits, but it cannot remove the definition of an
inherited member.

The following is an example of inheritance. The DataSet in this example is
based on the MarshalByValueComponent class that provides the base
implementation for components that are marshaled by value (a copy of the
serialized object is passed to the DataSet).

Object
 MarshalByValueComponent
 DataSet

Introduction

Definition

Example

 Module 4: Buidling DataSets (Prerelease) 21

How to Create a Custom DataSet by Using Inheritance
! The Inherits Statement

! Demonstration: Creating a Custom DataSet by Using
Inheritance

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

By using inheritance to create a custom DataSet, you can save time and reuse
code that already exists for other DataSets, and define a custom schema for
your custom dataset that is exposed to components that use your dataset.

The Inherits statement causes a class to inherit all of the non-private members
of the specified class.

To inherit from a class, add an Inherits statement with the name of the class
that you want to use as a base class as the first statement in your derived class.
The Inherits statement must be the first non-comment statement after the class
statement.

! To create a custom DataSet by using inheritance in Visual Basic
1. On the Project menu, click Add Class to add a new class to your project.
2. When prompted, enter a name for the new class; for example,

NorthwindDataSet.
3. Inside the class declaration, add the following code:

Inherits System.Data.DataSet

4. Add code to the New method that should run as soon as an instance of your
custom class is instantiated. For example, you would write code here to
create the schema for your dataset using the DataSet object model.

5. Add any additional properties, methods, fields, or other components that
you want your custom DataSet to have. If necessary, override existing
properties, methods, and so on.

Introduction

The Inherits statement

Demonstration

22 Module 4: Buidling DataSets (Prerelease)

! To create a custom DataSet by using inheritance in Visual C#
1. On the Project menu, click Add Class to add a new class to your project.
2. When prompted, enter a name for the new class; for example,

NorthwindDataSet.
3. At the end of the line that declares the class, add a colon (:) and the class

from which you want to inherit.
public class NorthwindDataSet : System.Data.DataSet

4. Add code to the constructor that should run as soon as an instance of your
custom class is instantiated. For example, you would write code here to
create the schema for your dataset using the DataSet object model.

5. Add any additional properties, methods, fields, or other components that
you want your custom DataSet to have. If necessary, override existing
properties, methods, and so on.

The Northwind Traders IT Director would like to save money by reusing
existing code.

In this practice, you will create a reusable DataSet class, bind it to a DataGrid,
and test the application.

1. Open the following file in Notepad and note that it contains schema and data
for the Categories and Products table from the Northwind database in
serialized DataSet i.e. XSD/XML format.

\Program Files\MSDNTrain\2389\Practices\Mod04_1\catprodnone.ds

2. Create a new Windows Application project named CustomDataSets in the
following location.
<install folder>\Practices\Mod04_1\

3. Add a new class called CatProdDataSet and add the following code:
Inherits System.Data.DataSet

Public Sub New()
 Me.ReadXml(�\Program Files\MSDNTrain\� & _
 �2389\Practices\Mod04_1\catprodnone.ds�, _
 XmlReadMode.ReadSchema)
End Sub

4. Add a DataGrid to the form.
5. Set the Dock property of the DataGrid to Fill.
6. Add code to the Form1_Load event that creates a private instance of the

CatProdDataSet class named dsCatProd and then binds the Categories
table to the existing DataGrid.

7. Run and test the application. You should see a list of eight categories in the
grid, but note that there is no way to access the products.

The solution for this practice is located at <install folder>\
Practices\Mod04_1\Lesson3\CustomDataSets\

Practice

 Module 4: Buidling DataSets (Prerelease) 23

Lab 4.1: Building, Binding, Opening, and Saving DataSets

! Exercise 1 (Optional): Building the DataSet
Test Application

! Exercise 2: Building the Custom DataSet
Class

! Exercise 3: Using the DataSet in the
Windows Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

! Build a DataSet that contains multiple DataTables.
! Bind DataSets to DataGrids.
! Save a DataSet as a file.
! Load a DataSet from an existing file.

Before working on this lab, you must have:

! Introductory Visual Basic language skills. For example, declaring variables
and writing procedures, loops, and branching statements.

! Introductory Windows Forms skills. For example, creating a simple form
with multiple controls.

See the �Visual Basic Language Features� and �Windows Forms
Walkthroughs� topics in the Visual Studio .NET documentation.

Northwind Traders has an e-commerce Web site that allows customers to order
products from an online catalog. Because it is a publicly available Web site,
when a user first visits the site, he or she can browse catalogs and fill a
shopping cart before any customer data exists in the Northwind customer
database.

The site automatically tracks basic information about customers and the
products that they have added to their shopping carts. If a customer wishes to
place an order, additional customer information must be gathered. Only during
the final checkout stage is the customer and order data saved into the
Northwind database. While the customer continues to shop, the data is stored
temporarily in the middle tier on the Web server. The DataSet class in ADO
.NET provides this capability.

Objectives

Prerequisites

For More Information

Scenario

Estimated time to
complete this lab: 60
minutes

24 Module 4: Buidling DataSets (Prerelease)

Exercise 0
Lab Setup

To complete this lab, you must �

!
2.
3.

 Module 4: Buidling DataSets (Prerelease) 25

Exercise 1 (optional)
Building the DataSet Test Application

In this exercise, you will build a Microsoft Windows application that will
function as a container for the custom DataSet class that you will build later.
The application will be used to track customer shopping carts and customer
information on the e-commerce Web site.

Before building the Northwind Traders e-commerce Web site, you must build a
Windows application that can be used to test the custom DataSet class that you
will build in a later exercise.

! To create the Windows application
1. Start the Microsoft Visual Studio .NET development environment.
2. Create a new project by using the Windows Application template, and

name it BuildingDataSets. Set the location to C:\Program
Files\MSDNTrain\2389\Labs\Lab04_1.

You can use any language you prefer for this lab, but note that
solutions are only provided in Visual Basic and Visual C#.

3. Add a DataGrid control to the form and set the following properties.

Property Value

Name grd

Dock Fill

4. Add an OpenFileDialog control to the form and set the following
properties.

Property Value

Name dlgOpen

Filter DataSet files (*.ds)|*.ds|All files (*.*)|*.*

5. Add a SaveFileDialog control to the form and set the following properties.

Property Value

Name dlgSave

DefaultExt ds

Filter DataSet files (*.ds)|*.ds|All files (*.*)|*.*

Scenario

Note

26 Module 4: Buidling DataSets (Prerelease)

! To create the menu
1. Add a MainMenu control to the form.
2. Add the following menu items.

Menu Property Value

mnuFile Text &File

 mnuNew Text &New

 mnuOpen Text &Open�

 Shortcut CtrlO

 mnuSave Text &Save

 Shortcut CtrlS

 mnuSaveAs Text Save &As�

 mnuExit Text E&xit

mnuView Text &View

 mnuCustomer Text &Customer

 Shortcut F7

 mnuCartItems Text Cart &Items

 Shortcut ShiftF7

 mnuProducts Text &Products

 Shortcut CtrlF7

The Products menu item will not be used until Lab 4.2.
3. (Optional) Add menu separators where appropriate.

! To code the Exit menu item
• Add code to the mnuExit Click event to close the form.

! To save the solution
• Save all the files in your solution.

 Module 4: Buidling DataSets (Prerelease) 27

Exercise 2
Building the Custom DataSet Class

In this exercise, you will create the structure of the DataSet programmatically,
to save the DataSet to disk and open an existing DataSet file. The DataSet will
contain a DataTable called Customer that will hold customer contact details,
and a DataTable called CartItems that will hold all of the items that a customer
chooses from the online catalog.

You will create a custom DataSet class that can track the contents of a shopping
cart for a visitor to the Northwind Traders e-commerce Web site.

! To continue building the application
• Open the solution that you created in Exercise 1 of this lab, or open the

solution BuildingDataSets in the folder
<install folder>\Labs\Lab04_1\Solution\Ex1\xx\ where xx is either VB or
CS.

! To create a custom DataSet class
1. Add a new class named NWShoppingCart to the project.

Do not choose the DataSet file template. You will use XML
Schema Definition (XSD) files in Module 6, �Using XML With ADO
.NET,� in Course 2389A, Programming With ADO .NET.

2. Add code to the class so that it inherits functionality from the
System.Data.DataSet class.

3. Declare a custom field with the following properties.

Scope Name Data type

Public Filename System.String

! To complete the constructor of the custom class
1. Call the constructor of the base class.

� Visual Basic
MyBase.New()

// Visual C#
// append the following to the end of the constructor
 : base()

2. Set the DataSetName property to NWShoppingCart.
3. Declare local variables for the two DataTables that you will create.

Name Data type

dtCustomer System.Data.DataTable

dtCartItems System.Data.DataTable

Scenario

Warning

28 Module 4: Buidling DataSets (Prerelease)

! To create the customer information DataTable
1. Add a new table called Customer to the Tables collection and assign the

result to dtCustomer.
2. Add the following DataColumns to the DataTable.

DataColumn Property Value

CustomerID DataType System.String

 AllowDBNull False

 MaxLength 5

CompanyName DataType System.String

 AllowDBNull False

 MaxLength 40

 Unique True

Address DataType System.String

 MaxLength 60

City DataType System.String

 MaxLength 15

! To create the cart items DataTable
1. Add a new table called CartItems to the Tables collection and assign the

result to dtCartItems.
2. Add the following DataColumns to the DataTable.

DataColumn Property Value

CustomerID DataType System.String

 AllowDBNull False

 MaxLength 5

ProductID DataType System.Int32

 AllowDBNull False

UnitPrice DataType System.Decimal

 AllowDBNull False

Quantity DataType System.Int32

 AllowDBNull False

Cost DataType System.Decimal

 ReadOnly True

 Expression UnitPrice * Quantity

 Module 4: Buidling DataSets (Prerelease) 29

! To finish the constructor
1. Add exception handling for common errors such as duplicate table or

column names.
2. If a problem occurs, throw a System.Data.DataException passing the

exception that caused the problem as an inner exception, and a message
containing the following text:
�Failed to create instance of NWShoppingCart. Check innerException for
more information.�

! To open an existing DataSet file
1. Create a new public method called OpenFromFile.
2. Clear any existing tables from the DataSet.
3. Read the XML Schema and data from the file specified in the Filename

field.

Use the ReadXml method for the class.

4. Add exception handling for common errors such as an invalid file name.
5. If a problem occurs, throw a System.Data.DataException passing the

exception that caused the problem as an inner exception, and a message
containing the following text:
�Failed to open NWShoppingCart file. Check innerException for more
information.�

! To save the DataSet to a file
1. Create a new public method called SaveToFile.
2. Write the XML Schema and data to the file name specified in the Filename

field.

Use the WriteXml method for the class.

3. Add exception handling for common errors such as an invalid file name.
4. If a problem occurs, throw a System.Data.DataException passing the

exception that caused the problem as an inner exception, and a message
containing the following text:
�Failed to save NWShoppingCart file. Check innerException for more
information.�

! To continue building the application
Now that the custom class has been defined, it can be used in the Windows
application that you previously created.

• Continue to Exercise 3 to complete this lab.

Tip

Tip

30 Module 4: Buidling DataSets (Prerelease)

Exercise 3
Using the DataSet in the Windows Application

In this exercise, you will write code to use the custom DataSet class in the
Windows application. To simulate a real-world development environment, you
will exchange the class code that you wrote for Exercise 2 with another student.
The instructor will pair you with your teammate.

On the Northwind Traders e-commerce Web site, the DataSet will be stored
temporarily in an ASP .NET session. In the Windows application, you will
persist the DataSet to disk to simulate the situation. The Northwind Traders
information technology department has a small team of developers working on
database projects. The e-commerce Web site development work has been
divided between two developers who must use each other�s .NET classes to
complete the project.

! To continue building the application
1. If you do not already have the solution open, open the solution called

BuildingDataSets in the folder
<install folder>\Labs\Lab04_1\Solution\Ex2\xx\ where xx is either VB or
CS.

2. Open the Form1 class module.
3. Declare a variable with the following properties.

Scope Name Data type

Private dsShoppingCart NWShoppingCart

4. Create a private procedure called SetFormCaption that contains code to
display the Filename property of the dsShoppingCart object in the title bar
of the form, combined with the fixed string �� Shopping Cart : Test
WinApp�.

5. Add exception handling to all procedures where appropriate.

! To code the View menu items
1. Program the Click event of the Customer menu item to perform the

following actions:
a. Set the DataGrid to bind to the Customer table.
b. Place a check mark next to the Customer menu item.
c. Clear the check mark next to the Cart Items menu item.

2. Program the Click event of the Cart Items menu item to perform the
following actions:
a. Set the DataGrid to bind to the CartItems table.
b. Clear the check mark next to the Customer menu item.
c. Place a check mark next to the Cart Items menu item.

Scenario

 Module 4: Buidling DataSets (Prerelease) 31

! To create a new DataSet object
1. Add a private procedure named NewDataSet to the form class to perform

the following actions:
a. Set the dsShoppingCart variable to point to a new instance of the

NWShoppingCart class. This also has the effect of removing any
existing DataSet from memory.

b. Set the Filename property of the dsShoppingCart object to
�ShoppingCart1�.

c. Call the SetFormCaption procedure.
d. Call the Click event for the Customer menu item to simulate a customer

selecting that menu item, as in the following example:

� Visual Basic
mnuCustomer_Click(Me, New System.EventArgs())

// Visual C#
mnuCustomer_Click(this, new System.EventArgs());

2. Call the NewDataSet procedure in the Load event for Form1.
3. Call the NewDataSet procedure in the Click event for the New menu item.

! To open an existing DataSet file
1. Show the Open dialog by adding code to the Click event of the Open menu

item..
2. If the user clicks the Open button, perform the following actions:

a. Set the Filename property of the dsShoppingCart object to the file
name selected in the Open dialog.

b. Call the OpenFromFile method of the dsShoppingCart object.
c. Call the SetFormCaption procedure.
d. Call the click event of the Customer menu item to simulate a customer

selecting that menu item.

! To save a DataSet file
1. Add a private procedure named SaveDataSet to the form class to perform

the following actions:
a. Call the SaveToFile method of the dsShoppingCart object.
b. Call the SetFormCaption procedure.
c. Program the Click event for the Save menu item to call SaveDataSet.
d. Program the Click event for the Save As menu item to show the Save

dialog.
2. If the user clicks the Save button, perform the following actions:

a. Set the Filename property of the dsShoppingCart object to the file
name selected in the Save dialog.

b. Call the SaveDataSet procedure.

32 Module 4: Buidling DataSets (Prerelease)

! To test creating a DataSet file
1. Build the application and correct any build errors.
2. Set a break point at the beginning of the NewDataSet and

mnuSaveAs_Click procedures.
3. Run the application.
4. Step through the code line by line until the form appears.
5. Toggle between the two DataTables by using the F7 and SHIFT+F7 keys,

or by using the menus. Notice that the DataGrid automatically recognizes
the DataTable structure.

6. Enter some data into the grid for a customer and several cart items. Notice
that the rules for data types and NULL values are enforced automatically.
The unique constraint on the Customer table prevents a user from adding
two customers with the same company name.

7. Use the Save As menu item to save the DataSet as a file called
MyFirstDataSet.ds. (The .ds file extension should be appended
automatically if you do not enter it.) Step through the code line by line until
the form reappears.

8. Close the application.

! To test editing and opening a DataSet file
1. Run Windows Explorer and open the file MyFirstDataSet.ds with Notepad.

Notice that using XSD saves the structure of the DataSet, and that the data
you entered follows the schema as part of the same file.

2. Use Notepad to edit the CompanyName value of the customer you entered.
Save the changes to the file and close Notepad.

3. In Visual Studio .NET, clear all existing break points and set a new break
point at the beginning of the mnuOpen_Click procedure.

4. Run your application again and open the file MyFirstDataSet.ds.
Notice that your application now recognizes the change that you made in
Notepad.

5. Choose the New menu item. The DataGrid should be emptied.
6. Close the application.

 Module 4: Buidling DataSets (Prerelease) 33

Lesson: Defining Data Relationships

! This lesson describes:

" How to Create a Primary Key Constraint

" Using Foreign Key Constraints to Restrict Actions

" How to Create a Foreign Key Constraint

" What is a DataRelation Object?

" How to Create a DataRelation Object

" How to Navigate Related DataTables

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Before you modify data in a DataTable, it is necessary to first define the
relationships between data to ensure data integrity.

After completing this lesson, you will be able to:

! Create a PrimaryKey constraint constructor.
! Create a ForeignKey constraint constructor.
! Create a DataRelation object.
! Navigate related DataTables.

Introduction

Lesson objectives

34 Module 4: Buidling DataSets (Prerelease)

How to Create a Primary Key Constraint

! Using the PrimaryKey property of the DataTable

! Using a constraint to create a primary key
workTable.Constraints.Add(�PK_Customer�,_

workTable.Columns(�CustomerID�), True)

! Defining multiple columns as a primary key
workTable.PrimaryKey=New DataColumn() _

{workTable.Columns(�CustLName�), _

workTable.Columns(�CustFName�)}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A database table commonly has a column, or group of columns, that uniquely
identifies each row in the table. This identifying column, or group of columns,
is called the primary key.

When you identify a single DataColumn as the primary key for a DataTable,
the table automatically sets the AllowDBNull property of the column to false
and the Unique property to true. For multiple-column primary keys, only the
AllowDBNull property is automatically set to false.

The PrimaryKey property of a DataTable receives as its value an array of one
or more DataColumn objects, as shown in the following examples.

dtCustomers.PrimaryKey = New DataColumn() _
 {dtCustomers.Columns("CustomerID")}

An easier method of creating a primary key is to add a unique constraint. When
doing so, the last parameter (True) can be used to indicate that a primary key
should be created instead of an ordinary unique constraint.

dtCustomers.Constraints.Add(_
 "PK_Customer", dtCustomers.Columns("CustomerID"), True)

The following example defines two columns as a primary key.

dtEmployees.PrimaryKey = New DataColumn() _
 {dtEmployees.Columns("LastName"), _
 dtEmployees.Columns("FirstName")}

Introduction

Using the PrimaryKey
property of a DataTable

Using a constraint to
create a primary key

Defining multiple
columns as a primary
key

 Module 4: Buidling DataSets (Prerelease) 35

Using Foreign Key Constraints to Restrict Actions

! Restricting actions performed in related tables

ActionActionAction DescriptionDescriptionDescription

CascadeCascade Deletes or updates related rows. This is the default.Deletes or updates related rows. This is the default.

SetNullSetNull Sets values in related rows to DBNull.Sets values in related rows to DBNull.

SetDefaultSetDefault Sets values in related rows to the DefaultValue.Sets values in related rows to the DefaultValue.

NoneNone No action is taken, but an exception is raised.No action is taken, but an exception is raised.

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A foreign key constraint restricts the action performed in related tables when
data in a table is either updated or deleted. For example, if a value in a row of
one table is updated or deleted, and that same value is also used in one or more
related tables, you can use a ForeignKeyConstraint constructor to determine
what happens in the related tables.

A ForeignKeyConstraint can restrict, as well as propagate, changes to related
columns. Depending on the properties set for the ForeignKeyConstraint of a
column, and if the EnforceConstraints property of the DataSet is true,
performing certain operations on the parent row will result in an exception. For
example, if the DeleteRule property of the ForeignKeyConstraint is None, a
parent row cannot be deleted if it has any child rows.

In a parent-child relationship between two columns, you establish the action to
be taken by setting the DeleteRule property of the foreign key constraint to one
of the values in the following table.

Action Description

Cascade Deletes or updates related rows. This is the default.

SetNull Sets values in related rows to DBNull.

SetDefault Sets values in related rows to the DefaultValue.

None No action is taken, but an exception is raised

Introduction

Restricting actions
performed in related
tables

36 Module 4: Buidling DataSets (Prerelease)

How to Create a Foreign Key Constraint

! ForeignKeyConstraint

! Examples

Visual Basic Example Visual C# Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

When creating a ForeignKeyConstraint, you can pass the DeleteRule and
UpdateRule values to the constructor as arguments, or you can set them as
properties as in the following example (where the UpdateRule value is left as
the default, Cascade).

The following code shows how to create a ForeignKeyConstraint on the
CustomerID column of the Orders table. The DeleteRule value is then set to
prevent the deletion of any customer who has existing orders

dtCustomers = dsNorthwind.Tables("Customers")
dtOrders = dsNorthwind.Tables("Orders")

Dim fkcCustomersOrders As ForeignKeyConstraint = _
 dtOrders.Constraints.Add(_
 New ForeignKeyConstraint("FK_CustomersOrders", _
 dtCustomers.Columns("CustomerID"), _
 dtOrders.Columns("CustomerID")))

' Prevent delete of customer with existing orders
fkcCustomersOrders.DeleteRule = Rule.None

Introduction

Example

 Module 4: Buidling DataSets (Prerelease) 37

What Is a DataRelation Object?

! Definition

The DataRelation object can perform two functions:

" Make available records related to a record with which
you are working

" Enforce constraints for referential integrity

! DataSets and DataRelation objects

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataRelation object defines the relationship between two tables. Typically,
two tables are linked through a single field that contains the same data. For
example, a table that contains address data might have a single field containing
codes that represent countries/regions. A second table that contains
country/region data will have a single field that contains the code that identifies
the country/region; it is this code that is inserted into the corresponding field in
the first table.

The DataRelation object can perform the following two functions:

! It can make available the records related to a record that you are working
with. It provides child records if you are in a parent record, and a parent
record if you are working with a child record.

! It can enforce constraints for referential integrity, such as deleting related
child records when you delete a parent record.

Although a DataSet contains tables and columns in a relational structure
similar to that of a database, the DataSet does not inherently include the ability
to relate tables. However, you can create DataRelation objects that establish a
relationship between a parent (master) and a child (detail) table based on a
common key.

For example, a DataSet that contains customer data might have a Customers
table and an Orders table. Even if the tables contain a key in common (in this
example, CustomerID), the DataSet itself does not keep track of the records in
one table that relate to those in another. However, you can create a
DataRelation object that references the parent and child tables (and their keys),
and then use this object to work with the related tables.

Definition

DataSets and
DataRelation objects

38 Module 4: Buidling DataSets (Prerelease)

How to Create a DataRelation Object

! Example of creating a DataRelation object
With DataSet1

.Relations.Add(�FK_CustomersOrders�, _

.Tables("Customers").Columns("CustID"), _

.Tables("Orders").Columns("CustID"), _

True) � create a ForeignKeyConstraint too

End With

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

To create a DataRelation object, you use the DataRelation constructor or the
Add method of the Relations collection of a DataSet.

The following example creates a DataRelation object.

dsNorthwind.Relations.Add(�FK_CustomersOrders�, _
 dtCustomers.Columns("CustomerID"), _
 dtOrders.Columns("CustomerID"), True)

The custom DataSet class you created in the previous exercise does not know
about the relationship between the Categories and Products tables.

1. Open the solution you built for the previous practice, or open this solution.
<install folder>\Practices\Mod04_1\Lesson3\CustomDataSets\

2. Open the form in Code view.
3. Add code to the Form1_Load event handler that will perform the following

actions.
e. Create a PrimaryKey on the CategoryID column for the Categories

table.
f. Create a PrimaryKey on the ProductID column for the Products table.
g. Create a DataRelation and ForeignKeyConstraint between Categories

and Products.
4. Run and test the application. You should see a list of eight categories in the

grid, and note that there is now a way to access the products: the user can
click the [+] icon next to a category and drill down to see just the products
for that category.

The solution for this practice is located at <install folder>\
Practices\Mod04_2\Lesson1\CreateADataRelation\

Introduction

Example

Practice

 Module 4: Buidling DataSets (Prerelease) 39

How to Navigate Related DataTables

! The GetChildRows method of the DataRow

! Example:
Dim drCustomer As DataRow

Dim drOrder As DataRow

For Each drCustomer In
dsNorthwind.Tables(�Customer�).Rows

For Each drOrder In drCustomer.GetChildRows(_

�FK_CustomersOrders�)

� process row

Next

Next

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In many application scenarios, you want to work with data from more than one
table, and often data from related tables. This is called a master-detail
relationship between a parent and child table. An example would be retrieving a
customer record and also viewing related order information.

The disconnected DataSet model allows you to work with multiple tables in
your application and to define a relationship between the tables. You can then
use the relationship to navigate between related records.

The GetChildRows method of the DataRow allows you to retrieve related
rows from a child table.

The following example loops through each customer and returns the order date
and company name for each order in the Orders table that is related to a
customer.

Dim drCustomer As DataRow
Dim drOrder As DataRow

For Each drCustomer In dsNorthwind.Tables(�Customer�).Rows
 For Each drOrder In drCustomer.GetChildRows(_
 �FK_CustomersOrders�)

 ' process row

 Next
Next

Introduction

Definition

Example

40 Module 4: Buidling DataSets (Prerelease)

Lesson: Modifying Data in a DataTable

! This lesson explains:

" How to Insert a New Record

" How to Position on a Record

" Modifying Data in a Table

" How to Delete a Record

" How to Handle the DataTable Events

" What Are the RowState and RowVersion Properties?

" How to Accept or Reject Changes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After creating a DataTable in a DataSet, you can perform the same activities
that you would perform when using a table in a database: adding, viewing,
editing, and deleting data; monitoring errors and events; and querying the data.
When modifying data in a DataTable, you can also verify whether the changes
are accurate, and determine whether to programmatically accept or reject the
changes.

After completing this lesson, you will be able to:

! Insert a new record into a DataTable.
! Find records in a DataTable.
! Update data in DataTables.
! Delete a record in a DataTable.
! Handle the RowDeleted event.
! Accept or reject changes to DataTables.

Introduction

Lesson objectives

 Module 4: Buidling DataSets (Prerelease) 41

How to Insert a New Record

! Creating a new record
Dim workRow As DataRow = workTable.NewRow()

! Filling the new record
workRow(�CustLName�)=�Smith�

workRow(1)=�Smith�

! Appending the record to a DataTable
workTable.Rows.Add(workRow)

! Creating, filling, and appending a record
workTable.Rows.Add(new Object() {1, �Smith})

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you create a DataTable and define its structure by using columns and
constraints, you can add new rows of data to the table.

To add a new row to a DataTable, you declare a new variable of the type
DataRow. A new DataRow object is returned when you call the NewRow
method. The DataTable then creates the DataRow object based on the
structure of the table, as defined by the DataColumnCollection.

Dim drNewEmployee As DataRow = dtEmployees.NewRow()

After adding a new row to a DataTable, you can manipulate the new row by
using an index or the column name.

drNewEmployee(0) = 11
drNewEmployee(1) = "Smith"

drNewEmployee("EmployeeID") = 11
drNewEmployee("LastName") = "Smith"

After data is inserted into the new row, the Add method is used to add the row
to the DataRowCollection.

dtEmployees.Rows.Add(drNewEmployee)

You can also call the Add method to add a new row by passing in an array of
values, typed as Object.

dtEmployees.Rows.Add(New Object() {11, "Smith"})

This technique creates a new row inside the table, and sets its column values to
the values in the object array. Note that values in the array are matched
sequentially to the columns, based on the order in which they appear in the
table.

Introduction

Creating a new record

Filling the new record

Appending the record to
a DataTable

Creating, filling, and
appending a record

42 Module 4: Buidling DataSets (Prerelease)

How to Position on a Record

! The Position property of the CurrencyManager object

! Example

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

In order to modify data, you first need to find the records that you want to
modify.

In a Windows Form application, the data-binding layer manages navigation
through records in a data source. The CurrencyManager object associated
with a table or view in a DataSet includes a Position property that can be used
to navigate through data.

Because the DataSet can contain multiple data sources, or because the controls
on a form can be bound to two or more data lists, the form can have multiple
currency managers.

To find a record in a Windows Form, set the Position property of the
CurrencyManager object for the bound data to the record position where you
would like to go.

Introduction

Finding records in a
Windows Form
application

 Module 4: Buidling DataSets (Prerelease) 43

The following is an example of setting the Position property of the
CurrencyManager object

Private myCM As CurrencyManager

Private Sub BindControl(myTable As DataTable)
 TextBox1.DataBindings.Add("Text", myTable, "CompanyName")
 myCM = CType(Me.BindingContext(myTable), CurrencyManager)
 myCM.Position = 0
End Sub

Private Sub MoveNext()
 If myCM.Position <> myCM.Count - 1 Then
 myCM.Position += 1
 End If
End Sub

Private Sub MoveFirst()
 myCM.Position = 0
End Sub

Private Sub MovePrevious()
 If myCM.Position <> 0 Then
 myCM.Position -= 1
 End if
End Sub

Private Sub MoveLast()
 myCM.Position = myCM.Count - 1
End Sub

Example

44 Module 4: Buidling DataSets (Prerelease)

Modifying Data in a Table

! The DataRow class

! The BeginEdit, EndEdit, and CancelEdit methods

! How to modify data in a table
dt.Rows(3).BeginEdit()

dt.Rows(3).Items(�FirstName�)=�John�

dt.Rows(3).Items(�LastName�)=�Smith�

dt.Rows(3).EndEdit()

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can modify data in a DataSet using code as well as via bound controls.

The DataRow class is used to manipulate individual records.

The DataRow class provides three methods for suspending and reactivating the
state of the row while editing: BeginEdit, EndEdit, and CancelEdit.

You call BeginEdit to suspend any events or exceptions while editing data.
You use the Items collection to specify the column names of the data you want
to modify and the new values. You use EndEdit to reactivate any events or
exceptions, and CancelEdit to abort any changes and reactivate any events or
exceptions.

The following example shows how to use the BeginEdit method, the Items
collection, and the EndEdit method.

' get the third employee
Dim drEmployee As DataRow = dtEmployees.Rows(3)

drEmployee.BeginEdit()
drEmployee("FirstName") = "John"
drEmployee("LastName") = "Smith"
drEmployee.EndEdit()

Introduction

The DataRow class

The BeginEdit, EndEdit,
and CancelEdit methods

How to modify data in a
table

 Module 4: Buidling DataSets (Prerelease) 45

How to Delete a Record

! The Remove method of the DataRowCollection object

! Example:
workTable.Rows.Remove(workRow)

! The Delete method of the DataRow object

! Example:
workRow.Delete

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use two methods to delete a DataRow object from a DataTable
object: the Remove method of the DataRowCollection object, and the Delete
method of the DataRow object. Although the Remove method deletes a
DataRow from the DataRowCollection, the Delete method only marks the
row for deletion.

The Delete method is typically used with data in a disconnected environment.

The Remove method of the DataRowCollection takes a DataRow as an
argument and removes it from the collection as shown in the following
example.

Dim drEmployee As DataRow = dtEmployees.Rows(3)

dtEmployees.Rows.Remove(drEmployee)

In contrast, the following example demonstrates how to call the Delete method
on a DataRow to change its RowState to Deleted.

drEmployee.Delete

Note: You will learn how to find a row in a later lesson.

Introduction

The Remove method
and the Delete method

46 Module 4: Buidling DataSets (Prerelease)

How to Handle the DataTable Events

! Example:
Private WithEvents dtProducts As DataTable

Private Sub dtProducts_RowDeleted(_

ByVal sender As Object, _

ByVal e As System.Data.DataRowChangeEventArgs) _

Handles dtProducts.RowDeleted

� write code here

End Sub

! DataTable events list

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You may need to build functionality into your application that handles events
that occur on a DataTable when data is being changed or deleted.

To handle DataTable events, use the WithEvents statement when declaring an
object. Then, create a procedure that uses the Handles statement to associate
the procedure with the event.

The following example shows how to handle the RowDeleted event.

Private WithEvents dtProducts As DataTable

...

Private Sub dtProducts_RowDeleted(_
 ByVal sender As Object, _
 ByVal e As System.Data.DataRowChangeEventArgs) _
 Handles dtProducts.RowDeleted

 ' write code here

End Sub

Introduction

To handle DataTable
events

Example

 Module 4: Buidling DataSets (Prerelease) 47

The DataTable object provides a series of events that can be processed by an
application. The following table describes DataTable events.

Event Description

ColumnChanged Occurs when a value has been inserted successfully into a

column.

ColumnChanging Occurs when a value has been submitted for a column.

RowChanged Occurs after a row in the table has been edited successfully.

RowChanging Occurs when a DataRow is changing.

RowDeleted Occurs after a row in the table has been deleted.

RowDeleting Occurs when a row in the table is marked for deletion.

The Northwind Traders Operations Manager wants more complex validation
rules to apply when products are changed than can be provided by simple
constraints. In this practice you will handle the ColumnChanging DataTable
event.

We want to see categories in the grid, and have the ability to "drill down" and
see the related products, so the grid must stay bound to the Categories table.
But we also want to see an event fired when a product is changed. Therefore an
event handling pointer to the Products table needs to be created that responds
to the Column_Changing event.

1. Open the solution you built for the previous practice, or open the solution at
the following location.

<install folder>\Practices\Mod04_2\Lesson1\CreateADataRelation\

2. Open the form in Code view.
3. Declare a private DataTable variable called dtProducts with the capability

of responding to events.
4. Add code to the Form1_Load event handler to point the dtProducts

variable to the Products table in the Northwind DataSet.
5. Add code to handle the dtProducts ColumnChanging event by displaying

a message box that shows the original value and the proposed new value of
a modified product row.

6. Run and test the application by editing one of the product names. Note: you
will need to �drill down� to find a product to edit. If you edit a category
name the event will not fire!

The solution for this practice is located at <install folder>\
Practices\Mod04_2\Lesson2\HandlingDataTableEvents\

List of DataTable events

Practice

48 Module 4: Buidling DataSets (Prerelease)

What Are the RowState and RowVersion Properties?

! RowState property values indicate whether and how
the row has changed

! RowState property values: Deleted, Modified, New, and
Unchanged

! Testing the RowVersion by calling the HasVersion
method and passing a DataRowVersion as an argument

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataRow class includes the RowState property, whose values indicate
whether and how the row has changed since the DataTable was first created or
loaded from the database. (RowState property values include Deleted,
Modified, New, and Unchanged.)

Changes made to column values in a DataRow are immediately placed in the
Current state of the row. At this point the RowState is set to Modified.

When modifying column values in a DataRow directly, the DataRow manages
column values by using the following row versions: Current, Default, and
Original. The BeginEdit, EndEdit, and CancelEdit methods utilize a fourth
row version: Proposed.

You can test whether a DataRow has a particular row version by calling the
HasVersion method and passing a DataRowVersion as an argument. For
example, DataRow.HasVersion(DataRowVersion.Original) will return false
for newly added rows.

The Proposed row version exists during an edit operation that is begun by
calling BeginEdit and ended with either EndEdit or CancelEdit. During the
edit operation, you can apply validation logic to individual columns by
evaluating the ProposedValue in the ColumnChanged event of the
DataTable. The DataColumnChangeEventArgs value passed to the
ColumnChanged event contains a reference to the changing column and the
ProposedValue. You can modify the proposed value or trigger the edit to be
canceled. The row moves out of the proposed state when the edit is completed.

Introduction

Testing the row version

 Module 4: Buidling DataSets (Prerelease) 49

How to Accept or Reject Changes

! AcceptChanges method

! RowState

! Checking for errors

! Example

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

After verifying the accuracy of changes made to data in a DataTable, you can
commit the changes by using the AcceptChanges method of the DataRow,
DataTable, or DataSet. This sets the Current row values to be the Original
values, and sets the RowState to Unchanged.

Accepting or rejecting changes deletes any RowError information and sets
HasErrors to false. Accepting or rejecting changes can also affect updating
data in the data source.

If ForeignKeyConstraints exist on the DataTable, changes committed or
rejected by using AcceptChanges and RejectChanges are propagated to child
rows of the DataRow according to the
ForeignKeyConstraint.AcceptRejectRule.

Introduction

50 Module 4: Buidling DataSets (Prerelease)

The following example code checks for rows with errors, resolves the errors
where applicable, and rejects the rows where the error cannot be resolved. Note
that for resolved errors, the RowError value is reset to an empty string,
resulting in the HasErrors property being set to false. When all of the rows
with errors have been resolved or rejected, AcceptChanges is called to accept
all changes for the entire DataTable.

If workTable.HasErrors Then
 Dim errRows() As DataRow = workTable.GetErrors()

 Dim I As Int32
 Dim errRow As DataRow
 For I = 0 To errRows.Length - 1
 errRow = errRows(I)

 If errRow.RowError = �Total cannot exceed 1000.� Then
 errRow(�Total�) = 1000
 errRow.RowError = ��
 Else
 If errRow.RowState=DataRowState.Added Then I = I - 1
 errRow.RejectChanges()
 End If
 Next
End If

workTable.AcceptChanges()

Example

 Module 4: Buidling DataSets (Prerelease) 51

Lesson: Using a DataView

! This lesson explains:

" What Is a DataView Object?

" How to Define a DataView

" How to sort and filter a DataTable by using a DataView
object

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataView object acts similarly to the way a view acts in Microsoft SQL
Server�. It is an object that presents a subset of data from a DataTable. A
DataView object acts like a layer on top of the DataTable, providing a filtered
and sorted view of the table contents.

After completing this lesson, you will be able to:

! Describe what a DataView object is.
! Create a DataView object.
! Sort and filter a DataTable by using a DataView Object.

Introduction

Lesson objectives

52 Module 4: Buidling DataSets (Prerelease)

What Is a DataView Object?

Server Data Store

Database

Connection Stored
Procedure

DataSet

Data Table

Data Table

Screenshot

DataView

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataView object is similar to a view in SQL Server. It is an object that
presents a subset of data from a DataTable. A DataView object acts like a
layer on top of the DataTable, providing a filtered and sorted view of the table
contents. This capability allows you to have two controls bound to the same
DataTable, but showing different versions of the data.

Another benefit of the DataView object is to allow data binding on both
Windows Forms and Web Forms.

Suppose that a sales associate at Northwind Traders travels throughout her
assigned region. While in a particular city, she may only want to see the contact
information (name, company, phone number, address) for the clients in that
city. You could use a DataView object to filter clients based on their city where
the sales associate will be working on a particular day.

Introduction

Example

 Module 4: Buidling DataSets (Prerelease) 53

How to Define a DataView

! Creating a DataView by using form controls

! Creating a DataView programmatically
Dim dv As New _

DataView(dsNorthwind.Tables(�Products�))

dv.Sort = �UnitPrice�

dv.RowFilter = �CategoryID > 4�

DataGrid1.DataSource = dv

! Applying a DataView to a DataTable
MyDataView.Table = _

MyDataset.Tables(�Categories�)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can create a DataView object in two ways:

! By using the Visual Studio .NET development environment graphical tools.
! Programmatically.

! To add a DataView to a form or component graphically
1. In the Visual Studio .NET development environment, in the Toolbox, drag a

DataView item from the Data tab onto the form or component.
A new DataView with the default name DataView1 is added to the form or
component.

2. If you want to configure the DataView at design time (rather than in code at
run time), select the DataView and use the Properties window to configure
the DataView. Consult the Visual Studio .NET documentation for a list of
properties that can be set for a DataView.
You can set all of these properties at run time, except the name of the
DataView.

Introduction

Creating a DataView by
using form controls

54 Module 4: Buidling DataSets (Prerelease)

The following is an example of creating a DataView programmatically.

Dim dvProducts As New DataView(dsNorthwind.Tables("Products"))
dvProducts.Sort = "UnitPrice"
dvProducts.RowFilter = "CategoryID > 4"
DataGrid1.DataSource = dvProducts

A DataView can be created independently of a DataTable and applied later to
different DataTables dynamically.

To apply a DataView to a DataTable, set the Table property of the DataView,
as shown in the following example.

Dim dvProducts As New DataView()
dvProducts.Table = dsNorthwind.Tables("Products").

Creating a DataView
programmatically

Applying a DataView to
a DataTable

 Module 4: Buidling DataSets (Prerelease) 55

How to Sort and Filter a DataTable Using a DataView

! Filtering and sorting by using a DataView object
DataView1.RowStateFilter=DataViewRowState. _

CurrentRows

! Filtering and sorting by using the default DataView
Dataset1.Customers.DefaultView.Sort=�City�

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Sorting with a DataView object allows you to set sort criteria at design time,
and provides an object that you can use for data binding.

You can filter and sort a DataTable by using a DataView object that you have
explicitly added to a form or component. Doing this allows you to set filter and
sort options at design time.

Alternatively, you can use the default DataView, called DefaultView, which is
available for every table in a DataSet. When you use the default view, you can
specify filter and sort options programmatically.

! To filter and sort by using a DataView object
1. If you want to set DataView options at design time, add a DataView object

to the form or component.
2. Set the DataView Sort property by using a sort expression. The sort

expression can include the names of DataColumns or a calculation. If you
set the sort expression at run time, the DataView reflects the change
immediately.

3. Set the DataView RowFilter property by using a filter expression. The filter
expression should evaluate to true or false, as in the following expression:
dvProducts.RowFilter = "CategoryID = 3"

Introduction

Filtering and sorting by
using a DataView object

56 Module 4: Buidling DataSets (Prerelease)

To filter based on a version or state of a record, set the RowStateFilter
property to a value from the DataViewRowState enumeration, such as the
following:

dvProducts.RowStateFilter = DataViewRowState.CurrentRows

The following example shows how to set the DataView filter and sort order at
run time by using the default DataView:

dtCustomers.DefaultView.Sort = "City"

The Northwind Traders Sales Director wants the ability to filter the products in
the catalog based on customer requirements.

1. Open the solution you built for the previous practice, or open the solution at
the following location.

<install folder>\Practices\Mod04_2\Lesson2\HandlingDataTableEvents\

2. Open the form in Code view.
3. Add code to the Form1_Load event handler to create a new DataView

called dvExpensiveProducts based on the dtProducts variable.
4. Add code to sort the DataView on the UnitsInStock column.
5. Add code to filter the DataView so that only products costing more than

$50 are displayed.
6. Run and test the application.

The solution for this practice is located at <install folder>\
Practices\Mod04_2\Lesson3\SortAndFilterUsingADataView\

Filtering and sorting by
using the default
DataView

Practice

 Module 4: Buidling DataSets (Prerelease) 57

Review

! Building DataSets and DataTables

! Binding a DataSet to a Windows Application Control

! Creating a Custom DataSet

! Defining Data Relationships

! Modifying Data in a DataTable

! Using a DataView

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1.

3.

4.

5.

6.

58 Module 4: Buidling DataSets (Prerelease)

Lab 4.2: Manipulating DataSets and Modifying Data

! Exercise 1: Creating Primary Keys and
Relationships

! Exercise 2: Navigating Relationships

! Exercise 3: Editing Rows in a DataTable

! Exercise 4: Sorting and Filtering with
DataViews

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

! Use a custom DataSet by using inheritance.
! Define a relationship.
! Modify data in a DataTable.
! Find and select rows in a DataTable.
! Sort and filter a DataTable by using a DataView object.

Before working on this lab, you must have:

!

Objectives

Prerequisites

Scenario

Estimated time to
complete this lab: 45
minutes

 Module 4: Buidling DataSets (Prerelease) 59

Exercise 0
Lab Setup

To complete this lab, you must �

!
2.
3.

60 Module 4: Buidling DataSets (Prerelease)

Exercise 1
Creating Primary Keys and Relationships

In this exercise, you will add primary keys to the DataTables you created in Lab
4.1, �Building, Binding, Opening, and Saving DataSets,� and define a
relationship between the two tables.

The Northwind Traders database is normalized to reduce data redundancy and
duplication. To extract useful information, you must join together the data in
the disparate tables by using relationships before displaying it to users.

! To continue building the application
• Open the solution you created in Lab 4.1, or open the solution

BuildingDataSets in the folder in <install folder>\Labs\Lab04_2\Starter\xx\
where xx is either VB or CS.

! To give the Customer table a primary key
1. Open the NWShoppingCart class module.
2. After the code that creates the Customer table, programmatically create a

primary key by using the following information.

Attribute Value

Name PK_CustomerID

Table Customer

Column CustomerID

3. Add a new private procedure named AddSchema to the class.
4. After the code that creates the CartItems table, insert code to call the

AddSchema procedure.

! To relate the Customer and CartItems tables
1. Add code to the AddSchema procedure to create a relationship (including a

foreign key constraint with default rules) between the Customer and
CartItems tables by using the following information.

Attribute Value

Name FK_Customer_CartItems

Parent Table Customer

Parent Column CustomerID

Child Table CartItems

Child Column CustomerID

2. Wrap the code that creates the relation in an If statement that checks
whether the relation already exists before attempting to create the relation.
Hint: most collections provide a Contains method for this purpose.

Scenario

 Module 4: Buidling DataSets (Prerelease) 61

! To clear the existing schema
Now that the custom DataSet creates a more complex schema, you must
provide a method to dismantle it when necessary.

1. Add a new public procedure named ClearSchema to the class.
2. Write a line of code to remove the ForeignKeyConstraint created by the

relationship.
3. Write a line of code to clear any existing relationships.
4. Write a line of code to clear any existing tables.
5. Modify the OpenFromFile method to call the ClearSchema method before

attempting to open a DataSet file.
6. Modify the OpenFromFile method to call the AddSchema method after

attempting to open a DataSet file.

! To test the relationship
1. Run the application.
2. Add a new customer record, or open a DataSet file that you created

previously.
3. Notice that the DataGrid recognizes the relationship and automatically

provides the ability to drill down to a customer�s shopping cart items.
4. Add a new cart item for a customer. Notice that the customer ID field is

automatically completed if the drill down feature is used.
5. Test the primary key by attempting to add another customer with a duplicate

CustomerID value.

62 Module 4: Buidling DataSets (Prerelease)

Exercise 2
Navigating Relationships

In this exercise, you will use the relationship defined between the two tables in
Exercise 1 to provide a summation of the total order value of a customer�s
shopping cart items. You will use two techniques: programmatically navigating
the object model, and adding an expression column that can automatically
summarize child rows.

To make its e-commerce Web site more convenient for users, Northwind
Traders wants to give its customers the ability to view a running total of the
order value of their shopping cart items.

! To start with the solution to the previous exercise
• If you did not complete the previous exercise open the solution

BuildingDataSets in the folder
<install folder>\Labs\Lab04_2\Solution\Ex1\xx\ where xx is either VB or
CS.

! To display a shopping cart order total
1. Open the Form1 class module in Designer view.
2. Add a new menu item to the View menu using the following information.

Menu Property Value

 mnuSubtotal Text Cart &Subtotal

 Shortcut F9

(Optional) Add menu separators where appropriate.

Scenario

 Module 4: Buidling DataSets (Prerelease) 63

! To calculate the subtotal
1. Add code to handle the Click event for the Cart Subtotal menu item.
2. Declare the following local variables.

Name Data type

sCustomerID System.String

drCustomer System.Data.DataRow

drCartItem System.Data.DataRow

dSubtotal System.Decimal

3. Initialize the subtotal to zero.
4. Set the string variable to be the CustomerID value of the currently selected

customer in the DataGrid.

The CurrentRowIndex property returns the current row in a
DataGrid.

5. Set the customer DataRow variable to point to the correct row in the
Customer DataTable by using the CustomerID retrieved in the previous
line as a criteria value for a DataRow selection filter.

Use the Select method provided by the DataTable class.

The Select method returns an array of DataRows. Even if only one
DataRow matches the select filter, you must use array syntax to retrieve an
individual DataRow.

6. Write a For Each statement to loop through all of the child rows returned
by a call to the GetChildRows method of the customer DataRow.

7. Inside the loop, increment the subtotal variable by the value in the Cost
column of the DataRow.

8. Use a message box to show the company name of the customer and the
amount they owe based on the items currently in their shopping cart.

! To add a cart total to the Customer table
1. Open the NWShoppingCart class module.
2. Add code to the AddSchema method to check for an existing column in the

Customer table named CartSubtotal.
3. If the column does not exist, write code to add the column with the

following attributes.

DataColumn Property Value

CartSubtotal DataType System.Decimal

 Expression Sum(Child.Cost)

4. Because the AddSchema method is called when a new DataSet is
instantiated and when an existing DataSet file is opened, there is no
additional code to write.

Tip

Tip

Caution

64 Module 4: Buidling DataSets (Prerelease)

! To test the cart totals
1. Run the application.
2. Add a new customer record.
3. Add some cart items and then return to the customer view.
4. Notice that the DataGrid automatically calculates the cart subtotal and

displays the results in the grid as an additional column.
5. On the View menu, click Cart Subtotal. The same subtotal value should be

returned.

 Module 4: Buidling DataSets (Prerelease) 65

Exercise 3
Editing Rows in a DataTable

In this exercise, you will provide a simple method to add new cart items to the
shopping cart. To supply the basic values required for a cart item, you will open
an existing DataSet file that contains sample categories and products.

When browsing the Northwind Traders e-commerce Web site, a customer will
want the ability to add an item to his or her shopping cart with a single click.

! To start with the solution to the previous exercise
• If you did not complete the previous exercise open the solution

BuildingDataSets in the folder
<install folder>\Labs\Lab04_2\Solution\Ex2\xx\ where xx is either VB or
CS.

! To open the existing DataSet file
1. Open the Form1 class module.
2. Declare a class-level variable named dsCatProd by using the standard

DataSet class as the data type.
3. Add code to the Form1_Load event to set the dsCatProd variable to point

to a new instance of the DataSet class.
4. Call the ReadXml method of the dsCatProd object to open the existing

DataSet file (including the schema) from the following location on your
training computer:
<install folder>\Labs\Lab04_2\CatProd.ds

! To code the View menu items
1. Add code to the mnuCustomer_Click event to clear the check mark next to

the mnuProducts menu item.
2. Add code to the mnuCartItems_Click event to clear the check mark next

to the mnuProducts menu item.
3. Add code to the mnuProducts_Click event to place a check mark next to

the mnuProducts menu item, and then clear the check marks next to the
mnuCustomer and mnuCartItems menu items.

4. Add code to the mnuProducts_Click event to set the DataGrid to bind to
the Products table in the dsCatProd DataSet.

! To create the menu to add a product to the cart
1. Use the menu editor to insert an Edit menu named mnuEdit with a single

Add To Cart menu item named mnuAddToCart.
The Add To Cart menu should only be available when the products are
displayed in the DataGrid.

2. Add code to handle the Edit menu�s Select event.
3. Add a line of code to set the Enabled property of the Add To Cart menu

item to have the same value as the Checked property of the Products menu
item on the View menu.

Scenario

66 Module 4: Buidling DataSets (Prerelease)

! To test the changes
1. Run the application.
2. Use the View menu to toggle the DataGrid to show the products available

on the Northwind Traders e-commerce Web site.
3. Ensure that the Add To Cart menu is only available when products are

shown in the DataGrid.

! To add a product to the shopping cart
1. Add code to handle the Click event for the Add To Cart menu item.
2. Declare local variables to store the CustomerID, ProductID, UnitPrice, and

Quantity that the user selects. Use the generic System.Object data type for
all four.

3. Set the CustomerID to the value in the first column of the first row of the
Customer DataTable. (To simplify this example, assume that there is only
one customer. If you have time at the end of this lab, you can add code to
allow the user to select a customer as well as a product and quantity.)

4. Set the ProductID variable to the ProductID column of the product
currently selected in the DataGrid.

5. Set the UnitPrice variable to the UnitPrice column of the product currently
selected in the DataGrid.

6. Use the InputBox method to prompt the user for a quantity and store the
value in the Quantity variable.

C# does not support the InputBox method natively. You must add a
reference to the Microsoft Visual Basic .NET Runtime assembly, and then
use a fully-qualified method call. For example, see the code below.

// Note: all five parameters are mandatory
Microsoft.VisualBasic.Interaction.InputBox(�Prompt�,
 �Title�, �DefaultResponse�, XPos, YPos);

7. Try to convert the Quantity variable to an integer. If the conversion fails (for
example, if the user entered an invalid value), exit the procedure.

8. Try to add the values as an array of objects using the Add method of the
Rows collection of the CartItems DataTable. Catch any exceptions.

! To test the application
1. Run the application.
2. Enter a new customer or open an existing file.
3. View the products.
4. Select a product in the DataGrid.
5. On the Edit menu, click Add To Cart.
6. Enter a quantity when prompted.
7. Repeat the procedure for several products.
8. Switch the view to see the cart items.

Tip

 Module 4: Buidling DataSets (Prerelease) 67

Exercise 4
Sorting and Filtering with DataViews

In this exercise, you will add the ability to filter the products list. The DataGrid
automatically provides basic sorting capability, but you will provide the user
with the ability to view all products, or to filter out discontinued or out-of-stock
products, or both.

When browsing the Northwind Traders e-commerce Web site, a customer will
want the ability to view the products in different ways; for example, products
that match some criteria sorted with the cheapest products first. Customers may
only want to see products that are in stock, or that have not been discontinued.

! To start with the solution to the previous exercise
• If you did not complete the previous exercise open the solution

BuildingDataSets in the folder
<install folder>\Labs\Lab04_2\Solution\Ex3\xx\ where xx is either VB or
CS.

! To open the existing DataSet file
1. Open the Form1 class module in Designer view.
2. Add two menu items to the View menu using the following information.

Menu Property Value

 mnuDiscontinued Text &Discontinued

 Checked True

 mnuOutOfStock Text &Out Of Stock

 Checked True

(Optional) Add menu separators where appropriate.
These menu items should only be available when the products are displayed
in the DataGrid.

3. Add code to handle the View menu�s Select event.
4. Add some code to set the Enabled property of the two menu items to have

the same value as the Checked property of the Products menu item on the
View menu.

Scenario

68 Module 4: Buidling DataSets (Prerelease)

In the following steps, you will add code to handle the Click event for these
menu items.

! To toggle the display of discontinued and out-of-stock products
1. Add a new private procedure named FilterMenus. This procedure must be

able to handle the System.EventHandler delegate.
' Visual Basic
Public Delegate Sub EventHandler(_
 ByVal sender As Object, _
 ByVal e As EventArgs)

// Visual C#
public delegate void EventHandler(
 object sender,
 EventArgs e);

2. Set the procedure to handle the mnuDiscontinued.Click,
mnuOutOfStock.Click, and mnuProducts.Click events.

Multiple procedures can handle an event. For example, we now have
two procedures that handle the mnuProducts.Click event; FilterMenus
and mnuProducts_Click.

3. Toggle the Checked property of the sender object, if the sender is not
mnuProducts.

If you are using C#, you must declare a
System.Windows.Forms.MenuItem variable, cast the sender object to it,
and then use that variable instead, because C# does not support late binding.

4. Declare a local DataView variable named dv and instantiate it by using the
Products DataTable.

5. If the Discontinued menu item is not selected, set the RowFilter property
of the DataView variable to only show rows where the Discontinued
column is False.

6. If the Out Of Stock menu item is not selected, set the RowFilter property
of the DataView variable to only show rows where the OutOfStock column
is False.

7. If both the Discontinued and the Out Of Stock menu items are not
selected, set the RowFilter property of the DataView variable to only show
rows where the Discontinued column is False and the OutOfStock column
is False.

8. Set the DataSource property of the DataGrid to the DataView named dv.
9. In the mnuProducts_Click procedure, delete the line of code that sets the

DataSource of the DataGrid, because the FilterMenus procedure does this
now.

Tip

Tip

 Module 4: Buidling DataSets (Prerelease) 69

! To test the application
1. Run the application.
2. Use the View menu to display the Products table.
3. Click the Discontinued column heading in the grid to sort the rows by this

value.
4. Use the View menu to toggle the display of discontinued and/or out-of-stock

products.
(Optional) Add a menu item to the View menu to provide complex sorting
capability programmatically, for example sorting on two columns
simultaneously.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

Overview 1

Lesson: Creating XSD Schemas 2

Lesson: Creating a Strongly-Typed
DataSet 14

Lesson: Writing XML from a DataSet 23

Lesson: Using the XmlDataDocument
Object 31

Review 44

Lab 5: Working with XML Data in
ADO .NET 46

Module 5: Using XML
with ADO .NET
(Prerelease)

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other relevant MS trademarks, listed
alphabetically. The publications specialist replaces this example list with the list of trademarks
provided by the copy editor. Microsoft, MS-DOS, Windows, and Windows NT are listed first,
followed by all other Microsoft trademarks listed in alphabetical order.> are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

<The publications specialist inserts mention of specific, contractually obligated to, third-party
trademarks, provided by the copy editor>

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 5: Using XML with ADO .NET (Prerelease) iii

Instructor Notes
Microsoft® ADO.NET uses XML as the format for managing and moving data
from a data source to a DataSet object and back. In addition, work directly with
data in XML format in an ADO.NET application. This module explains how to
use XML Schema Definition Language (XSD) to create files that provide
structure for working with data in XML documents and in DataSets.

After completing this module, students will be able to:

! Generate an XSD schema from a DataSet by using graphical tools.
! Identify the purpose and uses of the XmlDataDocument object.
! Save a DataSet structure to an XSD schema file.
! Create and populate a DataSet from an XSD schema and XML data.
! Load data and schema simultaneously into a DataSet.
! Save DataSet data as XML.
! Write and load changes by using a DiffGram.
! Manipulate data in an XmlDataDocument object.

To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2389A_05.ppt
! Module 5, �Reading and Writing XML With ADO .NET�
! Lab 5, Working with XML Data in ADO .NET

To prepare for this module:

! Read all of the materials for this module.
! Complete the practices and labs.
! Read the latest .NET Development news at

http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28000519

Presentation:
60 Minutes

Lab:
60 Minutes

Required materials

Preparation tasks

iv Module 5: Using XML with ADO .NET (Prerelease)

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Creating XSD Schemas
This section describes the instructional methods for teaching each topic in this
lesson.

Transition to Practice Exercise:

In this practice, you will create an XML file based on a schema by using the
Visual Studio XML Editor.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook. Guide the students through the practice.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

What is an XSD
Schema?

What Are Strongly-
Typed DataSets?

How Schema
Information Maps to
Relational Structure

Generating an XSD
Schema With Visual
Studio

 Module 5: Using XML with ADO .NET (Prerelease) v

Lesson: Creating a Strongly-Typed DataSet
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Loading a Schema Into a
DataSet

Examining Meta Data

Demonstration:
Examining DataSet
Structure

Loading XML Data Into a
DataSet

vi Module 5: Using XML with ADO .NET (Prerelease)

Lesson: Writing XML From a DataSet
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Writing Schema to a
File, Reader, or Stream

Writing DataSet
Information to a File or
Stream

Demonstration: Writing
Inline Schema and Data
to a File

Writing DataSet
Changes

 Module 5: Using XML with ADO .NET (Prerelease) vii

Lesson: Using the XmlDataDocument Object
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

Discussion Questions: Personalize questions to the background of the students
in your class.

What Is an
XmlDataDocument
Object?

Synchronizing an
XmlDataDocument With
a DataSet

Providing a Hierarchical
View of Existing
Relational Data

How to Provide a
Relational View of XML
Data

Applying an XSLT Style
Sheet to a DataSet

Performing an XPath
Query on a DataSet

 Module 5: Using XML with ADO .NET (Prerelease) 1

Overview

Overview of Module

" Creating XSD Schemas

" Creating Strongly-Typed DataSets

" Saving Data as XML

" Manipulating Data in an XML Data Document

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Microsoft® ADO.NET uses XML as the format for managing and moving data
from a data source to a DataSet object and back. In addition, work directly with
data in XML format in an ADO.NET application. This module explains how to
use XML Schema Definition Language (XSD) to create files that provide
structure for working with data in XML documents and in DataSets.

After completing this module, you will be able to:

! Generate an XSD Schema from a DataSet by using graphical tools.
! Identify the purpose and uses of the XmlDataDocument object
! Save a DataSet structure to an XSD Schema file.
! Create and populate a DataSet from an XSD Schema and XML data.
! Load data and schema simultaneously into a DataSet.
! Save DataSet data as XML.
! Write and load changes by using a DiffGram.
! Manipulate data in an XmlDataDocument object.

Introduction

Objectives

2 Module 5: Using XML with ADO .NET (Prerelease)

Lesson: Creating XSD Schemas

Creating XSD Schemas

" What is an XSD Schema?

" Why are strongly-typed data sets?

" Creating and Saving XSD Schema Visual Studio .NET

" Creating and Saving XSD Schema with code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

XSD schemas provide the mapping between relational data in DataSets and
data in XML documents. XSD schemas define the structure of the data in a
dataset, so that the data can be expressed and used in XML format.

After completing this lesson, you will be able to:

! Provide a definition of an XSD schema.
! Give examples of when to use an XSD schema.
! Create and save an XSD schema by using Microsoft Visual Studio® .NET.
! Create and save an XSD schema by using code.

Introduction

Lesson objectives

 Module 5: Using XML with ADO .NET (Prerelease) 3

What Is an XSD Schema?

What is an XSD Schema?

" What can an XSD schema contain?

" Why use an XSD schema.

XSD example XML document code example XML document in browser
*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create a new DataSet, no tables or other structures are defined. The
structure is usually loaded from an XSD file, or you can create the structure by
using code.

An XSD schema is a document that describes the structure of an XML
document, as well as the constraints on data in that document.

An XSD schema can contain the following information:

! A representation of relationships between data items similar to the foreign
key relationships between tables in a relational database.

! A representation of constraints similar to the primary key and Unique
constraints in a relational model.

! A specification of the data types of each individual element and attribute in
an XML document that complies with the XSD schema.

There are two basic reasons to use XSD schemas:

! To import data and know the structure of the data that you import.
When you receive data in XML format and want to load that data into a
DataSet, you can use a schema to define the structure of the data you are
reading.

! To describe the structure of data that you are exporting to another consumer.
When you want to send data from a DataSet and put it into an XML data
document, you can provide a schema to describe the data.

Introduction

Definition

What can an XSD
schema contain?

Why use an XSD
schema?

4 Module 5: Using XML with ADO .NET (Prerelease)

The following schema shows a two-level XSD schema.

<?xml version="1.0" standalone="yes"?>
<xsd:schema id="PersonPet" targetNamespace="" xmlns=""
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:msdata="urn:schemas-microsoft-
com:xml-msdata">
 <xsd:element name="PersonPet" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="Person">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ID" msdata:AutoIncrement="true" type="xsd:int" />
 <xsd:element name="Name" type="xsd:string" minOccurs="0" />
 <xsd:element name="Age" type="xsd:int" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Pet">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ID" msdata:AutoIncrement="true" type="xsd:int" />
 <xsd:element name="OwnerID" type="xsd:int" minOccurs="0" />
 <xsd:element name="Name" type="xsd:string" minOccurs="0" />
 <xsd:element name="Type" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 <xsd:unique name="Constraint1" msdata:PrimaryKey="true">
 <xsd:selector xpath=".//Person" />
 <xsd:field xpath="ID" />
 </xsd:unique>
 <xsd:unique name="Pet_Constraint1" msdata:ConstraintName="Constraint1"
msdata:PrimaryKey="true">
 <xsd:selector xpath=".//Pet" />
 <xsd:field xpath="ID" />
 </xsd:unique>
 </xsd:element>
 <xsd:annotation>
 <xsd:appinfo>
 <msdata:Relationship name="PersonPet" msdata:parent="Person"
msdata:child="Pet" msdata:parentkey="ID" msdata:childkey="OwnerID" />
 </xsd:appinfo>
 </xsd:annotation>
</xsd:schema>

The following example shows an XML data document that is based on the
schema in the preceding example.

Example of an XSD
schema

Example of an XML
document based on a
schema

 Module 5: Using XML with ADO .NET (Prerelease) 5

<PersonPet xmlns = "http://tempuri/PersonPet.xsd">
 <Person>
 <ID>0</ID>
 <Name>Mark</Name>
 <Age>18</Age>
 </Person>
 <Person>
 <ID>1</ID>
 <Name>William</Name>
 <Age>12</Age>
 </Person>
 <Person>
 <ID>2</ID>
 <Name>James</Name>
 <Age>7</Age>
 </Person>
 <Person>
 <ID>3</ID>
 <Name>Levi</Name>
 <Age>4</Age>
 </Person>
 <Pet>
 <ID>0</ID>
 <OwnerID>0</OwnerID>
 <Name>Frank</Name>
 <Type>cat</Type>
 </Pet>
 <Pet>
 <ID>1</ID>
 <OwnerID>1</OwnerID>
 <Name>Rex</Name>
 <Type>dog</Type>
 </Pet>
 <Pet>
 <ID>2</ID>
 <OwnerID>2</OwnerID>
 <Name>Cottontail</Name>
 <Type>rabbit</Type>
 </Pet>
 <Pet>
 <ID>3</ID>
 <OwnerID>3</OwnerID>
 <Name>Sid</Name>
 <Type>snake</Type>
 </Pet>
 <Pet>
 <ID>4</ID>
 <OwnerID>3</OwnerID>
 <Name>Tickles</Name>
 <Type>spider</Type>
 </Pet>
(Code continued on next page.)

6 Module 5: Using XML with ADO .NET (Prerelease)

 <Pet>
 <ID>5</ID>
 <OwnerID>1</OwnerID>
 <Name>Tweetie</Name>
 <Type>canary</Type>
 </Pet>
</PersonPet>

Create an XML file based on a schema by using the Visual Studio XML Editor.

! To create an XML file based on a target schema
1. Start Visual Studio and create a new empty project.
2. Click File, and then click Add Existing Item. Add PhoneList.xsd to the

project. Double-click the file in the Solution Explorer to open an editor
window. The editor opens by default in DataSet view showing a graphical
representation of the schema for the DataSet.

3. Switch to the XML view and examine the schema. Note that a <Customer>
element has three child elements and one attribute.

4. Click File, and then click Add New Item. Add a new XML file named
PhoneList.xml to the project.

5. Right-click the new XML document, and then click Properties.
6. Change the Target Schema to http://tempuri.org/PhoneList.xsd, and then

click OK. Notice that Visual Studio automatically adds a schema reference
and a parent tag to the XML document.

! To add data to the XML document
1. Type an �<� between the <CustomerData> tags. Visual Studio suggests an

appropriate XML element based on the target schema. Press the TAB key to
insert the <Customers> element into the XML document.

2. Type a space. Visual Studio suggests an XML attribute based on the target
schema. Press the TAB key to insert the ContactName attribute into the
XML document.

3. Type an �=�. Visual Studio inserts a set of quotation marks. Type your own
name as a value for the Contact Name attribute between these quotation
marks.

4. Type a �>� after your name in quotation marks. Visual Studio adds a closing
tag for the <Customers> element. Add some data to the body of the element

5. In between the <customers> and </customers> tags, type a �<�. Visual
Studio suggests appropriate child elements based on the target schema.
Double-click the suggested tag to insert a <CompanyName> child element
into the XML document.

6. Type an �>� to add a closing tag for the <CompanyName> element. Add
data for the company name.

Practice

 Module 5: Using XML with ADO .NET (Prerelease) 7

7. Use the Visual Studio XML Editor to complete the information for this
customer.

8. Save the changes. Notice that the XML Editor automatically reformats your
document.

9. Switch the XML Editor to Data view.
10. Enter another customer.
11. Switch the XML Editor to XML view. Notice that the tags and data are

entered for you.

8 Module 5: Using XML with ADO .NET (Prerelease)

What Are Strongly-Typed DataSets?

What are Strongly-Typed datasets?

! Why build a strongly-typed dataset

" Save data and its definition for others to consume

" Validate data in a document

" Text format, operating-system agnostic

! Ways to create a strongly-typed dataset

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A strongly-typed DataSet is an instance of a DataSet for which schema
information has been defined.

When you import data from an XML file, you must know how it maps to a
relational structure. That information is usually contained in an XSD file, or in
an inline schema within the XML document. You use this schema information
to build your data structure.

After the structure is defined, Visual Studio .NET creates a class based on this
DataSet structure. The name that you give to the DataSet is the name of the
class.

When you create a new DataSet based on this class, you create a strongly-typed
DataSet that inherits the tables, columns, and other structure from the parent
class. You can then load data from an XML file into this instance of the
DataSet.

You use an XSD to create tables, columns, data types, constraints, and
relationships in a DataSet. When the structure of the DataSet is complete, you
can load it with data.

The basic working cycle for strongly-typed DataSets follows these steps:

1. Create a blank DataSet.
2. Load the schema information from an XSD file.
3. Create a new DataSet object based on the schema.

Definition of strongly-
typed DataSet

Why build a strongly-
typed DataSet?

 Module 5: Using XML with ADO .NET (Prerelease) 9

You can dynamically load a schema into a DataSet by:

! Using an XSD schema.
When you load an XSD file into a DataSet, the DataSet generates tables,
relationships, and constraints based on the data structure described in the
XSD schema. This relational representation does not capture all of the detail
that is represented by an XSD file, but uses only the information that is
required to construct tables, columns, data types, unique constraints, and
foreign keys in the relational model. The XSD schema can exist in a
separate XSD file, or as an inline schema that precedes the data in an XML
data file.

! Inferring a schema from XML data.
If you have some XML data but no schema, you can generate a schema
based on the structure of the XML data. In some cases, the data may be
ambiguous or inconsistent. Therefore, if an appropriate schema exists, you
should use this schema rather than inferring one from the XML data.

! Manually creating the structure of the DataSet by using code to build tables
and create relationships.

In the .NET world, applications communicate by sending XML documents.
When you send an XML document to someone, you must send something that
describes the structure of the data, data types, relationships, and constraints that
are contained in the document.

You provide this description by including an XSD schema or an inline schema
with your data.

Ways to dynamically
load a schema into a
dataset

Save data and its
definitions for others to
consume

10 Module 5: Using XML with ADO .NET (Prerelease)

How Schema Information Maps to Relational Structure

How XSD Information Maps to Relational Structure

" ComplexTypes map to Tables

" Nested ComplexTypes map to Nested Tables

" Key/Unique constraints map to UniqueConstraints

" KeyRef map to ForeignKeyConstraint

XSD Schema
*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you use a schema to define your DataSet, certain types of schema tags
generate certain relational objects.

Within an n XSD schema, there is an element called <complexType>. A
complexType name usually maps to a table name. A complexType definition
can contain elements and attributes, which usually map to column names.

A complexType can also contain other complexTypes. In this case, the nested
complexType maps to a child table in a parent-child relationship in the
relational model.

Schemas can contain <key> and <unique> elements, often at the end of the
schema. These map to primary keys and unique constraints in the relational
model.

<keyref> elements define the relationships between data items in the schema.
<keyref> elements map to foreign key constraints in the relational model.

Introduction

<complexType>
elements map to tables

Nested <complexType>
elements map to nested
tables

<key> and <unique>
constraints map to
UniqueConstraint

<keyref> maps to
ForeignKeyConstraint

 Module 5: Using XML with ADO .NET (Prerelease) 11

The following example shows how to use an XSD schema that defines the parts
of a relational table named �Orders.�

<!-- The element name followed by a complexType defines the �Orders� table -->

<xsd:element name="Orders" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="OrderID" type="xsd:int"/>

 <!--This next block defines the OrderDetails table -->
 <xsd:element name="OrderDetails" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="ProductID" type="xsd:int"/>
 <xsd:element name="UnitPrice" type="xsd:number"/>
 <xsd:element name="Quantity" type="xsd:short"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="OrderDate" type="xsd:dateTime" minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="CustomerID" type="xsd:string" use="prohibited" />

 </xsd:complexType>
</xsd:element>

<xsd:unique name="Orders_Constraint"> <!-- Each OrderID is unique -->
 <xsd:selector xpath=".//Orders" />
 <xsd:field xpath="OrderID" />
</xsd:unique>

<xsd:key name="OrderDetails_Constraint"> <!-- Primary key -->
 <xsd:selector xpath=".//OrderDetails" />
 <xsd:field xpath="OrderID" />
 <xsd:field xpath="ProductID" />
</xsd:key>

Example

12 Module 5: Using XML with ADO .NET (Prerelease)

Generating an XSD Schema with Visual Studio

Generating an XSD Schema with Visual Studio

" Use the Visual Studio .NET Schema Editor

" Infer a schema from an XML data file

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use tools in the Visual Studio development environment to create and
edit XSD schema documents. You can also use a simple text editor, such as
Microsoft Notepad, to create a schema document.

The XML Designer, which contains the Schema Designer, provides the
following advantages:

! Tag completion
! Color coding
! Ability to drag and drop standard XSD tags, such as elements, attributes,,

complex types, simple types, keys, and relations into an XSD schema.

If you have an XML data file and do not have a schema for the data, you can
infer an XSD schema from the data file by following these steps:

1. Add a copy of the XML document into the Solution Explorer, and then view
the document.

2. From the XML view of this document, right-click the file, and then select
Create Schema to add an XSD file to the project.

Introduction

Using the Visual Studio
Schema Editor

Inferring an XSD schema
from an XML data file

 Module 5: Using XML with ADO .NET (Prerelease) 13

Create an XSD schema by using the Visual Studio XML Editor.

! To create a new schema
1. Start Visual Studio, and then create a new empty project.
2. Click File, and then click Add New Item. Add a new XML Schema named

PurchaseOrder.xsd to the project.
3. Drag a new element from the toolbox onto the designer surface. Change the

element name to PurchaseOrder.
4. Drag a complex type to the designer surface. Change the complex type

name to Address.
5. In the Address complex type, click the first cell on the first row, and click

element in the drop-down list. This is a child element.
6. In the second cell on the first row you enter the name of the child element,

type Name.
7. In the third cell on the first row you choose the data type of the child

element, choose string.
8. Add the following three additional child elements to the Address complex

type.

Name Data Type
City string

Street

Zip

string

integer

9. To the <PurchaseOrder> element, add the following child elements.

Name Data Type
BillTo Address

ShipTo Address

10. Add a Country attribute to the Address complex type. Notice that the
<BillTo> and <ShipTo> elements are updated to reflect changes in the data
type.

11. Switch to the XML view to view the XSD schema.
12. Save PurchaseOrder.xsd, and then quit Visual Studio.

Practice

14 Module 5: Using XML with ADO .NET (Prerelease)

Lesson: Creating a Strongly-Typed DataSet

Creating Strongly-Typed DataSets

" Loading Schema into a DataSet

" Examining Metadata

" Demonstration: Examining DataSet Structure

" Loading XML into a DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A strongly-typed DataSet is one that is based on an XSD schema. In this
lesson, you will learn how to create and use strongly-typed DataSets.

After completing this lesson, you will be able to:

! Load an XSD schema into a DataSet.
! Examine metadata.
! Load data in XML format into a DataSet.

Introduction

Lesson objectives

 Module 5: Using XML with ADO .NET (Prerelease) 15

Loading a Schema into a DataSet

Loading Schema into a DataSet

" Why load an XSD schema into a Dataset?

" How to load an XSD Schema into a DataSet

Visual Basic � loading an XSD Visual Basic � loading an XSD 2
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You may need to load data from an XML data file into a DataSet object.
Before you load the data, you must create a relational data structure in the
DataSet.

Use the ReadXmlSchema method of the DataSet object to load an XSD
schema into a DataSet. This method is overloaded so that you can you use any
of the following to supply the XSD information: a filename, a stream, a
TextReader subclass object, or an XmlReader subclass object.

The following example shows the syntax for using the ReadXmlSchema
method of the DataSet object.

DataSet.ReadXMLSchema (ByVal filename as string | stream as
stream | reader as textreader | reader as xmlreader)

This code loads an XSD schema from a file into a dataset. The XSD schema
describes the structure of a purchase order.

Private Const PurchaseSchema As String = _
 "C:\sampledata\Purchase.xsd"
Private myDS as DataSet

Private Sub Load_XSD()
 Try
 myDS = New DataSet()
 Console.WriteLine ("Reading the Schema file")
 myDS.ReadXmlSchema(PurchaseSchema)
 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 End Try
End Sub

Why load an XSD
schema into a DataSet?

How to load an XSD
schema into a DataSet

Syntax

Example of loading an
XSD from a file

16 Module 5: Using XML with ADO .NET (Prerelease)

The following code loads an XSD into a DataSet by using a Stream object. In
some applications, you may receive schema information in the form of a
stream, from a Web service, or another Internet application.

Private Const PurchaseSchema As String = _
 "C:\sampledata\Purchase.xsd"
Private myDS as DataSet

Private Sub Load_XSD()
 Dim myStreamReader As StreamReader = Nothing
 Try
 myStreamReader = New StreamReader(PurchaseSchema)
 myDS = New DataSet()
 Console.WriteLine ("Reading the Schema file")
 myDS.ReadXmlSchema(myStreamReader)
 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 Finally
 If Not myStreamReader Is Nothing Then
 myStreamReader.Close()
 End If
 End Try
End Sub

Example of loading an
XSD by using a Stream
object

 Module 5: Using XML with ADO .NET (Prerelease) 17

Examining Metadata

Examining Metadata

" Why examine dataset structure

" How to get dataset metadata

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you have loaded a schema into a DataSet object, or created an instance of
a strongly-typed DataSet subclass, you can examine the structure of the tables
and relationships in the dataset.

The dataset object contains information such as table names, column names,
and data types. You can use this information to populate user interface controls
and data displays.

You can use the following properties of the dataset object to return information
about the dataset structure

DataSet Property What this gives you

Tables property Allows you to reference the

DataTable collection of a DataSet.

Relations property Allows you to reference the
DataRelation collection of a
DataSet.

Tables.Count Returns the number of tables in a
DataSet.

Tables(index).TableName Returns the name of a table in the
DataTable Collection.

Tables(tablename | index).Columns(index) Allows you to reference the
DataColumn collection.

Tables(index).Columns(index).ColumnName Returns the name of a column.

Tables(index).Columns(index).DataType Returns the data type of a column.

Tables(index).Columns.Count Returns the number of columns in a
table.

Why examine DataSet
structure?

How to get DataSet
metadata

18 Module 5: Using XML with ADO .NET (Prerelease)

The following example prints out the structure of a DataSet named myDS.

Private Sub DisplayTableStructure()

 Console.WriteLine("Table structure")

 'Print the number of tables
 Console.WriteLine("Tables count=" & myDS.Tables.Count.ToString())

 'Print the table and column names
 Dim i, j As Integer

 For i = 0 To (myDS.Tables.Count - 1)
 'Print the table names
 Console.WriteLine("TableName='" & myDS.Tables(i).TableName & "'.")
 Console.WriteLine("Columns count=" & myDS.Tables(i).Columns.Count.ToString())

 For j = 0 To (myDS.Tables(i).Columns.Count - 1)
 'Print the column names and data types
 Console.WriteLine(vbTab & _
 " ColumnName='" & myDS.Tables(i).Columns(j).ColumnName & _
 " DataType='" & myDS.Tables(i).Columns(j).DataType.ToString())
 Next
 Console.WriteLine()
 Next
End Sub

Example

 Module 5: Using XML with ADO .NET (Prerelease) 19

Demonstration: Examining DataSet Structure

In this Demonstration

" You will load an XSD schema into a
DataSet

" Use the DataSet properties and methods
to retrieve information about tables in the
DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this demonstration, you will load an XSD schema into a DataSet. You will
then use DataSet properties and methods to retrieve information about the
tables in the DataSet. (code Walk thru).

1. Open PersonPet.xsd and explain how the XSD tags are mapped to
relational objects in the DataSet.

2. Open the ExistingSchema solution file with Visual Studio.
3. Double-click the Get Schema button and show the code.
4. Point out that the ParseSchema procedure loads the DataSet myDS with

schema information from PersonPet.xsd.
5. Explain the code in the Button1_click procedure. Point out that Tables,

Columns, ColumnName, and Count properties are used to return
information about the number of tables and the columns in each table.

6. Point out that a set of nested loops is used to reference each column in each
table.

7. Run the application and observe the results.
8. Quit Visual Studio.

Introduction

20 Module 5: Using XML with ADO .NET (Prerelease)

Loading XML Data into a DataSet

Loading XML Data into a DataSet

! Simplified syntax
Dataset.ReadXML(Stream | FileName | TextReader

| XMLReader, { ByVal mode as XMLReadMode })

Visual Basic Example Visual Basic Example Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use the ReadXml method of the DataSet object to load data from an
XML file into a DataSet. When you use this method, you can load data from
XML files that contain only XML data, or from files that contain XML data as
well as an inline schema.

An inline schema is an XSD schema that appears at the beginning of the XML
data file. This schema describes the XML information that appears after the
schema in the XML file.

The ReadXml method is overloaded and can be used to read from a stream
object, an XML file, a TextReader subclass object, or an XmlReader subclass
object.

Dataset.ReadXml(Stream | FileName | TextReader | XmlReader, {
ByVal mode as XmlReadMode })

Use the XmlReadMode parameter to specify what the XML file contains and
what information should be loaded from the file. This parameter is optional. If
no XmlReadMode value is supplied, the default value Auto is used.

The following table shows the values for the XmlReadMode parameter of the
ReadXml method of the DataSet object.

XmlReadMode value Description

ReadSchema Reads any inline schema and then loads the schema and

data.

• If the DataSet already contains a schema, any new
tables that are defined by an inline schema are added
to the DataSet.

• If the inline schema defines a table that is already in
the DataSet, an exception is thrown.

• If the DataSet does not contain a schema, and there
is no inline schema, no data is read.

Loading data and
schema by using the
Dataset.ReadXML
method

Simplified syntax

ReadMode parameter
values

 Module 5: Using XML with ADO .NET (Prerelease) 21

XmlReadMode value Description

IgnoreSchema Ignores any inline schema and loads data into the existing

DataSet. Any data that does not match the existing schema
is discarded.

InferSchema Ignores any inline schema and infers a new schema based
on the structure of the XML data. If the DataSet already
defines a schema, tables are added to this schema.

The data is then loaded into the DataSet.

DiffGram Reads a DiffGram and adds the data to the current schema
in the DataSet.

Fragment Reads XML fragments and appends data to appropriate
DataSet tables. This setting is typically used to read XML
data generated directly from Microsoft SQL Server�.

Auto Examines the XML file and chooses the most appropriate
option.

• If the DataSet contains a schema or the XML
contains an inline schema, ReadSchema is used.

• If the DataSet does not contain a schema and the
XML does not contain an inline schema,
InferSchema is used.

For best performance, specify an XmlReadMode rather
than using Auto.

The following example first loads a schema into a new DataSet by using the
ReadXmlSchema method, and then loads the data from an XML file by using
the ReadXml method with the IgnoreSchema option of the XmlReadMode
parameter.

Private Const PurchaseSchema As String = _
 "C:\sampledata\Purchase.xsd"

Private Sub ReadXmlDataOnly()
 Try
 myDS = New DataSet()
 Console.WriteLine("Reading the Schema file")
 myDS.ReadXmlSchema(PurchaseSchema)

 Console.WriteLine("Loading the XML data file")
 myDS.ReadXml("C:\sampledata\PurchaseData.xml", _
 XmlReadMode.IgnoreSchema)

 DataGrid1.DataSource = myDS.Tables(1)

 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 End Try
End Sub

Example of loading a
schema and data into a
DataSet

22 Module 5: Using XML with ADO .NET (Prerelease)

The following example reads both inline schema and XML data from an XML
file into a DataSet. In this case, PurchaseOrder.xml contains an inline schema
as well as XML data.

Private Sub ReadXmlDataAndSchema()
 Try
 myDS = New DataSet()

 myDS.ReadXml("C:\sampledata\PurchaseOrder.xml", _
 XmlReadMode.ReadSchema)

 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 End Try
End Sub

The following example shows how to infer a schema from XML data. In this
example, PurchaseOrder.xml contains XML data but no inline schema. When
the data is read into a DataSet, the DataSet infers a schema from the structure
of the XML data.

Private Sub ReadXmlDataInferSchema()
 Try
 myDS = NEW DataSet()

 myDS.ReadXml("C:\sampledata\PurchaseOrder.xml", _
 XmlReadMode.InferSchema)

 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 End Try
End Sub

Example of reading
inline schema and XML
data

Example of inferring a
schema

 Module 5: Using XML with ADO .NET (Prerelease) 23

Lesson: Writing XML from a DataSet

Lesson: Writing XML from a DataSet

" Writing schema to a file, reader, or stream

" Writing DataSet information to a file or stream

" Writing DataSet changes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson you will learn how to write data in XML format from a DataSet.

After completing this lesson, you will be able to:

! Write a schema to a file, reader, or stream.
! Write information in a DataSet object to a file or stream.
! Write DataSet changes.

Introduction

Lesson objectives

24 Module 5: Using XML with ADO .NET (Prerelease)

Writing Schema to a File, Reader, or Stream

Writing schema to a file, reader, or stream

" Why write out schema information to a DataSet?

" Using the WriteXMLSchema method of the DataSet
object

" Using the GetXML method of the DataSet object

Visual Basic Example Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

An application may create and populate a DataSet from several different
sources. Therefore, the structure of the DataSet may be fairly complex.

If a DataSet is required to run an application in the future, you may want to
save the structure and data that is contained in the DataSet to one or more files.
By using this strategy, you can easily recreate the structure of the DataSet or
construct a new strongly-typed DataSet from the XSD file and then load the
data when it is needed. You can use two different methods of the DataSet
object to generate an XSD file.:

! WriteXmlSchema
! GetXmlSchema

You can use the WriteXmlSchema method of the DataSet object to save
DataSet schema to an XSD file, stream, or reader object. This method takes a
single parameter that specifies the destination of the schema information.

The following example shows the syntax for the WriteXmlSchema method of
the DataSet object.

WriteXmlSchema (ByVal filename As String | stream As Stream |
writer As TextWriter | writer As XmlWriter)

Why write out schema
information from a
DataSet?

Using the
WriteXmlSchema method
of the DataSet object

Syntax

 Module 5: Using XML with ADO .NET (Prerelease) 25

This code sample loads a DataSet by using an inline schema and data from an
XML file. The schema is then saved to an XSD file by using the
WriteXmlSchema method of the DataSet object.

Private Sub SaveXSDSchema()
 Try
 myDS = New DataSet()

 'Load an inline schema and data from an XML file
 myDS.ReadXml("C:\sampledata\PurchaseOrder.xml", _
 XmlReadMode.ReadSchema)

 'Save the schema to an XSD file
 myDS.WriteXmlSchema("C:\sampledata\POSchema.xsd")

 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 End Try
End Sub

To extract schema information from a DataSet and store it as a string, use the
GetXmlSchema method of the DataSet object.

Public Function GetXmlSchema() as String

This method has no parameters.

The following code fragment uses the GetXmlSchema method of the DataSet
object to generate a string containing schema information.

Private Sub XSDSchemaToString()
 Try
 Dim StrPurchaseSchema as String
 myDS = New DataSet()

 'Load an inline schema and data from an XML file
 myDS.ReadXml("C:\sampledata\PurchaseOrder.xml", _
 XmlReadMode.ReadSchema)

 'Get the schema from the DataSet and load it
 'into a string
 StrPurchaseSchema = myDS.GetXmlSchema()

 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 End Try
End Sub

Example

Using the
GetXmlSchema method
of the DataSet object
Syntax

Example

26 Module 5: Using XML with ADO .NET (Prerelease)

Writing DataSet Information to a File or Stream

! Writing DataSet Information to a File or Stream
Overloads Public Sub WriteXml (ByVal filename as

String | stream as Stream | writer as XmlWriter |
writer as TextWriter, {ByVal mode as
XmlWriteMode})

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can write data and schema information from a DataSet to a file or stream
by using the WriteXml method of the DataSet object.

The following example shows partial syntax for the WriteXml method of the
DataSet object.

Overloads Public Sub WriteXml (ByVal filename As String |
stream As Stream | writer as TextWriter | writer as XmlWriter,
{ByVal mode As XmlWriteMode})

When you use the WriteXml method, you can specify an optional value for the
XmlWriteMode parameter. This parameter specifies whether to generate a file
that contains only XML data, XML data with an inline XSD schema, or a
DiffGram.

The following table describes the different values for the XmlWriteMode
parameter of the WriteXml method of the DataSet object.

XmlWriteMode value What is generated

IgnoreSchema An XML file containing the data from a DataSet. No

schema information is included. If the DataSet is empty, no
file is created.

WriteSchema An XML file containing an inline schema and the data from
a populated DataSet. If the DataSet contains only schema
information, an inline schema is written to the output file. If
the DataSet does not include schema information, no file is
created.

DiffGram An XML file in the form of a DiffGram, containing both
the original and current values for the data.

Introduction

Partial syntax

XmlWriteMode values

 Module 5: Using XML with ADO .NET (Prerelease) 27

The following example saves the data stored in a DataSet as an XML file, but
does not write any schema information.

Private Sub SaveXMLDataOnly()
 Try
 Dim StrPurchaseSchema as String
 myDS = New DataSet()

 'Load an inline schema and data from an XML file
 myDS.ReadXml("C:\sampledata\PurchaseOrder.xml", _
 XmlReadMode.ReadSchema)

 'Save the data portion of the DataSet to a file
 myDS.WriteXml("C:\sampledata\CurrentOrders.xml", _
 XmlWriteMode.IgnoreSchema)

 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 End Try
End Sub

Example of writing XML
data to a file

28 Module 5: Using XML with ADO .NET (Prerelease)

Demonstration

In this Demonstration

" You will create a new DataSet object,
tables, and columns

" Populate the DataSet with data

" Save the contents of the DataSet as an
XML file with an inline schema

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This demonstration:

! Creates a new DataSet object, creates tables and columns
! Populates the DataSet with data
! Saves the entire contents of the DataSet as an XML file with an inline

schema

 Module 5: Using XML with ADO .NET (Prerelease) 29

Writing DataSet Changes

Writing DataSet Changes

" What is a diffgram?

" Creating a diffgram

Visual Basic Example Example of DiffGram
*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataSet is a local information cache. During the lifetime of an application,
the data rows in the DataSet are often modified or deleted, and new rows may
be added.

Although you can send changes in a DataSet back to the database by using an
OleDbConnection or SqlConnection object and an OleDbDataAdapter or
SqlDataAdapter object, not every application uses a database to store and
retrieve information. You may want to store the changes in an XML file.

A salesperson has an application that loads a product stock list from an XML
file that he receives in e-mail each morning. The application generates a
DataSet from this file. During the day, the sales application is not connected to
the Internet. At the end of the day, the salesman uses the application to generate
an XML document that reflects the changes that he made to the original
DataSet, and then sends this file in e-mail to the regional sales manager.

What is a DiffGram

A diffgram is an XML format, such as a file or stream, that represents changes
made to a DataSet. It contains the original and current data for an element or
attribute, and a unique identifier that associates the original and current versions
of an element or attribute to each other.

A DiffGram is useful when you want to send data across a network and
preserve the various versions of the data (Original or Current), as well as the
Row State values (Added, Modified, Deleted, Unchanged) of the DataRows in a
DataSet.

Why save DataSet
changes?

Scenario

30 Module 5: Using XML with ADO .NET (Prerelease)

In the CustomerDataSet, the row with a CustomerID of ALFKI was modified.
In the resulting DiffGram, the new version of the row appears at the top of the
document and the original version appears inside the <diffgr:before> tag near
the end of the document.

<diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <CustomerDataSet>
 <Customers diffgr:id="Customers1"msdata:rowOrder="0"
 diffgr:hasChanges="modified">
 <CustomerID>ALFKI</CustomerID>
 <CompanyName>New Company</CompanyName>
 </Customers>
 <Customers diffgr:id="Customers2" msdata:rowOrder="1">
 <CustomerID>ANATR</CustomerID>
 <CompanyName>Ana Trujillo Emparedados y
helados</CompanyName>
 </Customers>
 </CustomerDataSet>

 <diffgr:before>
 <Customers diffgr:id="Customers1" msdata:rowOrder="0">
 <CustomerID>ALFKI</CustomerID>
 <CompanyName>Alfreds Futterkiste</CompanyName>
 </Customers>
 </diffgr:before>
</diffgr:diffgram>

To generate a DiffGram from a DataSet, set the WriteXml method of the
DataSet object with the XmlWriteMode parameter set to DiffGram.

Private Sub SaveDataSetChanges()
 Try
 Dim StrPurchaseSchema as String
 myDS = New DataSet()

 'Load an inline schema and data from an XML file
 myDS.ReadXml("C:\sampledata\Customers.xml", _
 XmlReadMode.ReadSchema)

 'Make a change to information in the DataSet
 'Delete a row
 myDS.Tables(1).Rows(1).Remove

 'Save the data portion of the DataSet as a Diffgram
 myDS.WriteXml("C:\sampledata\CustomerChanges.xml", _
 XmlWriteMode.DiffGram)

 Catch e as Exception
 Console.WriteLine("Exception: " & e.ToString())
 End Try
End Sub

Example of a DiffGram

Creating a DiffGram

Example

 Module 5: Using XML with ADO .NET (Prerelease) 31

Lesson: Using the XmlDataDocument Object

! Using the XMLDataDocument Object

" What is an XMLDataDocument object?

" Synchronizing an XMLDataDocument with a DataSet

" Providing a hierarchical view of existing relational data

" How to provide a relational view of XML data

" Applying an XSL/T stylesheet to a DataSet

" Performing an XPATH query on a DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The XmlDataDocument object allows you to load relational data or XML data,
and process the data by using World Wide Web Consortium (W3C) Document
Object Model (DOM) techniques.

After completing this lesson, you will be able to:

! Explain what an XmlDataDocument object is.
! Synchronize an XmlDataDocument with a DataSet.
! Diagram a hierarchical view of existing relational data.
! Provide a relational view of XML data.
! Apply an XSL/T style sheet to a DataSet.
! Perform an XPath query on a DataSet.

Introduction

Lesson objectives

32 Module 5: Using XML with ADO .NET (Prerelease)

What Is an XML DataDocumentObject?

! What is an XMLDataDocument object?

! Why use an XMLDataDocument object?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The ADO.NET DataSet object provides you with a relational representation of
data. For hierarchical data access, you can use the XML classes that are
available in the .NET Framework.

Historically, these two representations of data have been used separately.
However, the .NET Framework enables access to both the relational and
hierarchical representations of the same data by using the DataSet object and
the XmlDataDocument object, respectively.

The XmlDataDocument exposes a dataset as an XML Document Object
Model (DOM) tree. This enables you to process the data as if it were an XML
document, even if the dataset was populated with relational data.

The XmlDataDocument object inherits many of its methods and properties
from the XmlDocument object. As a result, you can use any of the methods of
the XmlDocument object to manipulate the XML representation of the data in
a dataset.

Introduction

Definition

 Module 5: Using XML with ADO .NET (Prerelease) 33

There are three main reasons for using an XmlDataDocument object in
conjunction with a DataSet, rather than using a DataSet alone:

! The XmlDataDocument enables you to load either relational data or XML
data and manipulate that data by using the W3C DOM. The
XmlDataDocument object has a DataSet property. By setting this property
to an existing DataSet, you can view relational data as an XML hierarchy,
and perform XML-oriented operations such as navigating XML nodes,
querying nodes using XPath, and transforming the data using an XSL/T
style sheet.

! By synchronizing a DataSet with an XmlDataDocument, changes made to
the DataSet will be reflected in the XmlDataDocument, and vice versa.

! Loading an XML file into an XmlDataDocument preserves all of the
schema detail that is contained in the original file. If you load or infer an
XSD schema into a DataSet object, only the information that is required to
create a relational representation of the data is captured. Any additional
detail is discarded.

Why use an
XMLDataDocument
object?

34 Module 5: Using XML with ADO .NET (Prerelease)

Synchronizing an XmlDataDocument with a DataSet

! Synchronizing an XMLDataDocument with a DataSet

" To allow an XmlDataDocument and a DataSet to
manipulate the same data.

" To provide a hierarchical view of existing relational
data. This view allows you to perform XML operations
such as XPath queries and XSL/T transformations.

" To provide a relational view of hierarchical (XML) data.
This view allows you to load XML data into relational
tables.

*****************************ILLEGAL FOR NON-TRAINER USE******************************

There are three reasons to synchronize an XmlDataDocument object with an
existing DataSet:

1. To allow an XmlDataDocument and a DataSet to manipulate the same
data.

2. To provide a hierarchical view of existing relational data. This view allows
you to perform XML operations such as XPath queries and XSL/T
transformations.

3. To provide a relational view of hierarchical (XML) data. This view allows
you to load XML data into relational tables.

There are two ways of creating a new XmlDataDocument and associating it
with an existing DataSet:

! Use an existing DataSet in the constructor for the XmlDataDocument.
The following example shows how to create a new XmlDataDocument object.

Dim xmlDoc As XmlDataDocument
xmlDoc = New XmlDataDocument(myDataSet)

Why synchronize?

Associating an
XMLDataDocument with
a DataSet

Example

 Module 5: Using XML with ADO .NET (Prerelease) 35

Providing a Hierarchical View of Existing Relational Data

! Providing a hierarchical view of existing relational
data

1. Populate a DataSet with both schema and data
2. Synchronize it with a new XmlDataDocument.

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

If the source of your data is an existing DataSet, you can already work with the
data tables and easily modify, create, and delete data rows and values. If you
want to perform XML -related operations on the data, you must associate the
DataSet with an XmlDataDocument.

In this case, the data source is an existing DataSet. If you want to use XML
operations on a relational DataSet:

1. Populate a DataSet with both schema and data.
2. Synchronize it with a new XmlDataDocument.

The following example shows how to use an XmlDataDocument object to fill
an existing DataSet with both schema and data.

Dim xmlDoc As XmlDataDocument = New XmlDataDocument
Dim myDataSet As New DataSet()

'Fill a DataSet with schema and data
myDataSet.ReadXmlSchema("c:\PurchaseOrder.xsd")
myDataSet.ReadXML("C:\PurchaseData.xml", _
 XmlReadMode.IgnoreSchema)

'Create a new XmlDataDocument by using an existing DataSet in
'the constructor.

Dim xmlDoc As XmlDataDocument = New
XmlDataDocument(myDataSet)

Introduction

How to provide a
hierarchical view of
existing relational data

Example

36 Module 5: Using XML with ADO .NET (Prerelease)

How to Provide a Relational View of XML Data

! How to Provide a Relational View of XML Data

! Partial Syntax:
XMLDataDocument.Load(filename as string |

reader as XMLReader)

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create a new XmlDataDocument object, you can load it with data
from an XML file, or you can associate it with data in an existing DataSet. If
you load data directly from an XML file, you can operate on the data by using
XML techniques. You do not need to synchronize with a DataSet.

However, if you want to operate on the same data by using relational
techniques, you must first synchronize the XmlDataDocument with a DataSet
that contains schema information.

When you create a new XmlDataDocument object, you can load it with data
from an XML file by using the Load method.

XmlDataDocument.Load(filename As String | reader As XmlReader)

The following example shows how to fill an XmlDataDocument object from
an XML document.

myXMLDataDocument.Load("C:\Books.xml")

Introduction

How to load data into an
XmlDataDocument

Partial syntax

Example

 Module 5: Using XML with ADO .NET (Prerelease) 37

In this case, the data source is an XML file. If you want to perform relational
operations on the XML representation of the data:

1. Populate a DataSet with schema only, such as a strongly-typed DataSet.
2. Synchronize the DataSet with an XmlDataDocument.
3. Load the XmlDataDocument from an XML document by using the Load

method.

Be aware that you cannot load an XmlDataDocument if it is synchronized with
a DataSet that already contains data. This will cause an exception to be thrown.

Dim myDataSet As DataSet = New DataSet()

' Populate the DataSet with schema, but not data.
myDataSet.ReadXmlSchema("c:\PurchaseOrder.xsd")

' Create a new XmlDataDocument that uses this DataSet schema
Dim xmlDoc As XmlDataDocument = New XmlDataDocument(myDataSet)

' Load the data into the XmlDataDocument from an XML file
xmlDoc.Load("C:\PurchaseData.xml")

How to provide a
relational view of
existing hierarchical
(XML) data

Example

38 Module 5: Using XML with ADO .NET (Prerelease)

Applying an XSLT Style Sheet to a DataSet

! Applying an XSLT Stylesheet to a DataSet

! Using an XmlDataDocument to apply XSLT Stylesheets
to a dataset

! Additional objects for applying XSLT Stylesheets to a
dataset

Visual Basic Example XSLT Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you apply an Extensible Stylesheet Language Transformations (XSLT)
style sheet to transform data, the source data is usually in XML format. To use
an XSLT style sheet with a dataset, you can follow these two steps:

1. Generate XML data from the dataset,
2. Apply the XSLT style sheet to the XML data.

As a more efficient alternative, you can apply an XSLT style sheet directly to
the data in a DataSet without having to first create an XML file. This is useful
when the source of the data is a relational database, or other non-XML source.

By associating an existing DataSet with an XmlDataDocument, you can
transform the data without creating an intermediate XML file. The
XmlDataDocument acts as the input to the transformation.

To help you perform XSLT transformations, you can use the following objects
and methods.

Object or method Purpose

XmlDataDocument The XmlDataDocument associated with

an existing DataSet and acts as the input
to the transform.

XslTransform.Load(stylesheet) Load the style sheet or transform to be
applied to the source data.

XslTransform.Transform(output file or
writer, parameter list, encoding format)

This method applies the style sheet and
saves the result to a file, stream, or writer
object.

XmlTextWriter This object writes XML text to a file or
stream. It contains methods to add nodes
and format the output.

Introduction

Using an
XmlDataDocument to
apply XSLT style sheets
to a DataSet

Additional objects for
applying XSLT style
sheets to a DataSet

 Module 5: Using XML with ADO .NET (Prerelease) 39

To apply an XSLT style sheet to a DataSet, use the following approach:

1. Create and populate a DataSet with both schema and data. The source could
be an XML file, a relational database, or a combination.

2. Create a new XmlDataDocument object and associate (synchronize) it with
the DataSet.

3. Create an XslTransform object and load a style sheet into the object.
4. Use the Transform method of the XslTransform object to apply the style

sheet and save the results to a file, stream, or writer object. In this step, the
XmlDataDocument is used as the input for the transform.

The following example populates a DataSet with tables and relationships,
synchronizes the DataSet with an XmlDataDocument, and writes a portion of
the DataSet as an HTML file by using an XSLT style sheet.

Public Shared Sub Main()

 'Create and populate a DataSet from SQL Server

 Dim nwindConn As SqlConnection = New SqlConnection _
 ("Data Source=localhost;Initial Catalog=northwind;Integrated Security=SSPI")
 nwindConn.Open()
 Dim myDataSet As DataSet = New DataSet("CustomerOrders")

 Dim custDA As SqlDataAdapter = New SqlDataAdapter _
 ("SELECT * FROM Customers", nwindConn)
 custDA.Fill(myDataSet, "Customers")

 Dim ordersDA As SqlDataAdapter = New SqlDataAdapter _
 ("SELECT * FROM Orders", nwindConn)
 ordersDA.Fill(myDataSet, "Orders")

 nwindConn.Close()

 myDataSet.Relations.Add("CustOrders", _
 myDataSet.Tables("Customers").Columns("CustomerID"), _
 myDataSet.Tables("Orders").Columns("CustomerID")).Nested = true

 'Create a new XmlDataDocument and synchronize it with the DataSet
 Dim xmlDoc As XmlDataDocument = New XmlDataDocument(myDataSet)

 'Create an XslTranform object and load a stylesheet
 Dim xslTran As XslTransform = New XslTransform()
 xslTran.Load("mytransform.xsl")

 'Apply the stylesheet using the XmlDataDocument as input
 'Capture the results in an XmlTextWriter object
 Dim writer As XmlTextWriter = New XmlTextWriter("xslt_output.html", _
 System.Text.Encoding.UTF8)
 xslTran.Transform(xmlDoc, Nothing, writer)
 writer.Close()
End Sub

How to apply an XSLT
transform (Procedure)

Example

40 Module 5: Using XML with ADO .NET (Prerelease)

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="CustomerOrders">
 <html>
 <style>
 body {font-family:verdana;font-size:9pt}
 td {font-size:8pt}
 </style>
 <body>
 <table border="1">
 <xsl:apply-templates select="Customers"/>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="Customers">
 <tr>
 <td>
 <xsl:value-of select="ContactName"/>,
 <xsl:value-of select="Phone"/>

 </td>
 </tr>
 <xsl:apply-templates select="Orders"/>
 </xsl:template>

 <xsl:template match="Orders">
 <table border="1">
 <tr>
 <td valign="top">
 Order:
 </td>
 <td valign="top">
 <xsl:value-of select="OrderID"/>
 </td>
 </tr>
 <tr>
 <td valign="top">
 Date:
 </td>
 <td valign="top">
 <xsl:value-of select="OrderDate"/>
 </td>
 </tr>
(Code continued on following page.)

Style sheet used in the
previous example

 Module 5: Using XML with ADO .NET (Prerelease) 41

 <tr>
 <td valign="top">
 Ship To:
 </td>
 <td valign="top">
 <xsl:value-of select="ShipName"/>

 <xsl:value-of select="ShipAddress"/>

 <xsl:value-of select="ShipCity"/>,
 <xsl:value-of select="ShipRegion"/>
 <xsl:value-of select="ShipPostalCode"/>

 <xsl:value-of select="ShipCountry"/>
 </td>
 </tr>
 </table>
 </xsl:template>

</xsl:stylesheet>

42 Module 5: Using XML with ADO .NET (Prerelease)

Performing an XPath Query on a DataSet

! Use an Xpath query to

" Extract certain parts of an XML file

" Navigate the nodes in the DOM representation of XML
data

" Extract a subset of information from a DataSet

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use an XPath query to extract certain parts of an XML file or navigate
the nodes in the DOM representation of the XML data. If the data that you want
to query is stored in a DataSet, you could create a new XML file by using the
WriteXml method of the DataSet object.

However, you can eliminate this step by synchronizing the DataSet with an
XmlDataDocument and then performing the query directly on the
XmlDataDocument.

You may need to extract a subset of information that meets certain criteria from
a DataSet. One way of filtering the information is by performing an XPath
query by using the SelectNodes or SelectSingleNode methods of the
XmlDataDocument class.

For example, for a DataSet that contains three related tables, Customers,
Orders, and OrderDetails, you can use an XPath query to select all customers
who ordered product number 35. This approach may be easier than processing
the data relationally, that is by using a SQL statement with two join clauses or
the Select method of the DataTable object.

To help you perform XPath queries, you can use the following objects and
methods.

Object or method Purpose

XmlDataDocument.SelectNodes(xPath) Select all the nodes in the XML that

match the XPath expression.

XmlDataDocument.SelectSingleNode(xPath) Select the first nodes in the XML that
match the XPath expression.

XmlNodeList Use this collection to store the nodes
selected by the XPath query.

Introduction

Why perform XPath
queries on a DataSet?

Additional objects
needed to perform
XPath queries

 Module 5: Using XML with ADO .NET (Prerelease) 43

To perform an XPath query on a DataSet, use the following approach:

1. Create and populate a DataSet with both schema and data. The source could
be an XML file, an XSD file, a relational database, or a combination.

2. Create a new XmlDataDocument object and associate (synchronize) it with
the DataSet.

3. Use the SelectNodes or SingleSelectNode method of the
XmlDataDocument with an XPath expression to return nodes that match
the criteria described by the XPath. Store the results in an XmlNodeList.

4. Use a node object to process each node in the XMLNodeList.

This example constructs a DataSet from an XML file that contains an inline
schema. It synchronizes the DataSet with an XmlDataDocument. The code
then selects all Customer nodes where there is a grandchild node containing an
order for ProductID number 35.

Public Shared Sub Main()

 'Create a new DataSet and load it with schema and data
 Dim myDataSet as New DataSet
 myDataSet.ReadXml("C:\sampledata\Customers.xml", XmlReadmode.ReadSchema)

 'Create a new XmlDataDocument and synchronize it with the DataSet
 Dim xmlDoc As XmlDataDocument = New XmlDataDocument(myDataSet)

 'Perform an XPath query and store the results in an XmlNodeList
 Dim nodeList As XmlNodeList = xmlDoc.DocumentElement.SelectNodes(_
 "descendant::Customers[*/OrderDetails/ProductID=35]")

'Process and print out information from each node
Dim myRow As DataRow
Dim myNode As XmlNode

 For Each myNode In nodeList
 myRow = xmlDoc.GetRowFromElement(CType(myNode, XmlElement))

 If Not myRow Is Nothing Then Console.WriteLine(myRow(0).ToString())
 Next
 End Sub

How to select XML
nodes using
XPath(Procedure)

Example

44 Module 5: Using XML with ADO .NET (Prerelease)

Review

! What are the ways that you can generate a schema using Visual
Studio .NET?

! An Xpath query returns results from a SQL Server database. How
can you load the results from an Xpath query from a SQL Server
into a DataSet?

! Should you create xml files with inline schema or generate a
separate XSD file?

! You have data stored in a relational database. You want to retrieve
this data and filter the data by using an XSLT before sending it to a
client. How can you do this?

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. You want to create an XSD schema from data in an XML document. The
document does not contain an inline schema, and no external XSD
document exists. What are the ways that you can generate a schema using
Visual Studio .NET?
You can create a schema by using the XML Designer. First add the
XML file to the project, and then infer a schema using visual tools.

2. An XPath query returns results from a SQL Server database. How can you
load the results into a DataSet?
SQL server generates document fragments rather than well-formed
XML documents as the result of sql-xml queries. Use the ReadXml
method of the DataSet object with the XmlReadMode parameter set to
fragment.

3. Should you create XML files with inline schema, or generate a separate
XSD file?
It depends. If you are shipping data to a client who does not know the
structure of the data, it is a good idea to use an inline schema. The
inline schema is easy to read or ignore. It is somewhat faster to load
data and schema from a single file rather than from separate files. If
you have a choice whether to use separate files or inline schema, use an
inline schema. You might want to use separate files when you have
multiple sets of information that conform to the same schema, for
example, a standard auto parts form that always looks the same.

 Module 5: Using XML with ADO .NET (Prerelease) 45

4. You have data stored in a relational database. You want to retrieve this data
and filter the data by using an XSLT style sheet before sending it to a client.
How can you do this?
First, load the data from the database into a DataSet. Next, create an
XmlDataDocument object and synchronize it with the DataSet. Use the
XmlDataDocument as the information source for an XSLT transform
that uses a style sheet to transform the data.
If the data is stored in an XML data file to begin with, you can apply
the style sheet in the browser. Because the data is stored relationally in
a DataSet, you must first generate a hierarchical representation by
loading the information into an XmlDataDocument object before you
can transform it.

46 Module 5: Using XML with ADO .NET (Prerelease)

Lab 5: Working with XML Data in ADO .NET

Lab x: title

! Exercise_#:_Title

! Exercise_#:_Title

! Exercise_#:_Title

! Exercise_#:_Title

! Exercise_#:_Title

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

! Create XSD schemas and XML data files by using Visual Studio .NET.
! Load schema and data into a DataSet.
! Write XSD schema and XML data to a file.
! Process relational data by using XML techniques.

Before working on this lab, you must have:

! Basic knowledge about the structure of an XML document.
! Basic knowledge about the purpose of an XSD schema.

Objectives

Prerequisites

For more information

Estimated time to
complete this lab: 90
minutes

 Module 5: Using XML with ADO .NET (Prerelease) 47

Exercise 1
Generating a DataSet Schema by Using Visual Studio XML Designer

In this exercise, you will infer a DataSet schema from an XML data file. You
will use the tools in the Visual Studio XML Designer to import the data and
infer a schema for the data. After you generate a schema, you will use it to
display data from the file in a data grid control.

! To infer a schema from an XML file by using the XML Designer
1. Start Visual Studio, and then in Microsoft Windows® create a new project

named CreateSchema.
2. Drag install folder/labs/lab05/customers.xml into the new project.

Alternatively, you can click File, and then click Add Existing Item� to
add customers.xml to the project.

3. Examine the structure of the file. It contains customer, order, and order
detail data, but no explicit definition of a schema. Notice that hierarchical
data can be mapped to three tables with parent-child relationships in a
relational model.

4. Switch to the Data View of the XML Designer.
5. Notice that the XML Designer has identified the three tables. Use the Data

Grid to �drill through� the parent-child relationship of the three tables.
6. Right-click the document, and then click Create Schema to generate an

XSD file based on the current data.
7. In the Solution Explorer, double-click customers.xsd.
8. Switch to the XML view and examine the schema generated by Visual

Studio.

! To create a new DataSet by using the XML Designer
1. Switch to the DataSet view of the Customers.xsd schema.
2. Right-click the design surface, and then click Generate DataSet.
3. Click the View All Files button in the Solution Explorer. Confirm that a

class was generated for the DataSet.

48 Module 5: Using XML with ADO .NET (Prerelease)

! Display DataSet data in a data grid control
4. In Project Explorer, double-click Form1.
5. Drag and drop a new DataGrid to the form. Set the Dock property of the

Grid to Fill to dock the DataGrid to the entire form.
6. Drag and drop a new DataSet from the toolbox to the form. Base this

DataSet on the CreateSchema.CustomerData DataSet.
7. Right-click the DataGrid on the form. Click properties, and then set the

data source property to CustomerData1.Customers. Note that the
Customers table is the parent of the Orders and OrderDetails tables.

8. Examine the DataGrid on the form. Note that Visual Studio uses the schema
information to populate the column headers automatically.

9. View the code for the form. Expand the code generated by the Windows
form designer. Find the following code:
 �InitializeComponent()�

10. Add the following code after the call to InitializeComponent().

Me.CustomerDataSet1.ReadXml(�\Program
Files\MSDNTrain\2389\Labs\Lab05\customers.xml�)

11. Save, build, and then run the application.

 Module 5: Using XML with ADO .NET (Prerelease) 49

Exercise 2
Creating and Loading a DataSet from XML

In this exercise, you will load schema information into a DataSet and then load
the data from an XML file.

A salesman uses a Windows application to collect orders for products that are
sold by Northwind Traders. The salesman does not have a reliable Internet
connection. Instead, the salesman loads customer and order information from an
XML file. This XML file contains only sales data; a separate file contains
schema information. You will build a part of a Windows application that allows
you to load and view the existing customer and order information.

! To the Customer Information form
1. Create a new Visual Basic or Microsoft Visual C#� Windows application

named LoadingDataSets.
2. Set the following properties of the Form1.

Property Value

Text Sales Information

3. Add a DataGrid control with the following characteristics:

Property Value

Anchor Top, Left

Dock Left

4. Add a button to the form with the following characteristics:

Property Value

Name btnLoadData

Text Display Customer Information

5. Add a button to the form with the following characteristics:

Property Value

Name btnClose

Text Close

6. Add code to the btnClose_Click event to close the application.

Scenario

50 Module 5: Using XML with ADO .NET (Prerelease)

! To declare namespaces, variables, and constants
• Add the following declarations to the form.

Variable or
constant name

Type

Value

myDocument String Constant \Program Files\MSDNTrain\2389

\Labs\Lab05\customers.xml

myLoadSchema String Constant \Program
Files\MSDNTrain\2389\Labs\Lab05\cust
omers.xsd

myDS DataSet Variable none

! To create and load a DataSet
1. Create a Try/Catch block for the procedure.
2. Create a new instance of a DataSet named myDS.
3. Write code to load a schema file into the DataSet. Use the information in

the following table. You may want to code this step as a separate subroutine.
Make sure to include code to handle errors. (Hint: use the ReadXmlSchema
method.)

Parameter Value

File variable myLoadSchema

4. Write code to load the XML data into the DataSet. Use the information in
the following table. (Hint: Use the ReadXml method)

Parameter Value

File variable MyDocument

XmlReadMode IgnoreSchema

5. Bind the data grid to the Customers table in the DataSet.
6. Save, build, and run the application.

! To infer a schema for the Customer DataSet
1. Modify your code to infer a schema for the XML data rather than loading a

separate schema file.
2. Save, build, and run the application.

 Module 5: Using XML with ADO .NET (Prerelease) 51

Exercise 3
Saving DataSet Schema and Data as XML

In this exercise, you will add code to the Windows application created in the
previous exercise to save the schema and data contained in the DataSet. You
will save the schema to a separate XSD file and you will save an inline schema
with an XML data file.

At the end of each business day, the salesman for Northwind traders saves sales
information to an XML file and then sends the data in an e-mail message to the
company�s central office for fulfillment. To accommodate this activity, you will
extend the Windows application to generate XML data files and XSD schema
files.

! To open the starter code
• For this exercise, you can use the code that you wrote for the previous

exercise, or you can use the project
install_path\Labs\Lab05\Solution\Ex2\xx\ where xx is VB or CS. Open the
project file in Visual Studio .NET.

! To save schema information
1. Add a button to the form with the following characteristics.

Property Value

Name btnSaveSchema

Text Save Schema

2. Add code to the Click event of this button that saves the DataSet schema.
Use the information in the following table.

File name \Program Files\MSDNTrain\2389\Labs\Lab05\

ResultSchema.xsd

3. Save, build, and then run the application.
4. Examine the resulting XSD file to confirm that it reflects the structure of the

Customers DataSet.

Scenario

52 Module 5: Using XML with ADO .NET (Prerelease)

! To save data as XML
1. Add a button to the form with the following characteristics.

Property Value

Name btnSaveData

Text Save Data

2. Add code to the Click event of this button that saves only the DataSet data.
Use the information in the following table.

File name \Program Files\MSDNTrain\2389\Labs\Lab05\ResultData.xml

3. Save, build and run the application.
4. Examine the resulting XML file to confirm it reflects the data in the

Customers DataSet.

! To save data and schema as XML

1. Modify your code to save both the DataSet data and an inline schema. Use
the information in the following table.

File name \Program Files\MSDNTrain\2389\Labs\Lab05\

ResultInlineSchema.xml

2. Save, build, and then run the application.
3. Examine the resulting XML file to confirm that it reflects the data and

schema information.

 Module 5: Using XML with ADO .NET (Prerelease) 53

If Time Permits
Processing a DataSet by Using XML Techniques

In this exercise, you will query a DataSet by using an XPath query.

A salesman for Northwind Traders often needs to know which customers have
ordered a certain product. You will examine and modify an application that
queries information loaded from an XML file into a DataSet. You will use the
XmlDataDomcument object to perform the XPath query.

! To examine the XML data file
• Open CustData.xml and examine the file.

! To examine the Common Query application
1. Open the Lab05_Ex4 Visual Basic .NET project. Note that for this exercise,

there is no C# solution.
2. Examine Form1. Note that it contains a text box in which to enter search

criteria, a list box to display search results and buttons to execute a query
and close the application.

3. Examine the code for the btnQueryByProduct_Click event. Note that the
code

• Creates and loads a DataSet from an XML file.

• Creates an XmlDataDocument and synchronizes it with the DataSet.

• Builds an XPath query string from information in the user interface.

• Executes the query and captures the results as a collection of nodes.

• Loops through the node list and populates a list box based on the results.
4. Build and run the application.
5. Enter 42 as the ProductID to search for, and then examine the results.

Scenario

54 Module 5: Using XML with ADO .NET (Prerelease)

! To execute different queries
1. Find the following line of code:

QueryString =
"descendant::Customers[*/OrderDetails/ProductID=" &
CurrentProduct.ToString() & "]"

2. Use the information in the following table to modify the query:

Query Description

"//Customers[*/OrderDetails/
ProductID=" &
CurrentProduct.ToString() &
"]"

The nodes of customers who ordered a
certain productid

This is an alternate syntax for the
original query

�//Customers� All customers

3. Try additional XPath queries and examine the results.

! To change the display information
1. Find the following line of code:

ListBox1.Items.Add(myRow(1).ToString())

2. Change the index of the myRow() collection to 2.
3. Run the application. What information is displayed in the list box? (ANS:

The Contact Name is displayed) What can you conclude from this? (ANS:
The Row object maps sub-elements at the same level to columns in a single
row)

4. Quit Visual Studio .NET

Contents

Overview 1

Lesson: Configuring a DataAdapter to
Retrieve Information 2

Lesson: Populating a DataSet by Using a
DataAdapter 12

Lab 6.1: Retrieving Data into a D
isconnected Application 26

Lesson: Configuring a DataAdapter to
Update the Underlying Data Source 44

Lesson: Persisting Changes to a Data
Source 57

Lesson: How to Handle Conflicts 70

Review 80

Lab 6.2: Retrieving and Updating
Customers and Orders Data 82

Module 6: Building
DataSets from Existing
Data Sources
(Prerelease)

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, place or event is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property..

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other relevant MS trademarks, listed
alphabetically. The publications specialist replaces this example list with the list of trademarks
provided by the copy editor. Microsoft, MS-DOS, Windows, and Windows NT are listed first,
followed by all other Microsoft trademarks listed in alphabetical order.> are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

<The publications specialist inserts mention of specific, contractually obligated to, third-party
trademarks, provided by the copy editor>

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) iii

Instructor Notes
This module teaches students . . .

After completing this module, students will be able to:

! Configure a DataAdapter to retrieve information.
! Populate a DataSet by using a DataAdapter.
! Configure a DataAdapter to modify information.
! Persist data changes to a server.
! Manage data conflicts.

To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2389A_06.ppt
! Module 6, �Building DataSets From Existing Data Sources�
! Lab 6.1, Retrieving Data into a Disconnected Application
! Lab 6.2, Retrieving and Updating Customers and Orders Data

To prepare for this module:

! Read all of the materials for this module.
! Complete the practices and labs.
! Read the latest .NET Development news at

http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28000519

Presentation:
60 Minutes

Lab:
60 Minutes

Required materials

Preparation tasks

iv Module 6: Building DataSets from Existing Data Sources (Prerelease)

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Configuring a DataAdapter to Retrieve Information
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following questions to the background
of the students in your class.
! What are some examples of when you would not want to use a

DataAdapter? Why?
Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! How do the DataSet methods GetChanges and Merge

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Practice Solution:

A disconnected application that provides read-only access to a table in the
database. For example, an application that allows the user to read the
Employees table in the Northwind database.

A disconnected application that provides full read-write access to a table. For
example, an application that allows sales people to query customer records,
update customer records, add new customers, and delete existing customers.

What is a DataAdapter?

DataAdapter Properties
and Methods

 Module 6: Building DataSets from Existing Data Sources (Prerelease) v

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What are some other business scenarios in which this functionality could be
used?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What are some other business scenarios in which this functionality could be
used?

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Questions for discussion after the practice:

! What problems did you encounter while completing this practice?

How to Create a
DataAdapter That Uses a
New SELECT Statement

How to Create a
DataAdapter That Uses
an Existing Stored
Procedure

After the practice

vi Module 6: Building DataSets from Existing Data Sources (Prerelease)

Lesson: Populating a DataSet by Using a DataAdapter
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following questions to the background
of the students in your class.
! What are the benefits of using a DataAdapter to fill a DataTable? Under

what circumstances would you want to do this?
! Why does disabling constraint checking while using the DataAdapter

improve performance?
! Are there any circumstances when you would not want to trade off

constraint checking or index maintenance for improved performance?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What are the differences between the MissingSchemaAction property and
the FillSchema method of the DataAdapter?

! When would you want to set the MissingSchemaAction property and when
would you want to call the FillSchema method?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What are the advantages or disadvantages for creating a strongly-typed
DataSet versus creating the DataColumns, DataTables, and DataRelations
programmatically?

How to Fill a DataSet
Table by Using a
DataAdapter

How to Infer Additional
Constraints for a
DataSet

How to Fill a DataSet
Efficiently

 Module 6: Building DataSets from Existing Data Sources (Prerelease) vii

Lesson: Configuring a DataAdapter to Update the Underlying Data
Source

This section describes the instructional methods for teaching each topic in this
lesson.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! Why would you use the DataAdapter to modify data rather than using the
data modification commands directly?

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

How Does the DataSet
Track Changes

What Are the Data
Modification
Commands?

How to Set the Data
Modification Commands
Using Existing Stored
Procedures With
Parameters and the
Wizard

viii Module 6: Building DataSets from Existing Data Sources (Prerelease)

Lesson: Persisting Changes to a Data Source
This section describes the instructional methods for teaching each topic in this
lesson.

Instructor Demo: Instructor runs code that has two DataGrids on a form; one
contains the original DataSet into which the instructor makes changes. The
second shows the DataSet that contains the changes.

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! Why is pointing to the rows within the original DataSet efficient?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! How is this method of updating a data source different than using the
DataAdapter and data modification commands?

Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook. To save time, you can guide students through this practice.

When to Use the
GetChanges Method of a
DataSet Object

When to Use the Select
Method

How to Update a Data
Source by Using a
DataSet

How to Accept Changes
Into the DataSet

 Module 6: Building DataSets from Existing Data Sources (Prerelease) ix

Lesson: How to Handle Conflicts
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following questions to the background
of the students in your class.
! Why does optimistic concurrency cause the potential for data update

conflicts?

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! List examples of when you would not want to use optimistic concurrency.
Transition to Practice Exercise:

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

What Conflicts Can
Occur?

How to Resolve
Conflicts

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 1

Overview

Overview of Module
! Configuring a DataAdapter to retrieve information

! Populating a DataSet by using a DataAdapter

! Configuring a DataAdapter to modify information

! Persisting data changes to a server

! How to handle data conflicts

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In the .NET environment, data can move from a central data source to a local
DataSet. In order to move the data, there must be a bridge from the data source
to the DataSet, and that bridge is the DataAdapter.

After completing this module, you will be able to:

! Configure a DataAdapter to retrieve information
! Populate a DataSet by Using a DataAdapter
! Configure a DataAdapter to modify information
! Persist data changes to a server
! Manage data conflicts

Introduction

Objectives

2 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Lesson: Configuring a DataAdapter to Retrieve
Information

! Configuring a DataAdapter to Retrieve Information

! Define a data adapter

! Define useful properties and methods of a DataAdapter
object

! Create a DataAdapter using a new connection string
and a SELECT statement

! Create a DataAdapter using an existing connection and
an existing stored procedure

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you create an instance of a DataAdapter object, you can set it up to pull
information from an existing data source.

After completing this lesson, you will be able to:

! Define a data adapter
! Define useful properties of a DataAdapter object
! Define useful methods of a DataAdapter object
! Create a DataAdapter using a new connection string and a SELECT

statement
! Create a DataAdapter using an existing connection and an existing stored

procedure

Introduction

Lesson Objective(s)

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 3

What is a DataAdapter?

! The DataAdapter class represents a set of data
commands and a database connection that you use to

" Fill a DataSet

" Update a data source

! Use the Fill method to populate a DataSet and the
Update method to map changes to the data source

! Visual Studio .NET provides two DataAdapter classes

" OleDbDataAdapter and SqlDataAdapter

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The DataSet object, which represents a local copy of data from a data source, is
one of the key innovations of the .NET Framework. By itself, it is useful for
reference. However, to serve as a true data management tool, a DataSet must be
able to interact with a data source. To accomplish this, .NET provides the
DataAdapter class.

A DataAdapter object serves as a bridge between a DataSet and a data source
for retrieving and saving data. The DataAdapter class represents a set of data
commands and a database connection you use to fill a DataSet and update the
data source. DataAdapter objects are part of the ADO.NET data providers,
which also include connection objects, data-reader objects, and command
objects.

Each DataAdapter exchanges data between a single DataTable object in a
DataSet and a single result set from a SQL statement or stored procedure.

You use DataAdapters to exchange data between a DataSet and a data source. A
common scenario is that an application reads data from a database into a
DataSet, and then writes changes from the DataSet back to the database. A
DataAdapter can, however, retrieve and update data from any data source, such
as from a BizTalk Server application to a DataSet.

Visual Studio.NET makes two primary data adapters available for use with
databases. In addition, other data adapters can be integrated with Visual Studio.
The primary data adapters are:

! OleDbDataAdapter, which is suitable for use with any data source exposed
by an OLE DB provider

! SqlDataAdapter, which is specific to SQL Server 7.0 or later database. It is
faster than the OleDbDataAdapter because it works directly with SQL and
does not go through an OLE DB layer.

Introduction

Definition

Scenario

Primary DataAdapters
for databases

4 Module 6: Building DataSets from Existing Data Sources (Prerelease)

You have a SQL table that you want to make multiple modifications to, so you
take a copy of a subset of the table, and store that copy in middle or user tier as
a DataSet.

A search function on your corporate Web site needs to return a list of matches
on a Web page. It would be inappropriate to use a DataAdapter and DataSet
because the results will be thrown away as soon as the page is created. There is
no point in caching this data in a DataSet.

Group Discussion: When would you use a DataAdapter? Examples from each
participant�s company.

Example

Non-example

Practice

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 5

DataAdapter Properties and Methods

! DataAdapter Properties
" SelectCommand
" InsertCommand
" UpdateCommand
" Deletecommand

! Methods a DataAdapter uses
" Fill
" Update
" GetChanges (a DataSet method)
" Merge (a DataSet method)

! Practice

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Although the DataAdapter class contains a great many properties and
methods, you will most likely use a certain subset of each.

You use DataAdapters to act on records from a data source. You can specify
which actions you want to perform by using one of four DataAdapter
properties, which executes a SQL statement or call a stored procedure. The
properties are actually objects that are instances of the SqlCommand or
OleDbCommand class:

! SelectCommand. A reference to a SQL statement or stored procedure that
retrieves rows from the data source.

! InsertCommand. A reference to a command for inserting rows.
! UpdateCommand. A reference to a command for modifying rows.
! DeleteCommand. A reference to a command for deleting rows.

You use DataAdapter methods to fill a DataSet or to transmit changes in a
DataSet table to a corresponding data store. These methods include:

! Fill. Use the Fill method of a SqlDataAdapter or OleDbDataAdapter to
add or refresh rows from a data source and place them in a DataSet table.
The Fill method uses the SELECT statement specified by an associated
SelectCommand property.

! Update. Use this method of a DataAdapter object to transmit changes to a
DataSet table to the corresponding data source. This method calls the
respective INSERT, UPDATE, or DELETE statement for each specified
row in a DataSet DataTable.

Introduction

DataAdapter Properties

Methods a DataAdapter
Uses

6 Module 6: Building DataSets from Existing Data Sources (Prerelease)

! GetChanges. Use this DataSet method to create a new DataSet that contains
a copy of changes to a DataSet.

! Merge. Use this DataSet method to merge two DataSet objects that have
similar schemas, one containing the original data, and the other containing
only the changed data. This is useful in a middle-tier application which
receives data updates from a client and then needs to merge these changes
into its own DataSet.

When you create a DataAdapter, you do not necessarily need to create
Command objects for all the data modification commands (SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand).

Describe a scenario where you would only need to create a Command object
for the SelectCommand property.

Describe another scenario where you would only need to create two Command
objects � one for the SelectCommand property, and one for the
UpdateCommand property.

Describe another scenario where you would need to all four Command
objects�one each for SelectCommand, InsertCommand, UpdateCommand,
and DeleteCommand.

Practice

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 7

How to Create a DataAdapter that Uses a New SELECT Statement

! You can create a data adapter to execute a new
SELECT statement

" Read-only data access for disconnected applications

! Two ways to create the data adapter:

" Use the Data Adapter Configuration Wizard

" Write the code yourself

! You must specify:

" A new or existing connection

" The SELECT statement for the query

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can create a DataAdapter object to execute a new SELECT statement.
This provides disconnected applications with read-only access to the data in the
database.

You can create the data adapter by using the Data Adapter Configuration
Wizard, or programmatically in your code. You must specify a connection to
the required database. You can also specify a new SELECT statement, to
retrieve data from the database.

A mobile worker needs to read addresses and telephone numbers for the
company's offices around the world. The worker needs to view this information
on the road, where there is no database connectivity available. The worker
never needs to update the addresses or telephone numbers.

To create a data adapter using the Data Adapter Configuration Wizard, follow
these steps:

1. Drag and drop a SqlDataAdapter control or OleDbDataAdapter control
from the toolbox onto your form.

2. In the Welcome screen for the Data Adapter Configuration Wizard, click
Next.

3. In the Choose Your Data Connection screen, click New Connection.
4. In the Data Link Properties dialog box, enter the connection details for the

required database. Click OK.
5. Back in the Choose Your Data Connection screen, click Next.
6. In the Choose a Query Type screen, choose Use SQL statements. Click

Next.
7. In the Generate the SQL statements screen, type an appropriate SQL

query statement. Click Advanced Options.
8. In the Advanced SQL Generation Options dialog box, clear the Generate

Insert, Update, and Delete statements check box. Click OK.

Introduction

Scenario

How to create a data
adapter by using the
Data Adapter
Configuration Wizard

8 Module 6: Building DataSets from Existing Data Sources (Prerelease)

9. Back in the Generate the SQL statements screen, click Next.
10. In the View Wizard Results screen, click Finish.

To create a data adapter programmatically, follow these steps:

1. Create a new SqlDataAdapter object or OleDbDataAdapter object.
2. Create a new SqlConnection object or OleDbConnection object. Specify

the connection string, to connect to the required database.
3. Create a new SqlCommand object or OleDbCommand object. Specify a

SELECT statement, to retrieve the required data from the database.
4. Call the AddParameter method on the command object, to specify any

parameters that are required by the SELECT statement.
5. Assign the new command object to the SelectCommand property of the

data adapter object.

The following example uses a SqlDataAdapter object to define a query on the
Products table in the Northwind database. The database connection is specified
by a SqlConnection object, and the query is specified by a SqlCommand
object:

' Visual Basic
Imports System.Data.SqlClient
�
Dim daProducts As New SqlDataAdapter()

Dim cnNorthwind As New SqlConnection(_
 "data source=(local);initial catalog=Northwind;" & _
 "integrated security=SSPI")

Dim cmSelect As New SqlCommand(_
 "SELECT * FROM Products", cnNorthwind)

daProducts.SelectCommand = cmSelect

// Visual C#
using System.Data.SqlClient;
�
SqlDataAdapter daProducts = new SqlDataAdapter();

SqlConnection cnNorthwind = new SqlConnection(
 "data source=(local);initial catalog=Northwind;" +
 "integrated security=SSPI");

SqlCommand cmSelect = new SqlCommand(
 "SELECT * FROM Products", cnNorthwind);

daProducts.SelectCommand = cmSelect;

How to create a data
adapter
programmatically

Example of creating a
data adapter
programmatically

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 9

How to Create a Data Adapter that Uses an Existing Stored
Procedure

! You can create a data adapter to execute an existing
stored procedure

" Specify a stored procedure for SelectCommand

" Specify stored procedures for InsertCommand,
UpdateCommand, and DeleteCommand if required

! Create the data adapter by using the Wizard, or in code

! You must specify:

" A new or existing connection

" The stored procedure(s)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can create a data adapter to execute an existing stored procedure. This
enables disconnected applications to retrieve complex table joins, by using
existing functionality in the database.

You can create the data adapter by using the Data Adapter Configuration
Wizard, or programmatically in your code. You must specify a connection to
the required database. You must also specify the name of the stored procedure
you wish to call, to retrieve the data from the database.

An organization has a suite of stored procedures, which retrieve consolidated
data from several tables in the database. Mobile workers need read-only access
to this consolidated data, in a disconnected application.

To create a data adapter using the Data Adapter Configuration Wizard, follow
these steps:

1. Drag and drop a SqlDataAdapter control or OleDbDataAdapter control
from the toolbox onto your form.

2. In the Welcome screen for the Data Adapter Configuration Wizard, click
Next.

3. In the Choose Your Data Connection screen, select an existing connection
(or click New Connection and specify a new connection, if necessary).

4. In the Choose a Query Type screen, choose Use existing stored
procedures. Click Next.

5. In the Bind Commands to Existing Stored Procedures screen, choose an
existing stored procedure for the Select operation (if the stored procedure
does not yet exist, create it now in the Server Explorer). Click Next.

6. In the View Wizard Results screen, click Finish.

Introduction

Scenario

How to create a data
adapter using the Data
Adapter Configuration
Wizard

10 Module 6: Building DataSets from Existing Data Sources (Prerelease)

To create a data adapter programmatically, follow these steps:

1. Create a new SqlDataAdapter object or OleDbDataAdapter object.
2. Create a new SqlConnection object or OleDbConnection object (or use an

existing XxxConnection object if you have one available).
3. Create a new SqlCommand object or OleDbCommand object. Specify the

following properties for the command object:

Property Description

Connection The XxxConnection object

CommandText The name of the stored procedure you wish to call

CommandType System.Data.CommandType.StoredProcedure

4. Call the AddParameter method on the command object, to specify any
parameters that are required by the stored procedure.

5. Assign the new command object to the SelectCommand property of the
data adapter object.

The following example creates a SqlDataAdapter object, and uses an existing
stored procedure named GetProductsAndCategories to query the database. An
existing SqlConnection object named cnNorthwind is used to connect to the
database:

' Visual Basic
Imports System.Data
Imports System.Data.SqlClient
�
Dim daProdCat As New SqlDataAdapter()

Dim cmSelect As New SqlCommand()
cmSelect.Connection = cnNorthwind
cmSelect.CommandText = "GetProductsAndCategories"
cmSelect.CommandType = CommandType.StoredProcedure

daProdCat.SelectCommand = cmSelect

// Visual C#
using System.Data;
using System.Data.SqlClient;
�
SqlDataAdapter daProdCat = new SqlDataAdapter();

SqlCommand cmSelect = new SqlCommand();
cmSelect.Connection = cnNorthwind;
cmSelect.CommandText = "GetProductsAndCategories";
cmSelect.CommandType = CommandType.StoredProcedure;

daProdCat.SelectCommand = cmSelect;

How to create a data
adapter
programmatically

Example of creating a
data adapter
programmatically

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 11

Northwind Traders needs to build a disconnected data application that allows
users to view information that is held in the product catalog.

In this practice, you will create a Windows Application containing two data
adapters. The first data adapter will retrieve category information from the
Northwind database. The second data adapter will retrieve product information
from the same database

1. Create a new Windows Application solution named CatalogViewer at the
following location.
<install folder>\Practices\Mod06_1\

2. Drag and drop a DataGrid onto the form.
3. Drag and drop a Button onto the form. Change the text of the button to Fill.
4. Drag and drop a SqlDataAdapter control from the toolbox onto the form

and use the Data Adapter Configuration Wizard to set the following
properties:

Property Value

Server Name (local)

Log On Use Windows NT Integrated security

Database Northwind

Query Type Use SQL statements

Load Statement SELECT * FROM Categories

Advanced Options All options enabled

5. Select the new data adapter. Use the Property Window to change its Name
to daCategories.

6. In the Server Explorer, create a new stored procedure in the Northwind
database as follows:
CREATE PROCEDURE dbo.usp_GetProducts
AS
 SELECT * FROM Products

7. In the Form Designer, drag and drop another SqlDataAdapter control onto
the form. Use the Data Adapter Configuration Wizard to set the following
properties:

Property Value

Connection (Use the connection you created earlier)

Query Type Use existing stored procedures

Select stored procedure usp_GetProducts

8. Select the new data adapter. Use the Property Window to change its Name
to daProducts.

9. Save all the files in your solution.

The solution for this practice is located at <install folder>\
Practices\Mod06_1\Lesson1\CatalogViewer\

Practice

12 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Lesson: Populating a DataSet by Using a DataAdapter

Lesson: Populating a DataSet by Using a DataAdapter

! How to Fill a DataSet Table by Using a DataAdapter

! Multimedia: How the DataAdapter�s Fill Method Creates
and Populates a DataTable in a DataSet

! How to Infer Additional Constraints for a DataSet

! How to Fill a Dataset Efficiently

! How to Fill a DataSet from Multiple DataAdapters

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After you choose the type of data adapter you want to use, SqlDbDataAdapter
or OleDbDataAdapter, and configure it to perform the tasks you need, you are
ready to populate the DataSet for which you created the DataAdapter.

When you complete this lesson, you will be able to:

! Diagram how the Fill method works
! Infer additional constraints for a DataSet
! Call the DataAdapter�s Fill method to populate a DataSet efficiently
! Populate a DataSet from Multiple DataAdapters

Introduction

Lesson objectives

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 13

How to Fill a DataSet Table by Using a DataAdapter

! You can fill a DataSet table by using a DataAdapter

" Call the Fill method on the DataAdapter

! The Fill method executes the SelectCommand

" Fills the dataset table with the structure and content of
the query result

! To optimize performance

" Set EnforceConstraints=false

" Call the BeginLoadData method on the data table

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can fill a DataSet table by using a DataAdapter. Call the Fill method on
the DataAdapter, specifying the DataSet table you wish to fill.

The Fill method implicitly executes the SQL query in the SelectCommand of
the DataAdapter. The results of the query are used to define the structure of the
DataSet table, and to populate the table with data.

The Fill method is overloaded. Here are some of the overloaded versions of
Fill:

rowsAffected = aDataAdapter.Fill(aDataSet)
rowsAffected = aDataAdapter.Fill(aDataSet, strDataTableName)
rowsAffected = aDataAdapter.Fill(aDataTable)

When you fill a DataSet, the DataAdapter enforces constraints such as primary
key uniqueness. To improve performance, set the DataSet property
EnforceConstraints to False before you fill the DataSet. This disables
constraint checking while the data is loaded:

aDataSet.EnforceConstraints = false

Another way to improve performance is to call the BeginLoadData method on
the data table. This turns off index maintenance and notifications while data is
loaded into the table. Call EndLoadData after the data has been loaded:

aDataTable.BeginLoadData()
�
aDataTable.EndLoadData()

Introduction

Definition of the Fill
method

Syntax for the Fill
method

Performance
considerations

14 Module 6: Building DataSets from Existing Data Sources (Prerelease)

The following example creates a DataSet containing a single table named
Customers. The table is filled by using a DataAdapter named daCustomers.
The BeginLoadData method is called, to optimize performance.

After the table has been filled, a DataGrid control is bound to the table. The
DataGrid will display the customer information on the screen.

' Visual Basic
Dim dsCustomers As New DataSet()
dsCustomers.Tables.Add(New DataTable("Customers"))

dsCustomers.Tables(0).BeginLoadData()
daCustomers.Fill(dsCustomers, "Customers")
dsCustomers.Tables(0).EndLoadData()

DataGrid1.DataSource = dsCustomers.Tables(0).DefaultView

// Visual C#
DataSet dsCustomers = new DataSet();
dsCustomers.Tables.Add(new DataTable("Customers"));

dsCustomers.Tables[0].BeginLoadData();
daCustomers.Fill(dsCustomers, "Customers");
dsCustomers.Tables[0].EndLoadData();

dataGrid1.DataSource = dsCustomers.Tables[0].DefaultView;

Example of filling a
DataSet by using a Data
Adapter

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 15

Multimedia: How the DataAdapter�s Fill Method Creates and
Populates a DataTable in a DataSet

! Multimedia: How the DataAdapter�s Fill
Method Creates and Populates a DataTable
in a DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This animation provides an overview of how the Fill method of a DataAdapter
object creates a DataTable in a DataSet, and then populates that DataTable.

Introduction

16 Module 6: Building DataSets from Existing Data Sources (Prerelease)

How to Infer Additional Constraints for a DataSet

! You can fill a DataSet even if the schema is not known
at design time

" The DataSet schema is created at runtime

! Set the MissingSchemaAction property to control how
the schema is created

" Add, AddWithKey, Error, or Ignore

! Call FillSchema to build a new DataSet schema

" DataAdapter executes SelectCommand, to determine
the structure of the data

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can fill a DataSet even if the schema is not known at design time. The
DataSet schema can be created at runtime, based on the structure of the
retrieved data.

You can control how a DataSet schema is created and modified at runtime.
Before you fill the dataset, do one of the following:

! Set the MissingSchemaAction property on the DataAdapter
! Call the FillSchema method on the DataAdapter

Set the MissingSchemaAction property to control how the schema is
created. The MissingSchemaAction property specifies the action to take
when you retrieve DataTables or DataColumns that are not present in the
DataSet schema.

Introduction

Definition of the
MissingSchemaAction
property

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 17

Use one of the following values for the MissingSchemaAction property:

MissingSchemaAction value Description

Add Adds extra tables and columns to the DataSet

schema, but does not preserve primary key
information.

If you add the same rows to the DataSet several
times, the rows are appended each time rather than
being modified. This is because the DataSet does not
check for primary keys, and therefore does not realize
the same rows are being loaded.

AddWithKey Extra tables and columns are added to the schema.
Primary key information is added to the data table, to
overcome the limitations of the Add property value
described above.

The AllowDBNull, AutoIncrement, MaxLength,
ReadOnly, and Unique properties are set for the new
columns, as defined in the data source. The
PrimaryKey property is also set for primary key
columns.

If there are no primary keys, but the resultset contains
unique columns that are all non-nullable, the unique
columns are assigned the PrimaryKey property. If
any unique columns are nullable, a
UniqueConstraint is added to the
ConstraintCollection for the DataSet, but the
PrimaryKey property is not set.

Error Generates a SystemException. This is useful if the
retrieved data must comply with a predefined DataSet
schema.

Ignore Ignores extra tables and columns in the resultset.

The following example shows the syntax for the MissingAction property of a
DataAdapter object.

aDataAdapter.MissingSchemaAction =
 MissingSchemaAction.Add |
 MissingSchemaAction.AddWithKey |
 MissingSchemaAction.Error |
 MissingSchemaAction.Ignore

Syntax for the
MissingSchemaAction
property

18 Module 6: Building DataSets from Existing Data Sources (Prerelease)

The following example creates an untyped DataSet, and uses a DataAdapter
named daCustomers to fill the DataSet. The MissingSchemaAction property
is set to AddWithKey, so that the DataSet schema is amended when the
DataSet is filled. This creates the necessary tables and columns in the DataSet,
to accommodate the data as it is loaded:

' Visual Basic
Dim dsCustomers As New DataSet()
daCustomers.MissingSchemaAction = _
 MissingSchemaAction.AddWithKey
daCustomers.Fill(dsCustomers)
DataGrid1.DataSource = dsCustomers.Tables(0).DefaultView

// Visual C#
DataSet dsCustomers = new DataSet();
daCustomers.MissingSchemaAction =
 MissingSchemaAction.AddWithKey;
daCustomers.Fill(dsCustomers);
dataGrid1.DataSource = dsCustomers.Tables[0].DefaultView;

Call FillSchema to build a new DataSet schema. The FillSchema method
executes the SelectCommand object on the DataAdapter, to determine the
schema of the data retrieved by that command. The FillSchema method takes a
SchemaType parameter, which can be one of the following values:

SchemaType parameter Description

Mapped Applies any existing table mappings to the retrieved

schema, and configures the DataSet with the transformed
schema.

Source Ignores any existing table mappings in the DataAdapter,
and configures the DataSet with the retrieved schema.

aDataTableArray = aDataAdapter.FillSchema(
 aDataSet,
 SchemaType.Mapped | SchemaType.Source)

Example of using
MissingSchemaAction

Definition of the
FillSchema method

Syntax for the
FillSchema method

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 19

The following example creates an untyped DataSet. The schema for the DataSet
is defined by calling the FillSchema method on a DataAdapter. The data for the
DataSet is retrieved by calling the Fill method on the DataAdapter:

' Visual Basic
Dim dsCustomers As New DataSet()
daCustomers.FillSchema(dsCustomers, SchemaType.Mapped)
daCustomers.Fill(dsCustomers)
DataGrid1.DataSource = dsCustomers.Tables(0).DefaultView

// Visual C#
DataSet dsCustomers = new DataSet();
daCustomers.FillSchema(dsCustomers, SchemaType.Mapped);
daCustomers.Fill(dsCustomers);
dataGrid1.DataSource = dsCustomers.Tables[0].DefaultView;

Performance considerations
The MissingSchemaAction property and the FillSchema method are slow,
because they build the DataSet schema at runtime. You should avoid using
these techniques if possible. A more efficient solution is to use strongly typed
DataSets, where the schema for the DataSet is defined at design time. This
enables the DataSet to retrieve data quickly into a known schema, rather than
having to deduce the schema first.

Example of using
FillSchema

20 Module 6: Building DataSets from Existing Data Sources (Prerelease)

How to Fill a Dataset Efficiently

! Define an explicit schema before you fill the DataSet

" DataTables, DataColumns, and DataRelations are
known before the data is loaded

" Enables the data to be loaded more efficiently

! To define an explicit DataSet schema

" Create a strongly-typed DataSet class

" Or create the DataTables, DataColumns, and
DataRelations programmatically

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The most efficient way to fill a DataSet is to define an explicit schema before
filling the DataSet. This means the DataTables, DataColumns, and
DataRelations are already known before the DataSet is filled.

There are two ways to define an explicit schema for a DataSet:

! Create a strongly-typed DataSet in the Form Designer
! Create the DataTables, DataColumns, and DataRelations programmatically

A disconnected application retrieves customer information from a central
database. The structure of the data is known in advance. You can therefore
create a strongly-typed DataSet, with a schema that conforms to the structure of
the retrieved data. This enables data to be loaded efficiently at runtime.

To create a strongly-typed DataSet in the Form Designer, follow these steps:

1. Drag and drop a SqlDataAdapter control or OleDbDataAdapter control
from the toolbox onto your form.

2. Configure the DataAdapter as required, using the Data Adapter
Configuration Wizard.

3. Right-click the new DataAdapter object, and choose Generate Dataset.
4. In the Generate Dataset dialog box, specify a name for the new DataSet

class.
5. Choose the tables that you wish to add to the DataSet.
6. Ensure the Add this dataset to the designer check box is checked.
7. Click OK. This will create a strongly-typed DataSet class, inherited from

DataSet. An instance of this class will also be created and added to your
application.

8. Right-click the new DataSet object, and choose View Schema.

Introduction

Scenario

How to create a
strongly-typed DataSet
in the Form Designer

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 21

9. In the XML Designer, examine the XSD schema for the DataSet. Modify
and extend the XSD schema if necessary, by dragging XSD schema
elements from the toolbox onto the XML Designer.

10. In your application, write code to fill the DataSet by using a Data Adapter.

The following example fills a strongly-typed DataSet object named
dsCustomers. The DataSet has a single table named Customers. The
BeginLoadData method is called before the data is loaded, to optimize
performance:

' Visual Basic
dsCustomers.Customers.BeginLoadData()
daCustomers.Fill(dsCustomers.Customers)
dsCustomers.Customers.EndLoadData()
DataGrid1.DataSource = dsCustomers.Customers.DefaultView

// Visual C#
dsCustomers.Customers.BeginLoadData();
daCustomers.Fill(dsCustomers.Customers);
dsCustomers.Customers.EndLoadData();
dataGrid1.DataSource = dsCustomers.Customers.DefaultView;

To define a DataSet schema programmatically, write the following code:

1. Create a DataTable object.
2. Create a DataColumn object for each column you require in the table.
3. Add these columns to the table. To do this, call the Add method on the

Columns collection in the DataTable object.
4. Define constraints on the table. To do this, call the Add method on the

Constraints collection in the DataTable object.
5. Repeat steps 1 to 4 as necessary, to create additional DataTable objects.
6. Create a DataSet object.
7. Add the DataTable objects to the DataSet. To do this, call the Add method

on the Tables collection in the DataSet object.
8. Define relations between columns in the DataSet. To do this, call the Add

method on the Relations collection in the DataSet object.

The following example shows how to create a DataSet schema
programmatically. The DataSet contains a single table named Customers. The
table has three columns named CustomerID, CompanyName, and
ContactName (all strings). The CustomerID column is a primary key.

Once the DataSet schema has been defined, the DataSet is filled by using a
DataAdapter named daCustomers. A DataGrid control is then bound to the
DataSet:

Example of filling a
strongly-typed DataSet

How to define a DataSet
schema
programmatically

Example of defining a
DataSet schema
programmatically

22 Module 6: Building DataSets from Existing Data Sources (Prerelease)

' Visual Basic
' Create the DataTable and DataColumns
Dim table As New DataTable("Customers")
Dim c1 As New DataColumn("CustomerID", GetType(String))
Dim c2 As New DataColumn("CompanyName", GetType(String))
Dim c3 As New DataColumn("ContactName", GetType(String))

' Add DataColumns and Constraints to the DataTable
table.Columns.Add(c1)
table.Columns.Add(c2)
table.Columns.Add(c3)
table.Constraints.Add("PK_CustomerID", c1, True)

' Create the DataSet, and add the DataTable to it
Dim dsCustomers As New DataSet()
dsCustomers.Tables.Add(table)

' Fill DataSet by using a DataAdapter, and bind to a DataGrid
dsCustomers.Tables(0).BeginLoadData()
daCustomers.Fill(dsCustomers, "Customers")
dsCustomers.Tables(0).EndLoadData()
DataGrid1.DataSource = dsCustomers.Tables(0).DefaultView

// Visual C#
// Create the DataTable and DataColumns
DataTable table = new DataTable("Customers");
DataColumn c1 = new DataColumn("CustomerID", typeof(String));
DataColumn c2 = new DataColumn("CompanyName", typeof(String));
DataColumn c3 = new DataColumn("ContactName", typeof(String));

// Add DataColumns and Constraints to the DataTable
table.Columns.Add(c1);
table.Columns.Add(c2);
table.Columns.Add(c3);
table.Constraints.Add("PK_CustomerID", c1, true);

// Create the DataSet, and add the DataTable to it
DataSet dsCustomers = new DataSet();
dsCustomers.Tables.Add(table);

// Fill DataSet by using a DataAdapter, and bind to a DataGrid
dsCustomers.Tables[0].BeginLoadData();
daCustomers.Fill(dsCustomers, "Customers");
dsCustomers.Tables[0].EndLoadData();
dataGrid1.DataSource = dsCustomers.Tables[0].DefaultView;

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 23

How to Fill a DataSet from Multiple DataAdapters

! You can use multiple DataAdapters to fill a DataSet
" Each DataAdapter fills a separate table in the DataSet

! Call the Fill method on each DataAdapter
" Specify the table to fill in the DataSet

! Visual Basic example
daCustomers.Fill(dsCustomerOrders.Customers)

daOrders.Fill(dsCustomerOrders.Orders)

DataGrid1.DataSource = dsCustomerOrders.Customers

! Practice: Building a Windows application to view an
online catalog

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can use multiple DataAdapters to fill a DataSet. Each DataAdapter fills a
separate table in the DataSet.

A salesperson needs to retrieve customer information, and information about
orders placed by each customer, from the central database. To meet this
requirement, create a disconnected application that contains two DataAdapters:
one to retrieve Customer records, and the other to retrieve order records.

Then, create a strongly-typed DataSet that contains two tables (Customers and
Orders), and define a relation to associate orders with customers. After you
create the strongly-typed DataSet, use the two DataAdapters to fill the tables in
the DataSet.

The following example populates a strongly-typed DataSet by using two
DataAdapters named daCustomers and daOrders. The Dataset has a
Customers table and an Orders table. The Customers table is populated with
the daCustomers DataAdapter. The Orders table is populated with the
daOrders DataAdapter.

Once the DataSet has been populated, a DataGrid control is bound to the
Customers table in the DataSet. The DataGrid will display the customers, and
the orders placed by each customer.

' Visual Basic
daCustomers.Fill(dsCustomerOrders.Customers)
daOrders.Fill(dsCustomerOrders.Orders)
DataGrid1.DataSource = dsCustomerOrders.Customers.DefaultView

// Visual C#
daCustomers.Fill(dsCustomerOrders.Customers);
daOrders.Fill(dsCustomerOrders.Orders);
dataGrid1.DataSource = dsCustomerOrders.Customers.DefaultView;

Introduction

Scenario

Example

24 Module 6: Building DataSets from Existing Data Sources (Prerelease)

In this practice, you will continue to build a Windows Application that allows
the users to view the Northwind Traders online product catalog. The solution
for this practice is located at <install
folder>\Practices\Mod06_1\Lesson2\CatalogViewer\

In the first part of this practice, you will see how the MissingSchemaAction
property influences how a DataAdapter fills a DataSet:

1. Open the Windows Application solution you created in the previous
practice, or the solution named CatalogViewer.

2. Open Form1 in the Form Designer, and then right-click daCategories and
choose Preview Data.

3. Click Fill DataSet. This button calls the data adapter�s Fill method, so it is
a useful way of testing a data adaptor. How many bytes of memory does the
DataSet require? How many rows are returned?

4. Click Fill DataSet again. This simulates refreshing the DataSet with the
latest data in the underlying database. How many bytes of memory does the
DataSet require now? How many rows are returned? Why are rows being
duplicated?

5. Set the MissingSchemaAction property of the data adapter to
AddWithKey.

6. Right-click daCategories and choose Preview Data.
7. Click Fill DataSet twice. Are rows still being duplicated?
8. Set the MissingSchemaAction property of the two data adapters to Error,

because the Add and AddWithKey values for this property have a negative
impact on performance. You will use a DataSet schema instead.

In the next part of this practice, you will generate a strongly typed DataSet
based on the structure of the data retrieved by the DataAdapter:

1. Right-click daCategories and choose Generate Dataset.
2. Set the name of the new DataSet to CatalogDataSet, and select both

daCategories and daProducts data adapters.
3. Select the new dataset in the Form Designer. Use the Property Window to

change its Name to dsCatalog.
4. Right-click dsCatalog, and choose View Schema. This will open the XSD

file that was generated for you by the Wizard.
5. In the usp_Products box, change the first field from usp_Products to

Products.
6. Right-click the Products box, and choose Add-New Relation. Click OK in

the Edit Relation dialog box.
7. Click the background of the Schema Designer, to select the DataSet. In the

Property Window, expand the key collection. Rename the two constraints to
PK_Categories and PK_Products.

Practice

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 25

In the final part of this practice, you will use the DataAdapter to fill the DataSet
with data from the data store:

1. Return to the Form Designer. Add a Click event handler for the Fill button.
2. In the event handler, call the Fill method of the two data adaptors. Also bind

the DataGrid control to the Categories table in the DataSet:
daCategories.Fill(dsCatalog.Categories)
daProducts.Fill(dsCatalog.Products)
DataGrid1.DataSource = dsCatalog.Categories

3. Run and test your application. Verify that the relationship between

categories and products is recognized by the DataGrid.
4. Use Server Explorer to change some data in the Products table in the SQL

Server Northwind database. Verify that you can use the Fill button your
form to refresh the DataSet, and see changes made to the underlying data.

26 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Lab 6.1: Retrieving Data into a Disconnected Application

! Exercise 1: Reviewing the Application

! Exercise 2: Building a DataSet to Hold
Employees and Application Settings

! Exercise 3: Loading and Displaying
Employee Information

! Exercise 4: Specifying and Using a
Different Server Name

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

! Create and configure a DataAdapter.
! Generate a strongly-typed DataSet from the DataAdapter.
! Use the XML Designer to adjust the schema in the DataSet.
! Use the DataAdapter to fill the DataSet.
! Save the DataSet data as an XML diffgram.

Before working on this lab, you must have:

! .
! .

See the DataSet and SqlDataAdapter topics in the Visual Studio .NET
documentation.

Northwind Traders has many sales persons on the road visiting customers. They
need to be able to update customer data including orders while away from the
office. Each sales person typically has responsibility for a limited subset of the
total central sales database, so it unnecessary to give every sales person a
complete copy of the central database.

The application must allow sales persons to update the data while on the road,
and then synchronize when they return to the office.

In this lab, you will retrieve data into DataSets in a disconnected application. In
Lab 6.2, you will update the database by using the data in the DataSets.

Objectives

Prerequisites

For More Information

Scenario

Estimated time to
complete this lab: 60
minutes

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 27

Exercise 0
Lab Setup

To complete this lab, you must �

!
2.
3.

28 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Exercise 1
Reviewing the Application

In this exercise, you will review a complete solution to this lab so that you
clearly understand how it works. This solution will show how the application
loads data into the disconnected application.

Then you will review a starter solution that will be the starting point for the
application you will complete in the other exercises of Labs 6.1 and 6.2.

The �On The Road� Windows application is used by Northwind Traders sales
people to track customer orders while the user is on the road, and do not
therefore have access to the central database servers.

The application will run on the users� laptops. While in the office, the user can
connect to the corporate network and get the latest order data for their
customers. This will be a subset of the order data stored on the central database
server. The user creates the subset of data by choosing their name from a list of
employees, and this information is used to only return customer and order data
for that employee.

When the application closes, it automatically saves a copy of the current data
set to the local disk drive of the laptop. When the application is next executed,
it automatically opens the saved data set so that the user can immediately
continue working on the data.

While on the road, users can add new orders, and edit and delete existing
orders. When the user returns to the office, they can choose a menu item to
update the central database with the changes they have made to the data set.
You will implement this functionality in Lab 6.2.

The application allows the user to specify the server name that hosts the central
database. It also has an About dialog to display copyright information.

This is the decision tree for when the �On The Road� application starts up.

Scenario

Application Startup
Decision Tree

Try to open an existing data set file named
OnTheRoad.xml. Does it load correctly?

YES. Bind the data
set to the grid.

NO. Show a warning message saying the file
is missing or corrupt, and ask the user if they
want to try to connect to the central database
to recreate the data set. What is the answer?

NO.YES. Try to connect to the central database. Does
the connection succeed?

NO. Show a warning message
suggesting the user try a
different server name.

YES. Fill the data set, allow the user
to pick an employee, and fill the other
tables based on the employee picked.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 29

Now you will open the solution and test the complete application.

! To open and rebuild the complete solution
1. Start the Microsoft Visual Studio .NET development environment.
2. Open an existing project named OnTheRoad. The location is

<install path>\2389\Labs\Lab06_2\Solution\Ex3\xx\ where xx is either VB
or CS. This project contains the complete solution for all the work you will
do in Labs 6.1 and 6.2.

3. Rebuild the solution.
4. Exit the Microsoft Visual Studio .NET development environment.
5. Start the Microsoft SQL Server Query Analyzer.
6. Open the script named lab6setup.sql in this folder:

<install path>\2389\Labs\Lab06_1\
7. Run the script.
8. Exit the Microsoft SQL Server Query Analyzer.

! To test the application settings
1. Open Windows Explorer and go to one of the following folders:

<install path>\2389\Labs\Lab06_2\Solution\Ex3\VB\OnTheRoad\bin\
- or -
<install path>\2389\Labs\Lab06_2\Solution\Ex3\CS\OnTheRoad\bin\debug\

2. There should be two files, named OnTheRoad.exe (the application
executable) and OnTheRoad.pdb (program debug database). If there is a
file named OnTheRoad.xml, delete it (this is where the data set is saved
while on the road).

3. Double-click the executable OnTheRoad.exe to run it.
4. You will see a warning message saying that a data set was not found, and

offering to connect to the central database to create one. Click No.
5. Choose the Tools � Options menu item. Notice you can change the server

name for the central database, and that it is currently set to (local). Click
Cancel. We do not want to change this option yet.

6. Close the application.
7. In Windows Explorer, notice that a file was created named

OnTheRoad.xml. Double-click the file to open it in Internet Explorer.
8. Review the contents of the OnTheRoad.xml file in Internet Explorer.

Notice that it currently contains the ID of the currently selected employee (it
defaults to zero) and the server name for the central database.

9. Close Internet Explorer.
10. Double-click the executable OnTheRoad.exe to run it again.
11. Choose No to the warning message, because you are still not ready to

connect to the central database.
12. Choose the Tools � Options menu item, and change the server name to the

name of your computer.

Exercise Steps

30 Module 6: Building DataSets from Existing Data Sources (Prerelease)

13. Close the application.
14. Double-click the OnTheRoad.xml file to open it in Internet Explorer again,

and note that the server name has changed.

! To test the local data set caching
1. Rerun the executable, and choose Yes to the warning message. This will

connect to the central database, and download a list of employees from the
database.

2. In the Get from central database dialog box, choose Dodsworth, Anne for
the employee name and click OK. You will then see all the customers (and
their orders and order details) managed by Anne.

3. Close the application. This will automatically save the data set into the same
XML file that stored the application settings.

4. Reopen the OnTheRoad.xml file using Internet Explorer.
5. Choose the Edit � Find (on This Page)� menu item to search for the XML

elements that begin with: <Products, <Employees, <Customers, <Orders,
<OrderDetails, and <AppSettings. Review the contents.

6. Rerun the executable. Notice you are no longer shown the warning message
because the XML file contains a complete and valid data set.

7. In the data grid, expand the customer with the company name of Around
The Horn. Notice it currently has two orders. Change the order date of the
first order to today�s date.

8. Expand the first order and add a third order detail row, for a product ID 1,
with a unit price of 25 and a quantity of 4. Click on the first or second row
to make sure the change is made to the data set.

9. Choose the Update to central database menu item. In the central database,
one row will be added to the OrderDetails table and one row in the Orders
table will be modified.

10. Use the Server Explorer to check that the changes were successfully made.

Lab 6.1 only deals with retrieving data from the central database. Lab
6.2 deals with updating the central database.

! To remove the stored procedures used by the solution
1. Start the Microsoft SQL Server Query Analyzer.
2. Open the script named lab6reset.sql in this folder:

<install path>\2389\Labs\Lab06_1\
3. Run the script.
4. Exit the Microsoft SQL Server Query Analyzer.

Note

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 31

! To review the starter solution
1. Start the Microsoft Visual Studio .NET development environment.
2. Open the existing project named OnTheRoad. The location is

<install path>\2389\Labs\Lab06_1\Starter\xx\ where xx is either VB or CS.
3. Open each of the following files using the Designer view and notice that

they each provide a very simple dialog box user interface for performing
certain tasks.

Form Description

About Shows copyright and version information.

Logon Allows the user to pick a named employee from a list and then retrieves
the customer data associated with that employee from the central
database.

Options Allows the user to change the SQL Server name of the central database.

4. Open the file named MainForm in Designer view, and review the menu and
its items. The menu items will perform the following tasks.

Menu Task

File � Get from central database� Shows the Logon form

File � Update to central database Updates the central database with the
latest changes made in the grid

File � Exit Ends the application

Tools � Options� Shows the Options form

Help � About� Shows the About form

! To test the starter solution
• Run the starter solution and click each of the menu items.

32 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Exercise 2
Building a DataSet to Hold Employees and Application Settings

In this exercise, you will build a custom data set that initially contains two
tables: one table for storing a list of all the employees IDs and full names, and
one table to store application settings. You will create and configure a data
adapter, so that it populates the employees table. You will populate the
application settings table programmatically in your code.

You will also write code to save the DataSet to an XML document when the
application closes.

You will create a custom DataSet class and schema that can track the
application specific options i.e. the employee using the application and the
server name for the central database.

! To open the starter solution
1. Start the Microsoft Visual Studio .NET development environment.
2. Open the existing project named OnTheRoad. The location is

<install path>\2389\Labs\Lab06_1\Starter\xx\ where xx is either VB or CS.

! To change the project settings
You will start by changing some project settings so that your code strictly
enforces data type conversions, and allows the debugging of SQL Server stored
procedures called by the code.

1. Right-click the project name in the Solution Explorer and choose Properties.
2. For Visual Basic projects only. Select Build properties and switch Option

Strict On. This will enforce the explicit conversion of data types.
3. Select Configuration Properties, Debugging and switch SQL Server

debugging on.

! To build the data adapter for filling the employees table
1. Open the MainForm class in Designer view and drag a SqlDataAdapter

from the Toolbox onto the form. This will run the Data Adapter
Configuration Wizard.

2. Choose a data connection to the Northwind database on your local SQL
Server.

3. Choose to Use SQL statements and type the following statement.
SELECT
 EmployeeID, LastName + ', ' + FirstName AS FullName
FROM
 Employees ORDER BY LastName, FirstName

4. Click the Advanced Options button and clear the Generate Insert, Update

and Delete statements check box. This application will not allow changes
to be made to the employees table.

5. Click Finish. The wizard will now create a data adapter, a connection and a
command that will be used to populate the employees table in the data set.

Scenario

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 33

6. Change the name of the new data adapter to daEmployees. Change the
name of its associated SelectCommand to cmSelectEmployees. Change
the name of the new connection to cnNorthwind.

7. Review the code written by the wizard.

! To generate the custom data set schema and class
1. Right-click the data adapter and choose Generate Dataset. Change the

name to NWDataSet, and select the Add the data set to the designer
check box. Click OK.

This will add a new XSD (data set schema) file to the project named
NWDataSet.xsd. An associated class file will also be created, but by
default it is hidden. Use the Show All Files button in the Solution
Explorer�s toolbar to toggle the display of hidden files.

2. Change the (Name) property of the data set named NWDataSet1 to
dsNorthwind.

! To store the two application settings
While the application is running, the two application settings can be held in
memory using simple fields that can be added to the form class. When the
application is not running, these settings will be stored with the data set in an
XML file.

1. Declare two variables named EmployeeID and ServerName with
appropriate data types:
' Visual Basic
Friend EmployeeID As System.Int32 = 0
Friend ServerName As System.String = "(local)"

// Visual C#
internal System.Int32 EmployeeID = 0;
internal System.String ServerName = "(local)";

2. Right-click the data set named dsNorthwind and choose View Schema.
This will launch the XML Designer and allow you to change the schema.

3. Drag a new element from the XML Schema section of the Toolbox onto
the Designer and name it AppSettings.

4. Add two sub-elements to AppSettings named EmployeeID and
ServerName.

5. Change the data type of EmployeeID to int.
6. Save your changes and close the XSD file.

Note

34 Module 6: Building DataSets from Existing Data Sources (Prerelease)

! To save the data set when the application closes
You will now add code to the MainForm Closing event, to save the application
settings stored in the data set to an XML file.

1. Locate the code for the MainForm Closing event.
2. Write a line of code to clear any existing rows in the AppSettings table.

' Visual Basic
Me.dsNorthwind.AppSettings.Clear()

// Visual C#
this.dsNorthwind.AppSettings.Clear();

3. Write a line of code to add a new row to the AppSettings table using the
values stored in the EmployeeID and ServerName fields:
' Visual Basic
Me.dsNorthwind.AppSettings.AddAppSettingsRow(_
 Me.EmployeeID, Me.ServerName)

// Visual C#
this.dsNorthwind.AppSettings.AddAppSettingsRow(
 this.EmployeeID, this.ServerName);

Write a line of code to call the AcceptChanges method to
accept the changes made to the AppSettings table:
' Visual Basic
Me.dsNorthwind.AppSettings.AcceptChanges()

// Visual C#
this.dsNorthwind.AppSettings.AcceptChanges();

4. Write a line of code to save the data set using the filename
OnTheRoad.xml and the DiffGram format. This will ensure that changes to
the data set are recorded as well as the original values.
' Visual Basic
Me.dsNorthwind.WriteXml(_
 "OnTheRoad.xml", XmlWriteMode.DiffGram)

// Visual C#
this.dsNorthwind.WriteXml(
 "OnTheRoad.xml", XmlWriteMode.DiffGram);

! To test the application settings code
1. Run and then immediately close the application. An XML file named

OnTheRoad.xml should have been created in the same folder that contains
the executable file.

2. Open the file and review its contents using Internet Explorer.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 35

Exercise 3
Loading and Displaying Employee Information

In this exercise you will write code for the Get from central database menu
item, to load employee information from the central database. Errors may occur
as you attempt to fill the data set so you will work with a temporary data set,
and then only if it is successfully created will you store the data set in the
application.

You will use the data adapter named daEmployees to fill the employees table
in the data set. You will also display the employee information in a list box on
the Logon form.

! To start with the solution to the previous exercise
• If you did not complete the previous exercise, open the solution

OnTheRoad in the folder
<install folder>\Labs\Lab06_1\Solution\Ex2\xx\ where xx is either VB or
CS.

! To fill the data set with employees
1. In MainForm.vb, locate the mnuFill Click event handler.
2. Declare a data set named tempNW based on the NWDataSet schema and

class.
' Visual Basic
Dim tempNW As New OnTheRoad.NWDataSet()

// Visual C#
OnTheRoad.NWDataSet tempNW = new OnTheRoad.NWDataSet();

3. Write an If statement to check the current state of the connection, and if it is
not open, then try to open the connection.
' Visual Basic
If Me.cnNorthwind.State <> ConnectionState.Open Then
 Try ' to open the database connection
 Me.cnNorthwind.Open()

// Visual C#
if (this.cnNorthwind.State != ConnectionState.Open)
{
 try // to open the database connection
 {
 this.cnNorthwind.Open();
 }

Scenario

36 Module 6: Building DataSets from Existing Data Sources (Prerelease)

4. If opening fails, catch the exception and display a warning message that
suggests the user try changing the server name, and then exit the sub
routine.
' Visual Basic
 Catch Xcp As System.Exception
 MessageBox.Show("Failed to connect because:" & _
 vbCrLf & Xcp.ToString() & vbCrLf & vbCrLf & _
 "Try a different server name.", _
 "Get from central database", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 Exit Sub
 End Try
End If

// Visual C#
 catch (System.Exception Xcp)
 {
 MessageBox.Show("Failed to connect because:\n" +
 Xcp.ToString() +
 "\n\nTry a different server name.",
 "Get from central database",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 return;
 }
}

5. Write code to try to fill the employees table using the data adapter named
daEmployees.
' Visual Basic
Try ' to fill the Employees DataTable
 Me.daEmployees.Fill(tempNW.Employees)

// Visual C#
try // to fill the Employees DataTable
{
 this.daEmployees.Fill(tempNW.Employees);
}

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 37

6. Catch any exceptions and display a warning message that informs the user
the employee list failed to be retrieved.
' Visual Basic
Catch Xcp As System.Exception
 MessageBox.Show(_
 "Failed to retrieve employee list because:" & _
 vbCrLf & Xcp.ToString(), _
 "Get from central database", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

// Visual C#
catch (System.Exception Xcp)
{
 MessageBox.Show(
 "Failed to retrieve employee list because:\n" +
 Xcp.ToString(),
 "Get from central database",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
}

7. After the code that instantiates the Logon form, write code to set its data
properties so that the list box displays a list of employee names, but the
bound value is the Employee ID.
' Visual Basic
frmLogon.lstEmployees.DataSource = tempNW.Employees
frmLogon.lstEmployees.DisplayMember = "FullName"
frmLogon.lstEmployees.ValueMember = "EmployeeID"

// Visual C#
frmLogon.lstEmployees.DataSource = tempNW.Employees;
frmLogon.lstEmployees.DisplayMember = "FullName";
frmLogon.lstEmployees.ValueMember = "EmployeeID";

Add code to highlight the current EmployeeID in the list.
' Visual Basic
frmLogon.lstEmployees.SelectedValue = Me.EmployeeID

// Visual C#
frmLogon.lstEmployees.SelectedValue = this.EmployeeID;

38 Module 6: Building DataSets from Existing Data Sources (Prerelease)

8. Inside the If statement that displays the Logon form, write code to change
the currently stored employee ID to the selected value in the list box, and
store the temporary data set in the dsNorthwind data set, and finally call a
method named RefreshUI that you will complete next.
' Visual Basic
Me.EmployeeID = CInt(frmLogon.lstEmployees.SelectedValue)
Me.dsNorthwind = tempNW
Me.RefreshUI()

// Visual C#
this.EmployeeID =
CInt(frmLogon.lstEmployees.SelectedValue);
this.dsNorthwind = tempNW;
this.RefreshUI();

9. After the end of the If statement that displays the Logon form, close the
connection.
' Visual Basic
Me.cnNorthwind.Close()

// Visual C#
this.cnNorthwind.Close();

! To refresh the user interface
1. Locate the private procedure named RefreshUI.
2. Write a line of code to set the title bar of the main form to show the full

name of the currently selected employee, and the name of the application.
For example, the title bar might show: Buchanen, Steven � On The Road.

' Visual Basic
Me.Text = Me.dsNorthwind.Employees.Select(_
 "EmployeeID=" & Me.EmployeeID)(0)("FullName").ToString() _
 & " - " & Application.ProductName

// Visual C#
this.Text = this.dsNorthwind.Employees.Select(
 "EmployeeID=" + this.EmployeeID)[0]["FullName"].ToString()
 + " - " + Application.ProductName;

! To test the code
1. Run and test your application.
2. Choose the File � Get from central database menu item.
3. The Get from central database dialog box should appear, and display a list

of employee names. Pick any employee name, and click OK.
4. The name you pick should appear in the title bar of the application, along

with the name of the application.
5. Close the application.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 39

Exercise 4
Specifying and Using a Different Server Name

In this exercise you will write code for the Options menu item, to allow the
user to choose a different server. The application will use this server name
when it needs to access the central database.

You will also extend the application start-up code. When the application is
launched, it will try to load application settings and employee information from
the XML file OnTheRoad.xml.

You will modify the database connection string, to use the new server name
entered by the user in the Options dialog box. You will also use the ReadXml
method to read application settings and employee information into the DataSet
at application start-up.

! To start with the solution to the previous exercise
• If you did not complete the previous exercise, open the solution

OnTheRoad in the folder
<install folder>\Labs\Lab06_1\Solution\Ex3\xx\ where xx is either VB
or CS.

! To allow the server name to change
1. In MainForm.vb, locate the mnuOptions Click event hander.
2. Write a line of code to fill the current server name into the text box on the

instance of the Options form.
' Visual Basic
frmOptions.txtServer.Text = Me.ServerName

// Visual C#
frmOptions.txtServer.Text = this.ServerName;

3. After the code that shows the form, write a line of code to retrieve the value
in the text box and store it in the ServerName field.
' Visual Basic
Me.ServerName = frmOptions.txtServer.Text

// Visual C#
this.ServerName = frmOptions.txtServer.Text;

Scenario

40 Module 6: Building DataSets from Existing Data Sources (Prerelease)

4. Write a line of code to retrieve the value in the ServerName field and use it
to change the data source parameter in the ConnectionString property of
the connection object.
' Visual Basic
Me.cnNorthwind.ConnectionString = _
 "data source=" & Me.ServerName & ";" & _
 "initial catalog=Northwind;" & _
 "integrated security=SSPI;" & _
 "persist security info=False;"

// Visual C#
this.cnNorthwind.ConnectionString =
 "data source=" + this.ServerName + ";" +
 "initial catalog=Northwind;" +
 "integrated security=SSPI;" +
 "persist security info=False;";

! To fill a data set when the application starts
1. Find the MainForm_Load procedure and add code to try to open an existing

XML file named OnTheRoad.xml, and that uses the DiffGram format.
' Visual Basic
Try ' to open existing local cached DataSet
 Me.dsNorthwind.ReadXml(_
 "OnTheRoad.xml", XmlReadMode.DiffGram)

// Visual C#
try // to open existing local cached DataSet
{
 this.dsNorthwind.ReadXml(
 "OnTheRoad.xml", XmlReadMode.DiffGram);

2. If the file is found (and therefore an exception is not thrown), retrieve
default values for the EmployeeID and ServerName fields.

' Visual Basic
Me.EmployeeID = _
 CInt(Me.dsNorthwind.AppSettings.Rows(0)("EmployeeID"))

Me.ServerName = _
 Me.dsNorthwind.AppSettings.Rows(0)("ServerName").ToString()

// Visual C#
this.EmployeeID = ConvertTo(
 this.dsNorthwind.AppSettings.Rows[0]["EmployeeID"], int);

this.ServerName =
this.dsNorthwind.AppSettings.Rows[0]["ServerName"].ToString();

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 41

3. Call the RefreshUI method to update the title bar of the form.
' Visual Basic
Me.RefreshUI()

// Visual C#
this.RefreshUI();

4. Write a Catch statement that uses an If statement to ask the user if they
want to connect to the central database to create the data set and checks their
response.
' Visual Basic
Catch
 If MessageBox.Show("An existing data set was not " & _
 "found or was corrupt. Do you want to connect " & _
 "to the central database to retrieve a new copy?", _
 "Warning!", MessageBoxButtons.YesNo, _
 MessageBoxIcon.Exclamation) = DialogResult.Yes Then

// Visual C#
catch
{
 if (MessageBox.Show("An existing data set was not " +
 "found or was corrupt. Do you want to connect " +
 "to the central database to retrieve a new copy?",
 "Warning!", MessageBoxButtons.YesNo,
 MessageBoxIcon.Exclamation) == DialogResult.Yes)
 {

5. If the user replies Yes, write code to try to open the connection and then call
the mnuFill_Click procedure to simulate the user clicking the Get from
central database menu item.
' Visual Basic
 Try ' to open the connection
 Me.cnNorthwind.Open()
 mnuFill_Click(sender, e)

// Visual C#
 try // to open the connection
 {
 this.cnNorthwind.Open();
 mnuFill_Click(sender, e);
 }

42 Module 6: Building DataSets from Existing Data Sources (Prerelease)

6. Write code to catch any exceptions, and if they occur, display a warning
message and then exit the procedure.

' Visual Basic
 Catch Xcp As System.Exception
 MessageBox.Show("Failed to connect because:" & _
 vbCrLf & Xcp.ToString() & vbCrLf & vbCrLf & _
 "Use Tools, Options to change the name of " & _
 "the SQL Server you are trying to connect to.", _
 "Connect to central database", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
 Exit Sub
 End Try
 End If
End Try

// Visual C#
 catch (System.Exception Xcp)
 {
 MessageBox.Show("Failed to connect because:\n" +
 Xcp.ToString() +
 "\n\nUse Tools, Options to change the name of " +
 "the SQL Server you are trying to connect to.",
 "Connect to central database",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 return;
 }
 }
}

! To test the code
1. In Windows Explorer, delete the XML file named OnTheRoad.xml if it

exists.
2. Run and test your application. You should get a warning message � choose

Yes to connect to your local database and retrieve the list of employees.
3. Pick any employee name and click OK. The name you pick should appear

in the title bar of the application along with the name of the application.
4. Close the application then rerun it and see if it correctly opens the XML and

remembers the employee you picked.
5. Try using the Tools � Options� menu item to change the server name to

London, which is the instructor�s computer name.
6. Close the application then rerun it and see if it correctly opens the XML and

loads the employees from the instructor's computer.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 43

7. Open OnTheRoad.xml and review its contents. It should look something
like this.
<?xml version="1.0" standalone="yes"?>
<NWDataSet xmlns="http://www.tempuri.org/NWDataSet.xsd">
 <Employees>
 <EmployeeID>5</EmployeeID>
 <FullName>Buchanan, Steven</FullName>
 </Employees>
 ...
 <Employees>
 <EmployeeID>6</EmployeeID>
 <FullName>Suyama, Michael</FullName>
 </Employees>
 <AppSettings>
 <EmployeeID>7</EmployeeID>
 <ServerName>London</ServerName>
 </AppSettings>
</NWDataSet>

8. Close the application.

44 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Lesson: Configuring a DataAdapter to Update the
Underlying Data Source

Lesson: Configuring a DataAdapter to update the
underlying data source

! How does a DataSet tracks changes?

! What are the data modification commands?

! How to set the data modification commands using
existing stored procedures and the Wizard

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Although a DataSet is typically a local copy of data from a remote data source,
you can create and update data in a DataSet and then use a DataAdapter to
update the underlying data source.

Configure a DataAdapter to update the underlying data source.

After completing this lesson, you will be able to:

! Explain how a DataSet tracks changes
! Use the data modification commands
! Set the data modification commands using existing stored procedures with

parameters and the Wizard

Introduction

Lesson Objective

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 45

How Does the DataSet Track Changes?

! Each DataRow has a RowState property
" Indicates the status of each row
" Added, Deleted, Detached, Modified, Unchanged

! The DataSet maintains two copies of data for each row
" Original version
" Current version

! Call the AcceptChanges method to accept all changes
" Copies current data into original data
" Resets the RowState to Unchanged for every row

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Each DataRow object in a DataTable has a RowState property. The RowState
property is read-only, and indicates whether the row has been modified,
inserted, or deleted from the DataSet since the DataSet was first populated.

The DataSet maintains two sets of data for each row � the current data and the
original data. You can specify which version of data you want when you use the
DataSet.

The DataSet also provides an AcceptChanges method. Call this method to
accept all the changes made to the DataSet so far, and set the DataSet's original
state to the current state.

The DataSet maintains the current status of each row in the DataSet. Whenever
a DataRow is changed in any way, the DataSet sets the RowState property to
indicate whether the row has been modified, inserted, or deleted. You can check
this property in your code, to examine the status of each row in the DataSet.

The DataSet maintains the current status of each row in the DataSet. Whenever
a DataRow is changed in any way, the DataSet sets the RowState property to
indicate whether the row has been modified, inserted, or deleted. You can check
this property in your code, to examine the status of each row in the DataSet.

Introduction

Definition of the
RowState property

Definition of the
RowState property

46 Module 6: Building DataSets from Existing Data Sources (Prerelease)

The RowState property has one of the following enumeration values:

RowState property value Description

DataRowState.Added The row has been added to the DataSet since the

AcceptChanges method was called.

DataRowState.Deleted The row has been deleted from the DataSet since the
AcceptChanges method was called.

DataRowState.Detached The row has been created, but it has not yet been
added to a DataRowCollection in a DataSet.

DataRowState.Modified The row has been modified since the AcceptChanges
method was called.

DataRowState.Unchanged The row has not changed since the AcceptChanges
method was called.

The DataSet maintains two copies of data for each row � the Current data and
the Original data. This enables you to see exactly how each row has changed in
the DataSet. When you access data in a DataRow, you can specify a
DataRowVersion parameter to indicate which version of the data you want:

DataRowVersion value Description

DataRowVersion.Curent The current version of data in the DataRow. This is

the default data version if you do not specify an
explicit version.

DataRowVersion.Original The original version of data in the DataRow, when
the AcceptChanges was last called.

The following example iterates through the rows in a DataSet table, and
displays the RowState for each row.

If the RowState is DataRowState.Added or DataRowState.Unchanged the
current version of the row data is displayed. If the RowState is
DataRowState.Deleted, the original version of the row data is displayed. If the
RowState is DataRowState.Modified, the original and current versions of the
row data are displayed to show how they differ:

Definition of the Current
and Original data
versions

Example of using
current and original data
in a row

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 47

' Visual Basic
Dim row As DataRow
For Each row In Me.dsCustomers.Customers.Rows

 Dim msg As String
 If row.RowState = DataRowState.Added Or _
 row.RowState = DataRowState.Unchanged Then

 msg = "Current data:" & vbCrLf & _
 row("CompanyName", DataRowVersion.Current) & ", " & _
 row("ContactName", DataRowVersion.Current)

 ElseIf row.RowState = DataRowState.Deleted Then

 msg = "Original data:" & vbCrLf & _
 row("CompanyName", DataRowVersion.Original) & ", " & _
 row("ContactName", DataRowVersion.Original)

 ElseIf row.RowState = DataRowState.Modified Then

 msg = "Original data:" & vbCrLf & _
 row("CompanyName", DataRowVersion.Original) & ", " & _
 row("ContactName", DataRowVersion.Original) & vbCrLf

 msg = msg & "Current data:" & _
 row("CompanyName", DataRowVersion.Current) & ", " & _
 row("ContactName", DataRowVersion.Current)

 End If
 MessageBox.Show(msg, "RowState: " & row.RowState.ToString())
Next

// Visual C#
foreach (DataRow row in this.dsCustomers.Customers.Rows)
{
 String msg = "";
 if (row.RowState == DataRowState.Added ||
 row.RowState == DataRowState.Unchanged)
 {
 msg = "Current data:\n" +
 row["CompanyName", DataRowVersion.Current] + ", " +
 row["ContactName", DataRowVersion.Current];
 }
 else if (row.RowState == DataRowState.Deleted)
 {
 msg = "Original data:\n" +
 row["CompanyName", DataRowVersion.Original] + ", " +
 row["ContactName", DataRowVersion.Original];
 }
(Code continued on next page.)

48 Module 6: Building DataSets from Existing Data Sources (Prerelease)

 else if (row.RowState == DataRowState.Modified)
 {
 msg = "Original data:\n" +
 row["CompanyName", DataRowVersion.Original] + ", " +
 row["ContactName", DataRowVersion.Original] + "\n";

 msg = msg + "Current data:\n" +
 row["CompanyName", DataRowVersion.Current] + ", " +
 row["ContactName", DataRowVersion.Current];
 }
 MessageBox.Show(msg, "RowState: " + row.RowState);
}

If you do not explicitly specify a DataRowVersion parameter when you access
a column in a DataRow, do you get the "current" data or the "original" data for
the row?

What happens if you try to display the "original" row data for a new added row?

What happens if you try to display the "current" row data for a deleted row?

Practice

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 49

Multimedia: How the DataSet Tracks Changes

! How the DataSet Tracks Changes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This animation shows how a DataSet uses the RowState property to identify the
state of each row. The animation also shows how the DataSet maintains two
versions of data for each row � the Current version and the Original version.

50 Module 6: Building DataSets from Existing Data Sources (Prerelease)

What are the Data Modification Commands?

! A SqlDataAdapter or OleDbDataAdapter object has
command properties that are are themselves command
objects you can use to modify data at the data source

" InsertCommand

" UpdateCommand

" DeleteCommand

! Syntax � essentially the same for both Sql and OleDb
DataAdapters and for the series of command objects

" public SqlCommand InsertCommand {get; set;}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataAdapter uses command objects to modify data at the data source. The
DataAdapter uses these commands to save changes in a DataSet back to the
underlying data source.

The following table describes the data modification commands, which are used
by the DataAdapter.

Command Description

InsertCommand Used during call to Update method of a DataAdapter to

insert records into the data source that correspond to new
rows in the DataSet.

UpdateCommand Used during call to Update method to update records in the
data source that correspond to modified rows in the
DataSet.

DeleteCommand Used during call to Update method to delete records in the
data source that correspond to deleted rows in the DataSet.

Introduction

Data modification
commands

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 51

The following example programmatically sets the InsertCommand property
for a DataAdapter. The command inserts a row into a simplified Customers
table, which contains columns named CustomerID and CustomerName. The
command requires two SqlParameter objects, to set the column values in the
new row:

' Visual Basic
Dim cmInsert As New SqlCommand(_
 "INSERT INTO Customers VALUES (@ID, @Name)", _
 cnNorthwind)
cmInsert.Parameters.Add(New SqlParameter("@ID", _
 SqlDbType.NChar, 5, ParameterDirection.Input, False, _
 0, 0, "CustomerID", DataRowVersion.Current, Nothing))
cmInsert.Parameters.Add(New SqlParameter("@Name", _
 SqlDbType.NVarChar, 40, ParameterDirection.Input, False, _
 0, 0, "CompanyName", DataRowVersion.Current, Nothing))
daCustomers.InsertCommand = cmInsert

// Visual C#
SqlCommand cmInsert = new SqlCommand(
 "INSERT INTO Customers VALUES (@ID, @Name)",
 cnNorthwind);
cmInsert.Parameters.Add(new SqlParameter("@ID",
 SqlDbType.NChar, 5, ParameterDirection.Input, false,
 0, 0, "CustomerID", DataRowVersion.Current, null));
cmInsert.Parameters.Add(new SqlParameter("@Name",
 SqlDbType.NVarChar, 40, ParameterDirection.Input, false,
 0, 0, "CompanyName", DataRowVersion.Current, null));
daCustomers.InsertCommand = cmInsert;

The following example sets the UpdateCommand property for a DataAdapter,
to update a row in the simplified Customers table. The command requires three
SqlParameter objects: the new CustomerID, the new CustomerName, and
the original CustomerID (to locate the customer record in the data source):

' Visual Basic
Dim cmUpdate As New SqlCommand(_
 "UPDATE Customers SET CustomerID = @ID, " & _
 "CompanyName = @Name WHERE (CustomerID = @OrigID)", _
 cnNorthwind)
cmUpdate.Parameters.Add(New SqlParameter("@ID", _
 SqlDbType.NChar, 5, ParameterDirection.Input, False, _
 0, 0, "CustomerID", DataRowVersion.Current, Nothing))
cmUpdate.Parameters.Add(New SqlParameter("@Name", _
 SqlDbType.NVarChar, 40, ParameterDirection.Input, False, _
 0, 0, "CompanyName", DataRowVersion.Current, Nothing))
cmUpdate.Parameters.Add(New SqlParameter("@OrigID", _
 SqlDbType.NChar, 5, ParameterDirection.Input, False, _
 0, 0, "CustomerID", DataRowVersion.Original, Nothing))
daCustomers.UpdateCommand = cmUpdate

Example of setting the
InsertCommand
property

Example of setting the
UpdateCommand
property

52 Module 6: Building DataSets from Existing Data Sources (Prerelease)

// Visual C#
SqlCommand cmUpdate = new SqlCommand(
 "UPDATE Customers SET CustomerID = @ID, " +
 "CompanyName = @Name WHERE (CustomerID = @OrigID)",
 cnNorthwind);
cmUpdate.Parameters.Add(new SqlParameter("@ID",
 SqlDbType.NChar, 5, ParameterDirection.Input, false,
 0, 0, "CustomerID", DataRowVersion.Current, null));
cmUpdate.Parameters.Add(new SqlParameter("@Name",
 SqlDbType.NVarChar, 40, ParameterDirection.Input, false,
 0, 0, "CompanyName", DataRowVersion.Current, null));
cmUpdate.Parameters.Add(new SqlParameter("@OrigID",
 SqlDbType.NChar, 5, ParameterDirection.Input, false,
 0, 0, "CustomerID", DataRowVersion.Original, null));
daCustomers.UpdateCommand = cmUpdate;

The following example sets the DeleteCommand property for a DataAdapter,
to delete a row in the simplified Customers table. The command requires one
SqlParameter object, to specify the CustomerID of the row to be deleted:

' Visual Basic
cmDelete = New SqlCommand(_
 "DELETE FROM Customers WHERE (CustomerID = @ID)", _
 cnNorthwind)
cmDelete.Parameters.Add(New SqlParameter("@ID", _
 SqlDbType.NChar, 5, ParameterDirection.Input, False, _
 0, 0, "CustomerID", DataRowVersion.Original, Nothing))
daCustomers.DeleteCommand = cmDelete

// Visual C#
SqlCommand cmDelete = new SqlCommand(
 "DELETE FROM Customers WHERE (CustomerID = @ID)",
 cnNorthwind);
cmDelete.Parameters.Add(new SqlParameter("@ID",
 SqlDbType.NChar, 5, ParameterDirection.Input, false,
 0, 0, "CustomerID", DataRowVersion.Original, null));
daCustomers.DeleteCommand = cmDelete;

Example of setting the
DeleteCommand
property

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 53

How to Set the Data Modification Commands using Existing Stored
Procedures and the Wizard

! You can create data modification commands by using
the Data Adapter Configuration Wizard

! The Wizard can generate the commands in three
different ways

" By using SQL statements

" By creating new stored procedures

" By using existing stored procedures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can create data modification commands by using the Data Adapter
Configuration Wizard. The Wizard can generate the commands in three
different ways:

! By using SQL statements
! By creating new stored procedures
! By using existing stored procedures

To create data modification commands by using the Data Adapter
Configuration Wizard, follows these steps:

1. Drag and drop a SqlDataAdapter control or OleDbDataAdapter control
from the toolbox onto your form.

2. In the Welcome screen for the Data Adapter Configuration Wizard, click
Next.

3. In the Choose Your Data Connection screen, select an existing connection
(or click New Connection and specify a new connection, if necessary).

4. Click Next, to move to the Choose a Query Type screen.
5. If you want to use SQL statements for the data modification commands,

follow these steps:
a. Choose Use SQL statements, and click Next.
b. In the Generate the SQL statements screen, type the SQL statement for

the SelectCommand. Click Advanced Options, and ensure Generate
Insert, Update, and Delete statements is checked. Click OK.

c. In the Generate the SQL statements screen, click Next.
d. In the View Wizard Results screen, click Finish.
e. Examine the generated code in your application, to see how the Wizard

created the data modification commands.

Introduction

How to create data
modification commands
by using the Wizard

54 Module 6: Building DataSets from Existing Data Sources (Prerelease)

6. If you want to create new stored procedures for the data modification
commands, follow these steps:
a. Choose Create new stored procedures, and click Next.
b. In the Generate the SQL statements screen, type the SQL statement for

the SelectCommand. Click Advanced Options, and ensure Generate
Insert, Update, and Delete statements is checked. Click OK.

c. In the Generate the SQL statements screen, click Next.
d. In the Create the Stored Procedures screen, enter names for the new

stored procedures. Click Next.
e. In the View Wizard Results screen, click Finish.
f. Examine the stored procedures in the Server Explorer.
g. Also examine the generated code in your application, to see how the

Wizard created the data modification commands.
7. If you want to use existing stored procedures for the data modification

commands, follow these steps:
a. Choose Use existing stored procedures, and click Next.
b. In the Bind Commands to Existing Stored Procedures screen, choose

existing stored procedures for the Select, Insert, Update, and Delete
commands. Click Next.

c. In the View Wizard Results screen, click Finish.
d. Examine the generated code in your application, to see how the Wizard

created the data modification commands.

Northwind Traders needs to allow users to make changes to the product catalog
that is published on the company�s web site. In this practice, you will create a
new Windows Application that uses a SqlDataAdapter to query and modify
the Products table.

You will use the Data Adapter Configuration Wizard to generate four new
stored procedures to achieve this task. The data adapter will call these stored
procedures in its data modification commands (SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand).

1. Create a new Windows Application solution named CatalogEditor at the
following location.
<install folder>\Practices\Mod06_1\

2. Drag and drop a SqlDataAdapter control from the toolbox onto the form.
Use the Data Adapter Configuration Wizard to set the following properties:

Property Value

Server Name (local)

Log On Use Windows NT Integrated security

Database Northwind

Query Type Create new stored procedures

Load Statement SELECT * FROM Products

Advanced Options All options enabled

Practice

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 55

Property Value

Stored Procedure Names usp_SelectProducts

usp_InsertProducts
usp_UpdateProducts
usp_DeleteProducts

Let the Wizard create them in the
database for you.

3. Select the new data adapter named SqlDataAdapter1. Use the Property
Window to set the following properties:

Property Value

(Name) daProducts

DeleteCommand
 (Name)

cmDeleteProducts

InsertCommand
 (Name)

cmInsertProducts

SelectCommand
 (Name)

cmSelectProducts

UpdateCommand
 (Name)

cmUpdateProducts

4. In Server Explorer, examine the four new stored procedures in the
Northwind database. The stored procedures are named usp_SelectProducts,
usp_InsertProducts, usp_UpdateProducts, and usp_DeleteProducts.
Note the following points:
usp_SelectProducts returns all the columns in the Products table.
usp_InsertProducts receives a number of parameters, which hold the
values for a new product. The stored procedure inserts these values into a
new row. The stored procedure returns a record set containing the new row,
using the clause WHERE (ProductID = @@IDENTITY) to obtain this
new row.
usp_UpdateProducts receives parameters that indicate the new and
original values of a particular row. The new values are used to update the
data in the row. The original values are used to ensure that the row has not
been changed by another application or user, since it was fetched by your
application. This prevents conflicting row updates in a disconnected
architecture.
usp_DeleteProducts receives parameters that indicate the original values of
the row to be deleted. The stored procedure ensures that the row has not
been changed by another application or user, since it was fetched by your
application. This prevents conflicting row deletions in a disconnected
architecture.

56 Module 6: Building DataSets from Existing Data Sources (Prerelease)

5. In the Code View window, examine the code that has been generated by the
Data Adapter Configuration Wizard. Note the following points:
SqlDataAdapter1 is assigned four data modification commands. The
SelectCommand property is assigned cmSelectProducts; the
InsertCommand property is assigned cmInsertProducts; and so on.
cmSelectProducts is initialized to call the usp_SelectProducts stored
procedure. A parameter is added to the command, to receive the return value
from the stored procedure.
cmInsertProducts is initialized to call usp_InsertProducts. Several
parameters are added to the command, using the current versions of data in
the row (the System.Data.DataRowVersion.Current flag is used for each
parameter).
cmUpdateProducts is initialized to call usp_UpdateProducts. Parameters
are added for the new values in the row (using
System.Data.DataRowVersion.Current), and for the original values
(using System.Data.DataRowVersion.Original).
cmDeleteProducts is initialized to call usp_DeleteProducts. Parameters
are added for the original values in the row, using the flag
System.Data.DataRowVersion.Original.

6. Save all the files in your application.

The solution for this practice is located at <install
folder>\Practices\Mod06_1\Lesson3\CatalogEditor\

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 57

Lesson: Persisting Changes to a Data Source

Lesson: Persisting Changes to a Data Source

" Use the GetChanges method of a DataSet object

" Use the Merge method to bring changes into the
DataSet

" Use the Select method of a DataTable object

" Explain how to use the Update method of a
DataAdapter object

" Use the AcceptChanges method

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you have created a DataSet in a typical multiple-tier implementation,
made changes, and are ready to persist changes to a data source, the steps are
the following:

1. Invoke the GetChanges method to create a second DataSet that features
only the changes to the data.

2. Invoke the Merge method to merge the changes from the second DataSet
into the first.

3. Call the Update method of the SqlDataAdapter (or OleDbDataAdapter)
and pass the merged DataSet as an argument.

4. Invoke the AcceptChanges method on the DataSet to persist changes.
Alternatively, invoke RejectChange to cancel the changes.

After completing this lesson, you will be able to persist changes to a data source
and be able to:

! Use the GetChanges method of a DataAdapter object
! Use the Select method of a DataAdapter object
! Use the Update method of a DataAdapter object
! Use the Merge method to changes into the DataSet
! Use the AcceptChanges method

Many of the methods that you use on a DataAdapter object allow different
combinations of parameters and datatypes for a method. The ability to create
different versions of a method is called overloading. The methods you will
learn about in this lesson all have the ability to be overloaded.

Introduction

Lesson objectives

Overloading a method

58 Module 6: Building DataSets from Existing Data Sources (Prerelease)

MultiMedia: How a DataAdapter�s Fill Method Creates and
Populates a DataTable in a DataSet

! How a DataAdapter�s Fill Method Creates
and Populates a DataTable in a DataSet

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A DataAdapter object is the bridge between a DataSet and a data source. A
DataSet contains one or more DataTables, each of which contains DataRows.
This animation shows how the Fill method of a DataAdapter object both creates
and populates a DataTable.

Introduction

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 59

When to use the GetChanges Method of a DataSet Object

! Use the GetChanges method when you need to give the changes
to another class for use by another object

! Syntax for the GetChanges method

public DataSet GetChanges(

DataRowState rowStates

);

! Use the GetChanges method to get a copy of a DataSet that
contains all the changes made to the DataSet

" Since it was loaded, or

" Since the last time the AcceptChanges method was called.

*****************************ILLEGAL FOR NON-TRAINER USE******************************

When you work in a disconnected environment, you can make changes to data
in a DataSet and then transmit those changes to a data source. You use the
GetChanges method of a DataSet object to produce a new DataSet object that
contains a copy of only the changed rows in the original DataSet. You then can
merge the new copy back into the original DataSet.

The following is the Visual C# Syntax for the GetChanges method of a
DataAdapter object.
public DataSet GetChanges(
 DataRowState rowStates
);

Use the rowStates argument to specify the type of changes the new object
should include. You can create sub-subsets with only changes of a certain type,
e.g. deleted rows.

You would use GetChanges when you need to give the changes to another class
for use by another object

While updating, the order in which inserts and deletes are performed is
important for parent/child related tables, such as Customers and Orders. When
inserting a new order for a new customer, the customer (parent) record must be
inserted before the order (child) record. But when deleting a customer, child
orders must be deleted before the customer (parent) record.

Introduction

Syntax

When to use
GetChanges

60 Module 6: Building DataSets from Existing Data Sources (Prerelease)

The following example tests a DataSet named dsCustomers, to see if it has any
modified rows. If it does, the modified rows are copied to a temporary DataSet
named dsTemp. The modified rows are displayed in a DataGrid.

' Visual Basic
If dsCustomers.HasChanges(DataRowState.Modified) Then
 Dim dsTemp As DataSet
 dsTemp = dsCustomers.GetChanges(DataRowState.Modified)
 DataGrid1.DataSource = dsTemp.Tables(0).DefaultView
End If

// Visual C#
if (dsCustomers.HasChanges(DataRowState.Modified))
{
 DataSet dsTemp;
 dsTemp = dsCustomers.GetChanges(DataRowState.Modified);
 dataGrid1.DataSource = dsTemp.Tables[0].DefaultView;
}

Modify the code in the previous example, so that it gets the deleted rows rather
than the modified rows from the DataSet, dsCustomers. How can you display
the deleted rows in a DataGrid control?

Example of getting
changes in a dataset

Practice

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 61

When to use the Select method?

! Use the Select method of a DataSet object to get an
array of DataRow objects

! Use this method when updating the underlying data
source

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Select method of a DataSet object gets an array of DataRow objects. This
method creates a set of pointers to rows within the original DataSet, not actually
copying anything, but rather just pointing to the changes, so this is very
efficient. You use this method when updating the underlying data source.

Note that you can create sub-subsets with only changes of a certain type, such
as deleted rows.

The following example selects rows from the Customers table in the
dsCustomers DataSet. The Select method gets all the deleted customers whose
City is London. The example loops through these customers, and displays the
original CompanyName of each customer:

' Visual Basic
Dim strFilter As New String("City='London'")
Dim strSort As New String("CompanyName ASC")

Dim selRows As DataRow()
selRows = dsCustomers.Customers.Select(_
 strFilter, strSort, DataViewRowState.Deleted)

Dim row As DataRow
For Each row In selRows
 MessageBox.Show(_
 "Company name: " & _
 row("CompanyName", DataRowVersion.Original), _
 "Deleted company in London")
Next

Introduction

Example of selecting
modified rows in a
dataset

62 Module 6: Building DataSets from Existing Data Sources (Prerelease)

// Visual C#
string strFilter = "City='London'";
string strSort = "CompanyName ASC";

DataRow[] selRows;
selRows = dsCustomers.Customers.Select(
 strFilter, strSort, System.Data.DataViewRowState.Deleted);

foreach (DataRow row in selRows)
{
 MessageBox.Show(
 "Company name: " +
 row["CompanyName", DataRowVersion.Original],
 "Deleted company in London");
}

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 63

How to Merge Changes into the DataSet

! Use the Merge method merge two DataSets, an original,
and one containing only the changes to the original

! Syntax
Public void Merge(

DataSet dataSet

);

! The two merged DataSets should have schemas that
largely similar

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Introduction
When you make changes to a DataSet, you typically create a new DataSet that
contains only the changes you made to the original DataSet.

Definition of the
The Merge method of a DataSet object merges the contents of the DataSet to
which the method is applied, with a second DataSet that typically contains only
the changes to the original DataSet. Like other methods that deal with changes
to a DataSet, the Merge method can be overloaded.

The following is the C# syntax for the Merge method, where dataSet is the
DataSet whose data and schema will be merged.

public void Merge(
 DataSet dataSet
);

You use the Merge method to merge two DataSet objects that have largely
similar schemas. You typically use a Merge on a client application to
incorporate the latest changes from a data source into an existing DataSet. This
allows the client application to have a refreshed DataSet with the latest data
from the data source.

The Merge method is typically called at the end of a series of procedures that
involve validating changes, reconciling errors, updating the data source with the
changes, and finally refreshing the existing DataSet.

TBS

Merge method

Syntax

When to use the Merge
method

Example of Using the
Merge Method

64 Module 6: Building DataSets from Existing Data Sources (Prerelease)

How to Update a Data Source by Using a DataSet

! The Update method of a DataAdapter object calls the
appropriate statement for each changed row in a
specific DataTable:

" INSERT

" UPDATE

" DELETE

! Syntax of the Update method

Public abstract int Update(

Dataset dataset

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Update method of a DataAdapter object calls the respective INSERT,
UPDATE, or DELETE statements for each inserted, updated, or deleted row in
the specified DataSet from a DataTable named "Table".

The Update method of a DataAdapter object is distinct and different from the
UpdateCommand property of a DataAdapter object, which gets or sets a SQL
statement or OleDBbCommand that updates records in the data source.

The C# syntax for the Update method of the DataAdapter class is the following:

Public abstract int Update(
 Dataset dataset

In this syntax, dataSet is the DataSet that is used to update the data source.

When an application calls the Update method, the DataAdapter examines the
RowState property, and executes the required INSERT, UPDATE, or DELETE
statements based on the order of the indexes configured in the DataSet. For
example, Update might execute a DELETE statement, followed by an INSERT
statement, and then another DELETE statement, due to the ordering of the rows
in the DataTable Data. An application can call the GetChanges method in
situations where you must control the sequence of statement types (for example,
INSERTs before UPDATEs). For more information, see Updating the Database
with a DataAdapter and the DataSet.

If INSERT, UPDATE, or DELETE statements have not been specified, the
Update method generates an exception. However, you can create a
SqlCommandBuilder or OleDbCommandBuilder object to automatically
generate SQL statements for single-table updates if you set the
SelectCommand property of a .NET data provider. Then, any additional SQL
statements that you do not set are generated by the CommandBuilder. This
generation logic requires key column information to be present in the DataSet.
For more information see Automatically Generated Commands.

Introduction

Syntax of the Update
method

How to call the Update
Method

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 65

The Update method retrieves rows from the table listed in the first mapping
before performing an update. The Update then refreshes the row using the
value of the UpdatedRowSource property. Any additional rows returned are
ignored.

After any data is loaded back into the DataSet, the OnRowUpdated event is
raised, allowing the user to inspect the reconciled DataSet row and any output
parameters returned by the command. After a row updates successfully, the
changes to that row are accepted.

The following example shows how to use the Update method to update a data
source. The example uses a DataSet named dsCustomerOrders, which has two
tables named Customers and Orders. The Customers table is initially filled by
the daCustomers DataAdapter, and the Orders table is filled by the daOrders
DataAdapter.

The objective is to allow the user to delete customers, and all the orders placed
by those customers. The orders must be deleted first, to avoid foreign key
constraint errors when the customers are deleted.

To achieve this effect, the GetChanges method is called to get the deleted rows
in the Orders table. These rows are deleted first. The GetChanges method is
then called a second time, to get the deleted rows in the Customers table. These
rows can now be safely deleted with any errors:

' Visual Basic
' Fill the Customers and Orders tables initially
daCustomers.Fill(dsCustomerOrders.Customers)
daOrders.Fill(dsCustomerOrders.Orders)
DataGrid1.DataSource = dsCustomerOrders.Customers.DefaultView
�
' Update the data source with any changes
Dim deletedOrders As DataTable = _
 dsCustomerOrders.Orders.GetChanges(DataRowState.Deleted)
daOrders.Update(deletedOrders)

Dim deletedCustomers As DataTable = _
 dsCustomerOrders.Customers.GetChanges(DataRowState.Deleted)
daCustomers.Update(deletedCustomers)

// Visual C#
// Fill the Customers and Orders tables initially
daCustomers.Fill(dsCustomerOrders.Customers);
daOrders.Fill(dsCustomerOrders.Orders);
dataGrid1.DataSource = dsCustomerOrders.Customers.DefaultView;
�
// Update the data source with any changes
DataTable deletedOrders =
 dsCustomerOrders.Orders.GetChanges(DataRowState.Deleted);
daOrders.Update(deletedOrders);

DataTable deletedCustomers =
 dsCustomerOrders.Customers.GetChanges(DataRowState.Deleted);
daCustomers.Update(deletedCustomers)

Example of updating a
data source

66 Module 6: Building DataSets from Existing Data Sources (Prerelease)

How to Accept Changes into the DataSet

! The AcceptChanges Method of the DataSet commits all
the changes made to a specific DataSet since it was
last loaded or since AcceptChanges was called

! Syntax:

" Public void AcceptChanges();

! You can invoke AcceptChanges for an entire DataSet or
for a each DataRow in each DataTable

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Introduction
When you make changes to a DataSet, you typically create a new DataSet that
contains only the changes you made to the original DataSet. When you have
merged the two DataSets and updated the contents, you then can call the
AcceptChanges method of any of the following objects: DataSet, DataTable,
and DataRow.

There is an AcceptChanges method for the DataSet, DataTable, DataRow
objects.

When you call AcceptChanges on a DataSet, you also invoke the
AcceptChanges method on all subordinate objects with a single call. A call to
AcceptChanges on a DataSet object, also calls AcceptChanges on each
DataTable in the DataSet, and calls AcceptChanges on each DataRow object in
each DataTable.

You can, however, call AcceptChanges on an individual DataTable or
DataRow.

The following is the Visual C# syntax for the AcceptChanges method of the
DataSet class:

Public void AcceptChanges ();

The syntax is the same for the DataTable and DataRow objects.

Choosing an
AcceptChanges method

Syntax

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 67

The following example shows how to use the Merge and AcceptChanges
methods in a client application.

The client application has a DataSet named dsCustomers. The DataSet is
bound to a DataGrid (for example), to allow the user to change the data locally.
When the user is ready to send the changes to the data source, the application
calls GetChanges to get the changes to the DataSet. The application sends this
(smaller) DataSet to a middle-tier component, such as a Web Service method.

The code for the Web Service method is not shown, but it could use stored
procedures to update the data source with the DataSet changes. The Web
Service method returns a new DataSet, which contains the latest data from the
data source (for example, the data source might have assigned default values to
null columns in the DataSet).

The client application receives this sanitized DataSet, and merges it into the
main dsCustomers DataSet. The client application then calls AcceptChanges,
to mark these new records as "unchanged" in the dsCustomers DataSet:

' Visual Basic
' Get changes made by the user to the dsCustomers DataSet
Dim dsChanges As DataSet = dsCustomers.GetChanges()

' Send changes to a Web Service, get latest data back again
Dim service As New MyWebService()
Dim dsLatest As DataSet = service.MyUpdateMethod(dsChanges)

' Merge latest data back into the dsCustomers DataSet
dsCustomers.Merge(dsLatest)

' Mark all rows as "unchanged" in the dsCustomers DataSet
dsCustomers.AcceptChanges()

// Visual C#
// Get changes made by the user to the dsCustomers DataSet
DataSet dsChanges = dsCustomers.GetChanges();

// Send changes to a Web Service, get latest data back again
MyWebService service = new MyWebService();
DataSet dsLatest = service.MyUpdateMethod(dsChanges);

// Merge latest data back into the dsCustomers DataSet
dsCustomers.Merge(dsLatest);

// Mark all rows as "unchanged" in the dsCustomers DataSet
dsCustomers.AcceptChanges();

Example of merging
DataSets

68 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Practice
In this practice, you will continue to build a Windows application that allows
the user to edit the Northwind Traders online product catalog.

1. Open the Windows Application solution you used in the previous practice,
or the solution named CatalogEditor at the following location:
<install folder>\Practices\Mod06_1\Lesson3\CatalogEditor\

2. In the form designer, right-click the SqlDataAdapter1 control and choose
Generate Dataset. Set the name of the new dataset to ProductDataSet, and
select the Products (SqlDataAdapter1) table.

3. Drag and drop a DataGrid onto the form.
4. Drag and drop a Button onto the form. Change the text of the button to Fill.
5. Add the following code, to handle the Click event of this button:

SqlDataAdapter1.Fill(ProductDataSet1.Products)
DataGrid1.DataSource = ProductDataSet1.Products

6. Drag and drop another Button onto the form. Change the text of the button
to Get modified rows.

7. Add the following code, to handle the Click event of this button. This code
gets a copy of all the modified rows, and displays the current and original
ProductName and UnitPrice for each row:
If (ProductDataSet1.HasChanges(DataRowState.Modified)) Then
 Dim ds As ProductDataSet = _
 ProductDataSet1.GetChanges(DataRowState.Modified)

 Dim row As DataRow
 For Each row In ds.Products.Rows
 Dim str As String = "Current: " & _
 row("ProductName", DataRowVersion.Current) & ", " & _
 row("UnitPrice", DataRowVersion.Current) & vbCrLf

 str = str & "Original: " & _
 row("ProductName", DataRowVersion.Original) & ", " & _
 row("UnitPrice", DataRowVersion.Original)

 MessageBox.Show(str, "Modified row")
 Next
Else
 MessageBox.Show("No modified rows", "Information")
End If

8. Drag and drop a third Button onto the form. Change the text of the button to
Update.

9. Add the following code, to handle the Click event of this button. This code
updates the data source, using the current and original data in the data set:
SqlDataAdapter1.Update(ProductDataSet1.Products)

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 69

10. Build and run the application.
11. Click Fill, to fill the dataset and display the data in the DataGrid.
12. Change the ProductName and UnitPrice values for some rows. Then click

Get modified rows, to display the current and original data in these rows.
13. Click Update, to send all updates to the data source.
14. Use the Server Explorer to check that the products have been updated.
15. Back in your application, click Get modified rows. There are no modified

rows in the data set now, because any pending modifications have been
saved to the data source.

The solution for this practice is located at <install folder>\
Practices\Mod06_1\Lesson4\CatalogEditor\

70 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Lesson: How to Handle Conflicts

Lesson: How to Handle Conflicts

! What conflicts can occur?

! How to detect conflicts

! How to resolve conflicts

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Introduction
When you write a disconnected application, you might experience data conflicts
when you try to update the data source. This happens if the data source has been
changed by another application or service, while your application was
disconnected from the data source.

In this lesson, you will learn how to detect potential data conflicts before they
happen. You will see how to use the HasErrors property to detect errors in a
DataSet, DataTable, or DataRow. You will also learn how to resolve these
conflicts in your application.

Lesson objectives
After completing this lesson, you will be able to:

! Explain when conflicts can occur
! Define optimistic concurrency
! Detect and resolve conflicts by using the HasErrors property

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 71

What Conflicts Can Occur?

! Disconnected applications use optimistic concurrency

" Release database locks between data operations

! Data conflicts can occur when you update the database

" Another application or service might have already
changed the data

! Examples

" Deleting a row that has already been deleted

" Changing a column that has already been changed

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Introduction
Disconnected applications in ADO.NET use optimistic concurrency. This can
cause conflicts when the application tries to update the data source. You can
write code to detect these conflicts, and handle them accordingly.

Definition of optimistic concurrency
In optimistic concurrency, database locks are released as soon as data retrieval
operations or data update operations are complete. Disconnected applications
use optimistic concurrency so that other applications can query and update the
database concurrently.

This is different from the situation in connected applications, which often use
pessimistic concurrency. The database is kept locked while a series of related
data operations are performed. This stops other applications from accessing the
database until the related operations have been completed, preventing conflicts
at the expense of temporarily denying database access to other applications.

Scenario
A disconnected application retrieves customer records from the central database
at the start of the day. During the day, a mobile worker modifies these records,
adds new records, and deletes records while disconnected from the database.

At the end of the day, the mobile worker connects to the corporate network and
tries to update the central database with these changes. Unfortunately, a co-
worker has already modified some of the customer records in the database. The
application needs to detect which customer records are in conflict, and must
resolve these conflicts in a sensible manner.

Practice
Group Discussion: What specific conflicts can occur when the disconnected
application tries to update the data source? How can the disconnected
application resolve these conflicts?

72 Module 6: Building DataSets from Existing Data Sources (Prerelease)

How to Detect Conflicts

! The Data Adapter Configuration Wizard can generate
SQL statements to detect conflicts

! When you update the database:

" Data modification commands compare the current data
in the database against your original values

" Any discrepancies cause a conflict error

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Data Adapter Configuration Wizard can generate SQL statements to detect
conflicts. The Wizard adds SQL tests to the InsertCommand,
UpdateCommand, and DeleteCommand. These tests check that the data in the
database is unchanged since you retrieved it into your application.

When you use the Data Adapter Configuration Wizard to create a DataAdapter
that uses SQL statements, the Generate the SQL statements screen lets you
specify Advanced Options. One of these options is Use optimistic
concurrency:

! If you choose this option, the Wizard will add tests to your SQL statements
to detect conflict errors that arise due to optimistic concurrency.

! If you do not choose this option, the Wizard will not add conflict tests to
your SQL statements. Any changes your application makes to data in the
database will overwrite changes made by other users.

Introduction

How the Wizard
supports optimistic
concurrency

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 73

The following example shows how the Data Adapter Configuration Wizard
helps detect conflicts that arise due to optimistic concurrency. The example sets
the UpdateCommand for a DataAdapter. For simplicity, the example uses a
simplified Customers table containing just two columns, CustomerID and
CustomerName.

The UpdateCommand object requires five parameters:

! The first and second parameters specify the current CustomerID and
CompanyName for the row.

! The third and fourth parameters specify the original CustomerID and
CompanyName for the row. The SQL statement has a WHERE clause, to
ensure the row in the database still contains these original values.

! The final parameter is used in a SELECT statement, to retrieve the updated
row from the database. This ensures that the application has the very latest
row data, after any trigger operations or default values assignments by the
database.

' Visual Basic
Me.cmUpdate.CommandText = _
 "UPDATE Customers " & _
 "SET CustomerID=@CustomerID, CompanyName=@CompanyName " & _
 " WHERE (CustomerID = @Original_CustomerID) " & _
 " AND (CompanyName = @Original_CompanyName); " & _
 "SELECT CustomerID, CompanyName FROM Customers " & _
 " WHERE (CustomerID = @Select_CustomerID)"

Me.cmUpdate.Parameters.Add(New SqlParameter(_
 "@CustomerID", _
 SqlDbType.NChar, 5, ParameterDirection.Input, False, _
 0, 0, "CustomerID", DataRowVersion.Current, Nothing))

Me.cmUpdate.Parameters.Add(New SqlParameter(_
 "@CompanyName", _
 SqlDbType.NVarChar, 40, ParameterDirection.Input, False, _
 0, 0, "CompanyName", DataRowVersion.Current, Nothing))

Me.cmUpdate.Parameters.Add(New SqlParameter(_
 "@Original_CustomerID", _
 SqlDbType.NChar, 5, ParameterDirection.Input, False, _
 0, 0 , "CustomerID", DataRowVersion.Original, Nothing))

Me.cmUpdate.Parameters.Add(New SqlParameter(_
 "@Original_CompanyName", _
 SqlDbType.NVarChar, 40, ParameterDirection.Input, False, _
 0, 0, "CompanyName", DataRowVersion.Original, Nothing))

Me.cmUpdate.Parameters.Add(New SqlParameter(_
 "@Select_CustomerID", _
 SqlDbType.NChar, 5, ParameterDirection.Input, False, _
 0, 0, "CustomerID", DataRowVersion.Current, Nothing))

Example of how the
Wizard supports
optimistic concurrency

74 Module 6: Building DataSets from Existing Data Sources (Prerelease)

// Visual C#
this.cmUpdate.CommandText =
 "UPDATE Customers " +
 "SET CustomerID=@CustomerID, CompanyName=@CompanyName " +
 " WHERE (CustomerID = @Original_CustomerID) " +
 " AND (CompanyName = @Original_CompanyName); " +
 "SELECT CustomerID, CompanyName FROM Customers " +
 " WHERE (CustomerID = @Select_CustomerID)";

this.cmUpdate.Parameters.Add(new SqlParameter(
 "@CustomerID",
 SqlDbType.NChar, 5, ParameterDirection.Input, false,
 0, 0, "CustomerID", DataRowVersion.Current, null));

this.cmUpdate.Parameters.Add(new SqlParameter(
 "@CompanyName",
 SqlDbType.NVarChar, 40, ParameterDirection.Input, false,
 0, 0, "CompanyName", DataRowVersion.Current, null));

this.cmUpdate.Parameters.Add(new SqlParameter(
 "@Original_CustomerID",
 SqlDbType.NChar, 5, ParameterDirection.Input, false,
 0, 0 , "CustomerID", DataRowVersion.Original, null));

this.cmUpdate.Parameters.Add(new SqlParameter(
 "@Original_CompanyName",
 SqlDbType.NVarChar, 40, ParameterDirection.Input, false,
 0, 0, "CompanyName", DataRowVersion.Original, null));

this.cmUpdate.Parameters.Add(new SqlParameter(
 "@Select_CustomerID",
 SqlDbType.NChar, 5, ParameterDirection.Input, false,
 0, 0, "CustomerID", DataRowVersion.Current, null));

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 75

How to Resolve Conflicts

! Use the HasErrors property to test for errors
" Test a DataSet, DataTable, or DataRow

! Choose one of these strategies to resolve conflicts
" "Last-in wins"
" Retain conflicting rows in your DataSet, so you can

update the database again later
" Reject conflicting rows, and revert to the original values

in your DataSet
" Reject conflicting rows, and reload the latest data from

the database

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the HasErrors property to resolve conflicts when you update data in a
disconnected application. You can use this property to find the location and
nature of the error in your DataSet.

The DataSet, DataTable, and DataRow classes each provide a HasErrors
property. You can use this property on any of these objects, to identify conflicts
and other errors at any level of granularity in your data. The DataRow class
also has a GetColumnsInError method, to get the columns in error for a
particular row.

To resolve conflicts, choose one of the following strategies:

! Use a "last in wins" approach, so that data changes made by your
application overwrite any database changes made by other applications.
This approach is effective for administrative applications that need to force
changes through a database.
To achieve this effect, do not choose Use optimistic concurrency when
you create the DataAdapter in the Data Adapter Configuration Wizard.

! Do not force conflicting data changes on the database. Retain the conflicting
changes locally, in your DataSet, so that the user can try to update the
database again later.
This is the default behavior when you choose the Use optimistic
concurrency option in the Data Adapter Configuration Wizard.

Introduction

Definition

How to resolve conflicts

76 Module 6: Building DataSets from Existing Data Sources (Prerelease)

! Reject the conflicting data changes in the local DataSet, and revert to the
data originally loaded from the database.
To achieve this effect, call the RejectChanges method on the conflicting
DataSet, DataTable, or DataRow.

! Reject the conflicting data changes in the local DataSet, and reload the latest
data from the database.
To achieve this effect, call the Clear method on the DataSet. Then call the
Fill method on the DataAdapter, to reload the latest data.

The following example shows how to resolve conflicts in a disconnected
application.

After an Update operation, the HasErrors property is tested to see if the
DataSet has any errors. If there are errors, a loop is used to check each table in
turn. If a table has errors, another loop is used to check each of its rows. If a
row has errors, the GetColumnsInError method is used to find which columns
are in error. The ClearError and RejectChanges methods are then called, to
clear the error status and reject the conflicting data in each row:

' Visual Basic
Try
 daCustomers.Update(dsCustomers)
Catch ex As System.Exception
 If dsCustomers.HasErrors Then
 Dim table As DataTable
 For Each table In dsCustomers.Tables

 If table.HasErrors Then
 Dim row As DataRow
 For Each row In table.Rows

 If row.HasErrors Then
 MessageBox.Show("Row: " & row("CustomerID"), _
 row.RowError)

 Dim column As DataColumn
 For Each column In row.GetColumnsInError()
 MessageBox.Show(column.ColumnName, _
 "Error in this column")
 Next
 row.ClearErrors()
 row.RejectChanges()
 End If
 Next
 End If
 Next
 End If
End Try

Example of resolving
conflicts

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 77

// Visual C#
try
{
 daCustomers.Update(dsCustomers);
}
catch(System.Exception ex)
{
 if(dsCustomers.HasErrors)
 {
 foreach(DataTable table in dsCustomers.Tables)
 {
 if(table.HasErrors)
 {
 foreach(DataRow row in table.Rows)
 {
 if(row.HasErrors)
 {
 MessageBox.Show("Row: " + row["CustomerID"],
 row.RowError);

 foreach(DataColumn col in row.GetColumnsInError())
 {
 MessageBox.Show(column.ColumnName,
 "Error in this column");
 }
 row.ClearErrors();
 row.RejectChanges();
 }
 }
 }
 }
 }
}

In this practice, you will continue to build a Windows application that allows
the user to edit the Northwind Traders online product catalog.

1. Open the Windows Application solution you used in the previous practice,
or the solution named CatalogEditor at the following location:
<install folder>\Practices\Mod06_1\Lesson4\CatalogEditor\

2. Run the application. Change the name of a product. Do NOT click Update
yet.

3. Use the Server Explorer to change the same product name to a different
value.

4. Switch back to the running application, and click Update.
What happens? Why? What does the user have to do in order to force their
change through to the underlying data source?

5. Stop the application running.

Practice

78 Module 6: Building DataSets from Existing Data Sources (Prerelease)

6. Modify the Click event handler for the Update button as follows. Check for
a DBConcurrencyException, to indicate a conflict error. If this occurs, clear
the error status and accept the latest value for the conflicting row from the
database:
Try

 SqlDataAdapter1.Update(ProductDataSet1.Products)

Catch ex As System.Data.DBConcurrencyException

 MessageBox.Show(_
 "Conflict with an existing record. " & _
 "You have lost your changes for product: " & _
 ex.Row("ProductName").ToString(), _
 "Warning!")

 ' Clear the error status for the conflicting row
 ex.Row.ClearErrors()

 ' Accept the latest value for this row from the database
 ex.Row.AcceptChanges()

End Try

7. Run and test your application. Conflicts are now automatically handled by
resetting conflicting values to the central version, and the user can
immediately reenter the value they want if desired.

The solution for this practice is located at <install folder>\Practices\
Mod06_1\Lesson5\CatalogEditor\

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 79

.

Multimedia: How the DataAdapter's Update Method Modifies the
Underlying Data Source

! How the DataAdapter's Update Method
Modifies the Underlying Data Source

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Text about the multimedia

80 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Review

! Configure a DataAdapter to retrieve information

! Populate a DataSet by using a DataAdapter

! Configure a DataAdapter to modify information

! Persist data changes to a server

! Manage data conflicts

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1. How do you create and configure a DataAdapter, to provide a disconnected
application with read-only access to a SQL Server 2000 database?
Create a SqlDataAdapter object, either programmatically in your code
or by using the Data Adapter Configuration Wizard.
Initialize the SelectCommand property for the DataAdapter. You must
specify a SqlConnection object. You must also specify a query to
retrieve data from the data source. You can define a SQL SELECT to
do this, or use a new or existing stored procedure.

2. What is the most efficient way to populate a DataSet by using a
DataAdapter?
First, create a strongly-typed DataSet with the same structure as the
data retrieved by the DataAdapter.
When you are ready to fill the DataSet, call the BeginLoadLoad method
to disable constraint checks and index maintenance while the data is
being loaded. Then call Fill on the DataAdapter, to fill a specific
DataTable in the DataSet. Finally, call EndLoadData when the data has
been completely loaded.

3. How do you configure a DataAdapter, to allow a data source to be updated
from the contents of a DataSet?
When you create a DataAdapter object, define SqlCommand or
OleDbCommand objects for its InsertCommand, UpdateCommand,
and DeleteCommand properties. The DataAdapter uses these command
objects implicitly to propagate DataSet changes back to the data source.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 81

4. How do you persist data changes back to the data source? How do you
control the order in which different types of changes are persisted?
Call the Update method on the DataAdapter. If your DataSet contains
several DataTables, you might need to perform some updates before
others (to avoid foreign key constraint errors). In this case, call the
GetChanges method on a DataSet to obtain a subset of changes �
modifications, updates, or deletes � on each table. Call the Update
method separately on each set of changes, to control the order in which
changes are persisted to the data source.

5. What types of conflict can occur when you update a data source in a
disconnected application? How do you detect and resolve these conflicts?
Disconnected applications use optimistic concurrency. This means that
rows might be inserted, updated or deleted by other users while your
application is disconnected from the data source.
This can cause conflicts when you try to save your changes to the data
source. An exception occurs in this situation. You can catch this
exception, and detect the location of the problem by inspecting the
HasErrors property on a DataSet, DataTable, and DataRow.
Once you have located the problem, you can decide whether to reject
the proposed change, force the change upon the data source, or keep
the change locally in the DataSet so that it can be saved later by the
user.

82 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Lab 6.2: Retrieving and Updating Customers and Orders
Data

! Exercise 1: Preparing to Load and Update
Multiple Tables in the Database

! Exercise 2: Filling a DataSet by Using
Multiple Data Adapters

! Exercise 3: Updating the Central Database

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

! Create DataAdapters to access multiple tables in the Northwind database.
! Define corresponding tables in a DataSet in your application.
! Specify relationships and constraints in the DataSet tables.
! Populate the DataSet and display its data in a DataGrid.
! Update the data source from the DataSet.

Before working on this lab, you must have:

! .
! .

See the DataSet and SqlDataAdapter topics in the Visual Studio .NET
documentation.

Objectives

Prerequisites

For More Information

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 83

In Lab 6.1, �Retrieving Data into a Disconnected Application�, you started
writing a Windows Application to help sales persons at Northwind Traders deal
with customer data while away from the office.

So far, you have written code to download employee names from the central
database. You have also written code to save employee names and applications
data locally in an XML file.

In this lab, you will extend the application so that it can retrieve and update
customers and orders data from the central database. The sales person will
download this data at the start of the day, and work with the data while
disconnected from the central database. At the end of the day, the sales person
will connect to the central database and update any records that have been
changed during the day.

Scenario

Estimated time to
complete this lab: 60
minutes

84 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Exercise 0
Lab Setup

To complete this lab, you must �

!
2.
3.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 85

Exercise 1
Preparing to Load and Update Multiple Tables in the Database

Sales persons need to use the Windows Application to create new orders during
the working day. To achieve this task, the application needs a local copy of the
products, customers, orders, and order details information from the central
database.

In this exercise, you will create DataAdapters to access the Products,
Customers, Orders, and Order Details tables in the Northwind database. You
will then add four tables to the DataSet in your application, to correspond with
the data returned by these DataAdapters.

! To continue building the application
1. Start the Microsoft Visual Studio .NET development environment.
2. Open the solution you created in Lab 6.1, or open the solution OnTheRoad

in the folder in <install folder>\Labs\Lab06_2\Starter\xx\ where xx is either
VB or CS.

! To create the products table
1. Open the MainForm class in Designer view and drag a SqlDataAdapter

from the Toolbox onto the form.
2. Choose a data connection to the Northwind database on your local SQL

Server.
3. Choose to Use SQL statements and click Next.
4. Enter the following statement.

SELECT
 ProductID, ProductName, UnitPrice
FROM
 Products

5. Click the Advanced Options button and clear the Generate Insert, Update
and Delete statements check box.

6. Click Finish. The wizard will now create a data adapter, a connection and a
command that will be used to populate the products table in the data set.

7. Change the name of the new data adapter to daProducts, and its associated
SelectCommand to cmSelectProducts.

8. Right-click the daProducts data adapter and choose Generate Dataset.
9. Choose the existing data set called OnTheRoad.NWDataSet, and clear the

Add the data set to the designer check box. Click OK.
10. Right-click the dsNorthwind data set, then choose View Schema to check

that the products table has been added to the data set schema.

Scenario

86 Module 6: Building DataSets from Existing Data Sources (Prerelease)

! To create the customers table
1. Open the MainForm class in Designer view and drag a SqlDataAdapter

from the Toolbox onto the form.
2. Choose a data connection to the Northwind database on your local SQL

Server.
3. Choose to Create new stored procedures and click Next.
4. Type the following statement.
SELECT
 Customers.CustomerID, CompanyName, ContactName, City, Phone
FROM Customers INNER JOIN Orders ON
 Customers.CustomerID = Orders.CustomerID
WHERE (Orders.EmployeeID = @EmployeeID)
ORDER BY CompanyName

5. Change the names of the stored procedures to: SelectCustomers,

InsertCustomers, UpdateCustomers, and DeleteCustomers.
6. Click Finish. The wizard will now create a data adapter, a connection and

four commands that will be used to populate and modify customers.
7. Use the Server Explorer to modify the SelectCustomers stored procedure

by adding DISTINCT after the SELECT keyword. This will prevent
duplicate customer rows. The Wizard cannot auto-generate DML statements
based on SELECT DISTINCT statements.

8. Change the name of the new data adapter to daCustomers, and its
associated XxxCommands to cmSelectCustomers, cmInsertCustomers,
cmDeleteCustomers, and cmUpdateCustomers.

9. Right-click the daCustomers data adapter and choose Generate Dataset,
choose the existing data set called OnTheRoad.NWDataSet, and clear the
Add the data set to the designer check box. Click OK.

! To create the orders table
1. Open the MainForm class in Designer view and drag a SqlDataAdapter

from the Toolbox onto the form.
2. Choose a data connection to the Northwind database on your local SQL

Server.
3. Choose to Create new stored procedures and click Next.
4. Type the following statement.

SELECT OrderID, OrderDate, EmployeeID, CustomerID
FROM Orders WHERE (EmployeeID = @EmployeeID)

5. Change the names of the stored procedures to: SelectOrders, InsertOrders,
UpdateOrders, and DeleteOrders.

6. Click Finish.
7. Change the name of the new data adapter to daOrders, and its associated

XxxCommands to cmSelectOrders, cmInsertOrders, cmDeleteOrders,
and cmUpdateOrders.

8. Right-click the daOrders data adapter and choose Generate Dataset,
choose the existing data set called OnTheRoad.NWDataSet, and clear the
Add the data set to the designer check box. Click OK.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 87

! To create the order details table
1. Open the MainForm class in Designer view and drag a SqlDataAdapter

from the Toolbox onto the form.
2. Choose a data connection to the Northwind database on your local SQL

Server.
3. Choose to Create new stored procedures and click Next.
4. Type the following statement.

SELECT
 [Order Details].OrderID, ProductID, UnitPrice, Quantity
FROM [Order Details] INNER JOIN Orders ON
 [Order Details].OrderID = Orders.OrderID
WHERE
 (Orders.EmployeeID = @EmployeeID)

5. Change the names of the stored procedures to: SelectOrderDetails,
InsertOrderDetails, UpdateOrderDetails, and DeleteOrderDetails.

6. Click Finish.
7. Change the name of the new data adapter to daOrderDetails, and its

associated XxxCommands to cmSelectOrderDetails,
cmInsertOrderDetails, cmDeleteOrderDetails, and
cmUpdateOrderDetails.

8. Change the TableMappings property of the daOrderDetails data adapter
so that the data set table name does not include a space between Order and
Details.

9. Right-click the daOrderDetails data adapter and choose Generate Dataset,
choose the existing data set called OnTheRoad.NWDataSet, and clear the
Add the data set to the designer check box. Click OK.

! To add primary keys to the custom data set schema and class
1. Right-click the dsNorthwind data set, then choose View Schema to check

that the customers, orders, and order details tables have been added to the
data set schema.

2. Right-click the CustomerID field in the Customers table, and choose Add
� New key.

3. Change the name to PK_Customers and click OK.
4. Right-click the OrderID field in the Orders table, and choose Edit key.
5. Change the name to PK_Orders and click OK.
6. Right-click the OrderID field in the OrderDetails table, and choose Add �

New key.
7. Change the name to PK_OrderDetails, add ProductID to the list of fields,

and click OK.
8. Right-click the EmployeeID field in the Employees table, and choose Edit

key.
9. Change the name to PK_Employees and click OK.
10. Right-click the ProductID field in the Products table, and choose Edit key.
11. Change the name to PK_Products and click OK.

88 Module 6: Building DataSets from Existing Data Sources (Prerelease)

! To add relationships to the custom data set schema and class
1. Right-click the Orders table and choose Add � New Relation.
2. Select Employees for the parent element and Orders for the child element,

and click OK.
3. Right-click the Orders table and choose Add � New Relation.
4. Select Customers for the parent element and Orders for the child element,

and click OK.
5. Right-click the OrderDetails table and choose Add � New Relation.
6. Select Orders for the parent element and OrderDetails for the child

element, change the name to OrdersOrderDetails and click OK.
7. Right-click the OrderDetails table and choose Add � New Relation.
8. Select Products for the parent element and OrderDetails for the child

element, change the name to ProductsOrderDetails and click OK.
9. Save and close the XSD file.

! To test your code
• Build your application. You are not ready to execute the application yet,

because you have not written any code to fill the DataSet from the
DataAdapers.

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 89

Exercise 2
Filling a DataSet by Using Multiple Data Adapters

When the sales person is connected to the central database, he or she can
download data for products, customers, orders, and order details. This
information will be held in a local DataSet within the application, so that the
user can continue to use the data while the application is disconnected from the
database.

In this exercise, you will use the Fill method on the DataAdapters to fill the
various tables in the DataSet. You will also bind the DataSet to a DataGrid, to
display the data on the screen.

! To start with the solution to the previous exercise
• If you did not complete the previous exercise, open the solution

OnTheRoad in the folder
<install folder>\Labs\Lab06_2\Solution\Ex1\xx\ where xx is either VB
or CS.

! To refresh the data grid
1. In MainForm.vb, add code to the RefreshUI method to bind the data grid to

the Customers table in the data set.
' Visual Basic
Me.grd.DataSource = Me.dsNorthwind.Customers

// Visual C#
this.grd.DataSource = this.dsNorthwind.Customers;

2. Locate the mnuFill_Click procedure, and insert a new line after the line that
retrieves the selected employee ID into the field. For example:

' Visual Basic
If frmLogon.ShowDialog(Me) = DialogResult.OK Then
 Me.EmployeeID = CInt(frmLogon.lstEmployees.SelectedValue)
 ' insert new code here

// Visual C#
if (frmLogon.ShowDialog(this) == DialogResult.OK)
{
 this.EmployeeID =
 ConvertTo(frmLogon.lstEmployees.SelectedValue, int);
 // insert new code here

3. Write code to try to fill the new tables you just added to the data set

(Products, Customers, Orders, OrderDetails) using the data adapters created
by the wizard. Catch any exceptions and display a warning message.

Scenario

90 Module 6: Building DataSets from Existing Data Sources (Prerelease)

' Visual Basic
Try
 Me.daProducts.Fill(tempNW.Products)

 Me.daCustomers.SelectCommand.Parameters(_
 "@EmployeeID").Value = Me.EmployeeID
 Me.daCustomers.Fill(tempNW.Customers)

 Me.daOrders.SelectCommand.Parameters(_
 "@EmployeeID").Value = Me.EmployeeID
 Me.daOrders.Fill(tempNW.Orders)

 Me.daOrderDetails.SelectCommand.Parameters(_
 "@EmployeeID").Value = Me.EmployeeID
 Me.daOrderDetails.Fill(tempNW.OrderDetails)

 Me.dsNorthwind = tempNW
 Me.RefreshUI()

Catch Xcp As System.Exception
 MessageBox.Show(_
 "Failed to retrieve data because: " & vbCrLf & _
 Xcp.ToString() & vbCrLf & vbCrLf & _
 "Try a different server name.", _
 "Get from central database", _
 MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

// Visual C#
try
{
 this.daProducts.Fill(tempNW.Products);

 this.daCustomers.SelectCommand.Parameters[
 "@EmployeeID"].Value = this.EmployeeID;
 this.daCustomers.Fill(tempNW.Customers);

 this.daOrders.SelectCommand.Parameters[
 "@EmployeeID"].Value = this.EmployeeID;
 this.daOrders.Fill(tempNW.Orders);

 this.daOrderDetails.SelectCommand.Parameters[
 "@EmployeeID"].Value = this.EmployeeID;
 this.daOrderDetails.Fill(tempNW.OrderDetails);

 this.dsNorthwind = tempNW;
 this.RefreshUI();
}
catch (System.Exception Xcp)
{
 MessageBox.Show(
 "Failed to retrieve data because:\n" + Xcp.ToString() +
 "\n\nTry a different server name.",
 "Get from central database",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
}

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 91

! To test the filling and saving of the complete data set
1. Build the application and correct any build errors.
2. Open the MainForm class in Code view and set a break point at the

beginning of the mnuFill_Click procedure.
3. Use the Server Explorer to set breakpoints on the first line of the

SelectCustomers, SelectOrders and SelectOrderDetails stored
procedures.

4. Run the application.
5. Choose the Get from central database menu item.
6. Step through the code line by line until the form appears.
7. Choose Fuller, Andrew, and then click OK.
8. Continue to step through the code line by line. Notice the value of the

EmployeeID field.
9. When stepping over the code that fills the customers table, notice that the

debugger steps into the correct stored procedure, and that the value passed
to the stored procedure for the @EmployeeID parameter is the same value
as the EmployeeID field.

10. Continue to step through the code line by line until the main form appears
with the data grid full of customers and orders taken by Andrew Fuller.

11. Close the application, and check that the OnTheRoad.xml file contains all
records in the data set using Internet Explorer.

12. Rerun the application and notice that the data set is correctly reloaded
automatically.

92 Module 6: Building DataSets from Existing Data Sources (Prerelease)

Exercise 3
Updating the Central Database

When the sales person reconnects to the central database, he or she can persist
any changes made to the products, customers, orders, and order details tables in
the DataSet.

In this exercise, you will use the Update method on the DataAdapters to update
the central database.

To update the database, you must separate the insert, update and delete changes
made to the data set so that they can be applied to the three tables (customer,
orders, order details) in the correct order. For example, inserts of customers
must occur before inserts of orders, but deletes of customers must come after
deletes of orders.

! To start with the solution to the previous exercise
• If you did not complete the previous exercise, open the solution

OnTheRoad in the folder
<install folder>\Labs\Lab06_2\Solution\Ex2\xx\ where xx is either VB
or CS.

! To update the central database
1. Locate the mnuUpdate_Click event handler.
2. Write code to declare three local DataSet variables named dsInserts,

dsUpdates, and dsDeletes. Instantiate them with the results of calling the
GetChanges method of the dsNorthwind data set, passing a
DataRowState parameter to separate insert, update and delete changes.
' Visual Basic
Dim dsInserts As DataSet = _
 Me.dsNorthwind.GetChanges(DataRowState.Added)

Dim dsUpdates As DataSet = _
 Me.dsNorthwind.GetChanges(DataRowState.Modified)

Dim dsDeletes As DataSet = _
 Me.dsNorthwind.GetChanges(DataRowState.Deleted)

// Visual C#
DataSet dsInserts =
 this.dsNorthwind.GetChanges(DataRowState.Added);

DataSet dsUpdates =
 this.dsNorthwind.GetChanges(DataRowState.Modified);

DataSet dsDeletes =
 this.dsNorthwind.GetChanges(DataRowState.Deleted);

Scenario

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 93

3. Write code to try to call the Update method of each of the three data
adapters for the insert, update and delete changes made to the data set in the
correct order if changes exist.

' Visual Basic
Try
 If Not dsInserts Is Nothing Then
 Me.daCustomers.Update(dsInserts.Tables("Customers"))
 Me.daOrders.Update(dsInserts.Tables("Orders"))
 Me.daOrderDetails.Update(dsInserts.Tables(_
 "OrderDetails"))
 End If

 If Not dsUpdates Is Nothing Then
 Me.daCustomers.Update(dsUpdates.Tables("Customers"))
 Me.daOrders.Update(dsUpdates.Tables("Orders"))
 Me.daOrderDetails.Update(dsUpdates.Tables(_
 "OrderDetails"))
 End If

 If Not dsDeletes Is Nothing Then
 Me.daOrderDetails.Update(dsDeletes.Tables(_
 "OrderDetails"))
 Me.daOrders.Update(dsDeletes.Tables("Orders"))
 Me.daCustomers.Update(dsDeletes.Tables("Customers"))
 End If

// Visual C#
try
{
 if (dsInserts != null)
 {
 this.daCustomers.Update(dsInserts.Tables["Customers"]);
 this.daOrders.Update(dsInserts.Tables["Orders"]);
 this.daOrderDetails.Update(dsInserts.Tables[
 "OrderDetails"]);
 }

 if (dsUpdates != null)
 {
 this.daCustomers.Update(dsUpdates.Tables["Customers"]);
 this.daOrders.Update(dsUpdates.Tables["Orders"]);
 this.daOrderDetails.Update(dsUpdates.Tables[
 "OrderDetails"]);
 }

 if (dsDeletes != null)
 {
 this.daOrderDetails.Update(dsDeletes.Tables[
 "OrderDetails"]);
 this.daOrders.Update(dsDeletes.Tables["Orders"]);
 this.daCustomers.Update(dsDeletes.Tables["Customers"]);
 }

94 Module 6: Building DataSets from Existing Data Sources (Prerelease)

4. Write code to try to catch any exceptions by displaying a message box and
exiting the procedure.
' Visual Basic
Catch Xcp As System.Exception
 MessageBox.Show(Xcp.ToString())
 Exit Sub
End Try

// Visual C#
catch (System.Exception Xcp)
{
 MessageBox.Show(Xcp.ToString());
 return;
}

5. Write code to ask the user if they want to refresh the data set, and if so, call
the mnuFill_Click procedure.
' Visual Basic
If MessageBox.Show(_
 "Do you want to refresh your local copy of data?", _
 "Update", MessageBoxButtons.YesNo, _
 MessageBoxIcon.Question) = DialogResult.Yes Then

 mnuFill_Click(sender, e)
End If

// Visual C#
if (MessageBox.Show(
 "Do you want to refresh your local copy of data?",
 "Update", MessageBoxButtons.YesNo,
 MessageBoxIcon.Question) == DialogResult.Yes)
{
 mnuFill_Click(sender, e);
}

 Module 6: Building DataSets from Existing Data Sources (Prerelease) 95

! To test the updating of the central database
1. Clear all existing break points in your application.
2. Set a new break point at the beginning of the mnuUpdate_Click procedure.
3. Use the Server Explorer to set breakpoints on the first line of the

UpdateCustomers, UpdateOrders, UpdateOrderDetails, InsertOrders,
InsertOrderDetails, DeleteOrders, and DeleteOrderDetails stored
procedures.

4. Run your application.
5. Make changes to the data set. Insert a new order (and order details) for an

existing customer. Edit an existing customer and order information.
6. Choose the Update to central database menu item.
7. Step through the code and notice which stored procedures are run, and

notice the values of parameters passed.
8. Close your application.
9. Restart the application and try to delete the order you added previously.
10. Choose the Update to central database menu item.
11. Step through the code and notice which stored procedures are run, and

notice the values of parameters passed.
12. Close the application.

Contents

Overview 1

Lesson: Building and Consuming a Web
Service That Returns Data 2

Review 13

Lab 7: Troubleshooting an ADO .NET
Application 14

Module 7: Building and
Consuming a Web Service
That Uses ADO .NET
(Prerelease)

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other appropriate product names or titles.
The publications specialist replaces this example list with the list of trademarks provided by the
copy editor. Microsoft is listed first, followed by all other Microsoft trademarks in alphabetical
order. > are either registered trademarks or trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

<The publications specialist inserts mention of specific, contractually obligated to, third-party
trademarks, provided by the copy editor>

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) iii

Instructor Notes
This module teaches students how to build and manage DataSets, define data
relationships, modify data, and use DataViews. Because practices in this
module build on files built during Lesson 1, the starter file for Lesson 2 is the
solution file for Lesson 1. Lesson 3 and practices in other lessons also build
upon each other.

After completing this module, students will be able to:

! Build a Web service.
! Consume a Web service in a client application.
! Troubleshoot errors in an ADO .NET application.

To teach this module, you need the following materials:

! Microsoft® PowerPoint® file 2389A_07.ppt
! Module 7, �Building and Consuming a Web Service That Uses ADO .NET�
! Lab 7, Troubleshooting an ADO .NET Application

To prepare for this module:

! Read all of the materials for this module.
! Complete the practices and labs.
! Read the latest .NET Development news at

http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28000519

Presentation:
45 Minutes

Lab:
60 Minutes

Required materials

Preparation tasks

Classroom setup

iv Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

How to Teach This Module
This section contains information that will help you to teach this module.

Lesson: Building and Consuming a Web Service That Returns Data
This section describes the instructional methods for teaching each topic in this
lesson.

Discussion Questions: Personalize the following questions to the background
of the students in your class.
! What are some other examples of Web services?
! How can you see Web services used in your organization? Give examples.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What other ways could you fill the local DataSet with data other than by
using a DataAdapter?

! What is the purpose of creating an empty, local instance of a DataSet?
! Why use a strongly-typed DataSet?

Transition to Practice Exercise: Now that you have seen examples of creating
a Web service, you can now practice creating a Web service programmatically.

Instruct students to turn to the practice exercise at the end of this topic in the
student workbook.

Discussion Questions: Personalize the following questions to the background
of the students in your class.

! What are some ways to find out the reference to Web services? How do you
use Universal Description, Discover, and Integration (UDDI)?

Transition to Practice Exercise: Now that you have seen examples of
consuming a Web service, you can now practice consuming a Web service in a
client application.

What is a Web Service?

How to Build a Web
Service That Returns
Data

How to Consume a Web
Service

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 1

Overview

! Building and Consuming a Web Service That Returns
Data

! Lab 7: Troubleshooting an ADO .NET Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Web services allow applications to communicate regardless of operating system
or programming language via the Internet. They can be implemented on any
platform and are defined through public standards organizations. Sharing data
through Web services allows the Web services to be independent of each other
while simultaneously giving them the ability to loosely link themselves into a
collaborating group that performs a particular task...

In this module, you will learn to create a Web service that returns data.

After completing this module, you will be able to:

! Build and consume a Web service.
! Troubleshoot errors in an ADO .NET application.

Introduction

Objectives

2 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

Lesson: Building and Consuming a Web Service That
Returns Data

! This lesson describes:

" What a Web service is

" How to build a Web service that returns data

" How to consume a Web service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Web services are enabling a new era of distributed application development. By
using ADO .NET, you can build Web services that return data, and those Web
services can be consumed by multiple applications locally or across the
Internet.

After completing this lesson, you will be able to:

! Explain what a Web service is.
! Build a Web service that returns data.
! Consume a Web service.

Introduction

Lesson Objective(s)

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 3

What is a Web Service?

Web Web
ServiceService

XMLXML

.NET My .NET My
ServicesServices

Web Web
ServiceService

HTTP
HTTP

ClientClient

Web Web
ServiceService

XML
XML

Web Web
ServiceService

XMLXML

XM
L

XM
L

! Programmable logic accessible via standard Web
protocols

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A Web service is a piece of programmable logic accessible by standard Web
protocols such as HTTP and XML. A Web service can be used locally by a
single application or published on the Internet for use by multiple
heterogeneous applications.

Web services allow applications to share data and functionality. Web services
use XML-based messaging to communicate between systems that use different
component models, operating systems, and programming languages.
Developers can create applications that weave together Web services from a
variety of sources in much the same way that developers traditionally use
components when creating a distributed application.

By using XML-based messaging to communicate between a web service and a
client application, both the Web service client and the Web service provider are
free from needing any knowledge of each other beyond inputs, outputs and
location.

A Web service can provide some reusable functionality that many clients can
share.

For example, a challenge faced by e-commerce applications is the need to
calculate charges for an assortment of shipping options. Such applications
would require current shipping cost tables from each shipping company to use
in these calculations.

Alternatively, an application could send an XML-based message over the
Internet, using a standard transport protocol such as HTTP, to the shipper's cost
calculation Web service. The message might provide the weight and
dimensions of the package, ship-from and ship-to locations, and other
parameters such as perhaps class of service. The shipper's Web service would
then calculate the shipping charge using the latest cost table and return, in a
simple XML-based response message, this amount to the calling application for
use in calculating the total charge to the customer.

Definition

Example

4 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

How to Build a Web Service That Returns Data

! To build a Web service that returns data, create a new Web service
by using Visual Studio. NET. Typically, this Web Service will define
one or more methods that:

" Establish a connection to a data source.

" Create a DataSet, define the structure of the resulting Typed
DataSet (by using an .xsd file).

" Create an empty, local instance of the Strongly Typed DataSet.

" Run a query or perform calculations, and fill the local DataSet. A
DataAdapter is commonly used to fill the dataset.

" Return the DataSet to the client application for further processing

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

Creating a Web service is similar to creating any component that provides
programmatic access to its application logic. To create a Web service, you need
some functionality that constitutes the service you wish to expose, a service
description that defines how to use the service, and an infrastructure to support
receiving and processing requests, and sending responses. Fortunately, much of
the required infrastructure is generated automatically by Visual Studio .NET.

To build a Web service that returns data, first create a new Web service by
using Visual Studio. NET. Typically, this Web Service will define one or more
methods that:

! Establish a connection to a data source.
! Create a DataSet, define the structure of the resulting Typed DataSet (by

using an .xsd file).
! Create an empty, local instance of the Strongly Typed DataSet.
! Run a query or perform calculations, and fill the local DataSet. A

DataAdapter is commonly used to fill the DataSet.
! Return the DataSet to the client application for further processing.

Introduction

Building a Web service
that returns data

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 5

The following example defines a Web method that takes a customer�s city as
input, queries the customers table in the Northwind database, and returns a
DataSet with information about all the customers in that city.

This example assumes that a connection to the Northwind database exists.

�Connect to the Northwind DataBase
Dim myCn as new SqlConnection

myCn.ConnectionString = �data source=localhost;initial
catalog=Northwind� & _
�integrated security=SSPI;persist� & _
�security info=false�

myCn.open

This example assumes that a SqlDataAdapter has been defined with the
following parameterized query:

SQLDataAdapter1.SelectCommand.CommandText = _
SELECT CustomerId, CompanyName, ContactName, Address, City,
Region, PostalCode, Country, Phone, Fax
FROM Customers
WHERE (City like @city)

When you create parameterized queries using the SQLDataAdapter, use
named arguments to mark parameters.

When you create parameterized queries using the OLEDBDataAdapter, use the
�?� character to mark parameters

Example

Note

6 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

�Set a query parameter for an OLDB data source

OLEDBDataAdapter1.SelectCommand.CommandText = _
SELECT CustomerId, CompanyName, ContactName, Address, City,
Region, PostalCode, Country, Phone, Fax
FROM Customers
WHERE (City like ?)

�Example of a Web Service that returns a DataSet
Imports System.Web.Services
Public Class Service1
 Inherits System.Web.Services.WebService

�This method accepts a city name as a query parameter
<WebMethod()> Public Function GetCustomers(ByVal city as
String) as CustDS

�Create an instance of a Typed DataSet to hold the information
�retrieved from SQL Server
 Dim ds as New CustDS()

�Set the city parameter of the query, 0 is the first in
�the collection
 SqlDataAdapter1.SelectCommand.Parameters(0).Value = city

 �Fill the local DataSet with the results
 SqlDataAdapter1.fill(ds)

 �Pass the results to the calling program
 Return ds

End Function

End Class

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 7

A salesperson for Northwind Traders travels to various cities in order to visit
customers and take orders. Since customer information changes frequently, the
Customer Information application uses an XML Web service to retrieve
information from the company�s central database about customers in a
particular city. The salesperson uses the application to generate the list of
customers to visit while in a particular city.

! To create a Web service
1. Start Visual Studio.net and create a new project. Use the information in the

following table.

Option Value

Project Type Visual Basic or Visual C#

Template ASP.Net Web service

Name CustomerInfoService

2. Use the Server Explorer to add a new connection to the Northwind database
on your local SQL Server.

3. Double Click on Service1.asmx in the Solution Explorer. This displays the
design surface for the Web service.

4. Click the Data tab of the toolbox. Drag a SqlDataAdapter to the design
surface. Use the information in the following table to configure the
SqlDataAdapter by using the wizard.

Option Value

Connection Localhost.Northwind.dbo

Query type Use SQL statement

Query SELECT CustomerId, CompanyName,
ContactName, Address, City, Region,
PostalCode, Country, Phone, Fax

FROM Customers

WHERE (City like @city)

5. Right click on SQLDataAdapter1 and then click Generate DataSet. Use the
information in the following table.

Property Value

New DataSet Name CustDS

Tables Customer

Add DataSet to the designer Checked

6. Right click CustDS.xsd and then click View Schema. Examine the
generated schema.

Practice

8 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

! To create a Web method that returns a dataset
1. View the code for Service1.asmx.
2. Create a new Web method by inserting the following code after the

commented example.
<WebMethod()> Public Function GetCustomers(ByVal city as _
String) as CustDS
 Dim ds as New CustDS()
 SqlDataAdapter1.SelectCommand.Parameters(0).Value = city
 SqlDataAdapter1.fill(ds)
 Return ds
End Function

3. Build the project.

! To test the Web service
1. Right click Service1.asmx and then click Browse With�Choose Microsoft

Internet Explorer from the list.
2. Right click Service1.asmx and then click View in Browser.
3. Examine the default page generated to describe the Web service.
4. Click GetCustomers.
5. Test the Web method by using �London� as the parameter value. Click

Invoke.
6. Examine the XML returned by the Web service. Notice that it contains both

schema and data.

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 9

How to Consume a Web Service

! To consume a Web service in a client application, you
need to:

" Define DataSet classes and Public Web Methods in the
Web service.

" Within the client application, add a reference to the Web
service.

Visual Basic Example
*****************************ILLEGAL FOR NON-TRAINER USE******************************

Because Web services are accessible using URLs, HTTP, and XML it means
programs running on any platform and in any language can access Web
services. Because the decentralized nature of Web services enables both the
client and the Web service to function as autonomous units, there are countless
ways to consume a Web service.

For example, a call to a Web service can be included in a Web application, a
middleware component, or even another Web service. No matter what form the
Web service client may take, all that's needed to call a Web service is to send a
properly formatted request message that conforms to the published service
description for that Web service. Depending upon the nature of the Web
service, it may send a response message in return. The originator of the request
must then be capable of extracting the necessary information from this message.

To consume a Web service in a client application, you need to:

! Define DataSet classes and Public Web Methods in the Web service.
! Within the client application, add a reference to the Web service.

When you create a Web Reference to a Web service, the classes and methods
defined in the Web Service are then available for use in the client application.
You can also use Universal Description, Discovery, and Integration (UDDI) to
find out what is available on the Web service.

When you find the Web service that you want to access, you need to add a Web
reference to that Web service within the client application. This allows you to
access the Web services classes and method as if they were local to your client
application

Introduction

To consume a Web
service

10 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

The following example retrieves a DataSet from a Web service. In this
application, a client form sends the City where customers live as a parameter to
a Web service. The Web service connects to SQL Server and executes a query
to retrieve a list of the customers in that city. The results are sent to the client as
a strongly typed DataSet.

The client application receives the DataSet and uses it to populate the local
cache. This cache is a DataSet of the same type defined by the Web service.
The application binds a DataGrid control to the local cache to display the
results.

The form in the client application contains a textbox to record the choice of
city, a datagrid to display results, and a button process the request for
information.

A complete code listing for this example is included in ClientList.txt.

Public Class Form_ClientList
 Inherits System.Windows.Forms.Form

�Create a new Strongly Typed DataSet based on the one declared
�in the Web service.
�A Web reference to the Web service that defines CustDS
�already exists.

 Public CustDS1 as New ClientList.localhost.CustDS()
. Private myCity as String
.
.
�Contact the Web Service, execute the query and retrieve
�results

Private Sub Btn_GetClients_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Btn_GetClients.Click

�Reference the Web service.
�This make the Web methods available to the client
application.

Dim ws As New ClientList.localhost.Service1()

�Get the city parameter from the form
myCity = txt_city.text

�Use the Web method to retrieve results.
�Merge the results into the local cache.

CustDS1.Merge(ws.GetCustomers(myCity))

End Sub

End Class

Example

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 11

A salesperson for Northwind Traders travels to various cities in order to visit
customers and take orders. Since customer information changes frequently, the
Customer Information application uses an XML Web service to retrieve
information from the company�s central database about customers in a
particular city. The salesperson uses the application to generate the list of
customers to visit while in a particular city.

In this practice, you will build a simple client application to consume the Web
service.

! To create a client form
1. Start Visual Studio.net and create a new project. Use the information in the

following table

Option Value

Project Type Visual Basic or Visual C#

Template Windows Application

Name ClientList

2. Add a button to the form. Use the information in the following table:

Property Value

Name btn_GetClients

Text List Customers

Dock bottom

3. Add a textbox to the form. Use the information in the following table:

Property Value

Name Txt_city

Text Enter a city

Dock Top

4. Add a data grid to the form. Use the information in the following table:

Property Value

Name Dgr_CustGrid

Dock Fill

Practice

12 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

! To add a Web reference
1. In the Solution Explorer, right click the References folder in the ClientList

project, and then click Add Web Reference.
2. Click Web References on Local Web Server and then click the link to

http://localhost/CustomerInfoService/CustomerInfoService.vsdisco.
3. Click Add Reference.
4. In the Solution Explorer, expand the Web References folder of the

ClientList project. Notice that CustDS.xsd describes the schema of the
DataSet returned by the Web service.

5. In the Class View, expand ClientList. Notice that a class named CustDS has
been created. In the next procedure you will create a strongly typed data set
based on this class.

! To use the methods and classes from a Web service
1. From the Data tab of the toolbox, add a new DataSet to the form. Use the

information in the following table

Option Value

Typed dataset Selected

Name ClientList.localhost.CustDS

2. Set the Data Source property of the data grid to CustDS1.Customers
3. Copy the following code to btn_GetClients_click procedure:

Dim ws as New ClientList.localhost.Service1()
CustDS1.Merge(ws.GetCustomers(txt_city.text))

4. Save the form and build the solution.

! To test your application
1. Start the Client list application in Debug mode.
2. Type �London� in the text box, and then click Retrieve Customers.
3. Examine the results.
4. Close the application.

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 13

Review

! What is a Web Service?

! How to Build a Web Service That Returns Data

! How to Consume a Web Service

*****************************ILLEGAL FOR NON-TRAINER USE******************************

1.

2.

3.

4.

5.

14 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

Lab 7: Troubleshooting an ADO .NET Application

*****************************ILLEGAL FOR NON-TRAINER USE******************************

After completing this lab, you will be able to:

!
!
!

Before working on this lab, you must have:

! Experience debugging .NET solutions.
!

Objectives

Prerequisites

For More Information

Scenario

Estimated time to
complete this lab: 60
minutes

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 15

Exercise 0
Lab Setup

To complete this lab, you must �

! To set up the XML Web service
1. Check that the OnTheRoadWS XML Web service is running correctly by

navigating to http://localhost/2389/labs/lab07/OnTheRoadWS/Check that
the instructor�s machine has a copy of the Employees table called
EmployeesLatest that includes a tenth row for John Smith.

16 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

Exercise 1
Bug Fixin�

In this exercise, you will fix bugs in a Visual Studio .NET solution. The
solution includes an XML Web service and a Windows client application that
both use ADO .NET to allow sales people to track customers� orders while
away from the office and the central sales database.

You have recently been employed in the Northwind Traders IT Department.
The previous programmer left for a dot com startup (and is now regretting it).
You have inherited a project with bugs, and it is your first job to fix them.

The instructor will play the role of the database administrator (DBA) for the
Northwind Traders IT Department. If you find DBA related problems, ask
questions and negotiate with the DBA as you would in the real world.

! To open the buggy solution
1.
2.
3.

Here are the solutions to the bugs.

! To fix all the bugs
1. Problem. The OnTheRoad project is missing a reference to the

System.XML.dll assembly. This causes six build errors related to classes
defined in the System.Xml namespace.
Solution. Right-click the OnTheRoad project and choose Add Reference,
then select the System.XML.dll assembly and choose OK.

2. Problem. The SalesManager.asmx class is missing an Imports (Visual
Basic) or a using (C#) statement for the System.Web.Services namespace.
This causes two �Type is not defined: �WebMethod�� build errors, because
the <WebMethod()> attribute is defined in the System.Web.Services
namespace.
Solution. Add the following code to the top of the SalesManager.asmx
class.
' Visual Basic
Imports System.Web.Services

// Visual C#
using System.Web.Services;

3. Problem. A new employee started recently. Their name is John Smith, but
their name is not appearing in the application.
Solution. The problem is that the connection string for the
cnNorthwindInstructor connection in the SalesManager.asmx class uses
(local) as the server name. Therefore the database used is the one on the
same server as the web service. This must be changed to the instructors
machine name, London, because that is the only server that contains the
EmployeesLatest table. This error is very common when moving from a
development or test environment to a production environment.

Scenario

Solution

 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease) 17

4. Problem. The connection string for the cnNorthwindInstructor connection
in the SalesManager.asmx class uses a SQL login named MaryJoe with a
password of secret that does not exist on the server.
Solution. This problem frequently occurs when moving between servers, for
example, when moving from a test server to a production server. The
solution would be to either create a new login with the correct permissions,
or use another login name and password. Use the MaryJane login instead.
She has the same password.

5. Problem. The code that calls the GetDataSet web method is missing a well-
written exception handler, so it is much harder to find out what is going
wrong when the code fails.
Solution. Add the following exception handling code as a minimum. If you
have time, write more code to catch specific exceptions and display friendly
error messages to the user.
' Visual Basic
Try
 tempNW = wsSalesMgr.GetDataSet(_
 Me.EmployeeID, Me.ServerName)
Catch Xcp As System.Exception
 MessageBox.Show(Xcp.ToString(), �Exception�)
End Try

// Visual C#
try
{
 tempNW = wsSalesMgr.GetDataSet(
 this.EmployeeID, this.ServerName);
}
catch (System.Exception Xcp)
{
 MessageBox.Show(Xcp.ToString(), �Exception�);
}

6. Problem. Instructor can put the Northwind database on the London server
into single user mode (or run a stored procedure?) to limit the number of
concurrent connections to less than the number of students.
Solution. Contact the DBA and make sure the database does not limit
connections for either reason.

7. Problem. The SelectCustomers command uses the SelectClients stored
procedure which now has the wrong name (perhaps it was renamed by a
DBA without telling the developers after they used the auto-gen. tools).
Solution. Users can fix the name in their code. It should be changed to
SelectCustomers.

8. Problem. A stored procedure has a parameter type mismatch (the same
DBA altered the stored procedure, again without telling the developers!)
Solution. The InsertCustomers command needs the parameter definition line
for the @CustomerID parameter altered from a 4 byte integer to a 5 byte
NChar.

9. Problem. Before calling the Fill method of the daOrderDetails data adapter
the parameter value for the EmployeeID is not set properly, so the order
detail rows displayed to the user are wrong.
Solution. Change the variable name to use iEmployeeID instead of
EmployeeID (which is always 0).

18 Module 7: Building and Consuming a Web Service That Uses ADO .NET (Prerelease)

10. Problem. The SqlDataReader loop code for listing employees has a logic
error. It uses the Read method in an If statement to check for records
(True/False), and then a Do loop, thereby losing the first row.
Solution.

11. Problem. DataGrid binding code uses a child table (Orders) instead of a
parent table (Customers).
Solution. Change the code in the RefreshUI method to bind to the
Customers table.

12. Problem. Indexing problem with filtering/sorting DataView. e.g. n+1
Solution.

13. Problem. XSD file does not define a relationship between the Orders and
OrderDetails tables so the data grid does not recognize the relationship
either.
Solution. Users need to use the XSD Editor to manually add the XSD file.
Open the NWDataSet.xsd file. Right-click the Orders table. Choose Add-
New Relation. Parent element Orders. Child element OrderDetails. Choose
OK.

14. Problem. Case wrong for an element in the XSD. Will the Editor fix/ignore
this?
Solution.

15. Problem. Missing line of code to append a new DataRow to the Rows
collection when adding a new AppSettings row.
Solution.

16. Problem. Not using Merge method when trying to combine to DataSets,
instead assigning one to the other thereby destroying the first.
Solution. Change the code to use the Merge method.
' Visual Basic
dsChanges.Merge(Me.dsNorthwind.AppSettings)

// Visual C#
dsChanges.Merge(this.dsNorthwind.AppSettings);

17. Problem. Code incorrectly calls AcceptChanges method before calling
Update meaning that the marked changes are �lost� and not sent to the
central database. On the next call to the Fill method the DataSet will revert
to the underlying values again.
Solution. Delete the call to the AcceptChanges method before calling the
GetChanges method in the mnuUpdate_Click procedure.

18. Problem. The CommandText property of the SelectCommand of a
SqlDataAdapter daEmployees has been mis-fixed so there is a missing
space character before the ORDER BY clause.
Solution. Manually add the space back, or re-run the Wizard to regenerate
statement.

19. Problem. A call to the Fill method has accidentally swapped the DataSet
and DataAdapter giving a compile error e.g. ds.Fill(da, �table�) is wrong!
Solution. Swap the data set and data adapter references.

20. Problem. Calls to commit or rollback transactions have been reversed. The
Server Explorer shows the data changes have not been made.
Solution.

Contents

Overview 1

Lesson: Retrieving Data from a Database 2

Lesson: Combining Data from Multiple
Tables 11

Lesson: Modifying Data 17

Lesson: Using Stored Procedures 26

Review 30

Lab A: Best Practices for Writing SQL
Statements and Stored Procedures 33

Appendix A: Best
Practices for Writing
SQL Statements and
Stored Procedures
(Prerelease)

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other appropriate product names or titles.
The publications specialist replaces this example list with the list of trademarks provided by the
copy editor. Microsoft, MS-DOS, Windows, and Windows NT are listed first, followed by all
other Microsoft trademarks listed in alphabetical order. > are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

<The publications specialist inserts mention of specific, contractually obligated to, third-party
trademarks, provided by the copy editor>

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) iii

Instructor Notes
Instructor_notes.doc

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 1

Overview

! Retrieving Data from a Database

! Combining Data from Multiple Tables

! Modifying Data

! Using Stored Procedures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This appendix describes the main features of SQL. SQL is a standard
language for retrieving data from a relational database and for modifying the
data in the database. You use SQL statements in Microsoft® ActiveX® Data
Objects (ADO) .NET applications, to retrieve and modify data in the database.

In this appendix, you will learn how to write SQL statements to retrieve data
from a single table or from multiple tables.

After completing this appendix, you will be able to:

! Retrieve data from a database.
! Join data in different tables.
! Insert, update, and delete data in a database.
! Create and call stored procedures.

Introduction

Objectives

2 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

Lesson: Retrieving Data from a Database

! How Are Relational Databases Organized?

! How to Retrieve Data from a Database Table

! How to Filter Rows

! Guidelines for Retrieving Data Efficiently

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will see how to retrieve data from a relational database.

This lesson shows how to use the SELECT statement to retrieve data from a
database. The lesson also shows how to filter data by using the WHERE clause,
and describes performance considerations that affect retrieving data.

After completing this lesson, you will be able to:

! Describe the structure of relational databases.
! Retrieve data from a database by using the SELECT statement.
! Filter data by using search conditions with the WHERE clause.
! Describe performance considerations that affect retrieving data.

Introduction

Lesson Objectives

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 3

How Are Relational Databases Organized?

productsproducts

productidproductid

1
2
3
4
5
6

1
2
3
4
5
6

productid
1
2
3
4
5
6

! Relational databases are organized into tables

productnameproductname

Chai
Chang
Aniseed Syrup
Chef Anton's Cajun Seasoning
Chef Anton's Gumbo Mix
Grandma's Boysenberry Spread

Chai
Chang
Aniseed Syrup
Chef Anton's Cajun Seasoning
Chef Anton's Gumbo Mix
Grandma's Boysenberry Spread

unitpriceunitprice

18.00
19.00
10.00
22.00
21.35
25.00

18.00
19.00
10.00
22.00
21.35
25.00

supplieridsupplierid

1
1
1
2
2
3

1
1
1
2
2
3

supplierssuppliers

supplieridsupplierid

1
2
3

1
2
3

companynamecompanyname

Exotic Liquids
New Orleans Cajun Delights
Grandma Kelly's Homestead

Exotic Liquids
New Orleans Cajun Delights
Grandma Kelly's Homestead

addressaddress

49 Gilbert St.
P.O. Box 78934
707 Oxford Rd.

49 Gilbert St.
P.O. Box 78934
707 Oxford Rd.

citycity

London
New Orleans
Ann Arbor

London
New Orleans
Ann Arbor

supplierid
1
2
3

! Use a primary key to uniquely identify rows in a table

! Use a foreign key to link to a different table

supplierid
1
1
1
2
2
3

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Relational databases are organized into tables. Each table contains rows
and columns. The rows represent records. The columns define the data items in
each record. A key is a column, or group of columns, that contains a unique
attribute or attributes that you use to identify a row in a table. For example,
each employee must have a unique identification number. In an employee table,
the employee�s identification number uniquely identifies a row for each
employee.

When you design a database, you define tables to represent each related group
of data. For example, a retailer company might design a database with tables
named Customers, Products, and Orders.

Use a primary key to uniquely identify rows in a table. When you
design a database table, you must specify one or more columns as the primary
key. The primary key uniquely identifies rows in the table. Each row has a
unique value for its primary key that distinguishes it from all other rows

Use a foreign key to link to a different table. When you design a
database table, you can specify foreign keys in the table. A foreign key in one
table refers to a primary key in another table. The value of the foreign key
identifies a particular row in the other table. A foreign key can be a single
column or a combination of columns. You can define any number of foreign
keys in a table.

Consider the following facts and guidelines when defining a table:

! Each column in the table must represent an atomic piece of data.
! You must choose an appropriate name for each column.
! You must choose an appropriate data type for each column.
! You must identify one or more columns in the table as the primary key.
! You can define foreign keys to establish links to primary keys in other

tables.

Introduction

Scenario

Definition of primary key

Definition of foreign key

Guidelines for defining a
table

4 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

How to Retrieve Data from a Database

! Use a SELECT statement to retrieve data from a database
USE northwind

SELECT productid, productname, unitprice

FROM products

WHERE unitprice > 50.00 AND unitprice < 100.00

ORDER BY unitprice DESC

GO

! Use select_list to specify the columns returned
! Use FROM to specify the required tables
! Use WHERE to specify the rows returned
! Use ORDER BY to retrieve rows in a specific order

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use a SELECT statement to retrieve data from a database. In a
SELECT statement, you specify the columns and rows that you want a query to
return from a table.

The partial syntax for the SELECT statement is as follows:

SELECT [ALL | DISTINCT] select_list
 FROM {table_source} [,�n]
 [WHERE search_condition]
 [ORDER BY column_name [ASC | DESC]]
Use select_list to specify the columns returned. Consider the following
facts and guidelines for the select list:

! The select list retrieves and displays the columns in the specified order.
! Separate the column names with commas. Do not place a comma after the

final column name. .
! Avoid or minimize the use of an asterisk (*) in the select list. An asterisk

retrieves all columns from a table.

Use a FROM clause to specify the required tables. Consider the
following facts and guidelines for the FROM clause:

! The FROM clause is mandatory. You must provide at least one table name.
! You can provide multiple table names to retrieve data from several tables.

Use a comma to separate each table name.

Introduction

Partial syntax for
SELECT statement

Specifying the columns
returned

Specifying the required
tables

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 5

Use a WHERE clause to specify the rows returned. Consider the
following facts and guidelines for the WHERE clause:

! The WHERE clause is optional. If you do not provide a WHERE clause,
you will retrieve all the rows in the specified table.

! You can define search conditions in the WHERE clause, to restrict the rows
to return. The search conditions can include string comparisons, numerical
comparisons, and other conditional tests.

Specifying the row order
Use an ORDER BY clause to retrieve rows in a specific order.
Consider the following facts and guidelines for the ORDER BY clause:

! The ORDER BY clause is optional. If you do not provide an ORDER BY
clause, you will retrieve rows in the order that they appear in the table.

! If you provide an ORDER BY clause, specify which column the database
engine must use for sorting the rows.

! You can provide an optional ASC or DESC clause to sort rows in ascending
or descending order. The default sorting order is ascending.

The USE statement in this example determines the database that your query acts
on. The SELECT statement retrieves the productid, productname, and
unitprice columns from the Products table in the Northwind Traders database.
The WHERE clause restricts the rows returned so that only products costing
more than $50 and less than $100 are returned. The ORDER BY clause sorts
rows in order of descending unit price.

/* Retrieve the product ID, product name, and unit price
 for products costing more than $50 and less than $100.
 Retrieve products in order of descending price */
USE northwind
SELECT productid, productname, unitprice
 FROM products
 WHERE unitprice > 50.00 AND unitprice < 100.00
 ORDER BY unitprice DESC
GO

The SELECT statement in the preceding example produces the following result:

productid productname unitprice
9 Mishi Kobe Niku 97.00
20 Sir Rodney's Marmalade 81.00
18 Carnarvon Tigers 62.50
59 Raclette Courdavault 55.00
51 Manjimup Dried Apples 53.00

The Products table has a column named unitsinstock, which gives the number
of units currently in stock for each product. There is also a column named
reorderlevel, which indicates the minimum number of units to maintain in
stock for each product.

Rewrite the SELECT statement in the previous example, to retrieve the
productid, productname, unitsinstock, and reorderlevel columns for all
products that have fallen below the reorder level. There is no need to sort the
rows in any particular order.

Specifying the rows
returned

Example of using the
SELECT statement

Result

Practice

6 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

How to Filter Rows

! Use a WHERE clause to filter rows retrieved in a query

! Filter rows by using search conditions

" Comparison operators

" String comparisons

" Logical operators

" Range of values

" List of values

" Unknown values

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use a WHERE clause to filter rows retrieved in a query. You can
retrieve just the rows that you need from the database, rather than retrieve all
the rows.

Filter rows by using search conditions. The following table describes the
types of filters and the corresponding search condition that you can use to filter
data.

Type of filter Usage Search condition

Comparison operators Use comparison operators to

compare values in a table to a
specified value or expression.

=, >, <, >=, <=, and <>

String comparisons Use the LIKE and NOT LIKE
search conditions with wildcard
characters to select rows by
comparing character strings.

LIKE and NOT LIKE

Logical operators Use the AND, OR, and NOT
logical operators to combine a
series of expressions and to refine
query processing. Use
parentheses to enforce or
emphasize the order of evaluation
of the test conditions.

AND, OR, and NOT

Introduction

Filtering rows

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 7

(continued)
Type of filter Usage Search condition

Range of values Use the BETWEEN and NOT

BETWEEN operators to retrieve
rows within or outside a specified
range of values.

Microsoft SQL Server� includes
the end values in the result set.
This means you can use
BETWEEN rather than an
expression such as (>= x AND
<= y). Likewise, you can use
NOT BETWEEN rather than an
expression such as (< x OR > y).

BETWEEN and NOT
BETWEEN

Lists of values Use the IN search condition to
retrieve rows that match a
specified list of values.

Use the NOT IN search condition
to retrieve rows that do not match
a specified list of values.

IN and NOT IN

Unknown values Use the IS NULL search
condition to retrieve rows where
information is missing from a
specified column. A column has a
null value if no value is entered
during data entry and no default
values are defined for that
column.

Use the IS NOT NULL search
condition to retrieve rows that do
not have a null value for a
specified column.

IS NULL and IS NOT
NULL

This example retrieves the last name and city of residence of employees who
reside in the United States from the Employees table.

/* Retrieve information for employees who reside in the US */
USE northwind
SELECT lastname, city
 FROM employees
 WHERE country = 'USA'
GO

The following table describes characters to use for string comparisons.

Wildcard Description

% Any string of zero or more characters

- Any single character

[] Any single character in the specified range or set

[^] Any single character not in the specified range or set

Example of using
comparison operators

Using string
comparisons

8 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

This example retrieves companies from the Customers table that have the word
�Restaurant� somewhere in their company names:

/* Retrieve company names that contain the word restaurant */
USE northwind
SELECT companyname
 FROM customers
 WHERE companyname LIKE '%Restaurant%'
GO

This example retrieves all products with product names that begin with the
letter T, or have a product ID of 46, and that have a price greater than $10:

/* Retrieve products that start with T or have a product ID
 of 46, and cost more than $10 */
USE northwind
SELECT productid, productname, supplierid, unitprice
 FROM products
 WHERE (productname LIKE 'T%' OR productid = 46)
 AND (unitprice > 10)
GO

This example retrieves the product name and unit price of all products with a
unit price between $10 and $18, inclusive:

/* Retrieve products costing between $10 and $18 inclusive */
USE northwind
SELECT productname, unitprice
 FROM products
 WHERE unitprice BETWEEN 10 AND 18
GO

This example produces a list of companies from the Suppliers table that are
located in Japan or Italy:

/* Retrieve suppliers in Japan or Italy */
USE northwind
SELECT companyname, country
 FROM suppliers
 WHERE country IN ('Japan', 'Italy')
GO

Example of using string
comparisons

Example of using logical
operators

Example of using a
range of values

Example of using a list
of values

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 9

This example retrieves a list of companies from the Suppliers table for which
the fax column contains a null value:

/* Retrieve suppliers that have a null fax */
USE northwind
SELECT companyname, fax
 FROM suppliers
 WHERE fax IS NULL
GO

Write an SQL SELECT statement to retrieve the product name, unit price, and
number of units in stock for products that match all of these conditions:

! The product name must start with the letter T.
! The unit price must be between $5 and $10, inclusive.
! The number of units in stock must be at least 25.

Example of retrieving
unknown values

Practice

10 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

Guidelines for Retrieving Data Efficiently

! Write efficient SELECT statements
! Use positive search conditions

" Positive tests are faster than NOT conditions
! Use specific string comparisons

" An exact string match is faster than using a LIKE
condition

! Retrieve unordered rows
" The database can retrieve unordered rows faster than

ordered rows

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Write efficient SELECT statements. This improves the performance of
your application, because data is retrieved as quickly as possible. It also
lightens the load on the database engine, because it has to do less work to
retrieve your data.

Use positive search conditions. Positive search conditions such as
BETWEEN, IN, and IS NULL are typically more efficient than negative search
conditions such as NOT BETWEEN, NOT IN, and IS NOT NULL.

Use specific string comparisons. String comparisons using = and <> are
typically more efficient than those using the LIKE search condition.

Retrieve unordered rows. Data retrieval may decrease if you use the
ORDER BY clause, because the database engine must determine and sort the
result set before it returns the first row.

Introduction

Using positive search
conditions

Using specific string
comparisons

Retrieving unordered
rows

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 11

Lesson: Combining Data from Multiple Tables

! What Is a Table Join?

! How to Join Two Tables

! How to Use Aliases for Table Names

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson shows how to use the JOIN keyword to join tables. The result set
includes rows and columns from each table. You will see how to use the ON
keyword to define the join condition. You will also see how to provide aliases
for table names to simplify the syntax in a complex query.

After completing this lesson, you will be able to:

! Describe why joins are important in relational databases.
! Combine data from separate tables by using joins.
! Use aliases for table names.

Introduction

Lesson Objectives

12 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

What Is a Table Join?

ordersorders

orderidorderid

10248
10249
10250

10248
10249
10250

orderdateorderdate

1996-07-04
1996-07-05
1996-07-08

1996-07-04
1996-07-05
1996-07-08

customeridcustomerid

VINET
TOMSP
HANAR

VINET
TOMSP
HANAR

! A table join combines data from two or more tables

" Specify the join conditions, and select required columns

! There are three types of joins in SQL

! Inner joins, outer joins, and cross joins

customerscustomers

customeridcustomerid

VINET
TOMSP
HANAR

VINET
TOMSP
HANAR

companynamecompanyname

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

customerid

VINET
TOMSP
HANAR

companynamecompanyname

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

customerid
VINET
TOMSP
HANAR

orderid

10248
10249
10250

orderdate

1996-07-04
1996-07-05
1996-07-08

resultsresults

orderidorderid

10248
10249
10250

10248
10249
10250

orderdateorderdate

1996-07-04
1996-07-05
1996-07-08

1996-07-04
1996-07-05
1996-07-08

companynamecompanyname

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A table join combines data from two or more tables. Use JOIN
statements to query any number of tables in the database to produce a single
result set that contains merged data from these tables.

Joins are an essential part of relational database theory. You can write a JOIN
statement to combine data from multiple tables in any way you like, depending
on the needs of your application.

There are three types of joins in SQL: inner joins, outer joins, and
cross joins. The following table describes each type of join.

Type of join Description

Inner join An inner join combines tables by comparing values in common

columns in the tables. The database engine returns only rows that
match the join conditions. Inner joins are most often used.

Outer join An outer join combines rows from two tables that match the join
condition, plus any unmatched rows in the first or second table.

The LEFT OUTER JOIN clause retrieves all rows from the first-
named table, plus the rows in the second-named table that match
the join condition.

The RIGHT OUTER JOIN clause retrieves all rows from the
second-named table, plus the rows in the first-named table that
match the join condition.

Cross join A cross join retrieves every combination of all rows in the joined
tables. You do not need to specify a common column to use cross
joins. One use of cross joins is to generate test data for a database.

Introduction

Using joins

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 13

The Northwind Traders database has a table named Orders, which contains
information about all the orders received by Northwind Traders. The following
table shows some of the data in the Orders table.

orderid orderdate customerid
10248 1996-07-04 VINET
10249 1996-07-05 TOMSP
10250 1996-07-08 HANAR

The database also has a table named Customers, which contains information
about all the customers that have placed an order with Northwind Traders. The
following table shows some of the data in the Customers table.

customerid companyname
VINET Vins et alcools Chevalier
TOMSP Toms Spezialitäten
HANAR Hanari Carnes

You can define an inner join on the Orders and Customers tables, to retrieve
detailed information about the customer who placed each order. Use the
customerid foreign key in the Orders table to identify the customer who placed
each order.

Open the Northwind Traders database in SQL Server Query Analyzer. Examine
the Orders table, and identify the foreign keys in this table. Consider how you
can use these foreign keys to join the Orders table to other tables in the
Northwind Traders database.

Example of using an
inner join

Practice

14 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

How to Join Two Tables

! Use the JOIN keyword to join two tables

! Use the ON keyword to specify the join condition
SELECT orderid, orderdate, companyname
FROM orders JOIN customers
ON orders.customerid = customers.customerid

ordersorders

orderidorderid

10248
10249
10250

10248
10249
10250

orderdateorderdate

1996-07-04
1996-07-05
1996-07-08

1996-07-04
1996-07-05
1996-07-08

customeridcustomerid

VINET
TOMSP
HANAR

VINET
TOMSP
HANAR

customerscustomers

customeridcustomerid

VINET
TOMSP
HANAR

VINET
TOMSP
HANAR

companynamecompanyname

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

customerid
VINET
TOMSP
HANAR

companynamecompanyname
Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

customerid
VINET
TOMSP
HANAR

orderid
10248
10249
10250

orderdate
1996-07-04
1996-07-05
1996-07-08

resultsresults

orderidorderid

10248
10249
10250

10248
10249
10250

orderdateorderdate

1996-07-04
1996-07-05
1996-07-08

1996-07-04
1996-07-05
1996-07-08

companynamecompanyname

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

Vins et alcools Chevalier
Toms Spezialitäten
Hanari Carnes

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the JOIN keyword to join two tables. The JOIN keyword specifies
which tables are to be joined and how to join them. Inner joins are used in most
situations and are the default type of join in SQL Server.

The syntax for an inner join is as follows:

SELECT select_list
 FROM {first_table_source} [,�n]
 JOIN joined_table_source
 ON join_condition
Use the ON keyword to specify the join condition for an inner join.
When you define an inner join, consider the following facts and guidelines:

! Specify the tables you want to join.
! Limit the number of tables in a join. The more tables that you join, the

longer it takes the database engine to process your query.
! Use a foreign key in one table to link to a primary key in another table. The

columns must have the same or similar data types.
! If a table has a composite key, you must reference the entire key when you

join tables.
! Select required columns from the joined tables.
! If any columns have the same name in both tables, use the table name to

qualify the column name. Use the syntax table_name.column_name.

Introduction

Partial syntax for an
inner join

Defining an inner join

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 15

This example performs an inner join on the Orders and Customers tables to
get the name of the customer who placed each order. The join condition uses
the customerid column in each table.

/* Join the orders and customers tables, using the customerid
 as the join condition */
USE northwind
SELECT orderid, orderdate, companyname
 FROM orders JOIN customers
 ON orders.customerid = customers.customerid
GO

Rewrite the SELECT statement in the previous example to perform an inner
join on the Orders and Employees tables. For each order, retrieve the order ID,
the order date, and the last name of the employee who took the order.

Example of defining an
inner join on two tables

Practice

16 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

How to Use Aliases for Table Names

! Use aliases for table names

! Defining a join without table aliases
SELECT orderid, orderdate, companyname
FROM orders JOIN customers
ON orders.customerid = customers.customerid

! Defining a join with table aliases
SELECT orderid, orderdate, companyname
FROM orders AS o JOIN customers AS c
ON o.customerid = c.customerid

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use aliases for table names, to simplify complex query statements.
Using aliases for table names makes Transact-SQL scripts easier to read and to
maintain.

You can replace a long and complex fully qualified table name with a simple,
abbreviated alias name when writing scripts. You use an alias name in place of
the full table name.

The syntax for table aliases is as follows:

SELECT select_list
 FROM table_source AS table_alias

This example performs a join on the Orders and Customers tables. The
example does not use table aliases. This means that you must write the
names of the Orders and Customers tables in full in the join condition.

/* Perform a join without using table aliases */
USE northwind
SELECT orderid, orderdate, companyname
 FROM orders JOIN customers
 ON orders.customerid = customers.customerid
GO

This example performs the same join as the previous example. However,
this example uses aliases for the Orders and Customers tables. The
aliases are used to simplify the join condition.

/* Perform a join using table aliases */
USE northwind
SELECT orderid, orderdate, companyname
 FROM orders AS o JOIN customers AS c
 ON o.customerid = c.customeridGO

Introduction

Partial syntax for table
aliases

Example of defining a
join without using table
aliases

Example of defining a
join using table aliases

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 17

Lesson: Modifying Data

! Why Use Transactions When Modifying Data?

! How to Insert Rows into an Existing Table

! How to Insert Rows into a New Table

! How to Delete Rows

! How to Update Rows

! How to Update Rows Using a Join

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to modify data in a database. You
have already seen how to query data by using a SELECT statement. In this
lesson, you will see how to write INSERT, DELETE, and UPDATE statements
to change the data in the database.

After completing this lesson, you will be able to:

! Use transactions to enforce the logical consistency of data.
! Write INSERT statements to insert rows into a new or existing table.
! Write DELETE statements to delete rows.
! Write UPDATE statements to update existing rows.

Introduction

Lesson Objectives

18 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

Why Use Transactions When Modifying Data?

! A transaction is a sequence of operations performed as
a single logical unit of work

! You can start a transaction in one of three modes

" Explicit, autocommit, or implicit

! You can end a transaction in one of two ways

" COMMIT TRANSACTION

" ROLLBACK TRANSACTION

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A transaction is a sequence of operations performed as a single
logical unit of work. You are responsible for starting and ending transactions
at points that enforce the logical consistency of the data. You must define a
sequence of data modifications that leaves the data in a consistent state relative
to the organization�s business rules.

You can use transactions when you make changes to several tables and you
need to ensure all of the changes are performed successfully. If any problems
arise, you can cancel all of the changes. For example, you might want to
withdraw money from a savings account and deposit the money into a checking
account. If any errors occur during the transaction, both accounts are restored to
their original states.

You can start a transaction in one of three modes: explicit,
autocommit, or implicit. The following table describes these modes.

Transaction mode Description

Explicit To start an explicit transaction, use the BEGIN

TRANSACTION statement.

Autocommit Autocommit transactions are the default in SQL Server. Each
individual Transact-SQL statement is committed as soon as it
is executed. You do not have to specify any statements to
control transactions.

Implicit Implicit transactions mode is set by an application
programming interface (API) function or the Transact-SQL
statement SET IMPLICT_TRANSACTIONS ON. Using this
mode, the next statement automatically starts a new
transaction. When the transaction is complete, the next
Transact-SQL statement implicitly starts a new transaction.

Introduction

Scenario

Starting a transaction

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 19

You can end a transaction in one of two ways. To commit a transaction,
use the COMMIT TRANSACTION statement. To rollback a transaction, use
the ROLLBACK TRANSACTION statement. The following table describes
these statements.

Statement Description

COMMIT
TRANSACTION

The COMMIT TRANSACTION statement guarantees that all
of the modifications in the transaction are permanently part of
the database. A COMMIT TRANSACTION statement also
frees resources, such as database locks, used during the
transaction.

ROLLBACK
TRANSACTION

The ROLLBACK TRANSACTION statement cancels a
transaction. It backs out of all modifications made in the
transaction by returning the data to its original state at the start
of the transaction. A ROLLBACK TRANSACTION statement
also frees resources used during the transaction. If an error
occurs in a transaction, SQL Server automatically performs a
rollback of the transaction in progress.

This example transfers $100 from a savings account to a checking account for a
customer by using a transaction. It undoes any data changes if there is an error
at any point during the transaction.

/* Transfer money from a savings account to a checking
 account. Use a transaction to ensure the logical
 consistency of the data */
BEGIN TRANSACTION

 UPDATE savings
 SET balance = balance � 100
 WHERE custid = 78910

 IF @@ERROR <> 0
 BEGIN
 RAISERROR ('Error, transaction not completed!', 16, -1)
 ROLLBACK TRANSACTION
 END

 UPDATE checking
 SET balance = balance + 100
 WHERE custid = 78910

 IF @@ERROR <> 0
 BEGIN
 RAISERROR ('Error, transaction not completed!', 16, -1)
 ROLLBACK TRANSACTION
 END

COMMIT TRANSACTION

Ending a transaction

Example of using
transactions

20 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

How to Insert Rows into an Existing Table

! Use the INSERT�SELECT statement to insert a result
set into an existing table

" Make sure the values have the correct data type

" Provide values for all required columns in the table

INSERT table_name
SELECT select_list

FROM {table_source}{,�n}
[WHERE search_condition]

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the INSERT�SELECT statement to insert a result set into an
existing table. All rows that satisfy the SELECT statement are inserted into
the specified table.

Using the INSERT�SELECT statement is more efficient than writing multiple,
single-row INSERT statements.

Using the INSERT�SELECT statement is a convenient way of adding rows to
an existing table from other sources. For example, employees of Northwind
Traders are eligible to buy company products. You can write an
INSERT�SELECT statement to add employee information to the Customers
table.

The syntax for the INSERT�SELECT statement is as follows:

INSERT table_name
 SELECT select_list
 FROM {table_source}{,�n}
 [WHERE search_condition]

When you use the INSERT�SELECT statement, consider the following facts
and guidelines:

! Make sure the new values have the same or similar data types as the
columns in the destination table.

! The result set must include values for all the required columns in the
destination table.

! The result set does not have to contain values for columns with default
values or for columns that can contain null values.

Introduction

Scenario

Partial syntax for
INSERT�SELECT

Guidelines for using
INSERT�SELECT

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 21

This example adds Northwind Traders employees to the Customers table. The
new customerid column consists of the first three letters of the employee�s first
name, concatenated with the first two letters of the last name. The employee�s
last name is used as the new company name, and the first name is used as the
contact name.

/* Insert employee information into the customers table */
USE northwind
INSERT customers
 SELECT substring (firstname, 1, 3)
 + substring (lastname, 1, 2)
 , lastname, firstname, title, address, city
 , region, postalcode, country, homephone, NULL
 FROM employees
GO

Rewrite the INSERT�SELECT statement in the previous example so that it
inserts only Seattle-based employees into the Customers table.

Example of using
INSERT�SELECT

Practice

22 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

How to Insert Rows into a New Table

! Use the SELECT�INTO statement to insert a result set
into a new table

" Create a table and insert rows into the table in a single
operation

SELECT select_list
INTO new_table
FROM {table_source}{,�n}
[WHERE search_condition]

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the SELECT�INTO statement to insert a result set into a new
table. This enables you to populate new tables in a database with imported or
computed data.

You can use the SELECT�INTO statement to break down complex problems
that require a data set from various sources. If you first create a temporary table,
the queries that you execute on it are simpler than those you execute on
multiple tables or databases.

For example, you might want to create a temporary table containing detailed
information about orders at Northwind Traders. For each order, the temporary
table might contain the product name from the Products table, the company
name from the Customers table, and the last name of the employee that took
the order.

You can also use the SELECT�INTO statement to store computed data
temporarily. For example, you might want to create a temporary table
containing the unit price and computed sales tax for all products at Northwind
Traders.

The syntax for the SELECT�INTO statement is as follows:

SELECT select_list
 INTO new_table
 FROM {table_source}{,�n}
 [WHERE search_condition]

Introduction

Scenario 1

Scenario 2

Partial syntax for
SELECT�INTO

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 23

When you use the SELECT�INTO statement, consider the following facts and
guidelines:

! You can use the SELECT�INTO statement to create a table and to insert
rows into the table in a single operation.

! Ensure that the table name in the SELECT�INTO statement is unique. If a
table exists with the same name, the SELECT�INTO statement fails.

! You must create column aliases or specify the column names of the new
table in the select list.

You can use the SELECT�INTO statement to create a local temporary table, a
global temporary table, or a permanent table. The following table describes
each of these types of tables and shows how to specify them using the
SELECT�INTO statement.

Type of table How to specify Description

Local temporary table #table_name A local temporary table is visible in

the current session only. Space for a
local temporary table is reclaimed
when the user ends the session.

Global temporary table ##table_name A global temporary table is visible in
all sessions. Space for a global
temporary table is reclaimed when the
table is no longer used in any session.

Permanent table table_name A permanent table is visible in all
sessions and is not reclaimed
automatically. Set the SELECT
INTO/BLUKCOPY database option
to ON to create a permanent table.

This example creates a local temporary table based on a query on the Products
table. Notice that you can use string and mathematical functions to manipulate
the result set.

/* Retrieve data from the products table, and insert the
 result set into a new temporary table named #pricetable */
USE northwind
SELECT productname AS products
 , unitprice AS price
 , (unitprice * 0.1) AS tax
 INTO #pricetable
 FROM products
GO

To view your result set, execute the following query:

/* Examine the data in the temporary table, #pricetable */
USE northwind
SELECT * FROM #pricetable
GO

Write a SELECT�INTO statement to create a temporary local table named
Stocklevels. Populate the table with the name of each product, the number of
units in stock, and the difference between the values in the unitsinstock and
reorderlevel columns.

Guidelines for using
SELECT�INTO

Creating a temporary or
permanent table

Example of using
SELECT�INTO

Practice

24 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

How to Delete Rows

! Use the DELETE statement to delete one or more rows
from a table

" Use a WHERE clause to specify the rows to delete

DELETE table_name
[WHERE search_condition]

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the DELETE statement to delete one or more rows from a table.
Each deleted row is logged in the transaction log.

The syntax for the DELETE statement is as follows:

DELETE table_name
 [WHERE search_condition]

When you use the DELETE statement, consider the following facts and
guidelines:

! Use a WHERE clause to specify which rows to delete.
! If you omit the WHERE clause, SQL Server deletes all the rows in the table.

This example deletes order records that are at least six months old:

/* Delete orders that are at least six months old */
USE northwind
DELETE orders
 WHERE DATEDIFF (MONTH, shippeddate, GETDATE()) >= 6
GO
Write a DELETE statement to delete rows from the �Order Details� table (you
must use quotes around this table name, because the table name contains a
space character). Delete each row where the quantity ordered is more than 50.

Introduction

Partial syntax for
DELETE

Guidelines for using
DELETE

Example of using
DELETE

Practice

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 25

How to Update Rows

! Use the UPDATE statement to modify existing rows in a
table

" Use a WHERE clause to specify the rows to update

" Use the SET keyword to specify the new values

UPDATE table_name
SET { column_name =

{expression | DEFAULT | NULL} }
[WHERE search_condition]

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the UPDATE statement to modify existing rows in a table. You
can change single rows, a group of rows, or all the rows in a table.

The syntax for the UPDATE statement is as follows:

UPDATE table_name
 SET { column_name = {expression | DEFAULT | NULL} } [,�n]
 [WHERE search_condition]

When you use the UPDATE statement, consider the following facts and
guidelines:

! You can change the data in only one table at a time.
! Use a WHERE clause to specify which rows to update.
! Use the SET keyword to specify the new values for columns in the table.
! You can use expressions for the new values. For example, you can use an

expression such as (unitprice * 2), add two columns together, and so on.
! Make sure the new values have the correct data types for the columns that

you are updating.
! SQL Server does not update any rows that violate any integrity constraints.

The changes do not occur, and the statement is rolled back.

This example adds 10 percent to the current price of all Northwind Traders
products:

/* Add 10 percent to the price of all products */
USE northwind
UPDATE products
 SET unitprice = unitprice * 1.1
GO
Rewrite the UPDATE statement in the previous example so that it only updates
the price for products that cost more than $50.

Introduction

Partial syntax for
UPDATE

Guidelines for using
UPDATE

Example of using
UPDATE

Practice

26 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

Lesson: Using Stored Procedures

! What Is a Stored Procedure?

! How to Create and Execute a Stored Procedure

! Guidelines for Using Stored Procedures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

In this lesson, you will learn how to create and execute a simple stored
procedure in Transact-SQL. You can use stored procedures to encapsulate
business rules and to execute these rules in procedural code in the database
engine.

You will also learn how to create triggers in Transact-SQL. You can
use triggers to enforce the consistency of related tables in the database.

After completing this lesson, you will be able to:

! Create a simple stored procedure.
! Execute a stored procedure.
! Describe the advantages of using stored procedures.

Introduction

Lesson Objectives

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 27

What Is a Stored Procedure?

! A stored procedure is a named collection of
precompiled Transact-SQL statements that are stored in
a database

! Stored procedures in SQL Server are similar to
procedures in other programming languages

" Contain statements that perform operations

" Accept input parameters

" Call other stored procedures

" Return a status value and multiple output parameters

*****************************ILLEGAL FOR NON-TRAINER USE******************************

A stored procedure is a named collection of precompiled Transact-
SQL statements that are stored in a database. Stored procedures support
user-defined variables, control-of-flow execution, and other advanced
programming features.

You can use stored procedures to encapsulate repetitive tasks in the database
engine and to execute these tasks efficiently and securely.

The Orders table in the Northwind Traders database contains information
about all the orders received. The table has a foreign key identifying the
customer that made the order. The table also has a foreign key identifying the
employee that took the order. You can create a stored procedure to execute a
complex SELECT statement that returns all this information by using a three-
table join.

Stored procedures in SQL Server are similar to procedures in other
programming languages. You can perform the following tasks in a stored
procedure:

! Define statements that perform operations in the database, such as a
SELECT statement.

! Accept input parameters, such as a value to be used in a WHERE clause in
the stored procedure.

! Call other stored procedures, to perform related and additional tasks.
! Return a status value to a calling stored procedure or batch, to indicate the

success or failure of the stored procedure.
! Return multiple values to the calling stored procedure or batch, using output

parameters.

Introduction

Scenario

Guidelines for using
stored procedures

28 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

How to Create and Execute a Stored Procedure

! Use the CREATE PROCEDURE statement to create a
stored procedure
CREATE PROCEDURE procedure_name
{@parameter_name parameter_type}{,�n}

AS
statements

! Use the EXECUTE statement to execute a stored
procedure
EXECUTE procedure_name
{parameter_value}{,�n}

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Use the CREATE PROCEDURE statement to create a stored
procedure. You can define parameters for the stored procedure, if necessary,
to make the stored procedure more flexible. Within the body of the stored
procedure, specify the statements that you want to perform when the stored
procedure is executed.

The syntax for creating a stored procedure is as follows:

CREATE PROCEDURE procedure_name
 {@parameter_name parameter_type}{,�n}
AS
 statements

This example creates a stored procedure named orders_info_all. The stored
procedure performs a complex SELECT statement, which uses a three-table
join on the Orders, Customers, and Employees tables. The query retrieves the
order ID, the company name for the customer that made the order, and the last
name of the employee that took the order.

This stored procedure does not use any parameters.

/* Create a stored procedure with a SELECT statement, using a
 join on the orders, customers, and employees tables */
CREATE PROCEDURE orders_info_all
AS
SELECT orderid, companyname, lastname
 FROM orders AS o
 JOIN customers AS c ON o.customerid = c.customerid
 JOIN employees AS e ON o.employeeid = e.employeeid
GO

Introduction

Syntax for creating a
stored procedure

Example of creating a
stored procedure

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 29

Use the EXECUTE statement to execute a stored procedure. If the
stored procedure requires parameters, pass these parameters as a comma-
separated list.

The syntax for executing a stored procedure is as follows:

EXECUTE procedure_name
 {parameter_value}{,�n}

This example executes the orders_info_all stored procedure, which was
created in the previous example:

/* Execute the orders_info_all stored procedure */
USE northwind
EXECUTE orders_info_all
GO

Write a stored procedure to increase the unit price of all products in the
Products table by 10 percent. Also write an SQL statement to execute the
stored procedure.

Executing a stored
procedure

Syntax for executing a
stored procedure

Example of executing a
stored procedure

Practice

30 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

Review

! Retrieving Data from a Database

! Combining Data from Multiple Tables

! Modifying Data

! Using Stored Procedures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The Duluth Mutual Life health care organization has a database that tracks
information about doctors and their patients. The database includes the
following tables.

doctors
Column Description

doc_id int NOT NULL, PRIMARY KEY
fname char(20) NOT NULL
lname char(25) NOT NULL
street char(50) NULL
city char(255) NULL
state char(255) NULL
postal_code char(7) NULL
specialty char(25) NOT NULL
charge_rate money NOT NULL
phone char(10) NULL

patients

Column Description

pat_id int NOT NULL, PRIMARY KEY
fname char(20) NOT NULL
lname char(25) NOT NULL
insurance_company char(25) NOT NULL
phone char(10) NULL

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 31

casefiles
Column Description

casefile_id int NOT NULL, PRIMARY KEY
admission_date datetime NOT NULL
pat_id int NOT NULL,

 FOREIGN KEY to patients.pat_id
doc_id int NOT NULL,

 FOREIGN KEY to doctors.doc_id
diagnosis char(150) NOT NULL

1. How would you retrieve information about doctors whose specialty is
�Pediatrics�, , �Physiotherapy�, or �Opthalmics�?
Write a SELECT statement with a WHERE clause of the
following type:
WHERE specialty = 'Pediatrics'
 OR specialty = 'Physiotherapy'
 OR specialty = 'Opthalmics'

Or use a WHERE clause that includes the IN keyword as follows:
WHERE specialty IN
 ('Pediatrics', 'Physiotherapy', 'Opthalmics')

2. How can you generate a list of patient names for a particular doctor?
You must join all three tables. The relationship between doctors and
patients is a many-to-many relationship. Even though you only want
information from the doctors and patients tables, you must also use the
casefiles table, because this table relates doctors to patients. Join the
doctors table to the casefiles table on the doc_id column, and then join
the patients table to the casefiles table on the pat_id column. Use a
WHERE clause to limit the results for a particular doctor.

3. The participating doctors have increased their costs of services. How can
you increase the value in the charge_rate column for all doctors by 12
percent?
Use an UPDATE statement of the following type:
UPDATE doctors SET charge_rate = (charge_rate * 1.12)

4. What is the minimum number of column values that you must supply to add
a new row to the doctors table?
You must supply data for at least five columns. At a minimum, the
INSERT statement must contain values for the doc_id, fname, lname,
specialty, and charge_rate columns. All other columns can have null
values.

32 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease)

5. How can you remove rows from the casefiles table for cases where the date
of admission was more than 12 months ago?
Use a DELETE statement of the following type:
DELETE casefiles
 WHERE DATEDIFF (MONTH, admission_date, GETDATE()) >= 12

6. How can you create a stored procedure to encapsulate a query to retrieve
full details for each case file? The stored procedure must return the
admission date, the full name of the patient, the full name of the doctor, and
the diagnosis.
Use a CREATE PROCEDURE statement of the following type:
CREATE PROCEDURE casefiles_info_all
AS
SELECT admission_date,
 p.fname + ' ' + p.lname,
 d.fname + ' ' + d.lname,
 diagnosis

 FROM casefiles AS c
 JOIN patients AS p ON c.pat_id = p.pat_id
 JOIN doctors AS d ON c.doc_id = d.doc_id
GO

 Appendix A: Best Practices for Writing SQL Statements and Stored Procedures (Prerelease) 33

Lab A: Best Practices for Writing SQL Statements and
Stored Procedures

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Lab.doc

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix B: ADO and ADO.NET
Comparison (Prerelease)

ADO and ADO.NET Comparison Table
Microsoft® ActiveX® Data Objects (ADO) .NET is an evolutionary
improvement on ADO. One way to quickly understand the advantages of
ADO.NET is to compare its features to those of ADO.

Feature ADO ADO.NET

Memory-resident data
representation

Uses the Recordset object,
which looks like a single
table.

Uses the DataSet object,
which can contain one or
more tables that are
represented by DataTable
objects.

Relationships between
multiple tables

Requires the JOIN query to
assemble data from
multiple database tables in
a single result table.

Supports the DataRelation
object to associate rows in
one DataTable object with
rows in another DataTable
object.

Data visitation Scans DataSet rows
sequentially.

Uses a navigation
paradigm for non-
sequential access to rows
in a table. ADO.NET
follows relationships to
navigate from rows in one
table to corresponding
rows in another table.

Disconnected access Uses the Recordset object
for disconnected access but
typically supports
connected access,
represented by the
Connection object. You
communicate to a database
with calls to an OLE DB
provider.

Communicates to a
database with standardized
calls to the DataAdapter
object, which
communicates to the OLE
DB provider (or sometimes
directly to application
programming interfaces
(APIs) that are provided by
a database management
system).

Introduction

2 Appendix B: ADO and ADO.NET Comparison (Prerelease)

(continued)
Feature ADO ADO.NET

Programmability Uses the Connection

object to transmit
commands addressing a
data source�s underlying
data constructs.

Uses the strongly typed
programming
characteristic of Extensible
Markup Language (XML).
Data is self-describing
because names for code
items correspond to the
"real world" problems
solved by the code.
Underlying data constructs
such as tables, rows, and
tables do not appear,
making code easier to read
and to write.

Sharing disconnected data
between tiers or
components

Uses COM marshalling to
transmit a disconnected
recordset. This supports
only those data types
defined by the COM
standard. Requires type
conversions, which
demand system resources.

Transmits a DataSet with
an XML file. The XML
format places no
restrictions on data types
and requires no type
conversions.

Transmitting data through
firewalls

Problematic, because
firewalls are typically
configured to prevent
system-level requests such
as COM marshalling.

Supported, because
ADO.NET DataSet
objects use text-based
XML, which can pass
through firewalls.

Scalability Database locks and active
database connections for
long durations contend for
limited database resources.

There is disconnected
access to database data
without database locks or
active database
connections for long
durations . This limits
contention for limited
database resources.

 Appendix B: ADO and ADO.NET Comparison (Prerelease) 3

Support for ADO in the .NET Framework
With all the features provided by ADO.NET, is there any reason to continue to
use ADO? Yes. Here are some potential reasons why.

! You will not be able to rewrite all of your existing software for the
Microsoft .NET Framework.

! You will need to interact with existing Component Object Model (COM)
components.

! You will not write all of your new software for the .NET Framework.
! You will need your �legacy� applications to be able to interact with .NET

components.

Some scenarios where you will want to interact with existing ADO code, or
reuse existing code that uses ADO, are when you want to:

! Upgrade an existing ADO project.
! Use server-side cursors directly.
! Use an existing COM component that returns an ADO Recordset.

If you have existing projects that use ADO, you may want to upgrade the
project to use the .NET Framework, while still using the ADO data layer.
Although this is not recommended, it can be done through the COM Interop
layer.

Another reason for using ADO is if your application requires server-side
cursors. The only type of server-side cursor supported by ADO.NET is the
forward-only, read-only, �firehose� cursor. ADO.NET does not support
dynamic and keyset cursors.

You can create a stored procedure that, because it is executed by the database
server, can create and use server-side cursors. Yet, ADO.NET can not create
and use server-side cursors directly. This functionality may be added to future
versions of ADO.NET. However, misuse of server-side cursors is a major factor
in poor scalability of database applications. This is one of the reasons why a
design decision was made to exclude this functionality from ADO.NET.

In the .NET Framework, you can access both existing components that return
ADO Recordset or Record objects by using .NET COM Interop services and
the OLE DB .NET Data Provider. This enables you to use existing COM
objects that return ADO objects, without having to rewrite them entirely by
using the .NET Framework. ADO.NET and the OLE DB .NET Data Provider
only support filling a DataSet from an ADO Recordset or Record object.

Performance of COM Interop in the Common Language Runtime (CLR) has
improved dramatically in later betas. ADO is one of the COM Interop team's
main scenarios, and the team continues to monitor performance and reliability
to make sure this is a valid scenario. In any case, you shouldn't be afraid to use
COM Interop to ADO; you just shouldn't be as excited about doing so as you
should be about using ADO.NET.

Introduction

Upgrading existing ADO
projects

Using server-side
cursors

Accessing an ADO
recordset or record from
ADO.NET

Performance

4 Appendix B: ADO and ADO.NET Comparison (Prerelease)

How to Expose COM Components to the .NET Framework
This section summarizes the process for exposing an existing COM component,
such as ADO, to managed code.

Existing COM components are valuable resources in managed code as middle-
tier business applications or as an isolated functionality. An ideal component
has a primary Interop assembly and closely conforms to the programming
standards imposed by COM.

To expose a COM component to the .NET Framework, perform the following
procedure:
1. Import a type library as an assembly.

The common language runtime requires metadata for all types, including
COM types. There are several ways to obtain an assembly containing COM
types that are imported as metadata.

2. Create COM types in managed code.
You can inspect COM types, activate instances, and invoke methods on the
COM object in the same way that you do for any managed type.

3. Compile an Interop project.
The .NET Framework software development kit (SDK) provides compilers
for several languages that are compliant with common language
specification (CLS), including Microsoft Visual Basic® .NET, C#, and
Managed Extensions for C++.

4. Deploy an Interop application.
Interop applications are best deployed as strong-named, signed assemblies
in the global assembly cache (GAC).

COM Interop is potentially a very complex subject. For more information about
COM Interop, search for the topic �Exposing COM Components to the .NET
Framework� in the Microsoft Visual Studio .NET documentation for further
information.

Introduction

How to expose COM
components to the .NET
Framework

For further information

 Appendix B: ADO and ADO.NET Comparison (Prerelease) 5

How to Fill a DataSet with an ADO Recordset or Record
To provide access to ADO Recordset and Record objects from ADO.NET, the
OLE DB .NET Data Provider overloads the Fill method of the
OleDbDataAdapter class to accept an ADO Recordset or Record object.
Filling a DataSet with the contents of an ADO object is a one-way operation.
That is, data can be imported from the ADO Recordset or Record object into
the DataSet, but any updates of the data must be handled explicitly by either
ADO.NET or ADO.

To consume a COM component that returns an ADO Recordset or Record
object by using .NET COM Interop services and ADO.NET, you need to first
import the type library information for the COM component and ADO. You do
this by using TlbImp.exe or the Visual Studio .NET development environment.

You can use the command line to import the type library information for the
COM component and ADO.

For example, an existing COM component with a programmatic identifier
(ProgID) of ADOComponent.DataClass is compiled into ADOComponent.dll.
It has methods that return objects of type ADODB.Recordset. To consume this
object from .NET, import both ADOComponent.dll, and msado15.dll, which
contains the ADODB.Recordset and ADODB.Record objects. To import the
COM type libraries to .NET, issue the following commands:

TlbImp "C:\Program Files\Common Files\System\Ado\msado15.dll"
/out:ADODB.dll

TlbImp ADOComponent.dll /out:ADOCOM.dll

You can then pass the resulting .NET libraries, ADODB.dll and ADOCOM.dll,
as library references when compiling a .NET-compatible program. The
following example shows how to compile a Microsoft Visual Basic® .NET
program using vbc.exe and how to supply the imported COM libraries:

vbc MyVB.vb /r:system.dll /r:system.data.dll /r:system.xml.dll
/r:ADODB.dll /r:ADOCOM.dll

Alternatively, using the Visual Studio .NET development environment, simply
use the References folder in the Solution Explorer.

If the ADOComponent.DataClass object has a method named GetData that
returns an ADODB.Recordset object, you can write the following in Visual
Basic .NET:

Dim adoComponent As ADOCOM.DataClass = New ADOCOM.DataClass
Dim adoRS As ADODB.Recordset = adoComponent.GetData()

Using the OLE DB .NET Data Provider, the ADODB.Recordset object can be
used to fill a DataSet as shown in the following sample:

Dim myDA As OleDbDataAdapter = New OleDbDataAdapter
Dim myDS As DataSet = New DataSet
myDA.Fill(myDS, adoRS, "MyTable")

Introduction

How to consume a COM
component that returns
an ADO Recordset or
Record

Using the command line

Using the Visual Studio
.NET development
environment

6 Appendix B: ADO and ADO.NET Comparison (Prerelease)

What Were We Thinking
The first question most developers have when they start learning about the
.NET Framework, which includes ADO.NET, is �what were they thinking?!?�
It is often unclear why a change was made to an existing technology, or why a
new feature or technology might be useful.

A major problem with new development tools and technologies is educating
developers. You know this. It is why you are reading this.

Often people assume that showing developers the syntax of the new tool or
technology is enough, especially for those developers already familiar with a
previous version of that tool or technology.

For example, developers who currently write Visual Basic applications that use
ADO just need to know the new syntax and object model to write Visual Basic
.NET applications that use ADO.NET. Right?

Wrong! Those developers need to know why the changes were made, in order
to adjust design decisions in applications they write, and therefore get the best
out of the new software. If developers attempt to use the design patterns they
learned about ADO in the ADO.NET world, they will fail.

Developers will also be frustrated. For example, transaction handling has
changed in ADO.NET, apparently for no good reason.

For example, here is some ADO code:

Dim cn As ADODB.Connection
cn.ConnectionString = �...�
cn.Open
cn.BeginTrans
� perform some database actions
cn.CommitTrans
cn.Close

Here is the equivalent ADO.NET code:

Dim cn As SqlConnection, tn As SqlTransaction
cn.ConnectionString = �...�
cn.Open
tn = cn.BeginTransaction()
� perform some database actions
tn.Commit
cn.Close

Why is there a new class? After all, no new functionality has been added, and
the code is now slightly more complex. Superficially it looks like a change for
no good reason. The reason is that by breaking transaction handling
functionality into a separate class, the SqlConnection class can be lighter-
weight. So for the majority of applications that do not require transaction
support, the applications are smaller and faster.

Another good example is the loss of the ADO Execute method. ADO.NET
does not have a single Execute method. Instead ADO.NET provides multiple
ExecuteX methods that return different types of information.

Introduction

Educating developers

Why did they change
that?

 Appendix B: ADO and ADO.NET Comparison (Prerelease) 7

At first glance this appears to complicate things, but the Execute method in
ADO was more complicated than most developers realized. It hides its
complexity in its optional parameters. Because the parameters were optional,
many developers did not use them, and got bad performance or scalability from
ADO as a result.

Here is another example. Have you ever used the adExecuteNoRecords
option? Most ADO developers have not, so when running a Data Manipulation
Language (DML) statement (for example, UPDATE, INSERT, and
DELETE), an unnecessary Recordset object is created. With ADO.NET, the
ExecuteNonQuery method is used to run DML statements, which does not
create unnecessary objects.

ADO is easy to use, but this leads to misuse. ADO.NET is harder to use, but
this leads to better, faster, scalable code. The developer�s job is now harder in
the beginning, but the long-term benefits are substantial.

Another example: the
adExecuteNoRecords
option

ADO is too easy to use
(and therefore misuse)

8 Appendix B: ADO and ADO.NET Comparison (Prerelease)

ADO.NET Design Decisions
Mike Pizzo posted on the public bulletin board
microsoft.public.dotnet.framework.adonet an excellent commentary on the
design decisions and architectural basis for ADO.NET. It was written in 2000,
before ADO+ was renamed ADO.NET.

Many of the differences between ADO and ADO+ come from subtle but
important conceptual differences. An admitted lack of documentation for our
data components in the beta release of the .NET Framework has left early
adopters on their own in trying to understand how to compose a differently
factored set of data objects to perform familiar tasks.

There are a number of comments already offered on this discussion group
debating the pros/cons of the ADO+ architecture, including references to
several articles on the subject. Instead of going into a semi-exhaustive list of
feature differences between the two, let me see if I can describe some of the
design goals we had in mind in (re)developing ADO for the .NET Framework
as ADO+ (ADO.NET).

Where-as OLE DB defines a set of factored interfaces between pluggable
components, ADO+ is built as a well-factored set of components. This is a key
conceptual difference that permeates the design.

OLE DB was designed as a flexible, extensible interface between pluggable
components. A data store can expose its native functionality, semantics, and
behavior through a common interface that contains introspection methods for
determining an individual store's level of support, behavior, and semantics.

The Rowset object, in particular, was designed to expose all data as a shared
buffer over which multiple components could add functionality, such as query
processing or cursoring, to a less-capable store. The idea being that applications
could specify the functionality they required, and it was up to the data store, and
possibly a set of services augmenting the functionality of that store, to decide
how best to expose the requested functionality.

ADO is built on top of OLE DB, and inherits OLE DB's strengths as well as its
weaknesses. It can expose a rich set of functionality and capabilities on top of a
wide variety of data stores. However, important differences in how
functionality is implemented or exposed are often inaccessible to the user.

For example, in talking to customers we find that a majority of them end up
invoking a service called the Client Cursor Engine, either directly or indirectly.
Even if they are not using the cursor engine's rich set of features, having the
common implementation of the OLE DB Rowset (ADO Recordset) gives them
a predictable target to program against.

The cursor engine reads all of the results from a query, puts them into an in-
memory cache, and then lets the user work with the data in the cache. If the user
updates data, the cursor engine generates insert, update, and delete commands
based on the metadata of the result in order to propagate the changes back to the
server; all done under the covers so the user doesn't have to even know it's
going on-most of the time. However, if the user's update logic is done through
stored procedures, rather than as direct queries against base tables (as is often
the case), then, because the generation of the insert/update/delete statements is
done under the covers, the user has no way to invoke that server-side update
logic.

Introduction

Posting

 Appendix B: ADO and ADO.NET Comparison (Prerelease) 9

Similarly, if the cursor engine can't determine the necessary metadata, or if the
user wants updates to occur against a different source, or with different logic,
than the default, they are at a dead end. And, since the cursor engine holds on to
the connection in order to propagate these changes back to the server,
persistence, remoting, or storing of the rowset (ADO Recordset) in a cache can
be problematic.

In looking at this common usage pattern, and talking to customers, we found
that these typical scenarios could be better served by providing an explicit
cache implementation for binding to, navigating, and updating data, and
separating out the logic for querying and updating data in the database.

This explicit cache is the ADO+ DataSet. Because it is an explicit cache, the
user is guaranteed consistent and predictable behavior and semantics, regardless
of the source of the data. Further, by defining an explicit cache, rather than a
generic interface like IRowset (or the ADO Recordset) that may be
implemented over either cached data or a live data stream, the interface can be
optimized to expose common cache functionality such as the ability to return
the number of records in a table. Also, the programming model over the cache
can be made more consistent with arrays, lists, and other collection types within
the programming language (indexed access, ForEach support, Contains(), etc.).

We also took a close look at how customers talk to a database. We found that,
except for a few generic tools and common components, most applications
know the query they are executing and the shape and types of the results. In
many cases the result is a single record, such as a customer profile, or even a
single value such as an account balance. When the results are a set of records, in
order not to hold state on the server, they are generally read sequentially in a
forward-only manner, and written to application memory or written out, for
example, as formatted HTML tables in a Response.Write.

We rarely found updates being made to the results themselves, but rather
through update logic such as stored procedures. For example, if I query an on-
line bookstore for titles and find one I want to purchase, I don't update the
bookstore's catalog that I've been browsing, but rather I build up a request
containing the books I'm interested in, and that request is processed on the
server by a series of order processing components that make individual reads
and writes to a series of tables and databases.

For all of these uses, the rich cursoring capabilities and other multi-user
facilities of the Rowset were unnecessary baggage. Even when such extended
functionality was not requested, there was some overhead inherent in the model
(such as row handle indirection) necessary in order to provide a common model
for accessing the data.

By providing a common relational DataSet that users could fill, bind to, and use
to navigate and modify their data, we were free to develop optimized
components for connecting to, executing queries against, and streaming data
from a database. These "Managed Providers" were not intended to replace OLE
DB interfaces to sophisticated stores; instead they were designed to provide
optimized access to certain core features we found most used in working with a
database.

10 Appendix B: ADO and ADO.NET Comparison (Prerelease)

So we have the DataSet, a custom object designed for navigating, remoting,
storing, and working with data, and Managed Providers that expose an
optimized set of simplified components for talking to a database. An object
called the DataSetCommand, supported by the Managed Provider, provides the
glue between the two. The DataSetCommand object encapsulates the logic for
populating a DataSet from the results of an ADO+ Command, and pushing
changes back to the database using exposed ADO+ Command objects
containing commands for Inserting, Updating, and Deleting records in a
database. We provide a component for automatically generating the Insert,
Update, and Delete statements, similar to the logic found in the ADO Client
Cursor Engine, but instead of these commands being generated as part of
internal logic, the commands are external. This means that users can specify
their own statements for applying updates to the back-end, such as the
invocation of stored procedures. Additionally, users can listen for the
OnRowUpdating events in order to add more complex business logic.

By putting all of the logic for communicating with the database outside of the
DataSet, the DataSet is left with no affinity to any particular back-end store.
Whether you populate the DataSet with the results from an Oracle Query, a
SQLServer stored procedure, application data, or XML, once the data is in the
DataSet it's just data. That means that you can populate a single DataSet with
data from various sources, and define relations between each of these different
types of data. So, for example, you could navigate from customers sourced
from an Oracle database, to orders obtained from a SQLServer database, to
product descriptions loaded from an XML file. That's pretty cool.

And, since the DataSet doesn't contain connections or other database state, the
DataSet is a perfect candidate for storing in an ASP+ cache, persisting to disk,
or remoting. In fact, WebServices know how to remote DataSets as parameters
in a WebRequest for passing relational sets of data between tiers. The DataSet
itself is persisted, of course, as XML.

Speaking of XML, The ADO+ stack of components, and the DataSet in
particular, were designed from the core to be great components for working
with XML data. Not only does the DataSet persist and load XML data, but it
also saves and loads its schema according to the XSD Schema definition
language for XML, and changes as SQLXML-compatible UpdateGrams. And
don't get me started on the integration between a live XmlDataDocument and
the DataSet.

So what happens to ADO and OLE DB? They continue to exist, and to serve
the role for which they were designed. OLE DB continues to be Microsoft's
preferred interface for developing a robust, comprehensive interface to an
arbitrary data store. We won't, for example, drop our OLE DB interface to
SQLServer in favor of a Managed Provider; there is just too much native
functionality in the store that Manged Providers weren't intended to represent.
Our ADO Managed Provider exposes the ADO+ Connection, Command, and
DataReader interfaces directly on top of any OLE DB provider, as well as a
DataSetCommand for loading OLE DB data into, and propagating changes out
of, the DataSet. OLE DB providers continue to be the way to expose data to
things like Microsoft SQLServer's Distributed Query Processor, or for plugging
multi-dimensional data into Microsoft Excel.

For functionality not exposed through ADO+, such as an object model for
schema manipulations, .NET users are still able to call classic ADO through
COM Interop.

 Appendix B: ADO and ADO.NET Comparison (Prerelease) 11

Which leads me to a question that I often get; will Managed Providers be
extended to support everything that ADO/OLE DB support today? Probably

not. Managed Providers were not intended to be the single, comprehensive
interface to any data store. I wouldn't want to add more and more functionality
to the Managed Providers simply because it exists today in ADO or OLE DB. I
do expect, however, that we will continue to enhance the functionality of
Managed Providers, based on customer demand. At the same time, I want to be
sure we don't muddy the clean factoring we have between these components.
So, for instance, rather than extending Managed Providers to support a schema
object model, we may decide to have a separate Database Schema object,
perhaps designed around XSD.

The key to the ADO+ architecture is the factoring of components. All
communication with the Database; connections, transactions, queries, stored
procedure invocation, streaming of data, etc., is done through the Managed
Providers. All interactive navigation and management of data is done through
the DataSet. Does the fact that the DataSet doesn't hold locks mean that ADO+
doesn't support things like a pessimistic update model? Not at all. It just means
that you have to understand which components hold locks (the Managed
Providers), and which expose a cursor model (the DataSet).

So, for example, if you want to guarantee that updates made through the
DataSet don't fail for reasons of concurrency, just start a transaction on an
ADO+ Connection with the appropriate isolation level specified. As long as you
use that same connection to execute the query that populates the dataset and to
propagate the changes to the backend, they will all be done under the scope of
that transaction. When you're done, just commit the transaction on the
connection.

More likely you won't want to hold state, such as locks, on the server while the
user interacts with the data in the DataSet. That's fine too; you don't have to
hold open a transaction or even a connection between populating and updating a
DataSet. You can even use a different Managed Provider to handle updates than
the one that originally populated the DataSet.

This explicit factoring of objects in ADO+ does mean that your applications
may look a little different, and in some cases you'll have to write a little more
code to wire the proper components together, but the benefits of having a well
factored set of focused, highly optimized, components should pay great
dividends in building a clean, well designed application with tightly integrated
data support.

Still skeptical? Fair enough. There is some new thinking in this architecture that
even I didn't fully appreciate until I starting writing code with it. My suggestion
would be to take a look at it. Kick the tires. Take it for a spin. And continue to
share thoughts, impressions, and comments, good and bad, on this discussion
group. For my part, I'm going to try and devote more time to listening to your
comments and feedback, and making sure ADO+ provides the best possible
tools and services for working with data in the .NET Framework.�

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix C: Additional Resources
(Prerelease)

ADO and ADO .NET Comparison
This appendix provides Web links to additional resources about Microsoft®
.NET, Microsoft® ActiveX® Data Objects (ADO) .NET, and related
technologies.

These Web links are subject to change.

The following resources provide information about ADO.NET and Microsoft
SQL Server�:

! Accessing Data with ADO.NET
http://msdn.microsoft.com/library/?url=/library/en-
us/cpguidnf/html/cpconaccessingdatawithadonet.asp?frame=true

! Introducing ADO+: Data Access Services for the Microsoft .NET
Framework
http://msdn.microsoft.com/msdnmag/issues/1100/adoplus/adoplus.asp

! ADO.NET for the ADO Programmer
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/adonetdev.asp?frame=true

! ADO to XML: Building a Data Access Tier with the DataManager
Component
http://msdn.microsoft.com/msdnmag/issues/01/08/data/data0108.asp

! SQL and XML: Use XML to Invoke and Return Stored Procedures Over the
Web
http://msdn.microsoft.com/msdnmag/issues/01/08/XMLSQL/XMLSQL.as
p

! Database Architecture: The Storage Engine
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/Dnsql2k/html/TheStorageEngine.asp?frame=true

Introduction

ADO.NET and SQL
Server

2 Appendix C: Additional Resources (Prerelease)

The following resources provide information about the Microsoft .NET
Framework:

! Microsoft .NET Framework Delivers the Platform for an Integrated,
Service-Oriented Web
http://msdn.microsoft.com/msdnmag/issues/0900/Framework/Framework.as
p

! Part 2: Microsoft .NET Framework Delivers the Platform for an Integrated,
Service-Oriented Web
http://msdn.microsoft.com/msdnmag/issues/1000/Framework2/Framewo
rk2.asp

! Avoiding DLL Hell: Introducing Application Metadata in the Microsoft
.NET Framework
http://msdn.microsoft.com/msdnmag/issues/1000/metadata/metadata.as
p

! .NET Framework: Building, Packaging, Deploying, and Administering
Applications and Types
http://msdn.microsoft.com/msdnmag/issues/01/02/buildapps/buildapps.a
sp

! .NET Framework: Building, Packaging, Deploying, and Administering
Applications and Types�Part 2
http://msdn.microsoft.com/msdnmag/issues/01/03/buildapps2/buildapps
2.asp

! Garbage Collection: Automatic Memory Management in the Microsoft
.NET Framework
http://msdn.microsoft.com/msdnmag/issues/1100/GCI/GCI.asp

! Garbage Collection�Part 2: Automatic Memory Management in the
Microsoft .NET Framework
http://msdn.microsoft.com/msdnmag/issues/1200/GCI2/GCI2.asp

! Windows Forms: A Modern-Day Programming Model for Writing GUI
Applications
http://msdn.microsoft.com/msdnmag/issues/01/02/winforms/winforms.as
p

! .NET: An Introduction to Delegates
http://msdn.microsoft.com/msdnmag/issues/01/04/net/net0104.asp

! .NET: Delegates, Part 2
http://msdn.microsoft.com/msdnmag/issues/01/06/net/net0106.asp

! .NET: Implementation of Events with Delegates
http://msdn.microsoft.com/msdnmag/issues/01/08/net/net0108.asp

! .NET Delegates: Making Asynchronous Method Calls in the .NET
Environment
http://msdn.microsoft.com/msdnmag/issues/01/08/Async/Async.asp

! Security in .NET: Enforce Code Access Rights with the Common Language
Runtime
http://msdn.microsoft.com/msdnmag/issues/01/02/CAS/CAS.asp

The Microsoft .NET
Framework

 Appendix C: Additional Resources (Prerelease) 3

! .NET P2P: Writing Peer-to-Peer Networked Apps with the Microsoft .NET
Framework
http://msdn.microsoft.com/msdnmag/issues/01/02/netpeers/netpeers.as
p

! Advanced Basics: Using Inheritance in Windows Forms Applications
http://msdn.microsoft.com/msdnmag/issues/01/06/Basics/Basics0106.as
p

! Under the Hood: Displaying Metadata in .NET EXEs with MetaViewer
http://msdn.microsoft.com/msdnmag/issues/01/03/Hood/Hood0103.asp

! C++ Attributes: Make COM Programming a Breeze with New Feature in
Visual Studio .NET
http://msdn.microsoft.com/msdnmag/issues/01/04/Attributes/Attributes.a
sp

! House of COM: Migrating Native Code to the .NET CLR
http://msdn.microsoft.com/msdnmag/issues/01/05/com/com0105.asp

! Microsoft .NET: Implement a Custom Common Language Runtime Host
for Your Managed App
http://msdn.microsoft.com/msdnmag/issues/01/03/clr/clr.asp

The following resources provide information about Active Server Pages (ASP)
.NET:

! Active Server Pages+: ASP+ Improves Web App Deployment, Scalability,
Security, and Reliability
http://msdn.microsoft.com/msdnmag/issues/0900/ASPPlus/ASPPlus.asp

! ASP .NET: Web Forms Let You Drag and Drop Your Way to Powerful
Web Apps
http://msdn.microsoft.com/msdnmag/issues/01/05/WebForms/WebForm
s.asp

! Cutting Edge: Server-side ASP .NET Data Binding
http://msdn.microsoft.com/msdnmag/issues/01/03/cutting/cutting0103.as
p

! Cutting Edge: Server-side ASP .NET Data Binding, Part 2: Customizing the
DataGrid Control
http://msdn.microsoft.com/msdnmag/issues/01/04/cutting/cutting0104.as
p

! Cutting Edge: Server-side ASP .NET Data Binding, Part 3: Interactive
DataGrids
http://msdn.microsoft.com/msdnmag/issues/01/05/cutting/cutting0105.as
p

! Cutting Edge: DataGrid In-place Editing
http://msdn.microsoft.com/msdnmag/issues/01/06/cutting/cutting0106.as
p

! Data Points: Revisiting the Ad-Hoc Data Display Web Application
http://msdn.microsoft.com/msdnmag/issues/01/06/data/data0106.asp

ASP.NET

4 Appendix C: Additional Resources (Prerelease)

! Cutting Edge: Custom Web Data Reporting
http://msdn.microsoft.com/msdnmag/issues/01/07/cutting/cutting0107.as
p

! Cutting Edge: Reusability in ASP .NET: Code-behind Classes and Pagelets
http://msdn.microsoft.com/msdnmag/issues/01/08/cutting/cutting0108.as
p

! The ASP Column: ASP .NET Connection Model and Writing Custom
HTTP Handler/Response Objects
http://msdn.microsoft.com/msdnmag/issues/01/07/asp/asp0107.asp

The following resources provide information about Extensible Markup
Language (XML) and Web services:

! The Programmable Web: Web Services Provides Building Blocks for the
Microsoft .NET Framework
http://msdn.microsoft.com/msdnmag/issues/0900/WebPlatform/WebPlatf
orm.asp

! Visual Studio .NET: Build Web Applications Faster and Easier Using Web
Services and XML
http://msdn.microsoft.com/msdnmag/issues/0900/VSNET/VSNET.asp

! Web Services: Building Reusable Web Components with SOAP and ASP
.NET
http://msdn.microsoft.com/msdnmag/issues/01/02/webcomp/webcomp.a
sp

! Documenting Your Web Service
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dn_voices_webservice/html/service07182001.asp

! XML in .NET: .NET Framework XML Classes and C# Offer Simple,
Scalable Data Manipulation
http://msdn.microsoft.com/msdnmag/issues/01/01/xml/xml.asp

! The XML Files: Understanding XML Namespaces
http://msdn.microsoft.com/msdnmag/issues/01/07/xml/xml0107.asp

! Wicked Code: CityView App: Build Web Service Clients Quickly and
Easily with C#
http://msdn.microsoft.com/msdnmag/issues/01/04/Wicked/Wicked0104.a
sp

XML and Web services

 Appendix C: Additional Resources (Prerelease) 5

The following resources provide information about Microsoft Visual Basic®
.NET:

! Visual Basic .NET: New Programming Model and Language Enhancements
Boost Development Power
http://msdn.microsoft.com/msdnmag/issues/01/02/vbnet/vbnet.asp

! Serving the Web: Windows Forms in Visual Basic .NET
http://msdn.microsoft.com/msdnmag/issues/01/04/serving/serving0104.a
sp

! Basic Instincts: New Features in Visual Basic .NET: Variables, Types,
Arrays, and Properties
http://msdn.microsoft.com/msdnmag/issues/01/05/Instincts/Instincts0105
.asp

! Basic Instincts: Exploiting New Language Features in Visual Basic .NET,
Part 2
http://msdn.microsoft.com/msdnmag/issues/01/08/Instincts/Instincts0108
.asp

! Visual Basic .NET: Tracing, Logging, and Threading Made Easy with .NET
http://msdn.microsoft.com/msdnmag/issues/01/07/vbnet/vbnet.asp

! Advanced Basics: Happy 10th Birthday, Visual Basic
http://msdn.microsoft.com/msdnmag/issues/01/07/basics/basics0107.as
p

The following resources provide information about C#:

! Sharp New Language: C# Offers the Power of C++ and Simplicity of Visual
Basic
http://msdn.microsoft.com/msdnmag/issues/0900/csharp/csharp.asp

! C++ -> C#: What You Need to Know to Move from C++ to C#
http://msdn.microsoft.com/msdnmag/issues/01/07/ctocsharp/ctocsharp.a
sp

! Visual Studio .NET: Managed Extensions Bring .NET CLR Support to C++
http://msdn.microsoft.com/msdnmag/issues/01/07/vsnet/vsnet.asp

! Design Patterns: Solidify Your C# Application Architecture with Design
Patterns
http://msdn.microsoft.com/msdnmag/issues/01/07/patterns/patterns.asp

! C# and the Web: Writing a Web Client Application with Managed Code in
the Microsoft .NET Framework
http://msdn.microsoft.com/msdnmag/issues/01/09/cweb/cweb.asp

Visual Basic .NET

C#

6 Appendix C: Additional Resources (Prerelease)

The following resources provide information about mobile applications:

! .NET Mobile Web SDK: Build and Test Wireless Web Applications for
Phones and PDAs
http://msdn.microsoft.com/msdnmag/issues/01/06/Mobile/Mobile.asp

! SQL Server CE: New Version Lets You Store and Update Data on
Handheld Devices
http://msdn.microsoft.com/msdnmag/issues/01/06/sqlce/sqlce.asp
Pocket PC: Seamless App Integration with Your Desktop using ActiveSync
3.1
http://msdn.microsoft.com/msdnmag/issues/01/06/PPC/PPC.asp

! Security Models and Scenarios for SQL Server 2000 Windows CE Edition
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnsql2K/html/sscesecurity.asp?frame=true

The following resources are columns on MSDN:

! Diving Into Data Access
http://msdn.microsoft.com/columns/data.asp

! Nothin� But ASP .NET
http://msdn.microsoft.com/columns/aspnet.asp

! Working with C#
http://msdn.microsoft.com/columns/csharp.asp

Mobile applications

MSDN Voices Columns

Contents

Overview 1

Lesson: .NET Framework Architecture 2

Lesson: .NET Namespaces 10

Review 17

Appendix D: Microsoft
.NET Framework
Overview (Prerelease)

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious,
and no association with any real company, organization, product, domain name, e-mail address,
logo, person, places or events is intended or should be inferred. Complying with all applicable
copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any
written license agreement from Microsoft, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights, or other intellectual property.

 2001 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, <plus other appropriate product names or titles.
The publications specialist replaces this example list with the list of trademarks provided by the
copy editor. Microsoft, MS-DOS, Windows, and Windows NT are listed first, followed by all
other Microsoft trademarks listed in alphabetical order. > are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries.

<The publications specialist inserts mention of specific, contractually obligated to, third-party
trademarks, provided by the copy editor>

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 1

Overview

! .NET Framework Architecture

! .NET Namespaces

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This appendix provides an overview of the .NET Framework.

1. Describe the .NET Framework architecture, and its major features.
After completing this module, students will be able to:

! Diagram the .NET Framework architecture.
! Reference namespaces in projects.
! Create a new namespace, or extend an existing namespace.

Introduction

Objectives

2 Appendix D: Microsoft .NET Framework Overview (Prerelease)

Lesson: .NET Framework Architecture

! .NET Framework Architecture

" Benefits

" Architecture of the .NET Framework

" .NET Development Languages

" Common Language Runtime

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces the .NET Framework and explains how ADO.NET
relates to other .NET Framework components.

After completing this lesson, you will be able to:

! List the benefits of using the .NET Framework.
! Diagram the general architecture of the .NET Framework.
! Discuss the .NET languages and the common language runtime.

Introduction

Lesson Objectives

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 3

Architecture of the .NET Framework

! Architecture of the .NET Framework

OthersOthersVB C#

VB compiler C# compiler

Microsoft
Intermediate
Language (MSIL)

ADO.NET

Common Language Runtime (CLR)

Win32 API

MyClass

This will be a build slide that will become an architectural-style graphic)

Source Code

Compiler

Operating System

Base Class Libraries

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework is a computing platform that simplifies application
development in the highly distributed environment of the Internet. The major
components of the .NET Framework are:

! Language compilers
! .NET base class libraries (written in C#, pre-compiled to MSIL)
! Common language runtime
! ASP.NET application and XML Web service platform

The .NET Framework supports many programming languages. The strategic
languages are Visual Basic and C#, but you can also use C++, Microsoft
JScript®, and more than 30 others such as Perl and COBOL.

The compilers produce Microsoft Intermediate Language code that is then
compiled �just in time� by the common language runtime.

The .NET Framework base class libraries include classes for the following:

! Data access (ADO.NET)
! Building Microsoft Win32® applications
! Building web applications (ASP.NET)
! Building XML Web services
! XML support

Introduction

Language compilers

The .NET Framework
class libraries

4 Appendix D: Microsoft .NET Framework Overview (Prerelease)

The common language runtime simplifies deployment and management of
applications. It performs the following:

! Manages running code, while:
! Verifying type safety.
! Providing garbage collection and error handling.
! Providing code access security for semi-trusted code.
! Provides a common type system, including:
! Value types (integer, float, user defined, and so on)
! Objects and interfaces
! Provides access to system resources, including native API and COM

interoperability.

The .NET Framework provides you with the following benefits:

! Exposes a language-independent yet consistent programming model across
all tiers of an application.

! Provides seamless interoperability with and easy migration from existing
technologies.

! Offers a simplified application development with a consistent set of classes
and interfaces.

! Provides a unified programming model with consistent application
programming interfaces (API) available across all languages and application
types.

! Utilizes Web standards by providing rich XML support, including
integrated XML and SOAP support, standard protocols, and a stateless
environment.

! Increases productivity because .NET applications are easy to deploy, run,
and maintain. The common language runtime makes applications developed
with the .NET Framework easy to use because it helps avoid registration
and version problems.

The common language
runtime

Benefits

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 5

Object Oriented Programming

! Object Oriented Programming

" Define classes to represent the main concepts

" Each class can comprise data, constructors, and
methods

" Create objects using the new operator

VB exampleVB example C# exampleC# example

*****************************ILLEGAL FOR NON-TRAINER USE******************************

One of the major features of the common language runtime is its support for
object oriented programming. A language compiler does not have to support all
the features of the common language runtime, but the two strategic .NET
languages, Visual Basic and C#, do. This means that you define classes to
represent the important concepts in your application. Each class can comprise
data, constructors to initialize the data, and methods to encapsulate the data.

The following example defines a class in Visual Basic, with a single instance
variable:

' Define a class with a balance instance variable

Public Class BankAccount
 Private dblBalance As Double ' Partial class definition
End Class

The following example shows how to define the BankAccount class in C#:

// Define a class with a balance instance variable

public class BankAccount
{
 private double dblBalance; // Partial class definition
}

Methods provide the behavior for a class, and encapsulate the data in the class.
You can also define constructors, to initialize the object when it is created.

Introduction

Example of defining a
class in Visual Basic

Example of defining a
class in C#

Defining methods in a
class

6 Appendix D: Microsoft .NET Framework Overview (Prerelease)

This example defines a constructor for the BankAccount class in Visual Basic.
The example also includes a Credit subroutine and a Debit function.
Subroutines do not return a value, but functions return a single value.

' Constructor to initialize the state of an object

Public Sub New(ByVal initBalance As Double)
 dblBalance = initBalance
End Sub

' Credit subroutine

Public Sub Credit(ByVal amount As Double)
 dblBalance += amount
End Sub

' Debit function. Return true if the balance is still OK,
' or false if overdrawn

Public Function Debit(ByVal amount As Double) As Boolean
 dblBalance -= amount
 Debit = (dblBalance >= 0)
End Function

This example defines a constructor, a Credit method, and a Debit method in
C#. In C#, the constructor has the same name as the class. The void keyword in
the Credit method indicates that the method does not return a value.

// Constructor to initialize the state of an object

public BankAccount(double initBalance)
{
 dblBalance = initBalance;
}

// Credit the balance

public void Credit(double amount)
{
 dblBalance += amount;
}

// Debit the balance, and return true or false

public bool Debit(double amount)
{
 dblBalance -= amount;
 return (dblBalance >= 0);
}

Properties provide the attributes for a class, and encapsulate the data in the
class.

Example of defining
methods in Visual Basic

Example of defining
methods in C#

Defining properties in a
class

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 7

This example defines a Balance property for the BankAccount class in Visual
Basic.

Public ReadOnly Property Balance() As Double
 Get
 Balance = dblBalance
 End Get
End Property

This example defines a Balance property for the BankAccount class in C#.

public double Balance
{
 get
 {
 return dblBalance;
 }
}

An object is an instance of a class. To create an object, use the new operator. To
use an object, call the public methods defined in the class.

This example creates a BankAccount object in Visual Basic, with an initial
balance of $100. The example shows how to call the Credit and Debit
methods.

' Create a BankAccount object, and call methods on the object

Dim myAccount As New BankAccount(_
 Convert.ToDouble(txtAmount.Text))
myAccount.Credit(50)
myAccount.Debit(75)

This example creates and uses a BankAccount object in C#:

// Create and use a BankAccount object in C#

BankAccount myAccount = new BankAccount(
 Convert.ToDouble(txtAmount.Text));
myAccount.Credit(50);
myAccount.Debit(75);

Example of defining
properties in Visual
Basic .NET

Example of defining
properties in C#

Creating and using
objects

Example of creating and
using objects in Visual
Basic

Example of creating and
using objects in C#

8 Appendix D: Microsoft .NET Framework Overview (Prerelease)

The Common Language Runtime

! The common language runtime provides an execution
environment for .NET Framework applications

! The common language runtime includes these
features:
" Common type system
" Just-in-time compiler
" Security support
" Garbage collection and memory management
" Class loader
" COM interoperability

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The common language runtime provides an execution environment for .NET
Framework code. The runtime gives a secure, robust, CPU-independent
environment for managed applications in the .NET Framework.

The common language runtime includes the following features:

! Common type system
! Just-in-time (JIT) compiler, from Microsoft Intermediate Language (MSIL)

to native code
! Security support
! Garbage collection and memory management
! Class loader
! COM interoperability

The common type system (CTS) defines a common set of data types that are
available in all .NET Framework development languages.

The CTS also defines the common language specification (CLS). The CLS is a
set of rules and programming language features that all .NET Framework
development languages must support. The CLS enables you to integrate code
written different in languages, and ensures type safety between these languages.

When you develop code targeted at the common language runtime, you compile
your code to Microsoft Intermediate Language. MSIL is a CPU-independent
instruction set, designed for efficient translation into native code.

When you run your code on a particular platform, the runtime must translate the
MSIL instructions into native code. For this purpose, the runtime includes a JIT
compiler for each CPU that it supports. This means you can execute your code
on any platform for which the runtime is available.

Introduction

Definition of common
language runtime

Common type system

Just-in-time compiler

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 9

Security is an important issue in the era of Web-enabled applications. The
common language runtime supports and enforces a strict security model, to
address these needs.

The security model uses code access security to control access to restricted
resources. Code access security defines the set of permissions required to access
system resources. Administrators create and configure security policy files,
which associate these permissions with groups of code. When your code tries to
access a protected resource, the runtime security system checks that the code
has the required permission.

The common language runtime manages how your application allocates and
releases memory.

Each time you create a new object, the runtime allocates memory from the
heap. When the object is no longer referenced in your application, the object
becomes available for garbage collection. The garbage collector periodically
sweeps through memory, reclaiming objects that are no longer required.

Garbage collection makes it easier for you to design your applications, because
you do not have to delete objects when they are no longer required. The garbage
collector deletes objects for you.

Garbage collection also helps to prevent memory leaks, which occur in
unmanaged code if you forget to delete an object when it is no longer needed.

The common language runtime includes a class loader, which dynamically
loads classes into the runtime when needed.

The common language runtime includes execution services for COM
interoperability. This enables you to write .NET Framework code to interface
with existing COM components. You can also expose .NET Framework
components as COM interfaces.

Security

Garbage collection and
memory management

Class loader

COM interoperability

10 Appendix D: Microsoft .NET Framework Overview (Prerelease)

Lesson: .NET Namespaces

! .NET Namespaces

" What Are Namespaces?

" How are Namespaces Referenced?

" Creating New Namespaces

*****************************ILLEGAL FOR NON-TRAINER USE******************************

This lesson introduces the .NET namespaces.

After completing this lesson, you will be able to:

! Define a namespace.
! Reference a namespace.

Introduction

Lesson Objectives

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 11

What Are Namespaces?

! What Are Namespaces?

" Collections of names that are organized in functional
groupings, such as classes, interfaces, and
enumerators

" Namespaces are used in everyday life and in
computing

VB.NET codeVB.NET code (this will be combo slide that will build and show a graphic)

*****************************ILLEGAL FOR NON-TRAINER USE******************************

The .NET Framework classes and data types are organized into namespaces. A
namespace is a logical collection of related classes and data types.

Namespaces divide the .NET Framework class library into meaningful
partitions. This makes it easy for developers to find the classes that they need.
Namespaces also help to prevent name clashes between similar classes in
different namespaces.

In simplest terms, a namespace is a collection of names. In application
development, a namespace is a bounded area of an organized collection of
names that is accessible to programs. Namespaces are often organized in a
hierarchy so that each entry in the namespace below the top level belongs to a
group.

Examples of namespaces exist outside of computers in everyday life. A
telephone directory is one type of namespace, where names are organized by
business type. A practical example of a namespace in everyday life is a
collection of mail slots in a business. These slots and the names that are
associated with them are managed to be current and accurate. The names are
often organized by group, by function, or in alphabetical order.

In the computer world, namespaces consist of collections of classes, interfaces,
enumerations, and related programming tools. Examples of namespaces include
the System.Web namespace, which is used by ASP.NET, and the System.Xml
namespace, which is used for XML processing.

A good non-example is the Win32 API. This collection of function calls does
not use namespaces, so all 600+ functions require unique names (making the
names long and complicated) and have no logical grouping. This is one of the
reasons writing applications for Windows is so hard using direct calls to the
operating system.

Introduction

Definition

Everyday examples

Computer examples

12 Appendix D: Microsoft .NET Framework Overview (Prerelease)

Namespaces do not indicate physical implementation. For example, a single
namespace can be implemented by multiple assemblies (EXEs and DLLs). For
example, some classes in the System.Web namespace are implemented in the
System.Web.dll assembly, and others are implemented in the
System.Web.RegularExpressions.dll assembly.

The reverse is also true: multiple namespaces can be implemented by a single
assembly. For example, the System.Data.dll assembly implements the
System.Data.SqlClient and System.Data.OleDb namespaces, as well as others.

The .NET Framework namespaces use a �dot� naming convention to indicate
namespace hierarchy. The following table describes some of the standard .NET
Framework namespaces.

Namespace Description

System General-purpose classes and interfaces, such as the

Math class.

System.Web.UI Classes and interfaces for ASP .NET user interfaces,
such as the Page class that represents a Web form.

System.Web.UI.WebControls Classes and interfaces for ASP .NET controls, such
as the TextBox and Button classes.

System.Data.SqlClient Classes and interfaces for accessing SQL Server 7.0
and later databases;. For example, the SqlCommand
class represents a SQL command.

Do not confuse namespace hierarchy (logical groups) with class inheritance
hierarchy. Use the online help to discover the class inheritance hierarchy for a
class.

For example, the SqlDataAdapter class in the System.Data.SqlClient
namespace inherits from the DbDataAdapter class in the
System.Data.Common namespace.

So the namespace hierarchy of SqlDataAdapter is:

System
 Data
 SqlClient
 SqlDataAdapter

But the class inheritance hierarchy of SqlDataAdapter is:

Object
 MarshallByRefObject
 Component
 DataAdapter
 DbDataAdapter
 SqlDataAdapter

Namespace
implementation

Namespace hierarchy

Class inheritance
hierarchy

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 13

How Are Namespaces Referenced?

! Classes and types are packaged as assemblies
" A namespace can be partitioned over several

assemblies
" An assembly can contain types from several

namespaces
! Assemblies are an important part of the .NET

Framework
! To add a reference to an assembly in your project:

" In Solution Explorer, right-click the References folder
" Select the assembly you require

*****************************ILLEGAL FOR NON-TRAINER USE******************************

Classes and types are packaged as assemblies. You can partition a namespace
over several assemblies. An assembly can contain classes and data types from
several related namespaces. Before you can use a namespace, you must
reference a physical DLL.

Assemblies provide the following capabilities:

! Assemblies are the unit of deployment in the .NET Framework. To install
an assembly, copy the assembly into the file system. There is no need to
register the assembly in the registry.

! Assemblies are self-describing. Each assembly has a manifest file, which
contains metadata about the classes and data types in the assembly.

! Assemblies contain version information. This makes it possible to install
and execute different versions of an assembly side by side, without conflict.

! Assemblies are the unit of security in the .NET Framework. You can specify
the permissions required to use and run each assembly.

! Assemblies can be declared as private to an application, or shared among
applications. Application-private assemblies are useful if you only want an
assembly to be visible in a single application. Shared assemblies are useful
for system classes and data types that are used by many applications.

To add a reference to an assembly in your project, follow these steps:

1. Open the Solution Explorer in Microsoft Visual Studio® .NET.
2. Expand the project in which you want to make a reference.
3. Right-click the References folder.
4. On the menu, choose Add Reference.
5. Select the checkbox for the DLL that implements the part of the namespace

that contains the class that you want to use.
6. Select OK.

Introduction

Importance of
assemblies

Adding an assembly
reference to a project

14 Appendix D: Microsoft .NET Framework Overview (Prerelease)

In this practice, you will learn how to add assembly references to a project. You
will also see how to import namespaces to simplify your code.

In the first part of the practice, you will create a new Windows application and
declare a System.Messaging.MessageQueue variable. You must also add a
reference to the System.Messaging assembly.

1. Run Visual Studio .NET.
2. On the File menu, point to New, and then click Project to create a new

project.
3. In the New Project dialog box, select the options in the following table, and

then click OK.

Option Selection

Project Types Visual Basic Project

Templates Windows Application

4. In the Solution Explorer, right-click Form1.vb and then click View Code.
5. Declare the following instance variable at the start of the Form1 class:

Private mq As System.Messaging.MessageQueue

6. On the Build menu, click Build. The following compiler error occurs:
Type is not defined: 'System.Messaging.MessageQueue'

7. In the Solution Explorer, right-click References, and then click Add
Reference.

8. In the Add Reference dialog box, select the .NET tab. In this tab, select the
component name System.Messaging.dll, click Select, and then click OK.

9. Notice that the References folder now includes the System.Messaging
assembly.

10. Build the project. The build succeeds.

In the next part of the practice, you will import the System.Messaging
namespace. This will enable you to use the MessageQueue data type directly in
the code, without specifying its namespace each time.

11. View the code for Form1.vb. Modify the declaration of the instance
variable at the start of the class, as follows:
Private mq As MessageQueue

12. Build the project. The following compiler error occurs:
Type is not defined: 'MessageQueue'

13. Add the following Imports statement at the start of Form1.vb:
Imports System.Messaging

14. Build the project again. The build succeeds.

Practice

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 15

Creating New Namespaces

! You can create new namespaces for your classes

" For example, create a new namespace for the
implementation of a .NET data provider for FoxPro

! To create a new namespace:

" Define the namespace

" Define your classes in the namespace

" Create an assembly to hold the compiled code

*****************************ILLEGAL FOR NON-TRAINER USE******************************

You can create a new namespace to act as a logical container for your classes
and data types. Placing your code in a distinct namespace helps you to avoid
name clashes with code written elsewhere. It also makes it easier for developers
to use your classes and data types in their programs.

For example, in ADO.NET, each .NET data provider is located in a different
namespace. The following table shows the namespaces for the data providers
that are packaged in the .NET Framework.

Data provider Namespace

SQL Server .NET System.Data.SqlClient

OLE DB .NET System.Data.OleDb

ADO.NET provides classes to help you to define your own .NET data
providers. This might be useful if you want to provide a simplified data access
architecture, or to expose provider-specific behavior to consumers.

To define your own .NET data provider, you must first create a new namespace.
In this namespace, place the classes and data types for your new data provider.

Introduction

Scenario

16 Appendix D: Microsoft .NET Framework Overview (Prerelease)

To create a new namespace, follow these steps:

1. Define the namespace in your source code. Choose a unique name for the
namespace.

2. Define your classes and data types in the namespace. You can place the
classes and data types in separate source files, as long as each source file
includes the same namespace definition.

3. Create an assembly to hold the compiled code. If your code makes use of
any other assemblies, include a reference to these assemblies.

This example defines a namespace in Visual Basic, to represent a new data
provider. The namespace is called System.Data.Fox. The System.Data prefix
indicates that the namespace represents a data provider.

' Visual Basic .NET

Namespace System.Data.Fox

 Class FoxConnection
 Inherits Component
 Implements IDbConnection, ICloneable

 ' . . .

 End Class

 ' Implement other.NET data provider classes and interfaces,
 ' such as IDbCommand and IDbDataAdapter

End Namespace

The following command line compiles all Visual Basic files in the current
directory, and creates a DLL assembly named System.Data.Fox.dll. This
assembly includes references to the System.dll and System.Data.dll assemblies,
which contain classes needed by the new data provider.

vbc /target:library
 /out:System.Data.Fox.dll *.vb
 /r:System.dll /r:System.Data.dll

Creating a new
namespace

Example of creating a
data provider in Visual
Basic .NET

 Appendix D: Microsoft .NET Framework Overview (Prerelease) 17

Review

! .NET Framework Architecture

! .NET Namespaces

*****************************ILLEGAL FOR NON-TRAINER USE******************************

THIS PAGE INTENTIONALLY LEFT BLANK

