Design Patterns and
Object Oriented
Programming In

Visual Basic 6 and

VB.NET

JamesW. Cooper

IBM Thomas J Watson Research Center
January 14, 2001
Copyright © 2001, by James W Cooper

1. What AreDesign Patterns?........cccceovieeveccie s 21
Defining DeSign PatternS..........cvvive i 23
The Learning PrOCESS........ccouiiiiii it 25
Studying DeSigN PatternsS..........coeeiiiiiie e 25
Notes on Object Oriented APProaches............cccoeveeeiiieeiniee e 26
VB DeSIgN PatternsS..........ueiiiiiiiiiie et 27
How thisBOOK IS Organized............cocueeeiieiiiiie e 27

2. UML DIAQramscccooeeiesierieeieseeseesieseeseesse e sseessesessseessesnessns 29

INNEITTANCE. ... 31
INEEITACES. ... 32
(000010107015 11 [0 o [R URRRR 33
ANNOLBLION ...ttt st e s e e nneeeenes A
WithClass UML Diagraims..........cooueeeiieiiniieeeiieeeniiee e 35
Visua BasiC PrOJeCt FIleS.........ueiiiiiiiiiiiiiee e 35

3. Using Classesand ODbjectSin VB......cccccceveeveveveee e 36
A Simple Temperature Conversion Program...........ccccveeeeeeeeeeeciiineneeeeeeeens 36
Building a TeEmMperature ClasSs..........oovveeeeiiiiiie e 338

Converting t0 KEIVIN ... 40
Putting the Decisions into the Temperature Class..........ccccevvvvveeeeiiiiieeeenee 40
Using Classes for Format and Vaue Conversion.............cceceeeeieeeniieeeniinens 42

Handling Unreasonable ValUES...........cooueiiiiiiiiiieecc e 44
A SING TOKENIZES ClESS....ccuviiiiiieiiiie et 45
ClasSES @S ODJECLS.ccuuieiiiiie ettt be e ebee e a7

ClaSS CONMAINMENT.......eeiueieiiesiie et 49
Class INITIAIZATONeeeiiiiiiiie e 50
Classes and Propertis........ueeeee ittt 50
Another Interface Example —The VoItmeter ... 52
A VORI CIBSS.......ooiiiiie e 53
Programming Style in Visual BaSiC..........cccooiiiiiiiiiiiieceec e 55
SUMIMIAIY ...ttt e et e e e s e e e e e e s nnne e e e e e annne s 56

BUIlAiNg VB ObJECES.........viiie ettt 58
Creating Instances of ODJECES.........ccvvvieeiie e, 59

A VB Measurement Prograim...........eeoiieriereeeeee e eaiiieeee e e ssiiieeeeeae e 59
Methods iNSIdE ODJECES.......cceiiiiiiee e 60
VaTADIES. ... 60
Passing Arguments by Reference and by Value.............cccceeeviiieeeeiciieeeenee 61
Object Oriented JAQON.ccuveieeeieiieeeeeee e e eee e see e e e ree e e e sneee e e e nnneeeas 61

5. Building Your Own VB Control.........cccocceveeiiesienseeneseeseesee e 63
A Highlighted Text FIEld........cccooiiiiieeeee e 63
Resizing aUser CONLIOlceviieeiiiciiieieeeee e 65
Testing Your HITEXt CONIOIS.couveeeeiiiiiee s 65
Adding Properties and Methods to User Controls..........ccueeeeviveeeesiciieeeennnee 66
Compiling @aUSer CONLIOL..........ceeiiiieiiiie et 67
SUMIMIBIY ..ottt e e e e s e e e e e e e e e annn e e e e e nnnre s 67

6. Inheritance and INterfaces........cocovvirenirinieiere s 69
INEEITACES. ... 69
AN INVESIMENE SIMUIBEOTvviiiiiiiiiec e 70
WIiting the SIMUIBEONvveeeiiiiie e 72
Indicators for Using an INterface.cueveeiiiieie i 73
Reusing Common MEthOOS............eiiiiiiiiiie e 75
Hidden INTErfaCeSoveiiiie e e 7
SUMIMIAIY ...ttt e e e e e s e e e e e e e e annn e e e e e annneeas 78

7. Introduction t0 VB.NETcoooiiiiiinireeeeeee e 79
Syntax DifferenceSin VB.NETcccveeiiieii et 79

Improved FUNCLION SYNEaXcccvvveiieeee e e 80

OBJECtSIN VB.NET ...ttt 81
NUMBDES TN VB.INET ...ttt 82
Propertiesin VB6 and VB.NET ... 82
Shorthand EQUalS SYNaX..........eeeiiiiiee e 83
Managed Languages and Garbage Collection............cccoocveeeiviiiiee i &
ClasseSIN VB.INET ... &4
Building aVB7 APPlICAIONc.cooiiiiiiiiiiiiie e 86
The Simplest Window Program in VB.INETccccoviiiiiiieiiiee e 88
INNEITEANCE ... e 89
CONSITUCLOIS........eeiiee ittt 91
Drawing and GraphicS iN VB.NETcccooiiiie e 93
(@< g 07="s] o TR SRR 93
INNEITTANCE ... A
NBIMESPACES. ...ttt e e e ettt e e e e e e e st e e e e e e e e e s snnreeeeeaaeeeans A
Creating a Square From aRectanglecocoeeiieiiiii e 9%
Public, Private and ProteCted..........eiiiiiiiiieeeeeee e 97
Overriding Methods in Derived ClIasseS.........ooceveiieeirieeeniee e 97
Overriding Windows CONtrolSeeiveeeiieeeiiieesiieesieessieee e 29
INEEITACES. ... 101
SUMIMIBIY e 102
Programs onthe CD-ROM...........coeiiieiiiiiiieeee e 102
8. Arrays, Filesand Exceptionsin VB.N€tccccooviiriinnnennenne 103
N = £ T PP SPRRP 103
COllECtioN ODJECES ..ottt 104

HESTEADIES. ... 105
SOMEOALISIS. ...ttt 105
EXCEDLIONS. ...ttt 106
MUItIPIE EXCEPLIONSceeiiiiiie ettt e e s enneeeeeen 108
THhrowing EXCEPLIONSoveiiiiiiee e 108
File HaNAING.eeiiiieeiee e 108
The FIl@ OBJECT......coiiieieie e 109
ReadiNg TEXE FIlooiiiieiiiie s 109
WItING @ TEXE FIE ..o 109
Exceptionsin File Handling...........ooooiiieiiiiiie e 110
Testing for ENd Of FIEevvvvieiieiceece e 110
SEC FIEMENOUS ... 111
A VOFITE CIBSS......coiiiiiiie e 112
Creational PatterNSccooveiiiiereeeee e 114
9. TheFactory Patternccccvccevieeececeee e 116
HOW @ FaCtory WOIKSooeiiiiiiiee ettt 116
SAMPIE COUBeeeieeee e e e e 117
The TWO Derived Classes........cocviiiiiiiiiieeiee e 117
Building the SImple FaCloryoooiiiiee e 119
USING thE FACIONY ... e 119
Writing the Factory Pattern in VB.NET ... 120
Factory Patternsin Math COmMPULALioNeevvueeiiieeiiiee e 122
Programs on the CD-ROM.........ccoiiiiiiiiiiiiiie e 123
Thought QUESHIONSccuveiiiiiie it 124

10. TheFactory Methodcccooovevieiiieceecece e 125

The SWIMMEN ClaSS.....ciiiiiiiiie e e 128
The EVENES ClaSSeS......c.uvviiiiiiiie et 129
1= 10 0= o] 0o TR 131
CIrcle SERAING.ee i 133
Our Seeding Program..........cuueieeeiiieeeeeieee e esiree e e sreee e enree e e nnnaeeas 133
(@107 g o (0] = ER 134
The Seeding Program in VBToccveie i 135
When to Use aFactory Method............oevveiiiiiie e 137
Thought QUESHIONSccueiiiie et e 138
Programs on the CD-ROM.........ccccoiiiiiiiiie e 138
11. The Abstract Factory Pattern........cccccoeieiceevee e, 139
A GardenMaKer FCIONY.......ccouiueieeeiiieee e eseee e s e seeeee e 139
How the User Interface WOrKS.........cocveeeeieiiiiee e 142
Creating an Abstract Factory USiNg VBT ..o 143
The PICEUIEBOX ...ceic ettt e 146
Handling the RadioButton and Button Events.............ccccceeevviveeiiciieeeenn, 147
AddiNg MOre ClIaSSES........coeiiiiiiiieeiiieesiiie et snee e 147
Consequences of Abstract Factorycccceevviveee i 148
Thought QUESHIONScccieiiiee e e e e e e 148
Code 0N the CD-ROM......cooiiiiiiiiiiie et 148
12, The SINgIeton Pattern ... 149
Creating Singleton Using a Static Methodccooiviiiiieiiiiieieee, 149
CaChiNg the EITON ... e 151
Providing a Global Point of Accessto a Singleton............cccvvvveeiiieeeiieenns 152

The MSComm Control asaSiNgIetonccooceeeeiiiiiee e 152

AVAIEDIE POIS.....ciiiiiieee e 155
Writing aSingleton iINVB.INEToooooiiiiiieee e 156
UsSiNg @ Private CONSITUCTON........cceiiiiieeeiiiie e siieee e ssieee e sieeee e 157
Error Handling in Our SINGIELON..........ccooiiiieeiiiiie e 157

A VB.NET SpoolDemo Program...........cceeceeeeeeiiiieeeeiniieeessniieeesssieeeeeens 159
The Global Point Of ACCESS........ccoiiiiiieeiiiiee e 160
Other Consequences of the Singleton Pattern............cocceevveeiiiieiiieennen. 161
Thought QUESHIONSccueeiiiiiie e 161
Programs on Your CD-ROMccoiiiiiiiiiiiiiieeeee e 161
13. TheBuilder Pattern ... 162
AN INVESIMENT TTACKEN......coiiiiiiiiieeee e 163
Calling the BUIlAEN'Scooiiieiie e 166
The List BOX BUITOEN.........coiiiiiiiee e 168
The CheckboX BUIIAEYccouviieeeiiiee e 169
Writing aBuilder iNn VB.INETooiiiiiiiie e 170
The SLOCK FaCLONYcciiiiieiiiie e e 171
The CheckChoiCe CIass.........cccociuiiieeiiiiiee et 172
The ListboXChOICE ClaSS.......ceiviiiieiiie et 174
Using the Items Collection in the ListBox Controlcccceeeeeviivvvnnenn.n. 175
The Final ChOICE..........ooiiiiiie e 177
Consequences of the Builder Pattern............ooccveveeiiiiee e 177
Thought QUESHIONS ...t 178
Programs on the CD-ROM........c.cciiiiiiiiiiiiiiee e 178
14. ThePrototype Patternccoovirininieieieeesee e 179

Cloning in Visual BaSIC B..........ccocuiieeiiiiiiee et 179

USING the PrOtOLYPE. ...ttt 180
Using the Prototype Pattern.............cooveeiiiiiiiieee e 134
Additional Methods in SUBCISSES.........cooiiiiiiiii 185
Dissimilar classes with the same interface..........ccccevvcieee e 187
Prototype ManagErS. ...cooeeee it 191
Writing a Prototype in VB7 ... 191
Conseguences of the Prototype Pattern...........cocveevveeiiieeiiiee e 195
Thought QUESHIONSccueeiiiiiie e 196
Programs on the CD-ROM..........cccooiiiiiiiiieiiie e 196
Summary of Creational Patterns.............ccceeeeeiiiiee i 196
StruCtural PatterNSocoiiiiieeee e 198
15. The Adapter Pattern.......c.cciiinieeeieeeesese e 199
Moving Data DEtWEEN LiStS.......ccceeeiiiieiiiieiiee e 199
USING the MSHIEXGIIAeeiiiiiiiiie e 201
USING @ TTEEVIBWooiiiieiiiie ettt st 204
The ObJECt AQBPLENcco i 205
The Class AdapLer.........oovie i e e 205
TWO Way AQADIENS.....ciieiee et 206
USING AGDEEIS TN VBT ..ottt 206
TreeView AdapterSfor VB.NETcooiiiiiiiieiiee e 208
Adapting aDaaGI Iooeiieieiiieeiee e 210
Object versus Class Adapters in VB.INET ... 212
Pluggable AdapEErS.......oocueeeieiiee e 213
AdBPLErS TN VB.....eiiiiiie ettt 213

Thought QUESHIONSeiiiee et 213

Programs 0N the CD-ROM............cooiiiiiiie et 213
16. TheBridgePatterN.......ccociiiieiiiiecee e 214
THhe VISLISt ClaSSeS....cciiieiee ettt 218
The ClasS DIagraMc.eeiiiiieiiie et 218
EXtending the Bridgeooiiiieiiiiee e 219
ActiveX ControlSas BIiagES.........uueiiiiiiiiieiiiee it 222
The Bridge Pattern in VB.NETccoiiiiii e 223
The LiStBOX VISLISt ClaSS.....ccocviiiieiiiiiie et 225
The Grid VISLISt ClaSS......viiiiiiiiiieece et 225
Loading the Data............ccuveiiiiee e e e 226
Changing the Data Side of the Bridge...........coccveveiiiiiieiiiiiiee e 227
Consequences of the Bridge Pattern............coocveveeiiiiee e 229
Thought QUESHIONS ...t 230
Programs on your CD-ROMccooiiiiiiiiiie e 230
17. The Composite Pattern........ccccveieeceneese e eee e 231
An Implementation of @ COMPOSITE.........cccccuviieeiiiiiiee e 232
CoMPULING SAIAITES........uvieiiieie e e e 233
The EMpPIoyee Classes. ... 233
The SUDOIAS ClaSS.......c.vviee e 236
THEBOSS CIESS......eeiii ettt neee e e e nees 237
Building the EMpIOYEe Tre......ccueiiiiieeieeeee e 239
S | 01070 1o RS 242
DOUDIY LIiNKEO LISES....eeeiveieiieieiiie ettt 243
Consequences of the Composite Pattern...........cccevveeiiieeiiiee e 244

A SIMPIE COMPOSILEcviiiee ettt e e e eare e e 245

COmMPOSILES IN VB 245
The CompoSIite iN VB.NET.......oooi oo 245
THE ENUMEIEION ...ttt 247
Multiple BOSS CONSIIUCIONS.cceeiiieeiieeiiieieeeiiieeeesseeeeessneeeeessneeeeeens 248
Other Implementation ISSUESevee i 250
ThoUght QUESHIONScciiieiee e e e nees 250
Programs 0N the CD-ROM...........cooiiiiiiiieieiiie et sreeee e 250
18. TheDecorator PatterN.......cccoevivirererieienese e 251
Decorating @ CoOIBULION.............eeeeiiiiiie e e 251
USING @ DECOIEIONeuveiiieeeeiiiciiiee e e e e e e st e e e e e e e nrraeeeaeas 255
The Class Diagram..........eeve i 258
Using ActiveX Controls as DECOratorS.ccuvveeeirireeeeiiiieeeseieeeeeenneeeens 259
A Decorator INVB.INET ...ttt 259
NON-ViSUSl DECOIALONS.......ueveeeiiiieeeiiiiieeeeiieee e e seeeeessseeeeeenaeeeeesnseeeeeans 262
Decorators, Adapters and COMPOSIEScciverrrieriiiee e 262
Consequences of the Decorator Pattern............ccceevveeiiieesiiee e 263
Thought QUESHIONScc.veiiiiiie e 263
Programs 0N the CD-ROM............coiiiiiiiie e 263
19. TheFagade Pattern........ccciiiienineneeeee e 264
What iISADa@DaSE?........c.eveee e 264
Getting Data out Of Dataasesccocveeeiiiieriie e 266
KiNAS Of Dal@baSES.....cccoieviieeiiiiiie et e e e e e nneee e 267
(@] = SRR 268
Microsoft Database Connection SIrategies........coovveeireeeirieeesiiee s 268

Datalase SETUCIUI.vveee ettt ettt e e e e e e e e et e e e e e e eeeeenea s 268

THEDBESE CCBSS......ccuveeirieiie ittt 269
Building the Fagade ClaSses.........cuuviiiiieiiiiiee e 272
The SEOrES ClaSS.....coiviiiiiie et 273
Building the Stores and FOOds TablesS.........cvvvieeiiiiiiieceee e 276
Building the Price Table.......ccooiiiieeie e 276
Building the Price QUENY.........coiuiiiiiiiieie e 278
Summary of the Fagade Pattern............c.coceeeiiieinie e 279
ADO Datahase ACCESSINVBB........coocuiiiiiiiiiieeiee e 281
The ADO CONNECLIONccuviieeeeiiiee e et e e e e e ee e eare e e e e e e 282
Adding and Seeking Rows Table ROWS........ccuvveeiiiiiiie e 283
Using the ADO EXENSIONScccecceiiiciiiieiiee e e eciireeee e e e e s esinrnee e e e e e e 284
The ADO Dhase ClaSS......ccueeiiieiieiiieiee ettt 285
Database ACCESSIN VB.INET ..o 288
USING ADONET ...ttt 289
Connecting to aDatabase.............ceeieieiiieeiee e 289
Reading Datafrom aDatabase Tableccceeiiieiiiiieiiiicceee 290
EXECULING @ QUENY.....ceiiiiiieiiiie ettt 291
Déeleting the Contents of aTable.........coviveiiiiiiiiiee e 291
Adding Rows to Database TablesUSiNg ADO.........cccoocvieeeiiiiiee e, 292
Making the VB.NET ADO Fagade............cccoeiiieiiiniieiieieesee e 293
The DBTabIe Class........cooviiiiiiic e 294
Creating Classesfor Each Table.........coooiiiiiiiiiiiie e 296
SLOMNG the PrICES....cci e 299
Loading the Database TabIes..........coooviiiiiiiiiee e 301

The Final APPlICAIONoocueiiiiiieeie e 302

12

What Constitutes the Fagade?............ccoeveiiiiiie i 303
Consequences of the Fagade............eeee i 304
ThoUgt QUESIIONS ...t 304
Programs on the CD-ROM............ooiiiiiiiieiiiiie e 304
20. TheFlywelght Pattern ... 305
DISCUSSION ...ttt ettt sttt et e et e bt e e bt e e et e e snbeeesnneeens 307
EXAMPIE COOBeeeiieie it 307
The Class DIiagram..........ccccuviee e 311
SAECtiNg A FOIAENoeoieee e 312
Writing a Flyweight Folder in VB.INET ..., 313
Flyweight USESIN VB ..o 318
Sharabl@ OBJECES.......ooeeiie e 318
Copy-0N-WItE ODJECES ...ttt 319
Thought QUESLIONS ...ttt 319
Programs on the CD-ROM..........ccooiiiiiiiiiie e 319
21, TheProxy Pattern.......cccccooiieieciececse et 320
SAMPIE COUB ...eeiiieie e 321
Writing @ ProxXy iN VB.NEL..........ooiiiiiiiiee e 323
ProXi€SIN VB ... 325
COPY-ONM-WIIEE .ttt 325
Comparison with Related Patterns..............cceeeiiieiieeiiiie e 325
Thought QUESHIONSc..eeieiiiee it 326
Programs on the CD-ROM.........ccoiiiiiiiiiiiiiie e 326
Summary of SruCtUral PattErNSooiveeeiiieeriie e 327

BeNaVIioral Patt@rNS......ooooo oot 329

22. Chain of Responsibility.......cccccoveieiieiiiie e 330
APPIICADITITY ... 331
SAMPIE COUE ... et e e e ennaeeas 332
THE LISt BOXES ... eeiee ettt e e e e 335
Programming @ HelP SYStemMoooiiiiiiiiiee e 337

Receiving the HElp Command............cooooueeiiiiiiiieniiee e 339
A ChaiN OF @TIEE?.....eii ettt e e s e e e e areee e 41
Chain of Responsibility iN VB.INETc..cooiiiiiieeecieee e 343
KindS Of REQUESES.coeiiiiiie ettt 346
EXamMPIESTNVB. ..ot 346
Consequences of the Chain of Responsibility...........ccccevviiiieeiiiiieneiiieen. 346
ThoUght QUESHIONScceieiiiiee et e A7
Programs on the CD-ROM.........coiiiiiiiiiiiiiie e 347

23. TheCommand Pattern.........cccocevereerieeiereereeeeseesee e 348
1Y Lo A7 1o SR SPURRRSPTPRI 348
Command OBJECESeeeeiiiiiiee e 349
Building Command ODJECES.........cceeveeeiiiiiiiiiiiee e 350
ATrays Of COMMANASevviiiiiiiiiee e e e 351
Consequences of the Command Pattern...........cccveeeveeeeiiiieee v 355
Providing UNOOc.oeeiiiiiiiiieee e 355
The Command Pattern in VB.NETcoociiieiiiee e 360
The CommandHolder INterface.oooveiiiiiiiie e 363
Handling Undo Commandsin VB.NET..........cccoiiiiiiiiiieeeeceiene 367
The Command Patternin the VB Language...........coccveeeeeeiiieeniieeesieeene 369

Thought QUESHIONSeiiiee et 370

Programs 0N the CD-ROM............cooiiiiiiie et 370
24. Thelnterpreter Pattern.......cccceiieiieevie e 371
1Y Lo A7 1o SRS PURR RPN 371

F Y o]0 LT o] 1) Y2 SRS 371
A SImple REPOIt EXAMPIEccoeiiiee et 372
INterpreting the LanQUBGE..........vvvree et e e sreee e 373
ObJjectsS USEd INPalrSiNg.......cvveieeiiiee et 374
Reducing the Parsed Stack...........cccoviviiiiiiiiie e 378
Implementing the Interpreter Pattern............oocveevveriiiee e 330
The SYNEAX TIEE.....ci et 380
Consequences of the Interpreter Pattern...........cveveviveee e 385
ThoUght QUESHIONScceieiiiiee et e 386
Programs on the CD-ROM............cooiiiiiiieiiiiie e 386
25. Thelterator PatterN.......cccccoeerieeiesiere e 387
1Y Lo A7 1o SR SPURRRSPTPRI 387
SAMPIE VBB COUE........eeiieiciiiee et 388
Fetching an HEratorc..vvviieiee e 389
FIIEred [TEIatOrS. ... vveee ittt sbe e e 390
The FItered HHErator........coocveiee e 390
ItEratorSin VB.NEToco et 393
Consequences of the l[terator Pattern............ccoocveeiieeiiiie s 395
Thought QUESHIONS.........eeieiiiie et 396
Programs on the CD-ROM.........ccoiiiiiiiiiiiiiie e 397
26. TheMediator Pattern.......ccocviiiieninieniineese s 398

AN EXaMPIe SYSEOM....coiie i 398

Interactions between CONtrolS.........coivivriiieeiiie e 399
SAMPIE COUBeeeieeee e e e e 401
Initialization of the SyStem..........cooie e 404
Mediators and Command ODJECES..........ceeeiiiiieeiiiiee e 404
The Mediator iNn VB.NEL..........ooviiiiie e 405
L aTRUF= 7z 1o o OSSR 407
Handling the Events for the New CONtrolscccceeeeiveeeeiiiiee s 408
Consequences of the Mediator Pattern.............ocovevveeiiieeiniee e 408
Single Interface MediatorsS..........cocvieei i 409
IMPIEMENEALION ISSUES.......ceeiiiieiiiee ettt 409
Programs on the CD-ROM............cooiiiiiiiiiiiie i 409
27. TheMemento PatterN........cccoiiiieiine e 410
1Y Lo A7 1o PSSR 410
IMPIEMENEBEION. ...ttt 111
SAMPIE COUE ...t 111
A CaUtioNary NOLEueeiiiiieiiie e 418
Command Objectsin the User Interface...........ococeeveeiiiiiiiiee e, 418
Handling Mouse and Paint EVENES............cccccvieeiiiiiee e 419
WritingaMemento iINVB.INET ... 420
Consequences Of the MEMENTO...........ccoviiireiiieie e 422
ThoUght QUESHIONSceeeiiiiee et e 423
Programs on the CD-ROM..........ccoiiiiiiiiiiiiiee e 423
28. TheObsarver PatterN......ccceieeieiiesece e 424
Watching Colors Change..........cooueiiiiieiiiie e 425

Writing an Observer iN VB.INET ... 428

The Messagetothe Media............coovvieeiiiiiiiic e 430
Consequences of the Observer Pattern............cccocveeeeieeeiicciiiieeeee e, 431
ThoUgt QUESIIONS ...t 431
Programs on the CD-ROM............ooiiiiiiiieiiiiie e 431
29. TheState Pattern ... 432
SAMPIE COUE ...t 432
SWitching BEtWEeN SEALES..........ceeiiiiieiiiieiieceee e 438
How the Mediator Interacts with the State Managerocooevvveeviciieeens 439
Handling the Fill State...........ccooiuiieiiiiie e 443
Handling the UNdO LiSt.........ccovviiiiiiee e 444
FilliNG CIrcleSiN VBB.......ccoiiiiiiiiiiiiie ettt 47
A State Pattern in VB.INETcvviiie e 448
Mediators and the GOd ClasS.........ccouieieieiiiiiie e 455
Consequences of the State Pattern............cocveeveeeriee e 455
Stz (I = 0 LSS 456
Thought QUESHIONScc.veiiiiiie e 456
Programs on the CD-ROM.........ccoiiiiiiiiieeiiie e 456
30. TheStrategy Pattern.......cccoeeiecieceecece e 457
1Y Lo A7 1o SRS PURR PPN 457
SAMPIE COUE ... 458
B L= o 1= SR 459
The Program COmMEaNS...........c.eieiiiiriiie e 460
The Line and Bar Graph SIrategies...........covvveeiiiieiiiie e 461
Drawing PIOtS TN VB ... 462

A Strategy Pattern in VB.INETcooiiiieiiiee e 465

Consequences of the Strategy Pattern............ccevvviieeneeiieenieeeesee e 468
Programs on the CD-ROM.........ccoiiiiiiiiiiiiiec e 468
31. TheTemplate Method Patterncccocoeveriiniineeneneneene 469
1Y Lo AV 1o PRSPPI 469
Kinds of Methods in a Template Class...........cccovieeiiieeiiiee e 472
SAMPIE COUE ...t 472
Drawing aStandard THaNGI@coovuvieiiieriiiie e 474
Drawing an 1S0CEeS THanglecccvveeeeiiiiee e 475
The Triangle Drawing Program.............ccoccveeeeiiieee e ar7
Templates and Callbacks.........covviieiiiiiiiiiee e 478
SUMMary and CONSEQUENCESuveeeeeriieeeesirreeeesiteeessssseeeesssseeesssnseeeas 479
Programs 0N the CD-ROM............ooiiiiiiiieiiiiie et 479
32. TheViSitor Patterncccccoevieneeenieseee e 480
1Y Lo A7 1o PSRRI 480
When to Use the ViSitor Pattern...........coooveeiieeiiiee e 482
SAMPIE COUEt 482
ViStiNg the ClaSSeS....ucviie i e 484
ViSiting SEVEral ClaSSes......cooiiiiiiiiiiiiiee et 485
Bosses are EMPIOYEES, 100........cvviiieiiiiee et 487
Catch-All Operations With VISITOrSoeeiiiiiiiiieiieeee e 488
Doubl@ DIiSPAICHINGeeiuveieiieieeiie ettt 489
Why Are We DoiNg ThiS?.......ooiiiiiiiieeiee et 490
Traversing a SerieS Of ClasseS......coocvve e 490
WIriting @ VISIOr iN VBBcc.veiiiiiiiiiie e 490

Consequences of the Visitor Pattern.............coccveeeiiieie e 494

Thought QUESHIONSc.evieee et
Programs onthe CD-ROM............coiiiiiiiiiiiieiee et

33. Bibliography ...

19

Preface

Thisisapractical book that tells you how to write Visual Basic (VB6 and
VB.NET) programs using some of the most common design patterns. It also
serves as a quick introduction to programming in the new VB.NET version of the
VB language. The pattern discussions are structured as a series of short chapters,
each describing a design pattern and giving one or more complete working,

visual example programs that use that pattern. Each chapter also includes UML
diagrams illustrating how the classes interact.

This book is not a"companion” book to the well-known Design Patterns text. by
the "Gang of Four." Instead, it is atutoria for people who want to learn what
design patterns are about and how to use them in their work. Y ou do not have to
have read Design Patterns to read this book, but when you are done here you
may well want to read or reread it to gain additional insights.

In this book, you will learn that Design patterns are frequently used ways of
organizing objectsin your programs to make them easier to write and modify.
You'll also seethat by familiarizing yourself with them, you’ ve gained some
valuable vocabulary for discussing how your programs are constructed.

People come to appreciate design patterns in different ways. from the highly
theoretical to the intensely practical and when they finaly see the great power of
these patterns an “ Ahal” moment occurs. Usualy this moment means that you
suddenly have an internal picture of how that pattern can help you in your work.

In this book, we try to help you form that conceptua idea or gestalt, by
describing the pattern in as many ways as possible. The book is organized into
Six main sections, an introductory description, and introduction to VB.NET and
descriptions of patterns, grouped as Creational, Structural and Behavioral
patterns.

For each pattern, we start with a brief verba description and then build smple
example programs. Each of these examplesisavisual program that you can run
and examine, to make the pattern as concrete a concept as possible. All of the
example programs and their variations are on the companion CD-ROM where
you run them, change them and see how the variations you create work.

20

We show that you can use design patterns effectively in VB6 and then show the
same patternsin VB.NET (aso called VB7). Since each of the examples consists
of anumber of VB filesfor each of the classes we usein that example, we also
provide aVB project files for each example, and place each examplein a
separate subdirectory to prevent any confusion. We place the VB.NET examples
in a separate directory under each pattern.

If you leaf through the book, you' |l see screen shots of the programs we develop
to illustrate the design patterns, providing yet another way to reinforce your
learning of these patterns. In addition, you'll see UML diagrams of these
programs, illustrating the interactions between classesin yet another way. UML
diagrams are just smple box and arrow illustrations of classes and their
inheritance structure, where arrows point to parent classes and dotted arrows
point to interfaces. And, if you're not yet familiar with UML, we provide a
simple introduction in the first chapter.

When you finish this book, you'll be comfortable with the basics of Design
Patterns, and will be able to start using them in your day to day Visua Basic
programming work.

James W. Cooper
Nantucket, MA
Wilton, CT

Maui, HI

21

1. WHAT ARE DESIGN PATTERNS?

Sitting a your desk in front of your workstation, you stare into space, trying to
figure out how to write a new program feature. Y ou know intuitively what must
be done, what data and what objects come into play, but you have this underlying
feeling that there is a more elegant and genera way to write this program.

In fact, you probably don’t write any code until you can build a picture in your
mind of what the code does and how the pieces of the code interact. The more
that you can picture this “organic whol€’ or gestalt, the more likely you are to
fed comfortable that you have devel oped the best solution to the problem. If you
don’t grasp this whole right away, you may keep staring out the window for a
time, even though the basic solution to the prablem is quite obvious.

In one sense you fed that the more elegant solution will be more reusable and
more maintainable, but even if you are the sole likely programmer, you fedl
reassured once you have designed a solution that is relatively elegant and which
doesn’t expose too many internal inelegancies.

One of the main reasons that computer science researchers began to recognize
Design Patternsis to satisfy this need for elegant, but simple, reusable solutions.
The term “design patterns’ sounds a bit formal to the uninitiated and can be
somewhat off-putting when you first encounter it. But, in fact, design patterns are
just convenient ways of reusing object-oriented code between projects and
between programmers. The idea behind design patterns is smple-- write down
and catalog common interactions between objects that programmers have
frequently found useful.

One of the frequently cited patterns form early literature on programming
frameworks is the Model-View-Controller framework for Smalltalk [Krasner and
Pope, 1988], which divided the user interface problem into three parts, as shown
in Figure 1.1. The parts were referred to as adata model which contain the
computational parts of the program, the view, which presented the user interface,
and the controller, which interacted between the user and the view.

Copyright © 2001, by James W. Cooper

Controller View

Data Model

Figure 1.1 — The Modée-View-Controller framework.

Each of these aspects of the problem is a separate object and each has its own
rules for managing its data. Communication between the user, the GUI and the
data should be carefully controlled and this separation of functions accomplished
that very nicely. Three objects talking to each other using this restrained set of
connectionsis an example of a powerful design pattern.

In other words, design patterns describe how objects communicate without
become entangled in each other’ s data models and methods. Keeping this
separation has always been an objective of good OO programming, and if you
have been trying to keep objects minding their own business, you are probably
using some of the common design patterns already.

Design patterns began to be recognized more formally in the early 1990s by
Erich Gamma (1992), who described patterns incorporated in the GUI
application framework, ET++. The culmination of these discussions and a
number of technical meetings was the publication of the parent book in this
series, Design Patterns -- Elements of Reusable Software, by Gamma, Helm,
Johnson and Vlissides.(1995). This book, commonly referred to as the Gang of
Four or “GoF" book, has had a powerful impact on those seeking to understand
how to use design patterns and has become an all-time best seller. It describes 23
commonly occurring and generally useful patterns and comments on how and
when you might apply them. We will refer to this groundbreaking book as
Design Patterns, throughout this book.

Since the publication of the origina Design Patterns text, there have been a
number of other useful books published. One closely related book is The Design
Patterns Smalltalk Companion (Alpert, Brown and Woolf, 1998), which covers

Copyright © 2001, by James W. Cooper

23

the same 23 patterns from the Smalltalk point of view. We'll refer to this book
throughout as the Smalltalk Companion. And finally, we recently published Java
Design Patterns Java: a Tutorial which illustrates all of these patternsin Java.

Defining Design Patterns

We dl talk about the way we do things in our everyday work, hobbies and home
life and recognize repeating patterns al the time.

Sticky buns are like dinner rolls, but | add brown sugar and nut filling to
them.

Her front garden is like mine, but, in mine | use astilbe.

This end table is constructed like that one, but in this one, the doors replace
drawers.

We see the same thing in programming, when we tell a colleague how we
accomplished atricky bit of programming so he doesn’t have to recreate it from
scratch. We simply recognize effective ways for objects to communicate while
maintaining their own separate existences.

Some useful definitions of design patterns have emerged as the literature in his
field has expanded:

“Design patterns are recurring solutions to design problems you see over and
over.” (The Smalltalk Companion)

“Design patterns congtitute a set of rules describing how to accomplish
certain tasks in the realm of software development.” (Pree, 1994)

“Design patterns focus more on reuse of recurring architectural design
themes, while frameworks focus on detailed design... and implementation.”
(Coplien & Schmidt, 1995).

“A pattern addresses a recurring design problem that arises in specific design
situations and presents a solution to it” (Buschmann, et. al. 1996)

“Patterns identify and specify abstractions that are above the level of single
classes and instances, or of components.” (Gamma, et a., 1993)

Copyright © 2001, by James W. Cooper

24

But whileiit is helpful to draw andogies to architecture, cabinet making and
logic, design patterns are not just about the design of objects, but about the
interaction between objects. One possible view of some of these patternsis to
consider them as communication patterns

Some other patterns deal not just with object communication, but with strategies
for object inheritance and containment. It is the design of simple, but elegant,
methods of interaction that makes many design patterns so important.

Design patterns can exist at many levels from very low level specific solutionsto
broadly generalized system issues. There are now in fact hundreds of patternsin
the literature. They have been discussed in articles and at conferences of all
levels of granularity. Some are examples which apply widely and afew writers
have ascribed pattern behavior to class groupings that apply to just asingle
problem (Kurata, 1998).

It has become apparent that you don’t just write a design pattern off the top of
your head. In fact, most such patterns are discovered rather than written. The
process of looking for these patternsis called “ pattern mining,” and is worthy of
abook of its own.

The 23 design patterns selected for inclusion in the origina Design Patterns book
were ones which had severa known applications and which were on amiddle
level of generality, where they could easily cross application areas and
encompass severa objects.

The authors divided these patterns into three types creational, structural and
behavioral.

Creational patterns are ones that create objects for you, rather than having
you instantiate objects directly. This gives your program more flexibility in
deciding which objects need to be created for a given case.

Sructural patterns help you compose groups of objects into larger structures,
such as complex user interfaces or accounting data.

Behavioral patterns help you define the communication between objectsin
your system and how the flow is controlled in a complex program.

Well be looking at Visua Basic versions of these patterns in the chapters that
follow. We will provide at least one complete, Visual Basic program for each of

Copyright © 2001, by James W. Cooper

25

the 23 patterns. This way you can not only examine the code snippets we
provide, but run, edit and maodify the complete working programs on the
accompanying CD-ROM. You'll find alist of al the programs on the CD-ROM
at the end of each pattern description.

The Learning Process

We have found that regardless of the language, learning Design patternsis a
multiple step process.

1. Acceptance
2. Recognition
3. Internaization

First, you accept the premise that design patterns are important in your work.
Then, you recognize that you need to read about design patterns in order to know
when you might use them. Finally, you internalize the patterns in sufficient detail
that you know which ones might help you solve a given design problem.

For some lucky people, design patterns are obvious tools and they grasp their
essential utility just by reading summaries of the patterns. For many of the rest of
us, thereisa dow induction period after we' ve read about a pattern followed by
the proverbial “Ahal” when we see how we can apply them in our work. This
book helps to take you to that final stage of internaization by providing
complete, working programs that you can try out for yoursdlf.

The examplesin Design Patternsare brief, and are in C++ or in some cases,
Smalltalk. If you are working in another language it is helpful to have the pattern
examples in your language of choice. This book attemptsto fill that need for
Visua Basic programmers.

Studying Design Patterns

There are several aternate ways to become familiar with these patterns. In each
approach, you should read this book and the parent Design Patterns book in one
order or the other. We aso strongly urge you to read the Smalltalk Companion

Copyright © 2001, by James W. Cooper

26

for completeness, since it provides an alternate description of each of the
patterns. Findly, there are a number of web sites on learning and discussing
Design Patterns for you to peruse.

Notes on Object Oriented Approaches

The fundamental reason for using design patternsis to keep classes separated and
prevent them from having to know too much about one another. Equally
important, using these patterns helps you avoid reinverting the wheel and alows
you to describe your programming approach succinctly in terms other
programmers can easily understand.

There are a number of strategies that OO programmers use to achieve this
separation, among them encapsulation and inheritance. Nearly al languages that
have OO capabilities support inheritance. A class that inherits from a parent class
has access to all of the methods of that parent class. It also has access to dl of its
non-private variables. However, by starting your inheritance hierarchy with a
complete, working class you may be unduly restricting yourself as well as
carrying along specific method implementation baggage. Instead, Design
Patterns suggests that you aways

Programto an interface and not to an implementation.

Putting this more succinctly, you should define the top of any class hierarchy
with an abstract class or an interface, which implement no methods, but smply
define the methods that class will support. Then, in al of your derived classes
you have more freedom to implement these methods as most suits your purposes.
And, since VB6 only supports interfaces and does not support inheritance, thisis
obviously very good advice in the VB context.

The other major concept you should recognize is that of object composition. This
is simply the construction of objects that contain others: encapsulation of several
objects inside another one. While many beginning OO programmers use
inheritance to solve every problem, as you begin to write more elaborate
programs, the merits of object composition become apparent. Y our new object
can have the interface that is best for what you want to accomplish without
having al the methods of the parent classes. Thus, the second major precept
suggested by Design Patternsis

Copyright © 2001, by James W. Cooper

27

Favor object composition over inheritance.

And, again, VB easily supports the inclusion of classes within other classes, so
you find that we are exactly on track for how we will be able to implement rather
sophisticated OO techniquesin VB.

VB Design Patterns

Each of the 23 patternsin Design Patterns is discussed in the chapters that
follow, along with at least one working program example for that pattern. All of
the programs have some sort of visua interface to make them that much more
immediate to you. All of them also use class, interfaces and object composition,
but the programs themselves are of necessity quite simple so that the coding
doesn’'t obscure the fundamenta elegance of the patterns we are describing.

We present each of the patterns both in VB.NET and (except one) in VB6. In
most cases we present the VBG6 version first and then show how the patterns
become even easier to implement in VB.NET (VB7).

However, even though VB is our target language, thisisn't specificaly a book on
the VB language. There are lots of featuresin VB that we don’t cover, but we do
cover most of what is centra to VB. You will find, however, that thisis afairly
useful tutorial in object-oriented programming in VB, and provides good
overview of how to program in VB.NET.

How thisBook is Organized

We take up each of the 23 patterns, grouped into the genera categories of
Creational, Structural and Behavioral patterns. Many of the patterns stand more
or less independently, but we do take advantage of aready discussed patterns
from time to time. For example, we use the Factory and Command patterns
extensively after introducing them, and use the Mediator several times after we
introduce it. We use the Memento again in the State pattern, the Chain of
Responsibility in the Interpreter pattern discussion and the Singleton pattern in
the Flyweight pattern discussion. In no case do we use a pattern before we have
introduced it formally.

Copyright © 2001, by James W. Cooper

28

We also take some advantage of the sophistication of later patterns to introduce
new features of VB.Net. For example, the Listbox, DataGrid and TreeView are
introduced in the Adapter and Bridge patterns. We show how to paint graphics
objects in the Abstract Factory, We introduce the Enumeration interface in the
Iterator and in the Composite, where we also take up formatting. We use
exceptions in the Singleton pattern and discuss ADO database connections in the
Facade pattern. And we show how to use VB.NET timers in the Proxy pattern.

Copyright © 2001, by James W. Cooper

29

2. UML DIAGRAMS

We have illustrated the patterns in this book with diagrams drawn using Unified
Modeling Language (UML). This smple diagramming style was developed out
of work done by Grady Booch, James Rumbaugh and Ivar Jacobson, which
resulted in a merging of ideas into a single specification, and eventualy a
standard. Y ou can read details of how to use UML in any number of books such
asthose by Booch, et. al, (1998), Fowler and Scott (1997) and Grand (1998).
We'll outline the basics you'll need in this introduction.

Basic UML diagrams consist of boxes representing classes. Let’sconsider the
following class (which has very little actual function).

'O ass Person
Private age As I|nteger
Private personNanme As String

Public Sub init(nmAs String)
per sonName = nm
End Sub

Publ i ¢ Function makeJdob() As String
makeJob = "hired"
End Function

Private Sub splitNanes()

End Sub

Publ i ¢ Function getAge() As Integer
get Age = age
End Function

Private Function getJob() As String

End Function

We can represent this classin UML as shown in Figure 2.1.

Copyright © 2001, by James W. Cooper

Person

-age
-persontatme
it String)
+makel obi)
-splitH atnes)
+getagel)
-getlohl)

Figure 2.1 — The Person class, showing private, protected, public variables and
static and abstract methods.

The top part of the box contains the class name and package name (if any). The
second compartment lists the class's variables and the bottom compartment lists
its methods. The symbolsin front of the names indicate that member’ s visibility,
where “+” means public, “-“ means private and “#’ means protected. Methods
whose names are written in italics are abstract, and of course the class nameis
also abstract since it contains an abstract class. Thus, the classnameisasoin
italics. Static methods are shown underlined.

Y ou can aso show al of the type information in a UML diagram where that is
helpful, asillustrated in Figure 2.2a.

Person Person
-ageInteger 268
-persont]ame String PETS ontlame
+make] bl) String makelob
_splith ames() splitt] atmes
+zeth ge 1Integer getinge
_getloh(1 String getlol
Figure 2.2a Figure 2.2b

The Person class UML diagram shown both with and without the method types.

Copyright © 2001, by James W. Cooper

31

UML does not require that you show al of the attributes of aclass, and it is usua
only to show the ones of interest to the discussion at hand. For example, in
Figure 2.2b, we have omitted some of the method details.

Inheritance

Let's consider aVVB7 version of Person which has public, protected and private
variables and methods, and an Employee class derived from it. We will aso
make the getJob method abstract in the base Person class, which meanswe
indicate it with the MustOverride keyword:

Public Mustlnherit C ass Person
' Cl ass Person
Private age As Short
Protected personNane As String
Public Sub init(ByRef nmAs String)
personNanme = nm
End Sub

Publ i c Function makeJob() As String
makeJob = "hired"
End Function

Private Sub splitNanes()

End Sub

Publ i ¢ Function get Age() As Short
get Age = age
End Function

Public MustOverride Function getJob() As String
End d ass

We now derive the Employee class from it, and fill in some code for the getJob
method:

Public d ass Enpl oyee
I nherits Person

Public Overrides Function getJob() As System String

Return "Wbrker"
End Function

Copyright © 2001, by James W. Cooper

32

End d ass

Y ou represent inheritance using a solid line and a hollow triangular arrow. For
the smple Employee class that is a subclass of Person, we represent thisin UML
as shown in Figure 2.3

Person
-agelnteger Enployee
Hpersont ame: Jtring L
+Perzon) constractor} +zetlobi:Btring
Huakelob 1:Bting

-splitl athe s)

+agetd ge 1lnteger

+getlob 1Sting {abstract}

Figure 2.3 — The UML diagram showing Employee derived from Person.

Note that the name of the Employee classisnot in italics, because it is now a
concrete class, because it includes a concrete method for the formerly abstract
getJob method. While it has been conventional to show the inheritance with the
arrow point up to the superclass, UML does not require this, and sometimes a
different layout is clearer or uses space more efficiently.

Interfaces

An interface looks much like inheritance, except that the arrow has a dotted line
tail as shown in Figure 2.4

Command ExitCommand

SRR O B g T S R I R +Execute])

Figure 2.4 — ExitCommand implements the Command interface.

Note that the name <<interface>> is shown, enclosed in double angle brackets,
or guillamets.

Copyright © 2001, by James W. Cooper

Composition

Much of the time, a useful representation of a class hierarchy must include how
objects are contained in other objects. For example, a small company might
include one Employee and one Person (perhaps a contractor).
Public d ass Conpany

Private emp as Enpl oyee

Private pers as Person
End Cd ass

We represent thisin UML as shown in Figure 2.5

Company

Person =

F s

Employee 1

Figure 2.5 — Company contains instances of Person and Employee.

The lines between classes show that there can be 0 to 1 instances of Person in
Company and 0 to 1 instances of Employee in Company. The diamonds indicate
the aggregation of classes within Company.

If there can be many instances of a class inside another, such as the array of
Employees shown here

Publ i c d ass Conpany
Private enp() as Enpl oyee
Private pers

End d ass

we represent that object composition as asingle line with either a“*” onit or “0,
*” on it as shown in Figure 2.6.

Copyright © 2001, by James W. Cooper

Company

Person -

Enployee

ettipl *

Figure 2.6 — Company contains any number of instances of Employee.

Some writers have used hollow and solid diamond arrowheads to indicate
containment of aggregates and circle arrowhead for single object composition,
but thisis not required.

Annotation

You will also find it convenient to annotate your UML or insert comments to
explain which classis call amethod in which other class. Y ou can place a
comment anywhere you want in a UML diagram. Comments may be enclosed in
abox with aturned corner, or just entered as text. Text comments are usualy
shown along an arrow-line, indicating the nature of the method that is called, as
shown in Figure 2.7

VacationVisiter I Eniployee
wisit(Me)

isit accept

¥

accept(w)

Vialbar viaikts Emgpslayas

Copyright © 2001, by James W. Cooper

35

Figure 2.7 — A comment is often shown in a box with a turned-down corner.

UML is quite a powerful way of representing object relationshipsin programs,
and there are more diagram features in the full specification. However, the above
brief discussion covers the markup methods we use in this text.

WithClass UML Diagrams

All of the UML programs in this book were drawn using the WithClass program
from MicroGold. This program reads in the actual compiled classes and
generates the UML class diagrams we show here. We have edited many of these
class diagrams to show only the most important methods and relationships.
However, the complete WithClass diagram files for each design pattern are
stored in that pattern’s directory. Thus, you can run your demo copy of
WithClass on the enclosed CD and read in and investigate the detailed UML
diagram starting with the same drawings you see here in the book.

Visual Basic Project Files

All of the programs in this book were written using Visual Basic 6.0 and
VB.NET using the project file feature. Each subdirectory of the CD-ROM
contains the project file for that project so you can load the project and compile it
aswedid.

Copyright © 2001, by James W. Cooper

3. USING CLASSES AND OBJECTS IN VB

The original versions of Visua Basic (1.0 through 3.0) did not contain much
in the way of object-oriented features and many programmers habits were
formed by the features of these early versions. However, starting with Visual
Basic 4.0, you could create Class modules as well as Form modules, and use
them as objects. In this chapter, we'll illustrate more of the advantages of
using class modules. In the following chapter we' |l extend these concepts for
the more fully object-oriented VB.NET.

A Simple Temperature Conversion Program

Suppose we wanted to write a visua program to convert temperatures
between the Celsius and Fahrenheit temperature scales. Y ou may remember
that water freezes at zero on the Celsius scale and boils at 100 degrees, while
on the Fahrenheit scale, water freezes at 32 and boils at 212. From these
numbers you can quickly deduce the conversion formulathat you may have
forgotten.

The difference between freezing and boiling on once scaleis 100 and on the
other 180 degrees or 100/180 or 5/9. The Fahrenheit scaleis“ offset” by 32,
since water freezes at 32 on its scale. Thus,

C=(F-32)* 5/9
and
F=5/9* C+32

Copyright © 2001, by James W. Cooper

37

In our visual program, we'll allow the user to enter a temperature

and select the scaleto convert it to aswe seein

. Convert temperatures

Enter temperature
|35

= Select conversion -
T to Celsius

¥ ta Fahrenheit

Converted
temperature I 95

Cloze |

Figure 3-1—

. Convert temperatures

Enter temperature
135

= Select conversion -
= to Celsius

¥ ta Fahrenheit

Corverted
temperature l 35

Figure 3-1- Converting 35 Celsius to 95 Fahrenheit with our visual

interface.

Using the very nice visua builder provided in VB, we can draw the user

interface in a few seconds and simply implement routines to be called when

the two buttons are pressed:

Private Sub bt Convert_d i ck()
DimenterTenp As Single, newlTenp As Single

enter Tenp = Val (txTenper at ure. Text)

Copyright © 2001, by James W. Cooper

| f opFahr. Val ue Then
newTenp = 9 * (enterTenp / 5) + 32

El se
newlenp = 5 * (enterTenp - 32) / 9
End | f
| bNewt enp. Caption = Str$(newTenp)
End Sub
Private Sub Cosit_dick()
End
End Sub

The above program is extremely straightforward and easy to understand, and
istypical of how many VB programs operate. However, it has some
disadvantages that we might want to improve on.

The most significant problem is that the user interface and the data handling
are combined in asingle program module, rather than being handled
separately. It is usualy a good ideato keep the data manipulation and the
interface manipulation separate so that changing interface logic doesn't
impact the computation logic and vice-versa.

Building a Temperature Class

Aswe noted in the previous chapter, aclassin VB isamodule that can
contain both public and private functions and subroutines, and can hold data
vaues aswell. It islogicaly the same as a Form except that it has no visua
aspects to it. These functions and subroutines in a class are frequently
referred to collectively as methods.

Class modules are dlso like Basic Types or C structs that alow you to keep a
set of datavauesin asingle named place and fetch those values using get and
set functions, which we then refer to as accessor methods.

Y ou create a class module from the VB integrated development environment
(IDE) using the menu item Project | Add class module. Then, you select the
Properties window (using function key F4) and enter the modul€e' s name. In
thisexample, we'll call the class module clsTemp.

What we want to do isto move all of the computation and conversion
between temperature scales into this new clsTemp class module. One way to
design this module is to rewrite the calling programs that will use the class
module first. In the code sample below, we create an instance of the clsTemp
class and use it to do whatever conversions are needed:

Copyright © 2001, by James W. Cooper

39

Private Sub bt Convert_dick()
Dimenter Tenp As Single, newlTenp As Single
Dimcl Tenp As New cl sTenp ‘create cl ass instance

| f opFahr.Val ue Then

cl Tenp. set Cel s txTenperature

| bNewt enp. Caption = Str$(cl Tenp. get Fahr)
El se

cl Tenp. set Fahr txTenperature

| bNewt enp. Caption = Str$(cl Tenp. get Cel s)
End | f

Note that to create aworking copy of aclass (called an instance) you have to
use the new keyword with the Dim statement:

Dimcl Tenp as New cl sTenp 'create class instance
If you simply declare a variable without the New keyword,

Di mcl Tenp as cl sTenp
you have created a pointer to a class instance but have not initialized an actual

instance until you actually create one using New. Y ou can set the value of the
pointer you created using the Set keyword

Set cl Tenp = New clsTenp 'create instance of clsTenp

In this program, we have two set methods and two get methods
setCels and setFahr, and
getCels and getFahr

which put values into the class and retrieve other values from the class. The
actua classisjust

Private tenperature As Single

Public Sub setFahr(tx As String)
temperature = 5 * (Val (tx) - 32) / 9
End Sub

Public Sub setCels(tx As String)
tenperature = Val (tx)
End Sub

Publ i c Function getFahr() As Single
getFahr = 9 * (tenperature / 5) + 32
End Function

Public Function getCels() As Single
getCels = tenperature

Copyright © 2001, by James W. Cooper

End Function

Note that the temperature variable is declared as private, so it cannot be
“seen” or accessed from outside the class. Y ou can only put data into the
class and get it back out using the four accessor methods. The main point to
this code rearrangement is that the outer calling program does not have to
know how the data are stored and how they are retrieved: that is only known
inside the class. In this class we dways store data in Celsius form and convert
on the way in and out as needed. We could aso do validity checks for lega
strings on the way in, but since the Va function returns zeros and no error for
illegal strings, we don’'t haveto in this case.

The other important feature of the classis that it actualy holdsdata. Y ou can
put datainto it and it will return it at any later time. This class only holds the
one temperature value, but classes can contain quite complex sets of data
values.

We could easily modify this class to get temperature values out in other
scales without still ever requiring that the user of the class know anything
about how the data are stored, or how the conversions are performed

Converting to Kelvin

Absolute zero on the Celsius scale is defined as —273.16 degrees. Thisis the
coldest possible temperature, since it is the point at which all molecular
motion stops. We can add a function

Publi ¢ Function getKelvin() As Single

getKelvin = temperature + 273.16
End Function

without any changes to the visua client at al. What would the setKelvin
method look like?

Putting the Decisionsinto the Temperature Class

Now we are still making decisions within the user interface about which
methods of the temperature class. It would be even better if al that
complexity could disappear into the clsTemp class. It would be nice if we just
could write our Conversion button click method as

Private Sub bt Convert_dick()
Dimcl Temp As New cl sTenp

Copyright © 2001, by James W. Cooper

4

"put the entered value and conversi on request
"into the class
cl Tenp. set Ent er Tenp t xTenper at ure. Text, opFahr. Val ue

"and get out the requested conversion
| bNewt enp. Caption = cl Tenp. get TenpStri ng

End Sub

This removes the decision making process to the temperature class and
reduces the calling interface program to just two lines of code.

The class that handles al this becomes somewhat more complex, however,
but it then keeps track of what data as been passed in and what conversion
must be done.

Private tenperature As Single "always in Cel sius
Private toFahr As Bool ean ‘conversion to F requested

Public Sub setEnterTenp(ByVal tx As String,
ByVal isCel sius As Bool ean)

'convert to Cel sius and save

If Not isCelsius Then

nmakeCel tx 'convert and save

toFahr = Fal se

El se

temperature = Val (tx) 'just save tenperature

toFahr = True

End If
End Sub
Private Sub makeCel (tx As String)

tenperature = 5 * (Val(tx) - 32) / 9
End Sub

Now, the isCelsius boolean tells the class whether to convert or not and
whether conversion is required on fetching the temperature value. The output
routine is Ssmply
Public Function getTenmpString() As String

get TenpString = Str$(get TenpVal)
End Function

Publi ¢ Function get TenpVal () As Single
Di m out Tenp As Single

I f toFahr Then "should we convert ot F?
out Tenp = nakeFahr 'yes

El se

out Tenp = tenperature 'no

End If

Copyright © 2001, by James W. Cooper

42

get TenpVal = out Tenp "return tenp val ue
End Function

Private Functi on makeFahr() As Single
Dmt As Single
"convert t to Fahrenheit
t =9 * (tenperature / 5) + 32
makeFahr =t
End Function

In this class we have both public and private methods. The public ones are
cdlable from other modules, such as the user interface form module. The
private ones, makeFahr and makeCel, are used internally and operate on the
temperature variable.

Note that we now aso have the opportunity to return the output temperature
as either astring or asingle floating point value, and could thus vary the
output format as needed.

Using Classesfor Format and Value Conversion

It is convenient in many cases to have a method for converting between
formats and representations of data. Y ou can use a classto handle and hide
the details of such conversions. For example, you might enter an elapsed time
in minutes and seconds with or without the colon:

315. 20

3:15.20
315.2

and so forth. Since dl styles are likely, you'd like a class to parse the legal
possihilities and keep the data in a standard format within. Figure 3-2 shows
how the entries“112” and “102.3" are parsed.

Copyright © 2001, by James W. Cooper

im, Enter times

Enter time |-l 023 Enter

22
I
o
oo

Figure 3-2— A simple parsing program that usesthe Times class.
The accessor functions for our Times class include

set Text (tx as String)
setSingle (t as Single)
getSingle as Single
getFormatted as String
get Seconds as Single

Parsing is quite smple and depends primarily on looking for a colon. If there
is no colon, then values greater than 99 are treated as minutes.
Public Function setText(ByVal tx As String) As Bool ean

Dmi As Integer, mns As Long, secs As Single
errflag = Fal se

i = InStr(tx, ":")
If i > 0 Then
mns = Val (Left$(tx, i - 1)

)
secs = Val (Right$(tx, Len(tx) - i))
If secs > 59.99 Then
errflag = True

End |f
t = mns * 100 + secs
El se
mns = Val (tx) \ 100
secs = Val (tx) - (100 * m ns)

If secs > 59.99 Then
errflag = True
t = NT
El se
set Si ngl e Val (tx)
End |f
End If
set Text = errflag

Copyright © 2001, by James W. Cooper

End Function

Sinceillegal time values might also be entered, we test for cases like 89.22
and set an error flag.

Depending on the kind of time measurements these represent, you might also
have some non-numeric entries such as NT for no time or in the case of
athletic times, SC for scratch or DQ for disqualified. All of these are best
managed inside the class. Thus, you never need to know what numeric
representations of these values are used internaly.

Private Const tnNT = 10000, tnmDQ = 20000, twSCRATCH = 30000
Some of these are processed in the code represented by Figure 3-3.

im. Enter times
E nter time |n Enter
SCH
(]|
MT

Figure 3-3 - Thetime entry interface, showing the parsing of
symbolsfor Scratch, Disqualification and No Time.

Handling Unreasonable Values

A classis aso agood place to encapsulate error handling. For example, it
might be that times greater than some threshold value are unlikely and might
actualy be times that were entered without a decimal point. If large times are
unlikely, then a number such as 123473 could be assumed to be 12:34.73"

Public Sub setSingle(tv As Single)

t =tv

If tv > minVal And tv <> tnNT Then
t =tv / 100

End |f

Copyright © 2001, by James W. Cooper

End Sub

The cutoff value minVa may vary with the domain of times being considered
and thus should be a variable. While classes do not have a Form_Load event
like Forms do, they do have and initialize event where you can set up default
values for variables.

here you can set up default values for variables.

Private Sub Cass_Initialize()
m nVal = 10000
End Sub

To set up the Initidize event in the IDE, click on the |eft drop-down in the
editor title bar so that Class is selected and select Initiaize from the right
drop-down as shown in Figure 3-4.

&4, EnterTimes - Times [Code

Class ng ilni‘tialize j

Private 3ub Class_Initialize()
minWal = 10000
End Suhk

Figure 3-4 — Selecting the Class I nitialize method.

A String Tokenizer Class

A number of languages provide a simple method for taking strings apart into
tokens, separated by a specified character. While VB does not provide this
feature, we can write one quite easily as a class. The goa of the Tokenizer
class will be to passin a string and obtain the successive string tokens back
one a atime. For example, if we had the smple string

Now is the tine
our tokenizer should return four tokens:;

Now

is

t he

tinme

The critical part of this classisthat it holds the initial string and remembers
which token is to be returned next. The whole class is shown below.

"String tokenizer class

Copyright © 2001, by James W. Cooper

Private s As String, i As Integer
Private sep As String 't oken separator

Public Sub init(ByVal st As String)

s = st
End Sub
Private Sub Cass_Initialize()

sep =" " "default is a space separator
End Sub
Public Sub set Separator(ByVal sp As String)

sep = sp
End Sub
Publ i ¢ Function next Token() As String

Di mtok$

i = 1InStr(s, sep) "l ook for occurrence of separator
If i >0 Then "if found

tok$ = Left$(s, i - 1) ‘return string to left

s = TrinB(R ght$(s, Len(s) - i)) 'shorten string
El se

tok$ = s "otherwise return end of string

s = "" "and set remainder to zero length
End | f
next Token = tok$ ‘return token

End Function
The classisillustrated in use in Figure 3-5.

. Show takenizer

Enter string to tokenize

Mo i the time for all good BEMe

Mow
i

the
time
far

all
good
BEMz

Figure 3-5—- The tokenizer in use.
The code that uses the Tokenizer classisjust:

Private Sub Tokenize_dick()
Dimtok As New Tokeni zer
Dms As String

Copyright © 2001, by James W. Cooper

47

tok.init txString. Text 'set the string fromthe input

| sTokens. C ear ‘"clear the list box

s = tok. next Token 'get a token

Wiile Len(s) >0 "as long as not of zero length
| sTokens. Addltem s 'add into the list
s = t ok. next Token "and | ook for next token

Vénd

End Sub

Classesas Objects

The primary difference between ordinary procedural programming and
object-oriented (OO) programming is the presence of classes. A classisjust a
module as we have shown above, which has both public and private methods
and which can contain data. However, classes are also unique in that there
can be any number of instances of aclass, each containing different data. We
frequently refer to these instances as objects. We |l see some examples of
single and multiple instances below.

Suppose as have afile of results from a swimming event stored in atext data
file. Such afile might look, in part, like this:

1 Emily Fenn 17 WRAT 4:59.54
2 Kathryn M1l er 16 Ww 5:01. 35
3 Melissa Sckol ni k 17 Ww 5:01.58
4 Sarah Bowman 16 CDEV 5.02. 44
5 Caitlin Klick 17 MBM 5:02.59
6 Caitlin Heal ey 16 MBM 5:03. 62

where the columns represent place, names, age, club and time. If we wrote a
program to display this swimmers and their times, we' d need to read in and
parse thisfile. For each swimmer, we' d have afirst and last name, an age, a
club and atime. An efficient way to keep the data for each swimmer grouped
together isto design a Swimmer class and create an instance for each
swimmer.

Here is how we read the file and create these instances. As each instance is
created we add it into a Collection object:

Dim swi nrers As New Col | ection
Private Sub Form Load()

Dimf As Integer, S As String
Dim sw As Swi nmer

Dimi As Integer

f = FreeFile

Copyright © 2001, by James W. Cooper

'read in data file and create sw nmmer instances
Open App. Path + "\500free.txt" For |nput As #f
Wil e Not EOF(f)

Line Input #f, S

Set sw = New Swi mrer 'create instances

sw.init S '"load in data
sw mers. Add sw "add to collection
Vend
Cl ose #f
"put names of swimers in list box
For i =1 To sw mers. Count

Set sw = swinmers(i)

| sSwi mrer s. Addl t em sw. get Nane
Next i
End Sub

The Swimmer class itsalf parses each line of data from the file and storesiit
for retrieval using getX XX accessor functions.

Private frname As String, | name As String
Private club As String

Private age As Integer

Private tns As New Ti nmes

Private place As |nteger

Public Sub init(dataline As String)
Dimtok As New Tokeni zer

tok.init dataline "initilaize string tokenizer
pl ace = Val (tok. next Token) 'get |ane nunber

frname = tok. next Token ‘get first nane

| name = t ok. next Token 'get |ast nane

age = Val (tok. next Token) 'get age

club = tok. next Token ‘get club

tns. set Text tok.next Token 'get and parse tine

Public Function getTinme() As String

getTine = tns. get Fornmatted

End Function

Public Function getName() As String

‘conbine first and | ast nanes and return together
getName = frnane + " " + | name

End Function

Publi ¢ Function get Age() As Integer

get Age = age

End Function

Public Function getd ub() As String

Copyright © 2001, by James W. Cooper

49

getClub = club
End Function

Class Containment

Each instance of the Swimmer class contains an instance of the Tokenizer
that it uses to parse the input string and an instance of the Times class we
wrote above to parse the time and return it in formatted form to the caling
program. Having a class contain other classes is a very common ploy in OO
programming and is one of the main ways we can build up more complicated
programs from rather simple components.

The program that displays these swvimmersis shown in Figure 3-6.

. Show swirnmers
Emily Fenn o Swimmer's time:
K.athron Miller
Melizza Sckolnik -
Sarah Bowman !5'03'52
Caitlir klick
Caitlin Heales

ki Richardson
Beth Malinowski

Patricia Finnerty

Caralyn Bowman

K.atie Martin

Lauren Dudley _‘d

Figure 3-6 —A list of swimmersand their times, using containment.

When you click on any swimmer, her time is shown in the box on the right.
The code for showing that time is extremely easy to write since al the data
are in the swimmer class:

Private Sub | sSwimers_Cick()
Dmi As Integer
Di m sw As Swi nmer

i = | sSwi mers. Li st ndex 'get index of Iist
If i >= 0 Then
Set sw = swinmers(i) 'get that sw mer

| bTi me. Capti on = sw. get Ti ne "display that tine
End If
End Sub

Copyright © 2001, by James W. Cooper

Class I nitialization

Aswe showed above, you can use the Class Initidize event to set up default
values for some class variables. However, if you want to set up some vaues
that are specific for each instance (such as our swimmer’s names and times),
we need a standard way to do this. In other languages, classes have specia
methods called constructors that you can use to pass in useful data at the
same time you create the instance. Since VB6 classes lack these methods, we
introduce the convention of an init method that we'll use to passin instance
specific data.

In our Swimmer class above, note that we have an init method that in turn
cdlls the init method of the Tokenizer class:

Public Sub init(dataline As String)
Di mtok As New Tokeni zer

tok.init dataline ‘initialize string tokenizer

Other languages, including VB7, also allow classes to have a series of
constructors which each have different arguments. Since thisis not a feature
of VB6, we'll use various setXX X methods instead.

Classesand Properties

Classesin VB can have Property methods as well as public and private
functions and subs. These correspond to the kinds of properties you associate
with Forms, but they can store and fetch any kinds of values you care to use.
For example, rather than having methods called getAge and setAge, you
could have a single Age property which then corresponds to a Property Let
and a Property Get method:

Property Get age() As I|nteger
age = sAge ‘'return the current age
End Property

Property Let age(ag As |nteger)
sAge = ag 'save a new age
End Property

To use these properties, you refer to the Let property on the left side of an
equals sign and the Get property on the right side:

nyAge = sw. Age '"Get this swimer’s age
sw. Age = 12 "Set a new age for this sw nmer

Copyright © 2001, by James W. Cooper

51

Properties are somewhat vestigial, since they really apply more to Forms, but
many programmers find them quite useful. They do not provide any features
not already available using get and set methods and both generate equally
efficient code.

In the revised version of our SwimmerTimes display program, we convert all
of the get and set methods to properties, and then alow usersto vary the
times of each swimmer by typing in new ones. Here is the Swimmer class

Option Explicit

Private frname As String, |Iname As String
Private sCub As String

Private sAge As I|nteger

Private tns As New Ti nmes

Private place As |nteger

Public Sub init(dataline As String)

Di mtok As New Tokeni zer

tok.init dataline "initilaize string tokenizer
pl ace = Val (tok. next Token) 'get |ane nunber

frnanme = tok.next Token ‘get first nane

| name = t ok. next Token 'get |ast nane

sAge = Val (tok. next Token) ' get age

sC ub = tok. next Token ‘get club

tns. set Text tok.next Token 'get and parse tine

End Sub

Property Get time() As String

time = tms. get Fornatted

End Property

Property Let tine(tx As String)
tms. set Text tx

End Property

Property Get Nane() As String
‘conbine first and | ast nanes and return together
Name = frname + " " + | nane

End Property

Property Get age() As I|nteger

age = sAge ‘'return the current age
End Property

Property Let age(ag As I|nteger)

sAge = ag 'save a new age

End Property

Property Get Club() As String

Copyright © 2001, by James W. Cooper

52

Club = sC ub
End Property

Then when the txTime text entry field loses focus, we can store anew time as
follows:

Private Sub txTi me_Change()
Dmi As Integer
Di m sw As Swi mmrer

i = | sSwi mers. Li st | ndex 'get index of Iist
If i >= 0 Then
Set sw = swimers(i) 'get that sw nmer
sw.time = txTime. Text 'store that tine

End I f

End Sub

Another Interface Example —-The Voltmeter

Suppose that you need to interface a digital voltmeter to your computer.
We'll assume that the meter can connect to your serial port and that you send
it astring command and get the measured voltage back as a string. We'll also
assume that you can set various measurement ranges such as millivolts, volts
and tens of volts. The methods for accessing this voltmeter might look like
this:

'The Vol tmeter class

Public Sub set Range(ByVal naxVal As Single)

'set maxi mum voltage to neasure
End Sub

Publi ¢ Function getVoltage() As Single
'get the voltage and convert it to a Single
End Function

The nice visua data gathering program you then write for this voltmeter
works fine, until you suddenly need to make another simultaneous set of
measurements. Y ou discover that the model of voltmeter you wrote the
program for is no longer available and that the new model has different
commands. It might even have a different interface (IEEE-488 or USB, for
instance).

Thisis an ideal time to think about program interfaces. The smple two
method interface we specified above should work for any voltmeter, and the
rest of the program should run without change. All you need to do isto write
aclass for the new voltmeter that implements the same interface. Then your

Copyright © 2001, by James W. Cooper

data-gathering program only needs to be told which meter to use and it will
run completely unchanged, as we show below:

Private Sub OK dick()
| f opPe. Val ue Then
Set vm = New PE2345

El se
Set vm = New HP1234
End If
vm get Vol t age
End Sub

Further, should your data needs expand so that there are still more meters,
you can quickly write more classes that implement this same Voltmeter
interface. Thisis the advantage of OO programming in a nutshell: only the
individual classes have detailed knowledge of how they work. The only
external knowledge is contained in the interfaces.

A vbFile Class

File handling in VB is for the most part awkward and primitive for historical
reasons. The statements for opening files have the form

f = FreeFile
Open “file.txt” for Input as #f

And those for reading data from files have the form

| nput #f, s
Li ne I nput #f, sLine

There is no smple statement for checking for the existence of afile, and the
file rename and delete have counterintuitive names.

Exists = len(dir$(filenanme))>0 'file exists
Name filel as file2 "Renane file
Kill filename "Delete file

None of these statements are at all object oriented. There ought to be objects
that encapsulate some of this awkwardness and keep the file handles suitably
hidden.

VB6 introduced the Scripting.FileSystemObject as away to handlefilesin a
presumably more object oriented way. However these objects are not fully
realized and a bit difficult to use. Thus, we might do well to create our own
vbFile object with convenient methods. These methods could include

Publ i ¢ Functi on OpenFor Read(Fil ename As String) As Bool ean

Copyright © 2001, by James W. Cooper

Publ i ¢ Function fEof() As Bool ean
Public Function readLine() As String
Public Function readToken() As String
Public Sub closeFile()

Public Function exists() As Bool ean
Public Function delete() As Bool ean
Public Function OpenForWite(fname As String) As Bool ean
Public Sub witeText(s As String)
Public Sub witeLine(s As String)
Public Sub setFilename(fnane As String)
c

Public Function getFilename() As String

A typical implementation of a couple of these methods includes

Publ i c Function OpenFor Read(Fil ename As String) As Bool ean
‘open file for reading

f = FreeFile 'get a free handle

Fil e_nanme = Fil enane 'save the filenane

On Local Error GoTo nofile 'trap errors
Open Fil ename For |nput As #f

opened = True ‘set true if open successfu
oexit:
OpenFor Read = opened "return to caller

Exit Function

"--error handling--

nofile:
end_file = True set end of file flag
errDesc = Err.Description 'save error nessae
opened = Fal se "no file open
Resune oexit "and resume

End Function

Public Function fEof() As Bool ean
"return end of file
I f opened Then

fEof = EOF(f)

El se

f Eof = True "if not opened then end file is true
End | f

End Function
Publ i ¢ Function readLine() As String
Dms As String
'read one line froma text file
I f opened Then
Line Input #f, s
readLine = s
El se
readLine = ""
End If

Copyright © 2001, by James W. Cooper

End Function

With these useful methods, we can write a simple program to read afile and
display it in alist box:

Dmfl As New vbFile
cDl g. ShowOpen ‘use conmmon di al og open

fl. OpenFor Read cDl g. Fi | enane
‘read in up to end of file
sline = fl.readLine
VWi le Not fl.fEof
| sFiles. Addltem sline
sline = fl.readLi ne
Vénd
fl.closeFile

Now, the implementation of this vbFile object can change as VB evolves.
However, by concealing the details, we can vary the implementation in the
future. We'll see another implementation of this class when we discuss
VB.NET.

Programming Stylein Visual Basic
Y ou can develop any of a number of readable programming styles for VB.
The one we use hereis partly influenced by Microsoft’s Hungarian notation

(named &fter its originator, Charles Simonyi) and partly on styles devel oped
for Java.

We will name VB controls such as buttons and list boxes with prefixes that
make their purpose clear:

Control name Prefix Example
Buttons bt btCompute
List boxes Is [SSwimmers
Radio (option buttons) op opFSex
Combo boxes cb cbCountry
Menus mnu mnuFile
Text boxes tx txTime

We will name classes in ways that describe their purpose, and precede them
with clsXXX if there is any ambiguity. Even though VB is case insensitive,
we otherwise will begin class names with capital |etters and instances of

Copyright © 2001, by James W. Cooper

classes with lowercase letters. We will also spell instances and classes with a
mixture of lowercase and capital letters to make their purpose clearer:

swi nmrer Ti ne

Summary

In this chapter, we' ve introduced VB classes and shown how they can contain
public and private methods and can contain data. Each class can have many
instances and each could contain different data values. Classes can aso have
Property methods for setting and fetching data. These Property methods
provide a simpler syntax over the usual getXXX and setXX accessor methods
but have no other substantial advantages.

Copyright © 2001, by James W. Cooper

57

4. OBJECT ORIENTED PROGRAMMING

Object-oriented programming is alittle different from earlier kinds of
programming because it introduces programming constructs called objects,
which contain both procedures and data. In this chapter we' |l begin to
understand what objects are and why they make programming easier and less
prone to errors.

A procedural program is written in the style you are probably most
familiar with: one in which there are arithmetic and logical statements,
variables, functions and subroutines. Data are declared somewhere at the top
of amodule or a procedure and more data are passed in and out of various
functions and procedures using argument lists.

This style of programming has been successfully utilized for avery long
time as programming goes but it does have some drawbacks. For example,
the data must be passed correctly between procedures, making sure that it is
of the correct size and type, and the procedures and their calling arguments
may often need to be revised as new function is added to the program during
development.

Object-oriented programming differsin that a group of procedures are
grouped around a set of related data to construct an object. An object isthus a
collection of data and the subroutines or methods that operate on it. Objects
are usualy designed to mimic actua physical entities that the program deals
with: customers, orders, accounts, graphical widgets, etc.

More to the point, most of how the data are manipulated inside an object
isinvisible to the user and only of concern inside the object. Y ou may be able
to put datainside an object and you may be able to ask to perform
computations, but how it performs them and on exactly what internal data
representation isinvisible to you as you create and use that object

Of course, aclass (in VB) is actualy just atemplate for an object. If you
design aclass the represents a Customer, you haven't created an object. An
object is an instance of the Customer class, and there can, of course, be many
such objects, al of type Customer. Creating a specific variable of a particular
classtypeisreferred to as ingtantiating that class.

Copyright © 2001, by James W. Cooper

Because objects contain data you can regard them as having states. If you
wrote a module of related functions, you probably would not have their
behavior dependent on a variable somewhere, eveniif it isin the same
module. However, when you write a class or object, you expect the various
methods within the class to make reference to the data contained in that class
and behave accordingly. For example, you might create a File object which
can be open or closed, or at the end-of -file or not.

Once someone creates an complete, working object, it islesslikely that
programmers will modify it. Instead they will smply derive new objects
based on it. We'll be taking up the concept of deriving new objects in Chapter
5.

Aswe have noted, objects are really alot like C structures or Pascal records
except that they hold both functions and data. However, objects are just the
structures or data types. In order to use them in programs, we have to create
variables having that data type. We call these variables instances of the
object.

Building VB Objects
Let’'stake a very smple example. Suppose that we want to design an object
for measuring distance. Now, our first thought might have been to simply

write a little subroutine to execute the measurement, and then perform the
measurement each time by calling this subroutine.

But in VB, we can write our code as a series of objects. So rather than writing
subroutines,

We create a TapeMeasure class

We create instances of that class, each with different sizes

We ask each instance to draw itself.

In VB, objects are represented as class modules Each VB classisan
object which can have as many instances as you like. When you writeaVB
program, the entire program is one or more classes. The main class represents
the running program itself, and it must have the same name as the program

file. In our example, the program is called Measurer.cls and the main classis
called Measure.frm.

Copyright © 2001, by James W. Cooper

59

Classesin VB contain data and functions, which are caled methods.
Both the data and the methods can have either apublic or apri vat e
modifier, which determines whether program code outside the class can
access them. Usually we make all data values private and write public
methods to store data and retrieve it from the class. This keeps programs from
changing these internal data value accidentally by referring to them directly.

If we want users of the class to be able to use a method, we, of course,
must make it public. If on the other hand, we have functions or subs that are
only used inside the class, we would make them private. A VB program can
be made up of any number of .clsand .frm files.

Creating I nstances of Objects

We use the new operator in VB to create an instance of a class. For example
to create an instance of the TapeMeasure class, we could write:

Dimtp as TapeMeasure ‘variable of type TapeMeasure

‘create instance of TapeMeasure
set tp = new TapeMeasure

Remember, while we can create new variables of the primitive types (such as
Integer, Single, etc.) we must use the new operator to create instances of
objects. The reason for this digtinction is that objects take up some block of
memory. In order to reserve that memory, we have to create an instance of the
object, using the new operator.

A VB Measurement Program

In the example below, we see a complete TapeMeasure class, including its
measur e routine.

' Tape neasure cl ass
Private width As Single, factor As Single

Public Sub setUnits(units As String)
"allows units to be cmor feet
Sel ect Case LCase$(units)

Case "c": ‘centineters
factor = 1

Case "f": ' feet
factor = 2.54

Case El se

Copyright © 2001, by James W. Cooper

factor = 1
End Sel ect
End Sub

Public Function Measure() As Single
width = Rd * 100#
Measure = width / factor

End Function

Public Function | astMeasure() As Single
| ast Measure = width / factor
End Function
The calling program is the Measurer form, which is merely the following:

Dmtp As New TapeMeasure

Private Sub bt Measure_d i ck()
t xMeasure. Text = Str$(tp. Measure)
End Sub

Private Sub opCM O i ck()

tp.setUnits "c"

t xMeasure. Text = Str$(tp.|ast Measure)
End Sub

Private Sub opFt_dick()

tp.setUnits "f"

t xMeasure. Text = Str$(tp.|ast Measure)
End Sub

Methodsinside Objects

As we noted above, functionsinside a class are referred to as methods. These
functions can be public, meaning that you can access them from outside the
class, or private, meaning that they can only be accessed from inside the
class.

Variables

In object oriented programming, you usualy make al of the variablesin a
class private as we did above with width and factor. Then you set the values
of these variables either as part of the constructor or using additional set and
get functions. This protects these variables from accidental access from
outside the class and allows you to add data integrity checksin the set
functions to make sure that the data are valid.

Copyright © 2001, by James W. Cooper

61

We could, of course, have made the TapeMeasure' s factor variable public
and set it directly.

tp.factor = 2.54,

but this gives the class no protection from erroneous data such as.
tp.factor = -50;

So instead, we use accessor functions such as setUnits to make sure that
the data values we send the class are valid:

tp.setUnits “c”

and then within the class we write this accessor function with some error
checking:

Likewise, since the TapeMeasur e class saves the last measurement it makes,
you can aways read it back by caling al ast Measur e method.

Passing Arguments by Reference and by Value

By default, all variables are passed into methods by reference. In other words
the original data can be accessed and change within any class method.
Public Sub setTenp(t As Single)

t =5 ‘changes t in the calling program
End Sub

To avoid this happening by accident, you should make a habit of prefixing
your arguments with ByVal, which copies the value into the subroutine.

Public Sub set Tenp(ByVal t as Single)
t =5 ‘has no affect on calling program
End Sub

Object Oriented Jargon
Object-oriented programs are often said to have three major properties:

*Encapsulation - we hide as much of what is going on inside methods in the
object.

*Polymor phism- Many different objects might have methods having

identical names, such as our Measure method. While they may do the same
thing, the way each isimplemented can vary widely. In addition, there can be

Copyright © 2001, by James W. Cooper

62

several methods within a single object with the same name but different sets
of arguments. In VB, aclass cannot have multiple methods with the same
name but different arguments as in other more polymorphic languages, but
related classes can have methods with the same name and arguments that do
different things.

eI nheritance - objects can inherit properties and methods from other objects,
allowing you to build up complex programs from simple base objects. VB6
only supports a subset of inheritance, using interfaces and implementations as
we see in the next chapter. VB.Net is more fully object oriented and we will
take it up in the chapter that follows.

Nonetheless, even with these limitations, we can use VB’s OO features to
write some very sophisticated programs, as you will see shortly.

Copyright © 2001, by James W. Cooper

5. BUILDING YOUR OWN VB CONTROL

One of the great strengths of VB isits powerful visual builder (IDE)
environment. It is easy to build complex and sophisticated user interfaces by
just dragging afew components onto a form and writing alittle code to
control their interactions. However, if no control does exactly what you want
it appears at first to be quite difficult of impossible to create a new control
that has these new properties. In this chapter we'll carry the idea of OO
programming a little further by showing how easy it isto derive anew
ActiveX control from the existing ones.

A Highlighted Text Field

Suppose we would like to build a text entry field that always highlights @l the
text when it receives the focus. This can be desirable whenever you want to
make sure that a single key press will replace the previous text with new text.
In fact, it seems that what we want to do isto derive a new class from the
TextBox. However, VB doesn’t alow us to do this directly, since it doesn’t
support inheritance.

However, you'll soon discover that the Gang of Four's maxim
Favor object composition over inheritance.

applies here. And object composition is just another word for encapsulation
or containment. Thus, if we can create a new class that contains the TextBox
but highlights the text whenever the control gets the focus, we'll have what
wewant.

We'll start by using the VB IDE to create the ActiveX control. Select File |
New Project and select ActiveX Control from the menu as shown in Figure
51

Hew |E>:isting! Hecent!

&
)
 Z=m > B N
Standard EXE Activel EXE Ackiver DLL WE Application
Wizard

B o

VB Enterprise
Edition Co...

Addin

Ackiver

5

Activer
Document DLL Daocurnent EXE

Copyright © 2001, by James W. Cooper

Figure 5-1- Selecting ActiveX Control creation from the VB
Project menu.

This brings up a gray form without borders called a UserControl that povides
the canvas on which to create your control, as shown in Figure 5-2

Figure5-2 - The User Control canvas.

First, change the name from UserControl1 (which is hardly mnemonic) to
HiText, by pressing F4 and changing the name in then Properties window.
Then drop a TextBox onto the form in the upper left corner, and resize the
grey background to match the size of the text box, asillustrated in Figure 5-3.

gt Project] - HiText [... H=] E3
0 ST

O
E‘TEHH] =
O

Figure 5-3—The Text box inside the User Control.

Now, lets add just alittle code. Select the GotFocus event for the Text1 box
you just added and add the code

Private Sub Text1_Got Focus()
Dims As String
s = Text 1. Text
Textl. Sel Start = 0 "Start highlight
Text 1. Sel Length = Len(s) "end hi ghlight
End Sub

Copyright © 2001, by James W. Cooper

Resizing a User Control

The last important part of a user control isthat it must resize during the
design mode. Select the HiText UserControl and select the Resize event.
Enter the following code.

Private Sub User Control _Resize()

Textl.Wdth = Wdth "design time resize of width
Text 1. Hei ght = Hei ght "and hei ght
End Sub

Testing Your HiText Controls

Now to test this control, close its design window. Then select File | Add
project to add a second project to test your new control with. On the Controls
toolbar, you will find a new icon representing the HiText control, as shown in

Figure 5-4.
1|

Figure5-4 —The HiText control icon in the Controlstoolbar.

Thisicon will only be active if the design window is closed for the HiText
control. Click on this new icon and put an instance of the control onto the
Form panel of the new project you just created. Then add a button labeled
Clear as shownin Figure 5-5.

i Tryout the new hiTest contiol

O []]

Figure5-5—Thetest project for our HiText control.

Copyright © 2001, by James W. Cooper

If you try to resize the HiText control, you'll see that the included TextBox
resizes with it in design mode.

Now if you run the test form, you will be able to type text into the HiText
box. Then, if you press the Tab key twice you will move the focus down to
the button and back to the HiText control. When it receives the focus, it will
display the text highlighted as shown in Figure 5-6.

. Try out the new hiT ext control

I
Clear |

Figure5-6 — The HiText control in action.

Adding Propertiesand Methodsto User Controls

Y ou can add any property you want to your new user control, and these
properties will appear in the Properties box if you create both a Let and a Get
property. For example, you might want to be able to change the Backcolor of
the TextBox. Just add the following code:

Property Let Backcol or(c As Col or Const ant s)
Text 1. Backcol or = ¢
Pr opert yChanged “BackCol or”

End Property

Property Get Backcol or() As Col or Constants
Backcol or = Text 1. Backcol or
End Property

Note that you must add the PropertyChanged method call whenever you
change a property of a user control. This passes this information to theVB
engine to make sure that the screen is refreshed as needed.

Copyright © 2001, by James W. Cooper

67

In the same way, you can add methods to your user control, and they will
appear in the syntax completion dropdown for any instance of that control.
For example, the TextBox control lacks a Clear method. However, we can
easily add one to our new control:

Public Sub d ear()
Textl. Text = ""
End Sub

Now that we' ve added that convenient Clear method, we can connect it to the
Clear button:
Private Sub Cearit_Cick()

hi Text 1. d ear
End Sub

and clicking the button will clear our new text box.

Compiling a User Control

Once you have your test program and user control working, you can compile
both of them by selecting File | Make Project Group. Thiswill produce an
.EXE filefor your test program and an .OCX file for your user control. Then,
if you want to use this control in further programs, you will find that VB has
automatically registered it and you can find it under Project | Components, to
add to any new project.

Summary

Building a user control like this helps you see how encapsulation can be used
to create new objects that have the properties you need. The only
disadvantage of this approach is that you must add all of the properties to the
control manually rather than having them inherited as could occur in
languages that allow inheritance. However, in many cases encapsulation is
very effective, since you have only afew properties to pass through from the
outer control interface to the enclosed control interfaces. And, if the new
control contains more than one basic contral, thisis the only possible
approach.

Copyright © 2001, by James W. Cooper

Copyright © 2001, by James W. Cooper

69

6. INHERITANCE AND INTERFACES

As you begin to work more with classes, you soon come across programming
cases where you have classes that are rather like other classes you are aready
using in this program or another similar one. It seems a shame to just copy al
that code over again and have alot of objects that are separate but very
smilar.

In languages like Java and C++, you can derive new classes from existing
classes and change only those methods that differ in the new class, with the
unchanged parent methods called automatically. VB6 does not support this
level of inheritance, but it does provide interfaces and implementations which
allow you to produce related classes with only a small amount of effort.

I nterfaces

In VB, you can create a class containing only definitions of the methods and
no actual code. Thisis called an interface definition. Then, you can create
other classes which implement that interface and they al can be treated as if
they were instances of the parent interface, even though they implement the
methods differently.

For example you could create an interface called Command which has the
following methods:

Public Sub Execute()

End Sub

Public Sub init(nm As String)
End Sub

Then you could create a number of Command objects such as ExitCommand
which implement the Command interface. To do this, you create a class
caled ExitCommand, and insert the line

| npl ement s Command

Then, from the left drop-down, you select the Command interface, and from
the right dropdown, you create instances of the Execute and init methods.
Then you can fill these methods in with whatever code is aprropriate.

Private Sub Conmand_Execut e()

Copyright © 2001, by James W. Cooper

70

'do sonet hi ng
End Sub

Private Sub Command_init(nm As String)
"initialize sonething
End Sub

The advantage of this approach is that the ExitCommand class is now also of
the type Command, and al of the classes that implement the Command
interface can be treated as instances of the Command class. To see how this
can be helpful, let’s consider a program for smulating investment growth..

An Investment Simulator

Our investment simulation program will present us with a mixture of stocks
and bonds, and we can look at their growth over any timeinterval. We will
assume that the bonds are all tax free municipal bonds and that the stocks are
al ones with positive growth rates.

The program starts with alist of seven stocks and bonds and an investment
nest egg of $10,000 to use. Y ou can invest in any combination of stocks and
bonds at any rate until all your money is invested. The initial program state is
shownin Figure 6-1.

. Imvestment simulator

Available stocks

Bostan =
Cisco
Dedham *
Electro
Fedex

GE

Fundsz remaining
I 10000

Amount bo invest

Stocks you own

Buy >3 |

Compute valuez on date |

I'I A1/2002

T azable income on date |

Figure 6-1-An investment simulator at the start.

Y ou select investments by highlighting them, selecting a purchase amount,
and clicking on the Buy button.

Copyright © 2001, by James W. Cooper

71

Once you have selected some stocks, you can enter any future date and
compute the total stock value and the total taxable income. For simplicity, we
assume that the stock income is al taxable and that the bond income is all
nontaxable. A typical investment result is shown in Figure 6-2.

vestment simulator

Fundz remaining

Aevailable stocks Stocks vou own
Dedham * I } Apple 331034
Fedex Boszton 3190.79

Electra 3237.04
Arnouint b itvest Cisco 77488
GE B36.33

600

Buy >»

£

| Compute values on date I

I1 /2002

T a=able income on date |

Figure 6-2 — A typical investment result
and the taxable income display is shown in Figure 6-3.

. Investrnent simulator

Funds remaining

Available stocks Stocks vou own
Dedham * ! 0 Apple 41034
Fedex Boston .00

Electro 337.04
Amount b invest Cizco 74.88
GE 36.33

E00

Buy >

£

Compute walues on date I

i1 M/2002

| Taxable income on date I

Figure 6-3 — Taxable income results.

Copyright © 2001, by James W. Cooper

72

Writing the Simulator

The most important classin the smulator represents a stock. This class has an
init method that sets the name and type (stock or bond) and an invest method
that determines the date and how much was invested:

Private stockName As String ' name

Private i sMuni Bond As Bool ean "true of muni bond
Private investnent As Single "anount invested
Private invDate As Date 'date of investnment
Private rate As Single ‘gromh rate

Public Sub init(nmAs String, nuni Bond As Bool ean)
st ockName = nm 'save the nane

i sMuni Bond = runi Bond "and whet her a bond

I f isMini Bond Then

rate = 0.05 "l ow fixed rate for bonds
El se

rate = Rnd / 10 "randomrate for stocks
End If

End Sub

Public Sub invest(ant As Single)

i nvDate = CvDate(Date$) 'renmenber date

i nvestnent = ant "and anount invested
End Sub

Then, when we ask for the amount of the investment or the taxable amount
earned, we compute them based on the days elapsed since the investment:

Public Function getName() As String

get Name = st ockNane ‘return the stock name

End Function

Public Function getValue(toDate As Date) As Single
Dmdiff, value As Single

'conpute the value of the investnent

diff = DateDiff("d", invDate, toDate)

value = (diff / 365) * rate * investment + investnment
get Val ue = val ue "and returnn it

End Function

Publ i ¢ Function get Taxabl e(toDate As Date) As Single
If isMuni Bond Then

get Taxable = 0 'no taxabl e i ncone
El se

"return the taxable income

get Taxabl e = get Val ue(toDate) - investnent
End I f

End Function

Copyright © 2001, by James W. Cooper

73

Indicatorsfor Using an Interface

There are two places in the above code where we have to ask what kind of
investment this is. One is when we decide on the rate and the other is when
we decide on the taxable return. Whenever you see decisions like this inside
classes you should treat them as ayellow caution flag indicating that there
might be a better way. Why should a class have to make such decisions?
Would it be better if each class represented only one type of investment? |
we did create a Stock and a Bond class, the program would become more
complicated, because our display of list data assumes the data are al of type
stock:

Private Sub Taxable_Qick()
Dmi As Integer, dt As Date
Dim stk as Stock

| sOwn. C ear
dt = CvDat e(t xDat e. Text)
For i = 1 To stocksOaned. Count

Set stk = stocksOaned(i)
| sOmn. Addl tem st k. get Nane + Chr$(9) + & _
For mat $(st k. get Taxabl e(dt), "####. 00")
Next i
End Sub

Instead, we'll create a new class called Equity and derive the Stock and Bond
classes from it. Here is our empty Equity interface:

Public Sub init(nm As String)
End Sub

Public Sub invest(ant As Single)
End Sub

Publ i c Function getNanme() As String
End Function

Publi ¢ Function getValue(toDate As Date) As Single
End Function

Publ i ¢ Function get Taxabl e(toDate As Date) As Single
End Function

Publ i ¢ Function isBond() As Bool ean
End Function

Now our Stock class just becomes:

| npl enents Equity
Private stockNane As String 'stock name

Copyright © 2001, by James W. Cooper

74

Private investnent As Single "anount invested
Private invDate As Date "investnent date
Private rate As Single ‘"rate of return

Private Function Equity_getNane() As String
Equi ty_get Name = st ockNane ‘return the nane
End Function
Private Function Equity_get Taxabl e(toDate As Date) As Single
' comput e the taxabl e include
Equi ty_get Taxabl e = Equity_get Val ue(tobDate) - investnent
End Function
Private Function Equity getValue(toDate As Date) As Single
Dmdiff, value As Single
‘conpute the total value of the investnent to date
diff = DateDiff("d", invDate, toDate)
value = (diff / 365) * rate * investnent + investnent
Equi ty_get Val ue = val ue
End Function

Private Sub Equity_init(nm As String)

st ockNanme = nm "initialize the nane
rate = Rnd / 10 "and a rate

End Sub
Private Sub Equity_invest(ant As Single)
i nvDat e = CVDat e(Dat %) 'set the date
i nvest ment = ant "and the anount
End Sub
Private Function Equity_isBond() As Bool ean
Equity_i sBond = False 'is not a bond
End Function

The Bond class is pretty similar, except for the getTaxable, init and isBond
methods.

| npl enents Equity

Private stockName As String

Private investnent As Single

Private invDate As Date

Private rate As Single

Private Function Equity _getNane() As String
Equi ty_get Name = st ockNane

End Function

Private Function Equity_get Taxabl e(toDate As Date) As Single
Equity_get Taxable = 0

End Function

Copyright © 2001, by James W. Cooper

75

Dmdiff, value As Single

diff = DateDiff("d", invDate, toDate)
value = (diff / 365) * rate * investnent + investnent
Equity_get Val ue = val ue
End Function
Private Sub Equity_init(nm As String)
st ockName = nm
rate = 0.05
End Sub
Private Sub Equity_invest(ant As Single)
i nvDat e = CVDat e(Dat e$)
i nvestment = ant
End Sub
Private Function Equity_isBond() As Bool ean
Equi ty_i sBond = True
End Function

However, by making both Stocks and Bonds implement the Equity interface,
we can treat them all as Equities, since they have the same methods, rather
than having to decide which kind is which:

Private Sub Taxable_Cick()

Dimi As Integer, dt As Date

Dim stk as Equity

" Show the Iist of taxable incomes

| sOwn. C ear
dt = CvDat e(t xDat e. Text)
For i = 1 To stocksOaned. Count

Set stk = stocksOaned(i)
| sOwn. Addl t em st k. get Nane + Chr$(9) + & _
For mat $(st k. get Taxabl e(dt), "####. 00")
Next i
End Sub

Reusing Common M ethods

A quick glance at the code above shows that the Stock and Bond classes have
some duplicated code. One way to prevent this from happening is to put some
methods in the base class and then call them from the derived classes. While
theinitial idea was to make the interface module just a series of empty
methods, VB does not require this and they can indeed have code in them.

Copyright © 2001, by James W. Cooper

76

For example, we could rewrite the basic Equity class to contain another
method which actually computes the interest, and is called by the derived
classes.

"Class Equity with cal cVal ue added
Public Sub init(nmAs String)
End Sub

Public Sub invest(ant As Single)
End Sub

Public Function getName() As String
End Function

Public Function getValue(toDate As Date) As Single
End Function

Publ i ¢ Function get Taxabl e(toDate As Date) As Single
End Function

Public Function isBond() As Bool ean
End Function

Public Function cal cVal ue(invDate As Date, toDate As Date,
rate As Single, investrment As Single)
Dmdiff, value As Single

diff = DateDi ff("d", invDate, toDate)

value = (diff / 365) * rate * investnment + investnent
cal cVal ue = val ue

End Function

Now since we don't have redl inheritance in VB, we can't call this from the
derived classes directly, but we can insert an instance of the Equity class
inside the Stock and Bond classes and call its calcVaue method. This
simplifies the Stock class to:

| npl ements Equity

Private stockNane As String 'stock name

Private investnent As Single "anount invested

Private invDate As Date 'date of investnent

Private rate As Single ‘"rate of return

Private eq As New Equity "instance of base Equity cl ass

Private Function Equity_getNane() As String
Equi ty_get Nane = st ockNanme
End Function

Private Function Equity_get Taxabl e(toDate As Date) As Single

Copyright © 2001, by James W. Cooper

Equi ty_get Taxabl e = Equity_get Val ue(tobDate) - investnent
End Function
Private Function Equity getValue(toDate As Date) As Single
'conpute using nethod in base Equity class
Equity_get Val ue = eq. cal cVal ue(i nvDate, toDate, rate, _
i nvest ment)
End Function
Private Sub Equity_init(nm As String)
st ockName = nm
rate = Rnd / 10
End Sub
Private Sub Equity_invest(ant As Single)
i nvDat e = CVDat e(Dat e$)
i nvestment = ant
End Sub
Private Function Equity_isBond() As Bool ean
Equity_i sBond = Fal se
End Function

Now, since the calcVaue method is part of the interface, you have to include
an empty method by that name in the Stock and Bond classes as well in order
for the classes to compile without error:

Private Function Equity_cal cValue(invDate As Date, & _
toDate As Date, rate As Single, &
i nvestnment As Single) As Variant
"never used in child classes

End Function

Y ou could avoid this by creating an ancillary class which contains the
computation method and creating an instance of it in the Stock and Bond
classes, but this does lead to more clutter of extra classes.

Hidden I nterfaces

Another way of accomplishing the same thing in this particular case isto give
Stock and Bond the same public interfaces, without using an Equity interface
at dl. Since dl the operations in this smple program take place through a
Callection, we can obtain a collection item and call its public methods
without ever knowing which type of equity it actually is. For example, the
following code will work for a collection Stocks containing a mixture of
Stock and Bond objects:

Copyright © 2001, by James W. Cooper

78

For i = 1 To stocks. Count
sname = stocks(i).getNane
| sSt ocks. Addl t em snane

Next i

Y ou should recognize, however, that this specia case only occurs because we
never need to get the objects back out as any particular type. In the cases we
develop in the chapters that follow this will seldom be the case.

Summary

In this chapter, we' ve shown how to construct an interface and a set of classes
that implement it. We can then refer to all the derived classes asif they were
instance of the interface class and simplify our code considerably.

Copyright © 2001, by James W. Cooper

79

/. INTRODUCTION TO VB.NET

VB.NET or VB7 has much the same basic syntax as earlier versions of Visua
Basic, but it isin many ways a completely new language. Unlike previous
versons of VB, VB7 is completely object oriented, and many common
operations are implemented a little differently because of this difference. For
these reasons, it is best to consider VB.NET alanguage for developing new
NET applications, rather than as a new compiler for programs you have
aready written. Because of the awkward typography of VB.NET, we'll use
the name VB7 to mean the same thing as VB.NET when we refer to it within
the text. We'll maintain the VB.NET name in subheads, however. We'll see
some of the advantages of VB7 in this chapter and in later chapters we'll see
how it maekes some of the design patterns that much easier to construct useful
object-oriented VB programs.

Syntax Differencesin VB.NET

The magjor differences you will find in this version of VB is that all callsto
subroutines and class methods must be enclosed in parentheses. In VB6, we
could write

Dim myCol As New Col |l ection
MyCol . Add "M ne"

However, in VB7 you must enclose the argument in parentheses:

Di m nyCol As New Arrayli st
MyCol . Add ("M ne")

One other significant difference, and for most people an improvement is that
arguments passed into subroutines are by default passed by value instead of
by reference In other words, you can operate on the variable within the
subroutine without inadvertently changing its value in the calling program. In
other words, the ByVal modifier is now the default. In fact, the devel opment
environment inserts it automatically in most cases If you want to change the
value in the calling program, you can still declare an argument using the
ByRef modifier instead.

Four other keywords have also been removed or significantly changed from
VB6: Set, Variant, Wend, EndIf. In fact, the development environment
simply removes the Set verb from the beginning of any line where you use it.

VB6 VB7

Copyright © 2001, by James W. Cooper

Set g = New Col |l ecti on g = New Col | ecti on
Dmy as Vari ant Dmy as Object
Wiile x < 10 Wiile x < 10

X =x +1 =x +1
Vénd Wi l e

Dimx as Integer, y as integer

X
d

mx,y As |nteger
m X(30) as Single
X = New Si ngl e(40)
o

ReD m X(40)

olo|m

ReDi m X(30) As Single

Since the Dim statement now alows you to list severd variables of the same
type in asingle statement,

Dmx, y As Integer

you can no longer list variables of different typesin a single statement:
Dim X as Integer, Y As Single "Illegal in VB7

Y ou must now list them on separate lines

Dim X as | nteger "legal in both vb6 and vb7
DimY as Single

The VB7 compiler will flag usage of many of the above VBG6 constructs as
errors. However, it smply skips additiona “As’ statements on the same line
of aDim statement. In addition, the string functions Instr, Left and Right have
been supplemented by the more versatile indexOf and substring methods of
the String class. Note that string indexes are zero based when using these new
methods.

VB6 VB7
Instr(s, ",") S. i ndexOr (",")
Left(s, 2) s. substring(0, 2)
Ri ght (s, 4) s.substring(s.Length() -4)

Improved Function Syntax

One of the awkward bugaboos in VB has been the need to refer to the
function name in returning a value from a function.
Public Function Squarit(x as Single)

Squarit = x * X
End Function

Copyright © 2001, by James W. Cooper

81

In VB7, this regtriction is finally lifted and you can smply use the return
statement as is common in many other languages:

Public Function Squarit(x as Single)
Return x * x
End Function

This makes functions much smpler to type and use.

Objectsin VB.NET

In VB7, everything is treated as an object. Whilein VB6, you could create
class instances that behaved as objects. Objects contain data and have
methods that operate on them. In VB7, thisis true of every kind of variable.

Strings are objects, as we illustrated above. They have methods such as

Substring
ToLower Case
ToUpper Case
| ndexOX

I nsert

ToSi ngl e
Tol nt 32

and so forth.
Integers, Single and Double variables are a so objects, and have methods.

Dims as String
Dimx as Single
x = 12.3

s = x.toString

In fact, you can even treat constants as objects

Dim snum as String
Snum = 9.toString

Note that conversion between strings and numerical typesis now done using
these methods rather than using the Va and Str functions. If you want to
format a number as a particular kind of string, each numeric type has a
Format method:

Dims as String
Dimx as Single
X = 12. 34

s = Single.Format (x, "##.000")

Copyright © 2001, by James W. Cooper

82

Numbersin VB.NET

All numbers without decimal points are assumed to be of type Int32, and all
numbers with decimal points are assumed to be of type Double. If you want
to set a Single variable to a decima number, you should following the
number with an “F” (for floating point).

Dmtinme As Single = 123F

Normally the VB.NET compiler is set to Option Explicit, which prevents
most undeclared type conversions, except to wider types. Y ou can always
convert from integer to single or double. However, if you want to convert a
single to an integer you must specificaly indicate that you mean to.

Dimk As Integer = tine.Tolntl6

Propertiesin VB6 and VB.NET

Visua Basic provides a construct called properties that is anaogous to the
getXxx and setXxx methods of other languages. In VB6, you can specify a
property by name and define its Get and Let methods. These two methods
allow you to set the value of a private variable and return the value of that
variable.

Property Get fred() As String
fred = fredNanme

End Property

Property Let fred(s As String)
fredName = s

End Property

Of course, you can do pre and post-processing of these data to validate them
or convert them from other forms as needed.

In VB7, these properties are combined into a single routine:

Property Fred() As String
Get
Ret urn fredNane
End Get
Set
fredName = val ue
End Set
End Property

Note the specia keyword value. We use it in VB7 to indicate the value being
passed in to a property. So if we write

Copyright © 2001, by James W. Cooper

Abc. Fred = "dog"

then the string value will contain “dog” when the property Set code is
executed.

In both systems, the purpose is to provide a smple interface to get and set
values from a class without knowing how the data are actually stored. Y ou
use these properties in common assignment statements. If “Fred” is a property
of the Boy class, then, you can write statements like

Dimki d as Boy
Kid.fred = "snart"

And

Dimbrain as string
Brain = kid.fred

In general the Property system provides an alternate syntax to the getFred and
setFred functions that you could write just as easily. While the syntax differs,
there is no obvious advantage other than the fact that many native VB objects
have properties rather than get and set methods. In this book we will not
make much use of properties because they are not a significant advantage in
coding object-oriented programs.

Shorthand Equals Syntax

VB7 adopts the short-hand equals syntax we find in C, C++, C# and Java. It
allows you to add, subtract, multiply or divide a variable by a constant
without typing its name twice.

Dimi As Integer = 5

i += 5 'add 5to i

i -= 8 'subtract 8 formi

i *= 4 'multiply i by 4
Y ou can use this approach to save typing, but the code generated is
undoubted the same as if you had written the code out in the old way
i +5

i i - 8

i i * 4
The same applies to division, but you seldom see it because it seems more
awkward to read.

Copyright © 2001, by James W. Cooper

Managed L anguages and Gar bage Collection

VB.NET and C# are both managed languages. This has two major
implications. First, both are compiled to an intermediate low-level language,
and a common language runtime (CLR) is used to execute this compiled

code, perhaps compiling it further first. So, not only do VB7 and C# share the
same runtime libraries, they are to a large degree two sides of the same coin
and two aspects of the same language system. The differences are that VB7 is
more Visual Basic like and a bit easier to learn and use. C# on the other hand
is more C++ and Java-like, and may appeal more to programmers already
experienced in those languages.

The other major implication is that managed languages are garbage-collected.
Garbage collected languages take care of releasing unused memory: you
never have to be concerned with this. As soon as the garbage collection
system detects that there are no more active references to a variable, array or
object, the memory is released back to the system. So you no longer need to
worry as much about running out of memory because you alocated memory
and never released it. Of coursg, it is still possible to write memory-eating
code, but for the most part you do not have to worry about memory allocation
and release problems.

Classesin VB.NET

Classes are avery important part of VB7. Almost every important program
congists of one or more classes. The distinction between classes and forms
has disappeared in VB7, and most programs are all classes. Since nearly
everything is a class, the number of names of class objects can get to be pretty
overwhelming. They have therefore been grouped into various functional
libraries that you must specifically mention in order to use the functionsin
these libraries.

Under the covers these libraries are each individual DLLs. However, you
need only refer to them by their base names using the Imports statement, and
the functionsin that library are available to you.

I mports System Col | ections 'Use Col |l ecti on nanmespace cl asses
Logically, each of these libraries represents a different namespace. Each
namespace is a separate group of class and method names which the compiler

will recognize after you import that name space. Y ou can import namespaces
that contain identically named classes or methods, but you will only be

Copyright © 2001, by James W. Cooper

notified of a conflict if you try to use a class or method that is duplicated in
more than one namespace.

The most common namespace is the System namespace, and it is imported by
default without your needing to declare it. It contains many of the most
fundamental classes and methods that VB7 uses for access to basic classes
such as Application, Array, Console, Exceptions, Objects, and standard
objects such as Byte, Boolean, Single and Double and String. In the smplest
VB7 program we can simply write “hello” out to the console without ever
bringing up awindow or form:

| nports System "this one is optional

"Sinple VB Hello Wrld program
Public Cass cMin
Shared Sub Mai n() ‘entry point is Main
' Wite text to the console
Consol e. WiteLine ("Hello VB World")
End Sub
End O ass

This program just writes the text “Hello VB World” to a command (DOYS)
window. The entry point of any program must be a Sub Main subroutine, and
in a class module, it must be declared Shared. The only other type of module
in VB7 is the Module type. Here the program can be written
"Simple VB Hello World program
Publ i ¢ Modul e cMain
Sub Mai n() "entry point is Main
' Wite text to the console
Consol e. WiteLine ("Hello VB World")

End Sub
End Modul e

The programs are pretty much identical, except that a Module has all public
(and shared) methods and the Sub Main need not be declared as Shared.
Modules are analogous to the Modules in earlier versions of VB, and are the
ones that Vb would have created with a .bas file type. The have the advantage
that al of the methods and constants declared in a Module are public and can
be referenced throughout the program. However, unlike classes, they provide
no way to hide information or algorithms, and we will not use them further in
this book.

In VBB, the class name was usualy declared the filename, athough you
could change a class s Name property. In VB7, the Class keyword alows you
to declare the class name irrespective of the filename, and in fact you must
declare a class name for each class. The default file extensions for VB6

Copyright © 2001, by James W. Cooper

classeswas .cls and for forms .frm. In VB7, you can use any filename or
extension you want, but the default file extension is .vb.

Building a VB7 Application

Let's start by creating a ssimple console application: that is one without any
windows, that just runs from the command line. Start the Visual Studio.NET
program, and select File [New Project. From the selection box, choose
Console application as shown in Figure 7-1.

New Project 5!
Iee ::::I
Project Types: Templates: BB oo

..... = ic

1“__‘| Wisual C# Projects @ @ m
-0 wisual C++ Projects %

[visual FoxPro Projects Console Windows Emphy Project
L3 setup and Deployment Projects Application Service

{_] Other Projects :
L :l e
2

L] Wisual Studio Solutions
Empty Wweb Impart Folder

Project ‘izard _"'J
|.C\ project For creating a command-line application
Tame: | Consoleapplicationl
Location: I [:\ProjectsivbPats\Programs j Browse, ,. |

Project will be created at DiiProjectsivbPatsiPrograms| Consoledpplicationl .

¥F Mare | oK I Cancel i Help I

Figure 7-1 — The New Project selection window. Selecting a console
application.

Thiswill bring up a module, with the Sub Main aready filled in. You can
type in the rest of the code as follows:

Modul e cMai n
Sub Mai n()
"wite text to the console
Consol e. WiteLine("Hello VB world")
End Sub
End Mbdul e

Copyright © 2001, by James W. Cooper

87

Y ou can compile this and run it by pressing F5. If you change the program’s
main module name, as we did here, from Modulel to cMain, you will also
have to change the name of the Startup module. To do this, in the right-hand
Solution Explorer window, right-click on the project name and select
Properties from the pop-up menu. Thiswill appear asin Figure 7-2.

ConsoleApplicationl Property Pages zj
Configurakion; INIF\ j Elatformm: INIP j Configuration Manager
‘=3 Cornmon Properties Assembly name:

g General I ConsoleApplication1
Versi
BZEDH Qukpuk Eype: Startup object:
Imports IConsoIe Application | ~

Reference Path Root namespace Consoleniilicationl cl¥ain
sharing

Consoleapplicationl
Designer Defaulks I Eh

(23 Configuration Properties

Information
Project Folder: D:ProjectsivbPatsProgramsiConsoleApplicationl’
Projeck File: ConsoleApplication! .vbproj

Output name: ConsoleApplication] .exe

Ok I Cancel | fpply I Help

Figure 7-2—The property pagefor the project.

Y ou can change the startup object in the dropdown menu to the correct new
name.

When you compile and run the program by pressing F5, a DOS window will
appear and print out the message “Hello VB World” and exit.

Y ou can aso delete the module and insert aclass instead.

Public Class cMain
Shared Sub Mai n()
Console. WiteLine("Hello classy VB world")
End Sub
End Cl ass

Thiswill compile and run in just the same way.

Copyright © 2001, by James W. Cooper

The Simplest Window Program in VB.NET
It isjust about as simple to write a program that brings up awindow. In fact,
you can create most of it using the Windows Designer. To do this, start
Visua Studio.NET and select File]New project, and select Windows
Application. The default name (and filename) is WindowsA pplicationl, but
you can change this before you close the New dialog box. This brings up a
single form project, initially called Form1.vb. Y ou can then use the Toolbox
to insert controls, just as you could in VB6.

The Windows Designer for a smple form with 2 |abels, one text field and one
button is shown in Figure 7-3.

b el - =Tk
Dl Lot e
-t Ed v E-g [[R D
I (1] 1 ALl R %%
y T #omoapermr| IE .o .
':!_ m . BT T T 0 = e | 151 5 e B
§ Comenein [Boroierete Y @ s el 1 et
i = TSI S M
A Lokl [= Pamtv
A Unkisbd Sl
il Button Lehiafl
 Tactos
B Mankenn g
F chacia: L Hal
' Rasaftton .
fn
i i T =
#v-ﬁ ; [Formad Spstem weroava Fown =]
] bt i 18 e
ehaning | : i i ?m!'!lyi toada x|
i e | Cuner Hmmw i
— R P .
gt 2| s W Connedes
] F|| rohiTesit Ao
Tk Semzle Helis
| B bt vice
ileadlvog Fakes =

T
o | Thet bt cormanaad i bhes conied

Figure 7-3—The Windows designer in Visual Studio.NET

Y ou can draw the controls on the form and double click on the controls to
enter code. In this simple form, we click on the “Say hello” button and it
copies the text from the text field to the blank label we named IbHi, and
clearsthetext field.

Protected Sub SayHello_Click(ByVal sender As Object, _
ByVal e As System Event Args)

| bhi . Text () = txhi. Text
txhi.Text = ""
End Sub

Copyright © 2001, by James W. Cooper

89

The code it generatesis alittle different. Note that the Click routine passesin
the sender object and an event object that you can query for further
information. The running program is shown in Figure 7-4.

R o
E nter your text below: E nter your text below:
Hello

Say hello |

Figure 7-4 —The SimpleHello form before and after clicking the
Say Hello button.

While we only had to write the two lines of code inside the above subroutine,
it isingructive to see how different the rest of the code is for this program.

We first see that severd libraries of classes are imported so the program can
use them:

| mports System Conponent Model
I mports System Draw ng
| mports System W nFor ns

Most significant is the WinForms library, which is common to all the .Net

languages. Y ou can use the same forms designer for VB as for C# (C-sharp)
and C++.

Inheritance
Next we see the must stunning change in VB7- inheritance.

Public Class Hell oForm
I nherits System W nFor ms. Form

Copyright © 2001, by James W. Cooper

The form we create is a child class of the Form class, rather than being an
instance of it as was the case in previous versions of VB. This has some very
powerful implications. Y ou can create visual objects and override some of
their properties so that the each behave alittle differently. We'll see some
examples of this shortly.

The code the designer generates for the controlsisilluminating. No longer is
the code for the control creation buried in an interpreter of Form module
declarations you can’t easily change. Instead it is right there in the open for
you to change if you want. Note however, that if you change this code
manualy instead of using the property page, the window designer may not
work any more. That iswhy this section isinitialy collapsed inside a“[+]”
box line on the code display.

Essentially, each control is declared as a variable and added to a container.
Here are the control declarations

"Required by the W ndows Form Desi gner

Private conmponents As System Conponent Model . Cont ai ner
Private WthEvents SayHell o As System W nForns. Button
Private WthEvents | bH As System W nFor ns. Label
Private WthEvents txH As System W nFor ms. Text Box

Dim Wt hEvents FormlL As System W nForns. Form

"I't can be nodified using the Wndows Form Desi gner.
"Do not modify it using the code editor.
vate Sub InitializeConmponent ()
Me. conmponents = New System Conmponent Model . Cont ai ner ()
Me. |l bHi = New System W nFor ns. Label ()
Me. SayHel l o = New System W nForns. Button()
Me.txH = New System W nFor ns. Text Box()
| bHi . Location = New System Draw ng. Poi nt (48, 72)
| bHi . Si ze = New System Drawi ng. Si ze(176, 24)
| bHi . ForeCol or = System Draw ng. Col or. Bl ue
| bHi . Font = New System Drawi ng. Font (_
"M crosoft Sans Serif", 10!, _
System Dr awi ng. Font St yl e. Bol d)
| bHi . Tabl ndex =1

Pr

SayHel | 0. Locati on = New System Draw ng. Poi nt (72, 128)
SayHel | 0. Si ze = New System Drawi ng. Si ze(112, 24)
SayHel | 0. Tabl ndex = 2

SayHel | 0. Text = "Say Hell o"

txHi . Location = New System Draw ng. Poi nt (48, 24)

Copyright © 2001, by James W. Cooper

91

txH . Text = "Hell o"

txHi . Tabl ndex = 0

txHi . Si ze = New System Draw ng. Si ze(176, 20)

Me. Text = "Sinple Hello"

Me. Aut oScal eBaseSi ze = New System Draw ng. Si ze(5, 13)

Me. Cont rol s. Add(SayHel | o)
Me. Control s. Add(| bHi)
Me. Control s. Add(t xHi)

End Sub

Note that the SayHello button is declared using the WithEvents modifier.
This means that there can be adirect connection between the button and the
subroutine SayHello_Click.

Congtructors

All classes now have specific constructorsthat are called when you create an
instance of a class. These constructors are always named New. This appliesto
form classes aswell as non-visua classes. Here is the constructor for our
simple hello window:

Publ i ¢ Sub New()

MyBase. New()
"This call is required by the Wn Form Desi gner.

InitializeConponent ()
End Sub

Note the MyBase.New method call. Thisisrequired in al classes that are
derived from other classes. It calls the constructor of the parent class, and
initiaizesit.

When you create your own classes, you can creste New methods to initidize
them, and can pass arguments into the class to initialize class parameters to
specific values. Suppose you wanted to create a StringTokenizer class like the
one we defined in Chapter 2. Here we will use real constructorsinstead of
the init() method. Our constructor will copy the string into an interna

variable, and create a default vaue for the token separator.

Public Class StringTokenizer
Private s As String
Private i As Integer
Private sep As String 't oken separat or

Public Sub New(ByVal st As String)

Copyright © 2001, by James W. Cooper

92

s = st ‘copy in string
sep = " " "default separator

End Sub

Public Sub set Separator(ByVvVal sp As String)
sep = sp ' copy separator

End Sub
Publ i ¢ Function next Token() As String
Dimtok As String
i = s.indexOf (sep) "l ook for separator
If i > 0 Then "if found
tok = s.substring(0, i)' 'return string to left
S = s.substring(i + 1) 'shorten string

El se

tok = s "otherwi se return end of string

s ="" "and set remainder to zero length
End | f
next Token = tok "return token

End Functi on

End Cl ass

Our caling program simply creates an instance of the tokenizer and prints out
the tokens:

illustrates use of tokenizer
Public Class TokTest

Shared Sub Mai n()
Dims As String
Dimtok As New StringTokenizer("Hello VB Worl d")
s = tok.next Token()
VWhile (s <> "")
Consol e.writeLine(s)
s = tok. next Token()
End Wi le
End Sub
End Cl ass

Note that VB7 allows you to declare variables and initidize them in the same
statement:

Dimtok As New StringTokenizer("Hello VB Worl d")

Copyright © 2001, by James W. Cooper

93

Drawing and Graphicsin VB.NET

In VB7, controls are repainted by the Windows system and you can overide
the OnPaint event to do your own drawing. The PaintEventArgs object is
passed into the subroutine by the underlying system, and you can obtain the
graphics surface to draw on from that object. To do drawing, you must create
an instance of a Pen object and define its color and, optionaly its width. This
isillustrated below for a black pen with a default width of 1.

Protected Overrides Sub OnPai nt (e as Pai nt Event Ar gs)
Dim g as Graphics = e. Graphics
Di mrpen As new Pen(Col or. Bl ack)
g. drawkLi ne(rpen, 10, 20, 70, 80)

End Sub

The Overrides keyword isacritica part of the VB inheritance system. Using
this keyword tells the compiler that you are overriding the same method in a
parent class.

Overloading

In VB7 aswell as other object oriented languages, you can have several class
methods with the same name as long as they have different calling arguments
or signatures. For example we might want to create an instance of the
StringTokenizer where we define both the string and the separator.

tok = New StringTokenizer("apples, pears", ",")

If we want to implement this congtructor, we have to tell VB that we are
overloading the constructor so the compiler will know we meant to have two
methods with the same name. Here are the two constructors.

Public Overloads Sub New(st as String, sepr as String)

s = st
sep = sepr
End Sub
Public Overloads Sub New(st As String)
s = st ‘copy in string
sep =" " "default separator
End Sub

Of course VB alows us to overload any method as long as we specify the
Overloads keyword before the sub or function name, and provide arguments
that alow the compiler can distinguish between the various overloaded (or
polymorphic) methods.

Copyright © 2001, by James W. Cooper

Inheritance

The most powerful new featureis VB7 is the ability to create classes which
are derived from existing classes. In new derived classes, we only have to
specify the methods that are new or changed. All the others are provided
automatically from the base class we inherit from. To see how this works, lets
consider writing a smple Rectangle class which draws itself on aform
window. This class has only two methods, the constructor and the draw
method.

Namespace VBPatterns
Public Class Rectangl e
Private x, y, h, w As Integer
Protected rpen As Pen
Public Sub New(ByVal x_ As Integer, _
Byval y_ As Integer,
ByVal h_ As Integer,
ByVal w_ As Integer)

S o< X

rpen = New Pen(Col or. Bl ack)

Public Sub draw(ByVal g As Graphics)
g. DrawRect angl e(rpen, x, y, w, h)
End Sub
End Cl ass
End Nanespace

Namespaces

We mentioned the System namespaces above. Further, VB7 createsa
Namespace for each project equa to the name of the project itself. You see
this default namespace being generated in Figure 7-2. Y ou can change this
namespace on the property page, or make it blank so that the project isnot in
anamespace. However, you can create namespaces of your own, and the
Rectangle class provides a good example of areason for doing so. There
already is a Rectangle class in the System.Drawing namespace that this
program imports. Rather than renaming the class to avoid this name overlap
or “collison,” we can just put the whole Rectangle classin its own

Copyright © 2001, by James W. Cooper

95

namespace by wrapping the class inside a namespace declaration as we show
above.

Then, when we declare the variable in the main Form window, we declare it
as amember of that namespace.

Public Class Rect Form
I nherits System W nFornms. Form
Private rect As VBPatterns. Rectangle

In this main Form window, we create an instance of our Rectangle class.

Public Sub New()
"This call is required by the Wn Form Desi gner.
InitializeConponent ()
rect = New VBPatterns. Rectangl e(40, 20, 30, 80)
End Sub

Then we override the OnPaint event to do the drawing and pass the graphics
surface on to the Rectangle instance.

Protected Overrides Sub OnPaint(_
ByVal e As Paint Event Ar gs)
Dimg As Gaphics
g = e.Graphics
rect.draw g)
End Sub
This gives us the display we see in Figure 5-4.

S=T

Figure 5-4. The Rectangle drawing program.

Copyright © 2001, by James W. Cooper

Creating a Square From a Rectangle

A squareisjust a special case of arectangle, and we can derive a square class
from the rectangle class without writing much new code. Here is the entire
class:

Nanmespace VBPatterns
Public Cl ass Square
Inherits Rectangl e
Public Sub New(Byval x As |nteger, _
ByVal y As Integer, ByVal w As Integer)
MyBase. Newm(x, vy, w, W)
End Sub
End C ass
End Nanespace

This Square class contains only a constructor, which passes the square
dimensions on to the underlying Rectangle class by caling the constructor of
the parent Rectangle class. The Rectangle class creates the pen and does the
actual drawing. Note that there is no draw method at al for the Square class.
If you don’t specify a new method the parent class s method is used
automatically.

The program which draws both a rectangle and a square has asimple
congtructor where instances of these objects are created:

Public Sub New()
InitializeConponent
rect = New Rectangl e(10, 10, 30, 80)
sq = New Square (50, 50, 50)

End Sub

and an OnPaint routine where they are drawn.

Protected Overrides Sub OnPaint(_
ByVal e As Paint Event Args)
Dimg As G aphics
g = e. Graphics
rect.drawg)
sq. draw(g)
End Sub
The display is shown below for the square and rectangle:

Copyright © 2001, by James W. Cooper

97

RIS

Figure 56 — The rectangle class and the square class derived fromit.

Public, Private and Protected

In VB6, you could declare variables and class methods as either public or
private. A public method is accessible from other classes and a private
method is accessible only inside that class. Usualy, you make al class
variables private and write getXxx and seXxx accessor functions to set or
obtain their values. It is generally abad ideato alow variablesinside a class
to be accessed directly from outside the class, since this violates the principle
of encapsulation. In other words, the classis the only place where the actua
data representation should be know, and you should be able to change the
algorithms inside a class without anyone outside the class being any the
wiser.

VB7 introduces the protected keyword as well. Both variables and methods
can be protected. Protected variables can be accessed within the class and
from any subclasses you derive from it. Similarly, protected methods are only
accessible from that class and its derived classes. They are not publicly
accessible from outside the class.

Overriding Methodsin Derived Classes
Suppose we want to derive a new class called DoubleRect from Rectangle,
that draws a rectangle in two colors offset by afew pixels. In the constructor,
we will create ared pen for doing this drawing:
Namespace VBPatterns

Public Cl ass Doubl eRect
I nherits Rectangle

Copyright © 2001, by James W. Cooper

Private redPen As Pen

Public Sub New(ByVal x As Integer, _
ByvVal y As Integer, ByVal w As Integer,
ByVal h As Integer)
MyBase. Newm(x, y, w, h)
redPen = New Pen(Col or. Fr omARGB(255,
Col or. Red), 2)
End Sub

This means that our new class DoubleRect will have to have its own draw
method. Now the base class has a draw method and we really ought to create
amethod with the same name, since we want all these classes to behave the
same. However, this draw method will use the parent class' s draw method but
add more drawing of its own. In other words, the draw method will be
overloaded and we must specifically declare that fact to satisfy the VB
compiler:

Public Overrides Sub drawm(ByVal g As Graphics)

MyBase. dr awm g)
g. drawRect angl e(redPen, x + 4, y + 4, w, h)
End Sub

Note that we want to use the coordinates and size of the rectangle that was
specified in the constructor. We could keep our own copy of these parameters
in the DoubleRect class, or we could change the protection mode of these
variables in the base Rectangle class to protected from private.

Protected x, y, h, w As Integer
We aso must tell the compiler that we want to allow the Rectangle’'s draw
method to be overridden by declaring it as overridable.

Public Overridable Sub draw(ByVal g As G aphics)
g. DrawRect angl e(rpen, x, y, w, h)
End Sub

The fina rectangle drawing window is shown in Figure 5-7.

Copyright © 2001, by James W. Cooper

RIS

Figure 5-7. The Rectangle, Square and DoubleRect classes.

Overriding Windows Controls

In VB7 we can finaly make new Windows controls based on existing ones
using inheritance. Earlier we created a Textbox control which highlighted al
the text when you tabbed into it. In VB6, we did this by writing anew DLL in
which the Textbox was enclosed in a Usercontrol, and where we passed all
the useful events on to the Textbox. In VB7, we can create that new control
by just deriving a new class from the Textbox class.

We'll start by using the Windows Designer to create a window with two text
boxes on it. Then we'll go to the Project|/Add User Control menu and add an
object called HiTextBox.vb. We'll change this to inherit from TextBox
instead of UserControl.

public class HText Box
I nherits Textbox

Then, before we make further changes, we compile the program. The new
HtextBox control will appear at the bottom of the Toolbox on the left of the
development environment. Y ou can create visual instances of the HtextBox
on any windows form you create. Thisis shown in Figure 5-8

Copyright © 2001, by James W. Cooper

100

3 PrintPreviewContral
& ErrorProvider

% PrintDocument

ﬂ PageSetuplialog

@ CrystalReportiiewer
1 = e -
&3 HiTextBox “ - - ClHiTesthoxl g::::::::::::::
= e
Clipboard Ring | =] s

General |

Figure 5-8. The Toolbox, showing the new control we created and an
instance of the HiTextBox on the Windows Designer pane of a new form.

Now we can modify this class and insert the code to do the highlighting.

"A text box which highlights when you tab into it
public class HText Box
I nherits Textbox
Public Sub New

Mybase. New
'add Event event handl er

AddHandl er Enter, _
New System Event Handl er (Addr essCOf

Me. HT _Enter)
End Sub

"Enter event handler is inside the class
Protected Sub HT_Enter(ByVal sender As bject,
ByVal e As System Event Args)
Me. sel ectionStart = 0
Me. sel ecti onLength = Me.text.length

End Sub
End Cl ass

And that’ s the whole process. We have derived a new Windows control in
about 10 lines of code. That’s pretty powerful. Y ou can see the resulting
program in Figure 5-8

Copyright © 2001, by James W. Cooper

101

JRI=TEY

Iabcde

ghijk:

Figure 5-8. A new derived HTextbox control and a regular Textbox control.

I nterfaces

VB7 also continues to support interfaces much like VB6 did. However, the
syntax has changed somewhat. Now an Interface is a special kind of class:
Interface Milti Choice

"an interface to any group of conponents

"that can return zero or nore selected itens
"the names are returned in an Arrayli st

Function getSel ected() As Arrayli st
Sub cl ear () ‘clear all selected
Function get Wndow() As Panel

End Interface
When you implement the methods of an Interface in concrete classes, you
must not only declare that the class implements that interface:

public O ass ListChoice
| npl ement's Mul ti Choi ce

But that each method of the class implements it as well:

public Function getSelected() As ArraylList _
I mpl ement's Mul ti Choi ce. get Sel ect ed

End Function

"clear all selected itens
Public Sub clear() inplenents MiltiChoice.clear

Publ i c Function get Wndow() As Pane

Copyright © 2001, by James W. Cooper

102

I mpl ement s Mul ti Choi ce. get W ndow
return pnl
End Function

We'll show how to use this interface when we discuss the Builder pattern.

Summary

We've seen the shape of most of the new featuresin VB7 in this chapter. In
addition to some syntax changes, VB7 adds inheritance, constructors and the
ability to overload methods to provide aternate versions. This leads to the
ability to create new derived versions even of Windows controls. In the
chapters that follow, we'll show you how you can write design patternsin
both VB6 and VBY.

Programs on the CD-ROM

\IntroVBNet\ H Text A subclassed text box
\IntroVBNet\ SayHel | o A Simple Hello program
\ I ntroVBNet \ Tokeni zer A string tokenizer

Copyright © 2001, by James W. Cooper

103

8. ARRAYS, FILES AND EXCEPTIONS IN
VB.NET

VB7 makes some significant changes in the ways you handle arrays and files
and completely changes error handling. All of these changes make your
programming a lot easier than it was before.

Arrays

InVBY7, al arrays are zero based. Thisis different than al previous versions
of Basic. In VBS, if you wrote

Dim x(10) As Single

Y ou assumed that the x array had elements from 1 to 10, although it actually
alwaysincluded a zero element as well. In other words the x array actualy
had 11 elements.

In VB7, such arrays have only 10 elements, numbered from 0 to 9. This
changes the way we move through arraysto be in line with the style used in
C, C++, C#and Java

Di m Max as | nteger

Max = 10

Di m x(Max)

For j =0 to Max-1
x(j) =]

Next |

Y ou should get into the habit of looping through arrays to the array bounds
minus one as we did in the above example.

All array variables have a length property so you can find out how large the
aray is.
Dimz(20) As Single
Dimj As I|nteger
For j =0 To z.Length -1

cz(i) =
Next j
Arraysin VB7 are dynamic and space can be reallocated at any time. To
create areference to an array and allocate it later within the class use the New
syntax:

"Declare at the class |evel

Copyright © 2001, by James W. Cooper

104

Dim x() As Single
"allocate within any method
X = New Single(20) {}

Note the unusual use of curly braces following the type and size. You can
also use the ReDim statement, with or without preserve to change the size of
adeclared array. However, you should note that ReDim no longer alows an
“As’ clause, since the array type cannot be changed during ReDim.

ReDi m x(40)

ReDi m Preserve x(50)

Collection Objects

The System.Collections namespace contains a number of useful variable
length array objects you can use to add and obtain items in severa ways.

ArrayLists

Since arrays are now zero-based, VB7 introduces the ArrayList object to
replace the Collection object, which was always 1-based. The ArrayList is
essentially a variable length array that you can add items to as needed. The
basic ArrayList methods are about the same as for Collections, although there
are quite afew more methods you can aso use.

Dmi, j As Integer
"create Arrayli st
Dimarl As New ArraylList() 'constructor

‘"add to it

For j = 0 To 10
Arl . Add(j)

Next j

Like the Collection object, the ArrayList has a Count property and an Item
property that alows you to obtain elements from it by index. And, like the
Collection, this property can be omitted, treating the ArrayList just asif it
were an array:

"print out contents
For i = 0 To arl.Count - 1
Console.writeLine(arl.lten(i))
Consol e.writeLine(arl (i))

Next i
Y ou can aso use the methods of the ArrayList shown in Table 6-1:
d ear Clearsthe contents of the ArrayList
Cont ai ns(obj ect) Returns true if the ArrayList contains

Copyright © 2001, by James W. Cooper

105

that value

CopyTo(array) Copies entire ArrayList into a one-
dimensional array.

I'ndexCf (obj ect) Returns the first index of the value

I'nsert (index, object) Insert the element at the specified
index.

Renove(obj ect) Remove eement from list.

RenpveAt (i ndex) Remove element from specified
position

Sort Sort ArrayList

Table 6-1- ArrayList methods

Hashtables

A Hashtable is avariable length array where every entry can be referred to by
akey value. Typically, keys are strings of some sort, but that can be any sort
of object. Keys must be unique for each element, although the e ements
themselves need not be unique. Hashtables are used to alow rapid access to
one of alarge and unsorted set of entries, and can aso be used by reversing
the key and the entry values to create alist where each entry is guaranteed to
be unique. The most important Hashtable methods are add and the item fetch.

Di m hash As New Hasht abl e()
Dim fredCObj ect As New Object ()
Di m obj As Obj ect
hash. Add(" Fred", fredObject)
obj = hash.lten("Fred")

Hashtables also have a count property and you can obtain an enumeration of
the keys or of the vaues.

SortedLists

The SortedList classis most like the VB6 Collection class. It maintains two
internal arrays, so you can obtain the e ements either by zero-based index or
by aphabetic key.

Di m sList As New SortedList()

Copyright © 2001, by James W. Cooper

106

slist.Add("Fred", fredObject)
slist.Add("Sant', obj)

Di m newCbj As Obj ect

newQbj slist. GetByl ndex(0) "by i ndex
newobj slist.ltem"Sam') "by key

Y ou will aso find the Stack and Queue objects in this namespace. They
behave much as you' d expect, and you can find their methods in the system
help documentation.

Exceptions

Error handling in VB7 is accomplished using exceptions instead of the
awkward On Error Goto syntax, which is no longer supported. The thrust of
exception handling is that you enclose the statements that could cause errors
inaTry block and then catch any errors using a Catch statement.
Try

' Statenents

Catch e as Exception
'do these if an error occurs

Final ly
'do these anyway
End Try

Typically, you use this approach to test for errors around file handling
statements, although you can a so catch array index out of range statements
and alarge number of other error conditions. The way this works s that the
statements in the Try block are executed and if there is no error, control
passes to the Finally statements if any, and then on out of the block. If errors
occur, control passes to the Catch statement, where you can handle the
errors, and then control passes on to the Finally statements and then on out of
the block.

The following example shows testing for any exception. Since we are moving
one element beyond the end of the ArrayList, an error will occur:

Try
For i = 0 To ar. Count ' NOTE: one too many
Console.wite(ar.lten(i))

Next i
Catch e As Exception

Consol e.writeLi ne(e. Message)

Consol e.writeLine(e.stackTrace)
End Try

Copyright © 2001, by James W. Cooper

107

Consol e.witeline("end of |oop")

This code prints out the error message and the calling locations in the
program and then goes on.

01234567891 ndex is out of range. Mist be non-negative and |ess
than si ze.
Par amet er nane: index
at System Col | ections. ArrayList.get_Iten{lnt32)
at ArrayTest. Main()
end of |oop

By contrast, if we do not catch the exception, we will get an error message
from the runtime system and the program will exit instead of going on.

Exception occurred: System Argunent Qut Of RangeException: | ndex
is out of range.
Must be non- negative and | ess than size.
Par anet er nane: index
at System Col | ections. ArrayList.get_Iten{lnt32)
at ArrayTest. Main()
at _vbProject._main(System String[])

Some of the more common exceptions are shown in Table 6-2.

AccessException Error in accessing a method or field
of aclass.

Argunent Excepti on Argument to a method is not valid.

Ar gunent Nul | Excepti on Argument is null

ArithneticException Overflow or underflow

Di vi deByZer oExcept i on Divison by zero

I ndexQut Of RangeExcept i on Array index out of range

Fi I eNot FoundExcept i on File not found

EndCf St r eanExcept i on Access beyond end of input stream
(such asfiles)

Di rect or yNot FoundExcepti on Directory not found

Nul | Ref er enceExcepti on The object variable has not been
initialized to areal value.

Copyright © 2001, by James W. Cooper

108

Multiple Exceptions

Y ou can aso catch a series of exceptions and handle them differently in the
same Try block.

Try
For i = 0 To ar. Count
Dimk As Integer = ClType(ar(i), Integer)
Console.witeLine(i.toString &" " &k / i)
Next i

Catch e As DivideByZer oExcepti on
Consol e.witeLine(e. Message)
Consol e.witeLine(e.stackTrace)
Catch e As | ndexQut Of RangeExcepti on
Consol e. witeLine(e. Message)
Consol e.witeLine(e.stackTrace)
Catch e As Exception
Consol e. witeLine("general exception" + e.Message)
Consol e.writeLine(e.stackTrace)
End Try

This gives you the opportunity to recover from various errorsin different
ways.

Throwing Exceptions
Y ou don’'t have to deal with exceptions exactly where they occur: you can
pass them back to the calling program using the Throw statement. This causes
the exception to be thrown in the calling program:

Try
' sone code
Catch e as Exception
Throw e 'pass on to calling routine
End Try
File Handling

If you import the Microsoft.vb6.compatibility, you can use some of the file
handling functions you are used to in VB6. However, the syntax is
sufficiently different because of the requirement that al arguments be
enclosed in parentheses that you will have to make mgor changes throughout
your file handling code.

Input #f, s ‘'read a string froma file in VB6

Copyright © 2001, by James W. Cooper

109

becomes
Input(f, s) 'vb6 conpatible string read fromfile

Further, VB7 has no Line Input statement at al. Thereforeit is usualy easier
to read and write file data using the new File and Stream methods provided in
VB?7.

The File Object

The File object represents a File, and has useful methods for testing for a
file's existence as well as renaming and deleting afile.

Dmfl as File

fl = new File("foo.txt")

If (fl.Exists) "if the file exists
fl.Delete "delete it
End If

Y ou can aso use the File object to obtain a FileStream for reading and
writing file data:

Dmts as TextStream
Dmfs as FileStream

ts
fs

fl.OpenText "open a text file for reading
fl.OpenRead "open any file for reading

Reading Text File

To read atext file, use the File object to obtain a StreamReader object. Then
use the text stream’s read methods:

Dimts as StreanReader

ts = fl.OpenText ()
s = ts.readLine 'read a line froma file

Writing a Text File
To create and write atext file, use the CreateText method to get a
StreamWriter object.

Dmsw as StreanWiter
sw = fl. CreateText
sw.witeLine("wite text into file")

Copyright © 2001, by James W. Cooper

110

If you want to append to an existing file, you can create a StreamWiriter
object directly with the Boolean argument for append set to true:

Sw = new StreanmWiter(path, true)

Exceptionsin File Handling

A large number of the most commonly occurring exceptions occur in
handling file input and output. Y ou can get exceptions for illegal filenames,
files which do not exist, directories that do not exist, illega filename
arguments and file protection errors. Thus, the best way to handle file input
and output is to enclose file manipulation code in Try blocks to assure
yourself that all possible error conditions are caught, and thus prevent
embarrassing fatal errors. All of the methods of the various file classes show
in their documentation which methods they throw. Y ou can assure yourself
that you catch al of them by just catching the general Exception object, but if
you need to take different actions for different exceptions, you can test for
them separately.

For example, you might open text files in the following manner:

Try

ts = fl.Qpentext()
Catch e as Exception

errDesc = e. Message

errFlag = true

Consol e.witeLine(errDesc) "print out any error
End Try

Testing for End of File

There are two useful ways of making sure that you do not pass the end of a
text file: looking for anull exception and looking for the end of a data stream.
When you read beyond then end of afile no error occurs and no end of file
exception is thrown. However, if you read a string after the end of afile, it
will return as a Null value. VB7 does not provide an IsNull method, but you
can easily force a Null Reference exception by trying to obtain the length of a
string. If you try to execute a length method on a null string, the system will
throw anull reference exception, and you can use this to detect the end of a
file.

Public Function readLine() As String
'"Read one line fromthe file

Dims As String

Try

Copyright © 2001, by James W. Cooper

111

s = ts.readLine ‘read line fromfile
lineLength = s.length 'use to catch null exception
Catch e As Exception

end_file = True ‘set EOF flag if nul

s ="" "and return zero length string
Finally

readLine = s

End Try

End Functi on

The other way for making sure you don’t read past then end of afileisto
peek ahead using the Stream’ s Peek method. This returns the ASCII code for
the next character, or a—1 if no characters remain.

"exanpl e of alternate appraoch to detecting end of file
Publ i ¢ Function readLineE() As String
'Read one line fromthe file
Dims As String

If ts.peek >= 0 Then "1 ook ahead
s = ts.readLine ‘read if nmore chars
Return s

El se
end file = True "Ser ECF flag if none |eft
Return ""

End | f

End Functi on

Static File M ethods

Y ou might think that the only way to use the File methods is to create an
instance of a File object that contains a specific filename. However, the File
class aso contains a number of static methodswhich you can call directly
using the File class name instead of the name of a specific instance. In VB7
parlance, these are called Shared methods, but the effect is exactly the same.

In the representative examples in the following table, we'll assume that we
have created an instance of File called fl. For a complete list consult the
documentation and help file.s

Dmfl as File
fl = New File(“foo.txt”)

Instance method Static method

fl.Exists File.Fil eExists(fil enane)

Copyright © 2001, by James W. Cooper

112

fl.Delete File.Del ete(fil enane)
Sw = fl . AppendText Fi | e. AppendText (String)
fl. IsDirectory

fl.isFile

fl.Length

File. Copy(fronFile, toFile)

File. Move(fronile, toFile)

Fi |l e. Get Ext ensi on(fil enane)

Fi | e. HasExt ensi on(fi | enane)

A vbFile Class

Earlier, we wrote a vbFile class for reading and writing text filesaline a a
time and atoken at atime. We can reimplement this vbFile class for VB7 to
have exactly the same methods, but utilize the VB7 file handling classes. In
essence we are reimplementing the vbFile interface for VB7. Since the syntax

remains the same we might declare formally that we are using the same
interface, but since the syntax differs somewhat, we will just write a new

class using that same interface.

The main difference is that we can include the filename and path in the
constructor:

Public Sub New(ByVal filename As String)
"Create new file instance

file_nanme = fil enanme "save file nane
fl = New File(file_nane) 'get file object
tokLine = "" “initialize tokenizer
sep = "," "and separator

End Sub

We can open afile for reading using either of two methods, once including

the filename and one which uses afilename in the argument.

Public Overl oads Function OpenForRead() As Bool ean
Ret urn OpenFor Read(fil e_nane)
End Function
Publ i c Overl oads Function OpenFor Read(_
ByVal Filenanme As String) As Bool ean
"opens specified file

file_name = Fil ename "save file nane
errFlag = Fal se ‘clear errors
end _File = Fal se "and end of file
Try

ts = fl.Opentext () "open the file

Catch e As Exception

Copyright © 2001, by James W. Cooper

113

errDesc = e. Message 'save error nmessage
errFlag = True "and fl ag

End Try

Return Not errFl ag ‘false if error

End Functi on

Y ou can then read data from the text file as we illustrated above.

Likewise, the following methods alow you to open afile for writing and
write lines of text to it.

Publ i c Overl oads Function OpenForWite(_
ByVal fname As String) As Bool ean
errFl ag = Fal se

Try
file_nanme = fname
fl = New File(file_nane) "create File object
sw = fl.CreateText ‘get StreanmWiter

Catch e As Exception
errDesc = e. Message
errflag = True
End Try
openForWite = Not errFl ag
End Function
Publ i c Overl oads Function OpenForWite() As Bool ean
OpenForWite = OpenForWite(file_nane)
End Function
Public Sub writeText(ByVal s As String)
sw. writeLine(s) "wite text to stream
End Sub

Since we have implemented the same methods in our new vbFile class as we
did for the VB6 class, we can substitute the new one and use it with VB7
programs without changing the surrounding programs at all.

Copyright © 2001, by James W. Cooper

114

Creational Patterns

With the foregoing description of objects, inheritance and interfaces in hand, we
are now ready to begin discussing Design Peatternsin earnest. Recall that these
are merely recipes for writing better object oriented programs. We have divided
them into the same three groups that the Gang of Four did: Creational, Structural
and Behavioral. We'll start out in this section with the Creational patterns/

All of the creationa patterns deal with ways to create instances of objects. Thisis
important because your program should not depend on how objects are created
and arranged. In VB, of course, the simplest way to create an instance of an
object is by using the new operator.

set fredl = new Fred ‘instance of Fred cl ass

However, this realy amounts to hard coding, depending on how you create the
object within your program. In many cases, the exact nature of the object that is
created could vary with the needs of the program and abstracting the creation
process into a specia “creator” class can make your program more flexible and
general.

The Factory Method Pattern provides a simple decision making class that
returns one of severa possible subclasses of an abstract base class depending
on the data that are provided. We'll start with the Simple Factory pattern as
an introduction to factories, and then introduce the Factory Method Pattern as
well.

The Abstract Factory Pattern provides an interface to create and return one
of severa families of related objects.

TheBuilder Pattern separates the construction of a complex object from its
representation, so that severa different representations can be created
depending on the needs of the program.

The Prototype Pattern starts with an instantiated class and copies or clones
it to make new instances. These instances can then be further tailored using
their public methods.

Copyright © 2001, by James W. Cooper

115

The Singleton Pattern is a class of which there can be no more than one
instance. It provides asingle globa point of access to that instance.

Copyright © 2001, by James W. Cooper

116

9. THE FACTORY PATTERN

One type of pattern that we see again and again in OO programsis the Smple
Factory pattern. A Simple Factory pattern is one that returns an instance of one of
severa possible classes depending on the data provided to it. Usually all of the
classesiit returns have a common parent class and common methods, but each of
them performs a task differently and is optimized for different kinds of data. This
Simple Factory isnot in fact one of the 23 GoF patterns, but serves here as an
introduction to the somewhat more subtle Factory Method GoF pattern we'll
discuss shortly.

How a Factory Works
To understand the Simple Factory pattern, let’s look at the diagram in Figure 3.1.

X
from default]
{local to package}
Ty XFactory
rdo ¥ frarm default) Produces different instance Df}{h
+#Factory() depending on value of argument. |
+getClassiint): X '
XY Xz
firam default) frorn defaul)
+XY +37
+do_X +do_®

Figure 3.1 — A Simple Factory pattern.

Inthisfigure, X isabase classand classes XY and XZ are derived from it. The
XFactory class decides which of these subclasses to return depending on the
arguments you give it. On the right, we define a getClass method to be one that
passes in some value abc, and that returns some instance of the classx. Which
one it returns doesn't matter to the programmer since they al have the same
methods, but different implementations. How it decides which oneto return is
entirely up to the factory. It could be some very complex function but it is often
quite simple.

Copyright © 2001, by James W. Cooper

117

Sample Code

Let's consider asimple VB6 case where we could use a Factory class. Suppose
we have an entry form and we want to allow the user to enter his name either as
“firstname lastname” or as “lastname, firstname”. We'll make the further
smplifying assumption that we will always be able to decide the name order by
whether there is a comma between the last and first name.

Thisis a pretty smple sort of decision to make, and you could make it with a
simpleif statement in asingle class, but let’s use it here to illustrate how a
factory works and what it can produce. We'll start by defining a simple interface
that takes the name string in and allows you to fetch the names back:

Public Sub init(ByVal s As String)
End Sub

Public Function getFrNanme() As String
End Function

Publ i ¢ Function getLnanme() As String
End Function

TheTwo Derived Classes

Now we can write two very simple classes that implement that interface and split
the name into two parts in the constructor. In the FNamer class, we make the
smplifying assumption that everything before the last space is part of the first
name:

'O ass FNamer

| npl enents Narer

Private nmAs String, Iname As String, frname As String
Private Function Naner_getFrnane() As String
Namer _get Frname = frnane

End Function

Private Function Namer_getlLnane() As String
Namer _get Lnane = | name

End Function

Private Sub Naner_init(ByVal s As String)
Dimi As Integer

Copyright © 2001, by James W. Cooper

118

nm=s
i = InStr(nm " ") "l ook for space
If i >0 Then
frname = Left$(nm i - 1) ' separate nanes
I nane = TrinB(Ri ght$(nm Len(nm - i))
El se
| name = nm "or put all in last nane
frname = ""
End I f
End Sub

And, in the LNamer class, we assume that a comma delimits the last name. In
both classes, we aso provide error recovery in case the space or comma does not
exist.

'O ass LNamer

| npl enents Narer

Private nmAs String, Iname As String, frname As String
Private Function Naner_getFrnane() As String
Namer _get Frname = frnane

End Function

Private Function Namer_getLnane() As String
Namer _get Lnane = | name

End Function

Private Sub Naner_init(ByVal s As String)
Dimi As Integer

nm=s ' save whol e nane
i =InStr(nm ",") "if comma, last is to left
If i >0 Then
I name = Left$(nm i - 1)
frnane = TrinB(R ght$(nm Len(nn) - i))
El se
| name = nm "or put all in last nane
frname = ""
End If
End Sub

Copyright © 2001, by James W. Cooper

119

Building the Smple Factory

Now our smple Factory classis easy to write, and is part of the user interface.
We just test for the existence of a comma and then return an instance of one class
or the other:

Private nnmer As Namer "willl be one kind or the other

Private Sub get Name_Click()
Dimst As String, i As Integer

st = txNanes. Text 'get the nane fromthe entry field
i = 1InStr(st, ",") "l ook for a comm
If i >0 Then
Set nmer = New | Naner ‘'create |ast nane cl ass
El se
Set nmer = New Frnaner 'or fist name cl ass
End If

nner.init st

"put results in display fields
t xFr Name. Text = nmer. get Fr Nane
t xI Nane. Text = nmer. get Lnane
End Sub

Using the Factory
Let’s see how we put this together. The complete class diagram is shown in

Figure 3.2.
Namer
from defautt)
getFirst(): String NameFactory
getlast(): String from default
MameFactory() creates instance of k
getMamer(java.lang. String): Marmer Marner
FirstFirst L astFirst
firorn default] firom defautt]

Figure 3.2 — The Namer factory program.

Copyright © 2001, by James W. Cooper

120

We have constructed a smple user interface that allows you to enter the namesin
either order and see the two names separately displayed. You can see this
program in Figure 3.3.

i, Mame distributor

iS mth, 5 andy

iSanu:Iy
iSmth

Figure 3.3 —The Namer program executing.

Y ou type in a name and then click on the Get name button, and the divided name
appears in the text fields below. The crux of this program is the compute method
that fetches the text, obtains an instance of a Namer class and displays the results.

And that’ s the fundamenta principle of the Simple Factory pattern. Y ou create
an abstraction that decides which of several possible classes to return and returns
one. Then you call the methods of that class instance without ever knowing
which subclass you are actually using. This approach keeps the issues of data
dependence separated from the classes' useful methods.

Writing the Factory Patternin VB.NET

In VB7, we can get afair amount of mileage out of using inheritance here. We
can define a base class caled NameClass which holds the first and last namein

Copyright © 2001, by James W. Cooper

121

protected variables, and define the two accessor functions to get the first and last
name out of the variables:

Public Cl ass Naned ass
Protected Lnane, Frname As String

Public Function getFirst() As String
Ret urn Frnane
End Functi on

Publ i ¢ Function getlLast() As String
Return Lnane
End Functi on
End Cl ass

Then we can derive the FirstFirst and LastFirst classes from this class and make
use of the underlying get methods. The complete FirstFirst classis just

Public Class FirstFirst
I nherits Naned ass
Public Sub New(ByVal nm As String)
Dimi As Integer
i = nmindexOr(" ")
If i > 0 Then
Frname = nm substring(0, i).trim)
Lname = nmsubstring(i + 1).trim)
El se
Frname = ""
LName = nm
End If
End Sub
End Cl ass

And the LastFirst classis entirely anaogous. The factory classis quite similar,
but makes use of the constructors

Publ i ¢ Cl ass NaneFactory
Publ i c Function get Nanmer(_

ByVal nm As String) As NaneC ass
Dimi As Integer

Copyright © 2001, by James W. Cooper

i = nmindexOF (", ")
If i >0 Then
Return New LastFirst(nm
El se
Return New FirstFirst(nm
End If
End Function
End Cl ass

Factory Patternsin Math Computation

Most people who use Factory patterns tend to think of them as tools for
simplifying tangled programming classes. But it is perfectly possible to use them
in programs that simply perform mathematical computations. For example, in
the Fast Fourier Transform (FFT), you evaluate the following four equations
repeatedly for alarge number of point pairs over many passes through the array
you are transforming. Because of the way the graphs of these computations are
drawn, these equations constitute one instance of the FFT “butterfly.” These are
shown as Equations 1--4.

R =R +Rcos(y)- 1,8n(y) @
R, =R, - R, cos(y) +1,5n(y) (2
I, =1, +R,sn(y) +1,co5(y) (3
l,=1,- Rysn(y)- 1, cos(y) (4

However, there are a number of times during each pass through the data where
the angley is zero. In this case, your complex math eval uation reduces to

Equations (5-8):
R=R+R, ©
R‘Zle- Rz (6)
L=+, @

|2 1° I2

Copyright © 2001, by James W. Cooper

123

)
Then, we can make a simple factory class that decides which class instance to
return. Since we are making Butterflies, we'll call our Factory a Cocoon:

' C ass Cocoon
'get back right kind of Butterfly
Public Function getButterfly(y As Single) As Butterfly

If y =0 Then

Set getButterfly = New addButterfly
El se

Set getButterfly = New trigButterfly
End | f

End Function

In this example, we create a new instance each time. Since there are only two
kinds, we might create them both in advance and return them as needed.

'Class Cocoonl

Private addB As Butterfly, trigB As Butterfly

'create instances in advance

Private Sub Cass_Initialize()

Set addB = New addButterfly

Set trigB = New trigButterfly

End Sub

'get back right kind of Butterfly

Public Function getButterfly(y As Single) As Butterfly

If y =0 Then

Set getButterfly = addB
El se

Set getButterfly = trigB
End If

End Function

Programs on the CD-ROM

\ Fact or y\ Naner The VB6 name factory
\ Fact or y\ Naner \ vbNet Narer The VB7 name factory
\ Fact or y\ FFT A VB6 FFT example

Copyright © 2001, by James W. Cooper

124

Thought Questions

1. Consider apersonal checkbook management program like Quicken. It
manages severa bank accounts and investments and can handle your bill
paying. Where could you use a Factory pattern in designing a program like
that?

2. Suppose you are writing a program to assist homeownersin designing
additions to their houses. What objects might a Factory be used to produce?

Copyright © 2001, by James W. Cooper

125

10. THE FACTORY METHOD

We just seen a couple of examples of the smplest of factories. The factory
concept recurs all throughout object-oriented programming, and we find a few
examples embedded in VB itself, and in other design patterns (such as the
Builder pattern). In these cases a single class acts as a traffic cop and decides
which subclass of a single hierarchy will be instantiated.

The Factory Method pattern is a clever but subtle extension of this idea, where no
single class makes the decision as to which subclass to instantiate. Instead, the
superclass defers the decision to each subclass. This pattern does not actually
have a decision point where one subclassis directly selected over another class.
Instead, programs written to this pattern define an abstract class that creates
objects, but lets each subclass decide which object to create.

We can draw a pretty simple example from the way that swimmers are seeded
into lanes in a swim meet. When swimmers compete in multiple heatsin a given
event, they are sorted to compete from dowest in the early heatsto fastest in the
last heat, and arranged within a heat with the fastest swvimmers in the center
lanes. Thisisreferred to asstraight seeding.

Now, when swimmers swim in championships, they frequently swim the event
twice. During preliminaries everyone competes and the top 12 or 16 swimmers
return to compete against each other at finals. In order to make the preliminaries
more equitable, the top heats are circle seeded, so that the fastest three swimmers
are in the center lane in the fastest three hesats, the second fastest three swimmers
in the next to center lane in the top three heats, and so forth

So, how do we build some objects to implement this seeding scheme and
illustrate the Factory Method. First, let’ s design an abstract Events class:

'Cl ass Events

Private nunmianes As I|nteger

Private swinrers As New Col l ection 'list of sw nmers
Public Sub init(Filename$, |anes As Integer)

Dmf As Integer, s As String

Dm sw As Sw nmer

'read in the data file in the constructor

f = FreeFile

Copyright © 2001, by James W. Cooper

126

nunLanes = | anes
Set swimers = New Col | ection
'read in swmers fromfile
Fil enamre = App. Path + "\" + Fil enane
Open Fil enanme For |nput As #f

I nput #f, s

Wi le (Not EOF(f))
Set sw = New Swi nmer 'create each sw nmer
sw.init s 'and initialize it
swi rmmer s. Add sw "add to list
| nput #f, s 'read anot her

end

Cl ose #f

Public Function get Swi nmrers() As Col |l ection
Set get Swi nmers = swi nmers
End Function

Public Function isPrelinm) As Bool ean
End Function

Publ i c Function isFinal() As Bool ean
End Function

Publ i ¢ Function isTinmedFinal () As Bool ean
End Function

Publ i ¢ Function getSeeding() As Seeding
End Function

Grammatically, it would have been better to call thisan ”Event” class, but
“BEvent” isareserved word in VB6. Note that this classis not entirely without
content. Since al the derived classes will need to read data from afile, we put
that code in the base class.

This defines the remaining methods simply without any necessity of filling them
in. Then we can implement concrete classes from the Events class, called
PrelimEvent and TimedFinal Event. The only difference between these classesis
that one returns one kind of seeding and the other returns a different kind of
seeding.

We aso define an abstract Seeding class having the following methods:

Copyright © 2001, by James W. Cooper

127

'Cl ass Seeding

Private nunmLanes As I|nteger

Private | aneOrder As Col |l ection

Dimasw() As Sw nmer

Publi ¢ Function getSeeding() As Collection

End Function

Public Function getHeat() As Integer

End Function

Publ i ¢ Function getCount() As Integer

End Function

Public Sub seed()

End Sub

Public Function get Swi nmers() As Col |l ection

End Function

Public Function getHeats() As Integer

End Function

Private Function odd(n As Integer) As Bool ean

odd = (n\ 2) * 2 <>n

End Function

Public Function cal cLaneOrder(lns As Integer) As Collection

nunianes = I ns

"This function is inplenmented but not shown here

ReDi m | anes(nunianes) As | nteger

End Function

Public Sub init(swnrs As Collection, |anes As Integer)
End Sub

Public Function sort(sw As Collection) As Collection

ReDi m asw(sw. count) As Sw nmer

"This function is inplenented but not shown here

End Function

Note that we actually included code for the calcLaneOrder and sort functions, but
omit the code here for smplicity. The derived classes then each create an
instance of the base Seeding classto call these functions.

Copyright © 2001, by James W. Cooper

128

We can then create two concrete seeding subclasses. StraightSeeding and
CircleSeeding. The PrelimEvent class will return an instance of CircleSeeding
and the TimedFina Event class will return an instance of StraightSeeding. Thus
we see that we have two hierarchies: one of Events and one of Seedings. We see
these two hierarchies illustrated in Figure 4.1.

Seading Evenf

[frarn default) [fmrn .t.‘i.efault] |
~+Seeding +Evert
et Court et S eding
tgetikats Hisfinal
Hged Shinrers s Predi
= A = iz e Fral
S mner A T
[fron defautt)
—age
:?:';N . StraightSeeding
1 ame =%
— [frorm defautt] :
i [[| Freli mEwvant TimedFinal Event
S {from default (from defaulf
—lastMame . +Prelim Evert Sl kel Suchit retums Circle
—time retun?s Straig — dgetSeading et Seading Seading
Seading HeFinal +sFinal
CircleSeading ark il :s:_relir;r |
(frarn defaut +izTimedFinal ST

Figure 4.1 — The class relations between Event and Seeding classes.

In the Events hierarchy, you will see that both derived Events classes contain a
getSeeding method. One of them returns an instance of StraightSeeding and the
other an instance of CircleSeeding. So you see, thereisno rea factory decision
point as we had in our simple example. Instead, the decision as to which Event
classto instantiate is the one that determines which Seeding class will be
instantiated.

While it looks like there is a one to one correspondence between the two class
hierarchies, there needn’t be. There could be many kinds of Events and only a
few kinds of Seeding that they use.

The Swimmer class

We haven't said much about the Swimmer class, except that it contains a name,
club age, seed time and place to put the heat and lane after seeding. The Event

Copyright © 2001, by James W. Cooper

129

class reads in the Swimmers from some database (afile in our example) and then
passes that Collection to the Seeding class when you call the getSeeding method
for that event.

The Events Classes

We have seen the abstract base Events class above. In actual use, we useit to
read in the swimmer data (here from afile) and passit on to instances of the
Swimmer class to parse

'Cl ass Events
Private nunmLanes As I|nteger
Private swimers As New Collection 'list of sw nmers
Public Sub init(Filename$, |anes As I|nteger)
Dmf As Integer, s As String
Dim sw As Sw nmer
Dmfl As New vbFile
"read in the data file in the constructor
f = FreeFile
nunLanes = | anes
Set swimers = New Col |l ection
‘read in swmers fromfile
Fil ename = App.Path + "\" + Filenane
fl.OpenFor Read Fil ename
s = fl.readLi ne

Vhile (Not fl.fEof)

Set sw = New Swi mrer 'create each sw mrer
sSw.init s "and initialize it
swi mmers. Add sw "add to list
s = fl.readLine 'read anot her
Veénd
Cl ose #f

End Sub

Publ i ¢ Function get Swi ners() As Col |l ection
Set get Swi nmmers = swi mmers
End Function

Public Function isPrelim) As Bool ean
End Function

Public Function isFinal () As Bool ean

Copyright © 2001, by James W. Cooper

130

End Function

Public Function isTimedFinal () As Bool ean
End Function

Publ i ¢ Function getSeeding() As Seeding
End Function

The base Event class has empty methods for whether the event is a prelim, final
or timed final event. Wefill thesein in the derived classes.

Our PrelimEvent class just returns an instance of CircleSeeding:

"Class Prelinkvent

| npl enents Events

Private nunianes As I|nteger
Private swimers As Collection
Private evnts As New Events
Private sd As Seeding

Private Sub Cass_Initialize()
Set evnts = New Events

Private Function Events_get Seedi ng() As Seeding
Set sd = New Circl eSeedi ng
sd.init swi nmers, nunlLanes
Set Events_get Seedi ng = sd

End Function

Private Function Events_get Swi nmmers() As Col | ection
Set Events_get Swi mmers = sw nmers

End Function

Private Function Events_isFinal () As Bool ean
Events_i sFinal = Fal se

End Function

Private Function Events_isPrelin() As Bool ean
Events_isPrelim= True

End Function

Private Function Events_i sTi medFi nal () As Bool ean
Events_i sTi medFi nal = Fal se

End Function

Copyright © 2001, by James W. Cooper

131

Private Sub Events_init(Filenane As String, |anes As Integer)
evnts.init Filename, |anes

nunLanes = | anes
Set swinmmers = evnts. get Swi mers
End Sub

while the TimedFinal Event returns an instance of StraightSeeding:

'Class PrelinEvent

| npl enents Events

Private nunmianes As I|nteger

Private swimers As Col | ection

Private evnts As New Events

Private sd As Seeding

Private Sub Cass_Initialize()
Set evnts = New Events

Private Function Events_get Seedi ng() As Seedi ng
Set sd = New Circl eSeedi ng

sd.init swimers, nunlLanes

Set Events_get Seedi ng = sd
End Function

In both cases our events classes contain an instance of the base Events class,
which we use to read in the datafiles.

Straight Seeding

In actually writing this program, we'll discover that most of the work is donein
straight seeding. The changes for circle seeding are pretty minimal. So we
instantiate our StraightSeeding class and copy in the Collection of swimmers and
the number of lanes.

Private Sub Seedi ng_seed()

Dim |l astHeat As Integer, |astlanes As |nteger
Dimheats As Integer, i As Integer, j As Integer
Di m swnt As Swi mrer

Set sw = sd.sort(sw)

Set | aneOrder = sd. cal cLaneOr der (nunLanes)
count = sw. count

| ast Heat = count Mod numlianes

Copyright © 2001, by James W. Cooper

132

If (lastHeat < 3) And | astHeat > 0 Then

| ast Heat = 3 "l ast heat nust have 3 or nore
End If
count = sw. count
| astl anes = count - | astHeat
nunmheats = | astl anes / nunlianes

If (lastHeat > 0) Then
nunheats = nunheats + 1

End If

heats = nunheats

‘place heat and lane in each swi mrer's obj ect
=1
For i =1 To |astlanes

Set swnr = sw(i)

swnr. set Lane (I aneOrder(j))

j=j+1

swnr . set Heat (heats)

If (j > numLanes) Then
heats = heats - 1
=1

End | f

Next i

"Add in last partial heat
If (lastHeat > 0) Then
If j > 1 Then
heats = heats - 1
End | f
j =1
For i = lastlanes + 1 To count
Set swir = sw(i)
swnr . set Lane | aneOrder(j)

=i +1
swnr . set Heat (heats)
Next i
End If
End Sub

This makes the entire array of seeded Swimmers available when you call the
getSwimmers method.

Copyright © 2001, by James W. Cooper

133

Circle Seeding

The CircleSeeding class is derived from StraightSeeding, so it copiesin the same
data.

"Circle seeding nethod

Private Sub Seedi ng_seed()

Dimi As Integer, j As Integer, k As |nteger
'get the |l ane order]

Set | aneOrder = sd. cal cLaneOr der (nunLanes)

Set sw = sd.sort(sw ‘sort the swi mmers
strSd.init sw, numLanes 'create Strai ght Seeing object
strSd. seed "seed into striaght order

numheats = strSd. get Heat s ‘get the total nunber of heats
If (nunmheats >= 2) Then
I f (numheats >= 3) Then

circlesd = 3 "seed either 3
El se

circlesd = 2 "or 2
End | f
i =1

'copy seeding info into swimers data
For j = 1 To nunlianes
For k =1 To circlesd
sw(i).setlLane (laneOrder(j))
sw(i).setHeat (numheats - k + 1)
i =i +1
Next k
Next j
End If
End Sub

Since the circle seeding calls straight seeding, it copies the swimmer collection
and lanes values. Then, our cal to strSd.seed does the straight seeding.. This
simplifies things, because we will always need to seed the remaining heats by
straight seeding. Then we seed the last 2 or 3 heats as shown above and we are
done with that type of seeding as well.

Our Seeding Program

In this example, we took alist of swimmers from the web who competed in the
500 yd freestyle and the 100 yd freestyle and used them to build our

Copyright © 2001, by James W. Cooper

134

TimedFinal Event and PrelimEvent classes. Y ou can see the results of these two
seedingsin Figure 4.2.

1100 Free: 12 IEmidy Farn WEAT 45854 - 12 3Knky Harmgan MES 5113 -
12 dE.athien Hiller Whw' 536 500 Fre= 11 3 Taey Thekn FELY 550
12 2 telahira Schiokdy Wihal BINGR 10 3 Linckay Hokama Har i
12 55 a1ah Bosamsn COEV S502ad 12 d.Jen Fillman mCY B
12 1 Caitin Klich. HEH 5059 11 d Annie Galdibein ass F.a2
12 B Caithn Hedley HEM GEED 10 qkda Bumss POy BEM
11 3Kim Fichardran Wetel 9.3 12 2KakiDuediey Wt D606
11 4Beth Halinmaski HaC 504,77 11 2Lindzay Woodward 055 S6.32
11 2 Palicaa Frnaik Wity BIEE 10 2 argaisl Fameay HEM BE4
11 SCaiokn Bovwman COEV 50573 12 Gl sl FC3C SR
11 1 Kalie Martin COEV 5067 11 § Teiesa Roselli DELM S5.7H
11 FLaten Dudey Wit TR 10 8 Ak M eLalan COEY G6E
10 ILoi Schuamhaersr WhrwS SI06Z 12 1 mards McCathy LA S6.66
10 4 Emnn Hurley MEH 51218 111 Samantha Kely Gl SeE8
10 2 Emillp Wit W GEE2T _",_J 10 1 Kalke Brancedelal D G6H _",_J

Figure 4.2 — Straight seeding of the 500 free and circle seeding of the 100 free.

Other Factories

Now one issue that we have skipped over is how the program that reads in the
swimmer data decides which kind of event to generate. We finesse this here by
smply creating the correct type of event when we read in the data. Thiscode is
in the Form_Load event

Dimev As Events

Set ev = New PrelinEvent "create a Prelinfinal event

ev.init "100free.txt", 6 ‘"read in the data

Seedi ngs. Add ev. get Seeding 'get the seeding and add to collection
| sEvents. Addltem "100 Free"

Set ev = New Ti nedFi nal Event 'create a new Tined final event

ev.init "500free.txt", 6 ‘'read in the data
Seedi ngs. Add ev. get Seedi ng 'get the seeeding
| sEvents. Addltem "500 Free" 'and add to collection

Clearly, thisis an instance where an EventFactory may be needed to decide
which kind of event to generate. This revisits the ssimple factory we began the
discussion with.

Copyright © 2001, by James W. Cooper

135

The Seeding Program in VB7

In VB7, we can make effective use of inheritance to make each of these classes
substantially smpler. For example, the Events classis an abstract class which we
fill in the methods the derived TimedFinal Event and PrelimEvent classes. IN
VB7, these classes differ in that we put the file reading methods in the base
Seeding class and let them be used by the derived classes, while in VB6, we had
to create an instance of the base Event class inside the TimedFina and Prelim
event classes and call its functions specificaly. The basic abstract class for
Eventsis now smply

Public Cl ass Events

Prot ected numianes As | nteger
Protected swmers As Swi mmers
Public Sub New(ByVal Filenane As String,
ByVal |anes As I|nteger)
MyBase. New()
Dims As String
Dim sw As Swi nmmrer
Dimfl As vbFile

fl = New vbFile(filenane) "Open the file
fl1.OpenFor Read()

nunmLanes = | anes ' Renmenber | ane nunber
swmers = New Swi mer s() "l'ist of kids

'read in swwmers fromfile
s = fl.ReadLi ne

VWhile Not fl.feof

sw = New Swi mrer (s) 'create each swi mrer
swmer s. Add(sw) "add to list
s = fl.ReadLi ne 'read anot her

End Wil e

fl.closeFile()

End Sub

Copyright © 2001, by James W. Cooper

136

Public Function getSwi mrers() As ArraylLi st
Ret urn swmrer s
End Function
Public Overridable Function isPrelim) As Bool ean
End Function
Publ i c Overridable Function isFinal() As Bool ean
End Function
Public Overridable Function isTimedFinal () As Bool ean
End Function
Public Overridable Function getSeedi ng() As Seeding
End Function
End Cl ass

Then our TimedFina Event is derived from that and creates an instance of the
StraightSeeding class.

Publ i c Cl ass Ti nedFi nal Event
I nherits Events

Public Sub New(ByVal Filename As String,
ByVal |anes As Integer)
MyBase. New(Fi | enane, | anes)

Public Overrides Function getSeeding() As Seeding
Di m sd As Seedi ng
‘create seeding and execute it
sd = New Strai ght Seedi ng(swmrers, numnLanes)
sd. seed()
Return sd

End Function

Public Overrides Function isFinal () As Bool ean
Return Fal se

End Function

Copyright © 2001, by James W. Cooper

137

Public Overrides Function isPrelim) As Bool ean
Return Fal se

End Function

Public Overrides Function isTimedFinal () As Bool ean
Return True

End Function

End Cl ass

The PrelimEvent class is basically the same, except that we create an instance of
circle seeding and set the prelim and finas flags differently. Here isthe
getSeeding method:

Public Overrides Function getSeeding() As Seeding

Return New Circl eSeedi ng(swhmers, nunianes)
End Function

In asimilar fashion, the base Seeding class contains the functions sort and
getL aneOrder, and the derived classes for Straight and Cirlce seeding contain
only the changed seed methods.

When to Use a Factory Method
Y ou should consider using a Factory method when

A class can't anticipate which kind of class of objectsit must create.
A class uses its subclasses to specify which objects it creates.

Y ou want to localize the knowledge of which class gets created.

There are several variations on the factory pattern to recognize.

1

The base classis abstract and the pattern must return a complete working
class.

The base class contains default methods and these methods are called unless
the default methods are insufficient.

Copyright © 2001, by James W. Cooper

138

3. Parameters are passed to the factory telling it which of several classtypesto
return. In this case the classes may share the same method names but may do
something quite different.

Thought Questions

1. Seedingin track is carried out from inside to outside lanes. What classes
would you need to develop to carry out track-like seeding as well?

Programs on the CD-ROM

\ Fact or y\ Seeder VB6 version of seeding program

\ Fact or y\ Seeder\ vbNet Seeder VB7 version of seeding program

Copyright © 2001, by James W. Cooper

139

11. THE ABSTRACT FACTORY PATTERN

The Abstract Factory pattern is one level of abstraction higher than the factory
pattern. Y ou can use this pattern when you want to return one of severd related
classes of objects, each of which can return several different objects on request.
In other words, the Abstract Factory is afactory object that returns one of severa
groups of classes. Y ou might even decide which class to return from that group
using a Simple Factory.

Common thought experiment-style examples might include automobile factories.
Y ou would expect a Toyota factory to work exclusively with Toyota parts and a
Ford factory to utilize Ford parts. Y ou can consider each auto factory as an
Abstract Factory and the parts the groups of related classes.

A GardenM aker Factory

Let's consider a practical example where you might want to use the abstract
factory in your application.

Suppose you are writing a program to plan the layout of gardens. These could be
annua gardens, vegetable gardens or perennia gardens. However, no matter
which kind of garden you are planning, you want to ask the same questions:

1. What are good border plants?

2. What are good center plants?

3. What plants do well in partia shade?

...and probably many other plant questions that we' [l omit here.

We want a base VB6 Garden class that can answer the above questions as class
methods:

Publ i c Function getCenter() As Pl ant
End Function

Publ i ¢ Function getBorder() As Pl ant
End Function

Publ i c Function get Shade() As Pl ant

Copyright © 2001, by James W. Cooper

140

End Function

where our Plant object just contains and returns the plant name:

‘T ass Plant
Private plantName As String

Public Sub init(nmAs String)
pl ant Nane = nm 'save the plant name
End Sub

Public Function getName() As String
Ret urn pl ant Nane ‘return the plant nane
End Function

In Design Patterns terms, the Garden interface is the Abstract Factory. It defines
the methods of concrete class that can return one of severa classes. Here we
return central, border and shade-loving plants as those three classes. The abstract
factory could aso return more specific garden information, such as soil pH or
recommended moisture content.

In area system, each type of garden would probably consult an elaborate
database of plant information. In our simple example we'll return one kind of
each plant. So, for example, for the vegetable garden we simply write

' O ass Veggi eGar den

| npl erents Gar den

Private pltsShade as Plant, pltBorder as Pl ant

Private pltCenter As Pl ant

Private Sub Cass_Initialize()

Set pltShade = New Pl ant

pl t Shade.init "Broccoli"

Set pltBorder = New Pl ant

pltBorder.init "Peas"

Set pltCenter = New Pl ant

pltCenter.init "Corn"

End Sub

Private Function Garden_getBorder() As Pl ant
Set Garden_get Border = pltBorder

End Function

Private Function Garden_getCenter() As Pl ant

Copyright © 2001, by James W. Cooper

141

Set Garden_getCenter = pltCenter
End Function

Private Function Garden_get Shade() As Pl ant
Set Garden_get Shade = plt Shade
End Function

In asimilar way, we can create Garden classes for Perennial Garden and
Annual Garden. Each of these concrete classesis known as a Concrete Factory,
since it implements the methods outlined in the parent abstract class. Now we
have a series of Garden objects, each of which returns one of several Plant

arden Gardener
Plant firorn defauti —
ffrom defauli +Garden() 0.1 :z;gnprlc?;rts
+Plant +getBorder): Plant | -garden . setCenter
+getMarme +getCenter): Plant - setGLU
+getShade(): Plant -setShade

AnnualGarden PerennialGarden VegieGarden
firam default) from default) from default)

objects. Thisisillustrated in the class diagram in Figure 5.1.
Figure 5.1 — The magjor objects in the Gardener program.

We can easily construct our abstract factory driver program to return one of these
Garden objects based on the radio button that a user selects as shown in the user
interface in Figure 5.2.

Copyright © 2001, by James W. Cooper

142

im. Garden planner
Peaz
— Qarden type
' Yegetahle ;
Broccal
= Annual it
i~ Perennial
Center Baorder
Cluit

Figure 5.2 — The user interface of the Gardener program.

How the User Interface Works

This smple interface consists of two parts. the left side, that selects the garden
type and the right side, which selects the plant category. When you click on one
of the garden types, this causes the program to return atype of garden that
depends on which button you select. At first, you might think that we would need
to perform some sort of test to decide which button was selected and then
instantiate the right Concrete Factory class. However, a more elegant solution is
to just listen for the radio button click and change the current garden. Then when
auser clicks on one of the plant type buttons, the plant type is returned from the
current garden and the name of that plant displayed:

Private Sub opAnnual _dick()
Set gden = New Annual Gar den 'sel ect Annual garden

End Sub
Private Sub opPeren_dQick()
Set gden = New PerenGarden 'sel ect Perennial garden

Copyright © 2001, by James W. Cooper

143

Private Sub opVeggi e _dick()
Set gden = New Veggi eGar den 'sel ect veget abl e garden
End Sub

Then, when we are called upon to draw a plant name on the garden display, we
erase the old name by XORIing it, and then draw a new onein its place, by
getting the correct Plant from the current Garden

Private Sub btCenter_dick()
Set plt = gden.getCenter 'get the center plant
drawCenter plt.getNane "and draw it's nane
End Sub
Private Sub drawCenter (st As String)
pcGar den. PSet (1200, 1000)
pcGarden. Print ol dCenter ' XOR out ol d nane
pcGarden. PSet (1200, 1000)

pcGarden. Print st "draw i n new nane
ol dCenter = st "renenber this nane so we can erase
End Sub

Creating an Abstract Factory Using VB7

The same GardenMaker program differs substantialy in VB7. Whileit is
certainly possible to write Garden as an interface and have each of the derived
gardensimplement that interface, it is easier to have some of the methods in the
base Garden class and the rest in the derived classes.

The other mgjor differencesin VB7 have to do with the event system. In VB7,
you do not draw on the screen directly from your code. Instead, the screen is
updated when the next OnPaint event occurs, and you must tell the paint routine
what objects it can now paint.

Since each garden should know how to draw itsdlf, it should have a draw method
that draw the appropriate plant names on the garden screen. And, since we
provided push buttons to draw each of the types of plants, we need to set a
Boolean which indicates that you can now draw each of these plant types.

We start with our simplified Plant class, where we pass the name of the plant in
right in the constructor:

Copyright © 2001, by James W. Cooper

144

Public Cl ass Pl ant
Private plantNane As String

Public Sub New(ByVal nm As String)
MyBase. New()

pl ant Nane = nm 'save the plant nane

Public Function getNane() As String
get Nane = pl ant Nanme "return the plant nane
End Function
End Cl ass

Then we create the basic Garden class, which contained the getShade, getCenter
and getBorder methods in the origina implementation, no longer needs these
methods in this implementation, because the Garden itself does the drawing.

Public Cl ass Garden
"protected objects are accessed by derived cl asses
Protected pltShade, pltBorder, pltCenter As Pl ant
Protected center, shade, border As Bool ean

'"These are created in the constructor
Private gbrush As Sol i dBrush
Private gdFont As Font

"Constructor creates brush and font fro draw ng
Public Sub New()

MyBase. New()
gBrush = New Sol i dBrush(Col or. Bl ack)

gdFont = New Font("Arial", 10)
End Sub

The drawing is done in asimple draw method, where we check as to whether we
are supposed to draw each kind of plant name, and draw it if that Boolean is true.

Public Sub drawm(ByVal g As Graphics)
| f border Then
g. Drawst ri ng(pl t Border. get Nane, gdFont,

Copyright © 2001, by James W. Cooper

gbrush, 50, 150)
End |f
If center Then
g. Drawst ri ng(plt Center.get Nane, gdFont,
gbrush, 100, 100)
End If
| f shade Then
g. Drawst ri ng(pl t Shade. get Nane, gdFont, _
gbrush, 10, 50)
End |f
End Sub

Then, we add three set methods to indicate that you can draw each plant:

Public Sub showCenter ()
center = True
End Sub
Publ i ¢ Sub showBor der ()
border = True

Publ i ¢ Sub showShade()
shade = True

End Sub

Public Sub clear()
center = Fal se
border = Fal se
shade = Fal se

End Sub

Now, the three derived classes for the three gardens are extremely ssmple, and
only contain calls to the constructors for the three plants. The following is the

entire AnnualGarden class:

Publ i ¢ Cl ass Annual Gar den
I nherits Garden
Public Sub New()
MyBase. New()
pl t Shade = New Pl ant (" Col eus™)
pl t Border = New Pl ant (" Al yssunt')

Copyright © 2001, by James W. Cooper

146

pltCenter = New Pl ant (" Mari gol d")
End Sub
End Cl ass

Note that the plant names are now set in their constructors, and that the three
plant variables that we set are part of the base garden class.

The PictureBox

We draw the circle representing the shady area inside the PictureBox, and draw
the names of the plants inside this box as well. Thus, we need to add an OnPaint
method not to the main GardenMaker window class, but to the PictureBox it
contains. One way to do thisis by creating a subclass of PictureBox which
contains the paint method including the circle drawing, and tells the garden to
draw itself:

Public Class GPic
I nherits System W nForns. Pi ct ur eBox
sinpl e derived Picturebox class that

"draws the Garden plant nanes and shade circle
Private gden As Garden
Private br As SolidBrush
Public Sub New()

MyBase. New

InitializeConponent ()

br = New Sol i dBrush(Col or. Li ght Gray)
End Sub

Public Sub set Garden(ByVal gd As Garden)
gden = gd 'copy in current garden
gden. cl ear ()
refresh()

Protected Overrides Sub OnPaint(_
ByVal e As Paint Event Args)
Dimg As Graphics = e. Graphics
"draw the circle
g.FillEllipse(br, 5 5, 100, 100)
"have the garden draw itself

Copyright © 2001, by James W. Cooper

147

gden. draw(g)
End Sub

End Cl ass

Note that we do not have to erase the plant name text each time in VB7, because
Paint is only called when the whole picture needs to be repainted.

Handling the RadioButton and Button Events

When one of the three radio buttons is clicked, you create a new garden of the
correct type, and pass it into the picture box class:

Prot ect ed Sub opPeren_CheckedChanged(_
ByVal sender As Object, _
ByVal e As System Event Args)
gden = New Perenni al Garden()
pBox. set Gar den(gden)
cl earchecks()
End Sub

Then, when you click on one of the buttons to show the plant names, you simply
call that garden’s method to show that plant name, and then call the picture box’s
Refresh method to cause it to repaint.

Prot ect ed Sub ckBorder_CheckedChanged(_
ByVal sender As Object, _
ByVal e As System Event Args)
gden. showBor der ()
pBox. refresh()
End Sub

Adding More Classes

One of the great strengths of the Abstract Factory is that you can add new
subclasses very easily. For example, if you needed a GrassGarden or a
WildFlowerGarden, you can subclass Garden and produce these classes. The
only real change you'd need to make in any existing code is to add some way to
choose these new kinds of gardens.

Copyright © 2001, by James W. Cooper

148

Consequences of Abstract Factory

One of the main purposes of the Abstract Factory isthat it isolates the concrete
classes that are generated. The actua class names of these classes are hidden in
the factory and need not be known at the client level at al.

Because of the isolation of classes, you can change or interchange these product
class families freely. Further, since you generate only one kind of concrete class,
this system keeps you from inadvertently using classes from different families of
products. However, it is some effort to add new class families, since you need to
define new, unambiguous conditions that cause such anew family of classesto
be returned.

While al of the classes that the Abstract Factory generates have the same base
class, there is nothing to prevent some subclasses from having additional
methods that differ from the methods of other classes. For example a

Bonsai Garden class might have a Height or WateringFrequency method that is
not present in other classes. This presents the same problem as occur in any
subclasses -- you don’t know whether you can cal a class method unless you
know whether the subclass is one that alows those methods. This problem has
the same two solutions as in any similar case: you can either define dl of the
methods in the base class, even if they don’t dways have a actual function. If you
can't change the base interface, you can derive a new base interface which
contains al the methods you need and subclass that for all of your garden types.

Thought Questions

If you are writing a program to track investments, such as stocks, bonds, meta
futures, derivatives, and the like., how might you use an Abstract Factory?

Code on the CD-ROM

\ Abst r act Fact or y\ Gar denPl anner VB6 version of Gardener program

\ Abstract Fact ory\ VBNet\ Gar dennaker | VVB7 version of Gardener program

Copyright © 2001, by James W. Cooper

149

12. THE SINGLETON PATTERN

In this chapter, we' |l take up the Singleton pattern. This pattern is grouped with
the other Creationd patterns, athough it is to some extent a pattern that limits the
creation of classes rather than promoting such creation. Specifically, the
Singleton assures that there is one and only one instance of a class, and provides
aglobal point of accessto it. There are any number of casesin programming
where you need to make sure that there can be one and only one instance of a
class. For example, your system can have only one window manager or print
spooler, or asingle point of access to a database engine. Y our PC might have
severa serial ports but there can only be one instance of “COM1.”

Creating Singleton Using a Static Method

The easiest way to make a class that can have only oneinstanceisto use an
externa static variable that we set on the first instance and check for each time
we create an instance of the class. Then we create have the Class_Initidize
method create a single instance or cause an error.

In thisfirst example, we create a variable spool _counter, in a publicly accesible
module and refer to it throughout.

' Singleton PrintSpooler static constant
Publ i ¢ spool _counter As I|nteger

Within the PrintSpooler class we check that counter and either create an instance
Or calise an error.

Private Sub Cass_Initialize()
I f spool _counter > 0 Then

Err.Rai se vbObjectError + 1 ‘rai se error
End | f
spool _counter = spool _counter + 1
End Sub

Copyright © 2001, by James W. Cooper

150

However this only assure that you can have but one instance. It does not provide
globa accesstoit. To do that, we must alow the class to create only one
accessible instance, and use an getSpooler method to return that instance.

' ass PrintSpool er

Private Sub Class_Initialize()
If spool _counter = 0 Then

Set gl bSpooler = Me 'save | egal instance
spool _counter = spool _counter + 1 ‘count it
End |f

Publ i c Function GetSpooler() As PrintSpool er
Set Get Spool er = gl bSpooler ‘'return |egal instance
End Function

We aso have two globa variables stored in module-level code where the one
legal instance is stored:

' Singleton PrintSpooler static constants
Publ i ¢ spool _counter As |nteger
Publ i ¢ gl bSpool er As Print Spool er

One magjor advantage to this approach is that you don’t have to worry about error
handling if the singleton already exists—you aways get the same instance of the
spooler. If however, you create an instance of the PrintSpooler class and choose
not to use the error handling, you need to put aflag in the spooler to indicate that
only oneinstance is legal. Here we use the legalInstance variable to make sure
that printing can only occur from the legal instance.

Option Explicit

Private | egal | nstance As Bool ean "true for only one

'O ass PrintSpool er

Private Sub Cass_Initialize()

I f spool _counter = 0 Then ‘create and save one instance
| egal I nstance = True "flag it
Set gl bSpooler = M "save it
spool _counter = spool _counter + 1 ‘count it

El se
| egal | nstance = Fal se "not the |l egal one
Err.Description = "Il egal spooler instance"

Err. Rai se vbQojectError + 1 'could raise an error

Copyright © 2001, by James W. Cooper

151

End | f
End Sub
Publ i ¢ Function GetSpooler() As PrintSpool er
Set Get Spool er = gl bSpooler ‘return the |egal one
End Function

Public Sub Printit(str As String)
If legallnstance Then
"test to make sure this isn't called directly
MsgBox str
End I f

Private Sub C ass_Term nate()
"term nate | egal class
If | egal I nstance Then
Set gl bSpool er = Not hi ng
spooler_cnt = 0
End | f
End Sub

Finaly, should you need to change the program to alow two or three instances,
this class is easily modified to alow this, by keeping an array of instance in your
module level code.

CatchingtheError

User errors are always ones you define and are constants added to the
vbObjectError constant. Y ou can only catch errors that are raised within class
modules, if you select the option “Break on unhandled errors’ from Tools |
Options, on the General tab. Otherwise the error will be raised within the class
instead of being passed out for processing by the calling program.

"PrintSpooler Driver form
Dim prSp As Print Spool er
Private Sub Get Spooler_dick()
On Local Error GoTo nospool
‘create a spool er
Set prSp = New PrintSpool er 'create class
Set prSp pr Sp. Get Spool er 'get legal instance

Copyright © 2001, by James W. Cooper

152

errText. Text = "Spool er created"
spexit:
Exit Sub
"if the spool er causes an error we will get this nessage
nospool :
errText. Text = "Spool er already exists"
Resune spexit
End Sub

Providing a Global Point of Accessto a Singleton

Since each Singleton is used to provide a single point of globa accessto aclass,
your program design must provide for away to reference the Singletons
throughout the program.

One solution isto create a collection such Singletons at the beginning of the
program and pass them as arguments to the major classes that might need to use
them.

Di m Si ngl etons as New Col | ection
Si ngl etons. add prSpl, "PrintSpooler"

The disadvantage is that you might not need al the Singletons that you create for
agiven program execution, and this could have performance implications.

A more elaborate solution could be to create aregistry of al the Singleton classes
in the program and make the registry generally available. Each time a Singleton
isinstantiated, it notes that in the Registry. Then any part of the program can ask
for the instance of any singleton using an identifying string and get back that
instance variable.

Of course, the registry itself is probably a Singleton and must be passed to all
parts of the program using the init method or various set functions, or as a global
variable.

The M SComm Control asa Singleton

The MSComm control provides you with convenient access to your PC's sexial
ports. You can set the port number, baud rate, parity, and the number of data bits
and stop bits and can open the port and send or receive data. A PC'sBIOS
usudly alows up to 4 serial ports, called COM1 through COM4, even though

Copyright © 2001, by James W. Cooper

153

fewer may actudly be installed, and this must be mirrored by the MSComm
control. In addition, there can be only one instance of any of the ports at any
given time, since two programs or devices cannot use the same port at the same
time.

Seria ports are a good example of aresource that should be represented by a
Singleton, since only one program at a time can have access to a serid port, and
even within a program only one module or group of modules should be
communicating over the port.

There are redlly two Singletons possible here: one which manages the collection
of ports and lets out only one instance of each port, and the port objects
themsealves which must each refer to a single port.

In our example program, we'll create an array of MSComm controlsin asmall
invisible form, and then provide methods to query them. The design of our
invisible form is shown in Figure 1.

O O

i, commForm

= = == =]

Figure 1 — The invisible form module

Then we can create public methods for thisinvisible form, to list which ports are
available and to try to open them.

Dim coms As New Col | ection
Di m | oaded As Bool ean
Di mvalidPorts As New Col |l ection
Di m avai |l abl ePorts As New Col | ection
Private Sub Form Load()
| oaded = Fal se
| oadComrs "l oad cons into collection
End Sub
Private Sub | oadComs()
‘create array of 5 MsSComm controls
If Not | oaded Then
cons. Add comm(0)

Copyright © 2001, by James W. Cooper

154

conms. Add commq(1)

conms. Add comm 2)

cons. Add comm(3)

cons. Add comm(4)

| oaded = True ‘collection is now | oaded
End If
End Sub

Y ou might want to inquire which ports are available or which ports are valid. In
either case, you need only move through the list of possible ports and try to open
them. If they are open, you will get a Port already open error and if they do not
exist, you will get an Invalid port number error. The code for handling this looks
like the following:

Publ i ¢ Function getValidPorts() As Collection
Dimcm As MsComm i As |nteger
Dimvalid As Integer

| oadComms "make sure ports list has been | oaded
On Local Error GoTo cmsb
For i =1 To 5
Set cm = cons(1) 'get any MsComm contr ol
valid = True "assune it is valid
cm CommPort = i 'set the port nunber
cm Port Open = True "try to open it
cm Port Open = Fal se "if it opens, close it
If valid Then "if not negated by error
validPorts. Add i "then add to |ist
End If
Next i

Set getValidPorts = validPorts ‘'return |ist
Exit Function

"error handling for opening ports
cnsb:
Sel ect Case Err. Nunmber
Case 8002 "invalid port
valid = Fal se
Case 8005 "port al ready open
valid = True
End Sel ect
Resume Next
End Function

Copyright © 2001, by James W. Cooper

155

Available Ports

We can construct a similar method to return alist of ports still available. In that
case the port is added to the list only if neither the “Port already open” or the
“Invalid port number” errors occur.

Figure 2 shows a program which allows you to open each port in succession and
see what error occurs. It also shows the results of the getVaidPorts and the
getAvailablePorts methods.

&, Test comm ports

- Senial parts 1 BOOS Part already open

2 Part opened

" Coml 38002 [reealid port number
4 8002 Ireealid port number

= Comz 1 8005 Part alrzady open

= Com3

" Comd

& Coml again

Walid ports | I1 2
INone

Figure 6.2- The available ports assigned and then in use.

The list of Com option buttons in Figure 6.2 above consist of calls to the
following comClick method, which just displays the error message (if any) or the
port status in the list bos:

Private Sub conmdick(i As Integer)
Di m com As MsConmm

On Local Error GoTo nocom

Set com = confrm get Comm{ i) "Cet a port fromthe array
com CormPort = i
confrm get Com(i). Port Open = True "try to open it

"display statu of por
Listl. Additem Str$(i) + " Port opened”

Copyright © 2001, by James W. Cooper

156

pexit:
Exit Sub

nocom
‘or display the error nessage
Listl. Addlitem Str$(i) + Str$(Err.Nunber) + " " &
Err. Description
Resume pexit
End Sub

Which are the Singletons here? Well, each MSComm is an open book to be
written on, but once it opens a particular port, it becomes a Singleton for that
port. Y ou cannot open another M SComm control using that port number.
Similarly, we could regard the invisible commForm control as a Singleton. There
could be more than one in a program, but it is unlikely that there would be any
reason to have more than one. It manages and shows you the results of each port.

Writing a Singleton in VB.NET

VB7 provides an unusualy powerful set of methods for creating and using
singletons, and illustrates a number of the powerful features of this new language
version. We want to be able to alocate one and only one spooler in our system
and know whether one has been allocated. In VB7, we can create classes which
have shared methods. These are methods that we can call using the class name
rather than through an instance of the class. In other languages, these are called
static methods. For example, the File classin VB7 can be used to get information
about files without creating an instance of it:

If File. Exists("foo.txt")

And the MessageBox class has only shared methods
MessageBox. Showm("Error in program")

Similarly, you can create ayour own class that has shared methods by simply
declaring these methods to be Shared. Shared methods can be called only using
the class name. They are now available from instances of the class.

In this Singleton example, you could create a method for getting alegal spooler
instance:

Publ i ¢ Shared Function get Spool er() As Spool er

Copyright © 2001, by James W. Cooper

157

How would such a class decide whether a spooler has been allocated? Y ou can
keep a shared counter right inside the class and check whether a spooler has been
allocated or not:

Private Shared Spool _counter as Integer

Shared variables like these are only accessible from Shared methods. M ethods of
the class that are not shared and are used by class instances cannot access these
shared variables.

Using a Private Constructor

Since we don’'t want anyone to be able to create multiple instances of our Spooler
class, we will make the New constructor private. The upshot of this smple
change is that the only class that can create an instance of the Spooler classisthe
spooler classitsalf. While this seems at first asiif it isacircular argument, we
find that we can use a Shared method of the Spooler class to create an actual
instance of the class. It might look like this:

Publ i ¢ Shared Function get Spool er() As Spool er

get Spool er = New Spool er
End Function

Then we can call the non-shared methods, such as a Print method using the
instance of the spooler that the shared method returns.

spl = Spool er. get Spool er
spl.Print("H there")

Error Handling in Our Singleton

Now we need to decide how to indicate errors when we have not alocated a
spooler and when we try to alocate more than one. The idea way to do thisin
VB7 isby using exceptions. We can create a smple Spool erException class
which has an appropriate error message for our Singleton as follows:

Public Cl ass Spool er Excepti on
I nherits Exception
Private nmesg As String

Copyright © 2001, by James W. Cooper

158

Public Sub New()
MyBase. New()

mesg = "Only one spool er instance all owed”

Public Overrides ReadOnly Property Message() As String
Get
Message = nesg
End Cet
End Property
End Cl ass

Then al we have to do in the constructor of our Spooler classisto check to seeif
thisis the first and only lega instance, and if it isn’t to create one. If it is, we
throw this exception:

Publ i c Cl ass Spool er
Private Shared Spool _counter As I|nteger
Private Shared gl bSpool er As Spool er
Private | egallnstance As Bool ean

Private Sub New()
MyBase. New()

I f spool _counter = 0 Then 'create one instance
gl bSpooler = Me 'save it
spool _counter = spool_counter + 1 "count it
| egal | nstance = True

El se
| egal I nstance = Fal se
Throw New Spool er Exception()
End | f
End Sub

In asimilar fashion, we expand our getSpooler shared method to pass on that
thrown exception to the calling program

Publ i ¢ Shared Function get Spool er() As Spool er
Try
gl bSpool er = New Spool er ()

Copyright © 2001, by James W. Cooper

159

Catch e As Exception

Throw e 'pass on to calling program
Final l'y
get Spool er = gl bSpooler 'or return |egal one

End Try
End Functi on

A VB.NET SpoolDemo Program

Now lets rewrite our simple spooler demo to display a message if we have a
spooler and if we don't. It really amounts to testing for and catching the
exceptions in the two button click events:

Protected Sub Print_Click(Byval sender As Object,
ByVal e As System Event Args)
Try
spl.Print("H there")
Catch ex As Exception
ErrorBox("No spool er all ocated")
End Try

Private Sub ErrorBox(ByVal mesg As String)
MessageBox. Show mesg, "Spooler Error",
Messagebox. | conError)

Protected Sub bt Get Spooler_Click(_
ByVal sender As Object, ByVal e As System Event Args)
Try
spl = Spool er. get Spool er
Text Box1l.text = "Got spooler”
Catch ex As Exception
Error Box (" Spool er already all ocated")
End Try
End Sub

This creates the ssimple window shown in Figure 6-3

Copyright © 2001, by James W. Cooper

160

1=

IGDt spoaler

Print |

Figure 6.3 —TheVB7 Spooler Demo
And it produces the two error message boxes shown in Figure 6.4

Spooler Error x| Spooler Error |

Q Mo spooler allocaked Q Spooler already allocated

The Global Point of Access

In order to illustrate how we can use exceptions and pass them on to the calling
program, we did not really provide aglobal point of access. Once we call the
shared getSpooler function once, additional calls to it throw an exception. It
might actually be more appropriate to smply aways return that instance once it
is created.

Copyright © 2001, by James W. Cooper

161

Publ i ¢ Shared Function get Spool er() As Spool er
I f spooler_count = 0 then
gl bSpool er = New Spool er
End | f
Get Spool er = gl bSpool er ‘return instance

End Function

Other Consequences of the Singleton Pattern

Y ou can easily change a Singleton to allonhw a smal number of instances where
thisis allowable and meaningful.

Thought Questions

1. Consider asystem for processing ATM card transactions, where a thief has
obtained an ATM card number and is using to steal funds, concurrent with

the legitimate user withdrawing funds. How could you design a Singleton to
reduce this risk?

Programson Your CD-ROM

\'Si ngl et on\ VB6 spooler singleton
\'Si ngl et on\ conms VB6 com port singleton
\ Si ngl et on\ VBNet Si ngl et on VB7 spooler singleton

Copyright © 2001, by James W. Cooper

162

13. THE BUILDER PATTERN

In this chapter we'll consider how to use the Builder pattern to construct objects
from components. We have already seen that the Factory Pattern returns one of
severa different subclasses depending on the data passed in arguments to the
creation methods. But suppose we don’'t want just a computing agorithm, but a
whole different user interface depending on the data we need to display. A
typical example might be your E-mail address book. Y ou probably have both
people and groups of people in your address book, and you would expect the
display for the address book to change so that the People screen has places for
first and last name, company, E-mail address and phone number.

On the other hand if you were displaying a group address page, you'd like to see
the name of the group, its purpose, and alist of members and their E-mail
addresses. You click on a person and get one display and on a group and get the
other display. Let’'s assume that all E-mail addresses are kept in an object called
an Address and that people and groups are derived from this base class as shown
in Figure 13-1.

Address
Person Group

Figure 13-1 — Both Person and Group are derived from Address.

Depending on which type of Address object we click on, we'd liketo see a
somewhat different display of that object’s properties. Thisis alittle more than
just a Factory pattern, because we aren't returning objects which are simple
descendents of a base display object, but totally different user interfaces made up
of different combinations of display objects. The Builder Pattern assemblesa
number of objects, such as display controls, in various ways depending on the

Copyright © 2001, by James W. Cooper

163

data. Furthermore, by using classes to represent the data and forms to represent
the display, you can cleanly separate the data from the display methods into
simple objects.

An Investment Tracker

Let’'s consider a somewhat smpler case where it would be useful to have a class
build our Ul for us. Suppose we are going to write a program to keep track of the
performance of our investments. We might have stocks, bonds and mutual funds,
and we'd like to display alist of our holdings in each category so we can select
one or more of the investments and plot their comparative performance.

Even though we can't predict in advance how many of each kind of investment
we might own at any given time, we'd like to have a display that is easy to use
for either alarge number of funds (such as stocks) or a small number of funds
(such as mutual funds). In each case, we want some sort of a multiple-choice
display so that we can select one or more funds to plot. If there is alarge number
of funds, we'll use amulti-choice list box and if there are 3 or fewer funds, we'll
use a set of check boxes. We want our Builder class to generate an interface that
depends on the number of items to be displayed, and yet have the same methods
for returning the results.

Our displays are shown in Figure 13-2. The first display (Figure 13-2 top)
contains alarge number of stocks and the second (Figure 13-2 bottom) a small
number of bonds.

Copyright © 2001, by James W. Cooper

. Stock analysis

File:

ii‘ PFick fund type

onds
utual fundz

Plat I

ih List of funds:

=10 x|

Cizca
Coca Cola

Harley O avidzon
IBM
bicrozaft

. Stock analysis
File

oM Fick furd tupe !El [x|

iﬂ Select stocks

Stocks

Mutual funds

Plat I

I LT G0 2005
[~ NY GO 2012
[~ GE Corp Bonds

I [=] E3

164

Figure 13-2 - Display of Stocks showing thelist interface(top) and

Bonds showing the checkbox interface (bottom).

Copyright © 2001, by James W. Cooper

165

Now, let’s consider how we can build the interface to carry out this variable
display. We'll start with a multiChoice interface that defines the methods we
need to implement:

"Interface Milti Choice

"This is the interface for the nmulti-Sel ect w ndows
‘get collection of all selected stocks

Publi ¢ Function getSel ected() As Coll ection

End Function

' get wi ndow containing multichoice controls

Public Function get Wndow) As Form

End Function

"store list of stocks
Public Sub init(stocks As Collection)
End Sub

The getWindow method returns a window with a multiple-choice display. The
two displays we're using here -- a checkbox panel or alist box panel —
implement this interface

' checkBox form
| npl enents Mul ti Choi ce

or

' Li stbox form
| mpl ements Mul ti Choi ce

Then we create a smple Factory class that decides which of these two classes to
return:

'O ass StockFactory
‘gets correct wi ndow for number of stocks presented
Publ i ¢ Function getBuil der(stocks As Col | ection)
Dimnmult As Multi Choice
I f stocks.Count <= 3 Then

Set rmult = New checkForm 'get check box form

El se

Set nult = New listForm 'get list box form
End If

mult.init stocks "initialize it

Set getBuilder = mult
End Function

Copyright © 2001, by James W. Cooper

166

In the language of Design Patterns, this simple factory classis caled the
Director, and the actual classes derived from multiChoice are each Builders.

Calling the Builders

Visual Basic 6 doesn’'t make it easy to create and change forms dynamically
during program execution, so we will instead create instances of the various
types of multiChoice windows as components of an MDI form. Then we'll
instantiate the one needed by the number of equities in a specific category.

Our user interface consists of an MDI form with the list of fund choices on the
left, and initidly nothing on the right. Since windows grow to fill the available
space, will fill the right space initially with a blank form as shown in Figure 13-3.

W Stock. analysis

File:
o8 Fick fund type | _ (O] x| ! E

Stocks
Bondz
kutual funds

Flot |

Figure 13-3 — Thefund choice before any fund typeis selected. A
blank form isuseto fill theright hand space.

Copyright © 2001, by James W. Cooper

167

We firgt define the interface Equities

"Interface to Equities class

Publ i c Function getFunds() As Collection
‘returns list of fund nanes

End Function

Then, we'll keep our three lists of investments in three classes called Stocks,
Bonds and Mutuals, each of which implements Equities. We create an instance of
each of them in the Funds class, and fetch one or the other of them from that
class:

'd ass funds
Private fundLi st As New Col |l ection
Private eq As Equities

Private Sub Cass_Initialize()
"Creates a collection of equities
fundLi st. Add New st ocks
fundLi st . Add New Bonds
fundLi st. Add New Mitual s

End Sub

Public Function getFund(i As Integer) As Equities
‘return selected equity fromcollection
If i >0 And i <= fundList. Count Then

Set getFund = fundList (i)

End I f

End Function

We load them with arbitrary values as part of program initialization:

'd ass stocks
| npl enents Equities
Private stockList As New Col |l ection

Private Sub Cass_Initialize()
"add in arbitrary list of stocks

st ockLi st. Add "Ci sco"
st ockLi st. Add "Coca Col a"
st ockLi st. Add " GE"
st ockLi st. Add "Harl ey Davi dson"
st ockLi st. Add "I BM'
st ockLi st. Add "M crosoft"”

End Sub

Copyright © 2001, by James W. Cooper

168

Private Function Equities_getFunds() As Collection
"return collection of stocks
Set Equities_get Funds = stockLi st
End Function

and similarly for Bonds and Mutuals. In area system, we'd probably read them
in from afile or database. Then, when the user clicks on one of the three
investment types in the left list box, we get the correct Equity from the Funds
class and use it to create the right display.

Private Sub fundList_dick()
Dmi As Integer, sel Stocks As Collection, eq As Equities

"catch list box click selecting fund type
i = fundList.Listlndex + 1
If (i > 0) Then
'get one type of fund
Set eq = fnds. get Fund(i) ‘get equit fromfunds class
Set sel Stocks = eq. get Funds "get list fromequity
‘get a nmulti Choice formfromthe factory
Set nthoi ce = sfact. getBuil der(sel St ocks)
"tell the parent MDI to show it
nmPar ent . set ShowFor m nchoi ce
End If
End Sub

TheList Box Builder

The simpler of the two buildersisthe List box builder. It returns aform
containing alist box showing the list of the investments in that equity type.

' Li stbox form

| mpl enents Mul ti Choi ce

Dimsels As Collection

Private Sub Multi Choice_init(stocks As Coll ection)
Dmi As Integer

For i = 1 To stocks. Count
Li st 1. Addl t em st ocks(i)

Next i

End Sub

Copyright © 2001, by James W. Cooper

169

The other important method is the getSel ected method that returns a collection of
Strings of the investments the user selects:

Private Function Milti Choice_getSel ected() As Coll ection
Dimi As Integer
Set sels = New Col | ection
For i = 0 To Listl.ListCount - 1

If Listl. Selected(i) Then

sels. Add Listl.List(i)

End If
Next
Set Mul ti Choi ce_get Sel ected = sels
End Function

The Checkbox Builder

The Checkbox builder is even smpler. Here we need to find out how many
elements are to be displayed and display them. The number can only be between
0 and 3, so we create them al in advance and display only those we need:

Private Sub Multi Choice_init(stocks As Coll ection)
Dmi As Integer
‘set captions for the checkboxes we are using

For i = 1 To stocks. Count
ckFunds(i - 1).Caption = stocks(i)
Next i
"make the rest invisible
For i = stocks.Count + 1 To 3
ckFunds(i).Visible = Fal se
Next
End Sub

The getSdlected method is analogous to the one we showed above, and is shown
below. We illustrate the find UML class diagram in Figure 13-4.

| npl erents Mul ti Choi ce
Private sels As Collection
Private Function Milti Choi ce_getSel ected() As Coll ection
Dmi As Integer
‘create collection of checked stcok nanes
Set sels = New Col |l ection
For i =1 To 3
If ckFunds(i - 1).Value = 1 Then

Copyright © 2001, by James W. Cooper

170

sel s. Add ckFunds(i - 1).Caption
End I f
Next i
"return collection to caller
Set Multi Choi ce_getSel ected = sels
End Function

Figure 13-4 — The Builder class diagram.

Writing a Builder in VB.NET

VBY7 gives us considerably more flexibility in designing builder classes, since we
have direct access to the methods that allow us to construct a window from basic
components. For this example, we'll let each builder construct a Panel containing
whatever components it needs. WE can then add that Panel to the form and
position it. When the display changes, you remove the old Panel and add a new
one. VB6 does not have a Pand class, but in VB7, aPand isjust a unbordered
container that can hold any number of Windows components. As we did above,
the two implementations of the Panel will satisfy the MultiChoice interface:

Interface Multi Choice
"an interface to any group of conponents
"that can return zero or nore selected itens
"the names are returned in an Arrayli st
Function get Sel ected() As Arrayli st
Sub cl ear () "clear all selected
Functi on get Wndow() As Pane

End Interface

We will create a base abstract class called Equities and derive the stocks, bonds
and mutua funds from it:

Public Mustlnherit Class Equities
Protected ar As Arrayli st

Publ i ¢ Function getNanes() As Arrayli st
Return ar
End Function

Copyright © 2001, by James W. Cooper

171

Publ i ¢ Function count() As Integer
Return ar. count
End Function

End Cl ass

Note the toString method. We'll use this to display each kind of equity in the list
box. Now our Stocks class will just contain the code to load the ArrayList with
the stock names:

Public Class Stocks
Inherits Equities

Public Sub New()

MyBase. New()
ar = New ArraylList ()

ar. Add(" Ci sco")
ar . Add(" Coca Col a")
ar. Add(" GE")
ar. Add("Harl ey Davi dson")
ar. Add("1BM")
ar. Add("M crosoft")
End Sub

Public Overrides Function toString() As String
Return " Stocks"
End Function
End Cl ass

All the remaining code (getNames and count) is implemented in the base Equities
class. The Bonds and Mutuals classes are equally smple.

The Stock Factory

We need allittle class to decide whether we want to return a checkbox panel or a
listbox panel. We'll cal this class the StockFactory class. However, we will
never need more than one instance of this class, so we'll create the class so that
its one method is Shared.

Public Class StockFactory

Copyright © 2001, by James W. Cooper

172

"This class has only one shared nethod
Publ i c Shared Function getBuil der (ByVa
stocks As Equities) _

As Ml ti Choice

Dmmult As Miulti Choice

I f stocks. Count <= 3 Then
'get check boxes
mult = New checkChoi ce(stocks)
El se
"get a listbox
mult = New | istChoice(stocks)
End If
Return nmul t
End Function
End Cl ass

The CheckChoice Class

Our checkbox builder constructs a panel containing O to 3 check boxes and
returns that panel to the calling program.

Public C ass CheckChoice
I mpl ements Mul ti Choice

Private stocks As ArraylLi st

Private pnl As Panel

Private boxes As Arrayli st

'create a Panel containing

"0 to 3 check boxes

Public Sub New(ByVal stks As Equities)

MyBase. New()
st ocks = stks. get Nanes
pnl = New Panel ()

boxes = New Arraylist() '"in an ArraylLi st
Dimi As Integer
For i = 0 To stocks.count - 1

Dim Ck As New Checkbox()

Ck. Location = _

Copyright © 2001, by James W. Cooper

Nex

End Sub

End Cl ass

QQQQ

New System Drawi ng. Point(8, 16 + i * 32)

. Text = stocks(i).toString
.Size = New Size(112, 24)

. Tabl ndex = 0

.TextAlign = _

Content Al i gnnment . M ddl eLeft

boxes. add(ck) "internal array

pnl . Control s. add(ck)

toi

"add into pane

173

The methods for returning the window and the list of selected names are shown
below. Note that we use the Ctype function to convert between the Object type
returned by an ArrayList and the CheckBox type the method actually requires.

'cl ear

al

sel ected check boxes

Public Sub clear() Inplenments Milti Choice.clear
Dimi
Dim ck As Checkbox

For

Nex
End Sub

'gets

i
ck

ck.

t i

i st

As | nt eger

0 To boxes.count - 1
= CType(boxes(i), Checkbox)
Checked = Fal se

of sel ected nanes

Publ i ¢ Function getSel ected() As ArraylList _
I mpl emrents Mul ti Choi ce. get Sel ect ed
Dimar As New ArraylList()

Dimi
Di m ck As Checkbox

For

Nex

ck

| f

As | nt eger

0O To Boxes.count - 1

= CType(boxes(i), Checkbox)
ck. Checked Then

ar. add(ck. Text)

End | f

toi

Copyright © 2001, by James W. Cooper

174

Return ar
End Function
'gets the Panel containing the check boxes
Public Function get Wndow() As Panel _
I mpl ements Mul ti Choi ce. get W ndow
Return pnl
End Function

The ListboxChoice Class

This class creates a multi-salect list box, insertsit in a Pand and loads the names
into the list:

Public Cl ass Li st Choice
| mpl ements Mul ti Choice

Private stocks As Arrayli st

Private pnl As Panel

Private I st As ListBox

'create a panel containing a

"mul tiselectablen |ist box

Public Sub New(ByVal stks As Equities)

MyBase. New()
st ocks = stks.getNanmes 'get the nanes
pnl = New Panel ()

"create the list box
I st = New ListBox()
| st.Location = New Point (16, 0)
| st.Size = New Size(120, 160)
| st. Sel ecti onMbde = _
Sel ecti onMbde. Mul t i Ext ended
| st. Tabl ndex = 0
"add it into the pane
pnl . Controls. Add(I st)
"add the nanes into the |ist
Dimi As Integer

For i = 0 To stks.count - 1
I st.itens.add(stocks(i))
Next i
End Sub

Copyright © 2001, by James W. Cooper

175

Sincethisis amulti-select list box, we can get al the selected itemsin asingle
Selectedindices collection. This method only works for a multi-select list box,
however. It returns a—1 for asingle-select list box. We use it to load the array list
of selected names as we show below.

Publ i ¢ Function getSel ected() As ArraylList _
I mpl ements Mul ti Choi ce. get Sel ect ed
Dimi As Integer
DmitemAs String
Dimarl As New ArrayList ()

"get itens and put in ArrayLli st
For i = 0 To Ist. Sel ectedlndices.count - 1
item=Ist.ltens(_
| st. Sel ectedlndices(i)).toString
arl.add(item
Next i
Return arl "return the Arrayli st
End Function
"clear all selected itens
Public Sub clear() Inmplenments Milti Choice.clear
I st.ltens.clear()
End Sub
"return the constructed pane
Public Function get Wndow() As Panel _
I mpl ements Mul ti Choi ce. get W ndow
Return pnl
End Function

Using the Items Collection in the ListBox Control

You are not limited to populating alistbox with stringsin VB7. When you add
datato the Items collection, it can be any kind of object that has a toString
method. This takes the place of the much more limited Itemdata property of the
listbox in VB6.

Copyright © 2001, by James W. Cooper

176

Since we created our three Equities classes to have a toString method, we can
add them directly to the list box in our main program’ s constructor.

Public Sub New()
MyBase. New
FormlL = Me
InitializeConponent()
Dimi As Integer
Dimeq As Equities
| sEqTypes. I tens. add(New St ocks())
| sEqTypes. | tenms. add(New Bonds())
| sEqTypes. | tems. add(New Miut ual s())
End Sub

Whenever we click on aline of the list box, the click method obtains that
instance of an Equities class and passes it to the MultiChoice factory, which in
turn produces a Panel containing the itemsin that class. It then removes the old
panel and adds in the new one:

Protected Sub | seqTypes_Sel ect edl ndexChanged(_
ByVal sender As Object, ByVal e As System Event Args)
Dimi As Integer
i = | seqTypes. Sel ect edl ndex

"get the Equity fromthe Iist box
eq = CType(l seEqTypes.itens(i), Equities)

'get the right Builder
nchoi ce = StockFactory. getBuil der (eq)

"renove the old pane
Try
Me. Control s. renmove(pnl)
Catch ex As Nul | Ref erenceException

End Try
'get the new one and add it to the wi ndow
pnl = nthoi ce. get W ndow

set Panel ()

End Sub

Copyright © 2001, by James W. Cooper

The Final Choice

177

Now that we have created al the needed classes, we can run the program. It starts
with ablank panel on the right side, so that there will always be some panel there
to remove. Then, each time we click on one of the names of the Equities, that
panel is removed and a new oneis added in its place. We see the three casesin

Figure 13-5.
=T JT=TES
[
Hionds Cocza Cola
Hutual lunds E
Hatley Darvickon
Efd
Micinenk
shuw | S
r— 0 .
Shook;
MM’W E et T GO 2005, GE Corp bonds,
I MY GO zmz
¥ [GE Coii B}
Show

Figure 13-5- The VB7 WealthBuilder program.

Consequences of the Builder Pattern

1. A Builder lets you vary the interna representation of the product it builds. It
also hides the details of how the product is assembled.

2. Each specific builder is independent of the others and of the rest of the
program. This improves modularity and makes the addition of other builders

relatively smple.

Copyright © 2001, by James W. Cooper

178

3. Because each builder constructs the final product step-by-step, depending on
the data, you have more control over each final product that a Builder
constructs.

A Builder pattern is somewhat like an Abstract Factory pattern in that both return
classes made up of a number of methods and objects. The main difference is that
while the Abstract Factory returns afamily of related classes, the Builder
constructs a complex object step by step depending on the data presented to it.

Thought Questions
1. Some word-processing and graphics programs construct menus dynamically
based on the context of the data being displayed. How could you use a
Builder effectively here?

2. Not al Builders must construct visual objects. What might you use a Builder
to construct in the personal finance industry? Suppose you were scoring a
track meet, made up of 5-6 different events? How can you use a Builder
there?

Programs on the CD-ROM

\ Bui | der s\ Si npl eBui | der VB6 hasic equities builder

\ Bui | der s\ VBNet Bui | der VB7 equities builder

Copyright © 2001, by James W. Cooper

179

14. THE PROTOTYPE PATTERN

The Prototype pattern is another tool you can use when you can specify the
generd class needed in a program but need to defer the exact class until
execution time. It is similar to the Builder in that some class decides what
components or details make up the final class. However, it differsin that the
target classes are constructed by cloning one or more prototype classes and then
changing or filling in the details of the cloned class to behave as desired.

Prototypes can be used whenever you need classes that differ only in the type of
processing they offer, for examplein parsing of strings representing numbersin
different radixes. In this sense, the prototype is nearly the same as the Examplar
pattern described by Coplien [1992].

Let’'s consider the case of an extensive database where you need to make a
number of queries to construct an answer. Once you have this answer as atable
or RecordSet, you might like to manipulate it to produce other answers without
issuing additional queries.

In a case like one we have been working on, we' |l consider a database of a large
number of swimmersin aleague or statewide organization. Each swimmer
swims several strokes and distances throughout a season. The “best times’ for
swimmers are tabulated by age group, and even within a single 4-month season
many swimmers will pass their birthdays and fall into new age groups. Thus the
query to determine which swimmers did the best in their age group that season is
dependent on the date of each meet and on each swimmer’ s birthday. The
computational cost of assembling this table of timesis therefore fairly high.

Once we have aclass containing this table, sorted by sex, we could imagine
wanting to examine this information sorted just by time, or by actual age rather
than by age group. It would not be sensible to recompute these data, and we don’t
want to destroy the origina data order, so some sort of copy of the data object is
desirable.

Cloningin Visual Basic 6

Theidea of cloning a class (making an exact copy) is not a designed-in feature of
to Visual Basic, but nothing actually stops you from carrying out such a copy

Copyright © 2001, by James W. Cooper

180

yourself. The only place the Clone method appearsin VB isin database
manipulation. Y ou can create a Recordset as aresult of a database query and
move through it arow at atime. If you have some need to keep references to two
places in this Recordset, you would need two “ current rows.” The smplest way
to handle thisin VB6 is to clone the Recordset.

Public Sub cl oneRec(Query$)
Di m db As Dat abase
Dimrec As Recordset, crec As Recordset

' open dat abase recordset
Set rec = db. OpenRecordset (Query$, dbOpenDynaset)

'clone a copy
Set crec = rec. C one
End Sub

Now this approach does not generate two copies of the Recordset. It just
generates two sets of row pointers to use to move through the records
independently of each other. Any change you make in one clone of the Recordset
isimmediately reflected in the other, because there isin fact only one data table.
We discuss asimilar problem to this in the following example.

Using the Prototype

Now let’swrite a simple program that reads data from a database and then clones
the resulting object. In our example program we just read these data from afile,
but the original data were derived from alarge database as we discussed above.
That file has the following form:

Kristen Frost, 9, CAT, 26.31, F
Ki mberly Watcke, 10, CDEV, 27.37, F
Jaclyn Carey, 10, ARAC, 27.53, F
Megan Crapster, 10, LEHY, 27.68, F

We'll use the vbFile class we devel oped earlier.

First, we create a class called Swimmer that holds one name, club name, sex and
time, and read them in using the File class

Option Explicit
"C ass Swi mer

Copyright © 2001, by James W. Cooper

181

Private ssex As String

Private sage As |nteger

Private stine As Single

Private sclub As String

Private sfrname As String, slnane As String
Public Sub init(Fl As vbFile)

Dmi As Integer

DimnmAs String

nm = Fl . readToken ‘read in name
i =InStr(nm " ")
If i >0 Then "separate into first and |ast
sfrnane = Left(nm i - 1)
sl name = Right$(nm Len(nm - i)
El se
sfrname = ""
sl name = nm ‘or just use one
End | f
sage = Val (Fl.readToken) ''get age
sclub = Fl . readToken ‘get club
stime = Val (Fl . readToken) ‘get time
ssex = Fl.readToken 'get sex

End Sub

Public Function getTinme() As Single
getTime = stine
End Function

Public Function getSex() As String
get Sex = ssex

End Function

Public Function getName() As String
get Nane = sfrname + " " + sl nane
End Function

Public Function getdub() As String
getCd ub = sclub

End Function

Publ i c Function getAge() As Integer
get Age = sage

End Function

Copyright © 2001, by James W. Cooper

182

We aso provide agetSvimmer method in SwimData and getName, getAge and
getTime methods in the Swimmer class. Once we' ve read the data into Swiminfo,
we can display it in alist box.

Then we create an interface class called SwimData that maintains a Collection of
the Swimmers we read in from the database.

"Interface Sw nData
Public Sub init(Filename As String)
End Sub

Public Sub C one(swd As Swi nDat a)
End Sub

Public Sub setData(swcol As Collection)

Public Sub sort()
End Sub

Public Sub MoveFirst ()
End Sub

Publ i ¢ Function hasMreEl enents() As Bool ean
End Function

Publ i c Function get Next Swi ner () As Sw mer
End Function

Then, when the user clicks on the Clone button, we'll clone this class and sort the
data differently in the new class. Again, we clone the data because creating a new
class instance would be much dower, and we want to keep the datain both

forms.

Private Sub Swi nData_C one(swd As Swi nDat a)

swd. set Data sw nmer s 'copy data into new cl ass
End Sub

In the original class, the names are sorted by sex and then by time, while in the
cloned class they are sorted only by time. In Figure 14-1, we see the simple user
interface that allows us to display the original data on the left and the sorted data
in the cloned class on the right:

Copyright © 2001, by James W. Cooper

Kristen Frost
Kimberly ' atcke
Jaclyn Carey
Megan Crapster
K.aitlyn Ament
Jackie Rogers
Erin McLaughlin
Emily Ferrier
Aurora Lee
Kate lsseles

D avid Liebovitz
Luke Mester

Jeffrep Sudbury
Ermest Yerico

Stephen Cosme
b atthew Donch

CAT
COEY
ARALC
LEHY
HMHS
A
HMST
WHIL
FFLY
HHMIL
W
GrwD

Fyan Rynazewski AJ5C

W
SHKS
DK

PSDY

26.31
2037
27.53
27.68
28.20
28.68
28.80
28.85
28.88
2891
28.78
24.88
28.83
28.24
28.46
27.83
28.95

Refresh |

| v

Luke Mester
Kristen Frost

Jaclpn Carey

K.aitlyn Ament

Ripan Rynaze
Erily Ferrier
Aurora Lee
Kate |sselee
hatthew Don

D
CAT

Kimberly ‘wiatcke COEY

ARALC

tegan Crapster LEHY
Stephen Cosme 04K

HMHS

Jeffrey Sudbury W
Ermest Vemico SHES
Jackie Rogers WA

David Lishovitz Wi
Erin McLaughlin - HMST

wiski AJSC
NHIL
FFLY
NHIL
ch PSDY

24.88
26.31
2737
27.53
2768
27.89
28.20
28.24
28.46
28.68
28.78
28.80
28.83
28.85
28.88
28.91
28.95

183

Figure 14-1. Prototype example. The left-hand list box is |loaded when
the program startsand theright-hand list box isloaded when you
click on the Clone button.

Now, let’s click on the Refr esh button to reload the left-hand list box from the
original data. The somewheat disconcerting result is shown in Figure 14-2.

L Misdie
Frishert Frost
Firmba pwrale ko
Jedin Carsp
el Crapusler
Slephen Comms
Fzihyn Lt
Jelr=y Sudbuap
Emrest¥erico
Jedkie Roges
David Lichoviz
Enn McLsughim
Fipan Ryremsaski
Ervlp Fenm
domia Les

= Tk =
st D oinch

(371
CAT
CIvE
AFRAC
LEH+
Oa&k.
HHHS
L
SHES
WA
W
HMST
JISC
HIIL
FFLY
HMIL
P3O

L

Liika Feelar
Ensten Fios|
Fimbaa by bfatcdos
Jechn Camp
Wege Crapster
Shsphen Cosme
Falr Ament
Jettrep S udbury
Emzat Wenico
Jeckis Aogemir
Dizwid Listoniz
Enn Hol_sughin
Fiyan Rynozesski
Emily Fermior
Lroea Les
Kana l=ake
atih=u Donch

Gl 3
cat 531
CDEY 3237
&AsC 2153
LEHY 27E3
QaK, 2rad
HRHE 2320
w82
SHES 2945
Wioa 283
Wl 2aTa
HMST 2380
&ISC 283
MWL 23
FFLY 2383
ML &A1
PEDY 2995

I

Copyright © 2001, by James W. Cooper

184

Figure 14-2— Prototype example, after clicking on Clone and then on
Refresh.

Why have the namesin the left-hand list box aso been re-sorted? This occurs
because the clone method is a shallow copy of the origind class. In other words,
the references to the data objects are copies, but they refer to the same underlying
data. Thus, any operation we perform on the copied data will also occur on the
original datain the Prototype class.

In some cases, this shallow copy may be acceptable, but if you want to make a
deep copy of the data, you must write a deep cloning routine of your own as part
of the class you want to clone. In this simple class, you just create a new
Collection and copy the elements of the old class's Collection into the new one.

Private Sub Swi nDat a_C one(swd As Swi nDat a)
Dimswnrs As New Col | ection

Dmi As Integer

'copy data from one collection

' to another

For i = 1 To swi mers. Count
swrs. Add swi mmers(i)
Next i

"and put into new cl ass
swd. set Data swnr's
End Sub

Using the Prototype Pattern

Y ou can use the Prototype pattern whenever any of anumber of classes might be
created or when the classes are modified after being created. Aslong as all he
classes have the same interface, they can actually carry out rather different
operations.

Let’s consider amore elaborate example of the listing of swimmers we discussed
above. Instead of just sorting the swimmers, let’s create subclasses that operate
on that data, modifying it and presenting the result for display in alistbox. We
start with the same abstract class SwimData

Then it becomes possible to write different concrete SwimData classes depending
on the application’ s requirements. We always start with the SexSwimData class
and then clone it for various other displays. For example, the OneSexSwimData

Copyright © 2001, by James W. Cooper

185

class resorts the data by sex and displays only one sex. Thisis shown in Figure
14-3.

. Show data form prototypes

Frizten Frozt CaT 26.31 - Stephen Cosme DAK 2789
Kimberly watcke CDEV 2737 — Jeffrey Sudbury WwWYW 2824
Jaclyn Carey ARAC 2753 Emest Vermico SHES 2846
Megan Crapster LEHY 27.68 Clone | David Liebovitz W' 2878
Kaitlyn Ament HWHS 28.20 Fipan Rynazewski AJ5C 28.83
Jackie Rogers WCA 28.68 Matthew Donch PSDY 28.95
Erin McLaughln -~ HMST 28,80 Chrigtopher Pruz - RAYS 29.02
Ermnily Ferrier MMIL 28.85 ~Sex Charles Baker PSDY 29.06
Aurora Lee FFLY 28.858 CF Matthew Sweitzer SHKS 2310
Kate lsselee MHIL - 28.91

DavidLishovitz Wi/ 28.78 *

Luke Mester GrwD 24.88

Fivan Rynazewski AJSC 28.83

Jeffrey Sudbury Wi 2824 o]

Emest Werico SHES 2846

Stephen Cozme DAK 2789

Malthew Donch ~ PSDY 28.95 =l

Refresh |

Figure 14-3 — The OneSexSwimData class displays only one sex on the
right.

In the OneSexSwimData class we sort the data by time, but return them for
display based on whether girls or boys are supposed to be displayed. This class
has the additional method:

Public Sub set Sex(sx$)
Sex = sx$ 'copy current sex preference
End Sub

and each time you click on the one of the sex option buttons, the classis given
the current state of these buttons.

Additional Methods in Subclasses

The OneSexSwimData class is a class which implements the SwimData
interface, but we want it to have an additional method as well, which alows usto
tell it which sex we want to display. The setSex method is not part of the
SwimData interface, and thus if we just create a SwimData object and assign it

Copyright © 2001, by James W. Cooper

186

the value of a new OneSexSwimData class instance, we won't have access to the
setSex method:

Private swd As Swi nDat a
Private tsd As Swi nData

Private Sub C one_dick()
Set tsd = New OneSexSwi nDat a
swd. Cl one tsd ‘clone into any type
tsd. sort "call interface nethod

On the other hand, if we create an instance of the OneSexSwimData class, we
won't have access to the methods of the SwimData interface

Private swd As Swi nDat a
Private osd As OneSexSwi nDat a

Private Sub C one_dick()
Set osd = tsd ‘copy to specific type

We can solve this problem by creating a variable of each type and referring to the
same class using both the SwimData and the OneSexSwimData variables:

Private swd As Swi nDat a

Private tsd As Sw nDat a

Private osd As OneSexSw nDat a

Private Sub C one_dick()
Set tsd = New OneSexSw nmDat a
swd. Cl one tsd "clone into any type
tsd. sort ‘call interface nethod

Set osd = tsd 'copy to specific type
osd.setSex "F* ‘'call derived class nethod
SexFrane. Enabl ed = True 'enabl e sex sel ection
| oadRi ght Li st

End Sub

Note that we enable the SexFrame containing the F and M sex selection option
buttons only when a clone has been performed. This prevents performing the
setSex method on a class which has not yet been initialized:

Private Sub Sex_Cick(Index As Integer)

Copyright © 2001, by James W. Cooper

187

"sets the sex of the class to either For M
0sd. set Sex Sex(| ndex). Caption
| oadRi ght Li st

End Sub

Dissimilar classes with the same interface

Classes do not have to be even that similar, however. The AgeSwimData class
takes the cloned input data array and creates a smple histogram by age. If you
click on “F’, you see the girls age distribution and if you click on “M”, you see
the boys age distribution as shown in Figure 14-4.

Eizlest Fiod CAT 31 - 8
Fimberdp Wecke CDEV 2T37 I S0
oo Carey BRAC 2THI 10X,
Wegan Crapetar LEHY 276A

E.atlpn Simen| HNHS 2820

Jacke Fogers T 2068

Ennhciaughln HMST 22480

Erabe Fanm HMIL 2885

Porors Lae FRLY 2248 Ses

Kate |saelee WHIL 2291 ®F

Dawid Lisbedz Wi Z5T7H

Luks Meste EWwWD 24.88 M

Ay Rprazemski 4050 2283

Jefbey Siadbory Wi 2524

Erreal Yenico SHES 28.4E e
Stephen Cosme &k 27
Watrow Doncky PE0Y 2295 =l

Relissh I

Figure 14-4 — The AgeSwimData class displays an age distribution.

Thisis an interesting case where the AgeSwimData class uses all the interface
methods of the base SwimData class and aso uses the setSex method of the
OneSexSwimData class we showed previoudy. We could just make the setSex
method a new public method in our AgeSwimData class, or we could declare that
AgeSwimData implements both interfaces.

' Cl ass AgeSw nDat a

| npl enent s OneSexSwi nDat a
| npl ement s Swi mDat a

Copyright © 2001, by James W. Cooper

188

There islittle to choose between them in this case, since there is only one extra
method, setSex, in the OneSexSwimData class. However, the data are
manipulated differently to create the histogram.

Private Sub Sw nData_sort ()

Dmi As Integer, j As Integer

Dimsw As Swi mrer, age As |nteger
DimageString As String

"Sort the data inbto increasing age order
max = swi mmers. Count

ReDi m sws(max) As Sw nmer

'copy the data into an array

For i = 1 To max

Set sws(i) = swimrers(i)
Next i
"sort by increasing age
For i =1 To max

For j =i To max

If sws(i).getAge > sws(j).get Age Then
Set sw = sws(i)
Set sws(i) = sws(j)

Set sws(j) = sw

End I f

Next j
Next i
"enpty the collection
For i = max To 1 Step -1

SwWi mrer s. Renove i
Next i
"fill it with the sorted data
For i =1 To max

swi mers. Add sws(i)
Next i
‘create the histogram
count AgeSex

End Sub

Private Sub count AgeSex()

Dmi As Integer, j As Integer
Dimsw As Swi mrer, age As |nteger
Dim ageString As String

'now count nunber in each age

Set ageList = New Col | ection
age = swimers(1l). get Age

Copyright © 2001, by James W. Cooper

189

ageString = ""
i =1
Wiile i <= nmax
"add to histogramif in age and sex
If age = swimers(i).get Age And Sex = swinmmers(i).getSex Then
ageString = ageString + "X'
End If
If age <> swinmers(i).getAge And Sex = swi nmers(i).getSex Then
‘create new swinmrer if age changes
Set sw = New Swi nmrer
sw.setFirst Str$(age) 'put string of age in 1lst nane
sw. set Last ageString 'put histogramin |ast name

ageli st. Add sw ‘add to collection

age = swimers(i).getAge

ageString = "X" ‘start new age hi stogram
End I f
i =i +1

Wend

‘copy last onein
Set sw = New Swi nmmer
sw. set First Str$(age)
sw. set Last ageString
ageli st. Add sw
amax = ageli st. Count

End Sub

Now, since our original classes display first and last names of selected
swimmers, note that we achieve this same display, returning Swimmer objects
with the first name set to the age string and the last name set to the histogram.

Copyright © 2001, by James W. Cooper

SexSwimData
firom default)

fernale

sexData

AgeSwimData
from default)
+AgeSwimData
+gethlame

-mmakeks
+setFemale
+5i78

+50rt

A

190

SwimData
firom defaulf)
+SwimData Swimlnfo
+deepClone 0.1 frorn defauli
_
+getiame sxdata +Ewirmlnfo
et Swirmrner
g 0.1 +actionPearfarmed
+setFemale i
- soata +main
+8iZe
+S0H

TimeSwimData
firom default)
+TimeSwimData
+getMame
+getSwimmer
+setFemale
+5ize
+s50r

0.1 swe

Swimmer
fror default)
{local to package
+Swirnrmer

+getAge
+etClub
+getilame
+getTime
+isFemale

Figure 14-5—-The UML diagram for the various SwimData classes.

The UML diagram in Figure 14-5 illustrates this system fairly clearly. The
Swiminfo classisthe main GUI class. It keeps two instances of SwmData, but
does not know specify which ones. The TimeSwimData and SexSwimData
classes are concrete classes derived from the abstract SwimData class and the
AgeSwimData class, which creates the histograms, is derived from the
SexSwimData class.

Y ou should aso note that you are not limited to the few subclasses we
demonstrated here. It would be quite smple to create additional concrete classes
and register them with whatever code selects the appropriate concrete class. In
our example program above, the user is the deciding point or factory, because he
smply clicks on one of severa buttons. In a more elaborate case, each concrete
class could have an array of characteristics and the decision point could be a class
registry or prototype manager which examines this characteristics and selects the
most suitable class. You could aso combine the Factory Method pattern with the

Copyright © 2001, by James W. Cooper

1901

Prototype, where each of several concrete classes uses a different concrete class
from those available.

Prototype Managers

A prototype manager class can be used to decide which of severa concrete
classes to return to the client. It can also manage severa sets of prototypes at
once. For example in addition to returning one of several classes of swimmers, it
could return different groups of swimmers who swam different strokes and
distances. It could also manage which of severa types of list boxes are returned
to display them in, including tables, multicolumn lists, and graphical displays. It
is best that whichever subclassis returned, that it not require conversion to a new
class type to be used in the program. In other words, the methods of the parent
abstract or base class should be sufficient and the client should never need to
know which actua subclassit is dealing with.

Writing a Prototypein VB7

In VB7, we can write more or less the same code. The mgor changes are that we
will use ArrayLists and zero-based arrays, and that we can write a base
SwimData class from which we can inherit a number of useful methods. We
create the base SwimData class without a sort method and specify using
Mustlnherit for the class and MustOverride for the method that you must provide
an implementation of sort in the child classes.

'Base class for Sw nData

Public Mustlnherit Class Sw nData
Protected Swi mrers As Arrayli st
Private i ndex As |nteger
‘constructor to be used with setData
Publ i c Overl oads Sub New()

MyBase. New()
index = 0

End Sub

'Constructor to be used with filenane
Public Overl oads Sub New(ByVal Filename As String)
MyBase. New()

Copyright © 2001, by James W. Cooper

192

Dimfl As New vbFil e(Fil enane)
Dim sw As Swi mmer
Dim sname As String

swi mrers = New ArraylList()
Fl . OpenFor Read(Fi | enane)

sname = fl.readLi ne
console.witelLine(":" + snane)
VWil e snanme.length > 0
If (snane.length > 0) Then
sw = New Swi nmrer (snane)
swi mrer s. Add(sw)
End If
sname = fl.readLi ne
console.witelLine(":" + sname)
End While
sort()
index =0
End Sub
Public Sub setData(ByVal swcol As ArraylList)
swWi mrers = swcol
nmovefirst()
End Sub
'Clone dataset from other sw ndata object
Public Sub Clone(ByVal swd As Swi nDat a)
Dim swnrs As New ArraylList()
Dimi As Integer
'copy data from one collection
' to anot her
For i = 0 To swi mers. Count - 1
swirs. Add(swi mmers(i))
Next i
"and put into new class
swd. set Dat a(swnr s)

End Sub

"sorting nmethod nmust be specified

Copyright © 2001, by James W. Cooper

193

"in the child classes
Public MustOverride Sub sort()
Public Sub MoveFirst()
index = -1
End Sub
Publ i ¢ Functi on hasMoreEl enents() As Bool ean
Return (index < (Swi mers.count - 1))
End Function
Public Function get Next Swi nmer () As Swi mmrer
i ndex = index + 1
Return CType(sw nmers(index), Sw mer)
End Function

End Cl ass

Note that we use the vbFile class we wrote earlier to read lines from thefile.
However, once we read the data, we parse each data line in the Swimmer class.
Data conversions have a different form in VB7. Instead of using the Va function,
we use the static tolnt16 method of the String class to convert integers:

sage = tok.next Token.Tolnt1l6 'get age

and the toSingle method to convert the time value
stime = tok.next Token. ToSi ngl e ‘get tine

The complete constructor for the Swimmer Class is shown below:

Public Cl ass Swi mrer
Private ssex As String
Private sage As |nteger
Private stinme As Single
Private sclub As String
Private sfrnane, slname As String

Public Sub New(ByVal nm As String)

MyBase. New()
Dimi As Integer
Dims As String

Copyright © 2001, by James W. Cooper

Dimt As Single
Dimtok As StringTokenizer

tok = New StringTokenizer(nm ",")

nm = t ok. next Token

i = nmindexOr(" ")

If i > 0 Then 'separate into first and | ast
sfrname = nm substring(0, i)
sl name = nm substring(i + 1)

El se

sfrname = ""

sl name = nm 'or just use one
End If
sage = tok.next Token. Tol nt 16 'get age
scl ub = tok. next Token "get club
stime = tok.nextToken. ToSi ngl e "get tinme
ssex = tok.next Token 'get sex

End Sub

Then, our TimeSwimData classis very simple, consisting only of the New
methods and the sort method:

Public Cl ass Ti neSw nmDat a
I nherits Swi nDat a
Public Overl oads Sub New(ByVal filename As String)
MyBase. New(fi | enane)

End Sub
Public Overl oads Sub New()
MyBase. new()

'"Required sort nethod

Public Overrides Sub sort()
Dimi, j, max As |nteger
Dim sw As Swi mmer
max = swi mrers. Count
'copy into array

Copyright © 2001, by James W. Cooper

195

Di m sws(max) As Swi mrer
swi mer s. CopyTo(sws)
"sort by tine
For i = 0 To max - 1
For j =i To max - 1
If sws(i).getTine > sws(j).getTime Then
sw = sws(i)

sws(i) = sws(j)
sws(j) = sw
End I f

Next j
Next i
'copy back into new Arrayli st
swimrers = New Arraylist()

For i =0 To max - 1
swi mmers. Add(sws(i))
Next i
End Sub
End Cl ass

Consequences of the Prototype Pattern

Using the Prototype pattern, you can add and remove classes at run time by
cloning them as needed. Y ou can revise the internal data representation of aclass
at run time based on program conditions. Y ou can aso specify new objects at run
time without creating a proliferation of classes.

One difficulty in implementing the Prototype pattern in VB isthat if the classes
aready exist, you may not be able to change them to add the required clone
methods. In addition, classes that have circular references to other classes cannot
really be cloned.

Like the registry of Singletons discussed above, you can also create aregistry of
Prototype classes which can be cloned and ask the registry object for alist of
possible prototypes. Y ou may be able to clone an existing class rather than
writing one from scratch.

Copyright © 2001, by James W. Cooper

196

Note that every class that you might use as a prototype must itself be instantiated
(perhaps at some expense) in order for you to use a Prototype Registry. This can
be a performance drawback.

Finally, the idea of having prototype classes to copy implies that you have
sufficient access to the data or methods in these classes to change them after
cloning. This may require adding data access methods to these prototype classes
so that you can modify the data once you have cloned the class.

Thought Questions

An entertaining banner program shows a slogan starting at different places on the
screen at different times and in different fonts and sizes. Design the program
using a Prototype pattern.

Programs on the CD-ROM

\ Pr ot ot ype\ Agepl ot VB6 age plot

\ Pr ot ot ype\ DeepPr ot 0 VB6 deep prototype

\ Pr ot ot ype\ OneSex VB6 display by sex

\ Pr ot ot ype\ Si npl eProt o VB6 shalow copy

\ Pr ot ot ype\ Twocl assAgePl ot VB6 age and sex display
\ Pr ot ot ype\ VBNet \ DeepPr ot VB7 deep prototype

Summary of Creational Patterns

The Factory Pattern is used to choose and return an instance of a class from
anumber of similar classes based on data you provide to the factory.

The Abstract Factory Pattern is used to return one of severa groups of
classes. In some cases it actualy returns a Factory for that group of classes.

Copyright © 2001, by James W. Cooper

197

TheBuilder Pattern assembles a number of objects to make a new object,
based on the data with which it is presented. Frequently, the choice of which
way the objects are assembled is achieved using a Factory.

The Prototype Pattern copies or clones an existing class rather than
creating a new instance when creating new instances is more expensive.

The Singleton Pattern is a pattern that insures there is one and only one
instance of an object, and that it is possible to obtain globa access to that
one instance.

Copyright © 2001, by James W. Cooper

198

Structural Patterns

Structural patterns describe how classes and objects can be combined to form
larger structures. The difference between classpatterns and object patterns is that
class patterns describe how inheritance can be used to provide more useful
program interfaces. Object patterns, on the other hand, describe how objects can
be composed into larger structures using object composition, or the inclusion of
objects within other objects.

For example, we'll see that the Adapter pattern can be used to make one class
interface match another to make programming easier. We'll aso look at a
number of other structural patterns where we combine objects to provide new
functionality. The Composite, for instance, is exactly that: a composition of
objects, each of which may be either simple or itself a composite object. The
Proxy pattern is frequently a simple object that takes the place of a more complex
object that may be invoked later, for example when the program runsin a
network environment.

The Flyweight pattern is a pattern for sharing objects, where each instance does
not contain its own state, but stores it externally. This allows efficient sharing of
objects to save space, when there are many instances, but only afew different
types.

The Facade patternis used to make a single class represent an entire subsystem,
and the Bridge pattern separates an object’ s interface from its implementation, so
you can vary them separately. Finaly, we'll look at the Decor ator pattern, which
can be used to add responsibilities to objects dynamicaly.

You'll seethat there is some overlap among these patterns and even some
overlap with the behaviora patterns in the next chapter. We'll summarize these
similarities after we describe the patterns.

Copyright © 2001, by James W. Cooper

199

15. THE ADAPTER PATTERN

The Adapter pattern is used to convert the programming interface of one class
into that of another. We use adapters whenever we want unrelated classes to
work together in asingle program. The concept of an adapter is thus pretty
simple: we write a class that hes the desired interface and then make it
communicate with the class that has a different interface.

There are two ways to do this. by inheritance, and by object composition. In the
first case, we derive anew class from the nonconforming one and add the
methods we need to make the new derived class match the desired interface. The
other way isto include the origina class inside the new one and create the
methods to trandate calls within the new class. These two approaches, termed
class adapters and object adapters are both fairly easy to implement in other
languages, but before VB7 you were forced to use object composition
preferentialy, since inheritance was not available.

Moving Data between Lists

Let’'s consider a simple program that allows you to select some names from alist
to be transferred to another list for amore detailed display of the data associated
with them. Our initial list consists of ateam roster and the second list, the names
plus their times or scores.

In this smple program, shown in Figure 15-1, the program reads in the names
from aroster file during initialization. Then, to move names to the right-hand list
box, you click on them, and then click on the arrow button. To remove a name
from the right hand list box, click on it and then on Remove. This moves the
name back to the left-hand list.

Copyright © 2001, by James W. Cooper

im,. Adapter Digplay

Kristen Frost ™ K.aitlyr Arment 28.20
Kimbery Watcke 7| Jackie Rogers 28.68
Sam Lee Elizabeth MecLaughlin 28.80
Jaclyn Carey Ermily Ferrier 20,95

tegan Crapster Aurora Lee 28.88
K.aitlyrn Arnent
Jackie Rogers

Elizabeth McLaughliv

EmiIE Fermier |
L4-- |

K.ate lzzelee

Luke Mester

Stephen Cozme

Jeffrey Sudbuny _'_l

Figure 15-1 — A simple program to choose names for display.

Thisis avery smple program to write in VB. It consists of the visual layout and
action routines for each of the button clicks. When we read in the file of team
roster data, we store each kid’'s name and score in a Swimmer object and then
store al of these objects in a collection. When you select one of the kidsto
display in expanded form, you simply obtain the list index of the selected kid
from the left-hand list and get that kid's data to display in the right hand list:

Private Sub Mveit_dick()
Dimi As Integer
i = IsKids.Listlndex + 1
If i >0 And i <= swrs. Count Then
Set sw = swnrs(i)
| sTi mes. Addl t em sw. get Nane + tabChar + str$(sw. get Ti ne)
End | f
End Sub

where we have defined the tabChar string as

Const tabval =9
DimtabChar As String
tabChar = Chr$(tabval)

Copyright © 2001, by James W. Cooper

201

In asimilar fashion, if we want to remove akid from the right hand list, we just
obtain the selected index and remove him:

Private Sub putback_Cick()
Dmi As Integer

i = | sTines. Li stlndex
If i >= 0 Then

| sTi mes. Renoveltem i
End If
End Sub

Note that we obtain the column spacing between the two rows using the tab
character. This works fine as long as the names are more or |ess the same length.
However if one name is much longer or shorter than the others, the list may end
up using adifferent tab column, as we see has happened for the third name n the
list.

Using the M SFlexGrid

To circumvent this problem with the tab columnsin the smple list box, we might
turn to agrid display. One smple grid that comes with VB is called the
MSHFlexGrid. It is asimple subset of a more elaborate control available from a
third party vendor. The M SFlexGrid has Rows and Cols properties that you can
use to find out its current size. Then you can set the Row and Col properties to
the row and column you want to change and use the Text property to change the
text in the selected cell of the grid.

Private Sub Movetogrid_dick()
Dimi As Integer, row As |nteger

i = IsKids.Listlndex + 1

If i >0 And i <= swnrs. Count Then
Set sw = swnrs(i)
grdTi mes. Addltem ""
row = grdTi mes. Rows
grdTimes.row = row - 1
grdTi nes. Col 0
grdTi mes. Text = sw. get Nane
grdTimes. Col =1
grdTi mes. Text = Str$(sw. get Ti ne)

Copyright © 2001, by James W. Cooper

202

End If
End Sub

However, we would like to be able to use the grid without changing our code at
all from that we used for the simple list box. It turns out that you can in fact do
that, because the Additem method of the M SFlexGrid interprets tab charactersin
an analogous fashion to the way the list box does.

The statement
grdTi nes. Addl t em sw. get Nane + tabChar + Str$(sw. get Ti ne)

will work just as the 7 lines of code do that we showed in the above example,
and the resulting display will put the names in one column and the scores in the
other asshown in Figure 15-2

i, Adapter Display

Kristen Frost - : _
Kimberly Watcke 7| Fids | Times
Sam Lee K.aitlyn Ament
Jaclyn Carey Jaclyn Carey
leaan oSt Elizabeth McL sughiin
aitlyn Ament i
Jackie Rogers Aurora Lee
Elizabeth McLaughliv Stephen Cozme
E mily Ferrier lcss
Aurora Lee P
K.ate lzzelee
Luke Mester

Stephen Cozme

Jeffrey Sudbury ;I

Figure 15-2 — Selecting kids for display in an MSFlexGrid control.

In other words, the M SFlexGrid control provides the same programming
interface asaconvenience, and isin fact its own Adapter between the list box
and the M SHexGrid control.

Copyright © 2001, by James W. Cooper

203

In fact, since the list and grid have the same programming interface, it is quite
easy to write a private subroutine to add the data to either of them:

Private Sub addText(ctl As Control, sw As Sw mmer)
ctl.Addl tem sw. get Name + tabChar + str$(sw. getTi ne)
End Sub

Then we could write the button click routines so they each call this method using
adifferent list as an argument:

Private Sub Mveit_dick()

Dmi As Integer

i = |IsKids.Listlndex + 1

If i >0 And i <= swnrs. Count Then
Set sw = swnrs(i)
addText |sTines, sw

End |f

End Sub

Private Sub Movetogrid_dick()

Dmi As Integer, row As |nteger

i = |IsKids.Listlndex + 1

If i >0 And i <= swnrs. Count Then
Set sw = swnrs(i)
addText grdTi mes, sw

End If

End Sub

However, thisis clearly not very object oriented. The addText method really
should be part of the class we use, rather than us passing an instance of the list or
grid into a method in the same class. Now in VB6 and before, there is no way to
add methods to a control. Instead, we can create a simple Control Adapter class
that will handle both the grid and the list and contain the addText method we
wrote as a simple subroutine above. Thisclassis

'Class Control Adapt er

Private ctrl As Control
Const tabval = 9
DimtabChar As String

Public Sub init(ctl As Control)

Copyright © 2001, by James W. Cooper

Set ctrl = ctl 'copy control into class
tabChar = Chr$(tabval)

End Sub

Public Sub addText (sw As Sw mrer)

‘add new line to list or grid

ctrl.Addltem sw. get Name + tabChar + str$(sw. get Ti nme)
End Sub

We initialize this class with an instance of alist or grid in the Form_L oad event

Private grdAdapt As New Contr ol Adapt er

"pass grid into Control Adapter
grdAdapt.init grdTi nes

Then we can simple cal the class' s addText method when we click on the Add
button, regardiess of which display control we are using:

Private Sub Moveit_dick()
Dmi As Integer
i = |IsKids.Listlndex + 1
If i >0 And i <= swnrs. Count Then
Set sw = swnrs(i)
gr dAdapt . addText sw
End If
End Sub

Usinga TreeView
If, however, you choose to use a TreeView control to display the data you select,
you will find that there is no conveniently adapted interface that you can useto
keep your code from changing. Thus, our convenient Control Adapter class can
not be used for the TreeView. Instead, we need to write anew TreeAdapter class
that has the same interface, but carries out the adding of aline to the tree
correctly.

TheTreeView class contains a Nodes collection to which you add data by adding
anode, setting its text and defining whether or not it is a child node. Child nodes
are related to the index of the parent node. The following code adds a parent node
and then adds a child nodeto it.

"add a parent node

Copyright © 2001, by James W. Cooper

Set tNode = Tree. Nodes. Add()

t Node. Text = sw. get Nane

t Node. Expanded = True

i ndex = t Node. i ndex ‘get its index
"add a child node

Set cNode = Tree. Nodes. Add(i ndex, tvwChild)
cNode. Text = Str$(sw. get Ti ne)

The Object Adapter

In the object adapter approach, (Figure 15-3) we create a class that containsa
List Box class but which implements the methods of the Control Adapter
interface. Thisis the approach we took in the example above

Figure 15-3 — An Object adapter approach to the list adapter.

The Class Adapter

In the class adapter approach (Figure 15-4), we derive anew class from ListBox
or the grid or tree control and add the desired methods to it. Thisis possiblein
VB7, but not in earlier versions of Visua Basic.

Figure 15-4— The class adapter approach to thelist adapter.

There are also some differences between the class and the object adapter
approaches, although they are less significant than in C++.

The Class adapter

Won't work when we want to adapt a class and all of its subclasses,
since you define the class it derives from when you cregte it.

L ets the adapter change some of the adapted class' s methods but till
alows the others to be used unchanged.

An Object adapter

Could alow subclasses to be adapted by smply passing them in as
part of a constructor.

Requires that you specifically bring any of the adapted object’s
methods to the surface that you wish to make available.

Copyright © 2001, by James W. Cooper

Two Way Adapters

The two-way adapter is a clever concept that allows an object to be viewed by
different classes as being either of type ListBox or atype MSFlexGrid. Thisis
most easily carried out using a class adapter, since al of the methods of the base
class are automatically available to the derived class. However, this can only
work if you do not override any of the base class' s methods with ones that
behave differently.

Using Adaptersin VB7

Adapters can be even more powerful in VB7. Let’ sfirst consider the VB7
ListBox itsdlf. This control has rather different methods from that VB6 list box,
and we might very well want to hide this difference by using an adapter so that
the methods that are brought to the surface appear to be the same.

InVB7, you add aline to alist box by adding a String to the listbox’ s Items
collection.

list.ltens. Add(s)

and the Listindex property is replaced by the Selectedindex property. So we
could easily write a simple wrapper class that trandates these methods into the
ListBox methods for VB7. The beginnings of a ListAdapter class hasa ListBox
instance in its constructor and saves that instance within the class, thus using
encapsulation or object composition.

Public Cl ass ListAdapter
" Adapter for ListBox emulating some of
"the nethods of the VB6 |ist box.
Private List As ListBox "instance of |ist box
Private tabChar As String
Public Sub New(ByVal |s As ListBox)
List =1s
tabChar = Convert. ToChar (9)
End Sub
Public Sub addlten(ByVal s As String)
list.ltens. Add(s) "add into list box

Copyright © 2001, by James W. Cooper

207

End Sub

Publ i ¢ Function Listlndex() As |nteger
Return |ist. Sel ect edl ndex ‘get list index
End Function

End C ass

However, in the program we have been discussing we want to display the name
of the swimmer and the swimmer’stime. Thus, it is convenient to add a method
that takes a Swimmer object as an argument and puts the name and time in the
list box. While the VB7 listbox still alows you to separate columns using the
Tab character (ASCII 9), the Chr$(9) function is no longer preferred, and we
create our tab character using the Shared ToChar method of the Convert class:

tabChar = Convert. ToChar (9)

Y ou can aso use the integer toChar method:
tabChar = 9.t oChar

Then we can add an extra method to the ListAdapter class which takes a
Swimmer object as an argument:

Publ i c Sub addText (ByVal sw As Swi mrer)
list.ltems. Add(sw. getnane + tabChar + _
sw. get Ti me. toString)
End Sub
The code that reads the swvimmers in from the file and loads their names into the
left-hand listbox also uses an instance of the ListAdapter . Here are declarations
and initialization,
Private | sAdapter, ksAdapter As ListAdapter

| sAdapt er
ksAdapt er

New Li st Adapt er (| sNanes)
New Li st Adapt er (I sKi ds)

and this simple routine reads in the lines of data:

Private Sub ReadFil e()
Dims As String
Dim sw As Swi mmer

Copyright © 2001, by James W. Cooper

Dimfl As New vbFile("sw nrers.txt")
fl.openFor Read()
s = fl.readLine
While Not fl.fEof
sw = New Swi mrer (s)
swi mrer s. add(sw)
ksAdapt er. addl t em(sw. get Nane)
s = fl.readLine
End While
End Sub

The running program is shown in Figure 15-5.

_loix

K.risten Frost
Fimberly ' atcke
Sam Lee

Jacln Carey

Jackie Rogers
kMegan Crapster
Jacln Carey
K.ate lzzeles

28.68
2768
2753
2891

kMegan Crapster

K.aitlorn Ament

Jackie Rogers

Elizabeth kcLaughlin

Emily Ferrier |
Aurora Lee

K.ate lzzeles
Luke Mester
Stephen Cozme

Jeffrey Sudbuny :_l

Figure 15-5—Two list boxes loaded using two instances of the
ListAdapter.

TreeView Adaptersfor VB.NET

The TreeView classin VB7 isonly dightly different than that in VB6. For each
node you want to create, you create an instance of the TreeNode class and add to
the root TreeNode collection of to another node. In our example version using the

Copyright © 2001, by James W. Cooper

TreeView, we'll add the swimmer’s name to the root node collection, and the
swimmer’s time as asubsidiary node. The entire TreeAdapter classis shown
below. Note that we only need implement the addText method.

Public Cl ass TreeAdapter
"An adapter to use TreeView
"instead of list boxes
Private Tree As TreeVi ew

[

i nstance of tree

Public Sub New(ByVal tr As TreeView)
Tree = tr
End Sub

Publ i c Sub addText (ByVal sw As Swi mrer)
Dimscnt As String
Di m nod As TreeNode
"add a root node
nod = Tree. Nodes. add(sw. get Name)

"add a child node to it
nod. Nodes. add(sw. get Ti me. t oStri ng)
Tree. expandAl | ()
End Sub
End Cl ass

The TreeDemo program is shown in Figure 15-6.

Copyright © 2001, by James W. Cooper

_loix
Frizten Frost - [=)- S5am Lee
Kirnberly YW atcke — L9743
SamLee 5. Jackie B
Jaclyn Carey = ‘?D 1000
kegan Crapster - 28.68
K.aitlyn Ament =1 Elizabeth MeLaughlin
Jackie Rogers i.ooe
Elizlal:ueth L aughlin S ke lslag
mily Ferrier :
Aurora Lee || 2841
k.ate |zzeles [=1- Stephen Cosme
Luke M ester L2789
Stephen Cozme
Jeffrey Sudbury
Ernest Yernco ;I

210

Figure 15-6 — The same swimmer selection program usinga TreeView
adapter.

Adapting a DataGrid

The VB7 DataGrid control is considerably more elaborate than the M SFlexGrid
control in VBS. It can be bound to a database or to an in-memory dataarray. To

use the DataGrid without a database, you create an instance of the DataTable

class and add DataColumns to it. DataColumns are by default of String type, but
you can define them to be of any type when you create them. Here is the genera
outline of how you create a DataGrid using a DataT able:

Di m dt abl e as Dat aTabl e

dt abl e = New Dat aTabl e("Ki ds")

Di m col um As Dat aCol um

colum =

New Dat aCol um(" Fr nanme",

System Type. Get Type(" Syst em St ri ng"))

Copyright © 2001, by James W. Cooper

211

dt abl e. Col umms. add(col um)
colum = New Dat aCol um("Lnane", _
System Type. Get Type("System String"))

dt abl e. Col umms. add(col unm)
colum = New Dat aCol um("Age", _
System Type. Get Type("System I nt16"))

dt abl e. Col unms. add(col um)
Dgri d. Dat aSource = dtabl e

To add text to the DataTable, you ask the table for a row object and then set the
elements of the row object to the data for that row. If the types are al String then
you copy the strings, but if one of the columns is of a different type, such as are
integer age column here, you must be sure to use that type in setting that
column’s data.

The complete GridAdapter classfillsin each row in this fashion.

Public Class Gi dAdapter

Private dtable As DataTabl e

Private Dgrid As DataGrid

Public Sub New(ByVal grid As DataGrid)
dt abl e = CType(gri d. Dat aSource, DataTabl e)
dgrid = grid

End Sub

Publ i c Sub addText (ByVal sw As Swi mrer)
Dimscnt As String
Di m row As Dat aRow

row = dtabl e. NewRow
row " Frnane") = sw. getFirstNanme
row(1l) = sw. getLast Nane
row(2) = sw.getAge 'This one is an integer
dt abl e. Rows. Add(r ow)
dt abl e. Accept Changes()
End Sub

End Cl ass

Copyright © 2001, by James W. Cooper

212

Note that you can refer to each column either by numeric position or by name.
The running program is shown in Figure 15-7.

Mordsiopeer _lnix

Forigten Frost -

Kimberly YW atcke [l

Sam Les Megan Crapster 10
Jaclyn Carey | Sam Lee 10
kegan Crapster = g

Kl et = | Elizabeth tcLaughlin 3
Jackie Rogers | Luke Mester 1a
Eliz_al:ueth _h-1 cLaughlin Jeffrep Sudbuny 10
Ermily Fermier s [RETS Carey 10

Aurora Lee

K.ate |lzzeles

Luke Mester

Stephen Cozme _I 4 r
= |

Jeffren Sudbury

Figure 15-7 - The GridAdapter program

Object versus Class Adaptersin VB.NET

The List, Tree and Grid adapters we have just illustrated are all Object adapters.
That is, they are dl classes which contain the visual component we are adapting.
However, it isequaly easy to write aList or Tree Class adapter which is derived
from the base class and contains the new addText method.

In the case of the DataGrid, thisis probably not a good idea, because we would
have to create instances of DataTables and Columnsinside the DataGrid class,
which makes one large complex class with too much knowledge of how other
classes work.

Copyright © 2001, by James W. Cooper

213

Pluggable Adapters

A pluggable adapter is one that adapts dynamically to one of several classes. Of
course, the adapter can only adapt to classes it can recognize, and usualy the
adapter decides which class it is adapting based on differing constructors or
setParameter methods.

Adaptersin VB

In abroad sense, there are aready a number of adapters built into the VB7
language, to alow for compatibility with VB6. These wrap new functions in the
API of the older ones in much the same way we did for the Listbox above.

Thought Questions

1. How would you go about writing a class adapter to make the Grid look like a
two-column list box?

Programs on the CD-ROM

\ Adapt er\ Tr eeAdapt er The VB6 Tree adapter
\ Adapt er\ VBNet \ Lst Adapt er VB7 List adapter
\ Adapt er\ VBNet \ G- dAdapt er VB7 Grid adapter
\ Adapt er\ VBNet \ Tr eAdapt er VB7 Treeview adapter

Copyright © 2001, by James W. Cooper

214

16. THE BRIDGE PATTERN

At first sight, the Bridge pattern looks much like the Adapter pattern, in that a
classis used to convert one kind of interface to another. However, the intent of
the Adapter pattern is to make one or more classes' interfaces look the same as
that of a particular class. The Bridge pattern is designed to separate aclass's
interface from its implementation, so that you can vary or replace the
implementation without changing the client code.

The participants in the Bridge pattern are the Abstraction, which defines the
class sinterface, the Refined Abstraction which extends and implements that
interface, the Implementor, which defines the interface for the implementation
classes and the Concretel mplementors which are the implementation classes.

Suppose that we have a program that displays alist of productsin awindow. The
simplest interface for that display isasimple Listbox. But, once a significant
number of products have been sold, we may want to display the productsin a
table along with their sales figures.

Since we have just discussed the adapter pattern, you might think immediately of
the class-based adapter, where we adapt the interface of the Listbox to our
simpler needs in this display. In smple programs, this will work fine, but aswe'll
see below there are limitsto that approach.

Let’ s further suppose that we need to produce two kinds of displays from our
product data, a customer view that isjust the list of products we' ve mentioned,
and an executive view that also shows the number of units shipped. We' Il display
the product list in an ordinary Listbox and the executive view in aMSFlexGrid
table display. These two displays are the implementations of the display classes,
asshownin Figure 16-1.

Copyright © 2001, by James W. Cooper

215

in. The VB Factony
Cuzstomer wigw E secutive view

Brazz plated widgets Froduct | Oty

Furled frammiz .

Dlstaisdral bk Brazz plated .wu:lgets 1.000,076

Zero-based hex dumps FurIeFI frammiz 75,000

Anterior antelope collars Dietailed rat bruzhes 700

W ashable softwear Zer-bazed hex dumps 20,000

Steel-toed wing-tips Anteriar antelope collar 578
W ashable zoftwear 83,000
Steel-toed wing-tips 456 666

Figure 16-1 — Two displays of the same information using a Bridge
pattern.

Now, we want to define a single interface that remains the same regardless of the
type and complexity of the actua implementation classes. We'll start by defining
an abstract Bridger class:

"Bridge interface to display classes

'add data to display

Public Sub addData(col As Coll ection)
End Sub

"initialize with list class
Public Sub init(visL As visList)
End Sub

This class just receives a Collection of data and passesit on to the display
classes.

We aso define a Product class that holds the names and quantities, and parses the
input string from the data file:

"Product class - reads in data
‘and provi des accessor nethods
Private prodNanme As String

Copyright © 2001, by James W. Cooper

216

Private qty As String
Public Sub init(prodString As String)
Dmi As Integer
i = InStr(prodString, "--")
If i >0 Then
prodNane = Trim(Left$(prodString, i - 1))
gty = Trim(Ri ght (prodString, Len(prodString) - i - 1))
El se
prodNanme = prodString
qty =""
End | f
End Sub

Public Function getNanme() As String
get Name = prodNane
End Function

Public Function getQy() As String
getQy = qty
End Function

On the other side of the bridge are the implementation classes, which usually
have a more elaborate and somewhat lower level interface. Here we' |l have them
add the data lines to the display one a atime.

‘add a line to the display
Public Sub addLi ne(p As Product)
End Sub

‘remove a line fromthe display
Publi ¢ Sub renovelLi ne(ByVal num As | nteger)
End Sub

"initialize the class with
"the appropriate visual control
Public Sub init(c As Control)
End Sub

The Bridge between the interface on the left and the implementation on the right
isthe listBridge class which instantiates one or the other of the list display
classes. Note that it implements the Bridger classfor use of the application

program.
| mpl enent's Bri dger

Copyright © 2001, by James W. Cooper

217

"A bridge between lists and display

Private visL As vislList

Private Sub Bridger_addData(col As Coll ection)
Dimi As Integer, p As Product

‘add data to list from product collection
For i = 1 To col. Count
Set p = col (i)
vi sL. addLi ne p

Next

End Sub

"Initialize with visible list class
Private Sub Bridger_init(vis As visList)
Set visL = vis

End Sub

Then, at the top programming level, we just create instances of atable and alist
using the listBridge class:

"create visList class for list box
Set prodLi st = New Product Li st
prodList.init pList

‘'create a bridge to the list
Set br = New ListBridge

"pass in the list box
br.init prodList
br.addDat a products 'display data

‘create visList for the grid
Set execLi st = New Product Tabl e
execList.init pGid

‘create a bridge to the grid
Set gbr = New ListBridge

"pass in the grid

gbr.init execLi st
gbr. addDat a products 'display data

Copyright © 2001, by James W. Cooper

218

ThevisList Classes

The two visList classes are really quite similar. The customer version operates on
aListBox and adds the names to it:

' C ass Product Li st

| mpl ement's vi sLi st

'class wrapper for the list box
‘to give it a comon interface
Private | st As ListBox

Private Sub visList_addLi ne(p As Product)
| st. Addl t em p. get Nanme

Private Sub visList_init(c As Control)
Set Ist =c¢
End Sub

Private Sub visList_renovelLi ne(ByVal num As | nteger)
| st. Renpvel tem num
End Sub

The ProductTable version of the visList is quite Similar except that it adds both
the product name and quantity to the two columns of the grid:

Private Sub visList_addLi ne(p As Product)
gridLi st. Addltem p. getName + tabChar + p.getQy
End Sub

The Class Diagram

The UML diagram in Figure 16-2 for the Bridge class shows the separation of the
interface and the implementation quite clearly. The Bridger class on the left is the
Abstraction and the listBridge class the implementation of that abstraction. The
visList interface describes the public interface to the list classes productList and
productTable. ThevisList interface defines the interface of the Implementor and
the Concrete Implementors are the productList and productTable classes.

Note that these two concrete implementors are quite different in their specifics
even though the both support the visList interface.

Copyright © 2001, by James W. Cooper

219

Bridger
frorn defautt] g
S —" ﬁhstractmnE |mp|ementnr5
#list
/ H
%,
Concrete I_l h
=
5

J'

listBridge r Implementars
firom defaul])
pruductTahIe productList
from defaul fram default]
EI..1£,mu:udeI
Refined prodModel
Ahbstraction from default] a1 a\tahle
{local to packacs JTable 7 Jawtl ist
columns fromn defaul from default)
pradiames -listCantents
guantities - listWWindow

FowWs

Figure 16-2— The UML diagram for the Bridge pattern used in the
two displays of product information.

Extending the Bridge

Now suppose that we need to make some changes in the way these lists display
the data. For example, you might want to have the products displayed in
alphabetical order. You might think you’ d need to either modify or subclass both
thelist and table classes. This can quickly get to be a maintenance nightmare,
especidly if more than two such displays eventually are needed. Instead, we
smply make the changes in the extended interface class, cresting a new
sortBridge class smilar to the listBridge class.

'C ass SortBridge

Copyright © 2001, by James W. Cooper

220

"sorts the data before passing it
"to the visList class
| mpl ement's Bri dger
Private brdg As Bridger
Private prods() As Product
Private Sub Bridger_addData(col As Collection)
Dim max As Integer, tprod As Product
max = col . Count
ReDi m prods(max) As Product
Dmi As Integer, j As Integer

‘copy into array

For i =1 To max
Set prods(i) = col (i)
Next
'sort array
For i = 1 To max
For j =i To max

I f prods(i).getNane > prods(j).getName Then
Set tprod = prods(i)
Set prods(i) = prods(j)
Set prods(j) = tprod
End If
Next j
Next

"put back into collection
Set col = Nothing
Set col = New Col | ection

For i = 1 To max
col . Add prods(i)
Next

‘pass on to basic pridge class

br dg. addDat a col

End Sub

Private Sub Bridger _init(visL As visList)
Set brdg = New ListBridge

brdg.init visL

End Sub

Copyright © 2001, by James W. Cooper

Y ou can see the sorted result in Figure 16-3.

. The Sorted VB Facton

Customer siew

E secubive view

Anteror antelope collars

Brazz plated widgetsz
Detailed rat brushes
Furled frammis
Steel-toed wing-tips
Washable zoftwear
Zero-bazed hex dumps

Product | Oty

Anterior antelope colla A7a
Brazz plated widgetz 1.000,076
Detailed rat brushes 00
Furled frammiz 0,000
Steel-toed wing-tips 456 666
W ashable zoftwear 783,000

Zerm-bazed her dumps 30,000

Figure 16-3— The sorted list generated using SortBridge class
This clearly shows that you can vary the interface without changing the

221

implementation. The converse is also true. For example you could create another
type of list display and replace one of the current list displays without any other

program changes as long as the new list also implements the visList interface.

In the example in Figure 16-4, we have created a tree list component which
implements the visList interface and replaced the ordinary list without any

change in the public interface to the classes.

Copyright © 2001, by James W. Cooper

222

. The Saorted WB Factary

Customer siew E secubive view
Antenor antell:ul_:ne collars Antenior antelope collars :J
Brazs plated widgets fBTR

Detailed rat bruzhes :
Eiiflad frammers Bra;s plated widgets

Steel-toed wing-tips ~---1,000,076
W ashable softwear Detailed rat brushes
Zero-bazed hex dumps e 00

Stegl-tned wing-tipz
v 456, GEG
"W azhable softwear _ﬂ

Figure 16-4 — Another display using a Bridge to atree list.

ActiveX ControlsasBridges

The visua ActiveX control isitself an ideal example of a Bridge pattern
implementation. An ActiveX control is a reusable software component that can
be manipulated visually in abuilder tool. All of the VB6 Controls are written as
ActiveX controls, which means they support a query interface that enables
builder programs to enumerate their properties and display them for easy
modification. Figure 16-5 shows a screen from VB, showing a panel with a text
field and a check box. The builder panel to the right shows how you can modify
the properties of either of those components using a simple visua interface.

Copyright © 2001, by James W. Cooper

- latForm
|IstFurm Farrm ;l
Alphabetic |Categnrized I

W, TheVYE Factony

-« Customer view

+ | pList
] |stFarm
Appearance (1 - 3D
AukoRedraw False
EiackCalor [&Haooo0;
EcrderStyle 2 - Sizable
(Caption The Y& Facta
ClipControls | True
(ControlBo: True
Ciravaiode 13 - Copy Pe
Ciraistyle 0 - Solid
Cor-aveidth 1

Enabled True

FillZalar B =Hoooooc
Fill3kyle 1 - Transpare
Faont: M5 Sans Serif;l

(Nanme)
Returns the name used in code ko
identify an object,

Figure 16-5— A screen from Visual Basic showing a properties
interface. The property lists are effectlivelyt implemented using a
Bridge pattern.

In other words, all ActiveX controls have the same interface used by the builder
program and you can substitute any control for any other and still manipulate its
properties using the same convenient interface. The actual program you construct
uses these classes in a conventiona way, each having its own rather different
methods, but from the builder’ s point of view, they all appear to be the same.

TheBridge Pattern in VB.NET

In VB7, you can write the same program in much the same fashion. The
important thrust of the Bridge pattern remains unchanged: to separate the
management of the data from the management of the display methods. So we
communicate between the underlying data and the Bridge using the smple
Bridger interface:

"Bridge interface to data

Copyright © 2001, by James W. Cooper

224

Public Interface Bridger
Sub addDat a(ByVal col As Arraylist)
End Interface

and we communicate between the Bridge and the visual display classes using the
visList interface, which is now just

Interface VisList
"add a line to the display
Sub addLi ne(ByVal p As Product)
"renpove a line fromthe display
Sub renoveli ne(ByVal num As | nteger)
End Interface

As before, the Listbridge class is the bridge between the data and the display.
When you create an instance of this class you passin the visList class you want
to use to display the data, and the Bridge loads that data into the display without
having to know what sort of display control it actualy uses.

Public Class ListBridge
| mpl enent s Bridger
Private visL As vislList

Public Sub New(ByVal vis As visList)

MyBase. New()
visL = vis "copy in display class

End Sub
" Adds array of product data
Publi c Sub addData(ByVal col As ArraylList) |nplenents _
Bri dger . addDat a
Dimi As Integer
Dimp As Product

"add data to list from product array
For i =0 To col.Count - 1
p = CType(col (i), Product)
vi sL. addLi ne(p)
Next i
End Sub
End Cl ass

Copyright © 2001, by James W. Cooper

225

The ListBox VisList Class

The ProductList classis the class wrapper that converts a ListBox into a VisList
object by implementing the VisList interface. In essence, it is an Adapter
between the ListBox class and the VisList interface we need for the Bridge. It is,
however, quite smple.

Public Cl ass ProductLi st
| mpl ement s vi sLi st
"class wrapper for the |ist box
"to give it a common interface
Private I st As ListBox
Private Sub addLi ne(Byval p As Product) _
| mpl emrent s vi sLi st. addLi ne
I st.ltenms. Add(p. get Nane)

End Sub
Public Sub New(ByVal c As ListBox)
Ist = c "copy in list box

Public Sub renovelLi ne(ByVal num As |nteger) _
| mpl ement s vi sLi st.renoveli ne
I st.ltens. remove(num
End Sub
End Cl ass

The Grid VisList class

The ProductTable class puts a VisList interface around the DataGrid control.
However, since the DataGrid is afairly complex control, we make use of the
GridAdapter class we developed in the previous Adapter pattern chapter. This
makes this class quite a bit smpler to write as well:

Public Class Product Tabl e
| mpl ement s vi sLi st
Private gridList As GidAdapter

Copyright © 2001, by James W. Cooper

Publ i ¢ Sub addLi ne(ByVal p As Product) _
| mpl ement s vi sLi st. addLi ne
gri dLi st. AddLi ne(p)
End Sub
Public Sub New(ByVal c¢ As DataGid)
gridList = New Gri dADapt er(c)

Public Sub renoveLi ne(ByvVal num As | nteger) _
| mpl ement s vi sLi st.renoveli ne
gridLi st.renovelLi ne(num
End Sub
End Cl ass

Loading the Data

The main BasicBridge program just creates these objects, reads in the data and

passes it to the two Bridges to pass on to the two VisList classes:

Public Sub New()
MyBase. New
FormL = Me
InitializeConponent ()
Di m dt abl e As Dat aTabl e
dt abl e = New Dat aTabl e(" Product s")
Di m col um As Dat aCol um
col um = New Dat aCol utm(" Pr odNanme")

dt abl e. Col unms. add(col um)
colum = New Dat aCol um(" Qy")

dt abl e. Col utms. add(col um)
| sExeclLi st. Dat aSource = dtabl e

products = New ArraylList() "array |ist
"create visList classes

Execli st = New Product Tabl e(l sExecl i st)
prodLi st = New Product Li st (I sProdLi st)

[

read in the data

Copyright © 2001, by James W. Cooper

227

readDat a(pr oduct s)

"create the two bridges

"and popul ate the displays

Di m prodBri dge As New Li st Bri dge(prodLi st)
Di mtabl eBridge As New Li stBridge(ExeclLi st)
pr odbri dge. addDat a(pr oduct s)

t abl eBri dge. addDat a(pr oduct s)

End Sub

The resulting display is shown in Figure 16-6.

_loix

Brazz plated widgetz
Furled frammiz

Detailed rat brushes
Zer-bazed her dump
Antenor antelope collars
Washable zoftwear
Steel-toed wing-tips

ProdMame | Oty

Brazs plated 1.000.076
Furled frammi 75,000
Detailed rat br 700
Zero-bazed b 20,000
Anterior antel 578
“Whashable zoft 789,000
Steel-toed win 456 EEE

Figure 16-6 — The BasicBridge program implemented in VB7

Changing the Data Side of the Bridge

Just asin the VB6 version, you can vary the interface and implementation

separately. In the above display we see two interface displays of the data. The
data implementation just reads the data into an ArrayList and passesit on into the
Bridge for display. However, the Bridge could sort the data before displaying it

aswe show here:

Copyright © 2001, by James W. Cooper

"A sorted version of the Data to Vislist
"Bridge class
Public Class ListBridge
| mpl enents Bridger
"A bridge between lists and displ ay
Private visL As visLi st

Public Sub New(ByVal vis As visList)

MyBase. New()
visL = vis
End Sub

Public Sub addData(ByVal col As Arraylist) _
| mpl ements Bridger. addDat a
Dimi, j, max As |nteger
Dimp As Product
max = col . count
Di m products(nmax) As Product

For i =0 To max - 1
products(i) = CType(col (i), Product)
Next i
"sort array into al phabetical order
For i = 0 To max - 1
For j =i To max - 1

I f products(i).getName > _
products(j).get Nane Then
p = products(i)
products(i) = products(j)
products(j) = p
End |f
Next |
Next i
"add data to list from product collection
For i =0 To max - 1
vi sL. addLi ne(products(i))
Next i
End Sub
End Cl ass

This produces the sorted display in Figure 16-7.

Copyright © 2001, by James W. Cooper

228

B sorted bridge =10 x|

Anterior antelope collars
Brazs plated widgetsz
Detailed rat brushes
Furled frammiz
Steel-toed wing-tips

W ashable softwear
Zero-bazed hex dump

ProdMame | Oty

Anterior antel 578
Brazs plated 1.000.076
Detailed rat br 700
Furled frammi 75,000
Steel-toed win 456 BB
Whashable zoft 789,000
Zero-bazed b 80,000

Figure 16-7. The sorted bridge display in VB7

Consequences of the Bridge Pattern

1. The Bridge pattern is intended to keep the interface to your client program
constant while alowing you to change the actua kind of class you display or
use. This can prevent you from recompiling a complicated set of user
interface modules, and only require that you recompile the bridge itself and
the actual end display class.

2. You can extend the implementation class and the bridge class separately, and

usually without much interaction with each other.

3. You can hide implementation details from the client program much more

essly.

Copyright © 2001, by James W. Cooper

Thought Questions

In plotting a stock’ s performance, you usualy display the price and price-
earnings ratio over time, while in plotting a mutua fund, you usually show the
price and the earnings per quarter. Suggest how you can use a Bridge to do both.

Programs on your CD-ROM

230

\ Bri dge\ Basi cBri dge

VB6 bridge from list to grid

\ Bri dge\ Sort Bri dge

VB6 sorted bridge

\ Bri dge\ TreeBri dge

VB6 list to tree bridge

\ Bri dge\ VBNet\ Basi cBri dge

VB7 bridge from list to grid

\ Bri dge\ VBNet\ Sor t Bri dge

VB7 sorted bridge form list to grid

Copyright © 2001, by James W. Cooper

231

17. THE COMPOSITE PATTERN

Frequently programmers develop systemsin which a component may be an
individual object or it may represent a collection of objects. The Composite
pattern is designed to accommodate both cases. Y ou can use the Composite to
build part-whole hierarchies or to construct data representations of trees. In
summary, a composite is a collection of objects, any one of which may be either
acomposite, or just a primitive object. In tree nomenclature, some objects may
be nodes with additional branches and some may be leaves.

The problem that develops is the dichotomy between having asingle, simple
interface to access al the objects in a composite, and the ability to distinguish
between nodes and leaves. Nodes have children and can have children added to
them, while leaves do not at the moment have children, and in some
implementations may be prevented from having children added to them.

Some authors have suggested creating a separate interface for nodes and leaves,
where aleaf could have the methods

public Function getName() As String
public Function getValue() As String

and a node could have the additional methods;

public Function elenents() As Collection

public Function getChild(nodeNane As String) As Node
public Sub add(obj As Object)

public Sub renove(obj As (bject);

This then leaves us with the programming problem of deciding which elements
will be which when we construct the composite. However, Design Patterns
suggests that each element should have the same interface, whether it isa
composite or a primitive element. Thisis easier to accomplish, but we are |eft
with the question of what the getChild operation should accomplish when the
object is actually a leaf.

VB can make this quite easy for us, since every node or leaf can return a
Collection of the child nodes. If there are no children, the count property returns

Copyright © 2001, by James W. Cooper

232

zexo. Thus, if we ssimply obtain the Collection of child nodes from each element,
we can quickly determine whether it has any children by checking the count
property.

Just as difficult is the issue of adding or removing leaves from elements of the
composite. A non-leaf node can have child-leaves added to it, but a leaf node
cannot. However, we would like all of the components in the composite to have
the same interface. Attempts to add children to a leaf node must not be alowed,
and we can design the leaf node class to raise an error if the program attempts to
add to such anode.

An Implementation of a Composite

Let’s consider asmall company. It may have started with a single person who got
the business going. He was, of course, the CEO, athough he may have been too
busy to think about it at first. Then he hired a couple of people to handle the
marketing and manufacturing. Soon each of them hired some additional

assistants to help with advertising, shipping and so forth, and they became the
company’s first two vice-presidents. As the company’ s success continued, the
firm continued to grow until it has the organizational chart we seein Figure 17-1.

CEO
Vp Mkt Vp prod
[[
[| [|
Sales mgr Mkt mgr Pro mgr Ship mgr
Sales Sales Secy Manu Manu Manu Ship Ship

Figure 17-1 — A typical organizational chart.

Copyright © 2001, by James W. Cooper

233

Computing Salaries
Now, if the company is successful, each of these company members receives a
salary, and we could at any time ask for the cost of the control span of any
employee to the company. We define this control cost as the salary of that person
and those of all his subordinates. Here is an ideal example for a composite:

The cost of an individual employeeis simply his salary (and benefits).

The cost of an employee who heads a department is his salary plus those of
all he controls.

We would like a single interface that will produce the salary totals correctly
whether the employee has subordinates or not.

public Function getSalaries() As Single

At this point, we redlize that the idea of all Composites having the same standard
method names in their interface is probably naive. We' d prefer that the public
methods be related to the kind of class we are actually developing. So rather than
have generic methods like getValue, we' |l use getSalaries.

The Employee Classes

We could now imagine representing the company as a Composite made up of
nodes. managers and employees. It would be possible to use asingle class to
represent all employees, but since each level may have different properties, it
might be more useful to define at least two classes: Employees and Bosses.
Employees are leaf nodes and cannot have employees under them. Bosses are
nodes that may have employee nodes under them.

We'll start with the AbstractEmployee class and derive our concrete employee
classes from it:

'O ass Abstract Enpl oyee
"Interface for all Enployee cl asses

Public Function getSalary() As Single
End Function

Publ i c Function getNanme() As String

Copyright © 2001, by James W. Cooper

234

End Function
Publ i c Function isLeaf() As Bool ean
End Function

Public Sub add(nm As String, salary As Single)

Public Sub addEnp(enp As Abstract Enpl oyee)
End Sub

Publ i ¢ Function get Subordi nates() As Subords
End Function

Public Function getChild(nm As String) As Abstract Enpl oyee
End Function

Public Function getSalaries() As Single

End Function

Public Sub init(nane As String, salary As Single)

End Sub

Our concrete Employee class will store the name and salary of each employee,
and allow us to fetch them as needed.

'O ass Enpl oyee

"inpl ementation of Abstract Enpl oyee interface

| npl enent's Abstract Enpl oyee

Private nmAs String

Private salary As String

Private subordi nates As Subords

Private Function Abstract Enpl oyee_get Child(nm As String)& _

As Abstract Enpl oyee

Set Abstract Enpl oyee_get Child = Null

End Function

Private Function Abstract Enpl oyee_get Nane() As String
Abstract Enpl oyee_get Nane = nm

End Function

Copyright © 2001, by James W. Cooper

235

Private Function Abstract Enpl oyee_get Sal aries() As Single
Abstract Enpl oyee_get Sal ari es = sal ary

End Function

Private Function Abstract Enpl oyee_get Sal ary() As Single
Abstract Enpl oyee_get Sal ary = sal ary

End Function

Private Sub Abstract Enpl oyee_init(name As String, & _
noney As Single)
nm = nane
sal ary = noney
Set subordi nates = New Subords

Private Function Abstract Enpl oyee_isLeaf() As Bool ean
Abstract Enpl oyee_i sLeaf = True
End Function

Private Sub Abstract Enpl oyee_renove(enp As Abstract Enpl oyee)
Err. Rai se vbOojectError + 513, , & _
"No subordinates in base enpl oyee cl ass"

Private Sub Cass_Initialize()
nm= ""
salary = 0

End Sub

The Employee class must have concrete implementations of the add, remove,
getChild and subordinates classes. Since an Employeeis aleaf, al of these will
return some sort of error indication. For example, subordinates could return null
but programming will be more consistent it if returns an empty enumeration:
Private Function Abstract Enpl oyee_get Subordi nates() & _

As Subor ds

Set Abstract Enpl oyee_get Subor di nat es = subordi nat es
End Function

The add and remove methods must generate errors since members of the basic
Employee class cannot have subordinates.

Private Sub Abstract Enpl oyee_add(nm As String, & _
salary As Single)

Copyright © 2001, by James W. Cooper

236

Err. Rai se vbOQbj ectError + 513, , & _
"No subordi nates in base enpl oyee cl ass"
End Sub
Private Sub Abstract Enpl oyee_addEnmp(enp As & _
Abst r act Enpl oyee)
Err.Rai se vbObjectError + 513, , & _
"No subordinates in base enpl oyee cl ass"

End Sub

The SubordsClass

VB does not provide an enumeration class which contains its own interna

pointer to move through alist. So we create a simple class which contains a
collection and an index to move through that collection. The advantage of using
this class, here called Subords, is that you can search down through the
composite tree without having to maintain indexes outside of each instance of the
Collection that you search through.

' C ass Subords
"A sinple enuneration of a collection
Private subNanes As Collection 'the collection
Private index As Integer "the internal index
Public Sub moveFirst ()
index =1
End Sub
Publ i ¢ Functi on hasMoreEl enent s()
hasMor eEl ements = i ndex <= subNanes. count
End Function
Publi ¢ Function nextEl enent() As Object
Set next El ement = subNames(i ndex)
index = index + 1
End Function
Private Sub Class_Initialize()
Set subNanes = New Col | ection
index =1
End Sub

Public Sub add(obj As Object)

Copyright © 2001, by James W. Cooper

237

subNanes. add obj

End Sub

Public Function elenent(i As Integer) As Object
Set el ement = subNames(i)

End Function

Public Function count() As Integer
count = subNanes. count

End Function

Using the Subords class, we can simply call the hasM oreElements method and
the nextElement method to move through a collection without having to use and
maintain an index ourselves.

TheBossClass

Our Boss classis a subclass of Employee, and allows usto store subordinate
employees aswell. W€ |l store them in a Collection called subordinatesand
return them through an enumeration. Thus, if a particular Boss has temporarily
run out of Employees, the enumeration will just be empty. We'll make this Boss
class contain an instance of Employee, which will then return the name and
salary information. The Boss class itsalf will handle the subordinate list.

'd ass Boss
" A Boss inplenentation of Abstract Enpl oyee
"which all ows subordinates
I mpl ement s Abstract Enpl oyee
Private enp As Abstract Enpl oyee ' keeps enpl oyee data
Private subordinates As Subords 'list of subordinates
Private Sub Abstract Enpl oyee_add(nm As String, & _
salary As Single)
Di m newEnp As Abstract Enpl oyee
Set newEnp = New Enpl oyee
newenp.init nm salary
subor di nat es. add newEnp

Private Sub Abstract Enpl oyee_addEnmp(enp As & _
Abst r act Enpl oyee)

Copyright © 2001, by James W. Cooper

238

subor di nat es. add enp

End Sub

Private Function Abstract Enpl oyee_getNane() As String

Abst ract Enpl oyee_get Name = enp. get Nane

End Function

Private Function Abstract Enpl oyee_get Salary() As Single

Abstract Enpl oyee_get Sal ary = enp. get Sal ary

End Function

Private Function Abstract Enpl oyee_get Subordi nates() & _
As Subor ds

Set Abstract Enpl oyee_get Subor di nat es = subordi nates

End Function

Private Sub Abstract Enpl oyee_init(nane As String, &

salary As Single)

Set enp = New Enpl oyee

enp.init name, salary

Set subordi nates = New Subords

End Sub

Private Function Abstract Enpl oyee_isLeaf() As Bool ean
Abst ract Enpl oyee_i sLeaf = Fal se
End Function

If you want to get alist of employees of a given supervisor, you can obtain an
Enumeration of them directly from the Subords collection. Similarly, you can use
this same Collection to returns a sum of salaries for any employee and his
subordinates:

Private Function Abstract Enpl oyee _getSal aries() As Single
Dim sum As Single, esub As Abstract Empl oyee
'get the salaries of the boss and subordi nat es
sum = enp. get Sal ary
subor di nat es. noveFi r st
Wi | e subor di nat es. hasMor eEl enent s
Set esub = subordi nat es. next El enent
sum = sum + esub. get Sal ari es
Wend
Abst ract Enpl oyee_get Sal ari es = sum
End Function

Copyright © 2001, by James W. Cooper

239

Note that this method starts with the salary of the current Employee, and then
calsthe getSalaries() method on each subordinate. Thisis, of course, recursive
and any employees which themselves have subordinates will be included. A
diagram of these classesis shown in Figure 17-2.

AhbstractEmployee

Employee ffram defaul)
firom defaut] #leaf
+Employes #name
+add ///V #=alary
+getChild
+gethlame
+getFarent
+getSalaries
+netSalary
+IEM Ve
+subordinates
Boss
firorm defaul)
employees
+Boss
+add
+getChild
+getSalaries
+rEMmaove

+subordinates

Figure 17-2 — The AbstractEmployee class and how Employee and
Bossarederived from it.

Building the Employee Tree

We start by creating a CEO Employee and then add his subordinates and their
subordinates as follows:

Copyright © 2001, by James W. Cooper

Private Sub buil dEnpl oyeelLi st ()

Dimi As Integer

Di m mar ket VP As Abstract Enpl oyee

Di m sal esMgr As Abstract Enpl oyee

D m advMgr As Abstract Enpl oyee, enp As Abstract Enpl oyee

Di m prodVP As Abstract Enpl oyee, prodMgr As Abstract Enpl oyee
Di m shi pMyr As Abstract Enpl oyee

Set prez = New Boss
prez.init "CEOQ', 200000

Set nmarket VP = New Boss
mar ket VP.init "Marketing VP', 100000
prez. addEnp nmar ket VP

Set sal esMgr = New Boss
salesMgr.init "Sales Mgr", 50000

Set advMgr = New Boss
advMgr.init "Advt Mr", 50000

mar ket VP. addEnp sal esMyr

mar ket VP. addEnp advMyr

Set prodVP = New Boss

prodVP.init "Production VP', 100000

prez. addEmp pr odVP
advMyr . add " Secy", 20000

"add sal esnen reporting to sal es nanager
For i =1 To 5
sal esMgr. add "Sal es" + Str$(i), rand_sal (30000)
Next i

Set prodMgr = New Boss
prodMgr.init "Prod Mgr", 40000
Set shi pMgr = New Boss
shipMyr.init "Ship Mgr*, 35000
pr odVP. addEnp pr odMgr

pr odVP. addEnp shi pMyr

For i =1 To 3

shi pMgr. add "Ship" + Str$(i), rand_sal (25000)
Next i

Copyright © 2001, by James W. Cooper

241

For i =1 To 4
prodMgr. add "Manuf" + Str$(i), rand_sal (20000)
Next i
End Sub

Once we have constructed this Composite structure, we can load a visual
TreeView list by starting at the top node and calling the addNode() method
recursively until all the leavesin each node are accessed:

Private Sub addNodes(nod As Node, ByVal enp As Abstract Enpl oyee)
Di mcol As Subords, i As Integer, newNode As Node

Di m neweEnp As Abstract Enpl oyee, cnt As Integer

Di mindex As Integer

Set col = enp. get Subordi nates
i ndex = nod. i ndex 'get node's index
col . noveFi r st
Wi | e col . hasMor eEl emrent s
Set newEkEnp = col . next El ement
Set newNode = enpTree. Nodes. add(i ndex, tvwchild)
newNode. Text = newEnp. get Nane
newNode. Expanded = True
addNodes newNode, newEnp
Vénd
End Sub

Thefina program display is shown in Figure 17-3..

Copyright © 2001, by James W. Cooper

242

i, Show employeses

L]

E- Marketing VP
=) :
-Bales 1
- Sales 2
- Sales 3
“-oales 4
. .Salesh
= At bgr
. Secy =|

214460

Figure 17-3 — The cor por ate organization shown in a TreeView
control.

In this implementation, the cost (sum of salaries) is shown in the bottom bar for
any employee you click on. This simple computation calls the getChild() method
recursively to obtain al the subordinates of that employee.

Private Sub empTree_Cick()
Di m newEnp As Abstract Enpl oyee
"finds the salary of the sel ected enpl oyee and
"all the subordinates

Set newkEnp = prez.getChild(enpTree. Sel ectedltem
I bl Sal ary. Caption = Str$(newknp. get Sal ari es)

End Sub

Self-Promotion

We can imagine cases where a ssimple Employee would stay in his current job,
but have new subordinates. For example, a Salesman might be asked to supervise

Copyright © 2001, by James W. Cooper

243

salestrainees. For such acase, it is convenient to provide a method in the Boss
class that creates a Boss from a Employee

Private Sub Abstract Enpl oyee_makeBoss(newBoss As & _
Abst r act Enpl oyee)

Set enp = newBoss
End Sub
In this implementation, we have dl the classes (Employee and Boss) implement
the AbstractEmployee interface, and so we can treat each object as one have the
methods of an AbstractEmployee, we have to include the makeBoss methods in
the AbstractEmployee interface. Then we have to add this method to the
Employee class aswell, raising an error if it is called inadvertently:

Private Sub Abstract Enpl oyee_makeBoss(& _

enp As Abstract Enpl oyee)
Err. Rai se vbQojectError + 514, , "Enployee is not a boss"
End Sub

Doubly Linked Lists

In the above implementation, we keep areference to each subordinate in the
Vector in each Boss class. This means that you can move down the chain from
the president to any employee, but that there is no way to move back up to find
out who an employee' s supervisor is. Thisis easily remedied by providing a
constructor for each AbstractEmployee subclass that includes a reference to the
parent node:

Private Sub Abstract Enpl oyee_init(parnt As Abstract Enpl oyee, & _
name As String, nmoney As Single)
Set parent = parnt
hasParent = True
nm = nane
sal ary = noney
Set subordi nates = New Subords
End Sub

Then you can quickly walk up the tree to produce a reporting chain:

Public Sub setBoss(enpl As Abstract Enpl oyee)
Dimnm As String

Set emp = enpl
Do
nm = enp. get Nane

Copyright © 2001, by James W. Cooper

244

enplLi st. Addl tem nm

Set enmp = enp. get Boss
Loop Until enp.getName = nm
End Sub

asshownin Figure 17-4..

i, Show employees = r—
= CEQ -
= Marketing VP Sales 2
= Sales Mar
Heasbe o M arketing VP
CEO

Bes 2
- Sales 3
-Sales 4
: ".Bales §
E-Advt har |

33200.54

Show boss |

Figure 17-4 — Thetreelist display of the composite, with a display of
the parent nodes on theright..

Consequences of the Composite Pattern

The Composite pattern alows you to define a class hierarchy of smple objects
and more complex composite objects so that they appear to be the same to the
client program. Because of this simplicity, the client can be that much smpler,
since nodes and |eaves are handled in the same way.

The Composite pattern also makes it easy for you to add new kinds of
components to your collection, as long as they support a similar programming
interface. On the other hand, this has the disadvantage of making your system
overly general. You might find it harder to restrict certain classes, where this
would normally be desirable.

Copyright © 2001, by James W. Cooper

245

A Simple Composite
The intent of the Composite pattern is to allow you to construct a tree of various
related classes, even though some have different properties than others and some
are leaves do not have children. However, for very simple cases, you can
sometimes use just asingle class that exhibits both parent and leaf behavior. In
the SimpleComposite example, we create an Employee class that always contains
the Collection employees This Collection of employees will either be empty or
populated and this determines the nature of the values that you return from the
getChild and remove methods. In this Ssmple case we do not raise errors and
aways alow leaf nodes to be promoted to have child nodes. In other words, we
always allow execution of the add method.

While you may not regard this automeatic promotion as a disadvantage, in
systems where there are a very large number of leaves, it is wasteful to keep a
Vector initialized and unused in each leaf node. In cases where there are
relatively few leaf nodes, thisis not a serious problem.

Compositesin VB

In VB, you will note that the Node object class we useto populate the TreeView
isin fact just such a simple composite pattern. Y ou will aso find that the
Composite describes the hierarchy of Form, Frame and Controlsin any user
interface program. Similarly toolbars are containers, and each may contain any
number of other containers.

Any container may then contain components such as Buttons, Checkboxes, and
TextBoxes, each of which isaleaf node that cannot have further children. They
may aso contain ListBoxes and grids that may be treated as leaf nodes, or which
may contain further graphical components. Y ou can walk down the Composite
tree using the Controlscollection.

The Compositein VB.NET

In VB7 we do not need to use the Subords class because we have an built-in
enumeration interface called |Enumerator. This interface consists of the methods

Functi on MoveNext () as Bool ean "False if no nore |eft
Function Current() as Object 'get current object

Copyright © 2001, by James W. Cooper

246

Sub Reset () "move to first

So we can create an AbstractEmployee interface that returns an Enumerator. Y ou
move through an enumeration, allowing for the fact that it might be empty using
the following approach

e. Reset

Wi | e e. MoveNext
Enmp = Ctype(e. Current, Enpl oyee)
'...do conputation.

End Wil e

This Enumerator may, of course be empty, and can thus be used for both nodes
and leaves of the composite. Our AbstractEmployee interface is

I nterface Abstract Enpl oyee
I nherits | Enunerable
"Interface for all Enployee cl asses
Function getSalary() As Single
Function get Name() As String
Function isLeaf() As Bool ean
Overl oads Sub add(ByVal nm As String,
ByVal salary As Single)
Overl oads Sub add(ByVal enp As Abstract Enpl oyee)
Functi on get Subordi nates() As | Enunerator
Sub renmove(ByVal enp As Abstract Enpl oyee)
Function getChild(ByvVal nmAs String) _
As Abstract Enpl oyee
Function getSalaries() As Single
End Interface

Since VB7 alows polymorphism, we have two polymorphic versions of the add
method. Note that VB7 syntax requires that we specifically declare them using
the Overloads keyword.

The other mgjor change we make for VB7 is that we can throw an exception if a
program tries to add or remove an Employee from an Employee class when that
employee is not a Boss and has no subordinates.

Public Overridable Overl oads Sub add(_
ByVal nm As String, _
ByVal salary As Single) _

Copyright © 2001, by James W. Cooper

247

| mpl ement s Abstract Enpl oyee. add
Throw New Exception("No subordi nates")

Public Overridabl e Overl oads Sub add(_
ByVal enp As Abstract Enpl oyee) _
| npl enments Abstract Enpl oyee. add
Throw New Exception("No subordi nates")
End Sub

In our VB6 version of the composite, we had to completely implement every
method of the AbstractEmployee interface in both the Employee and the Boss
class. In VB7 we can derive the Boss from the Employee class and only
implement the methods that differ. VB7's syntax does require that we
specifically declare the fact that we are overriding these methods as shown
below:

Public Overloads Overrides Sub add(_
ByVal nm As String, ByVal salary As Single)
Di m newkEnp As Abstract Enpl oyee
newkEnp = New Enpl oyee(nm sal ary)
subor di nat es. add(newEnp)
End Sub

Public Overl oads Overrides Sub add(_
ByVal enp As Abstract Enpl oyee)
subor di nat es. add(enp)
End Sub

The Enumerator

The Enumerator we use in our Boss and Employee classes to enumerate
employeesis amember of the ArrayList class. Classes which can return an
|Enumerator are said to implement the |Enumerable interface. However, the
advantage here is that we can create an empty ArrayList in the Employee class
and never dlow additions to the array. However, we need not handle requests for
an enumeration of subordinates separately because the enumeration will always
be empty.

Copyright © 2001, by James W. Cooper

248

For this reason, we do not have to create separate versions of the getSalaries
method for Employees and Bosses because in the enumeration of subordinatesis
empty the method will smply return the salary of the current employee.

Public Function getSalaries() As Single _

| mpl enent s Abstract Enpl oyee. get Sal ari es

Di m sum As Singl e

Di m esub As Abstract Enpl oyee

Di m enunSub As | Enuner at or

'get the salaries of the boss and subordi nates

sum = get Sal ary

enumSub = subor di nat es. get Enuner at or

VWi | e enunBSub. noveNext
esub = CType(enunSub. current, Abstract Enpl oyee)
sum = sum + esub. get Sal ari es

End While

Return sum

End Function

Multiple Boss Constructors

Inour VB6 version of the composite, we had a specific makeBoss method to
create a Boss from an employee. We can do that in VB7 with a second,
overloaded version of the constructor:

Public Overl oads Sub New(ByVal nane As String,
ByVal salary As Single)
MyBase. New(nane, sal ary)
subordi nates = New ArrayList()

Publ i c Overl oads Sub New(ByVal enp As Enpl oyee)
MyBase. New(enp. get Nane, enp. get Sal ary)
End Sub
When you click on an element of the tree view, you can catch the afterSelect

event

Protected Sub EnpTree_AfterSelect(_
ByVal sender As bject, _
ByVal e As System W nForns. Tr eeVi ewEvent Ar gs)
Di m node As EnpNode

Copyright © 2001, by James W. Cooper

249

node = CType(EnpTree. Sel ect edNode, EnpNode)
get NodeSum(node)
End Sub

and then compute the salary recursively:

Private Function get NodeSum ByVal node As EnpNode) _
As Single
Dim enp As Abstract Enpl oyee
Di m sum As Singl e

node. get Enpl oyee
enp. get Sal ari es

enp =
sum =
| bSal ary. Text = sum Format ("n", Not hing)
End Function
Note that the label text is generated using the Single variable object’ s Format
method.

The final Composite program for VB7 is shown in Figure 17-5.

-loix
=-CEOD
= barketing YF
=8 = cles Mor
- Sales
- Sales?
. Sales3
----- oalesd
----- Salesh
- At bAgr
- Production %P

218,701.66

Figure 17-5—-TheVB7 Composite

Copyright © 2001, by James W. Cooper

250

Other Implementation | ssues

Ordering components. In some programs, the order of the components may be
important. If that order is somehow different from the order in which they were
added to the parent, then the parent must do additional work to return them in the
correct order. For example, you might sort the original collection alphabetically
and return anew sorted collection.

Caching results. If you frequently ask for data which must be computed from a
series of child components as we did here with saaries, it may be advantageous
to cache these computed results in the parent. However, unless the computation is
relatively intensive and you are quite certain that the underlying data have not
changed, this may not be worth the effort.

Thought Questions

1. A baseball team can be considered an aggregate of itsindividual players.
How could you use a composite to represent individual and team
performance?

2. The produce department of a supermarket needs to track its sales
performance by food item. Suggest how a composite might be helpful.

Programs on the CD-ROM

\ Conposi t e\ Si npl eConposite VB6 compsoite shows tree

\ Conposi t e\ Par ent Chi | d VB6 composite that uses both child
links and parent links

\ Conposi t e\ VBNet Conposi t e VB7 composite of same employee tree

Copyright © 2001, by James W. Cooper

251

18. THE DECORATOR PATTERN

The Decorator pattern provides us with away to modify the behavior of
individua objects without having to create a new derived class. Suppose we have
aprogram that uses eight objects, but three of them need an additional feature.

Y ou could create aderived class for each of these objects, and in many cases this
would be a perfectly acceptable solution. However, if each of these three objects
require different features, this would mean creating three derived classes. Further,
if one of the classes has features of both of the other classes, you begin to create
complexity that is both confusing and unnecessary.

For example, suppose we wanted to draw a special border around some of the
buttons in atoolbar. If we created a new derived button class, this means that all
of the buttons in this new class would always have this same new border, when
this might not be our intent.

Instead, we create a Decorator class that decorates the buttons. Then we derive
any number of specific Decorators from the main Decorator class, each of which
performs a specific kind of decoration. In order to decorate a button, the
Decorator has to be an object derived from the visua environment, so it can
receive paint method calls and forward calls to other useful graphic methods to
the object that it is decorating. Thisis another case where object containment is
favored over object inheritance. The decorator is a graphical object, but it
contains the object it is decorating. It may intercept some graphical method calls,
perform some additional computation and may pass them on to the underlying
object it is decorating.

Decorating a CoolButton

Recent Windows applications such as Internet Explorer and Netscape Navigator
have arow of flat, unbordered buttons that highlight themselves with outline
borders when you move your mouse over them. Some Windows programmers
call thistoolbar a CoolBar and the buttons Cool Buttons. There is no analogous
button behavior in VB controls, but we can obtain that behavior by decorating a
PictureBox and using it as a button. In this case, we decorate it by drawing black
and white border linesto highlight the button or gray lines to remove the button
borders.

Copyright © 2001, by James W. Cooper

252

Let’s consider how to create this Decorator. Design Patterns suggests that
Decorators should be derived from some general Visual Component class and
then every message for the actual button should be forwarded from the decorator.
In VB6, thisisimpractical, because it is not possible to create a new visual
control that contains an existing one. Further, even if we derived a control from
an existing one, it would not have the line drawing methods we need to carry out
decoration.

Design Patterns suggests that classes such as Decorator should be abstract
classes and that you should derive al of your actual working (or concrete)
decorators from the abstract class. Here we show an abstract class for a decorator
that we can use to decorate picture boxes or other decorators.

' C ass Abstract Decor at or

'Used to decorate pictureBoxes

"and ot her Decorators

Public Sub init(c As Control, title As String)
"initializes decorator with control

End Sub

Public Sub initContents(d As Abstract Decorator)
"initializes decorator with another decorator
End Sub

Public Sub rouseUp()

End Sub

Public Sub nouseMove(ByVal x As Single, ByVal y As Single)
End Sub

Public Sub refresh()

End Sub

Public Sub paint()

End Sub

Publ i ¢ Function getControl () As Control
End Function

Copyright © 2001, by James W. Cooper

253

Now, let’slook at how we could implement a CoolButton. All we really need to
do isto draw the white and black lines around the button areawhen it is
highlighted, and gray lines when it is not. When a MouseMove is detected over
the button, it should draw the highlighted lines, and when the mouse leaves the
button area., the lines should be drawn in gray.

However, VB does not have a Mousel eft event, so you cannot know for certain
when the mouse is no longer over the button. As afirst approximation, we detect
the mouse crossing the outer 8 twips of the button area, and treat that as an exit.
To make sure that the button eventualy un-highlights event if the mouse moves
too quickly to trigger the exit criteria, we also use atimer to turn off the
highlighting after 1 second if the mouse is no longer over the button.

Publ i c Sub nobuseMove(x As Single, y As Single)
Dmh As Integer, w As Integer, col As Long

h = pic. Hei ght

w = pic.Wdth

If x <8O y<8O xx>w- 16 O y >h - 16 Then
col = pic. BackCol or
drawLi nes True, col, False
i sOver = Fal se
El se
cTime = Tine
col = vbBl ack
dr awLi nes Fal se, col, Fal se
"isOver = True
End If

drawLi nes Fal se, vbBl ack, True
isOver = True

Publ i c Sub nouseUp()
i sOver = Fal se
drawLi nes Fal se, vbBl ack, Fal se

End Sub

Public Sub paint()

Dimx As Integer, y As Integer, h As |nteger
x = 10

Copyright © 2001, by James W. Cooper

254

h = pic. Hei ght
y =0.33 * h
pic. PSet (x, y), pic.BackCol or

pic.Print btText;
End Sub
Private Sub drawLi nes(hide As Bool ean, col As Long, & _
down As Bool ean)
Dimh As Integer, w As |nteger
h = pic. Hei ght
w = pic.Wdth
I f down Then
col = vbBl ack
pic.Line (0, 0)-(w- 8, 0), col
pic.Line -(w- 8, h - 8), col
pic.Line -(0, h - 8), col
pic.Line -(1, 1), col
El se
I f hide Then
pic.Line (0, 0)-(w- 8, 0), col
pic.Line -(w- 8, h- 8), col
pic.Line -(0, h - 8), col
pic.Line -(1, 1), col
El se
pic.Line (0, 0)-(w- 8, 0), vbWwite
pic.Line -(w- 8, h- 8), col
pic.Line -(0, h - 8), col
pic.Line -(1, 1), vbWwite
End | f
End If

End Sub
We use atimer to seeif it istime to repaint the button without highlights:

Public Sub tick()
DmthisTine As Variant, diff As Variant
thisTine = Tine
diff = DateDiff("s", cTine, thisTine)
If diff >> 1 And Not isOver Then
drawLi nes True, pic.BackCol or, Fal se
i sOver = Fal se
End If
End Sub

Copyright © 2001, by James W. Cooper

255

Using a Decor ator

Now that we've written a Cool Decorator class, how do we useit? We simply put
PictureBoxes on the VB Form, create an instance of the Decorator and passit the
PictureBox it isto decorate. Let’s consider a Ssmple program with two
CoolButtons and one ordinary Button. We create the buttons in the Form_L oad
event as follows:

Private Sub Form Load()

cTime = Tinme ‘get the time

Set deco = New Decor at or

deco.init Picturel, "A Button"
deco. pai nt

Set deco2 = New Decorat or
deco2.init picture2, "B Button"
deco2. pai nt

This program is shown in Figure 18-1, with the mouse hovering over one of the
buttons.

i, Cool Buttons

& Button B Button E
it |

Figure 18-1 — The A button and B button are CoolButtons, which are
outlined when a mouse hovers over them. Here the B button is
outlined.

Now that we see how a single decorator works, what about multiple decorators?
It could be that we'd like to decorate our Cool Buttons with another decoration,
say, ared diagona line. Since we have provided an aternate initializer with a
Decorator as an argument, we can encapsulate one decorator inside another and
paint additional decorations without ever having to change the original code. In

Copyright © 2001, by James W. Cooper

256

fact it is this containment and passing on of events that is the real crux of the
Decoratror pattern.

Let’s consider the ReDecorator, which draws that diagonal red line. It draws the
line and then passes control to the enclosed decorator to draw suitable cool
button lines. Since Redecorator implants the AbstractDecorator interface we can
use it wherever we would have used the original decorator.

' C ass Redecorator
‘contains a Decorator which it further decorates
| npl ement s Abstract Decor at or
Private deco As Abstract Decorat or
Private pic As PictureBox
Public Sub init(d As Decorator)
Set deco =d
Set pic = deco. get Control
End Sub
Private Function AbstractDecorator_getControl () As Control
Set Abstract Decorator_getControl = pic
End Function
Private Sub AbstractDecorator_init(c As Control, title As String)
"never called- included for conpleteness

Private Sub AbstractDecorator_initContents(d As Abstract Decorator)
init d

End Sub

Private Sub Abstract Decorat or _nouseDown()

deco. nouseDown

Abst ract Decor at or _pai nt

End Sub

Private Sub AbstractDecorator_nouseMve(ByVal x As Single, ByvVal y
As Single)

deco. nouseMve X, y

Abstract Decor at or _pai nt

End Sub

Private Sub Abstract Decorat or_nouseUp()

deco. nouseUp

End Sub

Copyright © 2001, by James W. Cooper

257

Private Sub AbstractDecorator_paint()

Dimw As Integer, h As Integer

w = pic. Wdth

h = pic. Hei ght

‘draw di agonal red line

pic.Line (0, 0)-(w h), vbRed

deco. pai nt 'and repai nt contained decorator

Private Sub AbstractDecorator_refresh()
deco.refresh

Abstract Decor at or _pai nt

End Sub

Y ou can create the Cool Button with these two decorators by just calling one and
then the other during the Form_L oad event

Private Sub Form Load()
cTime = Tinme ‘get the time
"create first cool button
Set deco = New Decor at or
deco.init Picturel, "A Button"
deco. pai nt
'create cool button
Set deco2 = New Decor at or
deco2.init picture2, "B Button"
"put it inside new decorator
Set redec = New Redecor at or
redec.initContents deco2
redec. pai nt

End Sub

Thisgives us afina program that displays the two buttons as shown in Figure
18-2

Copyright © 2001, by James W. Cooper

258

=] B3

¥
2

& Button B EutFiji_
it |

Figure 18-2 — The B button is also decor ated with a SlashDecor ator .

The Class Diagram

JComponent ?
firom Javas.zwing)

i

Decorator
firorm defaull)
CoolDecorator SlashDecorator
firorn default] fromn default]
+ConlDecorator(javax. swing.JComponent) +SlashDecarator(javax. swing.JComponent)

T

JComponent is object N
which is decorated.

Figure 18-3— The UML class diagram for Decor ators and two specific
Decorator implementations.

Copyright © 2001, by James W. Cooper

259

Using ActiveX Controlsas Decorators

The HiText control we created in Chapter 2 is an example of a control
containing another control and operating on it. Thisisin fact akind of decorator,
too, and isidedl for creating new derived controls. However, for smple things
like bordersit is probably overkill.

A Decorator In VB.NET

We make a CoolButton in VB7 by deriving a container from the Panel class and
putting the button inside it. Then, rather than subclassing the button (or any other
control) we simply add handlers for the mouse and paint events of the button and
carry out the operations in the panel class.

To create our panel decorator class, we create our form, and then using the VB7
designer IDE, use the menu items Project | Add User Control to creste a new user
control. Then, as before we change the class from which the control inherits,

from UserControl to Panel.

Publ i ¢ Cl ass DecoPanel

I nherits System W nFor ns. Panel
After compiling this simple, and so-far empty class, we can add it to the form
using the designer and put a button inside it.

Moecoratorform——R[=T

: s :
: A button ﬁ{ Gt :
e A esssseEeEE.

Figure 18-4. The Design window for the Decorator panel

Now the button is there and we need to know of its size and position so we can
repaint it as needed. We could do this in the constructor, but this would break the
IDE builder. Instead, we'll smply ask for the control the first time the OnPaint
event occurs.

Copyright © 2001, by James W. Cooper

260

Protected Overrides Sub OnPaint(_
ByVal e As System W nForns. Pai nt Event Ar gs)
"This is where we find out about the contro
If Not gotcontrol Then 'once only
'get the contro
¢ = CType(Me. Control s(0), RichControl)
'set the panel size 1 pixel bigger all around
Me. Si ze.Wdth = c.Size. Wdth + 2
Me. Si ze. Hei ght = c. Si ze. Hei ght + 2

x1 = c.Location. X - 1
yl = c.Location.y - 1
X2 = c.Size.Wdth
y2 = c. Si ze. Hei ght

"create the overwite pen
gpen = New Pen(c. BackCol or, 2)
got Control = True "only once

Next we need to intercept the mouse events so we can tell if the mouse is over
the button.

Di m evh As EventHandler = _
New Event Handl er (AddressOF ct MouseEnt er)
AddHandl er c. MouseHover, evh
AddHandl er c. MouseEnter, evh
AddHandl er c. MouseMove, _
New MouseEvent Handl er (Addr essOf ct MouselMove)
AddHandl er c. MbuselLeave,

New Event Handl er (AddressOF ct MouselLeave)

The events these point to simply set amouse_over flag to true or false and then
repaint the control:

Public Sub ct MouseEnter (ByVal sender As bject,
ByVal e As Event Args)
nouse_over = True
Refresh()
End Sub

Public Sub ct MbuselLeave(ByVal sender As bject,
ByVal e As Event Args)
mouse_over = Fal se

Copyright © 2001, by James W. Cooper

261

Refresh()
End Sub
Public Sub ct MouseMive(ByVal sender As Object,
ByVal e As MbuseEvent Args)
nouse_over = True
End Sub

However, we don’t want to just repaint the panel, we want to paint right over the
button itself, so we can change the style of its borders. We can do this by
handling the paint event of the button itself. Note that we are Adding and event
handler and the button gets painted and then this additional handler gets called.

"pai nt handl er catches button's paint
AddHandl er c¢. Paint, _
New Pai nt Event Handl er (Addr essOF ct Pai nt)

Our paint method draws the background (usually gray) color over the button’s
border and then draws the new border on top.

Public Sub ctPai nt(ByVal sender As Cbject, ByVal e As
Pai nt Event Ar gs)
"draw over button to change its outline
Dimg As Graphics = e. Graphics
"draw over everything in gray first
g. DrawRect angl e(gpen, 0, 0, x2, y2)
"draw bl ack and white boundaries
"if the nouse is over
I f nouse_over Then
g. DrawLi ne(bpen, 0, 0, x2 - 1, 0)
g. DrawLi ne(bpen, 0, 0, 0, y2 - 1)
g. DrawLi ne(wpen, 0, y2 - 1, x2 - 1, y2 - 1)
g. DrawLi ne(wpen, x2 - 1, 0, x2 - 1, y2 - 1)
End | f
End Sub
The resulting Cool Button is shown in Figure 18-5.

Copyright © 2001, by James W. Cooper

262

_loix

fil bu[’t}t‘;:un ik

Figure 18-5 - The CoolButton in VB.NET

Using the genera method of overriding panels and inserting controls in them, we
can decorate any control to any length, and can even redraw the face of the
button if we want to. This sort of approach makes sense when you can't subclass
the button itself, because your program requires that it be of a particular class.

Non-Visual Decorators

Decorators, of course, are not limited to objects that enhance visua classes. You
can add or modify the methods of any object in asimilar fashion. In fact, non-
visual objects can be easier to decorate, because there may be fewer methods to
intercept and forward. Whenever you put an instance of a class inside another
class and have the outer class operate on it, you are essentialy “decorating” that
inner class. This is one of the most common tools for programming available in
Visual Basic.

Decor ators, Adaptersand Composites

Asnoted in Design Patterns, there is an essential similarity among these classes
that you may have recognized. Adapters also seem to “decorate” an existing
class. However, their function is to change the interface of one or more classes to
one that is more convenient for a particular program. Decorators add methods to
particular instances of classes, rather than to al of them. Y ou could also imagine
that a composite consisting of asingle item is essentially a decorator. Once again,
however, the intent is different

Copyright © 2001, by James W. Cooper

263

Consequences of the Decorator Pattern

The Decorator pattern provides a more flexible way to add responsibilitiesto a
class than by using inheritance, since it can add these responsibilities to selected
instances of the class. It aso allows you to customize a class without creating
subclasses high in the inheritance hierarchy. Design Patterns points out two
disadvantages of the Decorator pattern One isthat a Decorator and its enclosed
component are not identical. Thus tests for object type will fail. The second is
that Decorators can lead to a system with “lots of little objects’ that al look alike

to the programmer trying to maintan the code. This can be a maintenance
headache.

Decorator and Fagade evoke similar images in building architecture, but in
design pattern terminology, the Facade is away of hiding a complex system
inside a simpler interface, while Decorator adds function by wrapping a class.
WEe | take up the Fagcade next.

Thought Questions

1. When someone enters an incorrect value in a cell of a JTable, you might
want to change the color of the row to indicate the problem. Suggest how you
could use a Decorator.

2. A mutual fund is acollection of stocks. Each one consists of an array or
vector of prices over time. Can you see how a Decorator can be used to
produce areport of sotck performance for each stock and for the whole fund?

Programs on the CD-ROM

\ Decor at or \ Cool decor at or VB6 cool button decorator
\ Decor at or \ Redecor at or VB6 cool button and dash decorator
\ Decor at or \ DecoVBNet VB7 cool button decorator

Copyright © 2001, by James W. Cooper

264

19. THE FACADE PATTERN

In this chapter, we take up the Fagade pattern. This pattern is used to wrap a set
of complex classes into a smpler enclosing interface.

Freguently, as your programs evolve and develop, they grow in complexity. In
fact, for al the excitement about using design patterns, these patterns sometimes
generate so many classes that it is difficult to understand the program’s flow.
Furthermore, there may be a number of complicated subsystems, each of which
has its own complex interface.

The Facade pattern allows you to smplify this complexity by providing a
simplified interface to these subsystems. This simplification may in some cases
reduce the flexibility of the underlying classes, but usually provides al the
function needed for al but the most sophisticated users. These users can still, of
course, access the underlying classes and methods.

Fortunately, we don’t have to write a complex system to provide an example of
where a Facade can be useful.\VVB provides a set of classes that connect to
databases using either an interface called ODBC or direct connection to
Microsoft databases using the ADO or MSJet engines. Y ou can connect to any
database for which the manufacturer has provided a ODBC connection class --
amost every database on he market. Let’s take a minute and review how
databases are used and alittle about how they work.

What is a Database?

A database is a series of tables of information in some sort of file structure which
allows you to access these tables, select columns from them, sort them and select
rows based on various criteria. Databases usually have indexes associated with
many of the columns in these tables, so that we can access them as rapidly as
possible.

Databases are used more than any other kind of structure in computing. You'll

find databases as central elements of employee records and payroll systems, in
travel scheduling systems and all through product manufacturing and marketing.

Copyright © 2001, by James W. Cooper

265

In the case of employee records, you could imagine a table of employee names
and addresses, and of saaries, tax withholding and benefits. Let’s consider how
these might be organized. Y ou can imagine one table of employee names,
addresses and phone numbers. Other information that you might want to store
would include salary, salary range, last raise, next raise, employee performance
ranking and so forth.

Should this al be in one table? Almost certainly not. Salary ranges for various
employee types are probably invariant between employees and thus you would
store only the employee type in the employee table, and the salary rangesin
another table which is pointed to by the type number. Consider the datain Table
19-1.

Key | Lastname | SdaryType SdaryType Min Max
1 Adams 2 1 30000 45000
2 Johnson 1 2 45000 60000
3 Smyth 3 3 60000 75000
4 Tully 1

5 Wolff 2

Table 19-1 — Employee names and salary type tables

The datain the Sal ar yType column refers to the second table. We could
imagine many for such tables for things like state of residence and tax values for
each state, health plan withholding and so forth. Each table will have a primary
key column like the ones at the left of eacht able above, and severa more
columns of data. Building tables in database has evolved to both an art and a
science. The structure of these tables is refered to by their normal form. Tables
aresaid to bein first, second or third normal form, abbreviated as INF, 2NF or
3NF.

Copyright © 2001, by James W. Cooper

266

1%. Each cell in atable should have only one vaue (never an array of values).

(INF)

2", INF and every non-key column is fully dependent on the key column. This
means there is a 1-to-1 relationship between the primary key and the remaining
celsin that row. (2NF)

3. 2NF and al non-key columns are mutually independent. This means tat there
are no data columns containing vaues that can be calculated from other columns

data. (3NF)

Today nearly all databases are constructed o that all tables are in Third Normal
Form (3NF). This means that there are usualy afairly large number of tables,
each with relatively few columns of information.

Getting Data out of Databases
Suppose we wanted to produce atable of employees and their salary ranges for
some planning exercise. This table doesn't exist directly in the database, but it
can be constructed by issuing a query to the database. We' d like to have atable
that looked like the datain

| Name | Min | Max |
Adams $45,000.00 $60,000.00
Johnson $30,000.00 $45,000.00
Smyth $60,000.00 $75,000.00
Tully $30,000.00 $45,000.00
Wolff $45,000.00 $60,000.00

Table 19-2- Employee salaries sorted by name
or maybe sorted by increasing sdlary as

| Name | Min | Max |
Tully $30,000.00 $45,000.00
Johnson $30,000.00 $45,000.00
Wolff $45,000.00 $60,000.00

Copyright © 2001, by James W. Cooper

267

Adams $45,000.00 $60,000.00
Smyth $60,000.00 $75,000.00
Table 19-3 — Employee salaries sorted by magnitude.

We find that the query we issue to obtain these tables has the form

SELECT DI STI NCTROW Enpl oyees. Nanme, Sal ar yRanges. M n,

Sal ar yRanges. Max FROM Enpl oyees | NNER JO N Sal ar yRanges ON
Enpl oyees. Sal aryKey = Sal ar yRanges. Sal ar yKey

ORDER BY Sal ar yRanges. M n;

This language is called Structured Query Language or SQL (often pronounced
“sequel”) and it is the language of virtually al databases currently available.
There have been severd standards issued for SQL over the years and most PC
databases support much of these ANSI standards. The SQL-92 standard is
considered the floor standard, and there have been several updates since.
However, none of these databases support the later SQL versions perfectly and
most offer various kinds of SQL extensions to exploit various features unique to
their database.

Kinds of Databases

Since the PC became a magor office tool, there have been a number of popular
databases developed that are intended to run by themselves on PCs. These
include elementary databases like Microsoft Works, and more sophisticated ones
like Approach, dBase, Borland Paradox, Microsoft Access and FoxBase.

Another category of PC databases includes that databases intended to be accessed
from a server by anumber of PC clients. These include IBM DB/2, Microsoft
SQL Server, Oracle, and Sybase. All of these database products support various
relatively similar dialects of SQL and dl of them thus would appesr at first to be
relatively interchangeable. The reason they are not interchangeable, of course, is
that each was designed with different performance characteristics involved and
each with a different user interface and programming interface. While you might
think that since they al support SQL, programming them would be similar, quite
the opposite is true since each database has its own way of receiving the SQL
queries and its own way of returning the results. This is where the next proposed
level of standardization came about: ODBC.

Copyright © 2001, by James W. Cooper

268

ODBC

It would be nice if we could somehow write code that was independent of the
particular vendor’ s database that would allow us to get the same results from any
of these databases without changing our calling program. If we could only write
some wrappers for all of these databases so that they all appeared to have smilar
programming interfaces, this would be quite easy to accomplish.

Microsoft first attempted this feat in 1992, when they released a specification
called Object Database Connectivity. It was supposed to be the answer for
connection to all databases under Windows. Like all first software versions, this
suffered some growing pains and another version was released in 1994 that was
somewhat faster as well as more stable. It aso was the first 32-bit version. In
addition, ODBC began to move to other platforms than Windows and has by now
become quite pervasive in the PC and Workstation world. Nearly every major
database vendor provides ODBC drivers.

Microsoft Database Connection Strategies

The original database connection methods in Visual Basic were based on ODBC
and wrapped in alayer now caled RDO for Relational Data Objects. The
libraries supporting RDO have shipped with every version of Visua Basic since
version 3.0. However, in the past year or so, Microsoft has adopted a new
approach, termed ADO fro ActiveX Data Objects which supplants RDO and has
anumber of advantages. Up through Visual Basic 6, ADO was only lightly
supported and somewhat incomplete. However, Microsoft has provided a set of
downloads to support ADO caled MDAC for Microsoft Data Access
Components. As of thiswriting, you can download MDAC 2.6 from Microsoft
and use it with VB6 to gain the advantages of ADO. We'll provide examplesin
both RDO and ADO for VB6 and for ADO in VB7, all using more or less the

same fagcade.

Database Structure

At the lowest level, then, a database consists of a series of tables, each having
several named columns, and some relationships between these tables. This can
get pretty complicated to keep track of, and we would like to see some

Copyright © 2001, by James W. Cooper

269

simplification of thisin the code we use to manipulate databases. To some
degree, Microsoft has provided this smplification in a series of objects build
into VB. These are the

Database — an object representing the connection to a database
Tabledef — adatabase table

Field — a column in a database

Recordset — the result of a database query

In addition, you can use the AddNew, Edit and Update methods of the Recordset
object to add rows to a database table. So to alarge degree, VB providesasmple
Facade around the complexities of connecting to and using a database.

The DBase cCass

However, once you set about building a database from data you have
accumulated, you discover that there might perhaps be some advantages to
building some classes and hiding the implementation details inside these classes.
For example, suppose we wanted to connect to different types of databases. The
connection details are clearly different in each case and could well be buried in
instances of a Dbase class. In addition, the details of how one creates tables for a
database and adds indexes to these tables can be simplified by putting it inside a
Dbase class.

Our Dbase class hides the connection details, and alows us to create new
databases and connect to existing ones.

Option Explicit

' O ass DBase

' hides details of connection to specific database

‘contains factory for creating indexe for adding tables and
"indexes to tables

Private db As Database 'actual database connection

Private ws As Workspace 'used to connect to database
Private fl As File "used to check for file existence
Private tb As Tabl eDef 'used to create tables

Publ i ¢ Sub createDat abase(dbnane As String)

Set fl = New File

Copyright © 2001, by James W. Cooper

270

Set ws = Workspaces(0)

fl.setFil enamre dbnane
If fl.exists() Then

fl.delete
End |f
Set db = ws. creat eDat abase(dbnane, dbLangGeneral)

End Sub

Publ i ¢ Sub openDat abase(dbnane As String)

Set ws = Wor kspaces(0)

Set db = ws. openDat abase(dbnane, dbLangGeneral)

End Sub

Publ i c Function makeTabl e(nn®) As | ndexer

Diminx As New | ndexer

i nx. makeTabl e db, nm

Set makeTabl e = inx

End Function

Publ i ¢ Function openTabl e(tbNane As String) As Recordset
Set openTabl e = db. OpenRecor dset (t bNane, dbCpenTabl e)
End Function

Publ i ¢ Function openQuery(qry As String) As Recordset
Set openQuery = db. OpenRecordset (qry, dbOpenDynaset)
End Function

It dso contains a factory that produces an instance of the Indexer class. This class
alows you to create new tables, add fields to them and create indexes. Y ou can
create table columns of type Text, Integer, Single and Boolean. We show part of
the indexer class for Text fields below:

'd ass | ndexer
'"Used to create tables
"add fields to them
"and create i ndexes of these fields
Dmtb As Tabl eDef
Private db As Dat abase
"Creates the actual table
Public Sub makeTabl e(dat ab, nnt)
Set db = datab
Set tb = db. Creat eTabl eDef (nn$)
End Sub

Copyright © 2001, by James W. Cooper

271

Public Sub openTabl e(dat ab As Dat abase, nn$)
Set db = datab
Set tb = db. Tabl eDef s(nnt)
End Sub
"call this last when the table is all defined
Publ i ¢ Sub addTabl e()
db. Tabl eDef s. Append tb
End Sub
‘Creates unique key field
Publ i c Sub creat eKey(nn)
Dimkey As Field
Set key = tb. CreateFiel d(nn$, dbLong)
key. Attributes = dbAutolncrField
tb. Fi el ds. Append key
End Sub
"creates a text field
Public Sub createText(nn$, |ength As |nteger)
Dmtx As Field
Set tx = tb. CreateField(nn$, dbText)
tx.Size = length
tx. Al |l owZeroLength = True
tx. Defaul tvVal ue = "*
tb. Fi el ds. Append tx

‘creates a primary or secondary index
"usual ly the ungiue key is the primary index
Publ i c Sub makel ndex(nn®, primary As Bool ean)
Di m pi ndex As Index, pf As Field
Set pi ndex = tbh. Createl ndex(nns)
If primary Then
pi ndex. primary = True
pi ndex. Uni que = True
El se
pi ndex. primary = Fal se
pi ndex. Uni que = Fal se
End | f
Set pf = pindex. Creat eFi el d(nns)
pi ndex. Fi el ds. Append pf
tb. I ndexes. Append pi ndex
End Sub

Copyright © 2001, by James W. Cooper

Building the Fagade Classes
This description is the beginning of the new Fagade we are developing to handle

creating, connecting to and using databases. In order to carry out the rest, lets

272

consider asimple table shown in Table 19-4 we accumulated of grocery prices at

three local stores:

St op
St op
St op
St op
St op

and
and
and
and
and
and

Shop,
Shop,
Shop,
Shop,
Shop,
Shop,
Shop,

Mar ket ,
Mar ket ,
Mar ket ,
Mar ket ,
Mar ket ,
Mar ket ,
Mar ket ,

Wl dbaun s,
Wal dbaun s,
Val dbaun s,
Wl dbaun s,
Wal dbaun s,
Wl dbaumn s,

Appl es,

O anges,
Hanbur ger,
Butter,

M|k,

Col a,

G een beans,
Appl es,

Or anges,
Hanbur ger,
Butter,

M|k,

Col a,

G een beans,
Appl es,

Or anges,
Hanmbur ger,
Butter,

M|k,

Col a,

G een beans, 1

Table19-4 — Grocdy pricing data

NEWONOSONWENNOONMNMENEOO

99

It would be nice if we had this information in a database so we could easily ask
the question, “which store has the lowest prices for oranges?’ Such a database
should contain three tables. the stores, the foods and the prices. We aso need to
keep the relations between the three tables. One simple way to handle thisisto

create a Stores table with StoreName and StoreK ey, a Foods table with a
FoodName and a FoodK ey, and a Price table with a PriceKey, a Price and

references to the StoreKey and Foodkey.

In our Facade, we will make each of these three tables its own class and have it

take care of creating the actual tables. Since these three tables are so similar,
we' |l have them al implement a DBTable interface:

Copyright © 2001, by James W. Cooper

273

'Class DBTabl e

"An interface for creating tables
Public Sub createTabl e(datab As DBase)
End Sub

Publ i c Sub openTabl e()

Public Sub setDB(datab As Dat abase)
End Sub

Publ i c Sub addTabl eVal ue(nm As Stri ng)
End Sub

Public Sub makeTabl e()

Public Function getKey(nm As String) As I|nteger
End Function

Publ i c Function hasMoreEl enents() As Bool ean
End Function

Publi ¢ Sub moveFirst ()

End Sub

Publ i ¢ Function getValue() As String

End Function

The Stores Class

The Stores class creates the Stores table with a column for the StoreKey and a
column for the StoreName.

| mpl ement s DBTabl e

"Class Stores

‘creates the Stores table

"and allows you to query it for the list of nanes
Private db As DBase

Private t Names As Col | ection

Private rec As Recordset

Private opened As Bool ean

Copyright © 2001, by James W. Cooper

Private Sub DBTabl e_creat eTabl e(dat ab As DBase)
Diminx As | ndexer
"creates the table in the database
Set t Nanmes = New Col | ection
Set db = datab
Set inx = db. makeTabl e(" Stores")
i nx. creat eKey " StoreKey"
i nX.createText "StoreNane", 50
i nx. makel ndex " Storekey", True
i nx. makel ndex "StoreNane", False
i nx. addTabl e

Private Functi on DBTabl e_get Key(nm As String) As Integer

‘returns the key for any store nane
DBTabl e_openTabl e
rec. | ndex = "StoreNane"
rec. Seek "=", nm
If Not rec.NoMatch Then
DBTabl e_get Key = rec![storekey]
El se
DBTabl e_get Key
End If
End Function

0

Private Functi on DBTabl e_getValue() As String
"returns the next name in the table
DBTabl e_get Val ue = rec![storenane]
rec. MoveNext
End Function
Private Function DBTabl e_hashoreEl ements() As Bool ean
‘returns whether there are nore names in the |ist
DBTabl e_hasMor eEl ements = Not rec. EOF
End Function
Private Sub DBTabl e_noveFirst ()
rec. noveFirst

Private Sub DBTabl e_openTabl e()
If Not opened Then
Set rec = db. openTabl e(" Stores")
Opened = True
End | f

Copyright © 2001, by James W. Cooper

274

275

End Sub

Private Sub DBTabl e_set DB(datab As Dat abase)
Set db = datab
Set tNanes = New Col | ection

End Sub

Now when we start to create the Stores table, we don’t know how many stores
there will be. So we write code to keep adding store names to a collection, testing
for duplicates until we have gone all through the file. Then we can create the
actual entriesin the table. Thisis done in the following two methods:

Private Sub DBTabl e_addTabl eVal ue(nm As Stri ng)
Dmtbn As String

On Local Error GoTo nonane

tbn = t Nanmes(nm ‘see if the nane is already there
sbexi t: 'yes it is

Exit Sub
nonane: 'no it isn't

t Nanes. Add nm nm'add it to the collection
Resune sbhexit

End Sub

Private Sub DBTabl e_makeTabl e()

Dmi As Integer, nmAs String

' Adds the nanes fromthe collection

"into the database table
DBTabl e_openTabl e

For i = 1 To tNanmes. Count
nm = t Nanes(i)
rec. AddNew
rec![storenane] = nm
rec. Updat e
Next i
End Sub

The Foods class is almost identical.

Copyright © 2001, by James W. Cooper

276

Building the Stores and Foods Tables

Now that we have built these wrapping classes, it is very easy to read thefile,
parseit into tokens and add the stores and food names into the tables:

Set db = New DBase
dbname = App.Path + "\ G oceries. ndb"
db. cr eat eDat abase dbnane

Set fl = New vbFile
fname = App.Path + "\" + "Groceries.txt"
fl.setFilenane fnanme
If fl.exists() Then
fl.OpenForRead fname 'open the file
‘create the tables
Set stors = New Stores
stors.createTable db 'Stores table
Set fods = New Foods
fods. createTabl e db ' Foods table
Set price = New Prices
price.createTable db 'Price table
'read the file and create
"internal collections of nanes
While Not fl.fEof
nstore = fl.readToken
nfood = fl.readToken
nprice = fl.readToken
stors. addTabl evVal ue nstore 'store nane
f ods. addTabl eVal ue nf ood 'food nane
Wnd
fl.closeFile
"make tables fromthe collections
st ors. makeTabl e
f ods. makeTabl e

Building the Price Table

The Price table is a little more complicated, because it contains keys from the
other two tables. When it is completed, it will look like Table 19-5

| Pricekey | Foodkey | StoreKey | Price |
1 1 1 0.27
2 2 1 0.36
3 3 1 1.98

Copyright © 2001, by James W. Cooper

© 00N O b~

10
11
12
13
14
15
16
17
18
19
20
21

Table 19-5—-The Pricetable in the grocery database

OO, WNREPNOORWDNRERENO OB

7

WWWWWWNNNNNNNRRERPREPRE

3

2.39
1.98
2.65
2.29
0.29
0.29
2.45
2.99
1.79
3.79
2.19
0.33
0.47
2.29
3.29
1.89
2.99
1.99

277

To create it, we have to reread the file, finding the store and food names, looking
up their keys and adding them to the Price table. The DBTable interface doesn'’t
include this final method, but we can add additional specific methods to the Price

classthat are not part of that interface:

Publ i c Sub addRow st orekey As Integer,
price As Single)

DBTabl e_openTabl e
rec. AddNew
rec![storekey] =

rec. Update
End Sub

st or ekey
rec! [foodkey] = foodkey
rec![price] = price

f oodkey As Integer,

This just means that we have to treat the Price class instance both asa DBTable
and as a Price object. Here is the code that adds the final table:

Set tbPrice = price

Copyright © 2001, by James W. Cooper

"treat as price table class

278

"reread datafile and create price table with keys
"to the two other tables
fl.OpenFor Read fnane
Whil e Not fl.fEof

nstore = fl.readToken

nf ood = fl.readToken

sPrice = Val (fl.readToken)

storekey = stors. getKey(nstore)

f oodkey = fods. get Key(nf ood)

t bPri ce. addRow st or ekey, foodkey, sPrice
Vend
fl.closeFile

Building the Price Query

For every food name, we' d like to get areport of which stores have the cheapest
prices. This means writing a smple SQL query against the database. We can do
this within the Price class and have it return arecordset with the store names and
prices.

Public Sub getPrices(nmAs String)
Dmqry As String

I f precOpened Then
prec. d ose
End | f

gry = "SELECT Foods. Foodnane, Stores.StoreNane, Prices.Price " & _
"FROM Stores INNER JO N (Foods INNER JON Prices ON “ &
"Foods. Foodkey = Prices. Foodkey) ON " & _
"Stores. StoreKey = Prices.StoreKey " & _
"Where (((Foods. Foodnane) ='" + nm+ "')) " &
"ORDER BY Prices. Price;"

Set prec = db. openQuery(qry)
precQOpened = True
End Sub

The final application smply fills one list box with the food names and files the
other list box with prices when you click on afood name, as shown in Figure
191

Copyright © 2001, by James W. Cooper

i, MakeDB

Applesz Stop and Shop
Butter W aldbaum's
Cola Willage b arket
[Green beans
‘H arnburger
kdilk.
Oranges

Start

1.98
229
245

Figure 19-1 — The grocery program using a Facade pattern.

Summary of the Facade Pattern

Thereis no specific set of classesthat congtitute a Fagade pattern. Rather, you
use the Fagade pattern to smplify a complex series of operations into a more

279

tractable set of operations. For example, the File object we developed earlier in
Chapter 2 and use in the above examplesis just a Facade around the somewhat

awkward VB file manipulation statements.

In this example, we started with VB’ s database objects as shown in Figure 19-2.

Copyright © 2001, by James W. Cooper

280

ODBC method

SQL Select and

Database calls Join queries
connection
Database) SQL Insert
Tables Table queries statements
Database table SQL Replace
metadata statements
Database Recordset Tabledef Field

Figure 19-2 - The Facade around database operations created by VB.

We then further smplify these objects with our own new facade as shown in

Figure 19-3..

Copyright © 2001, by James W. Cooper

281

SQL queries

Database

Recordset

Tabledef

Field

X

DBase

DBTable

\

Indexer

Figure 19-3- The new Facade we impose over VB’sfacade for

handling database access.

ADO Database Accessin VB6

The ADO libraries provide much the same function but with some differencesin
details. WE'll seein this section that we can use the same Dbase, DBTable and
Indexer classes and smply change their internas. So, in a sense, thisfacade is
very nearly the whole house, and we ssimply open the garage door and drive out

with the whole heating plant in drive in with a new one. The functions of the

house don’t change at al.

ADO functionsin VB6 are divided into two groups, ADO which provides data
access to an existing database, and ADOX, the ADO extensions, which provide
way's to create database, add tables, columns and indexes.

Copyright © 2001, by James W. Cooper

282

In order to use ADO in VB6, you need to download and install Microsoft’s
MDAC package. Then you need to open your database project, and in the VB5
environment select Project | References, and select the

Microsoft ActiveX Data Objects, and
Microsoft ADO Extensions for DDL and Security

Checkboxes. Also make sure that the Microsoft DAO reference is not checked
sinceit is not advisable to have both kinds of database connections active in the
same project.

The ADO Connection

The most important part of ADO is the Connection object, which defines and
establishes the connection to the database. The connection strings are defined in
the ADO help for Access and SQL Server databases, but you can connect to all
the other popular databases as well. To open an Access database that aready
exists, you smply define the database path and the database driver, and open the
connection. Note that in the examples that follow, we are using the variable db to
represent a connection rather than the RDO Database object.

Di m db as Connection

Set db = New Connecti on

"Engine Type 5 is Access 2000 and Type 4 is Access 97
'construct the connection string

con = "Provider=M crosoft.Jet. OLEDB. 4. 0; Data source=" + _

dbname + "; Jet OLEDB: Engi ne Type=5;"
db. ConnectionString = con
db. Open

Then, to execute queries, you use a Command object to carry out the query. This
returns a Recordset object which has pretty much the same properties as the one
we used in the above RDO example:

"Qpen a recordset froman SQ query

Dimcmd As New Commrand ' conmand obj ect
Dmrec As Recordset

crmd. ActiveConnection = db 'get the connection
crmd. CommandType = adCrdText

cmd. ConmandText = qry

Copyright © 2001, by James W. Cooper

283

'execute the SQL
Set rec = cnd. Execute

To connect to atable for the purpose of seeking rows or adding rows, you can
use the Recordset object directly:

'open a table
Dimrec As New Recordset
rec. LockType = adLockOptim stic
rec. Cursor Type = adOpenKeyset
' open the database connection if not open
If db. State = adStateCd osed Then
db. ConnectionString = con

db. Open
End I f
'open the table recordset
rec. Open tbNane, db, , , adCmdTabl eDirect

Adding and Seeking Rows Table Rows

Adding rows to an existing table is exactly the samein ADO. You use a
Recordset as and use the AddNew and Update methods.

For i = 1 To tbNanes. Count
nm = t bNanes(i)
rec. AddNew
rec! [Foodnanme] = nm
rec. Update
Next i

To find arow that matches some criteria, the syntax is only very dightly
different:

rec. | ndex = "FoodName"
rec. Seek "Appl es", adSeekFirstEQ
If Not rec. EOF Then
get Key = rec![foodkey]
El se
getKey = 0
End | f

Copyright © 2001, by James W. Cooper

284

Using the ADO Extensions

The ADO Extensions alow you to create databases and tables as well as add
columns to tables. All of these extensions use a Catal og object to operate on the
database. The catalog connects to the database using exactly the same connection
string, so it is quite reasonable to create and initialize both at the same time.
Setting the connection string in the Catalog object effectively opens the Catalog
connection to the database.

Set db = New Connecti on
Set cat = New Catal og
‘construct the connection string
con = "Provider=M crosoft.Jet. OLEDB. 4. 0; Data source=" + _

dbnanme + "; Jet OLEDB: Engi ne Type=5;"
db. ConnectionString = con
db. Open

cat. ActiveConnection = con 'open the catal og

Y ou can create atable in ADO by creating a new instance of a Table object and
setting its name.

Dmtb = New Tabl e
tb. Name = nn$

Then, after you have set al the columns and indexes, you just add the table to the
Tables collection:

cat. Tabl es. Append tb

To add columns to the table, you create a Column object and set its properties.
This code create a text column:

Dmtx As New Col um
tx. Nane = nns
tx. Defi nedSi ze = | ength
tx. Type = adWChar
t b. Col ums. Append tx, adWChar, |ength

To create a primary key, you actually make an entry in the Indexes collection and
add it to the Connection. Note that the Autoincrement property is set as one of
the Properties.

Dimindx As New | ndex
Di m col m As New Col um

Copyright © 2001, by James W. Cooper

col m Nane = nm

col m Type = adl nt eger

"you nmust set this before setting autoincrenent
Set col m Parent Catal og = cat

col m Properties("Autolncrenent") = True
t b. Col utms. Append col m

indx. Name = nm+ "_" + "Index"

i ndx. PrimaryKey = True

i ndx. Col utms. Append nm adl nteger, 20

i ndx. Uni que = True

tb. I ndexes. Append i ndx

The ADO Dbase Class

With this simple outline, we can write a new version of our Dbase class with
exactly the same methods as we used for the RDO example:

' O ass DBase
' hides details of connection to specific database
‘contains factory for creating indexe for adding tables and
i ndexes to tables
" This version uses ADO and ADOX connections
Private db As ADODB. Connecti on 'actual database connection
Private cat As Catal og
Private fl As File '"used to check for file existence
Private con As String
Public Sub createDat abase(dbname As String)
Set fl = New File
Set cat = New Cat al og
fl.setFilenane dbnane
If fl.exists() Then
fl.delete
End If

Set db = New Connection

"Engine Type 5 is Access 2000 and Engi ne Type 4 is Access 97
‘construct the connection string

285

con = "Provider=M crosoft.Jet. OLEDB. 4. 0; Dat a source=" + dbnane +

"; Jet OLEDB: Engi ne Type=5;"
cat.Create con

Copyright © 2001, by James W. Cooper

286

Publ i ¢ Sub openDat abase(dbnane As String)

Set db = New Connection

Set cat = New Cat al og

‘construct the connection string

con = "Provider=M crosoft.Jet. OLEDB. 4. 0; Dat a source=" + dbnane +

", Jet OLEDB: Engi ne Type=5;"
db. ConnectionString = con
db. Open

cat. ActiveConnection = con

Publ i c Function nmakeTabl e(nn$) As | ndexer
Diminx As New | ndexer
i nx. makeTabl e cat, nm
Set makeTabl e = inx
End Function
Publ i ¢ Function openTabl e(tbNane As String) As Recordset
'open a table
Dimrec As New Recordset
rec. LockType = adLockOptim stic
rec. Cursor Type = adOpenKeyset
‘open the database connection if not open
If db. State = adSt ateC osed Then
db. ConnectionString = con

db. Open
End If
'open the table recordset
rec. Open tbNane, db, , , adCndTabl eDirect

Set openTable = rec

End Function

Publ i ¢ Function openQuery(qgry As String) As Recordset
' Open a recordset froman SQ query

Dimcnmd As New Conmand ' conmand obj ect
Dimrec As Recordset

cmd. ActiveConnection = db 'get the connection
crmd. CommandType = adCrdText

crmd. ConmandText = qry

'execute the SQL

Set rec = cnd. Execute

Set openQuery = rec "return the recordset
End Function

Copyright © 2001, by James W. Cooper

287

All of the functions we need to create tables and add them into the database are in
the same Indexer class we wrote before. Here is the salient section of that class:

'Class | ndexer

"Used to create tables using ADO Extensions
'"add fields to them

"and create i ndexes of these fields

Private tb As Table

Private db As Connection

Private cat As Catal og

Public Sub mekeTabl e(ctg As Catal og, nn$%)

Set cat = ctg 'get the catal og
Set tb = New Tabl e ‘create a table object
tb. Name = nn$

End Sub

Public Sub openTabl e(ctg As Catal og, nnt)
Set cat = ctg
Set tb = cat. Tabl es. |t en(nn8)

Publ i ¢ Sub addTabl e()
cat. Tabl es. Append tb

End Sub

Publ i c Sub creat eKey(nnt)

Dimindx As New | ndex
Di m col m As New Col um

col m Nane = nm

col m Type = adl nt eger

"you nmust set this before setting autoincrenent
Set col m Parent Catal og = cat

col m Properties("Autolncrement”) = True

tb. Col utms. Append col m

indx. Name = nm+ "_" + "Index"

i ndx. Pri maryKey = True

i ndx. Col uims. Append nm adl nteger, 20

i ndx. Uni que = True

tb. I ndexes. Append i ndx
End Sub
Public Sub createText(nn$, length As I|nteger)
Dmtx As New Col um

Copyright © 2001, by James W. Cooper

288

tx. Name = nn$
tx. DefinedSi ze = length
tx. Type = adWChar
tb. Col ums. Append tx, adWChar, |ength
End Sub
Public Sub nmakel ndex(nn®, primary As Bool ean)
Dimind As New | ndex
i nd. Nane = nm
ind. PrimaryKey = primary
i nd. Col ums. Append nm
tb. I ndexes. Append i nd
End Sub
Public Sub createl nteger(nns)
Dimdt As New Col um
dt. Name = nm
dt. Type = adl nt eger
t b. Col ums. Append dt
End Sub

Public Sub createSingl e(nn$)

Dimdt As New Col um

dt. Name = nm

dt. Type = adSi ngl e

tb. Col ums. Append dt, adSingle, 4
End Sub

With these straightforward changes, our main program for creating the Groceries
database is unchanged. It reads in the data file and creates the same database
using ADO, and executes the same queries. This shows the great power of the
Facade patter. We have changed no main program code, and none of the
interfaces to the Fagade, and the program executes in this new environment just
asit did in the old one.

Database Accessin VB.NET

VB7 and dl of VisualStudio.Net uses a different database access mode, called
ADO, for ActiveX Data Objects. The design philosophy of ADO isonein which
you define a connection between your program and a database and use that
connection sporadicaly, with much of the computation actually taking placein
objects on your local machine. Further ADO uses XML for definition of the

Copyright © 2001, by James W. Cooper

289

objects that are transmitted between the database and the program, primarily
under the covers, athough it is possible to access this data description using
some of the built-in ADO classes.

In its current state of development in VB7, you can use ADO to access existing
databases, and add or delete rows from them, but you cannot create new tables,
indexes or databases directly. Thus, our VB7 discussion will assume that you
have aready created the basic database, having al of the necessary tables, but as
yet containing no data.

Using ADO.NET

ADO asimplemented in VB7 condsts of afairly large variety of interrelated
objects. Since the operations we want to perform are still the same relatively
smple ones, the Fagade pattern will be an idea way to manage them.

ADOConnection— This object represents the actua connection to the
database. Y ou can keep an instance of this class available, but open and
close the connection as needed.

ADOCommand — This class represents a SQL command you send to the
database which may or may not return results.

ADODataSetCommand — Provides a bridge for moving data between a
database and alocal DataSet.. Y ou can specify an ADOCommand, a
Dataset and a connection.

DataSet — A representation of one or more database tables or results
from a query on your local machine.

DataTable— A single data table from a database or query
DataRow — A single row in a DataTable.

Connecting to a Database

To connect to a database, you specify a connection string in the constructor for
the database you want to use. For example for an Access database, your
connection string would be:

connection = "Provider=M crosoft.Jet. OLEDB. 4.0;” + _

Copyright © 2001, by James W. Cooper

"Data Source=" + dbnane
and the actual connection is made by

D m Adc as ADCConnecti on
Adc = New ADOConnecti on(connecti on)

Reading Data from a Database Table

To read data in from a database table, you create an ADOCommand with the
appropriate Select statement and connection.

Publ i ¢ Functi on openTabl e(ByVval tbNane As String) _
As Dat aTabl e
'create the dataset command connection
Di m dsCnd As New ADODat aSet Command()

"put the query into the dataset command
Dimquery As String = "Select * from" & tbname
dsCnd. Sel ect Command = New ADOCommand(query, adc)

Then you create a dataset object to put the results into.

'"create the destination dataset
Di m dset As New Dat aSet ()

Then, you smply tell the command object to use the connection to fill the
dataset. Y ou must specify the name of the table to fill in the FillDataSet method
aswe show here.

'open the connection and fill the table in the dataset
ADC. Open()
dsCnd. Fi | | Dat aSet (dset, tbnane)

The dataset then contains at least the one table, and you can obtain it by index or
by name and examine its contents.

'get the table fromthe result dataset
Di m dt abl e As DataTabl e = dset. Tabl es(0)
adc. Cl ose() 'close the connection
Return dtable "return the table we read
End Function

Copyright © 2001, by James W. Cooper

201

Executing a Query

Executing a Select query is exactly identical to the code above except that the
guery can be an SQL Select statement of any complexity. Here we show the steps
wrapped in aTry block in case there are SQL or other database errors:

Publ i ¢ Function openQuery(ByVal query As String) _
As Dat aTabl e
Dim dsCmd As New ADODat aSet Conmand()
Try
dsCd. Sel ect Command = New ADOCommand(query, ADC)
Di m dset As New Dat aSet ()
ADC. Open()
dsCnd. Fi | | Dat aSet (dset, "mi ne")
Di m dt abl e As DataTabl e = dset. Tabl es(0)
adc. Cl ose()
Return dtabl e
Catch e As Exception
messagebox. show(e. Message)
End Try
End Function

Deleting the Contents of a Table

Y ou can delete the contents of atable using the “Delete * from Table’” SQL
statement. However, since thisis not a Select command, and thereis no local
table to bridge to, you can smply use the ExecuteNonQuery method of the
ADOCommand object.

Public Sub del ete()
adc. Open()
Di m adcnd As ADOConmand
adcnmd = new ADOCommand("Delete * from" + tabl enane, adc)
Try
adcnd. Execut eNonQuery()
adc. Cl ose()
Catch e As Exception
Messagebox. show(e. Message)
End Try
End Sub

Copyright © 2001, by James W. Cooper

292

Adding Rowsto Database TablesUsing ADO

The process of adding datato atableis closely related. Y ou generaly start by
getting the current version of the table from the database. If it is very large, you
can get only the empty table by getting just its schema. The steps we follow here
are

Create a DataT able with the name of the table in the database.
Add it to a Dataset

Fill the dataset from the database

Get anew row object from the DataTable

Fill in its columns

Add the row to the table.

When you have added al the rows, update the database from the
modified DataT able object.

The process looks like this:

N o o bk~ WD

'create the dataset
dset = New Dat aSet (t abl enane)
Dimname As String
'create the data table
dt abl e = New Dat aTabl e(t abl enane)
dset. Tabl es. Add(dtabl e) 'add to dataset
adc. Open() 'open the connection
'create the conmmand and add the sel ect statenent
Di m adcnmd As New ADODat aSet Command()
adcnd. Sel ect Command = New ADOCommand(_
"Select * from" + tabl enane, adc)
" Add tabl e name mappi ng
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl enane)
"fill the dataset
adcnd. Fi | | Dat aSet (dset, tabl enane)
‘create a new row
row = dt abl e. NewRow
"add a value to a colum
row(col nanme) = nane
"add the rowto the table

Copyright © 2001, by James W. Cooper

293

dt abl e. Rows. Add(r ow)
"when all rows are added update the table
Try
adcnd. Updat e(dset)
adc. C ose()
Catch e As Exception
Messagebox. show(e. Message)
End Try

It is this table editing and update process that is central to the ADO style of
programming. Y ou get the table, modify the table and update the changes back to
the database. Y ou use this same process to edit or delete rows, and updating the
database makes these changes as well.

Making the VB.NET ADO Facade

The facade we will make for our VB7 style grocery database is smilar to the
VB6 version, but makes a little more use of inheritance. We start with a Dbase
class that represents a connection to a database. This encapsulates making the
connection and opening atable and an SQL query:

Publ i c Cl ass DBase
Private adc As ADOConnecti on
Public Overl oads Sub New(ByVal dbNanme As String,
ByVal connectionType As String)
Di m connection As String
connectiontype = connectiontype. ToLower
Sel ect Case connecti onType
Case "access"
connection = "Provider=M crosoft.Jet. OLEDB. 4.0;” _ &
“Data Source=" + dbnane

Case El se
connecti on = dbnanme
End Sel ect
Adc = New ADOConnecti on(connecti on)

End Sub

Public Sub New(ByVal dbname As String,

Copyright © 2001, by James W. Cooper

ByVal userid As String, _

ByVal servername As String,
ByVal password As String, _
ByVal connectionType As String)

Di m connection As String
connectiontype = connectiontype. ToLower
Sel ect Case connecti onType
Case "sql server™

connection = "Persist Security Info = False;" & _
“Initial Catalog =" + dbnane + ";" & _
"Data Source =" & servernane & ";" & _
"User ID =" & userid & ";" & _
"passwor d=" & password
Case El se
connection = dbnanme
End Sel ect
Adc = New ADOConnecti on(connecti on)

Publ i ¢ Function openTabl e(ByVval tbNane As String) _
As Dat aTabl e

'shown above

End Function

Publ i ¢ Function openQuery(ByVval query As String) _
As Dat aTabl e

'shown above

End Function

Publ i c Function get Connection() As ADOConnecti on
Return adc

End Function

End Cl ass

The DBTable class

The other major class we will need isthe DBTable class. It encapsulates opening,
loading and updating a single database table. We will also use this classin this
example to add the single values. Then we can derive food and store classes that
do this addition for each class.

Copyright © 2001, by James W. Cooper

Publ i c Cl ass DBTabl e
Private names As Hashtabl e
Protected db As DBase
Protected tableName As String
Private index As |nteger
Private dtabl e As DataTabl e
Private filled As Bool ean
Private columNanme As String
Private rowl ndex As Integer
Private opened As Bool ean
Di m adc As ADOConnecti on
Dimcnmd As adocommand
Di m dset As Dat aSet
Di m row As Dat aRow

295

Public Sub New(ByVal datab As DBase, ByVal tnane As String)

names = New Hasht abl e()

db = datab

t abl ename = tnane

i ndex =1

filled

opened
End Sub

Fal se
Fal se

Publ i ¢ Sub openTabl e()
dt abl e = db. openTabl e(t abl enane)
rowi ndex = 0
opened = True
End Sub
Public Sub del ete()
"deletes entire table
adc = db. get Connecti on
adc. Open()
Di m adcnd As New ADOCommand("Del ete * from"
t abl enanme, adc)
Try
adcnd. Execut eNonQuer y()
adc. Cl ose()
Catch e As Exception
Messagebox. show(e. Message)

Copyright © 2001, by James W. Cooper

+_

End Try
End Sub
End Cl ass

Creating Classesfor Each Table

We can derive the Store, Food, and Prices classes from DBTable, and reuse much
of the code. Both the store and food classes will require that when we parse the
input file, we create a table of unique names: store names in one class and food
names in the other.

VB7 provides avery convenient way to create these classes using the Hashtable.
A Hashtable is an unbounded array where each element isidentified with a
unique key. One way people use Hashtablesis to add long names to atable and a
short nickname as the key. Then you can fetch the longer name from the table by
using its nickname to access the table. The long names need not be unique, but of
course the keys must be unique.

The other place Hashtables are convenient isin making alist of unique names. If
we make the names the keys and some other number the contents, then we can
add names to the hash table and assure oursalves that each will be unique. For
them to be unique, the hash table must treat attempts to add a supplicate key in a
predictable way. For example, the Java hash table simply replaces a previous
entry having that key with the new one. The VB7 implementation of the hash
table, on the other hand, throws an exception when we try to add a non-unique
key value.

Now, bearing in mind that we want to accumulate the entire list of names before
addinig them into the database, we can use the following method to add names to
a Hashtable and make sure that they are unique:

Public Overridabl e Sub addTabl evVal ue(ByVvVal nm As String)
"accunul ates names in hash table
Try
nanmes. Add(nm i ndex)
i ndex = index + 1
Catch e As Argunment Exception
"do not allow duplicate nanes to be added
End Try
End Sub

Copyright © 2001, by James W. Cooper

297

Then, once we have added al the names, we can add each of them to the
database table. Here we use the Enumerator property of the Hashtable to iterate
though al the names we have entered in the list.

Public Overridabl e Sub nmakeTabl e(ByVal col Nane As String)
'stores current hash table values in data table
dset = New Dat aSet (t abl enane) '"create the data set
col umNare = col nane
Dim name As String

dt abl e = New Dat aTabl e(t abl enane) "and a datatabl e
dset. Tabl es. Add(dt abl e) "add to collection
adc = db. get Connecti on

adc. Open() "open the connection

Di m adcnd As New ADODat aSet Conmand()

'open the table
adcnd. Sel ect Command = _

New ADOCormmand(" Sel ect * from" + tabl enanme, adc)
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl enamne)

"l oad current data into the [ocal table copy
adcnd. Fi | | Dat aSet (dset, tabl enane)

'get the Enunerator from ther Hashtabl e
Di mienum As | Enunerat or = nanes. Keys. Get Enuner at or

"move through the table, adding the nanes to new rows
Whi | e i enum MoveNext
name = CType(ienum Current, String)
row = dt abl e. NewRow 'get new rows
row col nane) = nane
dt abl e. Rows. Add(r ow) "add into table
End While

' Now update the database with this table
Try

adcnd. Updat e(dset)

adc. Cl ose()

filled = True
Catch e As Exception

Messagebox. show e. Message)

Copyright © 2001, by James W. Cooper

End Try
End Sub

This simplifies our derived Stores table to just

Public Cl ass Stores
I nherits DBTabl e

Public Sub New(ByVal datab As DBase)
MyBase. New(dat ab, "Stores")

End Sub

Publ i ¢ Overl oads Sub nakeTabl e()
MyBase. makeTabl e(" St or eNane")

End Sub

Public Overl oads Function getValue() As String
Return MyBase. get Val ue(" St or eNane")

End Function

End Cl ass

and the Foods table to much the same thing.

Public Cl ass Foods
I nherits DBTabl e
Public Sub New(ByVal datab As DBase)
MyBase. New(dat ab, "Foods")
End Sub
Publ i ¢ Overl oads Sub nmakeTabl e()
MyBase. makeTabl e(" FoodNanme")
End Sub
Publ i ¢ Overloads Function getValue() As String
Return MyBase. get Val ue(" FoodNane")
End Function
End d ass

Copyright © 2001, by James W. Cooper

299

The getVaue method alows us to enumerate the list of names of Stores or Foods
and we can puit it in the base DBTable class.

Publ i ¢ Function getVal ue(ByVal columName As String) _
As String
"returns the next nane in the table
"assunes that openTabl e has already been called
| f opened Then
Di m row As Dat aRow
row = dtabl e.rows(row ndex)
rowi ndex = rowi ndex + 1
Return row(col unmmNane) . ToStri ng
El se
Return ""
End | f
End Function

Storing the Prices

The Prices class stores a series of StoreFoodPrice objectsin an ArrayList and
then loads them al into the database at once. Note that we have overloaded the
classes of DBTable to take arguments for the store and food key vales aswell as
the price:

Public Class Prices
I nherits DBTabl e
Private priceList As Arrayli st
Public Sub new(ByVal datab As DBase)
MyBase. New(dat ab, "Prices")
pricelist = New ArrayList()

Public Sub addRow(ByVal storekey As Long, _
ByVal foodkey As Long, ByVal price As Single)
pricelist.Add(_
New St or eFoodPri ce(storekey, foodkey, price))

Publ i ¢ Overl oads Sub nmakeTabl e()
"stores current array list values in data table
Di m adc As ADOConnecti on

Copyright © 2001, by James W. Cooper

Dim cnd As adoconmand

Di m dset As New Dat aSet (t abl enane)

Di m row As Dat aRow

Dimfprice As StoreFoodPrice

Di m dt abl e As New Dat aTabl e(t abl enane)

dset . Tabl es. Add(dt abl e)

adc = db. get Connecti on

adc. Open()

Di m adcnd As New ADODat aSet Command()

"fill in price table

adcnd. Sel ect Command = _

New ADOCormmand(" Sel ect * from" + tabl enanme, adc)
adcnd. Tabl eMappi ngs. Add(" Tabl e", tabl ename)
adcnd. Fi | | Dat aSet (dset, tabl enamne)

Dimienum As | Enunerator = pricelist. Get Enunerator

"add new price entries
VWi | e i enum MoveNext

fprice = CType(i enum Current,
row = dtabl e. NewRow
= fprice. get Food

= fprice.getStore
= fprice.getPrice
dt abl e. Rows. Add(r ow)

row " f oodkey")
row "storekey")

row("price")

End While
adcnd. Updat e(dset)
adc. Cl ose()

Publ i c Function getPrices(ByVal

As Dat aTabl e
Dim query As String

query = "SELECT Stores. StoreName, Foods. Foodnane,

"Prices.Price " &

St or ef oodpri ce)

'add to table

'send back to database

food As String) _

"FROM (Prices I NNER JO N Foods ON " _

"Prices. Foodkey = Foods. Foodkey)

"INNER JO N Stores ON Prices. StoreRey =" _

"Stores. StoreKey " &

" \WHERE(((Foods. Foodnane) = """ & food & """)) " &

"ORDER BY Prices.Price;"
Ret urn db. openQuery(query)
End Functi on

Copyright © 2001, by James W. Cooper

301

End Cl ass

L oading the Database Tables

With al these classes derived, we can write a class to |oad the table from the data
file. It reads the file once and builds the store and food database tables. Then it
reads thefile again, and looks up the store and food keys and adds them to the
arraylist in the Price class. Then, finally it creates the price table.

Publ i ¢ Cl ass Dat aLoader
Private vfile As vbFile
Private stor As Stores
Private fods As Foods
Private price As Prices
Private db As DBase

Public Sub new(ByVal datab As DBase)

db = datab
stor = New Stores(db) 'create class instances
fods = New Foods(db)

price = New Prices(db)

End Sub

Public Sub | oad(ByVval datafile As String)
Dimsline As String
Di m storekey As Long, foodkey As Long
Dimtok As StringTokenizer

"del ete current table contents
stor. del ete()

fods. del ete()

price.delete()

"now read i n new ones

vifile = New vbFile(datafile)
viil e. OpenFor Read()

sline = vfil e.readLi ne

VWile (sline <> "")

tok = New StringTokenizer(sline, ",")
st or. addTabl eVal ue(t ok. next Token) 'store nane
f ods. addTabl eVal ue(t ok. next Token) ' food nane

Copyright © 2001, by James W. Cooper

302

sline = vfile.readLi ne

End Wil e

vfile.closeFile()

‘construct store and food tables

st or. makeTabl e(" St or eNane")

f ods. makeTabl e(" FoodNane")

viil e. OpenFor Read()

sline = vfile.readLine

VWile (sline <> "")
'get the keys and add to storefoodprice objects
tok = New StringTokenizer(sline, ",")

st orekey = stor.get Key(tok.next Token, "Storekey")
f oodkey = fods. get Key(tok.next Token, "Foodkey")
pri ce. addRow(st or ekey, foodkey, & _

t ok. next Token. ToSi ngl e)

sline = vfile.readLine

End While

"add all to price table

price. makeTabl e()

vfile.closeFile()

End Sub
End Cl ass

TheFinal Application

The program loads alist of food pricesinto alist box on startup”

Private Sub | oadFoodTabl e()
Di m f ods As New Foods(db)
f ods. openTabl e()
Wi | e fods. hasMor eEl enent s
| sfoods. | tens. Add(f ods. get Val ue)
End While
End Sub
And displays the prices of the selected food when you click on it.

Protected Sub | sFoods_Sel ect edl ndexChanged(_
ByVal sender As Object, ByVal e As System Event Args)
Dim food As String = | sfoods. Text
Di m dtabl e As DataTable = prc.getPrices(food)
Dimrw As dat ar ow
| sprices.ltens. Clear()

Copyright © 2001, by James W. Cooper

For Each rw | n dtabl e. Rows
| sprices.ltens. Add(rw("StoreNane").tostring + _
"+ rw("Price").tostring)
Next
End Sub

The fina program is shown in Figure 19-4.

=

Cola ' aldbaums 1.99
Oranges Yillage Market 219
Gresnbears | Stop and Shop 2.23
Milk.
Applesz

Butter
Hamburger

Load data |

Figure 19-4 — The VB7 grocery database program.

If you click on the “load data’ button it clears the database and reloads it from
the text file.

What Constitutesthe Facade?

The Facade in this case wraps the classes as follows
Dbase

0 Contains ADOConnection, Database, DataT able,
ADOCommand. ADODatasetCommand

Copyright © 2001, by James W. Cooper

DBTable

0 Contains ADOCommand, Dataset, Datarow, Datatable,
ADODatasetCommand

Y ou can quickly see the advantage of the Fagade approach when deaing with
such complicated data objects.

Consequences of the Facade

The Facade pattern shields clients from complex subsystem components and
provides a simpler programming interface for the general user. However, it does
not prevent the advanced user from going to the deeper, more complex classes
when necessary.

In addition, the Fagade allows you to make changes in the underlying subsystems
without requiring changes in the client code, and reduces compilation
dependencies.

Thought Questions

Suppose you had written a program with a File|Open menu, atext field, and some
buttons controlling font (bold and italic). Now suppose that you need to have this
program run from a line command with arguments. Suggest how to use a Facade
pattern.

Programs on the CD-ROM

\ Facade V' B6 database Fagade classes using
RDO

\ Facade\ VBNet Facade VB7 database Facade classes

\ Fagade\ VB6ADO VB6 database Facade using ADO

Copyright © 2001, by James W. Cooper

20. THE FLYWEIGHT PATTERN

In this chapter we take up the Flyweight pattern, which is used to avoid the
overhead of large numbers of very similar classes.

There are cases in programming where it seems that you need to generate a very
large number of small class instances to represent data. Sometimes you can
gresatly reduce the number of different classes that you need to instantiate if you
can recognize that the instances are fundamentally the same except for afew
parameters. If you can move those variables outside the class instance and pass
them in as part of amethod call, the number of separate instances can be greatly
reduced by sharing them.

The Flyweight design pattern provides an approach for handling such classes. It
refers to the instance sintrinsic data that makes the instance unique, and the
extrinsic data that is passed in as arguments. The Flyweight is appropriate for
small, fine-grained classes like individual characters or icons on the screen. For
example, you might be drawing a series of icons on the screen in a window,
where each represents a person or data file as afolder, as shown in Figure 20-1.

Copyright © 2001, by James W. Cooper

i, F|_',".-'-.'Eig|'|t folders

Adam Bil Charlie
1 1 1
Dave Edward Fred
1

George

Figure 20-1- A set of foldersrepresenting information about various
people. Since these are so similar they are candidatesfor the
Flyweight pattern.

In this casg, it does not make sense to have an individua class instance for each
folder that remembers the person’s name and the icon’ s screen position.
Typicdly theseicons are one of afew similar images and the position where they
are drawn is calculated dynamically based on the window’ s size in any case.

In another example in Design Patterns, each character in a Document is
represented as a single instance of a character class, but the positions where the
characters are drawn on the screen are kept as external data so that there needs to
be only one instance of each character, rather than one for each appearance of
that character.

Copyright © 2001, by James W. Cooper

307

Discussion
Flyweights are sharable instances of a class. It might at first seem that each class
isa Singleton, but in fact there might be a small number of instances, such as one
for every character, or one for every icon type. The number of instances that are
allocated must be decided as the class instances are needed, and thisis usually
accomplished with a FlyweightFactory class. This factory classusuadly isa
Singleton, since it needs to keep track of whether or not a particular instance has
been generated yet. It then either returns a new instance or a reference to one it
has dready generated.

To decide if some part of your program is a candidate for using Flyweights,
consider whether it is possible to remove some data from the class and make it
extringic. If this makes it possible to reduce greatly the number of different class
instances your program needs to maintain, this might be a case where Flyweights
will help.

Example Code

Suppose we want to draw a small folder icon with a name under it for each
person in an organization. If thisis alarge organization, there could be alarge
number of such icons, but they are actually al the same graphical image. Even if
we have two icons, one for “is Selected” and one for “not Selected” the number
of different icons is small. In such a system, having an icon object for each
person, with its own coordinates, name and selected state is a waste of resources.
We show two such iconsin the diagram Figure 20-2.

Copyright © 2001, by James W. Cooper

i, Flpweight folders

1 1]
Adam Bill Charle
1]
Dave Fred
1
George

Figure 20-2— The Flyweight display with one folder selected

Instead, we'll create a FolderFactory that returns either the selected or the
unselected folder drawing class, but does not create additiona instances once one
of each has been created. Since thisis such asimple case, we just create them
both at the outset and then return one or the other:

' 0 ass Fol der Factory

"Returns selected or unsel ected fol der

Private Sel ected As Fol der, unSel ected As Fol der
Const sel Col or = &H5FF5F1C

Public Sub init(Pic As PictureBox)

Copyright © 2001, by James W. Cooper

‘create one instance of each of 2 folders
Set Sel ected = New Fol der
Selected.init Pic, sel Col or

Set unSel ected = New Fol der
unSel ected.init Pic, vbYell ow

Publ i ¢ Function get Fol der (i sSel ected As Bool ean) As Fol der
If isSelected Then
Set get Fol der = Sel ected
El se
Set get Fol der = unSel ect ed
End |f
End Function

For cases where more instances could exit, the factory could keep atable of the
onesit had aready created and only create new onesif they weren't already in
the table.

The unique thing about using Flyweights, however, is that we pass the
coordinates and the name to be drawn into the folder when we draw it. These
coordinates are the extrinsic data that allow us to share the folder objects, and in
this case create only two instances. The complete folder class shown below
simply creates a folder instance with one background color or the other and has a
public Draw method that draws the folder a the point you specify.

'Cl ass Fol der

"draws a folder on the picture box panel
Private Pic As PictureBox

Private bCol or As Long

Const w = 50, h = 30

Const Gray = &H308080

Public Sub init(pc As PictureBox, bc As Long)
Set Pic = pc

bCol or = bc

End Sub

Public Sub draw(X As Integer, Y As Integer, title As String)
Pic.Line (X, Y)-(X+ w, Y + h), bColor, BF

Pic.Line (X, Y)-(X+ w, Y + h), vbBlack, B

Pic.Line (X+ 1, Y+ 1)-(X+w- 1, Y + 1), vbWite
Pic.Line (X+ 1, Y)-(X + 1, Y + h), vbWwite

Copyright © 2001, by James W. Cooper

310

Pic.Line (X + 5, Y)-(X+ 15, Y - 5), bColor, BF
Pic.Line (X+ 5, Y)-(X+ 15, Y - 5), vbBlack, B
Pi c. Line (h - 1)-(X+w Y+ h- 1), Gay
Pic.Line (X+w- 1, V)-(X+w-1, Y+ h - 1), Gay
Pic.PSet (X, Y + h + 5), Pic.BackCol or
Pic.Print title;

End Sub

To use aFlyweight class like this, your main program must calculate the position
of each folder as part of its paint routine and then pass the coordinates to the
folder instance. Thisis actually rather common, since you need a different layout
depending on the window’ s dimensions, and you would not want to have to keep
telling each instance where its new location is going to be. Instead, we compute it
dynamically during the paint routine.

Here we note that we could have generated an array or Collection of folders at
the outset and ssimply scan through the array to draw each folder.

For i = 1 To nanes. Count
Set fol = folders(i) 'get a folder
fol.draw X, Y, nanes(i) 'and draw it
cnt = cnt + 1
If cnt > HCount Then

cnt =1
X = pLeft
Y = Y + VSpace
El se
X = X + HSpace
End | f
Next

Such an array is not as wasteful as a series of different instances becauseit is
actualy an array of references to one of only two folder instances. However,
since we want to display one folder as “selected,” and we would like to be able to
change which folder is selected dynamically, we just use the FolderFactory itsalf
to give us the correct instance each time:

Private Sub Form Paint ()
‘repaint entire pictureBox
Dimi As Integer

Dim X As Integer, Y As |Integer

X = pLeft
Y = pTop
cnt =1

Copyright © 2001, by James W. Cooper

311

'go through all nanes

For i = 1 To names. count
'get one kind of folder or other
Set fol = factory. getFol der(nanes(i) = sel ect edNane)

fol.draw X, Y, nanes(i)
cnt = cnt + 1
If cnt > HCount Then

cnt =1
X = pLeft
Y = Y + VSpace
El se
X = X + HSpace
End If
Next i
End Sub

The Class Diagram
The diagram in Figure 20-3 shows how these classes interact.

FolderFactory Folder
ffriorn defaul] 0.1 ffriorn defaul]
{local to packace unSelected flocalto package}
+FolderFactory 0.1 +Folder

+yetFolder Selected +draw
fact \l:l..1 fDIdE:r"}
FlyCanvas
firorn defaul)

Figure 20-3 — How Flyweights are generated.

The FlyCanvas classis the main Ul class, where the folders are arranged and
drawn. It contains one instance of the FolderFactory and one instance of the
Folder class. The FolderFactory class contains two instances of Folder: selected

and unselected. One or the other of these is returned to the FlyCanvas by the
FolderFactory.

Copyright © 2001, by James W. Cooper

312

Selecting A Folder

Since we have two folder instances, that we termed selected and unselected, we' d
like to be able to select folders by moving the mouse over them. In the paint
routine above, we smply remember the name of the folder which was selected
and ask the factory to return a“ selected’ folder for it. Since the folders are not
individual instances, we can’t listen for mouse motion within each folder
instance. In fact, even if we did listen within afolder, we' d have to have away to
tell the other ingtances to deselect themselves.

Instead, we check for mouse motion at the Picturebox leve and if the mouse is
found to be within a Rectangle, we make that corresponding name the sel ected

name. We create a single instance of a Rectangle class where the testing can be
done as to whether afolder contains the mouse at that instant.

'C ass Rectangle
'used to find out if an x,y coordinate
'"lies within a rectangle area
Private x1 As Integer
Private y1l As Integer
Private x2 As |nteger
Private y2 As Integer
Private w As |nteger
Private h As Integer
Public Function contains(X As Single, Y As Single) As Bool ean
If x1 <= X And X <= x2 And y1 <= Y And Y <= y2 Then
contains = True
El se
contains = Fal se
End | f
End Function

Public Sub init(x1_ As Integer, yl As Integer)

x1 = x1_
x2 = x1 +w
yl =yl
y2 =yl + h
End Sub
Public Sub setSize(w_ As Integer, h_ As I|nteger)
W= wW_
h = h_

Copyright © 2001, by James W. Cooper

313

End Sub

Thisalows usto just check each name when we redraw and creste a selected
folder instance where it is needed:

Private Sub Pic_MuseMve(Button As Integer, Shift As Integer, nX
As Single, my As Single)

Dimi As Integer, found As Bool ean

Dim X As Integer, Y As |Integer

'go through folder Iist

'l ooking to see if mpuse posn

"is inside any of them

X = pLeft
Y = pTop
cnt =1
i =1

found = Fal se
sel ectedNane = ""
While i <= nanes.count And Not found
rect.init X, Y
If rect.contains(mX, nY) Then
sel ectedNane = nanes(i) 'save that nane
found = True
End | f
cnt =cnt + 1
If cnt > HCount Then

cnt =1
X = pLeft
Y = Y + VSpace
El se
X = X + HSpace
End If
i =i +1
Wend
Ref r esh
End Sub

Writing a Flyweight Folder in VB.NET

Y ou can write very similar code in VB7 to handle this Flyweight pattern. Since
we create only two instances of the Folder class and then select one or the other
using a FolderFactory, we do not make any use of inheritance. Instead, our

Copyright © 2001, by James W. Cooper

314

FolderFactory creates two instances in the constructor and returns one or the
other:

Public Class Fol derFactory
Private sel Fol der, unsel Fol der As Fol der
Public Sub new()
"create the two folders
sel Fol der = New Fol der (Col or. Br own)
unsel Fol der = New Fol der (col or. Bi sque)
End Sub
Publ i ¢ Function getFol der(ByVal isSel ected As Bool ean) _
As Fol der
"return one or the other
If isSelected Then
Ret urn sel Fol der
El se
Ret urn unsel Fol der
End | f
End Functi on
End Cl ass

The folder classitself differs only in that we use the Graphics object to do the
drawing. Note that the drawRectangle method uses a width and height as the last
two arguments rather than the second pair of coordinates.

Public Cl ass Fol der
"Draws a folder at the specified coordinates
Private Const w As Integer = 50, h As Integer = 30
Private bl ackPen As Pen, whitePen As Pen
Private grayPen As Pen
Private backBrush, blackBrush As Soli dBrush
Private fnt As Font
Public Sub new(ByVal col As Col or)
backBrush = New Sol i dBrush(Col)
bl ackBrush = New Sol i dBrush(Col or. Bl ack)
bl ackPen = New Pen(col or. Bl ack)
whi tePen = New Pen(col or. Wite)
grayPen = New Pen(col or. Gray)

Copyright © 2001, by James W. Cooper

315

fnt = New Font("Arial", 12)
End Sub
Public Sub drawm(ByVal g As Graphics, _
ByVal x As |nteger, _
ByVal y As Integer, ByVal title As String)
. Fill Rect angl e(backBrush, x, y, w, h)
. DrawRrect angl e(bl ackPen, x, y, w, h)
.Drawl i ne(whitePen, x + 1, vy + 1, x +w- 1, y + 1)
.Drawl i ne(whitePen, x + 1, vy, x + 1, y + h)

[(oN(oN(o}(e]

g. DrawRrect angl e(bl ackPen, x + 5, y - 5, 15, 5)
g. Fil Il Rectangl e(backBrush, x + 6, y - 4, 13, 6)
g. DrawLi ne(graypen, x, y + h - 1, x +w, y + h - 1)
g. DrawLi ne(graypen, x + w- 1, vy, x +w- 1, y + h - 1)
g.DrawsString(title, fnt, blackBrush, x, y + h + 5)
End Sub
End d ass

The only real differencesin the VB7 approach are the way we intercept the paint
and mouse events. In both cases, we add an event handler. To do the painting of
the folders, we add a paint event handler to the picture box:

AddHandl er Pi c. Pai nt,

New Pai nt Event Handl er (Addr essO pi cpai nt)

The paint handler we add draws the folders, much as we did in the VB6 version:

"paints the folders in the picture box

Private Sub picPaint(ByVal sender As bject,
ByVal e As Paint Event Args)

Dmi, x, y , cnt As |nteger

Dimg As Graphics = e. Graphics

x = pleft
y = ptop
cnt =0
For i = 0 To nanes.Count - 1
fol = fol fact. get Fol der(sel ectednanme = _

CType(names(i), String))

Copyright © 2001, by James W. Cooper

fol.dramg, x, y, CType(nanmes(i), String))
cnt = cnt + 1
If cnt > 2 Then

cnt =0
x = pleft
y =y + vspace
El se
X = X + hspace
End |f
Next
End Sub

The mouse move event handler is very much analogous. We add a handler for

mouse movement inside the picture box during the form’s constructor:
AddHandl er Pi c. MouseMove, (AddressOf evnopuse)

316

In order to detect whether a mouse position isinside a rectangle, we use asingle

instance of a Rectangle class. Since there aready is a Rectangle classin the

System.Drawing namespace, we put this rectangle in a vV BPatterns namespace.

Nanmespace vbPatterns
Public Cl ass Rectangle
Private x1, x2, yl, y2 As Integer
Private w, h As Integer
Public Sub init(ByVal x_ As Integer, _
ByVal y_ As |nteger)

X1 = X_
yl =vy_
X2 = x1 +w
y2 =yl + h

End Sub

Public Sub setSize(ByVal w_ As Integer
ByVal h_ As Integer)

W= Ww_
h =h_

End Sub

Public Function contains(ByVal xp As I|nteger,
ByVal yp As |Integer) As Bool ean
Return x1 <= xp And xp <= x2 And _

Copyright © 2001, by James W. Cooper

yl <= yp And yp <=y2
End Function
End Cl ass
End Namespace

317

Then, using the contains method of the rectangle, we can check for whether the

mouse is over afolder in the mouse move event handler:

'mouse nove event handl er
Public Sub evnouse(ByVal sender As bject,
ByVal e As MuseEvent Args)
Dimx, y, i, cnt As Integer
Di m ol dnane As String
Di m f ound As Bool ean
ol dname = sel ectednane 'save ol d nane

x = pleft "move through coordi nates
y = ptop

i =0

cnt =0

found = Fal se

While i < names. Count And Not found
rect.init(x, y)
"see if a rectangle contains the nouse
If rect.contains(e.X, e.Y) Then

sel ectedname = CType(nanes(i), String)

found = True
End I f
i =i +1
cnt = cnt + 1
'"nove on to next rectangle
If cnt > 2 Then

cnt =0
x = pleft
=y + vspace
El se
X = X + hspace
End If
End Wil e

"only refresh if nouse in new rectangle
I f found And ol dname <> sel ect ednane Then

Copyright © 2001, by James W. Cooper

318

pi c. Refresh()
End If
End Sub

Flyweight Usesin VB

Flyweights are not frequently used at the application level in VB. They are more
of a system resource management technique, used at alower level than VB.
However, it is useful to recognize that this technique exists so you can useit if
you need it.

Some objects within the VB language could be implemented under the covers as
Flyweights. For example, if there are two instances of a String constant with
identical characters, they could refer to the same storage location. Similarly, it
might be that two Integer or Float constants that contain the same value could be
implemented as Flyweights, athough they probably are not.

Sharable Objects

The Smalltalk Companion points out that sharable objects are much like
Flyweights, although the purpose is somewhat different. When you have avery
large object containing alot of complex data, such as tables or bitmaps, you
would want to minimize the number of instances of that object. Instead, in such
cases, you' d return one instance to every part of the program that asked for it and
avoid creating other instances.

A problem with such sharable objects occurs when one part of a program wants
to change some data in a shared object. Y ou then must decide whether to change
the object for al users, prevent any change, or create a new instance with the
changed data. If you change the object for every instance, you may have to notify
them that the object has changed.

Sharable objects are al'so useful when you are referring to large data systems
outside of VB, such as databases. The Dbase class we developed above in the
Facade pattern could be a candidate for a sharable object. We might not want a
number of separate connections to the database from different program modules,
preferring that only one be instantiated. However, should several modulesin
different threads decide to make queries simultaneously, the Database class
might have to queue the queries or spawn extra connections.

Copyright © 2001, by James W. Cooper

319

Copy-on-Write Objects
The Flyweight pattern uses just a few object instances to represent many different
objectsin aprogram. All of them normally have the same base properties as
intrinsic data and a few properties that represent extrinsic data that vary with
each manifestation of the class instance. However, it could occur that some of
these instances eventually take on new intrinsic properties (such as shape or
folder tab position) and require a new specific instance of the class to represent
them. Rather than creating these in advance as specia subclasses, it is possible to
copy the classinstance and change its intrinsic properties when the program flow
indicates that a new separate instance is required. The class copies thus itself
when the change becomes inevitable, changing those intrinsic properties in the
new class. We call this process “ copy-on-write,” and can build thisinto
Flyweights as well as a number of other classes, such as the Proxy we discuss
next.

Thought Questions

1. If Buttons can appear on severd different tabs of a TabDialog, but each of
them controls the same one or two tasks, is this an appropriate use for a
Flyweight?

Programs on the CD-ROM

\ Fl ywei ght\ Fl yFol der s VB6 folders

\ Fl ywei ght\ Vbnet VB7 Flyweight folders

Copyright © 2001, by James W. Cooper

320

21. THE PROXY PATTERN

The Proxy pattern is used when you need to represent an object that is complex
or time consuming to create, by asimpler one. If creating an object is expensive
in time or computer resources, Proxy allows you to postpone this creation until
you need the actual object. A Proxy usualy has the same methods as the object it
represents, and once the object is loaded, it passes on the method calls from the
Proxy to the actua object.

There are several cases where a Proxy can be useful:
1. If an object, such as alarge image, takes along time to load.

2. If theresults of a computation take along time to complete and you need to
display intermediate results while the computation continues.

3. If the object is on aremote machine and loading it over the network may be
dow, especialy during peak network load periods.

4. |f the object has limited access rights, the proxy can validate the access
permissions for that user.

Proxies can aso be used to distinguish between requesting an instance of an
object and the actual need to accessit. For example, program initialization may
set up a number of objects that may not al be used right away. In that case, the
proxy can load the real object only when it is needed.

Let’s consider the case of alarge image that a program needs to load and display.
When the program starts, there must be some indication that an imageisto be
displayed so that the screen lays out correctly, but the actual image display can
be postponed until the image is completely loaded. This is particularly important
in programs such as word processors and web browsers that lay out text around
the images even before the images are available.

An image proxy can note the image and begin loading it in the background, while
drawing a ssimple rectangle or other symbol to represent the image’ s extent on the
screen before it appears. The proxy can even delay loading the image at al until

it receives a paint request, and only then begin the process.

Copyright © 2001, by James W. Cooper

321

Sample Code
In this example program, we create a Smple program to display an image on a
Image control when it is loaded. Rather than loading the image directly, we use a
class we call ImageProxy to defer loading and draw a rectangle until loading is
completed..

"Di splays an image during and after conputation
Diminmpr As | mageProxy
Private Sub Form Load()
Set inpr = New | mageProxy
End Sub

Private Sub Loadit_dick()
"start the image fetch or conputation

Ti mer1. Enabl ed = True

inmpr.startl mage

End Sub

Private Sub Tiner1_Tiner()
‘get an image to display

I magel. Picture = LoadPi cture(inpr. getlmage)

End Sub

Note that we create the instance of the ImageProxy just as we would have for an
Image,. The ImageProxy class sets up the image loading and creates an Imager
object to follow the loading process. It returns a class which implements the
Imager interface:

' ass imager
Publ i ¢ Function getlmge() As String
End Function

In this simple case, the ImageProxy class just delays 5 seconds and then switch
from the preliminary image to the final image.

' d ass | magePr oxy
Private stTinme As Variant
Private started As Bool ean
Private ing As | mager
Public Sub startlmage()
started = True "image fetch starting

Copyright © 2001, by James W. Cooper

322

stTime = Tinme '"log the tine
End Sub
Publ i c Function isReady() As Bool ean
"return true after inage delay-- here 5 secinds
DmtimAs Variant
tim= DateDiff("s", stTinme, Tine)
If tim>5 And started Then
i sReady = True
El se
i sReady = Fal se
End | f
End Function
Public Function getlnage() As String
"return an image foromthe prelimor final inmage class
If isReady Then
Set ing = New Fi nal | mage
End | f
getl mage = ing. getl mage
End Function

Private Sub Class_Initialize()

started = Fal se
Set img = New Qui ckl mage
End Sub

We implement the Imager interface in two tiny classes we called Quicklmage
and Finallmage. One gets asmall gif image and the other alarger (and
presumably slower) jpeg image.

'O ass Qui ckl mage

| npl enent s | mager

Private Function |nager_getlmage() As String
| mager _getlmage = App.Path + "\box.gif"

End Function

'O ass Finall mge
| npl enents | mager
Private Function | mager_getlmage() As String
I mger _getlmage = App.Path + "\flowtree.jpg"
End Function

The program’ s two states are illustrated in Figure 21-1.

Copyright © 2001, by James W. Cooper

323

. Image Proxy Display

Figure 21-1- The proxy image display on the l€eft is shown until the
image loads as shown on the right.

Writing a Proxy in VB.Net

We will illustrate the same image proxy in VB7. Since the PictureBox’s Image
property requires an Image as an argument, we will change our Imager interface
to return an Image type.

Public Interface | mger
Function getlnmge() As | mage
End Interface

In VB7, Imageis an abstract class and the Bitmap, Cursor, Icon and Metafile
classes are derived from it. So the actual class we will usudly return is derived
from Image. The Quicklmage class returns a Bitmap from a gif file:

Public Class Quickl nmage

| mpl enent s | mager

Publi ¢ Function getlmage() As |mage _

| mpl ement s | mager. get | mage
Return New bit map("Box.gif")

End Function
End Cl ass
And the Finallmage class returns a bitmap from a jpeg file:

Copyright © 2001, by James W. Cooper

324

Public Class Finallnmge
| mpl ement s | mager
Publi ¢ Function getlmage() As Image _
| mpl ement's | nager. get |l mage
Return New Bitmap("flowtree.jpg")
End Function
End Cl ass

The main difference in the way we obtain images in this program isin our
ImageProxy class. Timers are handled quite differently in VB7, using a
TimerCallback class which defines the method to be called when the timer ticks.
Thisis much the same as the way we add other event handlers:

Public Cl ass | mageProxy
Private done As Bool ean
Private tm As Ti mer
Public Sub New()
done = Fal se
"set up tinmer that ticks once after 5 seconds
tm = New Tinmer(_
New Ti mer Cal | back(Addr essOf t Cal | back),
Me, 5000, 0)
End Sub
The timer callback defines that the tCallback method will be called:

Public Sub tcCall back(ByVal obj As Object)
'set done flag and turn off tiner
done = True
tm Di spose()

End Sub

and this method sets the done flag and turns off the timer.

When you go to fetch an image, you initialy get the quick image, and after 5
seconds, get the final image:

Publi ¢ Function getlmge() As | mage
Diming As | mager
"return quick imge until ready
I f isReady Then
img = New Final | mrage()

Copyright © 2001, by James W. Cooper

325

El se
i mg = New Qui ckl mage()
End | f
Return ing. getl mage
End Function

This program works so that when you click on the form’s load button, you get the
quick image for the first 5 seconds after the first click, and later clicks produce
the final jpeg image.

Proxiesin VB

Since VB6 is primarily a client writing language, you will find VB6 Proxies less
common than in client-server systems. However you see much more proxy-like
behavior in VB7 which is crafted for network and internet use. For example, the
ADO database connection classes are all effectively proxies.

Y ou can use VB6 to create server-side WebClass objects, and Active Server
Pages (ASPs) which themselves utilize VB-like code. However, it is not common
to have VB6 running as both the server and client system, and thus Proxies are
lesslikely to be used. Evenin Visua Studio.NET, where you can use VB7 or one
ore more other languages to create server code, the client-side code is more
frequently HTML, and proxies would not normally occur. However, server-side
classes in any convenient languages can benefit from proxies whenever the
server-dde program is time-consuming to complete.

Copy-on-Write
Y ou can also use proxiesis to keep copies of large objects that may or may not
change. If you create a second instance of an expensive object, a Proxy can
decide there is no reason to make a copy yet. It smply uses the original object.
Then, if the program makes a change in the new copy, the Proxy can copy the
original object and make the change in the new instance. This can be agreat time
and space saver when objects do not always change after they are instantiated.

Comparison with Related Patterns

Both the Adapter and the Proxy congtitute athin layer around an object.
However, the Adapter provides a different interface for an object, while the

Copyright © 2001, by James W. Cooper

326

Proxy provides the same interface for the object, but interposes itself where it can
postpone processing or data transmission effort.

A Decorator aso has the same interface as the object it surrounds, but its purpose
isto add additional (sometimes visual) function to the original object. A proxy,
by contrast, controls access to the contained class.

Thought Questions

Y ou have designed a server that connects to a database. If several clients connect
to your server at once, how might Proxies be of help?

Programs on the CD-ROM

\ Pr oxy

VB6 Image proxy

\ Pr oxy\ VBNet

VB7 image proxy

Copyright © 2001, by James W. Cooper

327

Summary of structural patterns

In this chapter we have seen the

The Adapter pattern, used to change the interface of one class to that of
another one.

TheBridge pattern is designed to separate a class s interface from its
implementation, so that you can vary or replace the implementation without
changing the client code.

The Composite pattern, a collection of objects, any one of which may be
either itself a Composite, or just aleaf object.

The Decor ator pattern, a class that surrounds a given class, adds new
capabilities to it, and passes al the unchanged methods to the underlying
class.

The Fagade pattern, which groups a complex set of objects and provides a
new, smpler interface to access those data.

The Flyweight pattern, which provides away to limit the proliferation of
small, similar instances by moving some of the class data outside the class
and passing it in during various execution methods.

The Proxy pattern, which provides a simple place-holder object for a more
complex object which isin some way time-consuming or expensive to
instantiate.

Copyright © 2001, by James W. Cooper

328

Copyright © 2001, by James W. Cooper

329

Behavioral Patterns

Behaviord patterns are those patterns that are most specifically concerned
with communication between objects. In this chapter, we'll see that:

The Chain of Responsibility allows a decoupling between objects, by
passing arequest from one object to the next in a chain until the request is

recognized.

The Command pattern utilizes ssmple objects to represent execution of
software commands, and alows you to support logging and undoable
operations.

The Interpreter provides a definition of how to include language elements
in aprogram.

The Iterator pattern formalizes the way we move through alist of data
within aclass.

The Mediator defines how communication between objects can be
simplified by using a separate object to keep al objects from having to
know about each other.

The Observer pattern defines the way a number of objects can be notified
of achange,

The State pattern alows an object to modify its behavior when its internal
state changes.

The Strategy pattern encapsulates an algorithm inside a class,

The Template Method pattern provides an abstract definition of an
algorithm, and

The Visitor pattern adds polymorphic functions to a class noninvasively.

Copyright © 2001, by James W. Cooper

22. CHAIN OF RESPONSIBILITY

The Chain of Responsibility pattern allows a number of classes to attempt to
handle a request, without any of them knowing about the capabilities of the
other classes. It provides aloose coupling between these classes; the only
common link is the request that is passed between them. The request is passed
adong until one of the classes can handleit.

One example of such a chain pattern is a Help system like the one shown in
Figure 22-1 — A smple application where different kinds of help could be
useful., where every screen region of an application invites you to seek help,
but in which there are window background areas where more generic help is
the only suitable result.

E%%Help demo M=l E3
: [~ Textfiles
File [~ Binaryfiles

it

Figure 22-1 — A ssimple application wher e different kinds of help
could be useful.

When you sdlect an area for help, that visual control forwardsits ID or name
to the chain. Suppose you selected the “New” button. If the first module can
handle the New button, it displays the help message. If not, it forwards the
reguest to the next module. Eventually, the message is forwarded to an “ Al
buttons’ class that can display a general message about how buttons work. If
thereis no general button help, the message is forwarded to the general help
module that tells you how the system worksin generd. If that doesn’t exist,
the message is lost and no information is displayed. Thisisillustrated in
Figure 22-2— A smple Chain of

Copyright © 2001, by James W. Cooper

331

Responsihility.

New button File button All buttons

General help

Figure 22-2— A simple Chain of Responsibility.

All controls

There are two significant points we can observe from this example; first,
the chain is organized from most specific to most genera, and that there
is no guarantee that the request will produce aresponsein dl cases. We
will see shortly that you can use the Observer pattern to provide away for
anumber of classes to be notified of a change,

Applicability
The Chain of Responsibility isa good example of a pattern that helps keep
knowledge separate of what each object in a program can do. In other words,
it reduces the coupling between objects so that they can act independently.

This aso appliesto the object that constitutes the main program and contains
instances of the other objects. Y ou will find this pattern helpful when:

There are severa objects with similar methods that could be
appropriate for the action the program is requesting. However, it
is more appropriate for the objects to decide which oneisto carry
out the action than it is for you to build this decision into the
calling code.

One of the objects may be most suitable but you don’'t want to
build in a series of if-else or switch statementsto select a
particular object.

There might be new objects that you want to add to the possible
list of processing options while the program is executing.

There might be cases when more than one object will have to act
on areguest and you don’t want to build knowledge of these
interactions into the calling program.

Copyright © 2001, by James W. Cooper

332

Sample Code

The help system we described above is alittle involved for afirst example.
Instead, let’s start with a simple visua command-interpreter program (Figure
22-3— A smple visual command interpreter program that acts on one of four
panels depending on the command you typein.) that illustrates how the chain
works. This program displays the results of typed-in commands. While this
first caseis condtrained to keep the example code tractable, we'll see that this
Chain of Responsibility pattern is commonly used for parsers and even
compilers.

In this example, the commands can be
Image filenames
General filenames
Color names

All other commands

In the first three cases, we can display a concrete result of the request, and in
the last case, we can only display the request text itself.

. Image Chain

ImgChain. cls
Chain.clz
File.cls

ImaFarm
Typos

- Send commands

File:

Copyright © 2001, by James W. Cooper

Figure 22-3— A simple visual command interpreter program that
actson one of four panels depending on the command you typein.

In the above example system,
1. Wetypein“Mandrill” and see adisplay of the image Mandrill.jpg.

2. Then, wetypein “File’ and that filenameis displayed in the center list
box.

3. Next, wetypein “blue” and that color is displayed in the lower center
panel.

Findly, if we type in anything that is neither a filename nor a color, that text
is displayed in the final, right-hand list box. Thisis shown in Figure 16.4.

Image > Color > File >
M_’ file name name General

Figure 22-4 — How the command chain worksfor the program in
Figure 22-3.

To write this ssimple chain of responsibility program, we start with an abstract
Chain class:

"Interface class Chain

Publi ¢ Sub addChai n(c As Chai n)
End Sub

Public Sub sendToChai n(nmesg As String)
End Sub

Public Function getChain() As Chain
End Function

Public Sub setControl (¢ As Control)
End Sub

Publ i ¢ Function hasChai n() As Bool ean
End Function

The addChain method adds another class to the chain of classes. The
getChain method returns the current class to which messages are being
forwarded. These two methods allow us to modify the chain dynamically and

Copyright © 2001, by James W. Cooper

add additional classesin the middle of an existing chain. The sendToChain
method forwards a message to the next object in the chain.

Our main program assembles the Chain classes and sets areference to a
control into each of them. We start with the ImgChain class, which takes the
message string and looks for a .jpg file of that name. If it finds one it displays
it in the Image control and if not it sends the command on to the next element
in the chain.

'"dass | ngChain

I mpl enents Chain

Private chn As Chain

Private hasLink As Bool ean

Private fl As File

Private ing As | nage

Private Sub Chai n_addChai n(c As Chain)
Set chn = ¢
hasLi nk = True

End Sub

Private Function Chai n_get Chain() As Chain
Set Chai n_get Chain = chn

End Function

Private Function Chai n_hasChain() As Bool ean
Chai n_hasChai n = hasLi nk

End Function

Private Sub Chai n_sendToChai n(nmesg As String)
fl.setFilename App.Path + "\" + nesg + ".jpg"
If fl.exists Then

inmg.Picture = LoadPi cture(fl.getFilenang)
El se
chn. sendToChai n nmesg

End I f

Private Sub Chain_setControl (c As Control)
Set ing = ¢

End Sub

Private Sub Class_Initialize()
hasLi nk = Fal se
Set fl = New File

End Sub

Copyright © 2001, by James W. Cooper

In asimilar fashion, the ColorChain class simply interprets the message as a
color name and displays it if it can. This example only interprets 3 colors, but
you could implement any number:

Private Sub Chai n_sendToChai n(mesg As String)
Dimcolr As Long, found As Bool ean
found = True
Sel ect Case LCase(nesg) 'look for a col or name
Case "red"
colr = vbRed
Case "bl ue"
colr = vbBl ue
Case "green”
colr = vbGeen
Case El se
"if not found send it on
I f hasLi nk Then
chn. sendToChai n nesg
found = Fal se "not found
End If
End Sel ect
"if found change the col or
I f found Then
pc. BackCol or = colr
End I f
End Sub

The List Boxes

Both the file list and the list of unrecognized commands are ListBoxes. If the
message matches part of afilename, the filename is displayed in the fileList
box, and if not, the message is send on to the NoComd chain element.

Private Sub Chai n_sendToChai n(mesg As String)
Dmfls As String

ChDi r App. Path ‘current directory
fls = Dir(mesg + "*.*") "l ook for match
If Len(fls) > 0 Then
Ist.Addltemfls ‘add it to list
El se

I f hasLink Then
chn. sendToChain nesg 'or send to Nocnd cl ass
End | f
End If
End Sub

The NoCmd Chain classis very similar. It however, has no class to send data
on to.

'd ass NoOnd

Copyright © 2001, by James W. Cooper

I mpl enents Chain
Private | st As ListBox

Private Sub Chai n_addChai n(c As Chain)
End Sub

Private Function Chai n_getChain() As Chain
End Function

Private Function Chai n_hasChain() As Bool ean
Chai n_hasChain = Fal se

End Function

Private Sub Chai n_sendToChai n(nmesg As String)
| st. Addl t em nesg

End Sub

Private Sub Chain_setControl (¢ As Control)
Set Ist =¢

End Sub

Findly, we link these classes together in the Form_L oad routine to create the
Chain.

'set up Chain of Responshbility
Dmcolr As Chain
Dmfls As Chain
Di m nocom As Chai n
"l mage chain
Set chn = New I ngChai n
chn. set Control ingJpg
"Col or chain
Set colr = New Col or Chai n
colr.setControl pcCol or
chn. addChai n colr
"File chain
Set fls = New Fil eChain
fls.setControl IsFiles
colr.addChain fls
'No Command
Set nocom = New NoCnd
nocom set Control | sNoconds
fls.addChai n nocom

Y ou can see the relationship between these classes in the UML diagram in
Figure 22-5.

Copyright © 2001, by James W. Cooper

337

k)
= [Chabn
R S
1
btfiared_Clack L1
Flie bl - e ettt
] Faiwy_Loail Tkt Chaln Pl

n Be iy
e e Chan_saiChan
Ienlink huslink g Thein
Cihostn_addChain ':-'Ir:m_w:‘:-rl\.lm __._h'm“"-_hu‘,_hm
< 2 i o) Chks_seinfT o)
C::::ru(;; ﬂlul_lll.ﬁhhg L'hun_uh."mhpllul
[RN T (T l'.1|u|_fmnTm. tisdn

File iR _ 8 eRC ol Thain_stTariral

£

apanad

efiil_fils :"I‘_

arluae

Eir gade

OpanFafaed

Eof

ranedlrs

pedT okoim 1 il

clomaFis

Figure 22-5 - The class strcuture of the Chain of Responsibility
program.
The Sender classisthe initia class which implements the Chain interface. It
receives the button clicks and obtains the text from the text field. It passes the
command on to the Imager class, the FileList class, the Colorimage class and
finally to the RestList class. Note that FileList is a subclass of RestList and
implements the Chain interface because the parent RestList class does.

Programming a Help System

Aswe noted at the beginning of this discussion, help systems provide good
examples of how the Chain of Responsibility pattern can be used. Now that
we' ve outline away to write such chains, we' Il consider a help system for a
window with severa controls. The program (Figure 22-6) pops up a help

Copyright © 2001, by James W. Cooper

dialog message when the user presses the F1 (help) key. The message
depends on which control is selected when the F1 key is pressed.

24 Help demo =i 3
]
= [Textfiles w3 Button help x|

File [Binary files Click on any button to activate it

it Qe

Figure 22-6 — A simple help demonstration which popsup a
different message depending onwhich control is selected when you
pressthe F1key.

In the example above, the user has selected the Quit key, which does not have
a specific help message associated with it. Instead, the chain forwards the
help request to a genera button help object which displays the message
shown on the right.

To write this help chain system, we begin with agenera Chain interface
class that has empty implementations of all of the Chain interface methods.

"Interface class Chain

Publ i ¢ Sub addChai n(c As Chain)
End Sub

Publ i c Sub sendToChain(c As Control)
End Sub

Publ i ¢ Function getChain() As Chain
End Function

Publ i ¢ Function hasChain() As Bool ean
End Function

Note that this chain does not need to have a copy of areference to any kind of
control. Thisis passed in usng the sendToChain method.

Then you need to create specific classes for each of the help message
categories you want to produce. Asweillustrated earlier, we want help

messages for

Copyright © 2001, by James W. Cooper

339

The New button

The File button

A generd button

A generd visud control (covering the checkboxes)

In VB, one control will aways have th focus, and thus we don’t need a case
for the Window itsdlf. Therefore, we write the above 4 classes and combine
them into a chain as follows:

Private Sub Form Load()

Dimbutc As Chain

Dmfilc As Chain

Dimcchn As Chain

‘create chain of responsibility
Set chn = New NewChai n
Set filc = New Fil eChain
Set butc = New ButtonChain
Set cchn = New Control Chain
chn. addChain filc
filc.addChain butc
but c. addChai n cchn

End Sub

Receiving the Help Command

Now, we need to assign keyboard listeners to look for the F1 keypress. At
first, you might think we need 5 such listeners, for the 3 buttons and the two
checkboxes. However, we can make control arrays of the buttons and the
checkboxes and then we need to listend for a KeyDown event in two places,
and both call the same method:

Private chn As Chain
Private Sub bt New KeyDown(Index As |Integer, keyCode As I|nteger,
Shift As Integer)
cal | Chai n bt New(| ndex), keyCode
End Sub
Private Sub cal |l Chain(c As Control, keyCode As I|nteger)
I f keyCode = vbKeyFl Then ‘respond to F1 only
chn. sendToChain ¢
End |f
End Sub

For the File button, the chain class is implemented as follows:

| mpl enents Chain
Private chn As Chain

Copyright © 2001, by James W. Cooper

Private hasLi nk As Bool ean

Private Sub Chai n_addChai n(c As Chai n)
Set chn = ¢
hasLi nk = True

Private Function Chain_getChain() As Chain
Set Chai n_get Chain = chn
End Function

Private Function Chai n_hasChain() As Bool ean
Chai n_hasChai n = hasLi nk
End Function

Private Sub Chain_sendToChai n(c As Control)

If c.Caption = "File" Then

MsgBox "Use to open a file"
El se

| f hasLink Then

chn. sendToChain c

End | f

End | f

Private Sub Class_Initialize()
hasLi nk = Fal se
End Sub

Now at first you might think that you could just as easily have made a
separate KeyDown event method for each of the controls on the form,

instead of having only a couple of such events and sending them d through
the same chain. And, in fact, that is how VB programs are usually written.
The advantage to this Chain of Responsibility approach is that you can decide
the order in which controls are checked for membership in various classes
and control and easily change this order within your program. This provides a
considerably more versatile and flexible system than if each control called its
own event method.

We show the complete class diagram for this help system in Figure 22-7.

Copyright © 2001, by James W. Cooper

341

HelpWindow
firarm default)

FileNewHelp ButtonHelp WindowHelp
ffrarn defaulf) firomn default) ffror defaul)
FileHelp ControlHelp
firam default) fromm defaul]

Figure 22-7—- The class diagram for the Help system.

A Chainor aTree?

Of course, a Chain of Responsihility does not have to be linear. The Smalltalk
Companion suggests that it is more generally atree structure with a number

of specific entry points all pointing upward to the most general node as
shown in Figure 22-8.

Copyright © 2001, by James W. Cooper

General
help

T

Window
help

Button help

’_‘I_‘

Menu help

’_‘l_‘

List box
help

OK Quit

File New

Files

Colors

342

Figure 22-8— The chain of responsibility implemented asatree

structure.

However, this sort of structure seems to imply that each button, or is handler,

knows where to enter the chain. This can complicate the design in some

cases, and may preclude the need for the chain at al.
Another way of handling a tree-like structure is to have a single entry point

that branches to the specific button, menu or other widget types, and then

“un-branches’ as above to more genera help cases. There islittle reason for
that complexity -- you could aign the classes into a single chain, starting at

the bottom, and going left to right and up arow at atime until the entire

system had been traversed, as shown in Figure 22-9

Copyright © 2001, by James W. Cooper

General
help

:

Window
help

A+

|
Button help ——® Menu help List box

help
f‘

OK [Quit }P File [New %] Files —¥®) Colors

Figure 22-9 — The same chain of responsibility implement asa
linear chain.

Chain of Responsbility in VB.NET

We can implement the Chain of Responsibility in VB7 in avery smilar
manner. However, it is convenient to make the Chain class an abstract class
instead of an interface. Remember that an abstract class has one or more
methods that must be implemented in the derived classes. We mark this

methods as MustOverride and mark the class as MustInherit as we illustrate
below.

Public Mustlnherit Class Chain

Protected chn As Chain

Pri vate hasLi nk As Bool ean

Public Sub New()
hasLi nk = Fal se

End Sub

Publ i ¢ Sub addChai n(ByVal ¢ As chain)
chn = ¢
haslink = True 'mark as avail able

Copyright © 2001, by James W. Cooper

"will fill this in in derived classes
Public Must Overri de Sub sendToChai n(_
ByVal mesg As String)

Public Function getChain() As chain
Return chn

End Function

Publ i ¢ Function hasChai n() As Bool ean
Ret urn hasLi nk

End Function

End C ass

Then, we can easily derive classes, and we only need to implement the
sendToChain method. For example, here is the FileChain class:

Public Class FileChain
I nherits Chain
Private flist As ListBox

Public Sub new(ByVal |box As ListBox)

MyBase. new()
flist = 1box

Public Overrides Sub sendToChai n(ByVal nesg As
String)
Dim fname As String
Dmfiles As File()
fname = nesg + "*. *"
files = Directory. GetFileslnDirectory(_
Directory.CurrentDirectory, fnane)
"add themall to the Iistbox
If files.Length > 0 Then
Dimi As Integer
For i = 0 To files.Length - 1
flist.ltens. Add(files(i).Nane)
Next
El se
I f haschain Then
chn. sendToChai n(nesg)
End | f
End |f

Copyright © 2001, by James W. Cooper

End Sub
End Cl ass

Since we initialize the chains in their constructors, the code in the form

constructor that sets them up is alittle smpler:

Private Sub set UpChain()

Dimclrchain As New Col or Chai n(pnl col or)

Dimflchain As New Fil eChain(lsfiles)
Di m nochain As New NoCnd(| snocontd)

chn = New | mageChai n(pi cl mage)
chn. addChai n(cl r chai n)

cl rchai n. addChai n(f | chai n)

f |1 chai n. addChai n(nochai n)

End Sub

The final display is shown in Figure 22-10.

—Send commands

Iblurge

B chain of Responsibility

=101 x|

YBnetChain. exe
YBnetChain.pdb

blurge

Figure 22-10 — The VB7 version of theimage Chain of

Responsibility.

Copyright © 2001, by James W. Cooper

Kinds of Requests

The request or message passed aong the Chain of Responsibility may well be
agreat deal more complicated than just the string or Control that we
conveniently used on these examples. The information could include various
data types or a complete object with a number of methods. Since various
classes along the chain may use different properties of such arequest object,
you might end up designing an abstract Reguest type and any number of
derived classes with additional methods.

ExamplesinVB

Under the covers, VB form windows receive various events, such as
MouseMove and then forward them to the controls the form contains.
However, only the final control ever receives the messagein VB, whilein
some other languages, each containing control does aswell. Thisisa clear
implementation of Chain of Responsibility pattern. We could also argue that,
in genera, the VB.NET class inheritance structure itself exemplifies this
pattern. If you call for a method to be executed in a deeply derived class, that
method is passed up the inheritance chain until the first parent class
containing that method is found. The fact that further parents contain other
implementations of that method does not come into play.

We will also see that the Chain of Responsibility isideal for implementing
Interpreters and use one in the Interpreter pattern we discuss later in this
section.

Consequences of the Chain of Responsibility

1. Themain purpose for this pattern, like a number of others, isto reduce
coupling between objects. An object only needs to know how to forward
the request to other objects.

2. Each VB object in the chain is self-contained. It knows nothing of the
others and only need decide whether it can satisfy the request. This makes
writing each one very easy, and constructing the chain very easy.

3. You can decide whether the final object in the chain handles al requests
it receives in some default fashion, or just discards them. However, you
do have to know which object will be last in the chain for thisto be
effective.

4. Findly, since VB can not provide multiple inheritance, the basic Chain
class needs to be an interface rather than an abstract class, so that the

Copyright © 2001, by James W. Cooper

347

individual objects can inherit from another useful hierarchy, as we did
here by deriving them al from Control. This disadvantage of this
approach is that you often have to implement the linking, sending and
forwarding code in each module separately, or as we did here by
subclassing a concrete class which implements the Chain interface.

Thought Questions

1. Suggest how you might use a Chain of Responsibility to implement an E-
mail filter.

Programs on the CD-ROM

\ Chai n\ Hel pChai n VB6 program showing how a help
system can be implemented

\ Chai n\ Pi cChai n VB6 chain of file and image displays

\ Chai n\ VBNet CHai n VB7 chain of file and image displays

Copyright © 2001, by James W. Cooper

23. THE COMMAND PATTERN

The Chain of Responsibility forwards requests along a chain of classes, but
the Command pattern forwards a request only to a specific object. It encloses
arequest for a specific action inside an object and gives it a known public
interface. It lets you give the client the ability to make requests without
knowing anything about the actua action that will be performed, and alows
you to change that action without affecting the client program in any way.

M otivation

When you build a VB user interface, you provide menu items, buttons, and
checkboxes and so forth to alow the user to tell the program what to do.
When a user selects one of these controls, the program receives a clicked
event, which it receives into a specid routine in the user interface. Let's
suppose we build a very smple program that allows you to select the menu
items File | Open, FilelRed and File | Exit, and click on a button marked Red
which turns the background of the window red. The FilejRed menu item also
turns the background red. This program is shown in Figure 23-1

-l

File
Open
Red

Exit

Figure 23-1 — A simple program that receives events from the
button and menu items.

The program consists of the File Menu object with the mnuOpen, mnuRed
and mnuExit Menultems added to it. It aso contains one button called
btnRed. During the design phase, clicking on any of these items creates a
little method in the Form class which gets called when the control is clicked.

Copyright © 2001, by James W. Cooper

349

Now, as long as there are only afew menu items and buttons, this approach
works fine, but when you have dozens of menu items and severa buttons, the
Form module code can get pretty unwieldy. In addition, the red command is
carried out both from the button and the menu.

Command Objects

One way to assure that every object receives its own commands directly is to
use the Command pattern and create individua Command objects. A
Command object always has an Execute() method that is called when an
action occurs on that object. Most simply, a Command object implements at
least the following interface:

public interface Command {
public void Execute();
}

One objective of using thisinterface is to separate the user interface code
from the actions the program must carry out, such as we illustrate below.

Private Sub mmuexit_Cick()
exit Crd. Execut e
End Sub

Private Sub muQOpen_d i ck()
fl Cmd. Execut e
End Sub

Then we can provide an Execute method for each object that carries out the
desired action, thus keeping the knowledge of what to do inside the object
where it belongs, instead of having another part of the program make these
decisions.

One important purpose of the Command pattern is to keep the program and
user interface objects completely separate from the actions that they initiate.
In other words, these program objects should be completely separate from
each other and should not have to know how other objects work. The user
interface receives a command and tells a Command object to carry out
whatever duties it has been instructed to do. The Ul does not and should not
need to know what tasks will be executed. This decouples the Ul class from
the execution of specific commands, making it possible to modify or
completely change the action code without changing the classes containing
the user interface.

The Command object can aso be used when you need to tell the program to
execute the command when the resources are available rather than

Copyright © 2001, by James W. Cooper

immediately. In such cases, you are queuing commands to be executed later.
Finally, you can use Command objects to remember operations so that you

can support Undo requests.

Building Command Objects

There are several waysto go about building Command objects for a program
like this and each has some advantages. Well start with the simplest one:
creating new classes and implementing the Command interface in each. Here
is an example of the exit class

"Cass Exit comrand

| npl ements Conmand

Private Sub Command_Execut e()
End

End Sub

Then, both the File|Exit command and the Form_Unload event can call it.

Private Sub Form Unl oad(Cancel As Integer)
exi t Crd. Execut e
End Sub

Private Sub mmuexit_Cick()
exit Cmd. Execut e
End Sub

Y ou aso have only one localized place to change what takes place, if for
example you want to add an “Are you sure?’ message box.

This certainly lets us smplify the user interface code, butit does require that
we create and instantiate anew class for each action we want to execute.
Further because VB has fairly stringent type checking we need to create two
references to these objects, one as a specific class and one as a Command
object.

Private exi tCmd As Command

Private exitCO As Exitd ass

"the exit command cl ass

Set exitC = New Exitd ass
Set exitCnd = exitd ‘as conmand

Classes which require specific parameters to work need to have those
parameters passed in the init method or in a set method. For example, the
File|Open command requires that you pass it an instance of the
CommonDialog object: and the label where the filename will be displayed:

Copyright © 2001, by James W. Cooper

351

"and the file|open class
Set opner = New Qpener

opner.init cDi g, Labell 'send it the common dial og and | abel
Set flCnd = opner

Similarly, our RedCommand object needs the Form to set its background to
red:

‘create the red commuand cl ass
Set redd = New Redd ass

redd . set Form Me

Set redCnd = redd 'as a command

This can then be caled both from the menu and button click event methods:

Private Sub btnRed_d i ck()
redCnd. Execut e

Private Sub mmuRed_d i ck()
redCmd. Execut e
End Sub

Arraysof Commands

When you have a program with an array of smilar controls, such as a series
of buttons or radio buttons, you can create a parallel array of command
objects and simply execute the right one. For example, you might have a
program to display either or both sexesin alist of kids.

For example, the program in Figure 23-2 alows you to select the girls, the
boys or show all the kids at once:

Copyright © 2001, by James W. Cooper

352

i, Display kids by sex = | I:Ilil

Luke kester
Stephen Cosme
Jeffrey Sudbur
L Ernest Verico
= D awid Liebovitz
o Ryan Runazewski
" Both b atthew Donch
Christopher Prus
Charles Baker

Figure 23-2 —A program which displays kids by sex or all kids at
once.

Y ou can create the three radio buttons as a control array when you design the
program. Then you can simply create three command objects and out them in
a Vector. When aradio button is clicked, you just pick that command and
execute it:

"all button clicks come here

Private Sub opSex_Oick(lndex As |nteger)
Dimcnd As Comand

'execute the conmand fromthe vector

Set cnmd = buttons(lndex + 1)

cnd. Execut e

End Sub

In this program we create a Kids object containing a Vector of individual
Swimmers.

Private kds As New Col | ection

Private Index As Integer

Private sex$

Private sw As Swi nmer

Public Sub add(sw As Sw mer)
kds. add sw

End Sub

Public Sub set Sex(sx$)

sex = sx

noveFi r st

End Sub

Copyright © 2001, by James W. Cooper

Public Sub noveFirst()

Index =1

Set sw = kds(| ndex)

End Sub

"returns true if there are any nore kids

"of the current sex

Publi ¢ Function hasMoreEl enents() As Bool ean
Set sw = kds(| ndex)

If sw. getSex = sex Then

hasMor eEl enents = I ndex < kds. Count
El se

next El ement

hasMor eEl enents = I ndex < kds. Count
End If

End Function
'nmoves to the next kids of that sex
Publ i ¢ Function nextEl enent() As Sw mer
Set sw = kds(| ndex)
If sex <> "" Then
Wil e sw. get Sex <> sex And | ndex <= kds. Count
Set sw = kds(I ndex)

I f sw. getSex <> sex Then Index = Index + 1
Wend
I f sw getSex = sex Then
Set next El enent = sw
Index = I ndex + 1
El se
Index = Index + 1
End | f
El se
Set next El enent = kds(| ndex)
Index = Index + 1
End | f

End Function

Then we create a PickKids class which implements the Command interface
which returns a Vector of the kids which match the criterion:

'O ass pickKids

I mpl erent s Command
Private kds As Kids
Private | st As ListBox
Private sex$

Public Sub init(sx$, kidds As Kids, list As ListBox)
Set kds = ki dds
sex = sX

Copyright © 2001, by James W. Cooper

Set Ist = 1list
End Sub

Private Sub | oadLi st ()

"l oads the list box with the sel ected kids

Dmsw As Sw mer

| st.d ear

kds. set Sex sex$

kds. noveFi r st

Whi | e kds. hasMor eEl enent s
Set sw = kds. next El enent
| st. Addltem sw. get Nane

Wend

End Sub

'the command i s execured here

Private Sub Command_Execut e()
| oadLi st

End Sub

With this simple infrastructure, we can create three instances of the PickKids
class and select the right one depending on the button that the user clicks.

Di m pk As Pi ckKi ds

Set kds = New Ki ds
Set buttons = New Col |l ection
kds. readKi ds "Swi mrers.txt"

‘create 3 instances of PickKids

"for each of the 3 option selections
Set pk = New Pi ckKi ds

pk.init "F', kds, |sKids

buttons.add pk 'and add to the vector

Set pk = New Pi ckKi ds
pk.init "M, kds, |sKids
buttons. add pk

Set pk = New Pi ckKi ds
pk.init "", kds, |sKids
buttons. add pk

Again, the advantage here is that the user interface no longer plays atangled
role in providing the actual execution of commands. Instead, it smple
executes the command without ever knowing what it is or whether the
programmer had changed the character of that command.

Copyright © 2001, by James W. Cooper

Consequences of the Command Pattern

The main disadvantage of the Command pattern seems to be a proliferation of
little classes that clutter up the program. However, even in the case where we
have separate click events, we usualy call little private methods to carry out
the actual function. It turns out that these private methods are just about as
long as our little classes, so there is frequently little difference in complexity
between building the command classes and just writing more methods. The
main difference is that the Command pattern produces little classes that are
much more readable.

Providing Undo

Another of the main reasons for using Command design patternsis that they
provide a convenient way to store and execute an Undo function. Each
command object can remember what it just did and restore that state when
requested to do so if the computational and memory requirements are not too
overwhelming. At the top level, we smply redefine the Command interface
to have two methods:

Public Sub Execute()
End Sub

Public Sub Undo()
End Sub

Publ i ¢ Function isUndo()
End Function

Then we have to design each command object to keep arecord of what it last
did so it can undo it. This can be alittle more complicated than it first
appears, since having a number of interleaved Commands being executed and
then undone can lead to some hysteresis. In addition, each command will

need to store enough information about each execution of the command that it
can know what specifically has to be undone.

The problem of undoing commands is actually a multi-part problem. First,
you must keep alist of the commands that have been executed, and second,
each command hasto keep alist of its executions. To illustrate how we use
the Command pattern to carry out undo operations, let’s consider the program
shown in Figure 23-3 that draws successive red or blue lines on the screen
using two buttons to draw a new instance of each line. Y ou can undo the last
line you drew with the undo button:

Copyright © 2001, by James W. Cooper

(o]

Red | lUnda |

Figure 23-3 - A program which draws read and blue lines each
timeyou click the Red and Blue buttons.

If you click on Undo severa times, you' d expect the last severa linesto
disappear, no matter what order the buttons were clicked in as shown in
Figure 23-4

_iBfx]

Red

Blue |

Figure 23-4—- Thesameprogram asin Figure 23-3 after the Undo
button has been clicked several times.

Copyright © 2001, by James W. Cooper

357

Thus, any undoable program needs a single sequentid list of all the
commands which have been executed. Each time we click on any button, we
add its corresponding command to the list.

Private Sub btDraw dick(l ndex As I|nteger)
Dimcmd As Command

'get the command and execute it

Set cnd = buttons(lndex + 1)

cnd. Execut e

ud. add cnd "Add to undo collection
Refresh 'repai nt screem

End Sub

Further, the list that we add the Command objects to is maintained inside the
Undo command object so it can access that list conveniently.

Option Explicit

' Cl ass UndoComand

| npl ements Conmand

Private undoList As Collection

Public Sub init()

Set undoLi st = New Col | ection

End Sub

Public Sub add(cmd As Conmand)

If Not (cmd.isUndo) Then
undolLi st. add cnd

End If

Private Sub Command_Execute()

Di m I ndex As I|nteger

Dimcnd As Comrand

I ndex = undolLi st. Count

I f undoLi st. Count > 0 Then
Set cnd = undolLi st (I ndex)
cnd. Undo
undoLi st . Renove | ndex

End |f

End Sub

Private Function Command_i sUndo() As Vari ant

Command_i sUndo = True

End Function

Private Sub Command_Undo()

''do not hi ng

End Sub

Copyright © 2001, by James W. Cooper

The undoCommand object keeps alist of Commands, not alist of actual data
Each command object has its unDo method called to execute the actua undo
operation. Note that since the undoCommand object implements the
Command interface, it, too, needs to have an unDo method. However, the
idea of undoing successive unDo operations is a little complex for this smple
example program. Consequently, you should note that the add method adds
all Commands to the list except the undoCommand itself, since we have just
defined undoing an unDo command as doing nothing. For this reason our new
Command interface includes an isUndo method that returns false for the
RedCommand and BlueCommand objects and true for the UndoCommand
object.

The redCommand and blueCommand classes simple use different colors and
start at opposite sides of the window, although both inplement the revised
Command interface. Each class keeps alist of lines to be drawn in a vector as
a series of drawData objects containing the coordinates of each line. Undoing
aline from either the red or the blue line list smple means removing the last
drawData object from the drawL.ist vector. Then either command forces a
repaint of the screen.

Option Explicit
| mpl erent' s Comand
' O ass RedConmand
Private drawLi st As Col |l ection
Private x As Integer, y As Integer, dx As Integer, dy As
I nt eger
Private pic As PictureBox
Public Sub init(pict As PictureBox)
Set pic = pict
Set drawList = New Col |l ection
x =0
dx = 200
y =0
dy = 0

Private Sub Conmmand_Execute()

Dimdl As Drawbata

Set dl = New DrawDat a

dl.init x, y, dx, dy 'create a new DrawbDat a obj ect

drawli st. add dl "and add it to the |ist

X = x + dx 'next one has these val ues
y=y+ dy))

pi c. Refresh 'repaint screen w ndow

End Sub

Copyright © 2001, by James W. Cooper

359

Private Function Command_i sUndo() As Vari ant
Conmand_i sUndo = Fal se
End Function
Private Sub Command_Undo()
‘undo | ast draw
Di m I ndex As Integer
Dimdl As DrawData
I ndex = drawkLi st. Count
If Index > 0 Then
Set dl = drawli st (I ndex)
drawLi st. Renove | ndex
x = dl.getX
y = dl.getY
End If
pi c. Refresh
End Sub
Public Sub draw()
"draw entire list of lines
Dimh As Integer, w As Integer
Dimi As I|nteger
Dimdl As Drawbata

h = pic. Hei ght
w = pic. Wdth
For i = 1 To drawLi st. Count

Set dl = drawkist(i)

pic.Line (dl.getX dl.getY)-(dl.getX + dx, dl.getdY + h),
vbRed

Next i

End Sub

Note that the draw method in the drawCommand class redraws the entire list
of lines which that command object has stored. These two draw methods are
called from the paint method of the form.

Private Sub Form Paint ()

rc.draw "redraw red |ines
bc. draw 'redraw blue |ines
End Sub

The set of classes we use in this Undo program are shown in Figure 23-5

Copyright © 2001, by James W. Cooper

Blue Cnml.ma.mi

Command

Execute
Tndo
isIndo

drawlist
X

fic

Undi: Command

undolist

ituit
Comunand Execute
Comunand islUTndo

init
add
Comunand Execute
Cottnand islndo

RedCommand

drawlist
X

fir

itiit
Comunatid Execute
Comunatid islTndo

Comtnand Undo Comunand Tado Comunatid Tndo
drawr 5 drawr

H H
lad

)

undoForm
huttons

<r>_ ttDraw Click
Form Load -

Form Paint |1

kC

he

Figure 23-5 - The classes used to implement Undo in a Command
pattern implementation.

The Command Pattern in VB.NET

While you can write more or |less the same code in VB7, the availability of
inheritance provides some additional advantages. If you reconsider our
origina program with FilelOpen, FilelExit and a Red button, you can creste
derived Menu objects which aso implement the Command interface. Here,
our command interface initially contains only the Execute method:

public interface Conmmand

Copyright © 2001, by James W. Cooper

361

Sub Execute()
End interface

One difference here is that we can derive our RedButton class directly from
Button and have it also implement the Command interface.

Public Class cndButton
I nherits System W nFornms. Button
| mpl enents Command
Private frm As Form
Public Sub New()
MyBase. New
InitializeConponent

Public Sub set Form(Byval fm As Form
frm=1fm
End Sub

Public Sub Execute() I nplenments Comrand. Execut e
frm BackCol or = Col or. Red
End Sub
End Cl ass

Recall that in order to create a control that is derived from a Windows control
and which till will work with the Form designer in Visual Studio, we add
UserControl and then change the code so the control is derived from Button.
Then, after compiling the program once, the new cmdButton control will
appear on the bottom of the toolbar. Y ou can use this to create a button on the
form.

To create a Menultem that a so implements the Command interface, you can
use the MainMenu control on the toolbar and name it MenuBar. The designer
isshown in Figure 23-6

Copyright © 2001, by James W. Cooper

362

Figure 23-6 — The menu designer interface.

We derive the OpenMenu and ExitMenu classes from the Menultem class.
However, we have to add these in the program code, since there is no way to
add them in the Form Deisgner. Here is the ExitMenu class.

Public class ExitMenu
inherits Menultem
i mpl enent's Conmmand

Private frmas Form
Public Sub New(ByVval frm_ As Form
MyBase. New("Exit")
frm=frm
End Sub
Public Sub Execute() |nplenments Comrand. Execute
frmclose()
End Sub
End C ass

One other mgjor difference in VB7 isthat you don’t have to have separate
click methods for each event. Instead you can add the same event handler to
each button and menu item. This handler smply calls the commands:

Private Sub CommandHandl er (ByVal sender As bject,
ByVal e As System Event Args)
Dimcnd As Command
cnd = CType(sender, Conmand)
cnd. Execut e()
End Sub

Copyright © 2001, by James W. Cooper

Hereis how you register this method as the event handler:

"create the event handl er
Di m evh As Event Handler = _
New Event Handl er (AddressOfF conmmandhandl er)
"set up the button
bt Red. set For m(Me)
AddHandl er bt Red. i ck, evh
"define the nenu ite,s
Di m muQOpen As Fil eOpen = New Fil eOpen()
Dim muExit As exitmenu = New Exit Menu(Me)
menubar . Menul t ens. Add(rmuopen)
menubar . Menul t ens. Add(muexi t)
'connect event handler to them
AddHandl er mmuexit.Click, evh
AddHandl er mmuopen. dick, evh

The CommandHolder Interface

Now, while it is advantageous to encapsulate the action in a Command object,
binding that object into the element that causes the action (such as the menu
item or button) is not exactly what the Command pattern is about. Instead, the
Command object really ought to be separate from the invoking client so you
can vary the invoking program and the details of the command action
separately. Rather than having the command be part of the menu or button,
we can make the menu and button classes containersfor a Command object
which exists separately. We thus make these Ul elements implement a
CommandHolder interface:

Public Interface ComrmandHol der
Function get Command() As Conmand
End Interface

This smple interface smply saysthat there is away to obtain that object to
call its Execute method. We put the command object into the menu object as
part of the constructor. Thisis particularly important where we have several
ways of calling the same action, such as when we have both a Red button and
a Red menu item. In such a case, you would certainly not want the same code
to be executed inside both the Menultem and the Button classes. Instead, you
should fetch references to the same command object from both classes and
execute that command.

Then, we create cmdMenu class which implements this interface:

Public Class CndMenu
| mpl emrent s CommandHol der

Copyright © 2001, by James W. Cooper

Inherits Menultem
Protected cond As Command
Public Sub New(ByVval |bl As String, _
ByvVal cnmd As Command, ByVal evh As Event Handl er)
MyBase. New(| bl)
AddHandl er Click, evh
cond = cmd

Publ i ¢ Function get Conrand() As Conmmand _
| mpl emrent s CommandHol der . get Command
Return cond
End Function
End C ass

This actualy simplifies our program. We don't have to create a separate
menu class for each action we want to carry out. We just create instances of
the menu and pass them different Command objects.

Dimredc As RedCommand = New RedCommand(Me)
Dimexitc As ExitCommand = New Exit Command(Me)
Dim fopenc As Fil eOpenCommand = _
New Fi | eOpenConmmand()
Di m evh As Event Handl er = _
New Event Handl er (AddressOfF ConmandHandl er)
AddHandl er redButton. dick, evh
"menu itens
Di m muCpen As CmdMenu = _
New CrdMenu(" Open”, fopenc, evh)
menubar . Menul t ems. Add(nnuQOpen)
Di m muRed As CmdMenu = _
New CrdMenu(" Red", redc, evh)
menubar . Menul t ens. Add(mur ed)
Dim mmuExit As CnmdMenu = _
New CmdMenu("Exit", exitc, evh)
menuBar . Menul t ens. Add(mMmuEXxi t)

Creating the cmdBuitton class is analogous and we can use the same
RedCommand instance we just created.

redbut t on. set Conmrand(r edc)

We do still have to create separate Command objects but they are no longer
part of the user interface classes. For example, the FileCommand classis just

Copyright © 2001, by James W. Cooper

Public class Fil eOpenConmand
| mpl emrent s Command
' Command obj ect to show fil e-open dial og
Public Sub New()

MyBase. New()
End Sub

Public Sub Execute() I nplenments Comrand. Execut e
Dimfd As OpenFil eDi al og
fd = New OpenFil eDi al og()
fd. ShowDi al og()
End Sub
End C ass

Then our action method needs to obtain the actual command object from the
Ul object that caused the action and execute that command.

Publ i ¢ Sub CommandHandl er (ByVal sender As Obj ect,
ByVal e As Event Args)

Di m cmdh As CommandHol der

Dimcnmd As Command

cndh = CType(sender, CommandHol der)

cnd = cndh. get Conmand

cnd. Execut e()

End Sub

Thisis only dightly more complicated than our origina routine and again
keeps the action separate from the user interface elements.

We can see the relations between theses classes and interfaces clearly in the
UML diagramin Figure 23-7.

Copyright © 2001, by James W. Cooper

Menultem

Command
Bution CommandHolder
- -p| Execute
E ry ry getComitard
5 P + ' &
I i i
E : ExitCommand i ;
| ; : CmdMenu
| b Execute :
E] —| : getComitard
| [RedComumand RedButton | |
' [Execute getConumand
i
FileCommand
Execute
e
e
ComdHolder
Exit
thaitl

Figure 23-7 — A class structurefor three different objects which all
implement the Command interface and two which implement the
CommandHolder interface.

Here, you see that redButton and cdM enu implement the CommandHol der
interface, and that there are three instances of cmdMenu in the Ul class
ComdHolder. The diagram aso shows the classes ExitCommand,
RedCommand and FileCommand which implement the Command interface
and are instantiated in the ComdHolder Ul class. Thisisfinaly, the complete
implementation of the Command pattern that we have been inching towards.

Copyright © 2001, by James W. Cooper

367

Handling Undo Commandsin VB.NET

The UndoCommand version of the Command pattern is quite analogous. The
command interface now becomes

Public Interface Conmand

Sub Execute()

Sub Undo()

Function isUndo() As Bool ean
End Interface

We need only create one command button by deriving it from UserControl as
we did above.

Public Class CndButton
I nherits System W nForms. Button
| mpl ements CommandHol der
Private cmd As Conmand

Public Sub New()
MyBase. New
"This call is required by the Wn Form Desi gner
InitializeConponent

End Sub

Publ i c Sub set Commmand(ByVal Cond As Command)
cnd = cond

Publ i ¢ Function get Conrand() As Conmmand _
| mpl emrent s CommandHol der . get Command

Return cnd
End Functi on
End Cl ass

Then we create three instances of it for the Red, Blue and Undo buttons.

The command objects for Red, Blue and Undo differ dightly since we must
use a graphics object for drawing. Here is the BlueCommand

public class Bl ueCommand
| mpl emrent s Command

Private drawLi st As Arrayli st
Protected colr as Col or
Protected x, y , dx, dy As Integer

Copyright © 2001, by James W. Cooper

Private pic As PictureBox

Public Sub New(ByVal pict As PictureBox)
MyBase. New()
pic = pict
drawLi st = New ArraylList()
X = pic. Wdth
Colr = col or. Bl ue
dx = -20
y =0
dy = 0
End Sub
Public Sub Execute() |nplenments Comrand. Execute
Dimdl As DrawData
dl = New Drawbata(x, y, dx, dy)
drawli st . add(dl)
X = X + dx
y =y +dy
pi c. Refresh()
End Sub
Public Function isUndo() As Bool ean _
| mpl enents Conmmand. | sUndo
Return Fal se
End Function
Public Sub Undo() I nplenents Conmand. Undo
Di m I ndex As I|nteger
Dimdl As DrawData
I ndex = drawLi st. Count - 1
If Index >= 0 Then
dl = CType(drawLi st (i ndex), DrawData)
drawLi st . RemoveAt (| ndex)

x = dl.getX
y = dl.getY
End | f
pi c. Refresh()

End Sub

Public Sub draw(ByVal g As Graphics)
Dim h, w As Integer
Dimi As Integer
Dimdl As DrawbData

Di mrpen As New Pen(Col or. Fr omARGB(255, colr),

Copyright © 2001, by James W. Cooper

1)

369

h = pic. Hei ght

w = pic.Wdth

For i = 0 To drawList.Count - 1
dl = CType(drawLi st (i), DrawData)
g. drawLi ne(rpen, dl.getX, dl.getY,

dl . get X + dx, dl.getdY + h)
Next i
End Sub
End Cl ass

Then the command listener in the main form classis

Publ i ¢ Sub CommandHandl er (ByVal sender As bj ect,

ByVal e As Event Args)

Di m cmdh As ConmmandHol der

Dimcnmd As Conmmand

'get the command

cndh = CType(sender, commandhol der)

cmd = cndh. get Command

undoc. add(cnd) 'add it to the undo |ist

cnd. Execut e()

End Sub

We add a paint event handler to the picture box:

AddHandl er Pict. Paint, _
New Pai nt Event Handl er (Addr essOf pai nt handl er)

The paint handler routine just calls the red and blue command’ s draw
methods:

Publ i ¢ Sub Pai nt Handl er (ByVal sender As Object,
ByVal e As Pai nt Event Args)
Dimg As Graphics = e. Graphics
redc. draw g)
bl uec. drawm g)
End Sub

The Command Pattern in the VB Language

But there are still a couple of more ways to approach this. If you give every
control its own EventHandler class, you are in effect creating individual
command objects for each of them.

Copyright © 2001, by James W. Cooper

Thought Questions

370

1. Mouseclicks on list box items and on radio buttons aso congtitute
commands. Clicks on multi-select list boxes could aso be represented as
commands. Design a program including these features.

2. A lottery system uses arandom number generator constrained to integers
between 1 and 50. The selections are made aintervals selected by a
random timer. Each selection must be unique. Design command patterns
to choose the winning numbers each week.

Programs on the CD-ROM

\ Command\ But t onMenu

VB6 Buttons and menus using
Command pattern

\ Conmand\ Radi oComrands

VB6 program showing Commands
applied to radio buttons

\ Command\ Undo

VB6 program showing line drawing
and Undo

\ Command\ VBNet \ But t onMenu

VB7 menus and button commands

\ Command\ VBNet \ CondHol der

VB7 program showing
CommandHolder interface

\ Conmmand\ VBNet \ UndoCond

VB7 program showing line drawing
and undo

Copyright © 2001, by James W. Cooper

371

24. THE INTERPRETER PATTERN

Some programs benefit from having alanguage to describe operations they
can perform. The Interpreter pattern generally describes defining a grammar
for that language and using that grammar to interpret statements in that
language.

M otivation

When a program presents a number of different, but somewhat similar cases
it can deal with, it can be advantageous to use a smple language to describe
these cases and then have the program interpret that language. Such cases can
be as simple as the sort of Macro language recording facilities a number of
office suite programs provide, or as complex as Visua Basic for Applications
(VBA). VBA isnot only included in Microsoft Office products, but can be
embedded in any number of third party products quite smply.

One of the problems we must deal with is how to recognize when alanguage
can be helpful. The Macro language recorder smply records menu and
keystroke operations for later playback and just barely qualifiesasa
language; it may not actually have awritten form or grammar. Languages
such as VBA, on the other hand, are quite complex, but are far beyond the
capabilities of the individua application developer. Further, embedding
commercia languages such as VBA, Java or SmallTalk usualy require
substantial licensing fees, which make them less attractive to all but the
largest developers.

Applicability
As the Small Talk Companion notes, recognizing cases where an Interpreter
can be helpful is much of the problem, and programmers without formal
language/compiler training frequently overlook this approach. There are not
large numbers of such cases, but there are two general places where
languages are applicable:

1. When you need a command interpreter to parse user commands. The
user can type queries of various kinds and obtain a variety of answers.

2. When the program must parse an algebraic string. This caseisfairly
obvious. The program is asked to carry out its operations based on a

Copyright © 2001, by James W. Cooper

372

computation where the user enters an equation of some sort. This
frequently occurs in mathematical-graphics programs, where the program
renders a curve or surface based on any equation it can evaluate.
Programs like Mathematica and graph drawing packages such as Origin
work in this way.

3. When the program must produce varying kinds of output. This case
isalittle less obvious, but far more useful. Consider a program that can
display columns of datain any order and sort them in various ways.
These programs are frequently referred to as Report Generators, and
while the underlying data may be stored in arelationa database, the user
interface to the report program is usualy much simpler then the SQL
language which the database uses. In fact, in some cases, the smple
report language may be interpreted by the report program and trandated
into SQL.

A Simple Report Example

Let’s consider asimplified report generator that can operate on 5 columns of
datain atable and return various reports on these data. Suppose we have the
following sort of results from a swimming competition:

Amanda McCart hy 12 WCA 29. 28
Jami e Fal co 12 HNHS 29. 80
Meaghan O Donnel | 12 EDST 30. 00
Greer G bbs 12 CDEV 30.04
Rhi annon Jeffrey 11 Ww 30. 04
Sophi e Connol 'y 12 WAC 30. 05
Dana Hel yer 12 ARAC 30. 18

where the 5 columns arefrname, Iname, age, club and time. If we consider
the complete race results of 51 swimmers, we realize that it might be
convenient to sort these results by club, by last name or by age. Since there
are anumber of useful reports we could produce from these data in which the
order of the columns changes as well as the sorting, alanguage is one useful
way to handle these reports.

WEe Il define avery simple non-recursive grammar of the sort

Print Inane frnane club tinme Sortby club Thenby tine

For the purposes of this example, we define the 3 verbs shown above:

Print
Sort by

Copyright © 2001, by James W. Cooper

373

Thenby

and the 5 column names we listed earlier:

Fr nane
Lname

Age
C ub
Ti e

For convenience, we'll assume that the language is case insensitive. We'll
aso note that the simple grammar of this language is punctuation free, and
amounts in brief to

Print var[var] [sortby var [thenby var]]

Finaly, there is only one main verb and while each statement is a declaration,
there is no assignment statement or computational ability in this grammar.

I nter preting the Language
Interpreting the language takes place in three steps
1. Parsing the language symbols into tokens.
2. Reducing the tokens into actions.
3. Executing the actions.

We parse the language into tokens by smply scanning each statement with a
StringTokenizer and then substituting a number for each word. Usualy
parsers push each parsed token onto a stack -- we will use that technique here.
We implement the Stack class using a Vector, where we have push, pop, top
and nextTop methods to examine and manipulate the stack contents.

After parsing, our stack could look like this:

Type Token

Var Ti me <-top of stack
Verb Thenby

Var C ub

Verb Sor t by

Var Ti me

Var Cl ub

Var Fr name

Copyright © 2001, by James W. Cooper

374

| verb | Lname |

However, we quickly realize that the “verb” Thenby has no real meaning
other than clarification, and it is more likely that we' d parse the tokens and
skip the Thenby word atogether. Our initid stack then, looks like this

Ti ne

Cl ub

Sor t by

Ti ne

G ub

Fr nanme

Lnane

Print

ObjectsUsed in Parsing

Because the Interpreter pattern relies so heavily on having parsing objects
which al derived from the same base class, we will illustrate this pattern in
VB7 only. While you can write this pattern using VB6 interfaces, it is much
more difficult to present and explain.

In this parsing procedure, we do not push just a numeric token onto the stack,
but a ParseObject which has the both atype and a value property:

Public Cl ass Parse(bject

Public Const VERB As |Integer = 1000
Public Const VAR As Integer = 1010
Public Const MULTVAR As |Integer = 1020
Protected val ue As | nteger

Protected type As Integer

Public Sub new(ByVal val As Integer,
ByVal typ As Integer)

MyBase. New()
val ue = val
type = typ

End Sub

Public Function getValue() As Integer
Ret urn val ue

End Function

Public Function get_Type() As Integer
Return type

Copyright © 2001, by James W. Cooper

375

End Functi on
End Cl ass

These objects can take on the type VERB or VAR. Then we extend this
object into ParseVerb and ParseVar objects, whose value fields can take on
PRINT or SORT for ParseVerb and FRNAME, LNAME, etc. for ParseVar.
For later use in reducing the parse list, we then derive Printand Sort objects
from ParseVerb.

This gives us asmple hierarchy shown in Figure 24-1

ParseOhject
firorm defaul)
+yetType
+etvalue
fl K ParseVerh
ffrom defaul]
ParseVar +Parse'erb
ffram defaul) +addArgs
+Parse’ar +gettierb
+isLegal ﬂ +isLegal
Verh
ffrorm defaul)
+%erh
+Execute
+setData ‘K
Surt Print
ffrorm default) ffrorm default)

Figure 24-1 — A ssmple parsing hierarchy for the Interpreter
pattern.

Copyright © 2001, by James W. Cooper

376

The parsing processis just the following simple code, using the
StringTokenizer and the parse objects. Part of the main Parser classis shown
below.

Public Cl ass Parser
I mpl ement s Command
Private stk As Stack
Private actionList As Arrayli st
Private kdata As Ki dDat a
Private dat As Data
Private ptable As Listbox
Private chn As Chain

Public Sub new(ByVal line As String, ByVal k As kidData,
h ByVal pt As ListBox)
stk = New Stack()
setdata(k, pt)

actionList = New ArrayList() 'actions accunul ate
here
bui | dSt ack(!1i ne)
bui | dChai n() ‘construct interpreter chain
End Sub
Private Sub buil dStack(ByVal line As String)
"parse input tokens and build stack
Dimtok As StringTokenizer = New
StringTokeni zer (i ne)
Wil e (tok.hasMoreEl enents())
Di mt oken As Parsebject =
t okeni ze(t ok. next Token())
st k. push(token)

End Wi le
End Sub
Public Sub setData(ByVal k As KidData, ByVal pt As
I i stbox)
dat = New Dat a(k. getData())
ptabl e = pt
End Sub

Protected Function tokenize(ByVal s As String) As _
Par seChj ect
Di m obj As Parsebj ect
Dmtyp As Integer

Copyright © 2001, by James W. Cooper

377

Try
obj = getVerb(s)
typ = obj.get_Type '"this will throw null exception

Catch e As Nul | Ref erenceExcepti on
obj = getVar(s)
End Try

Ret urn obj
End Function
Protected Function getVerb(ByVal s As String) As
Par seVerb
Dimv As ParseVerb
v = New ParseVerb(s, dat, ptable)
If (v.isLegal ()) Then

Return v. get Verb(s)
El se
Ret urn Not hi ng
End If
End Function
Protected Function getVar(ByVal s As String) As
Par seVar
Dimv As ParseVar
v = New ParseVar (s)
If (v.isLegal ()) Then
Return v
End If
End Function

End Cl ass

The ParseVerb and ParseVar classes return objects with isLegal set to true if
they recognize the word.

Public Class ParseVerb
I nherits Parsebj ect
Protected Const PRINT As Integer = 100
Protected Const SORTBY As | nteger 110
Protected Const THENBY As | nteger 120
Protected args As Arrayli st
Protected kd As Data
Protected pt As I|istbox

Copyright © 2001, by James W. Cooper

378

Public Sub New(ByvVal s As String, ByVal kd_ As Data,
ByVal pt_ As ListBox)
args = New Arraylist()
s = s. ToLower ()
value = -1
type = VERB
kd = kd_
pt = pt_
Sel ect Case s
Case "print"
val ue = PRI NT
Case "sorthy"
val ue = SORTBY

End Sel ect
End Sub
Public Function getVerb(ByVal s As String) As
Par seVerb
Sel ect Case val ue
Case PRI NT
Return New Print(s, kd, pt)
Case SORTBY
Ret urn New Sort (s)
Case Else
Ret urn Not hi ng
End Sel ect

End Function

Reducing the Parsed Stack

The tokens on the stack have the form

Var
Var
Ver b
Var
Var
Var
Var
Ver b

We reduce the stack atoken at atime, folding successive Varsinto a MultVar
class until the arguments are folded into the verb objects as we show in
Figure 24-2.

Copyright © 2001, by James W. Cooper

379

Verb
Time

_I—b Multvar

Var
Club

Verb

Verb
SortBy

Var
Time

r

MultVar

Var
Club

MultVar

vao | —— “
Frname

Verb

Var
Lname

Figure 24-2 — How the stack isreduced during parsing.

When the stack reduces to a verb, this verb and its arguments are placed in an
action list; when the stack is empty the actions are executed.

Creating a Parser class that is a Command object, and executing it when the
Go button is pressed on the user interface carries out this entire process:

Protected Sub Compute_Click(ByVal sender As bject,
ByVal e As System Event Args)

Di m par As New Parser (txcommand. Text, kdat a,
| sresults)

par . Execut e()
End Sub
The parser itself just reduces the tokens as we show above. It checks for
various pairs of tokens on the stack and reduces each pair to a single one for
each of five different cases.

Copyright © 2001, by James W. Cooper

I mplementing the I nterpreter Pattern

It would certainly be possible to write a parser for this simple grammar as just
a series of if statements. For each of the six possible stack configurations,
reduce the stack until only a verb remains. Then, since we have made the
Print and Sort verb classes Command objects, we can just Execute them one
by one asthe action list is enumerated.

However the real advantage of the Interpreter pattern isits flexibility. By
making each parsing case an individual object we can represent the parse tree
asaseries of connected objects that reduce the stack successively. Using this
arrangement, we can easly change the parsing rules without much in the way
of program changes: we just create new objects and insert them into the parse
tree.

According to the Gang of Four, the names for the participating objectsin the
Interpreter pattern are:

AbstractExpression — declares the abstract Interpret operation.

Terminal Expression- interprets expressions containing any of the
terminal tokens in the grammar.

NonTerminalExpression— interprets al of the non-terminal expressions
in the grammar.

Context — contains the global information that is part of the parser, in this
case, the token stack.

Client — Builds the syntax tree from the above expression types and
invokes the Interpret operation.

The Syntax Tree

The syntax tree we construct to carry out the parsing of the stack we showed
above can be quite smple. We just need to look for each of the stack
configurations we defined and reduce them to an executable form. In fact, the
best way to implement this tree is using a Chain of Responsibility, which
passes the stack configuration along between classes until one of them
recognizes that configuration and acts on it. Y ou can decide whether a
successful stack reduction should end that pass or not—it is perfectly possible
to have several successive chain members work on the stack in a single pass.
The processing ends when the stack is empty. We see adiagram of the
individual parse chain elementsin Figure 24-3

Copyright © 2001, by James W. Cooper

381

-nextChain D..|1

InterpChain
firarn defautt)

VarMultrarParse VarVarParse VerbVarParse VerbAction

from default) from default) from default) from default)
actionlist
MultvaryarP arse VerbMultrarP arse
firarm default) firarm default)

Figure 24-3— How the classes interact which perform the parsing.

In this class structure, we start with the AbstractExpression interpreter class
InterpChain.

Public Mustlnherit Cl ass InterpChain
| mpl ements Chai n

Private nextChain As chain
Protected stk As Stack
Publ i ¢ Sub addtoChai n(Byval ¢ As Chain) _
| mpl ement s Chai n. addToChai n
next Chain = ¢ "next in chain of resp

Public Function getChain() As Interpreter.Chain _
I mpl ements I nterpreter. Chain. getChain
Ret urn next Chai n
End Function

Copyright © 2001, by James W. Cooper

382

Public Sub sendToChai n(ByVal stk_ As Stack) _
| mpl ement s Chai n. sendToChai n
stk = stk_
If (Not interpret) Then 'interpret stack
'Ot herwi se, pass request along chain
next Chai n. sendToChai n(st k)
End If

Protected Sub addArgsToVer b()
Dimv As ParseObj ect = CType(stk.pop(), parseobject)
Dimverb As ParseVerb = CType(stk.pop(), parseverb)
verb. addArgs(v)
st k. push(verb)
End Sub
Protected Function topStack(ByVal cl As Integer
ByVal c2 As Integer) As Bool ean
Di m pobj 1, pobj2 As ParseObj ect
pobj1 = stk.top
pobj 2 = st k. next Top
Return (pobj 1l.get_Type() = cl) And (pobj2.get_Type() =

c2)
End Functi on
End Cl ass

This class also contains the methods for manipulating objects on the stack.

Each of the subclasses implements the interpret operation differently and
reduces the stack accordingly. For example, the complete VarVarParse class
reduces two variables on the stack in succession to a single MultVar object:

Public Cl ass Var Var Par se
Inherits InterpChain

Public Overrides Function interpret() As Bool ean
If (topStack(ParseCbject. VAR, Parsebject.VAR)) Then
"reduce (Var Var) to Miltvar

Dimv As ParseVar = CType(stk.pop(), ParseVar)
Dim vl As ParseVar = CType(stk.pop(), ParseVar)
Dmnv As MultVar = New Mul tVar(vl, v)
st k. push(nv)

Return True

El se

Copyright © 2001, by James W. Cooper

Ret urn Fal se
End | f
End Functi on
End Cl ass

Thus, in this implementation of the pattern the stack constitutes the Context
participant. Each of the first five subclasses of InterpChain are

NonTerminal Expression participants and the ActionVerb class which moves
the completed verb and action objects to the actionList congtitutes the
Terminal Expression participant.

The client object is the Parser class which builds the stack object list from the
typed in command text and constructs the Chain of Responsibility from the

various interpreter classes. How the Parser class builds the chain is shown
below.

Public Cl ass Parser
| mpl emrent s Command
Private stk As Stack
Private actionList As Arrayli st
Private kdata As Ki dDat a
Private dat As Data
Private ptable As Listbox
Private chn As Chain

Public Sub new(ByVval line As String, ByVal k As ki dData,

ByVal pt As ListBox)
stk = New Stack()

actionList = New ArrayList() 'actions accunul ate

here
bui | dSt ack(!1i ne)
bui | dChai n() ‘construct interpreter chain

End Sub
Private Sub buil dStack(ByVal line As String)
"parse input tokens and build stack
Dimtok As StringTokenizer = New
StringTokeni zer(line)
Wil e (tok.hasMoreEl enents())
Di mt oken As Parsebject =
t okeni ze(t ok. next Token())
st k. push(token)
End Wi le
End Sub

Copyright © 2001, by James W. Cooper

Private Sub buil dChain()
chn = New VarVar Parse() 'start of chain
Dim vmvp As Var Mul t var Parse = New Var Mul t var Par se()
chn. addt oChai n(vimvp)
Dim nvvp As Ml tvar Var Parse = New Ml t var Var Par se()
vnvp. addt oChai n(nvvp)
Dimvrvp As VerbMil tvarParse = New

Ver bMul t var Par se()

mvvp. addt oChai n(vrvp)
Di m vvp As VerbVar Parse = New VerbVar Parse()
vrvp. addt oChai n(vvp)
Dimva As VerbAction = New VerbAction(actionList)
vvp. addt oChai n(va)

End Sub

The class dso sends the stack through the chain until it is empty and then
executes the verbs that have accumulated in the action list, when its Execute
method is called.

"executes parse and interpretation of command |ine
Public Sub Execute() | nplenments Command. Execute
Dimi As Integer
Wi |l e (stk.hasMoreEl enents())
chn. sendToChai n(st k)

End Wil e
'"now execute the verbs
For i = 0 To actionList.Count - 1

Dimv As Verb = CType(actionList(i), Verb)
v.set Dat a(dat, ptable)
v. Execut e()
Next i
End Sub

The fina visua program is shown below in Figure 24-4.

Copyright © 2001, by James W. Cooper

_Ioix

|print Inarne frname time sorthy Iname

Awment Haitlyn 30.93 -
Brookman PRachel 3051

Brudvig Farin 21.%24
Bullock Morgan 33.33
Coelho Colleen 325
Coia Nicole 31.94
Collins Eathy 33.11
Continlly Sophie 30.0E
Cooke Diana 32.33
Cowrles Lindsay 31.73
Danais EKarleen 30.7
Ducharme Michelle 3051
Luffy Annie 2319 _V__!

Figure 24-4 — The Interpreter pattern operating on the smple
command in the text field.

Consequences of the Interpreter Pattern

Whenever you introduce an interpreter into a program, you need to provide a
simple way for the program user to enter commands in that language. It can
be as smple as the Macro record button we noted earlier, or it can be an
editable text field like the one in the program above.

However, introducing alanguage and its accompanying grammar also
requires fairly extensive error checking for misspelled terms or misplaced
grammatical elements. This can easily consume a great deal of programming
effort unless some template code is available for implementing this checking.
Further, effective methods for notifying the users of these errors are not easy
to design and implement.

In the Interpreter example above, the only error handling is that keywords
that are not recognized are not converted to ParseObjects and pushed onto the
stack. Thus, nothing will happen, because the resulting stack sequence
probably cannot be parsed successfully, or if it can, the item represented by
the misspelled keyword will not be included.

Y ou can aso consider generating a language automatically from a user
interface of radio and command buttons and list boxes. While it may seem

Copyright © 2001, by James W. Cooper

that having such an interface obviates the necessity for alanguage at all, the
same requirements of sequence and computation still apply. When you have
to have away to specify the order of sequential operations, alanguageisa

good way to do so, even if the language is generated from the user interface.

The Interpreter pattern has the advantage that you can extend or revise the
grammar fairly easily one you have built the general parsing and reduction
tools. You can also add new verbs or variables quite easily once the
foundation is constructed.

In the smple parsing scheme we show in the Parser class above, there are
only 6 cases to consider, and they are shown as a series of smple if
statements. If you have many more than that, Design Patterns suggests that
you create a class for each one of them. This again makes language extension
easier, but has the disadvantage of proliferating lots of similar little classes.

Finaly, as the syntax of the grammar becomes more complex, you run the
risk of creating a hard to maintain program.

While interpreters are not al that common in solving general programming
problems, the Iterator pattern we take up next is one of the most common
onesyou'll be using.

Thought Questions

Design a system to compute the results of simple quadratic expressions such
as

4x"2 + 3x -4
where the user can enter x or arange of x’s and can type in the equation.

Programs on the CD-ROM

\Interpreter\VBNet VBT interpreter

\Interpreter VB6 interpreter

Copyright © 2001, by James W. Cooper

387

25. THE ITERATOR PATTERN

The Iterator is one of the smplest and most frequently used of the design
patterns. The Iterator pattern allows you to move through alist or collection
of data using a standard interface without having to know the details of the
internal representations of that data. In addition you can aso define special
iterators that perform some specia processing and return only specified
elements of the data collection.

M otivation

The Iterator is useful because it provides a defined way to move through a set
of data elements without exposing what is taking place inside the class. Since
the Iterator is an interface, you can implement it in any way that is convenient
for the data you are returning. Design Patterns suggests that a suitable
interface for an Iterator might be

Public Interface Iterator
public Function First() as Object
public Function Next() as bject
public Function isDone() as Bool ean
public Function Currentlten() as Object
End Interface

where you can move to the top of the list, move through the ligt, find out if
there are more elements and find the current list item. This interfaceis easy to
implement and it has certain advantages, but a number of other similar
interfaces are possible. For example, when we discussed the Composite
pattern, we introduced the Subords class for looping through al of the
subordinates any employee may have. The interface we used can be reduced
in VB7 termsto
Public Interface lterator

Publ i ¢ Sub noveFirst()

Publ i c Function hasMoreEl ements() as Bool ean

Publi ¢ Function nextEl ement () as Obj ect
End Interface

This aso alows us to loop through alist of zero or more elements in some
internal list structure without our having to know how that list is organized
inside the class.

One disadvantage of this Enumeration over similar constructs in C++ and
Smalltalk is the strong typing of the VB7 language, aong with its lack of

Copyright © 2001, by James W. Cooper

templates. This prevents the hasMoreElements() method from returning an
object of the actual type of the datain the collection without an annoying
requirement to change the returned Object type to the actua type. Thus, while
the Iterator or Enumeration interface is that is intended to be polymorphic,
thisis not directly possiblein VB7.

Sample VB6 Code

Let’sreuse the list of swimmers, clubs and times we described in the
Interpreter chapter, and add some enumeration capabilitiesto the KidData
class. Thisclassis essentially a collection of Kids, each with aname, club
and time, and these Kid objects are stored in a Collection.

'Class Kids

I mpl ements |terator

Private kidList As Collection
Private index As Integer

Public Sub init(Filename As String)

Dimsline As String "line read in

Di mvbf As New vbFile "file class

Dimkd As Kid "kid object

Set ki dLi st = New Col | ection

vbf . OpenFor Read Fil enane ‘open the file
Wil e Not vbf. f Eof ‘read in the lines

sline = vbf.readLi ne
Set kd = New Kid

kd.init sline 'convert to kid
ki dLi st. Add kd "Add to collection
Wnd
vbf.closeFil e
| terator_noveFirst "move to top of Ilist
End Sub

To obtain an enumeration of all the Kids in the collection, we simply use the
methods of the Iterator interface we defined above:

Private Function |terator_hasMreEl emrents() As Bool ean
Iterator_hasMreEl ements = index < kidList. Count
End Function
Private Sub Iterator_mnoveFirst()

index = 1

End Sub

Private Function lterator_nextEl ement() As Object

Set |terator_nextEl ement = kidLi st (index)

index = index + 1

Copyright © 2001, by James W. Cooper

389

End Function

Reading in the data and displaying alist of names is quite easy. We initidize
the Kids class with the filename and have it build the collection of kid
objects. Then, we treat the Kids class as an instance of Iterator and move
through it to get out the kids and display their names:

'd ass KidForm
Dim kidz As Kids 'sane as iter

Private Sub Form Load()
Dmiter As lterator "sanme as kidz
Dimkd As Kid

Set kidz = New Kids

"initialize the collection class
'and read in the data file
kidz.init App.Path + "\50free.txt"

"treat collection class as iterator
Set iter = kidz

While iter. hasMoreEl ements 'load into |istbox
Set kd = iter.nextEl enent
Li st1. Addltem kd. get Frname + " " + kd. get Lnane
Vénd
End Sub

Fetching an Iterator

Another dightly more flexible way to handle iterators in a classis to provide
the class with a getlterator method that returns instances of an iterator for that
class sdata. Thisis somewhat more flexible, because you can have any
number of iterators active simultaneoudy on the same data. Our Kidlterator
class can then be the one that implements our Iterator interface:

'Class Kidlterator

I mpl ements |terator

Private index As Integer

Private kidList As Collection
Public Sub init(col As Collection)
index = 1

Set kidList = col

Private Function |terator_hasMreEl emrents() As Bool ean
Iterator_hasMreEl emrents = index < kidList. Count
End Function

Private Sub Iterator_noveFirst()

Copyright © 2001, by James W. Cooper

390

index = 1

End Sub

Private Function lterator_nextEl ement() As Object
Set Iterator_nextEl ement = kidList(index)

index = index + 1

End Function

We can fetch iterators from the main KidList class by creating them as

needed:

Public Function getlterator() As Iterator

Dimkiter As New Kidlterator ‘create an iterator
kiter.init kidList "initialize it

Set getlterator = kiter "and return it
End Function

Filtered Iterators

While having a clearly defined method of moving through a collection is
helpful, you can also define filtered Iterators that perform some computation
on the data before returning it. For example, you could return the data ordered
in some particular way, or only those objects that match a particular criterion.
Then, rather than have alot of very similar interfaces for these filtered
iterators you simply provide a method that returns each type of enumeration,
with each one of these enumerations having the same methods.

The Filtered lterator

Suppose, however, that we wanted to enumerate only those kids who
belonged to a certain club. This necessitates a specia Iterator classthat has
access to the data in the KidData class. Thisis very simple, because the
methods we just defined give us that access. Then we only need to write an
Iterator that only returns kids belonging to a specified club:

'Class KidC ublterator

I mpl ements |terator

Private index As Integer
Private kidList As Collection
Private club As String

Public Sub init(col As Collection, clb As String)

index = 1
Set ki dLi st = col
club = clb

Copyright © 2001, by James W. Cooper

391

Private Function |terator_hasMreEl emrents() As Bool ean
Dim nore As Bool ean
Dimkd As Kid
nore = index <= ki dLi st. Count
If nmore Then

Set kd = ki dLi st (i ndex)

While more And kd.getClub <> club

Set kd = ki dLi st (i ndex)

index = index + 1
nore = i ndex <= ki dLi st. Count
end
End If

Iterator_hasMoreEl ements = nore
End Function

Private Sub Iterator_noveFirst()
index =1
End Sub

Private Function lterator_nextEl ement () As Obj ect
Set Iterator_nextEl ement = kidList(index)

index = index + 1

End Function

All of the work is done in the hasMoreElements() method, which scans
through the collection for another kid belonging to the club specified in the
constructor, and saves that kid in the kid variable, or setsit to null. Then, it
returns either true or false. The nextElement() method returns that next kid
variable.

Finally, we need to add a method to KidData to return this new filtered
Enumeration:

Public Function getCublterator(clb As String) As Iterator

Dimkiter As New Ki dCl ublterator ‘create an iterator
kiter.init kidList, clb ‘initialize it
Set getClublterator = kiter "and return it

End Function

This simple method passes the collection to the new Iterator class
kidClublterator aong with the club initials. A smple program is shown in
Figure 25-1, that displays all of the kids on the left side. It fills a combo box
with alist of the clubs, and then allows the user to select a club and fills the
right-hand list box with those belonging to a single club.

Copyright © 2001, by James W. Cooper

392

wkidust =10l x|
|M -]

Amanda McCarthy -
Jamie Falco :
Meaghan O'Donnell Sophie Connolly
Greer Gibbs Bghley McEntee
Rhiannon Jeffrey K.ate Olshefski
Sophie Conniolly rwette Landwehr
Crana Helyer Faisten Skrozki
Lindsay Marotto K.atie Druffy
Sarah Treichel
Bghley McEntee
Rachel Brookman
kichelle Ducharme ;I

Figure 25-1 — A simple program illustrated filtered enumeration.
The class diagram is shown in Figure 25-2.

Copyright © 2001, by James W. Cooper

Kids

kidLiat
index

Tterator

maoveFirat

nextElement

hashIoreElements

&

it
getlterator
getClublterator

KidClubLierator

i ex
kidList
cluh

Kid
frname
age

titme

init
getdge
getTime
getFrname
getLiame

Figure 25-2— The classes used in the Filtered enumeration.

1t

Iterator hashloreBElements

Iterator moveFirst

Iterator nextElement

393

Note that the elements method in KidData supplies an Enumeration, and the
kidClub classisin fact itself an Enumeration class.

Iteratorsin VB.NET

Y ou can write virtually the same code in VB7 as you could in VB6, with the

dight changes in how interfaces are declared. For example, the
KidClublterator we wrote for VB6 varies in VB7 only in that we change
Collections to ArrayLists, change to zero-based arrays, use constructors
instead of init methods, and can smplify the code dightly using the return

statement. The revised KidClublterator class is shown below:

Copyright © 2001, by James W. Cooper

3H

Public Class KidCl ublterator
| npl ements |terator
Private index As I|Integer
Private kidList As arrayli st
Private club As String
Public Sub New(ByRef col As Arraylist,
ByRef clb As String)
MyBase. New()
index =0
ki dLi st = col
club = clb
End Sub
Public Function hasMoreEl enents() As Bool ean _
| mpl enents Iterator. hasMoreEl enent s
Di m nore As Bool ean
Dimkd As Kid
nmore = index < kidList. Count()
If nore Then
kd = CType(kidList.Iltemindex), kid)
Wil e nore And kd.getClub <> club
kd = CType(kidList.ltem(index), kid)

index = index + 1
nore = index < KidList.Count()
End Wil e

End | f
Return nore
End Function
Public Sub moveFirst() Inplenments Iterator. nmoveFirst
index = 0
End Sub
Private Function nextElenent() As Object
I npl ement s |terator. next El enent
i ndex = index + 1
Return kidList.ltem(index - 1)
End Function
End Cl ass

However, you can aso write iterators using the standard VB.Net |Enumerator
interface, which amounts to

Functi on MoveNext () as Bool ean
Sub Reset ()

Copyright © 2001, by James W. Cooper

395

Property ReadOnly Current as Object

If you rewrite your Kidlterator class to use these methods, the code looks like
this:

Private index As Integer
Private kidList As Arrayli st
Public Sub New(ByVal col As Arraylist)
index =0
ki dLi st = col
End Sub
Public Function MyveNext() As Bool ean _
| mpl enent s | Enumer at or . MoveNext
i ndex = index + 1
Ret urn index < kidList. Count
End Function
Public Sub Reset() Inplenments _
| Enuner at or . Reset
index =0
End Sub
Public ReadOnly Property Current() As Object
| mpl ement's | Enuner at or. Current
Get
Ret urn ki dList.Iten(i ndex)
End Get
End Property
End Cl ass

If you have a class like our Kids class which can return an instance of an
enumerator, it is said to implement the |Enumerable interface:

Public Function GetEnumerator() As |Enumerator _
| mpl emrent s | Enuner abl e. Get Enuner at or

Conseguences of the lterator Pattern

1. Data modification. The most significant question iterators may raiseis
the question of iterating through data while it is being changed. If your
code is wide ranging and only occasionally moves to the next element, it
is possible that an element might be added or deleted from the underlying

Copyright © 2001, by James W. Cooper

39

collection while you are moving through it. It is also possible that another
thread could change the collection. There are no smple answers to this
problem. Y ou can make an enumeration thread-safe by declaring the loop
to be synchronized, but if you want to move through aloop using an
Enumeration, and delete certain items, you must be careful of the
conseguences. Deleting or adding an element might mean that a particular
eement is skipped or accessed twice, depending on the storage
mechanism you are using.

2. Privileged access. Enumeration classes may need to have some sort of
privileged access to the underlying data structures of the original
container class, so they can move through the data. If the datais stored in
a Vector or Hashtable, thisis pretty easy to accomplish, but if itisin
some other collection structure contained in a class, you probably have to
make that structure available through a get operation. Alternatively, you
could make the Iterator a derived class of the containment class and
access the data directly. The friend class solution available in C++ does
not apply in Java. However, classes defined in the same module as the
containing class do have access to the containing classes variables.

3. External versus Internal Iterators. The Design Patterns text describes
two types of iterators: external and internal. Thus far, we have only
described externd iterators. Interna iterators are methods that move
through the entire collection, performing some operation on each element
directly, without any specific requests from the user. These are less
common in Java, but you could imagine methods that normalized a
collection of data valuesto lie between 0 and 1 or converted al of the
strings to a particular case. In general, externa iterators give you more
control, because the calling program accesses each element directly and
can decide whether to perform an operation on.

Thought Questions

The Ligtlterator interface in Java 1.2 applies to objects of type List. It alows
you to move through alist in either direction and modify elements of the list.
Rewrite the J2lterator to allow and use these additional features.

Copyright © 2001, by James W. Cooper

397

Programs on the CD-ROM

\lterator\Sinplelter VB6 kid list using Iterator

\Iterator\Filteredlterator VB6 filtered iterator by team name

\Iterator\Filteredlterator\VBNet | VVB7 filtered iterator

Copyright © 2001, by James W. Cooper

398

26. THE MEDIATOR PATTERN

When a program is made up of a number of classes, the logic and
computation is divided logically among these classes. However, as more of
these isolated classes are devel oped in a program, the problem of
communication between these classes become more complex. The more each
class needs to know about the methods of another class, the more tangled the
class structure can become. This makes the program harder to read and harder
to maintain. Further, it can become difficult to change the program, since any
change may affect code in severd other classes. The Mediator pattern
addresses this problem by promoting looser coupling between these classes.
Mediators accomplish this by being the only class that has detailed
knowledge of the methods of ather classes. Classes send inform the mediator
when changes occur and the Mediator passes them on to any other classes
that need to be informed.

An Example System

Let’'s consider a program that has several buttons, two list boxes and a text
entry field as shownin Figure 26-1

E%Medialm demo =l E3
Amanda WcCarthy =
Jamie Falco
Meaghan O'Donnell
Greer Gibhs I
Rhiannaon Jeffrey
Sophie Connally
Dana Helyer
Lindsay Marotto
Sarah Treichel
|\Ashley McEntee
Rachel Brookman
Michelle Ducharme
Karleen Danais __ﬂ

Figure 26-1 — A ssimple program with two lists, two buttonsand a
text field which will interact.

When the program starts, the Copy and Clear buttons are disabled.

Copyright © 2001, by James W. Cooper

399

1. When you sdlect one of the namesin the left-hand list box, it is copied
into the text field for editing, and the Copy button is enabled.

2. When you click on Copy, that text is added to the right hand list box, and
the Clear button is enabled as we see in Figure 26-2.

EE% Mediator demo !E
|Lindsay Maratta : ;

Amanda McCarhy Lind=ay Marotto
Jamie Falco
Meaghan O'Donnell
Greer Gibbs
Rhiannon Jeffrey
Saphie Cannally

Dana Helyer

|»

Lindsay Marotto
{Sarah Treichel

|Ashley McEntee

iRacheI Brookman

[Michelle Ducharme

[Karleen Danais]
|

Figure 26-2 — When you select a name the buttons are enabled, and
when you click on Copy , the nameis copied to theright list box.

3. If you click on the Clear button, the right hand list box and the text field

are cleared, the list box is deselected and the two buttons are again
disabled.

User interfaces such as this one are commonly used to select lists of people or
products from longer lists. Further, they are usually even more complicated
than this one, involving insert, delete and undo operations as well.

| nter actions between Controls

The interactions between the visual controls are pretty complex, even in this
simple example. Each visual object needs to know about two or more others,
leading to quite atangled relationship diagram as shown in Figure 26-3.

Copyright © 2001, by James W. Cooper

name text

{ Copy (@&

Clear

Kid list

Picked list

Figure 26-3 — A tangled web of interactions between classesin the
simple visual interface we presented in Figures 20.1 and 20.2.

The Mediator pattern smplifies this system by being the only classthat is
aware of the other classes in the system. Each of the controls that the
Mediator communicates with is called a Colleague. Each Colleague informs
the Mediator when it has received a user event, and the Mediator decides
which other classes should be informed of this event. This smpler interaction
schemeisillustrated in Figure 26-4.

name text

Kid list

Copy

Clear

Picked list

Mediator

Figure 26-4 — A Mediator class simplifiestheinteractions between

classes.

Copyright © 2001, by James W. Cooper

401

The advantage of the Mediator is clear-- it isthe only class that knows of the
other classes, and thus the only one that would need to be changed if one of
the other classes changes or if other interface control classes are added.

Sample Code

Let’'s consider this program in detail and decide how each control is
constructed. The main difference in writing a program using a Medator class
isthat each class needs to be aware of the existence of the Mediator. Y ou start
by creating an instance of the Mediator and then pass the instance of the
Mediator to each classin its constructor.

Set med = New Medi at or

nmed. regi st er Ki dLi st | sKi ds
med. r egi st er Pi cked | sPi cked
med. r egi st er Text txNane

med. init

Our two buttons use accompanying Command pattern classes and register
themselves with the Mediator during their initidization. Here isthe
CopyCommand class:

'O ass CopyConmand

| npl enents Command
Private med As Medi ator

Public Sub init(nd As Mediator, cpBut As ConmandButt on)

Set med = nd
nmed. r egi st er Copy cpBut
End Sub

Private Sub Conmmand_Execute()
med. copyd i cked
End Sub

The Clear button is exactly analogous.

The Kid name list is based on the one we used in the last two examples, but
expanded so that the data loading of the list takes place in the Mediator’ s init
method.

Public Sub init()

"init method for Mediator

Dim kds As New Ki ds "Kids class instabce
Dimkd As Kid

Dmiter As |terator

Copyright © 2001, by James W. Cooper

402

kds.init App.Path + "\50free.txt" ‘'read in file
Set iter = kds.getlterator ‘get iterator
Wil e iter. hasMoreEl ements "put names in list box
Set kd = iter.nextEl ement
ki dLi st. Addl t em kd. get Frname + " " + kd. get Lnane
Vénd
cleardicked
End Sub

The text field is even smpler, since al we have to do it does isregister it with
the mediator. The complete Form_L oad event for the list box is shown below
with all the registration and command classes

Private Sub Form Load()

Set ned = New Medi at or ‘create nedi ator

Set cpyCnd = New CopyConmmand ' copy conmand cl ass
cpyCnd.init nmed, btCopy

Set clrCnd = New C earConmand ' clear conmand cl ass
clrCd.init ned, btd ear

ned. regi st er Ki dLi st | sKi ds "register lists

med. r egi st er Pi cked | sPi cked "and text box

nmed. r egi st er Text txName

med. i nit "set all to beginning state
End Sub

The genera point of all these classesis that each knows about the Mediator
and tells the Mediator of its existence so the Mediator can send commandsto
it when appropriate.

The Mediator itsalf is very smple. It supports the Copy, Clear and Select
methods, and has register methods for each of the controls:

Option Explicit

'O ass Medi ator

Private copyButton As ComrandButton

Private cl earButton As ComuandButton

Private txtBox As Text Box

Private kidList As ListBox

Private pickedLi st As ListBox

Publ i ¢ Sub registerCopy(cpBut As ConmandButt on)
Set copyButton = cpBut ' copy button

End Sub

Public Sub copydicked()

pi ckedLi st . Addl t em t xt Box. Text 'add text to picked |ist

Copyright © 2001, by James W. Cooper

cl ear Button. Enabl ed = True "enabl e clear button
kidList.Listlndex = -1 "deselect list item
End Sub
Public Sub registerd ear(clrBut As CommandButton)
Set clearButton = clrBut 'clear button
End Sub
Public Sub cleardicked()
t xt Box. Text = "" 'clear text bos
copyButton. Enabl ed = Fal se ' di sabl e buttons
cl ear Button. Enabl ed = Fal se
pi ckedLi st. C ear "clear picked list
kidList.Listlndex = -1 "deselect list item
End Sub
Public Sub registerText(txt As Text Box)
Set txtBox = txt "text box
End Sub
Public Sub registerKidList(klist As ListBox)
Set kidList = klist "kid list
End Sub
Public Sub registerPicked(plist As ListBox)
Set pickedList = plist " picked Iist

End Sub
Public Sub Iistdicked()
Dmi As Integer
i = kidList.Listlndex
If (i >= 0) Then

t xt Box. Text = ki dLi st. Text
End If
copyBut t on. Enabl ed = True
End Sub
Public Sub init()
"init nmethod for Mediator
Di m kds As New Ki ds "Kids class instabce
Dimkd As Kid
Dmiter As Iterator

kds.init App.Path + "\50free.txt" ‘'read in file

Set iter = kds.getlterator ‘get iterator

Wil e iter.hasMoreEl enents '
Set kd = iter.nextEl ement

ki dLi st. Addl tem kd. get Frnane + " " + kd. get Lnane
end
cleardicked "Set toinitial state
End Sub

Copyright © 2001, by James W. Cooper

put nanes in |ist box

403

Initialization of the System

One further operation that is best delegated to the Mediator is the
initialization of all the controls to the desired state. When we launch the
program, each control must be in a known, default state, and since these states
may change as the program evolves, we simply create an init method in the
Mediator, which sets them dl to the desired state. In this case, that state is the
same asis achieved by the Clear button and we simply call that method:

cleardicked "Set to initial state

Mediatorsand Command Objects

The two buttons in this program use command objects. Just as we noted
earlier, this makes processing of the button click events quite simple:

Private Sub btC ear_dick()
ned. cl ear O i cked
End Sub

Private Sub bt Copy_dick()
med. copyd i cked
End Sub

Private Sub |sKids_dick()
ned. listdicked
End Sub

In either case, however, this represents the solution to one of the problems we
noted in the Command pattern chapter; each button needed knowledge of
many of the other user interface classesin order to execute its command.
Here, we delegate that knowledge to the Mediator, so that the Command
buttons do not need any knowledge of the methods of the other visual objects.
The class diagram for this program is shown in Figure 26-5, illustrating both
the Mediator pattern and the use of the Command pattern.

Copyright © 2001, by James W. Cooper

405

Mediator
firom defaulf)

i ™
/ Y
! .

! 0.4 -cledButton 0.1 -moveBution 0.1 et 0.1 -picked
ClearButton MoveButton KTextField PickedKidsList
from defut fromm defaut from defaul] from defau]

0.1 |-klist
KidList
from default)

0.1 | kdata

KidData
from default)

Figure 26-5 — The inter actions between Command objects and the
Mediator object.

The Mediator in VB.Net

Y ou can create a Mediator in much the same way in VB7, but can take
advantage of inheritance to make you work easier. The Copy and Clear
buttons and the Kid name list can al be subclassed from the standard controls
so that they support the Command interface and register themselves with the
Mediator during the constructor. This makes the derived button classes very
easy to write:

Public Cl ass CopyButton
I nherits Button
| mpl enents Command
Private ned As Medi at or
"derived class for copy button

Public Sub New(ByVal nd As Medi ator)

MyBase. New()
med = nd ‘copy in Mediator
med. r egi st er (Me) "register button

"tell the Mediator we've been clicked
Public Sub Execute() I nplenments Comrand. Execut e
med. copyd i cked()

Copyright © 2001, by James W. Cooper

End Sub
End Cl ass

Further, since VB7 supports polymorphism, we can have aregister method in
the Mediator with different argument types for each control we want to
register. These methods are shown below

Public Overl oads Sub register(ByVal cpb As CopyButton)
cpbutton = cpb
End Sub
Public Overl oads Sub register(ByVal clr As
Cl ear Butt on)
clrbutton = clr
End Sub
Public Overl oads Sub register(Byval kd As
Ki dsLi st Box)
klist = kd

Public Overl oads Sub register(ByVal pick As ListBox)
pklist = pick

End Sub

Public Overloads Sub register(ByVal tx As Text Box)
txkids = tx

End Sub

The remainder of the Mediator manipulates the various controls as before.

Publ i c Sub ki dPi cked()
‘copy text fromlist to textbox
t xki ds. Text = klist. Text
'copy button enabl ed
cpbutton. Enabl ed = True

End Sub

Publ i c Sub copyCicked()
‘copy nanme to picked I|ist
pklist.Itenms. Add(t xki ds. Text)
‘cl ear button enabl ed
clrbutton. Enabl ed = True
klist.Selectedl ndex = -1

End Sub

Copyright © 2001, by James W. Cooper

407

Public Sub cleardicked()
"di sabl e buttons and clear |ist
cpbutton. Enabl ed = Fal se
clrbutton. Enabl ed = Fal se
pklist.ltems. Clear()

End Sub

Initialization

When we create the controls, we start by creating an instance of the Mediator.
Then as the buttons and list box controls are created, they can register
themselves inside the constructor for each derived control.

med = New Medi at or ()
“This call is required by the Wn Form Desi gner.
InitializeConponent ()
‘register remaining controls
med. r egi st er (t xNane)
med. r egi st er (| spi cked)
med.init() "“initialize nediator

During initialization, the Mediator reads in the data file and puts the kid's
names in the kidList list box. Note that the Kids class does the reading as
before, using the vbFile class, and that the Mediator just provides the
filename and loads the list once thefile is read.

Public Sub init()
Dim kd As Kid
clearClicked() 'set to defaults
‘read in datafile and load |i st
kds = New Ki ds(Application.StartUpPath & _
"\ 50free.txt")
Dimiter As Iterator = kds.getlterator
"Note we use the iterator here
Vil e (iter.hasMoreEl ements)
kd = CType(iter.nextEl enent, Kid)
klist.ltens. Add(kd. get Frname + _
+ kd. getl nane)
End Wil e
End Sub

Copyright © 2001, by James W. Cooper

408

Handling the Events for the New Controls

We create the new classes CopyButton, ClearButton and KidListBox, and
rather than declaring them as WithEvents, we smply add an event handler to
each of them which is the same simple handler in al 3 cases:

AddHandl er bt Copy.click, _

New Syst em Event Handl er (Addr essOf ConmandHandl er)
AddHandl er btClear.click, _

New Syst em Event Handl er (Addr essOf ConmmandHandl er)
AddHandl er | sKi ds. Sel ect edl ndexChanged, _

New System Event Handl er (Addr essOf ConmmandHandl er)

Now, the two buttons clicks and selecting akid in the Listbox all call the
CommandHandler. Since al three classes implement the Command interface,
our command handler reduces to just two lines of code:

Publ i ¢ Sub CommandHandl er (ByVal sender As Obj ect,
ByVal e As System Event Args)
Dimcnmd As Command = CType(sender, Command)
cmd. Execut e()
End Sub

Consequences of the M ediator Pattern

1. The Mediator pattern keeps classes from becoming entangled when
actions in one class need to be reflected in the state of another class.

2. Using a Mediator makes it easy to change a program’s behavior. For
many kinds of changes, you can merely change or subclass the Mediator,
leaving the rest of the program unchanged.

3. You can add new controls or other classes without changing anything
except the Mediator.

4. The Mediator solves the problem of each Command object needing to
know too much about the objects and methods in the rest of a user
interface.

5. The Mediator can become a“god class’, having too much knowledge of
therest of he program. This can make it hard to change and maintain.
Sometimes you can improve this situation by putting more of the function
into the individual classes and less into the Mediator. Each object should
carry out it’'s own tasks and the Mediator should only manage the
interaction between objects.

Copyright © 2001, by James W. Cooper

6. Each Mediator is a custom-written class that has methods for each
Colleague to call and knows what methods each Colleague has available.
This makes it difficult to reuse Mediator code in different projects. On the
other hand, most Mediators are quite simple and writing this code is far
easier than managing the complex object interactions any other way.

Single I nterface Mediator s

The Mediator pattern we have described above acts as a kind of Observer
pattern, observing changes in each of the Colleague elements, with each
element having a custom interface to the Mediator. Another approach is to
have a single interface to your Mediator, and pass that method various objects
that tell the Mediator which operations to perform.

In this approach, we avoid registering the active components, and create a
single action method with different polymorphic arguments for each of the
action elements.

public Sub action(m As MyveButton)

public Sub action(clrButton As C earButton)
public Sub action(klst as KidList)

Thus, we need not register the action objects, such as the buttons and source
list boxes, since we can pass them as part of generic action methods.

In the same fashion, you can have a single Colleague interface that each
Coalleague implements, and each Colleague then decides what operation it is
to carry out.

| mplementation Issues

Mediators are not limited to use in visua interface programs, however, it is
their most common application. Y ou can use them whenever you are faced
with the problem of complex intercommunication between a number of
objects.

Programs on the CD-ROM

\ Medi at or VB6 Mediator

\ Medi at or \ VBNet VB7 Mediator

Copyright © 2001, by James W. Cooper

410

27. THE MEMENTO PATTERN

In this chapter, we discuss how to use the Memento pattern to save data about
an object so that you can restore it later. For example, you might like to save
the color, size, pattern or shape of objects in adrafting or painting program.
Idedlly, it should be possible to save and restore this state without making
each object take care of thistask, and without violating encapsulation. Thisis
the purpose of the Memento pattern.

M otivation

Objects normally shouldn’t expose much of their interna state using public
methods, but you would till like to be able to save the entire state of an
object because you might need to restore it later. In some cases, you could
obtain enough information from the public interfaces (such as the drawing
position of graphical objects) to save and restore that data. In other cases, the
color, shading, angle and connection relationship to other graphical objects
need to be saved and this information is not readily available. This sort of
information saving and restoration is common in systems that need to support
Undo commands.

If al of the information describing an object is available in public variables, it
is not that difficult to save them in some external store. However, making
these data public makes the entire system vulnerable to change by external
program code, when we usually expect data inside an object to be private and
encapsulated from the outside world.

The Memento pattern attempts to solve this problem in some languages by
having privileged access to the state of the object you want to save. Other
objects have only a more restricted access to the object, thus preserving their
encapsulation. In VB6 there is no such thing as privileged access, however,
and we will seethisin only true to alimited degreein VBY7.

This pattern defines three roles for objects:
1. TheOriginator isthe object whose state we want to save.
2. TheMemento is another object that saves the state of the Originator.

3. The Caretaker manages the timing of the saving of the state, savesthe
Memento and, if needed, uses the Memento to restore the state of the
Originator.

Copyright © 2001, by James W. Cooper

411

| mplementation

Saving the gstate of an object without making al of its variables publicly
availableis tricky and can be done with varying degrees of successin various
languages. Design Patterns suggests using the C++ friend construction to
achieve this access, and the Smalltalk Companion notesthat it is not directly
possible in Smalltalk. In Java, this privileged access is possible using the
package protected mode. In V B6, like Smalltalk, thisis not directly possible.
Instead we will define a property to fetch and store the important internal
values, and make use of no other properties for any purpose in that class.

Sample Code

Let’s consider a simple prototype of a graphics drawing program that creates
rectangles, and allows you to select them and move them around by dragging
them with the mouse. This program has a toolbar containing three buttons:
Rectangle, Undo and Clear aswe seein Figure 27-1.

. Memento Drawing i -10] x|

| Rect Undo | Clear|

Figure 27-1 — A simple graphics drawing program that allows you
to draw rectangles, undo their drawing and to clear the screen.

The Rectangle button is a toolbar ToggleButton which stays selected until
you click the mouse to draw a new rectangle. Once you have drawn the
rectangle, you can click in any rectangle to select it as we seein Figure 27-2.

Copyright © 2001, by James W. Cooper

412

. Memento Drawing

. _{ol x|
Rect | Undo | Clearl

Figure 27-2 — Selecting a rectangle causes “ handles’ to appear
indicating that it is selected and can be moved.

and once it is selected, you can drag that rectangle to a new position using the
mouse as shown in Figure 27-3.

w. Memento Drawing

. _{of x|
Rect | Undo | Clearl

Figure 27-3 — The same selected rectangle after dragging.

The Undo button can undo a succession of operations. Specificaly, it can
undo moving arectangle and it can undo the creation of each rectangle.

Copyright © 2001, by James W. Cooper

413

There are 5 actions we need to respond to in this program:
Rectangle button click

Undo button click

Clear button click

Mouse click

a ~ WD P

Mouse drag.

The three buttons can be constructed as Command objects and the mouse
click and drag can be treated as commands as well. Since we have a number
of visual objects which control the display of screen objects, this suggests an
opportunity to use the Mediator pattern, and that is, in fact, the way this
program is constructed.

We will create a Caretaker class to manage the Undo action list; it can keep a
list of the last n operations so that they can be undone. The Mediator
maintains the list of drawing objects and communicates with the Caretaker
object aswell. In fact, since there could be any number of actions to save and
undo in such a program, a Mediator is virtually required so that thereis a
single place to send these commands to the Undo list in the Caretaker.

In this program we save and undo only two actions: creating new rectangles
and changing the position of rectangles. Let’s start with our visRectangle
class which actually draws each instance of the rectangles:

'O ass VisRectangl e

Dimx As Integer, y As Integer, w As Integer, h As Integer
Private rect As Rectangle

Private sel ected As Bool ean

Public Sub init(xp As Integer, yp As |nteger)

X = Xp ' save coordi nat es

y =yp

w = 40 "defaul t size

h = 30

saveAsRect 'keep in rectangle class as well

End Sub

"Property nethods used to save and restore state
Property Get rects() As Rectangle

Set rects = rect

End Property

Property Set rects(rc As Rectangle)

X = rc.x

y =rc.y

Copyright © 2001, by James W. Cooper

414

W=rcCc.W
h=rc.h
saveAsRect

End Property
Public Sub set Sel ected(b As Bool ean)
selected = b

'save values in Rectangle class
Private Sub saveAsRect ()

Set rect = New Rectangle

rect.init x, y, w, h

End Sub

"draw rectangl e and handl es

Public Sub draw(Pic As PictureBox)
"draw rectangl e

Pic.Line (x, y)-(x +w, y +h), , B

I f selected Then "draw handl es
Pic.Line (x +w/ 2, vy - 2)- _
(x +w/ 2+4, y +2), , BF

Pic.Line (x - 2, y + h/ 2)- _
(x +2, y+h/ 2+ 4), , BF
Pic.Line (x + (w/ 2), y +h - 2)- _
(x +(w/ 2) +4, y +h+2), , BF
Pic.Line (x + (w- 2), vy + (h/ 2))- _
(x +(w+2), y+(h/ 2 +4), , BF
End | f
End Sub

Public Function contains(xp As Integer, yp As Integer) As
Bool ean

contains = rect.contains(xp, yp)

End Function

Public Sub nove(xpt As Integer, ypt As Integer)
X = xpt

y = ypt

saveAsRect

End Sub

We aso make use of a Rectangle class which contains Get and Let properties
for the x, y, w and h values and a contains method.

Drawing the rectangle is pretty straightforward. Now, let’s look at our simple
Memento class that we use to store the state of arectangle:

'C ass Menento
Private x As Integer, y As |Integer
Private w As Integer, h As Integer

Copyright © 2001, by James W. Cooper

415

Private rect As Rectangle

Private visRect As Vi sRectangle

Public Sub init(vrect As Vi sRectangle)
'save the state of a visual rectangle
Set visRect = vrect

Set rect = vrect.rects

X = rect.x
y =rect.y
W =rect.w
h =rect.h

End Sub

Public Sub restore()
"restore the state of a visual rectangle

rect.x = x

rect.y =y

rect.h = h

rect.w=w

Set visRect.rects = rect
End Sub

When we create an instance of the Memento class, we use the init method to
pass it the visRectangle instance we want to save. It copies the size and
position parameters and saves a copy of the instance of the visRectangle
itself. Later, when we want to restore these parameters, the Memento knows
which instance it has to restore them to and can do it directly, aswe seein the
restore() method.

The rest of the activity takes place in the Mediator class, where we save the
previous state of the list of drawings as an integer on the undo list:

Public Sub createRect(ByVal x As Integer, ByVal y As |nteger)
Di m count As Integer
Dimv As Vi sRectangle
unpi ck "make sure no rectangle is selected
If startRect Then 'if rect button is depressed
count = draw ngs. count
caretakr.add count 'Save previous drawing |list size

Set v = New Vi sRectangl e ‘create a rectangle
v.init x, y
drawi ngs. add v "add new el enent to list
startRect = Fal se ‘done with this rectangle
rect.set Sel ected Fal se "unclick button
canvas. Refresh
El se
pi ckRect x, y 'if not pressed look for rect to select
End If
End Sub

Copyright © 2001, by James W. Cooper

416

On the other hand, if you click on the panel and the Rectangle button has not
been selected, you are trying to select an existing rectangle. Thisis tested
here:

Public Sub pickRect(x As Integer, y As Integer)
'save current selected rectangle
'to avoid doubl e save of undo
DimlastPick As Integer
Dimv As VisRectangle
Dimi As Integer
I f sel ectedlndex > 0 Then
| ast Pi ck = sel ect edl ndex
End | f
unpi ck 'undo any sel ection
"see if one is being selected
For i = 1 To draw ngs. count
Set v = draw ngs(i)
If v.contains(x, y) Then 'did click inside a rectangle
sel ectedl ndex = i ‘save it
rect Sel ected = True
I f sel ectedlndex <> | astPick Then 'but not tw ce
car et akr. renmenber Posi ti on draw ngs(sel ect edl ndex)

End | f
v. set Sel ected True "turn on handl es
repai nt "and redraw
End | f
Next i
End Sub

The Caretaker class remember the previous position of the rectanglein a
Memento object, and adds it to the undo list.

Publ i c Sub remenber Position(vrect As VisRectangl e)
Dm m As Menento
Set m = New Menento
minit vrect
undoLi st.add m
End Sub

The Caretaker class manages the undo list. Thislist is a Collection of integers
and Memento objects. If the value is an integer, it represents the number of
drawings to be drawn at that instant. If it isa Memento, it represents the
previous state of a visRectangle that isto be restored. In other words, the
undo list can undo the adding of new rectangles and the movement of existing
rectangles.

Our undo method simply decides whether to reduce the drawing list by one or
to invoke the restore method of a Memento:

Copyright © 2001, by James W. Cooper

417

Publ ic Sub undo()
Di m obj As Object
I f undoList.count > 0 Then
‘get last elenment in undo Iist
Set obj = undolLi st (undoLi st. count)
undolLi st. renove undolLi st. count "and renove it
If Not (TypeOF obj Is Menmento) Then
renovelast "renmove | nteger
El se
renove obj 'renove Memento
End |f
End | f
End Sub

Now this Undo method requires that al the elementsin the Collection be
objects, rather than a mixture of integers and Memento objects. So we create
asmall wrapper class to convert the integer count into an object:

'Cass intd ass

"treats an integer as an object
Private intg As Integer

Public Sub init(a As Integer)
intg = a

End Sub

Property Get integ() As Integer
integ = intg

End Property

Instances of this class are created when we add an integer to the undo list:

Public Sub add(intCbj As Integer)
Dminteg As intd ass
Set integ = New i ntC ass
integ.init intQObj
undolLi st. add integ
End Sub

The two remove methods either reduce the number of drawings or restore the
position of arectangle:

Private Sub renovelLast ()

dr awi ngs. renove draw ngs. count
End Sub

Private Sub renove(obj As Menent o)
obj.restore

End Sub

Copyright © 2001, by James W. Cooper

418

A Cautionary Note

While it is helpful in this example to call out the differences between a
Memento of a rectangle position and an integer specifying the addition of a
new drawing, thisisin genera an absolutely terrible example of OO
programming. Y ou should never need to check the type of an object to decide
what to do with it. Instead you should be able to call the correct method on
that object and have it do the right thing.

A more correct way to have written this example would be to have both the
intClass and what we are calling the Memento class both have their own
restore methods and have them both be members of a general Memento class
(or interface). We take this approach in the State example pattern that follows
in the next chapter.

Command Objectsin the User Interface

We can aso use the Command pattern to help in smplifying the code in the
user interface. The three buttons are tool bar buttons which are of the class
MSComctlLib.Button. We create paralel command object classes for each of
the buttons, and have them carry out the actions in conjunction with the

mediator:
Private Sub Form Load()

Set med = New Medi at or ‘create the nediator
nmed. init

nmed. r egi st er Canvas Pic

Set rectB = New RectButton ‘rectangl e button
rectB.init med, tbar.Buttons(1)

Set ubutn = New UndoButton ‘undo button
ubutn.init med, tbar.Buttons(2)

Set clrb = New Cl earButton ‘clear button

clrb.init ned

Set commands = New Col l ection 'nmake a list of them
commands. add rectB

conmands. add ubutn

comuands. add clrb

End Sub

Then the command interpretation devolves to just afew lines of code, since
all the buttons call the same click event aready:

Private Sub tbar_Buttondick(ByVval Button As
MSContt | Li b. Button)

Dmi As Integer

Dimcmd As Command

i = Button. | ndex 'get which button
Set cnmd = commands(i) 'get that command

Copyright © 2001, by James W. Cooper

419

cnd. Execut e "execute it
End Sub

The RectButton command class is where most of the activity takes place

'Class RectButton

I mpl erent s Command

Private bt As MsSConttl Lib. Button
Private med As Medi at or

Public Sub init(nmd As Mediator, but As MsConctl Li b. Button)

Set bt = but
Set nmed = nd
nmed. r egi st er Rect Button Me

Private Sub Conmmand_Execute()
If bt.Value = tbrPressed Then
nmed. st art Rect angl e

End If
End Sub
Public Sub set Sel ected(sel As Bool ean)
If sel Then
bt.Val ue = tbrPressed
El se
bt. Val ue = tbrUnpressed
End If
End Sub

Handling M ouse and Paint Events

We aso must catch the mouse down, up and move events and pass them on to
the Mediator to handle:

Private Sub Pic_MuseDown(Button As Integer, _
Shift As Integer, x As Single, y As Single)
mouse_down = True
nmed. createRect x, y
End Sub
Private Sub Pic_MuseMwve(Button As |nteger, _
Shift As Integer, x As Single, y As Single)
I f nouse_down Then
ned.drag x, y
End If
End Sub
Private Sub Pic_MuseUp(Button As Integer, Shift As Integer,
x As Single, y As Single)
nmouse_down = Fal se
End Sub

Copyright © 2001, by James W. Cooper

420

Whenever the Mediator makes a change, it calls for arefresh of the picture
box, which in turn calls the Paint event. We then pass this back to the
Mediator to draw the rectangles in their new positions.

Private Sub Pic_Paint()
med. reDraw Pic
End Sub

The complete class structure is diagrammed in Figure 27-4.

ainterfaces

Caretaker
Command Mediator 0.1 from defaul)
fromn defauf] 0.1 from defauff) -caretaker - drawings
§ .
e mecl 0.1 -undoList

TV

N

undo list cnnsistsl_

i ~ 0. \selec{edRec‘tangle of Mementos
. .
ClearButton RectButton UndoButton visRectangle
{rom default) {rom default) firom default) {rom default)
YBC‘tHB.j"-\-.. Memento
firom default)
{local to package}
+hemento

+restore

Figure 27-4 — The UML diagram for the drawing program using a
Memento

WritingaMementoin VB.NET

We can write dmost the same code in VB7. However, while VB7 does not
provide completely privileged access to class variables or properties, it does
provide the friend keyword, which restricts access to a property or variable to

code in the current project. For our visRectangle class, we can declare the rect
property as having a friend modifier

"Property nethods used to save and restore state
Friend Property rects() As vbpatterns. Rectangle

Set
x = val ue. x
y = value.y
w = val ue. w
h = val ue. h
saveAsRect ()

Copyright © 2001, by James W. Cooper

421

End Set
Cet
Return rect
End Get
End Property

Thisis amost the same as having public access to the method, with the
exception that if you compile the code into alibrary, these methods are not
visible. So while this friend property is much less restrictive than the C++
friend modifier, it is dightly restrictive.

The remainder of the program can be written in much the same way as for
VB6. The visRectangle class s draw method is only dightly different since it
uses the Graphics object,

"draw rectangl e and handl es
Public Sub draw(ByVal g As Graphics)
"draw rectangl e

g. DrawRect angl e(bpen, x, y, w, h)

If selected Then " draw handl es
g.fillrectangl e(bbrush, x + w/ 2, y - 2, 4, 4)
g. Fil I Rectangl e(bbrush, x - 2, y + h/ 2, 4, 4)
g. Fill Rectangl e(bbrush, x + (w/ 2), vy + h - 2, 4, 4)
g. Fill Rectangl e(bbrush, x + (w- 2), y + (h/ 2), 4, 4)
End | f
End Sub

but the Memento saves and restores a Rectangle object in much same way.

Y ou can build atoolbar and create ToolbarButtons in VB7 using the IDE, but
if you do, it is difficult to subclass them to make them into command objects.
There are two possible solutions. First, you can keep a parallel array of
Command objects for the RectButton, the UndoButton and the Clear button
and call them in the tall bar click routine.

Y ou should note, however, that the toolbar buttons do not have an Index
property and you cannot just ask which one has been clicked by its index and
relate it to the command array. Instead, we can use the getHashCode property
of each tool button to get a unique identifier for that button, and keep the
corresponding command objects in a Hashtable keyed off these button hash
codes. We construct the Hashtable as follows:

med = New Medi at or (pi c) "create Mediator
comands = New Hashtable() 'and Hash table

Copyright © 2001, by James W. Cooper

422

"create the command obj ects

Dimrbutn As New RectButton(med, tbar.Buttons(0))
Di m ubutn As New UndoButton(med, tbar.Buttons(1l))
Dimclrbutn As New Cl ear button(nmed)

"add themto the hashtable

"using the button hash val ues

conmands. Add(bt rect . Get HashCode, rbutn)

comuands. Add(bt undo. Get HashCode, ubutn)

comands. add(bt cl ear. Get HashCode, clrbutn)

We can use these hash codes to get the right command object when the
buttons are clicked.

Protected Sub tBar_ButtonClick(ByVal sender As bject,
ByVal e As Tool BarButtonCli ckEvent Args)
Dimcnmd As Conmmand
Dimtbutn As Tool BarButton = e. button
cnmd = CType(commands(tbutn. Get HashCode), Conmand)
cmd. Execut e()
End Sub
Alternatively, you could create the toolbar under IDE control, but add the
tool buttons to the collection programmatically and use derived buttons with a
Command interface instead. We illustrate this approach in the State pattern

Consequences of the Memento

The Memento provides away to preserve the state of an object while
preserving encapsulation, in languages where this is possible. Thus, data that
only the Originator class should have access to effectively remains private. It
also preserves the smplicity of the Originator class by delegating the saving
and restoring of information to the Memento class.

On the other hand, the amount of information that a Memento has to save
might be quite large, thus taking up fair amounts of storage. This further has
an effect on the Caretaker class that may have to design strategies to limit the
number of objects for which it saves state. In our simple example, we impose
no such limits. In cases where objects change in a predictable manner, each
Memento may be able to get by with saving only incremental changes of an
object’s state.

In our example code in this chapter, we have use not only the Memento, but
the Command and Mediator patterns as well. This clustering of severa
patternsis very common, and the more you see of good OO programs, the
more you will see these pattern groupings.

Copyright © 2001, by James W. Cooper

423

Thought Questions

Mementos can also be used to restore the state of an object when a process
falls. If adatabase update fails because of a dropped network connection, you
should be able to restore the data in your cached data to their previous State.
Rewrite the Database class in the Fagcade chapter to alow for such failures.

Programs on the CD-ROM

\ Menent o VB6 Memento

\ Menent o\ VBNet VB7 Memento

Copyright © 2001, by James W. Cooper

424

28. THE OBSERVER PATTERN

In this chapter we discuss how you can use the Observer pattern to present
datain severa forms at once.

In our new, more sophisticated windowing world, we often would like to
display datain more than one form at the same time and have al of the
displays reflect any changes in that data. For example, you might represent
stock price changes both as a graph and as atable or list box. Each time the
price changes, we' d expect both representations to change at once without
any action on our part.

We expect this sort of behavior because there are any number of Windows
applications, like Excel, where we see that behavior. Now there is nothing
inherent in Windows to alow this activity and, as you may know,
programming directly in Windows in C or C++ is pretty complicated. In VB,
however, we can easily make use of the Observer Design Pattern to cause our
program to behave in thisway.

The Observer pattern assumes that the object containing the data is separate
from the objects that display the data, and that these display objects observe
changesin that data. Thisissimpleto illustrate as we see in Figure 28-1.

Graphic List
Display Display

Data

User

Figure 28-1 — Data are displayed as a list and in some graphical
mode.

Copyright © 2001, by James W. Cooper

425

When we implement the Observer pattern, we usually refer to the data as the
Subject and each of the displays as Observers. Each of these observers
registersitsinterest in the data by calling a public method in the Subject.
Then, each observer has a known interface that the subject calls when the data
change. We could define these interfaces as follows:

"I nterface Observer
Public Sub sendNotify(mesg As String)

"Interface Subject
Public Sub registerlnterest(obs As Cbserver)
End Sub

The advantage of defining these abstract interfacesis that you can write any
sort of class objects you want as long as they implement these interfaces, and
that you can declare these objects to be of type Subject and Observer no
matter what else they do.

Watching Colors Change

Let'swrite asimple program to illustrate how we can use this powerful
concept. Our program shows a display frame containing 3 radio buttons
named Red, Blue and Green as shown in Figure 28-2.

=TS

— Colors

{~ Green
= Blue

Figure 28-2 — A simple control panel to createred, green or blue
“data.”

Note that our main frame class implements the Subject interface. That means
that it must provide a public method for registering interest in the datain this
class. This method is the registerInterest method, which just adds Observer
objectsto a Vector:

Copyright © 2001, by James W. Cooper

426

Private Sub Subject _registerlnterest(obs As Chserver)
observers. Add obs
End Sub

Now we create two observers, one that displays the color (and its name) and
another which adds the current color to alist box.

Private Sub Form Load()

Set observers = New Col |l ection
"create |ist observer

Dmlso As New | sCbserver
|so.init Me

| so. Show

‘create color fram observer
Dimcfr As New Col or Frane
cfr.init Me

cfr. Show

End Sub

When we create our ColorFrame window, we register our interest in the data
in the main program:

'Cl ass Col or Frame

I mpl ement s Cbserver

Public Sub init(s As Subject)
s.registerinterest Me

End Sub
Private Sub Observer_sendNotify(mesg As String)
Pic.ds
Sel ect Case LCase(nesg)
Case "red"

Pi c. BackCol or = vbRed
Case "green"
Pi c. BackCol or = vbG een
Case "bl ue"
Pi c. BackCol or = vbBl ue
End Sel ect
Pi c. PSet (300, 600)
Pic.Print nesg
End Sub

Our listbox window is aso an observer, and all it hasto do is add the color
name to the list. The entire class is shown below:

' Cl ass ListQbserver

| npl ements Cbserver

Public Sub init(s As Subject)
s.registerlnterest Me

End Sub

Copyright © 2001, by James W. Cooper

427

Private Sub Qbserver_sendNotify(nmesg As String)
"add color names to |ist

| sCol ors. Addl t em nesg

End Sub

Meanwhile in our main program, every time someone clicks on one of the
radio buttons, it calls the sendNotify method of each Observer who has
registered interest in these changes by smply running through the objectsin
the observers Collection:

Private Sub btCol or_dick(lndex As Integer)
Dmi As Integer
Dimmesg As String
Di m obs As (bserver
mesg = bt Col or (1 ndex) . Caption 'get the button | abel
‘send it to all the observers
For i = 1 To observers. Count
Set obs = observers(i)
obs. sendNoti fy nesg
Next i
End Sub

In the case of the ColorFrame observer, the sendNotify method changes the
background color and the text string in the frame panel. In the case of the
ListFrame observer, however, it just adds the name of the new color to the list
box. We see the fina program running in Figure 28-3.

w Color frame

[cheve iR T-TE

Copyright © 2001, by James W. Cooper

428

Figure 28-3 — The data control pane generates data that is
displayed simultaneously as a colored panel and as a list box. This
isacandidate for an Observer pattern.

Writing an Observer in VB.NET

In VB7, we till use the Observer and Subject interfaces to define the
interaction between the data and the displays of that data.

Public Interface Qbserver
Sub sendNotify(ByVal mesg As String)
End Interface

Public Interface Subject
Sub registerlnterest(ByVal obs As observer)
End Interface

As above, the main program with its three radio buttons constitutes the
Subject or data class, and notifies the observers when the data changes. To
make the programming simpler, we add the same event handler to all three
radio buttons

Di m evh As Event Handl er = _
New Event Handl er (AddressOfF radi oHandl er)
AddHandl er opRed. Cick, evh
AddHandl er opblue. Cick, evh
AddHandl er opgreen. Click, evh

and then send the text of their |abe to the observers.

Protect ed Sub Radi oHandl er (ByVal sender As Object,
ByVal e As Event Args)
Dimi As Integer
Di m rbut As Radi oButton = CType(sender, Radi oButton)
For i = 0 To observers. Count - 1
Di m obs As Observer = CType(observers(i), observer)
obs. sendNoti fy(rbut. Text)
Next i
End Sub

The list box observer is essentialy identical, where we add the text to the list
box:

Public Class |istQbs

Copyright © 2001, by James W. Cooper

429

I nherits System W nForns. Form
| mpl ement s Cbserver
Public Sub New(ByVal subj As Subject)
MyBase. New()
listCbs = Me
InitializeConmponent ()
subj . regi sterlnterest (M)
End Sub
Public Sub sendNotify(ByVal mesg As String) _
| mpl ements Observer. sendNotify
I scol ors.|tens. Add(nesgq)
End Sub
End C ass

The Color window observer is alittle different in that we paint the text in the
pain event handler and change the background color directly in the notify
event method:

Public Class Col Frane
I nherits System W nFor ms. Form
| mpl emrent s Cbserver
Private col nane As String
Dim fnt As Font
Di m bBrush As Sol i dBrush

Public Sub New(ByVal subj As Subject)
MyBase. New()
subj . regi sterlnterest (M)
Col Frame = Me
InitializeConmponent ()
fnt = New Font("arial", 18, _
Drawi ng. Font St yl e. Bol d)
bbrush = New Sol i dBrush(Col or. Bl ack)
AddHandl er Pic.Paint, _
New Pai nt Event Handl er (Addr essOf pai nt handl er)
End Sub
Public Sub sendNotify(ByVal mesg As System String) _
| mpl enents VBNet Observer. Cbserver. sendNoti fy
col nanme = nesg
Sel ect Case nesg. ToLower

Case "red"
pi c. BackCol or = col or. Red '
Case "bl ue"

pi c. BackCol or = col or. Bl ue

Copyright © 2001, by James W. Cooper

Case "green"
pi c. BackCol or = col or. Green
End Sel ect

Private Sub pai nt Handl er (ByVal sender As bject,
ByVal e As Pai nt Event Ar gs)
Dim g As Graphics = e. Graphics
g. Drawstri ng(col nane, fnt, bbrush, 20, 40)
End Sub
End Cl ass

TheMessageto the Media

Now, what kind of notification should a subject send to its observers? In this
carefully circumscribed example, the notification message is the string
representing the color itself. When we click on one of the radio buttons, we
can get the caption for that button and send it to the observers. This, of
course, assumes that all the observers can handle that string representation.

In more redlistic situations, this might not always be the case, especidly if the
observers could aso be used to observe other data objects. Here we undertake
two simple data conversions:

1. we get the label from the radio button and send it to the
observers, and

2. we convert the labd to an actual color in the ColorFrame
observer.

In more complicated systems, we might have observers that demand specific,
but different, kinds of data. Rather than have each observer convert the
message to the right data type, we could use an intermediate Adapter classto
perform this conversion.

Another problem observers may have to ded with is the case where the data
of the central subject class can change in several ways. We could delete
points from alist of data, edit their values, or change the scale of the datawe
are viewing. In these cases we either need to send different change messages
to the observers or send a single message and then have the observer ask
which sort of change has occurred.

Copyright © 2001, by James W. Cooper

431

Figure 28-4 — The Observer interface and Subject interface
implementation of the Observer pattern.

Consequences of the Observer Pattern

Observers promote abstract coupling to Subjects. A subject doesn’'t know the
details of any of its observers. However, this has the potential disadvantage of
successive or repeated updates to the Observers when there are a series of
incremental changes to the data. If the cost of these updates is high, it may be
necessary to introduce some sort of change management, so that the
Observers are not notified too soon or too frequently.

When one client makes a change in the underlying data, you need to decide
which object will initiate the notification of the change to the other observers.
If the Subject notifies al the observers when it is changed, each client is not
responsible for remembering to initiate the notification. On the other hand,
this can result in a number of small successive updates being triggered. If the
clients tell the Subject when to notify the other clients, this cascading
notification can be avoided, but the clients are left with the responsibility of
telling the Subject when to send the notifications. If one client “forgets,” the
program simply won’'t work properly.

Finally, you can specify the kind of notification you choose to send by
defining a number of update methods for the Observers to receive depending
on the type or scope of change. In some cases, the clients will thus be able to
ignore some of these notifications.

Thought Questions

1. The VB6 version of our observer example puts up three separate windows.
However, unlike the VB7 version, closing one of the windows does not close
the other two and end the program. How could you use an observer to assure
that the program shuts down as desired?

Programs on the CD-ROM

\ Cbser ver VB6 Observer

\ bser ver \ VBNet VB7 Observer

Copyright © 2001, by James W. Cooper

432

29. THE STATE PATTERN

The State pattern is used when you want to have an object represent the state of
your application, and switch application states by switching objects. For
example, you could have an enclosing class switch between a number of related
contained classes, and pass method calls on to the current contained class. Design
Patter ns suggests that the State pattern switches between interna classesin such
away that the enclosing object appears to changeits class. In VB, at least, thisis
ahbit of an exaggeration, but the actual purpose to which the classes are put can
change significantly.

Many programmers have had the experience of creating a class that performs
dightly different computations or displays different information based on the
argumerts passed into the class. This frequently leads to some sort of select case
or if-else statements inside the class that determine which behavior to carry out. It
isthis inelegance that the State pattern seeks to replace.

Sample Code

Let’s consider the case of a drawing program similar to the one we developed for
the Memento class. Our program will have toolbar buttons for Select, Rectangle,
Fill, Circle and Clear. We show this program in Figure 29-1.

ﬁ|ﬂ*| ri ﬂﬂ|£

=181 =1

Copyright © 2001, by James W. Cooper

433

Figure 29-1- A simple drawing program we will use for illustrating
the State pattern.

Each one of the tool buttons does something rather different when it is selected
and you click or drag your mouse across the screen. Thus, the state of the
graphical editor affects the behavior the program should exhibit. This suggests
some sort of design using the State pattern.

Initialy we might design our program like this, with a Mediator managing the
actions of 5 command buttons as shown in Figure 29-2.

Pick
—» Mediator
Fill
Circle
Clear

Figure 29-2— One possible inter action between the classes needed to
support the smple drawing program.

However, thisinitial design puts the entire burden of maintaining the state of the
program on the Mediator, and we know that the main purpose of a Mediator isto
coordinate activities between various controls, such as the buttons. Keeping the
state of the buttons and the desired mouse activity inside the Mediator can make
it unduly complicated as well as leading to a set of If or Select tests which make
the program difficult to read and maintain.

Copyright © 2001, by James W. Cooper

Further, this set of large, monalithic conditional statements might have to be
repeated for each action the Mediator interprets, such as mouseUp, mouseDrag,
rightClick and so forth. This makes the program very hard to read and maintain.

Instead, let’s analyze the expected behavior for each of the buttons:

1. If the Pick button is selected, clicking inside a drawing element
should cause it to be highlighted or appear with “handles.” If the
mouse is dragged and a drawing element is already selected, the
element should move on the screen.

2. |If the Rect button is selected, clicking on the screen should cause a
new rectangle drawing element to be created.

3. If the Fill button is selected and a drawing element is already
sdlected, that element should be filled with the current color. If no
drawing is selected, then clicking inside a drawing should fill it with
the current color.

4. If the Circle button is selected, clicking on the screen should cause a
new circle drawing element to be created.

5. If the Clear button is selected, al the drawing elements are removed.

There are some common threads among several of these actions we should
explore. Four of them use the mouse click event to cause actions. One uses the
mouse drag event to cause an action. Thus, we realy want to create a system that
can help us redirect these events based on which button is currently selected.

Let’sconsider creating a State object that handles mouse activities:

"Interface State
Public Sub nouseDown(X As Integer, Y As Integer)
End Sub

Public Sub nouseUp(X As Integer, Y As Integer)

Public Sub nouseDrag(X As Integer, Y As Integer)
End Sub

We'll include the mouseUp event in case we need it later. Then we'll create 4
derived State classes for Pick, Rect, Circle and Fill and put instances of al of

Copyright © 2001, by James W. Cooper

them inside a StateM anager class which sets the current state and executes
methods on that state object. In Design Patterns, this StateManager classis
referred to as a Context. This object isillustrated in Figure 29-3.

StateManager
currentState
| L
Pick Rect Fill Circle
State

Figure 29-3 — A StateManager class which keepstrack of the current
state.

A typical State object smply overrides (in VB6, implements and fills out) those

event methods that it must handle specially. For example, thisis the complete
Rectangle state object:

'"Class RectState

| npl enents State

Private ned As Medi at or

Public Sub init(nd As Medi ator)
Set nmed = nd

End Sub

Copyright © 2001, by James W. Cooper

436

Private Sub State_nouseDown(X As Integer, Y As |nteger)
Dimvr As New Vi sRectangl e

vr.init X Y

ned. addDr awi ng vr

End Sub

Private Sub State _npuseDrag(X As Integer, Y As |nteger)
End Sub

Private Sub State nouseUp(X As Integer, Y As Integer)
End Sub

The RectState object smply tells the Mediator to add a rectangle drawing to the
drawing list. Similarly, the Circle state object tells the Mediator to add a circleto
the drawing list:

"Class CircleState
| npl enents State
Private ned As Medi at or
Public Sub init(nd As Medi ator)
Set ned = nd
End Sub
Private Sub State nouseDown(X As Integer, Y As |nteger)
Dmc As visGrcle
Set ¢ = New visCircle
c.init X, Y
nmed. addDrawi ng ¢
End Sub
Private Sub State nouseDrag(X As Integer, Y As |nteger)
End Sub
Private Sub State nouseUp(X As Integer, Y As Integer)
End Sub

The only tricky button is the Fill button, because we have defined two actions for
it.

1. If an object is already selected, fill it.

2. If themouse is clicked inside an object, fill that one.

Copyright © 2001, by James W. Cooper

437

In order to carry out these tasks, we need to add the sel ectOne method to our base
State interface. This method is called when each tool button is selected:

"Interface State
Public Sub nmouseDown(X As Integer, Y As Integer)
End Sub

Public Sub nouseUp(X As Integer, Y As Integer)
End Sub

Public Sub nouseDrag(X As Integer, Y As Integer)
End Sub

Public Sub sel ect One(d As Drawi ng)
End Sub

The Drawing argument is either the currently selected Drawing. In this simple
program, we have arbitrarily set the fill color to red. So our Fill state class
becomes:

"Class Fill State

| npl enents State
Private ned As Medi at or
Private color As Col orConstants

Public Sub init(nd As Medi ator)

Set nmed = nd
col or = vbRed

End Sub

Private Sub State_nouseDown(X As Integer, Y As |nteger)
Di m drawi ngs As Col |l ection
Dimi As |nteger
Dimd As Draw ng

"Fill drawing if you click inside one
Set drawi ngs = ned. get Drawi ngs()
For i = 1 To draw ngs. Count

Set d = drawi ngs(i)
If d.contains(X Y) Then
d.setFill color '"fill draw ng
End |f
Next i
End Sub

Private Sub State_mpuseDrag(X As Integer, Y As |nteger)

Copyright © 2001, by James W. Cooper

End Sub

Private Sub State_nouseUp(X As Integer, Y As Integer)
End Sub

Private Sub State_sel ect One(d As Draw ng)
"Fill drawing if sel ected

d.setFill color "fill that draw ng
End Sub

Switching Between States

Now that we have defined how each state behaves when mouse events are sent to
it, we need to discuss how the StateManager switches between states. We create
an instance of each state, and thenwe simply set the currentState variable to the
state indicated by the button that is selected.

'd ass Stat eManager

Private currentState As State
Private rState As RectState
Private aState As ArrowState
Private cState As CircleState
Private fState As Fill State
Public Sub init(med As Mediator)
'create an instance of each state

Set rState = New Rect State
Set cState = New CircleState
Set aState = New ArrowSt at e

Set fState = New Fill State
"and initialize then

rState.init nmed
cState.init ned
aState.init ned
fState.init ned

'set default state

Set currentState = aState

End Sub

Note that in this version of the StateM anager, we create an instance of each state
during the constructor and copy the correct one into the state variable when the
set methods are called. It would also be possible to create these states on demand.
This might be advisable if there are alarge number of states which each consume
afair number of resources.

Copyright © 2001, by James W. Cooper

439

The remainder of the state manager code simply calls the methods of whichever
state object is current. Thisisthe critical piece -- there is no conditiona testing.
Instead, the correct state is dready in place and its methods are ready to be
caled.

Public Sub nouseDown(X As Integer, Y As Integer)
current St at e. nouseDown X, Y

Publ i c Sub nouseUp(X As Integer, Y As Integer)
current St ate. nouseUp X, Y

Public Sub nouseDrag(X As Integer, Y As Integer)
current St ate. nousebDrag X, Y
End Sub

Public Sub sel ectOne(d As Drawi ng, ¢ As Col or Const ants)
current State. sel ectOne d
End Sub

How the Mediator Interactswith the State Manager

We mentioned that it is clearer to separate the state management from the
Mediator’ s button and mouse event management. The Mediator is the critical
class, however, since it tells the StateM anager when the current program state
changes. The beginning part of the Mediator illustrates how this state change
takes place. Note that each button click calls one of these methods and changes
the state of the application. The remaining statements in each method simply turn
off the other toggle buttons, so that only one button at a time can be depressed.

'd ass Medi at or
Private startRRect As Bool ean
Private sel ectedl ndex As Integer
Private rectb As RectButton
Private dSel ected As Bool ean
Private drawi ngs As Col |l ection
Private undoList As Collection
Private rbutton As RectButton
Private filbutton As FillButton
Private circButton As Circl eButton
Private arrowButton As PickButton
Private canvas As PictureBox
Private sel ectedDrawi ng As I nteger

Copyright © 2001, by James W. Cooper

Private stngr As StateManager
Public Sub init(Pic As PictureBox)
start Rect = Fal se
dSel ected = Fal se
Set drawi ngs = New Col | ection
Set undoLi st = New Col | ection
Set stngr = New St at eManager
stngr.init Me
Set canvas = Pic
End Sub
Public Sub startRectangle()
st mgr . set Rect
arrowBut t on. set Sel ected (Fal se)
circButton. set Sel ected (Fal se)
filbutton. setSel ected (Fal se)
End Sub
Public Sub startCrcle()
Dimst As State
stnmgr.setCircle
rectb. set Sel ected Fal se
arrowBut t on. set Sel ected Fal se
filbutton. set Sel ected Fal se
End Sub

Aswedid in the discussion of the Memento pattern, we create a series of button
Command objects paraldling the toolbar buttons and keep them in an array to be
called when the toolbar button click event occurs.

Private Sub Form Load()

Set buttons = New Col | ection
‘create an instance of the Mediator
Set med = New Medi at or

ned.init Pic

‘Create the button comrand objects
‘give each of them access to the Mediator
Set pickb = New Pi ckButton

pi ckb.init med, tbar.buttons(1)

Set rectb = New RectButton
rectb.init nmed, tbar.buttons(2)

Set filb = New FillButton

filb.init med, tbar.buttons(3)

Set cb = New Circl eButton

Copyright © 2001, by James W. Cooper

411

cb.init nmed, tbar.buttons(4)
Set clrb = New C earButton
clrb.init ned

Set undob = New UndoButton

undob.init ned
"keep a Collection of the button Command objects
buttons. Add pi ckb

buttons. Add recthb

buttons. Add filb

buttons. Add cb

but t ons. Add undob

buttons. Add clrb

End Sub

These Execute methods in turn call the above startXxx methods.

Private Sub tbar_ButtonCick(ByVal Button As MsSConcttl Li b. Button)
Dmi As Integer

Dimcnd As Conmmand

"find out which button was clicked

i = Button.index

‘get that commmand obj ect

Set cnd = buttons(i)

cnd. Execut e "and execute it

End Sub

The class diagram for this program illustrating the State pattern in this
application isillustrated in two parts. The State section is shown in Figure 29-4,

Copyright © 2001, by James W. Cooper

State
ffrom default)
+mouseDown
+mouselrag

+mousellp
+select \

ArrowState CircleState FillState RectState
frotm defult) from default] frorn default) from default]

fState'fD.J

3
aState 0.4 cStste |01 rState’ 0.1

) ed
.0 e
-med - Mediator

0 " from defauly
sthigr

StateManager
frarn default)

Figure 29-4 — The StateM anager and the M ediator.

and the connection of the Mediator to the buttonsin Figure 29-5.

Copyright © 2001, by James W. Cooper

442

Y

ClearButton ! ; il
e RectButton FillButton PickButton
fron defaul firam defa
ffrom defauff ACEE ffrom defauti

;’ ,
/ \
UndoButton CircleButton
firorn defauti frarm defauli

0.1 K{neldihé.'lﬁ med
Mediator
firom default)

Figure 29-5- Interaction between the buttons and the M ediator .

Handling the Fill State

The Fill State object is only dightly more complex, because we have to handle

two cases. The program will fill the currently selected object if one exists, or fill
the next one that you click on. This means there are two State methods we have
to fill in for these two cases as we see below:

"Class Fill State

| npl enents State

Private nmed As Medi at or

Public Sub init(nd As Medi ator)
Set nmed = nd

Private Sub State_nouseDown(x As Integer, y As |nteger)
Di m drawi ngs As Col | ection
Dimi As |nteger
Dimd As Draw ng

Copyright © 2001, by James W. Cooper

"Fill drawing if you click inside one
i = med. findDraw ng(x, y)
If i >0 Then

Set d = ned. getDrawi ng(i)

d.setFill True 'fill draw ng

End I f
End Sub
Private Sub State_nouseDrag(x As Integer, y As |nteger)
End Sub
Private Sub State_nouseUp(x As Integer, y As Integer)
End Sub
Private Sub State_sel ect One(d As Draw ng)
"Fill drawing if selected

d.setFill True '"fill that draw ng
End Sub

Handling the Undo List

Now, we should be able to undo each of the actions we carry out in this drawing
program, and this means that we keep them in an undo list of some kind. The
actions we can carry out and undo are

1. Cresting arectangle

2. Credting acircle

3. Moving arectangle or circle
4. Filling arectangle or circle

In our discussion of the Memento pattern, we indicated that we would use a
Memento object to store the state of the rectangle object and restore its position
from that Memento as needed. Thisis generally true for both rectangles and
circles, since we need to save and restore the same kind of position information.
However, the addition of rectangles or circles and the filling of various figures
are also activities we want to be able to undo. And, as we indicated in the
previous Memento discussion, the idea of checking for the type of object in the
undo list and performing the correct undo operation is areally terrible idea.

‘really terrible progranm ng approach
Set obj = undolLi st (undoLi st. count)

Copyright © 2001, by James W. Cooper

undoLi st. renove undoli st. count "and renove it
If Not (TypeOf obj Is Menento) Then
drawi ngs. renove draw ngs. count
El se
obj .restore
End If

Instead, let’ s define the Memento as an interface.

"Interface Menento

Public Sub init(d As Draw ng)
End Sub

Public Sub restore()

‘"restore the state of an object
End Sub

Then, dl of the objects we add into the undo list will implement the Memento
interface, and will have arestore method that performs some operation. Some
kinds of Mementos will save and restore the coordinates of drawings, and others
will smply remove drawings or undo fill states.

First we will have both our circle and rectangle objects implement the Drawing
interface:

"Interface Draw ng

Public Sub setSel ected(b As Bool ean)

End Sub

Public Sub draw(g As PictureBox)

End Sub

Public Sub move(xpt As Integer, ypt As |nteger)
End Sub

Public Function contains(X As Integer, Y As Integer) As Bool ean
End Function

Public Sub setFill (b as Bool ean)

End Sub

"Property methods used to save and restore state
Property Get rects() As Rectangle

End Property

Property Set rects(rc As Rectangle)

Copyright © 2001, by James W. Cooper

End Property

The Memento we will use for saving the state of a Drawing will be similar to the
one we used in the Memento chapter, except that we specificaly make it
implement the Memento interface:

' Cl ass DrawiMenento

| mpl ement's Menent o

Private X As Integer, Y As |nteger
Private w As Integer, h As Integer
Private rect As Rectangle

Private visDraw As Draw ng

Private Sub Menento_init(d As Draw ng)
'save the state of a visual rectangle
Set visDraw = d

Set rect = visDraw. rects

X =rect. X
Y =rect.Y
wW=rect.w
h =rect.h

End Sub

Private Sub Menento_restore()
"restore the state of a draw ng obj ect

rect. X = X

rect.Y =Y

rect.h = h

rect.w=w

Set visDraw.rects = rect
End Sub

Now for the case where we just want to remove a drawing from the list to be
redrawn, we create a class to remember that index of that drawing and remove it
when its restore method is called:

' d ass Drawl nstance

| mpl ement's Menent o

"treats a drawi ng index as an object

Private intg As |nteger

Private med As Medi at or

Public Sub init(a As Integer, nd As Medi ator)
intg = a "remenber the index

Set med = nd

Copyright © 2001, by James W. Cooper

447

End Sub
Property Get integ() As Integer
integ = intg

End Property

Private Sub Menento_restore()
"renove that drawing fromthe |ist
med. renoveDrawi ng intg

End Sub

We handle the FillMemento in just the same way, except that its restore method
turns off the fill flag for that drawing element:

"Class Fill Menmento
| mpl ements Menent o
Private index As |nteger
Private med As Medi ator

Public Sub init(a As Integer, nd As Medi ator)
index = a

Set nmed = nd

End Sub

Private Sub Menmento_init(d As Draw ng)
End Sub

Private Sub Menento_restore()
Dimd As Draw ng

Set d = ned. get Drawi ng(i ndex)
d.setFill Fal se

End Sub

Filling Circles in VB6

VB6 does not have away to draw filled circles that is analogous to the way we
draw filled rectangles. Instead, circles are filled if the Picturebox control’s
FillStyle is set appropriately. However, in that case, it fills all circlesyou draw,
whether you want to or not. Therefore, for VB6, we approximate filling the
circles by drawing concentric circles inside the origina circle, and then drawing
an inscribed filled rectangle as well.

Copyright © 2001, by James W. Cooper

If filled Then

For i =r To 1 Step -1
Pic.Crcle (xc, yc), i, fillColor
Next i
Pic.Line (x + 4, y +4)-(x +w- 6, y +w- 6), fillColor, BF
End I f

A State Pattern in VB.NET

The State pattern in VB7 is similar to that in VB6. We use the same interfaces for
the Memento and Drawing classes.

Public Interface Menento
Sub restore()
End Interface

Public Interface Draw ng
Sub set Sel ected(ByVal b As Bool ean)
Sub draw(ByVal g As Graphics)
Sub nove(ByVal xpt As Integer, ByVal ypt As Integer)
Function contai ns(ByvVal x As Integer, _
ByVal y As Integer) As Bool ean
Sub setFill (ByVal b As Bool ean)
Property rects() As vbpatterns. Rectangle
End Interface

However, there is some advantage in creating a State class with empty methods
and overriding only those that a particular derived State class will require. So our
base State classis

Public Class State
Public Overridabl e Sub nouseDown(ByVal x As I|nteger, _
ByVal y As I|nteger)
End Sub
Public Overridable Sub nouseUp(ByVal x As Integer
ByVal y As I|nteger)
End Sub

Copyright © 2001, by James W. Cooper

449

Publi ¢ Overridabl e Sub nouseDrag(ByVal x As I|nteger
ByVval y As Integer)

Public Overridabl e Sub sel ect One(ByVal d As Draw ng)
End Sub
End Cl ass

Then our derived state classes need only overrides the methods important to
them. The RectState class only responds to MouseDown, for example:

Public Class RectState
Inherits State
Private med As Medi at or
Public Sub New(ByVal nd As Medi ator)
med = nd

Public Overrides Sub nouseDown(ByVal x As I|nteger
ByVal y As Integer)
Dimvr As New Vi sRectangl e(x, Yy)
med. addDr awi ng(vr)
End Sub
End Cl ass

We can take some useful advantage of inheritance in designing our visRectangle
and visCircle classes. We make visRectangle implement the Drawing interface,
and then have visCircle inherit from visRectangle. This alows us to reuse the
setSelected, setFill, and move methods and the rects properties. In addition, we
can split off the drawHandle method and use it in both classes. The revised
visRectangle class looks like this:

Public Class VisRectangle
| mpl ement s Drawi ng
Protected x, y, w, h As Integer
Private rect As vbpatterns. Rectangle
Protected sel ected As Bool ean
Protected filled As Bool ean
Prot ected bBrush As Sol i dBrush

Copyright © 2001, by James W. Cooper

Protected rBrush As Soli dBrush
Prot ected bPen As Pen
Private fill Col or As Col or

Public Sub New(ByVal xp As Integer
ByVal yp As Integer)

X = Xp 'save coordi nates
y =Yyp

w = 40 "default size

h = 30

fill Color = Col or. Red

bbrush = New Sol i dBrush(col or. Bl ack)

rbrush = New Sol i dBrush(fillcol or)

bPen = New Pen(col or. Bl ack)

saveAsRect () 'keep in rectangle class as wel

Protected Sub saveAsRect ()
rect = New vbpatterns. Rectangl e(x, y, w, h)
End Sub
Public Function contains(ByVal xp As I|nteger,
ByVal yp As Integer) As Bool ean _
| mpl ement s Draw ng. contai ns
Return rect.contains(xp, yp)
End Function
Public Overridable Sub draw(ByVvVal g As Graphics) _
| mpl ement s Drawi ng. dr aw
"draw rectangl e
If filled Then
g. Fill Rectangl e(rbrush, x, y, w, h)

End If

g. DrawRrect angl e(bpen, x, y, w, h)

If selected Then "draw handl es
dr awHandl es(g)

End |f

Protected Sub drawHandl es(ByVal g As G aphics)
"Draws handl es on sides of square or circle

Copyright © 2001, by James W. Cooper

451

g.fillrectangl e(bBrush, (x + w\ 2), (y - 2), 4, 4)

g. Fill Rectangl e(bbrush, x - 2, y + h\ 2, 4, 4)

g. Fill Rectangl e(bbrush, x + (w\ 2), y + h - 2, 4, 4)
g.Fill Rectangl e(bbrush, x + (w- 2), y + (h\ 2), 4, 4)

Public Overridable Sub nove(ByVal xpt As Integer
ByVal ypt As System | nteger) _
| mpl enment s VBNet St at e. Drawi ng. nove
' Moves drawi ng to new coordi nates
X = xpt
y = ypt
saveAsRect ()

Friend Property rects() As vbPatterns. Rectangle _
| mpl ements Drawi ng.rects
"Al Il ows changi ng of renenbered state
Set
val ue.
val ue.
val ue.
val ue.
aveAsRect
End Set
Get

=< x

X
y
w

h
S

—~ >

)

Return rect

End Cet

End Property

Public Sub setFill(ByVal b As Bool ean) _
| mpl ements Drawi ng. setFill
filled = b

End Sub

Public Sub setSel ected(ByVal b As Bool ean) _
| mpl ement s VBNet St at e. Drawi ng. set Sel ect ed
selected = b

End Sub

End Cl ass

Copyright © 2001, by James W. Cooper

452

However, our visCircle class only needs to override the draw method and have a
dightly different constructor:

Public Class VisCircle
I nherits VisRectangle
Private r As I|nteger
Public Sub New(ByVal xp As I|nteger
ByVal yp As |nteger)
MyBase. New(xp, yp)
r =15
w = 30
h = 30
saveAsRect ()
End Sub
Public Overrides Sub draw(ByVal g As G aphics)
"Fill the circle if flag set
If filled Then
g.FillEllipse(rbrush, x, y, w, h)
End If
g. Drawel i pse(bpen, x, y, w, h)
If selected Then
dr awHandl es(g)
End |f
End Sub
End Cl ass

Note that since we have made the x , y and filled variables Protected, we can
refer to them in the derived visCircle class without declaring them at al. Note
that there is avalid fill method in VB7 to fill circles (ellipses).

The Mediator, Memento and StateM anager classes are essentially identical to
those we wrote for VB6. However, we can simplify the overall program a great
deal by creating derived classes from the ToolBarButton class and making them
implement the Command interface as well.

"A tool bar button class that also
'"has a conmand interface
Public C ass CndTool barButton
Inherits System W nFor nms. Tool Bar Butt on

Copyright © 2001, by James W. Cooper

| mpl ement s Command
Protected ned As Medi at or
Protected sel ected As Bool ean
Public Sub New(ByVal caption As String,
ByVal md As medi ator)
MyBase. New()
Me. Text = caption
med = nd
InitializeConponent()
End Sub
Public Overridable Sub set Sel ected(ByRef b As Bool ean)
selected = b
End Sub
Public Overridable Sub Execute() _
| mpl emrent s Command. Execut e
End Sub
End Cl ass

We then can derive our RectButton, CircleButton, ClearButton, UndoButton,
FillButton and PickButton classes from the CmdT ool BarButton class, and give
each of them the appropriate Execute method. The RectButton classis just that
straightforward:

Public Class RectButton
I nherits CrmdTool bar Button
Public Sub New(ByVal nd As Medi ator)
MyBase. New(" Rect angl e", nd)
Me. Styl e = Tool BarButtonStyl e. Toggl eButton
nmed. r egi st er Rect Butt on(Me)
End Sub
Public Overrides Sub Execute()
med. startrectangl e()
End Sub
End Cl ass

Copyright © 2001, by James W. Cooper

The only disadvantage to this approach is that you have to add the buttons to the
toolbar programmatically instead of using the designer. However, this just
amounts to adding the buttons to a collection. We create the empty toolbar in the

designer, giving it the name Thar, and then add the buttons to it:

Public Sub New()
MyBase. New()
InitializeConponent()
'create a Medi ator
med = New Medi at or (pi c)
'create the buttons
Rct Butt on = New Rect Butt on(ned)
ArowButt on = New Pi ckButt on(med)
circbutton = New Circl eButton(nmed)
flButton = New Fill Button(ned)
undob = New UndoButt on(ned)
clrb = New Cl ear Button(ned)
"add the buttons into the tool bar
Tbhar . But t ons. Add(Ar owBut t on)
Tbar . But t ons. Add(Rct But t on)
t bar. Butt ons. Add(ci r cbut t on)
Tbar . Buttons. Add(f I button)
"include a separator
Dim sep As New Tool Bar Button()
sep. Styl e = Tool BarButtonStyl e. Separ at or
t bar . Butt ons. Add(sep)
Tbhar . But t ons. Add(undoB)
Tbhar . Butt ons. Add(cl rb)

End Sub

This makes the processing of the button clicks completely object oriented,

because we do not have to know which button was clicked. They are dl
Command objects, and we just call their execute methods:

' process button conmands

Protected Sub Thar_ButtonC i ck(ByVal sender As Object,

ByVal e As Tool BarButt onCl i ckEvent Ar gs)
Dimcnd As Command
Dimtbutn As Tool BarButton = e. button

cmd = CType(tbutn, Command) 'get the conmmand obj ect

cnd. Execut e() "and execute it

Copyright © 2001, by James W. Cooper

End Sub

M ediatorsand the God Class

One red problem with programs with this many objects interacting is putting too
much knowledge of the system into the Mediator so it becomes a“god class.” In
the example above, the Mediator communicates with the 6 buttons, the drawing
list and the StateManager. We could write this program another way, so that the
button Command objects communicate with the StateManager and the Mediator
only deals with the buttons and the drawing list. Here each button creates an
instance of the required state and sends it to the StateManager. This we will leave
as an exercise for the reader.

Consequences of the State Pattern

1

The State pattern creates a subclass of a basic State object for each state an
application can have and switches between them as the application changes
between states.

You don't need to have along set of conditiona if or switch statements
associated with the various states, since each is encapsulated in a class.

Since there is no variable anywhere which specifies which state a program is
in, this approach reduces errors caused by programmers forgetting to test this
dtate variable

Y ou could share state objects between severd parts of an application, suc as
separate windows as long as none of the state objects have specific instance
variables. In this example, only the FillState class has an instance variable
and this could be easily rewritten to be an argument passed in each time.

This approach generates a number of small class objects, but in the process,
simplifies and clarifies the program.

In VB, dl of the States must implement a common interface, and they must
thus al have common methods, although some of those methods can be
empty. In other languages, the states can be implemented by function

Copyright © 2001, by James W. Cooper

pointers with much less type checking, and, of course, greater chance of
error.

State Trangtions

The transition between states can be specified internally or externally. In our
example, the Mediator tells the StateManager when to switch between states.
However, it is aso possible that each state can decide automatically what each
successor state will be. For example, when arectangle or circle drawing object is
created, the program could automatically switch back to the Arrow-object State.

Thought Questions

1. Rewrite the StateManager to use a Factory pattern to produce the
states on demand.

2. Whilevisud graphics programs provide obvious examples of State
patterns, Java server programs can benefit by this approach. Outline
asimple server that uses a state pattern.

Programs on the CD-ROM
\State VB6 state drawing program

\ St at e\ Vbnet VB7 state drawing program

Copyright © 2001, by James W. Cooper

457

30. THE STRATEGY PATTERN

The Strategy pattern is much like the State pattern in outline, but alittle different
in intent. The Strategy pattern consists of a number of related agorithms
encapsulated in adriver class called the Context. Y our client program can select
one of these differing agorithms or in some cases the Context might select the
best one for you. The intent is to make these algorithms interchangeable and
provide away to choose the most appropriate one. The difference between State
and Strategy is that the user generally chooses which of severd strategiesto
apply and that only one strategy at atimeis likely to be instantiated and active
within the Context class. By contrast, as we have seen, it is possible that al of the
different States will be active a once and switching may occur frequently
between them. In addition, Strategy encapsulates severa agorithms that do more
or less the same thing, while State encapsul ates related classes that each do
something somewheat different. Finally, the concept of transition between
different states is completely missing in the Strategy pattern.

M otivation

A program which requires a particular service or function and which has severa
ways of carrying out that function is a candidate for the Strategy pattern.
Programs choose between these algorithms based on computational efficiency or
user choice. There can be any number of strategies and more can be added and
any of them can be changed at any time.

There are anumber of cases in programs where we'd like to do the same thing in
severa different ways. Some of these are listed in the Smalltalk Companion:

Save filesin different formats.

Compress files using different algorithms

Capture video data using different compression schemes
Use different line-breaking strategies to display text data.

Plot the same data in different formats: line graph, bar chart or pie
chart.

Copyright © 2001, by James W. Cooper

In each case we could imagine the client program telling a driver module
(Context) which of these strategies to use and then asking it to carry out the
operation.

The idea behind Strategy is to encapsulate the various strategies in asingle
module and provide asimple interface to allow choice between these strategies.
Each of them should have the same programming interface, although they need
not all be members of the same class hierarchy. However, they do have to
implement the same programming interface.

Sample Code
Let’s consider asimplified graphing program that can present data as aline graph
or abar chart. We'll start with an abstract PlotStrategy class and derive the two
plotting classes from it asillustrated in Figure 30-1.

Plot
Strategy

o

LinePlot BarPlot
Strategy Strategy

Figure 30-1 — Two instance of a PlotStrategy class.

Our base PlotStrategy class acts as an interface containing the plot routine to be
filled in in the derived strategy classes. It also contains the max and min
computation code which we will use in the derived classes by containing an
instance of this class.

"Interface PlotStrategy

Private xmin As Single, xmax As Single
Private ymn As Single, ymax As Single

Const max = 1E+38

Public Sub plot(x() As Single, y() As Single)
"to be filled in

Copyright © 2001, by James W. Cooper

"in inplementing classes

End Sub

Public Sub findBounds(x() As Single,

Dmi As Integer

Xmn = max

Xmax = -max

ymn = max

ymax = -nax

For i =1 To UBound(x())
If x(i) > xmax Then xmax = x(i)
If x(i) < xmn Then xmin = x(i)
If y(i) > ymax Then ymax = y(i)
If y(i) <ymn Then ymin = y(i)

Next i

End Sub
Publ i ¢ Function
get Xmax = xmax
End Function
Publ i ¢ Function
get Ymax = ymax
End Function
Publ i ¢ Function
getXmn = xmn
End Function
Public Function
getYmn = ynin
End Function

The important part is that all of the derived classes must implement a method

get Xmax() As Single

get Ymax() As Single

getXmn() As Single

getYm n() As Single

y() As Single)

459

caled plot with two float arrays as arguments. Each of these classes can do any
kind of plot that is appropriate.

The Context
The Context class is the traffic cop that decides which strategy is to be called.

The decision is usually based on arequest from the client program, and all that

Copyright © 2001,

by James W. Cooper

the Context needs to do isto set a variable to refer to one concrete strategy or
another.

'O ass Context

Dmfl As vbFile

Dimx() As Single, y() As Single
Dimplts As PlotStrategy

Publ i c Sub setLinePl ot ()
Set plts = New LinePl ot Strat egy
End Sub

Public Sub setBarPl ot ()
Set plts = New BarPl ot Strat egy
End Sub

Public Sub plot()

readFil e

plts. findBounds x(), y()

plts.plot x(), y() ‘do what ever Kkind of plot

Private Sub readFile()
'reads data in fromdata file
End Sub

The Context class is aso responsible for handling the data. Either it obtains the
data from afile or database or it is passed in when the Context is created.
Depending on the magnitude of the data, it can either be passed on to the plot
strategies or the Context can pass an instance of itself into the plot strategies and
provide a public method to fetch the data

The Program Commands

This simple program (Figure 30-2) is just a panel with two buttons that call the
two plots:

Copyright © 2001, by James W. Cooper

461

_ioix]

B ar Flot I

Figure 30-2 — A ssimple panel to call two different plots.

Each of the buttons is associated with a command object that sets the correct
strategy and then calls the Context’ s plot routine. For example, hereisthe
complete Line graph command class:

"Class LineOmd
| mpl emrent' s Comand
Private contxt As Context

Public Sub init(cont As Context)
Set contxt = cont
End Sub

Private Sub Command_Execut e()
cont xt . set Li nePl ot
cont xt . pl ot

End Sub

TheLineand Bar Graph Strategies

The two strategy classes are pretty much the same: they set up the window size
for plotting and call a plot method specific for that display panel. Here isthe Line
graph Strategy:

'O ass LinePlotStrategy

| npl enent s Pl ot Strat egy
Dmplts As PlotStrategy

Copyright © 2001, by James W. Cooper

462

Private Sub Cass_Initialize()
'base class used to conpute bounds
Set plts = New Pl ot Strat egy

End Sub

Private Sub Pl ot Strategy_findBounds(x() As Single, y() As Single)
plts.findBounds x, y

End Sub

"not used in derived cl asses

Private Function Pl ot Strategy_get Xmax()

End Function

Private Function Pl ot Strategy_get Xm n()

End Function

As Single

As
Private Function PlotStrategy_get Ymax() As Single

As

Single

End Function
Private Function PlotStrategy_getYnin()
End Function

Single

Private Sub PlotStrategy plot(x() As Single, y() As Single)
Dim | plot As New LinePl ot
plts.findBounds x, y
| pl ot. setBounds plts.getXmn, _
plts.get Xmax, plts.getYmn, plts.getYnax
| pl ot. Show

Iplot.plot x(), y()
End Sub

Drawing Plotsin VB

Note that both the LinePlot and the BarPlot window have plot methods which are
caled by the plot methods of the LinePlotStrategy and BarPlotStrategy classes.
Both plot windows have a setBounds method that computes the scaling between
the window coordinates and the x-y coordinate scheme.

Public Sub setBounds(xmm As Single, xmx As Single, ym As Single,
ynx As Single)

Xxmax = Xnx
Xxmn = xm
ymax = ynx
ymn = ym

h = Pi c. Hei ght

w = Pic.Wdth

xfactor = 0.9 * w/ (xmax - xmn)
xpmin = 0.05 * w

Copyright © 2001, by James W. Cooper

Xpmax = w - xpmn

yfactor = 0.9 * h / (ymax - ymn)
ypmin = 0.05 * h

ypmax = h - ypnmin

bounds = True

End Sub

In VB6 you use the Line command to draw both the line and the bar plots.
However, these plotting commands are immediate and do not refresh the screen
if awindow is obscured and needs ot be redrawn. So, we save the references to
the x and y arrays and aso cal the plot method from the PictureBox’s paint
event.

Public Sub plot(xp() As Single, yp() As Single)
Dimi As Integer, ix As Integer, iy As |nteger
‘draw a line plot

x = cal cx(x(1))
iy = calcy(y(1)) _

Pic.Os "clear the picture
Pic.PSet (ix, iy) 'start the draw ng point
"draw the |ines

For i = 2 To UBound(x())

ix = calex(x(i))

iy = calcy(y(i))

Pic.Line -(ix, iy), vbBlack
Next i

Private Function cal cx(ByVal xp As Single) As |nteger
Dimix As Integer

ix = (xp - xmn) * xfactor + xpmin

calecx = ix

End Function

Private Function calcy(ByVal yp As Single) As Integer
Dimiy As |nteger

yp = (yp - ymin) * yfactor

iy = ypmax - yp

calcy =iy

End Function

Private Sub Pic_Paint()

Copyright © 2001, by James W. Cooper

plot x(), y()
End Sub

Plot
Panel

o

LinePlot BarPlot
Panel Panel

Figure 30-3 — The two plot Panel classes derived from PlotPanel.

The final two plots are shown in Figure 30-4.

(5. Lncpiot TP

R [S
II_I

Figure 30-4 — Theline graph (left) and the bar graph (right)
The class diagram is given in Figure 30-5.

Figure30-5—-The UML classdiagram for the PlotStrategy classes.
Note that we again use the Command pattern.

Copyright © 2001, by James W. Cooper

A Strategy Pattern in VB.NET

The VB7 version of Strategy differs primarily in that we do not need to duplicate
code between the two Strategies or the two windows, since we can use
inheritance to make the same code work for both strategies. We define our basic
PlotStrategy class as an empty class which must be overridden:

Public Mustlnherit Class PlotStrategy
Public MustOverride Sub plot(Byval x() As Single,
ByVal y() As Single)
End Cl ass

The two instances for LinePlotStrategy and BarPlotStrategy differ only in the
plot window they create. Here is the LinePlotStrategy

Public Class LinePlotStrategy
Inherits PlotStrategy
Public Overrides Sub plot(Byval x() As Single,
ByVval y() As Single)
Dim | plot As New LinePl ot ()
| pl ot . Show()
[plot.plot(x, V)
End Sub
End Cl ass

and here is the BarPlotStrategy:

Public Class BarPl ot Strategy
Inherits PlotStrategy
Public Overrides Sub plot(Byval x() As Single,
ByVval y() As Single)
Di m bpl ot As New Bar Pl ot ()
bpl ot . Show()
bpl ot. pl ot (x, V)
End Sub
End Cl ass

All of the scaling computations can then be housed in one of the plot window
classes, and inherited for the other. We chose the BarPlot window as the base
class, but either one would work as well as the other as the base. This class

Copyright © 2001, by James W. Cooper

466

contains the scaling routines and creates an array of SolidBrush objects for the

various colors to be used in the bar plot:

Public Overridable Sub set_Bounds()
fi ndBounds()
'conpute scaling factors
h = Pic. Hei ght
w = Pic. Wdth

xfactor = 0.8F * w/ (xmax - xmn)
xpmin = 0.05F * w
Xpmax = w - xpmn
yfactor = 0.9F * h / (ymax - ymn)
ypmin = 0.05F * h
ypmax = h - ypnin

‘create array of colors for bars

colors = New arraylist()

col ors. Add(New Sol i dBrush(Col or. Red))

col ors. Add(New Sol i dBrush(col or. Green))

col ors. Add(New Sol i dBrush(col or. Bl ue))

col ors. Add(New Sol i dBrush(Col or. Magent a))

col ors. Add(New Sol i dBrush(col or. Yel | ow))
End Sub

The plotting amounts to copying in areference to the x and y arrays, calling the

scaling routine and then causing the Picturebox control to be refreshed, which

will then call the paint routine to paint the bars:

Public Sub plot(ByVal xp() As Single,
ByVval yp() As Single)

X = Xp
y =yp
set _Bounds() 'conpute scaling factors

hasData = True
pi c. Refresh()
End Sub
Publ i c Overridable Sub Pic_Paint(_
ByVal sender As bject,

Byval e As PaintEvEntArgs) Handl es Pi c. Pai nt

Copyright © 2001, by James W. Cooper

467

Dimg As Graphics = e. Graphics
Dimi, ix, iy As Integer

Di m br As Brush

I f hasData Then

For i = 0 To x.Length - 1
ix = calcx(x(i))
iy = calcy(y(i))
br = CType(colors(i), brush)

g. Fill Rectangl e(br, ix, h - iy, 20, iy)
Next
End |f
End Sub

The LinePlot window is much simpler now, because we can derive it from the
BarPlot window and reuse nearly al the code:

Publ i c Cl ass LinePl ot
| nherits BarPl ot
Private bPen As Pen
Public Sub New()
MyBase. New
LinePlot = Me
InitializeConponent ()
bpen = New Pen(Col or. Bl ack)
End Sub

Public Overrides Sub Pic_Paint(ByVal sender As Object,
ByVal e As Paint Event Args) Handl es Pic. Pai nt
Dimg As Graphics = e. Graphics
Dimi, ix, iy, ix1l, iyl As |Integer
Di m br As Brush
I f hasData Then

For i =1 To x.Length - 1
ix = calex(x(i - 1))
iy = calcy(y(i - 1))

i x1 = cal cx(x(i))
iyl = calcy(y(i))
g.draw i ne(bpen, ix, iy, ix1, iyl)
Next
End |f

Copyright © 2001, by James W. Cooper

End Sub
End Cl ass

The two resulting plot windows are identical to those draw in the VB6 version.

Consequences of the Strategy Pattern

Strategy alows you to select one of severa agorithms dynamicaly. These
algorithms can be related in an inheritance hierarchy or they can be unrelated as
long as they implement a common interface. Since the Context switches between
strategies at your request, you have more flexibility than if you smply called the
desired derived class. This approach also avoids the sort of condition statements
than can make code hard to read ad maintain.

On the other hand, strategies don’t hide everything. The client code is usually
aware that there are a number of aternative strategies and has some criteriafor
choosing among them. This shifts an agorithmic decision to the client
programmer or the user.

Since there are anumber of different parameters that you might pass to different
algorithms, you have to develop a Context interface and strategy methods that are
broad enough to alow for passing in parameters that are not used by that
particular algorithm. For example the setPenColor method in our PlotStrategy is
actually only used by the LineGraph strategy. It isignored by the BarGraph
strategy, since it sets up its own list of colors for the successive barsit draws.

Programs on the CD-ROM

\ Strat egy VB6 plot strategy

\ St r at egy\ VBNet St r at egy VB7 plot strategy

Copyright © 2001, by James W. Cooper

469

31. THE TEMPLATE METHOD PATTERN

In this chapter, we take up the Template Method pattern—a very smple pattern
that you will discover you use al the time. Whenever you write a parent class
where you |leave one or more of the methods to be implemented by derived
classes, you are in essence using the Template pattern. The Template pattern
formalizes the idea of defining an agorithm in a class, but leaving some of the
details to be implemented in subclasses. In other words, if your base classisan
abstract class, as often happens in these design patterns, you are using asimple
form of the Template pattern.

Since inheritance is acritical part of this pattern, we will develop our Template
Method example exclusively in VB7.

M otivation

Templates are so fundamental, you have probably used them dozens of times
without even thinking about it. The idea behind the Template pattern is that some
parts of an algorithm are well defined and can be implemented in the base class,
while other parts may have several implementations and are best |eft to derived
classes. Another main theme is recognizing that there are some basic parts of a
class that can be factored out and put in a base class so that they do not need to
be repeated in several subclasses.

For example, in developing the BarPlot and LinePlot classes we used in the
Strategy pattern examples kin the previous chapter, we discovered that in plotting
both line graphs and bar charts we needed similar code to scale the data and
compute the x-and y pixel positions.

Public Mustlnherit Cl ass Pl ot Wndow
I nherits System W nFornms. Form
' base plot wi ndow class for bar and line plots
Protected xfactor As Single, xpmn As Single
Protected xpmax As Single
Protected xmin As Single, xmax As Single
Protected ym n As Single, ymax As Single
Protected yfactor As Single, ypmn As Single
Protected yprmax As Single

Copyright © 2001, by James W. Cooper

470

Protected x() As Single, y() As Single
Protected bPen As Pen

Protected hasData As Bool ean

Protected w As Integer, h As |nteger
"Protected WthEvents pic As PictureBox
Const max As Single = 1E+38

Public Sub New()

MyBase. New()
Pl ot W ndow = Me

InitializeConponent ()
End Sub

Publ i c Sub set PenCol or (ByVal ¢ As Col or)
bpen = New Pen(c)

Private Sub findBounds()
Dimi As Integer

Xxmn = max

Xmax = - max

ym n = max

ymax = - max

For i = 0 To x.Length - 1
If x(i) > xmax Then xmax = x(i)
If x(i) < xmn Then xmin = x(i)
If y(i) > ymax Then ymax = y(i)
If y(i) <ymin Then ymin = y(i)

Next i

End Sub

Public Overridable Sub set_ Bounds(_
ByVal pic As PictureBox)
fi ndBounds()
'conpute scaling factors
h = pic. Hei ght
w = pic. Wdth
xfactor = 0.8F * w/ (xmax - xnin)
xpmn 0. 05F * w
Xpmax W - Xpmn

Copyright © 2001, by James W. Cooper

yfactor = 0.9F * h / (ymax - ymn)
ypmin = 0.05F * h
ypmax = h - ypmin

End Sub

Public Function cal cx(ByVal xp As Single) As Integer

Dimix As |nteger
ix = ((xp - xmn) * xfactor + xpmin). Tolnt1l6
Return ix

End Function

Publ i ¢ Function calcy(ByVval yp As Single) As I|Integer

Dimiy As Integer
yp ((yp - ymn) * yfactor). Tolnt16
iy = (ypmax - yp).Tolnt16
Return iy
End Function

Public Sub plot(ByVval xp() As Single,

471

ByVval yp() As Single, ByVal piE As Pi ct ur eBox)

X = Xp
y =Yyp
set _Bounds(pi c) "conmpute scaling factors
hasData = True
repai nt()
End Sub

Thus, these methods all belonged in a base PlotPanel class without any actual

plotting capabilities. Note that the plot method sets up al the scaling constants

and just calsrepaint The actua repaint method is deferred to the derived

classes. It is exactly this sort of extension to derived classes that exemplifies the

Template Method pattern.

Copyright © 2001, by James W. Cooper

472

Kinds of Methodsin a Template Class

Asdiscussed in Design Patterns, the Template Method pattern has four kinds of
methods that you can make use of in derived classes:

1. Complete methods that carry out some basic function that al the subclasses
will want to use, such as calcx and calcy in the above example. These are
caled Concrete methods.

2. Methodsthat are not filled in at al and must be implemented in derived
classes. In VB7, you would declare these as MustOverride methods.

3. Methods that contain a default implementation of some operations, but which
may be overridden in derived classes. These are called Hook methods. Of
course this is somewhat arbitrary, because in VB7 you can override any
public or protected method in the derived class, but Hook methods are
intended to be overridden, while Concrete methods are not.

4. Findly, a Template class may contain methods which themselves call any
combination of abstract, hook and concrete methods. These methods are not
intended to be overridden, but describe an algorithm without actually
implementing its details. Design Patterns refers to these as Template
methods.

Sample Code

Let’'s consider asmple program for drawing triangles on a screen. We'll start
with an abstract Triangle class, and then derive some specid triangle types from
it asweseein Figure 31-1.

Copyright © 2001, by James W. Cooper

473

Trangle

firam default)
+draw
+dfrawindline ———— ahstract method LI
+drawling

stdTriangle IsocelesTriangle RightTriangle
ffrom default) firom default) firom default)

Figure 31-1 - The abstract Triangle class and three of its subclasses.
Our abstract Triangle class illustrates the Template pattern:

Public Mustlnherit Class Triangle
Private pl, p2, p3 As Point
Protected bPen As Pen
Public Sub New(ByVal a As Point, ByVal b As Point,
ByVal c¢ As Point)
= a
p2 = b
=cC

New Pen(Col or . Bl ack)

"draw the conplete triangle
Public Sub draw(ByVal g As Graphics)
drawLi ne(g, pl, p2)
Dimc As Point = draw2ndLi ne(g, p2, p3)
closeTriangl e(g, c)
End Sub
"draw one line
Public Sub drawLi ne(ByVal g As Graphics,
ByVal a As Point, ByRef b As Point)
g. drawLi ne(bpen, a.x, a.y, b.x, b.y)

Copyright © 2001, by James W. Cooper

474

End Sub

"met hod you nust override in derived cl asses
Public MustOverride Function draw2ndLi ne(_
ByvVal g As Graphics, _
ByvVal a As Point, ByVal b As Point) As Point

'cl ose by drawi ng back to begi nning
Public Sub cl oseTriangl e(ByVal g As Graphics,
ByVal ¢ As Point)
g. DrawLi ne(bpen, c. X, c.Y, pl.x, pl.y)
End Sub
End Cl ass

This Triangle class saves the coordinates of three lines, but the draw routine
draws only the first and the last lines. The al important draw2ndLine method that
draws aline to the third point is left as an abstract method. That way the derived
class can move the third point to create the kind of rectangle you wish to draw.

Thisis ageneral example of a class using the Template pattern. The draw
method calls two concrete base class methods and one abstract method that must
be overridden in any concrete class derived from Triangle.

Another very similar way to implement the case triangle classis to include
default code for the draw2ndLine method.

Public Overridabl e Function draw2ndLi ne(_
ByVal g As Graphics, ByVal a As point,
ByVal b As Point) As Point
g. DrawLi ne(bpen, a. X, a.Y, b.X b.Y)
Return b
End Function

In this case, the draw2ndLine method becomes a Hook method that can be
overridden for other classes.

Drawing a Standard Triangle

To draw a genera triangle with no restrictions on its shape, we smple implement
the draw2ndLine method in a derived stdTriangle class:

Copyright © 2001, by James W. Cooper

475

Public Class StdTriangle
Inherits Triangle
Public Sub new(ByVal a As Point, _
ByVal b As Point, ByVal c¢ As Point)

MyBase. newm(a, b, c¢)

End Sub

Public Overrides Function draw2ndLi ne(_
ByVal g As Graphics, ByVal a As point,
ByVal b As Point) As Point
g. DrawLi ne(bpen, a. X, a.Y, b.X b.Y)

Return b
End Functi on
End Cl ass

Drawing an Isoceles Triangle

This class computes a new third data point that will make the two sides equal and
length and saves that new point inside the class.

Public Cl ass Isocel esTriangle

Inherits Triangle

Private newc As Point

Private newcx, newcy As I|nteger

Public Sub New(ByVal a As Point, ByVal b As Point,

ByVal c¢ As Point)

MyBase. New(a, b, c)
Di m dx1, dyl, dx2, dy2, sidel, side2 As Single
Di m sl ope, intercept As Single
Dimincr As |nteger

dx1 = b.x - a.x
dyl = b.y - a.y
dx2 = c.x - b.x
dy2 = c.y - b.y
sidel = cal cSide(dx1l, dyl)
side2 = cal cSi de(dx2, dy2)

If (side2 < sidel) Then

Copyright © 2001, by James W. Cooper

incr = -1
El se

incr =1
End I f

sl ope = dy2 / dx2
intercept = c.y - slope * c¢. X

476

"nove point ¢ so that this is an isoceles triangle

newcx = c. X
newcy = c.Y
VWile (abs(sidel - side2) > 1)
newcx = newcx + incr
"iterate a pixel at a time until close

newcy = (slope * newcx + intercept). Tolnt16

dx2 = newcx - b.Xx
dy2 = newcy - b.y
side2 = cal cSi de(dx2, dy2)

End While
newc = New Poi nt (newcx, newcy)

End Sub

Private Function cal cSide(Byval dx As Single,
ByVal dy As Single) As Single
Return Sgrt(dx * dx + dy * dy).ToSingle
End Function

When the Triangle class cals the draw method, it calls this new version of

draw2ndLine and draws a line to the new third point. Further, it returns that new
point to the draw method so it will draw the closing side of the triangle correctly.

"draw 2nd line using new saved point
Public Overrides Function draw2ndLi ne(_
ByVal g As Graphics, ByVal b As Point,
ByVal ¢ As Point) As Point
g. DrawLi ne(bpen, b.X, b.Y, newc. X, newc.Y)
Ret urn newc
End Function

Copyright © 2001, by James W. Cooper

The Triangle Drawing Program

The main program simple creates instances of the triangles you want to draw.
Then, it adds them to a ArrayList in the TriangleForm class.

Public Cl ass Forml
I nherits System W nFor ns. Form
Private triangles As Arrayli st
Public Sub New()
MyBase. New
Forml = Me
InitializeConponent ()
"Create a list of triangles to draw
triangles = New ArraylLi st ()
Dimtl As New StdTriangle(_
New Poi nt (10, 10), New Poi nt (150, 50),
New poi nt (100, 75))
Dimt2 As New | socel esTriangl e(_
New Poi nt (150, 100), New Poi nt (240, 40),
New Poi nt (175, 150))
triangles. Add(t1)
triangles. Add(t2)
End Sub

It is the paint routine in this class that actually draws the triangles.

Public Sub Pic_Paint(ByVal sender As Object, _
ByVal e As System W nForms. Pai nt Event Args) _
Handl es Pi c. Pai nt
Dimi As Integer
Dimg As Graphics = e. Graphics
For i = 0 To triangles.Count - 1
Dimt As Triangle = _
CType(triangles(i), triangle)
t.draw g)
Next
End Sub

An example of a standard triangle and an isoceles triangle is shown in Figure
31-2.

Copyright © 2001, by James W. Cooper

478

o/

Figure 31-2 —a standard and an isocelestriangle

Templatesand Callbacks

Design Patterns points out that Templates can exemplify the “Hollywood
Principle,” or “Don’t call us, we'll cal you.” The idea here is that methods in the
base class seem to call methods in the derived classes. The operative word here is
seem If we consider the draw code in our base Triangle class, we see that there
are 3 method calls:

drawLi ne(g, pl, p2)
Dimc As Point = draw2ndLi ne(g, p2, p3)
closeTriangl e(g, c)

Now drawLine and closeTriangle are implemented in the base class. However, as
we have seen, the draw2ndLine method is not implemented at al in the base
class, and various derived classes can implement it differently. Since the actual
methods that are being called are in the derived classes, it appears as though they
are being called from the base class.

Copyright © 2001, by James W. Cooper

479

If this idea make you uncomfortable, you will probably take solacein
recognizing that all the method calls originate from the derived class, and that
these calls move up the inheritance chain until they find the first class which
implements them. If this classiis the base class, fine. If not, it could be any other
class in between. Now, when you call the draw method, the derived class moves
up the inheritance tree until it finds an implementation of draw. Likewise, for
each method called from within draw, the derived class starts at the currently
class and moves up the tree to find each method. When it getsto the
draw2ndLine method, it finds it immediately in the current class. So it isn't
“realy” called from the base class, but it does sort of seem that way.

Summary and Consequences

Template patterns occur al the time in OO software and are neither complex nor
obscure in intent. They are normal part of OO programming and you shouldn’t
try to make them into more than they actually are.

The first significant point is that your base class may only define some of the
methods it will be using, leaving the rest to be implemented in the derived
classes. The second major point is that there may be methods in the base class
which call a sequence of methods, some implemented in the base class and some
implemented in the derived class. This Template method defines a genera
algorithm, athough the details may not be worked out completely in the base
class.

Template classes will frequently have some abstract methods that you must
override in the derived classes, and may aso have some classes with asimple
“place-holder” implementation that you are free to override where thisis
appropriate. If these place-holder classes are called from another method in the
base class, then we refer to these overridable methods are “Hook” methods.

Programs on the CD-ROM

\ Strat egy\ Tenpl at eSt r at egy VB7 plot strategy using Template
method pattern
\ Tenpl at e\ Tngl e VB7 triangle drawing template

Copyright © 2001, by James W. Cooper

32. THE VISITOR PATTERN

The Visitor pattern turns the tables on our object-oriented model and creates an
external classto act on datain other classes. Thisis useful when you have a

poly morphic operation that cannot reside in the class hierarchy for some reason..
For example, the operation wasn't considered when the hierarchy was designed,
or because it would clutter the interface of the classes unnecessarily. The Visitor
pattern is easier to explain using VB7, since polymorphism and inheritance make
the code rather simpler. We'll discuss how to implement the Visitor in VB6 at
the end of this chapter.

M otivation

While at first it may seem “unclean” to put operations that should be inside a
class in another class instead, there are good reasons for doing it. Suppose each
of anumber of drawing object classes has similar code for drawing itself. The
drawing methods may be different, but they probably all use underlying utility
functions that we might have to duplicate in each class. Further, a set of closely
related functions is scattered throughout a number of different classes as shown

in Figure 32-1
DrawObject
firorm defauk]
0.1 -circ 0.1 |-tri 0.1, -rect
Circle Triangle Rectangl
firorm defaul] firorm defaul] firorm defauk]
+drawy +drawy +orawy

Figure 32-1 — A DrawObject and three of its subclasses.

Instead, we write aVisitor class which contains al the related draw methods and
have it visit each of the objects in succession (Figure 32-2).

Copyright © 2001, by James W. Cooper

DrawObject
firom default]

- 0.1 [ri
IZI..1/ rect
Rectangl Triangle
firorm defaul] fram default]
+accept +accept

0.1 \{circ

Circle
firom defaul]
+accept

]

v.accept(this) §WM
]
Drawer
Visitor
from defaul] from sefaul
_— +olrawy
+4alt ..
+lsit

Figure 32-2 — A Visitor class (Drawer) which visits each of three
triangle classes.

481

The question that most people who first read about this pattern ask is “what does

visiting mean?’ Thereis only one way that an outside class can gain accessto
another class, and that is by calling its public methods. In the Visitor case,

visiting each class means that you are calling a method aready installed for this
purpose, caled accept The accept method has one argument: the instance of the
vigtor, and in return, it calls the visit method of the Visitor, passing itself as an
argument, as shown in Figure 32-3.

visited.accept(this);

Visitor

v.visit(this);

Copyright © 2001, by James W.

Cooper

Visited
instance

482

Figure 32-3- How the visit and accept methods interact.

Putting it in Smple code terms, every object that you want to visit must have the
following method:

Public Sub accept(ByVal v As Visitor)
V. Vvisit(M)
End Sub

In thisway, the Visitor object receives areference to each of the instances, one
by one, and can then call its public methods to obtain data, perform calculations,
generate reports, or just draw the object on the screen. Of coursg, if the class does
not have an accept method, you can subclass it and add one.

When to Usethe Visitor Pattern

Y ou should consider using a Visitor pattern when you want to perform an
operation on the data contained in a number of objects that have different
interfaces. Visitors are aso vauable if you have to perform a number of
unrelated operations on these classes. Visitors are a useful way to add function to
classlibraries or frameworks for which you either do not have the course or
cannot change the source for other technical (or political) reasons. In these | atter
cases, you simply subclass the classes of the framework and add the accept
method to each subclass.

On the other hand, as we will see below, Visitors are a good choice only when
you do not expect many new classes to be added to your program.

Sample Code

Let’'s consider a smple subset of the Employee problem we discussed in the
Composite pattern. We have a smple Employee object which maintains a record
of the employee’'s name, salary, vacation taken and number of sick days taken. A
smple version of thisclassis:

Publ i c Cl ass Enpl oyee
Di m si ckDays As Integer, vacDays As I|nteger
Dim salary As Single
Dimname As String

Copyright © 2001, by James W. Cooper

Public Sub New(ByVal nm As String, ByVal sl As Single,
ByVal vDays As Integer, ByVal sDays As |nteger)
nanme = nm
salary = sl
vacDays = vDays
si ckDays = sDays

End Sub

Public Function getNane() As String
Ret urn name

End Function

Public Function getSalary() As Single
Return sal ary

End Function

Publ i ¢ Function getSi ckdays() As |nteger
Return sickDays

End Function

Public Function getVacDays() As Integer
Ret urn vacDays

End Function

Public Sub accept(ByVal v As Visitor)
v.visit(Me)

End Sub

End Cl ass

Note that we have included the accept method in this class. Now let’s suppose
that we want to prepare areport of the number of vacation days that all
employees have taken so far this year. We could just write some code in the
client to sum the results of calls to each Employee’ sgetVacDays function, or we
could put this function into a Visitor.

Since Javais a strongly typed language, our base Visitor class needs to have a
suitable abstract visit method for each kind of classin your program. In this first

Copyright © 2001, by James W. Cooper

484

simple example, we only have Employees, so our basic abstract Visitor classis
just
Public Mustlnherit Class Visitor

Public MustOverride Sub visit(ByVal enp As Enpl oyee)

Public MustOverride Sub visit(ByVal bos As Boss)
End Cl ass

Notice that there is no indication what the Visitor does with each class in either
the client classes or the abstract Visitor class. We can in fact write awhole lot of
visitors that do different things to the classes in our program. The Visitor we are
going to write first just sums the vacation data for al our employees:

Public Cl ass VacationVisitor
Inherits Visitor
Di m t ot al Days As | nteger
Public Sub new()
total Days = 0
End Sub
Publ i ¢ Function getTotal Days() As |nteger
get Tot al Days = total Days
End Function
Public Overrides Sub visit(ByVal enp As Enpl oyee)
tot al Days = total Days + enp. getVacDays
End Sub
Public Overrides Sub visit(ByVal bos As Boss)
total Days = total Days + bos. getVacDays
End Sub
End Cl ass

Vigiting the Classes
Now, al we have to do to compute the total vacation taken isto go through alist
of the employees and visit each of them, and then ask the Visitor for the total.

For i = 0 To enpls.Length - 1
enpl s(i).accept (vac) 'get the enpl oyee
Next i

Copyright © 2001, by James W. Cooper

Listl.itenms. Add("Total vacation days=" + _
vac. get Tot al Days. toStri ng)

Let' sreiterate what happens for each visit:

We move through aloop of al the Employees.

The Visitor calls each Employee' s accept method.

That instance of Employee calls the Visitor’s visit method.

The Visitor fetches the vacation days and adds them into the total.
The main program prints out the total when the loop is complete.

o~ 0w N

Visiting Several Classes
The Visitor becomes more useful, when there are a number of different classes
with different interfaces and we want to encapsulate how we get data from these
classes. Let’s extend our vacation days model by introducing a new Employee
type called Boss. Let’s further suppose that at this company, Bosses are rewarded
with bonus vacation days (instead of money). So the Boss class as a coupl e of
extra methods to set and obtain the bonus vacation day information:

Public Cl ass Boss

I nherits Enpl oyee

Private bonusDays As Integer

Public Sub New(ByVal nm As String,
ByVal sl As Single, _
ByVal vDays As Integer, ByVal sDays As |nteger)
MyBase. New(nm sl , vdays, sdays)

End Sub

Publ i ¢ Sub set BonusDays(ByVal bdays As |nteger)
bonusdays = bdays

Publ i ¢ Function getBonusDays() As I|nteger
Ret urn bonusDays
End Function

Copyright © 2001, by James W. Cooper

486

Public Overrides Sub accept(ByVal v As Visitor)
v.visit(Me)
End Sub
End Cl ass

When we add a class to our program, we have to add it to our Visitor aswell, so
that the abstract template for the Visitor is now:

Public Mustlnherit Class Visitor
Public MustOverride Sub visit(ByVal enp As Enpl oyee)
Public MustOverride Sub visit(ByVal bos As Boss)

End Cl ass

This says that any concrete Visitor classes we write must provide polymorphic
visit methods for both the Employee and the Boss class. In the case of our
vacation day counter, we need to ask the Bosses for both regular and bonus days
taken, so the visits are now different. We'll write a new bVacationVisitor class
that takes account of this difference:

Public Cl ass bVacationVisitor
I nherits Visitor
Private total Days As I|nteger
Public Overrides Sub visit(_
ByVal enp As Enpl oyee)
t ot al Days += enp. get VacDays

Public Overrides Sub visit(ByVal bos As Boss)
t ot al Days += bos. get VacDays
t ot al Days += bos. get BonusDays

Publ i ¢ Function getTotal Days() As I|nteger
Return total Days
End Function
End Cl ass

Copyright © 2001, by James W. Cooper

487

Note that while in this case Boss is derived from Employee, it need not be related
a al aslong asit has an accept method for the Visitor class. It is quite important,
however, that you implement a visit method in the Visitor for every class you

will be visiting and not count on inheriting this behavior, since the visit method
from the parent class is an Employee rather than a Boss visit method. Likewise,
each of your derived classes (Boss, Employee, etc. must have its own accept
method rather than calling one in its parent class. Thisisillustrated in the class
diagram in Figure 32-4.

Figure 32-4 — The two visitor classesvisiting the Boss and Employee
classes.

Bosses are Employees, too

We show in Figure 32-5 a simple application that carries out both Employee
visits and Boss visits on the collection of Employees and Bosses. The origina
VacationVisitor will just treat Bosses as Employees and get only their ordinary
vacation data. The bVacationVisitor will get both.

Dimi As Integer

Di m vac As New VacationVisitor()

Di m bvac As New bVacationVisitor()

For i = 0 To enpls.Length - 1
enpl s(i).accept (vac) 'get the enpl oyee
enpl s(i).accept (bvac)

Next i

Listl.itens. Add("Total vacation days=" + _
vac. get Tot al Days. toStri ng)

Listl.itens. Add("Total boss vacation days=" +
bvac. get Tot al Days. t ostri ng)

The two lines of displayed data represent the two sums that are computed when
the user clicks on the V acations button.

Copyright © 2001, by James W. Cooper

_Mrormt ~1o| x|

Total vacation days=101
Total bogs vacation daps=130

Compute

Figure 32-5—- A simple application that performs the vacation visits
described above.

Catch-All Operationswith Visitors
In the cases we showed above, the Visitor class has avisit method for each
visiting class, such as

Public MustOverride Sub visit(ByVal enp As Enpl oyee)
Public MustOverride Sub visit(ByVal bos As Boss)

However, if you start subclassing your visitor classes and adding new classes that
might visit, you should recognize that some visit methods might not be satisfied
by the methods in the derived class. These might instead “fall through” to
methods in one of the parent classes where that object type is recognized. This
provides away of specifying default visitor behavior.

Now every class must override accept(v) with its own implementation so that the
return call v.visit(this) returns an object this of the correct type and not of the
superclass s type.

Copyright © 2001, by James W. Cooper

489

Let’s suppose that we introduce another layer of management into our company:
the Manager. Managers are subclasses of Employees and now they have the
privileges formerly reserved for Bosses of extra vacation days. Bosses now have
an additional reward—stock options. Now if we run the same program to
compute vacation days but do not revise our Visitor to look for Managers, it will
recognize them as mere Employees and count only their regular vacation and not
their extra vacation days. However, the catch-all parent classis a good thing if
subclasses may be added to the application from time to time and you want the
visitor operations to continue to run without modification.

There are three ways to integrate the new Manager class into the visitor system.
Y ou could define a ManagerVisitor or you use the BossVisitor to handle both.
However, there could be conditions when continually modifying the Visitor
structure is not desirable. In that case, you could smply test for this specia case
in the EmployeeVisitor class.

Public Overrides Sub visit(ByVal enp As Enpl oyee)
t ot al Days += enp. get VacDays
If TypeOf enp |s Manager Then
Di m mgr As Manager = CType(enp, Manager)
t ot al days += ngr. get BonusDays
End |f
End Sub

While this seems “unclean” at first compared to defining classes properly, it can
provide a method of catching specia cases in derived classes without writing
whole new visitor program hierarchies. This “catch-al” approach isdiscussed in
some detail in the book Pattern Hatching (Vlissides, 1998).

Double Dispatching

No discussion on the Visitor pattern is complete without mentioning that you are
really dispatching a method twice for the Visitor to work. The Visitor calls the
polymorphic accept method of a given object, and the accept method calls the
polymorphic visit method of the Visitor. It this bidirectional calling that allows
you to add more operations on any class that has an accept method, since each
new Visitor class we write can carry out whatever operations we might think of
using the data available in these classes.

Copyright © 2001, by James W. Cooper

490

Why AreWe Doing This?

Y ou may be asking yourself why we are jumping through these hoops when we
could call the getVacationDays methods directly. By using this “callback”
approach we are implementing “double dispatching.” There is no requirement
that the objects we visit be of the same or even of related types. Further, using
this callback approach, you can have a different visit method called in the Visitor
depending on the actua type of class. Thisis harder to implement directly.

Further, if the list of objects to be visited in an ArrayList are a collection of
different types, having different versions of the visit methods in the actual Visitor
isthe only way to handle the problem without specifically checking the type of
each class.

Traversing a Series of Classes

The calling program that passes the class instances to the Visitor must know
about al the existing instances of classesto be visited and must keep themin a
simple structure such as an array or Vector. Another possibility would be to
create an Enumeration of these classes and passit to the Visitor. Finally, the
Visitor itself could keep the list of objects that it isto visit. In our Smple example
program, we used an array of objects, but any of the other methods would work
equally well.

Writing a Visitor in VB6
In VB6, we will define the Visitor as an interface and define only the employee
visit as being required:

"Interface Visitor
Public Sub visit(enp As Enpl oyee)
End Sub

The Employee class has an accept method much the same asin our VB7 version:

Public Sub accept(v As Visitor)
v.visit M
End Sub

Copyright © 2001, by James W. Cooper

To create a VacationVisitor, we create a class which implements the Visitor
interface:

'Class VacationVisitor
| npl emrents Visitor
Di mtotal Days As | nteger

Private Sub Cass_Initialize()
total Days = 0
End Sub

Private Sub Visitor_visit(enp As Enpl oyee)
t ot al Days = total Days + enp. get VacDays

Publ i ¢ Function getTotal Days() As |nteger
get Tot al Days = total Days
End Function

Then to carry out the visiting and tabulate employee vacation days, we loop
through and call each employe€’ s accept method, much as before:

"l oop through all the enpl oyees

For i =1 To enpls. Count

Set enpl = enpls(i)

enpl . accept v 'get the enpl oyee
Next i

List1. Addltem "Total vacation days=" + Str$(vac. get Tot al Days)

In VBS6, our Boss class implements the Employee interface rather than being
derived from it, and contains an instance of the Employee class.

'd ass Boss

| npl enent s Enpl oyee

Private empl As Enpl oyee

Private bonusDays As I|nteger

Private Sub Cass_Initialize()

Set enpl = New Enpl oyee

End Sub

Private Sub Enpl oyee_accept(v As Visitor)
enpl . accept v

End Sub

Copyright © 2001, by James W. Cooper

491

492

Private Function Enpl oyee_get Name() As String
Enmpl oyee_get Nanme = enpl . get Nane
End Function
Private Function Enpl oyee_get Sal ary() As Single
Enpl oyee_get Sal ary = enpl . get Sal ary
End Function
Private Functi on Enpl oyee get Si ckdays() As Integer
Enpl oyee_get Si ckdays = enpl . get Si ckdays
End Function
Private Function Enpl oyee_get VacDays() As |nteger
Enpl oyee_get VacDays = enpl . get VacDays
End Function
Private Sub Enployee_init(nmAs String, sl As Single,
vDays As Integer, sDays As |nteger)

empl.init nm sl, vDays, sDays

Publ i c Sub setBonusdays(bday As I nteger)
bonusDays = bday

End Sub

Publ i ¢ Function getBonusDays() As Integer
get BonusDays = bonusDays

End Function

Public Sub accept(v As Visitor)
v.visit Me
End Sub

Note that this class has two accept methods: one from implementing the
Employee interface,

Private Sub Enpl oyee_accept(v As Visitor)
enpl . accept v
End Sub

and another just for the Boss class

Public Sub accept(v As Visitor)
v.visit Me

Copyright © 2001, by James W. Cooper

493

End Sub

The problem that VB6 introduces is that you must refer to an object as being an
Employee to use the Employee methods and refer to it as a Boss to use the Boss-
specific methods. Thus, there cannot be a polymorphic set of visit methods in the
visitor class for each classthat isto visit. Instead you must convert each object to
the correct class to call that class's methods. Since we shouldn’t have to know in
advance which objects are Employees and which are Bosses, we just try to
convert each Employee to aBoss and catch the error that is generated for classes
where thisis not legal:

Private Sub Conpute_Cick()

Dimi As Integer

Di m vac As New VacationVisitor

Di m bvac As New bVacationVisitor

Dmv As Visitor

Di m bos As Boss

Dim empl As Enpl oyee

Set v = vac

"l oop through all the enpl oyees

On Local Error GoTo noboss 'trap conversion errors

For i = 1 To enpls. Count
Set enpl = enpls(i)
enpl . accept v 'get the enpl oyee
enpl . accept bvac "and in box visitor
Set bos = enpl s(i)
bos. accept bvac ‘get as boss

nexti:

Next

List1. Addltem "Total vacation days=" + Str$(vac. get Tot al Days)
Li st 1. Addltem "Total boss vacation days=" +

Str$(bvac. get Tot al Days)

Exit Sub

"error if non-boss converted
"justs skips to bottom of |oop
noboss

Resume nexti
End Sub

This approach is significantly less elegant, but it does alow you to use a Visitor-
like approach in VB6.

Copyright © 2001, by James W. Cooper

494

Consequences of the Visitor Pattern

The Visitor pattern is useful when you want to encapsulate fetching data from a
number of instances of several classes. Design Patterns suggests that the Visitor
can provide additional functiondlity to a class without changing it. We prefer to
say that a Visitor can add functionality to a collection of classes and encapsulate
the methods it uses.

The Visitor is not magic, however, and cannot obtain private data from classes: it
is limited to the data available from public methods. This might force you to
provide public methods that you would otherwise not have provided. However, it
can obtain data from a disparate collection of unrelated classes and utilize it to
present the results of a global calculation to the user program.

It is easy to add new operations to a program using Visitors, since the Visitor
contains the code instead of each of the individua classes. Further, Visitors can
gather related operations into a single class rather than forcing you to change or
derive classes to add these operations. This can make the program smpler to
write and maintain.

Vigitors are less helpful during a program’s growth stage, since each time you
add new classes which must be visited, you have to add an abstract visit
operation to the abstract Visitor class, and you must add an implementation for
that class to each concrete Visitor you have written. Visitors can be powerful
additions when the program reaches the point where many new classes are
unlikely.

Visitors can be used very effectively in Composite systems and the boss-
employee system we just illustrated could well be a Composite like the one we
used in the Composite chapter.

Thought Questions

An investment firm’s customer records consist of an object for each stock or
other financia instrument each investor owns. The object contains a history of
the purchase, sale and dividend activities for that stock. Design a Visitor pattern
to report on net end of year profit or loss on stocks sold during the year.

Copyright © 2001, by James W. Cooper

Programs on the CD-ROM

495

\Visitor\

VB6 Vistor

\Visitor\VBNet Visitor

VB7 Vistor

Copyright © 2001, by James W. Cooper

496

33. BIBLIOGRAPHY

Copyright © 2001, by James W. Cooper

497

Alexander, Christopher, Ishikawa, Sara, et. al., A Pattern Language, Oxford University Press,
New York, 1977.

Alpert, S. R., Brown, K. and Wooalf, B., The Design Patterns Smalltalk Companion, Addison-
Wedley, 1998.

Arnold, K. and Godling, J. The Java Programming Language, Addison-Wesley, Reading, MA.,
1997

Booch, G., Jacobson, |. and Rumbaugh, J.The Unified Modeling Language User Guide, Addison-
Wesley, Reading, MA, 1998.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., A System of Patterns, John
Wiley and Sons, New Y ork, 1996.

Cooper, J. W., Java Design Patterns: A Tutorial. Addison-Wedey, Reading, MA, 2000.
Cooper, J. W., Principles of Object-Oriented Programming in Java 1.1 Coriolis (Ventana), 1997.

Coplien, James O. Advanced C++ Programming Styles and Idioms, Addison-Wesley, Reading,
MA., 1992.

Coplien, James O. and Schmidt, Douglas C., Pattern Languages of Program Design, Addison-
Wesley, 1995.

Fowler, Martin, with Kendall Scott, UML Distilled, Addison-Wesley, Reading, MA, 1997.

Gamma, E., Helm, T., Johnson, R. and Vlissides, J., Design Patterns. Abstraction and Reuse of
Object Oriented Design. Proceedings of ECOOP ' 93, 405-431.

Gamma, Eric; Hlm, Richard; Johnson, Ralph and Vlissides, John, Design Patterns. Elements of
Reusable Software, Addison-Wedey, Reading, MA, 1995

Grand, Mark, Patternsin Java, Volume 1, John Wiley & Sons, New Y ork 1998.

Krasner, G.E. and Pope, S.T., A cookbook for using the ModetView-Controller user interface
paradigm in Smalltalk-80. Journal of Object-Oriented Programmng | (3)., 1988

Kurata, Deborah, “Programming with Objects,” Visual Basic Programmer’s Journal, June,
1998.

Pree, Wolfgang, Design Patterns for Object Oriented Software Development, Addison-Wedey,
1994.

Rid, Arthur J., Object-Oriented Design Heuristics, Addison-Wesley, Reading, MA, 1996

Vlissides, John, Pattern Hatching: Design Patterns Applied, Addison-Wedey, Reading, MA,
1998

Copyright © 2001, by James W. Cooper

498

34.

Copyright © 2001, by James W. Cooper

