
 1

Design Patterns and
Object Oriented
Programming in

Visual Basic 6 and
VB.NET

James W. Cooper

IBM Thomas J Watson Research Center

January 14, 2001

Copyright © 2001, by James W Cooper

 2

Preface...19

1. What Are Design Patterns? .. 21

Defining Design Patterns...23
The Learning Process..25

Studying Design Patterns...25

Notes on Object Oriented Approaches..26

VB Design Patterns...27

How this Book is Organized ..27

2. UML Diagrams .. 29
Inheritance..31

Interfaces..32

Composition ...33

Annotation ..34

WithClass UML Diagrams...35

Visual Basic Project Files ..35

3. Using Classes and Objects in VB.. 36

A Simple Temperature Conversion Program...36

Building a Temperature Class..38

Converting to Kelvin ...40
Putting the Decisions into the Temperature Class..40

Using Classes for Format and Value Conversion ...42

Handling Unreasonable Values...44

A String Tokenizer Class...45

Classes as Objects...47

Class Containment...49

Class Initialization ..50
Classes and Properties...50

Another Interface Example –The Voltmeter..52

A vbFile Class ..53

Programming Style in Visual Basic ..55

Summary..56

4. Object Oriented Programming .. 57

 3

Building VB Objects...58

Creating Instances of Objects...59

A VB Measurement Program...59

Methods inside Objects ...60
Variables..60

Passing Arguments by Reference and by Value...61

Object Oriented Jargon..61

5. Building Your Own VB Control... 63
A Highlighted Text Field...63

Resizing a User Control ...65

Testing Your HiText Controls..65

Adding Properties and Methods to User Controls ..66

Compiling a User Control..67

Summary..67

6. Inheritance and Interfaces.. 69
Interfaces ...69

An Investment Simulator ...70

Writing the Simulator ..72

Indicators for Using an Interface ..73

Reusing Common Methods..75
Hidden Interfaces..77

Summary..78

7. Introduction to VB.NET ... 79

Syntax Differences in VB.NET..79
Improved Function Syntax ...80

 4

Objects in VB.NET...81

Numbers in VB.NET...82

Properties in VB6 and VB.NET...82

Shorthand Equals Syntax...83
Managed Languages and Garbage Collection..84

Classes in VB.NET...84

Building a VB7 Application ..86

The Simplest Window Program in VB.NET ...88

Inheritance ...89

Constructors ...91

Drawing and Graphics in VB.NET...93

Overloading..93
Inheritance ...94

Namespaces..94

Creating a Square From a Rectangle ...96

Public, Private and Protected...97

Overriding Methods in Derived Classes..97

Overriding Windows Controls ...99

Interfaces ... 101
Summary.. 102

Programs on the CD-ROM.. 102

8. Arrays, Files and Exceptions in VB.Net 103

Arrays.. 103
Collection Objects .. 104

ArrayLists... 104

 5

Hashtables .. 105

SortedLists.. 105

Exceptions .. 106

Multiple Exceptions .. 108
Throwing Exceptions .. 108

File Handling.. 108

The File Object ... 109

Reading Text File ... 109

Writing a Text File .. 109

Exceptions in File Handling... 110

Testing for End of File .. 110

Static File Methods ... 111
A vbFile Class .. 112

Creational Patterns ... 114

9. The Factory Pattern .. 116
How a Factory Works ... 116

Sample Code .. 117

The Two Derived Classes.. 117

Building the Simple Factory.. 119

Using the Factory.. 119
Writing the Factory Pattern in VB.NET.. 120

Factory Patterns in Math Computation ... 122

Programs on the CD-ROM.. 123

Thought Questions .. 124

10. The Factory Method .. 125

 6

The Swimmer class... 128

The Events Classes ... 129

Straight Seeding.. 131

Circle Seeding... 133
Our Seeding Program.. 133

Other Factories ... 134

The Seeding Program in VB7 .. 135

When to Use a Factory Method.. 137

Thought Questions .. 138

Programs on the CD-ROM.. 138

11. The Abstract Factory Pattern... 139
A GardenMaker Factory.. 139

How the User Interface Works... 142

Creating an Abstract Factory Using VB7.. 143

The PictureBox ... 146

Handling the RadioButton and Button Events.. 147
Adding More Classes.. 147

Consequences of Abstract Factory ... 148

Thought Questions .. 148

Code on the CD-ROM... 148

12. The Singleton Pattern .. 149
Creating Singleton Using a Static Method .. 149

Catching the Error... 151

Providing a Global Point of Access to a Singleton..................................... 152

The MSComm Control as a Singleton .. 152

 7

Available Ports.. 155

Writing a Singleton in VB.NET... 156

Using a Private Constructor.. 157

Error Handling in Our Singleton... 157
A VB.NET SpoolDemo Program... 159

The Global Point of Access ... 160

Other Consequences of the Singleton Pattern.. 161

Thought Questions .. 161

Programs on Your CD-ROM... 161

13. The Builder Pattern ... 162
An Investment Tracker.. 163

Calling the Builders .. 166

The List Box Builder... 168

The Checkbox Builder .. 169

Writing a Builder in VB.NET.. 170

The Stock Factory... 171
The CheckChoice Class... 172

The ListboxChoice Class ... 174

Using the Items Collection in the ListBox Control 175

The Final Choice... 177

Consequences of the Builder Pattern.. 177

Thought Questions .. 178

Programs on the CD-ROM.. 178

14. The Prototype Pattern ... 179

Cloning in Visual Basic 6.. 179

 8

Using the Prototype... 180

Using the Prototype Pattern... 184

Additional Methods in Subclasses .. 185

Dissimilar classes with the same interface... 187
Prototype Managers.. 191

Writing a Prototype in VB7... 191

Consequences of the Prototype Pattern... 195

Thought Questions .. 196

Programs on the CD-ROM.. 196

Summary of Creational Patterns... 196

Structural Patterns ... 198

15. The Adapter Pattern.. 199
Moving Data between Lists ... 199

Using the MSFlexGrid .. 201

Using a TreeView... 204

The Object Adapter... 205

The Class Adapter... 205

Two Way Adapters... 206

Using Adapters in VB7 ... 206

TreeView Adapters for VB.NET.. 208
Adapting a DataGrid ... 210

Object versus Class Adapters in VB.NET... 212

Pluggable Adapters... 213

Adapters in VB... 213

Thought Questions .. 213

 9

Programs on the CD-ROM.. 213

16. The Bridge Pattern... 214
The visList Classes ... 218

The Class Diagram.. 218

Extending the Bridge .. 219

ActiveX Controls as Bridges.. 222

The Bridge Pattern in VB.NET.. 223

The ListBox VisList Class ... 225
The Grid VisList class ... 225

Loading the Data... 226

Changing the Data Side of the Bridge... 227

Consequences of the Bridge Pattern... 229

Thought Questions .. 230

Programs on your CD-ROM.. 230

17. The Composite Pattern.. 231
An Implementation of a Composite .. 232

Computing Salaries... 233

The Employee Classes .. 233

The Subords Class .. 236

The Boss Class ... 237
Building the Employee Tree.. 239

Self-Promotion ... 242

Doubly Linked Lists.. 243

Consequences of the Composite Pattern... 244

A Simple Composite ... 245

 10

Composites in VB... 245

The Composite in VB.NET.. 245

The Enumerator .. 247

Multiple Boss Constructors.. 248
Other Implementation Issues ... 250

Thought Questions .. 250

Programs on the CD-ROM.. 250

18. The Decorator Pattern... 251
Decorating a CoolButton... 251

Using a Decorator ... 255

The Class Diagram.. 258

Using ActiveX Controls as Decorators... 259

A Decorator In VB.NET.. 259

Non-Visual Decorators.. 262

Decorators, Adapters and Composites .. 262

Consequences of the Decorator Pattern... 263
Thought Questions .. 263

Programs on the CD-ROM.. 263

19. The Façade Pattern.. 264

What is a Database? .. 264
Getting Data out of Databases.. 266

Kinds of Databases ... 267

ODBC.. 268

Microsoft Database Connection Strategies.. 268

Database Structure.. 268

 11

The DBase cCass .. 269

Building the Façade Classes .. 272

The Stores Class.. 273

Building the Stores and Foods Tables... 276
Building the Price Table .. 276

Building the Price Query.. 278

Summary of the Façade Pattern.. 279

ADO Database Access in VB6... 281

The ADO Connection .. 282

Adding and Seeking Rows Table Rows... 283

Using the ADO Extensions .. 284

The ADO Dbase Class .. 285
Database Access in VB.NET... 288

Using ADO.NET.. 289

Connecting to a Database... 289

Reading Data from a Database Table .. 290

Executing a Query... 291

Deleting the Contents of a Table ... 291

Adding Rows to Database Tables Using ADO.. 292
Making the VB.NET ADO Façade... 293

The DBTable class .. 294

Creating Classes for Each Table ... 296

Storing the Prices.. 299

Loading the Database Tables ... 301

The Final Application ... 302

 12

What Constitutes the Façade?.. 303

Consequences of the Façade .. 304

Thought Questions .. 304

Programs on the CD-ROM.. 304

20. The Flyweight Pattern ... 305

Discussion .. 307

Example Code .. 307

The Class Diagram.. 311
Selecting A Folder... 312

Writing a Flyweight Folder in VB.NET.. 313

Flyweight Uses in VB... 318

Sharable Objects... 318

Copy-on-Write Objects ... 319

Thought Questions .. 319

Programs on the CD-ROM.. 319

21. The Proxy Pattern.. 320
Sample Code .. 321

Writing a Proxy in VB.Net.. 323

Proxies in VB... 325

Copy-on-Write ... 325
Comparison with Related Patterns.. 325

Thought Questions .. 326

Programs on the CD-ROM.. 326

Summary of structural patterns .. 327

Behavioral Patterns ... 329

 13

22. Chain of Responsibility.. 330
Applicability... 331

Sample Code .. 332

The List Boxes ... 335

Programming a Help System... 337

Receiving the Help Command.. 339

A Chain or a Tree?.. 341

Chain of Responsibility in VB.NET... 343
Kinds of Requests... 346

Examples inVB... 346

Consequences of the Chain of Responsibility.. 346

Thought Questions .. 347

Programs on the CD-ROM.. 347

23. The Command Pattern .. 348
Motivation.. 348

Command Objects .. 349

Building Command Objects... 350

Arrays of Commands .. 351

Consequences of the Command Pattern.. 355

Providing Undo .. 355
The Command Pattern in VB.NET... 360

The CommandHolder Interface.. 363

Handling Undo Commands in VB.NET.. 367

The Command Pattern in the VB Language .. 369

Thought Questions .. 370

 14

Programs on the CD-ROM.. 370

24. The Interpreter Pattern... 371
Motivation.. 371

Applicability... 371

A Simple Report Example ... 372

Interpreting the Language .. 373

Objects Used in Parsing... 374

Reducing the Parsed Stack... 378
Implementing the Interpreter Pattern.. 380

The Syntax Tree.. 380

Consequences of the Interpreter Pattern.. 385

Thought Questions .. 386

Programs on the CD-ROM.. 386

25. The Iterator Pattern... 387
Motivation.. 387

Sample VB6 Code .. 388

Fetching an Iterator ... 389

Filtered Iterators ... 390

The Filtered Iterator... 390

Iterators in VB.NET.. 393
Consequences of the Iterator Pattern .. 395

Thought Questions .. 396

Programs on the CD-ROM.. 397

26. The Mediator Pattern .. 398
An Example System.. 398

 15

Interactions between Controls .. 399

Sample Code .. 401

Initialization of the System... 404

Mediators and Command Objects .. 404
The Mediator in VB.Net.. 405

Initialization.. 407

Handling the Events for the New Controls .. 408

Consequences of the Mediator Pattern.. 408

Single Interface Mediators... 409

Implementation Issues... 409

Programs on the CD-ROM.. 409

27. The Memento Pattern.. 410
Motivation.. 410

Implementation... 411

Sample Code .. 411

A Cautionary Note .. 418
Command Objects in the User Interface.. 418

Handling Mouse and Paint Events.. 419

Writing a Memento in VB.NET... 420

Consequences of the Memento... 422

Thought Questions .. 423

Programs on the CD-ROM.. 423

28. The Observer Pattern .. 424
Watching Colors Change ... 425

Writing an Observer in VB.NET.. 428

 16

The Message to the Media ... 430

Consequences of the Observer Pattern.. 431

Thought Questions .. 431

Programs on the CD-ROM.. 431

29. The State Pattern ... 432

Sample Code .. 432

Switching Between States.. 438

How the Mediator Interacts with the State Manager 439
Handling the Fill State... 443

Handling the Undo List ... 444

Filling Circles in VB6.. 447

A State Pattern in VB.NET.. 448

Mediators and the God Class ... 455

Consequences of the State Pattern.. 455

State Transitions ... 456

Thought Questions .. 456
Programs on the CD-ROM.. 456

30. The Strategy Pattern.. 457

Motivation.. 457

Sample Code .. 458
The Context.. 459

The Program Commands ... 460

The Line and Bar Graph Strategies... 461

Drawing Plots in VB... 462

A Strategy Pattern in VB.NET... 465

 17

Consequences of the Strategy Pattern... 468

Programs on the CD-ROM.. 468

31. The Template Method Pattern ... 469
Motivation.. 469

Kinds of Methods in a Template Class ... 472

Sample Code .. 472

Drawing a Standard Triangle .. 474

Drawing an Isoceles Triangle ... 475
The Triangle Drawing Program.. 477

Templates and Callbacks ... 478

Summary and Consequences ... 479

Programs on the CD-ROM.. 479

32. The Visitor Pattern .. 480
Motivation.. 480

When to Use the Visitor Pattern... 482

Sample Code .. 482

Visiting the Classes... 484

Visiting Several Classes .. 485

Bosses are Employees, too... 487

Catch-All Operations with Visitors .. 488
Double Dispatching .. 489

Why Are We Doing This? ... 490

Traversing a Series of Classes.. 490

Writing a Visitor in VB6 ... 490

Consequences of the Visitor Pattern... 494

 18

Thought Questions .. 494

Programs on the CD-ROM.. 495

33. Bibliography ... 496

34... 498

 19

Preface
This is a practical book that tells you how to write Visual Basic (VB6 and
VB.NET) programs using some of the most common design patterns. It also
serves as a quick introduction to programming in the new VB.NET version of the
VB language. The pattern discussions are structured as a series of short chapters,
each describing a design pattern and giving one or more complete working,
visual example programs that use that pattern. Each chapter also includes UML
diagrams illustrating how the classes interact.

This book is not a "companion" book to the well-known Design Patterns text. by
the "Gang of Four." Instead, it is a tutorial for people who want to learn what
design patterns are about and how to use them in their work. You do not have to
have read Design Patterns to read this book, but when you are done here you
may well want to read or reread it to gain additional insights.

In this book, you will learn that Design patterns are frequently used ways of
organizing objects in your programs to make them easier to write and modify.
You’ll also see that by familiarizing yourself with them, you’ve gained some
valuable vocabulary for discussing how your programs are constructed.

People come to appreciate design patterns in different ways: from the highly
theoretical to the intensely practical and when they finally see the great power of
these patterns an “Aha!” moment occurs. Usually this moment means that you
suddenly have an internal picture of how that pattern can help you in your work.

In this book, we try to help you form that conceptual idea or gestalt, by
describing the pattern in as many ways as possible. The book is organized into
six main sections, an introductory description, and introduction to VB.NET and
descriptions of patterns, grouped as Creational, Structural and Behavioral
patterns.

For each pattern, we start with a brief verbal description and then build simple
example programs. Each of these examples is a visual program that you can run
and examine, to make the pattern as concrete a concept as possible. All of the
example programs and their variations are on the companion CD-ROM where
you run them, change them and see how the variations you create work.

 20

We show that you can use design patterns effectively in VB6 and then show the
same patterns in VB.NET (also called VB7). Since each of the examples consists
of a number of VB files for each of the classes we use in that example, we also
provide a VB project files for each example, and place each example in a
separate subdirectory to prevent any confusion. We place the VB.NET examples
in a separate directory under each pattern.

If you leaf through the book, you’ll see screen shots of the programs we develop
to illustrate the design patterns, providing yet another way to reinforce your
learning of these patterns. In addition, you’ll see UML diagrams of these
programs, illustrating the interactions between classes in yet another way. UML
diagrams are just simple box and arrow illustrations of classes and their
inheritance structure, where arrows point to parent classes and dotted arrows
point to interfaces. And, if you’re not yet familiar with UML, we provide a
simple introduction in the first chapter.

When you finish this book, you’ll be comfortable with the basics of Design
Patterns, and will be able to start using them in your day to day Visual Basic
programming work.

James W. Cooper

Nantucket, MA

Wilton, CT

Maui, HI

Copyright © 2001, by James W. Cooper

21

1. WHAT ARE DESIGN PATTERNS?

Sitting a your desk in front of your workstation, you stare into space, trying to
figure out how to write a new program feature. You know intuitively what must
be done, what data and what objects come into play, but you have this underlying
feeling that there is a more elegant and general way to write this program.

In fact, you probably don’t write any code until you can build a picture in your
mind of what the code does and how the pieces of the code interact. The more
that you can picture this “organic whole” or gestalt, the more likely you are to
feel comfortable that you have developed the best solution to the problem. If you
don’t grasp this whole right away, you may keep staring out the window for a
time, even though the basic solution to the problem is quite obvious.

In one sense you feel that the more elegant solution will be more reusable and
more maintainable, but even if you are the sole likely programmer, you feel
reassured once you have designed a solution that is relatively elegant and which
doesn’t expose too many internal inelegancies.

One of the main reasons that computer science researchers began to recognize
Design Patterns is to satisfy this need for elegant, but simple, reusable solutions.
The term “design patterns” sounds a bit formal to the uninitiated and can be
somewhat off-putting when you first encounter it. But, in fact, design patterns are
just convenient ways of reusing object-oriented code between projects and
between programmers. The idea behind design patterns is simple-- write down
and catalog common interactions between objects that programmers have
frequently found useful.

One of the frequently cited patterns form early literature on programming
frameworks is the Model-View-Controller framework for Smalltalk [Krasner and
Pope, 1988], which divided the user interface problem into three parts, as shown
in Figure 1.1. The parts were referred to as a data model which contain the
computational parts of the program, the view, which presented the user interface,
and the controller, which interacted between the user and the view.

Copyright © 2001, by James W. Cooper

22

ViewController

Data Model

Figure 1.1 – The Model-View-Controller framework.

Each of these aspects of the problem is a separate object and each has its own
rules for managing its data. Communication between the user, the GUI and the
data should be carefully controlled and this separation of functions accomplished
that very nicely. Three objects talking to each other using this restrained set of
connections is an example of a powerful design pattern.

In other words, design patterns describe how objects communicate without
become entangled in each other’s data models and methods. Keeping this
separation has always been an objective of good OO programming, and if you
have been trying to keep objects minding their own business, you are probably
using some of the common design patterns already.

Design patterns began to be recognized more formally in the early 1990s by
Erich Gamma (1992), who described patterns incorporated in the GUI
application framework, ET++. The culmination of these discussions and a
number of technical meetings was the publication of the parent book in this
series, Design Patterns -- Elements of Reusable Software, by Gamma, Helm,
Johnson and Vlissides.(1995). This book, commonly referred to as the Gang of
Four or “GoF” book, has had a powerful impact on those seeking to understand
how to use design patterns and has become an all-time best seller. It describes 23
commonly occurring and generally useful patterns and comments on how and
when you might apply them. We will refer to this groundbreaking book as
Design Patterns, throughout this book.

Since the publication of the original Design Patterns text, there have been a
number of other useful books published. One closely related book is The Design
Patterns Smalltalk Companion (Alpert, Brown and Woolf, 1998), which covers

Copyright © 2001, by James W. Cooper

23

the same 23 patterns from the Smalltalk point of view. We’ll refer to this book
throughout as the Smalltalk Companion. And finally, we recently published Java
Design Patterns Java: a Tutorial which illustrates all of these patterns in Java.

Defining Design Patterns
We all talk about the way we do things in our everyday work, hobbies and home
life and recognize repeating patterns all the time.

• Sticky buns are like dinner rolls, but I add brown sugar and nut filling to
them.

• Her front garden is like mine, but, in mine I use astilbe.

• This end table is constructed like that one, but in this one, the doors replace
drawers.

We see the same thing in programming, when we tell a colleague how we
accomplished a tricky bit of programming so he doesn’t have to recreate it from
scratch. We simply recognize effective ways for objects to communicate while
maintaining their own separate existences.

Some useful definitions of design patterns have emerged as the literature in his
field has expanded:

• “Design patterns are recurring solutions to design problems you see over and
over.” (The Smalltalk Companion)

• “Design patterns constitute a set of rules describing how to accomplish
certain tasks in the realm of software development.” (Pree, 1994)

• “Design patterns focus more on reuse of recurring architectural design
themes, while frameworks focus on detailed design… and implementation.”
(Coplien & Schmidt, 1995).

• “A pattern addresses a recurring design problem that arises in specific design
situations and presents a solution to it” (Buschmann, et. al. 1996)

• “Patterns identify and specify abstractions that are above the level of single
classes and instances, or of components.” (Gamma, et al., 1993)

Copyright © 2001, by James W. Cooper

24

But while it is helpful to draw analogies to architecture, cabinet making and
logic, design patterns are not just about the design of objects, but about the
interaction between objects. One possible view of some of these patterns is to
consider them as communication patterns.

Some other patterns deal not just with object communication, but with strategies
for object inheritance and containment. It is the design of simple, but elegant,
methods of interaction that makes many design patterns so important.

Design patterns can exist at many levels from very low level specific solutions to
broadly generalized system issues. There are now in fact hundreds of patterns in
the literature. They have been discussed in articles and at conferences of all
levels of granularity. Some are examples which apply widely and a few writers
have ascribed pattern behavior to class groupings that apply to just a single
problem (Kurata, 1998).

It has become apparent that you don’t just write a design pattern off the top of
your head. In fact, most such patterns are discovered rather than written. The
process of looking for these patterns is called “pattern mining,” and is worthy of
a book of its own.

The 23 design patterns selected for inclusion in the original Design Patterns book
were ones which had several known applications and which were on a middle
level of generality, where they could easily cross application areas and
encompass several objects.

The authors divided these patterns into three types creational, structural and
behavioral.

• Creational patterns are ones that create objects for you, rather than having
you instantiate objects directly. This gives your program more flexibility in
deciding which objects need to be created for a given case.

• Structural patterns help you compose groups of objects into larger structures,
such as complex user interfaces or accounting data.

• Behavioral patterns help you define the communication between objects in
your system and how the flow is controlled in a complex program.

We’ll be looking at Visual Basic versions of these patterns in the chapters that
follow. We will provide at least one complete, Visual Basic program for each of

Copyright © 2001, by James W. Cooper

25

the 23 patterns. This way you can not only examine the code snippets we
provide, but run, edit and modify the complete working programs on the
accompanying CD-ROM. You’ll find a list of all the programs on the CD-ROM
at the end of each pattern description.

The Learning Process
We have found that regardless of the language, learning Design patterns is a
multiple step process.

1. Acceptance

2. Recognition

3. Internalization

First, you accept the premise that design patterns are important in your work.
Then, you recognize that you need to read about design patterns in order to know
when you might use them. Finally, you internalize the patterns in sufficient detail
that you know which ones might help you solve a given design problem.

For some lucky people, design patterns are obvious tools and they grasp their
essential utility just by reading summaries of the patterns. For many of the rest of
us, there is a slow induction period after we’ve read about a pattern followed by
the proverbial “Aha!” when we see how we can apply them in our work. This
book helps to take you to that final stage of internalization by providing
complete, working programs that you can try out for yourself.

The examples in Design Patterns are brief, and are in C++ or in some cases,
Smalltalk. If you are working in another language it is helpful to have the pattern
examples in your language of choice. This book attempts to fill that need for
Visual Basic programmers.

Studying Design Patterns
There are several alternate ways to become familiar with these patterns. In each
approach, you should read this book and the parent Design Patterns book in one
order or the other. We also strongly urge you to read the Smalltalk Companion

Copyright © 2001, by James W. Cooper

26

for completeness, since it provides an alternate description of each of the
patterns. Finally, there are a number of web sites on learning and discussing
Design Patterns for you to peruse.

Notes on Object Oriented Approaches
The fundamental reason for using design patterns is to keep classes separated and
prevent them from having to know too much about one another. Equally
important, using these patterns helps you avoid reinventing the wheel and allows
you to describe your programming approach succinctly in terms other
programmers can easily understand.

There are a number of strategies that OO programmers use to achieve this
separation, among them encapsulation and inheritance. Nearly all languages that
have OO capabilities support inheritance. A class that inherits from a parent class
has access to all of the methods of that parent class. It also has access to all of its
non-private variables. However, by starting your inheritance hierarchy with a
complete, working class you may be unduly restricting yourself as well as
carrying along specific method implementation baggage. Instead, Design
Patterns suggests that you always

Program to an interface and not to an implementation.

Putting this more succinctly, you should define the top of any class hierarchy
with an abstract class or an interface, which implement no methods, but simply
define the methods that class will support. Then, in all of your derived classes
you have more freedom to implement these methods as most suits your purposes.
And, since VB6 only supports interfaces and does not support inheritance, this is
obviously very good advice in the VB context.

The other major concept you should recognize is that of object composition. This
is simply the construction of objects that contain others: encapsulation of several
objects inside another one. While many beginning OO programmers use
inheritance to solve every problem, as you begin to write more elaborate
programs, the merits of object composition become apparent. Your new object
can have the interface that is best for what you want to accomplish without
having all the methods of the parent classes. Thus, the second major precept
suggested by Design Patterns is

Copyright © 2001, by James W. Cooper

27

Favor object composition over inheritance.

And, again, VB easily supports the inclusion of classes within other classes, so
you find that we are exactly on track for how we will be able to implement rather
sophisticated OO techniques in VB.

VB Design Patterns
Each of the 23 patterns in Design Patterns is discussed in the chapters that
follow, along with at least one working program example for that pattern. All of
the programs have some sort of visual interface to make them that much more
immediate to you. All of them also use class, interfaces and object composition,
but the programs themselves are of necessity quite simple so that the coding
doesn’t obscure the fundamental elegance of the patterns we are describing.

We present each of the patterns both in VB.NET and (except one) in VB6. In
most cases we present the VB6 version first and then show how the patterns
become even easier to implement in VB.NET (VB7).

However, even though VB is our target language, this isn’t specifically a book on
the VB language. There are lots of features in VB that we don’t cover, but we do
cover most of what is central to VB. You will find, however, that this is a fairly
useful tutorial in object-oriented programming in VB, and provides good
overview of how to program in VB.NET.

How this Book is Organized
We take up each of the 23 patterns , grouped into the general categories of
Creational, Structural and Behavioral patterns. Many of the patterns stand more
or less independently, but we do take advantage of already discussed patterns
from time to time. For example, we use the Factory and Command patterns
extensively after introducing them, and use the Mediator several times after we
introduce it. We use the Memento again in the State pattern, the Chain of
Responsibility in the Interpreter pattern discussion and the Singleton pattern in
the Flyweight pattern discussion. In no case do we use a pattern before we have
introduced it formally.

Copyright © 2001, by James W. Cooper

28

We also take some advantage of the sophistication of later patterns to introduce
new features of VB.Net. For example, the Listbox, DataGrid and TreeView are
introduced in the Adapter and Bridge patterns. We show how to paint graphics
objects in the Abstract Factory, We introduce the Enumeration interface in the
Iterator and in the Composite, where we also take up formatting. We use
exceptions in the Singleton pattern and discuss ADO database connections in the
Façade pattern. And we show how to use VB.NET timers in the Proxy pattern.

Copyright © 2001, by James W. Cooper

29

2. UML DIAGRAMS

We have illustrated the patterns in this book with diagrams drawn using Unified
Modeling Language (UML). This simple diagramming style was developed out
of work done by Grady Booch, James Rumbaugh and Ivar Jacobson, which
resulted in a merging of ideas into a single specification, and eventually a
standard. You can read details of how to use UML in any number of books such
as those by Booch, et. al, (1998), Fowler and Scott (1997) and Grand (1998).
We’ll outline the basics you’ll need in this introduction.

Basic UML diagrams consist of boxes representing classes. Let’s consider the
following class (which has very little actual function).

'Class Person
Private age As Integer
Private personName As String
'-----
Public Sub init(nm As String)
 personName = nm
End Sub
'-----
Public Function makeJob() As String
 makeJob = "hired"
End Function
'-----
Private Sub splitNames()

End Sub
'-----
Public Function getAge() As Integer
 getAge = age
End Function
'-----
Private Function getJob() As String

End Function

We can represent this class in UML as shown in Figure 2.1.

Copyright © 2001, by James W. Cooper

30

Figure 2.1 – The Person class, showing private, protected, public variables and
static and abstract methods.

The top part of the box contains the class name and package name (if any). The
second compartment lists the class’s variables and the bottom compartment lists
its methods. The symbols in front of the names indicate that member’s visibility,
where “+” means public, “-“ means private and “#” means protected. Methods
whose names are written in italics are abstract, and of course the class name is
also abstract since it contains an abstract class. Thus, the class name is also in
italics. Static methods are shown underlined.

You can also show all of the type information in a UML diagram where that is
helpful, as illustrated in Figure 2.2a.

Figure 2.2a Figure 2.2b

The Person class UML diagram shown both with and without the method types.

Copyright © 2001, by James W. Cooper

31

UML does not require that you show all of the attributes of a class, and it is usual
only to show the ones of interest to the discussion at hand. For example, in
Figure 2.2b, we have omitted some of the method details.

Inheritance
Let’s consider a VB7 version of Person which has public, protected and private
variables and methods, and an Employee class derived from it. We will also
make the getJob method abstract in the base Person class, which means we
indicate it with the MustOverride keyword:

Public MustInherit Class Person
 'Class Person
 Private age As Short
 Protected personName As String
 '-----
 Public Sub init(ByRef nm As String)
 personName = nm
 End Sub
 '-----
 Public Function makeJob() As String
 makeJob = "hired"
 End Function
 '-----
 Private Sub splitNames()

 End Sub
 '-----
 Public Function getAge() As Short
 getAge = age
 End Function
 '-----
 Public MustOverride Function getJob() As String
End Class

We now derive the Employee class from it, and fill in some code for the getJob
method:

Public Class Employee
 Inherits Person

 Public Overrides Function getJob() As System.String
 Return "Worker"
 End Function

Copyright © 2001, by James W. Cooper

32

End Class

You represent inheritance using a solid line and a hollow triangular arrow. For
the simple Employee class that is a subclass of Person, we represent this in UML
as shown in Figure 2.3

Figure 2.3 – The UML diagram showing Employee derived from Person.

Note that the name of the Employee class is not in italics, because it is now a
concrete class, because it includes a concrete method for the formerly abstract
getJob method. While it has been conventional to show the inheritance with the
arrow point up to the superclass, UML does not require this, and sometimes a
different layout is clearer or uses space more efficiently.

Interfaces
An interface looks much like inheritance, except that the arrow has a dotted line
tail as shown in Figure 2.4

Figure 2.4 – ExitCommand implements the Command interface.

Note that the name <<interface>> is shown, enclosed in double angle brackets,
or guillamets.

Copyright © 2001, by James W. Cooper

33

Composition
Much of the time, a useful representation of a class hierarchy must include how
objects are contained in other objects. For example, a small company might
include one Employee and one Person (perhaps a contractor).
Public Class Company
 Private emp as Employee
 Private pers as Person
End Class
We represent this in UML as shown in Figure 2.5

Figure 2.5 – Company contains instances of Person and Employee.

The lines between classes show that there can be 0 to 1 instances of Person in
Company and 0 to 1 instances of Employee in Company. The diamonds indicate
the aggregation of classes within Company.

If there can be many instances of a class inside another, such as the array of
Employees shown here

Public Class Company
 Private emp() as Employee
 Private pers
End Class

we represent that object composition as a single line with either a “*” on it or “0,
*” on it as shown in Figure 2.6.

Copyright © 2001, by James W. Cooper

34

Figure 2.6 – Company contains any number of instances of Employee.

Some writers have used hollow and solid diamond arrowheads to indicate
containment of aggregates and circle arrowhead for single object composition,
but this is not required.

Annotation
You will also find it convenient to annotate your UML or insert comments to
explain which class is call a method in which other class. You can place a
comment anywhere you want in a UML diagram. Comments may be enclosed in
a box with a turned corner, or just entered as text. Text comments are usually
shown along an arrow-line, indicating the nature of the method that is called, as
shown in Figure 2.7

Copyright © 2001, by James W. Cooper

35

Figure 2.7 – A comment is often shown in a box with a turned-down corner.

UML is quite a powerful way of representing object relationships in programs,
and there are more diagram features in the full specification. However, the above
brief discussion covers the markup methods we use in this text.

WithClass UML Diagrams
All of the UML programs in this book were drawn using the WithClass program
from MicroGold. This program reads in the actual compiled classes and
generates the UML class diagrams we show here. We have edited many of these
class diagrams to show only the most important methods and relationships.
However, the complete WithClass diagram files for each design pattern are
stored in that pattern’s directory. Thus, you can run your demo copy of
WithClass on the enclosed CD and read in and investigate the detailed UML
diagram starting with the same drawings you see here in the book.

Visual Basic Project Files
All of the programs in this book were written using Visual Basic 6.0 and
VB.NET using the project file feature. Each subdirectory of the CD-ROM
contains the project file for that project so you can load the project and compile it
as we did.

Copyright © 2001, by James W. Cooper

36

3. USING CLASSES AND OBJECTS IN VB
The original versions of Visual Basic (1.0 through 3.0) did not contain much
in the way of object-oriented features and many programmers’ habits were
formed by the features of these early versions. However, starting with Visual
Basic 4.0, you could create Class modules as well as Form modules, and use
them as objects. In this chapter, we’ll illustrate more of the advantages of
using class modules. In the following chapter we’ll extend these concepts for
the more fully object-oriented VB.NET.

A Simple Temperature Conversion Program
Suppose we wanted to write a visual program to convert temperatures
between the Celsius and Fahrenheit temperature scales. You may remember
that water freezes at zero on the Celsius scale and boils at 100 degrees, while
on the Fahrenheit scale, water freezes at 32 and boils at 212. From these
numbers you can quickly deduce the conversion formula that you may have
forgotten.

The difference between freezing and boiling on once scale is 100 and on the
other 180 degrees or 100/180 or 5/9. The Fahrenheit scale is “offset” by 32,
since water freezes at 32 on its scale. Thus,

C = (F – 32)* 5/9

and

F = 5/9 * C + 32

Copyright © 2001, by James W. Cooper

37

In our visual program, we’ll allow the user to enter a temperature
and select the scale to convert it to as we see in

Figure 3-1–

Figure 3-1– Converting 35 Celsius to 95 Fahrenheit with our visual

interface.
Using the very nice visual builder provided in VB, we can draw the user
interface in a few seconds and simply implement routines to be called when
the two buttons are pressed:

Private Sub btConvert_Click()
Dim enterTemp As Single, newTemp As Single

 enterTemp = Val(txTemperature.Text)

Copyright © 2001, by James W. Cooper

38

 If opFahr.Value Then
 newTemp = 9 * (enterTemp / 5) + 32
 Else
 newTemp = 5 * (enterTemp - 32) / 9
 End If

 lbNewtemp.Caption = Str$(newTemp)
End Sub
'-----
Private Sub Closit_Click()
 End
End Sub

The above program is extremely straightforward and easy to understand, and
is typical of how many VB programs operate. However, it has some
disadvantages that we might want to improve on.

The most significant problem is that the user interface and the data handling
are combined in a single program module, rather than being handled
separately. It is usually a good idea to keep the data manipulation and the
interface manipulation separate so that changing interface logic doesn’t
impact the computation logic and vice-versa.

Building a Temperature Class
As we noted in the previous chapter, a class in VB is a module that can
contain both public and private functions and subroutines, and can hold data
values as well. It is logically the same as a Form except that it has no visual
aspects to it. These functions and subroutines in a class are frequently
referred to collectively as methods.

Class modules are also like Basic Types or C structs that allow you to keep a
set of data values in a single named place and fetch those values using get and
set functions, which we then refer to as accessor methods.

You create a class module from the VB integrated development environment
(IDE) using the menu item Project | Add class module. Then, you select the
Properties window (using function key F4) and enter the module’s name. In
this example, we’ll call the class module clsTemp.

What we want to do is to move all of the computation and conversion
between temperature scales into this new clsTemp class module. One way to
design this module is to rewrite the calling programs that will use the class
module first. In the code sample below, we create an instance of the clsTemp
class and use it to do whatever conversions are needed:

Copyright © 2001, by James W. Cooper

39

Private Sub btConvert_Click()
 Dim enterTemp As Single, newTemp As Single
 Dim clTemp As New clsTemp ‘create class instance

 If opFahr.Value Then
 clTemp.setCels txTemperature
 lbNewtemp.Caption = Str$(clTemp.getFahr)
 Else
 clTemp.setFahr txTemperature
 lbNewtemp.Caption = Str$(clTemp.getCels)
 End If

Note that to create a working copy of a class (called an instance) you have to
use the new keyword with the Dim statement:
Dim clTemp as New clsTemp 'create class instance
If you simply declare a variable without the New keyword,

Dim clTemp as clsTemp
you have created a pointer to a class instance but have not initialized an actual
instance until you actually create one using New. You can set the value of the
pointer you created using the Set keyword

Set clTemp = New clsTemp 'create instance of clsTemp

In this program, we have two set methods and two get methods

 setCels and setFahr, and

 getCels and getFahr

which put values into the class and retrieve other values from the class. The
actual class is just

Private temperature As Single

Public Sub setFahr(tx As String)

temperature = 5 * (Val(tx) - 32) / 9
End Sub

Public Sub setCels(tx As String)

temperature = Val(tx)
End Sub

Public Function getFahr() As Single

getFahr = 9 * (temperature / 5) + 32
End Function

Public Function getCels() As Single

getCels = temperature

Copyright © 2001, by James W. Cooper

40

End Function

Note that the temperature variable is declared as private , so it cannot be
“seen” or accessed from outside the class. You can only put data into the
class and get it back out using the four accessor methods. The main point to
this code rearrangement is that the outer calling program does not have to
know how the data are stored and how they are retrieved: that is only known
inside the class. In this class we always store data in Celsius form and convert
on the way in and out as needed. We could also do validity checks for legal
strings on the way in, but since the Val function returns zeros and no error for
illegal strings, we don’t have to in this case.

The other important feature of the class is that it actually holds data. You can
put data into it and it will return it at any later time. This class only holds the
one temperature value, but classes can contain quite complex sets of data
values.

We could easily modify this class to get temperature values out in other
scales without still ever requiring that the user of the class know anything
about how the data are stored, or how the conversions are performed

Converting to Kelvin
Absolute zero on the Celsius scale is defined as –273.16 degrees. This is the
coldest possible temperature, since it is the point at which all molecular
motion stops. We can add a function

Public Function getKelvin() As Single
 getKelvin = temperature + 273.16
End Function

without any changes to the visual client at all. What would the setKelvin
method look like?

Putting the Decisions into the Temperature Class
Now we are still making decisions within the user interface about which
methods of the temperature class. It would be even better if all that
complexity could disappear into the clsTemp class. It would be nice if we just
could write our Conversion button click method as

Private Sub btConvert_Click()
Dim clTemp As New clsTemp

Copyright © 2001, by James W. Cooper

41

'put the entered value and conversion request
'into the class
clTemp.setEnterTemp txTemperature.Text, opFahr.Value

'and get out the requested conversion
lbNewtemp.Caption = clTemp.getTempString

End Sub

This removes the decision making process to the temperature class and
reduces the calling interface program to just two lines of code.

The class that handles all this becomes somewhat more complex, however,
but it then keeps track of what data as been passed in and what conversion
must be done.

Private temperature As Single 'always in Celsius
Private toFahr As Boolean 'conversion to F requested

Public Sub setEnterTemp(ByVal tx As String, _

 ByVal isCelsius As Boolean)
'convert to Celsius and save
 If Not isCelsius Then
 makeCel tx 'convert and save
 toFahr = False
 Else
 temperature = Val(tx) 'just save temperature
 toFahr = True
 End If
End Sub
'-----
Private Sub makeCel(tx As String)
 temperature = 5 * (Val(tx) - 32) / 9
End Sub

Now, the isCelsius boolean tells the class whether to convert or not and
whether conversion is required on fetching the temperature value. The output
routine is simply

Public Function getTempString() As String
 getTempString = Str$(getTempVal)
End Function
'-----
Public Function getTempVal() As Single
 Dim outTemp As Single
 If toFahr Then 'should we convert ot F?
 outTemp = makeFahr 'yes
 Else
 outTemp = temperature 'no
 End If

Copyright © 2001, by James W. Cooper

42

 getTempVal = outTemp 'return temp value
End Function
'-----
Private Function makeFahr() As Single
 Dim t As Single
'convert t to Fahrenheit
 t = 9 * (temperature / 5) + 32
 makeFahr = t
End Function

In this class we have both public and private methods. The public ones are
callable from other modules, such as the user interface form module. The
private ones, makeFahr and makeCel, are used internally and operate on the
temperature variable.

Note that we now also have the opportunity to return the output temperature
as either a string or a single floating point value, and could thus vary the
output format as needed.

Using Classes for Format and Value Conversion
It is convenient in many cases to have a method for converting between
formats and representations of data. You can use a class to handle and hide
the details of such conversions. For example, you might enter an elapsed time
in minutes and seconds with or without the colon:
315.20
3:15.20
315.2

and so forth. Since all styles are likely, you’d like a class to parse the legal
possibilities and keep the data in a standard format within. Figure 3-2 shows
how the entries “112” and “102.3” are parsed.

Copyright © 2001, by James W. Cooper

43

Figure 3-2 – A simple parsing program that uses the Times class.

The accessor functions for our Times class include

setText (tx as String)
setSingle (t as Single)
getSingle as Single
getFormatted as String
getSeconds as Single

Parsing is quite simple and depends primarily on looking for a colon. If there
is no colon, then values greater than 99 are treated as minutes.

Public Function setText(ByVal tx As String) As Boolean
 Dim i As Integer, mins As Long, secs As Single
 errflag = False
 i = InStr(tx, ":")
 If i > 0 Then
 mins = Val(Left$(tx, i - 1))
 secs = Val(Right$(tx, Len(tx) - i))
 If secs > 59.99 Then
 errflag = True
 End If
 t = mins * 100 + secs
 Else
 mins = Val(tx) \ 100
 secs = Val(tx) - (100 * mins)
 If secs > 59.99 Then
 errflag = True
 t = NT
 Else
 setSingle Val(tx)
 End If
 End If
 setText = errflag

Copyright © 2001, by James W. Cooper

44

End Function

Since illegal time values might also be entered, we test for cases like 89.22
and set an error flag.

Depending on the kind of time measurements these represent, you might also
have some non-numeric entries such as NT for no time or in the case of
athletic times, SC for scratch or DQ for disqualified. All of these are best
managed inside the class. Thus, you never need to know what numeric
representations of these values are used internally.

Private Const tmNT = 10000, tmDQ = 20000, tmSCRATCH = 30000
Some of these are processed in the code represented by Figure 3-3.

Figure 3-3 – The time entry interface, showing the parsing of

symbols for Scratch, Disqualification and No Time.

Handling Unreasonable Values
A class is also a good place to encapsulate error handling. For example, it
might be that times greater than some threshold value are unlikely and might
actually be times that were entered without a decimal point. If large times are
unlikely, then a number such as 123473 could be assumed to be 12:34.73”

Public Sub setSingle(tv As Single)
t = tv
If tv > minVal And tv <> tmNT Then
 t = tv / 100
End If

Copyright © 2001, by James W. Cooper

45

End Sub

The cutoff value minVal may vary with the domain of times being considered
and thus should be a variable. While classes do not have a Form_Load event
like Forms do, they do have and initialize event where you can set up default
values for variables.

here you can set up default values for variables.

Private Sub Class_Initialize()
minVal = 10000

End Sub

To set up the Initialize event in the IDE, click on the left drop-down in the
editor title bar so that Class is selected and select Initialize from the right
drop-down as shown in Figure 3-4.

Figure 3-4 – Selecting the Class Initialize method.

A String Tokenizer Class
A number of languages provide a simple method for taking strings apart into
tokens, separated by a specified character. While VB does not provide this
feature, we can write one quite easily as a class. The goal of the Tokenizer
class will be to pass in a string and obtain the successive string tokens back
one at a time. For example, if we had the simple string

Now is the time
our tokenizer should return four tokens:

Now
is
the
time
The critical part of this class is that it holds the initial string and remembers
which token is to be returned next. The whole class is shown below.

'String tokenizer class

Copyright © 2001, by James W. Cooper

46

Private s As String, i As Integer
Private sep As String 'token separator
'------
Public Sub init(ByVal st As String)
 s = st
End Sub
'------
Private Sub Class_Initialize()
 sep = " " 'default is a space separator
End Sub
'------
Public Sub setSeparator(ByVal sp As String)
 sep = sp
End Sub
'------
Public Function nextToken() As String
 Dim tok$
 i = InStr(s, sep) 'look for occurrence of separator
 If i > 0 Then 'if found
 tok$ = Left$(s, i - 1) 'return string to left
 s = Trim$(Right$(s, Len(s) - i)) 'shorten string
 Else
 tok$ = s 'otherwise return end of string
 s = "" 'and set remainder to zero length
 End If
 nextToken = tok$ 'return token
End Function
The class is illustrated in use in Figure 3-5.

Figure 3-5– The tokenizer in use.
The code that uses the Tokenizer class is just:

Private Sub Tokenize_Click()
 Dim tok As New Tokenizer
 Dim s As String

Copyright © 2001, by James W. Cooper

47

 tok.init txString.Text 'set the string from the input
 lsTokens.Clear 'clear the list box
 s = tok.nextToken 'get a token
 While Len(s) > 0 'as long as not of zero length
 lsTokens.AddItem s 'add into the list
 s = tok.nextToken 'and look for next token
 Wend
End Sub

Classes as Objects
The primary difference between ordinary procedural programming and
object-oriented (OO) programming is the presence of classes. A class is just a
module as we have shown above, which has both public and private methods
and which can contain data. However, classes are also unique in that there
can be any number of instances of a class, each containing different data. We
frequently refer to these instances as objects. We’ll see some examples of
single and multiple instances below.

Suppose as have a file of results from a swimming event stored in a text data
file. Such a file might look, in part, like this:

1 Emily Fenn 17 WRAT 4:59.54
2 Kathryn Miller 16 WYW 5:01.35
3 Melissa Sckolnik 17 WYW 5:01.58
4 Sarah Bowman 16 CDEV 5:02.44
5 Caitlin Klick 17 MBM 5:02.59
6 Caitlin Healey 16 MBM 5:03.62

where the columns represent place, names, age, club and time. If we wrote a
program to display this swimmers and their times, we’d need to read in and
parse this file. For each swimmer, we’d have a first and last name, an age, a
club and a time. An efficient way to keep the data for each swimmer grouped
together is to design a Swimmer class and create an instance for each
swimmer.

Here is how we read the file and create these instances. As each instance is
created we add it into a Collection object:

Dim swimmers As New Collection

Private Sub Form_Load()
Dim f As Integer, S As String
Dim sw As Swimmer
Dim i As Integer

f = FreeFile

Copyright © 2001, by James W. Cooper

48

'read in data file and create swimmer instances
Open App.Path + "\500free.txt" For Input As #f
While Not EOF(f)
 Line Input #f, S
 Set sw = New Swimmer 'create instances
 sw.init S 'load in data
 swimmers.Add sw 'add to collection
Wend
Close #f
'put names of swimmers in list box
For i = 1 To swimmers.Count
 Set sw = swimmers(i)
 lsSwimmers.AddItem sw.getName
Next i
End Sub

The Swimmer class itself parses each line of data from the file and stores it
for retrieval using getXXX accessor functions:

Private frname As String, lname As String
Private club As String
Private age As Integer
Private tms As New Times
Private place As Integer
'------
Public Sub init(dataline As String)
 Dim tok As New Tokenizer

 tok.init dataline 'initilaize string tokenizer
 place = Val(tok.nextToken) 'get lane number
 frname = tok.nextToken 'get first name
 lname = tok.nextToken 'get last name
 age = Val(tok.nextToken) 'get age
 club = tok.nextToken 'get club
 tms.setText tok.nextToken 'get and parse time
End Sub
'------
Public Function getTime() As String
 getTime = tms.getFormatted
End Function
'------
Public Function getName() As String
 'combine first and last names and return together
 getName = frname + " " + lname
End Function
'------
Public Function getAge() As Integer
 getAge = age
End Function
'------
Public Function getClub() As String

Copyright © 2001, by James W. Cooper

49

 getClub = club
End Function

Class Containment
Each instance of the Swimmer class contains an instance of the Tokenizer
that it uses to parse the input string and an instance of the Times class we
wrote above to parse the time and return it in formatted form to the calling
program. Having a class contain other classes is a very common ploy in OO
programming and is one of the main ways we can build up more complicated
programs from rather simple components.

The program that displays these swimmers is shown in Figure 3-6.

Figure 3-6 –A list of swimmers and their times, using containment.

When you click on any swimmer, her time is shown in the box on the right.
The code for showing that time is extremely easy to write since all the data
are in the swimmer class:

Private Sub lsSwimmers_Click()
 Dim i As Integer
 Dim sw As Swimmer
 i = lsSwimmers.ListIndex 'get index of list
 If i >= 0 Then
 Set sw = swimmers(i) 'get that swimmer
 lbTime.Caption = sw.getTime 'display that time
 End If
End Sub

Copyright © 2001, by James W. Cooper

50

Class Initialization
As we showed above, you can use the Class_Initialize event to set up default
values for some class variables. However, if you want to set up some values
that are specific for each instance (such as our swimmer’s names and times),
we need a standard way to do this. In other languages, classes have special
methods called constructors that you can use to pass in useful data at the
same time you create the instance. Since VB6 classes lack these methods, we
introduce the convention of an init method that we’ll use to pass in instance
specific data.

In our Swimmer class above, note that we have an init method that in turn
calls the init method of the Tokenizer class:

Public Sub init(dataline As String)
Dim tok As New Tokenizer

tok.init dataline 'initialize string tokenizer

Other languages, including VB7, also allow classes to have a series of
constructors which each have different arguments. Since this is not a feature
of VB6, we’ll use various setXXX methods instead.

Classes and Properties
Classes in VB can have Property methods as well as public and private
functions and subs. These correspond to the kinds of properties you associate
with Forms, but they can store and fetch any kinds of values you care to use.
For example, rather than having methods called getAge and setAge, you
could have a single Age property which then corresponds to a Property Let
and a Property Get method:

Property Get age() As Integer
 age = sAge 'return the current age
End Property
'------
Property Let age(ag As Integer)
 sAge = ag 'save a new age
End Property

To use these properties, you refer to the Let property on the left side of an
equals sign and the Get property on the right side:

myAge = sw.Age 'Get this swimmer’s age
sw.Age = 12 'Set a new age for this swimmer

Copyright © 2001, by James W. Cooper

51

Properties are somewhat vestigial, since they really apply more to Forms, but
many programmers find them quite useful. They do not provide any features
not already available using get and set methods and both generate equally
efficient code.

In the revised version of our SwimmerTimes display program, we convert all
of the get and set methods to properties, and then allow users to vary the
times of each swimmer by typing in new ones. Here is the Swimmer class

Option Explicit
Private frname As String, lname As String
Private sClub As String
Private sAge As Integer
Private tms As New Times
Private place As Integer
'------
Public Sub init(dataline As String)
Dim tok As New Tokenizer

 tok.init dataline 'initilaize string tokenizer
 place = Val(tok.nextToken) 'get lane number
 frname = tok.nextToken 'get first name
 lname = tok.nextToken 'get last name
 sAge = Val(tok.nextToken) 'get age
 sClub = tok.nextToken 'get club
 tms.setText tok.nextToken 'get and parse time
End Sub
'------
Property Get time() As String
 time = tms.getFormatted
End Property
'------
Property Let time(tx As String)
 tms.setText tx
End Property
'------
Property Get Name() As String
 'combine first and last names and return together
 Name = frname + " " + lname
End Property
'------
Property Get age() As Integer
 age = sAge 'return the current age
End Property
'------
Property Let age(ag As Integer)
 sAge = ag 'save a new age
End Property
'------
Property Get Club() As String

Copyright © 2001, by James W. Cooper

52

 Club = sClub
End Property

Then when the txTime text entry field loses focus, we can store a new time as
follows:

Private Sub txTime_Change()
 Dim i As Integer
 Dim sw As Swimmer
 i = lsSwimmers.ListIndex 'get index of list
 If i >= 0 Then
 Set sw = swimmers(i) 'get that swimmer
 sw.time = txTime.Text 'store that time
 End If
End Sub

Another Interface Example –The Voltmeter
Suppose that you need to interface a digital voltmeter to your computer.
We’ll assume that the meter can connect to your serial port and that you send
it a string command and get the measured voltage back as a string. We’ll also
assume that you can set various measurement ranges such as millivolts, volts
and tens of volts. The methods for accessing this voltmeter might look like
this:

'The Voltmeter class
Public Sub setRange(ByVal maxVal As Single)
 'set maximum voltage to measure
End Sub
'------
Public Function getVoltage() As Single
 'get the voltage and convert it to a Single
End Function

The nice visual data gathering program you then write for this voltmeter
works fine, until you suddenly need to make another simultaneous set of
measurements. You discover that the model of voltmeter you wrote the
program for is no longer available and that the new model has different
commands. It might even have a different interface (IEEE-488 or USB, for
instance).

This is an ideal time to think about program interfaces. The simple two
method interface we specified above should work for any voltmeter, and the
rest of the program should run without change. All you need to do is to write
a class for the new voltmeter that implements the same interface. Then your

Copyright © 2001, by James W. Cooper

53

data-gathering program only needs to be told which meter to use and it will
run completely unchanged, as we show below:

Private Sub OK_Click()
 If opPe.Value Then
 Set vm = New PE2345
 Else
 Set vm = New HP1234
 End If
 vm.getVoltage
End Sub

Further, should your data needs expand so that there are still more meters,
you can quickly write more classes that implement this same Voltmeter
interface. This is the advantage of OO programming in a nutshell: only the
individual classes have detailed knowledge of how they work. The only
external knowledge is contained in the interfaces.

A vbFile Class
File handling in VB is for the most part awkward and primitive for historical
reasons. The statements for opening files have the form
 f = FreeFile
 Open “file.txt” for Input as #f

And those for reading data from files have the form

Input #f, s
Line Input #f, sLine

There is no simple statement for checking for the existence of a file, and the
file rename and delete have counterintuitive names.

 Exists = len(dir$(filename))>0 'file exists
 Name file1 as file2 'Rename file
 Kill filename 'Delete file
None of these statements are at all object oriented. There ought to be objects
that encapsulate some of this awkwardness and keep the file handles suitably
hidden.

VB6 introduced the Scripting.FileSystemObject as a way to handle files in a
presumably more object oriented way. However these objects are not fully
realized and a bit difficult to use. Thus, we might do well to create our own
vbFile object with convenient methods. These methods could include
Public Function OpenForRead(Filename As String) As Boolean

Copyright © 2001, by James W. Cooper

54

Public Function fEof() As Boolean
Public Function readLine() As String
Public Function readToken() As String
Public Sub closeFile()
Public Function exists() As Boolean
Public Function delete() As Boolean
Public Function OpenForWrite(fname As String) As Boolean
Public Sub writeText(s As String)
Public Sub writeLine(s As String)
Public Sub setFilename(fname As String)
Public Function getFilename() As String

A typical implementation of a couple of these methods includes

Public Function OpenForRead(Filename As String) As Boolean
 'open file for reading
 f = FreeFile 'get a free handle
 File_name = Filename 'save the filename

 On Local Error GoTo nofile 'trap errors
 Open Filename For Input As #f
 opened = True 'set true if open successful
oexit:
 OpenForRead = opened 'return to caller
Exit Function
'--error handling--
nofile:
 end_file = True 'set end of file flag
 errDesc = Err.Description 'save error messae
 opened = False 'no file open
 Resume oexit 'and resume
End Function
'-----
Public Function fEof() As Boolean
 'return end of file
 If opened Then
 fEof = EOF(f)
 Else
 fEof = True 'if not opened then end file is true
 End If
End Function
'-----
Public Function readLine() As String
 Dim s As String
 'read one line from a text file
 If opened Then
 Line Input #f, s
 readLine = s
 Else
 readLine = ""
 End If

Copyright © 2001, by James W. Cooper

55

End Function

With these useful methods, we can write a simple program to read a file and
display it in a list box:
 Dim fl As New vbFile
 cDlg.ShowOpen 'use common dialog open

 fl.OpenForRead cDlg.Filename
 'read in up to end of file
 sline = fl.readLine
 While Not fl.fEof
 lsFiles.AddItem sline
 sline = fl.readLine
 Wend
 fl.closeFile

Now, the implementation of this vbFile object can change as VB evolves.
However, by concealing the details, we can vary the implementation in the
future. We’ll see another implementation of this class when we discuss
VB.NET.

Programming Style in Visual Basic
You can develop any of a number of readable programming styles for VB.
The one we use here is partly influenced by Microsoft’s Hungarian notation
(named after its originator, Charles Simonyi) and partly on styles developed
for Java.

We will name VB controls such as buttons and list boxes with prefixes that
make their purpose clear:

Control name Prefix Example
Buttons bt btCompute
List boxes ls lsSwimmers
Radio (option buttons) op opFSex
Combo boxes cb cbCountry
Menus mnu mnuFile
Text boxes tx txTime

We will name classes in ways that describe their purpose, and precede them
with clsXXX if there is any ambiguity. Even though VB is case insensitive,
we otherwise will begin class names with capital letters and instances of

Copyright © 2001, by James W. Cooper

56

classes with lowercase letters. We will also spell instances and classes with a
mixture of lowercase and capital letters to make their purpose clearer:

swimmerTime

Summary
In this chapter, we’ve introduced VB classes and shown how they can contain
public and private methods and can contain data. Each class can have many
instances and each could contain different data values. Classes can also have
Property methods for setting and fetching data. These Property methods
provide a simpler syntax over the usual getXXX and setXX accessor methods
but have no other substantial advantages.

Copyright © 2001, by James W. Cooper

57

4. OBJECT ORIENTED PROGRAMMING
Object-oriented programming is a little different from earlier kinds of
programming because it introduces programming constructs called objects,
which contain both procedures and data. In this chapter we’ll begin to
understand what objects are and why they make programming easier and less
prone to errors.

 A procedural program is written in the style you are probably most
familiar with: one in which there are arithmetic and logical statements,
variables, functions and subroutines. Data are declared somewhere at the top
of a module or a procedure and more data are passed in and out of various
functions and procedures using argument lists.

 This style of programming has been successfully utilized for a very long
time as programming goes but it does have some drawbacks. For example,
the data must be passed correctly between procedures, making sure that it is
of the correct size and type, and the procedures and their calling arguments
may often need to be revised as new function is added to the program during
development.

 Object-oriented programming differs in that a group of procedures are
grouped around a set of related data to construct an object. An object is thus a
collection of data and the subroutines or methods that operate on it. Objects
are usually designed to mimic actual physical entities that the program deals
with: customers, orders, accounts, graphical widgets, etc.

 More to the point, most of how the data are manipulated inside an object
is invisible to the user and only of concern inside the object. You may be able
to put data inside an object and you may be able to ask to perform
computations, but how it performs them and on exactly what internal data
representation is invisible to you as you create and use that object.

Of course, a class (in VB) is actually just a template for an object. If you
design a class the represents a Customer, you haven’t created an object. An
object is an instance of the Customer class, and there can, of course, be many
such objects, all of type Customer. Creating a specific variable of a particular
class type is referred to as instantiating that class.

Copyright © 2001, by James W. Cooper

58

Because objects contain data you can regard them as having states. If you
wrote a module of related functions, you probably would not have their
behavior dependent on a variable somewhere, even if it is in the same
module. However, when you write a class or object, you expect the various
methods within the class to make reference to the data contained in that class
and behave accordingly. For example, you might create a File object which
can be open or closed, or at the end-of-file or not.

Once someone creates an complete, working object, it is less likely that
programmers will modify it. Instead they will simply derive new objects
based on it. We’ll be taking up the concept of deriving new objects in Chapter
5.

As we have noted, objects are really a lot like C structures or Pascal records
except that they hold both functions and data. However, objects are just the
structures or data types. In order to use them in programs, we have to create
variables having that data type. We call these variables instances of the
object.

Building VB Objects
Let’s take a very simple example. Suppose that we want to design an object
for measuring distance. Now, our first thought might have been to simply
write a little subroutine to execute the measurement, and then perform the
measurement each time by calling this subroutine.

But in VB, we can write our code as a series of objects. So rather than writing
subroutines,

• We create a TapeMeasure class

• We create instances of that class, each with different sizes

• We ask each instance to draw itself.

 In VB, objects are represented as class modules Each VB class is an
object which can have as many instances as you like. When you write a VB
program, the entire program is one or more classes. The main class represents
the running program itself, and it must have the same name as the program
file. In our example, the program is called Measurer.cls and the main class is
called Measure.frm.

Copyright © 2001, by James W. Cooper

59

 Classes in VB contain data and functions, which are called methods.
Both the data and the methods can have either a public or a private
modifier, which determines whether program code outside the class can
access them. Usually we make all data values private and write public
methods to store data and retrieve it from the class. This keeps programs from
changing these internal data value accidentally by referring to them directly.

 If we want users of the class to be able to use a method, we, of course,
must make it public. If on the other hand, we have functions or subs that are
only used inside the class, we would make them private. A VB program can
be made up of any number of .cls and .frm files.

Creating Instances of Objects
We use the new operator in VB to create an instance of a class. For example
to create an instance of the TapeMeasure class, we could write:

Dim tp as TapeMeasure ‘variable of type TapeMeasure

‘create instance of TapeMeasure
set tp = new TapeMeasure

Remember, while we can create new variables of the primitive types (such as
Integer, Single, etc.) we must use the new operator to create instances of
objects. The reason for this distinction is that objects take up some block of
memory. In order to reserve that memory, we have to create an instance of the
object, using the new operator.

A VB Measurement Program
In the example below, we see a complete TapeMeasure class, including its
measure routine.

'Tape measure class
Private width As Single, factor As Single

Public Sub setUnits(units As String)
'allows units to be cm or feet
 Select Case LCase$(units)
 Case "c": 'centimeters
 factor = 1
 Case "f": 'feet
 factor = 2.54
 Case Else

Copyright © 2001, by James W. Cooper

60

 factor = 1
 End Select
End Sub

Public Function Measure() As Single
 width = Rnd * 100#
 Measure = width / factor
End Function

Public Function lastMeasure() As Single
 lastMeasure = width / factor
End Function
The calling program is the Measurer form, which is merely the following:

Dim tp As New TapeMeasure

Private Sub btMeasure_Click()
txMeasure.Text = Str$(tp.Measure)
End Sub

Private Sub opCM_Click()
tp.setUnits "c"
txMeasure.Text = Str$(tp.lastMeasure)
End Sub

Private Sub opFt_Click()
tp.setUnits "f"
txMeasure.Text = Str$(tp.lastMeasure)
End Sub

Methods inside Objects
As we noted above, functions inside a class are referred to as methods. These
functions can be public, meaning that you can access them from outside the
class, or private, meaning that they can only be accessed from inside the
class.

Variables
In object oriented programming, you usually make all of the variables in a
class private as we did above with width and factor. Then you set the values
of these variables either as part of the constructor or using additional set and
get functions. This protects these variables from accidental access from
outside the class and allows you to add data integrity checks in the set
functions to make sure that the data are valid.

Copyright © 2001, by James W. Cooper

61

 We could, of course, have made the TapeMeasure’s factor variable public
and set it directly.

tp.factor = 2.54;

but this gives the class no protection from erroneous data such as:

tp.factor = -50;

 So instead, we use accessor functions such as setUnits to make sure that
the data values we send the class are valid:

tp.setUnits “c”

and then within the class we write this accessor function with some error
checking:

Likewise, since the TapeMeasure class saves the last measurement it makes,
you can always read it back by calling a lastMeasure method.

Passing Arguments by Reference and by Value
By default, all variables are passed into methods by reference. In other words
the original data can be accessed and change within any class method.

Public Sub setTemp(t As Single)
 t = 5 ‘changes t in the calling program
End Sub
To avoid this happening by accident, you should make a habit of prefixing
your arguments with ByVal, which copies the value into the subroutine.

Public Sub setTemp(ByVal t as Single)
 t = 5 ‘has no affect on calling program
End Sub

Object Oriented Jargon
Object-oriented programs are often said to have three major properties:

�Encapsulation - we hide as much of what is going on inside methods in the
object.

�Polymorphism - Many different objects might have methods having
identical names, such as our Measure method. While they may do the same
thing, the way each is implemented can vary widely. In addition, there can be

Copyright © 2001, by James W. Cooper

62

several methods within a single object with the same name but different sets
of arguments. In VB, a class cannot have multiple methods with the same
name but different arguments as in other more polymorphic languages, but
related classes can have methods with the same name and arguments that do
different things.

�Inheritance - objects can inherit properties and methods from other objects,
allowing you to build up complex programs from simple base objects. VB6
only supports a subset of inheritance, using interfaces and implementations as
we see in the next chapter. VB.Net is more fully object oriented and we will
take it up in the chapter that follows.

Nonetheless, even with these limitations, we can use VB’s OO features to
write some very sophisticated programs, as you will see shortly.

Copyright © 2001, by James W. Cooper

63

5. BUILDING YOUR OWN VB CONTROL
One of the great strengths of VB is its powerful visual builder (IDE)
environment. It is easy to build complex and sophisticated user interfaces by
just dragging a few components onto a form and writing a little code to
control their interactions. However, if no control does exactly what you want
it appears at first to be quite difficult of impossible to create a new control
that has these new properties. In this chapter we’ll carry the idea of OO
programming a little further by showing how easy it is to derive a new
ActiveX control from the existing ones.

A Highlighted Text Field
Suppose we would like to build a text entry field that always highlights all the
text when it receives the focus. This can be desirable whenever you want to
make sure that a single key press will replace the previous text with new text.
In fact, it seems that what we want to do is to derive a new class from the
TextBox. However, VB doesn’t allow us to do this directly, since it doesn’t
support inheritance.

However, you’ll soon discover that the Gang of Four’s maxim

Favor object composition over inheritance.

applies here. And object composition is just another word for encapsulation
or containment. Thus, if we can create a new class that contains the TextBox
but highlights the text whenever the control gets the focus, we’ll have what
we want.

We’ll start by using the VB IDE to create the ActiveX control. Select File |
New Project and select ActiveX Control from the menu as shown in Figure
5-1

Copyright © 2001, by James W. Cooper

64

Figure 5-1– Selecting ActiveX Control creation from the VB
Project menu.

This brings up a gray form without borders called a UserControl that povides
the canvas on which to create your control, as shown in Figure 5-2

Figure 5-2 - The UserControl canvas.
First, change the name from UserControl1 (which is hardly mnemonic) to
HiText, by pressing F4 and changing the name in then Properties window.
Then drop a TextBox onto the form in the upper left corner, and resize the
grey background to match the size of the text box, as illustrated in Figure 5-3.

Figure 5-3 – The Text box inside the UserControl.

Now, lets add just a little code. Select the GotFocus event for the Text1 box
you just added and add the code

Private Sub Text1_GotFocus()
Dim s As String

s = Text1.Text
Text1.SelStart = 0 'Start highlight
Text1.SelLength = Len(s) 'end highlight

End Sub

Copyright © 2001, by James W. Cooper

65

Resizing a User Control
The last important part of a user control is that it must resize during the
design mode. Select the HiText UserControl and select the Resize event.
Enter the following code.

Private Sub UserControl_Resize()
Text1.Width = Width 'design time resize of width
Text1.Height = Height 'and height
End Sub

Testing Your HiText Controls
Now to test this control, close its design window. Then select File | Add
project to add a second project to test your new control with. On the Controls
toolbar, you will find a new icon representing the HiText control, as shown in
Figure 5-4.

Figure 5-4 – The HiText control icon in the Controls toolbar.

This icon will only be active if the design window is closed for the HiText
control. Click on this new icon and put an instance of the control onto the
Form panel of the new project you just created. Then add a button labeled
Clear as shown in Figure 5-5.

Figure 5-5 – The test project for our HiText control.

Copyright © 2001, by James W. Cooper

66

If you try to resize the HiText control, you’ll see that the included TextBox
resizes with it in design mode.

Now if you run the test form, you will be able to type text into the HiText
box. Then, if you press the Tab key twice you will move the focus down to
the button and back to the HiText control. When it receives the focus, it will
display the text highlighted as shown in Figure 5-6.

Figure 5-6 – The HiText control in action.

Adding Properties and Methods to User Controls
You can add any property you want to your new user control, and these
properties will appear in the Properties box if you create both a Let and a Get
property. For example, you might want to be able to change the Backcolor of
the TextBox. Just add the following code:

Property Let Backcolor(c As ColorConstants)
 Text1.Backcolor = c
 PropertyChanged “BackColor”
End Property
'------
Property Get Backcolor() As ColorConstants
 Backcolor = Text1.Backcolor
End Property

Note that you must add the PropertyChanged method call whenever you
change a property of a user control. This passes this information to theVB
engine to make sure that the screen is refreshed as needed.

Copyright © 2001, by James W. Cooper

67

In the same way, you can add methods to your user control, and they will
appear in the syntax completion dropdown for any instance of that control.
For example, the TextBox control lacks a Clear method. However, we can
easily add one to our new control:

Public Sub Clear()
 Text1.Text = ""
End Sub
Now that we’ve added that convenient Clear method, we can connect it to the
Clear button:

Private Sub Clearit_Click()
 hiText1.Clear
End Sub

and clicking the button will clear our new text box.

Compiling a User Control
Once you have your test program and user control working, you can compile
both of them by selecting File | Make Project Group. This will produce an
.EXE file for your test program and an .OCX file for your user control. Then,
if you want to use this control in further programs, you will find that VB has
automatically registered it and you can find it under Project | Components, to
add to any new project.

Summary
Building a user control like this helps you see how encapsulation can be used
to create new objects that have the properties you need. The only
disadvantage of this approach is that you must add all of the properties to the
control manually rather than having them inherited as could occur in
languages that allow inheritance. However, in many cases encapsulation is
very effective, since you have only a few properties to pass through from the
outer control interface to the enclosed control interfaces. And, if the new
control contains more than one basic control, this is the only possible
approach.

Copyright © 2001, by James W. Cooper

68

Copyright © 2001, by James W. Cooper

69

6. INHERITANCE AND INTERFACES
As you begin to work more with classes, you soon come across programming
cases where you have classes that are rather like other classes you are already
using in this program or another similar one. It seems a shame to just copy all
that code over again and have a lot of objects that are separate but very
similar.

In languages like Java and C++, you can derive new classes from existing
classes and change only those methods that differ in the new class, with the
unchanged parent methods called automatically. VB6 does not support this
level of inheritance, but it does provide interfaces and implementations which
allow you to produce related classes with only a small amount of effort.

Interfaces
In VB, you can create a class containing only definitions of the methods and
no actual code. This is called an interface definition. Then, you can create
other classes which implement that interface and they all can be treated as if
they were instances of the parent interface, even though they implement the
methods differently.

For example you could create an interface called Command which has the
following methods:

Public Sub Execute()

End Sub
'------
Public Sub init(nm As String)

End Sub

Then you could create a number of Command objects such as ExitCommand
which implement the Command interface. To do this, you create a class
called ExitCommand, and insert the line

Implements Command

Then, from the left drop-down, you select the Command interface, and from
the right dropdown, you create instances of the Execute and init methods.
Then you can fill these methods in with whatever code is aprropriate.

Private Sub Command_Execute()

Copyright © 2001, by James W. Cooper

70

'do something
End Sub
'------
Private Sub Command_init(nm As String)
'initialize something
End Sub

The advantage of this approach is that the ExitCommand class is now also of
the type Command, and all of the classes that implement the Command
interface can be treated as instances of the Command class. To see how this
can be helpful, let’s consider a program for simula ting investment growth..

An Investment Simulator
Our investment simulation program will present us with a mixture of stocks
and bonds, and we can look at their growth over any time interval. We will
assume that the bonds are all tax free municipal bonds and that the stocks are
all ones with positive growth rates.

The program starts with a list of seven stocks and bonds and an investment
nest egg of $10,000 to use. You can invest in any combination of stocks and
bonds at any rate until all your money is invested. The initial program state is
shown in Figure 6-1.

Figure 6-1-An investment simulator at the start.

You select investments by highlighting them, selecting a purchase amount,
and clicking on the Buy button.

Copyright © 2001, by James W. Cooper

71

Once you have selected some stocks, you can enter any future date and
compute the total stock value and the total taxable income. For simplicity, we
assume that the stock income is all taxable and that the bond income is all
nontaxable. A typical investment result is shown in Figure 6-2.

Figure 6-2 – A typical investment result
and the taxable income display is shown in Figure 6-3.

Figure 6-3 – Taxable income results.

Copyright © 2001, by James W. Cooper

72

Writing the Simulator
The most important class in the simulator represents a stock. This class has an
init method that sets the name and type (stock or bond) and an invest method
that determines the date and how much was invested:

Private stockName As String 'name
Private isMuniBond As Boolean 'true of muni bond
Private investment As Single 'amount invested
Private invDate As Date 'date of investment
Private rate As Single 'growth rate
'------
Public Sub init(nm As String, muniBond As Boolean)
 stockName = nm 'save the name
 isMuniBond = muniBond 'and whether a bond
 If isMuniBond Then
 rate = 0.05 'low fixed rate for bonds
 Else
 rate = Rnd / 10 'random rate for stocks
 End If
End Sub
'------
Public Sub invest(amt As Single)
 invDate = CVDate(Date$) 'remember date
 investment = amt 'and amount invested
End Sub

Then, when we ask for the amount of the investment or the taxable amount
earned, we compute them based on the days elapsed since the investment:

Public Function getName() As String
 getName = stockName 'return the stock name
End Function
'------
Public Function getValue(toDate As Date) As Single
 Dim diff, value As Single
 'compute the value of the investment
 diff = DateDiff("d", invDate, toDate)
 value = (diff / 365) * rate * investment + investment
 getValue = value 'and returnn it
End Function
'------
Public Function getTaxable(toDate As Date) As Single
 If isMuniBond Then
 getTaxable = 0 'no taxable income
 Else
 'return the taxable income
 getTaxable = getValue(toDate) - investment
 End If
End Function

Copyright © 2001, by James W. Cooper

73

Indicators for Using an Interface
There are two places in the above code where we have to ask what kind of
investment this is. One is when we decide on the rate and the other is when
we decide on the taxable return. Whenever you see decisions like this inside
classes you should treat them as a yellow caution flag indicating that there
might be a better way. Why should a class have to make such decisions?
Would it be better if each class represented only one type of investment? If
we did create a Stock and a Bond class, the program would become more
complicated, because our display of list data assumes the data are all of type
stock:

Private Sub Taxable_Click()
 Dim i As Integer, dt As Date
 Dim stk as Stock
 lsOwn.Clear
 dt = CVDate(txDate.Text)
 For i = 1 To stocksOwned.Count
 Set stk = stocksOwned(i)
 lsOwn.AddItem stk.getName + Chr$(9) + & _

Format$(stk.getTaxable(dt), "####.00")
 Next i
End Sub

Instead, we’ll create a new class called Equity and derive the Stock and Bond
classes from it. Here is our empty Equity interface:

Public Sub init(nm As String)
End Sub
'------
Public Sub invest(amt As Single)
End Sub
'------
Public Function getName() As String
End Function
'------
Public Function getValue(toDate As Date) As Single
End Function
'------
Public Function getTaxable(toDate As Date) As Single
End Function
'------
Public Function isBond() As Boolean
End Function

Now our Stock class just becomes:

Implements Equity
Private stockName As String 'stock name

Copyright © 2001, by James W. Cooper

74

Private investment As Single 'amount invested
Private invDate As Date 'investment date
Private rate As Single 'rate of return
'------
Private Function Equity_getName() As String
 Equity_getName = stockName 'return the name
End Function
'------
Private Function Equity_getTaxable(toDate As Date) As Single
 'compute the taxable include
 Equity_getTaxable = Equity_getValue(toDate) - investment
End Function
'------
Private Function Equity_getValue(toDate As Date) As Single
 Dim diff, value As Single
 'compute the total value of the investment to date
 diff = DateDiff("d", invDate, toDate)
 value = (diff / 365) * rate * investment + investment
 Equity_getValue = value
End Function
'------
Private Sub Equity_init(nm As String)
 stockName = nm 'initialize the name
 rate = Rnd / 10 'and a rate
End Sub
'------
Private Sub Equity_invest(amt As Single)
 invDate = CVDate(Date$) 'set the date
 investment = amt 'and the amount
End Sub
'------
Private Function Equity_isBond() As Boolean
 Equity_isBond = False 'is not a bond
End Function

The Bond class is pretty similar, except for the getTaxable, init and isBond
methods.

Implements Equity
Private stockName As String
Private investment As Single
Private invDate As Date
Private rate As Single
'------
Private Function Equity_getName() As String
 Equity_getName = stockName
End Function
'------
Private Function Equity_getTaxable(toDate As Date) As Single
 Equity_getTaxable = 0
End Function

Copyright © 2001, by James W. Cooper

75

'------
Private Function Equity_getValue(toDate As Date) As Single
 Dim diff, value As Single

 diff = DateDiff("d", invDate, toDate)
 value = (diff / 365) * rate * investment + investment
 Equity_getValue = value
End Function
'------
Private Sub Equity_init(nm As String)
 stockName = nm
 rate = 0.05
End Sub
'------
Private Sub Equity_invest(amt As Single)
 invDate = CVDate(Date$)
 investment = amt
End Sub
'------
Private Function Equity_isBond() As Boolean
 Equity_isBond = True
End Function

However, by making both Stocks and Bonds implement the Equity interface,
we can treat them all as Equities, since they have the same methods, rather
than having to decide which kind is which:

Private Sub Taxable_Click()
Dim i As Integer, dt As Date
Dim stk as Equity
'Show the list of taxable incomes
 lsOwn.Clear
 dt = CVDate(txDate.Text)
 For i = 1 To stocksOwned.Count
 Set stk = stocksOwned(i)
 lsOwn.AddItem stk.getName + Chr$(9) + & _

Format$(stk.getTaxable(dt), "####.00")
 Next i
End Sub

Reusing Common Methods
A quick glance at the code above shows that the Stock and Bond classes have
some duplicated code. One way to prevent this from happening is to put some
methods in the base class and then call them from the derived classes. While
the initial idea was to make the interface module just a series of empty
methods, VB does not require this and they can indeed have code in them.

Copyright © 2001, by James W. Cooper

76

For example, we could rewrite the basic Equity class to contain another
method which actually computes the interest, and is called by the derived
classes.

'Class Equity with calcValue added
Public Sub init(nm As String)
End Sub
'------
Public Sub invest(amt As Single)
End Sub
'------
Public Function getName() As String
End Function
'------
Public Function getValue(toDate As Date) As Single
End Function
'------
Public Function getTaxable(toDate As Date) As Single
End Function
'------
Public Function isBond() As Boolean
End Function
'------
Public Function calcValue(invDate As Date, toDate As Date, _

rate As Single, investment As Single)
 Dim diff, value As Single

 diff = DateDiff("d", invDate, toDate)
 value = (diff / 365) * rate * investment + investment
 calcValue = value
End Function

Now since we don’t have real inheritance in VB, we can’t call this from the
derived classes directly, but we can insert an instance of the Equity class
inside the Stock and Bond classes and call its calcValue method. This
simplifies the Stock class to:
Implements Equity
Private stockName As String 'stock name
Private investment As Single 'amount invested
Private invDate As Date 'date of investment
Private rate As Single 'rate of return
Private eq As New Equity 'instance of base Equity class
'------
Private Function Equity_getName() As String
 Equity_getName = stockName
End Function
'------
Private Function Equity_getTaxable(toDate As Date) As Single

Copyright © 2001, by James W. Cooper

77

 Equity_getTaxable = Equity_getValue(toDate) - investment
End Function
'------
Private Function Equity_getValue(toDate As Date) As Single
'compute using method in base Equity class
 Equity_getValue = eq.calcValue(invDate, toDate, rate, _

investment)
End Function
'------
Private Sub Equity_init(nm As String)
 stockName = nm
 rate = Rnd / 10
End Sub
'------
Private Sub Equity_invest(amt As Single)
 invDate = CVDate(Date$)
 investment = amt
End Sub
'------
Private Function Equity_isBond() As Boolean
 Equity_isBond = False
End Function

Now, since the calcValue method is part of the interface, you have to include
an empty method by that name in the Stock and Bond classes as well in order
for the classes to compile without error:

Private Function Equity_calcValue(invDate As Date, & _
toDate As Date, rate As Single, & _
investment As Single) As Variant
'never used in child classes

End Function

You could avoid this by creating an ancillary class which contains the
computation method and creating an instance of it in the Stock and Bond
classes, but this does lead to more clutter of extra classes.

Hidden Interfaces
Another way of accomplishing the same thing in this particular case is to give
Stock and Bond the same public interfaces, without using an Equity interface
at all. Since all the operations in this simple program take place through a
Collection, we can obtain a collection item and call its public methods
without ever knowing which type of equity it actually is. For example, the
following code will work for a collection Stocks containing a mixture of
Stock and Bond objects:

Copyright © 2001, by James W. Cooper

78

For i = 1 To stocks.Count
 sname = stocks(i).getName
 lsStocks.AddItem sname
Next i
You should recognize, however, that this special case only occurs because we
never need to get the objects back out as any particular type. In the cases we
develop in the chapters that follow this will seldom be the case.

Summary
In this chapter, we’ve shown how to construct an interface and a set of classes
that implement it. We can then refer to all the derived classes as if they were
instance of the interface class and simplify our code considerably.

Copyright © 2001, by James W. Cooper

79

7. INTRODUCTION TO VB.NET
VB.NET or VB7 has much the same basic syntax as earlier versions of Visual
Basic, but it is in many ways a completely new language. Unlike previous
versions of VB, VB7 is completely object oriented, and many common
operations are implemented a little differently because of this difference. For
these reasons, it is best to consider VB.NET a language for developing new
.NET applications, rather than as a new compiler for programs you have
already written. Because of the awkward typography of VB.NET, we’ll use
the name VB7 to mean the same thing as VB.NET when we refer to it within
the text. We’ll maintain the VB.NET name in subheads, however. We’ll see
some of the advantages of VB7 in this chapter and in later chapters we’ll see
how it makes some of the design patterns that much easier to construct useful
object-oriented VB programs.

Syntax Differences in VB.NET
The major differences you will find in this version of VB is that all calls to
subroutines and class methods must be enclosed in parentheses. In VB6, we
could write

Dim myCol As New Collection
MyCol.Add "Mine"

However, in VB7 you must enclose the argument in parentheses:

Dim myCol As New ArrayList
MyCol.Add ("Mine")

One other significant difference, and for most people an improvement is that
arguments passed into subroutines are by default passed by value instead of
by reference. In other words, you can operate on the variable within the
subroutine without inadvertently changing its value in the calling program. In
other words, the ByVal modifier is now the default. In fact, the development
environment inserts it automatically in most cases If you want to change the
value in the calling program, you can still declare an argument using the
ByRef modifier instead.

Four other keywords have also been removed or significantly changed from
VB6: Set, Variant, Wend, EndIf. In fact, the development environment
simply removes the Set verb from the beginning of any line where you use it.

VB6 VB7

Copyright © 2001, by James W. Cooper

80

Set q = New Collection q = New Collection
Dim y as Variant Dim y as Object
While x < 10
 x = x + 1
Wend

While x < 10
 x = x + 1
End While

Dim x as Integer, y as integer Dim x,y As Integer
ReDim X(30) As Single Dim X(30) as Single

X = New Single(40)
Or
ReDim X(40)

Since the Dim statement now allows you to list several variables of the same
type in a single statement,

Dim x, y As Integer

you can no longer list variables of different types in a single statement:

Dim X as Integer, Y As Single 'Illegal in VB7

You must now list them on separate lines

Dim X as Integer 'legal in both vb6 and vb7
Dim Y as Single

The VB7 compiler will flag usage of many of the above VB6 constructs as
errors. However, it simply skips additional “As” statements on the same line
of a Dim statement. In addition, the string functions Instr, Left and Right have
been supplemented by the more versatile indexOf and substring methods of
the String class. Note that string indexes are zero based when using these new
methods.

VB6 VB7

Instr(s, ",") s.indexOf(",")
Left(s, 2) s.substring(0,2)
Right(s, 4) s.substring(s.Length() –4)

Improved Function Syntax
One of the awkward bugaboos in VB has been the need to refer to the
function name in returning a value from a function.

Public Function Squarit(x as Single)
 Squarit = x * x
End Function

Copyright © 2001, by James W. Cooper

81

In VB7, this restriction is finally lifted and you can simply use the return
statement as is common in many other languages:

Public Function Squarit(x as Single)
 Return x * x
End Function
This makes functions much simpler to type and use.

Objects in VB.NET
In VB7, everything is treated as an object. While in VB6, you could create
class instances that behaved as objects. Objects contain data and have
methods that operate on them. In VB7, this is true of every kind of variable.

Strings are objects, as we illustrated above. They have methods such as

Substring
ToLowerCase
ToUpperCase
IndexOf
Insert
ToSingle
ToInt32
and so forth.

Integers, Single and Double variables are also objects, and have methods.

Dim s as String
Dim x as Single
x = 12.3
s = x.toString

In fact, you can even treat constants as objects

Dim snum as String

Snum = 9.toString

Note that conversion between strings and numerical types is now done using
these methods rather than using the Val and Str functions. If you want to
format a number as a particular kind of string, each numeric type has a
Format method:
Dim s as String
Dim x as Single
x = 12.34

s = Single.Format(x, "##.000")

Copyright © 2001, by James W. Cooper

82

Numbers in VB.NET
All numbers without decimal points are assumed to be of type Int32, and all
numbers with decimal points are assumed to be of type Double. If you want
to set a Single variable to a decimal number, you should following the
number with an “F” (for floating point).

Dim time As Single = 123F

Normally the VB.NET compiler is set to Option Explicit, which prevents
most undeclared type conversions, except to wider types. You can always
convert from integer to single or double. However, if you want to convert a
single to an integer you must specifically indicate that you mean to.

Dim k As Integer = time.ToInt16

Properties in VB6 and VB.NET
Visual Basic provides a construct called properties that is analogous to the
getXxx and setXxx methods of other languages. In VB6, you can specify a
property by name and define its Get and Let methods. These two methods
allow you to set the value of a private variable and return the value of that
variable.

Property Get fred() As String
 fred = fredName
End Property
Property Let fred(s As String)
 fredName = s
End Property

Of course, you can do pre and post-processing of these data to validate them
or convert them from other forms as needed.

In VB7, these properties are combined into a single routine:

 Property Fred() As String
 Get
 Return fredName
 End Get
 Set
 fredName = value
 End Set
 End Property

Note the special keyword value. We use it in VB7 to indicate the value being
passed in to a property. So if we write

Copyright © 2001, by James W. Cooper

83

Abc.Fred = "dog"

then the string value will contain “dog” when the property Set code is
executed.

In both systems, the purpose is to provide a simple interface to get and set
values from a class without knowing how the data are actually stored. You
use these properties in common assignment statements. If “Fred” is a property
of the Boy class, then, you can write statements like

Dim kid as Boy
Kid.fred = "smart"

And

Dim brain as string
Brain = kid.fred

In general the Property system provides an alternate syntax to the getFred and
setFred functions that you could write just as easily. While the syntax differs,
there is no obvious advantage other than the fact that many native VB objects
have properties rather than get and set methods. In this book we will not
make much use of properties because they are not a significant advantage in
coding object-oriented programs.

Shorthand Equals Syntax
VB7 adopts the short-hand equals syntax we find in C, C++, C# and Java. It
allows you to add, subtract, multiply or divide a variable by a constant
without typing its name twice.

 Dim i As Integer = 5
 i += 5 'add 5 to i
 i -= 8 'subtract 8 form i
 i *= 4 'multiply i by 4
You can use this approach to save typing, but the code generated is
undoubted the same as if you had written the code out in the old way

i = i + 5
 i = i - 8
 i = i * 4
The same applies to division, but you seldom see it because it seems more
awkward to read.

Copyright © 2001, by James W. Cooper

84

Managed Languages and Garbage Collection
VB.NET and C# are both managed languages. This has two major
implications. First, both are compiled to an intermediate low-level language,
and a common language runtime (CLR) is used to execute this compiled
code, perhaps compiling it further first. So, not only do VB7 and C# share the
same runtime libraries, they are to a large degree two sides of the same coin
and two aspects of the same language system. The differences are that VB7 is
more Visual Basic like and a bit easier to learn and use. C# on the other hand
is more C++ and Java-like, and may appeal more to programmers already
experienced in those languages.

The other major implication is that managed languages are garbage-collected.
Garbage collected languages take care of releasing unused memory: you
never have to be concerned with this. As soon as the garbage collection
system detects that there are no more active references to a variable, array or
object, the memory is released back to the system. So you no longer need to
worry as much about running out of memory because you allocated memory
and never released it. Of course, it is still possible to write memory-eating
code, but for the most part you do not have to worry about memory allocation
and release problems.

Classes in VB.NET
Classes are a very important part of VB7. Almost every important program
consists of one or more classes. The distinction between classes and forms
has disappeared in VB7, and most programs are all classes. Since nearly
everything is a class, the number of names of class objects can get to be pretty
overwhelming. They have therefore been grouped into various functional
libraries that you must specifically mention in order to use the functions in
these libraries.

Under the covers these libraries are each individual DLLs. However, you
need only refer to them by their base names using the Imports statement, and
the functions in that library are available to you.

Imports System.Collections 'Use Collection namespace classes

Logically, each of these libraries represents a different namespace. Each
namespace is a separate group of class and method names which the compiler
will recognize after you import that name space. You can import namespaces
that contain identically named classes or methods, but you will only be

Copyright © 2001, by James W. Cooper

85

notified of a conflict if you try to use a class or method that is duplicated in
more than one namespace.

The most common namespace is the System namespace, and it is imported by
default without your needing to declare it. It contains many of the most
fundamental classes and methods that VB7 uses for access to basic classes
such as Application, Array, Console, Exceptions, Objects, and standard
objects such as Byte, Boolean, Single and Double and String. In the simplest
VB7 program we can simply write “hello” out to the console without ever
bringing up a window or form:

Imports System 'this one is optional

'Simple VB Hello World program
Public Class cMain
 Shared Sub Main() 'entry point is Main
 ' Write text to the console
 Console.WriteLine ("Hello VB World")
 End Sub
End Class

This program just writes the text “Hello VB World” to a command (DOS)
window. The entry point of any program must be a Sub Main subroutine, and
in a class module, it must be declared Shared. The only other type of module
in VB7 is the Module type. Here the program can be written

'Simple VB Hello World program
Public Module cMain
 Sub Main() 'entry point is Main
 ' Write text to the console
 Console.WriteLine ("Hello VB World")
 End Sub
End Module

The programs are pretty much identical, except that a Module has all public
(and shared) methods and the Sub Main need not be declared as Shared.
Modules are analogous to the Modules in earlier versions of VB, and are the
ones that Vb would have created with a .bas file type. The have the advantage
that all of the methods and constants declared in a Module are public and can
be referenced throughout the program. However, unlike classes, they provide
no way to hide information or algorithms, and we will not use them further in
this book.

In VB6, the class name was usually declared the filename, although you
could change a class’s Name property. In VB7, the Class keyword allows you
to declare the class name irrespective of the filename, and in fact you must
declare a class name for each class. The default file extensions for VB6

Copyright © 2001, by James W. Cooper

86

classes was .cls and for forms .frm. In VB7, you can use any filename or
extension you want, but the default file extension is .vb.

Building a VB7 Application
Let’s start by creating a simple console application: that is one without any
windows, that just runs from the command line. Start the Visual Studio.NET
program, and select File |New Project. From the selection box, choose
Console application as shown in Figure 7-1.

Figure 7-1 – The New Project selection window. Selecting a console
application.

This will bring up a module, with the Sub Main already filled in. You can
type in the rest of the code as follows:

Module cMain
 Sub Main()
 'write text to the console
 Console.WriteLine("Hello VB world")
 End Sub
End Module

Copyright © 2001, by James W. Cooper

87

You can compile this and run it by pressing F5. If you change the program’s
main module name, as we did here, from Module1 to cMain, you will also
have to change the name of the Startup module. To do this, in the right-hand
Solution Explorer window, right-click on the project name and select
Properties from the pop-up menu. This will appear as in Figure 7-2.

Figure 7-2 – The property page for the project.

You can change the startup object in the dropdown menu to the correct new
name.

When you compile and run the program by pressing F5, a DOS window will
appear and print out the message “Hello VB World” and exit.

You can also delete the module and insert a class instead.

Public Class cMain
 Shared Sub Main()
 Console.WriteLine("Hello classy VB world")
 End Sub
End Class

This will compile and run in just the same way.

Copyright © 2001, by James W. Cooper

88

The Simplest Window Program in VB.NET
It is just about as simple to write a program that brings up a window. In fact,
you can create most of it using the Windows Designer. To do this, start
Visual Studio.NET and select File|New project, and select Windows
Application. The default name (and filename) is WindowsApplication1, but
you can change this before you close the New dialog box. This brings up a
single form project, initially called Form1.vb. You can then use the Toolbox
to insert controls, just as you could in VB6.

The Windows Designer for a simple form with 2 labels , one text field and one
button is shown in Figure 7-3.

Figure 7-3 – The Windows designer in Visual Studio.NET
You can draw the controls on the form and double click on the controls to
enter code. In this simple form, we click on the “Say hello” button and it
copies the text from the text field to the blank label we named lbHi, and
clears the text field.

Protected Sub SayHello_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 lbhi.Text() = txhi.Text
 txhi.Text = ""
End Sub

Copyright © 2001, by James W. Cooper

89

The code it generates is a little different. Note that the Click routine passes in
the sender object and an event object that you can query for further
information. The running program is shown in Figure 7-4.

Figure 7-4 – The SimpleHello form before and after clicking the
Say Hello button.

While we only had to write the two lines of code inside the above subroutine,
it is instructive to see how different the rest of the code is for this program.
We first see that several libraries of classes are imported so the program can
use them:

Imports System.ComponentModel
Imports System.Drawing
Imports System.WinForms

Most significant is the WinForms library, which is common to all the .Net
languages. You can use the same forms designer for VB as for C# (C-sharp)
and C++.

Inheritance
Next we see the must stunning change in VB7- inheritance.

Public Class HelloForm
 Inherits System.WinForms.Form

Copyright © 2001, by James W. Cooper

90

The form we create is a child class of the Form class, rather than being an
instance of it as was the case in previous versions of VB. This has some very
powerful implications. You can create visual objects and override some of
their properties so that the each behave a little differently. We’ll see some
examples of this shortly.

The code the designer generates for the controls is illuminating. No longer is
the code for the control creation buried in an interpreter of Form module
declarations you can’t easily change. Instead it is right there in the open for
you to change if you want. Note however, that if you change this code
manually instead of using the property page, the window designer may not
work any more. That is why this section is initially collapsed inside a “[+]”
box line on the code display.

Essentially, each control is declared as a variable and added to a container.
Here are the control declarations

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.Container
 Private WithEvents SayHello As System.WinForms.Button
 Private WithEvents lbHi As System.WinForms.Label
 Private WithEvents txHi As System.WinForms.TextBox

 Dim WithEvents Form1 As System.WinForms.Form

 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Private Sub InitializeComponent()
 Me.components = New System.ComponentModel.Container()
 Me.lbHi = New System.WinForms.Label()
 Me.SayHello = New System.WinForms.Button()
 Me.txHi = New System.WinForms.TextBox()
 lbHi.Location = New System.Drawing.Point(48, 72)
 lbHi.Size = New System.Drawing.Size(176, 24)
 lbHi.ForeColor = System.Drawing.Color.Blue
 lbHi.Font = New System.Drawing.Font(_

"Microsoft Sans Serif", 10!, _
System.Drawing.FontStyle.Bold)

 lbHi.TabIndex = 1

 SayHello.Location = New System.Drawing.Point(72, 128)
 SayHello.Size = New System.Drawing.Size(112, 24)
 SayHello.TabIndex = 2
 SayHello.Text = "Say Hello"

 txHi.Location = New System.Drawing.Point(48, 24)

Copyright © 2001, by James W. Cooper

91

 txHi.Text = "Hello"
 txHi.TabIndex = 0
 txHi.Size = New System.Drawing.Size(176, 20)
 Me.Text = "Simple Hello"
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)

 Me.Controls.Add(SayHello)
 Me.Controls.Add(lbHi)
 Me.Controls.Add(txHi)
End Sub

Note that the SayHello button is declared using the WithEvents modifier.
This means that there can be a direct connection between the button and the
subroutine SayHello_Click.

Constructors
All classes now have specific constructors that are called when you create an
instance of a class. These constructors are always named New. This applies to
form classes as well as non-visual classes. Here is the constructor for our
simple hello window:

Public Sub New()
 MyBase.New()
 'This call is required by the Win Form Designer.
 InitializeComponent()
End Sub

Note the MyBase.New method call. This is required in all classes that are
derived from other classes. It calls the constructor of the parent class, and
initializes it.

When you create your own classes, you can create New methods to initialize
them, and can pass arguments into the class to initialize class parameters to
specific values. Suppose you wanted to create a StringTokenizer class like the
one we defined in Chapter 2. Here we will use real constructors instead of
the init() method. Our constructor will copy the string into an internal
variable, and create a default value for the token separator.

Public Class StringTokenizer
 Private s As String
 Private i As Integer
 Private sep As String 'token separator
 '------
 Public Sub New(ByVal st As String)

Copyright © 2001, by James W. Cooper

92

 s = st 'copy in string
 sep = " " 'default separator
 End Sub
 '------
 Public Sub setSeparator(ByVal sp As String)
 sep = sp 'copy separator
 End Sub
 '------
 Public Function nextToken() As String
 Dim tok As String
 i = s.indexOf(sep) 'look for separator
 If i > 0 Then 'if found
 tok = s.substring(0, i)'return string to left
 s = s.substring(i + 1) 'shorten string
 Else
 tok = s 'otherwise return end of string
 s = "" 'and set remainder to zero length
 End If
 nextToken = tok 'return token
 End Function

End Class

Our calling program simply creates an instance of the tokenizer and prints out
the tokens:

'illustrates use of tokenizer
Public Class TokTest

 Shared Sub Main()
 Dim s As String
 Dim tok As New StringTokenizer("Hello VB World")
 s = tok.nextToken()
 While (s <> "")
 Console.writeLine(s)
 s = tok.nextToken()
 End While
 End Sub
End Class

Note that VB7 allows you to declare variables and initialize them in the same
statement:

Dim tok As New StringTokenizer("Hello VB World")

Copyright © 2001, by James W. Cooper

93

Drawing and Graphics in VB.NET
In VB7, controls are repainted by the Windows system and you can overide
the OnPaint event to do your own drawing. The PaintEventArgs object is
passed into the subroutine by the underlying system, and you can obtain the
graphics surface to draw on from that object. To do drawing, you must create
an instance of a Pen object and define its color and, optionally its width. This
is illustrated below for a black pen with a default width of 1.

Protected Overrides Sub OnPaint(e as PaintEventArgs)
 Dim g as Graphics = e.Graphics
 Dim rpen As new Pen(Color.Black)
 g.drawLine(rpen, 10,20,70,80)
End Sub

The Overrides keyword is a critical part of the VB inheritance system. Using
this keyword tells the compiler that you are overriding the same method in a
parent class.

Overloading
In VB7 as well as other object oriented languages, you can have several class
methods with the same name as long as they have different calling arguments
or signatures. For example we might want to create an instance of the
StringTokenizer where we define both the string and the separator.

tok = New StringTokenizer("apples, pears", ",")

If we want to implement this constructor, we have to tell VB that we are
overloading the constructor so the compiler will know we meant to have two
methods with the same name. Here are the two constructors.

Public Overloads Sub New(st as String, sepr as String)
 s = st
 sep = sepr
End Sub
'------
Public Overloads Sub New(st As String)
 s = st 'copy in string
 sep = " " 'default separator
End Sub
Of course VB allows us to overload any method as long as we specify the
Overloads keyword before the sub or function name, and provide arguments
that allow the compiler can distinguish between the various overloaded (or
polymorphic) methods.

Copyright © 2001, by James W. Cooper

94

Inheritance
The most powerful new feature is VB7 is the ability to create classes which
are derived from existing classes. In new derived classes, we only have to
specify the methods that are new or changed. All the others are provided
automatically from the base class we inherit from. To see how this works, lets
consider writing a simple Rectangle class which draws itself on a form
window. This class has only two methods, the constructor and the draw
method.

Namespace VBPatterns
Public Class Rectangle
 Private x, y, h, w As Integer
 Protected rpen As Pen
 '--------
Public Sub New(ByVal x_ As Integer, _

ByVal y_ As Integer, _
 ByVal h_ As Integer, _

ByVal w_ As Integer)
 x = x_
 y = y_
 h = h_
 w = w_
 rpen = New Pen(Color.Black)
 End Sub
 '--------
 Public Sub draw(ByVal g As Graphics)
 g.DrawRectangle(rpen, x, y, w, h)
 End Sub
 End Class
End Namespace

Namespaces
We mentioned the System namespaces above. Further, VB7 creates a
Namespace for each project equal to the name of the project itself. You see
this default namespace being generated in Figure 7-2. You can change this
namespace on the property page, or make it blank so that the project is not in
a namespace. However, you can create namespaces of your own, and the
Rectangle class provides a good example of a reason for doing so. There
already is a Rectangle class in the System.Drawing namespace that this
program imports. Rather than renaming the class to avoid this name overlap
or “collision,” we can just put the whole Rectangle class in its own

Copyright © 2001, by James W. Cooper

95

namespace by wrapping the class inside a namespace declaration as we show
above.

Then, when we declare the variable in the main Form window, we declare it
as a member of that namespace.

Public Class RectForm
 Inherits System.WinForms.Form
 Private rect As VBPatterns.Rectangle

In this main Form window, we create an instance of our Rectangle class.

Public Sub New()
 'This call is required by the Win Form Designer.
 InitializeComponent()
 rect = New VBPatterns.Rectangle(40, 20, 30, 80)
End Sub

Then we override the OnPaint event to do the drawing and pass the graphics
surface on to the Rectangle instance.

Protected Overrides Sub OnPaint(_
ByVal e As PaintEventArgs)

 Dim g As Graphics
 g = e.Graphics
 rect.draw(g)
End Sub
This gives us the display we see in Figure 5-4.

Figure 5-4. The Rectangle drawing program.

Copyright © 2001, by James W. Cooper

96

Creating a Square From a Rectangle
A square is just a special case of a rectangle, and we can derive a square class
from the rectangle class without writing much new code. Here is the entire
class:

Namespace VBPatterns
 Public Class Square
 Inherits Rectangle
 Public Sub New(ByVal x As Integer, _

ByVal y As Integer, ByVal w As Integer)
 MyBase.New(x, y, w, w)
 End Sub
 End Class
End Namespace

This Square class contains only a constructor, which passes the square
dimensions on to the underlying Rectangle class by calling the constructor of
the parent Rectangle class. The Rectangle class creates the pen and does the
actual drawing. Note that there is no draw method at all for the Square class.
If you don’t specify a new method the parent class’s method is used
automatically.

The program which draws both a rectangle and a square has a simple
constructor where instances of these objects are created:

Public Sub New()
 InitializeComponent
 rect = New Rectangle(10, 10, 30, 80)
 sq = New Square (50, 50, 50)
End Sub
and an OnPaint routine where they are drawn.

Protected Overrides Sub OnPaint(_
ByVal e As PaintEventArgs)

 Dim g As Graphics
 g = e.Graphics
 rect.draw(g)
 sq.draw(g)
End Sub
The display is shown below for the square and rectangle:

Copyright © 2001, by James W. Cooper

97

Figure 5-6 – The rectangle class and the square class derived from it.

Public, Private and Protected
In VB6, you could declare variables and class methods as either public or
private. A public method is accessible from other classes and a private
method is accessible only inside that class. Usually, you make all class
variables private and write getXxx and seXxx accessor functions to set or
obtain their values. It is generally a bad idea to allow variables inside a class
to be accessed directly from outside the class, since this violates the principle
of encapsulation. In other words, the class is the only place where the actual
data representation should be know, and you should be able to change the
algorithms inside a class without anyone outside the class being any the
wiser.

VB7 introduces the protected keyword as well. Both variables and methods
can be protected. Protected variables can be accessed within the class and
from any subclasses you derive from it. Similarly, protected methods are only
accessible from that class and its derived classes. They are not publicly
accessible from outside the class.

Overriding Methods in Derived Classes
Suppose we want to derive a new class called DoubleRect from Rectangle,
that draws a rectangle in two colors offset by a few pixels. In the constructor,
we will create a red pen for doing this drawing:

Namespace VBPatterns
 Public Class DoubleRect
 Inherits Rectangle

Copyright © 2001, by James W. Cooper

98

 Private redPen As Pen
 '-----
 Public Sub New(ByVal x As Integer, _
 ByVal y As Integer, ByVal w As Integer, _
 ByVal h As Integer)
 MyBase.New(x, y, w, h)
 redPen = New Pen(Color.FromARGB(255, _

Color.Red), 2)
 End Sub

This means that our new class DoubleRect will have to have its own draw
method. Now the base class has a draw method and we really ought to create
a method with the same name, since we want all these classes to behave the
same. However, this draw method will use the parent class’s draw method but
add more drawing of its own. In other words, the draw method will be
overloaded and we must specifically declare that fact to satisfy the VB
compiler:

Public Overrides Sub draw(ByVal g As Graphics)
 MyBase.draw(g)
 g.drawRectangle(redPen, x + 4, y + 4, w, h)
End Sub

Note that we want to use the coordinates and size of the rectangle that was
specified in the constructor. We could keep our own copy of these parameters
in the DoubleRect class, or we could change the protection mode of these
variables in the base Rectangle class to protected from private.

 Protected x, y, h, w As Integer
We also must tell the compiler that we want to allow the Rectangle’s draw
method to be overridden by declaring it as overridable.

Public Overridable Sub draw(ByVal g As Graphics)
 g.DrawRectangle(rpen, x, y, w, h)
End Sub

The final rectangle drawing window is shown in Figure 5-7.

Copyright © 2001, by James W. Cooper

99

Figure 5-7. The Rectangle, Square and DoubleRect classes.

Overriding Windows Controls
In VB7 we can finally make new Windows controls based on existing ones
using inheritance. Earlier we created a Textbox control which highlighted all
the text when you tabbed into it. In VB6, we did this by writing a new DLL in
which the Textbox was enclosed in a Usercontrol, and where we passed all
the useful events on to the Textbox. In VB7, we can create that new control
by just deriving a new class from the Textbox class.

We’ll start by using the Windows Designer to create a window with two text
boxes on it. Then we’ll go to the Project|Add User Control menu and add an
object called HiTextBox.vb. We’ll change this to inherit from TextBox
instead of UserControl.

public class HTextBox
 Inherits Textbox

Then, before we make further changes, we compile the program. The new
HtextBox control will appear at the bottom of the Toolbox on the left of the
development environment. You can create visual instances of the HtextBox
on any windows form you create. This is shown in Figure 5-8

Copyright © 2001, by James W. Cooper

100

Figure 5-8. The Toolbox, showing the new control we created and an
instance of the HiTextBox on the Windows Designer pane of a new form.

Now we can modify this class and insert the code to do the highlighting.

'A text box which highlights when you tab into it
public class HTextBox
 Inherits Textbox
 Public Sub New
 Mybase.New
 'add Event event handler
 AddHandler Enter, _

 New System.EventHandler(AddressOf _
Me.HT_Enter)

 End Sub
 '------------
 'Enter event handler is inside the class
 Protected Sub HT_Enter(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Me.selectionStart = 0
 Me.selectionLength = Me.text.length
 End Sub
End Class

And that’s the whole process. We have derived a new Windows control in
about 10 lines of code. That’s pretty powerful. You can see the resulting
program in Figure 5-8

Copyright © 2001, by James W. Cooper

101

Figure 5-8. A new derived HTextbox control and a regular Textbox control.

Interfaces
VB7 also continues to support interfaces much like VB6 did. However, the
syntax has changed somewhat. Now an Interface is a special kind of class:

Interface MultiChoice
'an interface to any group of components
'that can return zero or more selected items
'the names are returned in an Arraylist

Function getSelected() As ArrayList
Sub clear() 'clear all selected
Function getWindow() As Panel

End Interface

When you implement the methods of an Interface in concrete classes, you
must not only declare that the class implements that interface:

public Class ListChoice
 Implements MultiChoice

But that each method of the class implements it as well:

public Function getSelected() As ArrayList _
 Implements MultiChoice.getSelected

End Function
'--------
'clear all selected items
Public Sub clear() implements MultiChoice.clear
End Sub
'--------
Public Function getWindow() As Panel _

Copyright © 2001, by James W. Cooper

102

 Implements MultiChoice.getWindow
 return pnl
End Function
We’ll show how to use this interface when we discuss the Builder pattern.

Summary
We’ve seen the shape of most of the new features in VB7 in this chapter. In
addition to some syntax changes, VB7 adds inheritance, constructors and the
ability to overload methods to provide alternate versions. This leads to the
ability to create new derived versions even of Windows controls. In the
chapters that follow, we’ll show you how you can write design patterns in
both VB6 and VB7.

Programs on the CD-ROM
\IntroVBNet\HiText A subclassed text box

\IntroVBNet\SayHello A Simple Hello program

\IntroVBNet\Tokenizer A string tokenizer

Copyright © 2001, by James W. Cooper

103

8. ARRAYS, FILES AND EXCEPTIONS IN
VB.NET

VB7 makes some significant changes in the ways you handle arrays and files
and completely changes error handling. All of these changes make your
programming a lot easier than it was before.

Arrays
In VB7, all arrays are zero based. This is different than all previous versions
of Basic. In VB6, if you wrote

Dim x(10) As Single
You assumed that the x array had elements from 1 to 10, although it actually
always included a zero element as well. In other words the x array actually
had 11 elements.

In VB7, such arrays have only 10 elements, numbered from 0 to 9. This
changes the way we move through arrays to be in line with the style used in
C, C++ , C# and Java.

Dim Max as Integer
Max = 10
Dim x(Max)

For j = 0 to Max-1
 x(j) = j
Next j

You should get into the habit of looping through arrays to the array bounds
minus one as we did in the above example.

All array variables have a length property so you can find out how large the
array is:

Dim z(20) As Single
Dim j As Integer
For j = 0 To z.Length –1
 z(j) = j
Next j

Arrays in VB7 are dynamic and space can be reallocated at any time. To
create a reference to an array and allocate it later within the class use the New
syntax:

'Declare at the class level

Copyright © 2001, by James W. Cooper

104

 Dim x() As Single
'allocate within any method
 x = New Single(20) {}
Note the unusual use of curly braces following the type and size. You can
also use the ReDim statement, with or without preserve to change the size of
a declared array. However, you should note that ReDim no longer allows an
“As” clause, since the array type cannot be changed during ReDim.

ReDim x(40)
ReDim Preserve x(50)

Collection Objects
The System.Collections namespace contains a number of useful variable
length array objects you can use to add and obtain items in several ways.

ArrayLists
Since arrays are now zero-based, VB7 introduces the ArrayList object to
replace the Collection object, which was always 1-based. The ArrayList is
essentially a variable length array that you can add items to as needed. The
basic ArrayList methods are about the same as for Collections, although there
are quite a few more methods you can also use.

Dim i, j As Integer
 'create ArrayList
 Dim arl As New ArrayList() 'constructor
 'add to it
 For j = 0 To 10
 Arl.Add(j)
 Next j
Like the Collection object, the ArrayList has a Count property and an Item
property that allows you to obtain elements from it by index. And, like the
Collection, this property can be omitted, treating the ArrayList just as if it
were an array:

'print out contents
 For i = 0 To arl.Count - 1
 Console.writeLine(arl.Item(i))
 Console.writeLine(arl(i))
 Next i
You can also use the methods of the ArrayList shown in Table 6-1:

Clear Clears the contents of the ArrayList

Contains(object) Returns true if the ArrayList contains

Copyright © 2001, by James W. Cooper

105

that value

CopyTo(array) Copies entire ArrayList into a one-
dimensional array.

IndexOf(object) Returns the first index of the value

Insert(index, object) Insert the element at the specified
index.

Remove(object) Remove element from list.

RemoveAt(index) Remove element from specified
position

Sort Sort ArrayList

Table 6-1- ArrayList methods

Hashtables
A Hashtable is a variable length array where every entry can be referred to by
a key value. Typically, keys are strings of some sort, but that can be any sort
of object. Keys must be unique for each element, although the elements
themselves need not be unique. Hashtables are used to allow rapid access to
one of a large and unsorted set of entries, and can also be used by reversing
the key and the entry values to create a list where each entry is guaranteed to
be unique. The most important Hashtable methods are add and the item fetch.

Dim hash As New Hashtable()
 Dim fredObject As New Object()
 Dim obj As Object
 hash.Add("Fred", fredObject)
 obj = hash.Item("Fred")

Hashtables also have a count property and you can obtain an enumeration of
the keys or of the values.

SortedLists
The SortedList class is most like the VB6 Collection class. It maintains two
internal arrays, so you can obtain the elements either by zero-based index or
by alphabetic key.

Dim sList As New SortedList()

Copyright © 2001, by James W. Cooper

106

 slist.Add("Fred", fredObject)
 slist.Add("Sam", obj)
 Dim newObj As Object
 newObj = slist.GetByIndex(0) 'by index
 newObj = slist.Item("Sam") 'by key

You will also find the Stack and Queue objects in this namespace. They
behave much as you’d expect, and you can find their methods in the system
help documentation.

Exceptions
Error handling in VB7 is accomplished using exceptions instead of the
awkward On Error Goto syntax, which is no longer supported. The thrust of
exception handling is that you enclose the statements that could cause errors
in a Try block and then catch any errors using a Catch statement.

Try
 'Statements
 Catch e as Exception
 'do these if an error occurs
 Finally
 'do these anyway
End Try

Typically, you use this approach to test for errors around file handling
statements, although you can also catch array index out of range statements
and a large number of other error conditions. The way this works is that the
statements in the Try block are executed and if there is no error, control
passes to the Finally statements if any, and then on out of the block. If errors
occur, control passes to the Catch statement, where you can handle the
errors, and then control passes on to the Finally statements and then on out of
the block.

The following example shows testing for any exception. Since we are moving
one element beyond the end of the ArrayList, an error will occur:

 Try
 For i = 0 To ar.Count 'NOTE: one too many
 Console.write(ar.Item(i))
 Next i
 Catch e As Exception
 Console.writeLine(e.Message)
 Console.writeLine(e.stackTrace)
 End Try

Copyright © 2001, by James W. Cooper

107

 Console.writeline("end of loop")

This code prints out the error message and the calling locations in the
program and then goes on.

0123456789Index is out of range. Must be non-negative and less
than size.
Parameter name: index
 at System.Collections.ArrayList.get_Item(Int32)
 at ArrayTest.Main()
end of loop

By contrast, if we do not catch the exception, we will get an error message
from the runtime system and the program will exit instead of going on.

Exception occurred: System.ArgumentOutOfRangeException: Index
is out of range.
Must be non-negative and less than size.
Parameter name: index
 at System.Collections.ArrayList.get_Item(Int32)
 at ArrayTest.Main()
 at _vbProject._main(System.String[])

Some of the more common exceptions are shown in Table 6-2.

AccessException Error in accessing a method or field
of a class.

ArgumentException Argument to a method is not valid.

ArgumentNullException Argument is null

ArithmeticException Overflow or underflow

DivideByZeroException Division by zero

IndexOutOfRangeException Array index out of range

FileNotFoundException File not found

EndOfStreamException Access beyond end of input stream
(such as files)

DirectoryNotFoundException Directory not found

NullReferenceException The object variable has not been
initialized to a real value.

Copyright © 2001, by James W. Cooper

108

Multiple Exceptions
You can also catch a series of exceptions and handle them differently in the
same Try block.

Try
 For i = 0 To ar.Count
 Dim k As Integer = CType(ar(i), Integer)
 Console.writeLine(i.toString & " " & k / i)
 Next i
Catch e As DivideByZeroException
 Console.writeLine(e.Message)
 Console.writeLine(e.stackTrace)
Catch e As IndexOutOfRangeException
 Console.writeLine(e.Message)
 Console.writeLine(e.stackTrace)
Catch e As Exception
 Console.writeLine("general exception" + e.Message)
 Console.writeLine(e.stackTrace)
End Try

This gives you the opportunity to recover from various errors in different
ways.

Throwing Exceptions
You don’t have to deal with exceptions exactly where they occur: you can
pass them back to the calling program using the Throw statement. This causes
the exception to be thrown in the calling program:

Try
 'some code
Catch e as Exception
 Throw e 'pass on to calling routine
End Try

File Handling
If you import the Microsoft.vb6.compatibility, you can use some of the file
handling functions you are used to in VB6. However, the syntax is
sufficiently different because of the requirement that all arguments be
enclosed in parentheses that you will have to make major changes throughout
your file handling code.
Input #f, s 'read a string from a file in VB6

Copyright © 2001, by James W. Cooper

109

becomes
Input(f, s) 'vb6 compatible string read from file

Further, VB7 has no Line Input statement at all. Therefore it is usually easier
to read and write file data using the new File and Stream methods provided in
VB7.

The File Object
The File object represents a File , and has useful methods for testing for a
file’s existence as well as renaming and deleting a file.

Dim fl as File
fl = new File("foo.txt")
If (fl.Exists) 'if the file exists
 fl.Delete 'delete it
End If

You can also use the File object to obtain a FileStream for reading and
writing file data:

Dim ts as TextStream
Dim fs as FileStream

ts = fl.OpenText 'open a text file for reading
fs = fl.OpenRead 'open any file for reading

Reading Text File
To read a text file, use the File object to obtain a StreamReader object. Then
use the text stream’s read methods:

Dim ts as StreamReader
ts = fl.OpenText()
s = ts.readLine 'read a line from a file

Writing a Text File
To create and write a text file, use the CreateText method to get a
StreamWriter object.
Dim sw as StreamWriter
sw = fl.CreateText
sw.writeLine("write text into file")

Copyright © 2001, by James W. Cooper

110

If you want to append to an existing file, you can create a StreamWriter
object directly with the Boolean argument for append set to true:

Sw = new StreamWriter(path, true)

Exceptions in File Handling
A large number of the most commonly occurring exceptions occur in
handling file input and output. You can get exceptions for illegal filenames,
files which do not exist, directories that do not exist, illegal filename
arguments and file protection errors. Thus, the best way to handle file input
and output is to enclose file manipulation code in Try blocks to assure
yourself that all possible error conditions are caught, and thus prevent
embarrassing fatal errors. All of the methods of the various file classes show
in their documentation which methods they throw. You can assure yourself
that you catch all of them by just catching the general Exception object, but if
you need to take different actions for different exceptions, you can test for
them separately.

For example, you might open text files in the following manner:

Try
 ts = fl.Opentext()
Catch e as Exception
 errDesc = e.Message
 errFlag = true
 Console.writeLine(errDesc) 'print out any error
End Try

Testing for End of File
There are two useful ways of making sure that you do not pass the end of a
text file: looking for a null exception and looking for the end of a data stream.
When you read beyond then end of a file no error occurs and no end of file
exception is thrown. However, if you read a string after the end of a file, it
will return as a Null value. VB7 does not provide an IsNull method, but you
can easily force a Null Reference exception by trying to obtain the length of a
string. If you try to execute a length method on a null string, the system will
throw a null reference exception, and you can use this to detect the end of a
file.

Public Function readLine() As String
'Read one line from the file
 Dim s As String
 Try

Copyright © 2001, by James W. Cooper

111

 s = ts.readLine 'read line from file
 lineLength = s.length 'use to catch null exception
 Catch e As Exception
 end_file = True 'set EOF flag if null
 s = "" 'and return zero length string
 Finally
 readLine = s
 End Try
End Function

The other way for making sure you don’t read past then end of a file is to
peek ahead using the Stream’s Peek method. This returns the ASCII code for
the next character, or a –1 if no characters remain.

'example of alternate appraoch to detecting end of file
 Public Function readLineE() As String
 'Read one line from the file
 Dim s As String
 If ts.peek >= 0 Then 'look ahead
 s = ts.readLine 'read if more chars
 Return s
 Else
 end_file = True 'Ser EOF flag if none left
 Return ""
 End If
 End Function

Static File Methods
You might think that the only way to use the File methods is to create an
instance of a File object that contains a specific filename. However, the File
class also contains a number of static methods which you can call directly
using the File class name instead of the name of a specific instance. In VB7
parlance, these are called Shared methods, but the effect is exactly the same.

In the representative examples in the following table, we’ll assume that we
have created an instance of File called fl. For a complete list consult the
documentation and help file.s

Dim fl as File
fl = New File(“foo.txt”)

Instance method Static method
fl.Exists File.FileExists(filename)

Copyright © 2001, by James W. Cooper

112

fl.Delete File.Delete(filename)
Sw = fl.AppendText File.AppendText(String)
fl. IsDirectory
fl.isFile
fl.Length
 File.Copy(fromFile, toFile)
 File.Move(fromTile, toFile)
 File.GetExtension(filename)
 File.HasExtension(filename)

A vbFile Class
Earlier, we wrote a vbFile class for reading and writing text files a line at a
time and a token at a time. We can reimplement this vbFile class for VB7 to
have exactly the same methods, but utilize the VB7 file handling classes. In
essence we are reimplementing the vbFile interface for VB7. Since the syntax
remains the same we might declare formally that we are using the same
interface, but since the syntax differs somewhat, we will just write a new
class using that same interface.

The main difference is that we can include the filename and path in the
constructor:

Public Sub New(ByVal filename As String)
 'Create new file instance
 file_name = filename 'save file name
 fl = New File(file_name) 'get file object
 tokLine = "" 'initialize tokenizer
 sep = "," 'and separator
 End Sub

We can open a file for reading using either of two methods, once including
the filename and one which uses a filename in the argument.

Public Overloads Function OpenForRead() As Boolean
 Return OpenForRead(file_name)
End Function
'----------------
Public Overloads Function OpenForRead(_

ByVal Filename As String) As Boolean
 'opens specified file
 file_name = Filename 'save file name
 errFlag = False 'clear errors
 end_File = False 'and end of file
 Try
 ts = fl.Opentext() 'open the file
 Catch e As Exception

Copyright © 2001, by James W. Cooper

113

 errDesc = e.Message 'save error message
 errFlag = True 'and flag
 End Try
 Return Not errFlag 'false if error
End Function

You can then read data from the text file as we illustrated above.

Likewise, the following methods allow you to open a file for writing and
write lines of text to it.

Public Overloads Function OpenForWrite(_
ByVal fname As String) As Boolean

 errFlag = False
 Try
 file_name = fname
 fl = New File(file_name) 'create File object
 sw = fl.CreateText 'get StreamWriter
 Catch e As Exception
 errDesc = e.Message
 errflag = True
 End Try
 openForWrite = Not errFlag
End Function
'-------------
Public Overloads Function OpenForWrite() As Boolean
 OpenForWrite = OpenForWrite(file_name)
End Function
'-------------
Public Sub writeText(ByVal s As String)
 sw.writeLine(s) 'write text to stream
End Sub

Since we have implemented the same methods in our new vbFile class as we
did for the VB6 class, we can substitute the new one and use it with VB7
programs without changing the surrounding programs at all.

Copyright © 2001, by James W. Cooper

114

Creational Patterns
With the foregoing description of objects, inheritance and interfaces in hand, we
are now ready to begin discussing Design Patterns in earnest. Recall that these
are merely recipes for writing better object oriented programs. We have divided
them into the same three groups that the Gang of Four did: Creational, Structural
and Behavioral. We’ll start out in this section with the Creational patterns/

All of the creational patterns deal with ways to create instances of objects. This is
important because your program should not depend on how objects are created
and arranged. In VB, of course, the simplest way to create an instance of an
object is by using the new operator.

set fred1 = new Fred ‘instance of Fred class

However, this really amounts to hard coding, depending on how you create the
object within your program. In many cases, the exact nature of the object that is
created could vary with the needs of the program and abstracting the creation
process into a special “creator” class can make your program more flexible and
general.

• The Factory Method Pattern provides a simple decision making class that
returns one of several possible subclasses of an abstract base class depending
on the data that are provided. We’ll start with the Simple Factory pattern as
an introduction to factories, and then introduce the Factory Method Pattern as
well.

• The Abstract Factory Pattern provides an interface to create and return one
of several families of related objects.

• The Builder Pattern separates the construction of a complex object from its
representation, so that several different representations can be created
depending on the needs of the program.

• The Prototype Pattern starts with an instantiated class and copies or clones
it to make new instances. These instances can then be further tailored using
their public methods.

Copyright © 2001, by James W. Cooper

115

• The Singleton Pattern is a class of which there can be no more than one
instance. It provides a single global point of access to that instance.

Copyright © 2001, by James W. Cooper

116

9. THE FACTORY PATTERN

One type of pattern that we see again and again in OO programs is the Simple
Factory pattern. A Simple Factory pattern is one that returns an instance of one of
several possible classes depending on the data provided to it. Usually all of the
classes it returns have a common parent class and common methods, but each of
them performs a task differently and is optimized for different kinds of data. This
Simple Factory is not in fact one of the 23 GoF patterns, but serves here as an
introduction to the somewhat more subtle Factory Method GoF pattern we’ll
discuss shortly.

How a Factory Works
To understand the Simple Factory pattern, let’s look at the diagram in Figure 3.1.

Figure 3.1 – A Simple Factory pattern.

In this figure, X is a base class and classes XY and XZ are derived from it. The
XFactory class decides which of these subclasses to return depending on the
arguments you give it. On the right, we define a getClass method to be one that
passes in some value abc, and that returns some instance of the class x. Which
one it returns doesn't matter to the programmer since they all have the same
methods, but different implementations. How it decides which one to return is
entirely up to the factory. It could be some very complex function but it is often
quite simple.

Copyright © 2001, by James W. Cooper

117

Sample Code
Let's consider a simple VB6 case where we could use a Factory class. Suppose
we have an entry form and we want to allow the user to enter his name either as
“firstname lastname” or as “lastname, firstname”. We’ll make the further
simplifying assumption that we will always be able to decide the name order by
whether there is a comma between the last and first name.

This is a pretty simple sort of decision to make, and you could make it with a
simple if statement in a single class, but let’s use it here to illustrate how a
factory works and what it can produce. We’ll start by defining a simple interface
that takes the name string in and allows you to fetch the names back:

Public Sub init(ByVal s As String)
End Sub
'-----
Public Function getFrName() As String
End Function
'-----
Public Function getLname() As String
End Function

The Two Derived Classes
Now we can write two very simple classes that implement that interface and split
the name into two parts in the constructor. In the FNamer class, we make the
simplifying assumption that everything before the last space is part of the first
name:

'Class FNamer
Implements Namer
Private nm As String, lname As String, frname As String
'-----
Private Function Namer_getFrname() As String
Namer_getFrname = frname
End Function
'-----
Private Function Namer_getLname() As String
Namer_getLname = lname
End Function
'-----
Private Sub Namer_init(ByVal s As String)
Dim i As Integer

Copyright © 2001, by James W. Cooper

118

nm = s
i = InStr(nm, " ") 'look for space
If i > 0 Then
 frname = Left$(nm, i - 1) 'separate names
 lname = Trim$(Right$(nm, Len(nm) - i))
Else
 lname = nm 'or put all in last name
 frname = ""
End If
End Sub

And, in the LNamer class, we assume that a comma delimits the last name. In
both classes, we also provide error recovery in case the space or comma does not
exist.

'Class LNamer
Implements Namer
Private nm As String, lname As String, frname As String
'-----
Private Function Namer_getFrname() As String
Namer_getFrname = frname
End Function
'-----
Private Function Namer_getLname() As String
Namer_getLname = lname
End Function
'-----
Private Sub Namer_init(ByVal s As String)
Dim i As Integer
nm = s 'save whole name
i = InStr(nm, ",") 'if comma, last is to left
If i > 0 Then
 lname = Left$(nm, i - 1)
 frname = Trim$(Right$(nm, Len(nm) - i))
Else
 lname = nm 'or put all in last name
 frname = ""
End If
End Sub

Copyright © 2001, by James W. Cooper

119

Building the Simple Factory
Now our simple Factory class is easy to write, and is part of the user interface.
We just test for the existence of a comma and then return an instance of one class
or the other:

Private nmer As Namer 'willl be one kind or the other
'-----
Private Sub getName_Click()
Dim st As String, i As Integer
st = txNames.Text 'get the name from the entry field
i = InStr(st, ",") 'look for a comma
If i > 0 Then
 Set nmer = New lNamer 'create last name class
Else
 Set nmer = New Frnamer 'or fist name class
End If
nmer.init st
'put results in display fields
txFrName.Text = nmer.getFrName
txlName.Text = nmer.getLname
End Sub

Using the Factory
Let’s see how we put this together. The complete class diagram is shown in
Figure 3.2.

Figure 3.2 – The Namer factory program.

Copyright © 2001, by James W. Cooper

120

We have constructed a simple user interface that allows you to enter the names in
either order and see the two names separately displayed. You can see this
program in Figure 3.3.

Figure 3.3 –The Namer program executing.

You type in a name and then click on the Get name button, and the divided name
appears in the text fields below. The crux of this program is the compute method
that fetches the text, obtains an instance of a Namer class and displays the results.

And that’s the fundamental principle of the Simple Factory pattern. You create
an abstraction that decides which of several possible classes to return and returns
one. Then you call the methods of that class instance without ever knowing
which subclass you are actually using. This approach keeps the issues of data
dependence separated from the classes’ useful methods.

Writing the Factory Pattern in VB.NET
In VB7, we can get a fair amount of mileage out of using inheritance here. We
can define a base class called NameClass which holds the first and last name in

Copyright © 2001, by James W. Cooper

121

protected variables, and define the two accessor functions to get the first and last
name out of the variables:

Public Class NameClass
 Protected Lname, Frname As String

 Public Function getFirst() As String
 Return Frname
 End Function

 Public Function getLast() As String
 Return Lname
 End Function
End Class

Then we can derive the FirstFirst and LastFirst classes from this class and make
use of the underlying get methods. The complete FirstFirst class is just

Public Class FirstFirst
 Inherits NameClass
 Public Sub New(ByVal nm As String)
 Dim i As Integer
 i = nm.indexOf(" ")
 If i > 0 Then
 Frname = nm.substring(0, i).trim()
 Lname = nm.substring(i + 1).trim()
 Else
 Frname = ""
 LName = nm
 End If
 End Sub
End Class

And the LastFirst class is entirely analogous. The factory class is quite similar,
but makes use of the constructors

Public Class NameFactory

 Public Function getNamer(_
 ByVal nm As String) As NameClass
 Dim i As Integer

Copyright © 2001, by James W. Cooper

122

 i = nm.indexOf(",")
 If i > 0 Then
 Return New LastFirst(nm)
 Else
 Return New FirstFirst(nm)
 End If
 End Function
End Class

Factory Patterns in Math Computation
Most people who use Factory patterns tend to think of them as tools for
simplifying tangled programming classes. But it is perfectly possible to use them
in programs that simply perform mathematical computations. For example, in
the Fast Fourier Transform (FFT), you evaluate the following four equations
repeatedly for a large number of point pairs over many passes through the array
you are transforming. Because of the way the graphs of these computations are
drawn, these equations constitute one instance of the FFT “butterfly.” These are
shown as Equations 1--4.

(1)

(2)

(3)

(4)

However, there are a number of times during each pass through the data where
the angle y is zero. In this case, your complex math evaluation reduces to

Equations (5-8):

(5)

(6)

(7)

)cos()sin(
)cos()sin(
)sin()cos(
)sin()cos(

221
'
2

221
'
1

221
'
2

221
'
1

yIyRII
yIyRII
yIyRRR
yIyRRR

−−=
++=
+−=
−+=

21
'
2

21
'
1

21
'
2

21
'
1

III
III
RRR
RRR

−=
+=
−=
+=

Copyright © 2001, by James W. Cooper

123

(8)

Then, we can make a simple factory class that decides which class instance to
return. Since we are making Butterflies, we’ll call our Factory a Cocoon:

'Class Cocoon
'get back right kind of Butterfly
Public Function getButterfly(y As Single) As Butterfly
 If y = 0 Then
 Set getButterfly = New addButterfly
 Else
 Set getButterfly = New trigButterfly
 End If
End Function

In this example, we create a new instance each time. Since there are only two
kinds, we might create them both in advance and return them as needed.

'Class Cocoon1
Private addB As Butterfly, trigB As Butterfly
'-------
'create instances in advance
Private Sub Class_Initialize()
 Set addB = New addButterfly
 Set trigB = New trigButterfly
End Sub
'-------
'get back right kind of Butterfly
Public Function getButterfly(y As Single) As Butterfly
 If y = 0 Then
 Set getButterfly = addB
 Else
 Set getButterfly = trigB
 End If
End Function

Programs on the CD-ROM
\Factory\Namer The VB6 name factory

\Factory\Namer\vbNetNamer The VB7 name factory

\Factory\FFT A VB6 FFT example

Copyright © 2001, by James W. Cooper

124

Thought Questions
1. Consider a personal checkbook management program like Quicken. It

manages several bank accounts and investments and can handle your bill
paying. Where could you use a Factory pattern in designing a program like
that?

2. Suppose you are writing a program to assist homeowners in designing
additions to their houses. What objects might a Factory be used to produce?

Copyright © 2001, by James W. Cooper

125

10. THE FACTORY METHOD

We just seen a couple of examples of the simplest of factories. The factory
concept recurs all throughout object-oriented programming, and we find a few
examples embedded in VB itself, and in other design patterns (such as the
Builder pattern). In these cases a single class acts as a traffic cop and decides
which subclass of a single hierarchy will be instantiated.

The Factory Method pattern is a clever but subtle extension of this idea, where no
single class makes the decision as to which subclass to instantiate. Instead, the
superclass defers the decision to each subclass. This pattern does not actually
have a decision point where one subclass is directly selected over another class.
Instead, programs written to this pattern define an abstract class that creates
objects, but lets each subclass decide which object to create.

We can draw a pretty simple example from the way that swimmers are seeded
into lanes in a swim meet. When swimmers compete in multiple heats in a given
event, they are sorted to compete from slowest in the early heats to fastest in the
last heat, and arranged within a heat with the fastest swimmers in the center
lanes. This is referred to as straight seeding.

Now, when swimmers swim in championships, they frequently swim the event
twice. During preliminaries everyone competes and the top 12 or 16 swimmers
return to compete against each other at finals. In order to make the preliminaries
more equitable, the top heats are circle seeded, so that the fastest three swimmers
are in the center lane in the fastest three heats, the second fastest three swimmers
in the next to center lane in the top three heats, and so forth

So, how do we build some objects to implement this seeding scheme and
illustrate the Factory Method. First, let’s design an abstract Events class:

'Class Events
Private numLanes As Integer
Private swimmers As New Collection 'list of swimmers
'-----
Public Sub init(Filename$, lanes As Integer)
Dim f As Integer, s As String
Dim sw As Swimmer
'read in the data file in the constructor
f = FreeFile

Copyright © 2001, by James W. Cooper

126

numLanes = lanes
 Set swimmers = New Collection
 'read in swimmers from file
 Filename = App.Path + "\" + Filename
 Open Filename For Input As #f
 Input #f, s
 While (Not EOF(f))
 Set sw = New Swimmer 'create each swimmer
 sw.init s 'and initialize it
 swimmers.Add sw 'add to list
 Input #f, s 'read another
 Wend
 Close #f
End Sub
'-----
Public Function getSwimmers() As Collection
 Set getSwimmers = swimmers
End Function
'-----
Public Function isPrelim() As Boolean
End Function
'-----
Public Function isFinal() As Boolean
End Function
'-----
Public Function isTimedFinal() As Boolean
End Function
'-----
Public Function getSeeding() As Seeding
End Function

Grammatically, it would have been better to call this an ”Event” class, but
“Event” is a reserved word in VB6. Note that this class is not entirely without
content. Since all the derived classes will need to read data from a file, we put
that code in the base class.

This defines the remaining methods simply without any necessity of filling them
in. Then we can implement concrete classes from the Events class, called
PrelimEvent and TimedFinalEvent. The only difference between these classes is
that one returns one kind of seeding and the other returns a different kind of
seeding.

We also define an abstract Seeding class having the following methods:

Copyright © 2001, by James W. Cooper

127

'Class Seeding
Private numLanes As Integer
Private laneOrder As Collection
Dim asw() As Swimmer
'-----
Public Function getSeeding() As Collection
End Function
'-----
Public Function getHeat() As Integer
End Function
'-----
Public Function getCount() As Integer
End Function
'-----
Public Sub seed()
End Sub
'-----
Public Function getSwimmers() As Collection
End Function
'-----
Public Function getHeats() As Integer
End Function
'-----
Private Function odd(n As Integer) As Boolean
 odd = (n \ 2) * 2 <> n
End Function
'-----
Public Function calcLaneOrder(lns As Integer) As Collection
 numLanes = lns
 'This function is implemented but not shown here
 ReDim lanes(numLanes) As Integer
End Function
'-----
Public Sub init(swmrs As Collection, lanes As Integer)
End Sub
'-----
Public Function sort(sw As Collection) As Collection
 ReDim asw(sw.count) As Swimmer
 'This function is implemented but not shown here
End Function

Note that we actually included code for the calcLaneOrder and sort functions, but
omit the code here for simplicity. The derived classes then each create an
instance of the base Seeding class to call these functions.

Copyright © 2001, by James W. Cooper

128

We can then create two concrete seeding subclasses: StraightSeeding and
CircleSeeding. The PrelimEvent class will return an instance of CircleSeeding
and the TimedFinalEvent class will return an instance of StraightSeeding. Thus
we see that we have two hierarchies: one of Events and one of Seedings. We see
these two hierarchies illustrated in Figure 4.1.

Figure 4.1 – The class relations between Event and Seeding classes.

 In the Events hierarchy, you will see that both derived Events classes contain a
getSeeding method. One of them returns an instance of StraightSeeding and the
other an instance of CircleSeeding. So you see, there is no real factory decision
point as we had in our simple example. Instead, the decision as to which Event
class to instantiate is the one that determines which Seeding class will be
instantiated.

While it looks like there is a one to one correspondence between the two class
hierarchies, there needn’t be. There could be many kinds of Events and only a
few kinds of Seeding that they use.

The Swimmer class
We haven’t said much about the Swimmer class, except that it contains a name,
club age, seed time and place to put the heat and lane after seeding. The Event

Copyright © 2001, by James W. Cooper

129

class reads in the Swimmers from some database (a file in our example) and then
passes that Collection to the Seeding class when you call the getSeeding method
for that event.

The Events Classes
We have seen the abstract base Events class above. In actual use, we use it to
read in the swimmer data (here from a file) and pass it on to instances of the
Swimmer class to parse

'Class Events
Private numLanes As Integer
Private swimmers As New Collection 'list of swimmers
'-----
Public Sub init(Filename$, lanes As Integer)
Dim f As Integer, s As String
Dim sw As Swimmer
Dim fl As New vbFile
'read in the data file in the constructor
f = FreeFile
numLanes = lanes
 Set swimmers = New Collection
 'read in swimmers from file
 Filename = App.Path + "\" + Filename
 fl.OpenForRead Filename
 s = fl.readLine

 While (Not fl.fEof)
 Set sw = New Swimmer 'create each swimmer
 sw.init s 'and initialize it
 swimmers.Add sw 'add to list
 s = fl.readLine 'read another
 Wend
 Close #f
End Sub
'-----
Public Function getSwimmers() As Collection
 Set getSwimmers = swimmers
End Function
'-----
Public Function isPrelim() As Boolean
End Function
'-----
Public Function isFinal() As Boolean

Copyright © 2001, by James W. Cooper

130

End Function
'-----
Public Function isTimedFinal() As Boolean
End Function
'-----
Public Function getSeeding() As Seeding
End Function

The base Event class has empty methods for whether the event is a prelim, final
or timed final event. We fill these in in the derived classes.

Our PrelimEvent class just returns an instance of CircleSeeding:

'Class PrelimEvent
Implements Events
Private numLanes As Integer
Private swimmers As Collection
Private evnts As New Events
Private sd As Seeding
Private Sub Class_Initialize()
 Set evnts = New Events
End Sub
'-------
Private Function Events_getSeeding() As Seeding
 Set sd = New CircleSeeding
 sd.init swimmers, numLanes
 Set Events_getSeeding = sd
End Function
'-------
Private Function Events_getSwimmers() As Collection
 Set Events_getSwimmers = swimmers
End Function
'-------
Private Function Events_isFinal() As Boolean
 Events_isFinal = False
End Function
'-------
Private Function Events_isPrelim() As Boolean
 Events_isPrelim = True
End Function
'-------
Private Function Events_isTimedFinal() As Boolean
 Events_isTimedFinal = False
End Function
'-------

Copyright © 2001, by James W. Cooper

131

Private Sub Events_init(Filename As String, lanes As Integer)
 evnts.init Filename, lanes
 numLanes = lanes
 Set swimmers = evnts.getSwimmers
End Sub

while the TimedFinalEvent returns an instance of StraightSeeding:

'Class PrelimEvent
Implements Events
Private numLanes As Integer
Private swimmers As Collection
Private evnts As New Events
Private sd As Seeding
Private Sub Class_Initialize()
 Set evnts = New Events
End Sub
'-------
Private Function Events_getSeeding() As Seeding
 Set sd = New CircleSeeding
 sd.init swimmers, numLanes
 Set Events_getSeeding = sd
End Function

In both cases our events classes contain an instance of the base Events class,
which we use to read in the data files.

Straight Seeding
In actually writing this program, we’ll discover that most of the work is done in
straight seeding. The changes for circle seeding are pretty minimal. So we
instantiate our StraightSeeding class and copy in the Collection of swimmers and
the number of lanes.

Private Sub Seeding_seed()
Dim lastHeat As Integer, lastlanes As Integer
Dim heats As Integer, i As Integer, j As Integer
Dim swmr As Swimmer

Set sw = sd.sort(sw)
Set laneOrder = sd.calcLaneOrder(numLanes)
count = sw.count
lastHeat = count Mod numLanes

Copyright © 2001, by James W. Cooper

132

If (lastHeat < 3) And lastHeat > 0 Then
 lastHeat = 3 'last heat must have 3 or more
End If
count = sw.count
lastlanes = count - lastHeat
numheats = lastlanes / numLanes
If (lastHeat > 0) Then
 numheats = numheats + 1
End If
heats = numheats

'place heat and lane in each swimmer's object
j = 1
For i = 1 To lastlanes
 Set swmr = sw(i)
 swmr.setLane (laneOrder(j))
 j = j + 1
 swmr.setHeat (heats)
 If (j > numLanes) Then
 heats = heats - 1
 j = 1
 End If
Next i

'Add in last partial heat
 If (lastHeat > 0) Then
 If j > 1 Then
 heats = heats - 1
 End If
 j = 1
 For i = lastlanes + 1 To count
 Set swmr = sw(i)
 swmr.setLane laneOrder(j)
 j = j + 1
 swmr.setHeat (heats)
 Next i
 End If
End Sub

This makes the entire array of seeded Swimmers available when you call the
getSwimmers method.

Copyright © 2001, by James W. Cooper

133

Circle Seeding
The CircleSeeding class is derived from StraightSeeding, so it copies in the same
data.

'Circle seeding method
Private Sub Seeding_seed()
Dim i As Integer, j As Integer, k As Integer
'get the lane order]
Set laneOrder = sd.calcLaneOrder(numLanes)
Set sw = sd.sort(sw) 'sort the swimmers
strSd.init sw, numLanes 'create Straight Seeing object
strSd.seed 'seed into striaght order
numheats = strSd.getHeats 'get the total number of heats
 If (numheats >= 2) Then
 If (numheats >= 3) Then
 circlesd = 3 'seed either 3
 Else
 circlesd = 2 'or 2
 End If
 i = 1
 'copy seeding info into swimmers data
 For j = 1 To numLanes
 For k = 1 To circlesd
 sw(i).setLane (laneOrder(j))
 sw(i).setHeat (numheats - k + 1)
 i = i + 1
 Next k
 Next j
 End If
End Sub

Since the circle seeding calls straight seeding, it copies the swimmer collection
and lanes values. Then, our call to strSd.seed does the straight seeding.. This
simplifies things, because we will always need to seed the remaining heats by
straight seeding. Then we seed the last 2 or 3 heats as shown above and we are
done with that type of seeding as well.

Our Seeding Program
In this example, we took a list of swimmers from the web who competed in the
500 yd freestyle and the 100 yd freestyle and used them to build our

Copyright © 2001, by James W. Cooper

134

TimedFinalEvent and PrelimEvent classes. You can see the results of these two
seedings in Figure 4.2.

Figure 4.2 – Straight seeding of the 500 free and circle seeding of the 100 free.

Other Factories
Now one issue that we have skipped over is how the program that reads in the
swimmer data decides which kind of event to generate. We finesse this here by
simply creating the correct type of event when we read in the data. This code is
in the Form_Load event

Dim ev As Events

Set ev = New PrelimEvent 'create a Prelim/final event
ev.init "100free.txt", 6 'read in the data
Seedings.Add ev.getSeeding 'get the seeding and add to collection
lsEvents.AddItem "100 Free"

Set ev = New TimedFinalEvent 'create a new Timed final event
ev.init "500free.txt", 6 'read in the data
Seedings.Add ev.getSeeding 'get the seeeding
lsEvents.AddItem "500 Free" 'and add to collection

Clearly, this is an instance where an EventFactory may be needed to decide
which kind of event to generate. This revisits the simple factory we began the
discussion with.

Copyright © 2001, by James W. Cooper

135

The Seeding Program in VB7
In VB7, we can make effective use of inheritance to make each of these classes
substantially simpler. For example, the Events class is an abstract class which we
fill in the methods the derived TimedFinalEvent and PrelimEvent classes. IN
VB7, these classes differ in that we put the file reading methods in the base
Seeding class and let them be used by the derived classes, while in VB6, we had
to create an instance of the base Event class ins ide the TimedFinal and Prelim
event classes and call its functions specifically. The basic abstract class for
Events is now simply

Public Class Events

 Protected numLanes As Integer
 Protected swmmers As Swimmers
 '-----
 Public Sub New(ByVal Filename As String, _

ByVal lanes As Integer)
 MyBase.New()
 Dim s As String
 Dim sw As Swimmer
 Dim fl As vbFile

 fl = New vbFile(filename) 'Open the file
 fl.OpenForRead()

 numLanes = lanes 'Remember lane number
 swmmers = New Swimmers() 'list of kids

 'read in swimmers from file
 s = fl.ReadLine

 While Not fl.feof
 sw = New Swimmer(s) 'create each swimmer
 swmmers.Add(sw) 'add to list
 s = fl.ReadLine 'read another
 End While
 fl.closeFile()
 End Sub

Copyright © 2001, by James W. Cooper

136

 '-----
 Public Function getSwimmers() As ArrayList
 Return swmmers
 End Function
 '-----
 Public Overridable Function isPrelim() As Boolean
 End Function
 '-----
 Public Overridable Function isFinal() As Boolean
 End Function
 '-----
 Public Overridable Function isTimedFinal() As Boolean
 End Function
 '-----
 Public Overridable Function getSeeding() As Seeding
 End Function
End Class

Then our TimedFinalEvent is derived from that and creates an instance of the
StraightSeeding class.

Public Class TimedFinalEvent
 Inherits Events

 Public Sub New(ByVal Filename As String, _

 ByVal lanes As Integer)
 MyBase.New(Filename, lanes)
 End Sub
 '------
 Public Overrides Function getSeeding() As Seeding
 Dim sd As Seeding
 'create seeding and execute it
 sd = New StraightSeeding(swmmers, numLanes)
 sd.seed()
 Return sd
 End Function
 '------
 Public Overrides Function isFinal() As Boolean
 Return False
 End Function

Copyright © 2001, by James W. Cooper

137

 '------
 Public Overrides Function isPrelim() As Boolean
 Return False
 End Function
 '------
 Public Overrides Function isTimedFinal() As Boolean
 Return True
 End Function

End Class

The PrelimEvent class is basically the same, except that we create an instance of
circle seeding and set the prelim and finals flags differently. Here is the
getSeeding method:

Public Overrides Function getSeeding() As Seeding
 Return New CircleSeeding(swmmers, numLanes)
 End Function

In a similar fashion, the base Seeding class contains the functions sort and
getLaneOrder, and the derived classes for Straight and Cirlce seeding contain
only the changed seed methods.

When to Use a Factory Method
You should consider using a Factory method when

• A class can’t anticipate which kind of class of objects it must create.

• A class uses its subclasses to specify which objects it creates.

• You want to localize the knowledge of which class gets created.

There are several variations on the factory pattern to recognize.

1. The base class is abstract and the pattern must return a complete working
class.

2. The base class contains default methods and these methods are called unless
the default methods are insufficient.

Copyright © 2001, by James W. Cooper

138

3. Parameters are passed to the factory telling it which of several class types to
return. In this case the classes may share the same method names but may do
something quite different.

Thought Questions
1. Seeding in track is carried out from inside to outside lanes. What classes

would you need to develop to carry out track-like seeding as well?

Programs on the CD-ROM
\Factory\Seeder VB6 version of seeding program

\Factory\Seeder\vbNetSeeder VB7 version of seeding program

Copyright © 2001, by James W. Cooper

139

11. THE ABSTRACT FACTORY PATTERN

The Abstract Factory pattern is one level of abstraction higher than the factory
pattern. You can use this pattern when you want to return one of several related
classes of objects, each of which can return several different objects on request.
In other words, the Abstract Factory is a factory object that returns one of several
groups of classes. You might even decide which class to return from that group
using a Simple Factory.

Common thought experiment-style examples might include automobile factories.
You would expect a Toyota factory to work exclusively with Toyota parts and a
Ford factory to utilize Ford parts. You can consider each auto factory as an
Abstract Factory and the parts the groups of related classes.

A GardenMaker Factory
Let’s consider a practical example where you might want to use the abstract
factory in your application.

Suppose you are writing a program to plan the layout of gardens. These could be
annual gardens, vegetable gardens or perennial gardens. However, no matter
which kind of garden you are planning, you want to ask the same questions:

1. What are good border plants?

2. What are good center plants?

3. What plants do well in partial shade?

…and probably many other plant questions that we’ll omit here.

We want a base VB6 Garden class that can answer the above questions as class
methods:

Public Function getCenter() As Plant
End Function
'------
Public Function getBorder() As Plant
End Function
'------
Public Function getShade() As Plant

Copyright © 2001, by James W. Cooper

140

End Function

where our Plant object just contains and returns the plant name:

'Class Plant
Private plantName As String
'-----
Public Sub init(nm As String)
 plantName = nm 'save the plant name
End Sub
'-----
Public Function getName() As String
 Return plantName 'return the plant name
End Function

In Design Patterns terms, the Garden interface is the Abstract Factory. It defines
the methods of concrete class that can return one of several classes. Here we
return central, border and shade-loving plants as those three classes. The abstract
factory could also return more specific garden information, such as soil pH or
recommended moisture content.

In a real system, each type of garden would probably consult an elaborate
database of plant information. In our simple example we’ll return one kind of
each plant. So, for example, for the vegetable garden we simply write

'Class VeggieGarden
Implements Garden
Private pltShade as Plant, pltBorder as Plant
Private pltCenter As Plant
'-----
Private Sub Class_Initialize()
 Set pltShade = New Plant
 pltShade.init "Broccoli"
 Set pltBorder = New Plant
 pltBorder.init "Peas"
 Set pltCenter = New Plant
 pltCenter.init "Corn"
End Sub
'-----
Private Function Garden_getBorder() As Plant
 Set Garden_getBorder = pltBorder
End Function
'-----
Private Function Garden_getCenter() As Plant

Copyright © 2001, by James W. Cooper

141

 Set Garden_getCenter = pltCenter
End Function
'-----
Private Function Garden_getShade() As Plant
 Set Garden_getShade = pltShade
End Function

In a similar way, we can create Garden classes for PerennialGarden and
AnnualGarden. Each of these concrete classes is known as a Concrete Factory,
since it implements the methods outlined in the parent abstract class. Now we
have a series of Garden objects, each of which returns one of several Plant

objects. This is illustrated in the class diagram in Figure 5.1.

Figure 5.1 – The major objects in the Gardener program.

We can easily construct our abstract factory driver program to return one of these
Garden objects based on the radio button that a user selects as shown in the user
interface in Figure 5.2.

Copyright © 2001, by James W. Cooper

142

Figure 5.2 – The user interface of the Gardener program.

How the User Interface Works
This simple interface consists of two parts: the left side, that selects the garden
type and the right side, which selects the plant category. When you click on one
of the garden types, this causes the program to return a type of garden that
depends on which button you select. At first, you might think that we would need
to perform some sort of test to decide which button was selected and then
instantiate the right Concrete Factory class. However, a more elegant solution is
to just listen for the radio button click and change the current garden. Then when
a user clicks on one of the plant type buttons, the plant type is returned from the
current garden and the name of that plant displayed:

Private Sub opAnnual_Click()
 Set gden = New AnnualGarden 'select Annual garden
End Sub
'-----
Private Sub opPeren_Click()
 Set gden = New PerenGarden 'select Perennial garden
End Sub
'-----

Copyright © 2001, by James W. Cooper

143

Private Sub opVeggie_Click()
 Set gden = New VeggieGarden 'select vegetable garden
End Sub

Then, when we are called upon to draw a plant name on the garden display, we
erase the old name by XORing it, and then draw a new one in its place, by
getting the correct Plant from the current Garden

'-----
Private Sub btCenter_Click()
 Set plt = gden.getCenter 'get the center plant
 drawCenter plt.getName 'and draw it's name
End Sub
'-----
Private Sub drawCenter(st As String)
 pcGarden.PSet (1200, 1000)
 pcGarden.Print oldCenter 'XOR out old name
 pcGarden.PSet (1200, 1000)
 pcGarden.Print st 'draw in new name
 oldCenter = st 'remember this name so we can erase
End Sub

Creating an Abstract Factory Using VB7
The same GardenMaker program differs substantially in VB7. While it is
certainly possible to write Garden as an interface and have each of the derived
gardens implement that interface, it is easier to have some of the methods in the
base Garden class and the rest in the derived classes.

The other major differences in VB7 have to do with the event system. In VB7,
you do not draw on the screen directly from your code. Instead, the screen is
updated when the next OnPaint event occurs, and you must tell the paint routine
what objects it can now paint.

Since each garden should know how to draw itself, it should have a draw method
that draw the appropriate plant names on the garden screen. And, since we
provided push buttons to draw each of the types of plants, we need to set a
Boolean which indicates that you can now draw each of these plant types.

We start with our simplified Plant class, where we pass the name of the plant in
right in the constructor:

Copyright © 2001, by James W. Cooper

144

Public Class Plant
 Private plantName As String
 '-----
 Public Sub New(ByVal nm As String)
 MyBase.New()
 plantName = nm 'save the plant name
 End Sub
 '-----
 Public Function getName() As String
 getName = plantName 'return the plant name
 End Function
End Class

Then we create the basic Garden class, which contained the getShade, getCenter
and getBorder methods in the original implementation, no longer needs these
methods in this implementation, because the Garden itself does the drawing.

Public Class Garden
 'protected objects are accessed by derived classes
 Protected pltShade, pltBorder, pltCenter As Plant
 Protected center, shade, border As Boolean

 'These are created in the constructor
 Private gbrush As SolidBrush
 Private gdFont As Font

 'Constructor creates brush and font fro drawing
 Public Sub New()
 MyBase.New()
 gBrush = New SolidBrush(Color.Black)
 gdFont = New Font("Arial", 10)
 End Sub
 '-----

The drawing is done in a simple draw method, where we check as to whether we
are supposed to draw each kind of plant name, and draw it if that Boolean is true.

Public Sub draw(ByVal g As Graphics)
 If border Then
 g.DrawString(pltBorder.getName, gdFont, _

Copyright © 2001, by James W. Cooper

145

 gbrush, 50, 150)
 End If
 If center Then
 g.DrawString(pltCenter.getName, gdFont, _
 gbrush, 100, 100)
 End If
 If shade Then
 g.DrawString(pltShade.getName, gdFont,_
 gbrush, 10, 50)
 End If
 End Sub

Then, we add three set methods to indicate that you can draw each plant:

Public Sub showCenter()
 center = True
 End Sub
 '-----
 Public Sub showBorder()
 border = True
 End Sub
 '-----
 Public Sub showShade()
 shade = True
 End Sub
 '-----
 Public Sub clear()
 center = False
 border = False
 shade = False
 End Sub
Now, the three derived classes for the three gardens are extremely simple, and
only contain calls to the constructors for the three plants. The following is the
entire AnnualGarden class:

Public Class AnnualGarden
 Inherits Garden
 Public Sub New()
 MyBase.New()
 pltShade = New Plant("Coleus")
 pltBorder = New Plant("Alyssum")

Copyright © 2001, by James W. Cooper

146

 pltCenter = New Plant("Marigold")
 End Sub
End Class

Note that the plant names are now set in their constructors, and that the three
plant variables that we set are part of the base garden class.

The PictureBox
We draw the circle representing the shady area inside the PictureBox, and draw
the names of the plants inside this box as well. Thus, we need to add an OnPaint
method not to the main GardenMaker window class, but to the PictureBox it
contains. One way to do this is by creating a subclass of PictureBox which
contains the paint method including the circle drawing, and tells the garden to
draw itself:

Public Class GPic
 Inherits System.WinForms.PictureBox
 ' simple derived Picturebox class that
 'draws the Garden plant names and shade circle
 Private gden As Garden
 Private br As SolidBrush
 Public Sub New()
 MyBase.New
 InitializeComponent()
 br = New SolidBrush(Color.LightGray)
 End Sub

 Public Sub setGarden(ByVal gd As Garden)
 gden = gd 'copy in current garden
 gden.clear()
 refresh()
 End Sub
 '-----
 Protected Overrides Sub OnPaint(_

ByVal e As PaintEventArgs)
 Dim g As Graphics = e.Graphics
 'draw the circle
 g.FillEllipse(br, 5, 5, 100, 100)
 'have the garden draw itself

Copyright © 2001, by James W. Cooper

147

 gden.draw(g)
 End Sub
End Class

Note that we do not have to erase the plant name text each time in VB7, because
Paint is only called when the whole picture needs to be repainted.

Handling the RadioButton and Button Events
When one of the three radio buttons is clicked, you create a new garden of the
correct type, and pass it into the picture box class:

Protected Sub opPeren_CheckedChanged(_
ByVal sender As Object, _
 ByVal e As System.EventArgs)

 gden = New PerennialGarden()
 pBox.setGarden(gden)
 clearchecks()
 End Sub

Then, when you click on one of the buttons to show the plant names, you simply
call that garden’s method to show that plant name, and then call the picture box’s
Refresh method to cause it to repaint.

Protected Sub ckBorder_CheckedChanged(_
ByVal sender As Object, _
ByVal e As System.EventArgs)

 gden.showBorder()
 pBox.refresh()
 End Sub

Adding More Classes
One of the great strengths of the Abstract Factory is that you can add new
subclasses very easily. For example, if you needed a GrassGarden or a
WildFlowerGarden, you can subclass Garden and produce these classes. The
only real change you’d need to make in any existing code is to add some way to
choose these new kinds of gardens.

Copyright © 2001, by James W. Cooper

148

Consequences of Abstract Factory
One of the main purposes of the Abstract Factory is that it isolates the concrete
classes that are generated. The actual class names of these classes are hidden in
the factory and need not be known at the client level at all.

Because of the isolation of classes, you can change or interchange these product
class families freely. Further, since you generate only one kind of concrete class,
this system keeps you from inadvertently using classes from different families of
products. However, it is some effort to add new class families, since you need to
define new, unambiguous conditions that cause such a new family of classes to
be returned.

While all of the classes that the Abstract Factory generates have the same base
class, there is nothing to prevent some subclasses from having additional
methods that differ from the methods of other classes. For example a
BonsaiGarden class might have a Height or WateringFrequency method that is
not present in other classes. This presents the same problem as occur in any
subclasses -- you don’t know whether you can call a class method unless you
know whether the subclass is one that allows those methods. This problem has
the same two solutions as in any similar case: you can either define all of the
methods in the base class, even if they don’t always have a actual function. If you
can’t change the base interface, you can derive a new base interface which
contains all the methods you need and subclass that for all of your garden types.

Thought Questions
If you are writing a program to track investments, such as stocks, bonds, metal
futures, derivatives, and the like., how might you use an Abstract Factory?

Code on the CD-ROM
\AbstractFactory\GardenPlanner VB6 version of Gardener program

\AbstractFactory\VBNet\Gardenmaker VB7 version of Gardener program

Copyright © 2001, by James W. Cooper

149

12. THE SINGLETON PATTERN

In this chapter, we’ll take up the Singleton pattern. This pattern is grouped with
the other Creational patterns, although it is to some extent a pattern that limits the
creation of classes rather than promoting such creation. Specifically, the
Singleton assures that there is one and only one instance of a class, and provides
a global point of access to it. There are any number of cases in programming
where you need to make sure that there can be one and only one instance of a
class. For example, your system can have only one window manager or print
spooler, or a single point of access to a database engine. Your PC might have
several serial ports but there can only be one instance of “COM1.”

Creating Singleton Using a Static Method
The easiest way to make a class that can have only one instance is to use an
external static variable that we set on the first instance and check for each time
we create an instance of the class. Then we create have the Class_Initialize
method create a single instance or cause an error.

In this first example, we create a variable spool_counter, in a publicly accesible
module and refer to it throughout.

'Singleton PrintSpooler static constant
Public spool_counter As Integer

Within the PrintSpooler class we check that counter and either create an instance
or cause an error.

'-----
Private Sub Class_Initialize()
 If spool_counter > 0 Then
 Err.Raise vbObjectError + 1 'raise error
 End If
 spool_counter = spool_counter + 1
End Sub

Copyright © 2001, by James W. Cooper

150

However this only assure that you can have but one instance. It does not provide
global access to it. To do that, we must allow the class to create only one
accessible instance, and use an getSpooler method to return that instance.

'Class PrintSpooler
'-----
Private Sub Class_Initialize()
 If spool_counter = 0 Then
 Set glbSpooler = Me 'save legal instance
 spool_counter = spool_counter + 1 'count it
 End If
End Sub
'-----
Public Function GetSpooler() As PrintSpooler
 Set GetSpooler = glbSpooler 'return legal instance
End Function

We also have two global variables stored in module -level code where the one
legal instance is stored:

'Singleton PrintSpooler static constants
Public spool_counter As Integer
Public glbSpooler As PrintSpooler

One major advantage to this approach is that you don’t have to worry about error
handling if the singleton already exists—you always get the same instance of the
spooler. If however, you create an instance of the PrintSpooler class and choose
not to use the error handling, you need to put a flag in the spooler to indicate that
only one instance is legal. Here we use the legalInstance variable to make sure
that printing can only occur from the legal instance.

Option Explicit
Private legalInstance As Boolean 'true for only one
'Class PrintSpooler
'-----
Private Sub Class_Initialize()
 If spool_counter = 0 Then 'create and save one instance
 legalInstance = True 'flag it
 Set glbSpooler = Me 'save it
 spool_counter = spool_counter + 1 'count it
 Else
 legalInstance = False 'not the legal one
 Err.Description = "Illegal spooler instance"
 Err.Raise vbObjectError + 1 'could raise an error

Copyright © 2001, by James W. Cooper

151

 End If
End Sub
'-----
Public Function GetSpooler() As PrintSpooler
 Set GetSpooler = glbSpooler 'return the legal one
End Function
'-----
Public Sub Printit(str As String)
 If legalInstance Then
 'test to make sure this isn't called directly
 MsgBox str
 End If
End Sub
'-----
Private Sub Class_Terminate()
 'terminate legal class
 If legalInstance Then
 Set glbSpooler = Nothing
 spooler_cnt = 0
 End If
End Sub

Finally, should you need to change the program to allow two or three instances,
this class is easily modified to allow this, by keeping an array of instance in your
module level code.

Catching the Error
User errors are always ones you define and are constants added to the
vbObjectError constant. You can only catch errors that are raised within class
modules, if you select the option “Break on unhandled errors” from Tools |
Options, on the General tab. Otherwise the error will be raised within the class
instead of being passed out for processing by the calling program.

'PrintSpooler Driver form
Dim prSp As PrintSpooler
'-----
Private Sub GetSpooler_Click()
On Local Error GoTo nospool
 'create a spooler
 Set prSp = New PrintSpooler 'create class
 Set prSp = prSp.GetSpooler 'get legal instance

Copyright © 2001, by James W. Cooper

152

 errText.Text = "Spooler created"
spexit:
 Exit Sub
'if the spooler causes an error we will get this message
nospool:
 errText.Text = "Spooler already exists"
 Resume spexit
End Sub

Providing a Global Point of Access to a Singleton
Since each Singleton is used to provide a single point of global access to a class,
your program design must provide for a way to reference the Singletons
throughout the program.

One solution is to create a collection such Singletons at the beginning of the
program and pass them as arguments to the major classes that might need to use
them.
Dim Singletons as New Collection
Singletons.add prSpl, "PrintSpooler"

The disadvantage is that you might not need all the Singletons that you create for
a given program execution, and this could have performance implications.

A more elaborate solution could be to create a registry of all the Singleton classes
in the program and make the registry generally available. Each time a Singleton
is instantiated, it notes that in the Registry. Then any part of the program can ask
for the instance of any singleton using an identifying string and get back that
instance variable.

Of course, the registry itself is probably a Singleton and must be passed to all
parts of the program using the init method or various set functions, or as a global
variable.

The MSComm Control as a Singleton
The MSComm control provides you with convenient access to your PC’s serial
ports. You can set the port number, baud rate, parity, and the number of data bits
and stop bits and can open the port and send or receive data. A PC’s BIOS
usually allows up to 4 serial ports, called COM1 through COM4, even though

Copyright © 2001, by James W. Cooper

153

fewer may actually be installed, and this must be mirrored by the MSComm
control. In addition, there can be only one instance of any of the ports at any
given time, since two programs or devices cannot use the same port at the same
time.

Serial ports are a good example of a resource that should be represented by a
Singleton, since only one program at a time can have access to a serial port, and
even within a program only one module or group of modules should be
communicating over the port.

There are really two Single tons possible here: one which manages the collection
of ports and lets out only one instance of each port, and the port objects
themselves which must each refer to a single port.

In our example program, we’ll create an array of MSComm controls in a small
invisible form, and then provide methods to query them. The design of our
invisible form is shown in Figure 1.

Figure 1 – The invisible form module

Then we can create public methods for this invisible form, to list which ports are
available and to try to open them.

Dim coms As New Collection
Dim loaded As Boolean
Dim validPorts As New Collection
Dim availablePorts As New Collection
'-----
Private Sub Form_Load()
 loaded = False
 loadComms 'load coms into collection
End Sub
'-----
Private Sub loadComms()
 'create array of 5 MSComm controls
 If Not loaded Then
 coms.Add comm(0)

Copyright © 2001, by James W. Cooper

154

 coms.Add comm(1)
 coms.Add comm(2)
 coms.Add comm(3)
 coms.Add comm(4)
 loaded = True 'collection is now loaded
 End If
End Sub

You might want to inquire which ports are available or which ports are valid. In
either case, you need only move through the list of possible ports and try to open
them. If they are open, you will get a Port already open error and if they do not
exist, you will get an Invalid port number error. The code for handling this looks
like the following:

Public Function getValidPorts() As Collection
 Dim cm As MSComm, i As Integer
 Dim valid As Integer
 loadComms 'make sure ports list has been loaded
 On Local Error GoTo cmsb
 For i = 1 To 5
 Set cm = coms(1) 'get any MSComm control
 valid = True 'assume it is valid
 cm.CommPort = i 'set the port number
 cm.PortOpen = True 'try to open it
 cm.PortOpen = False 'if it opens, close it
 If valid Then 'if not negated by error
 validPorts.Add i 'then add to list
 End If
 Next i
 Set getValidPorts = validPorts 'return list
Exit Function

'error handling for opening ports
cmsb:
 Select Case Err.Number
 Case 8002 'invalid port
 valid = False
 Case 8005 'port already open
 valid = True
 End Select
 Resume Next
End Function

Copyright © 2001, by James W. Cooper

155

Available Ports
We can construct a similar method to return a list of ports still available. In that
case the port is added to the list only if neither the “Port already open” or the
“Invalid port number” errors occur.

Figure 2 shows a program which allows you to open each port in succession and
see what error occurs. It also shows the results of the getValidPorts and the
getAvailablePorts methods.

Figure 6.2- The available ports assigned and then in use.

The list of Com option buttons in Figure 6.2 above consist of calls to the
following comClick method, which just displays the error message (if any) or the
port status in the list bos:

Private Sub comClick(i As Integer)
Dim com As MSComm

On Local Error GoTo nocom
Set com = comFrm.getComm(i) 'Get a port from the array
com.CommPort = i
comFrm.getComm(i).PortOpen = True 'try to open it
'display statu of por
List1.AddItem Str$(i) + " Port opened"

Copyright © 2001, by James W. Cooper

156

pexit:
Exit Sub

nocom:
'or display the error message
 List1.AddItem Str$(i) + Str$(Err.Number) + " " & _

Err.Description
 Resume pexit
End Sub

Which are the Singletons here? Well, each MSComm is an open book to be
written on, but once it opens a particular port, it becomes a Singleton for that
port. You cannot open another MSComm control using that port number.
Similarly, we could regard the invisible commForm control as a Singleton. There
could be more than one in a program, but it is unlikely that there would be any
reason to have more than one. It manages and shows you the results of each port.

Writing a Singleton in VB.NET
VB7 provides an unusually powerful set of methods for creating and using
singletons, and illustrates a number of the powerful features of this new language
version. We want to be able to allocate one and only one spooler in our system
and know whether one has been allocated. In VB7, we can create classes which
have shared methods. These are methods that we can call using the class name
rather than through an instance of the class. In other languages, these are called
static methods. For example, the File class in VB7 can be used to get information
about files without creating an instance of it:

If File.Exists("foo.txt")

And the MessageBox class has only shared methods

MessageBox.Show("Error in program!")

Similarly, you can create a your own class that has shared methods by simply
declaring these methods to be Shared. Shared methods can be called only using
the class name. They are now available from instances of the class.

In this Singleton example, you could create a method for getting a legal spooler
instance:

Public Shared Function getSpooler() As Spooler

Copyright © 2001, by James W. Cooper

157

How would such a class decide whether a spooler has been allocated? You can
keep a shared counter right inside the class and check whether a spooler has been
allocated or not:

Private Shared Spool_counter as Integer

Shared variables like these are only accessible from Shared methods. Methods of
the class that are not shared and are used by class instances cannot access these
shared variables.

Using a Private Constructor
Since we don’t want anyone to be able to create multiple instances of our Spooler
class, we will make the New constructor private. The upshot of this simple
change is that the only class that can create an instance of the Spooler class is the
spooler class itself. While this seems at first as if it is a circular argument, we
find that we can use a Shared method of the Spooler class to create an actual
instance of the class. It might look like this:
Public Shared Function getSpooler() As Spooler
 getSpooler = New Spooler
End Function

Then we can call the non-shared methods, such as a Print method using the
instance of the spooler that the shared method returns.

spl = Spooler.getSpooler
spl.Print("Hi there")

Error Handling in Our Singleton
Now we need to decide how to indicate errors when we have not allocated a
spooler and when we try to allocate more than one. The ideal way to do this in
VB7 is by using exceptions. We can create a simple SpoolerException class
which has an appropriate error message for our Singleton as follows:

Public Class SpoolerException
 Inherits Exception
 Private mesg As String

Copyright © 2001, by James W. Cooper

158

 '---------
 Public Sub New()
 MyBase.New()
 mesg = "Only one spooler instance allowed"
 End Sub
 '---------
 Public Overrides ReadOnly Property Message() As String
 Get
 Message = mesg
 End Get
 End Property
End Class

Then all we have to do in the constructor of our Spooler class is to check to see if
this is the first and only legal instance, and if it isn’t to create one. If it is, we
throw this exception:

Public Class Spooler
 Private Shared Spool_counter As Integer
 Private Shared glbSpooler As Spooler
 Private legalInstance As Boolean
 '-----
 Private Sub New()
 MyBase.New()

 If spool_counter = 0 Then 'create one instance
 glbSpooler = Me 'save it
 spool_counter = spool_counter + 1 'count it
 legalInstance = True
 Else
 legalInstance = False
 Throw New SpoolerException()
 End If
 End Sub

In a similar fashion, we expand our getSpooler shared method to pass on that
thrown exception to the calling program

Public Shared Function getSpooler() As Spooler
 Try
 glbSpooler = New Spooler()

Copyright © 2001, by James W. Cooper

159

 Catch e As Exception
 Throw e 'pass on to calling program
 Finally
 getSpooler = glbSpooler 'or return legal one
 End Try
 End Function

A VB.NET SpoolDemo Program
Now lets rewrite our simple spooler demo to display a message if we have a
spooler and if we don’t. It really amounts to testing for and catching the
exceptions in the two button click events:

Protected Sub Print_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

 Try
 spl.Print("Hi there")
 Catch ex As Exception
 ErrorBox("No spooler allocated")
 End Try
 End Sub
 '--------
 Private Sub ErrorBox(ByVal mesg As String)
 MessageBox.Show(mesg, "Spooler Error", _

Messagebox.IconError)
 End Sub
 '------
 Protected Sub btGetSpooler_Click(_

ByVal sender As Object, ByVal e As System.EventArgs)
 Try
 spl = Spooler.getSpooler
 TextBox1.text = "Got spooler"
 Catch ex As Exception
 ErrorBox("Spooler already allocated")
 End Try
 End Sub

This creates the simple window shown in Figure 6-3

Copyright © 2001, by James W. Cooper

160

Figure 6.3 – The VB7 Spooler Demo

And it produces the two error message boxes shown in Figure 6.4

The Global Point of Access
In order to illustrate how we can use exceptions and pass them on to the calling
program, we did not really provide a global point of access. Once we call the
shared getSpooler function once, additional calls to it throw an exception. It
might actually be more appropriate to simply always return that instance once it
is created.

Copyright © 2001, by James W. Cooper

161

Public Shared Function getSpooler() As Spooler
 If spooler_count = 0 then
 glbSpooler = New Spooler
 End If
GetSpooler = glbSpooler 'return instance

End Function

Other Consequences of the Singleton Pattern
You can easily change a Singleton to allonhw a small number of instances where
this is allowable and meaningful.

Thought Questions
1. Consider a system for processing ATM card transactions, where a thief has

obtained an ATM card number and is using to steal funds, concurrent with
the legitimate user withdrawing funds. How could you design a Singleton to
reduce this risk?

Programs on Your CD-ROM
\Singleton\ VB6 spooler singleton

\Singleton\comms VB6 com port singleton

\Singleton\VBNetSingleton VB7 spooler singleton

Copyright © 2001, by James W. Cooper

162

13. THE BUILDER PATTERN

In this chapter we’ll consider how to use the Builder pattern to construct objects
from components. We have already seen that the Factory Pattern returns one of
several different subclasses depending on the data passed in arguments to the
creation methods. But suppose we don’t want just a computing algorithm, but a
whole different user interface depending on the data we need to display. A
typical example might be your E-mail address book. You probably have both
people and groups of people in your address book, and you would expect the
display for the address book to change so that the People screen has places for
first and last name, company, E-mail address and phone number.

On the other hand if you were displaying a group address page, you’d like to see
the name of the group, its purpose, and a list of members and their E-mail
addresses. You click on a person and get one display and on a group and get the
other display. Let’s assume that all E-mail addresses are kept in an object called
an Address and that people and groups are derived from this base class as shown
in Figure 13-1.

Address

Person Group

Figure 13-1 – Both Person and Group are derived from Address.
Depending on which type of Address object we click on, we’d like to see a
somewhat different display of that object’s properties. This is a little more than
just a Factory pattern, because we aren’t returning objects which are simple
descendents of a base display object, but totally different user interfaces made up
of different combinations of display objects. The Builder Pattern assembles a
number of objects, such as display controls, in various ways depending on the

Copyright © 2001, by James W. Cooper

163

data. Furthermore, by using classes to represent the data and forms to represent
the display, you can cleanly separate the data from the display methods into
simple objects.

An Investment Tracker
Let’s consider a somewhat simpler case where it would be useful to have a class
build our UI for us. Suppose we are going to write a program to keep track of the
performance of our investments. We might have stocks, bonds and mutual funds,
and we’d like to display a list of our holdings in each category so we can select
one or more of the investments and plot their comparative performance.

Even though we can’t predict in advance how many of each kind of investment
we might own at any given time, we’d like to have a display that is easy to use
for either a large number of funds (such as stocks) or a small number of funds
(such as mutual funds). In each case, we want some sort of a multiple -choice
display so that we can select one or more funds to plot. If there is a large number
of funds, we’ll use a multi-choice list box and if there are 3 or fewer funds, we’ll
use a set of check boxes. We want our Builder class to generate an interface that
depends on the number of items to be displayed, and yet have the same methods
for returning the results.

Our displays are shown in Figure 13-2. The first display (Figure 13-2 top)
contains a large number of stocks and the second (Figure 13-2 bottom) a small
number of bonds.

Copyright © 2001, by James W. Cooper

164

Figure 13-2 - Display of Stocks showing the list interface(top) and
Bonds showing the checkbox interface (bottom).

Copyright © 2001, by James W. Cooper

165

Now, let’s consider how we can build the interface to carry out this variable
display. We’ll start with a multiChoice interface that defines the methods we
need to implement:

'Interface MultiChoice
'This is the interface for the multi-Select windows
'-----
'get collection of all selected stocks
Public Function getSelected() As Collection
End Function
'-----
'get window containing multichoice controls
Public Function getWindow() As Form
End Function
'-----
'store list of stocks
Public Sub init(stocks As Collection)
End Sub
The getWindow method returns a window with a multiple -choice display. The
two displays we’re using here -- a checkbox panel or a list box panel –
implement this interface

'checkBox form
Implements MultiChoice

or

'Listbox form
Implements MultiChoice

Then we create a simple Factory class that decides which of these two classes to
return:

'Class StockFactory
'gets correct window for number of stocks presented
Public Function getBuilder(stocks As Collection)
 Dim mult As MultiChoice
 If stocks.Count <= 3 Then
 Set mult = New checkForm 'get check box form
 Else
 Set mult = New listForm 'get list box form
 End If
 mult.init stocks 'initialize it
 Set getBuilder = mult
End Function

Copyright © 2001, by James W. Cooper

166

In the language of Design Patterns, this simple factory class is called the
Director, and the actual classes derived from multiChoice are each Builders.

Calling the Builders
Visual Basic 6 doesn’t make it easy to create and change forms dynamically
during program execution, so we will instead create instances of the various
types of multiChoice windows as components of an MDI form. Then we’ll
instantiate the one needed by the number of equities in a specific category.

Our user interface consists of an MDI form with the list of fund choices on the
left, and initially nothing on the right. Since windows grow to fill the available
space, will fill the right space initially with a blank form as shown in Figure 13-3.

Figure 13-3 – The fund choice before any fund type is selected. A
blank form is use to fill the right hand space.

Copyright © 2001, by James W. Cooper

167

We first define the interface Equities

'Interface to Equities class
Public Function getFunds() As Collection
 'returns list of fund names
End Function

Then, we’ll keep our three lists of investments in three classes called Stocks,
Bonds and Mutuals, each of which implements Equities. We create an instance of
each of them in the Funds class, and fetch one or the other of them from that
class:

'Class funds
Private fundList As New Collection
Private eq As Equities

Private Sub Class_Initialize()
 'Creates a collection of equities
 fundList.Add New stocks
 fundList.Add New Bonds
 fundList.Add New Mutuals
End Sub
'-----
Public Function getFund(i As Integer) As Equities
 'return selected equity from collection
 If i > 0 And i <= fundList.Count Then
 Set getFund = fundList(i)
 End If
End Function

We load them with arbitrary values as part of program initialization:

'Class stocks
Implements Equities
Private stockList As New Collection

Private Sub Class_Initialize()
 'add in arbitrary list of stocks
 stockList.Add "Cisco"
 stockList.Add "Coca Cola"
 stockList.Add "GE"
 stockList.Add "Harley Davidson"
 stockList.Add "IBM"
 stockList.Add "Microsoft"
End Sub

Copyright © 2001, by James W. Cooper

168

'-----
Private Function Equities_getFunds() As Collection
 'return collection of stocks
 Set Equities_getFunds = stockList
End Function

and similarly for Bonds and Mutuals. In a real system, we’d probably read them
in from a file or database. Then, when the user clicks on one of the three
investment types in the left list box, we get the correct Equity from the Funds
class and use it to create the right display.

Private Sub fundList_Click()
 Dim i As Integer, selStocks As Collection, eq As Equities

 'catch list box click selecting fund type
 i = fundList.ListIndex + 1
 If (i > 0) Then
 'get one type of fund
 Set eq = fnds.getFund(i) 'get equit from funds class
 Set selStocks = eq.getFunds 'get list from equity
 'get a multiChoice form from the factory
 Set mchoice = sfact.getBuilder(selStocks)
 'tell the parent MDI to show it
 mParent.setShowForm mchoice
 End If
End Sub

The List Box Builder
The simpler of the two builders is the List box builder. It returns a form
containing a list box showing the list of the investments in that equity type.

'Listbox form
Implements MultiChoice
Dim sels As Collection
'-----
Private Sub MultiChoice_init(stocks As Collection)
 Dim i As Integer
 For i = 1 To stocks.Count
 List1.AddItem stocks(i)
 Next i
End Sub

Copyright © 2001, by James W. Cooper

169

The other important method is the getSelected method that returns a collection of
Strings of the investments the user selects:

Private Function MultiChoice_getSelected() As Collection
Dim i As Integer
Set sels = New Collection
For i = 0 To List1.ListCount - 1
 If List1.Selected(i) Then
 sels.Add List1.List(i)
 End If
Next i
Set MultiChoice_getSelected = sels
End Function

The Checkbox Builder
The Checkbox builder is even simpler. Here we need to find out how many
elements are to be displayed and display them. The number can only be between
0 and 3, so we create them all in advance and display only those we need:

Private Sub MultiChoice_init(stocks As Collection)
 Dim i As Integer
 'set captions for the checkboxes we are using
 For i = 1 To stocks.Count
 ckFunds(i - 1).Caption = stocks(i)
 Next i
 'make the rest invisible
 For i = stocks.Count + 1 To 3
 ckFunds(i).Visible = False
 Next i
End Sub

The getSelected method is analogous to the one we showed above, and is shown
below. We illustrate the final UML class diagram in Figure 13-4.

Implements MultiChoice
Private sels As Collection
'-----
Private Function MultiChoice_getSelected() As Collection
 Dim i As Integer
 'create collection of checked stcok names
 Set sels = New Collection
 For i = 1 To 3
 If ckFunds(i - 1).Value = 1 Then

Copyright © 2001, by James W. Cooper

170

 sels.Add ckFunds(i - 1).Caption
 End If
 Next i
 'return collection to caller
 Set MultiChoice_getSelected = sels
End Function

Figure 13-4 – The Builder class diagram.

Writing a Builder in VB.NET
VB7 gives us considerably more flexibility in designing builder classes, since we
have direct access to the methods that allow us to construct a window from basic
components. For this example, we’ll let each builder construct a Panel containing
whatever components it needs. WE can then add that Panel to the form and
position it. When the display changes, you remove the old Panel and add a new
one. VB6 does not have a Panel class, but in VB7, a Panel is just a unbordered
container that can hold any number of Windows components. As we did above,
the two implementations of the Panel will satisfy the MultiChoice interface:

Interface MultiChoice
 'an interface to any group of components
 'that can return zero or more selected items
 'the names are returned in an Arraylist
 Function getSelected() As ArrayList
 Sub clear() 'clear all selected
 Function getWindow() As Panel
End Interface

We will create a base abstract class called Equities and derive the stocks, bonds
and mutual funds from it:

Public MustInherit Class Equities
 Protected ar As Arraylist
 '-------
Public MustOverride Overrides Function toString() As String
 '-------
 Public Function getNames() As ArrayList
 Return ar
 End Function

Copyright © 2001, by James W. Cooper

171

 '-------
 Public Function count() As Integer
 Return ar.count
 End Function
 '-------
End Class

Note the toString method. We’ll use this to display each kind of equity in the list
box. Now our Stocks class will just contain the code to load the ArrayList with
the stock names:

Public Class Stocks
 Inherits Equities
 '-----
 Public Sub New()
 MyBase.New()
 ar = New ArrayList()
 ar.Add("Cisco")
 ar.Add("Coca Cola")
 ar.Add("GE")
 ar.Add("Harley Davidson")
 ar.Add("IBM")
 ar.Add("Microsoft")
 End Sub
 '-----
 Public Overrides Function toString() As String
 Return "Stocks"
 End Function
End Class

All the remaining code (getNames and count) is implemented in the base Equities
class. The Bonds and Mutuals classes are equally simple.

The Stock Factory
We need a little class to decide whether we want to return a checkbox panel or a
listbox panel. We’ll call this class the StockFactory class. However, we will
never need more than one instance of this class, so we’ll create the class so that
its one method is Shared.

Public Class StockFactory

Copyright © 2001, by James W. Cooper

172

 'This class has only one shared method
 Public Shared Function getBuilder(ByVal _
 stocks As Equities) _
 As MultiChoice

 Dim mult As MultiChoice

 If stocks.Count <= 3 Then
 'get check boxes
 mult = New checkChoice(stocks)
 Else
 'get a listbox
 mult = New listChoice(stocks)
 End If
 Return mult
 End Function
End Class

The CheckChoice Class
Our checkbox builder constructs a panel containing 0 to 3 check boxes and
returns that panel to the calling program.

Public Class CheckChoice
 Implements MultiChoice

 Private stocks As ArrayList
 Private pnl As Panel
 Private boxes As ArrayList
 '--------
 'create a Panel containing
 '0 to 3 check boxes
 Public Sub New(ByVal stks As Equities)
 MyBase.New()
 stocks = stks.getNames
 pnl = New Panel()
 boxes = New Arraylist() 'in an ArrayList
 Dim i As Integer
 For i = 0 To stocks.count - 1
 Dim Ck As New Checkbox()
 Ck.Location = _

Copyright © 2001, by James W. Cooper

173

 New System.Drawing.Point(8, 16 + i * 32)
 Ck.Text = stocks(i).toString
 Ck.Size = New Size(112, 24)
 Ck.TabIndex = 0
 Ck.TextAlign = _
 ContentAlignment.MiddleLeft
 boxes.add(ck) 'internal array
 pnl.Controls.add(ck) 'add into panel
 Next i

 End Sub

End Class

The methods for returning the window and the list of selected names are shown
below. Note that we use the Ctype function to convert between the Object type
returned by an ArrayList and the CheckBox type the method actually requires.

 'clear all selected check boxes
 Public Sub clear() Implements MultiChoice.clear
 Dim i As Integer
 Dim ck As Checkbox
 For i = 0 To boxes.count - 1
 ck = CType(boxes(i), Checkbox)
 ck.Checked = False
 Next i
 End Sub
'--------
 'gets list of selected names
 Public Function getSelected() As ArrayList _
 Implements MultiChoice.getSelected
 Dim ar As New ArrayList()
 Dim i As Integer
 Dim ck As Checkbox

 For i = 0 To Boxes.count - 1
 ck = CType(boxes(i), Checkbox)
 If ck.Checked Then
 ar.add(ck.Text)
 End If
 Next i

Copyright © 2001, by James W. Cooper

174

 Return ar
 End Function
 '--------
 'gets the Panel containing the check boxes
 Public Function getWindow() As Panel _
 Implements MultiChoice.getWindow
 Return pnl
 End Function

The ListboxChoice Class
This class creates a multi-select list box, inserts it in a Panel and loads the names
into the list:

Public Class ListChoice
 Implements MultiChoice

 Private stocks As ArrayList
 Private pnl As Panel
 Private lst As ListBox
 '--------
 'create a panel containing a
 'multiselectablen list box
 Public Sub New(ByVal stks As Equities)
 MyBase.New()
 stocks = stks.getNames 'get the names
 pnl = New Panel()
 'create the list box
 lst = New ListBox()
 lst.Location = New Point(16, 0)
 lst.Size = New Size(120, 160)
 lst.SelectionMode = _
 SelectionMode.MultiExtended
 lst.TabIndex = 0
 'add it into the panel
 pnl.Controls.Add(lst)
 'add the names into the list
 Dim i As Integer
 For i = 0 To stks.count - 1
 lst.items.add(stocks(i))
 Next i
 End Sub

Copyright © 2001, by James W. Cooper

175

Since this is a multi-select list box, we can get all the selected items in a single
SelectedIndices collection. This method only works for a multi-select list box,
however. It returns a –1 for a single-select list box. We use it to load the array list
of selected names as we show below.

Public Function getSelected() As ArrayList _
 Implements MultiChoice.getSelected
 Dim i As Integer
 Dim item As String
 Dim arl As New ArrayList()

 'get items and put in ArrayLlist
 For i = 0 To lst.SelectedIndices.count - 1
 item = lst.Items(_
 lst.SelectedIndices(i)).toString
 arl.add(item)
 Next i
 Return arl 'return the ArrayList
 End Function
 '--------
 'clear all selected items
 Public Sub clear() Implements MultiChoice.clear
 lst.Items.clear()
 End Sub
 '--------
 'return the constructed panel
 Public Function getWindow() As Panel _
 Implements MultiChoice.getWindow
 Return pnl
 End Function

Using the Items Collection in the ListBox Control
You are not limited to populating a listbox with strings in VB7. When you add
data to the Items collection, it can be any kind of object that has a toString
method. This takes the place of the much more limited Itemdata property of the
listbox in VB6.

Copyright © 2001, by James W. Cooper

176

Since we created our three Equities classes to have a toString method, we can
add them directly to the list box in our main program’s constructor.

Public Sub New()
 MyBase.New
 Form1 = Me
 InitializeComponent()
 Dim i As Integer
 Dim eq As Equities
 lsEqTypes.Items.add(New Stocks())
 lsEqTypes.Items.add(New Bonds())
 lsEqTypes.Items.add(New Mutuals())
 End Sub

Whenever we click on a line of the list box, the click method obtains that
instance of an Equities class and passes it to the MultiChoice factory, which in
turn produces a Panel containing the items in that class. It then removes the old
panel and adds in the new one:

 Protected Sub lsEqTypes_SelectedIndexChanged(_
ByVal sender As Object, ByVal e As System.EventArgs)

 Dim i As Integer
 i = lsEqTypes.SelectedIndex

 'get the Equity from the list box
 eq = CType(lsEqTypes.items(i), Equities)

 'get the right Builder
 mchoice = StockFactory.getBuilder(eq)

 'remove the old panel
 Try
 Me.Controls.remove(pnl)
 Catch ex As NullReferenceException
 End Try
 'get the new one and add it to the window
 pnl = mchoice.getWindow
 setPanel()

 End Sub

Copyright © 2001, by James W. Cooper

177

The Final Choice
Now that we have created all the needed classes, we can run the program. It starts
with a blank panel on the right side, so that there will always be some panel there
to remove. Then, each time we click on one of the names of the Equities, that
panel is removed and a new one is added in its place. We see the three cases in
Figure 13-5.

Figure 13-5- The VB7 WealthBuilder program.

Consequences of the Builder Pattern
1. A Builder lets you vary the internal representation of the product it builds. It

also hides the details of how the product is assembled.

2. Each specific builder is independent of the others and of the rest of the
program. This improves modularity and makes the addition of other builders
relatively simple.

Copyright © 2001, by James W. Cooper

178

3. Because each builder constructs the final product step-by-step, depending on
the data, you have more control over each final product that a Builder
constructs.

A Builder pattern is somewhat like an Abstract Factory pattern in that both return
classes made up of a number of methods and objects. The main difference is that
while the Abstract Factory returns a family of related classes, the Builder
constructs a complex object step by step depending on the data presented to it.

Thought Questions
1. Some word-processing and graphics programs construct menus dynamically

based on the context of the data being displayed. How could you use a
Builder effectively here?

2. Not all Builders must construct visual objects. What might you use a Builder
to construct in the personal finance industry? Suppose you were scoring a
track meet, made up of 5-6 different events? How can you use a Builder
there?

Programs on the CD-ROM
\Builders\SimpleBuilder VB6 basic equities builder

\Builders\VBNetBuilder VB7 equities builder

Copyright © 2001, by James W. Cooper

179

14. THE PROTOTYPE PATTERN

The Prototype pattern is another tool you can use when you can specify the
general class needed in a program but need to defer the exact class until
execution time. It is similar to the Builder in that some class decides what
components or details make up the final class. However, it differs in that the
target classes are constructed by cloning one or more prototype classes and then
changing or filling in the details of the cloned class to behave as desired.

Prototypes can be used whenever you need classes that differ only in the type of
processing they offer, for example in parsing of strings representing numbers in
different radixes. In this sense, the prototype is nearly the same as the Examplar
pattern described by Coplien [1992].

Let’s consider the case of an extensive database where you need to make a
number of queries to construct an answer. Once you have this answer as a table
or RecordSet, you might like to manipulate it to produce other answers without
issuing additional queries.

In a case like one we have been working on, we’ll consider a database of a large
number of swimmers in a league or statewide organization. Each swimmer
swims several strokes and distances throughout a season. The “best times” for
swimmers are tabulated by age group, and even within a single 4-month season
many swimmers will pass their birthdays and fall into new age groups. Thus the
query to determine which swimmers did the best in their age group that season is
dependent on the date of each meet and on each swimmer’s birthday. The
computational cost of assembling this table of times is therefore fairly high.

Once we have a class containing this table, sorted by sex, we could imagine
wanting to examine this information sorted just by time, or by actual age rather
than by age group. It would not be sensible to recompute these data, and we don’t
want to destroy the original data order, so some sort of copy of the data object is
desirable.

Cloning in Visual Basic 6
The idea of cloning a class (making an exact copy) is not a designed-in feature of
to Visual Basic, but nothing actually stops you from carrying out such a copy

Copyright © 2001, by James W. Cooper

180

yourself. The only place the Clone method appears in VB is in database
manipulation. You can create a Recordset as a result of a database query and
move through it a row at a time. If you have some need to keep references to two
places in this Recordset, you would need two “current rows.” The simplest way
to handle this in VB6 is to clone the Recordset.

Public Sub cloneRec(Query$)
Dim db As Database
Dim rec As Recordset, crec As Recordset

'open database recordset
Set rec = db.OpenRecordset(Query$, dbOpenDynaset)

'clone a copy
Set crec = rec.Clone
End Sub

Now this approach does not generate two copies of the Recordset. It just
generates two sets of row pointers to use to move through the records
independently of each other. Any change you make in one clone of the Recordset
is immediately reflected in the other, because there is in fact only one data table.
We discuss a similar problem to this in the following example.

Using the Prototype
Now let’s write a simple program that reads data from a database and then clones
the resulting object. In our example program we just read these data from a file,
but the original data were derived from a large database as we discussed above.
That file has the following form:

Kristen Frost, 9, CAT, 26.31, F
Kimberly Watcke, 10, CDEV,27.37, F
Jaclyn Carey, 10, ARAC, 27.53, F
Megan Crapster, 10, LEHY, 27.68, F

We’ll use the vbFile class we developed earlier.

First, we create a class called Swimmer that holds one name, club name, sex and
time, and read them in using the File class

Option Explicit
'Class Swimmer

Copyright © 2001, by James W. Cooper

181

Private ssex As String
Private sage As Integer
Private stime As Single
Private sclub As String
Private sfrname As String, slname As String
'-----
Public Sub init(Fl As vbFile)
 Dim i As Integer
 Dim nm As String

 nm = Fl.readToken 'read in name
 i = InStr(nm, " ")
 If i > 0 Then 'separate into first and last
 sfrname = Left(nm, i - 1)
 slname = Right$(nm, Len(nm) - i)
 Else
 sfrname = ""
 slname = nm 'or just use one
 End If

 sage = Val(Fl.readToken) 'get age
 sclub = Fl.readToken 'get club
 stime = Val(Fl.readToken) 'get time
 ssex = Fl.readToken 'get sex
End Sub
'-----
Public Function getTime() As Single
 getTime = stime
End Function
'-----
Public Function getSex() As String
 getSex = ssex
End Function
'-----
Public Function getName() As String
 getName = sfrname + " " + slname
End Function
'-----
Public Function getClub() As String
 getClub = sclub
End Function
'-----
Public Function getAge() As Integer
 getAge = sage
End Function

Copyright © 2001, by James W. Cooper

182

We also provide a getSwimmer method in SwimData and getName, getAge and
getTime methods in the Swimmer class. Once we’ve read the data into SwimInfo,
we can display it in a list box.

Then we create an interface class called SwimData that maintains a Collection of
the Swimmers we read in from the database.

'Interface SwimData
Public Sub init(Filename As String)
End Sub
'-----
Public Sub Clone(swd As SwimData)
End Sub
'-----
Public Sub setData(swcol As Collection)
End Sub
'-----
Public Sub sort()
End Sub
'-----
Public Sub MoveFirst()
End Sub
'-----
Public Function hasMoreElements() As Boolean
End Function
'-----
Public Function getNextSwimmer() As Swimmer
End Function

Then, when the user clicks on the Clone button, we’ll clone this class and sort the
data differently in the new class. Again, we clone the data because creating a new
class instance would be much slower, and we want to keep the data in both
forms.
Private Sub SwimData_Clone(swd As SwimData)
 swd.setData swimmers 'copy data into new class
End Sub

In the original class, the names are sorted by sex and then by time, while in the
cloned class they are sorted only by time. In Figure 14-1, we see the simple user
interface that allows us to display the original data on the left and the sorted data
in the cloned class on the right:

Copyright © 2001, by James W. Cooper

183

Figure 14-1. Prototype example. The left-hand list box is loaded when
the program starts and the right-hand list box is loaded when you

click on the Clone button.
Now, let’s click on the Refresh button to reload the left-hand list box from the
original data. The somewhat disconcerting result is shown in Figure 14-2.

Copyright © 2001, by James W. Cooper

184

Figure 14-2– Prototype example, after clicking on Clone and then on
Refresh.

Why have the names in the left-hand list box also been re-sorted? This occurs
because the clone method is a shallow copy of the original class. In other words,
the references to the data objects are copies, but they refer to the same underlying
data. Thus, any operation we perform on the copied data will also occur on the
original data in the Prototype class.

In some cases, this shallow copy may be acceptable, but if you want to make a
deep copy of the data, you must write a deep cloning routine of your own as part
of the class you want to clone. In this simple class, you just create a new
Collection and copy the elements of the old class’s Collection into the new one.

Private Sub SwimData_Clone(swd As SwimData)
 Dim swmrs As New Collection
 Dim i As Integer
 'copy data from one collection
 ' to another
 For i = 1 To swimmers.Count
 swmrs.Add swimmers(i)
 Next i
 'and put into new class
 swd.setData swmrs
End Sub

Using the Prototype Pattern
You can use the Prototype pattern whenever any of a number of classes might be
created or when the classes are modified after being created. As long as all he
classes have the same interface, they can actually carry out rather different
operations.

Let’s consider a more elaborate example of the listing of swimmers we discussed
above. Instead of just sorting the swimmers, let’s create subclasses that operate
on that data, modifying it and presenting the result for display in a listbox. We
start with the same abstract class SwimData.

Then it becomes possible to write different concrete SwimData classes depending
on the application’s requirements. We always start with the SexSwimData class
and then clone it for various other displays. For example, the OneSexSwimData

Copyright © 2001, by James W. Cooper

185

class resorts the data by sex and displays only one sex. This is shown in Figure
14-3.

Figure 14-3 – The OneSexSwimData class displays only one sex on the

right.

In the OneSexSwimData class we sort the data by time, but return them for
display based on whether girls or boys are supposed to be displayed. This class
has the additional method:

Public Sub setSex(sx$)
 Sex = sx$ 'copy current sex preference
End Sub

and each time you click on the one of the sex option buttons, the class is given
the current state of these buttons.

Additional Methods in Subclasses
The OneSexSwimData class is a class which implements the SwimData
interface, but we want it to have an additional method as well, which allows us to
tell it which sex we want to display. The setSex method is not part of the
SwimData interface, and thus if we just create a SwimData object and assign it

Copyright © 2001, by James W. Cooper

186

the value of a new OneSexSwimData class instance, we won’t have access to the
setSex method:

Private swd As SwimData
Private tsd As SwimData
'-----
Private Sub Clone_Click()
 Set tsd = New OneSexSwimData
 swd.Clone tsd 'clone into any type
 tsd.sort 'call interface method

On the other hand, if we create an instance of the OneSexSwimData class, we
won’t have access to the methods of the SwimData interface

Private swd As SwimData
Private osd As OneSexSwimData
'-----
Private Sub Clone_Click()
Set osd = tsd 'copy to specific type

We can solve this problem by creating a variable of each type and referring to the
same class using both the SwimData and the OneSexSwimData variables:

Private swd As SwimData
Private tsd As SwimData
Private osd As OneSexSwimData
'-----
Private Sub Clone_Click()
 Set tsd = New OneSexSwimData
 swd.Clone tsd 'clone into any type
 tsd.sort 'call interface method

 Set osd = tsd 'copy to specific type
 osd.setSex "F" 'call derived class method
 SexFrame.Enabled = True 'enable sex selection
 loadRightList
End Sub

Note that we enable the SexFrame containing the F and M sex selection option
buttons only when a clone has been performed. This prevents performing the
setSex method on a class which has not yet been initialized:

Private Sub Sex_Click(Index As Integer)

Copyright © 2001, by James W. Cooper

187

'sets the sex of the class to either F or M
 osd.setSex Sex(Index).Caption
 loadRightList
End Sub

Dissimilar classes with the same interface
Classes do not have to be even that similar, however. The AgeSwimData class
takes the cloned input data array and creates a simple histogram by age. If you
click on “F”, you see the girls age distribution and if you click on “M”, you see
the boys age distribution as shown in Figure 14-4.

Figure 14-4 – The AgeSwimData class displays an age distribution.
This is an interesting case where the AgeSwimData class uses all the interface
methods of the base SwimData class and also uses the setSex method of the
OneSexSwimData class we showed previously. We could just make the setSex
method a new public method in our AgeSwimData class, or we could declare that
AgeSwimData implements both interfaces.

'Class AgeSwimData
Implements OneSexSwimData
Implements SwimData

Copyright © 2001, by James W. Cooper

188

There is little to choose between them in this case, since there is only one extra
method, setSex, in the OneSexSwimData class. However, the data are
manipulated differently to create the histogram.

Private Sub SwimData_sort()
 Dim i As Integer, j As Integer
 Dim sw As Swimmer, age As Integer
 Dim ageString As String
 'Sort the data inbto increasing age order
 max = swimmers.Count
 ReDim sws(max) As Swimmer
 'copy the data into an array
 For i = 1 To max
 Set sws(i) = swimmers(i)
 Next i
 'sort by increasing age
 For i = 1 To max
 For j = i To max
 If sws(i).getAge > sws(j).getAge Then
 Set sw = sws(i)
 Set sws(i) = sws(j)
 Set sws(j) = sw
 End If
 Next j
 Next i
 'empty the collection
 For i = max To 1 Step -1
 swimmers.Remove i
 Next i
 'fill it with the sorted data
 For i = 1 To max
 swimmers.Add sws(i)
 Next i
 'create the histogram
 countAgeSex
End Sub
'----
Private Sub countAgeSex()
 Dim i As Integer, j As Integer
 Dim sw As Swimmer, age As Integer
 Dim ageString As String

 'now count number in each age
 Set ageList = New Collection
 age = swimmers(1).getAge

Copyright © 2001, by James W. Cooper

189

 ageString = ""
 i = 1
 While i <= max
 'add to histogram if in age and sex
 If age = swimmers(i).getAge And Sex = swimmers(i).getSex Then
 ageString = ageString + "X"
 End If
 If age <> swimmers(i).getAge And Sex = swimmers(i).getSex Then
 'create new swimmer if age changes
 Set sw = New Swimmer
 sw.setFirst Str$(age) 'put string of age in 1st name
 sw.setLast ageString 'put histogram in last name
 ageList.Add sw 'add to collection
 age = swimmers(i).getAge
 ageString = "X" 'start new age histogram
 End If
 i = i + 1
 Wend
 'copy last onein
 Set sw = New Swimmer
 sw.setFirst Str$(age)
 sw.setLast ageString
 ageList.Add sw
 amax = ageList.Count

End Sub

Now, since our original classes display first and last names of selected
swimmers, note that we achieve this same display, returning Swimmer objects
with the first name set to the age string and the last name set to the histogram.

Copyright © 2001, by James W. Cooper

190

Figure 14-5 – The UML diagram for the various SwimData classes.

The UML diagram in Figure 14-5 illustrates this system fairly clearly. The
SwimInfo class is the main GUI class. It keeps two instances of SwmData, but
does not know specify which ones. The TimeSwimData and SexSwimData
classes are concrete classes derived from the abstract SwimData class and the
AgeSwimData class, which creates the histograms, is derived from the
SexSwimData class.

You should also note that you are not limited to the few subclasses we
demonstrated here. It would be quite simple to create additional concrete classes
and register them with whatever code selects the appropriate concrete class. In
our example program above, the user is the deciding point or factory, because he
simply clicks on one of several buttons. In a more elaborate case, each concrete
class could have an array of characteristics and the decision point could be a class
registry or prototype manager which examines this characteristics and selects the
most suitable class. You could also combine the Factory Method pattern with the

Copyright © 2001, by James W. Cooper

191

Prototype, where each of several concrete classes uses a different concrete class
from those available.

Prototype Managers
A prototype manager class can be used to decide which of several concrete
classes to return to the client. It can also manage several sets of prototypes at
once. For example in addition to returning one of several classes of swimmers, it
could return different groups of swimmers who swam different strokes and
distances. It could also manage which of several types of list boxes are returned
to display them in, including tables, multicolumn lists, and graphical displays. It
is best that whichever subclass is returned, that it not require conversion to a new
class type to be used in the program. In other words, the methods of the parent
abstract or base class should be sufficient and the client should never need to
know which actual subclass it is dealing with.

Writing a Prototype in VB7
In VB7, we can write more or less the same code. The major changes are that we
will use ArrayLists and zero-based arrays, and that we can write a base
SwimData class from which we can inherit a number of useful methods. We
create the base SwimData class without a sort method and specify using
MustInherit for the class and MustOverride for the method that you must provide
an implementation of sort in the child classes.

'Base class for SwimData
Public MustInherit Class SwimData
 Protected Swimmers As ArrayList
 Private index As Integer
 '-------
 'constructor to be used with setData
 Public Overloads Sub New()
 MyBase.New()
 index = 0
 End Sub
 '-------
 'Constructor to be used with filename
 Public Overloads Sub New(ByVal Filename As String)
 MyBase.New()

Copyright © 2001, by James W. Cooper

192

 Dim fl As New vbFile(Filename)
 Dim sw As Swimmer
 Dim sname As String

 swimmers = New ArrayList()
 Fl.OpenForRead(Filename)

 sname = fl.readLine
 console.writeLine(":" + sname)
 While sname.length > 0
 If (sname.length > 0) Then
 sw = New Swimmer(sname)
 swimmers.Add(sw)
 End If
 sname = fl.readLine
 console.writeLine(":" + sname)
 End While
 sort()
 index = 0
 End Sub
 '-------
 Public Sub setData(ByVal swcol As ArrayList)
 swimmers = swcol
 movefirst()
 End Sub
 '-------
 'Clone dataset from other swimdata object
 Public Sub Clone(ByVal swd As SwimData)
 Dim swmrs As New ArrayList()
 Dim i As Integer
 'copy data from one collection
 ' to another
 For i = 0 To swimmers.Count - 1
 swmrs.Add(swimmers(i))
 Next i
 'and put into new class
 swd.setData(swmrs)

 End Sub
 '-----
 'sorting method must be specified

Copyright © 2001, by James W. Cooper

193

 'in the child classes
 Public MustOverride Sub sort()
 '-----
 Public Sub MoveFirst()
 index = -1
 End Sub
 '-----
 Public Function hasMoreElements() As Boolean
 Return (index < (Swimmers.count - 1))
 End Function
 '-----
 Public Function getNextSwimmer() As Swimmer
 index = index + 1
 Return CType(swimmers(index), Swimmer)
 End Function

End Class

Note that we use the vbFile class we wrote earlier to read lines from the file.
However, once we read the data, we parse each data line in the Swimmer class.
Data conversions have a different form in VB7. Instead of using the Val function,
we use the static toInt16 method of the String class to convert integers:

sage = tok.nextToken.ToInt16 'get age

and the toSingle method to convert the time value

stime = tok.nextToken.ToSingle 'get time

The complete constructor for the Swimmer Class is shown below:

Public Class Swimmer
 Private ssex As String
 Private sage As Integer
 Private stime As Single
 Private sclub As String
 Private sfrname, slname As String
 '-----
 Public Sub New(ByVal nm As String)
 MyBase.New()
 Dim i As Integer
 Dim s As String

Copyright © 2001, by James W. Cooper

194

 Dim t As Single
 Dim tok As StringTokenizer

 tok = New StringTokenizer(nm, ",")
 nm = tok.nextToken
 i = nm.indexOf(" ")
 If i > 0 Then 'separate into first and last
 sfrname = nm.substring(0, i)
 slname = nm.substring(i + 1)
 Else
 sfrname = ""
 slname = nm 'or just use one
 End If
 sage = tok.nextToken.ToInt16 'get age
 sclub = tok.nextToken 'get club
 stime = tok.nextToken.ToSingle 'get time
 ssex = tok.nextToken 'get sex
 End Sub

Then, our TimeSwimData class is very simple, consisting only of the New
methods and the sort method:

Public Class TimeSwimData
 Inherits SwimData
 '---------
 Public Overloads Sub New(ByVal filename As String)
 MyBase.New(filename)
 End Sub
 '---------
 Public Overloads Sub New()
 MyBase.new()
 End Sub
 '---------
 'Required sort method
 Public Overrides Sub sort()
 Dim i, j, max As Integer
 Dim sw As Swimmer
 max = swimmers.Count
 'copy into array

Copyright © 2001, by James W. Cooper

195

 Dim sws(max) As Swimmer
 swimmers.CopyTo(sws)
 'sort by time
 For i = 0 To max - 1
 For j = i To max - 1
 If sws(i).getTime > sws(j).getTime Then
 sw = sws(i)
 sws(i) = sws(j)
 sws(j) = sw
 End If
 Next j
 Next i
 'copy back into new ArrayList
 swimmers = New Arraylist()
 For i = 0 To max - 1
 swimmers.Add(sws(i))
 Next i
 End Sub

End Class

Consequences of the Prototype Pattern
Using the Prototype pattern, you can add and remove classes at run time by
cloning them as needed. You can revise the internal data representation of a class
at run time based on program conditions. You can also specify new objects at run
time without creating a proliferation of classes.

One difficulty in implementing the Prototype pattern in VB is that if the classes
already exist, you may not be able to change them to add the required clone
methods. In addition, classes that have circular references to other classes cannot
really be cloned.

Like the registry of Singletons discussed above, you can also create a registry of
Prototype classes which can be cloned and ask the registry object for a list of
possible prototypes. You may be able to clone an existing class rather than
writing one from scratch.

Copyright © 2001, by James W. Cooper

196

Note that every class that you might use as a prototype must itself be instantiated
(perhaps at some expense) in order for you to use a Prototype Registry. This can
be a performance drawback.

Finally, the idea of having prototype classes to copy implies that you have
sufficient access to the data or methods in these classes to change them after
cloning. This may require adding data access methods to these prototype classes
so that you can modify the data once you have cloned the class.

Thought Questions
An entertaining banner program shows a slogan starting at different places on the
screen at different times and in different fonts and sizes. Design the program
using a Prototype pattern.

Programs on the CD-ROM
\Prototype\Ageplot VB6 age plot

\Prototype\DeepProto VB6 deep prototype

\Prototype\OneSex VB6 display by sex

\Prototype\SimpleProto VB6 shallow copy

\Prototype\TwoclassAgePlot VB6 age and sex display

\Prototype\VBNet\DeepProt VB7 deep prototype

Summary of Creational Patterns
• The Factory Pattern is used to choose and return an instance of a class from

a number of similar classes based on data you provide to the factory.

• The Abstract Factory Pattern is used to return one of several groups of
classes. In some cases it actually returns a Factory for that group of classes.

Copyright © 2001, by James W. Cooper

197

• The Builder Pattern assembles a number of objects to make a new object,
based on the data with which it is presented. Frequently, the choice of which
way the objects are assembled is achieved using a Factory.

• The Prototype Pattern copies or clones an existing class rather than
creating a new instance when creating new instances is more expensive.

• The Singleton Pattern is a pattern that insures there is one and only one
instance of an object, and that it is possible to obtain global access to that
one instance.

Copyright © 2001, by James W. Cooper

198

Structural Patterns
Structural patterns describe how classes and objects can be combined to form
larger structures. The difference between class patterns and object patterns is that
class patterns describe how inheritance can be used to provide more useful
program interfaces. Object patterns, on the other hand, describe how objects can
be composed into larger structures using object composition, or the inclusion of
objects within other objects.

For example, we’ll see that the Adapter pattern can be used to make one class
interface match another to make programming easier. We’ll also look at a
number of other structural patterns where we combine objects to provide new
functionality. The Composite , for instance, is exactly that: a composition of
objects, each of which may be either simple or itself a composite object. The
Proxy pattern is frequently a simple object that takes the place of a more complex
object that may be invoked later, for example when the program runs in a
network environment.

The Flyweight pattern is a pattern for sharing objects, where each instance does
not contain its own state, but stores it externally. This allows efficient sharing of
objects to save space, when there are many instances, but only a few different
types.

The Façade pattern is used to make a single class represent an entire subsystem,
and the Bridge pattern separates an object’s interface from its implementation, so
you can vary them separately. Finally, we’ll look at the Decorator pattern, which
can be used to add responsib ilities to objects dynamically.

You’ll see that there is some overlap among these patterns and even some
overlap with the behavioral patterns in the next chapter. We’ll summarize these
similarities after we describe the patterns.

Copyright © 2001, by James W. Cooper

199

15. THE ADAPTER PATTERN

The Adapter pattern is used to convert the programming interface of one class
into that of another. We use adapters whenever we want unrelated classes to
work together in a single program. The concept of an adapter is thus pretty
simple: we write a class that has the desired interface and then make it
communicate with the class that has a different interface.

There are two ways to do this: by inheritance, and by object composition. In the
first case, we derive a new class from the nonconforming one and add the
methods we need to make the new derived class match the desired interface. The
other way is to include the original class inside the new one and create the
methods to translate calls within the new class. These two approaches, termed
class adapters and object adapters are both fairly easy to implement in other
languages, but before VB7 you were forced to use object composition
preferentially, since inheritance was not available.

Moving Data between Lists
Let’s consider a simple program that allows you to select some names from a list
to be transferred to another list for a more detailed display of the data associated
with them. Our initial list consists of a team roster and the second list, the names
plus their times or scores.

In this simple program, shown in Figure 15-1, the program reads in the names
from a roster file during initialization. Then, to move names to the right-hand list
box, you click on them, and then click on the arrow button. To remove a name
from the right hand list box, click on it and then on Remove. This moves the
name back to the left-hand list.

Copyright © 2001, by James W. Cooper

200

Figure 15-1 – A simple program to choose names for display.

This is a very simple program to write in VB. It consists of the visual layout and
action routines for each of the button clicks. When we read in the file of team
roster data, we store each kid’s name and score in a Swimmer object and then
store all of these objects in a collection. When you select one of the kids to
display in expanded form, you simply obtain the list index of the selected kid
from the left-hand list and get that kid’s data to display in the right hand list:

Private Sub Moveit_Click()
Dim i As Integer
i = lsKids.ListIndex + 1
 If i > 0 And i <= swmrs.Count Then
 Set sw = swmrs(i)
 lsTimes.AddItem sw.getName + tabChar + str$(sw.getTime)
 End If
End Sub

where we have defined the tabChar string as

Const tabval = 9
Dim tabChar As String
tabChar = Chr$(tabval)

Copyright © 2001, by James W. Cooper

201

In a similar fashion, if we want to remove a kid from the right hand list, we just
obtain the selected index and remove him:

Private Sub putback_Click()
 Dim i As Integer

 i = lsTimes.ListIndex
 If i >= 0 Then
 lsTimes.RemoveItem i
 End If
End Sub

Note that we obtain the column spacing between the two rows using the tab
character. This works fine as long as the names are more or less the same length.
However if one name is much longer or shorter than the others, the list may end
up using a different tab column, as we see has happened for the third name n the
list.

Using the MSFlexGrid
To circumvent this problem with the tab columns in the simple list box, we might
turn to a grid display. One simple grid that comes with VB is called the
MSFlexGrid. It is a simple subset of a more elaborate control available from a
third party vendor. The MSFlexGrid has Rows and Cols properties that you can
use to find out its current size. Then you can set the Row and Col properties to
the row and column you want to change and use the Text property to change the
text in the selected cell of the grid.

Private Sub Movetogrid_Click()
Dim i As Integer, row As Integer

i = lsKids.ListIndex + 1
 If i > 0 And i <= swmrs.Count Then
 Set sw = swmrs(i)
 grdTimes.AddItem ""
 row = grdTimes.Rows
 grdTimes.row = row - 1
 grdTimes.Col = 0
 grdTimes.Text = sw.getName
 grdTimes.Col = 1
 grdTimes.Text = Str$(sw.getTime)

Copyright © 2001, by James W. Cooper

202

 End If
End Sub

However, we would like to be able to use the grid without changing our code at
all from that we used for the simple list box. It turns out that you can in fact do
that, because the AddItem method of the MSFlexGrid interprets tab characters in
an analogous fashion to the way the list box does.

The statement
grdTimes.AddItem sw.getName + tabChar + Str$(sw.getTime)

will work just as the 7 lines of code do that we showed in the above example,
and the resulting display will put the names in one column and the scores in the
other as shown in Figure 15-2

Figure 15-2 – Selecting kids for display in an MSFlexGrid control.
In other words, the MSFlexGrid control provides the same programming
interface as a convenience, and is in fact its own Adapter between the list box
and the MSFlexGrid control.

Copyright © 2001, by James W. Cooper

203

In fact, since the list and grid have the same programming interface, it is quite
easy to write a private subroutine to add the data to either of them:

Private Sub addText(ctl As Control, sw As Swimmer)
 ctl.AddItem sw.getName + tabChar + str$(sw.getTime)
End Sub

Then we could write the button click routines so they each call this method using
a different list as an argument:

Private Sub Moveit_Click()
 Dim i As Integer
 i = lsKids.ListIndex + 1
 If i > 0 And i <= swmrs.Count Then
 Set sw = swmrs(i)
 addText lsTimes, sw
 End If
End Sub
'------
Private Sub Movetogrid_Click()
 Dim i As Integer, row As Integer
 i = lsKids.ListIndex + 1
 If i > 0 And i <= swmrs.Count Then
 Set sw = swmrs(i)
 addText grdTimes, sw
 End If
End Sub

However, this is clearly not very object oriented. The addText method really
should be part of the class we use, rather than us passing an instance of the list or
grid into a method in the same class. Now in VB6 and before, there is no way to
add methods to a control. Instead, we can create a simple ControlAdapter class
that will handle both the grid and the list and contain the addText method we
wrote as a simple subroutine above. This class is

'Class ControlAdapter
Private ctrl As Control
 Const tabval = 9
 Dim tabChar As String

Public Sub init(ctl As Control)

Copyright © 2001, by James W. Cooper

204

 Set ctrl = ctl 'copy control into class
 tabChar = Chr$(tabval)
End Sub
'-----
Public Sub addText(sw As Swimmer)
'add new line to list or grid
 ctrl.AddItem sw.getName + tabChar + str$(sw.getTime)
End Sub

We initialize this class with an instance of a list or grid in the Form_Load event

Private grdAdapt As New ControlAdapter

'pass grid into Control Adapter
grdAdapt.init grdTimes

Then we can simple call the class’s addText method when we click on the Add
button, regardless of which display control we are using:

Private Sub Moveit_Click()
 Dim i As Integer
 i = lsKids.ListIndex + 1
 If i > 0 And i <= swmrs.Count Then
 Set sw = swmrs(i)
 grdAdapt.addText sw
 End If
End Sub

Using a TreeView
If, however, you choose to use a TreeView control to display the data you select,
you will find that there is no conveniently adapted interface that you can use to
keep your code from changing. Thus, our convenient ControlAdapter class can
not be used for the TreeView. Instead, we need to write a new TreeAdapter class
that has the same interface, but carries out the adding of a line to the tree
correctly.

TheTreeView class contains a Nodes collection to which you add data by adding
a node, setting its text and defining whether or not it is a child node. Child nodes
are related to the index of the parent node. The following code adds a parent node
and then adds a child node to it.

'add a parent node

Copyright © 2001, by James W. Cooper

205

 Set tNode = Tree.Nodes.Add()
 tNode.Text = sw.getName
 tNode.Expanded = True
 index = tNode.index 'get its index
 'add a child node
 Set cNode = Tree.Nodes.Add(index, tvwChild)
 cNode.Text = Str$(sw.getTime)

The Object Adapter
In the object adapter approach, (Figure 15-3) we create a class that contains a
List Box class but which implements the methods of the ControlAdapter
interface. This is the approach we took in the example above

Figure 15-3 – An Object adapter approach to the list adapter.

The Class Adapter
In the class adapter approach (Figure 15-4), we derive a new class from ListBox
or the grid or tree control and add the desired methods to it. This is possible in
VB7, but not in earlier versions of Visual Basic.

Figure 15-4– The class adapter approach to the list adapter.

There are also some differences between the class and the object adapter
approaches, although they are less significant than in C++.

• The Class adapter

• Won’t work when we want to adapt a class and all of its subclasses,
since you define the class it derives from when you create it.

• Lets the adapter change some of the adapted class’s methods but still
allows the others to be used unchanged.

• An Object adapter

• Could allow subclasses to be adapted by simply passing them in as
part of a constructor.

• Requires that you specifically bring any of the adapted object’s
methods to the surface that you wish to make available.

Copyright © 2001, by James W. Cooper

206

Two Way Adapters
The two-way adapter is a clever concept that allows an object to be viewed by
different classes as being either of type ListBox or a type MSFlexGrid. This is
most easily carried out using a class adapter, since all of the methods of the base
class are automatically available to the derived class. However, this can only
work if you do not override any of the base class’s methods with ones that
behave differently.

Using Adapters in VB7
Adapters can be even more powerful in VB7. Let’s first consider the VB7
ListBox itself. This control has rather different methods from that VB6 list box,
and we might very well want to hide this difference by using an adapter so that
the methods that are brought to the surface appear to be the same.

In VB7, you add a line to a list box by adding a String to the listbox’s Items
collection.

list.Items.Add(s)

and the ListIndex property is replaced by the SelectedIndex property. So we
could easily write a simple wrapper class that translates these methods into the
ListBox methods for VB7. The beginnings of a ListAdapter class has a ListBox
instance in its constructor and saves that instance within the class, thus using
encapsulation or object composition.

Public Class ListAdapter
 'Adapter for ListBox emulating some of
 'the methods of the VB6 list box.
 Private List As ListBox 'instance of list box
 Private tabChar As String
 '--------
 Public Sub New(ByVal ls As ListBox)
 List = ls
 tabChar = Convert.ToChar(9)
 End Sub
 '--------
 Public Sub addItem(ByVal s As String)
 list.Items.Add(s) 'add into list box

Copyright © 2001, by James W. Cooper

207

 End Sub
 '--------
 Public Function ListIndex() As Integer
 Return list.SelectedIndex 'get list index
 End Function

End Class

However, in the program we have been discussing we want to display the name
of the swimmer and the swimmer’s time. Thus, it is convenient to add a method
that takes a Swimmer object as an argument and puts the name and time in the
list box. While the VB7 listbox still allows you to separate columns using the
Tab character (ASCII 9), the Chr$(9) function is no longer preferred, and we
create our tab character using the Shared ToChar method of the Convert class:

tabChar = Convert.ToChar(9)

You can also use the integer toChar method:

tabChar = 9.toChar

Then we can add an extra method to the ListAdapter class which takes a
Swimmer object as an argument:

Public Sub addText(ByVal sw As Swimmer)
 list.Items.Add(sw.getname + tabChar + _

sw.getTime.toString)
 End Sub
The code that reads the swimmers in from the file and loads their names into the
left-hand listbox also uses an instance of the ListAdapter . Here are declarations
and initialization,

Private lsAdapter, ksAdapter As ListAdapter

 lsAdapter = New ListAdapter(lsNames)
 ksAdapter = New ListAdapter(lsKids)

and this simple routine reads in the lines of data:

Private Sub ReadFile()
 Dim s As String
 Dim sw As Swimmer

Copyright © 2001, by James W. Cooper

208

 Dim fl As New vbFile("swimmers.txt")
 fl.openForRead()
 s = fl.readLine
 While Not fl.fEof
 sw = New Swimmer(s)
 swimmers.add(sw)
 ksAdapter.addItem(sw.getName)
 s = fl.readLine
 End While
 End Sub

The running program is shown in Figure 15-5.

Figure 15-5 – Two list boxes loaded using two instances of the

ListAdapter.

TreeView Adapters for VB.NET
The TreeView class in VB7 is only slightly different than that in VB6. For each
node you want to create, you create an instance of the TreeNode class and add to
the root TreeNode collection of to another node. In our example version using the

Copyright © 2001, by James W. Cooper

209

TreeView, we’ll add the swimmer’s name to the root node collection, and the
swimmer’s time as a subsidiary node. The entire TreeAdapter class is shown
below. Note that we only need implement the addText method.

Public Class TreeAdapter
 'An adapter to use TreeView
 'instead of list boxes
 Private Tree As TreeView 'instance of tree

 Public Sub New(ByVal tr As TreeView)
 Tree = tr
 End Sub
 '-------------
 Public Sub addText(ByVal sw As Swimmer)
 Dim scnt As String
 Dim nod As TreeNode
 'add a root node
 nod = Tree.Nodes.add(sw.getName)

 'add a child node to it
 nod.Nodes.add(sw.getTime.toString)
 Tree.expandAll()
 End Sub

End Class

The TreeDemo program is shown in Figure 15-6.

Copyright © 2001, by James W. Cooper

210

Figure 15-6 – The same swimmer selection program using a TreeView

adapter.

Adapting a DataGrid
The VB7 DataGrid control is considerably more elaborate than the MSFlexGrid
control in VB6. It can be bound to a database or to an in-memory data array. To
use the DataGrid without a database, you create an instance of the DataTable
class and add DataColumns to it. DataColumns are by default of String type, but
you can define them to be of any type when you create them. Here is the general
outline of how you create a DataGrid using a DataTable:
Dim dtable as DataTable

dtable = New DataTable("Kids")

 Dim column As DataColumn
 column = New DataColumn("Frname", _

System.Type.GetType("System.String"))

Copyright © 2001, by James W. Cooper

211

 dtable.Columns.add(column)
 column = New DataColumn("Lname", _

System.Type.GetType("System.String"))

 dtable.Columns.add(column)
 column = New DataColumn("Age", _

System.Type.GetType("System.Int16"))

 dtable.Columns.add(column)
 Dgrid.DataSource = dtable

To add text to the DataTable, you ask the table for a row object and then set the
elements of the row object to the data for that row. If the types are all String then
you copy the strings, but if one of the columns is of a different type, such as are
integer age column here, you must be sure to use that type in setting that
column’s data.

The complete GridAdapter class fills in each row in this fashion.

Public Class GridAdapter
 Private dtable As DataTable
 Private Dgrid As DataGrid
 '-----
 Public Sub New(ByVal grid As DataGrid)
 dtable = CType(grid.DataSource, DataTable)
 dgrid = grid
 End Sub
 '-----
 Public Sub addText(ByVal sw As Swimmer)
 Dim scnt As String
 Dim row As DataRow

 row = dtable.NewRow
 row("Frname") = sw.getFirstName
 row(1) = sw.getLastName
 row(2) = sw.getAge 'This one is an integer
 dtable.Rows.Add(row)
 dtable.AcceptChanges()
 End Sub

End Class

Copyright © 2001, by James W. Cooper

212

Note that you can refer to each column either by numeric position or by name.
The running program is shown in Figure 15-7.

Figure 15-7 - The GridAdapter program

Object versus Class Adapters in VB.NET
The List, Tree and Grid adapters we have just illustrated are all Object adapters.
That is, they are all classes which contain the visual component we are adapting.
However, it is equally easy to write a List or Tree Class adapter which is derived
from the base class and contains the new addText method.

In the case of the DataGrid, this is probably not a good idea, because we would
have to create instances of DataTables and Columns inside the DataGrid class,
which makes one large complex class with too much knowledge of how other
classes work.

Copyright © 2001, by James W. Cooper

213

Pluggable Adapters
A pluggable adapter is one that adapts dynamically to one of several classes. Of
course, the adapter can only adapt to classes it can recognize, and usually the
adapter decides which class it is adapting based on differing constructors or
setParameter methods.

Adapters in VB
In a broad sense, there are already a number of adapters built into the VB7
language, to allow for compatibility with VB6. These wrap new functions in the
API of the older ones in much the same way we did for the Listbox above.

Thought Questions
1. How would you go about writing a class adapter to make the Grid look like a

two-column list box?

Programs on the CD-ROM
\Adapter\TreeAdapter The VB6 Tree adapter

\Adapter\VBNet\LstAdapter VB7 List adapter

\Adapter\VBNet\GrdAdapter VB7 Grid adapter

\Adapter\VBNet\TreAdapter

VB7 Treeview adapter

Copyright © 2001, by James W. Cooper

214

16. THE BRIDGE PATTERN

At first sight, the Bridge pattern looks much like the Adapter pattern, in that a
class is used to convert one kind of interface to another. However, the intent of
the Adapter pattern is to make one or more classes’ interfaces look the same as
that of a particular class. The Bridge pattern is designed to separate a class’s
interface from its implementation, so that you can vary or replace the
implementation without changing the client code.

The participants in the Bridge pattern are the Abstraction, which defines the
class’s interface, the Refined Abstraction which extends and implements that
interface, the Implementor, which defines the interface for the implementation
classes and the ConcreteImplementors which are the implementation classes.

Suppose that we have a program that displays a list of products in a window. The
simplest interface for that display is a simple Listbox. But, once a significant
number of products have been sold, we may want to display the products in a
table along with their sales figures.

Since we have just discussed the adapter pattern, you might think immediately of
the class-based adapter, where we adapt the interface of the Listbox to our
simpler needs in this display. In simple programs, this will work fine, but as we’ll
see below there are limits to that approach.

Let’s further suppose that we need to produce two kinds of displays from our
product data, a customer view that is just the list of products we’ve mentioned,
and an executive view that also shows the number of units shipped. We’ll display
the product list in an ordinary Listbox and the executive view in a MSFlexGrid
table display. These two displays are the implementations of the display classes,
as shown in Figure 16-1.

Copyright © 2001, by James W. Cooper

215

Figure 16-1 – Two displays of the same information using a Bridge

pattern.

Now, we want to define a single interface that remains the same regardless of the
type and complexity of the actual implementation classes. We’ll start by defining
an abstract Bridger class:
'Bridge interface to display classes
'add data to display
Public Sub addData(col As Collection)
End Sub
'------------
'initialize with list class
Public Sub init(visL As visList)
End Sub

This class just receives a Collection of data and passes it on to the display
classes.

We also define a Product cla ss that holds the names and quantities, and parses the
input string from the data file:

'Product class - reads in data
'and provides accessor methods
Private prodName As String

Copyright © 2001, by James W. Cooper

216

Private qty As String
'------------
Public Sub init(prodString As String)
 Dim i As Integer
 i = InStr(prodString, "--")
 If i > 0 Then
 prodName = Trim(Left$(prodString, i - 1))
 qty = Trim(Right(prodString, Len(prodString) - i - 1))
 Else
 prodName = prodString
 qty = ""
 End If
End Sub
'------------
Public Function getName() As String
 getName = prodName
End Function
'------------
Public Function getQty() As String
 getQty = qty
End Function

On the other side of the bridge are the implementation classes, which usually
have a more elaborate and somewhat lower level interface. Here we’ll have them
add the data lines to the display one at a time.

'add a line to the display
Public Sub addLine(p As Product)
End Sub
'------------
'remove a line from the display
Public Sub removeLine(ByVal num As Integer)
End Sub
'------------
'initialize the class with
'the appropriate visual control
Public Sub init(c As Control)
End Sub

The Bridge between the interface on the left and the implementation on the right
is the listBridge class which instantiates one or the other of the list display
classes. Note that it implements the Bridger class for use of the application
program.

Implements Bridger

Copyright © 2001, by James W. Cooper

217

'A bridge between lists and display
Private visL As visList
'------------
Private Sub Bridger_addData(col As Collection)
 Dim i As Integer, p As Product
 'add data to list from product collection
 For i = 1 To col.Count
 Set p = col(i)
 visL.addLine p
 Next i
End Sub
'------------
'Initialize with visible list class
Private Sub Bridger_init(vis As visList)
 Set visL = vis
End Sub

Then, at the top programming level, we just create instances of a table and a list
using the listBridge class:

'create visList class for list box
Set prodList = New ProductList
prodList.init pList

'create a bridge to the list
Set br = New ListBridge

'pass in the list box
br.init prodList
br.addData products 'display data

'create visList for the grid
Set execList = New ProductTable
execList.init pGrid

'create a bridge to the grid
Set gbr = New ListBridge

'pass in the grid
gbr.init execList
gbr.addData products 'display data

Copyright © 2001, by James W. Cooper

218

The visList Classes
The two visList classes are really quite similar. The customer version operates on
a ListBox and adds the names to it:

'Class ProductList
Implements visList
'class wrapper for the list box
'to give it a common interface
Private lst As ListBox
'------------
Private Sub visList_addLine(p As Product)
 lst.AddItem p.getName
End Sub
'------------
Private Sub visList_init(c As Control)
 Set lst = c
End Sub
'------------
Private Sub visList_removeLine(ByVal num As Integer)
 lst.RemoveItem num
End Sub

The ProductTable version of the visList is quite similar except that it adds both
the product name and quantity to the two columns of the grid:

Private Sub visList_addLine(p As Product)
 gridList.AddItem p.getName + tabChar + p.getQty
End Sub

The Class Diagram
The UML diagram in Figure 16-2 for the Bridge class shows the separation of the
interface and the implementation quite clearly. The Bridger class on the left is the
Abstraction and the listBridge class the implementation of that abstraction. The
visList interface describes the public interface to the list classes productList and
productTable. The visList interface defines the interface of the Implementor and
the Concrete Implementors are the productList and productTable classes.

Note that these two concrete implementors are quite different in their specifics
even though the both support the visList interface.

Copyright © 2001, by James W. Cooper

219

Figure 16-2– The UML diagram for the Bridge pattern used in the
two displays of product information.

Extending the Bridge
 Now suppose that we need to make some changes in the way these lists display
the data. For example, you might want to have the products displayed in
alphabetical order. You might think you’d need to either modify or subclass both
the list and table classes. This can quickly get to be a maintenance nightmare,
especially if more than two such displays eventually are needed. Instead, we
simply make the changes in the extended interface class, creating a new
sortBridge class similar to the listBridge class.

'Class SortBridge

Copyright © 2001, by James W. Cooper

220

'sorts the data before passing it
'to the visList class
Implements Bridger
Private brdg As Bridger
Private prods() As Product
'----------
Private Sub Bridger_addData(col As Collection)
 Dim max As Integer, tprod As Product
 max = col.Count
 ReDim prods(max) As Product
 Dim i As Integer, j As Integer

 'copy into array
 For i = 1 To max
 Set prods(i) = col(i)
 Next i

 'sort array
 For i = 1 To max
 For j = i To max
 If prods(i).getName > prods(j).getName Then
 Set tprod = prods(i)
 Set prods(i) = prods(j)
 Set prods(j) = tprod
 End If
 Next j
 Next i

 'put back into collection
 Set col = Nothing
 Set col = New Collection
 For i = 1 To max
 col.Add prods(i)
 Next i

 'pass on to basic pridge class
 brdg.addData col
End Sub
'----------
Private Sub Bridger_init(visL As visList)
 Set brdg = New ListBridge
 brdg.init visL
End Sub

Copyright © 2001, by James W. Cooper

221

You can see the sorted result in Figure 16-3.

Figure 16-3– The sorted list generated using SortBridge class

This clearly shows that you can vary the interface without changing the
implementation. The converse is also true. For example you could create another
type of list display and replace one of the current list displays without any other
program changes as long as the new list also implements the visList interface.

In the example in Figure 16-4, we have created a tree list component which
implements the visList interface and replaced the ordinary list without any
change in the public interface to the classes.

Copyright © 2001, by James W. Cooper

222

Figure 16-4 – Another display using a Bridge to a tree list.

ActiveX Controls as Bridges
The visual ActiveX control is itself an ideal example of a Bridge pattern
implementation. An ActiveX control is a reusable software component that can
be manipulated visually in a builder tool. All of the VB6 Controls are written as
ActiveX controls, which means they support a query interface that enables
builder programs to enumerate their properties and display them for easy
modification. Figure 16-5 shows a screen from VB, showing a panel with a text
fie ld and a check box. The builder panel to the right shows how you can modify
the properties of either of those components using a simple visual interface.

Copyright © 2001, by James W. Cooper

223

Figure 16-5 – A screen from Visual Basic showing a properties

interface. The property lists are effectlivelyt implemented using a
Bridge pattern.

In other words, all ActiveX controls have the same interface used by the builder
program and you can substitute any control for any other and still manipulate its
properties using the same convenient interface. The actual program you construct
uses these classes in a conventional way, each having its own rather different
methods, but from the builder’s point of view, they all appear to be the same.

The Bridge Pattern in VB.NET
In VB7, you can write the same program in much the same fashion. The
important thrust of the Bridge pattern remains unchanged: to separate the
management of the data from the management of the display methods. So we
communicate between the underlying data and the Bridge using the simple
Bridger interface:

'Bridge interface to data

Copyright © 2001, by James W. Cooper

224

Public Interface Bridger
 Sub addData(ByVal col As ArrayList)
End Interface

and we communicate between the Bridge and the visual display classes using the
visList interface, which is now just

Interface VisList
 'add a line to the display
 Sub addLine(ByVal p As Product)
 'remove a line from the display
 Sub removeLine(ByVal num As Integer)
End Interface

As before, the Listbridge class is the bridge between the data and the display.
When you create an instance of this class you pass in the visList class you want
to use to display the data, and the Bridge loads that data into the display without
having to know what sort of display control it actually uses.

Public Class ListBridge
 Implements Bridger
 Private visL As visList
 '-----
 Public Sub New(ByVal vis As visList)
 MyBase.New()
 visL = vis 'copy in display class
 End Sub
 '-----
 'Adds array of product data
 Public Sub addData(ByVal col As ArrayList) Implements _
 Bridger.addData
 Dim i As Integer
 Dim p As Product

 'add data to list from product array
 For i = 0 To col.Count - 1
 p = CType(col(i), Product)
 visL.addLine(p)
 Next i
 End Sub
End Class

Copyright © 2001, by James W. Cooper

225

The ListBox VisList Class
The ProductList class is the class wrapper that converts a ListBox into a VisList
object by implementing the VisList interface. In essence, it is an Adapter
between the ListBox class and the VisList interface we need for the Bridge. It is,
however, quite simple.

Public Class ProductList
 Implements visList
 'class wrapper for the list box
 'to give it a common interface
 Private lst As ListBox
 '------------
 Private Sub addLine(ByVal p As Product) _
 Implements visList.addLine
 lst.Items.Add(p.getName)
 End Sub
 '------------
 Public Sub New(ByVal c As ListBox)
 lst = c 'copy in list box
 End Sub
 '------------
 Public Sub removeLine(ByVal num As Integer) _
 Implements visList.removeLine
 lst.Items.remove(num)
 End Sub
End Class

The Grid VisList class
The ProductTable class puts a VisList interface around the DataGrid control.
However, since the DataGrid is a fairly complex control, we make use of the
GridAdapter class we developed in the previous Adapter pattern chapter. This
makes this class quite a bit simpler to write as well:

Public Class ProductTable
 Implements visList
 Private gridList As GridAdapter
 '-----

Copyright © 2001, by James W. Cooper

226

 Public Sub addLine(ByVal p As Product) _
 Implements visList.addLine
 gridList.AddLine(p)
 End Sub
 '-----
 Public Sub New(ByVal c As DataGrid)
 gridList = New GridADapter(c)
 End Sub
 '-----
 Public Sub removeLine(ByVal num As Integer) _
 Implements visList.removeLine
 gridList.removeLine(num)
 End Sub
End Class

Loading the Data
The main BasicBridge program just creates these objects, reads in the data and
passes it to the two Bridges to pass on to the two VisList classes:

 Public Sub New()
 MyBase.New
 Form1 = Me
 InitializeComponent()
 Dim dtable As DataTable
 dtable = New DataTable("Products")
 Dim column As DataColumn
 column = New DataColumn("ProdName")

 dtable.Columns.add(column)
 column = New DataColumn("Qty")

 dtable.Columns.add(column)
 lsExecList.DataSource = dtable

 products = New ArrayList() 'array list
 'create visList classes
 Execlist = New ProductTable(lsExeclist)
 prodList = New ProductList(lsProdList)

 'read in the data

Copyright © 2001, by James W. Cooper

227

 readData(products)
 'create the two bridges
 'and populate the displays
 Dim prodBridge As New ListBridge(prodList)
 Dim tableBridge As New ListBridge(ExecList)
 prodbridge.addData(products)
 tableBridge.addData(products)
 End Sub
The resulting display is shown in Figure 16-6.

Figure 16-6 – The BasicBridge program implemented in VB7

Changing the Data Side of the Bridge
Just as in the VB6 version, you can vary the interface and implementation
separately. In the above display we see two interface displays of the data. The
data implementation just reads the data into an ArrayList and passes it on into the
Bridge for display. However, the Bridge could sort the data before displaying it
as we show here:

Copyright © 2001, by James W. Cooper

228

'A sorted version of the Data to Vislist
'Bridge class
Public Class ListBridge
 Implements Bridger
 'A bridge between lists and display
 Private visL As visList
 '-----
 Public Sub New(ByVal vis As visList)
 MyBase.New()
 visL = vis
 End Sub
 '-----
 Public Sub addData(ByVal col As ArrayList) _
 Implements Bridger.addData
 Dim i, j, max As Integer
 Dim p As Product
 max = col.count
 Dim products(max) As Product
 For i = 0 To max - 1
 products(i) = CType(col(i), Product)
 Next i
 'sort array into alphabetical order
 For i = 0 To max - 1
 For j = i To max - 1
 If products(i).getName > _

products(j).getName Then
 p = products(i)
 products(i) = products(j)
 products(j) = p
 End If
 Next j
 Next i
 'add data to list from product collection
 For i = 0 To max - 1
 visL.addLine(products(i))
 Next i
 End Sub
End Class

This produces the sorted display in Figure 16-7.

Copyright © 2001, by James W. Cooper

229

Figure 16-7. The sorted bridge display in VB7

Consequences of the Bridge Pattern
1. The Bridge pattern is intended to keep the interface to your client program

constant while allowing you to change the actual kind of class you display or
use. This can prevent you from recompiling a complicated set of user
interface modules, and only require that you recompile the bridge itself and
the actual end display class.

2. You can extend the implementation class and the bridge class separately, and
usually without much interaction with each other.

3. You can hide implementation details from the client program much more
easily.

Copyright © 2001, by James W. Cooper

230

Thought Questions
In plotting a stock’s performance, you usually display the price and price-
earnings ratio over time, while in plotting a mutual fund, you usually show the
price and the earnings per quarter. Suggest how you can use a Bridge to do both.

Programs on your CD-ROM
\Bridge\BasicBridge VB6 bridge from list to grid

\Bridge\SortBridge VB6 sorted bridge

\Bridge\TreeBridge VB6 list to tree bridge

\Bridge\VBNet\BasicBridge VB7 bridge from list to grid

\Bridge\VBNet\SortBridge VB7 sorted bridge form list to grid

Copyright © 2001, by James W. Cooper

231

17. THE COMPOSITE PATTERN

Frequently programmers develop systems in which a component may be an
individual object or it may represent a collection of objects. The Composite
pattern is designed to accommodate both cases. You can use the Composite to
build part-whole hierarchies or to construct data representations of trees. In
summary, a composite is a collection of objects, any one of which may be either
a composite, or just a primitive object. In tree nomenclature, some objects may
be nodes with additional branches and some may be leaves.

The problem that develops is the dichotomy between having a single, simple
interface to access all the objects in a composite, and the ability to distinguish
between nodes and leaves. Nodes have children and can have children added to
them, while leaves do not at the moment have children, and in some
implementations may be prevented from having children added to them.

Some authors have suggested creating a separate interface for nodes and leaves,
where a leaf could have the methods

public Function getName() As String
public Function getValue() As String

and a node could have the additional methods:

public Function elements() As Collection
public Function getChild(nodeName As String) As Node
public Sub add(obj As Object)
public Sub remove(obj As Object);

This then leaves us with the programming problem of deciding which elements
will be which when we construct the composite. However, Design Patterns
suggests that each element should have the same interface, whether it is a
composite or a primitive element. This is easier to accomplish, but we are left
with the question of what the getChild operation should accomplish when the
object is actually a leaf.

VB can make this quite easy for us, since every node or leaf can return a
Collection of the child nodes. If there are no children, the count property returns

Copyright © 2001, by James W. Cooper

232

zero. Thus, if we simply obtain the Collection of child nodes from each element,
we can quickly determine whether it has any children by checking the count
property.

Just as difficult is the issue of adding or removing leaves from elements of the
composite. A non-leaf node can have child-leaves added to it, but a leaf node
cannot. However, we would like all of the components in the composite to have
the same interface. Attempts to add children to a leaf node must not be allowed,
and we can design the leaf node class to raise an error if the program attempts to
add to such a node.

An Implementation of a Composite
Let’s consider a small company. It may have started with a single person who got
the business going. He was, of course, the CEO, although he may have been too
busy to think about it at first. Then he hired a couple of people to handle the
marketing and manufacturing. Soon each of them hired some additional
assistants to help with advertising, shipping and so forth, and they became the
company’s first two vice-presidents. As the company’s success continued, the
firm continued to grow until it has the organizational chart we see in Figure 17-1.

CEO

Vp Mkt Vp prod

Sales mgr Mkt mgr Pro mgr Ship mgr

Sales Sales Secy Ship ShipManu Manu Manu

Figure 17-1 – A typical organizational chart.

Copyright © 2001, by James W. Cooper

233

Computing Salaries
Now, if the company is successful, each of these company members receives a
salary, and we could at any time ask for the cost of the control span of any
employee to the company. We define this control cost as the salary of that person
and those of all his subordinates. Here is an ideal example for a composite:

• The cost of an individual employee is simply his salary (and benefits).

• The cost of an employee who heads a department is his salary plus those of
all he controls.

We would like a single interface that will produce the salary totals correctly
whether the employee has subordinates or not.

public Function getSalaries() As Single

At this point, we realize that the idea of all Composites having the same standard
method names in their interface is probably naïve. We’d prefer that the public
methods be related to the kind of class we are actually developing. So rather than
have generic methods like getValue, we’ll use getSalaries.

The Employee Classes
We could now imagine representing the company as a Composite made up of
nodes: managers and employees. It would be possible to use a single class to
represent all employees, but since each level may have different properties, it
might be more useful to define at least two classes: Employees and Bosses.
Employees are leaf nodes and cannot have employees under them. Bosses are
nodes that may have employee nodes under them.

We’ll start with the AbstractEmployee class and derive our concrete employee
classes from it:

'Class AbstractEmployee
'Interface for all Employee classes
'---------
Public Function getSalary() As Single
End Function
'---------
Public Function getName() As String

Copyright © 2001, by James W. Cooper

234

End Function
'---------
Public Function isLeaf() As Boolean
End Function
'---------
Public Sub add(nm As String, salary As Single)
End Sub
'---------
Public Sub addEmp(emp As AbstractEmployee)
End Sub
'---------
Public Function getSubordinates() As Subords
End Function
'---------
Public Sub remove(emp As AbstractEmployee)
End Sub
'---------
Public Function getChild(nm As String) As AbstractEmployee
End Function
'---------
Public Function getSalaries() As Single
End Function
'---------
Public Sub init(name As String, salary As Single)
End Sub

Our concrete Employee class will store the name and salary of each employee,
and allow us to fetch them as needed.
'Class Employee
'implementation of AbstractEmployee interface
Implements AbstractEmployee
Private nm As String
Private salary As String
Private subordinates As Subords
'--------
Private Function AbstractEmployee_getChild(nm As String)& _
 As AbstractEmployee
 Set AbstractEmployee_getChild = Null
End Function
'--------
Private Function AbstractEmployee_getName() As String
 AbstractEmployee_getName = nm
End Function
'--------

Copyright © 2001, by James W. Cooper

235

Private Function AbstractEmployee_getSalaries() As Single
 AbstractEmployee_getSalaries = salary
End Function
'--------
Private Function AbstractEmployee_getSalary() As Single
 AbstractEmployee_getSalary = salary
End Function
'--------
Private Sub AbstractEmployee_init(name As String, & _
 money As Single)
 nm = name
 salary = money
 Set subordinates = New Subords
End Sub
'--------
Private Function AbstractEmployee_isLeaf() As Boolean
 AbstractEmployee_isLeaf = True
End Function
'--------
Private Sub AbstractEmployee_remove(emp As AbstractEmployee)
 Err.Raise vbObjectError + 513, , & _
 "No subordinates in base employee class"
End Sub
'--------
Private Sub Class_Initialize()
 nm = ""
 salary = 0
End Sub

The Employee class must have concrete implementations of the add, remove,
getChild and subordinates classes. Since an Employee is a leaf, all of these will
return some sort of error indication. For example, subordinates could return null
but programming will be more consistent it if returns an empty enumeration:

Private Function AbstractEmployee_getSubordinates() & _
 As Subords
Set AbstractEmployee_getSubordinates = subordinates
End Function

The add and remove methods must generate errors since members of the basic
Employee class cannot have subordinates.

Private Sub AbstractEmployee_add(nm As String, & _
 salary As Single)

Copyright © 2001, by James W. Cooper

236

Err.Raise vbObjectError + 513, , & _
 "No subordinates in base employee class"
End Sub
'--------
Private Sub AbstractEmployee_addEmp(emp As & _
 AbstractEmployee)
Err.Raise vbObjectError + 513, , & _
 "No subordinates in base employee class"
End Sub

The Subords Class
VB does not provide an enumeration class which contains its own internal
pointer to move through a list. So we create a simple class which contains a
collection and an index to move through that collection. The advantage of using
this class, here called Subords, is that you can search down through the
composite tree without having to maintain indexes outside of each instance of the
Collection that you search through.

'Class Subords
'A simple enumeration of a collection
Private subNames As Collection 'the collection
Private index As Integer 'the internal index
'--------
Public Sub moveFirst()
 index = 1
End Sub
'--------
Public Function hasMoreElements()
 hasMoreElements = index <= subNames.count
End Function
'--------
Public Function nextElement() As Object
 Set nextElement = subNames(index)
 index = index + 1
End Function
'--------
Private Sub Class_Initialize()
 Set subNames = New Collection
 index = 1
End Sub
'--------
Public Sub add(obj As Object)

Copyright © 2001, by James W. Cooper

237

 subNames.add obj
End Sub
'--------
Public Function element(i As Integer) As Object
 Set element = subNames(i)
End Function
'--------
Public Function count() As Integer
 count = subNames.count
End Function

Using the Subords class, we can simply call the hasMoreElements method and
the nextElement method to move through a collection without having to use and
maintain an index ourselves.

The Boss Class
Our Boss class is a subclass of Employee, and allows us to store subordinate
employees as well. We’ll store them in a Collection called subordinates and
return them through an enumeration. Thus, if a particular Boss has temporarily
run out of Employees, the enumeration will just be empty. We’ll make this Boss
class contain an instance of Employee, which will then return the name and
salary information. The Boss class itself will handle the subordinate list.

'Class Boss
'A Boss implementation of AbstractEmployee
'which allows subordinates
Implements AbstractEmployee
Private emp As AbstractEmployee 'keeps employee data
Private subordinates As Subords 'list of subordinates
'--------
Private Sub AbstractEmployee_add(nm As String, & _
 salary As Single)
Dim newEmp As AbstractEmployee
 Set newEmp = New Employee
 newEmp.init nm, salary
 subordinates.add newEmp
End Sub
'--------
Private Sub AbstractEmployee_addEmp(emp As & _
 AbstractEmployee)

Copyright © 2001, by James W. Cooper

238

 subordinates.add emp
End Sub
'--------
Private Function AbstractEmployee_getName() As String
 AbstractEmployee_getName = emp.getName
End Function
'--------
Private Function AbstractEmployee_getSalary() As Single
 AbstractEmployee_getSalary = emp.getSalary
End Function
'--------
Private Function AbstractEmployee_getSubordinates() & _
 As Subords
 Set AbstractEmployee_getSubordinates = subordinates
End Function
'--------
Private Sub AbstractEmployee_init(name As String, & _
 salary As Single)
 Set emp = New Employee
 emp.init name, salary
 Set subordinates = New Subords
End Sub
'--------
Private Function AbstractEmployee_isLeaf() As Boolean
 AbstractEmployee_isLeaf = False
End Function

If you want to get a list of employees of a given supervisor, you can obtain an
Enumeration of them directly from the Subords collection. Similarly, you can use
this same Collection to returns a sum of salaries for any employee and his
subordinates:

Private Function AbstractEmployee_getSalaries() As Single
Dim sum As Single, esub As AbstractEmployee
'get the salaries of the boss and subordinates
 sum = emp.getSalary
 subordinates.moveFirst
 While subordinates.hasMoreElements
 Set esub = subordinates.nextElement
 sum = sum + esub.getSalaries
 Wend
 AbstractEmployee_getSalaries = sum
End Function

Copyright © 2001, by James W. Cooper

239

Note that this method starts with the salary of the current Employee, and then
calls the getSalaries() method on each subordinate. This is, of course, recursive
and any employees which themselves have subordinates will be included. A
diagram of these classes is shown in Figure 17-2.

Figure 17-2 – The AbstractEmployee class and how Employee and

Boss are derived from it.

Building the Employee Tree
We start by creating a CEO Employee and then add his subordinates and their
subordinates as follows:

Copyright © 2001, by James W. Cooper

240

Private Sub buildEmployeeList()

Dim i As Integer
Dim marketVP As AbstractEmployee
Dim salesMgr As AbstractEmployee
Dim advMgr As AbstractEmployee, emp As AbstractEmployee
Dim prodVP As AbstractEmployee, prodMgr As AbstractEmployee
Dim shipMgr As AbstractEmployee

 Set prez = New Boss
 prez.init "CEO", 200000

 Set marketVP = New Boss
 marketVP.init "Marketing VP", 100000
 prez.addEmp marketVP

 Set salesMgr = New Boss
 salesMgr.init "Sales Mgr", 50000

 Set advMgr = New Boss
 advMgr.init "Advt Mgr", 50000

 marketVP.addEmp salesMgr
 marketVP.addEmp advMgr
 Set prodVP = New Boss
 prodVP.init "Production VP", 100000

 prez.addEmp prodVP
 advMgr.add "Secy", 20000

'add salesmen reporting to sales manager
 For i = 1 To 5
 salesMgr.add "Sales" + Str$(i), rand_sal(30000)
 Next i

 Set prodMgr = New Boss
 prodMgr.init "Prod Mgr", 40000
 Set shipMgr = New Boss
 shipMgr.init "Ship Mgr", 35000
 prodVP.addEmp prodMgr
 prodVP.addEmp shipMgr

 For i = 1 To 3
 shipMgr.add "Ship" + Str$(i), rand_sal(25000)
 Next i

Copyright © 2001, by James W. Cooper

241

 For i = 1 To 4
 prodMgr.add "Manuf" + Str$(i), rand_sal(20000)
 Next i
End Sub

Once we have constructed this Composite structure, we can load a visual
TreeView list by starting at the top node and calling the addNode() method
recursively until all the leaves in each node are accessed:

Private Sub addNodes(nod As Node, ByVal emp As AbstractEmployee)
Dim col As Subords, i As Integer, newNode As Node
Dim newEmp As AbstractEmployee, cnt As Integer
Dim index As Integer

Set col = emp.getSubordinates
index = nod.index 'get node's index
col.moveFirst
While col.hasMoreElements
 Set newEmp = col.nextElement
 Set newNode = empTree.Nodes.add(index, tvwChild)
 newNode.Text = newEmp.getName
 newNode.Expanded = True
 addNodes newNode, newEmp
Wend
End Sub

The final program display is shown in Figure 17-3..

Copyright © 2001, by James W. Cooper

242

Figure 17-3 – The corporate organization shown in a TreeView

control.

In this implementation, the cost (sum of salaries) is shown in the bottom bar for
any employee you click on. This simple computation calls the getChild() method
recursively to obtain all the subordinates of that employee.
Private Sub empTree_Click()
 Dim newEmp As AbstractEmployee
 'finds the salary of the selected employee and
 'all the subordinates

 Set newEmp = prez.getChild(empTree.SelectedItem)
 lblSalary.Caption = Str$(newEmp.getSalaries)

End Sub

Self-Promotion
We can imagine cases where a simple Employee would stay in his current job,
but have new subordinates. For example, a Salesman might be asked to supervise

Copyright © 2001, by James W. Cooper

243

sales trainees. For such a case, it is convenient to provide a method in the Boss
class that creates a Boss from a Employee

Private Sub AbstractEmployee_makeBoss(newBoss As & _
 AbstractEmployee)
 Set emp = newBoss
End Sub
In this implementation, we have all the classes (Employee and Boss) implement
the AbstractEmployee interface, and so we can treat each object as one have the
methods of an AbstractEmployee, we have to include the makeBoss methods in
the AbstractEmployee interface. Then we have to add this method to the
Employee class as well, raising an error if it is called inadvertently:

Private Sub AbstractEmployee_makeBoss(& _
 emp As AbstractEmployee)
Err.Raise vbObjectError + 514, , "Employee is not a boss"
End Sub

Doubly Linked Lists
In the above implementation, we keep a reference to each subordinate in the
Vector in each Boss class. This means that you can move down the chain from
the president to any employee, but that there is no way to move back up to find
out who an employee’s supervisor is. This is easily remedied by providing a
constructor for each AbstractEmployee subclass that includes a reference to the
parent node:
Private Sub AbstractEmployee_init(parnt As AbstractEmployee,& _

 name As String, money As Single)
 Set parent = parnt
 hasParent = True
 nm = name
 salary = money
 Set subordinates = New Subords
End Sub

Then you can quickly walk up the tree to produce a reporting chain:

Public Sub setBoss(empl As AbstractEmployee)
Dim nm As String
Set emp = empl
Do
 nm = emp.getName

Copyright © 2001, by James W. Cooper

244

 empList.AddItem nm
 Set emp = emp.getBoss
Loop Until emp.getName = nm
End Sub

as shown in Figure 17-4..

Figure 17-4 – The tree list display of the composite, with a display of
the parent nodes on the right..

Consequences of the Composite Pattern
The Composite pattern allows you to define a class hierarchy of simple objects
and more complex composite objects so that they appear to be the same to the
client program. Because of this simplicity, the client can be that much simpler,
since nodes and leaves are handled in the same way.

The Composite pattern also makes it easy for you to add new kinds of
components to your collection, as long as they support a similar programming
interface. On the other hand, this has the disadvantage of making your system
overly general. You might find it harder to restrict certain classes, where this
would normally be desirable.

Copyright © 2001, by James W. Cooper

245

A Simple Composite
The intent of the Composite pattern is to allow you to construct a tree of various
related classes, even though some have different properties than others and some
are leaves do not have children. However, for very simple cases, you can
sometimes use just a single class that exhibits both parent and leaf behavior. In
the SimpleComposite example, we create an Employee class that always contains
the Collection employees. This Collection of employees will either be empty or
populated and this determines the nature of the values that you return from the
getChild and remove methods. In this simple case we do not raise errors and
always allow leaf nodes to be promoted to have child nodes. In other words, we
always allow execution of the add method.

While you may not regard this automatic promotion as a disadvantage, in
systems where there are a very large number of leaves, it is wasteful to keep a
Vector initialized and unused in each leaf node. In cases where there are
relatively few leaf nodes, this is not a serious problem.

Composites in VB
In VB, you will note that the Node object class we use to populate the TreeView
is in fact just such a simple composite pattern. You will also find that the
Composite describes the hierarchy of Form, Frame and Controls in any user
interface program. Similarly toolbars are containers, and each may contain any
number of other containers.

Any container may then contain components such as Buttons, Checkboxes, and
TextBoxes, each of which is a leaf node that cannot have further children. They
may also contain ListBoxes and grids that may be treated as leaf nodes, or which
may contain further graphical components. You can walk down the Composite
tree using the Controls collection.

The Composite in VB.NET
In VB7 we do not need to use the Subords class because we have an built-in
enumeration interface called IEnumerator. This interface consists of the methods

Function MoveNext() as Boolean 'False if no more left
Function Current() as Object 'get current object

Copyright © 2001, by James W. Cooper

246

Sub Reset() 'move to first

So we can create an AbstractEmployee interface that returns an Enumerator. You
move through an enumeration, allowing for the fact that it might be empty using
the following approach

e.Reset
While e.MoveNext
 Emp = Ctype(e.Current, Employee)
 '...do computation..
End While

This Enumerator may, of course be empty, and can thus be used for both nodes
and leaves of the composite. Our AbstractEmployee interface is

Interface AbstractEmployee
 Inherits IEnumerable
 'Interface for all Employee classes
 Function getSalary() As Single
 Function getName() As String
 Function isLeaf() As Boolean
 Overloads Sub add(ByVal nm As String, _

ByVal salary As Single)
 Overloads Sub add(ByVal emp As AbstractEmployee)
 Function getSubordinates() As IEnumerator
 Sub remove(ByVal emp As AbstractEmployee)
 Function getChild(ByVal nm As String) _

As AbstractEmployee
 Function getSalaries() As Single
End Interface

Since VB7 allows polymorphism, we have two polymorphic versions of the add
method. Note that VB7 syntax requires that we specifically declare them using
the Overloads keyword.

The other major change we make for VB7 is that we can throw an exception if a
program tries to add or remove an Employee from an Employee class when that
employee is not a Boss and has no subordinates.

 Public Overridable Overloads Sub add(_
ByVal nm As String,_
ByVal salary As Single) _

Copyright © 2001, by James W. Cooper

247

 Implements AbstractEmployee.add
 Throw New Exception("No subordinates")
 End Sub
 '--------
 Public Overridable Overloads Sub add(_

ByVal emp As AbstractEmployee) _
 Implements AbstractEmployee.add
 Throw New Exception("No subordinates")
 End Sub

In our VB6 version of the composite, we had to completely implement every
method of the AbstractEmployee interface in both the Employee and the Boss
class. In VB7 we can derive the Boss from the Employee class and only
implement the methods that differ. VB7’s syntax does require that we
specifically declare the fact that we are overriding these methods as shown
below:

 Public Overloads Overrides Sub add(_
ByVal nm As String, ByVal salary As Single)

 Dim newEmp As AbstractEmployee
 newEmp = New Employee(nm, salary)
 subordinates.add(newEmp)
 End Sub
 '--------
 Public Overloads Overrides Sub add(_

ByVal emp As AbstractEmployee)
 subordinates.add(emp)
 End Sub

The Enumerator
The Enumerator we use in our Boss and Employee classes to enumerate
employees is a member of the ArrayList class. Classes which can return an
IEnumerator are said to implement the IEnumerable interface. However, the
advantage here is that we can create an empty ArrayList in the Employee class
and never allow additions to the array. However, we need not handle requests for
an enumeration of subordinates separately because the enumeration will always
be empty.

Copyright © 2001, by James W. Cooper

248

For this reason, we do not have to create separate versions of the getSalaries
method for Employees and Bosses because in the enumeration of subordinates is
empty the method will simply return the salary of the current employee.

Public Function getSalaries() As Single _
 Implements AbstractEmployee.getSalaries
 Dim sum As Single
 Dim esub As AbstractEmployee
 Dim enumSub As IEnumerator
 'get the salaries of the boss and subordinates
 sum = getSalary
 enumSub = subordinates.getEnumerator
 While enumSub.moveNext
 esub = CType(enumSub.current, AbstractEmployee)
 sum = sum + esub.getSalaries
 End While
 Return sum
 End Function

Multiple Boss Constructors
In our VB6 version of the composite, we had a specific makeBoss method to
create a Boss from an employee. We can do that in VB7 with a second,
overloaded version of the constructor:

Public Overloads Sub New(ByVal name As String, _
 ByVal salary As Single)
 MyBase.New(name, salary)
 subordinates = New ArrayList()
 End Sub
 '--------
 Public Overloads Sub New(ByVal emp As Employee)
 MyBase.New(emp.getName, emp.getSalary)
 End Sub
When you click on an element of the tree view, you can catch the afterSelect
event

Protected Sub EmpTree_AfterSelect(_
 ByVal sender As Object, _
 ByVal e As System.WinForms.TreeViewEventArgs)
 Dim node As EmpNode

Copyright © 2001, by James W. Cooper

249

 node = CType(EmpTree.SelectedNode, EmpNode)
 getNodeSum(node)
 End Sub

and then compute the salary recursively:

Private Function getNodeSum(ByVal node As EmpNode)_
 As Single

 Dim emp As AbstractEmployee
 Dim sum As Single

 emp = node.getEmployee
 sum = emp.getSalaries

 lbSalary.Text = sum.Format("n", Nothing)
 End Function
Note that the label text is generated using the Single variable object’s Format
method.

The final Composite program for VB7 is shown in Figure 17-5.

Figure 17-5 – The VB7 Composite

Copyright © 2001, by James W. Cooper

250

Other Implementation Issues
Ordering components. In some programs, the order of the components may be
important. If that order is somehow different from the order in which they were
added to the parent, then the parent must do additional work to return them in the
correct order. For example, you might sort the original collection alphabetically
and return a new sorted collection.

Caching results. If you frequently ask for data which must be computed from a
series of child components as we did here with salaries, it may be advantageous
to cache these computed results in the parent. However, unless the computation is
relatively intensive and you are quite certain that the underlying data have not
changed, this may not be worth the effort.

Thought Questions
1. A baseball team can be considered an aggregate of its individual players.

How could you use a composite to represent individual and team
performance?

2. The produce department of a supermarket needs to track its sales
performance by food item. Suggest how a composite might be helpful.

Programs on the CD-ROM

\Composite\SimpleComposite VB6 compsoite shows tree

\Composite\ParentChild VB6 composite that uses both child
links and parent links

\Composite\VBNetComposite VB7 composite of same employee tree

Copyright © 2001, by James W. Cooper

251

18. THE DECORATOR PATTERN

The Decorator pattern provides us with a way to modify the behavior of
individual objects without having to create a new derived class. Suppose we have
a program that uses eight objects, but three of them need an additional feature.
You could create a derived class for each of these objects, and in many cases this
would be a perfectly acceptable solution. However, if each of these three objects
require different features, this would mean creating three derived classes. Further,
if one of the classes has features of both of the other classes, you begin to create
complexity that is both confusing and unnecessary.

For example, suppose we wanted to draw a special border around some of the
buttons in a toolbar. If we created a new derived button class, this means that all
of the buttons in this new class would always have this same new border, when
this might not be our intent.

Instead, we create a Decorator class that decorates the buttons. Then we derive
any number of specific Decorators from the main Decorator class, each of which
performs a specific kind of decoration. In order to decorate a button, the
Decorator has to be an object derived from the visual environment, so it can
receive paint method calls and forward calls to other useful graphic methods to
the object that it is decorating. This is another case where object containment is
favored over object inheritance. The decorator is a graphical object, but it
contains the object it is decorating. It may intercept some graphical method calls,
perform some additional computation and may pass them on to the underlying
object it is decorating.

Decorating a CoolButton
Recent Windows applications such as Internet Explorer and Netscape Navigator
have a row of flat, unbordered buttons that highlight themselves with outline
borders when you move your mouse over them. Some Windows programmers
call this toolbar a CoolBar and the buttons CoolButtons. There is no analogous
button behavior in VB controls, but we can obtain that behavior by decorating a
PictureBox and using it as a button. In this case, we decorate it by drawing black
and white border lines to highlight the button or gray lines to remove the button
borders.

Copyright © 2001, by James W. Cooper

252

Let’s consider how to create this Decorator. Design Patterns suggests that
Decorators should be derived from some general Visual Component class and
then every message for the actual button should be forwarded from the decorator.
In VB6, this is impractical, because it is not possible to create a new visual
control that contains an existing one. Further, even if we derived a control from
an existing one, it would not have the line drawing methods we need to carry out
decoration.

Design Patterns suggests that classes such as Decorator should be abstract
classes and that you should derive all of your actual working (or concrete)
decorators from the abstract class. Here we show an abstract class for a decorator
that we can use to decorate picture boxes or other decorators.

'Class AbstractDecorator
'Used to decorate pictureBoxes
'and other Decorators
'--------
Public Sub init(c As Control, title As String)
'initializes decorator with control
End Sub
'--------
Public Sub initContents(d As AbstractDecorator)
'initializes decorator with another decorator
End Sub
'--------
Public Sub mouseUp()
End Sub
'--------
Public Sub mouseDown()
End Sub
'--------
Public Sub mouseMove(ByVal x As Single, ByVal y As Single)
End Sub
'--------
Public Sub refresh()
End Sub
'--------
Public Sub paint()
End Sub
'--------
Public Function getControl() As Control
End Function

Copyright © 2001, by James W. Cooper

253

Now, let’s look at how we could implement a CoolButton. All we really need to
do is to draw the white and black lines around the button area when it is
highlighted, and gray lines when it is not. When a MouseMove is detected over
the button, it should draw the highlighted lines, and when the mouse leaves the
button area., the lines should be drawn in gray.

However, VB does not have a MouseLeft event, so you cannot know for certain
when the mouse is no longer over the button. As a first approximation, we detect
the mouse crossing the outer 8 twips of the button area, and treat that as an exit.
To make sure that the button eventually un-highlights event if the mouse moves
too quickly to trigger the exit criteria, we also use a timer to turn off the
highlighting after 1 second if the mouse is no longer over the button.

Public Sub mouseMove(x As Single, y As Single)
Dim h As Integer, w As Integer, col As Long
h = pic.Height
w = pic.Width

If x < 8 Or y < 8 Or x > w - 16 Or y > h - 16 Then
 col = pic.BackColor
 drawLines True, col, False
 isOver = False
Else
 cTime = Time
 col = vbBlack
 drawLines False, col, False
 'isOver = True
End If

End Sub
'--------
Public Sub mouseDown()
 drawLines False, vbBlack, True
 isOver = True
End Sub
'--------
Public Sub mouseUp()
 isOver = False
 drawLines False, vbBlack, False
End Sub
'--------
Public Sub paint()
Dim x As Integer, y As Integer, h As Integer
 x = 10

Copyright © 2001, by James W. Cooper

254

 h = pic.Height
 y = 0.33 * h
 pic.PSet (x, y), pic.BackColor
 pic.Print btText;
End Sub
'--------
Private Sub drawLines(hide As Boolean, col As Long, & _
 down As Boolean)
Dim h As Integer, w As Integer
h = pic.Height
w = pic.Width
If down Then
 col = vbBlack
 pic.Line (0, 0)-(w - 8, 0), col
 pic.Line -(w - 8, h - 8), col
 pic.Line -(0, h - 8), col
 pic.Line -(1, 1), col
Else
 If hide Then
 pic.Line (0, 0)-(w - 8, 0), col
 pic.Line -(w - 8, h - 8), col
 pic.Line -(0, h - 8), col
 pic.Line -(1, 1), col
 Else
 pic.Line (0, 0)-(w - 8, 0), vbWhite
 pic.Line -(w - 8, h - 8), col
 pic.Line -(0, h - 8), col
 pic.Line -(1, 1), vbWhite
 End If
End If

End Sub

We use a timer to see if it is time to repaint the button without highlights:

Public Sub tick()
Dim thisTime As Variant, diff As Variant
 thisTime = Time
 diff = DateDiff("s", cTime, thisTime)
 If diff >= 1 And Not isOver Then
 drawLines True, pic.BackColor, False
 isOver = False
 End If
End Sub

Copyright © 2001, by James W. Cooper

255

Using a Decorator
Now that we’ve written a CoolDecorator class, how do we use it? We simply put
PictureBoxes on the VB Form, create an instance of the Decorator and pass it the
PictureBox it is to decorate. Let’s consider a simple program with two
CoolButtons and one ordinary Button. We create the buttons in the Form_Load
event as follows:

Private Sub Form_Load()
cTime = Time 'get the time
Set deco = New Decorator
deco.init Picture1, "A Button"
deco.paint

Set deco2 = New Decorator
deco2.init picture2, "B Button"
deco2.paint

This program is shown in Figure 18-1, with the mouse hovering over one of the
buttons.

Figure 18-1 – The A button and B button are CoolButtons, which are

outlined when a mouse hovers over them. Here the B button is
outlined.

Now that we see how a single decorator works, what about multiple decorators?
It could be that we’d like to decorate our CoolButtons with another decoration,
say, a red diagonal line. Since we have provided an alternate initializer with a
Decorator as an argument, we can encapsulate one decorator inside another and
paint additional decorations without ever having to change the original code. In

Copyright © 2001, by James W. Cooper

256

fact it is this containment and passing on of events that is the real crux of the
Decoratror pattern.

Let’s consider the ReDecorator, which draws that diagonal red line. It draws the
line and then passes control to the enclosed decorator to draw suitable cool
button lines. Since Redecorator implants the AbstractDecorator interface we can
use it wherever we would have used the original decorator.

'Class Redecorator
'contains a Decorator which it further decorates
Implements AbstractDecorator
Private deco As AbstractDecorator
Private pic As PictureBox
'--------
Public Sub init(d As Decorator)
 Set deco = d
 Set pic = deco.getControl
End Sub
'--------
Private Function AbstractDecorator_getControl() As Control
 Set AbstractDecorator_getControl = pic
End Function
'--------
Private Sub AbstractDecorator_init(c As Control, title As String)
 'never called- included for completeness
End Sub
'--------
Private Sub AbstractDecorator_initContents(d As AbstractDecorator)
 init d
End Sub
'--------
Private Sub AbstractDecorator_mouseDown()
 deco.mouseDown
 AbstractDecorator_paint
End Sub
'--------
Private Sub AbstractDecorator_mouseMove(ByVal x As Single, ByVal y
As Single)
 deco.mouseMove x, y
 AbstractDecorator_paint
End Sub
'--------
Private Sub AbstractDecorator_mouseUp()
 deco.mouseUp
End Sub

Copyright © 2001, by James W. Cooper

257

'--------
Private Sub AbstractDecorator_paint()
Dim w As Integer, h As Integer
 w = pic.Width
 h = pic.Height
 'draw diagonal red line
 pic.Line (0, 0)-(w, h), vbRed
 deco.paint 'and repaint contained decorator
End Sub
'--------
Private Sub AbstractDecorator_refresh()
 deco.refresh
 AbstractDecorator_paint
End Sub

You can create the CoolButton with these two decorators by just calling one and
then the other during the Form_Load event

Private Sub Form_Load()
 cTime = Time 'get the time
 'create first cool button
 Set deco = New Decorator
 deco.init Picture1, "A Button"
 deco.paint
 'create cool button
 Set deco2 = New Decorator
 deco2.init picture2, "B Button"
 'put it inside new decorator
 Set redec = New Redecorator
 redec.initContents deco2
 redec.paint
End Sub

This gives us a final program that displays the two buttons as shown in Figure
18-2

Copyright © 2001, by James W. Cooper

258

Figure 18-2 – The B button is also decorated with a SlashDecorator.

The Class Diagram

Figure 18-3– The UML class diagram for Decorators and two specific

Decorator implementations.

Copyright © 2001, by James W. Cooper

259

Using ActiveX Controls as Decorators
The HiText control we created in Chapter 2 is an example of a control
containing another control and operating on it. This is in fact a kind of decorator,
too, and is ideal for creating new derived controls. However, for simple things
like borders it is probably overkill.

A Decorator In VB.NET
We make a CoolButton in VB7 by deriving a container from the Panel class and
putting the button inside it. Then, rather than subclassing the button (or any other
control) we simply add handlers for the mouse and paint events of the button and
carry out the operations in the panel class.

To create our panel decorator class, we create our form, and then using the VB7
designer IDE, use the menu items Project | Add User Control to create a new user
control. Then, as before we change the class from which the control inherits,
from UserControl to Panel.

Public Class DecoPanel
 Inherits System.WinForms.Panel
After compiling this simple, and so-far empty class, we can add it to the form
using the designer and put a button inside it.

Figure 18-4. The Design window for the Decorator panel
Now the button is there and we need to know of its size and position so we can
repaint it as needed. We could do this in the constructor, but this would break the
IDE builder. Instead, we’ll simply ask for the control the first time the OnPaint
event occurs.

Copyright © 2001, by James W. Cooper

260

 Protected Overrides Sub OnPaint(_
ByVal e As System.WinForms.PaintEventArgs)

 'This is where we find out about the control
 If Not gotcontrol Then 'once only
 'get the control
 c = CType(Me.Controls(0), RichControl)
 'set the panel size 1 pixel bigger all around
 Me.Size.Width = c.Size.Width + 2
 Me.Size.Height = c.Size.Height + 2
 x1 = c.Location.X - 1
 y1 = c.Location.y - 1
 x2 = c.Size.Width
 y2 = c.Size.Height
 'create the overwrite pen
 gpen = New Pen(c.BackColor, 2)
 gotControl = True 'only once

Next we need to intercept the mouse events so we can tell if the mouse is over
the button.

Dim evh As EventHandler = _
New EventHandler(AddressOf ctMouseEnter)

 AddHandler c.MouseHover, evh
 AddHandler c.MouseEnter, evh
 AddHandler c.MouseMove, _

New MouseEventHandler(AddressOf ctMouseMove)
 AddHandler c.MouseLeave, _

 New EventHandler(AddressOf ctMouseLeave)

The events these point to simply set a mouse_over flag to true or false and then
repaint the control:

Public Sub ctMouseEnter(ByVal sender As Object, _
ByVal e As EventArgs)

 mouse_over = True
 Refresh()
 End Sub
 '-----
 Public Sub ctMouseLeave(ByVal sender As Object, _

ByVal e As EventArgs)
 mouse_over = False

Copyright © 2001, by James W. Cooper

261

 Refresh()
 End Sub
 '-----
 Public Sub ctMouseMove(ByVal sender As Object, _

ByVal e As MouseEventArgs)
 mouse_over = True
 End Sub

However, we don’t want to just repaint the panel, we want to paint right over the
button itself, so we can change the style of its borders. We can do this by
handling the paint event of the button itself. Note that we are Adding and event
handler and the button gets painted and then this additional handler gets called.

 'paint handler catches button's paint
 AddHandler c.Paint, _

New PaintEventHandler(AddressOf ctPaint)

Our paint method draws the background (usually gray) color over the button’s
border and then draws the new border on top.

Public Sub ctPaint(ByVal sender As Object, ByVal e As
PaintEventArgs)
 'draw over button to change its outline
 Dim g As Graphics = e.Graphics
 'draw over everything in gray first
 g.DrawRectangle(gpen, 0, 0, x2, y2)
 'draw black and white boundaries
 'if the mouse is over
 If mouse_over Then
 g.DrawLine(bpen, 0, 0, x2 - 1, 0)
 g.DrawLine(bpen, 0, 0, 0, y2 - 1)
 g.DrawLine(wpen, 0, y2 - 1, x2 - 1, y2 - 1)
 g.DrawLine(wpen, x2 - 1, 0, x2 - 1, y2 - 1)
 End If
 End Sub
The resulting CoolButton is shown in Figure 18-5.

Copyright © 2001, by James W. Cooper

262

Figure 18-5 – The CoolButton in VB.NET

Using the general method of overriding panels and inserting controls in them, we
can decorate any control to any length, and can even redraw the face of the
button if we want to. This sort of approach makes sense when you can’t subclass
the button itself, because your program requires that it be of a particular class.

Non-Visual Decorators
Decorators, of course, are not limited to objects that enhance visual classes. You
can add or modify the methods of any object in a similar fashion. In fact, non-
visual objects can be easier to decorate, because there may be fewer methods to
intercept and forward. Whenever you put an instance of a class inside another
class and have the outer class operate on it, you are essentially “decorating” that
inner class. This is one of the most common tools for programming available in
Visual Basic.

Decorators, Adapters and Composites
As noted in Design Patterns, there is an essential similarity among these classes
that you may have recognized. Adapters also seem to “decorate” an existing
class. However, their function is to change the interface of one or more classes to
one that is more convenient for a particular program. Decorators add methods to
particular instances of classes, rather than to all of them. You could also imagine
that a composite consisting of a single item is essentially a decorator. Once again,
however, the intent is different

Copyright © 2001, by James W. Cooper

263

Consequences of the Decorator Pattern
The Decorator pattern provides a more flexible way to add responsibilities to a
class than by using inheritance, since it can add these responsibilities to selected
instances of the class. It also allows you to customize a class without creating
subclasses high in the inheritance hierarchy. Design Patterns points out two
disadvantages of the Decorator pattern One is that a Decorator and its enclosed
component are not identical. Thus tests for object type will fail. The second is
that Decorators can lead to a system with “lots of little objects” that all look alike
to the programmer trying to maintain the code. This can be a maintenance
headache.

Decorator and Façade evoke similar images in building architecture, but in
design pattern terminology, the Façade is a way of hiding a complex system
inside a simpler interface, while Decorator adds function by wrapping a class.
We’ll take up the Façade next.

Thought Questions
1. When someone enters an incorrect value in a cell of a JTable, you might

want to change the color of the row to indicate the problem. Suggest how you
could use a Decorator.

2. A mutual fund is a collection of stocks. Each one consists of an array or
vector of prices over time. Can you see how a Decorator can be used to
produce a report of sotck performance for each stock and for the whole fund?

Programs on the CD-ROM
\Decorator\Cooldecorator VB6 cool button decorator

\Decorator\Redecorator VB6 cool button and slash decorator

\Decorator\DecoVBNet VB7 cool button decorator

Copyright © 2001, by James W. Cooper

264

19. THE FAÇADE PATTERN

In this chapter, we take up the Façade pattern. This pattern is used to wrap a set
of complex classes into a simpler enclosing interface.

Frequently, as your programs evolve and develop, they grow in complexity. In
fact, for all the excitement about using design patterns, these patterns sometimes
generate so many classes that it is difficult to understand the program’s flow.
Furthermore, there may be a number of complicated subsystems, each of which
has its own complex interface.

The Façade pattern allows you to simplify this complexity by providing a
simplified interface to these subsystems. This simplification may in some cases
reduce the flexibility of the underlying classes, but usually provides all the
function needed for all but the most sophisticated users. These users can still, of
course, access the underlying classes and methods.

Fortunately, we don’t have to write a complex system to provide an example of
where a Facade can be useful.VB provides a set of classes that connect to
databases using either an interface called ODBC or direct connection to
Microsoft databases using the ADO or MSJet engines. You can connect to any
database for which the manufacturer has provided a ODBC connection class --
almost every database on he market. Let’s take a minute and review how
databases are used and a little about how they work.

What is a Database?
A database is a series of tables of information in some sort of file structure which
allows you to access these tables, select columns from them, sort them and select
rows based on various criteria. Databases usually have indexes associated with
many of the columns in these tables, so that we can access them as rapidly as
possible.

Databases are used more than any other kind of structure in computing. You’ll
find databases as central elements of employee records and payroll systems, in
travel scheduling systems and all through product manufacturing and marketing.

Copyright © 2001, by James W. Cooper

265

In the case of employee records, you could imagine a table of employee names
and addresses, and of salaries, tax withholding and benefits. Let’s consider how
these might be organized. You can imagine one table of employee names,
addresses and phone numbers. Other information that you might want to store
would include salary, salary range, last raise, next raise, employee performance
ranking and so forth.

Should this all be in one table? Almost certainly not. Salary ranges for various
employee types are probably invariant between employees and thus you would
store only the employee type in the employee table, and the salary ranges in
another table which is pointed to by the type number. Consider the data in Table
19-1.

Key Lastname SalaryType SalaryType Min Max

1 Adams 2 1 30000 45000

2 Johnson 1 2 45000 60000

3 Smyth 3 3 60000 75000

4 Tully 1

5 Wolff 2

Table 19-1 – Employee names and salary type tables

The data in the SalaryType column refers to the second table. We could
imagine many for such tables for things like state of residence and tax values for
each state, health plan withholding and so forth. Each table will have a primary
key column like the ones at the left of eacht able above, and several more
columns of data. Building tables in database has evolved to both an art and a
science. The structure of these tables is refered to by their normal form. Tables
are said to be in first, second or third normal form, abbreviated as 1NF, 2NF or
3NF.

Copyright © 2001, by James W. Cooper

266

1st. Each cell in a table should have only one value (never an array of values).
(1NF)

2nd. 1NF and every non-key column is fully dependent on the key column. This
means there is a 1-to-1 relationship between the primary key and the remaining
cells in that row. (2NF)

3rd. 2NF and all non-key columns are mutually independent. This means tat there
are no data columns containing values that can be calculated from other columns’
data. (3NF)

Today nearly all databases are constructed so that all tables are in Third Normal
Form (3NF). This means that there are usually a fairly large number of tables,
each with relatively few columns of information.

Getting Data out of Databases
Suppose we wanted to produce a table of employees and their salary ranges for
some planning exercise. This table doesn’t exist directly in the database, but it
can be constructed by issuing a query to the database. We’d like to have a table
that looked like the data in

Name Min Max
Adams $45,000.00 $60,000.00
Johnson $30,000.00 $45,000.00
Smyth $60,000.00 $75,000.00
Tully $30,000.00 $45,000.00
Wolff $45,000.00 $60,000.00

Table 19-2- Employee salaries sorted by name

or maybe sorted by increasing salary as

Name Min Max
Tully $30,000.00 $45,000.00
Johnson $30,000.00 $45,000.00
Wolff $45,000.00 $60,000.00

Copyright © 2001, by James W. Cooper

267

Adams $45,000.00 $60,000.00
Smyth $60,000.00 $75,000.00

Table 19-3 – Employee salaries sorted by magnitude.
We find that the query we issue to obtain these tables has the form

SELECT DISTINCTROW Employees.Name, SalaryRanges.Min,
SalaryRanges.Max FROM Employees INNER JOIN SalaryRanges ON
Employees.SalaryKey = SalaryRanges.SalaryKey
ORDER BY SalaryRanges.Min;

This language is called Structured Query Language or SQL (often pronounced
“sequel”) and it is the language of virtually all databases currently available.
There have been several standards issued for SQL over the years and most PC
databases support much of these ANSI standards. The SQL-92 standard is
considered the floor standard, and there have been several updates since.
However, none of these databases support the later SQL versions perfectly and
most offer various kinds of SQL extensions to exploit various features unique to
their database.

Kinds of Databases
Since the PC became a major office tool, there have been a number of popular
databases developed that are intended to run by themselves on PCs. These
include elementary databases like Microsoft Works, and more sophisticated ones
like Approach, dBase, Borland Paradox, Microsoft Access and FoxBase.

Another category of PC databases includes that databases intended to be accessed
from a server by a number of PC clients. These include IBM DB/2, Microsoft
SQL Server, Oracle, and Sybase. All of these database products support various
relatively similar dialects of SQL and all of them thus would appear at first to be
relatively interchangeable. The reason they are not interchangeable, of course, is
that each was designed with different performance characteristics involved and
each with a different user interface and programming interface. While you might
think that since they all support SQL, programming them would be similar, quite
the opposite is true since each database has its own way of receiving the SQL
queries and its own way of returning the results. This is where the next proposed
level of standardization came about: ODBC.

Copyright © 2001, by James W. Cooper

268

ODBC
It would be nice if we could somehow write code that was independent of the
particular vendor’s database that would allow us to get the same results from any
of these databases without changing our calling program. If we could only write
some wrappers for all of these databases so that they all appeared to have similar
programming interfaces, this would be quite easy to accomplish.

Microsoft first attempted this feat in 1992, when they released a specification
called Object Database Connectivity. It was supposed to be the answer for
connection to all databases under Windows. Like all first software versions, this
suffered some growing pains and another version was released in 1994 that was
somewhat faster as well as more stable. It also was the first 32-bit version. In
addition, ODBC began to move to other platforms than Windows and has by now
become quite pervasive in the PC and Workstation world. Nearly every major
database vendor provides ODBC drivers.

Microsoft Database Connection Strategies
The original database connection methods in Visual Basic were based on ODBC
and wrapped in a layer now called RDO for Relational Data Objects. The
libraries supporting RDO have shipped with every version of Visual Basic since
version 3.0. However, in the past year or so, Microsoft has adopted a new
approach, termed ADO fro ActiveX Data Objects which supplants RDO and has
a number of advantages. Up through Visual Basic 6, ADO was only lightly
supported and somewhat incomplete. However, Microsoft has provided a set of
downloads to support ADO called MDAC for Microsoft Data Access
Components. As of this writing, you can download MDAC 2.6 from Microsoft
and use it with VB6 to gain the advantages of ADO. We’ll provide examples in
both RDO and ADO for VB6 and for ADO in VB7, all using more or less the
same façade.

Database Structure
At the lowest level, then, a database consists of a series of tables, each having
several named columns, and some relationships between these tables. This can
get pretty complicated to keep track of, and we would like to see some

Copyright © 2001, by James W. Cooper

269

simplification of this in the code we use to manipulate databases. To some
degree, Microsoft has provided this simplification in a series of objects build
into VB. These are the

• Database – an object representing the connection to a database

• Tabledef – a database table

• Field – a column in a database

• Recordset – the result of a database query

In addition, you can use the AddNew, Edit and Update methods of the Recordset
object to add rows to a database table. So to a large degree, VB provides a simple
Façade around the complexities of connecting to and using a database.

The DBase cCass
However, once you set about building a database from data you have
accumulated, you discover that there might perhaps be some advantages to
building some classes and hiding the implementation details inside these classes.
For example, suppose we wanted to connect to different types of databases. The
connection details are clearly different in each case and could well be buried in
instances of a Dbase class. In addition, the details of how one creates tables for a
database and adds indexes to these tables can be simplified by putting it inside a
Dbase class.

Our Dbase class hides the connection details, and allows us to create new
databases and connect to existing ones.
Option Explicit

'Class DBase
'hides details of connection to specific database
'contains factory for creating indexe for adding tables and
'indexes to tables
Private db As Database 'actual database connection
Private ws As Workspace 'used to connect to database
Private fl As File 'used to check for file existence
Private tb As TableDef 'used to create tables
'--------
Public Sub createDatabase(dbname As String)
 Set fl = New File

Copyright © 2001, by James W. Cooper

270

 Set ws = Workspaces(0)

 fl.setFilename dbname
 If fl.exists() Then
 fl.delete
 End If
 Set db = ws.createDatabase(dbname, dbLangGeneral)
End Sub
'--------
Public Sub openDatabase(dbname As String)
 Set ws = Workspaces(0)
 Set db = ws.openDatabase(dbname, dbLangGeneral)
End Sub
'--------
Public Function makeTable(nm$) As Indexer
 Dim inx As New Indexer
 inx.makeTable db, nm
 Set makeTable = inx
End Function
'--------
Public Function openTable(tbName As String) As Recordset
 Set openTable = db.OpenRecordset(tbName, dbOpenTable)
End Function
'--------
Public Function openQuery(qry As String) As Recordset
 Set openQuery = db.OpenRecordset(qry, dbOpenDynaset)
End Function

It also contains a factory that produces an instance of the Indexer class. This class
allows you to create new tables, add fields to them and create indexes. You can
create table columns of type Text, Integer, Single and Boolean. We show part of
the indexer class for Text fields below:

'Class Indexer
'Used to create tables
'add fields to them
'and create indexes of these fields
Dim tb As TableDef
Private db As Database
'--------
'Creates the actual table
Public Sub makeTable(datab, nm$)
 Set db = datab
 Set tb = db.CreateTableDef(nm$)
End Sub

Copyright © 2001, by James W. Cooper

271

'--------
Public Sub openTable(datab As Database, nm$)
 Set db = datab
 Set tb = db.TableDefs(nm$)
End Sub
'--------
'call this last when the table is all defined
Public Sub addTable()
 db.TableDefs.Append tb
End Sub
'--------
'Creates unique key field
Public Sub createKey(nm$)
Dim key As Field
 Set key = tb.CreateField(nm$, dbLong)
 key.Attributes = dbAutoIncrField
 tb.Fields.Append key
End Sub
'--------
'creates a text field
Public Sub createText(nm$, length As Integer)
Dim tx As Field
 Set tx = tb.CreateField(nm$, dbText)
 tx.Size = length
 tx.AllowZeroLength = True
 tx.DefaultValue = ""
 tb.Fields.Append tx
End Sub
'--------
'creates a primary or secondary index
'usually the unqiue key is the primary index
Public Sub makeIndex(nm$, primary As Boolean)
Dim pindex As Index, pf As Field
 Set pindex = tb.CreateIndex(nm$)
 If primary Then
 pindex.primary = True
 pindex.Unique = True
 Else
 pindex.primary = False
 pindex.Unique = False
 End If
 Set pf = pindex.CreateField(nm$)
 pindex.Fields.Append pf
 tb.Indexes.Append pindex
End Sub

Copyright © 2001, by James W. Cooper

272

Building the Façade Classes
This description is the beginning of the new Façade we are developing to handle
creating, connecting to and using databases. In order to carry out the rest, lets
consider a simple table shown in Table 19-4 we accumulated of grocery prices at
three local stores:

Stop and Shop, Apples, 0.27
Stop and Shop, Oranges, 0.36
Stop and Shop, Hamburger, 1.98
Stop and Shop, Butter, 2.39
Stop and Shop, Milk, 1.98
Stop and Shop, Cola, 2.65
Stop and Shop, Green beans, 2.29
Village Market, Apples, 0.29
Village Market, Oranges, 0.29
Village Market, Hamburger, 2.45
Village Market, Butter, 2.99
Village Market, Milk, 1.79
Village Market, Cola, 3.79
Village Market, Green beans, 2.19
Waldbaum's, Apples, 0.33
Waldbaum's, Oranges, 0.47
Waldbaum's, Hamburger, 2.29
Waldbaum's, Butter, 3.29
Waldbaum's, Milk, 1.89
Waldbaum's, Cola, 2.99
Waldbaum's, Green beans, 1.99

Table 19-4 – Grocery pricing data

It would be nice if we had this information in a database so we could easily ask
the question, “which store has the lowest prices for oranges?” Such a database
should contain three tables: the stores, the foods and the prices. We also need to
keep the relations between the three tables. One simple way to handle this is to
create a Stores table with StoreName and StoreKey, a Foods table with a
FoodName and a FoodKey, and a Price table with a PriceKey, a Price and
references to the StoreKey and Foodkey.

In our Façade, we will make each of these three tables its own class and have it
take care of creating the actual tables. Since these three tables are so similar,
we’ll have them all implement a DBTable interface:

Copyright © 2001, by James W. Cooper

273

'Class DBTable
'An interface for creating tables
Public Sub createTable(datab As DBase)
End Sub
'--------
Public Sub openTable()
End Sub
'--------
Public Sub setDB(datab As Database)
End Sub
'--------
Public Sub addTableValue(nm As String)
End Sub
'--------
Public Sub makeTable()
End Sub
'--------
Public Function getKey(nm As String) As Integer
End Function
'--------
Public Function hasMoreElements() As Boolean
End Function
'--------
Public Sub moveFirst()
End Sub
'--------
Public Function getValue() As String
End Function

The Stores Class
The Stores class creates the Stores table with a column for the StoreKey and a
column for the StoreName.

Implements DBTable
'Class Stores
'creates the Stores table
'and allows you to query it for the list of names
Private db As DBase
Private tNames As Collection
Private rec As Recordset
Private opened As Boolean
'--------

Copyright © 2001, by James W. Cooper

274

Private Sub DBTable_createTable(datab As DBase)
Dim inx As Indexer
'creates the table in the database
 Set tNames = New Collection
 Set db = datab
 Set inx = db.makeTable("Stores")
 inx.createKey "StoreKey"
 inx.createText "StoreName", 50
 inx.makeIndex "Storekey", True
 inx.makeIndex "StoreName", False
 inx.addTable
End Sub
'--------
Private Function DBTable_getKey(nm As String) As Integer
'returns the key for any store name
 DBTable_openTable
 rec.Index = "StoreName"
 rec.Seek "=", nm
 If Not rec.NoMatch Then
 DBTable_getKey = rec![storekey]
 Else
 DBTable_getKey = 0
 End If
End Function
'--------
Private Function DBTable_getValue() As String
'returns the next name in the table
 DBTable_getValue = rec![storename]
 rec.MoveNext
End Function
'--------
Private Function DBTable_hasMoreElements() As Boolean
'returns whether there are more names in the list
 DBTable_hasMoreElements = Not rec.EOF
End Function
'--------
Private Sub DBTable_moveFirst()
 rec.moveFirst
End Sub
'--------
Private Sub DBTable_openTable()
 If Not opened Then
 Set rec = db.openTable("Stores")
 Opened = True
 End If

Copyright © 2001, by James W. Cooper

275

End Sub
'--------
Private Sub DBTable_setDB(datab As Database)
 Set db = datab
 Set tNames = New Collection
End Sub

Now when we start to create the Stores table, we don’t know how many stores
there will be. So we write code to keep adding store names to a collection, testing
for duplicates until we have gone all through the file. Then we can create the
actual entries in the table. This is done in the following two methods:

Private Sub DBTable_addTableValue(nm As String)
Dim tbn As String

 On Local Error GoTo noname
 tbn = tNames(nm) 'see if the name is already there

sbexit: 'yes it is
 Exit Sub

noname: 'no it isn't
 tNames.Add nm, nm 'add it to the collection
 Resume sbexit
End Sub
'--------
Private Sub DBTable_makeTable()
Dim i As Integer, nm As String
'Adds the names from the collection
'into the database table
 DBTable_openTable
 For i = 1 To tNames.Count
 nm = tNames(i)
 rec.AddNew
 rec![storename] = nm
 rec.Update
 Next i
End Sub

The Foods class is almost identical.

Copyright © 2001, by James W. Cooper

276

Building the Stores and Foods Tables
Now that we have built these wrapping classes, it is very easy to read the file,
parse it into tokens and add the stores and food names into the tables:

Set db = New DBase
dbname = App.Path + "\Groceries.mdb"
db.createDatabase dbname

Set fl = New vbFile
fname = App.Path + "\" + "Groceries.txt"
fl.setFilename fname
If fl.exists() Then
 fl.OpenForRead fname 'open the file
 'create the tables
 Set stors = New Stores
 stors.createTable db 'Stores table
 Set fods = New Foods
 fods.createTable db 'Foods table
 Set price = New Prices
 price.createTable db 'Price table
 'read the file and create
 'internal collections of names
 While Not fl.fEof
 nstore = fl.readToken
 nfood = fl.readToken
 nprice = fl.readToken
 stors.addTableValue nstore 'store name
 fods.addTableValue nfood 'food name
 Wend
 fl.closeFile
 'make tables from the collections
 stors.makeTable
 fods.makeTable

Building the Price Table
The Price table is a little more complicated, because it contains keys from the
other two tables. When it is completed, it will look like Table 19-5

Pricekey Foodkey StoreKey Price
1 1 1 0.27
2 2 1 0.36
3 3 1 1.98

Copyright © 2001, by James W. Cooper

277

4 4 1 2.39
5 5 1 1.98
6 6 1 2.65
7 7 1 2.29
8 1 2 0.29
9 2 2 0.29

10 3 2 2.45
11 4 2 2.99
12 5 2 1.79
13 6 2 3.79
14 7 2 2.19
15 1 3 0.33
16 2 3 0.47
17 3 3 2.29
18 4 3 3.29
19 5 3 1.89
20 6 3 2.99
21 7 3 1.99

Table 19-5 – The Price table in the grocery database
To create it, we have to reread the file, finding the store and food names, looking
up their keys and adding them to the Price table. The DBTable interface doesn’t
include this final method, but we can add additional specific methods to the Price
class that are not part of that interface:

Public Sub addRow(storekey As Integer, foodkey As Integer, & _
 price As Single)
 DBTable_openTable
 rec.AddNew
 rec![storekey] = storekey
 rec![foodkey] = foodkey
 rec![price] = price
 rec.Update
End Sub
This just means that we have to treat the Price class instance both as a DBTable
and as a Price object. Here is the code that adds the final table:

Set tbPrice = price 'treat as price table class

Copyright © 2001, by James W. Cooper

278

 'reread datafile and create price table with keys
 'to the two other tables
 fl.OpenForRead fname
 While Not fl.fEof
 nstore = fl.readToken
 nfood = fl.readToken
 sPrice = Val(fl.readToken)
 storekey = stors.getKey(nstore)
 foodkey = fods.getKey(nfood)
 tbPrice.addRow storekey, foodkey, sPrice
 Wend
 fl.closeFile

Building the Price Query
For every food name, we’d like to get a report of which stores have the cheapest
prices. This means writing a simple SQL query against the database. We can do
this within the Price class and have it return a recordset with the store names and
prices.
Public Sub getPrices(nm As String)
Dim qry As String

If precOpened Then
 prec.Close
End If

qry = "SELECT Foods.Foodname, Stores.StoreName, Prices.Price " & _
"FROM Stores INNER JOIN (Foods INNER JOIN Prices ON “ & _
"Foods.Foodkey = Prices.Foodkey) ON " & _
"Stores.StoreKey = Prices.StoreKey " & _
"Where (((Foods.Foodname) = '" + nm + "')) " & _
"ORDER BY Prices.Price;"

Set prec = db.openQuery(qry)
precOpened = True
End Sub
The final application simply fills one list box with the food names and files the
other list box with prices when you click on a food name, as shown in Figure
19-1

Copyright © 2001, by James W. Cooper

279

Figure 19-1 – The grocery program using a Façade pattern.

Summary of the Façade Pattern
There is no specific set of classes that constitute a Façade pattern. Rather, you
use the Façade pattern to simplify a complex series of operations into a more
tractable set of operations. For example, the File object we developed earlier in
Chapter 2 and use in the above examples is just a Façade around the somewhat
awkward VB file manipulation statements.

In this example, we started with VB’s database objects as shown in Figure 19-2.

Copyright © 2001, by James W. Cooper

280

Database
connection

Database
Tables

Database table
metadata

Table queries

SQL Select and
Join queries

SQL Insert
statements

SQL Replace
statements

ODBC method
calls

Database Recordset Tabledef FieldDatabase Recordset

Figure 19-2 - The Facade around database operations created by VB.
We then further simplify these objects with our own new façade as shown in
Figure 19-3..

Copyright © 2001, by James W. Cooper

281

Recordset

Database
Tabledef

Field

DBase DBTable Indexer

SQL queries

Figure 19-3- The new Façade we impose over VB’s façade for

handling database access.

ADO Database Access in VB6
The ADO libraries provide much the same function but with some differences in
details. We’ll see in this section that we can use the same Dbase, DBTable and
Indexer classes and simply change their internals. So, in a sense, this façade is
very nearly the whole house, and we simply open the garage door and drive out
with the whole heating plant in drive in with a new one. The functions of the
house don’t change at all.

ADO functions in VB6 are divided into two groups, ADO which provides data
access to an existing database, and ADOX, the ADO extensions, which provide
ways to create database, add tables, columns and indexes.

Copyright © 2001, by James W. Cooper

282

In order to use ADO in VB6, you need to download and install Microsoft’s
MDAC package. Then you need to open your database project, and in the VB5
environment select Project | References, and select the

• Microsoft ActiveX Data Objects, and

• Microsoft ADO Extensions for DDL and Security

Checkboxes. Also make sure that the Microsoft DAO reference is not checked
since it is not advisable to have both kinds of database connections active in the
same project.

The ADO Connection
The most important part of ADO is the Connection object, which defines and
establishes the connection to the database. The connection strings are defined in
the ADO help for Access and SQL Server databases, but you can connect to all
the other popular databases as well. To open an Access database that already
exists, you simply define the database path and the database driver, and open the
connection. Note that in the examples that follow, we are using the variable db to
represent a connection rather than the RDO Database object.

 Dim db as Connection

 Set db = New Connection
 'Engine Type 5 is Access 2000 and Type 4 is Access 97
 'construct the connection string
 con = "Provider=Microsoft.Jet.OLEDB.4.0;Data source=" + _

dbname + "; Jet OLEDB:Engine Type=5;"
 db.ConnectionString = con
 db.Open

Then, to execute queries, you use a Command object to carry out the query. This
returns a Recordset object which has pretty much the same properties as the one
we used in the above RDO example:

'Open a recordset from an SQL query
 Dim cmd As New Command 'command object
 Dim rec As Recordset
 cmd.ActiveConnection = db 'get the connection
 cmd.CommandType = adCmdText
 cmd.CommandText = qry

Copyright © 2001, by James W. Cooper

283

 'execute the SQL
 Set rec = cmd.Execute

To connect to a table for the purpose of seeking rows or adding rows, you can
use the Recordset object directly:

'open a table
 Dim rec As New Recordset
 rec.LockType = adLockOptimistic
 rec.CursorType = adOpenKeyset
 'open the database connection if not open
 If db.State = adStateClosed Then
 db.ConnectionString = con
 db.Open
 End If
 'open the table recordset
 rec.Open tbName, db, , , adCmdTableDirect

Adding and Seeking Rows Table Rows
Adding rows to an existing table is exactly the same in ADO. You use a
Recordset as and use the AddNew and Update methods.

For i = 1 To tbNames.Count
 nm = tbNames(i)
 rec.AddNew
 rec![Foodname] = nm
 rec.Update
Next i

To find a row that matches some criteria, the syntax is only very slightly
different:

rec.Index = "FoodName"
 rec.Seek "Apples", adSeekFirstEQ
 If Not rec.EOF Then
 getKey = rec![foodkey]
 Else
 getKey = 0
 End If

Copyright © 2001, by James W. Cooper

284

Using the ADO Extensions
The ADO Extensions allow you to create databases and tables as well as add
columns to tables. All of these extensions use a Catalog object to operate on the
database. The catalog connects to the database using exactly the same connection
string, so it is quite reasonable to create and initialize both at the same time.
Setting the connection string in the Catalog object effectively opens the Catalog
connection to the database.

 Set db = New Connection
 Set cat = New Catalog
'construct the connection string
 con = "Provider=Microsoft.Jet.OLEDB.4.0;Data source=" + _

dbname + "; Jet OLEDB:Engine Type=5;"
 db.ConnectionString = con
 db.Open
 cat.ActiveConnection = con 'open the catalog

You can create a table in ADO by creating a new instance of a Table object and
setting its name.

 Dim tb = New Table
 tb.Name = nm$

Then, after you have set all the columns and indexes, you just add the table to the
Tables collection:

 cat.Tables.Append tb

To add columns to the table, you create a Column object and set its properties.
This code create a text column:

Dim tx As New Column
 tx.Name = nm$
 tx.DefinedSize = length
 tx.Type = adWChar
 tb.Columns.Append tx, adWChar, length

To create a primary key, you actually make an entry in the Indexes collection and
add it to the Connection. Note that the Autoincrement property is set as one of
the Properties.

Dim indx As New Index
Dim colm As New Column

Copyright © 2001, by James W. Cooper

285

 colm.Name = nm
 colm.Type = adInteger
 'you must set this before setting autoincrement
 Set colm.ParentCatalog = cat
 colm.Properties("AutoIncrement") = True
 tb.Columns.Append colm
 indx.Name = nm + "_" + "Index"
 indx.PrimaryKey = True
 indx.Columns.Append nm, adInteger, 20
 indx.Unique = True
 tb.Indexes.Append indx

The ADO Dbase Class
With this simple outline, we can write a new version of our Dbase class with
exactly the same methods as we used for the RDO example:

'Class DBase
'hides details of connection to specific database
'contains factory for creating indexe for adding tables and
indexes to tables
'This version uses ADO and ADOX connections
Private db As ADODB.Connection 'actual database connection
Private cat As Catalog
Private fl As File 'used to check for file existence
Private con As String
'--------
Public Sub createDatabase(dbname As String)
 Set fl = New File
 Set cat = New Catalog
 fl.setFilename dbname
 If fl.exists() Then
 fl.delete
 End If

 Set db = New Connection
 'Engine Type 5 is Access 2000 and Engine Type 4 is Access 97
 'construct the connection string
 con = "Provider=Microsoft.Jet.OLEDB.4.0;Data source=" + dbname +
_
 "; Jet OLEDB:Engine Type=5;"
 cat.Create con
End Sub
'-----

Copyright © 2001, by James W. Cooper

286

Public Sub openDatabase(dbname As String)

 Set db = New Connection
 Set cat = New Catalog
 'construct the connection string
 con = "Provider=Microsoft.Jet.OLEDB.4.0;Data source=" + dbname +
_
 "; Jet OLEDB:Engine Type=5;"
 db.ConnectionString = con
 db.Open
 cat.ActiveConnection = con
End Sub
'--------
Public Function makeTable(nm$) As Indexer
 Dim inx As New Indexer
 inx.makeTable cat, nm
 Set makeTable = inx
End Function
'--------
Public Function openTable(tbName As String) As Recordset
 'open a table
 Dim rec As New Recordset
 rec.LockType = adLockOptimistic
 rec.CursorType = adOpenKeyset
 'open the database connection if not open
 If db.State = adStateClosed Then
 db.ConnectionString = con
 db.Open
 End If
 'open the table recordset
 rec.Open tbName, db, , , adCmdTableDirect
 Set openTable = rec
End Function
'--------
Public Function openQuery(qry As String) As Recordset
'Open a recordset from an SQL query
 Dim cmd As New Command 'command object
 Dim rec As Recordset
 cmd.ActiveConnection = db 'get the connection
 cmd.CommandType = adCmdText
 cmd.CommandText = qry
 'execute the SQL
 Set rec = cmd.Execute
 Set openQuery = rec 'return the recordset
End Function

Copyright © 2001, by James W. Cooper

287

All of the functions we need to create tables and add them into the database are in
the same Indexer class we wrote before. Here is the salient section of that class:

'Class Indexer
'Used to create tables using ADO Extensions
'add fields to them
'and create indexes of these fields
Private tb As Table
Private db As Connection
Private cat As Catalog
'--------
Public Sub makeTable(ctg As Catalog, nm$)
 Set cat = ctg 'get the catalog
 Set tb = New Table 'create a table object
 tb.Name = nm$
End Sub
'--------
Public Sub openTable(ctg As Catalog, nm$)
 Set cat = ctg
 Set tb = cat.Tables.Item(nm$)
End Sub
'--------
Public Sub addTable()
 cat.Tables.Append tb
End Sub
'--------
Public Sub createKey(nm$)
Dim indx As New Index
Dim colm As New Column
 colm.Name = nm
 colm.Type = adInteger
 'you must set this before setting autoincrement
 Set colm.ParentCatalog = cat
 colm.Properties("AutoIncrement") = True
 tb.Columns.Append colm
 indx.Name = nm + "_" + "Index"
 indx.PrimaryKey = True
 indx.Columns.Append nm, adInteger, 20
 indx.Unique = True
 tb.Indexes.Append indx
End Sub
'--------
Public Sub createText(nm$, length As Integer)
Dim tx As New Column

Copyright © 2001, by James W. Cooper

288

 tx.Name = nm$
 tx.DefinedSize = length
 tx.Type = adWChar
 tb.Columns.Append tx, adWChar, length
End Sub
'--------
Public Sub makeIndex(nm$, primary As Boolean)
 Dim ind As New Index
 ind.Name = nm
 ind.PrimaryKey = primary
 ind.Columns.Append nm
 tb.Indexes.Append ind
End Sub
'--------
Public Sub createInteger(nm$)
 Dim dt As New Column
 dt.Name = nm
 dt.Type = adInteger
 tb.Columns.Append dt
End Sub
'--------
Public Sub createSingle(nm$)
 Dim dt As New Column
 dt.Name = nm
 dt.Type = adSingle
 tb.Columns.Append dt, adSingle, 4
End Sub

With these straightforward changes, our main program for creating the Groceries
database is unchanged. It reads in the data file and creates the same database
using ADO, and executes the same queries. This shows the great power of the
Façade patter. We have changed no main program code, and none of the
interfaces to the Façade, and the program executes in this new environment just
as it did in the old one.

Database Access in VB.NET
VB7 and all of VisualStudio.Net uses a different database access model, called
ADO, for ActiveX Data Objects. The design philosophy of ADO is one in which
you define a connection between your program and a database and use that
connection sporadically, with much of the computation actually taking place in
objects on your local machine. Further ADO uses XML for definition of the

Copyright © 2001, by James W. Cooper

289

objects that are transmitted between the database and the program, primarily
under the covers, although it is possible to access this data description using
some of the built-in ADO classes.

In its current state of development in VB7, you can use ADO to access existing
databases, and add or delete rows from them, but you cannot create new tables,
indexes or databases directly. Thus, our VB7 discussion will assume that you
have already created the basic database, having all of the necessary tables, but as
yet containing no data.

Using ADO.NET
ADO as implemented in VB7 consists of a fairly large variety of interrelated
objects. Since the operations we want to perform are still the same relatively
simple ones, the Façade pattern will be an ideal way to manage them.

• ADOConnection – This object represents the actual connection to the
database. You can keep an instance of this class available, but open and
close the connection as needed.

• ADOCommand – This class represents a SQL command you send to the
database which may or may not return results.

• ADODataSetCommand – Provides a bridge for moving data between a
database and a local DataSet.. You can specify an ADOCommand, a
Dataset and a connection.

• DataSet – A representation of one or more database tables or results
from a query on your local machine.

• DataTable – A single data table from a database or query

• DataRow – A single row in a DataTable.

Connecting to a Database
To connect to a database, you specify a connection string in the constructor for
the database you want to use. For example for an Access database, your
connection string would be:

connection = "Provider=Microsoft.Jet.OLEDB.4.0;” + _

Copyright © 2001, by James W. Cooper

290

"Data Source=" + dbname
and the actual connection is made by
Dim Adc as ADOConnection
Adc = New ADOConnection(connection)

Reading Data from a Database Table
To read data in from a database table, you create an ADOCommand with the
appropriate Select statement and connection.

Public Function openTable(ByVal tbName As String) _
As DataTable

'create the dataset command connection
 Dim dsCmd As New ADODataSetCommand()

 'put the query into the dataset command
 Dim query As String = "Select * from " & tbname
 dsCmd.SelectCommand = New ADOCommand(query, adc)

Then you create a dataset object to put the results into.

 'create the destination dataset
 Dim dset As New DataSet()

Then, you simply tell the command object to use the connection to fill the
dataset. You must specify the name of the table to fill in the FillDataSet method
as we show here.

 'open the connection and fill the table in the dataset
 ADC.Open()
 dsCmd.FillDataSet(dset, tbname)

The dataset then contains at least the one table, and you can obtain it by index or
by name and examine its contents.

'get the table from the result dataset
 Dim dtable As DataTable = dset.Tables(0)
 adc.Close() 'close the connection
 Return dtable 'return the table we read
End Function

Copyright © 2001, by James W. Cooper

291

Executing a Query
Executing a Select query is exactly identical to the code above except that the
query can be an SQL Select statement of any complexity. Here we show the steps
wrapped in a Try block in case there are SQL or other database errors:

Public Function openQuery(ByVal query As String) _
As DataTable

 Dim dsCmd As New ADODataSetCommand()
 Try
 dsCmd.SelectCommand = New ADOCommand(query, ADC)
 Dim dset As New DataSet()
 ADC.Open()
 dsCmd.FillDataSet(dset, "mine")
 Dim dtable As DataTable = dset.Tables(0)
 adc.Close()
 Return dtable
 Catch e As Exception
 messagebox.show(e.Message)
 End Try
End Function

Deleting the Contents of a Table
You can delete the contents of a table using the “Delete * from Table” SQL
statement. However, since this is not a Select command, and there is no local
table to bridge to, you can simply use the ExecuteNonQuery method of the
ADOCommand object.

Public Sub delete()
adc.Open()
Dim adcmd As ADOCommand
adcmd = new ADOCommand("Delete * from " + tablename, adc)
 Try
 adcmd.ExecuteNonQuery()
 adc.Close()
 Catch e As Exception
 Messagebox.show(e.Message)
 End Try
End Sub

Copyright © 2001, by James W. Cooper

292

Adding Rows to Database Tables Using ADO
The process of adding data to a table is closely related. You generally start by
getting the current version of the table from the database. If it is very large, you
can get only the empty table by getting just its schema. The steps we follow here
are

1. Create a DataTable with the name of the table in the database.

2. Add it to a Dataset

3. Fill the dataset from the database

4. Get a new row object from the DataTable

5. Fill in its columns

6. Add the row to the table.

7. When you have added all the rows, update the database from the
modified DataTable object.

 The process looks like this:

'create the dataset
dset = New DataSet(tablename)
 Dim name As String
'create the data table
dtable = New DataTable(tablename)
dset.Tables.Add(dtable) 'add to dataset
adc.Open() 'open the connection
'create the command and add the select statement
Dim adcmd As New ADODataSetCommand()
 adcmd.SelectCommand = New ADOCommand(_

"Select * from " + tablename, adc)
'Add table name mapping
 adcmd.TableMappings.Add("Table", tablename)
'fill the dataset
 adcmd.FillDataSet(dset, tablename)
'create a new row
 row = dtable.NewRow
'add a value to a column
 row(colname) = name
'add the row to the table

Copyright © 2001, by James W. Cooper

293

 dtable.Rows.Add(row)
'when all rows are added update the table
 Try
 adcmd.Update(dset)
 adc.Close()
 Catch e As Exception
 Messagebox.show(e.Message)
End Try

It is this table editing and update process that is central to the ADO style of
programming. You get the table, modify the table and update the changes back to
the database. You use this same process to edit or delete rows, and updating the
database makes these changes as well.

Making the VB.NET ADO Façade
The façade we will make for our VB7 style grocery database is similar to the
VB6 version, but makes a little more use of inheritance. We start with a Dbase
class that represents a connection to a database. This encapsulates making the
connection and opening a table and an SQL query:

Public Class DBase
 Private adc As ADOConnection
 '-----
 Public Overloads Sub New(ByVal dbName As String, _

 ByVal connectionType As String)
 Dim connection As String
 connectiontype = connectiontype.ToLower
 Select Case connectionType
 Case "access"
 connection = "Provider=Microsoft.Jet.OLEDB.4.0;” _ &

“Data Source=" + dbname

 Case Else
 connection = dbname
 End Select
 Adc = New ADOConnection(connection)
End Sub
'-----
Public Sub New(ByVal dbname As String, _

Copyright © 2001, by James W. Cooper

294

ByVal userid As String, _
 ByVal servername As String, _

ByVal password As String, _
 ByVal connectionType As String)

Dim connection As String
 connectiontype = connectiontype.ToLower
 Select Case connectionType
 Case "sqlserver"
 connection = "Persist Security Info = False;" & _
 "Initial Catalog =" + dbname + ";" & _
 "Data Source =" & servername & ";" & _
 "User ID =" & userid & ";" & _
 "password=" & password
 Case Else
 connection = dbname
 End Select
 Adc = New ADOConnection(connection)
 End Sub
'-------
Public Function openTable(ByVal tbName As String) _

As DataTable
'shown above
End Function
'-------
Public Function openQuery(ByVal query As String) _

As DataTable
'shown above
End Function
'-------
 Public Function getConnection() As ADOConnection
 Return adc
 End Function
End Class

The DBTable class
The other major class we will need is the DBTable class. It encapsulates opening,
loading and updating a single database table. We will also use this class in this
example to add the single values. Then we can derive food and store classes that
do this addition for each class.

Copyright © 2001, by James W. Cooper

295

Public Class DBTable
 Private names As Hashtable
 Protected db As DBase
 Protected tableName As String
 Private index As Integer
 Private dtable As DataTable
 Private filled As Boolean
 Private columnName As String
 Private rowIndex As Integer
 Private opened As Boolean
 Dim adc As ADOConnection
 Dim cmd As adocommand
 Dim dset As DataSet
 Dim row As DataRow
'-------
Public Sub New(ByVal datab As DBase, ByVal tname As String)
 names = New Hashtable()
 db = datab
 tablename = tname
 index = 1
 filled = False
 opened = False
End Sub
'-------
Public Sub openTable()
 dtable = db.openTable(tablename)
 rowindex = 0
 opened = True
End Sub
'------
Public Sub delete()
'deletes entire table
 adc = db.getConnection
 adc.Open()
 Dim adcmd As New ADOCommand("Delete * from " + _

tablename, adc)
 Try
 adcmd.ExecuteNonQuery()
 adc.Close()
 Catch e As Exception
 Messagebox.show(e.Message)

Copyright © 2001, by James W. Cooper

296

 End Try
 End Sub
End Class

Creating Classes for Each Table
We can derive the Store, Food, and Prices classes from DBTable, and reuse much
of the code. Both the store and food classes will require that when we parse the
input file, we create a table of unique names: store names in one class and food
names in the other.

VB7 provides a very convenient way to create these classes using the Hashtable.
A Hashtable is an unbounded array where each element is identified with a
unique key. One way people use Hashtables is to add long names to a table and a
short nickname as the key. Then you can fetch the longer name from the table by
using its nickname to access the table. The long names need not be unique, but of
course the keys must be unique.

The other place Hashtables are convenient is in making a list of unique names. If
we make the names the keys and some other number the contents, then we can
add names to the hash table and assure ourselves that each will be unique. For
them to be unique, the hash table must treat attempts to add a supplicate key in a
predictable way. For example, the Java hash table simply replaces a previous
entry having that key with the new one. The VB7 implementation of the hash
table, on the other hand, throws an exception when we try to add a non-unique
key value.

Now, bearing in mind that we want to accumulate the entire list of names before
addinig them into the database, we can use the following method to add names to
a Hashtable and make sure that they are unique:

Public Overridable Sub addTableValue(ByVal nm As String)
 'accumulates names in hash table
 Try
 names.Add(nm, index)
 index = index + 1
 Catch e As ArgumentException
 'do not allow duplicate names to be added
 End Try
End Sub

Copyright © 2001, by James W. Cooper

297

Then, once we have added all the names, we can add each of them to the
database table. Here we use the Enumerator property of the Hashtable to iterate
though all the names we have entered in the list.

Public Overridable Sub makeTable(ByVal colName As String)
 'stores current hash table values in data table
 dset = New DataSet(tablename) 'create the data set
 columnName = colname
 Dim name As String
 dtable = New DataTable(tablename) 'and a datatable
 dset.Tables.Add(dtable) 'add to collection
 adc = db.getConnection
 adc.Open() 'open the connection
 Dim adcmd As New ADODataSetCommand()

 'open the table
 adcmd.SelectCommand = _
 New ADOCommand("Select * from " + tablename, adc)
 adcmd.TableMappings.Add("Table", tablename)

 'load current data into the local table copy
 adcmd.FillDataSet(dset, tablename)

 'get the Enumerator from ther Hashtable
 Dim ienum As IEnumerator = names.Keys.GetEnumerator

 'move through the table, adding the names to new rows
 While ienum.MoveNext
 name = CType(ienum.Current, String)
 row = dtable.NewRow 'get new rows
 row(colname) = name
 dtable.Rows.Add(row) 'add into table
 End While

 'Now update the database with this table
 Try
 adcmd.Update(dset)
 adc.Close()
 filled = True
 Catch e As Exception
 Messagebox.show(e.Message)

Copyright © 2001, by James W. Cooper

298

 End Try
End Sub

This simplifies our derived Stores table to just

Public Class Stores
 Inherits DBTable

 Public Sub New(ByVal datab As DBase)
 MyBase.New(datab, "Stores")
 End Sub
'------
 Public Overloads Sub makeTable()
 MyBase.makeTable("StoreName")
 End Sub
'------
 Public Overloads Function getValue() As String
 Return MyBase.getValue("StoreName")
 End Function

End Class

and the Foods table to much the same thing.

Public Class Foods
 Inherits DBTable
 '-------
 Public Sub New(ByVal datab As DBase)
 MyBase.New(datab, "Foods")
 End Sub
 '-------
 Public Overloads Sub makeTable()
 MyBase.makeTable("FoodName")
 End Sub
 '-------
 Public Overloads Function getValue() As String
 Return MyBase.getValue("FoodName")
 End Function
End Class

Copyright © 2001, by James W. Cooper

299

The getValue method allows us to enumerate the list of names of Stores or Foods
and we can put it in the base DBTable class.

Public Function getValue(ByVal columnName As String) _
As String

 'returns the next name in the table
 'assumes that openTable has already been called
 If opened Then
 Dim row As DataRow
 row = dtable.rows(rowindex)
 rowindex = rowindex + 1
 Return row(columnName).ToString
 Else
 Return ""
 End If
 End Function

Storing the Prices
The Prices class stores a series of StoreFoodPrice objects in an ArrayList and
then loads them all into the database at once. Note that we have overloaded the
classes of DBTable to take arguments for the store and food key vales as well as
the price:

Public Class Prices
 Inherits DBTable
 Private priceList As ArrayList
 Public Sub new(ByVal datab As DBase)
 MyBase.New(datab, "Prices")
 pricelist = New ArrayList()
 End Sub
 '------
Public Sub addRow(ByVal storekey As Long, _

ByVal foodkey As Long, ByVal price As Single)
 pricelist.Add(_

New StoreFoodPrice(storekey, foodkey, price))
 End Sub
 '------
 Public Overloads Sub makeTable()
 'stores current array list values in data table
 Dim adc As ADOConnection

Copyright © 2001, by James W. Cooper

300

 Dim cmd As adocommand
 Dim dset As New DataSet(tablename)
 Dim row As DataRow
 Dim fprice As StoreFoodPrice
 Dim dtable As New DataTable(tablename)
 dset.Tables.Add(dtable)
 adc = db.getConnection
 adc.Open()
 Dim adcmd As New ADODataSetCommand()
 'fill in price table
 adcmd.SelectCommand = _

 New ADOCommand("Select * from " + tablename, adc)
 adcmd.TableMappings.Add("Table", tablename)
 adcmd.FillDataSet(dset, tablename)
 Dim ienum As IEnumerator = pricelist.GetEnumerator
 'add new price entries
 While ienum.MoveNext
 fprice = CType(ienum.Current, Storefoodprice)
 row = dtable.NewRow
 row("foodkey") = fprice.getFood
 row("storekey") = fprice.getStore
 row("price") = fprice.getPrice
 dtable.Rows.Add(row) 'add to table
 End While
 adcmd.Update(dset) 'send back to database
 adc.Close()
 End Sub
 '------
 Public Function getPrices(ByVal food As String) _

As DataTable
 Dim query As String
 query = "SELECT Stores.StoreName, Foods.Foodname, " _

"Prices.Price " & _
 "FROM (Prices INNER JOIN Foods ON " _
 "Prices.Foodkey = Foods.Foodkey) " _

"INNER JOIN Stores ON Prices.StoreKey = " _
"Stores.StoreKey " & _

 "WHERE(((Foods.Foodname) = """ & food & """)) " & _
 "ORDER BY Prices.Price;"
 Return db.openQuery(query)
 End Function

Copyright © 2001, by James W. Cooper

301

End Class

Loading the Database Tables
With all these classes derived, we can write a class to load the table from the data
file. It reads the file once and builds the store and food database tables. Then it
reads thefile again, and looks up the store and food keys and adds them to the
arraylist in the Price class. Then, finally it creates the price table.

Public Class DataLoader
 Private vfile As vbFile
 Private stor As Stores
 Private fods As Foods
 Private price As Prices
 Private db As DBase
 '--------------
 Public Sub new(ByVal datab As DBase)
 db = datab
 stor = New Stores(db) 'create class instances
 fods = New Foods(db)
 price = New Prices(db)
 End Sub
 '--------------
 Public Sub load(ByVal datafile As String)
 Dim sline As String
 Dim storekey As Long, foodkey As Long
 Dim tok As StringTokenizer

 'delete current table contents
 stor.delete()
 fods.delete()
 price.delete()
 'now read in new ones
 vfile = New vbFile(datafile)
 vfile.OpenForRead()
 sline = vfile.readLine
 While (sline <> "")
 tok = New StringTokenizer(sline, ",")
 stor.addTableValue(tok.nextToken) 'store name
 fods.addTableValue(tok.nextToken) 'food name

Copyright © 2001, by James W. Cooper

302

 sline = vfile.readLine
 End While
 vfile.closeFile()
 'construct store and food tables
 stor.makeTable("StoreName")
 fods.makeTable("FoodName")
 vfile.OpenForRead()
 sline = vfile.readLine
 While (sline <> "")
 'get the keys and add to storefoodprice objects
 tok = New StringTokenizer(sline, ",")
 storekey = stor.getKey(tok.nextToken, "Storekey")
 foodkey = fods.getKey(tok.nextToken, "Foodkey")
 price.addRow(storekey, foodkey, & _

tok.nextToken.ToSingle)
 sline = vfile.readLine
 End While
 'add all to price table
 price.makeTable()
 vfile.closeFile()
 End Sub
End Class

The Final Application
The program loads a list of food prices into a list box on startup”

Private Sub loadFoodTable()
 Dim fods As New Foods(db)
 fods.openTable()
 While fods.hasMoreElements
 lsfoods.Items.Add(fods.getValue)
 End While
 End Sub
And displays the prices of the selected food when you click on it.

Protected Sub lsFoods_SelectedIndexChanged(_
ByVal sender As Object, ByVal e As System.EventArgs)

 Dim food As String = lsfoods.Text
 Dim dtable As DataTable = prc.getPrices(food)
 Dim rw As datarow
 lsprices.Items.Clear()

Copyright © 2001, by James W. Cooper

303

 For Each rw In dtable.Rows
 lsprices.Items.Add(rw("StoreName").tostring + _

" " + rw("Price").tostring)
 Next
 End Sub

The final program is shown in Figure 19-4.

Figure 19-4 – The VB7 grocery database program.

If you click on the “load data” button it clears the database and reloads it from
the text file.

What Constitutes the Façade?
The Facade in this case wraps the classes as follows

• Dbase

o Contains ADOConnection, Database, DataTable,
ADOCommand. ADODatasetCommand

Copyright © 2001, by James W. Cooper

304

• DBTable

o Contains ADOCommand, Dataset, Datarow, Datatable,
ADODatasetCommand

You can quickly see the advantage of the Façade approach when dealing with
such complicated data objects.

Consequences of the Façade
The Façade pattern shields clients from complex subsystem components and
provides a simpler programming interface for the general user. However, it does
not prevent the advanced user from going to the deeper, more complex classes
when necessary.

In addition, the Façade allows you to make changes in the underlying subsystems
without requiring changes in the client code, and reduces compilation
dependencies.

Thought Questions
Suppose you had written a program with a File|Open menu, a text field, and some
buttons controlling font (bold and italic). Now suppose that you need to have this
program run from a line command with arguments. Suggest how to use a Façade
pattern.

Programs on the CD-ROM
\Façade VB6 database Façade classes using

RDO

\Façade\VBNetFacade VB7 database Façade classes

\Façade\VB6ADO VB6 database Façade using ADO

Copyright © 2001, by James W. Cooper

305

20. THE FLYWEIGHT PATTERN

In this chapter we take up the Flyweight pattern, which is used to avoid the
overhead of large numbers of very similar classes.

There are cases in programming where it seems that you need to generate a very
large number of small class instances to represent data. Sometimes you can
greatly reduce the number of different classes that you need to instantiate if you
can recognize that the instances are fundamentally the same except for a few
parameters. If you can move those variables outside the class instance and pass
them in as part of a method call, the number of separate instances can be greatly
reduced by sharing them.

The Flyweight design pattern provides an approach for handling such classes. It
refers to the instance’s intrinsic data that makes the instance unique, and the
extrinsic data that is passed in as arguments. The Flyweight is appropriate for
small, fine-grained classes like individual characters or icons on the screen. For
example, you might be drawing a series of icons on the screen in a window,
where each represents a person or data file as a folder, as shown in Figure 20-1.

Copyright © 2001, by James W. Cooper

306

Figure 20-1– A set of folders representing information about various
people. Since these are so similar they are candidates for the

Flyweight pattern.

In this case, it does not make sense to have an individual class instance for each
folder that remembers the person’s name and the icon’s screen position.
Typically these icons are one of a few similar images and the position where they
are drawn is calculated dynamically based on the window’s size in any case.

In another example in Design Patterns, each character in a Document is
represented as a single instance of a character class, but the positions where the
characters are drawn on the screen are kept as external data so that there needs to
be only one instance of each character, rather than one for each appearance of
that character.

Copyright © 2001, by James W. Cooper

307

Discussion
Flyweights are sharable instances of a class. It might at first seem that each class
is a Singleton, but in fact there might be a small number of instances, such as one
for every character, or one for every icon type. The number of instances that are
allocated must be decided as the class instances are needed, and this is usually
accomplished with a FlyweightFactory class. This factory class usually is a
Singleton, since it needs to keep track of whether or not a particular instance has
been generated yet. It then either returns a new instance or a reference to one it
has already generated.

To decide if some part of your program is a candidate for using Flyweights,
consider whether it is possible to remove some data from the class and make it
extrinsic. If this makes it possible to reduce greatly the number of different class
instances your program needs to maintain, this might be a case where Flyweights
will help.

Example Code
Suppose we want to draw a small folder icon with a name under it for each
person in an organization. If this is a large organization, there could be a large
number of such icons, but they are actually all the same graphical image. Even if
we have two icons, one for “is Selected” and one for “not Selected” the number
of different icons is small. In such a system, having an icon object for each
person, with its own coordinates, name and selected state is a waste of resources.
We show two such icons in the diagram Figure 20-2.

Copyright © 2001, by James W. Cooper

308

Figure 20-2– The Flyweight display with one folder selected
Instead, we’ll create a FolderFactory that returns either the selected or the
unselected folder drawing class, but does not create additional instances once one
of each has been created. Since this is such a simple case, we just create them
both at the outset and then return one or the other:

'Class FolderFactory
'Returns selected or unselected folder
Private Selected As Folder, unSelected As Folder
Const selColor = &H5FF5F1C
'---------
Public Sub init(Pic As PictureBox)

Copyright © 2001, by James W. Cooper

309

 'create one instance of each of 2 folders
 Set Selected = New Folder
 Selected.init Pic, selColor

 Set unSelected = New Folder
 unSelected.init Pic, vbYellow
End Sub
'---------
Public Function getFolder(isSelected As Boolean) As Folder
 If isSelected Then
 Set getFolder = Selected
 Else
 Set getFolder = unSelected
 End If
End Function

For cases where more instances could exist, the factory could keep a table of the
ones it had already created and only create new ones if they weren’t already in
the table.

The unique thing about using Flyweights, however, is that we pass the
coordinates and the name to be drawn into the folder when we draw it. These
coordinates are the extrinsic data that allow us to share the folder objects, and in
this case create only two instances. The complete folder class shown below
simply creates a folder instance with one background color or the other and has a
public Draw method that draws the folder at the point you specify.

'Class Folder
'draws a folder on the picture box panel
Private Pic As PictureBox
Private bColor As Long
Const w = 50, h = 30
Const Gray = &H808080
'--------
Public Sub init(pc As PictureBox, bc As Long)
 Set Pic = pc
 bColor = bc
End Sub
'--------
Public Sub draw(X As Integer, Y As Integer, title As String)
 Pic.Line (X, Y)-(X + w, Y + h), bColor, BF
 Pic.Line (X, Y)-(X + w, Y + h), vbBlack, B
 Pic.Line (X + 1, Y + 1)-(X + w - 1, Y + 1), vbWhite
 Pic.Line (X + 1, Y)-(X + 1, Y + h), vbWhite

Copyright © 2001, by James W. Cooper

310

 Pic.Line (X + 5, Y)-(X + 15, Y - 5), bColor, BF
 Pic.Line (X + 5, Y)-(X + 15, Y - 5), vbBlack, B
 Pic.Line (X, Y + h - 1)-(X + w, Y + h - 1), Gray
 Pic.Line (X + w - 1, Y)-(X + w - 1, Y + h - 1), Gray
 Pic.PSet (X, Y + h + 5), Pic.BackColor
 Pic.Print title;
End Sub

To use a Flyweight class like this, your main program must calculate the position
of each folder as part of its paint routine and then pass the coordinates to the
folder instance. This is actually rather common, since you need a different layout
depending on the window’s dimensions, and you would not want to have to keep
telling each instance where its new location is going to be. Instead, we compute it
dynamically during the paint routine.

Here we note that we could have generated an array or Collection of folders at
the outset and simply scan through the array to draw each folder.

For i = 1 To names.Count
 Set fol = folders(i) 'get a folder
 fol.draw X, Y, names(i) 'and draw it
 cnt = cnt + 1
 If cnt > HCount Then
 cnt = 1
 X = pLeft
 Y = Y + VSpace
 Else
 X = X + HSpace
 End If
Next I

Such an array is not as wasteful as a series of different instances because it is
actually an array of references to one of only two folder instances. However,
since we want to display one folder as “selected,” and we would like to be able to
change which folder is selected dynamically, we just use the FolderFactory itself
to give us the correct instance each time:

Private Sub Form_Paint()
'repaint entire pictureBox
Dim i As Integer
Dim X As Integer, Y As Integer
X = pLeft
Y = pTop
cnt = 1

Copyright © 2001, by James W. Cooper

311

'go through all names
For i = 1 To names.count
 'get one kind of folder or other
 Set fol = factory.getFolder(names(i) = selectedName)
 fol.draw X, Y, names(i)
 cnt = cnt + 1
 If cnt > HCount Then
 cnt = 1
 X = pLeft
 Y = Y + VSpace
 Else
 X = X + HSpace
 End If
Next i
End Sub

The Class Diagram
The diagram in Figure 20-3 shows how these classes interact.

Figure 20-3 – How Flyweights are generated.

The FlyCanvas class is the main UI class, where the folders are arranged and
drawn. It contains one instance of the FolderFactory and one instance of the
Folder class. The FolderFactory class contains two instances of Folder: selected
and unselected. One or the other of these is returned to the FlyCanvas by the
FolderFactory.

Copyright © 2001, by James W. Cooper

312

Selecting A Folder
Since we have two folder instances, that we termed selected and unselected, we’d
like to be able to select folders by moving the mouse over them. In the paint
routine above, we simply remember the name of the folder which was selected
and ask the factory to return a “selected’ folder for it. Since the folders are not
individual instances, we can’t listen for mouse motion within each folder
instance. In fact, even if we did listen within a folder, we’d have to have a way to
tell the other instances to deselect themselves.

Instead, we check for mouse motion at the Picturebox level and if the mouse is
found to be within a Rectangle, we make that corresponding name the selected
name. We create a single instance of a Rectangle class where the testing can be
done as to whether a folder contains the mouse at that instant.

'Class Rectangle
'used to find out if an x,y coordinate
'lies within a rectangle area
Private x1 As Integer
Private y1 As Integer
Private x2 As Integer
Private y2 As Integer
Private w As Integer
Private h As Integer
'--------
Public Function contains(X As Single, Y As Single) As Boolean
 If x1 <= X And X <= x2 And y1 <= Y And Y <= y2 Then
 contains = True
 Else
 contains = False
 End If
End Function
'--------
Public Sub init(x1_ As Integer, y1_ As Integer)
 x1 = x1_
 x2 = x1 + w
 y1 = y1_
 y2 = y1 + h
End Sub
'--------
Public Sub setSize(w_ As Integer, h_ As Integer)
 w = w_
 h = h_

Copyright © 2001, by James W. Cooper

313

End Sub

This allows us to just check each name when we redraw and create a selected
folder instance where it is needed:

Private Sub Pic_MouseMove(Button As Integer, Shift As Integer, mX
As Single, mY As Single)
Dim i As Integer, found As Boolean
Dim X As Integer, Y As Integer
'go through folder list
'looking to see if mouse posn
'is inside any of them
 X = pLeft
 Y = pTop
 cnt = 1
 i = 1
 found = False
 selectedName = ""
 While i <= names.count And Not found
 rect.init X, Y
 If rect.contains(mX, mY) Then
 selectedName = names(i) 'save that name
 found = True
 End If
 cnt = cnt + 1
 If cnt > HCount Then
 cnt = 1
 X = pLeft
 Y = Y + VSpace
 Else
 X = X + HSpace
 End If
 i = i + 1
 Wend
 Refresh
End Sub

Writing a Flyweight Folder in VB.NET
You can write very similar code in VB7 to handle this Flyweight pattern. Since
we create only two instances of the Folder class and then select one or the other
using a FolderFactory, we do not make any use of inheritance. Instead, our

Copyright © 2001, by James W. Cooper

314

FolderFactory creates two instances in the constructor and returns one or the
other:

Public Class FolderFactory
 Private selFolder, unselFolder As Folder
 '-----
 Public Sub new()
 'create the two folders
 selFolder = New Folder(Color.Brown)
 unselFolder = New Folder(color.Bisque)
 End Sub
 '-----
 Public Function getFolder(ByVal isSelected As Boolean) _

As Folder
 'return one or the other
 If isSelected Then
 Return selFolder
 Else
 Return unselFolder
 End If
 End Function
End Class

The folder class itself differs only in that we use the Graphics object to do the
drawing. Note that the drawRectangle method uses a width and height as the last
two arguments rather than the second pair of coordinates.

Public Class Folder
 'Draws a folder at the specified coordinates
 Private Const w As Integer = 50, h As Integer = 30
 Private blackPen As Pen, whitePen As Pen
 Private grayPen As Pen
 Private backBrush, blackBrush As SolidBrush
 Private fnt As Font
 '-----
 Public Sub new(ByVal col As Color)
 backBrush = New SolidBrush(Col)
 blackBrush = New SolidBrush(Color.Black)
 blackPen = New Pen(color.Black)
 whitePen = New Pen(color.White)
 grayPen = New Pen(color.Gray)

Copyright © 2001, by James W. Cooper

315

 fnt = New Font("Arial", 12)
 End Sub
 '-----
 Public Sub draw(ByVal g As Graphics,_

 ByVal x As Integer, _
 ByVal y As Integer, ByVal title As String)
 g.FillRectangle(backBrush, x, y, w, h)
 g.DrawRectangle(blackPen, x, y, w, h)
 g.Drawline(whitePen, x + 1, y + 1, x + w - 1, y + 1)
 g.Drawline(whitePen, x + 1, y, x + 1, y + h)

 g.DrawRectangle(blackPen, x + 5, y - 5, 15, 5)
 g.FillRectangle(backBrush, x + 6, y - 4, 13, 6)

 g.DrawLine(graypen, x, y + h - 1, x + w, y + h - 1)
 g.DrawLine(graypen, x + w - 1, y, x + w - 1, y + h - 1)
 g.DrawString(title, fnt, blackBrush, x, y + h + 5)
 End Sub

End Class

The only real differences in the VB7 approach are the way we intercept the paint
and mouse events. In both cases, we add an event handler. To do the painting of
the folders, we add a paint event handler to the picture box:

AddHandler Pic.Paint, _
New PaintEventHandler(AddressOf picpaint)

The paint handler we add draws the folders, much as we did in the VB6 version:

'paints the folders in the picture box
Private Sub picPaint(ByVal sender As Object, _

 ByVal e As PaintEventArgs)
Dim i, x , y , cnt As Integer
Dim g As Graphics = e.Graphics
 x = pleft
 y = ptop
 cnt = 0
 For i = 0 To names.Count - 1
 fol = folfact.getFolder(selectedname = _
 CType(names(i), String))

Copyright © 2001, by James W. Cooper

316

 fol.draw(g, x, y, CType(names(i), String))
 cnt = cnt + 1
 If cnt > 2 Then
 cnt = 0
 x = pleft
 y = y + vspace
 Else
 x = x + hspace
 End If
 Next
 End Sub
The mouse move event handler is very much analogous. We add a handler for
mouse movement inside the picture box during the form’s constructor:

AddHandler Pic.MouseMove, (AddressOf evmouse)

In order to detect whether a mouse position is inside a rectangle, we use a single
instance of a Rectangle class. Since there already is a Rectangle class in the
System.Drawing namespace, we put this rectangle in a VBPatterns namespace.

Namespace vbPatterns
 Public Class Rectangle
 Private x1, x2, y1, y2 As Integer
 Private w, h As Integer
 '-----
 Public Sub init(ByVal x_ As Integer,_

ByVal y_ As Integer)
 x1 = x_
 y1 = y_
 x2 = x1 + w
 y2 = y1 + h
 End Sub
 '-----
 Public Sub setSize(ByVal w_ As Integer, _

 ByVal h_ As Integer)
 w = w_
 h = h_
 End Sub
 '-----
 Public Function contains(ByVal xp As Integer, _

ByVal yp As Integer) As Boolean
 Return x1 <= xp And xp <= x2 And _

Copyright © 2001, by James W. Cooper

317

y1 <= yp And yp <= y2
 End Function
 End Class
End Namespace

Then, using the contains method of the rectangle, we can check for whether the
mouse is over a folder in the mouse move event handler:

'mouse move event handler
 Public Sub evmouse(ByVal sender As Object, _

 ByVal e As MouseEventArgs)
 Dim x, y, i, cnt As Integer
 Dim oldname As String
 Dim found As Boolean
 oldname = selectedname 'save old name
 x = pleft 'move through coordinates
 y = ptop
 i = 0
 cnt = 0
 found = False
 While i < names.Count And Not found
 rect.init(x, y)
 'see if a rectangle contains the mouse
 If rect.contains(e.X, e.Y) Then
 selectedname = CType(names(i), String)
 found = True
 End If
 i = i + 1
 cnt = cnt + 1
 'move on to next rectangle
 If cnt > 2 Then
 cnt = 0
 x = pleft
 y = y + vspace
 Else
 x = x + hspace
 End If

 End While
 'only refresh if mouse in new rectangle
 If found And oldname <> selectedname Then

Copyright © 2001, by James W. Cooper

318

 pic.Refresh()
 End If
 End Sub

Flyweight Uses in VB
Flyweights are not frequently used at the application level in VB. They are more
of a system resource management technique, used at a lower level than VB.
However, it is useful to recognize that this technique exists so you can use it if
you need it.

Some objects within the VB language could be implemented under the covers as
Flyweights. For example, if there are two instances of a String constant with
identical characters, they could refer to the same storage location. Similarly, it
might be that two Integer or Float constants that contain the same value could be
implemented as Flyweights, although they probably are not.

Sharable Objects
The Smalltalk Companion points out that sharable objects are much like
Flyweights, although the purpose is somewhat different. When you have a very
large object containing a lot of complex data, such as tables or bitmaps, you
would want to minimize the number of instances of that object. Instead, in such
cases, you’d return one instance to every part of the program that asked for it and
avoid creating other instances.

A problem with such sharable objects occurs when one part of a program wants
to change some data in a shared object. You then must decide whether to change
the object for all users, prevent any change, or create a new instance with the
changed data. If you change the object for every instance, you may have to notify
them that the object has changed.

Sharable objects are also useful when you are referring to large data systems
outside of VB, such as databases. The Dbase class we developed above in the
Façade pattern could be a candidate for a sharable object. We might not want a
number of separate connections to the database from different program modules,
preferring that only one be instantiated. However, should several modules in
different threads decide to make queries simultaneously, the Database class
might have to queue the queries or spawn extra connections.

Copyright © 2001, by James W. Cooper

319

Copy-on-Write Objects
The Flyweight pattern uses just a few object instances to represent many different
objects in a program. All of them normally have the same base properties as
intrinsic data and a few properties that represent extrinsic data that vary with
each manifestation of the class instance. However, it could occur that some of
these instances eventually take on new intrinsic propertie s (such as shape or
folder tab position) and require a new specific instance of the class to represent
them. Rather than creating these in advance as special subclasses, it is possible to
copy the class instance and change its intrinsic properties when the program flow
indicates that a new separate instance is required. The class copies thus itself
when the change becomes inevitable, changing those intrinsic properties in the
new class. We call this process “copy-on-write,” and can build this into
Flyweights as well as a number of other classes, such as the Proxy we discuss
next.

Thought Questions
1. If Buttons can appear on several different tabs of a TabDialog, but each of

them controls the same one or two tasks, is this an appropriate use for a
Flyweight?

Programs on the CD-ROM
\Flyweight\FlyFolders VB6 folders

\Flyweight\Vbnet VB7 Flyweight folders

Copyright © 2001, by James W. Cooper

320

21. THE PROXY PATTERN

The Proxy pattern is used when you need to represent an object that is complex
or time consuming to create, by a simpler one. If creating an object is expensive
in time or computer resources, Proxy allows you to postpone this creation until
you need the actual object. A Proxy usually has the same methods as the object it
represents, and once the object is loaded, it passes on the method calls from the
Proxy to the actual object.

There are several cases where a Proxy can be useful:

1. If an object, such as a large image, takes a long time to load.

2. If the results of a computation take a long time to complete and you need to
display intermediate results while the computation continues.

3. If the object is on a remote machine and loading it over the network may be
slow, especially during peak network load periods.

4. If the object has limited access rights, the proxy can validate the access
permissions for that user.

Proxies can also be used to distinguish between requesting an instance of an
object and the actual need to access it. For example, program initialization may
set up a number of objects that may not all be used right away. In that case, the
proxy can load the real object only when it is needed.

Let’s consider the case of a large image that a program needs to load and display.
When the program starts, there must be some indication that an image is to be
displayed so that the screen lays out correctly , but the actual image display can
be postponed until the image is completely loaded. This is particularly important
in programs such as word processors and web browsers that lay out text around
the images even before the images are available.

An image proxy can note the image and begin loading it in the background, while
drawing a simple rectangle or other symbol to represent the image’s extent on the
screen before it appears. The proxy can even delay loading the image at all until
it receives a paint request, and only then begin the process.

Copyright © 2001, by James W. Cooper

321

Sample Code
In this example program, we create a simple program to display an image on a
Image control when it is loaded. Rather than loading the image directly, we use a
class we call ImageProxy to defer loading and draw a rectangle until loading is
completed..

'Displays an image during and after computation
Dim impr As ImageProxy
'--------
Private Sub Form_Load()
 Set impr = New ImageProxy
End Sub
'--------
Private Sub Loadit_Click()
'start the image fetch or computation
 Timer1.Enabled = True
 impr.startImage
End Sub
'--------
Private Sub Timer1_Timer()
'get an image to display
 Image1.Picture = LoadPicture(impr.getImage)
End Sub

Note that we create the instance of the ImageProxy just as we would have for an
Image,. The ImageProxy class sets up the image loading and creates an Imager
object to follow the loading process. It returns a class which implements the
Imager interface:

'Class imager
Public Function getImage() As String
End Function

In this simple case, the ImageProxy class just delays 5 seconds and then switch
from the preliminary image to the final image.

'Class ImageProxy
Private stTime As Variant
Private started As Boolean
Private img As Imager
'--------
Public Sub startImage()
 started = True 'image fetch starting

Copyright © 2001, by James W. Cooper

322

 stTime = Time 'log the time
End Sub
'--------
Public Function isReady() As Boolean
 'return true after image delay-- here 5 secinds
 Dim tim As Variant
 tim = DateDiff("s", stTime, Time)
 If tim > 5 And started Then
 isReady = True
 Else
 isReady = False
 End If
End Function
'--------
Public Function getImage() As String
 'return an image forom the prelim or final image class
 If isReady Then
 Set img = New FinalImage
 End If
 getImage = img.getImage
End Function
'--------
Private Sub Class_Initialize()
 started = False
 Set img = New QuickImage
End Sub

We implement the Imager interface in two tiny classes we called QuickImage
and FinalImage. One gets a small gif image and the other a larger (and
presumably slower) jpeg image.

'Class QuickImage
Implements Imager
Private Function Imager_getImage() As String
 Imager_getImage = App.Path + "\box.gif"
End Function

'Class FinalImage
Implements Imager
Private Function Imager_getImage() As String
 Imager_getImage = App.Path + "\flowrtree.jpg"
End Function

The program’s two states are illustrated in Figure 21-1.

Copyright © 2001, by James W. Cooper

323

Figure 21-1– The proxy image display on the left is shown until the
image loads as shown on the right.

Writing a Proxy in VB.Net
We will illustrate the same image proxy in VB7. Since the PictureBox’s Image
property requires an Image as an argument, we will change our Imager interface
to return an Image type.

Public Interface Imager
 Function getImage() As Image
End Interface

In VB7, Image is an abstract class and the Bitmap, Cursor, Icon and Metafile
classes are derived from it. So the actual class we will usually return is derived
from Image. The QuickImage class returns a Bitmap from a gif file:

Public Class QuickImage
 Implements Imager
 '-----
 Public Function getImage() As Image _
 Implements Imager.getImage
 Return New bitmap("Box.gif")
 End Function
End Class
And the FinalImage class returns a bitmap from a jpeg file:

Copyright © 2001, by James W. Cooper

324

Public Class FinalImage
 Implements Imager
 '-----
 Public Function getImage() As Image _
 Implements Imager.getImage
 Return New Bitmap("flowrtree.jpg")
 End Function
End Class

The main difference in the way we obtain images in this program is in our
ImageProxy class. Timers are handled quite differently in VB7, using a
TimerCallback class which defines the method to be called when the timer ticks.
This is much the same as the way we add other event handlers:

Public Class ImageProxy
 Private done As Boolean
 Private tm As Timer
 '-----
 Public Sub New()
 done = False
 'set up timer that ticks once after 5 seconds
 tm = New Timer(_
 New TimerCallback(AddressOf tCallback), _
 Me, 5000, 0)
 End Sub
The timer callback defines that the tCallback method will be called:

Public Sub tCallback(ByVal obj As Object)
 'set done flag and turn off timer
 done = True
 tm.Dispose()
End Sub
and this method sets the done flag and turns off the timer.

When you go to fetch an image, you initially get the quick image, and after 5
seconds, get the final image:

 Public Function getImage() As Image
 Dim img As Imager
 'return quick image until ready
 If isReady Then
 img = New FinalImage()

Copyright © 2001, by James W. Cooper

325

 Else
 img = New QuickImage()
 End If
 Return img.getImage
 End Function
This program works so that when you click on the form’s load button, you get the
quick image for the first 5 seconds after the first click, and later clicks produce
the final jpeg image.

Proxies in VB
Since VB6 is primarily a client writing language, you will find VB6 Proxies less
common than in client-server systems. However you see much more proxy-like
behavior in VB7 which is crafted for network and internet use. For example, the
ADO database connection classes are all effectively proxies.

You can use VB6 to create server-side WebClass objects , and Active Server
Pages (ASPs) which themselves utilize VB-like code. However, it is not common
to have VB6 running as both the server and client system, and thus Proxies are
less likely to be used. Even in Visual Studio.NET, where you can use VB7 or one
ore more other languages to create server code, the client-side code is more
frequently HTML, and proxies would not normally occur. However, server-side
classes in any convenient languages can benefit from proxies whenever the
server-side program is time-consuming to complete.

Copy-on-Write
You can also use proxies is to keep copies of large objects that may or may not
change. If you create a second instance of an expensive object, a Proxy can
decide there is no reason to make a copy yet. It simply uses the original object.
Then, if the program makes a change in the new copy, the Proxy can copy the
original object and make the change in the new instance. This can be a great time
and space saver when objects do not always change after they are instantiated.

Comparison with Related Patterns
Both the Adapter and the Proxy constitute a thin layer around an object.
However, the Adapter provides a different interface for an object, while the

Copyright © 2001, by James W. Cooper

326

Proxy provides the same interface for the object, but interposes itself where it can
postpone processing or data transmission effort.

A Decorator also has the same interface as the object it surrounds, but its purpose
is to add additional (sometimes visual) function to the original object. A proxy,
by contrast, controls access to the contained class.

Thought Questions
You have designed a server that connects to a database. If several clients connect
to your server at once, how might Proxies be of help?

Programs on the CD-ROM
\Proxy VB6 Image proxy

\Proxy\VBNet VB7 image proxy

Copyright © 2001, by James W. Cooper

327

Summary of structural patterns
In this chapter we have seen the

• The Adapter pattern, used to change the interface of one class to that of
another one.

• The Bridge pattern is designed to separate a class’s interface from its
implementation, so that you can vary or replace the implementation without
changing the client code.

• The Composite pattern, a collection of objects, any one of which may be
either itself a Composite, or just a leaf object.

• The Decorator pattern, a class that surrounds a given class, adds new
capabilities to it, and passes all the unchanged methods to the underlying
class.

• The Façade pattern, which groups a complex set of objects and provides a
new, simpler interface to access those data.

• The Flyweight pattern, which provides a way to limit the proliferation of
small, similar instances by moving some of the class data outside the class
and passing it in during various execution methods.

• The Proxy pattern, which provides a simple place-holder object for a more
complex object which is in some way time-consuming or expensive to
instantiate.

Copyright © 2001, by James W. Cooper

328

Copyright © 2001, by James W. Cooper

329

Behavioral Patterns
Behavioral patterns are those patterns that are most specifically concerned
with communication between objects. In this chapter, we’ll see that:

• The Chain of Responsibility allows a decoupling between objects, by
passing a request from one object to the next in a chain until the request is
recognized.

• The Command pattern utilizes simple objects to represent execution of
software commands, and allows you to support logging and undoable
operations.

• The Interpreter provides a definition of how to include language elements
in a program.

• The Iterator pattern formalizes the way we move through a list of data
within a class.

• The Mediator defines how communication between objects can be
simplified by using a separate object to keep all objects from having to
know about each other.

• The Observer pattern defines the way a number of objects can be notified
of a change,

• The State pattern allows an object to modify its behavior when its internal
state changes.

• The Strategy pattern encapsulates an algorithm inside a class,

• The Template Method pattern provides an abstract definition of an
algorithm, and

• The Visitor pattern adds polymorphic functions to a class noninvasively.

Copyright © 2001, by James W. Cooper

330

22. CHAIN OF RESPONSIBILITY
The Chain of Responsibility pattern allows a number of classes to attempt to
handle a request, without any of them knowing about the capabilities of the
other classes. It provides a loose coupling between these classes; the only
common link is the request that is passed between them. The request is passed
along until one of the classes can handle it.

One example of such a chain pattern is a Help system like the one shown in
Figure 22-1 – A simple application where different kinds of help could be
useful., where every screen region of an application invites you to seek help,
but in which there are window background areas where more generic help is
the only suitable result.

Figure 22-1 – A simple application where different kinds of help

could be useful.
When you select an area for help, that visual control forwards its ID or name
to the chain. Suppose you selected the “New” button. If the first module can
handle the New button, it displays the help message. If not, it forwards the
request to the next module. Eventually, the message is forwarded to an “All
buttons” class that can display a general message about how buttons work. If
there is no general button help, the message is forwarded to the general help
module that tells you how the system works in general. If that doesn’t exist,
the message is lost and no information is displayed. This is illustrated in
Figure 22-2– A simple Chain of

Copyright © 2001, by James W. Cooper

331

Responsibility.

File button All buttons

All controls General help

New button

Figure 22-2– A simple Chain of Responsibility.

• There are two significant points we can observe from this example; first,
the chain is organized from most specific to most general, and that there
is no guarantee that the request will produce a response in all cases. We
will see shortly that you can use the Observer pattern to provide a way for
a number of classes to be notified of a change,

Applicability
The Chain of Responsibility is a good example of a pattern that helps keep
knowledge separate of what each object in a program can do. In other words,
it reduces the coupling between objects so that they can act independently.
This also applies to the object that constitutes the main program and contains
instances of the other objects. You will find this pattern helpful when:

• There are several objects with similar methods that could be
appropriate for the action the program is requesting. However, it
is more appropriate for the objects to decide which one is to carry
out the action than it is for you to build this decision into the
calling code.

• One of the objects may be most suitable but you don’t want to
build in a series of if-else or switch statements to select a
particular object.

• There might be new objects that you want to add to the possible
list of processing options while the program is executing.

• There might be cases when more than one object will have to act
on a request and you don’t want to build knowledge of these
interactions into the calling program.

Copyright © 2001, by James W. Cooper

332

Sample Code
The help system we described above is a little involved for a first example.
Instead, let’s start with a simple visual command-interpreter program (Figure
22-3– A simple visual command interpreter program that acts on one of four
panels depending on the command you type in.) that illustrates how the chain
works. This program displays the results of typed-in commands. While this
first case is constrained to keep the example code tractable, we’ll see that this
Chain of Responsibility pattern is commonly used for parsers and even
compilers.

In this example, the commands can be

• Image filenames

• General filenames

• Color names

• All other commands

In the first three cases, we can display a concrete result of the request, and in
the last case, we can only display the request text itself.

Copyright © 2001, by James W. Cooper

333

Figure 22-3– A simple visual command interpreter program that
acts on one of four panels depending on the command you type in.

In the above example system,

1. We type in “Mandrill” and see a display of the image Mandrill.jpg.

2. Then, we type in “File” and that filename is displayed in the center list
box.

3. Next, we type in “blue” and that color is displayed in the lower center
panel.

Finally, if we type in anything that is neither a filename nor a color, that text
is displayed in the final, right-hand list box. This is shown in Figure 16.4.

Image
file

Color
name

File
name General Command

Figure 22-4 – How the command chain works for the program in
Figure 22-3.

To write this simple chain of responsibility program, we start with an abstract
Chain class:

'Interface class Chain
'--------
Public Sub addChain(c As Chain)
End Sub
'--------
Public Sub sendToChain(mesg As String)
End Sub
'--------
Public Function getChain() As Chain
End Function
'--------
Public Sub setControl(c As Control)
End Sub
'--------
Public Function hasChain() As Boolean
End Function

The addChain method adds another class to the chain of classes. The
getChain method returns the current class to which messages are being
forwarded. These two methods allow us to modify the chain dynamically and

Copyright © 2001, by James W. Cooper

334

add additional classes in the middle of an existing chain. The sendToChain
method forwards a message to the next object in the chain.

Our main program assembles the Chain classes and sets a reference to a
control into each of them. We start with the ImgChain class, which takes the
message string and looks for a .jpg file of that name. If it finds one it displays
it in the Image control and if not it sends the command on to the next element
in the chain.

'Class ImgChain
Implements Chain
Private chn As Chain
Private hasLink As Boolean
Private fl As File
Private img As Image
'--------
Private Sub Chain_addChain(c As Chain)
 Set chn = c
 hasLink = True
End Sub
'--------
Private Function Chain_getChain() As Chain
 Set Chain_getChain = chn
End Function
'--------
Private Function Chain_hasChain() As Boolean
 Chain_hasChain = hasLink
End Function
'--------
Private Sub Chain_sendToChain(mesg As String)
 fl.setFilename App.Path + "\" + mesg + ".jpg"
 If fl.exists Then
 img.Picture = LoadPicture(fl.getFilename)
 Else
 chn.sendToChain mesg
 End If
End Sub
'--------
Private Sub Chain_setControl(c As Control)
 Set img = c
End Sub
'--------
Private Sub Class_Initialize()
 hasLink = False
 Set fl = New File
End Sub

Copyright © 2001, by James W. Cooper

335

In a similar fashion, the ColorChain class simply interprets the message as a
color name and displays it if it can. This example only interprets 3 colors, but
you could implement any number:

Private Sub Chain_sendToChain(mesg As String)
Dim colr As Long, found As Boolean
 found = True
 Select Case LCase(mesg) 'look for a color name
 Case "red"
 colr = vbRed
 Case "blue"
 colr = vbBlue
 Case "green"
 colr = vbGreen
 Case Else
 'if not found send it on
 If hasLink Then
 chn.sendToChain mesg
 found = False 'not found
 End If
 End Select
 'if found change the color
 If found Then
 pc.BackColor = colr
 End If
End Sub

The List Boxes
Both the file list and the list of unrecognized commands are ListBoxes. If the
message matches part of a filename, the filename is displayed in the fileList
box, and if not, the message is send on to the NoComd chain element.

Private Sub Chain_sendToChain(mesg As String)
Dim fls As String
 ChDir App.Path 'current directory
 fls = Dir(mesg + "*.*") 'look for match
 If Len(fls) > 0 Then
 lst.AddItem fls 'add it to list
 Else
 If hasLink Then
 chn.sendToChain mesg 'or send to Nocmd class
 End If
 End If
End Sub

The NoCmd Chain class is very similar. It however, has no class to send data
on to.

'Class NoCmd

Copyright © 2001, by James W. Cooper

336

Implements Chain
Private lst As ListBox
'--------
Private Sub Chain_addChain(c As Chain)
End Sub
'--------
Private Function Chain_getChain() As Chain
End Function
'--------
Private Function Chain_hasChain() As Boolean
 Chain_hasChain = False
End Function
'--------
Private Sub Chain_sendToChain(mesg As String)
 lst.AddItem mesg
End Sub
'--------
Private Sub Chain_setControl(c As Control)
 Set lst = c
End Sub

Finally, we link these classes together in the Form_Load routine to create the
Chain.

'set up Chain of Responsbility
Dim colr As Chain
Dim fls As Chain
Dim nocom As Chain
 'Image chain
 Set chn = New ImgChain
 chn.setControl imgJpg
 'Color chain
 Set colr = New ColorChain
 colr.setControl pcColor
 chn.addChain colr
 'File chain
 Set fls = New FileChain
 fls.setControl lsFiles
 colr.addChain fls
 'No Command
 Set nocom = New NoCmd
 nocom.setControl lsNocomds
 fls.addChain nocom

You can see the relationship between these classes in the UML diagram in
Figure 22-5.

Copyright © 2001, by James W. Cooper

337

Figure 22-5 – The class strcuture of the Chain of Responsibility

program.

The Sender class is the initial class which implements the Chain interface. It
receives the button clicks and obtains the text from the text field. It passes the
command on to the Imager class, the FileList class, the ColorImage class and
finally to the RestList class. Note that FileList is a subclass of RestList and
implements the Chain interface because the parent RestList class does.

Programming a Help System
As we noted at the beginning of this discussion, help systems provide good
examples of how the Chain of Responsibility pattern can be used. Now that
we’ve outline a way to write such chains, we’ll consider a help system for a
window with several controls. The program (Figure 22-6) pops up a help

Copyright © 2001, by James W. Cooper

338

dialog message when the user presses the F1 (help) key. The message
depends on which control is selected when the F1 key is pressed.

Figure 22-6 – A simple help demonstration which pops up a

different message depending on which control is selected when you
press the F1 key.

In the example above, the user has selected the Quit key, which does not have
a specific help message associated with it. Instead, the chain forwards the
help request to a general button help object which displays the message
shown on the right.

To write this help chain system, we begin with a general Chain interface
class that has empty implementations of all of the Chain interface methods.

'Interface class Chain
'--------
Public Sub addChain(c As Chain)
End Sub
'--------
Public Sub sendToChain(c As Control)
End Sub
'--------
Public Function getChain() As Chain
End Function
'--------
Public Function hasChain() As Boolean
End Function

Note that this chain does not need to have a copy of a reference to any kind of
control. This is passed in using the sendToChain method.

Then you need to create specific classes for each of the help message
categories you want to produce. As we illustrated earlier, we want help
messages for

Copyright © 2001, by James W. Cooper

339

• The New button

• The File button

• A general button

• A general visual control (covering the checkboxes)

In VB, one control will always have th focus, and thus we don’t need a case
for the Window itself. Therefore, we write the above 4 classes and combine
them into a chain as follows:

Private Sub Form_Load()
Dim butc As Chain
Dim filc As Chain
Dim cchn As Chain
'create chain of responsibility
 Set chn = New NewChain
 Set filc = New FileChain
 Set butc = New ButtonChain
 Set cchn = New ControlChain
 chn.addChain filc
 filc.addChain butc
 butc.addChain cchn
End Sub

Receiving the Help Command
Now, we need to assign keyboard listeners to look for the F1 keypress. At
first, you might think we need 5 such listeners, for the 3 buttons and the two
checkboxes. However, we can make control arrays of the buttons and the
checkboxes and then we need to listend for a KeyDown event in two places,
and both call the same method:

Private chn As Chain
'--------
Private Sub btNew_KeyDown(Index As Integer, keyCode As Integer,
Shift As Integer)
 callChain btNew(Index), keyCode
End Sub
'--------
Private Sub callChain(c As Control, keyCode As Integer)
If keyCode = vbKeyF1 Then 'respond to F1 only
 chn.sendToChain c
End If
End Sub

For the File button, the chain class is implemented as follows:

Implements Chain
Private chn As Chain

Copyright © 2001, by James W. Cooper

340

Private hasLink As Boolean
'--------
Private Sub Chain_addChain(c As Chain)
 Set chn = c
 hasLink = True
End Sub
'--------
Private Function Chain_getChain() As Chain
 Set Chain_getChain = chn
End Function
'--------
Private Function Chain_hasChain() As Boolean
 Chain_hasChain = hasLink
End Function
'--------
Private Sub Chain_sendToChain(c As Control)
 If c.Caption = "File" Then
 MsgBox "Use to open a file"
 Else
 If hasLink Then
 chn.sendToChain c
 End If
 End If
End Sub
'--------
Private Sub Class_Initialize()
 hasLink = False
End Sub

Now at first you might think that you could just as easily have made a
separate KeyDown event method for each of the controls on the form,
instead of having only a couple of such events and sending them al through
the same chain. And, in fact, that is how VB programs are usually written.
The advantage to this Chain of Responsibility approach is that you can decide
the order in which controls are checked for membership in various classes
and control and easily change this order within your program. This provides a
considerably more versatile and flexible system than if each control called its
own event method.

We show the complete class diagram for this help system in Figure 22-7.

Copyright © 2001, by James W. Cooper

341

Figure 22-7– The class diagram for the Help system.

A Chain or a Tree?
Of course, a Chain of Responsibility does not have to be linear. The Smalltalk
Companion suggests that it is more generally a tree structure with a number
of specific entry points all pointing upward to the most general node as
shown in Figure 22-8.

Copyright © 2001, by James W. Cooper

342

General
help

Window
help

Button help Menu help List box
help

File NewOK Quit Files Colors

Figure 22-8– The chain of responsibility implemented as a tree

structure.
However, this sort of structure seems to imply that each button, or is handler,
knows where to enter the chain. This can complicate the design in some
cases, and may preclude the need for the chain at all.

Another way of handling a tree-like structure is to have a single entry point
that branches to the specific button, menu or other widget types, and then
“un-branches” as above to more general help cases. There is little reason for
that complexity -- you could align the classes into a single chain, starting at
the bottom, and going left to right and up a row at a time until the entire
system had been traversed, as shown in Figure 22-9

Copyright © 2001, by James W. Cooper

343

General
help

Window
help

Button help Menu help
List box

help

File NewOK Quit Files Colors

Figure 22-9 – The same chain of responsibility implement as a

linear chain.

Chain of Responsibility in VB.NET
We can implement the Chain of Responsibility in VB7 in a very similar
manner. However, it is convenient to make the Chain class an abstract class
instead of an interface. Remember that an abstract class has one or more
methods that must be implemented in the derived classes. We mark this
methods as MustOverride and mark the class as MustInherit as we illustrate
below.

Public MustInherit Class Chain
 Protected chn As Chain
 Private hasLink As Boolean
 '-----
 Public Sub New()
 hasLink = False
 End Sub
 '-----
 Public Sub addChain(ByVal c As chain)
 chn = c
 haslink = True 'mark as available

Copyright © 2001, by James W. Cooper

344

 End Sub
 '-----
 'will fill this in in derived classes
 Public MustOverride Sub sendToChain(_

ByVal mesg As String)
 '-----
 Public Function getChain() As chain
 Return chn
 End Function
 '-----
 Public Function hasChain() As Boolean
 Return hasLink
 End Function
End Class

Then, we can easily derive classes, and we only need to implement the
sendToChain method. For example, here is the FileChain class:

Public Class FileChain
 Inherits Chain
 Private flist As ListBox
 '-----
 Public Sub new(ByVal lbox As ListBox)
 MyBase.new()
 flist = lbox
 End Sub
 '-----
 Public Overrides Sub sendToChain(ByVal mesg As
String)
 Dim fname As String
 Dim files As File()
 fname = mesg + "*.*"
 files = Directory.GetFilesInDirectory(_
 Directory.CurrentDirectory, fname)
 'add them all to the listbox
 If files.Length > 0 Then
 Dim i As Integer
 For i = 0 To files.Length - 1
 flist.Items.Add(files(i).Name)
 Next
 Else
 If haschain Then
 chn.sendToChain(mesg)
 End If
 End If

Copyright © 2001, by James W. Cooper

345

 End Sub
End Class

Since we initialize the chains in their constructors, the code in the form
constructor that sets them up is a little simpler:

Private Sub setUpChain()
 Dim clrchain As New ColorChain(pnlcolor)
 Dim flchain As New FileChain(lsfiles)
 Dim nochain As New NoCmd(lsnocomd)

 chn = New ImageChain(picImage)
 chn.addChain(clrchain)
 clrchain.addChain(flchain)
 flchain.addChain(nochain)
 End Sub
The final display is shown in Figure 22-10.

Figure 22-10 – The VB7 version of the image Chain of
Responsibility.

Copyright © 2001, by James W. Cooper

346

Kinds of Requests
The request or message passed along the Chain of Responsibility may well be
a great deal more complicated than just the string or Control that we
conveniently used on these examples. The information could include various
data types or a complete object with a number of methods. Since various
classes along the chain may use different properties of such a request object,
you might end up designing an abstract Request type and any number of
derived classes with additional methods.

Examples inVB
Under the covers, VB form windows receive various events, such as
MouseMove and then forward them to the controls the form contains.
However, only the final control ever receives the message in VB, while in
some other languages, each containing control does as well. This is a clear
implementation of Chain of Responsibility pattern. We could also argue that,
in general, the VB.NET class inheritance structure itself exemplifie s this
pattern. If you call for a method to be executed in a deeply derived class, that
method is passed up the inheritance chain until the first parent class
containing that method is found. The fact that further parents contain other
implementations of that method does not come into play.

We will also see that the Chain of Responsibility is ideal for implementing
Interpreters and use one in the Interpreter pattern we discuss later in this
section.

Consequences of the Chain of Responsibility
1. The main purpose for this pattern, like a number of others, is to reduce

coupling between objects. An object only needs to know how to forward
the request to other objects.

2. Each VB object in the chain is self-contained. It knows nothing of the
others and only need decide whether it can satisfy the request. This makes
writing each one very easy, and constructing the chain very easy.

3. You can decide whether the final object in the chain handles all requests
it receives in some default fashion, or just discards them. However, you
do have to know which object will be last in the chain for this to be
effective.

4. Finally, since VB can not provide multiple inheritance, the basic Chain
class needs to be an interface rather than an abstract class, so that the

Copyright © 2001, by James W. Cooper

347

individual objects can inherit from another useful hierarchy, as we did
here by deriving them all from Control. This disadvantage of this
approach is that you often have to implement the linking, sending and
forwarding code in each module separately, or as we did here by
subclassing a concrete class which implements the Chain interface.

Thought Questions
1. Suggest how you might use a Chain of Responsibility to implement an E-

mail filter.

Programs on the CD-ROM
\Chain\HelpChain VB6 program showing how a help

system can be implemented

\Chain\PicChain VB6 chain of file and image displays

\Chain\VBNetCHain VB7 chain of file and image displays

Copyright © 2001, by James W. Cooper

348

23. THE COMMAND PATTERN
The Chain of Responsibility forwards requests along a chain of classes, but
the Command pattern forwards a request only to a specific object. It encloses
a request for a specific action inside an object and gives it a known public
interface. It lets you give the client the ability to make requests without
knowing anything about the actual action that will be performed, and allows
you to change that action without affecting the client program in any way.

Motivation
When you build a VB user interface, you provide menu items, buttons, and
checkboxes and so forth to allow the user to tell the program what to do.
When a user selects one of these controls, the program receives a clicked
event, which it receives into a special routine in the user interface. Let's
suppose we build a very simple program that allows you to select the menu
items File | Open, File|Red and File | Exit, and click on a button marked Red
which turns the background of the window red. The File|Red menu item also
turns the background red. This program is shown in Figure 23-1

Figure 23-1 – A simple program that receives events from the

button and menu items.

The program consists of the File Menu object with the mnuOpen, mnuRed
and mnuExit MenuItems added to it. It also contains one button called
btnRed. During the design phase, clicking on any of these items creates a
little method in the Form class which gets called when the control is clicked.

Copyright © 2001, by James W. Cooper

349

Now, as long as there are only a few menu items and buttons, this approach
works fine, but when you have dozens of menu items and several buttons, the
Form module code can get pretty unwieldy. In addition, the red command is
carried out both from the button and the menu.

 Command Objects
One way to assure that every object receives its own commands directly is to
use the Command pattern and create individual Command objects. A
Command object always has an Execute() method that is called when an
action occurs on that object. Most simply, a Command object implements at
least the following interface:

public interface Command {
 public void Execute();
}
One objective of using this interface is to separate the user interface code
from the actions the program must carry out, such as we illustrate below.

Private Sub mnuexit_Click()
 exitCmd.Execute
End Sub
'-------
Private Sub mnuOpen_Click()
 flCmd.Execute
End Sub

Then we can provide an Execute method for each object that carries out the
desired action, thus keeping the knowledge of what to do inside the object
where it belongs, instead of having another part of the program make these
decisions.

One important purpose of the Command pattern is to keep the program and
user interface objects completely separate from the actions that they initiate.
In other words, these program objects should be completely separate from
each other and should not have to know how other objects work. The user
interface receives a command and tells a Command object to carry out
whatever duties it has been instructed to do. The UI does not and should not
need to know what tasks will be executed. This decouples the UI class from
the execution of specific commands, making it possible to modify or
completely change the action code without changing the classes containing
the user interface.

The Command object can also be used when you need to tell the program to
execute the command when the resources are available rather than

Copyright © 2001, by James W. Cooper

350

immediately. In such cases, you are queuing commands to be executed later.
Finally, you can use Command objects to remember operations so that you
can support Undo requests.

Building Command Objects
There are several ways to go about building Command objects for a program
like this and each has some advantages. We'll start with the simplest one:
creating new classes and implementing the Command interface in each. Here
is an example of the exit class

'Class Exit command
Implements Command
Private Sub Command_Execute()
 End
End Sub

Then, both the File|Exit command and the Form_Unload event can call it.

Private Sub Form_Unload(Cancel As Integer)
 exitCmd.Execute
End Sub
'-----
Private Sub mnuexit_Click()
 exitCmd.Execute
End Sub

You also have only one localized place to change what takes place, if for
example you want to add an “Are you sure?” message box.

This certainly lets us simplify the user interface code, butit does require that
we create and instantiate a new class for each action we want to execute.
Further because VB has fairly stringent type checking we need to create two
references to these objects, one as a specific class and one as a Command
object.

Private exitCmd As Command
Private exitCl As ExitClass
'the exit command class
Set exitCl = New ExitClass
Set exitCmd = exitCl ‘as command

Classes which require specific parameters to work need to have those
parameters passed in the init method or in a set method. For example, the
File|Open command requires that you pass it an instance of the
CommonDialog object: and the label where the filename will be displayed:

Copyright © 2001, by James W. Cooper

351

'and the file|open class
Set opner = New Opener
opner.init cDlg, Label1 'send it the common dialog and label
Set flCmd = opner

Similarly, our RedCommand object needs the Form to set its background to
red:

'create the red command class
Set redCl = New RedClass
redCl.setForm Me
Set redCmd = redCl 'as a command

This can then be called both from the menu and button click event methods:

Private Sub btnRed_Click()
 redCmd.Execute
End Sub
'-----
Private Sub mnuRed_Click()
 redCmd.Execute
End Sub

Arrays of Commands
When you have a program with an array of similar controls, such as a series
of buttons or radio buttons, you can create a parallel array of command
objects and simply execute the right one. For example, you might have a
program to display either or both sexes in a list of kids.

For example, the program in Figure 23-2 allows you to select the girls, the
boys or show all the kids at once:

Copyright © 2001, by James W. Cooper

352

Figure 23-2 –A program which displays kids by sex or all kids at

once.
You can create the three radio buttons as a control array when you design the
program. Then you can simply create three command objects and out them in
a Vector. When a radio button is clicked, you just pick that command and
execute it:

'all button clicks come here
Private Sub opSex_Click(Index As Integer)
Dim cmd As Command
'execute the command from the vector
 Set cmd = buttons(Index + 1)
 cmd.Execute
End Sub

In this program we create a Kids object containing a Vector of individual
swimmers.

Private kds As New Collection
Private Index As Integer
Private sex$
Private sw As Swimmer
'-----
Public Sub add(sw As Swimmer)
 kds.add sw
End Sub
'-----
Public Sub setSex(sx$)
 sex = sx
 moveFirst
End Sub

Copyright © 2001, by James W. Cooper

353

'-----
Public Sub moveFirst()
 Index = 1
 Set sw = kds(Index)
End Sub
'-----
'returns true if there are any more kids
'of the current sex
Public Function hasMoreElements() As Boolean
 Set sw = kds(Index)
 If sw.getSex = sex Then
 hasMoreElements = Index < kds.Count
 Else
 nextElement
 hasMoreElements = Index < kds.Count
 End If
End Function
'-----
'moves to the next kids of that sex
Public Function nextElement() As Swimmer
 Set sw = kds(Index)
 If sex <> "" Then
 While sw.getSex <> sex And Index <= kds.Count
 Set sw = kds(Index)
 If sw.getSex <> sex Then Index = Index + 1
 Wend
 If sw.getSex = sex Then
 Set nextElement = sw
 Index = Index + 1
 Else
 Index = Index + 1
 End If
 Else
 Set nextElement = kds(Index)
 Index = Index + 1
 End If
End Function

Then we create a PickKids class which implements the Command interface
which returns a Vector of the kids which match the criterion:

'Class pickKids
Implements Command
Private kds As Kids
Private lst As ListBox
Private sex$
'-----
Public Sub init(sx$, kidds As Kids, list As ListBox)
 Set kds = kidds
 sex = sx

Copyright © 2001, by James W. Cooper

354

 Set lst = list
End Sub
'-----
Private Sub loadList()
'loads the list box with the selected kids
Dim sw As Swimmer
lst.Clear
kds.setSex sex$
kds.moveFirst
While kds.hasMoreElements
 Set sw = kds.nextElement
 lst.AddItem sw.getName
Wend
End Sub
'-----
'the command is execured here
Private Sub Command_Execute()
 loadList
End Sub

With this simple infrastructure, we can create three instances of the PickKids
class and select the right one depending on the button that the user clicks.

Dim pk As PickKids

Set kds = New Kids
Set buttons = New Collection
kds.readKids "Swimmers.txt"

'create 3 instances of PickKids
'for each of the 3 option selections
Set pk = New PickKids
pk.init "F", kds, lsKids
buttons.add pk 'and add to the vector

Set pk = New PickKids
pk.init "M", kds, lsKids
buttons.add pk

Set pk = New PickKids
pk.init "", kds, lsKids
buttons.add pk

Again, the advantage here is that the user interface no longer plays a tangled
role in providing the actual execution of commands. Instead, it simple
executes the command without ever knowing what it is or whether the
programmer had changed the character of that command.

Copyright © 2001, by James W. Cooper

355

Consequences of the Command Pattern
The main disadvantage of the Command pattern seems to be a proliferation of
little classes that clutter up the program. However, even in the case where we
have separate click events, we usually call little private methods to carry out
the actual function. It turns out that these private methods are just about as
long as our little classes, so there is frequently little difference in complexity
between building the command classes and just writing more methods. The
main difference is that the Command pattern produces little classes that are
much more readable.

Providing Undo
Another of the main reasons for using Command design patterns is that they
provide a convenient way to store and execute an Undo function. Each
command object can remember what it just did and restore that state when
requested to do so if the computational and memory requirements are not too
overwhelming. At the top level, we simply redefine the Command interface
to have two methods:

Public Sub Execute()
End Sub
'-----
Public Sub Undo()
End Sub
'-----
Public Function isUndo()
End Function

Then we have to design each command object to keep a record of what it last
did so it can undo it. This can be a little more complicated than it first
appears, since having a number of interleaved Commands being executed and
then undone can lead to some hysteresis. In addition, each command will
need to store enough information about each execution of the command that it
can know what specifically has to be undone.

The problem of undoing commands is actually a multi-part problem. First,
you must keep a list of the commands that have been executed, and second,
each command has to keep a list of its executions. To illustrate how we use
the Command pattern to carry out undo operations, let’s consider the program
shown in Figure 23-3 that draws successive red or blue lines on the screen
using two buttons to draw a new instance of each line. You can undo the last
line you drew with the undo button:

Copyright © 2001, by James W. Cooper

356

Figure 23-3 – A program which draws read and blue lines each

time you click the Red and Blue buttons.
If you click on Undo several times, you’d expect the last several lines to
disappear, no matter what order the buttons were clicked in as shown in
Figure 23-4

Figure 23-4– The same program as in Figure 23-3 after the Undo

button has been clicked several times.

Copyright © 2001, by James W. Cooper

357

Thus, any undoable program needs a single sequential list of all the
commands which have been executed. Each time we click on any button, we
add its corresponding command to the list.

Private Sub btDraw_Click(Index As Integer)
Dim cmd As Command
'get the command and execute it
 Set cmd = buttons(Index + 1)
 cmd.Execute
 ud.add cmd 'Add to undo collection
 Refresh 'repaint screem
End Sub

Further, the list that we add the Command objects to is maintained inside the
Undo command object so it can access that list conveniently.
Option Explicit
'Class UndoCommand
Implements Command
Private undoList As Collection
'-----
Public Sub init()
Set undoList = New Collection
End Sub
'-----
Public Sub add(cmd As Command)
If Not (cmd.isUndo) Then
 undoList.add cmd
End If
End Sub
'-----
Private Sub Command_Execute()
Dim Index As Integer
Dim cmd As Command
Index = undoList.Count
If undoList.Count > 0 Then
 Set cmd = undoList(Index)
 cmd.Undo
 undoList.Remove Index
End If
End Sub
'-----
Private Function Command_isUndo() As Variant
Command_isUndo = True
End Function
'-----
Private Sub Command_Undo()
'do nothing
End Sub

Copyright © 2001, by James W. Cooper

358

The undoCommand object keeps a list of Commands, not a list of actual data.
Each command object has its unDo method called to execute the actual undo
operation. Note that since the undoCommand object implements the
Command interface, it, too, needs to have an unDo method. However, the
idea of undoing successive unDo operations is a little complex for this simple
example program. Consequently, you should note that the add method adds
all Commands to the list except the undoCommand itself, since we have just
defined undoing an unDo command as doing nothing. For this reason our new
Command interface includes an isUndo method that returns false for the
RedCommand and BlueCommand objects and true for the UndoCommand
object.

The redCommand and blueCommand classes simple use different colors and
start at opposite sides of the window, although both inplement the revised
Command interface. Each class keeps a list of lines to be drawn in a vector as
a series of drawData objects containing the coordinates of each line. Undoing
a line from either the red or the blue line list simple means removing the last
drawData object from the drawList vector. Then either command forces a
repaint of the screen.

Option Explicit
Implements Command
'Class RedCommand
Private drawList As Collection
Private x As Integer, y As Integer, dx As Integer, dy As
Integer
Private pic As PictureBox
'-----
Public Sub init(pict As PictureBox)
 Set pic = pict
 Set drawList = New Collection
 x = 0
 dx = 200
 y = 0
 dy = 0
End Sub
'-----
Private Sub Command_Execute()
 Dim dl As DrawData
 Set dl = New DrawData
 dl.init x, y, dx, dy 'create a new DrawData object
 drawList.add dl 'and add it to the list
 x = x + dx 'next one has these values
 y = y + dy
 pic.Refresh 'repaint screen window
End Sub

Copyright © 2001, by James W. Cooper

359

'-----
Private Function Command_isUndo() As Variant
 Command_isUndo = False
End Function
'-----
Private Sub Command_Undo()
'undo last draw
 Dim Index As Integer
 Dim dl As DrawData
 Index = drawList.Count
 If Index > 0 Then
 Set dl = drawList(Index)
 drawList.Remove Index
 x = dl.getX
 y = dl.getY
 End If
 pic.Refresh
End Sub
'-----
Public Sub draw()
'draw entire list of lines
Dim h As Integer, w As Integer
Dim i As Integer
Dim dl As DrawData
h = pic.Height
w = pic.Width

For i = 1 To drawList.Count
 Set dl = drawList(i)
 pic.Line (dl.getX, dl.getY)-(dl.getX + dx, dl.getdY + h),
vbRed
Next i
End Sub

Note that the draw method in the drawCommand class redraws the entire list
of lines which that command object has stored. These two draw methods are
called from the paint method of the form.

Private Sub Form_Paint()
 rc.draw 'redraw red lines
 bc.draw 'redraw blue lines
End Sub

The set of classes we use in this Undo program are shown in Figure 23-5

Copyright © 2001, by James W. Cooper

360

Figure 23-5 – The classes used to implement Undo in a Command

pattern implementation.

The Command Pattern in VB.NET
While you can write more or less the same code in VB7, the availability of
inheritance provides some additional advantages. If you reconsider our
original program with File|Open, File|Exit and a Red button, you can create
derived Menu objects which also implement the Command interface. Here,
our command interface initially contains only the Execute method:

public interface Command

Copyright © 2001, by James W. Cooper

361

 Sub Execute()
End interface

One difference here is that we can derive our RedButton class directly from
Button and have it also implement the Command interface.

Public Class cmdButton
 Inherits System.WinForms.Button
 Implements Command
 Private frm As Form
 Public Sub New()
 MyBase.New
 InitializeComponent
 End Sub
 '-----
 Public Sub setForm(ByVal fm As Form)
 frm = fm
 End Sub
 '-----
 Public Sub Execute() Implements Command.Execute
 frm.BackColor = Color.Red
 End Sub
End Class

Recall that in order to create a control that is derived from a Windows control
and which still will work with the Form designer in Visual Studio, we add
UserControl and then change the code so the control is derived from Button.
Then, after compiling the program once, the new cmdButton control will
appear on the bottom of the toolbar. You can use this to create a button on the
form.

To create a MenuItem that also implements the Command interface, you can
use the MainMenu control on the toolbar and name it MenuBar. The designer
is shown in Figure 23-6

Copyright © 2001, by James W. Cooper

362

Figure 23-6 – The menu designer interface.

We derive the OpenMenu and ExitMenu classes from the MenuItem class.
However, we have to add these in the program code, since there is no way to
add them in the Form Deisgner. Here is the ExitMenu class.

Public class ExitMenu
 inherits MenuItem
 implements Command

Private frm as Form
'-----
 Public Sub New(ByVal frm_ As Form)
 MyBase.New("Exit")
 frm = frm_
 End Sub
 '-----
 Public Sub Execute() Implements Command.Execute
 frm.close()
 End Sub
End Class

One other major difference in VB7 is that you don’t have to have separate
click methods for each event. Instead you can add the same event handler to
each button and menu item. This handler simply calls the commands:

Private Sub CommandHandler(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim cmd As Command
 cmd = CType(sender, Command)
 cmd.Execute()
 End Sub

Copyright © 2001, by James W. Cooper

363

Here is how you register this method as the event handler:

'create the event handler
Dim evh As EventHandler = _
 New EventHandler(AddressOf commandhandler)
 'set up the button
 btRed.setForm(Me)
 AddHandler btRed.Click, evh
 'define the menu ite,s
 Dim mnuOpen As FileOpen = New FileOpen()
 Dim mnuExit As exitmenu = New ExitMenu(Me)
 menubar.MenuItems.Add(mnuopen)
 menubar.MenuItems.Add(mnuexit)
 'connect event handler to them
 AddHandler mnuexit.Click, evh
 AddHandler mnuopen.Click, evh

The CommandHolder Interface
Now, while it is advantageous to encapsulate the action in a Command object,
binding that object into the element that causes the action (such as the menu
item or button) is not exactly what the Command pattern is about. Instead, the
Command object really ought to be separate from the invoking client so you
can vary the invoking program and the details of the command action
separately. Rather than having the command be part of the menu or button,
we can make the menu and button classes containers for a Command object
which exists separately. We thus make these UI elements implement a
CommandHolder interface:

Public Interface CommandHolder
 Function getCommand() As Command
End Interface

This simple interface simply says that there is a way to obtain that object to
call its Execute method. We put the command object into the menu object as
part of the constructor. This is particularly important where we have several
ways of calling the same action, such as when we have both a Red button and
a Red menu item. In such a case, you would certainly not want the same code
to be executed inside both the MenuItem and the Button classes. Instead, you
should fetch references to the same command object from both classes and
execute that command.

Then, we create cmdMenu class which implements this interface:

Public Class CmdMenu
 Implements CommandHolder

Copyright © 2001, by James W. Cooper

364

 Inherits MenuItem
 Protected comd As Command
 '-----
 Public Sub New(ByVal lbl As String, _

 ByVal cmd As Command, ByVal evh As EventHandler)
 MyBase.New(lbl)
 AddHandler Click, evh
 comd = cmd
 End Sub
 '-----
 Public Function getCommand() As Command _

Implements CommandHolder.getCommand
 Return comd
 End Function
End Class

This actually simplifies our program. We don’t have to create a separate
menu class for each action we want to carry out. We just create instances of
the menu and pass them different Command objects.

Dim redc As RedCommand = New RedCommand(Me)
Dim exitc As ExitCommand = New ExitCommand(Me)
 Dim fopenc As FileOpenCommand = _

 New FileOpenCommand()
 Dim evh As EventHandler = _

 New EventHandler(AddressOf CommandHandler)
 AddHandler redButton.Click, evh
 'menu items
 Dim mnuOpen As CmdMenu = _

New CmdMenu("Open", fopenc, evh)
 menubar.MenuItems.Add(mnuOpen)
 Dim mnuRed As CmdMenu = _

 New CmdMenu("Red", redc, evh)
 menubar.MenuItems.Add(mnured)
 Dim mnuExit As CmdMenu = _

New CmdMenu("Exit", exitc, evh)
 menuBar.MenuItems.Add(mnuExit)

Creating the cmdButton class is analogous and we can use the same
RedCommand instance we just created.

 redbutton.setCommand(redc)

We do still have to create separate Command objects but they are no longer
part of the user interface classes. For example, the FileCommand class is just

Copyright © 2001, by James W. Cooper

365

Public class FileOpenCommand
 Implements Command
 'Command object to show file-open dialog
 Public Sub New()
 MyBase.New()
 End Sub
 '------
 Public Sub Execute() Implements Command.Execute
 Dim fd As OpenFileDialog
 fd = New OpenFileDialog()
 fd.ShowDialog()
 End Sub
End Class

Then our action method needs to obtain the actual command object from the
UI object that caused the action and execute that command.

Public Sub CommandHandler(ByVal sender As Object, _
 ByVal e As EventArgs)
 Dim cmdh As CommandHolder
 Dim cmd As Command
 cmdh = CType(sender, CommandHolder)
 cmd = cmdh.getCommand
 cmd.Execute()
 End Sub
This is only slightly more complicated than our original routine and again
keeps the action separate from the user interface elements.

We can see the relations between theses classes and interfaces clearly in the
UML diagram in Figure 23-7.

Copyright © 2001, by James W. Cooper

366

Figure 23-7 – A class structure for three different objects which all
implement the Command interface and two which implement the

CommandHolder interface.

Here, you see that redButton and cmdMenu implement the CommandHolder
interface, and that there are three instances of cmdMenu in the UI class
ComdHolder. The diagram also shows the classes ExitCommand,
RedCommand and FileCommand which implement the Command interface
and are instantiated in the ComdHolder UI class. This is finally, the complete
implementation of the Command pattern that we have been inching towards.

Copyright © 2001, by James W. Cooper

367

Handling Undo Commands in VB.NET
The UndoCommand version of the Command pattern is quite analogous. The
command interface now becomes

Public Interface Command
 Sub Execute()
 Sub Undo()
 Function isUndo() As Boolean
End Interface

We need only create one command button by deriving it from UserControl as
we did above.

Public Class CmdButton
 Inherits System.WinForms.Button
 Implements CommandHolder
 Private cmd As Command

 Public Sub New()
 MyBase.New
 'This call is required by the Win Form Designer.
 InitializeComponent
 End Sub

 '-----
 Public Sub setCommmand(ByVal Comd As Command)
 cmd = comd
 End Sub
 '-----
 Public Function getCommand() As Command _

Implements CommandHolder.getCommand
 Return cmd
 End Function
End Class

Then we create three instances of it for the Red, Blue and Undo buttons.

The command objects for Red, Blue and Undo differ slightly since we must
use a graphics object for drawing. Here is the BlueCommand

public class BlueCommand
 Implements Command

Private drawList As ArrayList
Protected colr as Color
Protected x, y , dx, dy As Integer

Copyright © 2001, by James W. Cooper

368

Private pic As PictureBox
 '-----
 Public Sub New(ByVal pict As PictureBox)
 MyBase.New()
 pic = pict
 drawList = New ArrayList()
 x = pic.Width
 Colr = color.Blue
 dx = -20
 y = 0
 dy = 0
 End Sub
 '-----
 Public Sub Execute() Implements Command.Execute
 Dim dl As DrawData
 dl = New DrawData(x, y, dx, dy)
 drawList.add(dl)
 x = x + dx
 y = y + dy
 pic.Refresh()
 End Sub
 '-----
 Public Function isUndo() As Boolean _

Implements Command.IsUndo
 Return False
 End Function
 '-----
 Public Sub Undo() Implements Command.Undo
 Dim Index As Integer
 Dim dl As DrawData
 Index = drawList.Count - 1
 If Index >= 0 Then
 dl = CType(drawList(index), DrawData)
 drawList.RemoveAt(Index)
 x = dl.getX
 y = dl.getY
 End If
 pic.Refresh()
 End Sub
 '-----
 Public Sub draw(ByVal g As Graphics)
 Dim h, w As Integer
 Dim i As Integer
 Dim dl As DrawData

 Dim rpen As New Pen(Color.FromARGB(255, colr), 1)

Copyright © 2001, by James W. Cooper

369

 h = pic.Height
 w = pic.Width

 For i = 0 To drawList.Count - 1
 dl = CType(drawList(i), DrawData)
 g.drawLine(rpen, dl.getX, dl.getY, _

dl.getX + dx, dl.getdY + h)
 Next i
 End Sub
End Class

Then the command listener in the main form class is

Public Sub CommandHandler(ByVal sender As Object, _
ByVal e As EventArgs)

 Dim cmdh As CommandHolder
 Dim cmd As Command
 'get the command
 cmdh = CType(sender, commandholder)
 cmd = cmdh.getCommand
 undoc.add(cmd) 'add it to the undo list
 cmd.Execute()
 End Sub
We add a paint event handler to the picture box:

AddHandler Pict.Paint, _
New PaintEventHandler(AddressOf painthandler)

The paint handler routine just calls the red and blue command’s draw
methods:

 Public Sub PaintHandler(ByVal sender As Object, _
ByVal e As PaintEventArgs)

 Dim g As Graphics = e.Graphics
 redc.draw(g)
 bluec.draw(g)
 End Sub

The Command Pattern in the VB Language
But there are still a couple of more ways to approach this. If you give every
control its own EventHandler class, you are in effect creating individual
command objects for each of them.

Copyright © 2001, by James W. Cooper

370

Thought Questions
1. Mouse clicks on list box items and on radio buttons also constitute

commands. Clicks on multi-select list boxes could also be represented as
commands. Design a program including these features.

2. A lottery system uses a random number generator constrained to integers
between 1 and 50. The selections are made a intervals selected by a
random timer. Each selection must be unique. Design command patterns
to choose the winning numbers each week.

Programs on the CD-ROM
\Command\ButtonMenu VB6 Buttons and menus using

Command pattern

\Command\RadioCommands VB6 program showing Commands
applied to radio buttons

\Command\Undo VB6 program showing line drawing
and Undo

\Command\VBNet\ButtonMenu VB7 menus and button commands

\Command\VBNet\ComdHolder VB7 program showing
CommandHolder interface

\Command\VBNet\UndoComd VB7 program showing line drawing
and undo

Copyright © 2001, by James W. Cooper

371

24. THE INTERPRETER PATTERN

Some programs benefit from having a language to describe operations they
can perform. The Interpreter pattern generally describes defining a grammar
for that language and using that grammar to interpret statements in that
language.

Motivation
When a program presents a number of different, but somewhat similar cases
it can deal with, it can be advantageous to use a simple language to describe
these cases and then have the program interpret that language. Such cases can
be as simple as the sort of Macro language recording facilities a number of
office suite programs provide, or as complex as Visual Basic for Applications
(VBA). VBA is not only included in Microsoft Office products, but can be
embedded in any number of third party products quite simply.

One of the problems we must deal with is how to recognize when a language
can be helpful. The Macro language recorder simply records menu and
keystroke operations for later playback and just barely qualifies as a
language; it may not actually have a written form or grammar. Languages
such as VBA, on the other hand, are quite complex, but are far beyond the
capabilities of the individual application developer. Further, embedding
commercial languages such as VBA, Java or SmallTalk usually require
substantial licensing fees, which make them less attractive to all but the
largest developers.

Applicability
As the SmallTalk Companion notes, recognizing cases where an Interpreter
can be helpful is much of the problem, and programmers without formal
language/compiler training frequently overlook this approach. There are not
large numbers of such cases, but there are two general places where
languages are applicable:

1. When you need a command interpreter to parse user commands. The
user can type queries of various kinds and obtain a variety of answers.

2. When the program must parse an algebraic string. This case is fairly
obvious. The program is asked to carry out its operations based on a

Copyright © 2001, by James W. Cooper

372

computation where the user enters an equation of some sort. This
frequently occurs in mathematical-graphics programs, where the program
renders a curve or surface based on any equation it can evaluate.
Programs like Mathematica and graph drawing packages such as Origin
work in this way.

3. When the program must produce varying kinds of output. This case
is a little less obvious, but far more useful. Consider a program that can
display columns of data in any order and sort them in various ways.
These programs are frequently referred to as Report Generators, and
while the underlying data may be stored in a relational database, the user
interface to the report program is usually much simpler then the SQL
language which the database uses. In fact, in some cases, the simple
report language may be interpreted by the report program and translated
into SQL.

A Simple Report Example
Let’s consider a simplified report generator that can operate on 5 columns of
data in a table and return various reports on these data. Suppose we have the
following sort of results from a swimming competition:

Amanda McCarthy 12 WCA 29.28
Jamie Falco 12 HNHS 29.80
Meaghan O'Donnell 12 EDST 30.00
Greer Gibbs 12 CDEV 30.04
Rhiannon Jeffrey 11 WYW 30.04
Sophie Connolly 12 WAC 30.05
Dana Helyer 12 ARAC 30.18

where the 5 columns are frname, lname, age, club and time. If we consider
the complete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name or by age. Since there
are a number of useful reports we could produce from these data in which the
order of the columns changes as well as the sorting, a language is one useful
way to handle these reports.

We’ll define a very simple non-recursive grammar of the sort

Print lname frname club time Sortby club Thenby time

For the purposes of this example, we define the 3 verbs shown above:

Print
Sortby

Copyright © 2001, by James W. Cooper

373

Thenby

and the 5 column names we listed earlier:

Frname
Lname
Age
Club
Time

For convenience, we’ll assume that the language is case insensitive. We’ll
also note that the simple grammar of this language is punctuation free, and
amounts in brief to

Print var[var] [sortby var [thenby var]]

Finally, there is only one main verb and while each statement is a declaration,
there is no assignment statement or computational ability in this grammar.

Interpreting the Language
Interpreting the language takes place in three steps

1. Parsing the language symbols into tokens.

2. Reducing the tokens into actions.

3. Executing the actions.

We parse the language into tokens by simply scanning each statement with a
StringTokenizer and then substituting a number for each word. Usually
parsers push each parsed token onto a stack -- we will use that technique here.
We implement the Stack class using a Vector, where we have push, pop, top
and nextTop methods to examine and manipulate the stack contents.

After parsing, our stack could look like this:

Type Token

Var Time <-top of stack
Verb Thenby
Var Club
Verb Sortby
Var Time
Var Club
Var Frname

Copyright © 2001, by James W. Cooper

374

verb Lname

However, we quickly realize that the “verb” Thenby has no real meaning
other than clarification, and it is more likely that we’d parse the tokens and
skip the Thenby word altogether. Our initial stack then, looks like this

Time
Club
Sortby
Time
Club
Frname
Lname
Print

Objects Used in Parsing
Because the Interpreter pattern relies so heavily on having parsing objects
which all derived from the same base class, we will illustrate this pattern in
VB7 only. While you can write this pattern using VB6 interfaces, it is much
more difficult to present and explain.

In this parsing procedure, we do not push just a numeric token onto the stack,
but a ParseObject which has the both a type and a value property:

Public Class ParseObject

 Public Const VERB As Integer = 1000
 Public Const VAR As Integer = 1010
 Public Const MULTVAR As Integer = 1020
 Protected value As Integer
 Protected type As Integer

 Public Sub new(ByVal val As Integer, _

ByVal typ As Integer)
 MyBase.New()
 value = val
 type = typ
 End Sub
 '-----
 Public Function getValue() As Integer
 Return value
 End Function
 '-----
 Public Function get_Type() As Integer
 Return type

Copyright © 2001, by James W. Cooper

375

 End Function

End Class

These objects can take on the type VERB or VAR. Then we extend this
object into ParseVerb and ParseVar objects, whose value fields can take on
PRINT or SORT for ParseVerb and FRNAME, LNAME, etc. for ParseVar.
For later use in reducing the parse list, we then derive Print and Sort objects
from ParseVerb.

This gives us a simple hierarchy shown in Figure 24-1

Figure 24-1 – A simple parsing hierarchy for the Interpreter
pattern.

Copyright © 2001, by James W. Cooper

376

The parsing process is just the following simple code, using the
StringTokenizer and the parse objects. Part of the main Parser class is shown
below.

Public Class Parser
 Implements Command
 Private stk As Stack
 Private actionList As ArrayList
 Private kdata As KidData
 Private dat As Data
 Private ptable As Listbox
 Private chn As Chain

 Public Sub new(ByVal line As String, ByVal k As kidData,
_

ByVal pt As ListBox)
 stk = New Stack()
 setdata(k, pt)

 actionList = New ArrayList() 'actions accumulate
here
 buildStack(line)
 buildChain() 'construct interpreter chain
 End Sub
 '--
 Private Sub buildStack(ByVal line As String)
 'parse input tokens and build stack
 Dim tok As StringTokenizer = New
StringTokenizer(line)
 While (tok.hasMoreElements())
 Dim token As ParseObject =
tokenize(tok.nextToken())
 stk.push(token)
 End While
 End Sub
 '--
Public Sub setData(ByVal k As KidData, ByVal pt As
listbox)
 dat = New Data(k.getData())
 ptable = pt
 End Sub
 '--------------------------------------
Protected Function tokenize(ByVal s As String) As _

ParseObject
 Dim obj As ParseObject
 Dim typ As Integer

Copyright © 2001, by James W. Cooper

377

 Try
 obj = getVerb(s)
 typ = obj.get_Type 'this will throw null exception
 Catch e As NullReferenceException
 obj = getVar(s)
 End Try

 Return obj
 End Function
 '--
 Protected Function getVerb(ByVal s As String) As
ParseVerb
 Dim v As ParseVerb
 v = New ParseVerb(s, dat, ptable)
 If (v.isLegal()) Then

 Return v.getVerb(s)
 Else
 Return Nothing
 End If
 End Function
 '--
 Protected Function getVar(ByVal s As String) As
ParseVar
 Dim v As ParseVar
 v = New ParseVar(s)
 If (v.isLegal()) Then
 Return v
 End If
 End Function

End Class

The ParseVerb and ParseVar classes return objects with isLegal set to true if
they recognize the word.

Public Class ParseVerb
 Inherits ParseObject
 Protected Const PRINT As Integer = 100
 Protected Const SORTBY As Integer = 110
 Protected Const THENBY As Integer = 120
 Protected args As ArrayList
 Protected kd As Data
 Protected pt As listbox
 '----------

Copyright © 2001, by James W. Cooper

378

 Public Sub New(ByVal s As String, ByVal kd_ As Data,
ByVal pt_ As ListBox)
 args = New Arraylist()
 s = s.ToLower()
 value = -1
 type = VERB
 kd = kd_
 pt = pt_
 Select Case s
 Case "print"
 value = PRINT
 Case "sortby"
 value = SORTBY
 End Select
 End Sub
 '-----
 Public Function getVerb(ByVal s As String) As
ParseVerb
 Select Case value
 Case PRINT
 Return New Print(s, kd, pt)
 Case SORTBY
 Return New Sort(s)
 Case Else
 Return Nothing
 End Select
 End Function

Reducing the Parsed Stack
The tokens on the stack have the form

Var
Var
Verb
Var
Var
Var
Var
Verb

We reduce the stack a token at a time, folding successive Vars into a MultVar
class until the arguments are folded into the verb objects as we show in
Figure 24-2.

Copyright © 2001, by James W. Cooper

379

Verb
Time

Var
Club

Verb
SortBy

Var
Time

Var
Club

Var
Frname

Var
Lname

MultVar

Verb

MultVar

MultVar

Verb

Figure 24-2 – How the stack is reduced during parsing.

When the stack reduces to a verb, this verb and its arguments are placed in an
action list; when the stack is empty the actions are executed.

Creating a Parser class that is a Command object, and executing it when the
Go button is pressed on the user interface carries out this entire process:

Protected Sub Compute_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

 Dim par As New Parser(txcommand.Text, kdata,
lsresults)
 par.Execute()
End Sub
The parser itself just reduces the tokens as we show above. It checks for
various pairs of tokens on the stack and reduces each pair to a single one for
each of five different cases.

Copyright © 2001, by James W. Cooper

380

Implementing the Interpreter Pattern
It would certainly be possible to write a parser for this simple grammar as just
a series of if statements. For each of the six possible stack configurations,
reduce the stack until only a verb remains. Then, since we have made the
Print and Sort verb classes Command objects, we can just Execute them one
by one as the action list is enumerated.

However the real advantage of the Interpreter pattern is its flexibility. By
making each parsing case an individual object we can represent the parse tree
as a series of connected objects that reduce the stack successively. Using this
arrangement, we can easily change the parsing rules without much in the way
of program changes: we just create new objects and insert them into the parse
tree.

According to the Gang of Four , the names for the participating objects in the
Interpreter pattern are:

• AbstractExpression – declares the abstract Interpret operation.

• TerminalExpression- interprets expressions containing any of the
terminal tokens in the grammar.

• NonTerminalExpression – interprets all of the non-terminal expressions
in the grammar.

• Context – contains the global information that is part of the parser, in this
case, the token stack.

• Client – Builds the syntax tree from the above expression types and
invokes the Interpret operation.

 The Syntax Tree
The syntax tree we construct to carry out the parsing of the stack we showed
above can be quite simple. We just need to look for each of the stack
configurations we defined and reduce them to an executable form. In fact, the
best way to implement this tree is using a Chain of Responsibility, which
passes the stack configuration along between classes until one of them
recognizes that configuration and acts on it. You can decide whether a
successful stack reduction should end that pass or not—it is perfectly possible
to have several successive chain members work on the stack in a single pass.
The processing ends when the stack is empty. We see a diagram of the
individual parse chain elements in Figure 24-3

Copyright © 2001, by James W. Cooper

381

Figure 24-3– How the classes interact which perform the parsing.

In this class structure, we start with the AbstractExpression interpreter class
InterpChain.

Public MustInherit Class InterpChain
 Implements Chain

 Private nextChain As chain
 Protected stk As Stack
'--
Public Sub addtoChain(ByVal c As Chain) _

 Implements Chain.addToChain
 nextChain = c 'next in chain of resp
End Sub
'--
Public MustOverride Function interpret() As Boolean
'--
Public Function getChain() As Interpreter.Chain _

Implements Interpreter.Chain.getChain
 Return nextChain
End Function

Copyright © 2001, by James W. Cooper

382

'--
Public Sub sendToChain(ByVal stk_ As Stack) _

Implements Chain.sendToChain
 stk = stk_
 If (Not interpret) Then 'interpret stack
 'Otherwise, pass request along chain
 nextChain.sendToChain(stk)
 End If
End Sub
'---
Protected Sub addArgsToVerb()
 Dim v As ParseObject = CType(stk.pop(), parseobject)
 Dim verb As ParseVerb = CType(stk.pop(), parseverb)
 verb.addArgs(v)
 stk.push(verb)
End Sub
'--
 Protected Function topStack(ByVal c1 As Integer, _

ByVal c2 As Integer) As Boolean
 Dim pobj1, pobj2 As ParseObject
 pobj1 = stk.top
 pobj2 = stk.nextTop
 Return (pobj1.get_Type() = c1) And (pobj2.get_Type() =
c2)
 End Function
End Class

This class also contains the methods for manipulating objects on the stack.

Each of the subclasses implements the interpret operation differently and
reduces the stack accordingly. For example, the complete VarVarParse class
reduces two variables on the stack in succession to a single MultVar object:

Public Class VarVarParse
 Inherits InterpChain

Public Overrides Function interpret() As Boolean
 If (topStack(ParseObject.VAR, ParseObject.VAR)) Then
 'reduce (Var Var) to Multvar
 Dim v As ParseVar = CType(stk.pop(), ParseVar)
 Dim v1 As ParseVar = CType(stk.pop(), ParseVar)
 Dim mv As MultVar = New MultVar(v1, v)
 stk.push(mv)
 Return True
 Else

Copyright © 2001, by James W. Cooper

383

 Return False
 End If
 End Function
End Class

Thus, in this implementation of the pattern the stack constitutes the Context
participant. Each of the first five subclasses of InterpChain are
NonTerminalExpression participants and the ActionVerb class which moves
the completed verb and action objects to the actionList constitutes the
TerminalExpression participant.

The client object is the Parser class which builds the stack object list from the
typed in command text and constructs the Chain of Responsibility from the
various interpreter classes. How the Parser class builds the chain is shown
below.

Public Class Parser
 Implements Command
 Private stk As Stack
 Private actionList As ArrayList
 Private kdata As KidData
 Private dat As Data
 Private ptable As Listbox
 Private chn As Chain

 Public Sub new(ByVal line As String, ByVal k As kidData,
_

ByVal pt As ListBox)
 stk = New Stack()

 actionList = New ArrayList() 'actions accumulate
here
 buildStack(line)
 buildChain() 'construct interpreter chain
 End Sub
 '--
 Private Sub buildStack(ByVal line As String)
 'parse input tokens and build stack
 Dim tok As StringTokenizer = New
StringTokenizer(line)
 While (tok.hasMoreElements())
 Dim token As ParseObject =
tokenize(tok.nextToken())
 stk.push(token)
 End While
 End Sub

Copyright © 2001, by James W. Cooper

384

 '--
 Private Sub buildChain()
 chn = New VarVarParse() 'start of chain
 Dim vmvp As VarMultvarParse = New VarMultvarParse()
 chn.addtoChain(vmvp)
 Dim mvvp As MultvarVarParse = New MultvarVarParse()
 vmvp.addtoChain(mvvp)
 Dim vrvp As VerbMultvarParse = New
VerbMultvarParse()
 mvvp.addtoChain(vrvp)
 Dim vvp As VerbVarParse = New VerbVarParse()
 vrvp.addtoChain(vvp)
 Dim va As VerbAction = New VerbAction(actionList)
 vvp.addtoChain(va)
 End Sub

The class also sends the stack through the chain until it is empty and then
executes the verbs that have accumulated in the action list, when its Execute
method is called.

 'executes parse and interpretation of command line
 Public Sub Execute() Implements Command.Execute
 Dim i As Integer
 While (stk.hasMoreElements())
 chn.sendToChain(stk)
 End While
 'now execute the verbs
 For i = 0 To actionList.Count - 1
 Dim v As Verb = CType(actionList(i), Verb)
 v.setData(dat, ptable)
 v.Execute()
 Next i
 End Sub

The final visual program is shown below in Figure 24-4.

Copyright © 2001, by James W. Cooper

385

Figure 24-4 – The Interpreter pattern operating on the simple

command in the text field.

Consequences of the Interpreter Pattern
Whenever you introduce an interpreter into a program, you need to provide a
simple way for the program user to enter commands in that language. It can
be as simple as the Macro record button we noted earlier, or it can be an
editable text field like the one in the program above.

However, introducing a language and its accompanying grammar also
requires fairly extensive error checking for misspelled terms or misplaced
grammatical elements. This can easily consume a great deal of programming
effort unless some template code is available for implementing this checking.
Further, effective methods for notifying the users of these errors are not easy
to design and implement.

In the Interpreter example above, the only error handling is that keywords
that are not recognized are not converted to ParseObjects and pushed onto the
stack. Thus, nothing will happen, because the resulting stack sequence
probably cannot be parsed successfully, or if it can, the item represented by
the misspelled keyword will not be included.

You can also consider generating a language automatically from a user
interface of radio and command buttons and list boxes. While it may seem

Copyright © 2001, by James W. Cooper

386

that having such an interface obviates the necessity for a language at all, the
same requirements of sequence and computation still apply. When you have
to have a way to specify the order of sequential operations, a language is a
good way to do so, even if the language is generated from the user interface.

The Interpreter pattern has the advantage that you can extend or revise the
grammar fairly easily one you have built the general parsing and reduction
tools. You can also add new verbs or variables quite easily once the
foundation is constructed.

In the simple parsing scheme we show in the Parser class above, there are
only 6 cases to consider, and they are shown as a series of simple if
statements. If you have many more than that, Design Patterns suggests that
you create a class for each one of them. This again makes language extension
easier, but has the disadvantage of proliferating lots of similar little classes.

Finally, as the syntax of the grammar becomes more complex, you run the
risk of creating a hard to maintain program.

While interpreters are not all that common in solving general programming
problems, the Iterator pattern we take up next is one of the most common
ones you’ll be using.

Thought Questions
Design a system to compute the results of simple quadratic expressions such
as

4x^2 + 3x –4
where the user can enter x or a range of x’s and can type in the equation.

Programs on the CD-ROM
\Interpreter\VBNet VB7 interpreter

\Interpreter VB6 interpreter

Copyright © 2001, by James W. Cooper

387

25. THE ITERATOR PATTERN
The Iterator is one of the simplest and most frequently used of the design
patterns. The Iterator pattern allows you to move through a list or collection
of data using a standard interface without having to know the details of the
internal representations of that data. In addition you can also define special
iterators that perform some special processing and return only specified
elements of the data collection.

Motivation
The Iterator is useful because it provides a defined way to move through a set
of data elements without exposing what is taking place inside the class. Since
the Iterator is an interface, you can implement it in any way that is convenient
for the data you are returning. Design Patterns suggests that a suitable
interface for an Iterator might be
Public Interface Iterator

public Function First() as Object
public Function Next() as Object
public Function isDone() as Boolean
public Function CurrentItem() as Object

End Interface

where you can move to the top of the list, move through the list, find out if
there are more elements and find the current list item. This interface is easy to
implement and it has certain advantages, but a number of other similar
interfaces are possible. For example, when we discussed the Composite
pattern, we introduced the Subords class for looping through all of the
subordinates any employee may have. The interface we used can be reduced
in VB7 terms to

Public Interface Iterator
 Public Sub moveFirst()
 Public Function hasMoreElements() as Boolean
 Public Function nextElement() as Object
End Interface

This also allows us to loop through a list of zero or more elements in some
internal list structure without our having to know how that list is organized
inside the class.

One disadvantage of this Enumeration over similar constructs in C++ and
Smalltalk is the strong typing of the VB7 language, along with its lack of

Copyright © 2001, by James W. Cooper

388

templates. This prevents the hasMoreElements() method from returning an
object of the actual type of the data in the collection without an annoying
requirement to change the returned Object type to the actual type. Thus, while
the Iterator or Enumeration interface is that is intended to be polymorphic,
this is not directly possible in VB7.

Sample VB6 Code
Let’s reuse the list of swimmers, clubs and times we described in the
Interpreter chapter, and add some enumeration capabilities to the KidData
class. This class is essentially a collection of Kids, each with a name, club
and time, and these Kid objects are stored in a Collection.

'Class Kids
Implements Iterator
Private kidList As Collection
Private index As Integer

Public Sub init(Filename As String)
 Dim sline As String 'line read in
 Dim vbf As New vbFile 'file class
 Dim kd As Kid 'kid object
 Set kidList = New Collection
 vbf.OpenForRead Filename 'open the file
 While Not vbf.fEof 'read in the lines
 sline = vbf.readLine
 Set kd = New Kid
 kd.init sline 'convert to kid
 kidList.Add kd 'Add to collection
 Wend
 vbf.closeFile
 Iterator_moveFirst 'move to top of list
End Sub

To obtain an enumeration of all the Kids in the collection, we simply use the
methods of the Iterator interface we defined above:

Private Function Iterator_hasMoreElements() As Boolean
 Iterator_hasMoreElements = index < kidList.Count
End Function
'-----
Private Sub Iterator_moveFirst()
 index = 1
End Sub
'-----
Private Function Iterator_nextElement() As Object
 Set Iterator_nextElement = kidList(index)
 index = index + 1

Copyright © 2001, by James W. Cooper

389

End Function

Reading in the data and displaying a list of names is quite easy. We initialize
the Kids class with the filename and have it build the collection of kid
objects. Then, we treat the Kids class as an instance of Iterator and move
through it to get out the kids and display their names:

'Class KidForm
Dim kidz As Kids 'same as iter

Private Sub Form_Load()
 Dim iter As Iterator 'same as kidz
 Dim kd As Kid

 Set kidz = New Kids
 'initialize the collection class
 'and read in the data file
 kidz.init App.Path + "\50free.txt"

 'treat collection class as iterator
 Set iter = kidz
 While iter.hasMoreElements 'load into listbox
 Set kd = iter.nextElement
 List1.AddItem kd.getFrname + " " + kd.getLname
 Wend
End Sub

Fetching an Iterator
Another slightly more flexible way to handle iterators in a class is to provide
the class with a getIterator method that returns instances of an iterator for that
class’s data. This is somewhat more flexible, because you can have any
number of iterators active simultaneously on the same data. Our KidIterator
class can then be the one that implements our Iterator interface:

'Class KidIterator
Implements Iterator
Private index As Integer
Private kidList As Collection
'-----
Public Sub init(col As Collection)
 index = 1
 Set kidList = col
End Sub
'-----
Private Function Iterator_hasMoreElements() As Boolean
 Iterator_hasMoreElements = index < kidList.Count
End Function
'-----
Private Sub Iterator_moveFirst()

Copyright © 2001, by James W. Cooper

390

 index = 1
End Sub
'-----
Private Function Iterator_nextElement() As Object
 Set Iterator_nextElement = kidList(index)
 index = index + 1
End Function

We can fetch iterators from the main KidList class by creating them as
needed:

Public Function getIterator() As Iterator
 Dim kiter As New KidIterator 'create an iterator
 kiter.init kidList 'initialize it
 Set getIterator = kiter 'and return it
End Function

Filtered Iterators
While having a clearly defined method of moving through a collection is
helpful, you can also define filtered Iterators that perform some computation
on the data before returning it. For example, you could return the data ordered
in some particular way, or only those objects that match a particular criterion.
Then, rather than have a lot of very similar interfaces for these filtered
iterators you simply provide a method that returns each type of enumeration,
with each one of these enumerations having the same methods.

The Filtered Iterator
Suppose, however, that we wanted to enumerate only those kids who
belonged to a certain club. This necessitates a special Iterator class that has
access to the data in the KidData class. This is very simple, because the
methods we just defined give us that access. Then we only need to write an
Iterator that only returns kids belonging to a specified club:

'Class KidClubIterator
Implements Iterator
Private index As Integer
Private kidList As Collection
Private club As String
'-----
Public Sub init(col As Collection, clb As String)
 index = 1
 Set kidList = col
 club = clb

Copyright © 2001, by James W. Cooper

391

End Sub
'-----
Private Function Iterator_hasMoreElements() As Boolean
 Dim more As Boolean
 Dim kd As Kid
 more = index <= kidList.Count
 If more Then
 Set kd = kidList(index)
 While more And kd.getClub <> club
 Set kd = kidList(index)
 index = index + 1
 more = index <= kidList.Count
 Wend
 End If
 Iterator_hasMoreElements = more
End Function
'-----
Private Sub Iterator_moveFirst()
index = 1
End Sub
'-----
Private Function Iterator_nextElement() As Object
 Set Iterator_nextElement = kidList(index)
 index = index + 1
End Function

All of the work is done in the hasMoreElements() method, which scans
through the collection for another kid belonging to the club specified in the
constructor, and saves that kid in the kid variable, or sets it to null. Then, it
returns either true or false. The nextElement() method returns that next kid
variable.

Finally, we need to add a method to KidData to return this new filtered
Enumeration:

Public Function getClubIterator(clb As String) As Iterator
Dim kiter As New KidClubIterator 'create an iterator
 kiter.init kidList, clb 'initialize it
 Set getClubIterator = kiter 'and return it
End Function

This simple method passes the collection to the new Iterator class
kidClubIterator along with the club initials. A simple program is shown in
Figure 25-1, that displays all of the kids on the left side. It fills a combo box
with a list of the clubs, and then allows the user to select a club and fills the
right-hand list box with those belonging to a single club.

Copyright © 2001, by James W. Cooper

392

Figure 25-1 – A simple program illustrated filtered enumeration.

The class diagram is shown in Figure 25-2.

Copyright © 2001, by James W. Cooper

393

Figure 25-2– The classes used in the Filtered enumeration.

Note that the elements method in KidData supplies an Enumeration, and the
kidClub class is in fact itself an Enumeration class.

Iterators in VB.NET
You can write virtually the same code in VB7 as you could in VB6, with the
slight changes in how interfaces are declared. For example, the
KidClubIterator we wrote for VB6 varies in VB7 only in that we change
Collections to ArrayLists, change to zero-based arrays, use constructors
instead of init methods, and can simplify the code slightly using the return
statement. The revised KidClubIterator class is shown below:

Copyright © 2001, by James W. Cooper

394

Public Class KidClubIterator
 Implements Iterator
 Private index As Integer
 Private kidList As arraylist
 Private club As String
 '-----
 Public Sub New(ByRef col As ArrayList, _

ByRef clb As String)
 MyBase.New()
 index = 0
 kidList = col
 club = clb
 End Sub
 '-----
 Public Function hasMoreElements() As Boolean _

Implements Iterator.hasMoreElements
 Dim more As Boolean
 Dim kd As Kid
 more = index < kidList.Count()
 If more Then
 kd = CType(kidList.Item(index), kid)
 While more And kd.getClub <> club
 kd = CType(kidList.Item(index), kid)
 index = index + 1
 more = index < kidList.Count()
 End While
 End If
 Return more
 End Function
 '-----
 Public Sub moveFirst() Implements Iterator.moveFirst
 index = 0
 End Sub
 '-----
 Private Function nextElement() As Object _

 Implements Iterator.nextElement
 index = index + 1
 Return kidList.Item(index - 1)
 End Function
End Class

However, you can also write iterators using the standard VB.Net IEnumerator
interface, which amounts to

Function MoveNext() as Boolean
Sub Reset()

Copyright © 2001, by James W. Cooper

395

Property ReadOnly Current as Object

If you rewrite your KidIterator class to use these methods, the code looks like
this:

 Private index As Integer
 Private kidList As ArrayList
 '-----
 Public Sub New(ByVal col As Arraylist)
 index = 0
 kidList = col
 End Sub
 '-----
 Public Function MoveNext() As Boolean _
 Implements IEnumerator.MoveNext
 index = index + 1
 Return index < kidList.Count
 End Function
 '-----
 Public Sub Reset() Implements _
 IEnumerator.Reset
 index = 0
 End Sub
 '-----
 Public ReadOnly Property Current() As Object _
 Implements IEnumerator.Current
 Get
 Return kidList.Item(index)
 End Get
 End Property
End Class

If you have a class like our Kids class which can return an instance of an
enumerator, it is said to implement the IEnumerable interface:

Public Function GetEnumerator() As IEnumerator _
Implements IEnumerable.GetEnumerator

 Consequences of the Iterator Pattern
1. Data modification. The most significant question iterators may raise is

the question of iterating through data while it is being changed. If your
code is wide ranging and only occasionally moves to the next element, it
is possible that an element might be added or deleted from the underlying

Copyright © 2001, by James W. Cooper

396

collection while you are moving through it. It is also possible that another
thread could change the collection. There are no simple answers to this
problem. You can make an enumeration thread-safe by declaring the loop
to be synchronized, but if you want to move through a loop using an
Enumeration, and delete certain items, you must be careful of the
consequences. Deleting or adding an element might mean that a particular
element is skipped or accessed twice, depending on the storage
mechanism you are using.

2. Privileged access. Enumeration classes may need to have some sort of
privileged access to the underlying data structures of the original
container class, so they can move through the data. If the data is stored in
a Vector or Hashtable, this is pretty easy to accomplish, but if it is in
some other collection structure contained in a class, you probably have to
make that structure available through a get operation. Alternatively, you
could make the Iterator a derived class of the containment class and
access the data directly. The friend class solution available in C++ does
not apply in Java. However, classes defined in the same module as the
containing class do have access to the containing classes variables.

3. External versus Internal Iterators. The Design Patterns text describes
two types of iterators: external and internal. Thus far, we have only
described external iterators. Internal iterators are methods that move
through the entire collection, performing some operation on each element
directly, without any specific requests from the user. These are less
common in Java, but you could imagine methods that normalized a
collection of data values to lie between 0 and 1 or converted all of the
strings to a particular case. In general, external iterators give you more
control, because the calling program accesses each element directly and
can decide whether to perform an operation on.

Thought Questions
The ListIterator interface in Java 1.2 applies to objects of type List. It allows
you to move through a list in either direction and modify elements of the list.
Rewrite the J2Iterator to allow and use these additional features.

Copyright © 2001, by James W. Cooper

397

Programs on the CD-ROM
\Iterator\SimpleIter VB6 kid list using Iterator

\Iterator\FilteredIterator VB6 filtered iterator by team name

\Iterator\FilteredIterator\VBNet VB7 filtered iterator

Copyright © 2001, by James W. Cooper

398

26. THE MEDIATOR PATTERN

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more of
these isolated classes are developed in a program, the problem of
communication between these classes become more complex. The more each
class needs to know about the methods of another class, the more tangled the
class structure can become. This makes the program harder to read and harder
to maintain. Further, it can become difficult to change the program, since any
change may affect code in several other classes. The Mediator pattern
addresses this problem by promoting looser coupling between these classes.
Mediators accomplish this by being the only class that has detailed
knowledge of the methods of other classes. Classes send inform the mediator
when changes occur and the Mediator passes them on to any other classes
that need to be informed.

An Example System
Let’s consider a program that has several buttons, two list boxes and a text
entry field as shown in Figure 26-1

Figure 26-1 – A simple program with two lists, two buttons and a

text field which will interact.

When the program starts, the Copy and Clear buttons are disabled.

Copyright © 2001, by James W. Cooper

399

1. When you select one of the names in the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right hand list box, and
the Clear button is enabled as we see in Figure 26-2.

Figure 26-2 – When you select a name the buttons are enabled, and
when you click on Copy , the name is copied to the right list box.

3. If you click on the Clear button, the right hand list box and the text field
are cleared, the list box is deselected and the two buttons are again
disabled.

User interfaces such as this one are commonly used to select lists of people or
products from longer lists. Further, they are usua lly even more complicated
than this one, involving insert, delete and undo operations as well.

Interactions between Controls
The interactions between the visual controls are pretty complex, even in this
simple example. Each visual object needs to know about two or more others,
leading to quite a tangled relationship diagram as shown in Figure 26-3.

Copyright © 2001, by James W. Cooper

400

name text Copy Clear

Kid list Picked list

Figure 26-3 – A tangled web of interactions between classes in the

simple visual interface we presented in Figures 20.1 and 20.2.
The Mediator pattern simplifies this system by being the only class that is
aware of the other classes in the system. Each of the controls that the
Mediator communicates with is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This simpler interaction
scheme is illustrated in Figure 26-4.

name text Copy Clear

Kid list

Picked list

Mediator

Figure 26-4 – A Mediator class simplifies the interactions between
classes.

Copyright © 2001, by James W. Cooper

401

The advantage of the Mediator is clear-- it is the only class that knows of the
other classes, and thus the only one that would need to be changed if one of
the other classes changes or if other interface control classes are added.

Sample Code
Let’s consider this program in detail and decide how each control is
constructed. The main difference in writing a program using a Mediator class
is that each class needs to be aware of the existence of the Mediator. You start
by creating an instance of the Mediator and then pass the instance of the
Mediator to each class in its constructor.

Set med = New Mediator
med.registerKidList lsKids
med.registerPicked lsPicked
med.registerText txName
med.init

Our two buttons use accompanying Command pattern classes and register
themselves with the Mediator during their initialization. Here is the
CopyCommand class:

'Class CopyCommand
Implements Command
Private med As Mediator

Public Sub init(md As Mediator, cpBut As CommandButton)
 Set med = md
 med.registerCopy cpBut
End Sub

Private Sub Command_Execute()
 med.copyClicked
End Sub

The Clear button is exactly analogous.

The Kid name list is based on the one we used in the last two examples, but
expanded so that the data loading of the list takes place in the Mediator’s init
method.
Public Sub init()
 'init method for Mediator
 Dim kds As New Kids 'Kids class instabce
 Dim kd As Kid
 Dim iter As Iterator

Copyright © 2001, by James W. Cooper

402

 kds.init App.Path + "\50free.txt" 'read in file
 Set iter = kds.getIterator 'get iterator
 While iter.hasMoreElements 'put names in list box
 Set kd = iter.nextElement
 kidList.AddItem kd.getFrname + " " + kd.getLname
 Wend
 clearClicked
End Sub

The text field is even simpler, since all we have to do it does is register it with
the mediator. The complete Form_Load event for the list box is shown below
with all the registration and command classes

Private Sub Form_Load()
 Set med = New Mediator 'create mediator
 Set cpyCmd = New CopyCommand 'copy command class
 cpyCmd.init med, btCopy

 Set clrCmd = New ClearCommand 'clear command class
 clrCmd.init med, btClear

 med.registerKidList lsKids 'register lists
 med.registerPicked lsPicked 'and text box
 med.registerText txName
 med.init 'set all to beginning state
End Sub

The general point of all these classes is that each knows about the Mediator
and tells the Mediator of its existence so the Media tor can send commands to
it when appropriate.

The Mediator itself is very simple. It supports the Copy, Clear and Select
methods, and has register methods for each of the controls:

Option Explicit
'Class Mediator
Private copyButton As CommandButton
Private clearButton As CommandButton
Private txtBox As TextBox
Private kidList As ListBox
Private pickedList As ListBox
'-----
Public Sub registerCopy(cpBut As CommandButton)
 Set copyButton = cpBut 'copy button
End Sub
'-----
Public Sub copyClicked()
 pickedList.AddItem txtBox.Text 'add text to picked list

Copyright © 2001, by James W. Cooper

403

 clearButton.Enabled = True 'enable clear button
 kidList.ListIndex = -1 'deselect list item
End Sub
'-----
Public Sub registerClear(clrBut As CommandButton)
 Set clearButton = clrBut 'clear button
End Sub
'-----
Public Sub clearClicked()
 txtBox.Text = "" 'clear text bos
 copyButton.Enabled = False 'disable buttons
 clearButton.Enabled = False
 pickedList.Clear 'clear picked list
 kidList.ListIndex = -1 'deselect list item
End Sub
'-----
Public Sub registerText(txt As TextBox)
 Set txtBox = txt 'text box
End Sub
'-----
Public Sub registerKidList(klist As ListBox)
 Set kidList = klist 'kid list
End Sub
'-----
Public Sub registerPicked(plist As ListBox)
 Set pickedList = plist 'picked list
End Sub
'-----
Public Sub listClicked()
 Dim i As Integer
 i = kidList.ListIndex
 If (i >= 0) Then
 txtBox.Text = kidList.Text
 End If
 copyButton.Enabled = True
End Sub
'-----
Public Sub init()
 'init method for Mediator
 Dim kds As New Kids 'Kids class instabce
 Dim kd As Kid
 Dim iter As Iterator

 kds.init App.Path + "\50free.txt" 'read in file
 Set iter = kds.getIterator 'get iterator
 While iter.hasMoreElements 'put names in list box
 Set kd = iter.nextElement
 kidList.AddItem kd.getFrname + " " + kd.getLname
 Wend
 clearClicked 'Set to initial state
End Sub

Copyright © 2001, by James W. Cooper

404

Initialization of the System
One further operation that is best delegated to the Mediator is the
initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these states
may change as the program evolves, we simply create an init method in the
Mediator, which sets them all to the desired state. In this case, that state is the
same as is achieved by the Clear button and we simply call that method:

clearClicked 'Set to initial state

Mediators and Command Objects
The two buttons in this program use command objects. Just as we noted
earlier, this makes processing of the button click events quite simple:

Private Sub btClear_Click()
 med.clearClicked
End Sub
'-----
Private Sub btCopy_Click()
 med.copyClicked
End Sub
'-----
Private Sub lsKids_Click()
 med.listClicked
End Sub

In either case, however, this represents the solution to one of the problems we
noted in the Command pattern chapter; each button needed knowledge of
many of the other user interface classes in order to execute its command.
Here, we delegate that knowledge to the Mediator, so that the Command
buttons do not need any knowledge of the methods of the other visual objects.
The class diagram for this program is shown in Figure 26-5, illustrating both
the Mediator pattern and the use of the Command pattern.

Copyright © 2001, by James W. Cooper

405

Figure 26-5 – The interactions between Command objects and the

Mediator object.

The Mediator in VB.Net
You can create a Mediator in much the same way in VB7, but can take
advantage of inheritance to make you work easier. The Copy and Clear
buttons and the Kid name list can all be subclassed from the standard controls
so that they support the Command interface and register themselves with the
Mediator during the constructor. This makes the derived button classes very
easy to write:

Public Class CopyButton
 Inherits Button
 Implements Command
 Private med As Mediator
 'derived class for copy button
 '-----
 Public Sub New(ByVal md As Mediator)
 MyBase.New()
 med = md 'copy in Mediator
 med.register(Me) 'register button
 End Sub
 '-----
 'tell the Mediator we've been clicked
 Public Sub Execute() Implements Command.Execute
 med.copyClicked()

Copyright © 2001, by James W. Cooper

406

 End Sub
End Class

Further, since VB7 supports polymorphism, we can have a register method in
the Mediator with different argument types for each control we want to
register. These methods are shown below

 Public Overloads Sub register(ByVal cpb As CopyButton)
 cpbutton = cpb
 End Sub
 '-----
 Public Overloads Sub register(ByVal clr As
ClearButton)
 clrbutton = clr
 End Sub
 '-----
 Public Overloads Sub register(ByVal kd As
KidsListBox)
 klist = kd
 End Sub
 '-----
 Public Overloads Sub register(ByVal pick As ListBox)
 pklist = pick
 End Sub
 '-----
 Public Overloads Sub register(ByVal tx As TextBox)
 txkids = tx
 End Sub
 The remainder of the Mediator manipulates the various controls as before.

 Public Sub kidPicked()
 'copy text from list to textbox
 txkids.Text = klist.Text
 'copy button enabled
 cpbutton.Enabled = True
 End Sub
 '-----
 Public Sub copyClicked()
 'copy name to picked list
 pklist.Items.Add(txkids.Text)
 'clear button enabled
 clrbutton.Enabled = True
 klist.SelectedIndex = -1
 End Sub
 '-----

Copyright © 2001, by James W. Cooper

407

 Public Sub clearClicked()
 'disable buttons and clear list
 cpbutton.Enabled = False
 clrbutton.Enabled = False
 pklist.Items.Clear()
 End Sub
 '-----

Initialization
When we create the controls, we start by creating an instance of the Mediator.
Then as the buttons and list box controls are created, they can register
themselves inside the constructor for each derived control.

 med = New Mediator()
 ‘This call is required by the Win Form Designer.
 InitializeComponent()
'register remaining controls
 med.register(txName)
 med.register(lspicked)
 med.init() 'initialize mediator

During initialization, the Mediator reads in the data file and puts the kid’s
names in the kidList list box. Note that the Kids class does the reading as
before, using the vbFile class, and that the Mediator just provides the
filename and loads the list once the file is read.

 Public Sub init()
 Dim kd As Kid
 clearClicked() 'set to defaults
 'read in datafile and load list
 kds = New Kids(Application.StartUpPath & _

"\50free.txt")
 Dim iter As Iterator = kds.getIterator
 'Note we use the iterator here
 While (iter.hasMoreElements)
 kd = CType(iter.nextElement, Kid)
 klist.Items.Add(kd.getFrname + _

" " + kd.getlname)
 End While
 End Sub

Copyright © 2001, by James W. Cooper

408

Handling the Events for the New Controls
We create the new classes CopyButton, ClearButton and KidListBox, and
rather than declaring them as WithEvents, we simply add an event handler to
each of them which is the same simple handler in all 3 cases:

AddHandler btCopy.click, _
New System.EventHandler(AddressOf CommandHandler)

AddHandler btClear.click, _
New System.EventHandler(AddressOf CommandHandler)

AddHandler lsKids.SelectedIndexChanged, _
New System.EventHandler(AddressOf CommandHandler)

Now, the two buttons clicks and selecting a kid in the Listbox all call the
CommandHandler. Since all three classes implement the Command interface,
our command handler reduces to just two lines of code:

Public Sub CommandHandler(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Dim cmd As Command = CType(sender, Command)
 cmd.Execute()
End Sub

Consequences of the Mediator Pattern
1. The Mediator pattern keeps classes from becoming entangled when

actions in one class need to be reflected in the state of another class.

2. Using a Mediator makes it easy to change a program’s behavior. For
many kinds of changes, you can merely change or subclass the Mediator,
leaving the rest of the program unchanged.

3. You can add new controls or other classes without changing anything
except the Mediator.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become a “god class”, having too much knowledge of
the rest of he program. This can make it hard to change and maintain.
Sometimes you can improve this situation by putting more of the function
into the individual classes and less into the Mediator. Each object should
carry out it’s own tasks and the Mediator should only manage the
interaction between objects.

Copyright © 2001, by James W. Cooper

409

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has available.
This makes it difficult to reuse Mediator code in different projects. On the
other hand, most Mediators are quite simple and writing this code is far
easier than managing the complex object interactions any other way.

Single Interface Mediators
The Mediator pattern we have described above acts as a kind of Observer
pattern, observing changes in each of the Colleague elements, with each
element having a custom interface to the Mediator. Another approach is to
have a single interface to your Mediator, and pass that method various objects
that tell the Mediator which operations to perform.

In this approach, we avoid registering the active components, and create a
single action method with different polymorphic arguments for each of the
action elements.

public Sub action(mv As MoveButton)
public Sub action(clrButton As ClearButton)
public Sub action(klst as KidList)

Thus, we need not register the action objects, such as the buttons and source
list boxes, since we can pass them as part of generic action methods.

In the same fashion, you can have a single Colleague interface that each
Colleague implements, and each Colleague then decides what operation it is
to carry out.

Implementation Issues
Mediators are not limited to use in visual interface programs; however, it is
their most common application. You can use them whenever you are faced
with the problem of complex intercommunication between a number of
objects.

Programs on the CD-ROM
\Mediator VB6 Mediator

\Mediator\VBNet VB7 Mediator

Copyright © 2001, by James W. Cooper

410

27. THE MEMENTO PATTERN
In this chapter, we discuss how to use the Memento pattern to save data about
an object so that you can restore it later. For example, you might like to save
the color, size, pattern or shape of objects in a drafting or painting program.
Ideally, it should be possible to save and restore this state without making
each object take care of this task, and without violating encapsulation. This is
the purpose of the Memento pattern.

Motivation
Objects normally shouldn’t expose much of their internal state using public
methods, but you would still like to be able to save the entire state of an
object because you might need to restore it later. In some cases, you could
obtain enough information from the public interfaces (such as the drawing
position of graphical objects) to save and restore that data. In other cases, the
color, shading, angle and connection relationship to other graphical objects
need to be saved and this information is not readily available. This sort of
information saving and restoration is common in systems that need to support
Undo commands.

If all of the information describing an object is available in public variables, it
is not that difficult to save them in some external store. However, making
these data public makes the entire system vulnerable to change by external
program code, when we usually expect data inside an object to be private and
encapsulated from the outside world.

The Memento pattern attempts to solve this problem in some languages by
having privileged access to the state of the object you want to save. Other
objects have only a more restricted access to the object, thus preserving their
encapsulation. In VB6 there is no such thing as privileged access, however,
and we will see this in only true to a limited degree in VB7.

This pattern defines three roles for objects:

1. The Originator is the object whose state we want to save.

2. The Memento is another object that saves the state of the Originator.

3. The Caretaker manages the timing of the saving of the state, saves the
Memento and, if needed, uses the Memento to restore the state of the
Originator.

Copyright © 2001, by James W. Cooper

411

Implementation
Saving the state of an object without making all of its variables publicly
available is tricky and can be done with varying degrees of success in various
languages. Design Patterns suggests using the C++ friend construction to
achieve this access, and the Smalltalk Companion notes that it is not directly
possible in Smalltalk. In Java, this privileged access is possible using the
package protected mode. In VB6, like Smalltalk, this is not directly possible.
Instead we will define a property to fetch and store the important internal
values, and make use of no other properties for any purpose in that class.

Sample Code
Let’s consider a simple prototype of a graphics drawing program that creates
rectangles, and allows you to select them and move them around by dragging
them with the mouse. This program has a toolbar containing three buttons:
Rectangle, Undo and Clear as we see in Figure 27-1.

Figure 27-1 – A simple graphics drawing program that allows you

to draw rectangles, undo their drawing and to clear the screen.

The Rectangle button is a toolbar ToggleButton which stays selected until
you click the mouse to draw a new rectangle. Once you have drawn the
rectangle, you can click in any rectangle to select it as we see in Figure 27-2.

Copyright © 2001, by James W. Cooper

412

Figure 27-2 – Selecting a rectangle causes “handles” to appear
indicating that it is selected and can be moved.

and once it is selected, you can drag that rectangle to a new position using the
mouse as shown in Figure 27-3.

Figure 27-3 – The same selected rectangle after dragging.
The Undo button can undo a succession of operations. Specifically, it can
undo moving a rectangle and it can undo the creation of each rectangle.

Copyright © 2001, by James W. Cooper

413

There are 5 actions we need to respond to in this program:

1. Rectangle button click

2. Undo button click

3. Clear button click

4. Mouse click

5. Mouse drag.

The three buttons can be constructed as Command objects and the mouse
click and drag can be treated as commands as well. Since we have a number
of visual objects which control the display of screen objects, this suggests an
opportunity to use the Mediator pattern, and that is, in fact, the way this
program is constructed.

We will create a Caretaker class to manage the Undo action list; it can keep a
list of the last n operations so that they can be undone. The Mediator
maintains the list of drawing objects and communicates with the Caretaker
object as well. In fact, since there could be any number of actions to save and
undo in such a program, a Mediator is virtually required so that there is a
single place to send these commands to the Undo list in the Caretaker.

In this program we save and undo only two actions: creating new rectangles
and changing the position of rectangles. Let’s start with our visRectangle
class which actually draws each instance of the rectangles:

'Class VisRectangle
Dim x As Integer, y As Integer, w As Integer, h As Integer
Private rect As Rectangle
Private selected As Boolean
'-----
Public Sub init(xp As Integer, yp As Integer)
 x = xp 'save coordinates
 y = yp
 w = 40 'default size
 h = 30
 saveAsRect 'keep in rectangle class as well
End Sub
'-----
'Property methods used to save and restore state
Property Get rects() As Rectangle
 Set rects = rect
End Property
'-----
Property Set rects(rc As Rectangle)
 x = rc.x
 y = rc.y

Copyright © 2001, by James W. Cooper

414

 w = rc.w
 h = rc.h
 saveAsRect
End Property
'-----
Public Sub setSelected(b As Boolean)
 selected = b
End Sub
'-----
'save values in Rectangle class
Private Sub saveAsRect()
 Set rect = New Rectangle
 rect.init x, y, w, h
End Sub
'-----
'draw rectangle and handles
Public Sub draw(Pic As PictureBox)
'draw rectangle
 Pic.Line (x, y)-(x + w, y + h), , B
 If selected Then 'draw handles
 Pic.Line (x + w / 2, y - 2)- _
 (x + w / 2 + 4, y + 2), , BF
 Pic.Line (x - 2, y + h / 2)- _
 (x + 2, y + h / 2 + 4), , BF
 Pic.Line (x + (w / 2), y + h - 2)- _
 (x + (w / 2) + 4, y + h + 2), , BF
 Pic.Line (x + (w - 2), y + (h / 2))- _
 (x + (w + 2), y + (h / 2) + 4), , BF
 End If
End Sub
'-----
Public Function contains(xp As Integer, yp As Integer) As
Boolean
 contains = rect.contains(xp, yp)
End Function
'-----
Public Sub move(xpt As Integer, ypt As Integer)
 x = xpt
 y = ypt
 saveAsRect
End Sub

We also make use of a Rectangle class which contains Get and Let properties
for the x, y, w and h values and a contains method.

Drawing the rectangle is pretty straightforward. Now, let’s look at our simple
Memento class that we use to store the state of a rectangle:

'Class Memento
Private x As Integer, y As Integer
Private w As Integer, h As Integer

Copyright © 2001, by James W. Cooper

415

Private rect As Rectangle
Private visRect As VisRectangle
'-----
Public Sub init(vrect As VisRectangle)
'save the state of a visual rectangle
 Set visRect = vrect
 Set rect = vrect.rects
 x = rect.x
 y = rect.y
 w = rect.w
 h = rect.h
End Sub
'-----
Public Sub restore()
'restore the state of a visual rectangle
 rect.x = x
 rect.y = y
 rect.h = h
 rect.w = w
 Set visRect.rects = rect
End Sub

When we create an instance of the Memento class, we use the init method to
pass it the visRectangle instance we want to save. It copies the size and
position parameters and saves a copy of the instance of the visRectangle
itself. Later, when we want to restore these parameters, the Memento knows
which instance it has to restore them to and can do it directly, as we see in the
restore() method.

The rest of the activity takes place in the Mediator class, where we save the
previous state of the list of drawings as an integer on the undo list:

Public Sub createRect(ByVal x As Integer, ByVal y As Integer)
Dim count As Integer
Dim v As VisRectangle
 unpick 'make sure no rectangle is selected
 If startRect Then 'if rect button is depressed
 count = drawings.count
 caretakr.add count 'Save previous drawing list size
 Set v = New VisRectangle 'create a rectangle
 v.init x, y
 drawings.add v 'add new element to list
 startRect = False 'done with this rectangle
 rect.setSelected False 'unclick button
 canvas.Refresh
 Else
 pickRect x, y 'if not pressed look for rect to select
 End If
End Sub

Copyright © 2001, by James W. Cooper

416

On the other hand, if you click on the panel and the Rectangle button has not
been selected, you are trying to select an existing rectangle. This is tested
here:

Public Sub pickRect(x As Integer, y As Integer)
'save current selected rectangle
'to avoid double save of undo
 Dim lastPick As Integer
 Dim v As VisRectangle
 Dim i As Integer
 If selectedIndex > 0 Then
 lastPick = selectedIndex
 End If
 unpick 'undo any selection
 'see if one is being selected
 For i = 1 To drawings.count
 Set v = drawings(i)
 If v.contains(x, y) Then 'did click inside a rectangle
 selectedIndex = i 'save it
 rectSelected = True
 If selectedIndex <> lastPick Then 'but not twice
 caretakr.rememberPosition drawings(selectedIndex)
 End If
 v.setSelected True 'turn on handles
 repaint 'and redraw
 End If
 Next i
End Sub

The Caretaker class remember the previous position of the rectangle in a
Memento object, and adds it to the undo list.

Public Sub rememberPosition(vrect As VisRectangle)
 Dim m As Memento
 Set m = New Memento
 m.init vrect
 undoList.add m
End Sub

The Caretaker class manages the undo list. This list is a Collection of integers
and Memento objects. If the value is an integer, it represents the number of
drawings to be drawn at that instant. If it is a Memento, it represents the
previous state of a visRectangle that is to be restored. In other words, the
undo list can undo the adding of new rectangles and the movement of existing
rectangles.

Our undo method simply decides whether to reduce the drawing list by one or
to invoke the restore method of a Memento:

Copyright © 2001, by James W. Cooper

417

Public Sub undo()
Dim obj As Object
 If undoList.count > 0 Then
 'get last element in undo list
 Set obj = undoList(undoList.count)
 undoList.remove undoList.count 'and remove it
 If Not (TypeOf obj Is Memento) Then
 removeLast 'remove Integer
 Else
 remove obj 'remove Memento
 End If
 End If
 End Sub

Now this Undo method requires that all the elements in the Collection be
objects, rather than a mixture of integers and Memento objects. So we create
a small wrapper class to convert the integer count into an object:
'Class intClass
'treats an integer as an object
Private intg As Integer
Public Sub init(a As Integer)
 intg = a
End Sub
'-----
Property Get integ() As Integer
 integ = intg
End Property

Instances of this class are created when we add an integer to the undo list:

Public Sub add(intObj As Integer)
 Dim integ As intClass
 Set integ = New intClass
 integ.init intObj
 undoList.add integ
 End Sub

The two remove methods either reduce the number of drawings or restore the
position of a rectangle:

 Private Sub removeLast()
 drawings.remove drawings.count
 End Sub
 '-----
 Private Sub remove(obj As Memento)
 obj.restore
 End Sub

Copyright © 2001, by James W. Cooper

418

A Cautionary Note
While it is helpful in this example to call out the differences between a
Memento of a rectangle position and an integer specifying the addition of a
new drawing, this is in general an absolutely terrible example of OO
programming. You should never need to check the type of an object to decide
what to do with it. Instead you should be able to call the correct method on
that object and have it do the right thing.

A more correct way to have written this example would be to have both the
intClass and what we are calling the Memento class both have their own
restore methods and have them both be members of a general Memento class
(or interface). We take this approach in the State example pattern that follows
in the next chapter.

Command Objects in the User Interface
We can also use the Command pattern to help in simplifying the code in the
user interface. The three buttons are tool bar buttons which are of the class
MSComctlLib.Button. We create parallel command object classes for each of
the buttons, and have them carry out the actions in conjunction with the
mediator:

Private Sub Form_Load()
 Set med = New Mediator 'create the mediator
 med.init
 med.registerCanvas Pic
 Set rectB = New RectButton 'rectangle button
 rectB.init med, tbar.Buttons(1)
 Set ubutn = New UndoButton 'undo button
 ubutn.init med, tbar.Buttons(2)
 Set clrb = New ClearButton 'clear button
 clrb.init med
 Set commands = New Collection 'make a list of them
 commands.add rectB
 commands.add ubutn
 commands.add clrb
End Sub

Then the command interpretation devolves to just a few lines of code, since
all the buttons call the same click event already:

Private Sub tbar_ButtonClick(ByVal Button As
MSComctlLib.Button)
 Dim i As Integer
 Dim cmd As Command
 i = Button.Index 'get which button
 Set cmd = commands(i) 'get that command

Copyright © 2001, by James W. Cooper

419

 cmd.Execute 'execute it
End Sub

The RectButton command class is where most of the activity takes place

'Class RectButton
Implements Command
Private bt As MSComctlLib.Button
Private med As Mediator
'-----
Public Sub init(md As Mediator, but As MSComctlLib.Button)
 Set bt = but
 Set med = md
 med.registerRectButton Me
End Sub
'-----
Private Sub Command_Execute()
 If bt.Value = tbrPressed Then
 med.startRectangle
 End If
End Sub
'-----
Public Sub setSelected(sel As Boolean)
 If sel Then
 bt.Value = tbrPressed
 Else
 bt.Value = tbrUnpressed
 End If
End Sub

Handling Mouse and Paint Events
We also must catch the mouse down, up and move events and pass them on to
the Mediator to handle:

Private Sub Pic_MouseDown(Button As Integer, _
Shift As Integer, x As Single, y As Single)

 mouse_down = True
 med.createRect x, y
End Sub
Private Sub Pic_MouseMove(Button As Integer, _

 Shift As Integer, x As Single, y As Single)
 If mouse_down Then
 med.drag x, y
 End If
End Sub
Private Sub Pic_MouseUp(Button As Integer, Shift As Integer, _
 x As Single, y As Single)
 mouse_down = False
End Sub

Copyright © 2001, by James W. Cooper

420

Whenever the Mediator makes a change, it calls for a refresh of the picture
box, which in turn calls the Paint event. We then pass this back to the
Mediator to draw the rectangles in their new positions.

Private Sub Pic_Paint()
 med.reDraw Pic
End Sub

The complete class structure is diagrammed in Figure 27-4.

Figure 27-4 – The UML diagram for the drawing program using a

Memento

Writing a Memento in VB.NET
We can write almost the same code in VB7. However, while VB7 does not
provide completely privileged access to class variables or properties, it does
provide the friend keyword, which restricts access to a property or variable to
code in the current project. For our visRectangle class, we can declare the rect
property as having a friend modifier

'Property methods used to save and restore state
 Friend Property rects() As vbpatterns.Rectangle
 Set
 x = value.x
 y = value.y
 w = value.w
 h = value.h
 saveAsRect()

Copyright © 2001, by James W. Cooper

421

 End Set
 Get
 Return rect
 End Get
 End Property

This is almost the same as having public access to the method, with the
exception that if you compile the code into a library, these methods are not
visible. So while this friend property is much less restrictive than the C++
friend modifier, it is slightly restrictive.

The remainder of the program can be written in much the same way as for
VB6. The visRectangle class’s draw method is only slightly different since it
uses the Graphics object,

'draw rectangle and handles
Public Sub draw(ByVal g As Graphics)
'draw rectangle
 g.DrawRectangle(bpen, x, y, w, h)

 If selected Then 'draw handles
 g.fillrectangle(bbrush, x + w / 2, y - 2, 4, 4)
 g.FillRectangle(bbrush, x - 2, y + h / 2, 4, 4)
 g.FillRectangle(bbrush, x + (w / 2), y + h - 2, 4, 4)
 g.FillRectangle(bbrush, x + (w - 2), y + (h / 2), 4, 4)
 End If
End Sub

but the Memento saves and restores a Rectangle object in much same way.

You can build a toolbar and create ToolbarButtons in VB7 using the IDE, but
if you do, it is difficult to subclass them to make them into command objects.
There are two possible solutions. First, you can keep a parallel array of
Command objects for the RectButton, the UndoButton and the Clear button
and call them in the toll bar click routine.

You should note, however, that the toolbar buttons do not have an Index
property and you cannot just ask which one has been clicked by its index and
relate it to the command array. Instead, we can use the getHashCode property
of each tool button to get a unique identifier for that button, and keep the
corresponding command objects in a Hashtable keyed off these button hash
codes. We construct the Hashtable as follows:

 med = New Mediator(pic) 'create Mediator
 commands = New Hashtable() 'and Hash table

Copyright © 2001, by James W. Cooper

422

 'create the command objects
 Dim rbutn As New RectButton(med, tbar.Buttons(0))
 Dim ubutn As New UndoButton(med, tbar.Buttons(1))
 Dim clrbutn As New Clearbutton(med)
 'add them to the hashtable

 'using the button hash values
 commands.Add(btrect.GetHashCode, rbutn)
 commands.Add(btundo.GetHashCode, ubutn)
 commands.add(btclear.GetHashCode, clrbutn)

We can use these hash codes to get the right command object when the
buttons are clicked.

Protected Sub tBar_ButtonClick(ByVal sender As Object, _
 ByVal e As ToolBarButtonClickEventArgs)
 Dim cmd As Command
 Dim tbutn As ToolBarButton = e.button
 cmd = CType(commands(tbutn.GetHashCode), Command)
 cmd.Execute()
 End Sub
Alternatively, you could create the toolbar under IDE control, but add the
toolbuttons to the collection programmatically and use derived buttons with a
Command interface instead. We illustrate this approach in the State pattern

Consequences of the Memento
The Memento provides a way to preserve the state of an object while
preserving encapsulation, in languages where this is possible. Thus, data that
only the Originator class should have access to effectively remains private. It
also preserves the simplicity of the Originator class by delegating the saving
and restoring of information to the Memento class.

On the other hand, the amount of information that a Memento has to save
might be quite large, thus taking up fair amounts of storage. This further has
an effect on the Caretaker class that may have to design strategies to limit the
number of objects for which it saves state. In our simple example, we impose
no such limits. In cases where objects change in a predictable manner, each
Memento may be able to get by with saving only incremental changes of an
object’s state.

In our example code in this chapter, we have use not only the Memento, but
the Command and Mediator patterns as well. This clustering of several
patterns is very common, and the more you see of good OO programs, the
more you will see these pattern groupings.

Copyright © 2001, by James W. Cooper

423

Thought Questions
Mementos can also be used to restore the state of an object when a process
fails. If a database update fails because of a dropped network connection, you
should be able to restore the data in your cached data to their previous state.
Rewrite the Database class in the Façade chapter to allow for such failures.

Programs on the CD-ROM
\Memento VB6 Memento

\Memento\VBNet VB7 Memento

Copyright © 2001, by James W. Cooper

424

28. THE OBSERVER PATTERN
In this chapter we discuss how you can use the Observer pattern to present
data in several forms at once.

In our new, more sophisticated windowing world, we often would like to
display data in more than one form at the same time and have all of the
displays reflect any changes in that data. For example, you might represent
stock price changes both as a graph and as a table or list box. Each time the
price changes, we’d expect both representations to change at once without
any action on our part.

We expect this sort of behavior because there are any number of Windows
applications, like Excel, where we see that behavior. Now there is nothing
inherent in Windows to allow this activity and, as you may know,
programming directly in Windows in C or C++ is pretty complicated. In VB,
however, we can easily make use of the Observer Design Pattern to cause our
program to behave in this way.

The Observer pattern assumes that the object containing the data is separate
from the objects that display the data, and that these display objects observe
changes in that data. This is simple to illustrate as we see in Figure 28-1.

Graphic
Display

List
Display

Data

User

Figure 28-1 – Data are displayed as a list and in some graphical
mode.

Copyright © 2001, by James W. Cooper

425

When we implement the Observer pattern, we usually refer to the data as the
Subject and each of the displays as Observers. Each of these observers
registers its interest in the data by calling a public method in the Subject.
Then, each observer has a known interface that the subject calls when the data
change. We could define these interfaces as follows:

'Interface Observer
Public Sub sendNotify(mesg As String)
End Sub
'-----
'Interface Subject
Public Sub registerInterest(obs As Observer)
End Sub

The advantage of defining these abstract interfaces is that you can write any
sort of class objects you want as long as they implement these interfaces, and
that you can declare these objects to be of type Subject and Observer no
matter what else they do.

Watching Colors Change
Let’s write a simple program to illustrate how we can use this powerful
concept. Our program shows a display frame containing 3 radio buttons
named Red, Blue and Green as shown in Figure 28-2.

Figure 28-2 – A simple control panel to create red, green or blue

“data.”
Note that our main frame class implements the Subject interface. That means
that it must provide a public method for registering interest in the data in this
class. This method is the registerInterest method, which just adds Observer
objects to a Vector:

Copyright © 2001, by James W. Cooper

426

'-----
Private Sub Subject_registerInterest(obs As Observer)
 observers.Add obs
End Sub

Now we create two observers, one that displays the color (and its name) and
another which adds the current color to a list box.

Private Sub Form_Load()
 Set observers = New Collection
 'create list observer
 Dim lso As New lsObserver
 lso.init Me
 lso.Show
 'create color fram observer
 Dim cfr As New ColorFrame
 cfr.init Me
 cfr.Show

End Sub

When we create our ColorFrame window, we register our interest in the data
in the main program:

'Class ColorFrame
Implements Observer
Public Sub init(s As Subject)
 s.registerInterest Me
End Sub

Private Sub Observer_sendNotify(mesg As String)
Pic.Cls
 Select Case LCase(mesg)
 Case "red"
 Pic.BackColor = vbRed
 Case "green"
 Pic.BackColor = vbGreen
 Case "blue"
 Pic.BackColor = vbBlue
 End Select
 Pic.PSet (300, 600)
 Pic.Print mesg
End Sub

Our listbox window is also an observer, and all it has to do is add the color
name to the list. The entire class is shown below:

'Class ListObserver
Implements Observer
Public Sub init(s As Subject)
 s.registerInterest Me
End Sub

Copyright © 2001, by James W. Cooper

427

'-----
Private Sub Observer_sendNotify(mesg As String)
 'add color names to list
 lsColors.AddItem mesg
End Sub

Meanwhile in our main program, every time someone clicks on one of the
radio buttons, it calls the sendNotify method of each Observer who has
registered interest in these changes by simply running through the objects in
the observers Collection:

Private Sub btColor_Click(Index As Integer)
 Dim i As Integer
 Dim mesg As String
 Dim obs As Observer
 mesg = btColor(Index).Caption 'get the button label
 'send it to all the observers
 For i = 1 To observers.Count
 Set obs = observers(i)
 obs.sendNotify mesg
 Next i
End Sub

In the case of the ColorFrame observer, the sendNotify method changes the
background color and the text string in the frame panel. In the case of the
ListFrame observer, however, it just adds the name of the new color to the list
box. We see the final program running in Figure 28-3.

Copyright © 2001, by James W. Cooper

428

Figure 28-3 – The data control pane generates data that is
displayed simultaneously as a colored panel and as a list box. This

is a candidate for an Observer pattern.

Writing an Observer in VB.NET
In VB7, we still use the Observer and Subject interfaces to define the
interaction between the data and the displays of that data.

Public Interface Observer
 Sub sendNotify(ByVal mesg As String)
End Interface
'-----
Public Interface Subject
 Sub registerInterest(ByVal obs As observer)
End Interface

As above, the main program with its three radio buttons constitutes the
Subject or data class, and notifies the observers when the data changes. To
make the programming simpler, we add the same event handler to all three
radio buttons

Dim evh As EventHandler = _
New EventHandler(AddressOf radioHandler)

 AddHandler opRed.Click, evh
 AddHandler opblue.Click, evh
 AddHandler opgreen.Click, evh

and then send the text of their label to the observers.

Protected Sub RadioHandler(ByVal sender As Object, _
ByVal e As EventArgs)

Dim i As Integer
Dim rbut As RadioButton = CType(sender, RadioButton)
 For i = 0 To observers.Count - 1
 Dim obs As Observer = CType(observers(i), observer)
 obs.sendNotify(rbut.Text)
 Next i
End Sub

The list box observer is essentially identical, where we add the text to the list
box:

Public Class listObs

Copyright © 2001, by James W. Cooper

429

 Inherits System.WinForms.Form
 Implements Observer
 Public Sub New(ByVal subj As Subject)
 MyBase.New()
 listObs = Me
 InitializeComponent()
 subj.registerInterest(Me)
 End Sub
 '-----
 Public Sub sendNotify(ByVal mesg As String) _

Implements Observer.sendNotify
 lscolors.Items.Add(mesg)
 End Sub
End Class

The Color window observer is a little different in that we paint the text in the
pain event handler and change the background color directly in the notify
event method:

Public Class ColFrame
 Inherits System.WinForms.Form
 Implements Observer
 Private colname As String
 Dim fnt As Font
 Dim bBrush As SolidBrush
 '-----
 Public Sub New(ByVal subj As Subject)
 MyBase.New()
 subj.registerInterest(Me)
 ColFrame = Me
 InitializeComponent()
 fnt = New Font("arial", 18, _

Drawing.FontStyle.Bold)
 bbrush = New SolidBrush(Color.Black)
 AddHandler Pic.Paint, _

New PaintEventHandler(AddressOf painthandler)
 End Sub
 '-----
 Public Sub sendNotify(ByVal mesg As System.String) _

Implements VBNetObserver.Observer.sendNotify
 colname = mesg
 Select Case mesg.ToLower
 Case "red"
 pic.BackColor = color.Red '
 Case "blue"
 pic.BackColor = color.Blue

Copyright © 2001, by James W. Cooper

430

 Case "green"
 pic.BackColor = color.Green
 End Select
 End Sub
 '-----
 Private Sub paintHandler(ByVal sender As Object, _

ByVal e As PaintEventArgs)
 Dim g As Graphics = e.Graphics
 g.DrawString(colname, fnt, bbrush, 20, 40)
 End Sub
End Class

The Message to the Media
Now, what kind of notification should a subject send to its observers? In this
carefully circumscribed example, the notification message is the string
representing the color itself. When we click on one of the radio buttons, we
can get the caption for that button and send it to the observers. This, of
course, assumes that all the observers can handle that string representation.
In more realistic situations, this might not always be the case, especially if the
observers could also be used to observe other data objects. Here we undertake
two simple data conversions:

1. we get the label from the radio button and send it to the
observers, and

2. we convert the label to an actual color in the ColorFrame
observer.

In more complicated systems, we might have observers that demand specific,
but different, kinds of data. Rather than have each observer convert the
message to the right data type, we could use an intermediate Adapter class to
perform this conversion.

Another problem observers may have to deal with is the case where the data
of the central subject class can change in several ways. We could dele te
points from a list of data, edit their values, or change the scale of the data we
are viewing. In these cases we either need to send different change messages
to the observers or send a single message and then have the observer ask
which sort of change has occurred.

Copyright © 2001, by James W. Cooper

431

Figure 28-4 – The Observer interface and Subject interface
implementation of the Observer pattern.

Consequences of the Observer Pattern
Observers promote abstract coupling to Subjects. A subject doesn’t know the
details of any of its observers. However, this has the potential disadvantage of
successive or repeated updates to the Observers when there are a series of
incremental changes to the data. If the cost of these updates is high, it may be
necessary to introduce some sort of change management, so that the
Observers are not notified too soon or too frequently.

When one client makes a change in the underlying data, you need to decide
which object will initiate the notification of the change to the other observers.
If the Subject notifies all the observers when it is changed, each client is not
responsible for remembering to initiate the notification. On the other hand,
this can result in a number of small successive updates being triggered. If the
clients tell the Subject when to notify the other clients, this cascading
notification can be avoided, but the clients are left with the responsibility of
telling the Subject when to send the notifications. If one client “forgets,” the
program simply won’t work properly.

Finally, you can specify the kind of notification you choose to send by
defining a number of update methods for the Observers to receive depending
on the type or scope of change. In some cases, the clients will thus be able to
ignore some of these notifications.

Thought Questions
1. The VB6 version of our observer example puts up three separate windows.
However, unlike the VB7 version, closing one of the windows does not close
the other two and end the program. How could you use an observer to assure
that the program shuts down as desired?

Programs on the CD-ROM
\Observer VB6 Observer

\Observer\VBNet VB7 Observer

Copyright © 2001, by James W. Cooper

432

29. THE STATE PATTERN

The State pattern is used when you want to have an object represent the state of
your application, and switch application states by switching objects. For
example, you could have an enclosing class switch between a number of related
contained classes, and pass method calls on to the current contained class. Design
Patterns suggests that the State pattern switches between internal classes in such
a way that the enclosing object appears to change its class. In VB, at least, this is
a bit of an exaggeration, but the actual purpose to which the classes are put can
change significantly.

Many programmers have had the experience of creating a class that performs
slightly different computations or displays different information based on the
arguments passed into the class. This frequently leads to some sort of select case
or if-else statements inside the class that determine which behavior to carry out. It
is this inelegance that the State pattern seeks to replace.

Sample Code
Let’s consider the case of a drawing program similar to the one we developed for
the Memento class. Our program will have toolbar buttons for Select, Rectangle,
Fill, Circle and Clear. We show this program in Figure 29-1.

Copyright © 2001, by James W. Cooper

433

Figure 29-1– A simple drawing program we will use for illustrating
the State pattern.

Each one of the tool buttons does something rather different when it is selected
and you click or drag your mouse across the screen. Thus, the state of the
graphical editor affects the behavior the program should exhibit. This suggests
some sort of design using the State pattern.

Initially we might design our program like this, with a Mediator managing the
actions of 5 command buttons as shown in Figure 29-2.

Mediator

Pick

Rect

Fill

Circle

Clear

Screen

Mouse

Figure 29-2– One possible interaction between the classes needed to

support the simple drawing program.
However, this initial design puts the entire burden of maintaining the state of the
program on the Mediator, and we know that the main purpose of a Mediator is to
coordinate activities between various controls, such as the buttons. Keeping the
state of the buttons and the desired mouse activity inside the Mediator can make
it unduly complicated as well as leading to a set of If or Select tests which make
the program difficult to read and maintain.

Copyright © 2001, by James W. Cooper

434

Further, this set of large, monolithic conditional statements might have to be
repeated for each action the Mediator interprets, such as mouseUp, mouseDrag,
rightClick and so forth. This makes the program very hard to read and maintain.

Instead, let’s analyze the expected behavior for each of the buttons:

1. If the Pick button is selected, clicking inside a drawing element
should cause it to be highlighted or appear with “handles.” If the
mouse is dragged and a drawing element is already selected, the
element should move on the screen.

2. If the Rect button is selected, clicking on the screen should cause a
new rectangle drawing element to be created.

3. If the Fill button is selected and a drawing element is already
selected, that element should be filled with the current color. If no
drawing is selected, then clicking inside a drawing should fill it with
the current color.

4. If the Circle button is selected, clicking on the screen should cause a
new circle drawing element to be created.

5. If the Clear button is selected, all the drawing elements are removed.

There are some common threads among several of these actions we should
explore. Four of them use the mouse click event to cause actions. One uses the
mouse drag event to cause an action. Thus, we really want to create a system that
can help us redirect these events based on which button is currently selected.

Let’s consider creating a State object that handles mouse activities:

'Interface State
Public Sub mouseDown(X As Integer, Y As Integer)
End Sub
'-----
Public Sub mouseUp(X As Integer, Y As Integer)
End Sub
'-----
Public Sub mouseDrag(X As Integer, Y As Integer)
End Sub

We’ll include the mouseUp event in case we need it later. Then we’ll create 4
derived State classes for Pick, Rect, Circle and Fill and put instances of all of

Copyright © 2001, by James W. Cooper

435

them inside a StateManager class which sets the current state and executes
methods on that state object. In Design Patterns, this StateManager class is
referred to as a Context. This object is illustrated in Figure 29-3.

StateManager

State

Pick Rect Fill Circle

currentState

Figure 29-3 – A StateManager class which keeps track of the current

state.

A typical State object simply overrides (in VB6, implements and fills out) those
event methods that it must handle specially. For example, this is the complete
Rectangle state object:

'Class RectState
Implements State
Private med As Mediator
Public Sub init(md As Mediator)
 Set med = md
End Sub
'-----

Copyright © 2001, by James W. Cooper

436

Private Sub State_mouseDown(X As Integer, Y As Integer)
Dim vr As New VisRectangle
 vr.init X, Y
 med.addDrawing vr
End Sub
'-----
Private Sub State_mouseDrag(X As Integer, Y As Integer)
End Sub
'-----
Private Sub State_mouseUp(X As Integer, Y As Integer)
End Sub

The RectState object simply tells the Mediator to add a rectangle drawing to the
drawing list. Similarly, the Circle state object tells the Mediator to add a circle to
the drawing list:

'Class CircleState
Implements State
Private med As Mediator
'-----
Public Sub init(md As Mediator)
 Set med = md
End Sub
'-----
Private Sub State_mouseDown(X As Integer, Y As Integer)
 Dim c As visCircle
 Set c = New visCircle
 c.init X, Y
 med.addDrawing c
End Sub
'-----
Private Sub State_mouseDrag(X As Integer, Y As Integer)
End Sub
'-----
Private Sub State_mouseUp(X As Integer, Y As Integer)
End Sub

The only tricky button is the Fill button, because we have defined two actions for
it.

1. If an object is already selected, fill it.

2. If the mouse is clicked inside an object, fill that one.

Copyright © 2001, by James W. Cooper

437

In order to carry out these tasks, we need to add the selectOne method to our base
State interface. This method is called when each tool button is selected:

'Interface State
Public Sub mouseDown(X As Integer, Y As Integer)
End Sub
'-----
Public Sub mouseUp(X As Integer, Y As Integer)
End Sub
'-----
Public Sub mouseDrag(X As Integer, Y As Integer)
End Sub
'-----
Public Sub selectOne(d As Drawing)
End Sub

The Drawing argument is either the currently selected Drawing. In this simple
program, we have arbitrarily set the fill color to red. So our Fill state class
becomes:

'Class FillState
Implements State
Private med As Mediator
Private color As ColorConstants
'-----
Public Sub init(md As Mediator)
 Set med = md
 color = vbRed
End Sub
'-----
Private Sub State_mouseDown(X As Integer, Y As Integer)
 Dim drawings As Collection
 Dim i As Integer
 Dim d As Drawing
 'Fill drawing if you click inside one
 Set drawings = med.getDrawings()
 For i = 1 To drawings.Count
 Set d = drawings(i)
 If d.contains(X, Y) Then
 d.setFill color 'fill drawing
 End If
 Next i
End Sub
'-----
Private Sub State_mouseDrag(X As Integer, Y As Integer)

Copyright © 2001, by James W. Cooper

438

End Sub
'-----
Private Sub State_mouseUp(X As Integer, Y As Integer)
End Sub
'-----
Private Sub State_selectOne(d As Drawing)
'Fill drawing if selected
 d.setFill color 'fill that drawing
End Sub

Switching Between States
Now that we have defined how each state behaves when mouse events are sent to
it, we need to discuss how the StateManager switches between states. We create
an instance of each state, and thenwe simply set the currentState variable to the
state indicated by the button that is selected.

'Class StateManager
Private currentState As State
Private rState As RectState
Private aState As ArrowState
Private cState As CircleState
Private fState As FillState
'-----
Public Sub init(med As Mediator)
'create an instance of each state
 Set rState = New RectState
 Set cState = New CircleState
 Set aState = New ArrowState
 Set fState = New FillState
 'and initialize then
 rState.init med
 cState.init med
 aState.init med
 fState.init med
 'set default state
 Set currentState = aState
End Sub

Note that in this version of the StateManager, we create an instance of each state
during the constructor and copy the correct one into the state variable when the
set methods are called. It would also be possible to create these states on demand.
This might be advisable if there are a large number of states which each consume
a fair number of resources.

Copyright © 2001, by James W. Cooper

439

The remainder of the state manager code simply calls the methods of whichever
state object is current. This is the critical piece -- there is no conditional testing.
Instead, the correct state is already in place and its methods are ready to be
called.
Public Sub mouseDown(X As Integer, Y As Integer)
 currentState.mouseDown X, Y
End Sub
'-----
Public Sub mouseUp(X As Integer, Y As Integer)
 currentState.mouseUp X, Y
End Sub
'-----
Public Sub mouseDrag(X As Integer, Y As Integer)
 currentState.mouseDrag X, Y
End Sub
'-----
Public Sub selectOne(d As Drawing, c As ColorConstants)
 currentState.selectOne d
End Sub

How the Mediator Interacts with the State Manager
We mentioned that it is clearer to separate the state management from the
Mediator’s button and mouse event management. The Mediator is the critical
class, however, since it tells the StateManager when the current program state
changes. The beginning part of the Mediator illustrates how this state change
takes place. Note that each button click calls one of these methods and changes
the state of the application. The remaining statements in each method simply turn
off the other toggle buttons, so that only one button at a time can be depressed.

'Class Mediator
 Private startRect As Boolean
 Private selectedIndex As Integer
 Private rectb As RectButton
 Private dSelected As Boolean
 Private drawings As Collection
 Private undoList As Collection
 Private rbutton As RectButton
 Private filbutton As FillButton
 Private circButton As CircleButton
 Private arrowButton As PickButton
 Private canvas As PictureBox
 Private selectedDrawing As Integer

Copyright © 2001, by James W. Cooper

440

 Private stmgr As StateManager
'-----
 Public Sub init(Pic As PictureBox)
 startRect = False
 dSelected = False
 Set drawings = New Collection
 Set undoList = New Collection
 Set stmgr = New StateManager
 stmgr.init Me
 Set canvas = Pic
End Sub
'-----
Public Sub startRectangle()
 stmgr.setRect
 arrowButton.setSelected (False)
 circButton.setSelected (False)
 filbutton.setSelected (False)
End Sub
'-----
Public Sub startCircle()
 Dim st As State
 stmgr.setCircle
 rectb.setSelected False
 arrowButton.setSelected False
 filbutton.setSelected False
End Sub

As we did in the discussion of the Memento pattern, we create a series of button
Command objects paralleling the toolbar buttons and keep them in an array to be
called when the toolbar button click event occurs.

Private Sub Form_Load()
 Set buttons = New Collection
 'create an instance of the Mediator
 Set med = New Mediator
 med.init Pic
 'Create the button command objects
 'give each of them access to the Mediator
 Set pickb = New PickButton
 pickb.init med, tbar.buttons(1)
 Set rectb = New RectButton
 rectb.init med, tbar.buttons(2)
 Set filb = New FillButton
 filb.init med, tbar.buttons(3)
 Set cb = New CircleButton

Copyright © 2001, by James W. Cooper

441

 cb.init med, tbar.buttons(4)
 Set clrb = New ClearButton
 clrb.init med

 Set undob = New UndoButton
 undob.init med
'keep a Collection of the button Command objects
 buttons.Add pickb
 buttons.Add rectb
 buttons.Add filb
 buttons.Add cb
 buttons.Add undob
 buttons.Add clrb
End Sub

 These Execute methods in turn call the above startXxx methods.

Private Sub tbar_ButtonClick(ByVal Button As MSComctlLib.Button)
 Dim i As Integer
 Dim cmd As Command
 'find out which button was clicked
 i = Button.index
 'get that comnmand object
 Set cmd = buttons(i)
 cmd.Execute 'and execute it
End Sub

The class diagram for this program illustrating the State pattern in this
application is illustrated in two parts. The State section is shown in Figure 29-4,

Copyright © 2001, by James W. Cooper

442

Figure 29-4 – The StateManager and the Mediator.
and the connection of the Mediator to the buttons in Figure 29-5.

Copyright © 2001, by James W. Cooper

443

Figure 29-5– Interaction between the buttons and the Mediator.

Handling the Fill State
The Fill State object is only slightly more complex, because we have to handle
two cases. The program will fill the currently selected object if one exists, or fill
the next one that you click on. This means there are two State methods we have
to fill in for these two cases as we see below:

'Class FillState
Implements State
Private med As Mediator
'-----
Public Sub init(md As Mediator)
 Set med = md
End Sub
'-----
Private Sub State_mouseDown(x As Integer, y As Integer)
 Dim drawings As Collection
 Dim i As Integer
 Dim d As Drawing

Copyright © 2001, by James W. Cooper

444

 'Fill drawing if you click inside one
 i = med.findDrawing(x, y)
 If i > 0 Then
 Set d = med.getDrawing(i)
 d.setFill True 'fill drawing
 End If
End Sub
'-----
Private Sub State_mouseDrag(x As Integer, y As Integer)
End Sub
'-----
Private Sub State_mouseUp(x As Integer, y As Integer)
End Sub
'-----
Private Sub State_selectOne(d As Drawing)
'Fill drawing if selected
 d.setFill True 'fill that drawing
End Sub

Handling the Undo List
Now, we should be able to undo each of the actions we carry out in this drawing
program, and this means that we keep them in an undo list of some kind. The
actions we can carry out and undo are

1. Creating a rectangle

2. Creating a circle

3. Moving a rectangle or circle

4. Filling a rectangle or circle

In our discussion of the Memento pattern, we indicated that we would use a
Memento object to store the state of the rectangle object and restore its position
from that Memento as needed. This is generally true for both rectangles and
circles, since we need to save and restore the same kind of position information.
However, the addition of rectangles or circles and the filling of various figures
are also activities we want to be able to undo. And, as we indicated in the
previous Memento discussion, the idea of checking for the type of object in the
undo list and performing the correct undo operation is a really terrible idea.

 'really terrible programming approach
 Set obj = undoList(undoList.count)

Copyright © 2001, by James W. Cooper

445

 undoList.remove undoList.count 'and remove it
 If Not (TypeOf obj Is Memento) Then
 drawings.remove drawings.count
 Else
 obj.restore
 End If
Instead, let’s define the Memento as an interface.
'Interface Memento
Public Sub init(d As Drawing)
End Sub
'-----
Public Sub restore()
'restore the state of an object
End Sub

Then, all of the objects we add into the undo list will implement the Memento
interface, and will have a restore method that performs some operation. Some
kinds of Mementos will save and restore the coordinates of drawings, and others
will simply remove drawings or undo fill states.

First we will have both our circle and rectangle objects implement the Drawing
interface:
'Interface Drawing
Public Sub setSelected(b As Boolean)
End Sub
'-----
Public Sub draw(g As PictureBox)
End Sub
'-----
Public Sub move(xpt As Integer, ypt As Integer)
End Sub
'-----
Public Function contains(X As Integer, Y As Integer) As Boolean
End Function
'-----
Public Sub setFill(b as Boolean)
End Sub
'-----
'Property methods used to save and restore state
Property Get rects() As Rectangle
End Property
'-----
Property Set rects(rc As Rectangle)

Copyright © 2001, by James W. Cooper

446

End Property

The Memento we will use for saving the state of a Drawing will be similar to the
one we used in the Memento chapter, except that we specifically make it
implement the Memento interface:

'Class DrawMemento
Implements Memento
Private X As Integer, Y As Integer
Private w As Integer, h As Integer
Private rect As Rectangle
Private visDraw As Drawing
'-----
Private Sub Memento_init(d As Drawing)
'save the state of a visual rectangle
 Set visDraw = d
 Set rect = visDraw.rects
 X = rect.X
 Y = rect.Y
 w = rect.w
 h = rect.h
End Sub
'-----
Private Sub Memento_restore()
'restore the state of a drawing object
 rect.X = X
 rect.Y = Y
 rect.h = h
 rect.w = w
 Set visDraw.rects = rect
End Sub

Now for the case where we just want to remove a drawing from the list to be
redrawn, we create a class to remember that index of that drawing and remove it
when its restore method is called:

'Class DrawInstance
Implements Memento
'treats a drawing index as an object
Private intg As Integer
Private med As Mediator
Public Sub init(a As Integer, md As Mediator)
 intg = a 'remember the index
 Set med = md

Copyright © 2001, by James W. Cooper

447

End Sub
Property Get integ() As Integer
 integ = intg
End Property
'------
Private Sub Memento_init(d As Drawing)
End Sub
'------
Private Sub Memento_restore()
 'remove that drawing from the list
 med.removeDrawing intg
End Sub

We handle the FillMemento in just the same way, except that its restore method
turns off the fill flag for that drawing element:

'Class FillMemento
Implements Memento
Private index As Integer
Private med As Mediator
'-----
Public Sub init(a As Integer, md As Mediator)
 index = a
 Set med = md
End Sub
'-----
Private Sub Memento_init(d As Drawing)
End Sub
'-----
Private Sub Memento_restore()
Dim d As Drawing
 Set d = med.getDrawing(index)
 d.setFill False
End Sub

Filling Circles in VB6
VB6 does not have a way to draw filled circles that is analogous to the way we
draw filled rectangles. Instead, circles are filled if the Picturebox control’s
FillStyle is set appropriately. However, in that case, it fills all circles you draw,
whether you want to or not. Therefore, for VB6, we approximate filling the
circles by drawing concentric circles inside the original circle, and then drawing
an inscribed filled rectangle as well.

Copyright © 2001, by James W. Cooper

448

If filled Then
 For i = r To 1 Step -1
 Pic.Circle (xc, yc), i, fillColor
 Next i
 Pic.Line (x + 4, y + 4)-(x + w - 6, y + w - 6), fillColor, BF
End If

A State Pattern in VB.NET
The State pattern in VB7 is similar to that in VB6. We use the same interfaces for
the Memento and Drawing classes.

Public Interface Memento
 Sub restore()
End Interface

Public Interface Drawing
 Sub setSelected(ByVal b As Boolean)
 Sub draw(ByVal g As Graphics)
 Sub move(ByVal xpt As Integer, ByVal ypt As Integer)
 Function contains(ByVal x As Integer, _
 ByVal y As Integer) As Boolean
 Sub setFill(ByVal b As Boolean)
 Property rects() As vbpatterns.Rectangle
End Interface

However, there is some advantage in creating a State class with empty methods
and overriding only those that a particular derived State class will require. So our
base State class is

Public Class State
 Public Overridable Sub mouseDown(ByVal x As Integer,_

ByVal y As Integer)
 End Sub
 '-----
 Public Overridable Sub mouseUp(ByVal x As Integer, _

ByVal y As Integer)
 End Sub
 '-----

Copyright © 2001, by James W. Cooper

449

 Public Overridable Sub mouseDrag(ByVal x As Integer, _
ByVal y As Integer)

 End Sub
 '-----
 Public Overridable Sub selectOne(ByVal d As Drawing)
 End Sub
End Class

Then our derived state classes need only overrides the methods important to
them. The RectState class only responds to MouseDown, for example:

Public Class RectState
 Inherits State
 Private med As Mediator
 Public Sub New(ByVal md As Mediator)
 med = md
 End Sub
 '-----
 Public Overrides Sub mouseDown(ByVal x As Integer, _
 ByVal y As Integer)
 Dim vr As New VisRectangle(x, y)
 med.addDrawing(vr)
 End Sub
End Class

We can take some useful advantage of inheritance in designing our visRectangle
and visCircle classes. We make visRectangle implement the Drawing interface,
and then have visCircle inherit from visRectangle. This allows us to reuse the
setSelected, setFill, and move methods and the rects properties. In addition, we
can split off the drawHandle method and use it in both classes. The revised
visRectangle class looks like this:

Public Class VisRectangle
 Implements Drawing
 Protected x, y, w, h As Integer
 Private rect As vbpatterns.Rectangle
 Protected selected As Boolean
 Protected filled As Boolean
 Protected bBrush As SolidBrush

Copyright © 2001, by James W. Cooper

450

 Protected rBrush As SolidBrush
 Protected bPen As Pen
 Private fillColor As Color
 '-----
 Public Sub New(ByVal xp As Integer, _

ByVal yp As Integer)
 x = xp 'save coordinates
 y = yp
 w = 40 'default size
 h = 30
 fillColor = Color.Red
 bbrush = New SolidBrush(color.Black)
 rbrush = New SolidBrush(fillcolor)
 bPen = New Pen(color.Black)
 saveAsRect() 'keep in rectangle class as well
 End Sub
 '------
 Protected Sub saveAsRect()
 rect = New vbpatterns.Rectangle(x, y, w, h)
 End Sub
 '-----
 Public Function contains(ByVal xp As Integer, _
 ByVal yp As Integer) As Boolean _

Implements Drawing.contains
 Return rect.contains(xp, yp)
 End Function
 '-----
 Public Overridable Sub draw(ByVal g As Graphics) _
 Implements Drawing.draw
 'draw rectangle
 If filled Then
 g.FillRectangle(rbrush, x, y, w, h)
 End If
 g.DrawRectangle(bpen, x, y, w, h)
 If selected Then 'draw handles
 drawHandles(g)
 End If
 End Sub
 '-----
 Protected Sub drawHandles(ByVal g As Graphics)
 'Draws handles on sides of square or circle

Copyright © 2001, by James W. Cooper

451

 g.fillrectangle(bBrush, (x + w \ 2), (y - 2), 4, 4)
 g.FillRectangle(bbrush, x - 2, y + h \ 2, 4, 4)
 g.FillRectangle(bbrush, x + (w \ 2), y + h - 2, 4, 4)
 g.FillRectangle(bbrush, x + (w - 2), y + (h \ 2), 4, 4)
 End Sub
 '-----
 Public Overridable Sub move(ByVal xpt As Integer, _
 ByVal ypt As System.Integer) _
 Implements VBNetState.Drawing.move
 'Moves drawing to new coordinates
 x = xpt
 y = ypt
 saveAsRect()
 End Sub
 '-----
 Friend Property rects() As vbPatterns.Rectangle _
 Implements Drawing.rects
 'Allows changing of remembered state
 Set
 x = value.x
 y = value.y
 w = value.w
 h = value.h
 saveAsRect()
 End Set
 Get
 Return rect
 End Get
 End Property
 '-----
 Public Sub setFill(ByVal b As Boolean) _
 Implements Drawing.setFill
 filled = b
 End Sub
 '-----
 Public Sub setSelected(ByVal b As Boolean) _
 Implements VBNetState.Drawing.setSelected
 selected = b
 End Sub
End Class

Copyright © 2001, by James W. Cooper

452

However, our visCircle class only needs to override the draw method and have a
slightly different constructor:

Public Class VisCircle
 Inherits VisRectangle
 Private r As Integer
 '-----
 Public Sub New(ByVal xp As Integer, _

ByVal yp As Integer)
 MyBase.New(xp, yp)
 r = 15
 w = 30
 h = 30
 saveAsRect()
 End Sub
 '-----
 Public Overrides Sub draw(ByVal g As Graphics)

 'Fill the circle if flag set
 If filled Then

 g.FillEllipse(rbrush, x, y, w, h)
 End If
 g.DrawEllipse(bpen, x, y, w, h)
 If selected Then
 drawHandles(g)
 End If
 End Sub
End Class

Note that since we have made the x , y and filled variables Protected, we can
refer to them in the derived visCircle class without declaring them at all. Note
that there is a valid fill method in VB7 to fill circles (ellipses).

The Mediator, Memento and StateManager classes are essentially identical to
those we wrote for VB6. However, we can simplify the overall program a great
deal by creating derived classes from the ToolBarButton class and making them
implement the Command interface as well.

'A toolbar button class that also
'has a command interface
Public Class CmdToolbarButton
 Inherits System.WinForms.ToolBarButton

Copyright © 2001, by James W. Cooper

453

 Implements Command
 Protected med As Mediator
 Protected selected As Boolean
 Public Sub New(ByVal caption As String, _

ByVal md As mediator)
 MyBase.New()
 Me.Text = caption
 med = md
 InitializeComponent()
 End Sub
 '-----
 Public Overridable Sub setSelected(ByRef b As Boolean)
 selected = b
 End Sub
 '-----
 Public Overridable Sub Execute() _
 Implements Command.Execute
 End Sub
End Class

We then can derive our RectButton, CircleButton, ClearButton, UndoButton,
FillButton and PickButton classes from the CmdToolBarButton class, and give
each of them the appropriate Execute method. The RectButton class is just that
straightforward:

Public Class RectButton
 Inherits CmdToolbarButton
 '-----
 Public Sub New(ByVal md As Mediator)
 MyBase.New("Rectangle", md)
 Me.Style = ToolBarButtonStyle.ToggleButton

 med.registerRectButton(Me)
 End Sub
 '-----
 Public Overrides Sub Execute()
 med.startrectangle()
 End Sub
End Class

Copyright © 2001, by James W. Cooper

454

The only disadvantage to this approach is that you have to add the buttons to the
toolbar programmatically instead of using the designer. However, this just
amounts to adding the buttons to a collection. We create the empty toolbar in the
designer, giving it the name Tbar, and then add the buttons to it:

Public Sub New()
 MyBase.New()
 InitializeComponent()
 'create a Mediator
 med = New Mediator(pic)
 'create the buttons
 RctButton = New RectButton(med)
 ArowButton = New PickButton(med)
 circbutton = New CircleButton(med)
 flButton = New FillButton(med)
 undob = New UndoButton(med)
 clrb = New ClearButton(med)
 'add the buttons into the toolbar
 Tbar.Buttons.Add(ArowButton)
 Tbar.Buttons.Add(RctButton)
 tbar.Buttons.Add(circbutton)
 Tbar.Buttons.Add(flbutton)
 'include a separator
 Dim sep As New ToolBarButton()
 sep.Style = ToolBarButtonStyle.Separator
 tbar.Buttons.Add(sep)
 Tbar.Buttons.Add(undoB)
 Tbar.Buttons.Add(clrb)
 End Sub

This makes the processing of the button clicks completely object oriented,
because we do not have to know which button was clicked. They are all
Command objects, and we just call their execute methods:

'process button commands
 Protected Sub Tbar_ButtonClick(ByVal sender As Object, _
 ByVal e As ToolBarButtonClickEventArgs)
 Dim cmd As Command
 Dim tbutn As ToolBarButton = e.button
 cmd = CType(tbutn, Command) 'get the command object
 cmd.Execute() 'and execute it

Copyright © 2001, by James W. Cooper

455

 End Sub

Mediators and the God Class
One real problem with programs with this many objects interacting is putting too
much knowledge of the system into the Mediator so it becomes a “god class.” In
the example above, the Mediator communicates with the 6 buttons, the drawing
list and the StateManager. We could write this program another way, so that the
button Command objects communicate with the StateManager and the Mediator
only deals with the buttons and the drawing list. Here each button creates an
instance of the required state and sends it to the StateManager. This we will leave
as an exercise for the reader.

Consequences of the State Pattern
1. The State pattern creates a subclass of a basic State object for each state an

application can have and switches between them as the application changes
between states.

2. You don’t need to have a long set of conditional if or switch statements
associated with the various states, since each is encapsulated in a class.

3. Since there is no variable anywhere which specifies which state a program is
in, this approach reduces errors caused by programmers forgetting to test this
state variable

4. You could share state objects between several parts of an application, suc as
separate windows as long as none of the state objects have specific instance
variables. In this example, only the FillState class has an instance variable
and this could be easily rewritten to be an argument passed in each time.

5. This approach generates a number of small class objects, but in the process,
simplifies and clarifies the program.

6. In VB, all of the States must implement a common interface, and they must
thus all have common methods, although some of those methods can be
empty. In other languages, the states can be implemented by function

Copyright © 2001, by James W. Cooper

456

pointers with much less type checking, and, of course, greater chance of
error.

State Transitions
The transition between states can be specified internally or externally. In our
example, the Mediator tells the StateManager when to switch between states.
However, it is also possible that each state can decide automatically what each
successor state will be. For example, when a rectangle or circle drawing object is
created, the program could automatically switch back to the Arrow-object State.

Thought Questions
1. Rewrite the StateManager to use a Factory pattern to produce the

states on demand.

2. While visual graphics programs provide obvious examples of State
patterns, Java server programs can benefit by this approach. Outline
a simple server that uses a state pattern.

Programs on the CD-ROM
\State VB6 state drawing program

\State\Vbnet VB7 state drawing program

Copyright © 2001, by James W. Cooper

457

30. THE STRATEGY PATTERN

The Strategy pattern is much like the State pattern in outline, but a little different
in intent. The Strategy pattern consists of a number of related algorithms
encapsulated in a driver class called the Context. Your client program can select
one of these differing algorithms or in some cases the Context might select the
best one for you. The intent is to make these algorithms interchangeable and
provide a way to choose the most appropriate one. The difference between State
and Strategy is that the user generally chooses which of several strategies to
apply and that only one strategy at a time is likely to be instantiated and active
within the Context class. By contrast, as we have seen, it is possible that all of the
different States will be active at once and switching may occur frequently
between them. In addition, Strategy encapsulates several algorithms that do more
or less the same thing, while State encapsulates related classes that each do
something somewhat different. Finally, the concept of transition between
different states is completely missing in the Strategy pattern.

Motivation
A program which requires a particular service or function and which has several
ways of carrying out that function is a candidate for the Strategy pattern.
Programs choose between these algorithms based on computational efficiency or
user choice. There can be any number of strategies and more can be added and
any of them can be changed at any time.

There are a number of cases in programs where we’d like to do the same thing in
several different ways. Some of these are listed in the Smalltalk Companion:

• Save files in different formats.

• Compress files using different algorithms

• Capture video data using different compression schemes

• Use different line-breaking strategies to display text data.

• Plot the same data in different formats: line graph, bar chart or pie
chart.

Copyright © 2001, by James W. Cooper

458

In each case we could imagine the client program telling a driver module
(Context) which of these strategies to use and then asking it to carry out the
operation.

The idea behind Strategy is to encapsulate the various strategies in a single
module and provide a simple interface to allow choice between these strategies.
Each of them should have the same programming interface, although they need
not all be members of the same class hierarchy. However, they do have to
implement the same programming interface.

Sample Code
Let’s consider a simplified graphing program that can present data as a line graph
or a bar chart. We’ll start with an abstract PlotStrategy class and derive the two
plotting classes from it as illustrated in Figure 30-1.

Plot
Strategy

LinePlot
Strategy

BarPlot
Strategy

Figure 30-1 – Two instance of a PlotStrategy class.
Our base PlotStrategy class acts as an interface containing the plot routine to be
filled in in the derived strategy classes. It also contains the max and min
computation code which we will use in the derived classes by containing an
instance of this class.

'Interface PlotStrategy
Private xmin As Single, xmax As Single
Private ymin As Single, ymax As Single
Const max = 1E+38
Public Sub plot(x() As Single, y() As Single)
'to be filled in

Copyright © 2001, by James W. Cooper

459

'in implementing classes
End Sub
'-----
Public Sub findBounds(x() As Single, y() As Single)
 Dim i As Integer
 xmin = max
 xmax = -max
 ymin = max
 ymax = -max

 For i = 1 To UBound(x())
 If x(i) > xmax Then xmax = x(i)
 If x(i) < xmin Then xmin = x(i)
 If y(i) > ymax Then ymax = y(i)
 If y(i) < ymin Then ymin = y(i)
 Next i
End Sub
'-----
Public Function getXmax() As Single
 getXmax = xmax
End Function
'-----
Public Function getYmax() As Single
 getYmax = ymax
End Function
'-----
Public Function getXmin() As Single
 getXmin = xmin
End Function
'-----
Public Function getYmin() As Single
 getYmin = ymin
End Function

The important part is that all of the derived classes must implement a method
called plot with two float arrays as arguments. Each of these classes can do any
kind of plot that is appropriate.

The Context
The Context class is the traffic cop that decides which strategy is to be called.
The decision is usually based on a request from the client program, and all that

Copyright © 2001, by James W. Cooper

460

the Context needs to do is to set a variable to refer to one concrete strategy or
another.

'Class Context
Dim fl As vbFile
Dim x() As Single, y() As Single
Dim plts As PlotStrategy
'-----
Public Sub setLinePlot()
 Set plts = New LinePlotStrategy
End Sub
'-----
Public Sub setBarPlot()
 Set plts = New BarPlotStrategy
End Sub
'-----
Public Sub plot()
 readFile
 plts.findBounds x(), y()
 plts.plot x(), y() 'do whatever kind of plot
End Sub
'-----
Private Sub readFile()
'reads data in from data file
End Sub

The Context class is also responsible for handling the data. Either it obtains the
data from a file or database or it is passed in when the Context is created.
Depending on the magnitude of the data, it can either be passed on to the plot
strategies or the Context can pass an instance of itself into the plot strategies and
provide a public method to fetch the data.

The Program Commands
This simple program (Figure 30-2) is just a panel with two buttons that call the
two plots:

Copyright © 2001, by James W. Cooper

461

Figure 30-2 – A simple panel to call two different plots.

Each of the buttons is associated with a command object that sets the correct
strategy and then calls the Context’s plot routine. For example, here is the
complete Line graph command class:

'Class LineCmd
Implements Command
Private contxt As Context
'-----
Public Sub init(cont As Context)
 Set contxt = cont
End Sub
'-----
Private Sub Command_Execute()
 contxt.setLinePlot
 contxt.plot
End Sub

The Line and Bar Graph Strategies
The two strategy classes are pretty much the same: they set up the window size
for plotting and call a plot method specific for that display panel. Here is the Line
graph Strategy:

'Class LinePlotStrategy
Implements PlotStrategy
Dim plts As PlotStrategy

Copyright © 2001, by James W. Cooper

462

Private Sub Class_Initialize()
 'base class used to compute bounds
 Set plts = New PlotStrategy
End Sub

Private Sub PlotStrategy_findBounds(x() As Single, y() As Single)
 plts.findBounds x, y
End Sub
'-----
'not used in derived classes
Private Function PlotStrategy_getXmax() As Single
End Function
Private Function PlotStrategy_getXmin() As Single
End Function
Private Function PlotStrategy_getYmax() As Single
End Function
Private Function PlotStrategy_getYmin() As Single
End Function
'-----
Private Sub PlotStrategy_plot(x() As Single, y() As Single)
Dim lplot As New LinePlot
 plts.findBounds x, y
 lplot.setBounds plts.getXmin, _
 plts.getXmax, plts.getYmin, plts.getYmax
 lplot.Show
 lplot.plot x(), y()
End Sub

Drawing Plots in VB
Note that both the LinePlot and the BarPlot window have plot methods which are
called by the plot methods of the LinePlotStrategy and BarPlotStrategy classes.
Both plot windows have a setBounds method that computes the scaling between
the window coordinates and the x-y coordinate scheme.

Public Sub setBounds(xmn As Single, xmx As Single, ymn As Single,
ymx As Single)
 xmax = xmx
 xmin = xmn
 ymax = ymx
 ymin = ymn
 h = Pic.Height
 w = Pic.Width
 xfactor = 0.9 * w / (xmax - xmin)
 xpmin = 0.05 * w

Copyright © 2001, by James W. Cooper

463

 xpmax = w - xpmin

 yfactor = 0.9 * h / (ymax - ymin)
 ypmin = 0.05 * h
 ypmax = h - ypmin
 bounds = True
End Sub

In VB6 you use the Line command to draw both the line and the bar plots.
However, these plotting commands are immediate and do not refresh the screen
if a window is obscured and needs ot be redrawn. So, we save the references to
the x and y arrays and also call the plot method from the PictureBox’s paint
event.

Public Sub plot(xp() As Single, yp() As Single)
 Dim i As Integer, ix As Integer, iy As Integer
 'draw a line plot
 x = xp
 y = yp
 ix = calcx(x(1))
 iy = calcy(y(1))
 Pic.Cls 'clear the picture
 Pic.PSet (ix, iy) 'start the drawing point
'draw the lines
 For i = 2 To UBound(x())
 ix = calcx(x(i))
 iy = calcy(y(i))
 Pic.Line -(ix, iy), vbBlack
 Next i
End Sub
'------
Private Function calcx(ByVal xp As Single) As Integer
 Dim ix As Integer
 ix = (xp - xmin) * xfactor + xpmin
 calcx = ix
End Function
'-----
Private Function calcy(ByVal yp As Single) As Integer
 Dim iy As Integer
 yp = (yp - ymin) * yfactor
 iy = ypmax - yp
 calcy = iy
End Function
'------
Private Sub Pic_Paint()

Copyright © 2001, by James W. Cooper

464

 plot x(), y()
End Sub

Plot
Panel

LinePlot
Panel

BarPlot
Panel

Figure 30-3 – The two plot Panel classes derived from PlotPanel.

The final two plots are shown in Figure 30-4.

Figure 30-4 – The line graph (left) and the bar graph (right)
The class diagram is given in Figure 30-5.

Figure 30-5 – The UML class diagram for the PlotStrategy classes.
Note that we again use the Command pattern.

Copyright © 2001, by James W. Cooper

465

A Strategy Pattern in VB.NET
The VB7 version of Strategy differs primarily in that we do not need to duplicate
code between the two Strategies or the two windows, since we can use
inheritance to make the same code work for both strategies. We define our basic
PlotStrategy class as an empty class which must be overridden:

Public MustInherit Class PlotStrategy
 Public MustOverride Sub plot(ByVal x() As Single, _

 ByVal y() As Single)
End Class

The two instances for LinePlotStrategy and BarPlotStrategy differ only in the
plot window they create. Here is the LinePlotStrategy ,

Public Class LinePlotStrategy
 Inherits PlotStrategy
 Public Overrides Sub plot(ByVal x() As Single, _

ByVal y() As Single)
 Dim lplot As New LinePlot()
 lplot.Show()
 lplot.plot(x, y)
 End Sub
End Class

and here is the BarPlotStrategy:

Public Class BarPlotStrategy
 Inherits PlotStrategy
 Public Overrides Sub plot(ByVal x() As Single, _

 ByVal y() As Single)
 Dim bplot As New BarPlot()
 bplot.Show()
 bplot.plot(x, y)
 End Sub
End Class

All of the scaling computations can then be housed in one of the plot window
classes, and inherited for the other. We chose the BarPlot window as the base
class, but either one would work as well as the other as the base. This class

Copyright © 2001, by James W. Cooper

466

contains the scaling routines and creates an array of SolidBrush objects for the
various colors to be used in the bar plot:

Public Overridable Sub set_Bounds()
 findBounds()
 'compute scaling factors
 h = Pic.Height
 w = Pic.Width
 xfactor = 0.8F * w / (xmax - xmin)
 xpmin = 0.05F * w
 xpmax = w - xpmin

 yfactor = 0.9F * h / (ymax - ymin)
 ypmin = 0.05F * h
 ypmax = h - ypmin
 'create array of colors for bars
 colors = New arraylist()
 colors.Add(New SolidBrush(Color.Red))
 colors.Add(New SolidBrush(color.Green))
 colors.Add(New SolidBrush(color.Blue))
 colors.Add(New SolidBrush(Color.Magenta))
 colors.Add(New SolidBrush(color.Yellow))
 End Sub

The plotting amounts to copying in a reference to the x and y arrays, calling the
scaling routine and then causing the Picturebox control to be refreshed, which
will then call the paint routine to paint the bars:

 Public Sub plot(ByVal xp() As Single, _

ByVal yp() As Single)
 x = xp
 y = yp
 set_Bounds() 'compute scaling factors
 hasData = True
 pic.Refresh()
 End Sub
'-----
 Public Overridable Sub Pic_Paint(_

ByVal sender As Object, _
ByVal e As PaintEventArgs) Handles Pic.Paint

Copyright © 2001, by James W. Cooper

467

 Dim g As Graphics = e.Graphics
 Dim i, ix, iy As Integer
 Dim br As Brush
 If hasData Then
 For i = 0 To x.Length - 1
 ix = calcx(x(i))
 iy = calcy(y(i))
 br = CType(colors(i), brush)
 g.FillRectangle(br, ix, h - iy, 20, iy)
 Next
 End If
 End Sub

The LinePlot window is much simpler now, because we can derive it from the
BarPlot window and reuse nearly all the code:

Public Class LinePlot
 Inherits BarPlot
 Private bPen As Pen
 Public Sub New()
 MyBase.New
 LinePlot = Me
 InitializeComponent()
 bpen = New Pen(Color.Black)
 End Sub

Public Overrides Sub Pic_Paint(ByVal sender As Object, _

ByVal e As PaintEventArgs) Handles Pic.Paint
 Dim g As Graphics = e.Graphics
 Dim i, ix, iy, ix1, iy1 As Integer
 Dim br As Brush
 If hasData Then
 For i = 1 To x.Length - 1
 ix = calcx(x(i - 1))
 iy = calcy(y(i - 1))
 ix1 = calcx(x(i))
 iy1 = calcy(y(i))
 g.drawline(bpen, ix, iy, ix1, iy1)
 Next
 End If

Copyright © 2001, by James W. Cooper

468

 End Sub
End Class

The two resulting plot windows are identical to those draw in the VB6 version.

Consequences of the Strategy Pattern
Strategy allows you to select one of several algorithms dynamically. These
algorithms can be related in an inheritance hierarchy or they can be unrelated as
long as they implement a common interface. Since the Context switches between
strategies at your request, you have more flexibility than if you simply called the
desired derived class. This approach also avoids the sort of condition statements
than can make code hard to read ad maintain.

On the other hand, strategies don’t hide everything. The client code is usually
aware that there are a number of alternative strategies and has some criteria for
choosing among them. This shifts an algorithmic decision to the client
programmer or the user.

Since there are a number of different parameters that you might pass to different
algorithms, you have to develop a Context interface and strategy methods that are
broad enough to allow for passing in parameters that are not used by that
particular algorithm. For example the setPenColor method in our PlotStrategy is
actually only used by the LineGraph strategy. It is ignored by the BarGraph
strategy, since it sets up its own list of colors for the successive bars it draws.

Programs on the CD-ROM
\Strategy VB6 plot strategy

\Strategy\VBNetStrategy VB7 plot strategy

Copyright © 2001, by James W. Cooper

469

31. THE TEMPLATE METHOD PATTERN

In this chapter, we take up the Template Method pattern—a very simple pattern
that you will discover you use all the time. Whenever you write a parent class
where you leave one or more of the methods to be implemented by derived
classes, you are in essence using the Template pattern. The Template pattern
formalizes the idea of defining an algorithm in a class, but leaving some of the
details to be implemented in subclasses. In other words, if your base class is an
abstract class, as often happens in these design patterns, you are using a simple
form of the Template pattern.

Since inheritance is a critical part of this pattern, we will develop our Template
Method example exclusively in VB7.

Motivation
Templates are so fundamental, you have probably used them dozens of times
without even thinking about it. The idea behind the Template pattern is that some
parts of an algorithm are well defined and can be implemented in the base class,
while other parts may have several implementations and are best left to derived
classes. Another main theme is recogniz ing that there are some basic parts of a
class that can be factored out and put in a base class so that they do not need to
be repeated in several subclasses.

For example, in developing the BarPlot and LinePlot classes we used in the
Strategy pattern examples kin the previous chapter, we discovered that in plotting
both line graphs and bar charts we needed similar code to scale the data and
compute the x-and y pixel positions.

Public MustInherit Class PlotWindow
 Inherits System.WinForms.Form
 'base plot window class for bar and line plots
 Protected xfactor As Single, xpmin As Single
 Protected xpmax As Single
 Protected xmin As Single, xmax As Single
 Protected ymin As Single, ymax As Single
 Protected yfactor As Single, ypmin As Single
 Protected ypmax As Single

Copyright © 2001, by James W. Cooper

470

 Protected x() As Single, y() As Single
 Protected bPen As Pen
 Protected hasData As Boolean
 Protected w As Integer, h As Integer
 'Protected WithEvents pic As PictureBox
 Const max As Single = 1E+38

 Public Sub New()
 MyBase.New()
 PlotWindow = Me
 InitializeComponent()
 End Sub
 '-----
 Public Sub setPenColor(ByVal c As Color)
 bpen = New Pen(c)
 End Sub
 '-----
 Private Sub findBounds()
 Dim i As Integer
 xmin = max
 xmax = -max
 ymin = max
 ymax = -max

 For i = 0 To x.Length - 1
 If x(i) > xmax Then xmax = x(i)
 If x(i) < xmin Then xmin = x(i)
 If y(i) > ymax Then ymax = y(i)
 If y(i) < ymin Then ymin = y(i)
 Next i
 End Sub
 '-----
 Public Overridable Sub set_Bounds(_

ByVal pic As PictureBox)
 findBounds()
 'compute scaling factors
 h = pic.Height
 w = pic.Width
 xfactor = 0.8F * w / (xmax - xmin)
 xpmin = 0.05F * w
 xpmax = w - xpmin

Copyright © 2001, by James W. Cooper

471

 yfactor = 0.9F * h / (ymax - ymin)
 ypmin = 0.05F * h
 ypmax = h - ypmin
 End Sub
 '-----
 Public Function calcx(ByVal xp As Single) As Integer
 Dim ix As Integer
 ix = ((xp - xmin) * xfactor + xpmin).ToInt16
 Return ix
 End Function
 '-----
 Public Function calcy(ByVal yp As Single) As Integer
 Dim iy As Integer
 yp = ((yp - ymin) * yfactor).ToInt16
 iy = (ypmax - yp).ToInt16
 Return iy
 End Function
 '-----
 Public Sub plot(ByVal xp() As Single, _

ByVal yp() As Single, ByVal pic As PictureBox)
 x = xp
 y = yp
 set_Bounds(pic) 'compute scaling factors
 hasData = True
 repaint()
 End Sub
 '-----
 Public MustOverride Sub repaint()
 '-----
End Class

Thus, these methods all belonged in a base PlotPanel class without any actual
plotting capabilities. Note that the plot method sets up all the scaling constants
and just calls repaint. The actual repaint method is deferred to the derived
classes. It is exactly this sort of extension to derived classes that exemplifies the
Template Method pattern.

Copyright © 2001, by James W. Cooper

472

Kinds of Methods in a Template Class
As discussed in Design Patterns, the Template Method pattern has four kinds of
methods that you can make use of in derived classes:

1. Complete methods that carry out some basic function that all the subclasses
will want to use, such as calcx and calcy in the above example. These are
called Concrete methods.

2. Methods that are not filled in at all and must be implemented in derived
classes. In VB7, you would declare these as MustOverride methods.

3. Methods that contain a default implementation of some operations, but which
may be overridden in derived classes. These are called Hook methods. Of
course this is somewhat arbitrary, because in VB7 you can override any
public or protected method in the derived class, but Hook methods are
intended to be overridden, while Concrete methods are not.

4. Finally, a Template class may contain methods which themselves call any
combination of abstract, hook and concrete methods. These methods are not
intended to be overridden, but describe an algorithm without actually
implementing its details. Design Patterns refers to these as Template
methods.

Sample Code
Let’s consider a simple program for drawing triangles on a screen. We’ll start
with an abstract Triangle class, and then derive some special triangle types from
it as we see in Figure 31-1.

Copyright © 2001, by James W. Cooper

473

Figure 31-1 – The abstract Triangle class and three of its subclasses.

Our abstract Triangle class illustrates the Template pattern:

Public MustInherit Class Triangle
 Private p1, p2, p3 As Point
 Protected bPen As Pen
 '-----
 Public Sub New(ByVal a As Point, ByVal b As Point, _
 ByVal c As Point)
 p1 = a
 p2 = b
 p3 = c
 bPen = New Pen(Color.Black)
 End Sub
 '-----
 'draw the complete triangle
 Public Sub draw(ByVal g As Graphics)
 drawLine(g, p1, p2)
 Dim c As Point = draw2ndLine(g, p2, p3)
 closeTriangle(g, c)
 End Sub
 '-----
 'draw one line
 Public Sub drawLine(ByVal g As Graphics, _

ByVal a As Point, ByRef b As Point)
 g.drawLine(bpen, a.x, a.y, b.x, b.y)

Copyright © 2001, by James W. Cooper

474

 End Sub
 '-----
 'method you must override in derived classes
 Public MustOverride Function draw2ndLine(_

ByVal g As Graphics, _
 ByVal a As Point, ByVal b As Point) As Point
 '-----
 'close by drawing back to beginning
 Public Sub closeTriangle(ByVal g As Graphics, _

ByVal c As Point)
 g.DrawLine(bpen, c.X, c.Y, p1.x, p1.y)
 End Sub
End Class

This Triangle class saves the coordinates of three lines, but the draw routine
draws only the first and the last lines. The all important draw2ndLine method that
draws a line to the third point is left as an abstract method. That way the derived
class can move the third point to create the kind of rectangle you wish to draw.

This is a general example of a class using the Template pattern. The draw
method calls two concrete base class methods and one abstract method that must
be overridden in any concrete class derived from Triangle.

Another very similar way to implement the case triangle class is to include
default code for the draw2ndLine method.

Public Overridable Function draw2ndLine(_
 ByVal g As Graphics, ByVal a As point, _
 ByVal b As Point) As Point
 g.DrawLine(bpen, a.X, a.Y, b.X, b.Y)
 Return b
 End Function

In this case, the draw2ndLine method becomes a Hook method that can be
overridden for other classes.

Drawing a Standard Triangle
To draw a general triangle with no restrictions on its shape, we simple implement
the draw2ndLine method in a derived stdTriangle class:

Copyright © 2001, by James W. Cooper

475

Public Class StdTriangle
 Inherits Triangle
 '-----
 Public Sub new(ByVal a As Point, _
 ByVal b As Point, ByVal c As Point)
 MyBase.new(a, b, c)
 End Sub
 '-----
 Public Overrides Function draw2ndLine(_
 ByVal g As Graphics, ByVal a As point, _
 ByVal b As Point) As Point
 g.DrawLine(bpen, a.X, a.Y, b.X, b.Y)
 Return b
 End Function
End Class

Drawing an Isoceles Triangle
This class computes a new third data point that will make the two sides equal and
length and saves that new point inside the class.

Public Class IsocelesTriangle
 Inherits Triangle
 Private newc As Point
 Private newcx, newcy As Integer
 '-----
 Public Sub New(ByVal a As Point, ByVal b As Point, _

ByVal c As Point)
 MyBase.New(a, b, c)
 Dim dx1, dy1, dx2, dy2, side1, side2 As Single
 Dim slope, intercept As Single
 Dim incr As Integer
 dx1 = b.x - a.x
 dy1 = b.y - a.y
 dx2 = c.x - b.x
 dy2 = c.y - b.y

 side1 = calcSide(dx1, dy1)
 side2 = calcSide(dx2, dy2)

 If (side2 < side1) Then

Copyright © 2001, by James W. Cooper

476

 incr = -1
 Else
 incr = 1
 End If
 slope = dy2 / dx2
 intercept = c.y - slope * c.X

 'move point c so that this is an isoceles triangle
 newcx = c.X
 newcy = c.Y
 While (abs(side1 - side2) > 1)
 newcx = newcx + incr

'iterate a pixel at a time until close
 newcy = (slope * newcx + intercept).ToInt16
 dx2 = newcx - b.x
 dy2 = newcy - b.y
 side2 = calcSide(dx2, dy2)
 End While
 newc = New Point(newcx, newcy)
 End Sub
 '------
 Private Function calcSide(ByVal dx As Single, _

ByVal dy As Single) As Single
 Return Sqrt(dx * dx + dy * dy).ToSingle
 End Function

When the Triangle class calls the draw method, it calls this new version of
draw2ndLine and draws a line to the new third point. Further, it returns that new
point to the draw method so it will draw the closing side of the triangle correctly.

'draw 2nd line using new saved point
 Public Overrides Function draw2ndLine(_
 ByVal g As Graphics, ByVal b As Point, _
 ByVal c As Point) As Point
 g.DrawLine(bpen, b.X, b.Y, newc.X, newc.Y)
 Return newc
 End Function

Copyright © 2001, by James W. Cooper

477

The Triangle Drawing Program
The main program simple creates instances of the triangles you want to draw.
Then, it adds them to a ArrayList in the TriangleForm class.

Public Class Form1
 Inherits System.WinForms.Form
 Private triangles As ArrayList
 Public Sub New()
 MyBase.New
 Form1 = Me
 InitializeComponent()
 'Create a list of triangles to draw
 triangles = New ArrayList()
 Dim t1 As New StdTriangle(_
 New Point(10, 10), New Point(150, 50), _
 New point(100, 75))
 Dim t2 As New IsocelesTriangle(_
 New Point(150, 100), New Point(240, 40), _
 New Point(175, 150))
 triangles.Add(t1)
 triangles.Add(t2)
 End Sub

It is the paint routine in this class that actually draws the triangles.

Public Sub Pic_Paint(ByVal sender As Object, _
 ByVal e As System.WinForms.PaintEventArgs) _
 Handles Pic.Paint
 Dim i As Integer
 Dim g As Graphics = e.Graphics
 For i = 0 To triangles.Count - 1
 Dim t As Triangle = _

CType(triangles(i), triangle)
 t.draw(g)
 Next
 End Sub

An example of a standard triangle and an isoceles triangle is shown in Figure
31-2.

Copyright © 2001, by James W. Cooper

478

Figure 31-2 – a standard and an isoceles triangle

Templates and Callbacks
Design Patterns points out that Templates can exemplify the “Hollywood
Principle,” or “Don’t call us, we’ll call you.” The idea here is that methods in the
base class seem to call methods in the derived classes. The operative word here is
seem. If we consider the draw code in our base Triangle class, we see that there
are 3 method calls:

 drawLine(g, p1, p2)
 Dim c As Point = draw2ndLine(g, p2, p3)
 closeTriangle(g, c)

Now drawLine and closeTriangle are implemented in the base class. However, as
we have seen, the draw2ndLine method is not implemented at all in the base
class, and various derived classes can implement it differently. Since the actual
methods that are being called are in the derived classes, it appears as though they
are being called from the base class.

Copyright © 2001, by James W. Cooper

479

If this idea make you uncomfortable, you will probably take solace in
recognizing that all the method calls originate from the derived class, and that
these calls move up the inheritance chain until they find the first class which
implements them. If this class is the base class, fine. If not, it could be any other
class in between. Now, when you call the draw method, the derived class moves
up the inheritance tree until it finds an implementation of draw. Likewise, for
each method called from within draw, the derived class starts at the currently
class and moves up the tree to find each method. When it gets to the
draw2ndLine method, it finds it immediately in the current class. So it isn’t
“really” called from the base class, but it does sort of seem that way.

Summary and Consequences
Template patterns occur all the time in OO software and are neither complex nor
obscure in intent. They are normal part of OO programming and you shouldn’t
try to make them into more than they actually are.

The first significant point is that your base class may only define some of the
methods it will be using, leaving the rest to be implemented in the derived
classes. The second major point is that there may be methods in the base class
which call a sequence of methods, some implemented in the base class and some
implemented in the derived class. This Template method defines a general
algorithm, although the details may not be worked out completely in the base
class.

Template classes will frequently have some abstract methods that you must
override in the derived classes, and may also have some classes with a simple
“place-holder” implementation that you are free to override where this is
appropriate. If these place-holder classes are called from another method in the
base class, then we refer to these overridable methods are “Hook” methods.

Programs on the CD-ROM
\Strategy\TemplateStrategy VB7 plot strategy using Template

method pattern

\Template\Tngle VB7 triangle drawing template

Copyright © 2001, by James W. Cooper

480

32. THE VISITOR PATTERN

The Visitor pattern turns the tables on our object-oriented model and creates an
external class to act on data in other classes. This is useful when you have a
polymorphic operation that cannot reside in the class hierarchy for some reason..
For example, the operation wasn’t considered when the hierarchy was designed,
or because it would clutter the interface of the classes unnecessarily. The Visitor
pattern is easie r to explain using VB7, since polymorphism and inheritance make
the code rather simpler. We’ll discuss how to implement the Visitor in VB6 at
the end of this chapter.

Motivation
While at first it may seem “unclean” to put operations that should be inside a
class in another class instead, there are good reasons for doing it. Suppose each
of a number of drawing object classes has similar code for drawing itself. The
drawing methods may be different, but they probably all use underlying utility
functions that we might have to duplicate in each class. Further, a set of closely
related functions is scattered throughout a number of different classes as shown
in Figure 32-1

Figure 32-1 – A DrawObject and three of its subclasses.

Instead, we write a Visitor class which contains all the related draw methods and
have it visit each of the objects in succession (Figure 32-2).

Copyright © 2001, by James W. Cooper

481

Figure 32-2 – A Visitor class (Drawer) which visits each of three

triangle classes.
The question that most people who first read about this pattern ask is “what does
visiting mean?” There is only one way that an outside class can gain access to
another class, and that is by calling its public methods. In the Visitor case,
visiting each class means that you are calling a method already installed for this
purpose, called accept. The accept method has one argument: the instance of the
visitor, and in return, it calls the visit method of the Visitor, passing itself as an
argument, as shown in Figure 32-3.

Visitor
Visited
instance

visited.accept(this);

v.visit(this);

Copyright © 2001, by James W. Cooper

482

Figure 32-3- How the visit and accept methods interact.
Putting it in simple code terms, every object that you want to visit must have the
following method:

Public Sub accept(ByVal v As Visitor)
 v.visit(Me)
End Sub

In this way, the Visitor object receives a reference to each of the instances, one
by one, and can then call its public methods to obtain data, perform calculations,
generate reports, or just draw the object on the screen. Of course, if the class does
not have an accept method, you can subclass it and add one.

When to Use the Visitor Pattern
You should consider using a Visitor pattern when you want to perform an
operation on the data contained in a number of objects that have different
interfaces. Visitors are also valuable if you have to perform a number of
unrelated operations on these classes. Visitors are a useful way to add function to
class libraries or frameworks for which you either do not have the course or
cannot change the source for other technical (or political) reasons. In these latter
cases, you simply subclass the classes of the framework and add the accept
method to each subclass.

On the other hand, as we will see below, Visitors are a good choice only when
you do not expect many new classes to be added to your program.

Sample Code
Let’s consider a simple subset of the Employee problem we discussed in the
Composite pattern. We have a simple Employee object which maintains a record
of the employee’s name, salary, vacation taken and number of sick days taken. A
simple version of this class is:

Public Class Employee
 Dim sickDays As Integer, vacDays As Integer
 Dim salary As Single
 Dim name As String

Copyright © 2001, by James W. Cooper

483

 '-----
 Public Sub New(ByVal nm As String, ByVal sl As Single, _

 ByVal vDays As Integer, ByVal sDays As Integer)
 name = nm
 salary = sl
 vacDays = vDays
 sickDays = sDays
 End Sub
 '-----
 Public Function getName() As String
 Return name
 End Function
 '-----
 Public Function getSalary() As Single
 Return salary
 End Function
 '-----
 Public Function getSickdays() As Integer
 Return sickDays
 End Function
 '-----
 Public Function getVacDays() As Integer
 Return vacDays
 End Function
 '-----
 Public Sub accept(ByVal v As Visitor)
 v.visit(Me)
 End Sub
End Class

Note that we have included the accept method in this class. Now let’s suppose
that we want to prepare a report of the number of vacation days that all
employees have taken so far this year. We could just write some code in the
client to sum the results of calls to each Employee’s getVacDays function, or we
could put this function into a Visitor.

Since Java is a strongly typed language, our base Visitor class needs to have a
suitable abstract visit method for each kind of class in your program. In this first

Copyright © 2001, by James W. Cooper

484

simple example, we only have Employees, so our basic abstract Visitor class is
just

Public MustInherit Class Visitor
 Public MustOverride Sub visit(ByVal emp As Employee)
 Public MustOverride Sub visit(ByVal bos As Boss)
End Class

Notice that there is no indication what the Visitor does with each class in either
the client classes or the abstract Visitor class. We can in fact write a whole lot of
visitors that do different things to the classes in our program. The Visitor we are
going to write first just sums the vacation data for all our employees:

Public Class VacationVisitor
 Inherits Visitor
 Dim totalDays As Integer
 '-----
 Public Sub new()
 totalDays = 0
 End Sub
 '-----
 Public Function getTotalDays() As Integer
 getTotalDays = totalDays
 End Function
 '-----
 Public Overrides Sub visit(ByVal emp As Employee)
 totalDays = totalDays + emp.getVacDays
 End Sub
 Public Overrides Sub visit(ByVal bos As Boss)
 totalDays = totalDays + bos.getVacDays
 End Sub
End Class

Visiting the Classes
Now, all we have to do to compute the total vacation taken is to go through a list
of the employees and visit each of them, and then ask the Visitor for the total.

For i = 0 To empls.Length - 1
 empls(i).accept(vac) 'get the employee
Next i

Copyright © 2001, by James W. Cooper

485

List1.items.Add("Total vacation days=" + _

vac.getTotalDays.toString)

Let’s reiterate what happens for each visit:

1. We move through a loop of all the Employees.

2. The Visitor calls each Employee’s accept method.

3. That instance of Employee calls the Visitor’s visit method.

4. The Visitor fetches the vacation days and adds them into the total.

5. The main program prints out the total when the loop is complete.

Visiting Several Classes
The Visitor becomes more useful, when there are a number of different classes
with different interfaces and we want to encapsulate how we get data from these
classes. Let’s extend our vacation days model by introducing a new Employee
type called Boss. Let’s further suppose that at this company, Bosses are rewarded
with bonus vacation days (instead of money). So the Boss class as a couple of
extra methods to set and obtain the bonus vacation day information:

Public Class Boss
 Inherits Employee
 Private bonusDays As Integer
 '-----
 Public Sub New(ByVal nm As String, _

 ByVal sl As Single, _
 ByVal vDays As Integer, ByVal sDays As Integer)
 MyBase.New(nm, sl, vdays, sdays)
 End Sub
 '-----
 Public Sub setBonusDays(ByVal bdays As Integer)
 bonusdays = bdays
 End Sub
 '-----
 Public Function getBonusDays() As Integer
 Return bonusDays
 End Function

Copyright © 2001, by James W. Cooper

486

 '-----
 Public Overrides Sub accept(ByVal v As Visitor)
 v.visit(Me)
 End Sub
End Class

When we add a class to our program, we have to add it to our Visitor as well, so
that the abstract template for the Visitor is now:

Public MustInherit Class Visitor
 Public MustOverride Sub visit(ByVal emp As Employee)
 Public MustOverride Sub visit(ByVal bos As Boss)
End Class

This says that any concrete Visitor classes we write must provide polymorphic
visit methods for both the Employee and the Boss class. In the case of our
vacation day counter, we need to ask the Bosses for both regular and bonus days
taken, so the visits are now different. We’ll write a new bVacationVisitor class
that takes account of this difference:

Public Class bVacationVisitor
 Inherits Visitor
 Private totalDays As Integer
 '-----
 Public Overrides Sub visit(_

ByVal emp As Employee)
 totalDays += emp.getVacDays
 End Sub
 '-----
 Public Overrides Sub visit(ByVal bos As Boss)
 totalDays += bos.getVacDays
 totalDays += bos.getBonusDays
 End Sub
 '-----
 Public Function getTotalDays() As Integer
 Return totalDays
 End Function
End Class

Copyright © 2001, by James W. Cooper

487

Note that while in this case Boss is derived from Employee, it need not be related
at all as long as it has an accept method for the Visitor class. It is quite important,
however, that you implement a visit method in the Visitor for every class you
will be visiting and not count on inheriting this behavior, since the visit method
from the parent class is an Employee rather than a Boss visit method. Likewise,
each of your derived classes (Boss, Employee, etc. must have its own accept
method rather than calling one in its parent class. This is illustrated in the class
diagram in Figure 32-4.

Figure 32-4 – The two visitor classes visiting the Boss and Employee
classes.

Bosses are Employees, too
We show in Figure 32-5 a simple application that carries out both Employee
visits and Boss visits on the collection of Employees and Bosses. The original
VacationVisitor will just treat Bosses as Employees and get only their ordinary
vacation data. The bVacationVisitor will get both.

Dim i As Integer
 Dim vac As New VacationVisitor()
 Dim bvac As New bVacationVisitor()
 For i = 0 To empls.Length - 1
 empls(i).accept(vac) 'get the employee
 empls(i).accept(bvac)
 Next i
 List1.items.Add("Total vacation days=" + _

vac.getTotalDays.toString)
 List1.items.Add("Total boss vacation days=" + _

bvac.getTotalDays.tostring)

The two lines of displayed data represent the two sums that are computed when
the user clicks on the Vacations button.

Copyright © 2001, by James W. Cooper

488

Figure 32-5 – A simple application that performs the vacation visits

described above.

Catch-All Operations with Visitors
In the cases we showed above, the Visitor class has a visit method for each
visiting class, such as

 Public MustOverride Sub visit(ByVal emp As Employee)
 Public MustOverride Sub visit(ByVal bos As Boss)

However, if you start subclassing your visitor classes and adding new classes that
might visit, you should recognize that some visit methods might not be satisfied
by the methods in the derived class. These might instead “fall through” to
methods in one of the parent classes where that object type is recognized. This
provides a way of specifying default visitor behavior.

Now every class must override accept(v) with its own implementation so that the
return call v.visit(this) returns an object this of the correct type and not of the
superclass’s type.

Copyright © 2001, by James W. Cooper

489

Let’s suppose that we introduce another layer of management into our company:
the Manager. Managers are subclasses of Employees and now they have the
privileges formerly reserved for Bosses of extra vacation days. Bosses now have
an additional reward—stock options. Now if we run the same program to
compute vacation days but do not revise our Visitor to look for Managers, it will
recognize them as mere Employees and count only their regular vacation and not
their extra vacation days. However, the catch-all parent class is a good thing if
subclasses may be added to the application from time to time and you want the
visitor operations to continue to run without modification.

There are three ways to integrate the new Manager cla ss into the visitor system.
You could define a ManagerVisitor or you use the BossVisitor to handle both.
However, there could be conditions when continually modifying the Visitor
structure is not desirable. In that case, you could simply test for this special case
in the EmployeeVisitor class.

Public Overrides Sub visit(ByVal emp As Employee)
 totalDays += emp.getVacDays
 If TypeOf emp Is Manager Then
 Dim mgr As Manager = CType(emp, Manager)
 totaldays += mgr.getBonusDays
 End If
 End Sub

While this seems “unclean” at first compared to defining classes properly, it can
provide a method of catching special cases in derived classes without writing
whole new visitor program hierarchies. This “catch-all” approach is discussed in
some detail in the book Pattern Hatching (Vlissides, 1998).

Double Dispatching
No discussion on the Visitor pattern is complete without mentioning that you are
really dispatching a method twice for the Visitor to work. The Visitor calls the
polymorphic accept method of a given object, and the accept method calls the
polymorphic visit method of the Visitor. It this bidirectional calling that allows
you to add more operations on any class that has an accept method, since each
new Visitor class we write can carry out whatever operations we might think of
using the data available in these classes.

Copyright © 2001, by James W. Cooper

490

Why Are We Doing This?
You may be asking yourself why we are jumping through these hoops when we
could call the getVacationDays methods directly. By using this “callback”
approach we are implementing “double dispatching.” There is no requirement
that the objects we visit be of the same or even of related types. Further, using
this callback approach, you can have a different visit method called in the Visitor
depending on the actual type of class. This is harder to implement directly.

Further, if the list of objects to be visited in an ArrayList are a collection of
different types, having different versions of the visit methods in the actual Visitor
is the only way to handle the problem without specifically checking the type of
each class.

Traversing a Series of Classes
The calling program that passes the class instances to the Visitor must know
about all the existing instances of classes to be visited and must keep them in a
simple structure such as an array or Vector. Another possibility would be to
create an Enumeration of these classes and pass it to the Visitor. Finally, the
Visitor itself could keep the list of objects that it is to visit. In our simple example
program, we used an array of objects, but any of the other methods would work
equally well.

Writing a Visitor in VB6
In VB6, we will define the Visitor as an interface and define only the employee
visit as being required:

'Interface Visitor
Public Sub visit(emp As Employee)
End Sub

The Employee class has an accept method much the same as in our VB7 version:

Public Sub accept(v As Visitor)
 v.visit Me
End Sub

Copyright © 2001, by James W. Cooper

491

To create a VacationVisitor, we create a class which implements the Visitor
interface:

'Class VacationVisitor
Implements Visitor
Dim totalDays As Integer
'-----
Private Sub Class_Initialize()
 totalDays = 0
End Sub
'-----
Private Sub Visitor_visit(emp As Employee)
 totalDays = totalDays + emp.getVacDays
End Sub
'-----
Public Function getTotalDays() As Integer
 getTotalDays = totalDays
End Function

Then to carry out the visiting and tabulate employee vacation days, we loop
through and call each employee’s accept method, much as before:

'loop through all the employees
For i = 1 To empls.Count
 Set empl = empls(i)
 empl.accept v 'get the employee
 Next i
List1.AddItem "Total vacation days=" + Str$(vac.getTotalDays)

In VB6, our Boss class implements the Employee interface rather than being
derived from it, and contains an instance of the Employee class.

'Class Boss
Implements Employee
Private empl As Employee
Private bonusDays As Integer
'-----
Private Sub Class_Initialize()
 Set empl = New Employee
End Sub
'-----
Private Sub Employee_accept(v As Visitor)
 empl.accept v
End Sub

Copyright © 2001, by James W. Cooper

492

'-----
Private Function Employee_getName() As String
 Employee_getName = empl.getName
End Function
'-----
Private Function Employee_getSalary() As Single
 Employee_getSalary = empl.getSalary
End Function
'-----
Private Function Employee_getSickdays() As Integer
 Employee_getSickdays = empl.getSickdays
End Function
'-----
Private Function Employee_getVacDays() As Integer
 Employee_getVacDays = empl.getVacDays
End Function
'-----
Private Sub Employee_init(nm As String, sl As Single, _
 vDays As Integer, sDays As Integer)
 empl.init nm, sl, vDays, sDays
End Sub
'-----
Public Sub setBonusdays(bday As Integer)
 bonusDays = bday
End Sub
'-----
Public Function getBonusDays() As Integer
 getBonusDays = bonusDays
End Function
'-----
Public Sub accept(v As Visitor)
 v.visit Me
End Sub

Note that this class has two accept methods: one from implementing the
Employee interface,

Private Sub Employee_accept(v As Visitor)
 empl.accept v
End Sub

and another just for the Boss class
Public Sub accept(v As Visitor)
 v.visit Me

Copyright © 2001, by James W. Cooper

493

End Sub

The problem that VB6 introduces is that you must refer to an object as being an
Employee to use the Employee methods and refer to it as a Boss to use the Boss-
specific methods. Thus, there cannot be a polymorphic set of visit methods in the
visitor class for each class that is to visit. Instead you must convert each object to
the correct class to call that class’s methods. Since we shouldn’t have to know in
advance which objects are Employees and which are Bosses, we just try to
convert each Employee to a Boss and catch the error that is generated for classes
where this is not legal:

Private Sub Compute_Click()
Dim i As Integer
Dim vac As New VacationVisitor
Dim bvac As New bVacationVisitor
Dim v As Visitor
Dim bos As Boss
Dim empl As Employee
Set v = vac
'loop through all the employees
On Local Error GoTo noboss 'trap conversion errors
For i = 1 To empls.Count
 Set empl = empls(i)
 empl.accept v 'get the employee
 empl.accept bvac 'and in box visitor
 Set bos = empls(i)
 bos.accept bvac 'get as boss
 nexti:
Next i
List1.AddItem "Total vacation days=" + Str$(vac.getTotalDays)
List1.AddItem "Total boss vacation days=" +
Str$(bvac.getTotalDays)
Exit Sub

'error if non-boss converted
'justs skips to bottom of loop
noboss:
 Resume nexti
End Sub

This approach is significantly less elegant, but it does allow you to use a Visitor-
like approach in VB6.

Copyright © 2001, by James W. Cooper

494

Consequences of the Visitor Pattern
The Visitor pattern is useful when you want to encapsulate fetching data from a
number of instances of several classes. Design Patterns suggests that the Visitor
can provide additional functionality to a class without changing it. We prefer to
say that a Visitor can add functionality to a collection of classes and encapsulate
the methods it uses.

The Visitor is not magic, however, and cannot obtain private data from classes: it
is limited to the data available from public methods. This might force you to
provide public methods that you would otherwise not have provided. However, it
can obtain data from a disparate collection of unrelated classes and utilize it to
present the results of a global calculation to the user program.

It is easy to add new operations to a program using Visitors, since the Visitor
contains the code instead of each of the individual classes. Further, Visitors can
gather related operations into a single class rather than forcing you to change or
derive classes to add these operations. This can make the program simpler to
write and maintain.

Visitors are less helpful during a program’s growth stage, since each time you
add new classes which must be visited, you have to add an abstract visit
operation to the abstract Visitor class, and you must add an implementation for
that class to each concrete Visitor you have written. Visitors can be powerful
additions when the program reaches the point where many new classes are
unlikely.

Visitors can be used very effectively in Composite systems and the boss-
employee system we just illustrated could well be a Composite like the one we
used in the Composite chapter.

Thought Questions
An investment firm’s customer records consist of an object for each stock or
other financial instrument each investor owns. The object contains a history of
the purchase, sale and dividend activities for that stock. Design a Visitor pattern
to report on net end of year profit or loss on stocks sold during the year.

Copyright © 2001, by James W. Cooper

495

Programs on the CD-ROM
\Visitor\ VB6 Visitor

\Visitor\VBNetVisitor VB7 Visitor

Copyright © 2001, by James W. Cooper

496

33. BIBLIOGRAPHY

Copyright © 2001, by James W. Cooper

497

Alexander, Christopher, Ishikawa, Sara, et. al., A Pattern Language, Oxford University Press,
New York, 1977.

Alpert, S. R., Brown, K. and Woolf, B., The Design Patterns Smalltalk Companion, Addison-
Wesley, 1998.

Arnold, K. and Gosling, J. The Java Programming Language, Addison-Wesley, Reading, MA.,
1997

Booch, G., Jacobson, I. and Rumbaugh, J.The Unified Modeling Language User Guide, Addison-
Wesley, Reading, MA, 1998.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., A System of Patterns, John
Wiley and Sons, New York, 1996.

Cooper, J. W., Java Design Patterns: A Tutorial. Addison-Wesley, Reading, MA, 2000.

Cooper, J. W., Principles of Object-Oriented Programming in Java 1.1 Coriolis (Ventana), 1997.

Coplien, James O. Advanced C++ Programming Styles and Idioms, Addison-Wesley, Reading,
MA., 1992.

Coplien, James O. and Schmidt, Douglas C., Pattern Languages of Program Design, Addison-
Wesley, 1995.

Fowler, Martin, with Kendall Scott, UML Distilled, Addison-Wesley, Reading, MA, 1997.

Gamma, E., Helm, T., Johnson, R. and Vlissides, J., Design Patterns: Abstraction and Reuse of
Object Oriented Design. Proceedings of ECOOP ’93, 405-431.

Gamma, Eric; Helm, Richard; Johnson, Ralph and Vlissides, John, Design Patterns. Elements of
Reusable Software., Addison-Wesley, Reading, MA, 1995

Grand, Mark, Patterns in Java, Volume 1, John Wiley & Sons, New York 1998.

Krasner, G.E. and Pope, S.T., A cookbook for using the Model-View-Controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programmng I(3)., 1988

Kurata, Deborah, “Programming with Objects,” Visual Basic Programmer’s Journal, June,
1998.

Pree, Wolfgang, Design Patterns for Object Oriented Software Development, Addison-Wesley,
1994.

Riel, Arthur J., Object-Oriented Design Heuristics, Addison-Wesley, Reading, MA, 1996

Vlissides, John, Pattern Hatching: Design Patterns Applied, Addison-Wesley, Reading, MA,
1998

Copyright © 2001, by James W. Cooper

498

34.

