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 Objectives 
Introdu ct ion to Comput er H ardware

After completing this chapter, you should be able to:

◗ Describe the fundamental elements of every computer system: proces-
sor, memory, and input/output

◗ Compare elements of the HC11 block diagram to the fundamentals of
every computer system

◗ Describe the use of busses to connect computer elements

◗ Explain the three major functional units of a processor

◗ Illustrate the typical registers inside the processor

◗ List the HC11 processor registers

◗ Discuss the HC11 processor modes

◗ Compare and contrast various memory types

◗ Describe the on-chip memory of the HC11

◗ Specify input/output functions present on most computers

◗ Use some basic BUFFALO commands to control the EVBU

 Outline 

◗ 1.1 Elements of Every Computer

◗ 1.2 Elements of Processors

◗ 1.3 Introduction to Memory

◗ 1.4 Memory Types

◗ 1.5 Input/Output

◗ 1.6 EVBU/BUFFALO
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 Introduction 

Computer systems have been developed for a variety of functions and purposes.
General-application desktop machines are the most common. They run a variety of
software applications, such as word processing, financial management and data
processing. They have all but replaced the typewriter as a necessary business tool.
Computers are also present in automobiles, appliances, airplanes and all types of
controllers and electromechanical devices.

Despite the differences among these computer systems, they all share fundamental
components and design. The purpose of this chapter is to provide an understanding
of the fundamental components of a computer system. A conceptual presentation
regarding the elements of every computer system is made with sufficient detail to
establish a foundation for these concepts. The concepts will then be extended to the
HC11 hardware.

 1.1 Elements of Every Computer 

All computers are made up of a group of three fundamental elements: a central
processor, memory, and input/output devices. Figure 1.1 shows a block diagram of a
computer that includes these three elements. The examination of any kind of desktop
computer, workstation or computer control system will reveal at least this minimum
structure. Many computing devices will have multiple processors, multiple memory
types, and numerous input/output devices. In many cases, the input/output devices
contain all three elements as a unit. Video cards for personal computers, for example,
always contain a video processor and memory in addition to their inherent input/out-
put capability.

Central
Processor

(CPU)

Connection to the
Outside World

Memory

Input/Output

Data Bus

Address Bus

Control Bus

Figure 1.1 Fundamental Block Diagram of a Computer
2

Technician’s Guide to the 68HC11 Microcontroller



HC11 Hardware Block Diagram

The HC11 is a computer system on a single chip that contains the three functional
blocks of a computer system. Its internal central processor is a member of the 6800
family of processors; it has on-board memory and sophisticated on-chip input/output
capabilities.

The HC11 block diagram is shown in Figure 1.2. This block diagram is specific to the
M68HC11E9 version of the HC11. This version of the HC11 is used on the development
board (EVBU), as well as in the examples used throughout this text. Three types of
memory are included on-chip: RAM, ROM and EEPROM. The HC11 also supports
expanded off-chip memory. It contains five on-chip input/output functions, an
analog-to-digital converter, and a sophisticated timing system that supports numerous
event-driven functions. The address, data and control busses are not shown in this
diagram; the processor is connected to the memory and input/output functions inside
the HC11 chip in the manner illustrated in Figure 1.1.

Figure 1.2 M68HC11E9 Block Diagram
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NOTE: Throughout this text, references to the HC11 presume the M68HC11E9
version of the chip; thus, the shorter, more general name “HC11” will be used,
unless otherwise specified.

Central Processor

The processor is the device at the center of the machine. It has the responsibility to
execute instructions, manipulate data and perform arithmetic functions. It controls
and manages the activities of the entire machine. The human brain is the ultimate
processor. It can receive and process instructions, process data (like visual images and
sounds) and perform arithmetic calculations. However, the human brain is much,
much more than a processor because it has the ability to think and to reason. Computer
processors cannot think in the same sense.

The term Central Processing Unit (CPU) is used to refer to the main processor in a
system. The CPU often works in conjunction with a set of processors to complete a
whole system. Modern computers contain additional processors, other than the CPU.
They contain video processors, input/output processors, memory controllers, interrupt
controllers and math co-processors, to name a few. Since these other processors are
subordinate to the central processor, they are often called sub-processors. Many
peripheral devices, such as harddrives, printers and video projection systems, have
dedicated processors embedded into their control circuitry.

Memory

Memory is a term that refers to any component that stores data and programs used by
the processor. Memory can have many forms. There are semiconductor memories,
magnetic memories, and optical memories. Semiconductor memories include read
only memory (ROM) and read/write memory (RAM). Magnetic memories include
floppy disk drives, hard disk drives and tape systems. Optical memories include
CD-ROM, DVD and optical disks. A thorough presentation of memory relevant to the
HC11 will be provided in chapter 8. Section 1.3 will address concepts of memory that
are applicable to all computer systems and a necessary foundation for this study of the
HC11.

Input/Output

Input/Output is a term that refers to any subsystem that has the responsibility of
receiving data for the processor (input) or sending data out from the processor
(output). Input/Output is typically abbreviated as I/O and does not necessarily imply
that a particular device has both input and output capability. Typical input devices are
keyboards, mice or scanners. Typical output devices are printers and monitors. Typical
devices that perform both input and output functions are modems or tape drives.
Collectively, all these devices are referred to as I/O devices. The HC11 I/O capability
is discussed in detail in chapters 10 through 13.
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Busses

The processor communicates with the memory and I/O via busses. On a computer, a
bus is a set of two or more conductors that are grouped together to form a parallel
information path to and/or from the processor. The bus size, given in bits, is a measure
of the number of conductors that can be active simultaneously on the bus. There are
three major busses on computer systems: the data bus, the address bus and the control
bus.

The data bus is responsible for the transfer of data between the processor and memory or
the processor and I/O. It is a bidirectional bus, because data can travel to or from the
processor and other devices. Typically, a data bus transfers data in byte widths. Thus, a
data bus is an 8-bit, 16-bit or 32-bit bus (1 byte, 2 bytes or 4 bytes wide). The number of
bits, or data bus width, also directly correlates with the default processing capacity of the
processor. Typically, processors and computers are referred to by the size of their data
busses. An HC11 is considered an 8-bit processor because it has an 8-bit data bus and has
the default processing capability of one byte. Pentium-based personal computers are
32-bit or 64-bit machines. Thus, they can process four or eight bytes simultaneously.

The address bus is responsible for the transfer of addresses from the processor to mem-
ory or to I/O. The address is used to identify specific memory locations or I/O devices. It
is a unidirectional or one-way bus, because processors are the only devices that can create
an address for memory or I/O. Typically, an address bus transfers addresses over the bus
in double byte widths. Thus, an address bus is usually a 16-bit, 32-bit, or 64-bit bus (2 bytes,
4 bytes or 8 bytes wide). The HC11 uses a 16-bit address bus.

The control bus is responsible for the control signals necessary to interface the various
devices within a computer system. This bus is not typically structured as a fixed number
of conductors, as are the data and address busses. It is more likely to be a collection of
all other signals necessary for proper operation of the system.

Figure 1.3 illustrates how busses might be implemented between an HC11 and some
expanded off-chip memory device. This example uses a 16-bit address bus, an 8-bit data
bus and two control signals that would be part of a larger system control bus.
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Self-Test Questions 1.1

 1.2 Elements of Processors 

Processors have the job of processing the data within a computer and controlling the
overall operation of the system. The basic block diagram of a processor includes an
arithmetic logic unit, processor registers and a control unit, as shown in Figure 1.4.

Arithmetic Logic Unit

The arithmetic logic unit (ALU) is responsible for mathematical and logical operations.
Most processors support addition and subtraction, logical AND, OR and NOT
operations and data shifting. All of these operations are performed in an ALU. The
ALU receives data from the processor registers and from external memory via the
external data bus. It does not store data, but it returns the result of the operations to
the registers or to memory. The ALU is interfaced to a block of processor registers and
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Figure 1.4 Processor Block Diagram

1. What are the three main hardware components of a computer?
2. What is the function of each of the three hardware components of a computer?
3. What connects the three hardware components and allows the data, addresses

and control signals to move between these components?
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to the control block, as shown in Figure 1.4. The HC11 has an ALU that can perform
operations on 8-bit and 16-bit data.

Processor Registers

The processor registers are a set of registers needed to perform the instruction
execution. The registers are used to temporarily store data and memory addresses, as
well as to contain status and control information. These registers are accessible to the
user via instructions. A basic register block configuration is shown in Figure 1.5. Each
processor will have a unique design that may not include all the registers described
here. Often a processor will contain multiple copies of these registers for versatility and
enhanced functionality.

Accumulators are special registers directly linked to the ALU to assist with the
arithmetic operations. The results of arithmetic operations are stored in an accumula-
tor. The size of the accumulators is related to the size of the data bus. If the processor
is an 8-bit processor, then it will have 8-bit accumulators. If it is a 16-bit processor, then
it will have 16-bit accumulators. Moreover, processors often have the ability to process
data of various sizes. For example, an 8-bit processor may also be able to process 16-bit
data. If the processor has a 32-bit configuration, it can also process data in 16-bit or
even 8-bit words.

The program counter is a processor register that keeps track of the address of the next
location in memory that will be accessed. Every processor must have a register that
performs the function of a program counter. The program counter is the same size as
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the address bus. If the processor has a 16-bit address bus, the program counter is a
16-bit register. Instructions require one or more bytes of memory for their completion;
therefore, the program counter must be capable of incrementing through memory as
the instructions are executed. Without the program counter, the processor would not
be able to determine which instruction to execute. This register is sometimes called
the instruction pointer.

The processor has a need to temporarily store and retrieve data from memory during
the processing of instructions. This temporary memory area is called the stack. The
processor must have a register that contains an address pointer that indicates the next
available memory location on the stack. This register is called the stack pointer. The
stack pointer is the same size as the address bus. If the processor has a 16-bit address
bus, the stack pointer is a 16-bit register.

Most general-purpose processors contain registers that are used specifically by the
instructions to address memory. These registers have various names, but generally they
are called address registers. The use of address registers allows for simpler instructions,
because they do not need to be concerned about the address. The address required to
complete the instruction is already provided in the address register.

Every processor must have a register dedicated to reporting status. The status register
contains bits that indicate certain results of the last operation. The most common status
bits are sign flags, carry/borrow flags, zero flags and overflow flags. The sign flags
indicate the sign of the last data processed. The carry/borrow flags indicate that an
arithmetic operation produced a result larger than could fit into the register used or
that it had to borrow to complete the operation. The zero flag indicates that result of
the last operation was zero, and the overflow flag indicates that a sign overflow occurred
(the sign of the last operation is wrong).

Control Unit

The control unit within the processor is responsible for reading the instruction from
memory; it then ensures that the instructions are executed. The control function is
driven by the instructions that are decoded by the control unit. The decoded
instruction causes a series of steps to be followed during the execution. Figure 1.6 shows
the major components of the control unit within a processor.

The memory address register (MAR) is a special address register that is linked to the
program counter. The job of the MAR is to contain the address of the current data word
that is being addressed. The memory data register (MDR) is another special register that
resides between the data bus and the various processor registers. It provides buffering
and control of the movement of data into and out of the processor. The MAR and MDR
are not accessible to the user, but are used internally by the processor for address and data
bus interface and to assist in the execution of instructions.

The instruction register (IR) is a special register that always contains the opcode for
the current instruction. This instruction opcode is read from memory during a fetch
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cycle and deposited into this register. The opcode remains in this register until it is
overwritten by the opcode for the next instruction.

Opcodes, operands and instructions are explained in Chapter 2.

NOTE: The instruction register should be called the opcode register, because it
contains only the opcode of the instruction. Operands and operand addresses
are not processed by the instruction register.

The instruction decoder is the main section of the control block. It has the job of
decoding the instruction in the instruction register and controlling the execution of
the instruction. It causes each step of the instruction execution to take place. If an
address needs to be read from memory, the instruction decoder will cause that to take
place. If data needs to be added, it will tell the ALU to perform an addition operation,
and so on.

T he process of fetching and executing an instruction is covered in chapter 2.

HC11 Processor

The HC11 is a member of the Motorola 6800 family of processors. It is compatible with
the M6800 and M6801 processors. In addition to executing all M6800 and M6801
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instructions, the HC11 supports many additional instructions. The HC11 supports
16-bit by 16-bit divide instructions, twelve instructions that support bit-manipulation,
and various instructions that support a second address register (Y), none of which was
available on the original 6800.

The HC11 MCU is an 8-bit processor, which supports a 16-bit address bus. It contains
an 8-bit ALU that can be configured to perform some 16-bit operations.

HC11 Processor Registers

The HC11 has a complete set of processor registers. This set of registers is called the
programmer’s model, as shown in Figure 1.7. It has two 8-bit accumulators that can be
configured as a 16-bit accumulator for some operations. It has two16-bit address
registers, a 16-bit stack pointer and a 16-bit program counter. Finally, it contains an
8-bit status register that contains three control bits and five status flags. None of these
registers is addressable as memory; they can only be accessed via instructions. These
registers are described in the following sections.

Accumulator A.  An 8-bit register that is used as the primary data-processing register.
All arithmetic and logical instructions can operate on data in this register. Many
special-purpose instructions can only operate on data in this register. This register is
referred to as the “A” register or as “AccA.”

Accumulator B. An 8-bit register that is identical to Accumulator A in function. Some
instructions have versions that access Accumulator A only and do not support
Accumulator B. There are also two instructions that utilize Accumulator B and do not
support Accumulator A. This register is referred to as the “B” register or as “AccB.”

10 Figure 1.7 HC11 Programmer’s Model (adapted with permission from Motorola)
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Accumulator D (A:B). A 16-bit register that is the two 8-bit accumulators joined
together (the colon between A and B indicates the joining of the two registers). It is
not a separate hardware register. Although the HC11 is technically an 8-bit processor,
several instructions are provided that allow 16-bit operations. This joining of A and B
is referred to as the “D” register or as “AccD.”

Index Register X. A 16-bit address register that is used by the indexed addressing mode
instructions. It can also be used as a general-purpose, 16-bit data register. When used with
the indexed addressing mode instructions, it contains a 16-bit base address. When used
as a general-purpose data register, 16-bit data of any type can be stored and processed in
this register. This register is referred to as the “IX” or simply the “X” register.

The role of the memory addressing registers is explained in chapter 2 during the presentation on memory
addressing modes. The use of these registers to address memory is emphasized in chapter 5.

Index Register Y. A 16-bit address register that is identical in function to index register
X. This register is referred to as the “IY” or simply the “Y” register.

Stack Pointer. A 16-bit register that always contains the address of the next available
stack memory location. It is referred to as the “S” or the “SP” register.

T he use of the stack pointer and the function of the memory stack are explained in chapter 6.

Program Counter. A 16-bit address register that always contains the address of the next
location in memory that will be addressed. It is referred to as the “PC.”

Condition Code Register. An 8-bit status and control register. Five of the eight bits
(H, N, Z, V and C) are status flags, which indicate the results of the last processor
operation. The remaining three bits (S, X and I) are control bits for advanced processor
functions. This register is referred to as the “C” register, the “CCR” register and the
“Status” register.

T he function of the status flags is presented in chapter 3 (Instruction Set). T he function of the
control bits is presented in chapter 10 (Interrupts).

HC11 Processor Modes

The HC11 supports four hardware modes: Single Chip, Expanded, Special Test and
Bootstrap. Each hardware mode configures the HC11 to perform a special class of
hardware functions.

Single chip mode is the normal operating mode. As the name implies, the single chip
mode requires that all software needed to control the processor is contained in the
on-chip memories. External address and data busses are not available. Expanded mode
is an alternative normal operating mode. It allows for off-chip memory connection. In
this mode, the PORTB and Port C pins are converted to a multiplexed address and
data bus. In addition, the strobe A and strobe B control lines become the address strobe
and read/write control lines.

Special Test mode is a special mode intended primarily for testing during the chip
production process. The bootstrap mode is another special hardware mode, designed
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to allow loading of permanent programs and other production related programming
tasks.

NOTE: This text focuses only on the normal modes and primarily on operation
in the single chip mode. Some examples and explanation of the use of the
expanded mode are provided in chapter 8 on memory. The special modes will
not be discussed, because of the advanced nature of their function.

The hardware mode is selected by the logic levels on two mode control pins
(MODA and MODB) when the processor is in the reset state. Figure 1.8 shows
the logic levels required to select each of the four modes. The MODB bits selects
between the normal modes (Single Chip and Expanded) and the special modes
(Bootstrap and Test).

Self-Test Questions 1.2

 1.3 Introduction to Memory 

Memory is a term that refers to any component that stores data and programs
for the processor. The programs (software), as well as the program data, are stored
in the memory during execution and processing. Memory consists of storage
locations, where each location can contain one byte of information. A unique
address is assigned to each storage location in memory so that it can be individually
accessed. The HC11 uses memory that contains a byte of data in each storage
location.

A memory address is an n-bit binary number that the processor uses to select a specific
memory location. If the processor wishes to communicate with memory location 7, it
produces the 16-bit binary address for this location (%0000 0000 0000 0111) and places
this address on the address bus. The number of address bits in a system determines
the number of unique addresses that can be created by the processor, as shown in
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MODB MODA Mode

1 0 Single Chip
1 1 Expanded
0 0 Bootstrap
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Figure 1.8 Hardware Mode Select (courtesy of Motorola)

1. What are the three main components of a central processor?
2. What is the function of each of the three components of a processor?
3. What registers make up the M68HC11 programmer’s model?
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Equation 1.1. The HC11 uses a 16-bit address. Therefore, it can address 216 or 64K
unique memory locations.

# of unique addresses = 2n Equation 1.1

where n is the number of address bits in the system.

Although an address can be generated from each combination of binary bits in the
address, there may not be physical memory at all locations in the address range. A
memory map designates the memory addresses that are connected to physical memory
locations and indicates which locations are unused. For example, a system may have a
16-bit address bus, which allows it to address 64K memory locations. However, the
system may have only 16K of physical memory connected. In this case, the memory
map indicates the address range within the 64K range that will be used for this 16K
device. Figure 1.9 illustrates how this memory map would look.

The data is the information stored at each memory location. Since all data is just a
group of binary bits, it all appears about the same to the processor. It is impossible by
simple inspection to know if a value in memory is a number, a special code or a piece
of a larger address. The real value of the data is how it is used. The meaning of the
data comes from the order in which it appears in the memory, as well as how it is used
by the processor.

The process of storing data in memory is called a write operation. When a specific
memory location is addressed, the data can be written to the data bus by the
processor, as shown in Figure 1.10. The processor generates the address $0005
and sends it to the memory device on the address bus. Then the processor places
the data $CF on the data bus. The processor tells the memory what type of
operation to perform via the control signals. Writing to memory is a destructive
process, which means that any data previously in the memory location is overwritten
by the new data and the old data is lost. After a write operation, the data will
remain in the memory location until it is overwritten by another write operation.

Data can also move from the memory location to the processor via a read operation,
as shown in Figure 1.11. A read operation causes a copy of the data to be sent
to the processor from the memory. The processor initiates a read operation by
placing the address ($0007) on the address bus. It then signals the memory to
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place the data ($CE) from the addressed location on the data bus. The processor
waits a specific length of time and then reads the data from the data bus. The
signal between the processor and the memory that controls the direction of data
movement is usually called read/write. Reading from memory is a nondestructive
process, which means that data in the memory location is not affected.

Self-Test Questions 1.3
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1. What is an address?
2. How many unique addresses can be generated from a 12-bit address bus? A 20-bit

address bus?
3. In which direction does the data move during a read operation?
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 1.4 Memory Types 

The physical memory locations can be represented by various types of memory devices.
Two different types of memory made from semiconductor materials will be described:
volatile and nonvolatile. Volatile memory is a memory that retains the data only when
the power is applied. If the power is removed, the data stored in the memory locations
will be lost. As the name implies, nonvolatile memory is not volatile. A nonvolatile
memory retains the data with or without power being applied to the device.

RAM

RAM stands for Random Access Memory; however, it is better described as read/write
memory. Most memory on modern computers is random access, which means that it
can be randomly addressed (the data is accessed in any order the processor chooses).
Sequentially accessed memory is used only for special processing and timing applica-
tions and will not be described in this text.

RAM is volatile, retaining data only when the power is applied. If the power going to
RAM is turned off, all data contained in it is lost. When power is reapplied, the content
of RAM is undefined, which means the data can be any value. RAM is used for
temporary storage of programs while they are being executed, as well as for temporary
storage of data while it is being processed. RAM is relatively fast memory when
compared to the whole family of various memory devices. RAM is also relatively less
expensive, uses less power and is smaller than most memory devices.

ROM

ROM stands for Read Only Memory. ROM is used for permanent storage of programs
and data. It is a nonvolatile memory; therefore, it always retains its data, whether power
is applied or not. Standard ROM must be loaded with the permanent programs and
data during the manufacturing process. Other types of ROM have been developed that
allow programs and data to be written to them after the manufacturing process.

Programmable Read Only Memory or PROM is designed to be programmed in the
field, after the manufacturing process. This provides the user the ability to purchase
one chip and use it for various purposes dependent upon the field application. PROM
can be programmed one time. If a program or data contained in a PROM needs to be
modified, the PROM must be discarded and a new one must be programmed.

Erasable Programmable Read Only Memory, EPROM, is a type of PROM that can be
erased by applying an intense ultraviolet light to the memory circuitry. Once it has been
erased, it can be reprogrammed using a special programming fixture. Chips that
contain EPROM have a small window on the chip package that allows the light to reach
the memory circuitry. Once an EPROM is programmed, this window is covered to stop
light from entering the device and inadvertently erasing the memory locations.

Electrically Erasable Programmable Read Only Memory, EEPROM, can be erased with
electrical signals and then reprogrammed. EEPROM is used in various devices that
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require permanent memory yet need the convenience of electrical erasure. Single
locations within an EEPROM can be erased and reprogrammed.

HC11 Memory

The HC11E9 contains three types of on-chip memory, RAM, EEPROM and ROM, as
shown in Figure 1.12. There are 512 bytes of RAM located in the memory map, from
$0000 through $01FF. In addition to the RAM, the HC11 contains 512 bytes of EEPROM
and 12K of ROM. The EEPROM is located from $B600 through $B7FF in the memory
map, and the ROM is located from $D000 through $FFFF. In addition to this memory, a
64-byte register block is located at $1000 through $103F within the memory map.

Refer to chapter 8 for a further presentation regarding HC11 memory.

Self-Test Questions 1.4

 1.5 Input/Output 

The third element of every computer system is the I/O. All computers must input data
from at least one source. The data is processed internally and then output to an external
device. Not all I/O capabilities are related to specific devices. For example, most
desktop computer systems have general I/O ports. A port is an I/O connection that
allows for the movement of data between the computer and an I/O device. There are
two major types of ports on computers: serial ports and parallel ports. A serial port is
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Figure 1.12 Memory Map on the HC11E9
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1. What two types of memory devices make up the memory system of a computer?
2. What type of ROM can be erased by electrical signals?
3. How much RAM is contained on the HC11E9?
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designed to allow two-way transfer of data as a serial data stream. Serial means one bit
is transferred at a time over a single wire or line. Modems use serial connections to
interface to the computer. High-speed serial ports are becoming the standard for
communications. A parallel port is designed to transfer data in parallel. Parallel means
multiple bits are transferred simultaneously over multiple wires (typically, 8). Histori-
cally, most scanners and printers use parallel ports to interface with the computer.

A special type of I/O requires an analog interface. Many data sources in the real world
are analog. For the computer to access this data, it must be converted into a digital
form, using an analog to digital converter. When the computer needs to send data to
an analog device, a digital to analog converter is necessary. Examples of analog data
are temperature, wind speed, and humidity.

Figure 1.13 illustrates various I/O devices that may be connected to a computer system.

I/O on the HC11

The HC11 contains several on-chip ports that provide a variety of input/output
functions. The I/O capabilities are organized as shown in Figure 1.14.

Port A can be used for digital I/O as well as for multiple timer functions. The digital
I/O capabilities include three dedicated output pins, three dedicated input pins and
two programmable I/O pins. A 16-bit free running counter is included to support the
input-capture and output-compare timer functions. In addition, an 8-bit pulse accumu-
lator subsystem and a periodic interrupt generator are provided as part of the Port A
timing system.
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Figure 1.13 I/O Devices Connected to a Computer System
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See chapter 12 for explanation of the Port A timing system.

Port B is an 8-bit general-purpose output port. Port C is an 8-bit general-purpose port
that can be configured for either input or output operation.

The primary I/O functions of Port B and Port C are presented in chapter 9.

Port D is a general-purpose digital port and also supports serial communication
functions. The digital I/O function uses the six I/O pins of Port D as programmable
I/O pins. When used for serial communications, two independent serial interfaces can
be configured. They are called the serial communications interface (SCI) and the serial
peripheral interface (SPI).

The serial communications capabilities built into Port D are discussed in chapter 13.

Port E is an 8-bit general-purpose digital input port that can be configured as an
8-channel analog-to-digital converter with an internal resolution of 8-bits.

The analog input capabilities of the HC11 are presented in chapter 11.
18

Figure 1.14 HC11 I/O Ports (adapted with permission from Motorola)
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Self-Test Questions 1.5

 1.6 EVBU / BUFFALO 

A full explanation of the function of the EVBU is presented in the Universal Evaluation Board
User’s Manual. Refer to section 4.6 of the EVBU User’s Manual for a description of the BUFFALO
monitor commands.

The EVBU is the Motorola M68HC11 Universal Evaluation Board. It is a development
tool for HC11 microcontroller-based designs. It provides a variety of features with which
to experiment with the functions of the HC11 and to test designs based on the HC11.
It also works well as an educational tool. In addition to the HC11 chip, the EVBU
contains the following hardware features:

◗ M68HC68 Real-time clock chip. The real-time clock chip provides accu-
rate timing information in seconds, minutes, hours, and so on.

◗ Standard serial communications port. This port allows connection to
an external computer.

◗ Breadboard area. A small solder pad development area is provided on
the EVBU layout.

The EVBU has a monitor program that serves as an operating environment. The
monitor program is a piece of software that provides a controlled environment in which
the HC11 can operate. It also provides a user interface (UI). The UI allows a user of
the EVBU to enter some simple commands to access memory, run programs and
monitor the function of the HC11. The monitor program is called BUFFALO (Bit User
Fast Friendly Aid to Logical Operations). BUFFALO works in conjunction with the
EVBU hardware to provide the following features:

◗ One-line assembler. The user can enter programs directly into memory.

◗ Program download. Programs that have been created externally can
be loaded directly into memory.

◗ Troubleshooting capabilities. BUFFALO commands allow users to exe-
cute programs one step at a time, to stop programs at a particular in-
struction and to examine the contents of the registers and memory.

BUFFALO is burned into the HC11 on-chip ROM during the manufacturing process.
It occupies 8K of the 12K of available ROM. In addition, some of the RAM is used by
BUFFALO as system temporary memory. Therefore, only part of the RAM is available
for user programs and data. However, the EEPROM is unused by the EVBU and is
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1. What is a port?
2. What is the difference between a serial and a parallel port?
3. Why are analog interfaces needed?
4. How many I/O ports are contained on the HC11? What are they?
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available for user programs. The ROM on the EVBU contains the system control
program.

NOTE: BUFFALO is located in the on-chip ROM from $E000 through $FFFF. It
uses some of the on-chip RAM as temporary memory. User programs must not
use RAM between $0030 and $00FF, to avoid conflicts with the system temporary
space.

A photograph of the EVBU is shown in Figure 1.15. The block diagram of the EVBU
is shown in Figure 1.16.
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Figure 1.15 EVBU Photo
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Figure 1.16 EVBU Block Diagram
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Basic EVBU Function

The BUFFALO monitor program controls the HC11 within the environment created
by the EVBU hardware. The user can type commands at the BUFFALO prompt
that tell BUFFALO to perform a variety of memory operations and control functions.
For example, BUFFALO provides a command that allows the user to display a
block of memory to the screen. This command is called Memory Display and is
abbreviated by using the letters MD followed by the address range that will be
dumped to the screen. The operation of this instruction is shown in Figure 1.17.
The user types in the MD command at the BUFFALO prompt, followed by the
start and end addresses of the range to be displayed (in this case $E640–$E68F).
Note that hex is assumed for the addresses that are supplied with the BUFFALO
command. Thus, the user should not use the preceding “$” character to indicate
hex. Then BUFFALO displays values stored in memory for this range. Each row
of the output contains the start address or the address of the first byte displayed,
followed by the hex values for the data stored in 16 sequential memory locations.
At the end of the line, the ASCII equivalent characters are displayed for each
value shown on the line (i.e., $42 = “B”, $55 = “U”, $46 = “F,” etc.). When the
display is complete, a new BUFFALO prompt is displayed, prompting the user for
another BUFFALO command.

T he concepts of ASCII communications and use of ASCII characters are presented in Chapter
13.

Rather than display all the commands supported by BUFFALO and the EVBU at this
point in the text, a brief summary of several useful commands is provided in Figure
1.18. The four commands listed in this table are used to display and change the data
in the memory and processor registers in the HC11. They are very useful from the
beginning of the study of the HC11 and will be used in the problems at the end of this
chapter.

The following examples are provided to show the operation of these instructions.

A complete list of BUFFALO commands is provided in section 3 of the EVBU User’s Manual.
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> MD E640 E68F<cr>

E640 42 55 46 46 41 4C 4F 20 33 2E 34 20 28 65 78 74 BUFFALO 3.4 (ext
E650 29 20 2D 20 42 69 74 20 55 73 65 72 20 46 61 73 ) – Bit User Fas
E660 74 20 46 72 69 65 6e 64 6c 79 20 41 69 64 20 74 t Friendly Aid t
E670 6f 20 4C 6f 67 69 63 61 6C 20 4F 70 65 72 61 74 o Logical Operat
E680 69 6F 6E 04 57 68 61 74 3F 04 54 6F 6F 20 4C 6F ion What? Too Lo

>

Figure 1.17 Operation of the MD Command in BUFFALO
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Example 1.1

Problem: Use the BUFFALO monitor commands to load a range of memory
($0000–$000F) with $20 and then display the range of memory on the monitor.

Solution: This problem requires the use of two BUFFALO commands: BF and MD.
First, BF will be used to fill the range with the value $20, and then the MD command
will be used to display this on the monitor. The part that is typed by the user is bolded.

> BF 0000 000F 20 <cr>

> MD 0000 000F<cr>

 0000 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

>

Example 1.2

Problem: Use the BUFFALO monitor commands to modify the data stored in
memory location $0003 so that it contains $FE and then to display the range of
memory ($0000–$000F) on the monitor.

Solution: This problem requires the use of two BUFFALO commands: MM and MD.
First MM will be used to modify the value at $0003 to $FE, and then the MD
command will be used to display a range on the monitor. The part that is typed by
the user is bolded.

> MM 0003<cr>

0003 20 FE<cr>

> MD 0000 000F<cr>

0000 20 20 20 FE 20 20 20 20 20 20 20 20 20 20 20 20

>
22

Command Usage Description
MD MD<Start><End> Memory Display: Displays successive memory 

locations in rows of 16 bytes starting with the start 
address <Start> and ending with the row that contains
the ending address <End>.

MM MM<Address> Memory Modify: Display a Single byte of memory
specified by <Address> to the screen and allow the
user to modify this data.

BF BF<Start><End><Data> Block Fill: Fills successive memory locations with the data
<Data> starting with the start address <Start> and ending
with the row that contains the ending address <End>.

RM RM Register Modify: Display the contents of the
programmer’s model registers and allow the user to
modify their contents.

Figure 1.18 Summary of BUFFALO Commands
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Example 1.3

Problem: Use the BUFFALO monitor commands to display the data stored in the
processor registers. Modify the contents of the X register to be $1000 and AccA to
be $3B. Redisplay the contents of these registers to verify that the changes took
place.

Solution: This problem requires the use of one BUFFALO command: RM. First RM
will be used to display the register contents and modify the values in the X register
and AccA. Then the RM command will be used again to display the contents and
verify that the changes took place. The part that is typed by the user is bolded.

> RM<cr>

P-0100 Y-FFFF X-FFFF A-FF B-FF C-D1 S-0041

P-0108<SPACE BAR>

Y-FFFF<SPACE BAR>

X-FFFF 1000<SPACE BAR>

A-FF 3B<cr>

> RM<cr>

P-0100 Y-FFFF X-1000 A-3B B-FF C-D1 S-0041

>

Self-Test Questions 1.6

 Summary 

All computer systems consist of three major components: processor, memory and I/O.
The processor is the controlling element of the system. It manages the movement of
data to and from the memory and I/O components. The processor is also made up of
three major components: ALU, internal registers and control block. The ALU is
responsible for the arithmetic and logical functions performed by the processor. The
registers provide temporary storage of data and addresses for efficient processing, and
the control block manages the execution of the instructions. Memory contains the
programs and data used by the processor. Two major types of memory are represented
in computer systems, RAM and ROM. Finally, all computer systems must have some
connection to the external world. These connections are accomplished by the I/O
capabilities. A keyboard is an example of a standard input device, and a monitor is an
example of a standard output device.
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1. What is the EVBU?
2. What is the name of the monitor program on the EVBU?
3. Which BUFFALO monitor command is used to fill a range of memory locations

with a particular value?
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 Chapter Questions 

Section 1.1
 1. What are the three major components of a computer system? Why are all of

the components necessary in an operational computer system?
 2. How does the HC11 meet the functional components of a computer system

(processor, memory and I/O)?
 3. How are address, data and control signals connected to the various components

within the computer system?

Section 1.2
 4. What is a processor? What function does a processor perform?
 5. What are the sections of a processor?
 6. What is the purpose of the ALU?
 7. List the common register types in a microprocessor. What purpose does each

of the registers have, generally?
 8. Does the Control Unit contain any registers? If so, how are they different from

the registers in the processor?
 9. What kind of processor is embedded in the HC11 microcontroller?
10. How many bits of data can be processed at a time by the HC11 processor?
11. What is in the HC11 programming model?
12. Does the HC11 support different hardware modes? What are they?

Section 1.3
13. If a system has a 20-bit address bus, how many unique addresses can be

addressed?
14. What is a memory map?
15. What is the size of the HC11 address bus? What is the maximum number of

memory locations that can be addressed by the HC11?
16. If a system has a 16-bit address bus and must address two 32 Kbyte memory

chips, draw a picture of how the memory map would be configured to uniquely
address each location within the memory devices.

17. How does the processor communicate to memory whether it wishes to perform
a read or a write operation?

18. Why is reading memory nondestructive to the data in the addressed memory
location?

19. Why is writing to memory destructive to the data that was originally in the
addressed memory location?

Section 1.4
20. Explain the differences among ROM, EPROM and EEPROM.
21. Why must every computer system have some nonvolatile memory?
22. What types and quantities of memory are on the M68HC11E9?
23. Is the entire address space used by the on-chip memory on the HC11? If not,

how much address space is available?

Section 1.5
24. What types of ports are typically available on computer systems?
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25. How many ports are available on the HC11?
26. What types of I/O functions are supported by the ports on the HC11?

Section 1.6
27. What is the EVBU? What is its purpose?
28. What is BUFFALO? What is its purpose?
29. How many parameters are used by the BF command?

 Answers to Self-Test Questions 

Section 1.1
1. Processor, memory and I/O
2. The processor is at the center of the computer. The processor manipulates the

data, performs arithmetic functions and manages the processes. The memory is
used to store data and programs. The I/O is used to move data to/from the
computer and external devices.

3. Busses. The address bus transfers address information from the processor to the
memory and I/O devices. The data bus is a bidirectional bus that transfers data
to/from the processor, memory and I/O. The control bus is a collection of control
signals necessary to control the processes of the computer.

Section 1.2
1. Arithmetic logic unit (ALU), the register block and the control block.
2. The ALU has the job of performing the actual arithmetic data processing. It can

do arithmetic and logical operations. The register block contains a set of registers
that are used by the processor to store data temporarily, accumulate data,
manipulate addresses, and so on. The control block decodes instructions and
generates all of the timing and control signals necessary to execute the
instructions.

3. The HC11 programming model contains two 8-bit accumulators (A and B) that
can be configured as a 16-bit accumulator (D); two address registers (X and Y);
a stack pointer (SP), which contains the address of the next available stack
location; the program counter (PC), which contains the address of the next
instruction to be executed; and the condition code register (CCR), which contains
three control bits and five status flags. 

Section 1.3
1. An n-bit binary number that the processor uses to select a specific memory

location.
2. 12-bit bus → n = 12, therefore 2n = 212 = 4K addresses can be generated.

20-bit bus → n = 20, therefore 2n = 220 = 1M addresses can be generated.
3. The data moves from the memory to the processor during a read operation. 

Section 1.4
1. Volatile and nonvolatile, or RAM and ROM. 
2. The EEPROM is electrically erasable.
3. There are 512 bytes of RAM on the HC11E9.

25

Introduction to Computer Hardware



Section 1.5
1. A port is an I/O connection that allows data to move between the computer and

a variety of peripheral devices.
2. A serial port transfers data one bit at a time on a single wire. A parallel port

transfers data multiple bits at a time via multiple wires.
3. Analog interfaces are required because most things in the real world are analog.

Examples of analog data are temperature, wind speed, humidity and time.
4. There are five I/O ports on the HC11: PORTA, PORTB, PORTC, PORTD and

PORTE.

Section 1.6
1. The EVBU is the HC11 Universal Evaluation Board.
2. The monitor program on the EVBU is called BUFFALO (Bit User Fast Friendly Aid

to Logical Operations).
3. The BF command allows a range of memory locations to be filled with the data

value given in the command (i.e., BF 0006 001D 40 will fill $0006–$001D with the
value $40).
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 Objectives 
Introdu ct ion to Comput er So ftware

After completing this chapter, you should be able to:

◗ Describe the difference between source code and machine code

◗ Define opcode, operand and address of an operand

◗ Explain the purpose of memory addressing modes

◗ Show how memory addressing modes work on the HC11

◗ Explain how an instruction is fetched from memory and executed by
the processor

◗ Use flowcharts to show the flow/function of a program

 Outline 

◗ 2.1 Programming the Computer

◗ 2.2 Memory Addressing Modes

◗ 2.3 HC11 Memory Addressing Modes

◗ 2.4 Processing Instructions

◗ 2.5 Program Flow

 Introduction 

The programs that run on computers are called software. The software consists of
ordered sets of instructions that tell the hardware what it should do. The computer
hardware will not function without the software controlling each function. The
instructions control the processes that are executed, the data that is processed and the

Introduction to Computer Software

 c h a p t e r 2
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order in which these operations are completed. This chapter will introduce some
concepts behind the software that controls the hardware.

 2.1 Programming the Computer 

A program is a detailed list of steps that must be followed to complete a task. Many
jobs in life follow the same steps each time they are accomplished. Someone who gets
up in the morning to go to work often follows a specific set of steps to prepare for
work. Cooking a meal from a recipe requires following a set of instructions in a specific
order. Most tasks become so natural that the fact that specific steps are followed is
forgotten.

Programs tell computers what to do. When the tasks become more complex, more
instructions are required to accomplish the task. Unlike humans and animals,
computers do nothing except what they are told by the programs. In fact, they do only
what they are told. In this sense, they are 100% obedient. They never complain and
never have to be fed. They definitely can’t think. The strength of computers comes
from the fact that they perform many very simple instructions millions of times a second
to accomplish much greater tasks.

Some computers are designed to execute only one program. For example, the
computer embedded in the transmission controller on a minivan executes one
program. The job of this computer is to control the shifting of the automatic
transmission. It has one program or set of instructions. Each time the computer is
activated when the car is turned on, it begins to execute the set of instructions that
controls the automatic transmission. It knows of nothing else, cares about nothing at
all and never complains about its job. This type of computer is a dedicated computer.

Many computers are more general in nature. They are designed to allow a variety of
programs to be executed. In some cases, they even allow multiple programs to be
executed at the same time. Desktop personal computers, for example, are designed to
run word processors, e-mail programs, spreadsheets and essentially any program that
someone can conceive and write. This type of computer is a general-purpose computer.

Source Code

Source code is a program written in a programming language. Programming languages
are made up of English-like words that communicate the instructions to the computer.
Hundreds of programming languages have been developed for this purpose. Program-
ming languages are designed to help humans with the process of programming
computers. Programs written in computer languages must be converted into machine
code and loaded into the computer memory. Figure 2.1 shows the relative spectrum of
computer languages and provides some samples of how the code might read.

High-level languages are designed to be more removed from machine code and more
like a spoken language. They have syntax similar to sentence structure, making them
even easier to read. In a high-level language, single keywords can cause many
machine-level instructions to be executed. Examples of high-level languages are BASIC,
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FORTRAN and COBOL. High-level source code must be processed by a program called
a compiler or interpreter. It translates the high-level language to the machine-level code
that can be loaded into the processor on the target computer.

Assembly is the lowest level of all computer languages. Assembly language program-
ming is a low-level programming language because it is most like the actual machine
code. Assembly language source code is made up of a set of abbreviations, which are
specific to a processor or processor family. The abbreviations are called mnemonics
(pronounced ne-mon-icks). A mnemonic correlates to a single machine code instruc-
tion. The mnemonics are designed to be easy to read and easy to remember. They are
a significant improvement over the binary machine codes. The assembly language
source code is processed by a program called an assembler, which translates the
mnemonics into the machine-level code that can be loaded into the computer.

In addition to low-level and high-level languages, some languages are in between. They
are in between because they have characteristics of both types. These mid-level
languages have features similar to those of the low-level languages, yet maintain the
strengths of the high-level languages. Some examples of languages that fit this
description are “C”, “C++” and FORTH.

High-level and mid-level languages have an advantage. The same source code file
written in a high- or mid-level language can be compiled to run on almost any hardware.
This type of source code is called portable. Because assembly-level languages are so
close to the actual machine code, portability is limited to processors within the same
family. In most cases it is not portable at all.

On the other hand, low-level languages also have an advantage. Since the low-level
source code is so similar to the actual machine code, assembly-level programming tends
to result in machine code that is smaller and consequently runs faster than the same
programs written in a higher-level language.

Highest
Level

BASIC

Lowest
Level

MACHINE
CODE

Relative Level of Programming Language

CBASICENGLISH MACHINEASSEMBLER

if (X == Y)
  Z = X;
else
  Z = Y;

if (X == Y) then
  Z = X
else
  Z = Y
end if

if X is equal
to Y, then set
Z equal to X,
otherwise set
Z equal to Y

96    00
91    01
27    02
96    01
97    02

X
Y
PAST
Y
Z

LDAA 
CMPA
BEQ   
LDAA 

PAST     STAA 

C ASSEMBLER

Figure 2.1 Various Levels of Computer Code
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Machine Code

There is only one language that the computer hardware understands, machine language.
The machine language is made up of machine code. The machine code is multibit binary
codes that tell the computer the specific tasks it is to perform. Machine code is the lowest
level of all computer languages. In general, it is very difficult for humans to communicate
with computers solely using machine language. The groups of 1’s and 0’s tend to look
alike, and the probability of error is very high. Other computer languages have been
developed to aid humans when they program computers.

NOTE: Machine code is commonly referred to as object code, and a machine
code program is referred to as an object code program. Because the term
“machine code” implies low-level codes that the machine uses, it will be used
exclusively in this text. To avoid confusion, the term “object code” will not be
used in this text.

The machine code consists of operational codes (opcodes), operands (data) and
addresses of the operands. The assemblers and compilers produce the machine code
from the lines of code written in the programming language.

An opcode is a multibit code that identifies an instruction. Each opcode contains
specific information about the instruction to be executed, as well as how to execute it.
Many instructions can be implemented in a variety of ways on a computer. Each method
requires a unique opcode; thus, a single instruction will be implemented with one or
more opcodes.

An operand is data that is operated upon by the instruction. For example, an addition
instruction adds operands, and a load instruction reads an operand from an address
in memory and loads it into a processor register. The operand field is a group of up
to three bytes following the opcode. The operand field contains bytes necessary to
complete the instruction. It can contain 8-bit and 16-bit data, 8-bit addresses and 16-bit
addresses. In some cases, the operand field contains nothing at all, because all necessary
data is already in the processor registers.

NOTE: The term “operand” is not consistently used throughout computer
literature and is often used to refer to any bytes that occupy the operand field.
This text will use the term operand in its literal sense, as the data that is operated
upon by the instruction. This usage is consistent with the Motorola HC11 data
manuals. Addresses and offsets will not be referred to as operands in the text,
although they all occupy bytes in the operand field and are commonly referred
to this way.

An address is a pointer into memory. Each memory location has a unique address by
which it is identified. Most small computers have a byte-oriented memory; therefore,
each address points to the location of a byte of data in memory. Addresses can be
expressed in an absolute sense. An absolute address is a complete address, or an address
that consists of all the address bits. Addresses can also be expressed as an offset. An
offset is a value that is added to a base address to reference another memory location.
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Offsets are commonly used to allow addressing of memory without specific reference
to the entire address. Programs that use offsets typically result in less actual machine
code because the offsets are smaller than complete addresses. Since these programs
occupy fewer bytes of memory, often they will execute faster.

 HC11 Machine Code 

HC11 machine code is made up of opcodes, operands and addresses. The HC11 uses
an 8-bit opcode and supports various ways of accessing operands in memory. Figure 2.2
illustrates three examples of the relationship of the opcode to the bytes in the operand
field. Further examples of the relationship of opcodes, the operand field, operands
and mnemonic instructions will be provided in sections 2.3 and 2.4 of this chapter.

Since the HC11 uses an 8-bit opcode, 256 unique opcode values can be generated (28

= 256). This is the maximum number of unique binary values that can be derived from
an 8-bit binary code. Thus, the HC11 should be limited to 256 instruction opcodes, yet
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Machine Code

complete instruction

operand field

opcode mnemonic

immediate
data (actual

operand)

Source Code Comments

86 10 LDAA #$10 ;$A8 ⇒ A

1B ABA

operand field
empty

opcode

complete instruction

;(A) + (B) ⇒ A

B7 01 9B STAA  $019B

mnemonic

operand field

extended mode
effective address

complete instruction

;(B) ⇒ $019B

Figure 2.2 Opcode and Operand Field Examples

a. Load instruction—Immediate mode

c. Add instruction—Inherent mode

b. Store instruction—Extended mode
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the HC11 has 308. The designers of the HC11 built in a mechanism that allows for
each of the 308 instruction opcodes to be properly handled. Some of these instructions
require an additional opcode byte, which is called a prebyte. The prebyte directs the
instruction decoder to perform two fetch cycles. Three of the opcodes are actually
opcode prebytes: $18, $1A and $CD. Thus, every instruction that uses a prebyte also
has an additional opcode. Appendix C provides a complete listing of all opcodes and
prebytes used on the HC11.

Self-Test Questions 2.1

 2.2 Memory Addressing Modes 

An addressing mode is a method of accessing operands. The addressing mode defines
how the instruction will be coded and how it will operate to access and process data. Many
instructions can operate in different modes, yet some operate only in a single mode. The
addressing mode also defines how the effective address of an operand will be generated.
The effective address is the address of the operand in memory. Each addressing mode
accesses the effective address in a different manner. For example, the effective address
for an immediate mode instruction is the address of the data following the opcode.
Furthermore, an indexed mode instruction must calculate the effective address from the
contents of the index register and the 8-bit offset provided in the instruction.

The application of the addressing modes on the HC11 is presented in section 2.3.

Methods of Addressing Memory

Every memory location in memory has a unique address. When data is needed from
memory to complete an instruction, the processor generates the effective address and
accesses the data stored at that location. There are many methods used by most
computers to produce the effective addresses of data in memory. Five methods will be
described in the following sections.

Immediate

Immediate addressing is used when the operand immediately follows the instruction
opcode in memory. Thus, the memory access is limited to those locations immediately
following the instruction opcode.

A number may be needed in a processor to complete a set of instructions. If this
number is always the same value, it could be easily loaded into the register using the
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1. What is a computer program?
2. What is the difference between source code and machine code?
3. What is the operand and how is it used?
4. What is an opcode prebyte?
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immediate mode. The number actually resides in the memory location immediately
following the instruction opcode, as shown in Figure 2.3.

Absolute

Absolute addressing is used to access the operand directly from memory. The address
of the operand follows the instruction opcode in memory. This mode is implemented
on different processors in several forms.

Assume for a minute that an operand is in memory location $0012. This address would
follow the instruction opcode in memory. When the instruction is executed, the address
is retrieved from the memory and then used as the address of the operand. Additional
machine cycles must be executed to then retrieve the actual operand that is processed,
as shown in Figure 2.4.

Implied

In implied addressing, no address is necessary because the location of the data is implied
by the instruction. For example, if data already exists in two separate accumulators in the
processor, this data can be directly added without accessing memory. The instruction that
would be used to add the contents of these two accumulators together would be im-
plemented in the implied mode, since the data is implied as shown in Figure 2.5. Because
the data is already provided in the two accumulators, the data does not need to be
retrieved from memory before the addition operation is completed. The instruction is
inherently complete, by itself.

Indexed

Indexed addressing uses an address in a register called an index register combined
with an address offset to determine the location of the operand in memory. The

opcode operand

AccA

Instruction: Load AccA with contents of memory

                       (M) ⇒ AccA, using immediate addressing

operand immediately
follows opcode in

memory.

86 29 29

AccA

IR receives
this code—decoder
causes next byte to
be loaded into AccA.

Figure 2.3 Loading AccA Using Immediate Addressing
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instruction indicates which register to use, and the address offset follows the instruction
opcode in memory. The address of the operand is calculated by adding the address
offset to the address from the index register or by indexing the base address contained
in the register. This addressing mode allows for simple access to data stored in a table.
A detailed presentation of the HC11 implementation of indexed addressing mode is
provided in chapter 5.
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opcode address

operand

Operand is located
in memory at
address supplied by
instruction

M

AccA

Instruction: Load AccA with contents of memory

                       (M) ⇒ AccA, using absolute addressing

address of
operand

B6 $0120 29

29$0120

AccA

IR receives this
code—decoder causes
address M to be retrieved,
then actual operand
to be loaded into AccA
from (M).

Figure 2.4 Loading AccA Using Absolute Addressing

opcode operand operand

+

AccBAccA

Instruction: Add contents of AccA to contents of
         AccB and store result in AccA.

Operands are
already in
processor
registers so no
memory accessing
is necessary.

1B 29

6C
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+

AccBAccA

IR recieves this code—
decoder causes contents
of A to be added to
contents of B and stores
result in A.

Overwrite 29
with 6C in A

Figure 2.5 Adding AccA to AccB Using Inherent Addressing
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Assume for a minute that an operand is in memory location $1012 and that the
address $1000 is contained in a processor index register. In this case an address
offset of $12 would follow the instruction opcode in memory. When the instruction
is executed, the address offset is retrieved from the memory and then added to
the address in the index register to calculate the address of the operand ($1012).
This calculated address would then be used to access the operand in memory, as
shown in Figure 2.6.

Relative

Relative addressing is used to change the flow of the program so that the instructions do
not have to be laid out in a sequential manner. The address of the next instruction is
described relative to the current position in memory. Instructions that use the relative
mode express the location of the next instruction with an address displacement that is
added to the current memory location. Thus, the next location is relative to the current
position and not an address, which is absolutely specified. This addressing mode is used
only to express the location of the next instruction to execute, rather than the location of
an operand in memory. The displacement is a signed 2’s complement value, which
occupies a single byte. Since the displacement is a signed value, the flow of the program
can change to instructions before or after the current instruction in memory.

Assume for a minute that a relative mode instruction is located at $01A7 and that the
next instruction is located at $01A9. When the relative mode instruction is executed,
the address offset is retrieved from the memory and used to calculate the address of
the next instruction to execute. The reference point is always the address of the next
instruction in memory. Therefore, as shown in Figure 2.7, the address $01A9 is the
reference point, and the new address is calculated relative to this position.

opcode offset

operand

Memory

address

X

M

M = X + offset

AccA

A6 20 29

29

Memory

0100

X

$0120

+

AccA

Instruction: Load AccA with contents of memory,
                  using indexed addressing.

IR receives this code—
decoder causes address
M to be calculated
from (X) + offset, then
actual operand is loaded
into AccA from (M).

Offset

Figure 2.6 Loading AccA Using Indexed Addressing
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Self-Test Questions 2.2

 2.3 HC11 Addressing Modes 

The HC11 utilizes six addressing modes: inherent, immediate, extended, direct,
indexed and relative. The indexed addressing mode is implemented using either index
register and is often referred to as two separate modes: indexed X and indexed Y. Each
mode has an abbreviation that is used throughout the Motorola documentation, as
summarized in Figure 2.8. These abbreviations are also used throughout this text.

8-bit versus 16-bit Memory Access

On the HC11, most data is stored as bytes. Each byte can be accessed in memory via a
single read or write operation. However, 16-bit data and addresses are needed in most
programs. Since data is accessed in memory via single-byte read/write operations, the
16-bit data and addresses are divided into a high byte and a low byte. The high byte is
the upper 8 bits of the 16-bit word, and the low byte is the lower 8 bits.

Motorola uses a “hi-byte first” convention for all 16-bit storage. “Hi-byte first” means
the high byte of a 16-bit data word or address will be stored in the first address, followed
in memory by the low byte. Instructions that use extended addressing mode or 16-bit
operands have the need to access information stored in memory in this format. Other
manufacturers use a “low-byte first” convention.

opcode relative
address opcode operand opcode operand

20

IR receives this
code–decoder causes
address of next
instruction to be
calculated from
current PC and
relative address.

address of
this instruction
+ relative address

PC + relative address = Address of next instruction
0102 + 02 = 0104

0100 0101 0102 0103 0104 0105

02 opcode operand opcode operand

Instruction: Branch to new location in program.

memory location
(address)

Figure 2.7 Branching Using Relative Addressing

1. What are the five addressing modes used on computers?
2. What is the difference between absolute and relative addressing?
3. Which addressing mode is used to change the flow of a program?
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Motorola uses the capital letter “M” to designate a memory address. When the two
memory locations are required to access two bytes of data, M:M+1 is used to designate
the addresses of two consecutive locations. In this case, M is the address of the high
byte and M+1 is the address of the low byte. M+1 indicates that the low byte is stored
in the memory address immediately following (one more than M) the high byte.

Transfer Notation

When the contents of a register are being read as part of the operation, the location
being read is shown in parentheses. For example, the contents of AccA are shown as
(A). The contents of memory location $0120 are shown as ($0120). The “contents of”
notation only refers to reading data from a location. When data is being written to a
location, the name of the location is used without the parentheses. For example, “store
the contents of AccA into memory location $B600” is written as (A) → $B600; “load
AccA with the contents of location $0002” would be written as ($0002) → A.

NOTE: Instructions will be commented using transfer notation, where the paren-
theses () indicate “contents of” and → indicates the direction of the data movement.

Immediate (IMM)

The immediate mode is used when the operand is a constant. The actual operand
occupies the operand field of the machine code instruction. Thus, the effective address

Mode Name Abbreviation
Operand
Field Description

Inherent INH Empty Memory access is not required. Operand is implied
by the instruction. Operand field is empty.

Immediate IMM ii Operand is contained in the memory location(s)
following opcode (ii), which is the operand field.

Extended EXT hhll Operand contained in memory location pointed to
by $hhll, where hh is the high-order byte and ll is
the low-order byte of the 16-bit absolute address.
Both hh and ll are located in the operand field.

Direct DIR dd Operand contained in memory location pointed to
by $00dd, where dd is the direct mode address
located in the operand field.

Indexed INDX

INDY

ff Operand contained in the memory location
addressed by the contents of the index register + ff,
where ff is the 8-bit unsigned index mode offset
located in the operand field.

Relative REL rr If branch test passes, program execution will
proceed at PC+$rr, where $rr is the signed 8-bit
relative mode displacement located in the operand
field. If the branch test fails, it will execute the next
instruction.

Figure 2.8 Summary of HC11 Addressing Modes
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of the operand is the memory address immediately following the opcode. When the
immediate operand is two bytes for 16-bit operations, these bytes occupy the two
memory locations immediately following the opcode in memory. Examples of HC11
immediate mode instructions are shown in Figure 2.9.

Extended (EXT)

The HC11 extended addressing mode is the name Motorola gave to this absolute
addressing mode. The extended mode is used when the operand is anywhere within
the 64K memory map, $0000–$FFFF. The high-order and low-order bytes of the
effective address occupy the operand field of the machine code instruction. The
high-order byte of the effective address is always the first of the two bytes followed by
the low-order. This high-order, low-order convention is strictly followed by functions
within the HC11. To complete the execution of an extended mode instruction, both
bytes must be retrieved from the operand field and joined to form the effective address
of the operand. This effective address is used to access the actual operand. Examples
of HC11 extended mode instructions are shown in Figure 2.10.

Direct (DIR)

The HC11 direct mode is a form of absolute addressing. It uses an 8-bit absolute
address. This 8-bit address becomes the low-order byte of the effective address, and the
high-order byte of the effective address is $00. The direct mode is used on the HC11
only when the operand is located within the first 256 locations of the memory map,
$0000–$00FF. Thus, the direct mode is sometimes called zero-page addressing. The
low-order byte of the effective address occupies the operand field of the machine code
instruction. To complete the execution of a direct mode instruction, the low-order byte
of the effective address must be retrieved from the operand field and the effective
address must be calculated, then the actual operand can be accessed using this effective
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Address
0000

Machine Code
86 29

opcode mnemonic

pound sign
indicates

imm mode

operand
(ii)

M = PC + 1
  = 0001

operand
(ii)

Source Code
LDAA    #$29

Comments
;$29 → A

Address
0002

Machine Code
ce 10 00

opcode mnemonic

pound sign
indicates

imm mode

two-byte
operand

(jjkk)

M = PC + 1 = 0003
M + 1 = 0004

operand
(jjkk)

Source Code
LDX     #$1000

Comments
;$1000 → X

Figure 2.9 Examples of HC11 Immediate Mode Instructions
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address. Functionally the direct mode is identical to the extended mode, but it executes
faster since only one byte of address must be accessed from the operand field to
calculate the effective address of the operand. Examples of HC11 direct mode
instructions are shown in Figure 2.11.

Inherent (INH)

The HC11 inherent mode is used when the operand is inherent or implied. The
operands are already contained in processor registers prior to execution of an inherent
mode instruction. The operand field of an inherent mode instruction is empty.
Examples of HC11 inherent mode instructions are shown in Figure 2.12.

Indexed (INDX, INDY)

The HC11 indexed mode is used when the operand may be at varying addresses within
the 64K memory map, $0000–$FFFF. It allows indexing from a reference base address
contained in one of the 16-bit index registers. An 8-bit offset is contained in the
operand field of the indexed mode instruction. The effective address is the sum of the
address contained in the designated index register and this indexed mode offset.

Address
0005

Machine Code
b6 00 0b

opcode mnemonic

effective
address of
operand

(hhll)

effective
address of
operand

(hhll)

M = hhll
  = 000B

Source Code
LDAA     $000B

Comments
;($000B) → A
   (M)

Address
0009

Machine Code
b7 00 0e

opcode mnemonic

effective
address of
operand

(hhll)

effective
address of
operand

(hhll)

M = hhll
  = 000E

Source Code
STAA     $000E

Comments
;(A) → 000E
         M

Address
0007

Machine Code
fe 00 0c

opcode mnemonic

effective
address of
high-byte of

16-bit operand
(hhll)

effective
address of

high-byte of
16-bit operand

(hhll)

M = hhll = 000C
M + 1 = 000D

Source Code
LDX      $000C

Comments
;($000C) : ($000D) → X
   (M)   : (M + 1)

Figure 2.10 Examples of HC11 Extended Mode Instructions

39

Introduction to Computer Software



To complete the execution of an indexed mode instruction, the offset must be retrieved
from the operand field. The effective address must be calculated using the contents of
the index register plus the index offset; then the actual operand is accessed using this
effective address. The contents of the index register are not changed when this address
is calculated. The calculated address is kept in an internal temporary register. Indexed

Address
0010

Machine Code
96   0b

opcode mnemonic

low byte of
effective address
of operand (dd)

low byte of
effective address
of operand (dd)

M = 00dd

Source Code
LDAA      $0B

Comments
;($000B) → A
   (M)

Address
0014

Machine Code
97   0e

opcode mnemonic

low byte of
effective address
of operand (dd)

low byte of
effective address
of operand (dd)

M = 00dd

Source Code
STAA      $0E

Comments
;(A) → 000E
         M

Address
0012

Machine Code
de   0c

opcode mnemonic

low byte of first
effective address
of operand (dd)

low byte of first
effective address
of operand (dd)

M = 00dd

Source Code
LDX       $0C

Comments
;($000C) : ($000D) → X
   (M)   : (M + 1)

Figure 2.11 Examples of HC11 Direct Mode Instructions
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Address
0011

Machine Code
1b

opcode mnemonic

Operands are already in
AccA and AccB, so memory

access is unnecessary.

Source Code
ABA

Comments
;(A) + (B) → A

Address
0012

Machine Code
08

opcode mnemonic

16-bit operand is already
in X, so memory access

is unnecessary.

Source Code
INX

Comments
;(X) + $0001 → X

Figure 2.12 Examples of HC11 Inherent Mode Instructions
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mode instructions are easily found in the code to their unique format. The instruction
is followed by the offset (ff), a comma and a reference to either of the index registers
(X or Y). Examples of HC11 indexed mode instructions are shown in Figure 2.13.

Relative (REL)

On the HC11, the relative mode is used only for branch instructions. Relative mode
instructions do not process data, but control the flow of the program. If the branch
test passes, the 8-bit relative address is sign extended to 16 bits and added to the
contents of the program counter to form the effective branch address. If the branch
test fails, nothing is added to the contents of the program counter. Execution thus
proceeds with the next instruction in sequence. No examples will be shown at this point
in the text.

Self-Test Questions 2.3
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Address
0020

Machine Code
a6 02

opcode mnemonic index register
to be used for
effective address
calculation

M = (X) + ff
(if X = $1000,
    then
M = $1000 + $02
  = $1002)

offset
(ff)

offset
(ff)

Source Code
LDAA  $02,X

Comments
;(M) → A

Address
0022

Machine Code
ec 10

opcode mnemonic index register
to be used for
effective address
calculation

M = (X) + ff
(if X = $0180,
    then
M = $0180 + $10
  = $0190)
M + 1 = $0190 + 1
  = $0191

offset
(ff)

offset
(ff)

Source Code
LDD   $10,X

Comments
;(M) : (M + 1) → D

Address
0024

Machine Code
a7 00

opcode mnemonic index register
to be used for
effective address
calculation

M = (X) + ff
(if X = $B700,
    then
M = $B700 + 00
  = $B700)

offset
(ff)

offset
(ff)

Source Code
STAA  $00,X

Comments
;(A) → M

Figure 2.13 Examples of HC11 Indexed Mode Instructions

1. What are the six addressing modes used on the HC11?  How do they relate to
the five addressing modes present on most computers?

2. What is the difference between HC11 extended and direct addressing modes?
3. What is the difference between INDX and INDY?
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 2.4 Processing Instructions 

When the processor comes out of reset, it initializes the program counter, then
immediately begins to execute instructions. The first step is to read an instruction
opcode from memory. The opcode is an 8-bit code that tells the processor which
instruction to execute and which addressing mode to use. Once the opcode has been
fetched from memory, it is decoded by the instruction decoder. After it is decoded, the
processor is ready to complete the steps necessary to execute the instruction. The
decoding process selects the specific set of steps that will be followed, which internal
registers to use and which addressing mode to use. The processor does not “think”
about what it has to do; it just methodically executes the instructions, based on the
built-in sequence for the specific instruction.

NOTE: Before the execution of an instruction is considered complete, the
program counter has been updated to point to the address of the next instruction
and the CCR has been updated to reflect the status of the operation.

Machine Cycles

Each instruction is executed by a series of machine cycles (two or more). A machine
cycle is a short set of steps that are performed during a single clock cycle. The HC11
performs a four-step process during each machine cycle. This four-step process is
generated by a two-phase non-overlapping clock, as shown in Figure 2.14. Phase 1
(PH1) controls steps one and two of the cycle. They have to do with the use of the
program counter. Phase 2 (PH2) controls the last two steps. They have to do with
memory access and other processing functions necessary to complete the instruction.
Each step of the cycle is driven by one of the edges of PH1 and PH2. These edges
control the sequence of events during each cycle.

NOTE: Nothing happens in a microprocessor unless there is an edge present
from a clock.

Fetch Cycles

The job of the fetch cycle is to read the instruction opcode from the memory. The
instruction opcode is always located in memory at the address that is contained in the
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1 Machine Cycle

STEP
1

STEP
2

STEP
3

PH2

PH1

STEP
4

Figure 2.14 HC11 Four-Step Machine Cycle
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program counter. A fetch cycle is the first machine cycle for each instruction. A new
fetch cycle is started automatically following the completion of the previous instruction.

The fetch cycle starts by moving the contents of the program counter to the memory
address register. Then the program counter is incremented so that it is always looking
at the next location in the program. The address in the memory address register is
driven out onto the address bus. This is the address of the instruction opcode in
memory. The memory is enabled during the third step. The memory location responds
to the enable by placing the opcode onto the data bus. The fourth step of the fetch
cycle loads the opcode from the data bus into the Instruction Register, where it is
immediately decoded.

NOTE: Some HC11 instructions utilize an opcode prebyte; thus, two fetch cycles
are required. Instruction execution cannot begin until both the prebyte and the
actual opcode have been fetched from memory. The prebyte indicates to the
processor that another opcode is necessary before the execution can begin.

Figure 2.15 illustrates the events of the fetch cycle for the immediate mode instruction
LDAA #$29. The opcode for this instruction is $86. It is the job of the fetch cycle to
read this opcode from memory and load it into the instruction register for decoding.
The first step consists of copying the contents of the program counter into the memory
address register ($0000 → MAR). Then the program counter is incremented ($0001
→ PC). The third step enables the memory location, which causes the memory to drive
the opcode onto the data bus ($86 → Data Bus). Finally, the opcode is loaded into the
instruction register ($86 → IR) where it is decoded. This completes the fetch cycle.

43Figure 2.15 Fetch Cycle for LDAA #$29

→→0000
0001

PC

MAR

MDR

AccA

86

IR

Decoder

STEP 1

STEP 2
PC + 1

STEP 4
Load IR0000

Memory
enable

memory

STEP 3

Address
bus

Data
bus

Control
bus

External of
processor

Internal to
processor

0000  86
0001  29

Load
MAR
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Execute Cycles

After the opcode is decoded, the processor methodically executes the instruction. The
execution requires one or more machine cycles, which are called execute cycles. Each
execute cycle is a built-in sequence of events that completes the operation of the
instruction. Instruction execution is unique for each instruction. The process that is
followed is dependent not only upon the instruction type but also upon the addressing
mode used. The first job is to locate the operands. Inherent mode instructions do not
require this step because the operands are already available in the processor registers,
if any are required. Immediate mode instructions provide operands in the memory
location immediately following the opcode for the instruction. Direct, extended,
indexed and relative mode instructions must gather address information from the
operand field before the operands can be accessed and processed.

Figure 2.16 illustrates the steps that must be followed to execute the LDAA #$29
instruction that was fetched in Figure 2.15. The first step is to copy to contents of the
program counter to the memory address register ((PC) → MAR). This places the
address $0001 in the memory address register. Since this is an immediate mode
instruction, this address represents the effective address of the operand. The next step
is to increment the program counter ((PC) + 1 → PC) so that it is properly indicating
the next memory location in sequence. The next step is to enable memory location
$0001. It responds by putting the operand on the data bus. To complete the execution
of the instruction, the operand ($29) is loaded from the data bus into AccA and the
status flags in the CCR are updated. The LDAA #$29 instruction requires only one
execute cycle to complete the load operation.
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0002
0001 29

PC

MAR

MDR

AccA

86

IR

Decoder

STEP 1

STEP 4
Load A

STEP 2
PC + 1

0001

Memory
enable

memory

STEP 3

Address
bus

Data
bus

Control
bus

0000  86
0001  29

load
MAR

STEP 3

Figure 2.16 Execute Cycle for LDAA #$29
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NOTE: Each instruction requires at least two machine cycles to complete, one
fetch cycle and one execute cycle. Some require as many as 41, 1 fetch and 40
executes. Assume that memory location $019B contains $36 before the start of
this program.

Example 2.1

Problem: Using the following four-instruction program. Describe what the processor
does to complete the necessary fetch and execute cycles.

Address    Machine Code     Source Code       Comments

 0100      86 a8         LDAA  #$A8    ;$A8  →  A

 0102      f6 01 9b      LDAB  $019B   ;($019B)  →  B

 0105      1b            ABA           ;(A) + (B)  →  A

 0106      97 20         STAA  $20     ;(A)  →  $0020

Solution:
Operation Description Functional Result

Fetch LDAA opcode
(1 machine cycle)

Contents of PC are copied to MAR.
PC is incremented.
Opcode is read from memory.
Opcode is loaded into IR.

(PC) → MAR $0100 → MAR
(PC) + 1 → PC $0101 → PC
($0100) → data bus $86 → data bus
Opcode → IR $86 → IR

Execute LDAA
(1 machine cycle)

Contents of PC are copied to MAR.
PC is incremented.
Operand is read from memory.
Operand is loaded into AccA.

(PC) → MAR $0101 → MAR
(PC) + 1 → PC $0102 → PC
($0101) → data bus $A8 → data bus
Operand → A $A8 → A

Fetch LDAB opcode
(1 machine cycle)

Contents of PC are copied to MAR.
PC is incremented.
Opcode is read from memory.
Opcode is loaded into IR.

(PC) → MAR $0102 → MAR
(PC) + 1 → PC $0103 → PC
($0102) → data bus $F6 → data bus
Opcode → IR $F6 → IR

Execute LDAB
(3 machine cycles)

Contents of PC are copied to MAR.
PC is incremented.
Hi-byte of effective address (hh) is   
 read from memory.
hh is loaded into Temp16H.

Contents of PC are copied to MAR.
PC is incremented.
Lo-byte of effective address (ll) is    
 read from memory.
ll is loaded into Temp16L.
Contents of Temp16 are copied to MAR.

Operand is read from memory.
Operand is loaded into AccB.

(PC) → MAR $0103 → MAR
(PC) + 1 → PC $0104 → PC
($0103) → data bus $01 → data bus

hh → Temp16H $01 → Temp16H

(PC) → MAR $0104 → MAR
(PC) + 1 → PC $0105 → PC
($0104) → data bus $9B → data bus

ll → Temp16L $9B → Temp16L
(Temp16) → MAR $019B → MAR

($019B) → data bus $36 → data bus
Operand → B $36 → B

Fetch ABA opcode
(1 machine cycle)

Contents of PC are copied to MAR.
PC is incremented.
Opcode is read from memory.
Opcode is loaded into IR.

(PC) → MAR $0105 → MAR
(PC) + 1 → PC $0106 → PC
($0106) → data bus $1B → data bus
Opcode → IR $1B → IR
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Operation Description Functional Result

Execute ABA
(1 machine cycle)

Operands are read from registers and
 added.
Result is loaded into AccA.

(A) + (B) → data bus$A8 + $36 → data bus
Result → A $DE → A

Fetch STAA opcode
(1 machine cycle)

Contents of PC are copied to MAR.
PC is incremented.
Opcode is read from memory.
Opcode is loaded into IR.

(PC) → MAR $0106 → MAR
(PC) + 1 → PC $0107 → PC
($0106) → data bus $97 → data bus
Opcode → IR $97 → IR

Execute STAA
(2 machine cycles)

Contents of PC are copied to MAR.
PC is incremented.
Lo-byte of effective address (dd) is   
 read from memory.
dd is loaded into Temp16L.
Temp16H is cleared.
Contents of Temp16 are copied to MAR.

Operand is retrieved from AccA.
Operand is loaded into memory.

(PC) → MAR $0107 → MAR
(PC) + 1 → PC $0108 → PC
($0107) → data bus $20 → data bus

dd → Temp16L $20 → Temp16L
$00 → Temp16H
(Temp16) → MAR $0020 → MAR

(A) → data bus $DE → data bus
Operand → M $DE → $0020

Self-Test Questions 2.4

 2.5 Program Flow 

Programs can be written to perform a variety of tasks. The flow of a program is
determined by the instructions used to implement the program. Often software defects
are caused by a flaw in the flow of a program. A defect is an undesirable behavior of
the software. Software defects are often referred to as “bugs.” The best way to write a
program is to first document what the program is going to do. A good way of doing
this is by drawing a flowchart.

A flowchart is a means of organizing the flow of a program. It is used to show the
function and flow of a program. It is a graphical representation of processes, input and
output of data, decisions and loops. Each function performed is represented by a
symbol in the chart. Figure 2.17 shows some basic flowcharting symbols. Each symbol
represents specific program functions.

The rounded rectangle is used for program termination. It is used at the beginning
and end of each program. The rectangle is used as a process box. A description of the
process is included in the box. The parallelogram (leaning rectangle) is used for input
and output to and from the system. The diamond is used for a decision. The decision
is shown as an expression inside the diamond. The rectangle with stripes is used to
show a subroutine (a process accomplished by a routine outside the main body of the
program). The circle is used as an on-page connector, and the home-plate (pentagon)
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1. What is the function of a fetch cycle?
2. What takes place during the execute cycles of an instruction?
3. How does Motorola store 16-bit data in memory?
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indicates the flowchart continues onto another page. The arrows indicate the direction
of the program flow.

Flowcharts can be used to show the flow of any operation in any environment, yet the
presentation in this text will be limited to software functions.

Example 2.2

Problem: Draw a flowchart for answering the phone after it rings three times.

Solution: The flowchart is shown in Figure 2.18. The terminator symbol is used to
start the program. The first thing that needs to be done is to count the ring. If there
have been less than three rings, keep counting; otherwise, answer the phone. Say
“hello.” If it is a salesman, hang up; otherwise have a conversation, say “goodbye”
and then hang up.

Example 2.3

Problem: Draw a flowchart for a 10 ms time delay.

Solution: The flowchart is shown in Figure 2.19. The terminator symbol is used to
start and end the flowchart. First a counter has to be loaded with a value equivalent
with the 10 ms delay. Then the counter is decremented. If it is equal to zero, the
delay is completed; otherwise, go back and decrement the counter again and
continue this process until it equals zero.

Self-Test Questions 2.5
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terminator used to show start
and end of program

process used to show
a process

input/output used to show any
data input/output
operations

decision used to show
process decisions

Figure 2.17 Basic Flowcharting Symbols

subroutine used to show a
subroutine process

on-page
connector

shows flowchart
continues on
same page

off-page
connector

shows flowchart
continues to
another page

arrows direction of flow

1. What is the purpose of a flowchart?
2. What symbol is used to show a decision?
3. What symbol is used to show a subroutine process?
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 Summary 

This chapter contains a discussion of the role of software on a computer. Software
programs are ordered sets of instructions that control the hardware. Software must be
written by programmers as source code. It is written in a variety of programming
languages like assembly, FORTRAN, BASIC and “C.”  The source code uses English-like
keywords and abbreviations called mnemonics to form a structured set of operations
for the hardware to perform. The source code is converted into object or machine
code by a program called an assembler or a compiler. The machine code contains only
the opcodes, operands and addresses needed by the hardware to complete each
instruction.
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Answer Phone

END

Count
Ring

Pick Up
Phone

Hang up

Have
Conversation

Say
"Hello"

Say
"Goodbye"

NO

YES

YES

SKIP

COUNT

3 Rings?

NO

Salesman?
10 ms Delay

END

Load
Counter

Decrement
counter

NO

YES

WAIT

Counter = 0?

Figure 2.18 Flowchart for Answering
the Phone after Three Rings

Figure 2.19 Flowchart of a 10 ms
Time Delay
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The processor must access memory on a regular basis to read and write the data that
is processed by the instructions. Each processor supports several methods it can use to
access the memory called memory addressing modes. Some of the addressing modes
are called immediate mode, direct mode, indexed mode and relative mode. Some
modes allow memory to be accessed with an absolute address and others use an address
that is relative to the current location in the program or relative to the address stored
in a register. The inherent mode is used for all instructions for which the operand is
implied.

The processor runs a program sequentially. It first reads an instruction opcode from
memory and decodes it and then performs the operation designated by the instruction
opcode. When the processor reads the instruction opcode from memory, it is
performing a fetch cycle. The data is processed during execute cycles. Every instruction
involves at least one fetch cycle and at least one execute cycle. Some instructions require
many execute cycles to complete the operation.

 Chapter Questions 

Section 2.1
 1. What is the difference between a computer’s hardware and its software?
 2. Is assembly-level programming a high-level or a low-level programming lan-

guage?  Why?
 3. What is the difference between source code and machine code?
 4. Define the term machine code.
 5. What is an opcode?
 6. What is an operand?
 7. What can be contained in the operand field?
 8. What is a prebyte? What does it tell the processor to do?

Section 2.2
 9. What is an effective address and how is it used?
10. When using the absolute addressing mode, where is the operand?
11. What is the difference between immediate and inherent addressing modes?
12. Which addressing mode is used when the data is implied?
13. What makes indexed addressing unique?
14. Relative addressing mode does not process data in the same sense as the other

addressing modes. What does it do?
Section 2.3

15. How many addressing modes are provided on the HC11?
16. How does the HC11 implement the generalized absolute addressing method?
17. Which memory locations can be addressed by the HC11 direct mode?
18. Is there ever a situation where there are two effective addresses for a single

instruction?
19. When using transfer notation, what symbols are used to show “contents of”?

Section 2.4
20. How many steps are performed during each machine cycle of the processor?
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21. What happens to the PC during the second step of the fetch cycle?
22. After the processor fetches an opcode from memory, which processor register

holds the opcode while it is being decoded?
23. Which register holds the address being currently used by the address bus?
24. How many fetch cycles are required by each instruction on the HC11?
25. How many execute cycles are required by each instruction on the HC11?

Section 2.5
26. What is a flowchart?
27. What symbol is used to indicate that a process is accomplished in a subroutine?

 Chapter Problems 

1. Identify the addressing mode used by each of the following instructions.
a. LDAA $1002 
b. LDY #$B600 
c. ABA  
d. STAA $04,X 
e. BRA $FC 
f. ADDA $32 
g. BPL $02 
h. ADCA #$32 

2. Calculate the effective address(es) used by each of the following instructions.
a. LDAB $0C 
b. LDD $B600 
c. ABA  
d. ADDA $32 
e. LDAA $1032 

3. Draw a flowchart that shows the process of checking the oil in a car.
4. Draw a flowchart of the process of taking a shower.
5. Draw a flowchart of the process of cooking burgers on the BBQ.

 Answers to Self-Test Questions 

Section 2.1
1. An ordered set of instructions to perform a task.
2. Source code contains the instructions written by the programmer.  The machine

code is the actual operational code and operands (in binary or hex) that execute
on the machine.

3. The operand is the actual data that is processed by the instruction.
4. An opcode prebyte tells the instruction decoder that another opcode byte must

be fetched from memory before the whole opcode can be interpreted.

Section 2.2
1. Implied/Inherent, Immediate, Absolute, Indexed and Relative.
2. When using absolute addressing mode, the address following the mnemonic is
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the effective address of the operand. When using relative addressing mode, the
value following the mnemonic is the displacement. The displacement is the
relative distance to the next instruction.

3. Relative addressing mode is always used to change the flow of the program.

Section 2.3
1. The HC11 has an inherent mode (INH), an immediate mode (IMM), two absolute

modes (EXT and DIR), two indexed modes (INDX and INDY) and a relative mode
(REL).

2. Extended mode on the HC11 uses 16-bit addresses as the effective address in
the instruction.  The Direct mode on the HC11 uses an 8-bit address, which is
used as the lower byte of the 16-bit address where the upper byte is zero.

3. INDX and INDY are both indexed addressing modes. INDX uses the X index
register, and INDY uses the Y index register.

Section 2.4
1. The fetch cycle retrieves the instruction opcode from memory and places it into

the instruction register.
2. The actual operation of the instruction is completed during the execute cycles of

the instruction.
3. Motorola uses a high-byte first format.  The high byte of a 2-byte data block is

written to the first memory location and the low byte is written to the next location.

Section 2.5
1. A flowchart is a diagram that shows the function and flow of a program.
2. The diamond symbol is used to show a decision in the flowchart.
3. The subroutine symbol is a rectangle with an extra line on each end.
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 Objectives 
HC11 P rogramming

After completing this chapter, you should be able to:

◗ Define the five Condition Code Register Status Flags

◗ Write simple programs that move data via load, store and transfer in-
structions

◗ Perform simple arithmetic and logic operations using a variety of add,
subtract and logic instructions

◗ Illustrate how serial shifting of data is possible in software

◗ Perform multiplication and division operations

◗ Write short programs using INH, IMM, DIR and EXT addressing
modes

 Outline 

◗ 3.1 Condition Code Register Status Flags

◗ 3.2 Data Movement

◗ 3.3 Addition

◗ 3.4 Subtraction

◗ 3.5 Logic

◗ 3.6 Shifting and Rotating

◗ 3.7 Multiplication and Division

◗ 3.8 Status Flag Manipulation

HC11 Programming

 c h a p t e r 3

53



 Introduction 

The instructions are the commands that control what the processor does. Without the
instructions, the processor is nonfunctional. The instruction set on the HC11 consists
of 308 unique opcodes derived from 145 mnemonic key words. Many of the mnemonic
instructions operate in more than one addressing mode. Thus, 145 unique mnemonic
forms can generate 308 opcodes. For example, the LDAA instruction can be
implemented using the IMM, DIR, EXT, INDX and INDY addressing modes. Thus, five
opcodes are required for the LDAA instruction so that each of these addressing modes
can be uniquely expressed to the processor during opcode fetch. Each of these five
implementations accomplishes the same task of loading a byte of data from memory
to AccA; they just accomplish it in different ways.

The instruction set has been broken down by the author into several categories of similar
function. Each group will be discussed as a set. Explanations pertaining to the entire group
will be provided at the beginning of each major section. Instructions will then be described in
small groups. A functional explanation of each instruction will be provided. In addition, each
instruction presentation will include an explanation of the addressing modes in which the
instruction operates, as well as the effect the instruction has on the CCR.

Although each addressing mode is explained, the examples and problems in this chapter are limited
to the application of the INH, IMM, DIR and EXT  modes. The application of instructions that
use the REL, INDX and INDY modes are reserved for chapters 4 and 5.

The lower-case “x” is used in conjunction with the instruction mnemonics to indicate
a wildcard. In each case, the x means that the mnemonic has several variations that
support different registers within the processor register block. The register designation
is substituted in place of the x to form a specific mnemonic that performs a function
on a single register. For example, LDAx can have the form LDAA or LDAB, indicating
load accumulator A or load accumulator B. Another example is the STx instructions
that can have the forms STD, STS, STX, and STY. These instructions are used to store
the contents of the double accumulator, the stack pointer register, the X index register
or the Y index register into memory respectively. Figure 3.1 summarizes the registers
and their corresponding single-letter designations.

NOTE: The P designation is sometimes confused for the program counter when
it is used in the instruction mnemonic. Motorola uses the P to designate the CCR
in just two instructions: TPA and TAP; the function of these instructions is
explained later in this chapter.

The program counter register is not included in this table because it is not directly
referenced by any instructions (i.e., there is not an instruction that allows the PC to be
directly loaded or stored). In addition, some instruction mnemonics include references
to bits in the CCR (i.e., SEC—set the carry flag in the CCR).

This chapter directly correlates to section 6.3 and Appendix A of the HC11 Reference Manual
and Table 3-2 of the Technical Data Manual. Much of this chapter relies on the information on
the instruction set that is contained in these sections.
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 3.1 Condition Code Register Status Flags 

In chapter 1, the condition code register is introduced as one of the registers in the
programmer’s model. The instruction set descriptions, covered in this chapter and
throughout the remainder of the text, provide further information on how the specific
instructions affect these bits. This section provides additional insight into the function
and use of these bits.

Figure 3.2 illustrates the layout of the HC11 Condition Code Register (CCR). Three
bits are control bits (S, X and I). Since these bits have to do with processor interrupts
and special modes, the function of these bits is reserved for chapter 10, when interrupts
are discussed. This section will focus on the definition of the remaining five bits: H, N,
Z, V and C. They indicate the status (or condition) of the processor at the end of the
instruction and are referred to as the status flags.

Addition and subtraction instructions affect all of the status flags. Therefore, they serve
as good illustrations of what conditions cause the various flags to be set. Figure 3.3
shows the layout of an 8-bit addition and an 8-bit subtraction. In the addition example,
the B word (B7–B0) is added to the A word (A7–A0) to form the 8-bit result R (R7–R0).
In the subtraction example, the B word (B7–B0) is subtracted from the A word (A7–A0)
to form the 8-bit result R (R7–R0).

The H bit is the half carry flag. This flag is set when there is a carry from the lower
nibble to the upper nibble during addition operations. If there is no carry from the
lower nibble, this bit is cleared. Addition instructions are the only instructions that
affect this flag. It is used only by the DAA instruction during the decimal adjustment
after the addition of two BCD values. It is undefined after reset.

Designation Register
Register Size

 (bits)

A Accumulator A 8
B Accumulator B 8
P Condition Code Register (CCR) 8
D Double Accumulator D (A:B) 16
S Stack Pointer Register 16
X Index Register X 16
Y Index Register Y 16

Figure 3.1 Register Designations Used by HC11 Instruction Mnemonics
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CCR b7 b6 b5 b4 b3 b2 b1 b0

S X H I N Z V C

RESET 1 1 U 1 U U U U

Figure 3.2 Condition Code Register Bits
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Further explanation on BCD arithmetic and decimal adjustment is found later in this chapter.

The N bit is the negative flag. This bit indicates a negative condition. It is equal to the
sign of the result and is equal to the sign bit (MSB) of the result. It is set if the data is
negative and cleared if the data is positive. It is undefined after reset.

The Z bit is the zero flag. This bit indicates a zero condition. It is set if the result of
the operation is zero. If the result is not zero, then this bit is cleared. It is undefined
after reset.

The V bit is the overflow flag. This bit indicates a sign overflow has occurred. It is set
when the operation caused a 2’s complement overflow. When this bit is set, it indicates
that the sign (N flag) of the result of the last operation is wrong. When it is cleared,
the sign (N flag) of the result of the last operation is correct. It is undefined after reset.

The C bit is the full carry/borrow flag. When this bit is set, it indicates that the operation
produced a full carry or that a full borrow was required to complete the operation. It
is undefined after reset.

NOTE: Many instructions use these bits to indicate status. In some cases, the
meaning of these bits varies from the definitions provided for addition and
subtraction. These exceptions will be discussed as they arise.

Self-Test Questions 3.1

 3.2 Data Movement 

Data movement instructions are concerned with the copying or moving of data. During
the execution of a program, the opcodes, operands and addresses are located in
memory. Before a program starts, the processor knows nothing about what it is going

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2  A1 A0

+ B7 B6 B5 B4 B3 B2 B1 B0 - B7 B6 B5 B4 B3 B2 B1 B0
 

R7 R6 R5 R4 R3 R2 R1 R0 R7 R6 R5 R4 R3 R2 R1 R0

ADDITION LAYOUT SUBTRACTION LAYOUT

Full Carry
C = 1

Half Carry
H = 1

Borrow
C = 1

Negative
N = 1

Overflow if
sign is wrong

V = 1

If all Zero
Z = 1

Negative
N = 1

Overflow if
sign is wrong

V = 1

If all Zero
Z = 1

Figure 3.3 Meaning of the Condition Codes for Addition and Subtraction
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1. How many bits are in the CCR?  How many are used for status?
2. What happens to the Z flag if the result of the last operation is equal to zero?
3. If the V flag is set, what is true regarding the sign of the last result?
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to do. The program must load the addresses and data into the processor required to
complete the execution of the program. The movement of data can be accomplished
three different ways:

1. from the processor registers to memory
2. from memory to the processor registers
3. from one processor register to another processor register.

NOTE: The HC11 does not support instructions that allow direct memory to
memory transfers using a single instruction. An example of how to accomplish
memory to memory transfers is provided in chapter 5.

Load Instructions

Load instructions are responsible for the movement of data from memory to the proces-
sor registers, as shown in Figure 3.4. Load instructions perform an input operation by
reading one or more bytes of data into a processor register from memory. Each of the
load instructions that copies two bytes of data follows the “high byte first” convention.

The family of load instructions is summarized in Figure 3.5. LDAA and LDAB load one
byte into one of the 8-bit accumulators. LDD, LDS, LDX and LDY load two bytes into
the double accumulator, stack pointer, index register X or index register Y respectively.

Processor Memory

A B

LDAA
LDAB

LDX

LDY

LDS

2 bytes

2 bytes

2 bytes

1 byte
1 byte

X

Y

S

Figure 3.4 Direction of Data Movement During a Load Instruction

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

LDAA
LDAB

Load Acc with
contents of memory

(M) ⇒ A
X X X X X - - - - - - ] ] 0 -

LDD Load D with
contents of memory

(M) ⇒ A,
(M+1) ⇒ B X X X X X - - - - - - ] ] 0 -

LDS
LDX
LDY

Load 16-bit Register
with contents of
memory

(M):(M+1) ⇒ S
(M):(M+1) ⇒ X
(M):(M+1) ⇒ Y

X X X X X - - - - - - ] ] 0 -

Figure 3.5 Family of Load Instructions
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Each load instruction operates in IMM, DIR, EXT, INDX and INDY addressing modes.
All load instructions affect only three status flags in the CCR: N and Z reflect the actual
condition of the data that was loaded. The V bit is cleared, indicating that the sign (N
flag) is correct. Load instructions are complementary to store instructions.

Example 3.1

Problem: Describe what each of the following instructions accomplishes and then
indicate the addressing mode used, effective address(es) of the operand, the
operand and resulting status in the CCR, given the following:

0010  81  22  33  44  55  66  77  88     CCR  $D0

0120  2A  00  A6  00  00  FF  00  00

   Address   Machine Code  Source Code

a. 01D9      86 16         LDAA  #$16

b. 0112      D6 10         LDAB  $10

c. B6C3      FE 01 23      LDX   $0123

Solution:

a. $16 → A. Mode = IMM (the data is preceded by the # sign). Effective address =
$01DA. It is the address immediately following the opcode in memory. Operand =
$16. Data stored at the effective address. N = 0, Z = 0, V = 0 → CCR = $D0.

b. ($0010) → B. Mode = DIR (single byte in the operand field without # sign).
Effective address = $0010. Effective address in direct mode is equal to $00dd.
Operand = $81. Data stored at the effective address N = 1, Z = 0, V = 0 → CCR
= $D8.

c. ($0123):($0124) → X. Mode = EXT (two bytes in the operand field without # sign).
Effective addresses = $0123 and $0124. The first effective address in extended
mode is equal to $hhll (M) and second is M+1. Operand = $0000. Data stored at
the effective addresses. N = 0, Z = 1, V = 0 → CCR = $D4.

Example 3.2

Problem: Each load instruction occupies a fixed number of bytes in memory and
requires a fixed number of machine cycles to execute. For each of the following
instructions, use the Motorola documentation to determine the number of bytes it
will occupy in memory, the name of each byte using the Motorola terminology,
determine the opcode and how many machine cycles are required to complete the
instruction.

(Hint: Refer to Appendix A of the Reference Manual and Table 3.2 of the Technical
Data Manual.)

58

Technician’s Guide to the 68HC11 Microcontroller



a. LDAB  #$16

b. LDX  $10

c. LDY  $0123

d. LDAA $B600

Solution:

a. Bytes = 2. LDAB IMM will occupy two bytes, the first byte is the opcode and the
second is the operand (ii). Opcode = $C6. Cycles = 2, 1 fetch and 1 execute.

b. Bytes = 2. LDX DIR will occupy two bytes, the first byte is the opcode and the
second is the low-byte of the effective address (dd). Opcode = $DE. Cycles = 4, 1
fetch and 3 executes.

c. Bytes = 4. LDY EXT will occupy four bytes, the first byte is the prebyte, the second
is the opcode and the last two are the first effective address of the operand (hhll).
Opcode = $18 FE ($18 is a prebyte and $FE is the actual opcode). Cycles = 6, 2
fetches and 4 executes.

d. Bytes = 3. LDAA EXT will occupy three bytes, the first byte is the opcode and
the last two are the effective address of the operand (hhll). Opcode = $B6. Cycles
= 4, 1 fetch and 3 executes.

Store Instructions

Store instructions are responsible for the movement of data from the processor
registers to memory as shown in Figure 3.6. Store instructions perform an output
operation by writing one or more bytes of data into memory from a processor
register. Each of the store instructions that stores two bytes of data follows the
“high byte first” convention.
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Processor Memory

A B
STAA  1 byte
STAB  1 byte

STD  2 bytes

STY  2 bytes

STS  2 bytes

STX
2 bytes

X

Y

S

Figure 3.6 Direction of Data Movement During a Store Instruction
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The family of store instructions is summarized in Figure 3.7. STAA and STAB store a
byte from one of the 8-bit accumulators into memory. STD, STS, STX and STY store
two bytes from the double accumulator, stack pointer, index register X or index register
Y into memory respectively. Each of the store instructions operates in the DIR, EXT,
INDX and INDY addressing modes. All store instructions affect only three status flags
in the CCR: N and Z reflect the actual condition of the data that was loaded. The V
bit is cleared, indicating that the sign (N flag) is correct. Store instructions are
complementary to load instructions.

Example 3.3

Problem: Describe what each of the following instructions accomplishes and then
indicate the addressing mode used, effective address(es) of the operand, the
operand and resulting status in the CCR, given the following:

      A    $80      X    $B600

      B    $FF      Y    $1000

      CCR  $E1      S    $0041

   Address  Machine Code  Source Code

a. 0002     B7 00 16      STAA  $0016

b. 018F     D7 10         STAB  $10

c. E2B3     DD 08         STS   $08

Solution:

a. Mode = EXT. The two bytes in the operand field without # sign. Effective address
= $0016. The first effective address in extended mode is equal to $hhll. Operand =
$80. Data from AccA. N = 1, Z = 0, V = 0. Thus CCR = $E9.

b. Mode = DIR. The single byte in the operand field without # sign. Effective address
= $0010. Effective address in direct mode is equal to $00dd. Operand = $FF. Data
from AccB. N = 1, Z = 0, V = 0. Thus CCR = $E9.
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Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

STAA
STAB

Store Acc to
contents of memory

(A) ⇒  M
(B) ⇒ M - X X X X - - - - - - ] ] 0 -

STD Store D to contents
of memory

(A) ⇒ M,
(B) ⇒ M+1 - X X X X - - - - - - ] ] 0 -

STS
STX
STY

Store 16-bit
Register to contents
of memory

(S) ⇒ M:M+1
(X) ⇒ M:M+1
(Y) ⇒ M:M+1

- X X X X - - - - - - ] ] 0 -

Figure 3.7 Family of Store Instructions
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c. Mode = DIR. The single byte in the operand field without # sign. Effective addresses
= $0008 and $0009. First effective address in direct mode is equal to $00dd (M), second
is M+1. Operand = $0041. Data from SP. N = 0, Z = 0, V = 0. Thus CCR = $E1.

Example 3.4

Problem: Each store instruction occupies a fixed number of bytes in memory and
requires a fixed number of machine cycles to execute. For each of the following
instructions, use the Motorola documentation to determine the number of bytes it
will occupy in memory, the name of each byte using the Motorola terminology,
determine the opcode and how many machine cycles are required to complete the
instruction.

(Hint: Refer to Appendix A of the Reference Manual and Table 3.2 of the Technical
Data Manual.)

a. STAB $16

b. STX  $10

c. STY  $0123

d. STAA $B600

Solution:

a. Bytes = 2. STAB DIR will occupy two bytes; the first byte is the opcode and the
second is the low byte of the effective address (dd). Opcode = $D7. Cycles = 3, 1
fetch and 2 executes.

b. Bytes = 2. STX DIR will occupy two bytes; the first byte is the opcode and the
second is the low byte of the first effective address (dd). Opcode = $DF. Cycles =
4, 1 fetch and 3 executes.

c. Bytes = 4. STY EXT will occupy four bytes; the first byte is the prebyte, the second
is the opcode and the last two are the first effective address of the operand (hhll).
Opcode = $18 FF FE ($18 is a prebyte and $FF is the actual opcode). Cycles = 6,
2 fetches and 4 executes.

d. Bytes = 3. STAA EXT will occupy three bytes; the first byte is the opcode and
the last two are the effective address of the operand (hhll). Opcode = $B7. Cycles
= 4, 1 fetch and 3 executes.

Example 3.5

Problem: Draw flowchart and write the program that will copy a single byte from
$0100 to $0180. Assemble the code, starting at location $0000.

Solution: In order to copy a byte from one memory location to another, the byte
must be loaded into a processor register and then stored to the new location. This
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program reads the byte stored at location $0100 and loads it into AccA. Then it
takes the value from AccA and writes it out to memory location $0180.

Address  Machine Code  Source Code  Comments

0000     B6 01 00      LDAA  $0100  ;($0100) → A

0003     B7 01 80      STAA  $0180  ;(A) → $0180

Clear Instructions

Clear instructions are responsible for clearing the contents of a processor register or
a memory location. The clear instructions responsible for clearing a processor register
are very similar to load instructions. Functionally, $00 is loaded into the register. The
clear instruction responsible for clearing a memory location is very similar to a store
instruction. Functionally, $00 is stored in the memory location. Clear instructions
provide a distinct advantage over load and store instructions. Each clear instruction
occupies fewer bytes of memory than the equivalent combination of load and store
instructions.

The clear instructions are summarized in Figure 3.8. CLRA and CLRB work like load
instructions in that $00 is loaded into AccA or AccB. The mnemonic form, CLR, works
like a store instruction in that $00 is stored into a memory location. The CLRA and
CLRB operate in the inherent mode, and CLR operates in the EXT, INDX and INDY

Memory to 
Memory copy 

Load value
from memory

Store value
into memory

END

Example 3.5 Flowchart

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

CLRA
CLRB

Clear Acc $00  ⇒   A
$00  ⇒  B

- - - - - X - - - - - 0 1 0 0

CLR Clear contents of
memory

$00  ⇒  M - - X X X - - - - - - 0 1 0 0

Figure 3.8 Clear Instructions
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addressing modes. No support is provided for the DIR addressing mode. Four status
flags in the CCR are affected by clear instructions: N = 0 since zero is a positive number,
Z = 1 because the result of the last operation was zero, V = 0 since the sign of the
number is correct (positive) and C = 0 because there was no carry.

Transfer Instructions

The transfer instructions are responsible for the movement of data from one processor
register to another. They copy the data from the source register and to the destination
register. The operation of the transfer instructions is summarized in Figure 3.9.

TAB copies data from AccA to AccB, and TBA copies data from AccB to AccA. These
instructions operate in the inherent addressing mode. These instructions affect three
status flags in the CCR: N and Z reflect the actual condition of the data after the transfer
operation. The V bit is cleared, indicating that the sign (N flag) is correct.

TAP copies data from AccA to the CCR. It causes all eight bits of the CCR to be updated
with the data from AccA. However, the X bit can only be cleared by this instruction.
Attempts to set the X bit are ignored. TPA copies data from the CCR to A. TPA has no
affect on the CCR. The TPA and TAP instructions operate in the inherent addressing
mode.

Further explanation of the X bit is provided in chapter 10.

The TSX and TSY instructions take the contents of the stack pointer register, add one
to it and load this value into one of the two index registers. The TXS and TYS
instructions take the contents of the designated index register, subtract one and load
this value into the stack pointer register. These instructions operate in the inherent
addressing mode and have no affect on the CCR.

Exchange Instructions

Exchange instructions are responsible for swapping the contents of the double
accumulator with the contents of one of the index registers. In essence, they act
like a double transfer instruction because data is moved to and from each register.
The two exchange instructions are summarized in Figure 3.10. XGDX swaps the

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

TAB
TBA

Transfer Acc to the
other Acc

(A)  ⇒  B
(B)  ⇒  A - - - - - X - - - - - ] ] 0 -

TAP Transfer A to CCR (A)  ⇒  CCR - - - - - X - ] ↓ ] ] ] ] ] ]

TPA Transfer CCR to A (CCR)  ⇒  A - - - - - X - - - - - - - - -

TSX
TSY

Transfer Stack
Pointer to Index
Reg

(S) + 1  ⇒  X
(S) + 1  ⇒ Y - - - - - X - - - - - - - - -

TXS
TYS

Transfer Index Reg
to Stack Pointer

(X) - 1  ⇒  S
(Y) - 1  ⇒  S

- - - - - X - - - - - - - - -

Figure 3.9 Transfer Instructions
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contents of the D and X registers. XGDY swaps the contents of the D and Y
registers. These instructions operate in the inherent addressing mode and have
no affect on the CCR.

Self-Test Questions 3.2

 3.3 Addition 

Addition instructions are a subset of the many arithmetic instructions that use the
internal arithmetic logic unit. Each instruction performs a mathematical addition
operation on the contents of an accumulator or a memory location. The result
of each of these operations is written back into the accumulator or memory
location designated by the instruction.

Add Instructions

Add instructions are responsible for adding data to the contents of one of the
accumulators. Both 8-bit and 16-bit add instructions are supported. In each case, the
result of the addition operation is kept in the accumulator. The add instructions are
summarized in Figure 3.11.

ADDA and ADDB are used for 8-bit addition. An 8-bit operand from memory is added
to the contents of AccA or AccB. ADDD is used to accomplish 16-bit addition
operations. A 16-bit operand is added to the contents of AccD, the double accumulator.
These instructions operate in the IMM, DIR, EXT, INDX and INDY addressing modes.
The ADDA and ADDB instructions affect all five status flags in the CCR: H, N, Z, V and
C reflect the actual condition of the data after the add operation. The ADDD
instruction affects four status flags in the CCR: N, Z, V and C reflect the actual condition
of the data after the add operation. H is not defined for 16-bit operations.

ABA, ABX and ABY allow the contents of the B accumulator to be added to the A, X
or Y registers respectively. These instructions operate in the inherent addressing mode.
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Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

XGDX
XGDY

Exchange D with
Index Reg

D ↔ X
D ↔ Y - - - - - X - - - - - - - - -

Note: D ↔ X implies that (D) → X while the original (X) → D.

Figure 3.10 Exchange Instructions

1. Do load instructions perform read or write operations?
2. Do store instructions perform read or write operations?
3. Which instruction acts like a store instruction but only stores $00?
4. Why can all transfer instructions operate in the inherent addressing mode?
5. How many data bits are copied from each register during an exchange

instruction?
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The ABA instruction affects all five status flags in the CCR: H, N, Z, V and C reflect
the actual condition of the data after the add operation. The ABX and ABY instructions
have no effect on the contents of the CCR.

Example 3.6

Problem: Describe what each of the following instructions accomplishes and then
indicate the addressing mode used, effective address(s) of the operand, the result
and resulting status in the CCR, given the following:

     0028  81 22 33 4A 55 6B C7 88

     0160  FF 00 D6 00 10 1F 10 0F

     A   $80 X $B600

     B   $2F Y $0100

     CCR $D3 S $0041

   Address  Machine Code  Source Code

a.   B700     8B 65         ADDA  #$65

b.   000E     FB 01 62      ADDB  $0162

c.   012C     D3 29         ADDD  $29

d.   F4B3     3A            ABX

Solution:

a. Mode = IMM. The byte in the operand field has # sign. Effective address = $B701.
It is the address immediately following the opcode in memory. $80 + $65 = $E5 →
A. H = 0, N = 1, Z = 0, V = 0, C = 0 → CCR = $D8.

b. Mode = EXT. The two bytes in the operand field without # sign. Effective address
= $0162. Effective address in extended mode is equal to $hhll. (B) + ($0162) = $2F
+ $D6 = $05 → B. H = 1, N = 0, Z = 0, V = 0, C = 1 → CCR = $E1.
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Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

ADDA
ADDB

Add contents of
memory to Acc

(A) + (M)   ⇒  A
(B) + (M)   ⇒  B X X X X X - - - - ] - ] ] ] ]

ADDD Add contents of
memory to D

(D)+(M):(M+1)
⇒  D X X X X X - - - - - - ] ] ] ]

ABA Add B to A (A) + (B)  ⇒  A - - - - - X - - - ] - ] ] ] ]

ABX
ABY

Add B to Index Reg (X) + $00:(B)  
⇒  X
(Y) + $00:(B)  
⇒  Y

- - - - - X - - - - - - - - -

Figure 3.11 Addition Instructions
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c. Mode = DIR. The single byte in the operand field without # sign. Effective
addresses = $0029 and $002A. First effective address in direct mode is equal to
$00dd (M) and second is M+1. (D) + ($0029):($002A) = $802F + $2233 = $A262
→ D. N = 1, Z = 0, V = 0, C = 0 → CCR = $D8.

d. Mode = INH. The operand field is empty. Effective addresses = N/A. Memory is
not accessed. (X) + $00:(B) = $B600 + $002F = $B62F → X. Does not affect status
flags, thus CCR = $D3.

Example 3.7

Problem: Each add instruction occupies a fixed number of bytes in memory and
requires a fixed number of machine cycles to execute. For each of the following
instructions, use the Motorola documentation to determine the number of bytes it
will occupy in memory, name the bytes using the Motorola terminology, and
determine the opcode and how many machine cycles are required to complete the
instruction.

a. ADDB #$16

b. ABA

c. ABY

d. ADDA $B6

Solution:

a. Bytes = 2. ADDB IMM will occupy two bytes; the first byte is the opcode and the
second is the immediate data (ii). Opcode = $CB. Cycles = 2, 1 fetch and 1 execute.

b. Bytes = 1. ABA INH will occupy one byte, the opcode. Opcode = $1B. Cycles =
2, 1 fetch and 1 execute.

c. Bytes = 2. ABY INH will occupy two bytes; the first byte is the prebyte and the
second is the opcode. Opcode = $18 3A. Cycles = 4, 2 fetches and 2 executes.

d. Bytes = 2. ADDA DIR will occupy two bytes; the first byte is the opcode and the
second byte is the low byte of the effective address of the operand (dd). Opcode =
$9B. Cycles = 2, 1 fetch and 1 execute.

Example 3.8

Problem: Draw flowchart and write the program that will load a byte from memory
$0000, add $30 to it, then store the result in locations $0121. Assemble the code,
starting at location $0100, and use AccB for the addition. Assume the value stored
at $0000 is $D0.

Solution: The program starts by loading AccB, using direct mode with the value
stored at $0000. Then, using immediate mode, it adds $30 to the first value and
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loads the result back into AccB. Finally, using extended mode, it stores the result
in location $0121.

Address  Machine Code  Source Code     Comments

0000     D6 00         LDAB  54M$00    ;($0000) → B

0002     CB 30         ADDB  #F54M$30  ;(B) + $30 → B

0004     F7 01 21      STAB  $0121     ;(B) → $0121

BCD Addition

The HC11 supports addition of binary coded decimal data. It provides the DAA
instruction to perform decimal adjustments of the output of the hex adder. DAA
operates only on the data in AccA; therefore, only AccA can be used for BCD addition.
The DAA instruction only performs the proper BCD adjustments following the ADDA,
ADCA or ABA addition operations because these instructions affect the H flag in the
CCR and operate on data in AccA. The two operands (or values being added) must be
valid BCD values before the addition otherwise the DAA instruction will not perform
the proper adjustments. Because the ALU will add these values as if they are Hex values,
the DAA is necessary to adjust the result back to a valid BCD state. Figure 3.12
summarizes what will happen when the DAA instruction is executed. The DAA
instruction affects four status flags in the CCR: N and Z reflect the actual condition of
the data after the add operation. Sign-overflow is undefined for BCD, yet the V flag
will reflect the standard overflow condition as if the data were in hex. The C flag will
reflect the state according to the data shown in Figure 3.12.
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Example 3.8 

Load value
from memory

Add $30 to
first value

END

Store result
in memory

Example 3.8 Flowchart
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Example 3.9

Problem: Draw a flowchart and write the program that will load 25 BCD, add 37
BCD to it, then decimal adjust the result. Assemble the code, starting at location
$0100.

Solution: The program starts by using immediate mode to load AccA with 25 BCD.
Then, using immediate mode, it adds 37 BCD to the first value and loads the result
back into AccA. Since the ALU performs a hex addition, 25 and 37 are viewed as
hex values ($25 and $37), resulting in the sum $5C. Finally, using DAA, the program
adjusts the result back to a valid BCD state by adding the adjustment value $06,
which is determined from the table in Figure 3.12. The second line of the table
applies because C = 0 (C was cleared by the add instruction), the upper nibble =
$5, H = 0 (H was cleared by the add instruction) and the lower nibble = $C. The
result is the proper BCD value of 62.

Address  Machine Code  Source Code      Comments

0000     86 25         LDAA  #F54M$25   ;$25 → A

0002     8B 37         ADDA  #F54M$37   ;$25 + $37 = $5C → A

0004     19            DAA              ;$5C + $06 = $62 → A
68

State of C Bit
Before DAA
(Column 1)

Upper Half-
Byte of Acca

(Bits 7–4)
(Column 2)

Initial Half-
Carry H Bit
from CCR

(Column 3)

Lower Half-
Byte of Acca

(Bits 3–0)
(Column 4)

Number Added
to Acca by

DAA (Column
5)

State of C Bit
After DAA
(Column 6)

0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0

0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1

NOTE
Columns (1) through (4) of the table represent all possible cases that can result from any of the
operations ABA, ADDx, or ADCx, with initial carry either set or clear, applied to binary-coded operands.
The table shows hexadecimal values.

Figure 3.12 BCD Adjustment after Addition (adapted with permission from Motorola)
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Increment Instructions

Increment instructions are a special class of addition instructions. They add one to the
operand, then overwrite the previous operand with this result. The increment
instructions are summarized in Figure 3.13.

The INC instruction operates on data stored in memory. It operates in the EXT, INDX
and INDY addressing modes. No support is provided for the DIR addressing mode.
The INCx and INx forms operate on data stored in one of the processor registers and
therefore use the inherent mode. The A, B, S, X and Y registers are incremented by
the INCA, INCB, INS, INX and INY instructions respectively. The INC, INCA and INCB
instructions affect three status flags in the CCR: N, Z and V reflect the actual condition
of the data after the increment operation. The INX and INY instructions affect only
one flag: Z is updated to reflect the actual condition of the data after the increment.
The INS instruction has no effect on the CCR.

Example 3.9 

Load 25 BCD

Add 37 BCD
to 25 BCD

END

Decimal adjust
the result

Example 3.9 Flowchart

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

INCA
INCB

Increment Acc (A) + 1 ⇒ A
(B) + 1 ⇒ B - - - - - X - - - - - ] ] ] -

INS Increment the stack
pointer

(S) + 1 ⇒ S
- - - - - X - - - - - - - - -

INX
INY

Increment Index
Register

(X) + 1 ⇒ X
(Y) + 1 ⇒ Y

- - - - - X - - - - - - ] - -

INC Increment contents
of memory

(M) + 1 ⇒ M - - X X X - - - - - - ] ] ] -

Figure 3.13 Increment Instructions 69
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No sample code is provided at this point for increment and decrement instructions. However, several
examples in chapters 4 and 5 use increment instructions.

Self-Test Questions 3.3

 3.4 Subtraction 

Subtract instructions are a subset of the many arithmetic instructions that use the
internal arithmetic logic unit. Each instruction performs a mathematical subtraction
operation on the contents of an accumulator or a memory location. The result of each
of these operations is written back into the accumulator or memory location designated
by the instruction.

Subtract Instructions

Subtract instructions are responsible for subtracting data from the contents of one of
the accumulators. Both 8-bit and 16-bit subtract instructions are supported. In each
case, the result of the subtraction operation is kept in the accumulator. The subtract
instructions are summarized in Figure 3.14.

SUBA and SUBB are used for 8-bit subtraction. An 8-bit operand from memory is
subtracted from the contents of AccA or AccB. SUBD is used to perform 16-bit
subtraction operations. A 16-bit operand is subtracted from the contents of AccD, the
double accumulator. These instructions operate in the IMM, DIR, EXT, INDX and
INDY addressing modes. The SUBA, SUBB and SUBD instructions affect four status
flags in the CCR: N, Z, V and C reflect the actual condition of the data after the subtract
operation. H is not defined for subtraction.

SBA allows the contents of AccB to be subtracted from AccA. This instruction operates
in the inherent addressing mode. The SBA instruction affects four status flags in the
CCR: N, Z, V and C reflect the actual condition of the data after the subtract operation.
H is not defined for subtraction.

1. Which flag bit is only affected by addition instructions?
2. What is the purpose of the DAA instruction?
3. Can the function of the increment instruction be accomplished with addition

and subtraction instructions?

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

SUBA
SUBB

Subtract contents of
memory from Acc

(A) - (M)   ⇒  A
(B) - (M)   ⇒  B

X X X X X - - - - - - ] ] ] ]

SUBD Subtract contents of
memory from D

(D)-(M):(M+1) 
⇒  D

X X X X X - - - - - - ] ] ] ]

SBA Subtract B from A (A) – (B)  ⇒  A - - - - - X - - - - - ] ] ] ]

Figure 3.14 Subtraction Instructions
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Example 3.10

Problem: Describe what each of the following instructions accomplishes and then
indicate the addressing mode used, effective address(es) of the operand, the result
and resulting status in the CCR, given the following:

      0028  81 22 33 4A 55 6B C7 88

      0160  FF 00 D6 00 10 1F 10 0F

      A    $80       X    $B600

      B    $2F       Y    $0100

      CCR  $D3       S    $0041

    Address  Machine Code  Source Code

a.  B700     80 65         SUBA  #$65

b.  000E     F0 01 62      SUBB  $0162

c.  012C     93 29         SUBD  $29

Solution:

a. Mode = IMM. The byte in the operand field has # sign. Effective address = $B701.
It is the address immediately following the opcode in memory. $80 – $65 = $1B →
A. N = 0, Z = 0, V = 1, C = 0, thus CCR = $D2.

b. Mode = EXT. The two bytes in the operand field without # sign. Effective address
= $0162. Effective address in extended mode is equal to $hhll. (B) – ($0162) = $2F
– $D6 = $59 → B. N = 0, Z = 0, V = 0, C = 1 → CCR = $D1.

c. Mode = DIR. The single byte in the operand field without # sign. Effective
addresses = $0029 and $002A. First effective address in direct mode is equal to
$00dd (M) and second is M+1. (D) – ($0029):($002A) =$802F – $2233 = $5DFC
→ D. N = 0, Z = 0, V = 1, C = 0 → CCR = $D8.

Example 3.11

Problem: Each subtract instruction occupies a fixed number of bytes in memory and
requires a fixed number of machine cycles to execute. For each of the following in-
structions, use the Motorola documentation to determine the number of bytes it will
occupy in memory, name the bytes using the Motorola terminology and determine the
opcode and how many machine cycles are required to complete the instruction.

a. SUBB #$16

b. SBA

c. SUBA $B6
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Solution:

a. Bytes = 2. SUBB IMM will occupy two bytes; the first byte is the opcode and the
second is the immediate data (ii). Opcode = $C0. Cycles = 2, 1 fetch and 1 execute.

b. Bytes = 1. SBA INH will occupy one byte, the opcode. Opcode = $10. Cycles =
2, 1 fetch and 1 execute.

c. Bytes = 2. SUBA DIR will occupy two bytes; the first byte is the opcode and the
second byte is the low byte of the effective address of the operand (dd). Opcode =
$90. Cycles = 2, 1 fetch and 1 execute.

Example 3.12

Problem: Draw a flowchart and write the program that will load a byte from memory
$0000, subtract $30 from it, then store the result in locations $0121. Assemble the
code, starting at location $0100 and use AccB for the addition. Assume the value
stored at $0000 is $21.

Solution: The program starts by loading AccB using direct mode with the value
stored at $0000. Then, using immediate mode, it subtracts $30 from the first value
and loads the result back into AccB. Finally, using extended mode, it stores the
result in location $0121.

Address  Machine Code  Source Code     Comments

0000     D6 00         LDAB  $00       ;($0000) → B

0002     C0 30         SUBB  $30       ;(B) – $30 → B

0004     F7 01 21      STAB  $0121     ;(B) → $0121
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Example 3.12 

Load value
from memory

Subtract $30
from first value

END

Store result
in memory

Example 3.12 Flowchart
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Negate Instructions

The negate instructions change the sign of a value in AccA, in AccB or in a memory
location. It accomplishes this sign change by using the 2’s complement negation
operation on the 8-bit operand. Specifically, these instructions subtract the operand
from zero, then overwrite the previous operand with the result, as shown in Figure 3.15.

NEGA and NEGB use the contents of AccA or AccB as the operand. These two
mnemonic forms operate in the inherent addressing mode. NEG uses the contents of
a memory location as the operand; however, it is available only in the EXT, INDX and
INDY addressing modes. No support is provided for the DIR addressing mode. Like
the subtract instructions, the NEGA, NEGB and NEG instructions affect four status flags
in the CCR: N, Z, V and C reflect the actual condition of the data after the negate
operation.

Because of the similarity the negate instructions have to the subtract instructions, no additional
sample code is provided.

Decrement Instructions

Decrement instructions are a special class of subtraction instructions. They subtract one
from the operand, then overwrite the previous operand with this result. The decrement
instructions are summarized in Figure 3.16.

The DEC instruction operates on data stored in memory; however, it operates only in
the EXT, INDX and INDY addressing modes. No support is provided for the DIR
addressing mode. The DECx and DEx forms operate on data stored in one of the
processor registers and therefore use the inherent mode. The A, B, S, X and Y registers

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

NEGA
NEGB

2’s Complement of
Acc

$00 – (A)  ⇒  A
$00 – (B)  ⇒  B - - - - - X - - - - - ] ] ] ]

NEG 2’s Complement of
contents of memory

$00-(M)  ⇒  M
- - X X X - - - - - - ] ] ] ]

Figure 3.15 Negate Instructions

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

DECA
DECB

Decrement Acc (A) - 1   ⇒  A
(B) - 1   ⇒  B

- - - - - X - - - - - ] ] ] -

DES Decrement Stack
Pointer

(S) - 1   ⇒  S - - - - - X - - - - - - - - -

DEX
DEY

Decrement Index
Reg

(X) - 1   ⇒  X
(Y) - 1   ⇒  Y - - - - - X - - - - - - ] - -

DEC Decrement
contents of memory

(M) - 1  ⇒  M
- - X X X - - - - - - ] ] ] -

Figure 3.16 Decrement Instructions 73
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are decremented by the DECA, DECB, DES, DEX and DEY instructions respectively.
The DEC, DECA and DECB instructions affect three status flags in the CCR: N, Z and
V reflect the actual condition of the data after the decrement operation. The DEX and
DEY instructions affect only one flag: Z is updated to reflect the actual condition of
the data after the decrement. The DES instruction has no effect on the CCR.

No sample code is provided at this point for increment and decrement instructions. However, several
examples in chapters 4 and 5 use decrement instructions.

Self-Test Questions 3.4

 3.5 Logic 

Logic instructions, a subset of the instruction set, require the use of the internal
arithmetic logic unit. Each instruction performs a logical operation on the contents of
an accumulator or on the operand stored in memory. The result of each of these
operations is written back into the accumulator or the memory location designated by
the instruction. The logical AND, OR, XOR and NOT operations are supported by the
HC11. Each of these instructions performs the logical operation on a group of eight
bits. In essence, eight 2-bit pairs are created and operated on independently to produce
the result. The logic instructions are summarized in Figure 3.17.

The ANDx instructions perform a logical AND operation on an 8-bit operand and the
data contained in one of the 8-bit accumulators, as shown in Figure 3.18. ANDA and
ANDB overwrite the contents of the A or B accumulator with the result of the AND
operation. ORAx and EORx are functionally identical to the ANDx instructions, except
they perform logical OR and XOR operations respectively. The ANDx, ORAx, and
EORx instructions are available in the IMM, DIR, EXT, INDX and INDY addressing

1. Which flag bit is not affected by subtract instructions?
2. Why are the negate instructions grouped with subtract instructions?
3. Can the function of the decrement instructions be accomplished with subtraction

instructions?

Figure 3.17 Logic Instructions

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

ANDA
ANDB

AND Acc with
contents of memory

(A) • (M) ⇒ A
(B) • (M) ⇒ B X X X X X - - - - - - ] ] 0 -

ORAA
ORAB

OR Acc with
contents of memory

(A) + (M) ⇒ A
(B) + (M) ⇒ B X X X X X - - - - - - ] ] 0 -

EORA
EORB

XOR Acc with
contents of memory

(A) ⊕ (Μ) ⇒ A
(B) ⊕ (Μ) ⇒ B X X X X X - - - - - - ] ] 0 -

COMA
COMB

NOT Acc 1’s
complement of Acc

!(A)  ⇒  A
!(B)  ⇒  B X X X X X - - - - - - ] ] 0 1

COM 1’s Complement of
contents of memory

!(M)  ⇒  M - - X X X - - - - - - ] ] 0 1
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modes. They affect three status flags in the CCR: N and Z reflect the actual condition
of the data after the logic operation, and V = 0 indicates that the sign of the result is
correct.

The COMx instructions perform a logical NOT operation on an 8-bit operand. COMA
and COMB overwrite the contents of AccA or AccB with the result of the NOT
operation. The COM form overwrites the contents of a memory location with the result
of the NOT operation. This operation is also referred to as the 1’s complement, thus
the use of the mnemonic “COM.” The COMA and COMB instructions are available in
the INH addressing mode only. The COM instruction is available in the EXT, INDX

75

 
(AccA)

(M)

A7

M7

A6

M6

A5

M5

A0

A1

A2

A3

A4

M0

M1

M2

M3

M4 AccA
This 8-bit result
will be loaded
back into the 
accumulator, 
overwriting the
previous data.

R = (A) AND (M)

R7

R0

R1

R2

R3

R4

R5

R6

Figure 3.18 Logical AND Operation on the HC11 (ANDx). The 8-bit contents of AccA is
ANDed as bit pairs with the 8-bit contents of a memory location. Eight 2-input AND gates
are used for the operation. The result is loaded back into AccA. OR (ORAx) and XOR
(EORx) perform in the same way, except OR gates and XOR gates are used, respectively.

(AccA)

A7

A6

A5

A0

A1

A2

A3

A4

AccA

R7

R0

R1

R2

R3

R4

R5
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R = (A)

This 8-bit result
will be loaded
back into the 
accumulator, 
overwriting the
previous data.

Figure 3.19 Logical NOT Operation on the HCII (COMx). The 8-bit contents of AccA
are inverted. Eight NOT gates are used for the operation. The result is loaded back into
AccA. COM performs in the same way, except the contents of a memory location are
the input and the result overwrites the data in the memory location.
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and INDY addressing modes, as shown in Figure 3.19. No support is provided for the
DIR addressing mode. These instructions affect four status flags in the CCR: N and Z
reflect the actual condition of the data after the logic operation, V = 0 indicates that
the sign of the result is correct and C is set.

Example 3.13

Problem: Draw a flowchart and write the program that will perform a logical NOR
operation on $43 and $C6. Load AccA with the first value and NOR it with another
value. Use immediate mode as much as possible.

Solution: The program starts by loading $43 into AccA using immediate mode.
Then, using immediate mode, it ORs $43 with $C6. Finally, the result is NOTed to
complete the NOR operation.

Address  Machine Code  Source Code      Comments

0000     86 43         LDAA  #F54M$43   ;$43 → A

0002     8A C6         ORAA  #F54M$C6   ;$43 OR $C6 = $C7 → A

0004     43            COMA             ;!(A) = $38 →D A

Self-Test Questions 3.5
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1. What logical functions are supported by the HC11?
2. Which of the logical functions can operate on data in the 8-bit accumulators? On

data in memory?

Example 3.13

Load $43
from memory

OR first value
with $C6

END

NOT result

Example 3.13 Flowchart
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 3.6 Shifting and Rotating 

Several types of data shifting and rotating instructions are supported on the HC11.
Shifting of data is based on the principles of serial shift registers. Data is moved one
bit to the right (toward the LSB) or one bit to the left (toward the MSB). Logical
shifting, as well as arithmetic shifting, is supported. Logical shifting causes a “0” to be
shifted into one end of the data word, pushing all of the data bits over one position in
the data word, as shown in Figure 3.20.

Arithmetic shifting is similar to logical shifting with one exception. When shifting right
(toward the LSB), the sign bit is maintained. Instead of shifting a “0” into the MSB of
the data word, a copy of the sign bit (MSB) is shifted and the original sign bit remains
in the MSB position of the data word, as shown in Figure 3.20c.

Data rotating is a special form of data shifting. When rotating data, the output of the
shifted data is fed back to the input of the shift register and is shifted back into the
data word. Both right and left rotate are supported by the HC11, as shown in Figure
3.20.

All shift and rotate instructions on the HC11 utilize the C flag of the CCR to catch the
output data bit as it is shifted out of the data word. Whatever bit is being shifted out is
moved into the C bit. This permits a simple bit-level test to immediately follow the
operation.

Logical Shift Instructions

The logical shift left (LSL) instructions are responsible for shifting a data word one bit
to the left. The MSB is shifted into the C flag of the CCR, and the LSB is filled with
zero. In Figure 3.21a, there is an 8-bit data word $A7 that will be shifted left. Before
the shift is performed, the C flag in the CCR contains zero. When the shift left operation
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0

b7 b0

a) Logical Shift Right

b7 b0

b) Logical Shift Left

b7 b0

c) Arithmetic Shift Right

b7 b0

d) Rotate Shift Right

b7 b0

e) Rotate Shift Left

0

Figure 3.20 Data Shifting and Rotating
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is performed, a “0” is shifted into the LSB from the right. The original 8-bit word is
moved one bit position to the left, and MSB is moved into the C flag of the CCR. Thus
the resulting data word is $4E and C flag = 1. Figure 3.21b shows how the same process
applies to a 16-bit data word stored in AccD.

The logical shift right (LSR) instructions are responsible for shifting a data word one
bit to the right. The LSB is shifted into the C flag of the CCR and the MSB is filled
with zero. In Figure 3.22a, there is an 8-bit data word $A7 that will be shifted right.
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1 0 1 0 0 1 1 1

1 0 0 1 1 1

0

0 01

01 0 1 1 0 1 1 1

1 1 0 1 1 1

1

0

C

11

1 1 1 0 0 1 0 0

1 1 0 0 1 0 0 0

$4

$6 $8

0
Before LSL
Data = $A7, C = 0

After LSL
Data = $4E, C = 1 

a) 8-bit Logical Shift Left

AccD

$E

AccA AccB

$F $C

b) 16-bit Logical Shift Left

Before LSL
Data = $B7E4, C = 1

After LSL
Data = $6FC8, C = 1

b7 b0 b7 b0

b7 b0

Figure 3.21 Logical Shift Left Examples

0 1 0 1 0 0 1 1 1

1 0 1 0 0 1

0

0

C

1 1

0 1 0 1 1 0 1 1 1

1 0 1 1 0 1

1

0

C

1 0

1 1 1 0 0 1 0 0

1 1 1 1 0 0 1 0

$5 $3

$5 $2$B $F

AccD

AccA AccB

a) 8-bit Logical Shift Right

b) 16-bit Logical Shift Right

Before LSR
Data = $A7, C = 0

After LSR
Data = $5E, C = 1 

Before LSR
Data = $B7E4, C = 1

After LSR
Data = $5BF2, C = 0

b0b7

b7 b0 b7 b0

Figure 3.22 Logical Shift Right Examples
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Before the shift is performed, the C flag in the CCR contains zero. When the shift right
operation is performed, a “0” is shifted into the MSB from the left. The original 8-bit
word is moved one bit position to the right and LSB is moved into the C flag of the
CCR. Thus the resulting data word is $53 and C = 1. Figure 3.22b shows how the same
process applies to a 16-bit data word stored in AccD.

There are four versions of the logical shift left instruction: LSL, LSLA, LSLB, and LSLD,
as shown in Figure 3.23. The LSL instruction operates directly on an 8-bit data word
stored at a memory location. It operates in the EXT, INDX and INDY addressing modes.
No support is provided for the DIR addressing mode. The LSLA and LSLB instructions
operate on the 8-bit data contained in AccA and AccB respectively. The LSLD
instruction operates on the 16-bit data word contained in AccD. LSLA, LSLB and LSLD
operate in the inherent addressing mode. The logical shift left instructions affect four
status flags in the CCR: N, Z, V and C reflect the actual condition of the data after the
operation. The V bit indicates sign error for these instructions. V =1 if the sign of the
data changed during the shift operation.

There are four versions of the logical shift right instruction: LSR, LSRA, LSRB, and
LSRD, as shown in Figure 3.23. There implementation is identical to the logical shift
left instructions already described. The logical shift right instructions affect four flag
bits in the CCR: N is cleared and Z, V and C reflect the actual condition of the data
after the operation. The V bit indicates sign error for these instructions. V =1 if the
sign of the data changed during the shift operation.

Example 3.14

Problem: Describe what each of the following instructions accomplishes and then
indicate the addressing mode used, the result and resulting status in the CCR,
given the following:

    0000  81 22 E4 4A 55 6B C7 90     A    $C7

    0198  FE DC BA 00 10 1F 00 FF     B    $5E

                                      CCR  $D4
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Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

LSLA
LSLB
LSLD

Logical shift left Acc See Figure 3.21
- - - - - X - - - - - ] ] ] ]

LSL Logical shift left
contents of memory

See Figure 3.21
- - X X X - - - - - - ] ] ] ]

LSRA
LSRB
LSRD

Logical shift right
Acc

See Figure 3.22
- - - - - X - - - - - 0 ] ] ]

LSR Logical shift right
contents of memory

See Figure 3.22
- - X X X - - - - - - 0 ] ] ]

Figure 3.23 Logical Shift Instructions

HC11 Programming



    Address  Machine Code  Source Code

a.  B700     48            LSLA

b.  002E     74 01 9A      LSR   $019A

c.  012C     04            LSRD

Solution:

a. Mode = INH. Nothing in the operand field. Shift left $C7, make LSB 0, stuff MSB
into C flag. Result $8E, C = 1. N = 1, Z = 0, V = 0, C = 1 → CCR = $D9.

b. Mode = EXT. The two bytes in the operand field without # sign. Shift right $BA,
make MSB 0, stuff LSB into C flag. Result $5D, C = 0. N = 0, Z = 0, V = 1, C = 0
→ CCR = $D2.

c. Mode = INH. Nothing in the operand field. Shift right $C75E, make MSB 0, stuff
LSB into C flag. Result $63AF, C = 0. N = 0, Z = 0, V = 1, C = 0 → CCR = $D2.

Arithmetic Shift Instructions

The arithmetic shift right instructions are similar to the logical shift right instructions.
They shift a data word one bit to the right. The LSB is shifted into the C flag of the
CCR; however, the MSB is retained. By holding the MSB, the sign of the data is retained
allowing special arithmetic operations on 2’s complement data (signed data). In Figure
3.24, there is an 8-bit data word $A7 that will be shifted right. Before the shift is
performed, the C flag in the CCR contains zero. When the shift right operation is
performed, the MSB from the data is shifted back into the MSB position. The original
8-bit word is moved one bit position to the right and LSB is moved into the C flag of
the CCR. Thus the resulting data word is $D3 and C flag = 1.

There are three versions of this instruction: ASR, ASRA and ASRB, as shown in Figure
3.25. The ASR operates directly on an 8-bit data word stored at a memory location. It
operates in the EXT, INDX and INDY addressing modes. No support is provided for the
DIR addressing mode. The ASRA and ASRB instructions operate on the 8-bit data con-
tained in the A and B accumulators respectively. There is no 16-bit version of the arithme-
tic shift right instruction. ASRA and ASRB operate in the inherent addressing mode. The
arithmetic shift right instructions affect four status flags in the CCR: N, Z, V and C reflect
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1 0 1 0 0 1 1 1

1 0 1 0 0 1

0

1 1 1

b7 b0 C

$D $3

Before ASR
Data = $A7, C = 0

After ASR
Data = $D3, C = 1

Figure 3.24 Arithmetic Shift Right Example
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the actual condition of the data after the operation. The V bit still indicates sign error for
these instructions, even though a sign error cannot occur since the sign bit is retained.

NOTE: The logical shift left and arithmetic shift left instructions are identical in
function and share the same opcodes. The different mnemonic forms are
provided for each type only to aid in the readability of source code (i.e., when
logical operations are being performed, logical mnemonic forms are used).
Therefore, no discussion or examples of the operation of arithmetic shift left
instructions are provided.

Example 3.15

Problem: Describe what each of the following instructions accomplishes and then
indicate the addressing mode used, the result and resulting status in the CCR,
given the following:

    0100  24 78 BA 41 93 1F BE FF     B    $41

                                      CCR  $D4

    Address  Machine Code  Source Code

a.  0100     57            ASRB

b.  01E3     77 01 06      ASR   $0106

Solution:

a. Mode = INH. Nothing in the operand field. Shift right $41, retain the MSB, stuff
LSB into C flag. Result $20, C = 1. N = 0, Z = 0, V = 0, C = 1, thus CCR = $D1.

b. Mode = EXT. The two bytes in the operand field without # sign. Shift right $BE,
retain the MSB, stuff LSB into C flag. Result $DF, C = 0. N = 1, Z = 0, V = 0, C =
0, thus CCR = $D8.

Rotate Instructions

The rotate left (ROL) instructions are responsible for rotating a data word one bit to
the left. The MSB is shifted into the C flag of the CCR, and the LSB is filled with the
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Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

ASRA
ASRB

Arithmetic shift
right Acc

See Figure 3.24
- - - - - X - - - - - ] ] ] ]

ASR Arithmetic shift
right contents of
memory

See Figure 3.24
- - X X X - - - - - - ] ] ] ]

Figure 3.25 Arithmetic Shift Instructions
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prior contents of the C flag. In Figure 3.26a, there is an 8-bit data word $37 that will
be rotated left. Before the rotate is performed, the C flag in the CCR contains zero.
When the rotate left operation is performed, the MSB is shifted into the C flag and
the prior value in C is rotated into the LSB from the right. The original 8-bit word is
moved one bit position to the left. Thus the resulting data word is $6E and C flag = 0.

The rotate right (ROR) instructions are responsible for rotating a data word one bit to
the right. The LSB is shifted into the C flag of the CCR, and the MSB is filled with the prior
contents of the C flag. In Figure 3.26b, there is an 8-bit data word $37 that will be rotated
right. Before the rotate is performed, the C flag in the CCR contains zero. When the
rotate left operation is performed, the LSB is shifted into the C flag and the prior value in
C is rotated into the MSB from the left. The original 8-bit word is moved one bit position
to the right. Thus the resulting data word is $1B and C flag = 1.

There are three versions of the rotate left instruction: ROL, ROLA and ROLB, as shown
in Figure 3.27. The ROL operates directly on an 8-bit data word stored at a memory
location. It operates in the EXT, INDX and INDY addressing modes. No support is
provided for the DIR addressing mode. The ROLA and ROLB instructions operate on
the 8-bit data contained in AccA and AccB respectively. They operate in the inherent
addressing mode. The rotate left instructions affect four status flags in the CCR: N, Z, V
and C reflect the actual condition of the data after the operation. The V bit indicates sign
error for these instructions. V = 1 if the sign of the data changed during the rotate
operation.

There are three versions of the rotate right instruction: ROR, RORA and RORB, as
shown in Figure 3.27. The ROR operates directly on an 8-bit data word stored at a
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0 0 1 1 0 1 1 1

1 1 0 1 1 1

0

0

C

00

$6

0 0 1 1 0 1 1 1

0 0 1 1 0 1

0

0

C

1 1

$1

Before ROL
Data = $37, C = 0

After ROL
Data = $6E, C = 0

Before ROR
Data = $37, C = 0

After ROR
Data = $1B, C = 1

b7 b0

$E

b7 b0

$B

a) Rotate Left through Carry (C)

b) Rotate Right through Carry (C)

Figure 3.26 Rotate Examples
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memory location. It operates in the EXT, INDX and INDY addressing modes. No
support is provided for the DIR addressing mode. The RORA and RORB instructions
operate on the 8-bit data contained in AccA and AccB respectively. They operate in the
inherent addressing mode. The rotate right instructions affect four status flags in the
CCR: N, Z, V and C reflect the actual condition of the data after the operation. The V
bit indicates sign error for these instructions. V = 1 if the sign of the data changed
during the rotate operation.

Example 3.16

Problem: Describe what each of the following instructions accomplishes and then
indicate the addressing mode used, the result and resulting status in the CCR,
given the following:

    0100  24 78 BA 41 93 1F BE FF      B    $45

                                       CCR  $D7

    Address  Machine Code  Source Code

a.  0100     56            RORB

b.  01E3     79 01 06      ROL    $0106

Solution:

a. Mode = INH. Nothing in the operand field. Rotate right $45, MSB = C, stuff LSB
into C flag. Result $A2, C = 1. N = 1, Z = 0, V = 1, C = 1, → CCR = $DB.

b. Mode = EXT. The two bytes in the operand field without # sign. Rotate left $BE,
LSB = C, stuff MSB into C flag. Result $7D, C = 1. N = 0, Z = 0, V = 1, C = 1, →
CCR = $D3.
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Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

ROLA
ROLB

Rotate left Acc See Figure 3.26 - - - - - X - - - - - ] ] ] ]

ROL Rotate left contents
of memory 

See Figure 3.26 - - X X X - - - - - - ] ] ] ]

RORA
RORB

Rotate right Acc See Figure 3.26 - - - - - X - - - - - ] ] ] ]

ROR Rotate right
contents of memory

See Figure 3.26 - - X X X - - - - - - ] ] ] ]

Figure 3.27 Rotate Instructions
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Self-Test Questions 3.6

 3.7 Multiplication and Division 

The HC11 supports 8-bit by 8-bit multiplication as well as 16-bit by 16-bit division. Multi-
plication is accomplished by the MUL instruction. Division is accomplished by two divide
instructions, IDIV and FDIV. These instructions are summarized in Figure 3.28.

Multiply Instruction

MUL calculates a 16-bit unsigned product from two 8-bit unsigned words. It assumes
that the 8-bit words are in each of the 8-bit accumulators, AccA and AccB. The 16-bit
result is stored in the 16-bit accumulator, AccD, as shown in Figure 3.29. MUL
instructions interpret all values as unsigned numbers. MUL operates in the inherent
addressing mode and affects only the C flag of the CCR. C = 1 only when the MSB of
lower byte of the result is set. The carry flag is used for multi-precision multiplication.

See Appendix A for an explanation of multi-precision multiplication.
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1. Which status flag bit is used by all shift and rotate instructions?
2. What is the difference between arithmetic shift and logical shift?
3. What type of rotate instruction is used when the data is shifting from the MSB

to the LSB of the data word?

× $ 23
$ 0C

24

$ 1A4
18

b) hex longhand

3510×
1210

1

1
60

42010

36

a) decimal longhand

×

↓

0C

A

8-bit

23

B

8-bit

A4

D

B

16-bit result

01

A

c) (A) × (B) → D

+ +

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

MUL 8-bit Multiply (A) * (B)  ⇒  D - - - - - X - - - - - - - - ]

IDIV 16-bit integer divide (D) / (X)  ⇒  X
Remainder  ⇒ 
D

- - - - - X - - - - - - ] 0 ]

FDIV 16-bit fractional
divide

(D) / (X)  ⇒  X
Remainder  ⇒ 
D

- - - - - X - - - - - - ] ] ]

Figure 3.28 Multiply and Divide Instructions

Figure 3.29 HCII Multiplication
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Integer Division Instruction

IDIV calculates a 16-bit unsigned quotient from two 16-bit unsigned words. The 16-bit
numerator is contained in the D accumulator, and the 16-bit denominator is contained
in the X register. The result (or the quotient) is placed in the X register and the
remainder is placed in the D accumulator, as shown in Figure 3.30. A divide by zero
condition causes the quotient to be set to $FFFF and the remainder is undefined. IDIV
operates in the inherent addressing mode. It affects three status flags in the CCR: V=
0 and Z and C reflect the actual condition of the data after the operation. C = 1 only
if the denominator was $0000.

Fractional Division Instruction

FDIV calculates a 16-bit unsigned fraction of two 16-bit unsigned words. The 16-bit
numerator is contained in the D accumulator and is expected to be smaller than the
16-bit denominator contained in the X register. The result (or quotient) is placed in
the X register and the remainder is placed in the D accumulator. The result is
interpreted as a binary weighted fraction. An overflow occurs when the numerator is
greater than the denominator. An overflow condition causes the quotient to be set to
$FFFF and the remainder is undefined. FDIV operates in the inherent addressing
mode. It affects three status flags in the CCR: V = 1 only if the numerator was greater
than the denominator, Z reflects the actual condition of the data after the operation
and C = 1 only if the denominator was $0000.

Figure 3.31 contains an example that illustrates the concept of binary-weighted
fractions. The decimal fraction is 3/16, shown in decimal form as 0.1875. This fraction
can be represented in 16-bit hex as $0003/$0010. The purpose of executing the FDIV
instruction is to calculate a binary-weighted equivalent of 0.1875. If $0003 is loaded
into AccD and $0010 into the X register, the FDIV instruction would result in $3000.
This result represents the binary weighting shown in Figure 3.32. From this illustration,
it is clear that 3/16 is equal to 1/8 plus 1/16. Thus, the binary-weighted fraction $3000
is equal to 3/16.

01E7

D

16-bit

000C

X

16-bit

0028

X

16-bit
quotient

0007

D

16-bit
remainder

↓

c) (D) / (X) → X, Remainder → D

 $28R7

$01E7$0C

67

7

018  

60

b) hex longhand

40R7

487    12

07    

7    

48      

0    

a) decimal longhand

− −

Figure 3.30 HCII Integer Divide
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NOTE: Most calculators cannot perform calculations on fractional hex and binary
numbers. The result of the FDIV instruction can be calculated by multiplying the
numerator by $10000, then dividing by the denominator.

Example 3.17

Problem: Describe the result of each of the following. Show the result (and
remainder, if any) in hex.

     Address  Machine Code  Source Code

a.   0100     86 2D         LDAA  #45

     0102     C6 61         LDAB  #97

     0104     3D            MUL

b.   016B     CC 05 98      LDD   #1432

     016E     C6 00 C5      LDX   #197

     0171     02            IDIV
86

0003

D

16-bit

0010

X

16-bit

3000

X

16-bit
quotient

0000

D

16-bit
remainder

↓

c) (D) / (X) → X, Remainder → 0

0.3000

3.00    $10

0 00    
3 0      

$3
$10

Remainder 0

b) hex longhand

0.1875

3.0      16

1 40    
1 6      

1 28    
120  

3
16

80
112  

Remainder 0
80

a) decimal longhand

−

−

−

Figure 3.31 HCII Fractional Divide

Figure 3.32 Binary-Weighted Fractional Equivalents

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

$3 $0 $0 $0

•0 0 0 0

$0 •

Binary Weights

23 22 21 20 2–1 2–162–152–142–132–122–112–102–92–82–72–62–52–42–32–2

Radix Point

Since 2–3 = 1/8 and 2–4 = 1/16 and 1/8 + 1/16 = 3/16,
then the decimal fraction 3/16 = the binary-weighted fraction $3000.

160 16–1 16–2 16–3 16–4 Hex
Weights
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Solution:

a. This program multiplies two decimal numbers, 45 and 97. The numbers are
converted into hex and loaded into AccA and AccB respectively. The MUL
instruction multiplies the two 8-bit numbers to determine the 16-bit product that is
loaded into AccD.

45 × 97 = 4,365 → $2D ×$61 = $110D. $110D = 4,365.
b. This program divides two decimal numbers, 1,432 by 197. The numbers are
converted into hex and loaded into AccD and the X register respectively. The IDIV
instruction divides the two 16-bit numbers to determine the 16-bit quotient that is
loaded into the X register; the remainder is loaded into AccD.

1,432/197 = 7 R 53 (7.2690) → $0598/$00C5 = $0007 R $0035 ($7.44).

Self-Test Questions 3.7

 3.8 Status Flag Manipulation 

Sometimes the state of a status flag needs to be set or cleared prior to some other
operation to assure proper operation of another instruction. The HC11 provides four
instructions that can directly manipulate status flags in the CCR. These instructions are
summarized in Figure 3.33. CLC and SEC clear or set the carry flag (C) in the CCR,
respectively. CLV and SEV clear or set the twos complement overflow flag (V) in the
CCR, respectively. These four instructions operate in the inherent addressing mode
and have no other effect on the CCR.

For example, all of the shift and rotate instructions use the C flag of the CCR. Thus,
the C flag needs to be initialized to the desired state (1 or 0) before performing these
operations. Many instructions, like the load instructions, do not affect the C flag. If the
load instruction is used prior to a rotate and it is desirable to have the C flag cleared,
simply execute the CLC instruction.

1. What is the largest number that can be directly multiplied on the HC11?
2. Where is the result of the MUL instruction stored?
3. Which register contains the remainder of a division?
4. What happens if an attempt is made to divide by zero?
5. Which division instruction would be used to find the binary-weighted equivalent

fraction of any number less than zero?

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

CLC Clear carry flag 0  ⇒  C - - - - - X - - - - - - - - 0

SEC Clear carry flag 1  ⇒  C - - - - - X - - - - - - - - 1

CLV Clear overflow flag 0  ⇒  V - - - - - X - - - - - - - 0 -

SEV Clear overflow flag 1  ⇒  V - - - - - X - - - - - - - 1 -

Figure 3.33 Status Flag Manipulation Instructions
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Self-Test Questions 3.8

 Summary 

Instructions tell the processor which functions should be performed. The order in
which the instructions are presented to the processor determines the order in which
the functions are performed. Some instructions are responsible for the movement of
data. The HC11 instruction set allows data to be moved using three different methods:
from memory to the processor registers (load instructions), from the processor registers
to memory (store instructions) and from one processor register to another processor
register (transfer and exchange instructions).

Other instructions are responsible for mathematical calculations. The basic arithmetic
operations of addition, subtraction, multiplication and division are supported. In
addition, instructions to increment, decrement or change the sign of a value are
supported. The logical operations AND, OR, XOR and NOT are also provided.

The operation of single instructions and the combination of a few instructions in short
program segments are the focus of this chapter. The application and examples are
limited to the inherent, immediate, direct and extended addressing modes to reinforce
their use.

 Chapter Questions 

Section 3.1
 1. What is the H flag used for?
 2. What is the N flag used for?

Section 3.2
 3. List the three ways that the movement of data can be accomplished.
 4. What type of instructions are used to accomplish the data movement methods

listed for question #3?
 5. What is the address of the data that gets loaded by the following instruction:

LDAA $4B?
 6. How many bytes of data are loaded by the following instruction: LDX $00?
 7. What is the mnemonic used for the instruction that stores the contents of AccA?
 8. What is the source of the data that gets stored by the following instruction:

STAB $019F?
 9. Why is the CLRA instruction similar to the LDAA instruction?
10. What happens to AccA when a TAB instruction is executed?
11. How many instructions would be necessary to duplicate the function of a single

exchange instruction?

1. Can status flags in the CCR be directly modified by instructions? How?
2. What instruction is used to set the V flag?
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Section 3.3
12. What condition causes the C flag to be set during an add instruction?
13. What condition causes the H flag to be set during an add instruction?
14. What actually takes place when the following instruction is executed: ADDA

$0100?
15. Can the DAA instruction perform a decimal adjust after a subtract instruction?
16. How can the function of the INCA instruction be duplicated using an ADDA

instruction?

Section 3.4
17. What condition causes the C flag to be set during a subtract instruction?
18. What condition causes the H flag to be set during a subtract instruction?
19. What addressing modes support the negate instructions?
20. What is the advantage of a decrement instruction over the equivalent subtract

instruction?

Section 3.5
21. What four logical operations are supported by the HC11?
22. What series of instructions could be used to create a logical NAND function?

Section 3.6
23. What is the significant difference between a logical and an arithmetic shift

right?
24. Which bit in the CCR is used by all of the shift and rotate instructions?
25. How many times would the LSRA instruction have to be executed to shift the

upper nibble to the lower nibble position?
26. Why are there different mnemonic forms for logical and arithmetic shift left if

they share the same opcodes?
27. Which flags in the CCR are affected by the ROLA instruction?

Section 3.7
28. Where are the results of a multiply instruction located at the end of the

instruction?
29. Where is the result of an integer divide instruction located at the end of the

instruction?
30. What happens if the X register contains zero and the IDIV instruction is

executed?
31. If the numerator is less than the denominator, which divide instruction should

be used?

Section 3.8
32. What addressing mode is used by the CLC instruction?

 Chapter Problems 

 1. Using the diagram in Figure 3.3, derive a logic function for the Z flag. Validate
the function with the data from Figure 3.34.

 2. Using the data in Figure 3.34, express the results of the following instructions.
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Which addressing mode is used for each instruction? NOTE: Each instruction is
independent of the others. The results are not cumulative.
a. LDAA   #$F9
b. STX    $0108
c. TBA
d. CLRB
e. XGDX
f. LDD    $F9
g. TSX
h. STS    $0193
i. CLR    $0029
j. TAP
k. LDAB   $FB

 3. Using the data in Figure 3.35 draw a flowchart and write a program that will
transfer the contents of AccA to AccB and then exchange the contents of the X
and D registers.

 4. Using the data from Figure 3.35, express the results of the following instructions.
Which addressing mode is used for each instruction? NOTE: Each instruction is
independent of the others. The results are not cumulative.

a. ADDA   #$49
b. ABX
c. INCB
d. DEC    $0100
e. ADDD   #$0100
f. SUBB   $13
g. DES
h. ADDB   $010B
i. SBA

C =  $C4 00F8  00 11 22 33 44 55 66 77
D =  $B600 0100  F3 56 E3 DB A1 A0 09 00
X =  $00A0 0108  22 44 52 88 63 77 74 33
Y =  $0110 0110  FF 00 FF 11 FF 22 FF 83
S =  $0107 0118  F1 3B BB B6 D4 AD CE 00

Registers Memory
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Figure 3.34 Default Data Set #1

Figure 3.35 Default Data Set #2

C =  $D5 0000  52 88 63 33 44 55 66 77
D =  $0082 0008  F3 56 E3 DB A1 A0 09 00
X =  $0100 0010  22 44 52 88 63 77 74 33
Y =  $0000 0100  FF 00 88 63 77 74 FF 83
S =  $0041 0108  44 52 88 63 52 88 63 00

0110  33 44 55 B6 A1 A0 09 00

Registers Memory
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 5. Draw a flowchart and write a program that will add $3C and $42 and store the
sum at location $0020.

 6. Draw a flowchart and write a program that will add the BCD values $26 and $39,
perform the proper decimal adjust as needed and store the sum at location $0180.

 7. Draw a flowchart and write a program that will subtract the contents of memory
locations $0000 and $0001 and store the result in location $0002.

 8. Using the data from Figure 3.35, express the results of the following instructions.
Which addressing mode is used for each instruction? NOTE: Each instruction is
independent of the others. The results are not cumulative.

a. EORB   $0E
b. COMA
c. COM    $0103
d. ORAB   $0012
e. ANDB   $06

 9. Draw a flowchart of a program that multiplies the two numbers located in memory
locations $0134 and $0135 and then divides the result by $000A.

10. Write a program that will divide $04A3 by $001B. Show the result and remainder
and where they are stored.

11. Write instructions that will do the following:

a. Set the C flag in the CCR.
b. Clear the V flag in the CCR
c. Set the Z flag in the CCR.

12. Using the data from Figure 3.35, comment each line of code using transfer
notation and express the results of the programs. NOTE: The results of each
instruction within each program are cumulative; however, each program is
independent of the others.

a. LDAA   $03
LDAB  #$59
ABA
DAA

b. ADDA    $0100
SUBA   $0A,Y
STAA   $0102

c. DECB
COMA
MUL

 Answers to Self-Test Questions 

Section 3.1
1. There are a total of 8-bits in the CCR.  Five bits are used for status.
2. The Z flag is set (Z=1) indicating the zero condition.
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3. When the V flag is set (V=1), a sign overflow has occurred which means that the
sign of the previous result is wrong.

Section 3.2
1. Load instructions are bringing data into the processor from memory, so they are

read instructions.
2. Store instructions are copying data from the processor into memory, so they are

write instructions.
3. The CLR instruction stores zeros in memory.
4. Because the operands are already in a register that is accessed by the transfer

instructions.
5. 16-bits are copied from two different registers.

Section 3.3
1. The H flag is only set by addition instructions.
2. DAA will adjust a hex result from the addition of two BCD numbers back to a valid

BCD.
3. Yes.  Increment adds one to the register.

Section 3.4
1. The H flag is only set by addition instructions.
2. The negate instructions perform a subtract from zero operation to complete the

negation.
3. Yes. Decrement subtracts one from the register.

Section 3.5
1. The HC11 supports AND, OR, XOR and NOT.
2. ANDx, ORAx, EORx and COMx operate exclusively on data in AccA or AccB.

Only COM will operate on data in memory.

Section 3.6
1. The C flag is used by all shift and rotate instructions.
2. The arithmetic shift right instructions retain the sign bit, but the logical shift right

instructions shift a zero into the MSB. There is no functional difference between
arithmetic and logical left instructions.

3. MSB to LSB movement would require a rotate right instruction.

Section 3.7
1. The largest multiplication operation directly supported on the HC11 is unsigned

8-bit × 8-bit, therefore the largest value is 255.
2. The result of MUL is stored in the 16-bit AccD.
3. The X register contains the remainder of a division operation.
4. The result is set to $FFFF in AccD, the remainder is undefined and C flag is set.
5. FDIV calculates binary weighted fractions of values less than zero.

Section 3.8
1. Yes. The CLC, SEC, CLV and SEV instructions modify the C and V bits. 
2. SEV will set the V Flag. 92

Technician’s Guide to the 68HC11 Microcontroller



 Objectives 
Branching and Loo ps

After completing this chapter, you should be able to:

◗ Use branch and jump instructions in short programs

◗ Calculate the destination address when using branch instructions

◗ Calculate the relative address when using branch instructions

◗ Evaluate the conditional branch instructions to determine whether the
branch test passes or fails

◗ Use compare instructions to update the status flags in the condition
code register

◗ Use branch instructions to implement the IF-THEN-ELSE program-
ming structure

◗ Implement finite loops using the WHILE and UNTIL programming
structures

◗ Make a simple time delay using a counter in a finite program loop

 Outline 

◗ 4.1 Jumping

◗ 4.2 Branching and Relative Address Mode

◗ 4.3 Branch Instructions

◗ 4.4 Preparation for a Valid Branch Test

◗ 4.5 Conditional Flow Using IF-THEN-ELSE

◗ 4.6 Program Loops

◗ 4.7 Timing Loops

Branching and Loops

 c h a p t e r 4
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 Introduction 

Chapter 3 focused on instructions that have various jobs of manipulating the data in
the registers and in memory. This chapter will focus on a different class of instructions
that have the job of controlling or altering the flow of a program. The function of the
jump instruction is discussed first, followed by a presentation on the function of the
branch instructions.

Sometimes the flow of the program needs to be altered unconditionally. For example,
every time a program reaches a certain point it may need to go to back to the beginning
and start over. Two methods will be presented to accomplish the unconditional change
in the flow of the program, one using the jump instruction and the other using the
branch always instruction.

Most of the time the need to alter the flow of a program is conditional. For example,
an instruction might say to go back to the beginning of the program and start over
only if some condition is true. Conditional instructions perform tests that determine
if the alternative paths will be followed. Three different programming structures will
be presented with practical applications that all utilize the conditional methods of
altering the flow of a program.

This chapter directly correlates to sections 6.2.6 and 6.3.4 of the HC11 Reference Manual and
Section 3.4.6 of the Technical Data Manual.

 4.1 Jumping 

Jump instructions cause a change in the program flow to any location within the
addressable range of the processor. The jump instruction directly loads the program
counter (PC) with a 16-bit address. This address is the location of the next instruction
to be executed, commonly referred to as the destination address. This jump instruction
is unconditional; thus it will alter the flow of the program each and every time it is
executed. Jump instructions are used in a program any time an absolute change of
program flow is required.

The jump instruction has only one mnemonic form on the HC11, JMP. The JMP
instruction is defined for EXT, INDX and INDY addressing modes, as shown in Figure
4.1. The addressing mode is used to designate the destination address. The JMP
instruction does not affect the bits in the CCR.

Jump instructions used in the source code are usually followed by a label. The label is
a name that the programmer makes up. Typically, it represents the destination address

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

JMP Change flow to
absolute address

hhll → PC
- - X X X - - - - - - - - - -

Figure 4.1 Jump Instructions
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of the jump or branch instruction. The same label is used to the left of the instruction
that will be executed following the jump instruction. Consider the program example
shown in Figure 4.2. This program loads a number into AccA, then adds another
number to the value already in AccA. Next it jumps to another part of memory and
stores the result of the addition. Figure 4.2a shows the jump instruction in the extended
mode and the destination address is $0180. Figure 4.2b illustrates how the same result
can be accomplished by using the label “STORE.” The label “STORE” represents the
destination address and is properly replaced with the actual destination address in
memory.

Self-Test Questions 4.1

 4.2 Branching and Relative Address Mode 

Branch instructions differ from jump instructions in that they do not supply the
absolute address of the next instruction. When a branch instruction is executed, the
destination address must be calculated relative to the current program counter. Thus,
this set of instructions uses the relative addressing mode.

Calculating the Destination Address

In the relative mode, a relative address follows the opcode in memory. It is added to
the current program counter to determine the destination address. The relative
address is a signed 8-bit number that indicates the number of bytes to branch forward
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0100 86 4b                LDAA    #$4B    ;load a number into AccA
0102 8b 23                ADDA    #$23    ;Add another to AccA
0104 7e 01 80             JMP     $0180   ;go store the result

•               ;additional instructions
•
•

0180 b7 00 00             STAA    $0000   ;store the sum
0183 3f                   SWI

0100 86 4b                LDAA    #$4B    ;load a number into AccA
0102 8b 23                ADDA    #$23    ;Add another to AccA
0104 7e 01 80            JMP     STORE   ;go store the result

•               ;additional instructions
•
•

0180 b7 00 00     STORE   STAA    $0000   ;store the sum
0183 3f                   SWI

a) Jump using actual absolute address

b) Jump using label for absolute address

Destination
Address

Destination
Address

Figure 4.2 Jump Instructions

1. What is a label? How are labels used with jump instructions?
2. What kind of address is used by all jump instructions?
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or backward in memory to the destination address. It is a displacement from the current
position in memory. Since it is a signed 8-bit number, it must be sign extended to 16
bits before being added to the contents of the 16-bit program counter. The result of
this operation produces the destination address, as shown in Equation 4.1. 

DA = PC + rr Equation 4.1

DA = Destination Address

PC = Address in the Program Counter

rr = Sign-Extended Relative Address

Figure 4.3 contains the same example used in Figure 4.1, except the jump instructions
have been replaced with branch instructions. Instead of the absolute 16-bit address
following a jump instruction, a relative address is provided following the branch
instruction. This relative address must be added to the current program counter to
calculate the destination address. In Figure 4.3, the branch instruction is assembled as
two bytes in memory. The opcode for a BRA instruction is $20; it is located at location
$0104. The operand field is located at location $0105 and is occupied by the relative
address $7A. Figure 4.4 summarizes the sequence of events that occur to process this
instruction.

Since the program counter contains $0180 at the end of this instruction, the instruction
located at $0180 (STAA $0000) will be executed. The flow of the program was altered
by this branch instruction, because the next sequential instruction was located at $0106.
Each time a branch instruction is executed the processor must calculate the destination
address in this manner. Additional examples of how this is done are shown in Example
4.1.
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0100 86 4b              LDAA    #$4B    ;load a number into AccA
0102 8b 23              ADDA    #$23    ;Add another to AccA
0104 20 7a              BRA     $0180   ;go store the result
0106 •             ;additional instructions

•
•

0180 b7 00 00           STAA    $0000   ;store the sum
0183 3f                 SWI

0100 86 4b              LDAA    #$4B    ;load a number into AccA
0102 8b 23              ADDA    #$23    ;Add another to AccA
0104 20 7a              BRA     STORE   ;go store the result
0106 •             ;additional instructions

•
•

0180 b7 00 00   STORE   STAA    $0000   ;store the sum
0183 3f                 SWI

a) BRA using actual absolute address

b) BRA using label for absolute address

+007A
Displacement

PC

Destination
Address

+007A
Displacement

PC

Destination
Address

Figure 4.3 BRA Instructions
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Example 4.1

Problem: Calculate the destination address (DA) for each of the following branch
instructions.

      Address    Machine Code     Source Code

 a.   0109       20 6C            BRA    PAST

 b.   01E2       20 D3            BRA    LOOP

 c.   B723       20 9B            BRA    AGAIN

Solution: In each case, the contents of the PC must be determined. Then the
sign-extended relative address must be added to the PC to calculate the destination
address (Equation 4.1). The PC is the address of the next sequential instruction.
Since each of these instructions occupies two bytes of memory, the address of the
next instruction (PC) will be two greater than the address of the BRA instruction.

a. PC = $0109 + 2 →  $010B
rr = $6C, sign extend → +$006C
DA = PC + rr →  $0177

b. PC = $01E2 + 2 →  $01E4
rr = $D3, sign extend → +$FFD3
DA = PC + rr →  $01B7

c. PC = $B723 + 2 →  $B725
rr = $9B, sign extend → +$FF9B
DA = PC + rr →  $B6C0

Calculating the Relative Address

All relative mode instructions calculate the destination address by adding the relative
address to the current program counter. In Figure 4.3 it is shown that the source code
includes the actual destination address (i.e., BRA $0180), yet the machine code uses
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Operation Description Functional Result

Fetch BRA opcode
(1 machine cycle)

Contents of PC are copied
  to MAR. 
PC is incremented.
Opcode is read from memory.
Opcode is loaded into IR.

(PC) → MAR  $0104 → MAR

(PC) + 1 → PC  $0105 → PC
($0105) → data bus $20 → data bus
Opcode → IR  $20 → IR

Execute BRA
(2 machine cycles)

Contents of PC are copied
  to MAR.
PC is incremented.
Displacement is read from
  memory.
Calculate destination 
address.

PC → MAR  $0105 → MAR
PC + 1 → PC  $0106 → PC

rr → MDR  $7A → MDR
PC + rr → PC  $0106 + $007A = $0180 →
PC

Figure 4.4 Process of Executing the BRA Instruction
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the displacement. How does the assembler calculate the relative address from the
destination address? The answer is found by subtracting PC from both sides of Equation
4.1, as shown in Equation 4.2.

      DA = PC + rr           Subtract PC from both sides
      DA – PC = PC – PC + rr   Rearrange

        rr = DA – PC Equation 4.2

Because the relative mode offset is a signed 8-bit value, the distance that a program
can branch forward or backward is limited. The largest positive decimal number
that can be represented in eight bits is 127, and the largest decimal negative
number is –128. Thus, forward displacement is limited to 127 bytes, and backward
displacement is limited to 128 bytes. Each time a branch instruction is assembled,
the assembler must calculate the relative address. Examples of how this is done
are shown in Example 4.2.

Example 4.2

Problem: Calculate the relative address (rr) for each of the following branch
instructions.

 Address  Machine Code  Source Code

a.    0109     20 ??         BRA  PAST

      010B     8B 30   OVER  ADDA #$30

      010D     97 10   PAST  STAA $10

b.    018E     C6 0A   BACK  LDAB 0,X

      0190     CB 30         ADDB #$30

      0192     08            INX

      0193     20 ??         BRA  BACK

c.    0173     20 ??         BRA  MAIN

                             ⋅ ⋅ ⋅
      01E2     4A      MAIN  DECA

d.    E204     86 45   OUTA  LDAA #$45

                             ⋅ ⋅ ⋅
      E27A     20 ??         BRA  OUTA

Solution: In each case, the contents of the PC must be determined. Then the
relative address can be calculated by subtracting the PC from the DA (Equation
4.2). The PC is the address of the next sequential instruction. Since each of these
instructions occupies two bytes of memory, the address of the next instruction (PC)
will be two greater than the address of the BRA instruction.
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a. DA = 010D →  $010D
PC = $0109 + 2 → +$010B
rr = DA – PC →  $0002 rr = $02

b. DA = 018E →  $018E
PC = $0193 + 2 → +$0195
rr = DA – PC →  $FFF9 rr = $F9

c. DA = 01E2 →  $01E2
PC = $0173 + 2 → +$0175
rr = DA – PC →  $006D rr = $6D

d. DA = E204 →  $E204
PC = $E25A + 2 → +$E25C
rr = DA – PC →  $FFA8 rr = $A8

Nature of the Relative Address

Further explanation is in order regarding the nature of the relative address. The
relative address was defined earlier as the number of bytes to branch forward or
backward in memory to the destination address. What does it mean to branch forward
or backward? Figure 4.5 provides some insight into this process.

NOTE: When branching forward, the relative address is positive. It is the number
of bytes of memory that will be skipped forward, starting with the first byte
following the relative address in memory and going up to, but not including, the
byte stored in the destination address.

In Example 4.2a, the relative address is calculated to be $02. This means that the
program will skip forward past two bytes of memory. The two bytes of the ADDA #$30
instruction, $8B and $30, are skipped, as shown in Figure 4.5a. The instruction located
two bytes forward in memory is executed.

rr - positive will 
skip next two bytes

PC contains 
this address 
when rr is 
fetched from 
memory

Destination
address

1 2

0109

010B

010D

20  02

8B  30

97  10

BRA       PAST

OVER    ADDA    #$30  

PAST    STAA    $10    

a) Branching forward

+2 rr - negative will 
skip back seven bytes

PC contains 
this address 
when rr is 
fetched from 
memory

Destination
address

7 6

5 4

3

2 1

018E

0190

0192

0193

0195

C6 0A

CB 30

08

20 F9

BACK  LDAB  0,X  

ADDB  #$30     

INX            

BRA   BACK

b) Branching backward

Figure 4.5 The Nature of the Relative Address
99

Branching and Loops



NOTE: When branching backward, the relative address is negative. It is the
number of bytes of memory that will be skipped backward, starting with the
relative address and going back to, and including, the byte stored in the
destination address.

In Example 4.2b, the relative address was calculated to be $F9 (–710). This means that
the program will skip backward seven bytes of memory. The two bytes of the BRA
instruction, the one byte of the INX instruction, the two bytes of the ADDA instruction
and the two bytes of LDAB instruction are skipped, as shown in Figure 4.5b. The
instruction located seven bytes backward in memory is executed.

Self-Test Questions 4.2

 4.3 Branch Instructions 

There are 21 branch instructions defined for the HC11. Three of these instructions, BRCLR,
BRSET  and BSR, have special applications. Their function will not be presented in this section.
BRCLR and BRSET  are described in chapter 9, and BSR is described in chapter 6. T he function
of the remaining 18 branch instructions will be the focus of this section.

Each branch instruction performs a test to determine if the branch will be taken. As
each test has a complementary form, the instructions are paired. For example, branch
if equal to zero (BEQ) is complementary to branch if not equal to zero (BNE). BEQ
will cause a branch to occur if the Z flag of the CCR is set, which indicates that the
result of a prior instruction was zero. BNE will cause a branch to occur if the Z flag of
the CCR is cleared, which indicates that the result of a prior instruction was not zero.

The branch instructions are categorized into functional groups for presentation in this
text. These functional groups are unconditional, conditional-simple, conditional-

1. What kind of address is used by all branch instructions?
2. If the address of a BRA instruction is $0023 and the Offset = $62, what is the

destination address?
3. If the address of a BRA instruction is $B61D and the Offset = $9A, what is the

destination address?
4. Calculate the relative address (rr) for each of the following branch instructions.

         0193    20 ??         BRA  END

                               ⋅ ⋅ ⋅
         01DD    E6 00   END   LDAB  0,X

 5. Calculate the relative address (rr) for each of the following branch instructions.

         E25A    97 25   MSG1  STAA $25

                               ⋅ ⋅ ⋅
         E273    20 ??         BRA  MSG1
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unsigned and conditional-signed. Each functional group is described in subsequent
sections. Figure 4.6 summarizes the 18 branch instructions. All branch instructions use
the relative addressing mode and have no affect on the CCR.

Unconditional Branching

There are two unconditional branch instructions: BRA and BRN. The BRA instruction
always passes the branch test and will always branch, as the mnemonic implies (BRA =
Branch Always). The BRN instruction never passes the branch test and will never
branch, as the mnemonic implies (BRN = Branch Never). The BRN instruction is very
useful during troubleshooting to replace another branch instruction as well as in timing
loops to cause a time delay.

Conditional Branching

The branch tests are simple if they consist of testing the state of a single bit in the CCR.
The branch tests are “unsigned” because they perform a branch test from an unsigned
perspective. The unsigned perspective ignores the sign bit and views all eight (or
sixteen) data bits as magnitude. Each of these tests is concerned about the relationship
of two unsigned data words. The branch tests are “signed” because they perform a
branch test from a signed perspective. The signed perspective views the MSB as a sign
bit and the remaining bits as a 2’s complement magnitude. Each of these tests is

Mnemonic Description

Boolean
Conditional

Test
Complement

Form Functional Group

BRA Branch always Always passes BRN Unconditional
BRN Branch never Never passes BRA Unconditional
BCC Branch if carry cleared (see BHS) ? C = 0 BCS Conditional-simple
BCS Branch if carry set (see BLO) ? C = 1 BCC Conditional-simple
BEQ Branch if equal to zero ? Z = 1 BNE Conditional-simple
BMI Branch if minus (negative) ? N = 1 BPL Conditional-simple
BNE Branch if not equal to zero ? Z = 0 BEQ Conditional-simple
BPL Branch if plus (positive) ? N = 0 BMI Conditional-simple
BVC Branch if overflow cleared ? V = 0 BVS Conditional-simple
BVS Branch if overflow is set ? V = 1 BVC Conditional-simple
BHI Branch if higher ? C + Z = 0 BLS Conditional-unsigned
BHS Branch if higher or same (see BCC) ? C = 0 BLO Conditional-unsigned
BLO Branch if lower (see BCS) ? C = 1 BHS Conditional-unsigned
BLS Branch if lower or same ? C + Z = 1 BHI Conditional-unsigned
BGE Branch if greater than or equal ? N ⊕ V = 0 BLT Conditional-signed
BGT Branch if greater than ? Z+(N⊕V) = 0 BLE Conditional-signed
BLE Branch if less than or equal ? Z+(N⊕V) = 1 BGT Conditional-signed
BLT Branch if less than ? N ⊕ V = 1 BGE Conditional-signed

Figure 4.6 Summary of Branch Instructions
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concerned about the relationship of two signed data words. Although BEQ and BNE
are conditional-simple, they are used for equality tests in all groups because equal is
equal regardless of the sign of the data.

Each of the conditional branch instructions requires that a branch test be performed
before the address of the next instruction is calculated. The branch test consists of
evaluating a Boolean expression to determine if the condition has been met. For
example, if the program is concerned about overflow conditions, it might perform a
BVS instruction. The BVS instruction tests to see if the V flag in the CCR is set. The
test is shown as ?V = 1, which is read as “does V = 1?” If the V flag is set, the BVS will
cause the displacement to be added to the value in the program counter to calculate
the address of the next instruction to execute.

NOTE: The branch test is a Boolean expression that must be evaluated before
the branch can take place. If the expression evaluates to a true state, the branch
test passes and the branch takes place. If the expression evaluates to a false state,
the branch test fails and the program falls through to the next instruction.

Some of the conditional-unsigned branches and all of the conditional-signed branches
evaluate a Boolean expression for the branch test. Rather than testing for the state of a
single bit, each of these branch tests evaluates the status of two or three bits. For example,
the branch if less than (BLT) instruction evaluates the Boolean expression, “? N ⊕ V = 1”,
which is read “Is (N XOR V) equal to 1?” The HC11 performs this test with logic gates, as
shown in Figure 4.7. The condition is true only when N and V are opposites.

To emphasize the concept of evaluating the Boolean expression, one more example
will presented. Consider the branch if greater than (BGT) instruction. It evaluates the
Boolean expression, “? Z + (N ⊕ V) = 0”, which is read “Is (Z OR (N XOR V)) equal
to 0?” The HC11 performs this test with logic gates, as shown in Figure 4.8. The
condition is true only when Z is zero and N and V are equal.

Example 4.3

Problem: Calculate the destination address for each of the following conditional
branch instructions if the CCR register contains $DA before the branch is executed.

N

CCR
N V

XOR
Test

0 0 0

1 0 1
0 1 1

1 1 0

fail

N + V = 1 only when N and V
are opposites, as shown in truth table.

pass

fail
Test

1?

I V CZHXS

Figure 4.7 BLT Branch Test (? N ⊕ V = 1)

102

Technician’s Guide to the 68HC11 Microcontroller



    Address  Machine Code  Source Code

 a.  01D9     2B 0C         BMI  PAST

 b.  0112     25 53         BCS  LOOP

 c.  B6C3     23 8B         BLS  AGAIN

 d.  E0F4     2E F2         BGT  AGAIN

Solution: In each case, the processor must determine if the branch test passes or
fails. In addition, the contents of the PC must be determined. If the test fails, DA =
PC. If the test passes, then the sign-extended relative address must be added to
the PC to calculate the destination address (Equation 4.1). Since each of these
instructions occupies two bytes of memory, the address of the next instruction (PC)
will be two greater than the address of the branch instruction.

CCR = $DA, thus N = 1, Z = 0, V = 1, C = 0.

a. BMI test checks if N = 1. Since N = 1, the test passes and DA = PC + rr.
PC = $01D9 + 2 → $01DB
rr = $0C, sign extend → $000C
DA = PC + rr → $01E7

b. BCS test checks if C = 1. Since C = 0, the test fails and DA = PC.
DA = PC = $0112 + 2  → $0114

c. BLS test checks if Z or (N XOR V) = 0. Since Z = 0 and (N XOR V) = 0,
 then the test passes and DA = PC + rr.
DA = PC = $B6C3 + 2  → $B6C5

d. BGT test checks if N = 1. Since N = 1, the test passes and DA = PC + rr.
PC = $E0F4 + 2 → $E0F6
rr = $F2, sign extend → $FFF2
DA = PC + rr → $E0E8

Many instructions update the status flags with the information necessary to complete
the branch test. For example, when an LDAA instruction is executed, the N and Z flags

NZ N + V

0 0
Z + (N + V)

0

1 1 1

0 1 1
0 1 1

1

N

0

1

1
0

1 0

V

0

0

0
0 0 01 1
1 0 10 0
1 1 10 1

1

1 1

Z + (N + V) = 0 only when both Z and (N + V)
are equal to zero, as shown in truth table.

Test

0?

I V CZHXS

Figure 4.8 BGT Branch Test (?Z + (N ⊕ V) = 0)
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are updated with the state of the data that was loaded. The C flag is also cleared by an
LDAA instruction. A conditional branch instruction can immediately follow and
perform branch tests relevant to the status recorded during the LDAA instruction.

Example 4.4

Problem: Calculate the destination address for the following conditional branch
instruction.

      Address  Machine Code  Source Code

      01D3     C6 84         LDAB #$84

      01D5     2B 03         BMI  PAST

Solution: The processor must determine if the branch test passes or fails. In
addition, the contents of the PC must be determined. If the test fails, DA = PC. If
the test passes, then the sign-extended relative address must be added to the PC
to calculate the destination address (Equation 4.1). Since the branch instruction
occupies two bytes of memory, the address of the next instruction (PC) will be two
greater than the address of the branch instruction.

Since the data loaded by the LDAB is negative, then the N flag in the CCR will be
set. Because BMI test checks if N = 1, then the test passes and DA = PC + rr.

PC = $01D5 + 2 →  $01D7
rr = $03, sign extend → +$0003
DA = PC + rr →  $01DA

Self-Test Questions 4.3

 4.4 Preparation for a Valid Branch Test 

In some cases, the branch performs a test that requires the comparison of two bytes of
data. For example, BGT is testing to see if one signed number is greater than another

1. Calculate the destination address for the following conditional branch instruction
if the CCR register contains $D3 before the branch is executed.

   0181    2A 2C         BPL  T12

2. Calculate the destination address for the following conditional branch instruction
if the CCR register contains $DC before the branch is executed.

   01EE    26 05         BNE  LAST

3. Calculate the destination address for the following conditional branch instruction.

   0177    C6 32         LDAB #$32

   0179    CB DE         ADDB #$CE

   017B    27 A3         BEQ  TXNOW
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signed number. If the first of the two numbers is the greater, the branch test will pass;
otherwise, it will fail and the program will fall through. Since all conditional branch
instructions test for some condition in the flags of the CCR, these flags must be updated
prior to the execution of the BGT in order for a valid comparison to take place.
Technically, the BGT instruction does not compare two numbers, but only tests to see
if a greater-than condition existed after a comparison was done.

In order to allow the flags to be properly updated prior to a branch instruction that
performs a comparative branch test, the HC11 provides a group of compare instructions.

Compare Instructions

Compare instructions are a special set of instructions that only affect status flags in the
CCR. No data is changed by any of these instructions. Their job is to compare two
numbers and manipulate the flags in the CCR to reflect the relationship of the two
numbers. Compare instructions are only executed in preparation for a conditional
branch test. Thus, they are used exclusively in conjunction with conditional branch
instructions. The comparison of two data words is accomplished by subtracting the two
words. Simple logic shows why a subtraction is necessary to complete the compare.

For example, let A be the first word and B be the second word. If A > B, then the result
of A – B must be a positive number. If A = B, then the result of A – B must be zero;
and if A < B, then the result of A – B must be a negative number.

NOTE: A valid comparison of two data words can take place only if the second
word is subtracted from the first word.

Remember that the compare instruction is not concerned with the value of the result. It
performs the subtraction operation, updates the appropriate flags in the condition code
register and then discards the result of the subtraction. A subtract instruction will cause
the same status in the CCR; however, the result of the subtract operation will be saved and
the data will be changed. Compare instructions are summarized in Figure 4.9.

The CBA instruction is responsible for comparing the data in AccA to the data in AccB.
It operates in the inherent addressing mode. CMPA and CMPB compare the data from
an 8-bit accumulator to a byte of data in memory. CPD, CPX and CPY compare the
data from a 16-bit register to two bytes of data in memory. Each of these instructions
operates in the IMM, DIR, EXT, INDX or INDY address modes. The compare

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

CMPA
CMPB

Compare Acc to
contents of memory

(A) - (M)
(B) - (M)

X X X X X - - - - - - ] ] ] ]

CPD
CPX
CPY

Compare 16-bit
register to contents
of memory

(D) - (M):(M+1)
(X) - (M):(M+1)
(Y) - (M):(M+1)

X X X X X - - - - - - ] ] ] ]

CBA Compare A to B (A) - (B) - - - - - X - - - - - ] ] ] ]

Figure 4.9 Compare Instructions
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instructions affect four status flags in the CCR: N, Z, V and C reflect the actual condition
of the data after the compare operation.

Example 4.5

Problem: Compare $43 to $56 and update the condition code flags.

    Address  Machine Code  Source Code

      01D3     86 43         LDAA #$43

      01D5     81 56         CMPA #$56

Solution: The compare instruction will subtract $56 from $43, update the condition
codes and then discard the result of the subtraction.

      $43

    –$56

      $ED

$ED is a negative number, thus N is set (N = 1). It is non-zero, thus Z is cleared (Z =
0), there was no sign overflow (the sign of the result is correct), so V is cleared (V =
0) and a borrow was necessary to complete the subtraction, so C is set (C = 1).

Compare to Zero Instructions

Often there is a need to compare some value to zero. Rather than use a regular compare
instruction, the HC11 provides special instructions that compare only to zero. They
work identically to the compare instructions except that they never require that the
second value be provided because it is assumed to be zero. These instructions are called
test instructions and come in three mnemonic forms: TST, TSTA and TSTB. They are
summarized in Figure 4.10.

TSTA and TSTB compare the contents of one of the 8-bit accumulators to the number
zero. The TSTx instructions accomplish this by subtracting zero from the value being
tested. They operate in the inherent addressing mode. TST compares a byte of data in
memory to zero. It operates in EXT, INDX or INDY addressing modes. No support is

Figure 4.10 Compare to Zero Instructions

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

TSTA
TSTB

Test contents of Acc
for zero or minus

(A) - $00
(B) - $00

- - - - - X - - - - - ] ] 0 0

TST Test contents of
memory for zero or
minus

(M) - $00
- - X X X - - - - - - ] ] 0 0
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provided for the DIR addressing mode. The compare instructions affect four status
flags in the CCR: N and Z reflect the actual condition of the data after the compare
operation. V = 0 and C = 0 because a sign error and borrow condition cannot occur
when zero is subtracted from another number.

Example 4.6

Problem: Load a value in AccB and then do a compare to zero.

    Address  Machine Code  Source Code

      0102     86 01         LDAA #$01

      0104     4D            TSTA

Solution: The compare instruction will subtract $00 from $43, update the condition
codes and then discard the result of the subtraction.

     $01

    –$00

     $01

$43 is a positive number, thus N is cleared (N = 0). It is non-zero, thus Z is cleared
(Z = 0); the V and the C flags are always cleared (V = 0, C = 0).

Self-Test Questions 4.4

 4.5 Conditional Flow Using IF-THEN-ELSE 

Conditional transfer of control instructions is dependent on the result of a branch test.
If the branch test passes, the flow of the program is altered. If the branch test fails, the
flow falls through to the next instruction. The IF-THEN-ELSE structure uses condi-
tional branch instructions to determine IF a condition is true. IF the condition is true
the branch test passes, THEN the program will branch, ELSE the branch test fails and
the program falls through to the next instruction.

Using a flowchart, Figure 4.11 illustrates how the IF-THEN-ELSE structure works. The
IF is shown with the diamond or decision symbol on the flow chart. The IF is
implemented with a conditional branch instruction. IF the test performed by the
conditional branch passes, the THEN path will be followed. IF the test performed by
the conditional branch fails, then the program falls through to the next instruction in
sequence, which is the ELSE process block.

1. Compare instructions are typically used just prior to a branch instruction. What
function do compare instructions perform?

2. What is the difference between the CMPA and TSTA instructions?
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In some cases, there are specific operations for either condition, which must be
performed. Figure 4.11b illustrates the flow of the IF-THEN-ELSE for this scenario.
When this scenario occurs, an additional unconditional branch instruction must be
included to avoid processing the THEN block after the ELSE block is processed.

Example 4.7

Problem: Write a segment of code using the IF-THEN-ELSE structure to determine
the absolute value of an 8-bit signed value. Assume the value is stored at location
$0000. Overwrite the value with the absolute value.

Solution: 

IF
Passes

Fails
ELSE

THEN

Condition?

Next sequential
process

a) Simple IF-THEN

IF
Passes

Fails
ELSE

THEN

Condition?

Process when
condition is false

Process when
condition is true

b) Complete IF-THEN-ELSE

Figure 4.11 IF-THEN-ELSE Flowchart

Get value
from memory LDAA    $00

BPL     PAST

NEGA

STAA     $00Store
result

Change sign
of value

THEN

PAST

IF

ELSE

Absolute value function

Is value + ?

Example 4.7 Flowchart
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         * Absolute value function using IF-THEN-ELSE

0120 96 00       LDAA    $00    ;Get the value from memory

0122 2a 03       BPL     PAST   ;IF positive, THEN do nothing

0124 40          NEGA           ;ELSE change the sign

0125 97 00       STAA    $00    ;Overwrite the original value

0127        PAST . . .          ;Continue other processes

The flowchart of Example 4.7 illustrates how this IF-THEN-ELSE would be structured.
The LDAA instruction updates the N flag in the CCR; after it successfully reads the
value from memory location $0000 and loads AccA, the N flag properly indicates the
sign of the data. The BPL instruction checks if N = 0 before performing the branch.
If N = 0, the number is already positive so no further action is required to determine
the absolute value. The program branches down in the code to PAST, where other
processes continue. Notice that the relative address is $03 in memory location $0123.
This indicates the number of bytes the program must branch forward to reach PAST
(three bytes). There are three bytes between the BPL instruction and the label PAST:
$40, $97 and $00. If the original value is negative, the N flag will be set. If N = 1, the
branch test fails and the flow falls through to the NEGA instruction, which changes the
sign of the 2’s complement data. Finally, the absolute value is stored back in memory.

Example 4.8

Problem: Write a segment of code using the IF-THEN-ELSE structure to convert
an ASCII code of a hex digit to the actual hex value. Assume the ASCII code is
stored in memory at $0010 and that the resulting HEX value will be stored at $0011.

Solution: 

Get ASCII
code LDAA   $10

CMPA   #$30
BLO    END

CMPA   #$39
BH1    END

SUBA   #$30

STAA   $11

Store
BCD

Convert
ASCII to BCD

THEN

THEN

END

IF

ELSE

IF

ELSE

ASC 2 BCD function

Is ASCII 
<$30 ?

Is ASCII
>$39 ?

Example 4.8 Flowchart 109
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        * Code to convert an ASCII code to BCD digit

        * ASCII $30 → BCD $0, $31 → BCD $1, etc.

0000 96 10          LDAA    $10     ;Get the ASCII code

0002 81 30          CMPA    #$30    ;check code for BCD $0

0004 25 08          BLO     END     ;IF < ASCII $30, not BCD

0006 81 39          CMPA    #$39    ;check code for BCD $9

0008 22 04          BHI     END     ;IF > ASCII $30, not BCD

000a 80 30          SUBA    #$30    ;Convert ASCII to BCD

000c 97 11          STAA    $11     ;Store BCD value

000e         END    . . .           ;continue other processes

Example 4.8 uses two IF-THEN-ELSE structures to determine if the ASCII code
represents a valid BCD digit. It first tests to see if the code is lower (below $30) than
the valid range and then if it is higher than the valid range, as shown in the flowchart.

The first CMPA instruction updates the flags in the CCR, in preparation for the
branch-if-lower test. The BLO instruction checks if C = 1 before performing the branch.
If C = 1, the ASCII code was lower than $30. Since the BCD digits 0 through 9 are
represented by the ASCII codes $30 through $39, this is the lowest valid ASCII code
that can be converted by this function. The program branches down in the code to
END, where other processes continue. Notice that the relative address for the BLO is
$08. This indicates the number of bytes the program must branch forward to reach
END. If C = 0, the ASCII code was not lower than $30, the branch test fails and the
flow falls through to the next CMPA instruction.

The second CMPA instruction updates the flags in the CCR, in preparation for the
branch-if-higher test. The BHI instruction evaluates the Boolean expression C + Z = 0 as
the branch test before performing the branch. Functionally, this is a two-input OR gate
with the C flag connected to one input and the Z flag connected to the other input, as
shown in Figure 4.12. The only way to get a zero out of the OR gate is to have two zeros
going in. If the expression equals 0, the ASCII code was higher than $39. The program
branches down in the code to END, where other processes continue. Notice that the
relative address for the BHI is $04. This indicates the number of bytes the program must
branch forward to reach END. If the expression evaluates to 1, the ASCII code was not
higher than $39, the branch test fails and the flow falls through to the SUBA instruction.

Now that it has been established that the ASCII code is a valid code for a BCD digit
(i.e., $30 through $39), the conversion can be completed. The conversion is
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accomplished by subtracting $30 from the code via the SUBA instruction. The result
of this process is the desired BCD value. Finally, the BCD value is stored in memory
location $11.

Self-Test Questions 4.5

 4.6 Program Loops 

A program loop is any set of instructions that are repeated within a program. A loop
always ends with a branch or a jump instruction. This final instruction causes the flow
to return to some location earlier in the code to repeat a set of instructions. Some
program loops are conditional; therefore they loop back to an earlier part of the
program only when some condition is true. Conditional loops are called finite loops
because they end whenever the condition is no longer true.

While and Until Loops

Often a program needs to execute a set of instructions only while a condition is true.
This is called a WHILE loop. In other cases, the program may need to execute a set of
instructions until some condition is true. This is called an UNTIL loop. A WHILE loop
performs the branch test at the beginning of the loop; thus, the loop will never be
executed if the condition is never true. An UNTIL loop performs the branch test at
the end of the loop; thus, the loop is executed at least once. Figure 4.13 shows the
flowcharts for the basic structure of the WHILE loop and the UNTIL loop. Either loop
structure can be used to accomplish the same task. The only difference between the
structures is the point at which the test is performed.

N

CCR

C flag

Z flag

C Z
OR
Test

0 0 0

1 0 1

0 1 1

1 1 1

C + Z = 0 only when C = 0 and
Z = 0, as shown in the truth table.

pass

fail

Test

0?

I V CZHXS

Figure 4.12 BHI Branch Test

1. What class of branch instructions is required to implement the IF-THEN-ELSE
structure?

2. What flowcharting symbol is required to show the IF-THEN-ELSE structure?
3. Which path will the program take (THEN path or ELSE path) if the branch test

fails?
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For example, while the window is open the wind blows in, yet the wind will blow in until
the window is closed. The process is the wind blowing in. Notice that the window must be
opened before the wind can blow in. This is a WHILE condition. The wind will never blow
in unless the window is first opened. The opposite situation is the UNTIL condition. If the
window is already open, the wind will continue to blow until it is closed.

The UNTIL structure is easier to code. It requires only a single branch instruction. The
WHILE structure requires an additional unconditional branch to skip past the process
when the condition is no longer true. This difference can be illustrated with a simple
time delay function.

First consider a time delay that utilizes the UNTIL structure, as shown in Figure 4.14.
The process starts by initializing a counter. The X register will be used as the counter
because it can hold a large count (up to 65,535), and the HC11 provides a decrement
X instruction for the process of the loop. After the count has been initialized, the count
is decremented once before the condition is checked. The desired time has expired
when the count is equal to zero. If the count is not zero, the program loops back up
to the decrement instruction to perform the process again. When the counter equals
zero, the BNE instruction fails the branch test and the process drops out of the loop.

Process

WHILE

TrueDO

False

Continue
on to other
processes

Condition?

a) WHILE loop

Process

UNTIL

True

DO

False

Continue
on to other
processes

Condition?

b) UNTIL loop

Figure 4.13 WHILE and UNTIL Loop Flowcharts

BACK

DO

UNTIL

BACK LDX #delay

DEX

BNE  BACK

Initialize
Counter

Decrement
Counter

Count = 0?

Yes

No

Figure 4.14 Time Delay Using UNTIL Structure
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The value loaded into the X register during the initialization of the count determines
how long this function waits.

The time delay can be accomplished with the WHILE structure, as shown in Figure
4.15. The process starts by initializing a counter. After the count has been initialized,
the condition is checked. If the count is zero, the program branches out of the while
loop and the process is complete; otherwise, it drops into the decrement process. After
the count is decremented, the unconditional branch causes the program to loop back
to perform the test again. This repeats until the count is decremented to zero.

Timing Loops

Since each instruction requires a fixed number of machine cycles to perform the fetch
and execution of the instruction, programs can be written to cause things to happen at
specific points in time. There are two instructions that can be used to help cause specific
timing conditions: NOP and BRN. These instructions are summarized in Figure 4.16.

The NOP instruction stands for “No operation.” It takes two machine cycles to do
nothing. It is primarily for timing control within a program. It can also be a valuable
tool during software debugging. An instruction within a program can be temporarily
disabled by replacing it with an NOP. The BRN instruction stands for “Branch Never.”
It takes three machine cycles to perform a branch test that always fails and then falls
through to the next instruction, in essence doing nothing. It is primarily used during
the troubleshooting of a program to temporarily disable another branch instruction.

Initialize
Counter

Count ≠ 0?

Decrement
Counter

NoWHILE

DO

BACK

Yes

BACK LDX #$delay

BRA  OUT

DEX

BRA BACK

OUT …

Figure 4.15 Time Delay Using WHILE Structure

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

NOP No operation Fetch opcode
and do nothing

- - - - - X - - - - - - - - -

BRN Branch never Perform branch
test and fall
through

- - - - - - X - - - - - - - -

Figure 4.16 Time Delay Instructions
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Because it requires three machine cycles, it can be used in conjunction with the NOP
to create and odd or even number of machine cycles within a timing loop.

The NOP and BRN instructions can be used anywhere in a program to just wait two or
three machine cycles. They have no other effect on the processes. If each machine cycle
is 500 ns, the NOP would create a time delay of 1 µs and the BRN would create a time delay
of 1.5 µs. This may not seem like a very long time, but to a computer, it is long enough to
wait on a slow memory or I/O device before proceeding with the next operation. Inside
a timing loop, like the loop presented in Figure 4.14, one of these time delay instructions
can greatly increase the length of the loop. Outside the loop, they could require an extra
two or three machine cycles to make the time delay more precise.

Self-Test Questions 4.6

 Summary 

This chapter focused on the instructions that have the job of controlling or altering
the flow of a program. The JMP and BRA instructions are used to unconditionally
change the flow of the program. There also is a large group of conditional branch
instructions that perform a branch test before the branch takes place. If the test fails,
the program will not branch. It falls through to the instruction following the branch
instruction. The jump instruction uses an absolute 16-bit address to designate the
destination address of the jump. Any address can be designated as the destination
address of the jump instruction. Branch instructions use a relative address to designate
the destination address. The final destination must be calculated from the PC and the
relative address. Since the relative address is only an 8-bit address, the destination
address is limited to a small range around the current PC (128 bytes backwards, 127
bytes forward).

Because of the ability of conditional branch instructions to perform branch tests, they
can be used in various conditional-programming structures. The IF-THEN-ELSE
structure allows a process to occur only IF a condition is true. The WHILE structure
allows a process only while some condition is true, and the UNTIL structure allows the
process to continue until some condition is true.

 Chapter Questions 

Section 4.1
 1. What is the destination address of a jump instruction?
 2. How are destination addresses usually designated in the code so that the

programmer does not have to calculate the exact address?

1. What is a finite loop?
2. What is the difference between a WHILE loop and an UNTIL loop?
3. Why does the UNTIL structure use fewer lines of code to implement?
4. What is one function of the NOP instruction?
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Section 4.2
 3. What effect does a branch instruction have on the program counter?
 4. Are relative addresses signed or unsigned values?
 5. What is the largest number of addresses that a program can branch forward?
 6. What is the largest number of addresses that a program can branch backward?
 7. Which address is used as the reference before the branch is calculated?
 8. If a BRA instruction is located at $0134, what is the maximum forward

destination address?
 9. If a BRA instruction is located at $01CD, what is the maximum backward

destination address?

Section 4.3
10. Which CCR flags are used by the conditional branch instructions for the branch

tests?
11. What is the conditional branch test for the BLT instruction?
12. How is it determined if the branch test in question 11 passes or fails?
13. Repeat question 12 for the BHI instruction.

Section 4.4
14. What do compare instructions actually do?
15. What is the difference between a subtraction and a compare instruction?
16. On the HC11, is there any other way to compare two numbers, besides

subtracting them?

Section 4.5
17. Why is a conditional branch instruction required for an IF-THEN-ELSE

structure?
18. Could an IF-THEN-ELSE structure be written that tests to see if something is

“not true”?

Section 4.6
19. What is the functional difference between a WHILE and an UNTIL loop?
20. Explain the idea behind a finite loop.
21. Which finite loop is easier to code, WHILE or UNTIL? Why?
22. What combination of instructions could be used to cause a delay of five machine

cycles?

 Chapter Problems 

 1. If the “N” flag bit in the CCR is a “1,” what is the location of the next instruction
that would be executed?

   Address  Object Code

   015A     2A 1E

 2. Use the instruction from Problem #1. If the “N” flag bit in the CCR is a “0,” what
is the location of the next instruction that would be executed?
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 3. What is the conditional test for this branch instruction?

Address  Object Code

0148     2B E8

 4. Use the instruction from Problem #3. If the “N” flag bit in the CCR is a “1,” what
is the location of the next instruction that would be executed?

 5. Use the instruction from Problem #3. If the “N” flag bit in the CCR is a “0,” what
is the location of the next instruction that would be executed?

 6. Determine the state of the N, Z, V and C bits in the CCR after the CMPA instruction
is executed for each of the following:
a. LDAA #$A0 b. LDAA  #$E0 c. LDAA  #$0A d. LDAA  #$90

CMPA #$A0   CMPA  #$A0  CMPA  #$A0   CMPA  #$A0

 7. Draw a flowchart and write a program that will load the X register with $8888 if
the value in AccA = $88.

 8. Draw a flowchart and write a program that will perform an IDIV if the value in
AccD is greater than the value in the X register, else it will perform an FDIV.

 9. Draw a flowchart and write a program that will perform a loop 100 times. Use AccB
as the loop counter. Use AccA as an accumulator and inside the loop add $02 to
the previous value. Initialize the accumulator to zero. Use the UNTIL method.

10. Redo problem #9, using the WHILE method.

 Answers to Self-Test Questions 

Section 4.1
1. A label is a set of characters that the programmer makes up to designate the

destination address for a jump instruction. It is used following the JMP mnemonic
as well as to the left of the destination instruction in the source code.

2. All jump instructions use a 16-bit absolute address to designate the destination
address.

Section 4.2
1. All branch instructions use an 8-bit relative address. The destination address must

be calculated.
2.   $0023 current program counter
   +$0002 BRA is a two-byte instruction

   +$0062 sign-extended relative address

    $0087 destination address

3.   $B61D current program counter
   +$0002 BRA is a two-byte instruction

   +$FF9A sign-extended relative address

    $B5B9 destination address
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4. DA = 01DD →  $01DD
   PC = $0193 + 2  → +$0195
   rr = DA – PC →  $0048   rr = $48
5. DA = E25A → +$E25A
   PC = $E273 + 2 →  $E275
   rr = DA – PC →  $FFE5   rr = $E5

Section 4.3
1. CCR = $D3, thus N = 0, Z = 0, V = 1, C = 1.
   BPL test checks if N = 0. Since N = 0, the test passes and DA = PC + rr.
   PC = $0181 + 2 →  $0183
   rr = $2C, sign extend → +$002C
   DA = PC + rr →  $01AF
2. CCR = $DC, thus N = 1, Z = 1, V = 0, C = 0.
   BNE test checks if Z = 0. Since Z = 1, the test fails and DA = PC.
   DA = PC = $01EE + 2 → $01F0
3. Since the sum of $32 + $CE equals zero, then the Z flag in the CCR is set. Because

the BEQ test checks if Z = 1, then the test passes and DA = PC + rr.
   PC = $017B + 2 →  $017D
   rr = $A3, sign extend → +$FFA3
   DA = PC + rr →  $0120

Section 4.4
1. Compare instructions perform operations that set up the conditions codes so that

the branch tests can be properly performed.
2. CMPA compares the value in AccA to any other 8-bit value. TSTA compares the

value in AccA to zero.

Section 4.5
1. Conditional branch instructions are required for IF-THEN-ELSE because they

perform a branch test. IF the test passes, THEN the branch will occur, ELSE the
process will fall through to the next instruction.

2. The decision symbol (diamond) is used to show the IF-THEN-ELSE structure.
3. The ELSE path is followed if the branch test fails.

Section 4.6
1. A set of instructions that terminates when a conditional test fails.
2. The WHILE condition is tested at the start of the loop before the loop task is

executed. The UNTIL condition is tested at the end of the loop after the loop task
is executed.

3. The UNTIL needs only one conditional branch instruction. The WHILE structure
requires a conditional branch and an unconditional branch.

4. The NOP instruction can be used as a two-cycle time delay.
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 Objectives 

After completing this chapter, you should be able to:
Indexing Through Memory

◗ Calculate the effective address for an indexed mode instruction

◗ Perform summation on a list of numbers

◗ Find items in a list using indexed mode to index through the list

◗ Count items in a list using indexed mode to index through the list

◗ Accomplish memory-to-memory copy of data

 Outline 

◗ 5.1 Using Indexed Addressing

◗ 5.2 Summing a List of Numbers

◗ 5.3 Finding the Largest Number

◗ 5.4 Counting the Number of Positive Numbers

◗ 5.5 Copying a Block of Memory

 Introduction 

Indexed addressing was introduced in chapter 2, but only in the context of the other
addressing modes. Chapter 3 provided a more in-depth look at the application of the
inherent, immediate, direct and extended addressing modes. Chapter 4 focused on the
application of the relative addressing mode. This chapter provides further explanation
of how the indexed addressing mode works. Several examples of small programs are
provided to illustrate the advantages of the indexed mode to access memory.

Indexing Through Memory

 c h a p t e r 5
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The indexed addressing mode provides a means of accessing data that is stored in
banks, lists, look-up tables or any other sequential method of storage. Because it uses
a base address as a reference point or starting point, only the offset is necessary to
sequence through the memory one byte at a time. By combining the instructions that
increment or decrement the index registers with some looping, small blocks of code
can perform much larger data access functions.

For example, when someone is given directions to a store, these directions could come
in several forms. The actual address could be given, such as “2149 W. Dunlap Avenue.”
The actual address is analogous to the method used in extended addressing mode. The
whole or absolute address is given as part of the instruction. The directions could also
be provided in reference to a known location, such as “third building west of 19th
Avenue and Dunlap.” This method is analogous to the way indexed addressing mode
works. The index register contains an address that is the common known location, and
the instruction provides an offset that tells the processor how far the effective address
is from the reference. The address in the index register is like saying “19th Avenue and
Dunlap.” It establishes the neighborhood, and the offset tells the actual location to
which to go. The principles of how this works are provided in this chapter.

This chapter directly correlates to section 6.2.4 of the HC11 Reference Manual and Section 3.4.4
of the Technical Data Manual.

 5.1 Using Indexed Addressing 

The indexed addressing mode allows stepping through the memory space from a
common base address. The common base address or reference base address is
contained in one of the 16-bit index registers. The instructions use an 8-bit unsigned
offset to index forward into memory from the base address. The effective address of
the operand is always the sum of the address contained in the designated index register
and the offset. Figure 5.1 provides three examples of how the indexed mode
instructions look. The operand field contains the offset.

In the indexed mode, an offset follows the opcode in memory. The offset indicates the
number of bytes to index forward in memory to the effective address. It is an offset
from the current base address stored in one of the index registers. Since it is an
unsigned 8-bit number, it is added to the contents of the 16-bit register by zero filling
the 8-bit word out to 16 bits. Zero filling is the process of filling all bit positions with
zeros that are not occupied by data. The result of this operation produces the effective
address, as shown in Equation 5.1. The index register must be loaded with the base
address only once. This is usually done at the start of the program.

        EA = X + ff Equation 5.1

        EA = Effective Address

        X = Address in the X index register (or Y index register)

        ff = Offset
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NOTE: The effective address of an indexed mode instruction is the sum of the
base address from either index register (X or Y) and an unsigned 8-bit offset (ff)
supplied by the instruction.

Figure 5.2 contains an example similar to the program found in Example 3.8, except
that the extended-mode instructions have been replaced with indexed-mode
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Address
0023

Machine Code
ab 10

opcode mnemonic

offset
(ff)

offset
(ff)

Index
Register

Source Code
ADDA   $10,X

Comments
;(A) + ($0110) → A

Address
0025

Machine Code
f6 5b

opcode mnemonic

offset
(ff)

offset
(ff)

Index
Register

combination is effective
address of operand

combination is effective
address of operand

Source Code
LDAB   $5B,X

Comments
;($015B) → B

Address
0027

Machine Code
b7 f2

opcode mnemonic

offset
(ff)

offset
(ff)

Index
Register

combination is effective
address of operand

Source Code
STAA   $F2,X

Comments
;(A) → $01F2

Assume X Register contains $0100 for each of the following examples.

Figure 5.1 Examples of Indexed Mode Instructions

0140               ORG   $0140
0140 ce 01 80      LDX   #$0180   ;Set base address
0143 a6 00         LDAA  $00,X    ;Get 1st number (Base+0)
0145 ab 01         ADDA  $01,X    ;Add 2nd (Base+1) to 1st
0147 a7 02         STAA  $02,X    ;Store sum in Base+2
0149 3f            SWI

0180        BASE   EQU   $0180    ;Base address

0140               ORG   $0140
0140 ce 01 80      LDX   #BASE    ;Set base address
0143 a6 00         LDAA  $00,X    ;Get 1st number (Base+0)
0145 ab 01         ADDA  $01,X    ;Add 2nd (Base+1) to 1st
0147 a7 02         STAA  $02,X    ;Store sum in Base+2
0149 3f            SWI

         

   BASE   $0180   $68   1st number

         

          $0181   $19   2nd number

         

          $0182   $81   sum of 1st + 2nd

a) Summing two numbers using Index mode.

b) Summing two numbers using Index mode. Base address is designated using a label.

c) Memory map of locations accessed by the sum program.

Figure 5.2 Addition Program Using Indexed Instructions
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instructions. Instead of the absolute 16-bit address following each instruction, an offset
is provided following each instruction and a reference to the X register. This offset
must be added to the base address in the X register to calculate the effective address
for each instruction. This requires that the index X register be loaded with the base
address (initialized) before the other instructions can be run.

In Figure 5.2a, the base address is loaded in the index X register. The actual value of
the base address ($0180) is shown in the code. This base address is then used by the
next three instructions to access three memory locations. Figure 5.3 summarizes the
sequence of events that occur when the LDAA, ADDA and STAA instructions are
executed. Additional examples of how the indexed addressing works are shown in
Example 5.1.

Example 5.1

Problem: Calculate the effective address (EA) for each of the following instructions.
Assume the X register contains $0012 and the Y register contains $1000 for each
instruction.
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Operation Description Functional Result

Fetch LDAA opcode
(1 machine cycle)

PC is moved to MAR.
PC is incremented.
Opcode is read from memory.

PC → MAR $0140 → MAR
PC + 1 → PC $0141 → PC
Opcode → IR $A6 →  IR

Execute LDAA
(3 machine cycles)

PC is moved to MAR.
PC is incremented.
Offset is read from memory.
Calculate effective address.
Read operand from effective address.
Update status in the CCR.

PC → MAR $0141 → MAR
PC + 1 → PC $0142 → PC
rr → Temp $00 →  Temp
IX + ff → MAR $0180 + $0000 = $0180 → MAR
1st number → A $62 → A
N → 0, Z = 0, V = 0 = CCR

Fetch ADDA
opcode
(1 machine cycle)

PC is moved to MAR. 
PC is incremented.
Opcode is read from memory.

PC → MAR $0142 → MAR
PC + 1 → PC $0143 → PC
Opcode → IR $AB →  IR

Execute ADDA
(3 machine cycles)

PC is moved to MAR.
PC is incremented.
Offset is read from memory.
Calculate effective address.
Read operand from effective address.
Add two numbers. 
Update status in the CCR.

PC → MAR $0143 → MAR
PC + 1 → PC $0144 → PC
rr → Temp $01 →  Temp
IX + ff → MAR $0180 + $0001 = $0181 → MAR
2nd  number → Temp     

$19 → Temp
A + Temp → A $68 + $19 = $81 → A
H = 1, N = 1, Z = 0, V = 1, C = 0  → CCR

Fetch STAA opcode
(1 machine cycle)

PC is moved to MAR. 
PC is incremented.
Opcode is read from memory. 

PC → MAR $0144 → MAR
PC + 1 → PC $0145 → PC
Opcode → IR $A7 →  IR

Execute STAA
(3 machine cycles)

PC is moved to MAR.
PC is incremented.
Offset is read from memory.
Calculate effective address.
Store operand in effective address.
Update status in the CCR.

PC → MAR $0145 → MAR
PC + 1 → PC $0146 → PC
rr → Temp $02 →  Temp
IX + ff → MAR $0180 + $0002 → $0182 → MAR
A → EA  $81 → M($0182)
N = 1, Z = 0, V = 0  → CCR

Figure 5.3 Process of Executing the Index Mode Instructions
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    Address  Machine Code  Source Code

a.  0109     E6 E8         LDAB $E8,X

b.  0100     AA 00         ORAA $00,X

c.  01E2     18 6F 04      CLR  $04,Y

d.  E234     18 A7 04      STAA $30,Y

Solution: In each case, the effective address (M) must be determined. Then the
offset must be zero filled to 16 bits and added to the base address in the index
register to calculate the effective address (Equation 5.1).
a. X  = $0012 →  $0012

ff = $E8, zero filled → +$00E8
EA = X + ff →  $0100

b. X  = $0012 →  $0012
ff = $00, zero filled → +$0000
EA = X + ff →  $0012

c. Y  = $1000 →  $1000
ff = $04, zero filled → +$0004
EA = X + ff →  $1004

d. Y  = $1000 →  $1000
ff = $30, zero filled → +$0030
EA = X + ff →  $1030

As has been shown in chapters 2 and 3, the HC11 supports 16-bit data operations.
Remember that the first of the two effective addresses is called M. The next location
in memory is simply M + 1. Example 5.2 shows how the M and M + 1 are calculated
when two bytes must be read from memory or written to two consecutive memory
locations by a single instruction.

Example 5.2

Problem: Calculate the effective address (EA) for each of the following instructions
that require a 2-byte memory access. Assume the X register contains $0140 and
the Y register contains $B600 for each instruction.

    Address  Machine Code  Source Code

a.  002F     AE 02         LDS  $02,X

b.  0106     18 E3 00      ADDD $00,Y

c.  B723     ED 20         STD  $A0,X

Solution: In each case, the two effective addresses (M and M + 1) must be
determined. Then the offset must be zero filled to 16 bits and added to the base
address in the index register to calculate the effective address (Equation 5.1).
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a. This instruction must copy two bytes of data from memory to the SP. Therefore,
two effective addresses must be calculated (M and M + 1)

 X = $0140 →  $0140
 ff = $02, zero filled → +$0002
 EA = X + ff →  $0142 M
 Next address is M + 1 → +$0001
 →  $0143 M + 1
b. This instruction must copy two bytes of data from memory and add them to the
contents of AccD. Therefore, two effective addresses must be calculated (M and M + 1).

 Y = $B600 →  $B600
 ff = $00, zero filled → +$0000
 EA = X + ff →  $B600 M
 Next address is M + 1 → +$0001
 →  $B601 M + 1
c. This instruction must copy two bytes of data from the D register to memory.
Therefore, two effective addresses must be calculated (M and M + 1).

 X = $0140 →  $0140
 ff = $A0, zero filled → +$00A0
 EA = X + ff →  $01E0 M
 Next address is M + 1 → +$0001
 →  $01E1 M + 1

Self-Test Questions 5.1

 5.2 Summing a List of Numbers 

Numbers are often organized in columns and rows. Sometimes the data needs to be
summed to calculate a total. The indexed method of addressing is ideal for implement-
ing this summation. The first location in the list is set as the base address. Each
subsequent instruction uses indexed-mode instructions to access the proper data to
complete the summation.

Summing a List: UNTIL Method

An example of a summation program is shown in Figures 5.4 and 5.5. The objective of
this program is to sum 16 numbers that are stored in sequential memory locations. The
sum that is calculated will then be stored at the next memory location immediately
following the list. The flowchart and code use the UNTIL method to accomplish this
summation.
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1. What kind of offset is used by all indexed-mode instructions?
2. If the address X register is $0023 and the offset = $62, what is the effective address?
3. Is there ever a situation where an instruction needs more than one effective

address? If so, when?
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NOTE: The source code listing for this example and all subsequent examples in
the text will include sequential line numbers as the first column of the file. These
line numbers are present in all listing files produced by an assembler. They are
simply used as unique identifiers for lines of code in the file.

The program starts by clearing the sum. The sum must start at zero, or the first addition
would cause an erroneous result. Each number that is retrieved from memory will be
added to the previous total already in AccA. The second step is to initialize the base address
or the reference. This program uses the X register to hold the base address. It is loaded
initially with $0000, which is the address of the first number to be summed. This com-
pletes the steps necessary to initialize the program before it begins the actual summation.

The summation starts by retrieving the first number from memory and adding it to the
initial sum. The next step is to increment the base address and check to see if the

 
 

Summing a List

Clear SUM

Initialize Base
Address in Index

Register AGAIN

Add number to
previous sum

Increment
Base Address

No
Finished?

Store Sum

End

Yes

0001                    *Program to sum a list of numbers
0002                    *using index mode - UNTIL method
0003
0004 0100 4f                    CLRA            ;Clear SUM
0005 0101 ce 00 00              LDX     #$0000  ;Initialize base address
0006 0104 ab 00         AGAIN   ADDA    $00,X   ;Add number to previous sum
0007 0106 08                    INX             ;Increment base address
0008 0107 8c 00 10              CPX     #$0010  ;Finished?
0009 010a 26 f8                 BNE     AGAIN   ;  If NOT, do again!
0010 010c a7 00                 STAA    $00,X   ;Store SUM following list
0011 010e 3f                    SWI

Figure 5.4 Flowchart to Sum a List of Numbers: UNTIL Method

Figure 5.5 Code to Sum a List of Numbers: UNTIL Method
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summation is finished. The ADDA instruction will always offset $00 bytes from the base
address. This offset is fixed; however, as the base address can change in the X register,
this instruction can access a different memory location each time it is executed in the
loop.

The program must determine if the summation is finished. Since this program is
summing 16 values, it can check to see if the base address has moved 16 locations
through memory. The program uses a CPX instruction to compare the value in the X
register to the address following the list that is being summed. It checks against this
next address because the base pointer is incremented prior to the test. Thus, it always
points to the next location to be summed, rather than the last location that was
summed. When the value in the X register is less than the address ($0010), the Z flag
will be cleared, indicating that the two numbers are not equal. Now the program is
ready to perform the conditional branch test.

The conditional BNE instruction on line 9 is used to determine if another pass through
the loop is needed. If the base address in the X register is still within the desired range
(i.e., less than $0010), the program loops back and continues the summation. If the
base address has advanced past the end of the list of numbers to be summed, the
program does not continue to loop. The last time through the loop, the base address
is equal to the address of the last value to be summed. It is then incremented by the
INX instruction so that the base address is one greater than the last address of the list.
When the CPX instruction is executed, the base address in the X register will be equal
to the address ($0010). The subtraction of the two values by the CPX instruction will
result in zero, and the Z flag in the CCR will be set, indicating an equal condition. The
branch test for the BNE is “?Z = 0,” which will fail, and the program will fall through
to the next instruction. At this point, the sum is stored in the next memory location
and the program is complete.

NOTE: The program is terminated on the HC11 EVBU with an SWI instruction.
The SWI instruction provides an output to the monitor indicating the execution
has been completed. The SWI instruction is described in chapter 10.

Summing a List: WHILE Method

The previous summation example is repeated in this section, except that the WHILE
method is used instead of the UNTIL method. The objective of the program is still to
sum a list of 16 numbers that are stored in sequential memory locations. The sum that
is calculated will then be stored at the next memory location immediately following the
list. Figures 5.6 and 5.7 contain the flowchart and the program code for this method.

The program starts by clearing the sum and initializing the base address in the same
manner as the UNTIL version. AccA will be used for the sum, and the X register will
be used for the base address. Consistent with the WHILE method, the first step of the
summation in the loop is to perform a test (lines 6 and 7 of file). Remember, the
WHILE loop will only be executed while the condition is true. Since this program is
summing 16 values, it checks to see if the base address has moved 16 locations through
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memory. The program uses a CPX instruction to compare the value in the X register
to the address following the list ($0010). It checks against this next address because
the base pointer is incremented each time through the loop. Thus, it always points to
the next location to be summed, rather than the last location that was summed.

The summation starts by retrieving the first number from memory and adding it to the
initial sum. Then it increments the base address and loops back to the top of the
WHILE loop. The last time through the loop, the base address is equal to the address
of the last value to be summed. It is then incremented by the INX instruction so that
it is equal to the address following the list. When the WHILE loop branches back and
executes the CPX instruction, the base address in the X register will be equal to the
address ($0010). The subtraction of the two values will result in zero, and the Z flag in

Summing a List

Clear Sum

Initialize Base
Address in Index

Register  AGAIN

Yes
Finished?

No

Add number to
previous sum

Increment
Base Address

STORE

Store Sum

End

Figure 5.6 Flowchart to Sum a List of Numbers: WHILE Method

0001                    *Program to sum a list of numbers
0002                    *using index mode - WHILE method
0003
0004 0120 4f                    CLRA            ;Clear SUM
0005 0121 ce 00 00              LDX     #$0000  ;Initialize base address
0006 0124 8c 00 10      AGAIN   CPX     #$0010  ;Finished?
0007 0127 27 04                 BEQ     STORE   ; If so, store result
0008 0129 ab 00                 ADDA    $00,X   ;Else, Add number to sum
0009 012b 08                    INX             ;Increment base address
0010 012c 20 f7                 BRA     AGAIN   ;  do again!
0011 012e a7 00         STORE   STAA    $00,X   ;Store SUM following list
0012 0130 3f                    SWI

Figure 5.7 Code to Sum a List of Numbers: WHILE Method
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the CCR will be set. The branch test for the BEQ is “?Z = 1,” which will pass, and the
program will branch to the STORE section of the code. At this point, the sum is stored
in the next memory location and the program is complete.

Self-Test Questions 5.2

 5.3 Finding the Largest Number 

In many applications, there is a need to sort the values in a list. Although there are
very sophisticated sorting programs, often it is sufficient just to walk through the list
and find the largest number. The process could then be repeated to find the next
largest until the entire list is sorted. The objective of this program is to examine a list
of 20 numbers and simply find the largest unsigned number, as shown in Figures 5.8

1. Why is the base address incremented in the summation example, and not the
offset value?

2. How many times is the conditional branch instruction executed in the UNTIL
example? In the WHILE example?

 

Find Largest

Set Reference
equal to zero

Initialize
Base Address

Compare
a number

to the reference

Yes
Smaller?

No

Make the number
the reference

LOOP

OVER

Increment
Base Address

Finished?
No

Yes

End

Figure 5.8 Flowchart to Find the Largest Number in a List
128

Technician’s Guide to the 68HC11 Microcontroller



and 5.9. The largest number will then be stored at the next memory location
immediately following the list. Sorting an entire list will be left as a problem for the
end of the chapter.

The program starts by setting a reference value to zero. In order for the comparison
to work properly, the reference is set to the lowest value ($00). Each number stored in
the list will be compared to the reference in order. If the value is smaller than the
reference, the loop continues to the next value in the list. Otherwise, the reference is
replaced by the value. This process will keep the largest value as the reference, so that
when each value in the list has been examined, the final reference is the largest value
from the list.

As in all programs, this one starts by initializing resources needed in the program.
The reference is set to zero, and the base address is loaded into the X register.
Note that the address of the first number in the list is $01D4. This address is
used to illustrate that the base address can be any valid address. The search for
the largest number starts by retrieving the first number from the list and comparing
it to the reference. This is accomplished with a single compare instruction using
indexed addressing in line 6 of the code. When the compare is complete, the
flags in the CCR are updated to reflect the relationship of the number to the
reference. The next step is to perform the branch test that determines if the
number is smaller than the reference. The BLO instruction is used in line 7 to
perform this test because it performs an unsigned test and branches if the number
is lower. If the number is not lower than the reference, the branch test fails and
the program falls through to the next instruction, where the reference is replaced
with the number.

The program must determine if the search is finished. Since this program is comparing
to 20 numbers, it can check to see if the base address has moved 20 locations through
memory. The program increments the base address and uses a CPX instruction to
compare the base address to the address that is 20 locations higher than the initial base
address. If the current base address is not yet equal to the final address ($01E8), then
the program loops and performs the next compare. The last time through the loop
the base address is incremented to $01E8, the BNE test fails, and the program is
finished.

0001                    *Program to find largest number in a list
0002                    *using index mode
0003
0004 0140 4f                    CLRA            ;Clear Reference
0005 0141 ce 01 d4              LDX     #$01D4  ;Initialize Base Address
0006 0144 a1 00         LOOP    CMPA    $00,X   ;Compare number to reference
0007 0146 25 02                 BLO     OVER    ;If lower, don't replace!
0008 0148 a6 00                 LDAA    $00,X   ;Else, Replace the reference
0009 014a 08            OVER    INX             ;Point to next item in table
0010 014b 8c 01 e8              CPX     #$01E8  ;Is list finished?
0011 014e 26 f4                 BNE     LOOP    ;If NOT, do loop again
0012 0150 3f                    SWI

Figure 5.9 Code to Find the Largest Number in a List
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Self-Test Questions 5.3

 5.4 Counting the Number of Positive Numbers 

Another common programming task is counting. Counters are used to keep track of
the number of things that have been processed and of how much time has expired and
to perform a variety of other tasks. This programming example counts the number of
positive numbers in a list. The flow of the program is very similar to that of the previous
program that found the largest number in a list, as shown in Figures 5.10 and 5.11.

The program starts by clearing the count and initializing the base address. Each
number is loaded into AccB. The process of loading updates the condition code flags
to indicate the sign of the number, so that the test can be immediately executed
following the load. If the value is positive, the counter is incremented; otherwise, the

1. In addition to the WHILE loop, what programming structure is used by this
program?

2. How many times will the LDX instruction in line 5 be executed?
3. Why is the CLRA instruction in line 4 necessary?

Counting Positives

Clear Count

Initialize
Base Address

LOOP

Get a number

No
Positive?

Yes

Increment count

PAST

Increment
Base Address

Finished?
No

Yes

End

Figure 5.10 Flowchart to Count Positive Numbers in a List
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counting is skipped. When the program ends, the number of positive numbers from
the list will be in the counter (AccA).

After each number is loaded into AccB, the BMI instruction is used to perform the
branch test. If the number loaded in line 6 is negative, the N flag will be set; otherwise,
it will be cleared. The branch test performed by BMI is “?N = 1.” If this test fails, the
number is positive, and the program falls through to the next instruction, where the
counter is incremented. This process continues until the end of the list is reached.

Self-Test Questions 5.4

 5.5 Copying a Block of Memory 

One of the most prevalent activities on a computer is the need to copy data from one
location to another (i.e., memory to the processor, processor to I/O, etc.). Typically,
the data consists of more than one byte. In chapter 3, the function of a set of data
movement instructions was presented. Three types of movement are directly supported
by the HC11: memory to processor register, processor register to memory and processor
register to processor register. The program in this section will demonstrate a method
of copying a block (one or more bytes) from a range of memory locations to another
range of memory locations; thus it is a memory-to-memory movement. The data
movement instructions, load and store, will be utilized with the indexed mode of
addressing to methodically copy the block. A flowchart for this program is shown in
Figure 5.12, and the source code listing to implement the program is shown in Figure
5.13.

The program starts by initializing the source and destination addresses. The X register
holds the source address, and the Y register holds the destination address. The address
of the first location of the source is $0000. The address of the first location of the
destination is $0180. The numbers are read from each source location and written to

0001                    *Program to count the positive numbers
0002                    *in a list using index mode
0003
0004 0160 4f                    CLRA            ;Clear COUNT
0005 0161 ce 01 80              LDX     #$0180  ;Initialize the base address
0006 0164 e6 00         LOOP    LDAB    $00,X   ;Get a number
0007 0166 2b 01                 BMI     PAST    ;If negative, don't count!
0008 0168 4c                    INCA            ;Else, Count the positive
0009 0169 08            PAST    INX             ;Increment base address
0010 016a 8c 01 a0              CPX     #$01A0  ;Is list finished?
0011 016d 26 f5                 BNE     LOOP ;If not finished, LOOP
0012 016f 3f                    SWI

Figure 5.11 Code to Count Positive Numbers in a List

1. How many bytes does this program occupy in memory?
2. What address value is assigned to the label “LOOP”?
3. How many numbers are in the list?
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each destination location one-by-one, until the entire block is copied. The load
instruction in line 6 reads the source data from memory and temporarily holds it in
AccA. Then the store instruction in line 7 writes this data from AccA to the destination
address. Since the source and destination locations are changing, both index registers
must be incremented each time through the loop. The program determines if the copy
operation is complete by comparing the destination address to the first address beyond
the destination range. The CPY instruction in line 10 accomplishes the check in
preparation for the branch test in line 11. As has been shown before, if the destination
is not equal to the address beyond the end of the range, then the process loops until
the copy operation is complete.

Copy a Block

Initialize Source
Address

Initialize Dest.
Address

COPY

Get a number

Store the number
in Destination

Increment
Pointer

No
Finished?

Yes

End

Figure 5.12 Flowchart to Copy a Block of Numbers

0001                    *Program to copy a list of numbers
0002                    *using index mode from $0000 - $0009 to $0180 - $0189
0003
0004 0100 ce 00 00              LDX     #$0000  ;Init source address
0005 0103 18 ce 01 80           LDY     #$0180  ;Init destination address
0006 0107 a6 00         COPY    LDAA    $00,X   ;Get a number from source
0007 0109 18 a7 00              STAA    $00,Y   ;Store the number in dest
0008 010c 08                    INX             ;Increment pointers
0009 010d 18 08                 INY
0010 010f 18 8c 01 8a           CPY     #$018A  ;Finished?
0011 0113 26 f2                 BNE     COPY    ;  If NOT, do again!
0012 0115 3f                    SWI

Figure 5.13 Code to Copy a Block of Numbers
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Self-Test Questions 5.5

 Summary 

The indexed addressing mode is a method of addressing memory that uses a 16-bit
base address in conjunction with an 8-bit unsigned offset. The advantage of the
instructions that use this mode is that they allow a program to loop through memory,
operating on different bytes in a list each time through the loop. Five examples were
presented in this chapter: two methods of summing a list of numbers, a means of
finding the largest number in a list, the means of counting the number of positive
numbers in a list and a method of copying a block of data from one memory area to
another. Each of these examples used one or both of the index registers as a base
address to reference the data in the list or block.

 Chapter Questions 

 1. What is the effective address of the following instruction if the X register
contains $0120: LDAB $20,X?

 2. What is the effective address of the following instruction if the Y register
contains $B629: LDAB $D7,Y?

 3. What is the effective address of the following instruction if the X register
contains $0005: CPX $01,Y?

 4. Using the data in Figure 5.14, express the results of the following instructions,
including status of the condition code flags. Which addressing mode is used
for each instruction? What is the opcode (including prebytes) of each
instruction? NOTE: Each instruction is independent. The results are not
cumulative.
a. LDAA $F9,Y
b. STX $01,X
c. CLR  $00,X
d. DEX
e. LDD $1A,X
f. TSX
g. STS  $01,X
h. CMPB $07,X
i. TST  $E2,Y
j. LSR  $FB,Y

1. Since two index registers are being used, what is the maximum distance between
the source and destination ranges?

2. Why are there four bytes of machine code listed for the CPY instruction on line
10 of Figure 5.13?

3. If the program ends when the destination address is incremented to $018A, what
is the last destination address that receives data?

133

Indexing Through Memory



5. What is the cost in instructions of using the WHILE loop instead of the UNTIL loop
from Figures 5.5 and 5.7?

6. If the block copy program from section 5.5 used a single index register as a base
address, what would be the maximum distance of the copy?

 Chapter Problems 

1. Modify the UNTIL method summation program from Figure 5.5 to do BCD
arithmetic instead of hex arithmetic.

2. Draw a flowchart of a program that will count the number of items equal to zero in
a list of ten items starting at location $0000.

3. Write a program from the flowchart in problem 2. Assume the list starts at $B600
and ends at $B63F. Be sure to use the appropriate compare instruction.

4. Write a program that will count the negative and positive numbers in a list. Assume
the list of numbers starts at $0100 and is 40 bytes long.

5. Given two sequential lists of ten numbers, write a program that will add the numbers
in pairs and store the result of each pair in a third list. The first number will be
added to the first number of the second list, and the result will be stored in the first
position of the third list. The lists start at the following memory locations: $0000,
$000A, and $0014.

6. Rewrite the program from Figure 5.13 to copy a block of 24 bytes from $0100–$0117
to $0168–$017F. Use only one index register to establish the base address and use
different offsets to designate the source and destination locations used by the load
and store instructions. Assemble the code to run starting from location $0000.

7. Rewrite the program from Figure 5.13 to perform the same function presented in
problem 6, except use AccD for the temporary storage location in the processor.
Modify the flow of the program to accommodate this double-byte flow of data. The
end result of the program should be the same as for the program in problem 6.
Which approach is a more efficient use of memory? Which approach is a more
efficient use of time (fewer machine cycles)?

 Answers to Self-Test Questions 

Section 5.1
1. All indexed mode instructions use an unsigned 8-bit offset.
2.   $0023 base address
2. + $0062 zero-filled address offset
2.   $0085 effective address
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C =  $D0 00F8  00 11 22 33 44 55 66 77
D =  $B600 0100  F3 56 E3 DB A1 A0 09 00
X =  $0100 0108  22 44 52 88 63 77 74 33
Y =  $0016 0110  FF 00 FF 11 FF 22 FF 83
S =  $01FF 0118  F1 3B BB B6 D4 AD CE 00

Registers Memory

Figure 5.14 Default Data Set #3
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3. All instructions that require two-byte memory access require two effective
addresses. The first of the two addresses (M) is calculated using Equation 5.1.
The second is simply M + 1.

Section 5.2
1. The offset is fixed in memory, but the HC11 provides instructions to increment the

addresses in the index registers.
2. The UNTIL example executes the conditional branch 16 times. The WHILE

example must execute it 17 times the way it is written.

Section 5.3
1. An IF-THEN-ELSE structure is used in addition to the WHILE structure.
2. As line 5 is outside the loop, it will be executed only one time.
3. Since the program is finding the largest number, the reference must initially be

the lowest number to assure that it cannot be greater than any other number in
the list.

Section 5.4
1. The program occupies 16 bytes, $0160–$016F.
2. The label LOOP is equal to the address $0164, where it is defined in line 6. This

destination address is used by the assembler to calculate the relative address
$F5 that is used in line 11.

3. The list consists of 32 numbers ($01A0–$0180).

Section 5.5
1. Since two index registers are being used, there is no limit on the range except

the 64K address boundary of the HC11.
2. Instructions that utilize the Y index register require the prebyte before the opcode.

The first byte ($18) is the prebyte, followed by the opcode ($8C), followed by the
two-byte immediate data jjkk ($018A).

3. Y = $0189 on the last pass, so the STAA $00,Y instruction writes to $0189 before
being incremented to $018A and falling out of the loop.
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 Objectives 

After completing this chapter, you should be able to:
Sub rou tines

◗ Use push and pull instructions to move data to and from the stack

◗ Organize code into subroutines

◗ Explain the use of subroutine control instructions: JSR, BSR and RTI

◗ Compare efficiency trade-offs between in-line code and code that uses
subroutines

◗ Describe how parameters are passed to subroutines

◗ Use nesting to call subroutines from other subroutines

◗ Access subroutines in the BUFFALO monitor program

 Outline 

◗ 6.1 Temporary Storage Using a Stack

◗ 6.2 Function of Subroutines

◗ 6.3 Parameter Passing

◗ 6.4 Converting a Hex Value to ASCII

◗ 6.5 Nested Subroutines

◗ 6.6 BUFFALO Subroutines

 Introduction 

Up to this point all programming examples have used code that is sequential in the
file. Chapter 4 presented the concepts behind the use of branching instruction to
change the flow of the program. Branching offers the ability to have code that does

Subroutines

 c h a p t e r 6
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not have to be executed in the exact sequential order in which it resides in memory.
This chapter presents a method of modularizing the code within a program. This
method groups the instructions into functional groups, where each group completes
a task. Each of the functional groups of instructions is called a subroutine. Functionally,
each subroutine is a self-contained subprogram.

This chapter is designed to provide information surrounding the use of subroutines.
A general presentation is made regarding subroutines, how they function and why they
are used. Then a presentation is made on passing data to and from subroutines. A
variety of subroutines contained in the BUFFALO monitor program are discussed as
well.

Since all subroutines use the memory stack, a deeper understanding of the role of the
stack is required. Therefore, this chapter starts with a discussion regarding the function
of the memory stack and the use of push and pull instructions.

 6.1 Temporary Storage Using a Stack 

Often during the execution of a program there is a need to temporarily store some
data in memory. Most computer systems provide an area of memory for temporary
storage called the stack. Functionally, the stack is sequential block of memory
configured as a LIFO (last-in, first-out). Data is written to the stack in the opposite
order to that in which it is retrieved from the stack. Specifically, the last byte written to
the stack is on the top of the stack; therefore, it must be the first byte taken off the
stack before other data can be accessed. The concept of how this works is illustrated
in Figure 6.1.

The stack of plates is a good example of how a stack works on a computer. The first
plate placed on the stack ends up on the bottom of the stack. The last plate placed on
the stack is on the top. When the plates are removed from the stack, they are removed
from the top first; thus the last one on the stack is the first one off. A memory stack is
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a block of sequential locations in memory. The first location used is the bottom of the
stack, in the same way the first plate is on the bottom of the stack. This becomes the
highest address location in the stack. The last location, or the top of the stack, will be
the lowest address location used by the stack, as shown in Figure 6.1b. In this example,
six locations are used. The bottom of the stack is at location $0041 in memory; and
the top of the stack is at location $003C.

As the data moves to and from the stack, the address of the next available location on
the memory stack is changing. After data is placed on the stack, the address is
decremented. After data is removed from the stack, the address is incremented. This
address is called the stack pointer, and the processor keeps it in the stack pointer
register. The HC11 uses a 16-bit address as the stack pointer register so that any location
within the HC11 memory map can be used as the stack.

The HC11 supports a group of special instructions designed to manage the data on
the stack. Push instructions are a special type of data movement instructions that are
used to place data on the stack. They copy the data from a processor register and place
it on the stack. They are also responsible for decrementing the stack pointer so that it
continues to point to the next available location on the memory stack.

The mnemonic form for push instructions is PSHx. Data can be pushed onto the stack
from the A, B, X or Y registers using the PSHA, PSHB, PSHX or PSHY instructions, as
shown in Figure 6.2. Since the source of the data is included in the mnemonic and the
address of the data destination is indicated by the address in the stack pointer register,
all push instructions use the inherent addressing mode. Push instructions have no effect
on the CCR. Push instructions are complementary to pull instructions.

Pull instructions are a special type of data movement instructions that are used to remove
data from the stack. They copy the data from the stack and place it in a processor register.
They first increment the stack pointer so that it points to the last byte written to the stack.
When the data has been copied to the processor register, the location it occupied on the
stack is now available for another byte of data. Since the stack pointer already points to
this location, it does not have to be updated at the end of the instruction.

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

PSHA Push 8 bits from
AccA onto Stack,
Decrement S

(A)  ⇒  MS

(S) – 1  ⇒  S - - - - - X - - - - - - - - -

PSHB Push 8 bits from
AccB onto Stack,
Decrement S

(B)  ⇒  MS

(S) – 1  ⇒  S - - - - - X - - - - - - - - -

PSHX Push 16 bits from X
onto Stack,
Decrement S

(XL)  ⇒  MS

(S) – 1  ⇒  S
(XH)  ⇒  MS

(S) – 1  ⇒  S

- - - - - X - - - - - - - - -

PSHY Push 16 bits from Y
onto Stack,
Decrement S

(YL)  ⇒  MS

(S) – 1  ⇒  S
(YH)  ⇒  MS

(S) – 1  ⇒  S

- - - - - X - - - - - - - - -

Figure 6.2 Push Instructions
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The mnemonic form for pull instructions is PULx. Data can be pulled from the stack and
loaded into the A, B, X or Y registers using the PULA, PULB, PULX or PULY instructions,
as shown in Figure 6.3. Since the destination of the data is included in the mnemonic and
the address of the data source is indicated by the address in the stack pointer register, all
pull instructions use the inherent addressing mode. Pull instructions have no effect on
the CCR. Pull instructions are complementary to push instructions.

Example 6.1

Problem: For each of the following push or pull instructions, indicate what effect
the instruction has on the registers or memory.

0030  81 22 33 44 55 66 77 88

       A    $80       X     $B600

       B    $FF       S     $0035

    Address  Machine Code  Source Code

a.  0109     36            PSHA

b.  0100     32            PULB

c.  01E2     38            PULX

Solution:

a. (A) → $0035, $0034 → S
PSHA writes the contents of AccA ($80) to location $0035 in memory overwriting
the previous data in this location. The stack pointer is decremented to $0034 after
the data is pushed.

b. $0036 → S, ($0036) →  B
PULB increments the stack pointer to point to the last location used on the stack
($0036). It then reads the contents of location $0036 from memory and loads AccB
with the data ($77).
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Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

PULA Increment S, Pull 8-
bits from Stack into
AccA

(S) + 1  ⇒  S
(MS)  ⇒  A - - - - - X - - - - - - - - -

PULB Increment S, Pull 8-
bits from Stack into
AccB

(S) + 1  ⇒  S
(MS)  ⇒  B - - - - - X - - - - - - - - -

PULX Increment S, Pull
16-bits from Stack
into X register

(S) + 1  ⇒  S
(MS)  ⇒  XH

(S) + 1  ⇒  S
(MS)  ⇒  XL

- - - - - X - - - - - - - - -

PULY Increment S, Pull
16-bits from Stack
into Y register

(S) + 1  ⇒  S
(MS)  ⇒  YH

(S) + 1  ⇒  S
(MS)  ⇒  YL

- - - - - X - - - - - - - - -

Figure 6.3 Pull Instructions
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c. $0036 → S, ($0036) → XL, $0037 → S, ($0037) → XH.

PULX increments the stack pointer to point to the last location used on the stack
($0036). It then reads the contents of location $0036 from memory and loads the
low byte of the X register with the data ($77). The stack pointer is incremented
again to $0037, followed by a read of that new location. The data is loaded into the
high byte of the X register ($88).

Self-Test Questions 6.1

 6.2 Function of Subroutines 

A subroutine is a self-contained subprogram. Each subroutine contains one or more
instructions associated with a specific task. For example, a subroutine could be written
to perform a time delay, to add a list of numbers or to convert a number from ASCII
to hex. Since subroutines are modular groups of code, they are not required to reside
in sequential order in memory. The subroutines are executed in any order. This order
is dictated by the main program. A subroutine call is a special instruction that must be
used to start the execution of a subroutine. The HC11 supports two subroutine call
instructions: Jump-To-Subroutine (JSR) and Branch-To-Subroutine (BSR). Each sub-
routine must end with a special instruction that returns the flow to the calling program.
This instruction is the Return-From-Subroutine (RTS). Figure 6.4 summarizes the
instructions that manage the use of subroutines.

Figure 6.4 summarizes the function of the RTS, JSR and BSR instructions. JSR operates
in the DIR, EXT, INDX and INDY addressing modes. BSR operates in the relative mode.
RTS operates in the inherent addressing mode. JSR, BSR and RTS have no effect on
the CCR.

1. When data is pushed onto sequential locations of the stack, is the stack pointer
incremented or decremented? Why?

2. Is a pull instruction a read or a write operation?
3. What data movement instruction performs a similar operation to the PULA

instruction?

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

JSR Jump to subroutine (P)  ⇒  MS:MS-1,
S – 2  ⇒  S, 
Eff address  ⇒  P

- X X X X - - - - - - - - - -

BSR Branch to
subroutine

(P)  ⇒  MS:MS-1,
S – 2  ⇒  S, 
Eff address  ⇒  P

- - - - - - X - - - - - - - -

RTS Return from
subroutine

(MS+1:MS+2) ⇒  P,
S + 2  ⇒  S

- - - - - X - - - - - - - -

Figure 6.4 Subroutine Instructions
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The JSR instruction is similar to JMP in that it uses an absolute 16-bit address to point
to the address of the first instruction of the subroutine. The BSR is similar to BRA in
that it uses an 8-bit relative mode offset to point to the address of the first instruction
of the subroutines. Because the JSR instruction uses a 16-bit address, it allows access to
subroutines at any location within the memory map. The BSR instruction can only
access subroutines within the +127 or –128 byte limits of the relative address. JSR and
BSR cause an unconditional change in the program flow to the subroutine. The HC11
does not support conditional branch to subroutine instructions.

NOTE: The JSR or BSR must be executed to call a subroutine. Every subroutine
must end with the RTS instruction in order to return to the calling program.

Steps to Execute a Subroutine

When a subroutine is used on the HC11, a sequence of three events takes place. Each
step of the following sequence is described in subsequent sections.

1. Call the subroutine, using a JSR or BSR instruction.
2. Execute the instructions of the subroutine.
3. Return from the subroutine by executing the RTS instruction.

Calling the Subroutine

The only way to execute a subroutine is via the JSR or BSR instruction. These
instructions cause the flow of a program to be routed to a subroutine. In chapter 4,
the function of the JMP and BRA instructions is presented. JMP and BRA have the job
of loading the program counter with the address of the next instruction to execute.
Although JSR and BSR are similar to JMP and BRA, they perform an additional task.
JSR and BSR cause a return address to be pushed onto the stack prior to loading the
program counter with the address of the first instruction in the subroutine. The return
address is the address of the instruction that will be executed after the program returns
from the subroutine. It is always the address of the instruction immediately following
the JSR or BSR in memory. This information is used by the subroutine to return to the
calling program. Without the return address, the subroutine would not be able to
return to the proper location in the main program.

Figure 6.5 illustrates how the return address is pushed to the stack. The low byte is
written to the current address in the stack pointer. The stack pointer is then
decremented and the high-order byte is written to this location. Then the stack pointer
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is decremented one more time so that it continues to point to the next available
location on the stack.

After the return address is pushed onto the stack, the program counter is loaded with
the address of the first instruction of the subroutine. The JSR and BSR instructions
acquire this starting address from the effective address included with the instruction.
JSR uses the DIR, EXT, INDX or INDY addressing mode, and BSR uses the REL
addressing mode to specify the effective address.

Example 6.2

Problem: For the following program, identify the return address and the starting
address of the subroutine and show the effect on the stack when the subroutine is
called.

Address  Machine Code  Label  Source Code

0100     8E 01 E5             LDS     #$01E5     

0103     BD 01 09             JSR     DELAY

0106     86 29                LDAA    #$29

0108     3F                   SWI

0109     CE 0D 06      DELAY  LDX     #$0D06

010C     09            LOOP   DEX

010D     26 FD                BNE     LOOP

010F     39                   RTS    

Solution: The Return Address is always the address of the instruction immediately
following the JSR or BSR instruction. In this program it is the address of the LDAA
instruction, which is $0106.

The starting address of the delay subroutine is $0109.

The starting stack pointer is $01E5, because of the LDS instruction. The low byte
of the return address will be written to this location, then the stack pointer will be
decremented to $01E4. The high byte of the return address is written to this location
of the stack, and the stack pointer is decremented again to $01E3.

$06 → $01E5,  $01E4 → S

$01 → $01E4,  $01E3 → S

Returning from the Subroutine

After the subroutine is executed, the flow of the program must return to the calling
program. Remember, the return address was pushed onto the stack by the calling
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instruction. This return address must be pulled from the stack in order to know the
address of the next instruction to execute. The last instruction of each subroutine must
be the RTS instruction, because the RTS instruction pulls the return address from the
stack and loads it into the program counter.

Example 6.3

Problem: Given the following memory block and stack pointer, what is the address
of the next instruction to be executed following an RTS instruction? What is the
effect on the stack pointer?

01E0   00   01  FF  38  01  06  2A  4B     S = 01E3

Solution: The stack pointer is first incremented to $01E4. The high byte of the
return address is pulled from this location ($01). The stack pointer is then
incremented to $01E5, and the low byte of the return address is pulled ($06).
Therefore the return address is $0106, and the stack pointer is changed to $01E5.

Efficiency Trade-offs

Subroutines offer a programmer the ability to modularize the code within a program.
A function that is performed several times throughout the program can be written as
a subroutine. Instead of having one continuous set of instructions, subroutines allow
code reuse. The instructions contained in the subroutine can be executed many times,
from various parts of the program. Thus, subroutines provide a means of using memory
more efficiently. Without subroutines, all code would have to be in-line. In-line code
contains all functions in the order they are used, and the program is one continuous
set of instructions. In-line code executes very fast because it does not use the subroutine
control instructions (JSR, BSR and RTS). Because in-line code must duplicate a
function each time it is used, it does not use memory resources efficiently.

Each time a subroutine is executed, two extra instructions are required in the code.
The JSR or BSR instruction is required to call the subroutine. Moreover, each
subroutine must be terminated by the RTS instruction. The RTS retrieves the return
address from the stack so that the program returns to the proper location in the calling
program. The time it takes to execute these two instructions, as well as the memory
space they require, is called subroutine overhead. In other words, there is a cost in
execution speed (time) and memory usage (space) associated with the use of
subroutines. If the overhead of using subroutines is greater than the equivalent in-line
implementation, there is no advantage in using subroutines.

Some programmers feel that the main program should be nothing but calls to
subroutines. In theory this is a good practice, but it can be taken a bit too far.
Subroutines should be used for tasks that are executed more than once within a
program. These tasks should be carefully structured to minimize the impact of the extra
instructions required to call and return from subroutines.
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NOTE: In-line code executes faster than the equivalent application using
subroutines. Therefore, the in-line code uses time more efficiently. Subroutines
typically use less memory than the equivalent in-line implementation. Thus,
subroutines are more memory efficient.

Subroutines are typically used when a program has a need to do a group of tasks repeat-
edly. As a subroutine, the tasks are called by various parts of the program, as shown in
Figure 6.6. The DELAY subroutine is needed in more than one place in the program.
Without the ability to modularize the code into a subroutine, the DELAY task would have to
be imbedded into the main program repeatedly to form one set of in-line code. It should be
apparent that using the DELAY subroutine is a more efficient use of memory than would
be required with an in-line implementation. Since this program has time delays built in,
there is no concern for the extra time it requires to execute the DELAY subroutine.

Self-Test Questions 6.2

 6.3 Parameter Passing 

Subroutines often require data from the program to complete their function. For
example, a subroutine that converts a hex value to the equivalent ASCII character code

Instructions
in main
program

Instructions
in delay

subroutine

DELAY

1

3

5
6

4

2

JSR DELAY

JSR DELAY

RTS

JSR DELAY

Figure 6.6 Example of a Subroutine

1. How would you describe a subroutine in your own words?
2. What value does a subroutine provide to a program?
3. How is a subroutine called?
4. How many bytes are pushed onto the stack when a subroutine is called? What

are they?
5. What must happen to achieve balanced use of the stack?
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must be provided the hex value that will be converted. In the same manner, subroutines
often have the need to return data to the calling program. When the conversion is
completed by the hex-to-ASCII conversion subroutine, the ASCII character code must
be returned to the calling program. Parameter passing is the name given the process
of passing data to and from subroutines.

There are two primary methods of passing these parameters to and from subroutines,
pass by value and pass by reference. The pass by value method sends a copy of data to
the subroutine. The subroutine uses this copy of the data in whatever manner necessary
to complete the function of the subroutine. The pass by reference method sends an
address of the data to the subroutine. The address represents the location in memory
where the data is stored. During the execution of the subroutine, the data is accessed
via this address.

The easiest way to pass by value is to load a processor register with the data prior to calling
the subroutine. The subroutine uses the data from the register during the execution of
the subroutine. The pass-by-reference method loads either the X or Y register with an
address where the data is stored. The subroutine then must use an indexed mode instruc-
tion to access the data. Data can also be returned to the calling program by using either
of these methods. It is common to pass a value to a subroutine via a processor register to
have the value processed and then to return the processed value in the same register.

Example 6.4

Problem: Write a subroutine to accomplish a squaring function. Use the following
flowchart as an outline of what the subroutine should do. Use the pass-by-value
technique to pass the data to and from the subroutine. Use AccA to pass the data
to the subroutine and return the squared data in AccD. Assemble the code starting
with location $0180.

Solution: The squaring function can be accomplished in two instructions. Since the
value to be squared is in AccA, this value needs to be copied to AccB to prepare
for the multiplication. The square is found by multiplying the contents of AccA by
the contents of AccB. The result of the MUL instruction is automatically stored in
AccD.

Example 6.4

Load AccA with
value to be squared

Square
the value

END

Squaring
Subroutine

Copy the value
in order to multiply

Multiply

Return

Example 6.4 Flowchart
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0001 0180 16   SQUARE  TAB      ;duplicate value (A) → B

0002 0181 3d           MUL      ;square value, (A) x (B) → D

0003 0182 39           RTS      ;return to calling program

In some cases, subroutines do not require any data from the calling program. They
perform operations that are independent of the data being processed. A time delay is
an example of this type of subroutine. The time delay executes a set of instructions a
fixed number of times and then returns to the calling program. The job of the time
delay is simply to keep the processor busy for a fixed length of time.

Balanced Use of Stack

Often during execution of a subroutine, the contents of the registers that are
changed by the routine are first pushed onto the stack. This way the original
contents of these processor registers can be restored at the end of the routine
by pulling them back off the stack. For example, if the X register is used temporarily
by a subroutine, as shown in Figure 6.7, it is wise to push the contents of the
X register onto the stack at the beginning of the subroutine. The routine can
then use the X register for any purpose, because the original contents are saved
on the stack. At the end of the subroutine, the contents of the X register must
be restored by executing a pull instruction. This is called balanced use of the
stack. Balanced use implies that whatever is pushed onto the stack is removed
from the stack before another process is done.

NOTE: Values must pulled from the stack in an order opposite to that in which
they were pushed onto the stack to maintain the integrity of the original data.
For example, PSHA, PSHX must be complemented with PULX, PULA.

When a subroutine is called, the two-byte return address is pushed onto the stack by
the JSR or BSR instruction, and the RTS pulls these two bytes back off. This is another
example of balanced use of the stack.

*Delay Subroutine

DELAY  PSHX ;Save X (2-bytes) to stack

       LDX    #$0D06 ;Use X as counter

AGAIN  DEX ;Loop until X = 0
       BNE    AGAIN

       PULX ;Restore X (2-bytes) from stack

       RTS

Figure 6.7 Balanced Use of Stack
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Self-Test Questions 6.3

 6.4 Converting a Hex Value to ASCII 

Most data processed by the computer is stored as hex values in memory. However, if
this data needs to be displayed on the monitor, it is typically converted to the ASCII
character code format. ASCII is a seven-bit code that is typically stored as bytes, where
as the MSB is zero filled. The remainder of this section will describe a subroutine
designed to convert a single hex digit (4 bits) to the equivalent ASCII code. The hex
digit will be passed to the subroutine by value in the lower nibble of AccA. The ASCII
code will be passed back to the calling program by value also using AccA. If the hex
value is not a single hex digit, the routine will return the hex value unchanged.

ASCII is a sequential code that follows the numeric and alphabetic order of the
characters. For example, the ASCII code for “A” is $41, for “B” is $42, and so on.
Higher-order digits translate to higher-order ASCII codes.

Figure 6.8 summarizes the 16 hex digits and their equivalent ASCII codes. If each
of the values of the hex digits is subtracted from the corresponding ASCII codes,

1. What is a simple method of passing a value to a subroutine?
2. If a value is passed by reference, what addressing mode must be used to access

the value in memory?
3. What must be done before the RTS instruction to maintain a balanced stack if

the first instruction of the subroutine is PSHX?

Hex Value ASCII Code
Numeric

Difference

$0 $30 $30
$1 $31 $30
$2 $32 $30
$3 $33 $30
$4 $34 $30
$5 $35 $30
$6 $36 $30
$7 $37 $30
$8 $38 $30
$9 $39 $30
$A $41 $37
$B $42 $37
$C $43 $37
$D $44 $37
$E $45 $37
$F $46 $37

Figure 6.8 Relationship of Hex Values to ASCII Equivalent Codes
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a difference results with a distinct pattern. The numeric digits “0” through “9”
all have a numeric difference from the ASCII codes of $30. The alpha digits “A”
through “F” all have a numeric difference from the ASCII codes of $37. Thus,
the ASCII code for the numeric digits can be generated by adding $30 to the
hex value. The ASCII codes for the alpha digits can be generated by adding $37
to the hex value.

Figure 6.9 illustrates the flowchart of this subroutine, and Figure 6.10 contains the
source code listing for the subroutine.

This subroutine checks the input value to make sure that it is a valid hex digit.
If the character is not is a valid hex digit, it is returned without any processing.
The first step is to compare the input value to $0F. If the input value is greater
than $0F, then it is not a valid hex digit. The routine returns without processing
the digit. The next step is to check if it is less than $0A. If the input value is
less than $0A, then the input value is a valid digit 0–9, and no special processing
(addition of $07) is required. If the input value is A–F, then $07 must be added
to the value. Careful examination of the ASCII table reveals why $07 must be
added to some values.

If the input value is determined to be one of the numeric digits 0–9, this extra offset
is skipped. The final ASCII character code is calculated by adding $30 to the hex digit
if it is 0–9. If it is A–F, then $37 is added to the hex digit.

HEX to ASCII

Compare digit
to $F

Yes
Digit > $F?

No

Compare digit
to $A

Yes
Digit < $A?

No

Add $07 to code
for alpha digits

SKIP

Finish conversion
to ASCII (Add $30)

END

Return

Figure 6.9 Flowchart of Hex-to-ASCII Conversion Subroutine
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Self-Test Questions 6.4

 6.5 Nested Subroutines 

Often there is a need to call subroutines from another subroutine. This is called nesting
and is illustrated in Figure 6.11. Nested subroutines provide increased efficiency and
provide for better code reuse. Theoretically, nesting can go on for many levels, that is,
a subroutine can call another, which can call another, which can call another, and so
on. However, system constraints limit this practice. First, each time a subroutine is
called, the two-byte return address is pushed onto the stack. If another subroutine is
called before the first one is finished executing, then two additional bytes will be pushed
onto the stack as the return address for this next routine. Each additional nested layer
requires two more bytes for each subsequent return address. Eventually the system will
run out of stack space by filling all available memory with return addresses.

1. What is the purpose of the compare to $0F in HEX2ASC?
2. Why is $07 added to the code if the hex value is not lower than $0A?

* Subroutine to convert the lower hex digit ($0-$F) 

* to ASCII equivalent.  Return ASCII of digit in 

0120 81 0f   HEX2ASC CMPA    #$0F     ;Is digit > $F?
0122 22 08             BHI     END      ;Value not single hex digit
0124 81 0a             CMPA    #$0A     ;Is digit alpha?
0126 25 02             BLO     SKIP     ;If NOT skip extra $07
0128 8b 07             ADDA    #$07     ;Alpha digit needs $07 more
012A 8b 30     SKIP    ADDA    #$30     ;Finish ASCII conversion
012C 39        END     RTS

of a byte in AccA

AccA.

Figure 6.10 Source Code Listing of Hex-to-ASCII Conversion Subroutine

Instructions
in main
program

Instructions
in delay

subroutine

DELAY

1

3

5
6

4

2

JSR DELAY

JSR DELAY JSR SLOWER

RTS

Instructions
in slower

subroutine

RTS

JSR DELAY

B

A

Figure 6.11 Example of a Nested Subroutine
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Excessive nesting also leads to excessive overhead costs. The processor requires extra
machine cycles to execute the JSR/BSR and RTS required each time a subroutine is
called. In some cases, these extra machine cycles are more than the routine requires
for execution. Therefore, moderation is the best practice. There needs to be a balance
between the modular benefits of subroutines and the execution efficiencies of in-line
code. The ideal balance is dependent on the particular system and its priorities on
speed versus memory efficiency.

Time calculation lends itself well to this concept of subroutine nesting. For example,
a one-minute delay subroutine could be implemented by calling a one-second delay
subroutine 60 times. Furthermore, the one-second delay subroutine could call a 10 ms
delay subroutine 100 times. This idea is illustrated in Example 6.5.

Example 6.5

Problem: Write a subroutine that will delay the processor for 1 second. Use the 10
ms delay subroutine from Example 6.2, but enhance the routine so that the registers
are not changed when this delay is complete. Estimate as closely as possible with
a single program loop the actual time of the 1 second delay.

Solution: The flowchart shown in Figure 6.12 illustrates the specific operations
necessary to accomplish this task. The source code listing for this task is shown in
Figure 6.13. This particular listing contains an additional column of information.

Delay 1 s

Save A register
on stack

Load loop counter
for 1 s

Delay 10 ms
(DLY10MS)

Decrement
Loop Counter

Count = 0?

Restore A register
from Stack

Return

No

Yes

Figure 6.12 Flowchart of 1-Second Delay Subroutine
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Each instruction has the number of machine cycles required to execute shown in
brackets. This information facilitates the calculation of the actual delay.

The DLY10MS subroutine utilizes delays 10 ms; it needs to be executed 100 times
to accomplish the 1 second delay. The overhead associated with calling this routine,
returning from the routine and initializing the loop are minor compared to the overall
length. The code for the DLY10MS subroutine is shown again in the same listing
for continuity.

Each time the DLY2 loop is executed in the DLY1S routine, the DLY10MS routine
is executed. Thus, the DLY10MS routine is nested within the DLY1S routine.

The two subroutines DLY1S and DLY10MS are written so that the original contents of
the registers are not affected. These routines use AccA and the X register as counters
to accomplish the delay. At the start of each subroutine, the counter register is pushed
onto the stack. This saves the original contents while the register is being used for
another purpose. Before the subroutine is complete, the original register value is
restored to the counter register via a pull instruction. The combination of the push
and pull instructions inside each subroutine maintains a balanced use of the stack.

One more example is presented to show the value of nested subroutines. In section
6.4, the process of converting a hex digit to the equivalent ASCII character code was
presented. Since each byte stored in memory can contain two hex digits, the HEX2ASC
subroutine could be called twice to convert each digit stored within a byte. Example
6.6 shows how a routine could be written to convert two hex digits from a single byte
into two ASCII characters. It utilizes the HEX2ASC subroutine from section 6.4.

Example 6.6

Problem: Write a subroutine to convert a two-digit hex number to the two equivalent
ASCII character codes. Utilize the HEX2ASC subroutine from section 6.4 to convert
each digit separately and then store the results in two sequential bytes in memory.
The address of the first byte is passed to this subroutine in the X register.

* Subroutine to delay 1 s by calling a 10 ms delay 100 times

0140 36            [ 3 ] DLY1S   PSHA              ;Save A temporarily on stack
0141 86 64         [ 2 ]         LDAA    #100      ;set loop counter
0143 bd 00 0b      [ 6 ] DLY2    JSR     DLY10MS   ;Delay 10 ms
0146 4a            [ 2 ]         DECA              ;decrement loop counter
0147 26 fa         [ 3 ]         BNE     DLY2      ;If not zero do again
0149 32            [ 4 ]         PULA              ;restore value in A
014A 39            [ 5 ]         RTS               ;return

                         * Subroutine to delay 10 ms

014B 3c            [ 4 ] DLY10MS PSHX              ;Save X temporarily on stack
014C ce 0d 01      [ 3 ]         LDX     #$0D01    ;set loop counter
014F 09            [ 3 ] DLYLP   DEX               ;decrement loop counter
0150 26 fd         [ 3 ]         BNE     DLYLP     ;If not zero do again
0152 38            [ 5 ]         PULX              ;restore value in X
0153 39            [ 5 ]         RTS               ;return

Figure 6.13 Source Code Listing of Nested Subroutine Time Delay
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Solution: Each byte of data contains two hex digits. The left digit will be converted
first and stored at the memory location contained in the X register. The right digit
will then be converted, and the ASCII equivalent will be stored at X + 1. The
conversion subroutine (HEX2ASC) requires that the hex digit to be converted is
located in the right position of the byte and the upper nibble is zero. Therefore, the
upper hex digit must be moved to the lower digit before it can be converted. Figures
6.14 and 6.15 illustrate how this is done.

The original data is stored on the stack so that the upper digit can be shifted and
converted. The upper digit is shifted to the lower digit position, and the HEX2ASC
converter is called. This subroutine returns the ASCII equivalent that can be directly

Two-digit HEX
to ASCII

Temporarily save
hex to stack

Isolate
upper digit

Convert digit
(HEX2ASC)

Store ASCII
char code at X

Get original
value from stack

Isolate
lower digit

Convert digit
(HEX2ASC)

Store ASCII
char code at X+1

Return

Figure 6.14 Flowchart of Two-Digit Hex to ASCII Conversion

* Subroutine to convert two hex digits in A register
* to ASCII equivalent.  Return the ASCII in memory pointed to by X.

0160 36            HH2AA   PSHA               ;Store A on stack
0161 44                    LSRA               ;Shift upper digit to lower
0162 44                    LSRA
0163 44                    LSRA
0164 44                    LSRA
0165 bd 00 00              JSR     HEX2ASC    ;Convert digit to ASCII
0168 a7 00                 STAA    $00,X      ;Store ASCII at X
016A 32                    PULA               ;Get original hex value
016B 84 0f                 ANDA    #$0F       ;Isolate lower digit
016D bd 00 13              JSR     HEX2ASC    ;Convert digit to ASCII
0170 a7 01                 STAA    $01,X
0172 39                    RTS

Figure 6.15 Source Code Listing of Two-Digit Hex to ASCII Conversion
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written to memory. The indexed mode is used to address memory since the effective
address is located in the X register. This completes the conversion and storage of
the upper digit.

Following the conversion of the first digit, the original data is retrieved from the stack
so that the lower digit can be converted. The AND instruction is used to apply a
logical mask to isolate the lower digit. Again, the HEX2ASC converter is called,
which returns the ASCII equivalent character code of the hex digit. This ASCII code
is then written to the memory location following the location of the first digit.

Self-Test Questions 6.5

 6.6 BUFFALO Subroutines 

The BUFFALO monitor program contains many subroutines that it uses to accomplish
its job. These subroutines are also available for use by the user programs. Figure 6.16
summarizes the subroutines documented in the EVBU users manual. Each of these

1. What is a nested subroutine?
2. What problems can be caused by nesting?
3. How many machine cycles are required to call and return from a subroutine?

Figure 6.16 BUFFALO Subroutines Referenced in Jump Table

Jump
Table
Address

Start
Address

Routine
Name Description

$FF7C $E0CE WARMST Go to the BUFFALO prompt “>” (skip BUFFALO message).
$FF7F $E1B8 BPCLR Clear the breakpoint table.
$FF82 $E1F9 RPRINT Display the user registers on the screen.
$FF85 $E207 HEXBIN Convert ASCII character code from the A register to a 4-bit binary number.

Shift the binary number into SHFTREG from the right.  SHFTREG is a 16-
bit register (it will hold 4 hex digits).  If the value in A is not an ASCII
character code for a valid hex digit, then SHFTREG is unaffected.

$FF88 $E23A BUFFAR Read 4-digit hexadecimal argument from input buffer to SHFTREG.
$FF8B $E25D TERMAR Read 4-digit hexadecimal argument from terminal device to SHFTREG.
$FF8E $E285 CHGBYT Write value from SHFTREG+1 (two right-most hex digits of 4-digit buffer)

to the memory location pointed to by the X register.  This operates on
EEPROM locations as well.

$FF91 $E2F1 READBU Read next character from INBUFF.
$FF94 $E2F8 INCBUF Increment pointer into input buffer.
$FF97 $E2FE DECBUF Decrement pointer into input buffer.
$FF9A $E306 WSKIP Read input buffer until non-white space character code is found.
$FF9D $E329 CHKABR Monitor input for ctrl-X, Delete, or ctrl-W requests.
$FFA0 $E1AD UPCASE If the character code contained in the A register is a lowercase character

(‘a’ – ‘z’), then convert it to the equivalent uppercase character code (‘A’ –
‘Z’).
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routines is designed to be accessed from the same location in memory regardless of
the version of BUFFALO that is being used. Each version of BUFFALO has a variety of
changes that cause the subroutines to appear in different locations in the memory. To
assist programmers with the access of these common subroutines, BUFFALO was
designed with a lookup table for these subroutines. This lookup table is called the
subroutine Jump Table. Each entry in the jump table includes a JMP instruction and
the actual starting address of the subroutine.

For example, there is a subroutine called UPCASE in the jump table. It converts the
ASCII code that is in AccA to the uppercase equivalent. The JMP instruction for
UPCASE is located in the Jump Table at $FFA0, but the actual subroutine is located at
$E1AD within the BUFFALO monitor program. The Jump Table provides a fixed
location to access these subroutines. On another machine the UPCASE subroutine can
be located anywhere in the memory. As long as the Jump Table remains constant, the
user software will still work.

Jump
Table
Address

Start
Address

Routine
Name Description

$FFA3 $E316 WCHEK Test the character code in the A register and set the Z bit if the code is a
white space character code (space, tab or comma).

$FFA6 $E321 DCHEK Test the character code in the A register and set the Z bit if the code is a
delimiter character code (carriage return or white space).

$FFA9 $E378 INIT Initialize the I/O device.
$FFAC $E39E INPUT Read from the I/O device.
$FFAF $E3CA OUTPUT Write to the I/O device.
$FFB2 $E4DE OUTLHL Convert the left half of the A register to an ASCII character code and

output it to the terminal port.
$FFB5 $E4E2 OUTRHL Convert the right half of the A register to an ASCII character code and

output it to the terminal port.
$FFB8 $E4EC OUTA Output the ASCII character code in the A register to terminal port.
$FFBB $E4F0 OUT1BY Convert each digit of the byte pointed to by the address in the X register to

ASCII character codes and output on the terminal.  Increments the X
register so that it points to the next byte in memory.

$FFBE $E4FF OUT1BS Same as OUT1BY, except a space is output after the two characters.
$FFC1 $E4FC OUT2BS Same as OUT1BS, except four characters from two consecutive bytes are

output followed by a space.  X is incremented twice.
$FFC4 $E508 OUTCRL Output the ASCII carriage return followed by the line feed character codes.
$FFC7 $E518 OUTSTR Output the ASCII character codes until end-of-transmission ($04) is found.

The first location is pointed to by the address in the X register.
$FFCA $E51B OUTST0 Same as OUTSTR except the leading carriage return and line feed are

skipped.
$FFCD $E544 INCHAR Input the ASCII character code from the terminal and store in the A

register.  This routine does not return until a valid character code is
received.

$FFD0 $E357 VECINIT Initializes the Vector Jump Table in RAM with JMP instructions and default
addresses.

Figure 6.16 BUFFALO Subroutines Referenced In Jump Table (continued)
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Example 6.7

Problem: Write a program that will input a character from the keyboard, convert
the character to uppercase and output the character on the monitor. Use BUFFALO
subroutines for all functions. Assemble the program at $0180 in memory.

Solution: This program can be accomplished with three subroutine calls. BUFFALO
provides a subroutine that will allow input from the keyboard (INCHAR), another to
convert the character to uppercase (UPCASE) and finally one to output the
character on the monitor (OUTA). Each of these passes the character via AccA so
that no additional instructions are necessary. Notice the use of the assembler
directive EQU to define the Jump Table addresses for each of the subroutines. The
subroutines are then referenced by name in the code, which makes the code more
readable.

   * Program to read a character from the keyboard, convert 

   * it  to uppercase and then output it to the monitor.

0180 bd ff cd      JSR    $FFCD  ;get char from keyboard

0183 bd ff a0      JSR    $FFA0  ;convert to uppercase

0186 bd ff b8      JSR    $FFB8  ;output the char to monitor

0189 3f            SWI

In addition to the subroutines listed in Figure 6.16, there are many more subroutines
within the BUFFALO monitor program. These subroutines are also accessible to the
user and can be very useful. As they do not have corresponding entries in the Jump
Table, the program must use the actual address of the subroutine to access them. Some
of these additional subroutines are listed in Figure 6.17.
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Address in
BUFFALO 3.4 Routine Description

$E290 WRITE Write the byte from the A register to the memory location pointed to by
the address in the X register.  This routine support EEPROM writes.  It first
performs an erase of the affected location if necessary.

$E2C6 EEBYTE Erase a single byte in the EEPROM.
$E2D4 EEBULK Erase the entire EEPROM memory.
$E2E5 DLY10MS Delay 10 ms.  This routine does not change the contents of any processor

register.
$E39E INPUT Reads the I/O device and returns an ASCII character code in the A

register.  If no key has been pressed on the keyboard, it returns 0.  Unlike
INCHAR, this routine does not wait for a valid character, but returns
immediately.

$E502 OUTSPAC Output a space to the monitor.
$E538 TABTO Move cursor to the twentieth position on the monitor.
$FC38 TXBWAIT Delay 100 ms.  This overwrites the contents of the Y register.

Figure 6.17 BUFFALO Subroutines NOT Referenced in Jump Table
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Self-Test Questions 6.6

 Summary 

A subroutine is a group of code that is modularized for a particular function. It is a set
of instructions that work together to accomplish a specific task. The instructions are
grouped together in a manner that allows any other program or function to access
them. A subroutine is accessed by executing a JSR or BSR instruction. When the JSR
or BSR instruction is executed, the flow of the program switches to the subroutine and
a return address is saved on the stack. Each subroutine must conclude with the RTS
instruction. The RTS instruction retrieves the return address from the stack so that the
flow of the program transfers back to the main program.

When writing and using a subroutine, the programmer must remember what each
subroutine does and what the starting address of the subroutine is and must know what
parameters must be initialized and what registers or memory locations are changed by
the subroutine.

 Chapter Questions 

Section 6.1
 1. Define LIFO and describe how it works on a computer memory stack.
 2. What is the destination of the data that gets loaded by the following instruction:

PULX?
 3. What is the destination of the data that gets stored by the following instruction:

PSHA?

Section 6.2
 4. How many bytes are pushed onto the stack when a subroutine is called? What

are these bytes?
 5. How many methods can be used to call a subroutine?
 6. What address is always used as the return address of a subroutine call?
 7. Why must each subroutine end with an RTS instruction?
 8. How can the code in a subroutine be reused?
 9. What is the minimum number of machine cycles required to call and return

from a subroutine?
10. What is the main advantage of in-line code over subroutines?
11. What is the main advantage of subroutines over in-line code?

Section 6.3
12. Which registers could be used to pass a single byte to a subroutine?
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1. What function does the DLY10MS subroutine provide?
2. When would it be useful to execute the INCHAR subroutine?
3. What subroutine would be executed to write a single byte to a location in the

EEPROM?
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13. Which registers could be used to pass the starting location of a list of 20 bytes
to a subroutine?

14. How is passing by reference similar to the extended addressing mode?
15. Explain balanced use of the stack.

Section 6.4
16. What logical instruction could be used to assure that the value passed to the

HEX2ASC subroutine is a single hex digit before conversion?

Section 6.5
17. Theoretically, how many layers of subroutines can be nested together?
18. How many nested layers are required to complete the 1-minute delay illustrated

in Figure 6.12?
19. What simple method could be used to increase the 1-minute time delay to a

2-minute time delay?

Section 6.6
20. What is the purpose of the subroutine jump table?
21. What BUFFALO subroutine can be used for a 100 ms delay?
22. How is the start of the message passed to the OUTSTR subroutine?

 Chapter Problems 

1. Using the data in Figure 6.18, express the results of the following instructions,
including status of the stack pointer. What is the opcode (including prebytes) of
each instruction? NOTE: Each instruction is independent of the others. The results
are not cumulative.

a. PSHA
b. PSHX
c. PULB
d. PULY
e. INS
f. PSHB
g. RTS

2. Given the following instruction, what is the return address of the subroutine call?

012B BD 01 A5 JSR $91A5

Registers A =  $D0 Memory 00F8  00 11 22 33 44 55 66 77
B =  $64 0100  F3 56 E3 DB A1 A0 09 00
X =  $1000 0108  22 44 52 88 63 77 74 33
Y =  $E216 0110  FF 00 FF 11 FF 22 FF 83
S =  $0103 0118  F1 3B BB B6 D4 AD CE 00

Figure 6.18 Default Data Set #4
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3. Which of the following short code segments are examples of balanced use of the
stack?

 a.PSHA     b. PSHY     c. PSHX     d. PSHX

PSHX        PSHB        PULY        PSHA
PULX        PULX                    PULB

PULA                                RTS

4. Write a subroutine to delay one minute using subroutines. Use PSH and PUL
instructions to protect the original data in registers that are used by the
subroutine.

5. Write a short program that will use the HH2AA subroutine to convert the four-digit
hex number stored in AccD to four ASCII characters. Start the program at $0100
and store the four digits starting at $0000.

6. Write a program to send the message “HELLO WORLD!” to the monitor. Use the
BUFFALO subroutines to accomplish this task.

7. Write a program to accept two decimal values from the keyboard, add the numbers
and display the decimal sum on the monitor. Use BUFFALO subroutines to
accomplish the task.

 Answers to Self-Test Questions 

Section 6.1
1. The stack pointer is decremented when data is pushed onto the stack. The last

item pushed onto the stack is the first item that comes off the stack.
2. Read operation.
3. LDDA.

Section 6.2
1. A subroutine is a set of instructions grouped by function and is terminated by the

RTS instruction.
2. A subroutine provides modularity by grouping instructions into functional blocks.

It also provides a simple way of reusing the same code in various parts of the
program, which provides a more efficient use of the memory.

3. Via a JSR or BSR instruction.
4. The two-byte PC is pushed onto the stack.
5. Each byte that is written to the stack must be read from the stack.

Section 6.3
1. Load the value into a processor register before calling the subroutine.
2. The indexed addressing must be used to access data that was passed by

reference.
3. The PULX instruction must be executed.

Section 6.4
1. If the hex value passed into the subroutine is greater than $0F, then it is not a

single digit.
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2. The difference between the ASCII codes and the alpha digits is $37, and that
between the ASCII codes and the numeric digits is $30. Thus, an extra value of
$07 must be added to the codes converted from alpha digits.

Section 6.5
1. When a subroutine is called by another subroutine, this practice is called nesting.
2. Nesting causes a significant amount of overhead by pushing and pulling multiple

return addresses to and from the stack. The JSR and RTS instructions require 10
or more machine cycles to execute.

3. JSR = 5, 6 or 7 cycles; RTS = 5 machine cycles.

Section 6.6
1. The DLY10MS subroutine provides a time delay of 10 ms.
2. The INCHAR subroutine is used when the user wants to wait for keyboard input.
3. The WRITE subroutine allows writes to EEPROM. It requires the A register to

contain the data and the X register to contain the address to be written to.
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Working with an Assembler

 Objectives 

After completing this chapter, you should be able to:

◗ Understand techniques of writing source code that is readable

◗ Utilize assembler directives, labels and directives to enhance source
code

◗ Explain the fields in the listing file

◗ Define the contents of S records and be able to interpret what the
fields of each record contain

 Outline 

◗ 7.1 Writing Source Code

◗ 7.2 Assembler Functions

◗ 7.3 Listing Files

◗ 7.4 “S” Records

 Introduction 

An assembler is a piece of software that converts mnemonic instructions into machine
code. Line by line the assembler converts the mnemonic instructions to the machine
code that will actually execute on the processor. This machine code is made up of the
operational codes and the operands.

Many assemblers use a two-pass process to perform the conversion function. During
the first pass through the source code, the assembler builds a symbol table that

Working with an Assembler

 c h a p t e r 7
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contains addresses and definitions of all the labels. A preliminary set of machine
code is also generated. On the second pass, the labels are replaced with the
definitions and addresses that the machine code needs to complete the execution
of the instructions. The branch displacements are also calculated and placed in
the proper place in the code. As errors are found in the source code, the assembler
will inform the user via messages to the monitor or to a listing file. The error
message contains a line number from the original source code file and some kind
of error message that defines the error type. The final machine code file is not
generated until all the errors are resolved.

Assemblers are written so that they operate on a specific set of mnemonic instructions
unique to a certain processor or processor family. The assembler described in this
chapter is the AS11 assembler. It generates machine code for the HC11 family of
processors.

 7.1 Writing Source Code 

Source code is sometimes considered a form of art. Each programmer uses a personal
style or a style dictated by the employer. Some styles are very organized and modular,
where white space is used to separate functions and processes and each line is
commented in detail. Other programmers focus solely on the function of the code and
pay little attention to the look and layout of the code. Regardless of the programmer’s
opinion and personal style, there are conventions that should be followed to provide
order, readability and maintainability of the code. Three conventions will be discussed
that can make a significant impact on the readability of source code: use of labels,
commenting code, and using white space.

Use of Labels

One of the key factors that make code more readable is the use of labels. Labels should
be used for any reference to memory or to a constant value. When the labels are defined
with terms that imply the function or operation that is being applied, it makes the code
more readable. For example, use MSG as the label for a message to be displayed or
PORTB as the label for the address of the PORTB register. Whenever the port B register
is accessed, the label will remind the reader of the code of what is located at the effective
address. Some programmers are extremists and have labels defined for every numeric
constant and every address used in the code; thus, no numeric values appear in the
body of the executable code. The numeric values are replaced by the label instead.

Labels are defined in the AS11 assembler in the label field of the source file. The label
field starts in the left-most column of each line of the source file. If the first character is
the asterisk “*”, the entire line is treated as a comment; thus the line is ignored by the
assembler. If the first character of a line is a space, the assembler assumes that there is no
label defined for the line of code. Labels can still be used in the operand field, but these
labels must be defined elsewhere in the code. If the first character of the line is a symbol
character, then a label is defined in the label field. Label symbols are limited to upper-
and lower-case characters a – z and the digits 0 – 9. Three special characters are also
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allowed: the period “.”, the dollar sign “$” and the underscore “_”. Labels can be one to
eight characters long. Each label can start with any of the label symbols except the dollar
sign. Labels are also case sensitive. To create greater visual recognition of labels when
they are defined, the optional colon “:” character may be used to end the label. The colon
is not part of the label but acts as a separator. Figure 7.1 contains examples of valid labels.

Commenting Code

Comments within the code provide the user with clues about the function of the
program. The comments provide additional information regarding the function or
operation of one or more lines of code. They should also explain why the function is
being done. Comments can be most effective when two types are used. The first type
occupies an entire line or several lines of the source file. It gives a general description
of what is to follow. If it is describing the function of a subroutine, it may include a
definition of the parameters used by the routine and the results that are passed back
when complete. All full-line comments must be preceded by the asterisk character. The
asterisk must appear in the left-most position of the line. This indicates to the assembler
that this line contains only a comment. Blank lines within the source code file are also
treated as full-line comments.

Each line of code can be commented to the right of the instruction. The AS11
assembler interprets anything that follows the last byte in the operand field as a
comment. Some assemblers require the end-of-line comments to begin after a certain
column in the source code or require the comments to begin with a special symbol
like the semicolon character. The comments on each line should be specific to a single
line or perhaps a pair of lines. They should provide the reader a reason that that line
of code was included in the source.

NOTE: Often comments tell the reader what the instruction is doing. The “what”
is implicit in the instruction itself and needs no further explanation. In addition
to the “what,” comments should emphasize the “why,” so that the reader gains a
sense of the reason things are done.

Using White Space

White space can provide a significant degree of readability. White space is defined as
a space, tab or blank line. Subroutines can be separated by one or more blank lines to
help the reader understand where one function ends and another starts. Within a
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HERE     LDAA #$23
         BNE  HERE

LOOP:    DECA
         BNE  LOOP

PORTB    EQU   $1004

MSG1     FCC   ‘Waiting’

Figure 7.1 Examples of Labels in Source Code
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routine, white space can be used to group functional lines of code. Often, more than
one line of code is needed to complete some operation. These lines should be grouped
together to make the code more readable.

Figure 7.2 illustrates two versions of the same source code file. The first version in
Figure 7.2a is shown without labels, comments or white space. The second version is
complete with labels, comments and abundant use of white space. The improvement
in readability should be evident.
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        ORG     $0100
        SEI
        LDD     #$0180
        STD     $00DD
        LDX     #$1000
        LDAA    #$40
        STAA    $20,X
        STAA    $22,X
        CLI
MAIN    WAI
        BRA     MAIN
        ORG     $0180
        BCLR    $23,X $BF
        LDD     $18,X
        ADDD    #$3E8
        STD     $18,X
        RTI

***********************************************************
* HC11 Output Compare Demonstration
* Squarewave Generation
*
* This program generates a 1KHz squarewave on OC2 (pin 28)
* using an Interrupt Service Routine
**********************************************************
* Declarations
**********************************************************

REGBASE EQU     $1000

OC2_JMP EQU     $00DD

TOC2    EQU     $18
TCTL1   EQU     $20
TMSK1   EQU     $22
TFLG1   EQU     $23

**********************************************************
* Main Program
**********************************************************

        ORG     $0100           ;Start program at $0100

        SEI
        LDD     #OC2_ISR        ;Load ISR address into the Jump Table
        STD     OC2_JMP

        LDX     #REGBASE        ;Load register base address into Index X

        LDAA    #$40            ;toggle OC2 on successful compare
        STAA    TCTL1,X
        STAA    TMSK1,X         ;enable OC2 interrupt

        CLI

MAIN    WAI                     ;Wait for interrupt
        BRA     MAIN

OC2_ISR BCLR    TFLG1,X $BF     ;Clear OC2 flag

        LDD     TOC2,X          ;get compare value from TOC2

        ADDD    #$3E8           ;add offset for next pulse transition
        STD     TOC2,X          ; 1000 (3E8) counts high / low for 1KHz

        RTI

b) With Labels, Comments and White Space

a) Without Labels, Comments and White Space

Figure 7.2 Examples of Readability
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Self-Test Questions 7.1

 7.2 Assembler Functions 

The assembler supports the use of special symbols within the code. These symbols
provide the assembler with additional information about the mnemonic instructions.
In addition, these symbols tell the assembler how to process the source code.

Data Type Constants

The AS11 assembler supports five numeric data type contants: decimal, hex, binary, octal
and ASCII characters. Numbers are considered decimal unless they are preceded by a
special symbol. If the user wants the assembler to interpret numbers as hex values, the
numbers must be preceded by the “$” symbol. If numeric values are to be interpreted as
binary, they must be preceded by the “%” symbol. If numeric values are to be interpreted
as octal, they must be preceded by the “@” symbol. ASCII characters will be interpreted as
the ASCII character codes when they are preceded by the single quote (’) character. It is
common practice to provide the trailing single quote, yet the AS11 assembler does not
require it. Examples of these data types are shown in Figure 7.3.

The decimal, hex and ASCII data types are the most common since they are read most
easily. The binary type is used in place of hex when specific bits are being emphasized,
but it is more difficult to read. The octal data type is rarely used with modern
computers. Octal is a grouping of three binary digits.

Directives

The assembler supports a special set of commands called directives. A directive tells
the assembler what to do and indirectly affects the resulting machine code. It is an
instruction to the assembler. However, a directive is not an instruction that is converted
to machine code. For this reason, the directives are sometimes called pseudo-ops.
Figure 7.4 summarizes the directives supported by the AS11 assembler and what
functionality each directive provides.
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1. How can a programmer make the code more readable?
2. What are two different types of comments that can be used in a source file?
3. How can white space be used to make the code more readable?

86 7F LDAA #127 ;decimal 127 will be converted

86 2B LDAA

LDAA

LDAA

LDAA

#$2B ;hex 2B will be used

86 D6 #%11010110 ;binary 11010110 will be converted

86 9C #@234 ;octal 234 will be converted

86 41 #'A' ;'A' will be converted to ASCII code

Figure 7.3 Assembler Data Types
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One of the directives is a control directive. Control directives do not have a label
preceding them as do the data directives. ORG is a control directive. Data directives
define the data used by a program. They allocate memory for that data. Data directives
are preceded by a label. The address of the data assigned by the data directive is
assigned to this label; thus the label points to the data in memory.

Figure 7.5 illustrates how each of these directives is used. The source code block starts
with four EQU directives. They are used to assign addresses to three labels PORTB,
DLY10MS and OUTSTR, as well as a byte of data to a data parameter called TEN. The
first ORG directive sets the default address of the machine code to the beginning of
RAM at $0000. Next, an eight-byte memory block is reserved by the use of the RMB
directive. The address of the first of these eight bytes is assigned to the label BUFFER
(BUFFER = $0000). Then, two bytes are reserved and zeroed. The label ZERO is the
address of the first of these two bytes (ZERO = $0008).

A second ORG statement appears in the code that changes the default address memory
address to $0100. At this point in the source the program instructions start. The
program consists of all the instructions up to and including the SWI instruction.
Following the end of the program is a message in memory. The message is assigned to
memory by the FCC directive. FCC converts each character of the message to the ASCII
character codes.
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Directive Syntax Function

BSZ BSZ n Block Store Zeros—Reserves n number of memory bytes and fills
them with zero.

EQU EQU expression Equate—Causes the value of the expression to replace the label in
the listing and machine code files.

FCB FCB n Form Constant Byte—Causes a byte of data n to be assigned to
specific memory locations. Successive bytes can be separated by
commas.

FCC FCC ‘String’ Form Constant Character—Causes ASCII codes to be assigned to
specific memory locations. The characters of String are assigned
to sequential memory locations. The String must appear between
single quotes (‘String’).

FDB FDB n Form Double Byte—same as FCB except double bytes are
formed.

FILL FILL val, n Fill Memory—Causes n memory locations to be filled with
constant val.

ORG ORG address Origin—Causes the following code to be assigned to a memory
block starting with address.

RMB RMB n Reserve Memory Byte—Causes n number of memory locations
to be reserved.

ZMB ZMB n Zero Memory Byte—same as BSZ.

Figure 7.4 AS11 Assembler Directives
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Assembler Arithmetic

Expressions can be used in many places throughout the code. The assembler will
resolve the expression before making the assignment. If the label BUFFER equals the
address $0000, then the expression BUFFER + 1 = $0001. An expression can consist of
labels, constants or the asterisk character (denotes the value of the current memory
address) joined by operators.

The AS11 supports eight operators, as shown in Figure 7.6. Expressions are evaluated
from left to right, and there is no provision for parenthesized expressions. How these
are used is illustrated in the comments of Figure 7.7.
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0001                         * program to print message on the monitor ten times
0002                         * designed to demonstrate the use of various directives
0003
0004 1004                    PORTB   EQU     $1004   ;assign address $1004 to label PORTB
0005 e2e5                    DLY10MS EQU     $E2E5   ;assign address $E2E5 to label DLY10MS
0006 ffc7                    OUTSTR  EQU     $FFC7   ;assign address $FFC7 to label OUTSTR
0007
0008 000a                    TEN     EQU     10      ;assign decimal value 10 to label TEN
0009
0010
0011 0000                            ORG     $0000   ;set default address to $0000
0012
0013 0000                    BUFFER  RMB     8       ;reserve 8 bytes starting at BUFFER
0014 0008 00 00              ZERO    ZMB     2       ;zero 2 bytes following 8 byte BUFFER
0015
0016
0017 0100                            ORG     $0100   ;set default address to $0100
0018
0019 0100 18 ce 00 00        MAIN    LDY     #BUFFER ;load address of buffer into Y
0020 0104 86 0a                      LDAA    #TEN    ;load value of TEN into A
0021
0022 0106 bd e2 e5           LOOP    JSR     DLY10MS ;call subroutine at address DLY10MS
0023 0109 ce 01 19                   LDX     #MSG    ;load address of MSG into X
0024 010c bd ff c7                   JSR     OUTSTR  ;output message to the monitor
0025 010f 18 a7 00                   STAA    0,Y     ;store value of A at Y+0
0026 0112 b7 10 04                   STAA    PORTB   ;store value of A at  PORTB
0027 0115 4a                         DECA            ;decrement counter
0028 0116 26 ee                      BNE     LOOP    ;if not done, do it again
0029
0030 0118 3f                         SWI
0031
0032 0119 57 61 69 74 65 64  MSG     FCC     'Waited 10 ms'
          20 31 30 20 6d 73
0033 0125 04                         FCB     $04     ;EOT character - delimiter

Operator Description

+ Integer addition
- Integer subtraction
* Integer multiplication
/ Integer division
% Integer remainder
& Bitwise AND
| Bitwise OR
^ Bitwise XOR

Figure 7.5 Example Using Directives

Figure 7.6 Operators Defined for Expressions
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Self-Test Questions 7.2

 7.3 Listing Files 

The AS11 has the ability to create a listing file. A listing file is a file that contains
the combination of the original source code and the assembled code. Each line
from the original source code file is included in the listing file, including blank
lines. Each line is numbered to provide a cross-reference to the original source
file. The line numbers are used when reporting error messages. Figure 7.8 illustrates
all the features of a listing file.
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0001 000a TEN EQU 10
0002 0005 FIVE EQU TEN/2
0003 0001 REMAIN EQU TEN%3
0004 0014 TWENTY EQU TEN*2
0005 001e THIRTY EQU TEN+TWENTY
0006 0007 SEVEN EQU TWENTY/2-3
0007
0008 0073 VALUE1 EQU %01110011
0009 0096 VALUE2 EQU %10010110
0010 0012 AND EQU VALUE1&VALUE2
0011 00f7 OR EQU VALUE1|VALUE2
0012 00e5 XOR EQU VALUE1^VALUE2
0013
0014 0100 ORG $0100
0015
0016 0100 BUFFER RMB 8
0017 0108 00 00 ZERO ZMB 2
0018 010a 02 DATA FCB SEVEN%FIVE
0019 010b 65 71 UPCASE FCB $45|$20, $51|$20
0020 010d 53 4a LOCASE FCB $73&$DF, $6A&$DF

Figure 7.7 Assembler Expressions

1. What symbol is used to designate hex numbers in the assembler?
2. What directive is used to define a byte in memory that is the ASCII character

code for a single character?
3. What will be stored in memory by the following expression? SUM = $3B + 78

0001                     *Program to count the number of positive numbers in a
0002                     *list using index mode
0003
0004 0000 4f                      CLRA           ;Clear COUNT
0005 0001 ce 01 d4                LDX    #$01D4  ;Init pointer to first location
0006 0004 a1 00           LOOP    CMPA   $00,X   ;Get a number
0007 0006 25 02                   BLO    OVER    ;If negative, don't count!
0008 0008 a6 00                   LDAA   $00,X   ;Count the positive
0009 000a 08              OVER    INX            ;Increment pointer
0010 000b 8c 01 e8                CPX    #$01E8  ;Is list finished
0011 000e 26 f4                   BNE    LOOP
0012 0010 3f                      SWI

Memory
Address

Line
#

Machine Code

Label Field

Mnemonic

Operand
Field

Comment Field

}

Comments can occupy the entire line if the 
first character of the line is the asterisk "*".

Figure 7.8 Features of a Listing File.
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Each line of the listing file starts with a line number. This number is a decimal number
that is sequential throughout the file. The field contains the address in memory that
the machine code will start for that instruction. Following the address is the actual
machine code. That completes the machine code portion of the file. Everything to the
right of the machine code is the original source code. The original source code includes
the label, the mnemonics, the operands and any comments.

Errors

During the assembly, any errors that occur are included in the listing file. The error
messages are included in the listing prior to the line that caused the error. The line
number of the instruction that caused the error is referenced in the error message.
Errors that are found in the first pass through the assembly process cancel the assembly.
A lesser type of error called a “warning” does not cause the assembly to stop, yet it
should be viewed critically. The source of warnings should be found and the problems
resolved.

The AS11 assembler has the ability to identify a variety of syntax errors, but the logical
and functional errors of the programs must be found and resolved by the programmer.

NOTE: During assembly, errors are reported to the monitor. The line number of
the instruction within the source file that caused the error is provided in the error
message.

Self-Test Questions 7.3

 7.4 “S” Records 

The machine code that is generated by the process of assembling a source file is
contained in a file called an S19 file. The S19 files are designed to simplify data transfer
to the memory after assembly. The S19 format is printable; thus the transfer of data to
memory can be visually monitored and the S records can be modified in a text editor.
The files contain multiple S records.

The S records are essentially character strings that are made up of five fields, as shown
in Figure 7.9. The type field must be “S1” or “S9” for AS11 records for the HC11 EVBU.
The length field contains a two-digit hex value that represents the record length. The
record length is the sum of the number of bytes in the address field and the number
of bytes in the data field plus one for the checksum. The address field contains the
character codes for a 16-bit address. Four characters are needed to represent the four
hex digits that make up the address. The data field contains characters that represent
each hex value in the machine code. Each byte of binary data is encoded as a

1. What is a listing file?
2. What process generates a listing file?
3. Where are error messages placed in the listing file?
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two-character hex value. The first character of each two-character pair represents the
upper four bits, and the second character represents the lower four bits of the machine
code byte. The checksum field contains two characters. These characters are the 1’s
complement of the two-digit hex checksum value. The checksum is the sum of all
characters, starting with the record length through the data field.

There are eight different S record types defined, but only S1 and S9 records are
supported by the EVBU monitor program. S1 records contain program codes and
program data in the data field. The address field of an S1 record contains the four-digit
hex address of where these program codes and data are to reside. The S9 record is a
termination record for a block of S1 records. The address field of an S9 record may
optionally contain the address of the first instruction to be executed after the download
is complete. S9 records contain an empty data field. Figure 7.10 describes all the parts
of S1 and S9 records.

Self-Test Questions 7.4

2 chars 2 chars 4-8 chars n chars 2 chars

Type Length Address Code & Data Checksum

Complete S Record

Figure 7.9 Format of S Records

S1190000368664BD000B4A26FA32393C21F2CE0D010926FD383961

Length = $19 bytes

Type = S1

Type = S9

Length = $03 bytes Address =   $0000

Checksum

Address = $0000

Data
(actual program

codes) Checksum

S9030000F6

Figure 7.10 Examples of S Records

1. What are the two types of S records defined for the AS11 assembler?
2. What are the fields of the S1 record type?
3. How are S9 records used?
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 Summary 

An assembler is a piece of software that converts mnemonic instructions into
operational codes and operands. The source code is the original set of instructions
written by the programmer. The use of labels, comments and white space can make
the source code files more readable. The assembler contains many features that allow
the programmer greater flexibility. These features include support for multiple
data-type constants, directives (instructions to the assembler imbedded in the source
code), the use of symbolic variables within the code called labels, and symbolic
expressions.

The assembly process produces two types of output: listing files and S19 files. The listing
files contain the original source code and the resulting machine code in a line-by-line
format. The S19 files contain S records. The S records are character representations
of the hex code and data that are to be loaded into memory for program execution.
This code and data are packaged in the S record format, which includes some header
fields and a trailing checksum that provide structure and organization to the download
process.

 Chapter Questions 

Section 7.1

 1. How are labels defined in the source code?
 2. What symbols are allowed as labels?
 3. Which of the following is an invalid label: GO_TEAM, DeVry.com, abc123,

Help$, 1_time.
 4. What is the maximum length of a label?
 5. Should comments express the “what” or the “why” regarding the instructions?

Section 7.2

 6. What symbol is used to designate ASCII character values in the assembler?
 7. What directive could be used to define a string of bytes in memory that are the

ASCII characters?
 8. If the label REGS is defined to be equivalent to $1000, what value is loaded by

the following instruction?

        LDX   #REGS+6

Section 7.3

 9. List the fields in the listing file.
10. What kinds of error messages terminate the assembly process?

Section 7.4

11. Essentially, what is an S19 file?
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 Chapter Problems 

1. Modify the following example to increase readability without changing the
program’s function.

      MAIN        LDAA    #$10

      AGAIN       JSR     $E2E5

                  DECA

                  BNE     AGAIN

2. Use directives to define a label for the memory address $1004. Reserve a buffer of
eight bytes of memory starting at address $0180 and a message called BOOT that
says, “Booting up the computer,” and is terminated by the EOT (end of transmis-
sion) character.

 Answers to Self-Test Questions 

Section 7.1
1. Use labels, comments and white space.
2. Full-line comments and comments that follow a line of code.
3. Blank lines can be inserted in the source code between subroutines to physically

separate the functions. This makes it more clear where one function ends and
another starts.

Section 7.2
1. The $ symbol must precede a number for the assembler to interpret the number

as hex.
2. EQU could be used, as in CHARA EQU ’A’. FCC could also be used:  CHARA

FCC ’A’.
3. The assembler will perform the addition operation of the two constants $3B and

$4E (7810). SUM will be equal to $89.

Section 7.3
1. A listing file is an output file from the assembly process. It contains the original

source code and the output machine code.
2. The assembly process generates the listing file by redirecting the terminal output

to a file.
3. Error messages appear immediately prior to the line that contains the error. The

error message refers to the line that caused the error.

Section 7.4
1. S1 and S9 records are used by AS11 and the EVBU.
2. The S1 record type contains five fields: type, length, address, data and checksum.
3. S9 records are used to terminate a transfer of data.
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 Objectives 
Memory Systems

After completing this chapter, you should be able to:

◗ Describe the differences between address and data and explain how
they are used

◗ Demonstrate the concepts of address decoding

◗ Show how the on-chip memory resources are allocated on the HC11

◗ Use the control bits that activate the EEPROM and ROM

◗ Use the control bits that relocate the RAM and system registers in the
memory map

◗ Erase and write EEPROM locations

◗ Connect external memory devices to the HC11 using expanded mode

 Outline 

◗ 8.1 Address Decoding

◗ 8.2 On-chip Memory

◗ 8.3 RAM

◗ 8.4 EEPROM

◗ 8.5 ROM

◗ 8.6 System Registers

◗ 8.7 Memory Expansion

Memory Systems

 c h a p t e r 8

173



 Introduction 

One of the three critical components of a computer system is memory. Without
memory, the computer could not be instructed what to do, because the instructions
are stored in memory locations. Without memory, the computer system would not have
any data to process because the data is also stored in the memory. This chapter focuses
on aspects of the memory on an HC11. It provides a brief theoretical discussion of
addresses and address decoding to broaden the understanding of memory on a
computer system. The function of the three memory types on the HC11 are described:
RAM, EEPROM and ROM. Special features are presented so that the user has a broad
understanding of what capabilities are available, as well how these features can be
implemented.

In addition to the traditional memory components, the HC11 contains a register block
of 64 bytes. These registers are addressed in the same manner as the RAM, EEPROM
and ROM. They also provide critical control of many HC11 system functions. Since this
register block is memory in the broadest sense, a general discussion of the registers is
provided here. Further information is provided in the appendix as well as in other
sections of the text.

Finally, the chapter wraps up the discussion on memory with two sections related to
the application of the memory. The HC11 supports the use of external memory devices.
The concepts and application of the expanded memory capabilities are provided. In
addition, the EEPROM can be used as the boot ROM on the EVBU. The application
of this feature is discussed at the end of the chapter.

This chapter directly correlates to Sections 4 and 3.3.1 of the HC11 Reference Manual and section
4 of the Technical Data Manual.

 8.1 Address Decoding 

When we send a letter, it has to be addressed. Furthermore, electronic mail (e-mail)
also requires an address. An address specifies where the data is being delivered and is
not the data that is being delivered. The letter inside the envelope is the data that is
being delivered. The address to which the letter is being delivered is on the outside of
the envelope.

Addresses typically contain multiple parts. For example, an apartment number is an
address within an apartment complex. If you were invited to visit someone in apartment
number 216, you would probably ask, “In which complex?”  Many complexes have an
apartment 216. The complete address contains all the parts that uniquely identify a
particular apartment. The complete address would include a street name and number,
an apartment number, city, state, and zip code, as shown in Figure 8.1. This complete
address must be unique. It identifies one apartment within a complex, one complex
among the many that are on Dunlap Avenue, one street among the many streets in
Phoenix, one zip code within the many zip codes within the state, and one state within
the many states.
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In a similar fashion, addresses of computer memory locations also can contain several
parts. Often the address parts need to be decoded in order for a particular memory
location to be activated. Just like apartments in the apartment complex, a memory
module may contain many independent storage devices that must have unique
addresses. A single byte of data is stored at a location in a device. There can be multiple
devices within a module. There can be multiple devices and multiple modules within
the computer system; therefore, each one must be uniquely addressed so that the data
gets stored in the proper memory locations, just as the letter gets delivered to the
proper recipient.

Memory addresses, unlike street addresses, are just a bunch of hex digits, as shown in
Figure 8.2. Unless close attention is paid, it can be difficult to discern the various parts,
like module address, device address, and so on.

A good example of the concepts behind memory addressing is illustrated at most
self-storage facilities. Figure 8.3 shows the layout of a typical self-storage facility. This
particular facility has four buildings of storage units. Each building is a column on the
drawing, numbered 1 through 4. The units within each building are numbered from
1 to 16. Each unit has a unique number (or address) that is a function of which building
(column) it is in and its location within the column. The column number always is the
first digit of the complete address. The unit number within the column is designated
by the last two digits of the complete number.
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Tex Nishen
2149 W Dunlap #16
Phoenix, AZ  85021

Figure 8.1 Example of Address

3/24/2000

Dear mom,

I’ve been having a really hard time here at school.
They really challenge me in many ways, but I’m
learning much

I hope all is well with you and daa.  Oh, I forgot, I
need $1000.

Love

Dani
Tex Nishen
2149 W Dunlap #16
Phoenix, AZ  85021

Letter is folded and
placed in envelope
that is addressed

Data is stored in memory at
this memory location

Data
Byte

$29

Letter
(Data)

Envelope
(Address)

$B630

Memory
Address

Figure 8.2 Relationship of Street Address to Memory Address
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The three-digit number is unique for each unit, but the various parts of each number are
not (i.e., the column number is the same for all units in a column). The number for a
specific unit within the facility could be referred to by the specific column and unit
numbers. For example, unit 107 could be referred to as unit 07 on column 1. In this sense,
the unit number is a code that can be easily decoded. The first digit of the code indicates
a column and the last two digits represent the unit on that column. Although the unit
numbers are unique for each storage unit, multiple boxes of “stuff” can be stored in each
unit. The unit number represents where the “stuff” is stored; it is not the “stuff” itself.

Now let’s apply the self-storage facility example to the operation of a memory. Figure
8.4 shows the layout of a simple memory module. This memory module looks a lot like
the layout of the self-storage facility. In this example, there are four columns, and each
column contains 16 storage locations. Each column in the storage facility was a
building; in the memory, each column will be a memory chip. Each storage location
has a unique, four-digit address. In this case, a 16-bit binary address is used. This address
is shown as a four-digit hex number. The right-most digit is used to identify the location
within a chip, and the left-most three digits represent a unique chip number. This
addressing method is typical on many computer systems.

Each storage location can hold more than one data bit. In most computer systems, the
memory is configured for bytes. This means that each memory location can hold eight
binary bits of information. Each time data is written to a particular memory location,
eight bits or an entire byte must be written. In the same manner, each time the data
in a location is read, all eight bits are read simultaneously.

In the self-storage facility example, each unit could hold multiple boxes of stuff.
The unit can even be empty. When the unit is full, a box must be taken out
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Figure 8.3 Addressing of Units in a Self-Storage Facility
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before a new box can be put in. This is never the case with a computer memory.
Electronic memory always contains data, patterns of 1’s and 0’s; never can the
memory location be empty. Often the data in a particular memory, location has
no relevance to an operation, yet it is still there. When the processor writes data
to memory the previous data is overwritten; thus, write operations are destructive.
When the processor reads data from memory, the data is left unharmed. In reality
a read operation takes a copy of the data from the memory location and brings
it into the processor.

Self-Test Questions 8.1

 8.2 On-chip Memory 

Each member of the HC11 microcontroller family has built-in memory. There are slight
differences on each version of the chip, as shown in Figure 8.5. Each version contains
RAM and at least one type of ROM (ROM, EPROM or EEPROM).

Each of these memory components is mapped into the address space. The memory
map is a layout of where each memory block resides within the entire address space.

177

$000

$00F

$00E

$00D

$00C

$00B

$00A

$009

$008

$007

$006

$005

$004

$003

$002

$001

$010

$01F

$01E

$01D

$01C

$01B

$01A

$019

$018

$017

$016

$015

$014

$013

$012

$011

$030

$03F

$03E

$03D

$03C

$03B

$03A

$039

$038

$037

$036

$035

$034

$033

$032

$031

$020

$02F

$02E

$02D

$02C

$02B

$02A

$029

$028

$027

$026

$025

$024

$023

$022

$021

Data
Bus

Figure 8.4 Addressing of a Memory Module

1. What is an address?
2. Can an address contain more than one part?  If so, give an example.
3. Why is the layout of a self-storage facility similar to the layout of a computer

memory?
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This memory map is unique for each version of the HC11. On the HC11, user programs
have no concern for the type of memory being accessed during read operations because
all the memory types allow read operations. The RAM, EEPROM, ROM and external
memory are read in the same manner. Each of these memory devices responds to a
read operation within the constraints of the processor machine cycles. In other words,
the memory during a read operation is at least as fast as the processor can generate
read operations.

The ROM is of course “read only,” so write operations make no change to the ROM
memory locations. The EEPROM is also “read only,” but data can be changed by a
special programming operation. The RAM is general-purpose read-write memory.

The function of the EEPROM programming operation is explained in section 8.4.

Self-Test Questions 8.2
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Part Number RAM EEPROM ROM EPROM Comments

MC68HC11A8 256 512 8K —- Entire HC11 family is built around this version of
the device

MC68HC11A1 256 512 —- —- ‘A8 with ROM disabled
MC68HC11A0 256 —- —- —- ‘A8 with ROM & EEPROM disabled
MC68HC811A8 256 8K + 512 —- —- ‘A8 with EEPROM instead of ROM
MC68HC11E9 512 512 12K —- Enhanced A8—Four IC functions, more RAM

and ROM (used on the EVBU)
MC68HC11E1 512 512 —- —- ‘E9 with ROM disabled
MC68HC11E0 512 —- —- —- ‘E9 with ROM & EEPROM disabled
MC68HC811E2 256 2K —- —- ‘E9 with more EEPROM, no ROM
MC68HC711E9 512 512 —- 12K ‘E9 with EPROM instead of ROM
MC68HC11D3 192 —- 4K —- Budget A8—40-pin package, reduced

functionality
MC68HC711D3 192 —- —- 4K ‘D3 with EPROM instead of ROM
MC68HC11F1 1024 512 —- —- Enhanced A8—non-multiplexed expanded

memory bus independent of PORTB and
PORTC, 68-pin package

MC68HC11K4 768 640 24K —- Enhanced A8—larger address bus, PWM, CS,
more memory, 84-pin package

MC68HC711K4 768 640 —- 24K ‘K4 with EPROM instead of ROM
MC68HC11L6 512 512 16K —- Enhanced E9—more I/O, more ROM, 64- and 68-

pin packages
MC68HC711L6 512 512 —- 16K ‘L6 with EPROM instead of ROM

Figure 8.5 HC11 Memory Configurations (adapted with permission from Motorola)

1. Do all versions of the HC11 microcontroller contain on-chip memory?
2. How much RAM is contained on the K4 version of the HC11?
3. What is the difference between the HC11E9 version and the HC711E9 version?
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 8.3 RAM 

There are two primary types of RAM: static and dynamic. All static memory devices use
a latch as the storage cell. Each bit of binary data is stored in a single latch. The term
static refers to the fact that the state of a latch remains static or unchanged so long as
power is applied or the new data is latched into the device. In contrast, dynamic RAM
(DRAM) devices use a capacitor to store the data bits. Unlike a static device, a capacitor
is constantly discharging or the voltage level is dynamic. All DRAM devices require
refresh circuitry to keep the charge levels on the capacitors at the proper level to retain
the 1’s and 0’s stored in them.

Every version of the HC11 contains SRAM. The HC11E9 contains 512 bytes that are
fully functional read-write memory. The RAM is typically used for the storage of
variables and data during program execution, yet it can also contain executable
programs. In a microcontroller environment, executable programs are usually pro-
grammed into a nonvolatile memory (ROM or EEPROM) so that the programs are not
inadvertently lost from power loss or erasure.

Location of RAM in HC11 Memory Map

The HC11E9 RAM is located by default at $0000–$01FF in the memory map. The user
can move the location of the RAM in the memory map by changing the RAM map
position control bits in the INIT register, as shown in Figure 8.6. These four bits specify
the most-significant hex digit of the 16-bit RAM address in the memory map. The
location can be changed to the start of any 4K memory block, as shown in Figure 8.7.
4K is the maximum number of memory locations that can be addressed with the
remaining 12 bits of the 16-bit address bits (212 = 4K).

NOTE: The INIT register is one of four protected control registers (BPROT, INIT,
OPTION and TMSK2). In order to protect the sensitivity of the bits in the INIT
register, write operations are protected in normal processor modes except under
special circumstances. The INIT register can only be written once and that write
must occur in the first 64 machine cycles after reset.

The ability to relocate the RAM in the address space allows the user to have greater
flexibility with on-chip and off-chip resources. Address decoding circuitry is simplified
if the memory device can be located in the zero page of the memory map. If the on-chip
RAM were remapped to a higher memory area, the 4K zero page of the memory would
be available for external connection.
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INIT b7 b6 b5 b4 b3 b2 b1 b0

$103D RAM3 RAM2 RAM1 RAM0 REG3 REG2 REG1 REG0

RESET 0 0 0 0 0 0 0 1

Figure 8.6 RAM Map Position
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Overlapping Memory Devices

The HC11 also allows the on-chip RAM, register block and ROM to be mapped to the
same address space. They can also be mapped to the same space as an external memory
device. The HC11 has internal address decode circuitry that automatically protects
against memory access conflicts when the memory address space overlaps. When an
internal device is read, the external bus is ignored, even if the external device drives
the bus. Conflicts between on-chip resources are resolved with priority circuitry. The
register block always has the highest priority, then the RAM, followed by the ROM.

On the HC11E9 the register block and RAM could be remapped to the same space,
starting at $D000, as shown in Figure 8.8. In this case, the register block would respond
to any memory accesses from $D000 to $D03F. The RAM and ROM would be disabled
for this range. The RAM would respond to memory accesses from $D040 to $D1FF.
The ROM would be disabled for this range. The ROM would then be active for the
remainder of the 12K space from $D200 to $FFFF.

RAM on the EVBU

The BUFFALO monitor program on the EVBU uses a large portion of the RAM for
the temporary storage of variables, data, the user stack and the interrupt vector jump
table. Sometimes this area of RAM is called the scratch pad because of the way the
BUFFALO monitor program uses it. BUFFALO reads and writes data to and from this
area in a way similar to the way people jot notes on a scrap of paper. Figure 8.9 shows
the layout of the scratch pad RAM area.
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RAM[3:0]
(Binary)

RAM[3:0]
(Hex) Address Range

0000 $0 $0000 - $01FF
0001 $1 $1000 - $11FF
0010 $2 $2000 - $21FF
0011 $3 $3000 - $31FF
0100 $4 $4000 - $41FF
0101 $5 $5000 - $51FF
0110 $6 $6000 - $61FF
0111 $7 $7000 - $71FF
1000 $8 $8000 - $81FF
1001 $9 $9000 - $91FF
1010 $A $A000 - $A1FF
1011 $B $B000 - $B1FF
1100 $C $C000 - $C1FF
1101 $D $D000 - $D1FF
1110 $E $E000 - $E1FF
1111 $F $F000 - $F1FF

Figure 8.7 RAM Mapping
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NOTE: The BUFFALO Monitor program requires that the RAM be mapped in
the default range of $0000–$01FF.

Self-Test Questions 8.3

Register Block

Available RAM

Available ROM

$D000

$D03F
$D040

$D1FF
$D200

$FFFF

ROM Mapped
$D000–$FFFF

RAM Mapped
$D000–$D1FF

Figure 8.8 Overlapping Memory Map

$0000
$002C
$002D
$0041
$0042

RAM Memory MAP

$005F
$0060

$00C3
$00C4

$00FF
$0100

$01FF

Available for user programs

Default user stack

BUFFALO monitor stack

BUFFALO variable space

Interrupt Vector Jump Table

Available for user programs

1. What is the default memory location of the RAM on the EVBU?  Can this location
be changed?

2. How is the RAM used by the BUFFALO monitor program?

Figure 8.9 RAM Contents on EVBU 181
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 8.4 EEPROM 

The HC11 supports on-chip EEPROM. The HC11E9 contains 512 bytes of EEPROM.
The EEPROM is typically used to contain user executable programs, yet can also be
used to store any data that requires more security from loss. The EEPROM on the
HC11E9 is mapped to $B600–$B7FF. Unlike the RAM and the register block, the
EEPROM cannot be remapped to another page of the unused memory. The on-chip
EEPROM can be disabled via the EEON control bit of the CONFIG register. When the
EEPROM is disabled, it is effectively removed from the memory map. Figure 8.10
illustrates where the EEON bit is located in the CONFIG register. When EEON = 1, the
on-chip EEPROM is enabled. When EEON = 0, the on-chip EEPROM is disabled. The
state of the EEON bit after reset is undefined. The E9 version of the chip used on the
EVBU is shipped from Motorola with the CONFIG register set to $0F.

NOTE: As the CONFIG register is implemented in EEPROM, its contents remain
unchanged after power loss; however, it is a separate 8-bit EEPROM. Other than
the EEON bit, the CONFIG register has no connection to the EEPROM memory
block.

Operation of the EEPROM

EEPROM by nature acts like a ROM, thus it is nonvolatile. During read operations, it
acts like any memory location; however, the EEPROM requires special handling when
data is being written to an EEPROM memory location. Write operations to an EEPROM
location can only be performed by programming a location in the EEPROM.

Most EEPROM devices require special programming voltages and often require special
hardware fixtures designed specifically for write operations. The EEPROM on the HC11
is designed so that none of the special hardware is needed. It can be reprogrammed
via software control without the use of external circuitry or a special power supply.

The EEPROM on the HC11 is logically arranged in 32 rows of 16 bytes each. The first
row occupies the locations $B600–$B60F, the second row occupies $B610–$B61F, and
so on. Before a location in the EEPROM is written (programmed), it should be erased
to assure that all bits in that location are high. The process of writing data into a location
of the EEPROM removes fuse connections from the fuse map for all zeros in the data.
Ones in the data cause the fuses to be left in place. Thus, all locations need to be
connected prior to the write operation.

The EEPROM Programming register (PPROG) contains seven bits that control the
operation of the EEPROM on the HC11. They layout of this register is shown in Figure

CONFIG b7 b6 b5 b4 b3 b2 b1 b0

$103F − − − − NOSEC NOCOP ROMON EEON

RESET 0 0 0 0 U U 1 U

Figure 8.10 EEON Control Bit in the CONFIG Register
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8.11. The ODD and EVEN control bits allow all locations in either the odd or the even
half of the EEPROM array to be programmed with the same data simultaneously. They
are used only during factory testing of the EEPROM. Bit 5 is unused and is always read
as a zero.

EEPROM locations can be erased one at a time, in rows of 16 locations or all 512 bytes
at once. The BYTE and ROW bits are used to determine the type of erase to perform
when the ERASE bit is set, as shown in Figure 8.12. When ERASE = 1, the EEPROM
can be erased. The BYTE controls single-byte erasures, and the ROW bit determines
whether a ROW or the entire EEPROM will be erased. When ERASE = 0, the EEPROM
is configured for normal read or programming mode.

The EEPROM Latch control bit (EELAT) controls the operations of the EEPROM.
When EELAT = 0, the EEPROM is configured for normal reads. When EELAT = 1, the
EEPROM is configured for programming or erasing. When EELAT = 1, the EEPROM
is effectively removed from the memory map; thus it is not accessible during the
relatively long time it requires to complete the erase or write operations. The
relationship of the ERASE and EELAT bits is shown in Figure 8.13.

The LSB of the PPROG register is the EEPROM Programming Voltage Enable (EPGM
or EEPGM in some literature). It is used to switch on the programming voltage to the
EEPROM array, which is necessary for the erase and write operations. The HC11 uses
an internal charge pump to build up the programming voltage so that an external

PPROG b7 b6 b5 b4 b3 b2 b1 b0

$103B ODD EVEN − BYTE ROW ERASE EELAT EPGM

RESET 0 0 0 0 0 0 0 0

Figure 8.11 PPROG Register

BYTE ROW
Erase Action
when ERASE = 1

0 0 Bulk Erase (Entire array)
0 1 Row Erase (16 bytes)
1 X Byte Erase

Figure 8.12 EEPROM Erase Options
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ERASE EELAT
Function
when EPGM = 1

0 0 EEPROM Read
0 1 EEPROM Write
1 0 Undefined
1 1 EEPROM Erase

Figure 8.13 ERASE and EELAT Functions
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programming voltage is not required. This charge pump is activated when EELAT = 1.
The charge pump must be activated before the HC11 will allow the programming
voltage to be applied to the EEPROM array. The internal circuitry prevents the EPGM
bit from being set unless the EELAT bit was previously set.

NOTE: The EELAT bit must be set in an operation prior to the operation that
sets the EPGM bit. This is required to allow sufficient time for the internal charge
pump to raise the programming voltage to the proper level. If the user attempts
to set the EELAT and EPGM bits in the same operation (when they were both
previously cleared), neither bit will be set.

Erasing the EEPROM

The EEPROM must be erased to assure all bits are 1’s prior to a write operation. A
write operation can only clear 1’s; thus, bits that are already zero in an EEPROM
location cannot be set to one with the write operation. Although there are three options
available to erase EEPROM locations, the same process must be followed. Figure 8.14
lists the steps necessary to successfully erase EEPROM locations.

The code segments shown in Figure 8.15 illustrate how the procedure from Figure 8.14
can be implemented to erase the entire EEPROM, a row of 16 bytes in the EEPROM
or a single location within the EEPROM. The three examples illustrate that there are
only slight differences in the code, but significant differences in the results.

NOTE: The CONFIG register is implemented in EEPROM; however, it has no
relationship to the EEPROM memory block. Therefore, none of the EEPROM
code segments affects the contents of the CONFIG register.

Writing to the EEPROM

The EEPROM write operation is referred to as EEPROM programming. It follows a
process similar to the steps of an erase operation, which is outlined in Figure 8.16.

Step Description

1 Set the EELAT and ERASE bits of the PPROG register to prepare the EEPROM for erasure
and select the desired erase operation (BYTE, ROW) as described in Figure 8.12.

2 Write any data to the EEPROM. The write operation is used only to indicate to the
EEPROM control hardware which locations are to be erased; the value of the data is
irrelevant. If the entire EEPROM is selected, any location within the EEPROM can be
selected. If a row is being erased, then the location must be within the target row. A
single location must addressed for it to be erased.

3 Set the EPGM bit in the PPROG register to start the erasure.
4 Wait 10 ms for the erasure to complete. (In some cases, the required delay may be

longer than 10 ms.)
5 Clear all the bits in the PPROG register to deactivate the erase function.

Figure 8.14 Steps Necessary to Erase EEPROM Locations
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During a write to the EEPROM, the ROW and BYTE bits of the PPROG register are
not used. Data must be written to the EEPROM one byte at a time. As the erase
operation, the write operation requires a 10 ms delay to allow the programming to
complete. The code segment shown in Figure 8.17 illustrates one method that can be
used to write a single byte of data to the EEPROM.

BULKE   LDAB    #%00000110    ;ERASE=1, EELAT=1
        STAB    $103B         ;Activate BULK erase
        STAB    EEADD         ;Write any data to any EEPROM address to
                              ;  initialize erase operation
        LDAB    #%0000111     ;ERASE=1, EELAT=1, EPGM=1
        STAB    $103B         ;turn on programming voltage
        JSR     DLY10MS       ;Wait 10 ms
        CLR     $103B         ;ERASE=0, EELAT=0, EPGM=0

ROWE    LDAB    #%00001110     ;ROW=1, ERASE=1, EELAT=1
        STAB    $103B         ;Activate BULK erase
        STAB    EEADD         ;Write any data to EEPROM address in row
                              ;  to initialize erase operation of row
        LDAB    #%00001111    ;ROW=1, ERASE=1, EELAT=1, EPGM=1
        STAB    $103B         ;turn on programming voltage
        JSR     DLY10MS       ;Wait 10 ms
        CLR     $103B         ;ROW=0, ERASE=0, EELAT=0, EPGM=0

BYTEE   LDAB    #%00010110    ;BYTE=1, ERASE=1, EELAT=1
        STAB    $103B         ;Activate BULK erase
        STAB    EEADD         ;Write any data to any EEPROM address to
                              ;  initialize erase operation of address
        LDAB    #%00010111    ;BYTE=1, ERASE=1, EELAT=1, EPGM=1
        STAB    $103B         ;turn on programming voltage
        JSR     DLY10MS       ;Wait 10 ms
        CLR     $103B         ;BYTE=0, ERASE=0, EELAT=0, EPGM=0

c) Byte Erase

b) Row Erase

a) Bulk Erase

Figure 8.15 Examples of Code for Erasing the EEPROM

Step Description

1 Set the EELAT bit and clear the ERASE bit of the PPROG register to prepare the
EEPROM to receive data.

2 Write data to the EEPROM location. The write instruction does not accomplish the
physical write but indicates to the EEPROM control hardware which location is
targeted to receive the data that is provided.

3 Set the EPGM bit in the PPROG register to start the write.
4 Wait 10 ms for the write to complete. (In some cases, the required delay may be longer

than 10 ms.)
5 Clear all the bits in the PPROG register to deactivate the write function.

Figure 8.16 Steps Necessary to Write to an EEPROM Location

WRITEE  LDAB    #%00000010    ;EELAT=1
        STAB    $103B         ;Activate BULK erase
        STAB    EEADD         ;Write any data to any EEPROM address to
                              ;    initialize write operation for that address
        LDAB    #%00000011    ;EELAT=1, EPGM=1
        STAB    $103B         ;turn on programming voltage
        JSR     DLY10MS       ;Wait 10 ms
        CLR     $103B         ;BYTE=0, ERASE=0, EELAT=0, EPGM=0

Figure 8.17 Example of Code for Writing a Byte to the EEPROM
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EEPROM Clock

If the E clock is below 2 MHz, the 10 ms time delay may need to be increased to assure
proper operation during EEPROM writes. If a longer delay is not an acceptable option,
then the Clock Select (CSEL) bit of the OPTION register may have to be set. Figure
8.18 illustrates the location of the CSEL bit in the OPTION register. When CSEL = 1,
the on-chip RC oscillator will drive the programming voltage (VPP) instead of the E
clock. When CSEL = 0, the E clock is used as the main clock for the EEPROM
programming system. The CSEL bit is cleared after reset.

NOTE: CSEL is used to determine the charge pump clock source for the A/D
conversion hardware as well as the EEPROM programming hardware. Setting
CSEL for the EEPROM function automatically reconfigures the A/D function.

EEPROM Security

The HC11 provides a mechanism to protect the contents of the EEPROM from inadver-
tent writes or erasure. The Block Protect bits for the EEPROM (BPRT3–BPRT0) are
located in the Block Protect register (BPROT), as shown in Figure 8.19. The BPRT3–
BPRT0 bits control this EEPROM protection function. When these bits are cleared,
programming and erasure of blocks of the EEPROM memory area is allowed. When
these bits are set, programming and erasure are inhibited. The bits are set after reset and
must be cleared by user software to allow EEPROM programming and erasure.

Each bit controls a block of the EEPROM, as shown in Figure 8.20. Each bit protects
a unique block of the EEPROM. The blocks are different sizes, which allows greater

OPTION b7 b6 b5 b4 b3 b2 b1 b0

$1039 ADPU CSEL IREQ DLY CME − CR1 CR0

RESET 0 0 0 1 0 0 0 0

Figure 8.18 Clock Select for EEPROM system.

BPROT b7 b6 b5 b4 b3 b2 b1 b0

$1035 − − − PTCON BPRT3 BPRT2 BPRT1 BPRT0

RESET 0 0 0 1 1 1 1 1

Figure 8.19 EEPROM Block Protect Control Bits

Figure 8.20 EEPROM Protection Blocks

Bit Name Block Size Block Address Range

BPRT0  32 $B600 - $B61F
BPRT1  64 $B620 - $B65F
BPRT2 128 $B660 - $B6DF
BPRT3 288 $B6E0 - $B7FF
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versatility. When a single block is not protected, it is available for normal programming
and erasure, even though the remaining blocks are protected.

NOTE: The BPROT register is one of four protected control registers (BPROT,
INIT, OPTION and TMSK2). In the normal processor modes the bits in the
BPROT register can be cleared only in the first 64 machine cycles after reset. The
bits can be set at anytime during program operation. BUFFALO clears the BPROT
register immediately following reset.

EEPROM on the EVBU

The BUFFALO monitor program on the EVBU does not use the EEPROM. All 512
bytes are available for user programs and data. Although the BUFFALO monitor
program does not use the EEPROM, it provides five subroutines to program or erase
the EEPROM. EEWRIT is used to write a byte of data to a particular location in the
EEPROM. EEBYTE is used to erase a single location, and EEBULK is used to erase the
entire EEPROM. Another routine called WRITE will write data to any memory location,
including addresses in the EEPROM; if the EEPROM location is not erased, a byte-erase
operation will be performed before the write is completed. The fifth subroutine is a
10 ms delay called DLY10MS.

WRITE, EEWRIT, EEBYTE and EEBULK use the X register to specify the memory
location to process. WRITE and EEWRIT use the A register to contain the data that is
to be written to the location specified in the X register. The 10 ms delay is automatically
called by each of these subroutines, eliminating the need for the user to manage the
required 10 ms delay. These subroutines do not affect any other registers.

Refer to Figure 6.16 for a brief explanation of the EEPROM subroutines as well as their location
in BUFFALO.

Self-Test Questions 8.4

 8.5 ROM 

The primary use of the on-chip ROM is storage of user’s application programs. These
programs cannot be changed, because they are programmed in the unit during the
manufacturing process. Each series of the HC11 family of microcontrollers has a
development version that has EPROM or EEPROM in lieu of ROM. This allows the
user to develop and modify the programs on a single device. When the programs are
debugged, an order can be placed for a high-quantity production version that will
contain the user programs in ROM.

1. Describe the various methods available to erase the EEPROM.
2. Briefly, describe the steps required to write to the EEPROM.
3. What can be done to protect the contents of the EEPROM from accidental write

or erasure?
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The on-chip ROM can be disabled by a control bit in the CONFIG register, as shown
in Figure 8.21. The ROMON control bit is set after reset enabling the on-chip ROM.
When the ROMON bit is cleared, the on-chip ROM is disabled. When the on-chip ROM
is disabled, none of the memory space is used for ROM. The user typically disables the
on-chip ROM when the user programs are located in an external memory chip.
Versions of the HC11 that do not contain ROM, such as the M68HC11E1, still have
on-chip ROM, but it is disabled permanently. The ROM is disabled because the
ROMON is permanently set to zero in the CONFIG register.

ROM on the EVBU

The BUFFALO monitor program on the EVBU is located in the ROM. It occupies the
memory space from $E000 to $FFFF. The first 4K page of ROM from $D000 to $DFFF
is unused and unavailable. The Interrupt Vector Table occupies the last 42 bytes of the
addressable memory space, $FFD6–$FFFF, located in ROM. The BUFFALO is pro-
grammed into the ROM memory during manufacturing; thus it cannot be changed by
the user.

See chapter 9 for further information on interrupts and the use of the interrupt vector table.

Self-Test Questions 8.5

 8.6 System Registers 

The HC11 has a 64-byte block of the memory space for system registers. These registers
contain control and status bits for the HC11 hardware systems. In addition, many of
the registers contain data that is used by the hardware systems. The registers act as an
interface between the user software and the on-chip hardware systems.

The HC11E9 system register block is located by default at $1000–$103F in the memory
map. The user can move the location of the registers in the memory map by changing
the REG map position control bits in the INIT register, as shown in Figure 8.22. These
four bits specify the most significant hex digit of the 16-bit register block address in
the memory map. The location can be changed to the start of any 4K memory block,
as shown in Figure 8.23. 4K is the maximum number of memory locations that can be
addressed with the remaining 12 bits of the 16-bit address bits (212 = 4K).

CONFIG b7 b6 b5 b4 b3 B2 b1 b0

$103F − − − − NOSEC NOCOP ROMON EEON

RESET 0 0 0 0 U U 1 U

Figure 8.21 ROMON Control Bit

1. When are the programs loaded into the ROM memory?
2. Can the on-chip ROM be deactivated? If so, how?
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NOTE: The INIT register is one of four protected control registers (BPROT, INIT,
OPTION and TMSK2). In order to protect the sensitivity of the bits in the INIT
register, write operations are protected in normal processor modes except under
special circumstances. The INIT register can be written only once and that write
must occur in the first 64 machine cycles after reset.

The ability to remap the register block address space allows the user to have
greater flexibility between on-chip and off-chip resources. Address decoding
circuitry is simplified if the memory device can be located in the zero block of
the memory map. If the system register block were remapped to a higher memory
area, the 4K block of the memory ($1000–$1FFF) would be available for external
connection.

Further information regarding the entire register block is provided in Appendix 18.

INIT b7 b6 b5 b4 b3 b2 b1 b0

$103D RAM3 RAM2 RAM1 RAM0 REG3 REG2 REG1 REG0

RESET 0 0 0 0 0 0 0 1

Figure 8.22 Register Map Position

REG[3:0]
Binary

REG[3:0]
Hex Address Range

0000 $0 $0000 - $003F
0001 $1 $1000 - $103F
0010 $2 $2000 - $203F
0011 $3 $3000 - $303F
0100 $4 $4000 - $403F
0101 $5 $5000 - $503F
0110 $6 $6000 - $603F
0111 $7 $7000 - $703F
1000 $8 $8000 - $803F
1001 $9 $9000 - $903F
1010 $A $A000 - $A03F
1011 $B $B000 - $B03F
1100 $C $C000 - $C03F
1101 $D $D000 - $D03F
1110 $E $E000 - $E03F
1111 $F $F000 - $F03F

Figure 8.23 Register Mapping
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Self-Test Questions 8.6

 8.7 Memory Expansion 

The HC11 has two processor modes that are used for normal operation, single-chip
mode and expanded mode. The expanded mode allows the HC11 to address memory
devices that are not included on the HC11 chip. The single-chip mode does not extend
the address and data busses to external devices, therefore single-chip mode designs are
limited to the on-chip memory.

In expanded mode, the HC11 needs an external address bus, data bus and control
lines to interface to the off-chip devices. This mode converts PORTB and Port C into
a multiplexed data and address bus. PORTB becomes the upper byte (A15–A8) of the
HC11 16-bit address bus, and Port C becomes the lower byte of the 16-bit address bus,
which is time multiplexed with the 8-bit data bus (AD7–AD0). In other words, Port C
is used for both address and data. In addition, the strobe A (STRA) and strobe B
(STRB) control lines become the address strobe (AS) and read/write (R/W) control
for the external memory devices.

During the first half of each bus cycle, the address signals A7–A0 are present on the
lower half of the time multiplexed address/data bus. During the second half of the bus
cycle, these pins are used as a bidirectional data bus. The AS signal is used as an active
high latch enable. When AS is high, address information is allowed through the latch.
When AS is low, the address information is latched. It remains unchanged until AS
returns to the high state. The R/W signal indicates the direction of data. It is high
during read cycles and low during write cycles. The E clock is used to synchronize these
operations.

The schematic in Figure 8.24 illustrates the hardware connects necessary for a basic
expanded-mode system. Expanded mode is selected by connecting both MODA and
MODB control lines to VDD. The address latch is present on the low-order byte of the
address/data bus. The latch enable is connected to the AS signal. The output of the
address latch forms the low-order byte of the address bus when the address/data bus
is time multiplexed for data transfer. The R/W control line and E clock are connected
directly to the address decode circuitry. The decode circuitry generates the unique chip
select, output enable, read and write signals for the three external chips.

The address decoding used in this example is accomplished by a 74HC138 and a
74HC373 chip. The lower 13 address bits (A12–A0) are connected directly to each of
the three chips. On these 13 address lines, 8K addresses can be created to uniquely
address each location in the memory device. The other three address lines, A15, A14,
and A13 are decoded to activate the external chip, as shown in Figure 8.25. The RAM
chip responds to the fixed address range $2000–$3FFF.

1. What is the default memory location of the system register block on the EVBU?
Can this location be changed?

2. What is the purpose of the system register block?
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Self-Test Questions 8.7

1 µF 0.01 µF

10M

8.0 MHz

18 pF

18 pF

10 µF

vDD

vDD

vDD

vDD

vDD

vSS

PA2/IC0

MC68HC11A8

PA1/IC2
PA0/IC3

10K TYP

PA7/PAI/OC1

PD0/RxD

MODA/LIR

IRQ

XIRQ

RESET

EXTAL

XTAL

RESET

MC34064

GND

IN

MODB/VSTBY

PD1/TxD
PD2/MISO
PD3/MOSI
PD4/SCK

PD5/SS

PE0/AN0

1K

1 µF

vDD

vDD
vDD

4.7K
CONNECT

JUMPER FOR
TEST MODE

4.7K

4.7K

4.7K

4.7K

PE1/AN1
PE2/AN2
PE3/AN3
PE4/AN4
PE5/AN5
PE6/AN6

vRH

vRL
PE7/AN7

PA6/OC2/OC1

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

D0

DATA BUS

D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

AS
74HC373

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7

A0
A1
A2
A3
A4
A5
A6
A7

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12

WE
RD

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12

10K TYP

D0
D1
D2
D3
D4
D5
D6
D7

Y0
Y1
Y2
Y3
Y4
Y5G
Y6
Y7

74HC138

8K X 8 RAM

A0
A1
A2

G1
G2

A15

A14
A13
R/W

E

D0
D1
D2
D3
D4
D5
D6
D7

D0
D1
D2
D3
D4
D5
D6
D7

OELE
R/W

E

AS
R/W

E

A8
A9

A10
A11
A12
A13
A14
A15

A8
A9

A10
A11
A12
A13
A14
A15

CONTROL BUS
A

D
D

R
E

S
S

 B
U

S

PA4/OC4/OC1
PA5/OC3/OC1

PA3/OC5/OC1−

S
Y

S
T

E
M

P
O

W
E

R

Figure 8.24 Basic Expanded-Mode Hardware Connections (adapted with permission
from Motorola)

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1

0 0 1

Control bits to the
'138 decoder

Address bits to
the RAM chip

$2 $0 $0 $0

$3 $F $F $F

First address
of RAM

Last address
of RAM

Figure 8.25 Address Decoding for the Expanded Memory

1. What functions are performed by STRA and STRB in expanded mode?
2. How are the address and data busses created in expanded mode?
3. What role does address decoding play when the HC11 is configured for expanded

mode?
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 Summary 

Memory is a critical part of all computer systems. All memory requires memory
addresses that act as pointers to specific memory locations. The addresses must be
decoded so that the individual memory devices can be addresses without the other
devices conflicting. The HC11E9 contains 512 bytes of RAM, 512 bytes of EEPROM
and 12K bytes of ROM.

The RAM is general-purpose volatile memory that is available for temporary storage of
data and programs. By default, it is located at $0000–$01FF of the memory map. It can
be moved to the beginning of any 4K block within the 64K memory map. A large
portion of the RAM is used by the BUFFALO monitor program on the EVBU and is
not available to the user. In other respects it acts like ROM. It is located at $B600–$B7FF
in the memory map. The entire EEPROM is available to the user for programs and
data. The ROM is burned during the manufacturing process. It contains the BUFFALO
monitor program and interrupt vectors. It is located at $D000–$FFFF within the
memory map. The EEPROM and ROM cannot be relocated within the memory map,
but they can be deactivated with control bits in the CONFIG register.

In addition to the traditional memory components, the HC11 contains a register block of
64 registers. These registers are addressed in the same manner as the RAM, EEPROM and
ROM. They also provide critical control of many HC11 system functions. Further informa-
tion about the registers is provided in the appendix, as well as in other sections of the text.

 Chapter Questions 

Section 8.1
 1. Why is each building on a street required to have a unique address number?
 2. How many bits are typically stored at each memory location?
 3. Can an electronic memory ever be empty?

Section 8.2
 4. Which type of memory is present on all versions of the HC11?
 5. How much RAM is contained on the A8 version of the HC11?
 6. Why are there four versions within the “A” series of the HC11?

Section 8.3
 7. What is the main difference between static and dynamic RAM?
 8. What type of RAM is present on the HC11?
 9. What value must be loaded into the INIT register to relocate the RAM to

$D000–$D1FF and leave the register block in the default location?
10. What happens if the on-chip RAM is mapped to the same space that is occupied

by the ROM?
11. Does the BUFFALO monitor program require RAM?

Section 8.4
12. Can the on-chip EEPROM be deactivated?  If so, how?
13. What is the name of the control register used for programming the EEPROM?

What is the default location of this register in the memory map?
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14. Why does the EEPROM require the system clock?
15. Does BUFFALO use the EEPROM?
16. Fully explain what will happen if the control word %00000110 is written to the

PPROG register.

Section 8.5
17. What type of information is typically loaded into the on-chip ROM?
18. What occupies the last 42 bytes of the ROM on the HC11?
19. Where is BUFFALO located in the ROM?

Section 8.6
20. How many bytes are occupied by the system registers on the HC11?
21. What value must be loaded into the INIT register to relocate the system registers

to $B000–$B03F and leave the RAM in the default location?
22. What happens if the on-chip system registers are mapped to the same space

that is occupied by the RAM?
23. Does the BUFFALO monitor program require the memory registers?

Section 8.7
24. Can additional memory be added to the HC11?
25. What hardware processor mode is required to access external memory devices?
26. How are address and data sent to the external memory devices?

 Chapter Problems 

1. Write a small program that will load the data $AA into EEPROM memory location
$B63D.

2. Write a program to copy the contents of $0000–$000F into the EEPROM at
$B730–$B73F. Use row erase to erase those two rows of the EEPROM before the
copy operation. Write all code from scratch.

3. Rewrite the program from problem 2, utilizing the BUFFALO subroutines for all
EEPROM programming tasks.

 Answers to Self-Test Questions 

Section 8.1
1. An address is a unique identifier for a memory location.
2. Yes. Addresses can contain more than one part. In the same way a street address

contains a number, a street name and an apartment number, the addresses on
computers contain multiple parts. The address $1002 might represent unit #$02
in building $10.

3. Self-storage facilities contain rows of buildings, where each building contains
more than one storage unit. Computer memories often contain more than one
device, where each device contains multiple storage locations.

Section 8.2
1. Yes. All versions contain at least some RAM.
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2. The HC11K4 contains 768 bytes of RAM.
3. The HC711 versions contain EPROM; the equivalent HC11 versions contain ROM.

Section 8.3
1. The default EVBU RAM location is $0000. This location can be changed by writing

to the upper four bits of the INIT register.
2. The BUFFALO monitor program uses the RAM for temporary storage of variables

and data needed by the monitor program. The Vector Jump Table is also
contained in RAM.

Section 8.4
1. The EEPROM can be erased one byte at a time (Byte Erase), one row of 16 bytes

at a time (Row Erase) or the entire EEPROM (Bulk Erase).
2. Erase the location. Set the EELAT bit in the PPROG to activate the charge pump.

Perform a write operation to tell the EEPROM hardware which location will be
accessed. Set the EPGM bit to start the programming of the location. Wait 10 ms.
Clear the PPROG register.

3. Write to the Block Protect Control bits in the BPROT register.

Section 8.5
1. ROM must be masked during the manufacturing process.
2. Yes, by the ROMON bit in the CONFIG register.

Section 8.6
1. The default memory location of the registers is $1000–$103F. This location can be

changed by writing to the lower four bits of the INIT register.
2. The system register block contains data, control and status registers used by the

on-chip hardware resources.

Section 8.7
1. They become the address strobe (AS) and read/write (R/W) control lines for

external memory.
2. PORTB is converted into the upper byte of the address bus. Port C becomes the

lower byte of the address byte time multiplexed as the data bus.
3. Address decoding is necessary to properly select the external memory device

within the memory space of the HC11.
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 Objectives 
General P urp ose I/O

After completing this chapter, you should be able to:

◗ Write a code to output data onto the Port B pins

◗ Program the data direction of the Port C bits

◗ Use Port C for input and output of data

◗ Input and output data using simple strobed mode

◗ Input data from an external system using full-input handshaking

◗ Output data to an external system using full-output handshaking

◗ Program the direction of the Port D pins and use them for digital I/O

◗ Receive parallel data at the HC11 from an external device via Port E

 Outline 

◗ 9.1 Port B—Output Only

◗ 9.2 Port C—Programmable I/O

◗ 9.3 Bit-Level Operations

◗ 9.4 I/O with Handshaking

◗ 9.5 General-Purpose I/O on Other Ports

 Introduction 

As a microcontroller, the HC11 will be connected to sensors and controls. It will collect
data from the sensors and output signals to the controls to manage a machine process
or the function of a device. These external devices are connected to the HC11 via ports.

General Purpose I/O

 c h a p t e r 9
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The ports provide an interface between the processor and the outside world and
support a variety of input/output functions.

There are five Input/Output (I/O) ports on the HC11. Each of these ports supports
8 bits of general-purpose digital I/O, except PORTD, which has only 6 bits defined.
There are 11 dedicated input pins, 11 dedicated output pins and 16 bidirectional pins,
as shown in Figure 9.1. Many features from the Motorola PIA and ACIA peripheral
chips have been integrated into these five ports.

This chapter directly correlates to section 7 of the HC11 Reference Manual and Section 6 of the
Technical Data Manual.

 9.1 Port B—Output Only 

Port B is a general-purpose digital output port. It consists of an 8-bit data register and
eight Port B pins. It has the job of outputting the digital data contained in the Port B
register (PORTB) to the output pins in parallel form, as shown in Figure 9.2. In
single-chip mode, the function of the Port B pins is limited to digital I/O. However, in
expanded mode, the Port B pins are used as the upper byte of the 16-bit external
address bus.

The Port B register (PORTB) is located in the 64-byte register block. It is accessed via
read and write operations to memory address $1004, as shown in Figure 9.3. Data is
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Port Input Pins Output Pins
Bidirectional
Pins Shared Functions

Port A 3 3 2 Timer
Port B - 8 - High-Order Address in Expanded Mode
Port C - - 8 Low-Order Address and Data Bus in Expanded

Mode
Port D - - 6 SCI and SPI
Port E 8 - - A/D Converter

Figure 9.1 I/O Port Capabilities (courtesy of Motorola)

b0b1b2b3b4b5b6b7

HC11 Internal Data bus

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 Port B Pins

Port B Register
(PORTB - $1004)

Figure 9.2 Port B Function Block Diagram
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output to the Port B pins following a write to the port B register. A read of the Port B
register returns the last data written to the register and has no effect on the register
contents or on the data present on the Port B pins. The Port B pins are named
PB7–PB0. The Port B register and the Port B pins are cleared after reset.

Example 9.1

Problem: Write a program that will add the data stored at locations $0000 and
$0001 and output the result on the port B pins. Start the program at location $0100.

0000  81 22

Solution: Since the input data is located in memory locations that start with $00,
the direct mode can be used to load and add them. The result can be directly stored
to PORTB by writing to location $1004. When the data is written to PORTB, the
data appears on the Port B output pins. Using transfer notation, this program
accomplishes the following:

($0000) + ($0001) → $1004, $81 + $22 = $A3 → $1004

                ORG   $0100 ;Start program at $0100

0100  96 00     LDAA  $00   ;Get first number ($0000) → A

0102  9B 01     ADDA  $01   ;Add 2nd to 1st (A) + ($0000) → A

0104  B7 10 04  STAA  $1004 ;Store result (A) → ($1004)

0107  3F        SWI         ;Stop

Self-Test Questions 9.1

 9.2 Port C—Programmable I/O 

Port C is a general-purpose bidirectional port. It consists of an 8-bit data register
(PORTC), an 8-bit data direction register (DDRC) and eight Port C pins. It has the job
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PORTB b7 b6 b5 b4 b3 b2 b1 b0

$1004 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

DIGITAL I/O Out Out Out Out Out Out Out Out

RESET 0 0 0 0 0 0 0 0

Figure 9.3 Port B Register (PORTB) Pin Assignments

1. What is the address of the Port B register?
2. Is Port B an input or an output port?
3. What are the names of the Port B pins?
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of outputting the digital data contained in the Port C register (PORTC) to the output
pins or inputting the data from the Port C pins to the Port C register. Each operation
is done in parallel form, as shown in Figure 9.4. The DDRC register controls the
direction of the Port C register bits. Each bit in the DDRC controls the direction of
the corresponding bit in the Port C register. If DDRCx = 0, the corresponding bit in
the Port C register is configured as an input. If DDRCx = 1, the corresponding bit in
the Port C register is configured as an output. Any combination of input and output
functions can be programmed without regard to the order of the bits.

The Port C and DDRC registers are located in the 64-byte register block. They are
accessed via memory addresses $1003 and $1007 respectively. Data is output to the Port
C pins following a write to the Port C register. Bits that have been programmed for
input operation are unaffected by a write operation. A read of the Port C register
returns the data present on the Port C pins that have been programmed as inputs. The
last data written to the output bits of the register will be read back. Read operations
have no effect on the register contents or on the data present on the Port C pins. The
Port C pins are named PC7–PC0, as shown in Figure 9.5. The Port C register is in an
undefined state after reset. The DDRC register is cleared after reset, which causes the
Port C register to be configured as eight input bits.
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b0b1b2b3b4b5b6b7

DDRC7 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0

HC11 Internal Data bus

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

Data Direction Register
for Port C

(DDRC - $1007)

Port C Register
(PORTC - $1003)

Port C Pins

Figure 9.4 Port C Functional Block Diagram

PORTC b7 b6 b5 b4 b3 b2 b1 b0

$1003 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

DIGITAL I/O In/Out In/Out In/Out In/Out In/Out In/Out In/Out In/Out

RESET U U U U U U U U

DDRC b7 b6 b5 b4 b3 b2 b1 b0

$1007 DDRC7 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0

RESET 0 0 0 0 0 0 0 0

Figure 9.5 Port C Pin Assignments and Data Direction Control Register
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Example 9.2

Problem: Write a program that will program the Port C pins for input, read the data
from PORTC and output it to PORTB. Start the program at location $0120.

Solution: Since the Port C pins are programmable, a control word must be written
to the DDRC register to program the pins. 0’s in the control word cause the
corresponding Port C pins to be input pins. The first thing done in the program is
to clear the DDRC register, which programs the Port C pins as inputs. Then PORTC
is read, and this data is directly written to PORTB.

                 ORG    $0120 ;Start program at $0120

0100  7F 10 07   CLR    $1007 ;Program Port C for Input

0103  D6 10 03   LDAB   $1003 ;Get Port C data ($1003) → A

0106  F7 10 04   STAB   $1004 ;Store to Port B (A) → ($1004)

0109  3F         SWI          ;Stop

Example 9.3

Problem: Build the control word and write the lines of code necessary to program
the upper nibble of Port C for input and the lower nibble for output.

Solution: 0’s in the control word cause the corresponding Port C pins to be input
pins and 1’s cause the corresponding pins to be outputs. Thus, the control word is
%00001111. This value must be written to the DDRC register. The binary format is
used to show the specific programming of each bit.

86 0F       LDAA    #%00001111  ;Build DDRC control word

B7 10 03    STAA    $1003       ;Program Port C

Self-Test Questions 9.2

 9.3 Bit-Level Operations 

The HC11 contains several instructions that are concerned with groups of bits rather
than bytes or 16-bit words. These instructions provide the ability to change individual bits
within data bytes, perform comparison operations at a bit level and cause branching
based on the condition of individual bits. The discussion of these instructions is
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1. Can each bit of Port C be programmed independently of the other bits?
2. What is the name of the register that controls the direction of data flow through

the Port C register?
3. What is the address of the Port C register?
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presented at this point in the text because these instructions are often used in
conjunction with the I/O ports.

Data Masking

All bit-level instructions require a mask to identify the data bits that are to be
processed. A mask is an 8-bit word that designates which bits within the operand
will be processed. Ones (1) in the mask indicate bit positions that will be processed.
Zeros (0) in the mask indicate bit positions that are ignored. A data mask blocks
certain data bits from being considered during the execution of a bit-level instruction,
in the same manner in which a mask is used to cover features of a character’s
face.

Masks are used for different purposes, as shown in Figure 9.6. In some cases, a
mask is worn for protection. A catcher on a baseball team and a goalie on a
hockey team wear masks to protect their faces from the ball or puck. Masks can
also be used to hide something. A bank robber wears a mask to prevent identification
by covering facial features. Not all of the information regarding the bank robber’s
identity can be seen through the mask. Masks can also act as filters and block
out irrelevant data. A photographer uses filters on the end of a camera lens to
create special affects. Some of these filters fade the edges or create special looking
frames around a subject.

Masks are used by the microprocessor to accomplish similar purposes. When data
is being changed, a mask can be used to identify which data bits to change and
which data bits to ignore. The data masking protects some of the bits and allows
access to others. The mask can create focus so that a decision is based on only
some of the bits in a data word. Figure 9.7(a) shows how three bits can be filtered
out of the data word for processing. The mask contains 1’s in b6, b5, and b0,
and 0’s in all other positions. Thus, only the bits in b6, b5 and b0 of the data
word are processed. Figure 9.7(b) shows how to mask out the upper nibble of a
data word.

The logical AND operation can be used to mask data. By ANDing a data word with a
mask, unwanted data can be eliminated, as shown in Figure 9.8.
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Hockey mask

Lens filter

Catcher's mask

Figure 9.6 Examples of Masks
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The HC11 has six instruction mnemonics that are specifically designed for bit-level
operations. Two are called bit manipulation instructions because they are designed to
change bits within a data word. Another two are designed to perform bit-level
comparisons, and the last two will perform bit-level conditional branches.

Example 9.4

Problem: Build the masks necessary to isolate the following groups of bits and
ignore all other bits within an 8-bit data word:

a. Upper nibble
b. Odd bits
c. b7, b2, b0
d. b7, b6, b4, b3, b1

Solution: Bits that will be isolated will have 1’s in the corresponding bit positions
of the mask and the bits that will be ignored will have 0’s.

a. %11110000 or $F0 would isolate the upper nibble and ignore the lower nibble.
b. %10101010 or $AA would isolate the odd bits and ignore the even bits.
c. %10000101 or $85 would isolate b7, b2, b0 and ignore the rest.
d. %11011010 or $DA would isolate b7, b6, b4, b3, b1 and ignore the rest.

Bit Manipulation
The HC11 contains instructions that allow one or more data bits within a data word to
be set or cleared. The operation of these instructions is summarized in Figure 9.9. The
mask is used in this case to designate which bits within the data word will be affected.
The BSET instruction will set the designated bits within a data word stored at a memory
location. It does this by ORing the operand with the mask. Thus, all bits that are ones
in the mask will be set in the memory location after the BSET operation. All bits that
are zeros in the mask are unaffected.

b7 b6 b0b5

0 1 0
1 1

1
1

0
1

0
0

0
0

1
0

mask

data

$G1

$F0 0

process these bits

b7 b0

0 0 1
0 0

0
1

0
1

1
1

1
0

1
1

mask

data

$0F

$39 0

process these bits

a) b7, b4 − b1 masked b) upper nibble masked

Figure 9.7 Data Masks
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0

1

1

0
0 10 1

0

0
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Figure 9.8 Masking Using the AND Operation.
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The BCLR instruction will clear the designated data bits within a data word stored at
a memory location. It does this by ANDing the operand with the inverse of the mask.
Thus, all bits that are 1’s in the mask will be clear in the memory location after the
BCLR operation. All bits that are 0’s in the mask are unaffected. These two instructions
operate in the DIR, INDX and INDY addressing modes. They affect only three status
flags in the CCR: N and Z reflect the actual condition of the data that was loaded. The
V bit is cleared, indicating that the sign (N flag) is correct.

Example 9.5

Problem: Using bit manipulation instructions, perform the following functions.
Assume the Y register contains $1000 and the X register contains $0100.

a. Clear the lower nibble of PORTB.
b. Program PORTC so that the upper nibble is output and the lower nibble is

input.
c. b7, b6, b0 of $002E will be set.
d. b7–b1 of $01FF will be cleared and b0 will be set.

Solution: Bits that will be isolated will have 1’s in the corresponding bit positions
of the mask and bits that will be ignored will have 0’s.

a. %00001111 or $0F will isolate the lower nibble. Index Y mode is used to 
address PORTB because the extended mode is not supported by the 
BCLR instruction.

BCLR  $04,Y $0F 
b. %11110000 or $F0 will isolate the upper nibble. The DDRC register is 

cleared first to make all bits inputs, and then the upper nibble is set, 
making them outputs.

CLR   $03,Y
BSET  $03,Y $FO

c. %11000001 or $C1 will isolate b7, b6, b0 and ignore the rest. Since 
$002E uses a zero high byte, the direct mode can be used.

BSET  $2E $C1
d. %11111110 or $FE will isolate b7–b1 and ignore the rest.

BCLR  $FF,X $FE
BSET  $FF,X $01

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

BSET Set bit(s) in
contents of memory

(M)+mm  ⇒ 
(M) - X - X X - - - - - - ] ] 0 -

BCLR Clear bit(s) in
contents of memory

(M)•mm  ⇒ 
(M) - X - X X - - - - - - ] ] 0 -

Figure 9.9 Bit Manipulation Instructions
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Bit-Level Comparison

There is another set of special compare instructions. They are capable of performing
bit-level comparisons. These instructions are called bit tests. The operation of the
bit-level compare instructions is summarized in Figure 9.10. They are used primarily to
test for zero conditions in a series of bits and therefore have results similar to the test
instructions. Rather than a subtraction, BITA and BITB perform the logical AND on
the data in one of the 8-bit accumulators and a byte from a memory location. This
operation masks or isolates the groups of bits under test. The result of the AND
operation updates the flags in the CCR. BITA and BITB operate in the IMM, DIR, EXT,
INDX and INDY addressing modes. They affect only three status flags in the CCR: N
and Z reflect the actual condition of the data that was loaded. The V bit is cleared,
indicating that the sign (N flag) is correct.

Example 9.6

Problem: Using bit-test instructions, perform the following functions and indicate
the resulting condition codes. Assume the X register contains $0180.

01E0  81 22 AA 55 F0 3C 7E 1F A = 14  B = 82  CCR = D0

a. BITA #$37
b. BITB $01E2
c. BITB $66,X

Solution:
a. (A) AND $37 = $14 AND $37 = $00, thus N = 0, Z = 1, V = 0, CCR = $D4
b. (B) AND ($01E2) = $82 AND $AA = $80, thus N = 1, Z = 0, V = 0, CCR 

= $D8
c. (B) AND ($01E6) = $82 AND $7E = $02, thus N = 0, Z = 0, V = 0, CCR 

= $D0

Bit-Level Conditional Branching
There are two conditional branch instructions that perform the branch test on one or
more bits contained in a location of memory. The operation of these instructions is
summarized in Figure 9.11. These are special branch instructions because they use the
relative mode only for the branch calculation. These two instructions also use either
the direct or the indexed addressing mode to access the operand and the immediate
addressing mode to retrieve the mask from memory.

BRSET will cause a relative mode branch if all of the bits designated in the mask are
set. The instruction accomplishes this by ANDing the mask with the inverse of the
operand stored at the memory location. The branch test is then performed on the

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

BITA
BITB

Tests bit(s) in
contents of memory

A • (M)
B • (M)

X X X X X - - - - - - ] ] 0 -

Figure 9.10 Bit-Level Comparison Instructions
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result. In this case, the result must be zero for the branch to take place. The result is
discarded in either case. No data is permanently modified by this instruction, and it
has no effect on the CCR.

BRCLR will cause a relative mode branch if all of the bits designated in the mask are
cleared. The instruction accomplishes this by ANDing the mask with the operand stored
at the memory location. The branch test is then performed on the result. In this case,
the result must be zero for the branch to take place. The result is discarded in either
case. No data is permanently modified by this instruction, and it has no effect on the
CCR.

Example 9.7

Problem: Calculate the destination address for each of the following bit-level
conditional branch instructions. Use the following data to evaluate each instruction.

0000  C6 84 F2 B1 29 35 B6 E0      X = 0000

Address     Machine Code  Source Code

a. 01D9     12 07 60 94   BRSET  $07 $60 $94

b. 0112     1F 03 43 2C   BRCLR  $03,X $43 $2C

Solution: In each case, the processor must determine if the branch test passes or
fails. In addition, the contents of the PC must be determined. If the test fails, then
DA = PC. If the test passes, then the sign-extended relative address must be added
to the PC to calculate the destination address (Equation 4.1). Since each of these
instructions occupies four bytes of memory, the PC will be four more than the
address of the branch instruction.

a. The first step is to read the operand from memory. In this case, the DIR mode
is used to address the operand. The direct mode address $07 translates to $0007.
Thus the operand is $E0. Next, the mask is read from memory ($60). The binary
value of the mask contains two 1’s in bits b6 and b5. The compare is checking to
see if these two bits are set in the operand (which they are). It does this by ANDing
the operand inverted with the mask, as shown. Since the result of this operation is
zero (i.e., bits b6 and b5 were set), the branch test passes. The resulting destination
address is calculated, as shown.

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

BRSET Branch if bit(s) are
set

If (M) • mm = 0
then P + ssrr = P - X - X X - - - - - - - - - -

BRCLR Branch if bit(s) are
clear

If (M) • mm = 0
then P + ssrr = P - X - X X - - - - - - - - - -

Figure 9.11 Bit-Level Conditional Branch Instructions
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 Operand $E0   %11100000 → %00011111 (inverted)

 Mask    $60   %01100000 → %01100000

                        AND %00000000

PC = $01D9 + 4 →  $01DD
rr = $94, sign extend → +$FF94
DA = PC + rr →  $0171

b. The first step is to read the operand from memory. In this case, the INDX mode is
used to address the operand. The effective address is the sum of the contents of X
plus the offset ($0000 + $03), which translates to $0003. Thus the operand is $B1.
Next, the mask is read from memory ($43). The binary value of the mask contains three
1’s in bits b6, b1 and b0. The compare is checking to see if these three bits are cleared
in the operand (b0 is not). It does this by ANDing the operand with the mask as shown.
Since the result of this operation is not zero (i.e., bits b0 was set), the branch test fails.
The resulting destination address is calculated, as shown.

Operand $B1   %10110001

Mask    $43   %01000011

              %00000001

DA = PC = $0112 + 4 → $0116

Self-Test Questions 9.3

 9.4 I/O with Handshaking 

The HC11 provides parallel I/O with handshaking. The term handshaking is used to
describe a method of data transfer that uses control signals between the computer and
the peripheral device. The handshaking subsystem consists of PORTB, Port C and two
control lines, strobe A (STRA) and strobe B (STRB). There are two methods of
handshaking supported on the HC11, simple and full. The various modes and functions
are selected and controlled by the bits in the Parallel Input/Output Control (PIOC)
register. The layout of this register is shown in Figure 9.12. The Handshake Mode Select
(HNDS) and Output or Input Handshake Select (OIN) bits control which mode has
been selected. Figure 9.13 summarizes how the various modes are selected.

Simple Handshaking

Simple handshaking is called simple strobed mode. The sending device uses a strobe
to indicate to the receiving device that the data present on the parallel bus is valid.

1. What is a mask?
2. What bit-level operations are supported by the HC11?
3. Which instructions provide bit-level conditional branching?

205

General Purpose I/O



The HC11 can simultaneously send and receive data, because the simple strobed mode
send and receive functions are managed by independent hardware. Figure 9.14
illustrates how this works.

The simple strobed mode is controlled by the bits in the Parallel Input/Output Control
(PIOC) register, as shown in Figure 9.12. Five of the eight PIOC bits are used in the
simple strobed mode. Simple strobe mode is selected by the HNDS bit of the PIOC
register. When HNDS = 0, simple strobed mode is selected. Data is output using simple
strobed mode via Port B. The user writes data to the Port B register. This data is
transferred to the Port B pins by the HC11 hardware, then a pulse (the strobe) is
generated on the Strobe B (STRB) pin. This pulse is two E-clocks in length. The polarity
of the STRB pulse is controlled by the Invert Strobe B (INVB) bit in the PIOC register.
When INVB = 1, the active state of the pulse is logic one. When INVB = 0, the active
state of the pulse is logic zero.

Data is input using simple strobed mode via the Port C Latched (PORTCL) register.
An external device writes data to the Port C pins. This data is transferred to the
PORTCL register when an edge is received on the Strobe A (STRA) pin. The PORTCL
register is shown in Figure 9.15.

The polarity of the STRA edge is controlled by the Active Edge for Strobe A (EGA) bit
in the PIOC register. When EGA = 1, STRA is active on the rising edge. When EGA =
0, STRA is active on the falling edge. The Strobe A Flag (STAF) bit of the PIOC register

PIOC b7 b6 b5 b4 b3 B2 b1 b0

$1002 STAF STAI CWOM HNDS OIN PLS EGA INVB

RESET 0 0 0 0 0 U 1 1

Figure 9.12 Parallel I/O Control Register (PIOC)

HNDS OIN Mode Description

0 X Simple Strobed Mode
1 0 Full-input Handshaking
1 1 Full-output Handshaking

Figure 9.13 Parallel I/O Mode Selection Summary

8-bit
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output to
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8-bit
parallel

input from
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Figure 9.14 Simple Strobed Mode
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indicates that a valid edge has been detected on STRA and the data has been latched
into the PORTCL register. In simple strobed mode, the STAF bit is cleared by reading
the PIOC register followed by a read of the PORTCL register.

NOTE: Since the Port C pins are configured for input during simple strobed
mode, the corresponding pins of the DDRC register must be cleared.

Simple strobed mode also supports interrupts. The STAI is a local interrupt enable bit.
When STAI = 1, an interrupt will be requested each time the STAF bit is set. If STAI =
0, no interrupt will be requested when STAF bit is set.

See Chapter 10 for further explanation of the operation of interrupts.

Example 9.8

Problem: Build the control word to program the I/O system for simple handshake
mode. Let the control lines remain at their default state. Then write the code to
configure the hardware and cause the output of the data $48.

Solution: Since the default state of the I/O system is simple handshake mode, then
the control word needs to be equal to the reset state of the PIOC register. Thus,
the control word is %00000011. The OIN and PLS bits are cleared, but they have
no meaning in this mode.

 86 0F       LDAA    #%00000011   ;Build PIOC control word

 B7 10 02    STAA    $1002  ~     ;Program PIOC

 86 48       LDAA    #$48 ~       ;Load data to transfer

 B7 10 04    STAA    $1004  ~     ;Send it via PORTB

Full Handshaking

Full handshaking is available for input or output operations. Full handshaking uses Port
C and the STRA and STRB control lines. Figure 9.16 illustrates how this works.

The full handshake modes are controlled by bits in the PIOC register. Seven of the
eight PIOC bits are used in the full handshake modes, as shown in Figure 9.12. Full
handshake mode is selected by the HNDS bit of the PIOC register. When HNDS = 1,
full handshake mode is selected. The Output or Input handshake Select (OIN) bit of
the PIOC register selects input or output full handshake mode. When OIN = 0,
full-input handshaking is selected. When OIN = 1, full-output handshaking is selected.

PORTCL b7 b6 b5 b4 b3 b2 b1 b0

$1005 PCL7 PCL6 PCL5 PCL4 PCL3 PCL2 PCL1 PCL0

RESET U U U U U U U U

Figure 9.15 Port C Latched (PORTCL) Pin Assignments
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Full-input Handshaking

In full-input handshaking mode, the Port C pins are used to receive data from an
external device. STRB acts as a ready signal to the external device. The external device
waits for the STRB signal to be asserted, which indicates that the HC11 is ready to
receive data. The external device then sends the data to the Port C pins and asserts the
STRA signal, indicating that the data is valid at the Port C pins. The HC11 recognizes
the STRA input and latches the data into the PORTCL register. Once the data is latched
into PORTCL, the HC11 automatically removes the STRB ready signal, indicating to
the external device that it is not ready for a data transfer.

NOTE: In full-input handshake mode the STRB indicates that the HC11 is ready
to receive data. STRB is asserted by reading the PORTCL register (independent
of clearing the STAF bit).

The polarity of the STRB pulse is controlled by the INVB bit in the PIOC register. When
INVB = 1, the active state of the STRB signal is logic one. When INVB = 0, the active
state of the STRB signal is logic zero. The polarity of the STRA edge is controlled by
the EGA bit in the PIOC register. When EGA = 1, STRA is active on the rising edge.
When EGA = 0, STRA is active on the falling edge. The Strobe A Flag bit (STAF) of
the PIOC register indicates that a valid edge has been detected on STRA and the data
has been latched into the PORTCL register. In full-input handshake mode, the STAF
bit is cleared by reading the PIOC register followed by a read of the PORTCL register.
A read of PORTCL also reasserts STRB, starting another full-input handshake
operation.

NOTE: Since the Port C pins are configured for input during full-input
handshaking, the corresponding pins of the DDRC register must be cleared.

Example 9.9

Problem: Build the control word to program the I/O system for full-input handshake
mode. Let the control lines remain at their default state, except make the STRA to

Figure 9.16 Full Handshake Modes
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activate on a falling edge and cause pulsed handshaking. Then write the code to
configure the hardware and cause the input of the data to be stored in location
$0000.

Solution: Full handshaking is selected by HNDS = 1, input mode by OIN = 0. STRA
falling edge is selected by EGA = 0. PLS will be set to cause pulsed handshaking.
The default state of STAI, CWOM and INVB will be used.

86 0F            LDAA   #%00010101 ;Build PIOC control word

B7 10 02         STAA   $1002      ;Program PIOC

B6 10 02  CHECK  LDAA   $1002      ;wait for STAF

2A FB            BPL    CHECK      ;If not STAF, check again

B6 10 05         LDAA   $1005      ;Get input data

97 00            STAA   $00        ;Store input data

Full-output Handshaking

In full-output handshaking mode the Port C pins are used to output data to an external
device. The output operation is started by writing to PORTCL. The STRB signal is auto-
matically asserted by the write to PORTCL. This data is then transferred to the Port C
pins. The external device recognizes the STRB signal as a ready signal and latches the
data. Once the data is latched by the external device, it asserts the STRA signal indicating
to the HC11 that the data has been received. The active edge on STRA automatically
removes the STRB signal and sets the STAF bit. The polarity of the STRB pulse is con-
trolled by the INVB bit in the PIOC register. When INVB = 1, the active state of the signal
is logic one. When INVB = 0, the active state of the signal is logic zero.

The polarity of the STRA edge is controlled by the EGA bit in the PIOC. When EGA
= 1, STRA is active on the rising edge. When EGA = 0, STRA is active on the falling
edge. In full-output handshake mode, the STAF bit is cleared by reading the PIOC
followed by a write to PORTCL.

The full handshake modes also support interrupts. The STAI is a local interrupt enable
bit. When STAI = 1, an interrupt will be requested each time the STAF bit is set. If STAI
= 0, no interrupt will be requested when STAF bit is set.

NOTE: Since the Port C pins are configured for output during full-output
handshaking, the corresponding pins of the DDRC register must be set.

Example 9.10

Problem: Build the control word to program the I/O system for full-output
handshake mode. Let the control lines remain at their default state, except make
the STRA to activate on a falling edge and cause pulsed handshaking. Then write
the code to configure the hardware and cause the output of the data $9F.
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Solution: Full handshaking is selected by HNDS = 1, output mode by OIN = 1.
STRA falling edge is selected by EGA = 0. PLS will be set to cause pulsed
handshaking. The default state of STAI, CWOM and INVB will be used.

C6 0F            LDAB    #%00011101 ;Build PIOC control word

F7 10 02         STAB    $1002      ;Program PIOC

C6 9F            LDAB    #$9F       ;Get output data

F7 10 05         STAB    $1005      ;output to PORTCL

F6 10 02  CHECK  LDAB    $1002      ;wait for STAF

2A FB            BPL     CHECK      ;If not STAF, check again

Self-Test Questions 9.4

 9.5 General-Purpose I/O On Other Ports 

The HC11 contains three additional I/O ports: PORTA, PORTD and PORTE. These
three ports support standard general-purpose I/O as well as alternative functions. The
general-purpose I/O functions are described in this chapter.

Port A

Port A is an 8-bit I/O port. The eight general-purpose I/O bits are labeled PA7–PA0.
Three bits are dedicated outputs (PA6, PA5 and PA4), three bits are dedicated inputs
(PA2, PA1 and PA0) and two bits are programmable input or output (PA7 and PA3),
as shown in Figure 9.17.

The programmable bits are controlled by two data direction control bits. DDRA7
controls the data direction of Port A b7 (PA7), and DDRA3 controls the data direction
of PORTA b3. The DDRAx control bits are in the Pulse Accumulator Control (PACTL)
register and are only remotely related to the pulse accumulator function. When the

1. What are the two types of handshaking supported on the HC11?
2. Which port is used for data input using simple strobed mode?
3. What two types of full handshaking are supported?

PORTA b7 b6 b5 b4 b3 b2 b1 b0

$1000 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

DIGITAL I/O In/Out Out Out Out In/Out In In In

RESET 0 0 0 0 0 0 0 0

PACTL b7 b6 b5 b4 b3 b2 b1 b0

$1026 DDRA7 PAEN PAMOD PEDGE DDRA3 I4/O5 RTR1 RTR0

RESET 0 0 0 0 0 0 0 0

Figure 9.17 PORTA Pin Assignments and Data Direction Control Bits
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DDRAx bit = 0, the corresponding I/O pin is configured as an input. When the DDRAx
bit = 1, the corresponding I/O pin is configured as an output. After reset, the bits in
PORTA are cleared and PA7 and PA3 are configured as input pins. The Port A pins
are alternatively used as the on-chip timing system.

T he Port A pins are alternatively used for the Port A timing system, which is described in Chapter
12.

Port D

Port D is a 8-bit I/O port. Six bits are programmable input or output (PD5 through
PD0), and the two most significant bits are unused. This configuration is shown in
Figure 9.18. The programmable bits are controlled by data direction control bits in the
Data Direction register for Port D (DDRD). When the DDRDx bit = 0, the correspond-
ing I/O pin is configured as an input. When the DDRDx bit = 1, the corresponding
I/O pin is configured as an input. After reset, the bits in PORTD are cleared and are
configured as input pins.

T he PORTD pins are alternatively used as the on-chip serial communication functions, which
are presented in Chapter 13.

Port E

Port E is an 8-bit input port. The eight general-purpose input pins are labeled PE7–PE0,
as shown in Figure 9.19. After reset, the bits in the Port E register (PORTE) are cleared.

T he Port E pins are alternatively used as analog input pins connected to the on-chip analog to
digital converter. T he analog-to-digital conversion function is presented in Chapter 11.

PORTD b7 b6 b5 b4 b3 b2 b1 b0

$1008 − − PD5 PD4 PD3 PD2 PD1 PD0

DIGITAL I/O − − In/Out In/Out In/Out In/Out In/Out In/Out

RESET 0 0 0 0 0 0 0 0

DDRD b7 b6 b5 b4 b3 b2 b1 b0

$1009 − − DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0

RESET 0 0 0 0 0 0 0 0

Figure 9.18 PORTD Pin Assignments and Data Direction Control Bits

PORTE b7 b6 b5 b4 b3 b2 b1 b0

$100A PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0

DIGITAL I/O In In In In In In In In

RESET U U U U U U U U

Figure 9.19 PORTE Pin Assignments
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Self-Test Questions 9.5

 Summary 

There are five Input/Output (I/O) ports on the HC11. Thirty-eight general-purpose
I/O pins are supported. PORTB and Port C support two types of handshaking for
interface control, simple strobed mode and full handshaking. The PIOC control
register contains control and status flag bits relevant to the handshaking operations.
The function of the STRA and STRB control lines were also discussed. PORTA, PORTD
and PORTE support alternative functions unrelated to the general-purpose I/O
capabilities.

 Chapter Questions 

Section 9.1
 1. What register is located at $1004 in the memory map?
 2. Which port is a dedicated output port?
 3. Which bit of PORTB is the pin PB4 associated with?

Section 9.2
 4. What is the function of a data direction register?
 5. What register is located at $1007 in the memory map?
 6. What value must be written to the DDRC to program the three LSBs as outputs

and the other pins as inputs?
 7. What is the default direction of the Port C pins?

Section 9.3
 8. What does the term “mask” mean? What do 1’s and 0’s represent in a data

mask?
 9. What 8-bit mask is needed to mask all bits except b7, b6 and b2?
10. What 8-bit mask is necessary to hide the upper nibble of a data word?
11. What is the difference between the AND instruction and a bit test instruction?
12. What mask is necessary in a BITA instruction to simulate the operation of

TSTA?
13. What mask is necessary in a BCLR instruction to clear the two MSBs?
14. Does the instruction BSET $34 have any effect on b3?

Section 9.4
15. What is the difference between PORTC and PORTCL?
16. What are the functions of STRA and STRB?
17. When writing data into the PIOC register, why is the data in the MSB irrelevant?

1. How are the PORTA pins configured for general-purpose I/O?
2. When DDRD bits contain logic ’1’, how are the corresponding PDx bits

configured?
3. How are the PORTE pins configured for general-purpose I/O?
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18. What is one advantage of having the STAF bit in the MSB position of the PIOC
register?

19. What is the difference between the simple strobed mode and full handshaking?
20. Fully explain the configuration of the handshaking system if the PIOC contains

$17.

Section 9.5
21. What is the default configuration of the PORTA, PORTB, PORTC, PORTD and

PORTE pins?
22. Which ports contain programmable I/O pins?
23. What is the total number of general-purpose I/O pins available on the HC11E9?

 Chapter Problems 

1. Write a code segment that will output the data $ED on the pins of PORTB.
2. Write a code segment that will output the data stored in memory location $0020 on

the pins of PORTB.
3. Write a simple program that will turn on a light that is connected to PB0 when the

sum of two numbers is negative.
4. Write a code segment that configures Port C so that the four MSBs are outputs and

the four LSBs are inputs.
5. Write a code segment that configures the two MSBs and the LSB of Port C as outputs

and the other bits as inputs.
6. Write a code segment that will recognize the logic level of a switch connected to

PC7 and indicate the switch’s logic level on an LED connected to PB7.
7. Write a code segment that will recognize the logic level of a switch connected to

PA7 and indicate the switch’s logic level on an LED connected to PA3.

 Answers to Self-Test Questions 

Section 9.1
1. The Port B register is located at $1004.
2. Port B is a dedicated output port.
3. The Port B pins are labeled PB7–PB0. PB7 is the MSB.

Section 9.2
1. Yes. The DDRC register allows each Port C pin to be configured independently

as an input or output pin.
2. The DDRC register is the Data Direction Register for Port C.
3. The Port C register is located at $1003.

Section 9.3
1. A mask is an 8-bit word that designates which bits within the operand will be

considered as part of the instruction.
2. There are six bit-level instructions supported on the HC11: BSET, BCLR, BITA,

BITB, BRSET, BRCLR.
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3. BRSET and BRCLR will perform branch tests at the bit level.

Section 9.4
1. The HC11 supports simple and full handshaking.
2. The PORTCL register is used to latch the input data in simple strobed mode.
3. The HC11 supports full-input handshaking and full-output handshaking.

Section 9.5
1. The three PA2–PA0 are dedicated inputs, PA6–PA4 are dedicated outputs and

PA7 and PA3 are programmable I/O.
2. 1’s in the DDRD register cause the PDx pins to be configured for output.
3. They are dedicated digital input pins.
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 Objectives 
HC11 Int errupts  and Reset s

After completing this chapter, you should be able to:

◗ Describe the process of servicing an interrupt

◗ Enable and mask interrupts via global and local control bits

◗ Differentiate the strengths and weaknesses of maskable and nonmask-
able interrupts

◗ Use the vector table and vector jump table

◗ Understand the impact of hardware reset on all hardware systems

◗ List the process of servicing a reset

 Outline 

◗ 10.1 Condition Code Register Control Bits

◗ 10.2 Servicing an Interrupt

◗ 10.3 Interrupt Control

◗ 10.4 Maskable Interrupts

◗ 10.5 Using Interrupts on the EVBU

◗ 10.6 Nonmaskable Interrupts

◗ 10.7 Resets

◗ 10.8 Servicing a Reset Interrupt

HC11 Interrupts and Resets

 c h a p t e r 10
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 Introduction 

Resets and interrupts are often discussed together because they share a common
function. Each must fetch a vector from memory to initialize the starting point of
processing that follows each reset or interrupt.

The main purpose behind reset is to establish the initial conditions of the processor.
Without the proper initial conditions, the processor cannot start processing instructions
in an orderly fashion.

Interrupts are a powerful mechanism of computers designed to allow the more efficient
use of system resources. Interrupts allow multiple tasks to happen in a completely
random order, controlled by events external to the processor.

Most computer processors execute software instructions sequentially. As was described
in chapter 2, a software program is nothing more than an ordered set of instructions
that the processor executes sequentially. In many applications, it is necessary to execute
sets of instructions in response to some external stimulus. Typically, this type of request
comes from peripherals and is asynchronous to the program being executed by the
processor. Thus, the external stimulus interrupts what the processor is doing and causes
another set of instructions to be executed. When it is complete, it returns to what it
was executing prior to the peripheral request as if there had been no interruption.
Thus, an interrupt is an external stimulus that requests immediate attention from the
processor.

The HC11 supports 21 independent interrupts. Six of these are classified as nonmask-
able interrupts, and the remaining 15 are classified as maskable. In general, maskable
interrupts can be controlled (enabled or inhibited) by the user at any time, and
nonmaskable interrupts cannot be controlled by the user. The specifics surrounding
the maskable and nonmaskable groups, as well as exceptions to the masking rule, are
discussed later in this chapter.

This chapter directly correlates to section 5 of the HC11 Reference Manual and section 5 of the
Technical Data Manual.

 10.1 Condition Code Register Control Bits 

As presented in chapter 1, the HC11 contains a processor register that is used for status
and control. This register is called the Condition Code Register (CCR) and is part of
the HC11 Programmer’s Model. Chapter 3 provided a further study of the use of the
five status flags (H, N, Z, V and C) contained in this register. This section offers
explanation regarding the three control bits (S, X and I), as shown in Figure 10.1.

The S bit is the stop disable bit. It is a control bit and occupies b7 of the register. Setting
this bit disables the STOP instruction from putting the HC11 into a low-power stop
condition. It is set during processor reset to disable the STOP feature. When this bit
is set, the STOP instruction is treated like an NOP instruction (an NOP is the “no
operation” instruction that lets the processor idle for two machine cycles).

216

Technician’s Guide to the 68HC11 Microcontroller



Refer to section 5.5.2 of the Technical Data Manual, as well as to sections 5.2.3, 5.4.1 and
6.3.4.5 of the Reference Manual, for further information regarding the function of the S bit and
STOP instruction.

The X bit is the XIRQ interrupt mask bit. The nonmaskable XIRQ hardware interrupt is
disabled when this bit is set. It is set during processor reset to disable the XIRQ interrupt.
The user can only clear this bit. Attempts to set the bit via software will be ignored.

Further explanation of the function of the X bit is provided in section 10.6.

The I bit is the IRQ interrupt mask bit. The maskable IRQ hardware interrupt is
disabled when this bit is set. This bit can be directly manipulated by the CLI and SEI
instructions. It is set during processor reset to disable IRQ interrupts.

Further explanation of the function of the I bit is provided in section 10.5.

Self-Test Questions 10.1

 10.2 Servicing an Interrupt 

Interrupts are not unique to computer systems. Many aspects of life are filled with
interrupts. For example, the best television programs are constantly interrupted with
annoying commercials. A good night’s sleep is interrupted by the sound of the alarm,
and a quiet dinner at home is regularly interrupted by the telephone ringing. Each of
these events (commercials, alarms and phone calls) is an external event that causes
someone to stop what he or she is doing and do something else. They will be used
throughout this section as examples to illustrate the concept of interrupts and how the
processor reacts to these external stimuli.

The external stimulus is called an interrupt request. It signals the processor that an
interrupt is pending. The ring of the telephone is the interrupt request. It is an audible
signal that demands attention. The alarm on the alarm clock has the same effect. It
demands attention immediately. The process of responding to an interrupt request is
referred to as servicing the interrupt. These audio signals (ringing or buzzer) are
designed to get someone’s attention, and they work very effectively.

The act of responding to the interruption is almost automatic. When the phone rings
during dinner, the fork is set down, the phone picked up and then a greeting is spoken,
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Figure 10.1 Condition Code Register Control Bits

1. What must be written to the I bit in the CCR to enable maskable interrupts?
2. What bit position of the CCR contains the X bit?
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like “hello.” This semiautomatic response to the telephone ring has little variation from
day to day and from place to place. The telephone ring demands service, and rarely
does it go without being serviced. In the same way, a computer has a fixed response to
an interrupt. When an interrupt request is received by the computer, it stops what it is
doing and services the interrupt. It accomplishes this by executing a set of instructions
that are called an interrupt service routine (ISR). The ISR is executed each time the
interrupt is requested, just like the ringing telephone invokes a similar response each
time.

Steps to Service an Interrupt

When an interrupt request is received at the HC11 processor, a sequence of six events
takes place. The six events are listed here. Each step of this sequence is described in
subsequent sections.

1. Complete execution of the current instruction.
2. Stack the current processor registers so that the current processor context can be

restored when it returns from the interrupt service routine.
3. Disable the maskable interrupts by setting the I bit of the CCR (by default an

interrupt service routine cannot be interrupted).
4. Load the interrupt vector into the program counter register. The vector is the

address of the first instruction of the interrupt service routine.
5. Execute the instructions of the interrupt service routine.
6. Return from the interrupt by executing the RTI instruction. This causes the

processor registers to be restored from the stack, including the return address, so
that the processor can pick up where it left off prior to the interrupt. This also will
restore the I bit of the CCR back to 0, reenabling maskable interrupts.

Complete the Current Instruction

All instructions require a finite length of time (a fixed number of machine cycles) to
execute. Since the processor is rarely sitting idle, interrupt requests typically occur when
the processor is occupied with an instruction. The processor will always complete
execution of the current instruction before it services the interrupt. This requires a
length of time that sometimes is significant to time-critical operations. It is important
to remember that the program counter is updated during the execution of an
instruction to point to the next instruction to be executed.

For example, the LDAA immediate instruction requires two machine cycles to execute.
If the interrupt request occurs any time during the fetch or execution of this
instruction, the hardware will wait until the instruction is complete before servicing the
interrupt. The hardware will service a pending interrupt only when the execution of
the current instruction is complete.

Stack Processor Registers

When the current instruction is completed, the hardware interrupt mechanism takes
over. The first task is to save the program context. This way the program can pick up
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right where it left off before the interrupt was serviced. The context is contained in the
processor registers, and this context is saved by stacking the contents of the processor
registers. This process is similar to the process of stacking the return address during a
subroutine call so that the program knows where to return when the subroutine is
complete. However, in addition to the return address, the entire context is saved by
stacking all of the processor registers, excluding the stack pointer.

The order in which the registers are stacked is shown in Figure 10.2. The content of
the stack pointer register (SP) is used to identify the first address used to stack the
register contents. It is unnecessary to stack the stack pointer because it needs to
continue to point to the next available stack location. After each byte is written to the
stack, the stack pointer is decremented so that it always points to the next available
stack location. Notice that the low byte of each of the 16-bit registers is written followed
by the upper byte of the same register. By initial inspection, this may seem to violate
Motorola’s “hi-byte-first” convention. After closer analysis, the consistency becomes
more apparent. The stack increments backwards, so the data still resides high byte/low
byte in sequential memory locations.

Disable Maskable Interrupts

By default, the interrupt system inhibits interrupts after the registers have been stacked
by setting the I control bit in the CCR. This blocks interrupts from occurring during
an interrupt service routine. When the registers are restored at the end of the process,
the interrupts are again enabled.

NOTE: In some instances, it may be desirable to allow interrupt requests to be
serviced during an interrupt service routine. This is called “nesting of interrupts.”
It greatly complicates the system and rarely improves system performance.

Load the Interrupt Vector

When the current instruction has been completed and the processor registers have
been stacked, the processor is ready to execute the interrupt service routine. The
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Figure 10.2 Stacking Order of Registers
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interrupt service routine can be located anywhere in memory, but the address of the
first instruction of the routine must be stored at a fixed place in memory. The address
of the first instruction of the interrupt service routine is called the interrupt vector or
simply the vector. The term “vector” is used to mean “pointer.” The interrupt vector
points to where the interrupt service routine is in memory, as shown in Figure 10.3.

This vector is stored at a specific vector address in memory. Since the vector is actually
an address, it occupies two bytes in memory. Thus the high byte of the vector is located
at the vector address, and the low byte of the vector is located at vector address + 1.
The vector addresses are fixed locations in memory that cannot be changed. These
addresses are designed into the hardware. For example, when an IRQ interrupt request
is received, the hardware will go get the IRQ vector from the vector address $FFF2 and
$FFF3. This cannot be changed by the user.

All vector addresses on the HC11 are located at the very end of the memory map. The
block of memory designated as the vector addresses for the 21 interrupt sources is
called the vector table. Figure 10.4 shows the vector table for the HC11. It contains
vectors for each of the 21 interrupt sources, where each interrupt vector is stored at a
unique interrupt vector address.

NOTE: The Strobe A (STRA) interrupt is internally connected to the IRQ pin;
thus, it shares the IRQ vector. However, STRA has a unique local interrupt enable.

Execute the Instructions of the Interrupt Service Routine

An interrupt service routine is very similar to a subroutine. It is executed only because
an interrupt request is recognized by the processor. A subroutine is executed only if it
is called by a JSR or BSR instruction. An interrupt service routine is executed only if
the corresponding interrupt request is received. In the same way, both routines end
with a special instruction. All subroutines must end with an RTS instruction, and
interrupt service routines end with the RTI instruction.

Since the vector is the address of the first instruction of the interrupt service routine,
the hardware loads it into the program counter. The program counter then contains
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Figure 10.3 Pointing to the Interrupt Service Routine Using the Interrupt Vector
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the proper address of the instructions designed to service the interrupt. The
instructions in the interrupt service routine are executed in the normal sequential
manner until the service routine is completed.

Return from Interrupt and Unstack the Registers

The last instruction of every interrupt service routine must be the RTI instruction. The
RTI instruction causes the nine bytes of processor register data to be pulled from the
stack. They are pulled in the opposite order in which they were stacked, as shown in
Figure 10.2. This process restores the context of the processor to the point it was when
the interrupt occurred. The processor then continues the execution with the next
instruction as if it never had been interrupted.

Example 10.1

Problem: Given the following register contents, designate the nine bytes that will
be stacked if an interrupt occurs during the execution of the STAA instruction. Show
the location of the bytes on the stack after the stacking operation.

Vector Address Interrupt Source

FFD6, FFD7 SCI Serial System
FFD8, FFD9 SPI Serial Transfer Complete
FFDA, FFDB Pulse Accumulator Input Edge
FFDC, FFDD Pulse Accumulator Overflow
FFDE, FFDF Timer Overflow
FFE0, FFE1 Timer Input Capture 4 /

Timer Output Compare 5
FFE2, FFE3 Timer Output Compare 4
FFE4, FFE5 Timer Output Compare 3
FFE6, FFE7 Timer Output Compare 2
FFE8, FFE9 Timer Output Compare 1
FFEA, FFEB Timer Input Capture 3
FFEC, FFED Timer Input Capture 2
FFEE, FFEF Timer Input Capture 1
FFF0, FFF1 Real Time Interrupt
FFF2, FFF3 IRQ (External Pin) / Strobe A
FFF4, FFF5 XIRQ (External Pin)
FFF6, FFF7 Software interrupt (SWI)
FFF8, FFF9 Illegal Opcode Trap
FFFA, FFFB COP Failure
FFFC, FFFD Clock Monitor Fail
FFFE, FFFF RESET

Figure 10.4 HC11 Interrupt Vector Table (adapted with permission from Motorola)
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        A   $92       X    $B680

        B   $FD       Y    $FF2D

        CCR $E1       S    $0041

Address  Machine Code  Source Code

0002     B7 01 16      STAA  $0116

Solution: The first step is to complete the execution of the current instruction. The
store instruction will write $92 from AccA to memory location $0116, update the
CCR to $E9 because $92 is a negative number and update the PC to $0005 (STAA
extended is a 3-byte instruction). Next the stacking operation starts by writing the
low byte of the PC to the current location in the stack pointer, (PCL) ⇒ MSP, then
decrements the stack pointer, (SP) – 1 ⇒ SP. This process continues until all nine
bytes are pushed onto the stack.

  $05 → $0041       PCL      → MSP

  $00 → $0040       PCH      → MSP–1

  $2D → $003F       YL       → MSP–2

  $FF → $003E       YH       → MSP–3

  $80 → $003D       XL       → MSP–4

  $B6 → $003C       XH       → MSP–5

  $92 → $003B       A        → MSP–6

  $FD → $003A       B        → MSP–7

  $E9 → $0039       B        → MSP–8

  $0038 → SP        (SP) – 9 → SP

Self-Test Questions 10.2

 10.3 Interrupt Control 

Repetitive tasks in a program are usually packaged as a subroutine; however, they can
also be packaged as an interrupt service routine. An interrupt service routine is
functionally a subroutine that ends with the RTI instruction instead of the RTS
instruction. In a sense, an interrupt service routine is a conditional subroutine. The
only way an interrupt service routine can be executed is through the occurrence of an
interrupt. The HC11 provides four instructions used for direct control of maskable
interrupts. These instructions are summarized in Figure 10.5.

1. What happens to the current instruction if the interrupt occurs during the fetch
cycle?

2. How many bytes are pushed to the stack when an interrupt is serviced?
3. Which instruction must be executed at the end of every interrupt service routine?
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Each time an interrupt is executed, the current processor registers are pushed onto
the stack prior to loading the program counter with the address of the first instruction
of the interrupt service routine. The last instruction of every interrupt service routine
must be a return from interrupt instruction (RTI). RTI causes the registers to be
restored to their context prior to the interrupt by pulling the contents from the stack.
The last processor register to be restored is the PC. It will contain the return address
or the address of the next instruction to execute. RTI uses the inherent addressing
mode. The CCR is one of the registers that was stacked; thus it is restored to the original
state during the RTI instruction.

The process of stacking the registers requires many machine cycles, which leads to a
delay before the interrupt service routine actually starts execution. Sometimes this delay
is too long and therefore is unacceptable. The WAI instruction was designed to assist
the hardware in preparing for an interrupt. When a WAI instruction is executed, the
registers are stacked as if an interrupt has occurred and then the processor goes into
an idle state waiting for the actual interrupt to occur. When the interrupt occurs, the
WAI instruction has already stacked the registers so the execution of the first instruction
of the interrupt service routine starts immediately. The normal delay that occurs during
the process of stacking the registers is completely avoided. The WAI instruction uses
the inherent addressing mode and has no affect on the CCR.

The CLI and SEI instructions control the maskable interrupt mask control bit (I bit)
in the CCR. CLI clears the control bit enabling maskable interrupts. SEI sets the control
bit disabling maskable interrupts. CLI and SEI are inherent mode instructions. Other
than the I bit, they have no other affect on the CCR.

Local versus Global Control

The HC11 uses control bits in various registers to allow local and global control of
interrupts. Global control is the process of controlling an entire class of interrupts with
a single bit. For example, the I bit in the CCR is used to mask all maskable interrupts.
If I = 1, all maskable interrupts are disabled regardless of the state of the local interrupt
control bits. Local control bits provide individual control of each interrupt within the
class. When the global mask is cleared (I = 0), then each individual interrupt source
can be enabled or disabled using local control bits. For an interrupt source to be

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

WAI Wait for interrupt See Section 10.3 - - - - - X - - - - - - - - -

RTI Return from
interrupt

See Section 10.3
- - - - - X - ] ↓ ] ] ] ] ] ]

CLI Clear  maskable
interrupt mask

0 ⇒ I
- - - - - X - - - - 0 - - - -

SEI Set  maskable
interrupt mask

1 ⇒ I
- - - - - X - - - - 1 - - - -

Figure 10.5 Maskable Interrupt Control Instructions
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enabled, both the global and local control bits must be enabled. If either is not enabled,
the interrupt will be ignored by the processor.

Figure 10.6 provides a summary of the global and local interrupt control bits for all
maskable interrupt sources. Note that the global control bit (I) is referred to as a mask
and local control bits are enables. If I = 1, maskable interrupts are disabled (enable is
active low). If a local control bit is set, the local interrupt is enabled (enable is active
high).

An additional parallel can be drawn between the ring of the telephone and the
interrupt requests to a computer processor. Sometimes the ring of the telephone is
ignored. When it goes unserviced for four or five rings, the caller usually hangs up,
which terminates the interrupt request. In some extreme cases, the ringer is turned
off, so that the interrupt request is not heard. However, the telephone company still
continues to send the the ring signal (interrupt request). The computer processor also
has the ability to ignore interrupt requests. The interrupts can be disabled or masked,
which causes the processor to never “hear” them. The external stimuli may continue
to occur, but the processor will never respond to them when the interrupts are masked.

The interrupt system of a processor has to be enabled for it to function. Typically, the
interrupt system is disabled after reset to avoid inadvertent interrupt requests from
being serviced before the software is ready for this to happen. Control is split between
the two interrupt classes: maskable and nonmaskable. The processing of enabling and

Interrupt Source Global Mask Local Enables
Local Control
Register

SCI Serial System I bit in CCR RIE, TIE, TCIE & ILIE SCCR2
SPI Serial Transfer Complete I bit in CCR SPIE SPCR
Pulse Accumulator Input Edge I bit in CCR PAII TMSK2
Pulse Accumulator Overflow I bit in CCR PAOVI TMSK2
Timer Overflow I bit in CCR TOI TMSK2
Timer Input Capture 4 /
Timer Output Compare 5 I bit in CCR I4/O5I TMSK1
Timer Output Compare 4 I bit in CCR OC4I TMSK1
Timer Output Compare 3 I bit in CCR OC3I TMSK1
Timer Output Compare 2 I bit in CCR OC2I TMSK1
Timer Output Compare 1 I bit in CCR OC1I TMSK1
Timer Input Capture 3 I bit in CCR IC3I TMSK1
Timer Input Capture 2 I bit in CCR IC2I TMSK1
Timer Input Capture 1 I bit in CCR IC1I TMSK1
Real Time Interrupt I bit in CCR RTII TMSK2
IRQ (External Pin) I bit in CCR None N/A
Strobe A I bit in CCR STAI PIOC

Figure 10.6 Maskable Interrupt Control Bits (adapted with permission from Motorola)
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inhibiting interrupts is sometimes called masking, which explains the use of the
interrupt class names.

Self-Test Questions 10.3

 10.4 Maskable Interrupts 

Maskable interrupts are a group of interrupt sources that can be globally as well as
locally controlled, as shown in Figure 10.6. The I bit of the CCR acts as the global
interrupt mask for the entire class. When a 1 is written to the I bit of the CCR, all
maskable interrupts are inhibited. Local interrupt enable masks are overridden by the
global mask. When the I bit is 0, control of maskable interrupts is transferred to the
local bits.

Serial Communication System Interrupt Sources

The serial communications system contains two interrupt sources and five local
interrupt enables. The SCI subsystem has four local interrupt masks, RIE, TIE, TCIE
and ILIE, which are located in the SCCR2 register. Each of these bits must be set to
enable the corresponding interrupt request to be made. All four of these enable bits
are linked to the SCI system interrupt request. Therefore, the SCI system interrupt can
be requested by four different events within the serial communications interface. The
SPI has one local interrupt enable, the SPIE bit of the SPCR register. The SPIE bit must
be set to enable the SPI interrupt.

Further explanation of serial communication interrupt sources is found in chapter 13.

Timer System Interrupt Sources

The timer system contains 12 local interrupt enable bits. The TOI bit in the TMSK2
register enables the timer overflow interrupt. Timer overflows occur when the TCNT
register rolls over from $FFFF to $0000. The PAII and PAOVI bits in the TMSK2 register
enable interrupts linked to the pulse accumulator function. PAII enables the pulse
accumulator input edge interrupt. Each time a valid pulse accumulator input edge is
detected, this interrupt occurs. PAOVI enables the pulse accumulator overflow
interrupt. Pulse accumulator overflow occurs when the PACNT register rolls over from
$FF to $00. The RTII in the TMSK2 register enables the real-time interrupt. Real-time
events occur on a periodic basis at all times during normal operation of the processor.

The TMSK1 register contains eight additional timer system interrupt enable bits. OC1I,
OC2I, OC3I and OC4I enable interrupts for the output-compare functions OC1–OC4

1. What instruction is designed to help speed up interrupt servicing?
2. How can the user disable all maskable interrupts?
3. Is there a local interrupt control bit for Timer Overflow Interrupt? If so, where

is it?
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respectively. IC1I, IC2I and IC3I enable interrupts for the input-capture functions
IC1–IC3 respectively. I4/O5I enables the interrupt for the IC4 or the OC5 function
depending on which of these two functions is active. Setting an interrupt enable bit in
the TMSK1 or TMSK2 registers enables the corresponding interrupt.

Further explanation of the time system interrupt sources is found in chapter 12.

External Interrupts Using IRQ

The IRQ interrupt source is an external hardware pin dedicated to the interrupt system.
Unlike the maskable interrupt sources in the timer and communications subsystems,
IRQ is not tied to some internal hardware system in the HC11. This pin can be used
to cause an interrupt request from any outside source. It is often linked to the interrupt
features of an external peripheral device. The IRQ interrupt does not have a local
control capability. It is controlled only by the I bit in the CCR.

Unlike the other maskable interrupt sources, IRQ has a dedicated hardware pin that
can be connected to any external interrupt source. To accommodate a greater variety
of interrupt sources, IRQ can be configured for level-sensitive or edge-sensitive
operation. The IRQ Edge bit (IRQE) in the OPTION register is used to select between
edge and level sensitivity, as shown in Figure 10.7. If IRQE is set, IRQ is configured for
edge-sensitive operation. If it is cleared, IRQ is configured for level-sensitive operation.
After reset, IRQE = 0, so that the default is level-sensitive operation.

NOTE: The IRQE bit can only be written to once in the first 64 E clock cycles
out of reset when in normal modes. IRQ has no local interrupt enable. It is
enabled and disabled by the state of the I bit in the CCR.

Parallel I/O Interrupt Source

During parallel I/O an interrupt can be requested each time strobe A flag (STAF) is
set in the PIOC register. The strobe A interrupt enable bit (STAI), also found in the
PIOC register, is the local enable that controls whether the interrupt will be requested.
This allows an interrupt service routine to do some special data processing only when
the valid strobe A is received.

This interrupt source is unique. It shares the interrupt vector with the IRQ interrupt;
therefore, only one interrupt service routine can exist for both the IRQ and the parallel
I/O interrupt sources. If the strobe A interrupt is enabled, the IRQ pin should not be
used. The system checks the state of the IRQ pin before it checks the state of the STAF
and STAI bits in the PIOC.

Further explanation of the parallel I/O system is found in chapter 9.

OPTION b7 b6 b5 b4 b3 b2 b1 b0

$1039 ADPU CSEL IRQE DLY CME − CR1 CR0

RESET 0 0 0 1 0 0 0 0

Figure 10.7 IRQ Edge Control Bit
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Maskable Interrupt Priority

Since there are 15 maskable interrupt sources, there is a reasonable probability that
two or more of the sources could be enabled at the same time. In the event that two
interrupts occur during the processing of the same instruction, which interrupt will be
serviced first? To resolve this potential conflict, each maskable interrupt source is
assigned a priority, which governs the order in which interrupts will be serviced, as
shown in Figure 10.8. When two interrupt requests occur during the execution of the
same instruction, the interrupt with the highest priority (1 being the highest priority,
15 being the lowest priority) will be processed first.

The 4-bit code contained in the Priority Select bits (PSELx) of the Highest Priority
register (HPRIO) elevates the interrupt priority of one maskable interrupt to the
highest level. Figure 10.9 illustrates the location of these bits in the HPRIO register.
The highest priority interrupt will be serviced before any other maskable interrupt
request. Figure 10.8 shows the default priority, as well as the value required in the PSELx
bits to change this priority. When an interrupt is elevated in priority, the priority order
of all other interrupts is not changed. The fact that the priority order does not change
when one interrupt is elevated in priority is very evident in the interrupt priority
resolution flowchart, shown in Figure 10.10.

Interrupt Source Priority PSEL[3:0]

IRQ (External Pin) 1 0 1 1 0
Real Time Interrupt (RTI) 2 0 1 1 1
Timer Input Capture 1 3 1 0 0 0
Timer Input Capture 2 4 1 0 0 1
Timer Input Capture 3 5 1 0 1 0
Timer Output Compare 1 6 1 0 1 1
Timer Output Compare 2 7 1 1 0 0
Timer Output Compare 3 8 1 1 0 1
Timer Output Compare 4 9 1 1 1 0
Timer Input Capture 4 /
Timer Output Compare 5 10 1 1 1 1
Timer Overflow 11 0 0 0 0
Pulse Accumulator Overflow 12 0 0 0 1
Pulse Accumulator Input Edge 13 0 0 1 0
SPI Serial Transfer Complete 14 0 0 1 1
SCI Serial System 15 0 1 0 0

Figure 10.8 Maskable Interrupt Priority (courtesy of Motorola)

Figure 10.9 Interrupt Priority Select Bits

HPRIO b7 b6 b5 b4 b3 b2 b1 b0

$103C RBOOT SMOD MDA IRVNE PSEL3 PSEL2 PSEL1 PSEL0

RESET 0 0 0 0 0 1 1 0
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Figure 10.10 Interrupt Priority Resolution Flowchart (adapted with permssion from
Motorola)
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$FFE0, $FFE1

NO

YES YES

NO

Figure 10.10 (continued)
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Self-Test Questions 10.4

 10.5 Using Interrupts on the EVBU 

As was presented in section 10.2, the interrupt vector table is located in the last locations
of memory on the HC11, from $FFD6 through $FFFF. As these locations on the EVBU
are in ROM, the contents of the vector table are fixed during the manufacturing
process. On a normal HC11 system, the vectors are the actual addresses of the interrupt
service routines used by the system. However, on the EVBU the location of interrupt
service routines is not determined until the user is actually writing a program that uses
interrupts. The user of the EVBU cannot change the vectors that are permanently
stored in the vector table in ROM.

The fixed state of the vectors on the EVBU could severally limit what could be done
with interrupts on the EVBU. The designers of the EVBU anticipated this restriction
and devised a method that allows users of the EVBU to have full control over the
location and length of interrupt service routines. The permanent vectors in the
ROM-based vector table are address locations in the RAM. Each vector points to a JMP
instruction in RAM. The JMP instruction is initialized with a default ISR address located
in BUFFALO. The JMP instruction effectively becomes the first instruction of the
interrupt service routine. The remainder of this interrupt service routine can be
anywhere in memory. The user must overwrite the default effective address of the jump
instruction with the actual start address of the ISR.

Each of the interrupt sources has a corresponding JMP instruction RAM except the
RESET. The reset interrupt causes the BUFFALO monitor program to start over. It
starts at location $E000 of ROM. The remaining 20 JMP instructions occupy a block of
RAM that is called the Vector Jump Table, as shown in Figure 10.11. The theory of how
interrupts work is still the same; the difference is that the BUFFALO system supplies
the first instruction of each interrupt service routine via the interrupt vector jump table.
The user must load the address of the rest of the interrupt service routine into the
appropriate locations in the vector jump table and write the remainder of the interrupt
service routine.

1. What binary value must be written to the IRQE bit to select level-sensitive
operation?

2. What is the default priority of the RTI?
3. If the Timer Input Capture 1 and the Pulse Accumulator Overflow interrupts

occur during the execution of the same instruction, which interrupt request will
be serviced first?

230

Technician’s Guide to the 68HC11 Microcontroller



Example 10.2

Problem: Using the flowchart in Figure 10.12, write a program that will allow the
IRQ to be serviced.

Solution: The source code starts with some parameter definitions: REGBASE and
so on, as shown in Figure 10.13. Note that the address assigned to IRQJMP is $00EF,
not $00EE. The opcode for the JMP instruction is located in $00EE, and the absolute
address is located in $00EF and $00F0. The executable code starts by loading the
address of the IRQISR into the vector jump table. Note that the maskable interrupts
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Figure 10.11 Relationship of Interrupt Vector Table to Interrupt Vector Jump Table
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are disabled during the initialization. Then the wait message is displayed, and the pro-
gram waits for the IRQ interrupt. When the interrupt occurs, the IRQISR is executed.
The IRQ message is displayed, and a two-second delay is called. The RTI instruction
completes the execution of the ISR, and the control is returned to the main program
with the BRA instruction following the WAI instruction.

START

 

 

IRQ Demo

Initialize the start
address in the

Vector Jump Table 

IRQ ISR

Display IRQ
message

Wait two
seconds

Wait for interrupt

Display WAI
message

Return from
 interrupt

Figure 10.12 IRQ Interrupt Demo Flowchart

* IRQ Interrupt Demo - Message changes when IRQ interrupt occurs

REGBASE EQU     $1000
IRQJMP  EQU     $00EF

DLY10MS EQU     $E2E5         BUFFALO 3.4 10 ms delay
OUTSTRG EQU     $FFC7         BUFFALO output string of characters to monitor

        ORG     $0100
MAIN    SEI                   Inhibit maskable interrupts during init
        LDX     #IRQISR
        STX     IRQJMP        Load jump table with IRQ ISR start address
        CLI                   Re-enable maskable interrupts

START   LDX     #MSGWAI
        JSR     OUTSTRG       Display wait message
        WAI                   Wait for the IRQ interrupt
        BRA     START         Repeat forever

TDLY    LDAB    #200          Two second time delay to slow things down
UP      JSR     DLY10MS
        DECB
        BNE     UP
        RTS

IRQISR  LDX     #MSGIRQ
        JSR     OUTSTRG       Display IRQ message
        JSR     TDLY          Wait two seconds
        RTI

MSGWAI  FCC     'Waiting for IRQ'
        FCB     $04
MSGIRQ  FCC     'IRQ ISR is running'
        FCB     $04

Figure 10.13 IRQ Interrupt Demo Source Code
232

Technician’s Guide to the 68HC11 Microcontroller



Self-Test Questions 10.5

 10.6 Nonmaskable Interrupts 

On the HC11, 6 of the 21 interrupt sources are classified as nonmaskable, as shown in
Figure 10.14. In general, nonmaskable interrupts cannot be inhibited or enabled by the
user. This rule holds true for three of the interrupts in this class, yet the other three can
be controlled to a small degree by the user. The SWI, Illegal Opcode Fetch and Processor
Reset interrupts cannot be inhibited in any way. They are active as part of normal proces-
sor function. The Clock Monitor, COP Failure and XIRQ have control bits that the user
can use to inhibit these interrupts. The specific bits are shown in Figure 10.14.

External Interrupts Using XIRQ

XIRQ functions in the same manner as the IRQ interrupt; however, it has a
nonmaskable characteristic. The XIRQ interrupt source is an external hardware pin
(XIRQ
______

) dedicated to the interrupt system. This pin can be used to cause an interrupt
request from any outside source in the same manner as IRQ. Because it has a higher
priority than all maskable interrupts, it is often linked to the interrupt features of an
external peripheral device.

XIRQ exhibits two characteristics of a maskable interrupt and maintains all the
strengths of a nonmaskable interrupt. First, the XIRQ is inhibited shortly after reset,
disabling the XIRQ function. Second, the user can enable the XIRQ by using a TAP
instruction to clear this bit. After the XIRQ is enabled, it cannot be inhibited by the
user, thus becoming a nonmaskable interrupt. Since the XIRQ has higher interrupt
priority (as do all nonmaskable interrupts) than all the maskable interrupts, the state
of the I bit is irrelevant to the XIRQ. When an XIRQ is requested, both the X and I
bits in the CCR are set by the hardware, disabling further interrupts from occurring.
When the RTI instruction is executed, the original state of the X and I bits is restored.

Interrupt Source Global Mask Local Mask
Local Control
Register

XIRQ (External Pin) X bit in CCR None N/A
Software Interrupt (SWI) None None N/A
Illegal Opcode Trap None None N/A
COP Failure None NOCOP CONFIG
Clock Monitor Fail None CME OPTION
Reset None None N/A

Figure 10.14 Nonmaskable Interrupt Control
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NOTE: The X bit is set after reset disabling the XIRQ interrupt source. The user
can use a TAP instruction to clear this bit to enable this nonmaskable interrupt
source. Once XIRQ has been enabled, it cannot be disabled, except via system
reset.

Software Interrupt (SWI)

SWI is an instruction in the HC11 instruction set. It is executed in the same manner
as all other instructions, yet it is unique. It is the only software means of directly causing
an interrupt. The SWI interrupt functions in the same manner as the maskable
interrupts, but is nonmaskable. When serviced, the I bit in the CCR is set, inhibiting
all maskable interrupts. The CPU registers are stacked in the same manner; a vector is
fetched from the vector table and an interrupt service routine is executed. SWI is truly
nonmaskable because it cannot be inhibited by the X and I global interrupt masks bits
in the CCR or any local interrupt enable control bits.

NOTE: Since SWI is a software instruction, it will not be fetched if any other
interrupt is pending. However, once an SWI instruction begins, no other interrupt
can be honored until the SWI vector has been fetched.

The BUFFALO monitor program uses SWI instructions for several useful purposes.
First, if the user program that is running from a BUFFALO prompt is terminated with
an SWI instruction, BUFFALO will service the interrupt by displaying on the monitor
the register contents. This is a very useful means of discovering the status of the
processor when program execution is complete. If the user chooses to use the SWI
instruction for another purpose, the default use of SWI by BUFFALO will be disabled.

Illegal Opcode Fetch

Since not all possible opcodes or opcode sequences are defined, an illegal opcode
detection mechanism has been built into the HC11. Each time an illegal opcode is
detected, the Illegal Opcode interrupt is requested. The address of the first byte of the
illegal opcode is stacked when the registers are stacked. The user can use this stacked
value as a pointer to the illegal opcode and thus determine if the illegal condition was
caused by a single- or double-byte opcode.

For example, the TEST instruction (opcode $00) is defined for the special test and
bootstrap modes, but is considered illegal by the single-chip and expanded modes.

Note: Since the illegal opcode fetch is a nonmaskable interrupt, the illegal opcode
vector should never be left uninitialized. If the vector address does not contain a
valid interrupt vector, the processor will crash if this interrupt occurs.

Computer Operating Properly (COP) Failure

Fundamentally, the Computer Operating Properly (COP) system is a timer. It is
intended to detect software processing errors. When the COP is being used, the

234

Technician’s Guide to the 68HC11 Microcontroller



software is responsible for keeping a free-running clock from timing out. If the clock
times out, it is an indication that the software is no longer executing properly. This
condition causes a system reset. Although this is classified as a nonmaskable interrupt
source, it can be locally disabled by the NOCOP bit of the CONFIG register, as shown
in Figure 10.15. When the NOCOP bit is set, the COP is disabled. When the NOCOP
bit is cleared, the COP is enabled. The COP is disabled by reset.

Further information on the operation of the COP feature is provided in section 10.6.

Clock Monitor Failure

The clock monitor system uses time delay controlled by an internal resistor/capacitor
(RC) to determine if the system clock is operating properly. If it detects a problem with
the system clock, it will cause a system reset. Since the clock monitor circuitry is based
on a delay derived from an RC delay, the clock monitor circuitry will operate properly
without any MCU clocks.

The CME bit in the OPTION register is used to disable the clock monitor system, as
shown in Figure 10.16. When CME is cleared, the clock monitoring system is disabled.
The clock monitor feature is disabled by reset.

Further information on the operation of the Clock Monitor Failure feature is provided in section
10.7.

Power-On Reset (POR)

The POR is only intended to initialize the internal MCU circuits. Essentially, it is not
an interrupt in the purest sense; however, it exhibits many interrupt-like characteristics.
When the power-on reset occurs, the system stops and restarts. The main system
software is executed. On the EVBU, the main system software is the BUFFALO monitor
program. Since the main system software technically never ends, the software does not
require the common terminating RTI instruction.

Further explanation of reset conditions on the HC11 are explained in sections 10.7 and 10.8 of
this text.

CONFIG b7 b6 b5 b4 b3 b2 b1 b0

$103F − − − − NOSEC NOCOP ROMON EEON

RESET 0 0 0 0 1 1 1 1

Figure 10.15 COP Local Control Bit

OPTION b7 b6 b5 b4 b3 b2 b1 b0

$1039 ADPU CSEL IRQE DLY CME − CR1 CR0

RESET 0 0 0 1 0 0 0 0

Figure 10.16 Clock Monitor Control Bit
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Nonmaskable Interrupt Priority

The nonmaskable interrupt sources are prioritized as shown in Figure 10.17. Unlike
the maskable interrupt sources, nonmaskable sources cannot be reprioritized. Because
more than one of the nonmaskable interrupt requests can occur during a single
instruction, each nonmaskable interrupt has a relative priority (where 1 is the highest
priority). When two or more nonmaskable interrupt requests occur at the same time,
the highest-priority request will be serviced first. Each nonmaskable interrupt has a
higher priority than any maskable interrupt. Therefore, if a maskable interrupt request
is received at the same time as a nonmaskable interrupt request is received, the
nonmaskable interrupt request will be serviced first.

Stop Instruction

The STOP instruction is a special instruction that in one sense acts like a nonmaskable
interrupt. When it is executed, it causes the processor to halt. The internal system clocks
stop, and the system is placed in a minimum-power standby mode. All CPU registers
and I/O pins, including the CCR, remain unaffected. The STOP is controlled by the
S control bit of the CCR. When S is cleared, the STOP instruction causes the system
halt, as described above. If S is set when the STOP instruction is executed, it is
interpreted as an NOP.

Recovery from a STOP instruction is accomplished by a hardware reset (RESET) or by
the processor receiving an XIRQ or IRQ interrupt request. XIRQ can cause STOP
recovery in two ways. If the X control bit in the CCR is set, which masks XIRQ interrupts,
execution will continue with the instruction immediately following the STOP instruc-
tion. If X is clear, which enables XIRQ interrupts, execution will start with the processor
register stacking operation common to the servicing of all interrupts.

Self-Test Questions 10.6

Interrupt Source Priority

Power-On Reset (POR) 1
Clock Monitor Fail 2
COP Failure 3
XIRQ (External Pin) 4
Illegal Opcode Fetch 5
Software Interrupt (SWI) 6

Figure 10.17 Nonmaskable Interrupt Priority

236

1. How many nonmaskable interrupt sources are available on the HC11?
2. Can any of the nonmaskable interrupts be masked? If so, which ones and how?
3. What is unique about the SWI interrupt?
4. What is the relative priority of the nonmaskable interrupts in reference to the

family of maskable interrupts?
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 10.7 Resets 

The reset feature of a microcomputing system is used to set initial conditions within
the system and begin executing instructions from a predetermined address. The reset
condition can be caused by an external or an internal stimulus. External stimuli are
classified as external resets, and internal stimuli are classified as internal resets.

Typically, the reset condition is caused by some external stimulus such as power-on or a low
level on the hardware RESET pin. These two interrupt sources are referred to as external
resets, because they are caused by an external stimulus. The internal hardware subsystems of
the HC11 can also detect illegal conditions that can also cause a reset condition. This is an
internal reset condition. The internal reset condition is output on the RESET pin so that
peripheral devices can be made aware of the system reset condition caused by the internal
stimuli. The Computer Operating Properly (COP) and Clock Monitor subsystems are the
two subsystems on the HC11 that can cause the internal reset condition.

A reset condition immediately stops the execution of the current instruction and forces
the program counter to one of three vector addresses, depending on the source of the
reset. Typically following the reset stimulus, a delay starts. This delay allows the system
to stabilize before the servicing of the reset interrupt can begin. The process of servicing
the reset stimulus is a sequence of tasks that must be performed. This delay, along with
other reset related tasks require a clock. If no clock is present, the processor cannot
advance past the first step of the servicing sequence. Servicing of the reset is similar to
the process followed to service a general-purpose interrupt. Interrupt servicing is
discussed earlier in this chapter.

There are four sources of a reset condition: the power-on reset (POR), external reset
(activating the RESET pin on the chip), a COP watchdog failure, and a clock monitor
failure. These reset conditions will be explained in the following sections.

Power-On Reset (POR)

The Power-On Reset (POR) is caused by an external stimulus. It is generated by a rising
edge on the main power pin of the HC11 chip (VDD). It is used exclusively for power-up
conditions and cannot be used to detect drops in the power supply voltage. Immediately
following the rising edge on VDD and when the oscillator becomes active, a delay starts of
4,064 clock cycles. This delay allows the clock generator to stabilize. If the RESET pin is at
logic zero at the end of this delay, the processor remains in reset until the RESET pin
changes to a logic one state. In most applications the POR system is externally connected
to the RESET pin via a low-voltage connect circuit. The low-voltage connect circuit is also
typically connected to a system reset switch. Thus, the POR and system reset are com-
bined to both cause a reset on the external RESET pin. This protects the processor from
power fluctuations and assures that the same process is followed for both reset sources.

External Reset (RESET)

The HC11 is equipped with an external RESET pin. It functions similar to the external
Reset pins on all processors, yet has additional functionality. Typically, external reset is
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an input-only pin on a processor. An active state on this pin causes the process to enter
a reset sequence. The HC11 RESET pin functions as an external reset input as well as
an internal reset output.

When any reset occurs, an internal device drives the RESET pin low for four E clock
cycles. At the end of the four clock cycles the internal device releases the RESET pin.
It then waits an additional two E clock cycles and samples the signal level on the RESET
pin. If it is still low, the processor then handles the reset as an external reset. If the
RESET pin is high after the two additional E clocks, the reset is handled as an internal
reset.

NOTE: Because of the dual function of the RESET pin, an external resistor/ca-
pacitor (RC) power-up delay circuit must not be connected to the RESET pin.
The RC charge time can cause the processor to misinterpret the type of reset that
occurred.

COP Failure Reset

The COP system is designed to detect software processing errors. When the COP is
being used, the software is responsible for keeping a free-running clock from timing
out. If the clock times out, it is an indication that the software is not executing properly.
When this condition is detected, the COP failure reset is initiated.

The COP failure feature of the HC11 is enabled and disabled by the NOCOP bit of
the CONFIG register, as shown in Figure 10.15. Because of the sensitive nature of this
control function, stringent requirements have been established for changing the
NOCOP bit. The user has the ability to change this control bit by writing to the CONFIG
register. However, changes to this bit do not immediately take effect. This bit is only
checked after a reset. Because of this strict procedure, it is very unlikely that this bit
will be accidentally changed.

The COP timer must be serviced by the user software before the COP time-out to avoid
the system reset. The user software must write to the COP arm/reset register
(COPRST), shown in Figure 10.18, to service the COP Timer. Servicing the timer has
two steps. First, the user must write $55 to the COPRST register to arm the COP timer
clearing mechanism. Then the user must write $AA to the COPRST register to clear
the COP timer.

The time-out rate of the COP failure system is controlled by the CR1 and CR0 bits in
the OPTION register, as shown in Figure 10.19. The default time-out rate is set to E/215.
The COP timer reset select bits select one of the four scale factors, as shown. CR1 and
CR0 can be written to only once during the first 64 machine cycles after reset.

COPRST

$103A b7 b6 b5 b4 b3 b2 b1 b0

RESET 0 0 0 0 0 0 0 0

Figure 10.18 COP Arm/Reset Register
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Since the COP timer is based on the system clock, the COP watchdog cannot detect
errors that cause the system clock to stop. Placing the COP service instructions in an
interrupt service routine is a bad practice. Interrupt service routines can still function
when the main program is not functioning properly. In this case, the COP timer would
be reset in the interrupt service routine, indicating that the software is operating
properly when it actually is not.

Clock Monitor Reset

The clock monitor circuitry is designed to determine the proper operation of the
internal processor clock. Specifically, E clock rates that drop below 10 kHz will be
detected as a clock failure. E clock frequencies must be above 200 kHz to assure that
the clock monitor circuitry does not accidentally detect clock problems. Systems that
operate on E clock frequencies below 200 kHz should not use the clock monitor
circuitry.

Since the COP system requires the system clock to function properly, the clock monitor
system is often used as a backup to the COP failure system. The clock monitor system
is also used to detect the accidental use of the STOP instruction. The STOP instruction
shuts down the system clock; thus the clock monitor circuitry would detect its use.

The clock monitor system must be enabled by software. The CME control bit in the
OPTION register is set to enable this function. The CME bit is cleared by system RESET,
thus disabling the clock monitor system.

Self-Test Questions 10.7

Control Bits

CR1 CR0 Scale Value Time-out Rate (E/x) Time-out Rate (ms)

0 0 1 E/215 16.384
0 1 4 E/217 65.536
1 0 16 E/219 262.144
1 1 64 E/221 1.049 s

OPTION b7 b6 b5 b4 b3 b2 b1 b0

$1039 ADPU CSEL IRQE DLY CME − CR1 CR0

RESET 0 0 0 1 0 0 0 0

Figure 10.19 COP Time-Out Rate Control Bits

1. What is the difference between an external and an internal reset?
2. Name the four reset sources.
3. What is the default COP time-out rate?
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 10.8 Servicing a Reset Interrupt 

There are four sources of a reset condition: the power-on condition, an active low state
on the RESET pin, a COP watchdog failure, and a clock monitor failure.
Each of these reset sources causes a set process to be followed. The steps are as follows:

1. Stop execution of the current instruction.
2. System hardware enters the initial conditions.
3. Load the system configuration data from the CONFIG register.
4. Establish the mode of operation.
5. Load the program counter with the reset vector.

Stop Execution of Current Instruction

Unlike the interrupt service process that waits for the execution of the current
instruction to complete, the reset process forces the execution of the current
instruction to stop, regardless of the state of that execution. Whatever effect this action
has on the processor systems is unimportant, since the next step is to initialize the
hardware systems.

Initialize Hardware Conditions

The following list provides a brief description of all HC11 systems affected by the reset
function. If a particular system is not affected or if it is undefined, it is not included in
this list.

◗ Clock Monitor system and Clock Monitor interrupt are disabled.

◗ COP and COP Failure interrupt are disabled.

◗ STOP mode is disabled.

◗ XIRQ and IRQ interrupts are globally disabled (masked).

◗ IRQ is selected as the highest-priority maskable interrupt source. It is
configured for level-sensitive operation.

◗ All maskable interrupts (i.e., PAI, TOC2, SPIE, etc) are locally disabled.

◗ RAM is mapped to $0000.

◗ Control register block is mapped to $1000.

◗ ROM and EEPROM are configured for normal read mode.

◗ EEPROM programming controls are disabled, and EEPROM block pro-
tection is enabled.

◗ All I/O pins on PORTA–PORTE are defaulted to general-purpose
I/O: PORTB and PA6–PA3 are configured as output pins that are
cleared, and PORTC, PORTE, PD5–PD0, PA7 and PA2–PA0 are config-
ured as inputs.

◗ Timer Counter (TCNT register) is cleared.

◗ Timer prescaler is set to a scale factor of 1.
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◗ Timer Output Compare registers are set to $FFFF.

◗ OC5 is selected, and IC4 is disabled.

◗ All output-compare, input-capture and pulse accumulator functions
are disabled.

◗ Real-Time interrupt rate is set to the fastest rate (E/213).

◗ All timer, OC, IC, PA and RTI interrupt flags are cleared.

◗ COP rate is set for the fastest rate (E/215).

◗ SCI receiver clock rate is set to E/16.

◗ SCI transmit clock rate is set to E/256.

◗ SCI transmitter and receiver are disabled. All related control and sta-
tus bits are set to their respective idle conditions (some high and some
low).

◗ SPI system is disabled.

◗ Analog-to-digital converter is disabled.

Load System Configuration from CONFIG Register

The HC11 includes an EEPROM-based CONFIG register. This register contains a
number of master system control bits. Since this register is EEPROM based, it is
nonvolatile; thus configuration is maintained during reset and power-down sequences.
Writes to this register do not take effect until after the next reset sequence.

Establish the Mode of Operation

There are four modes on the HC11: Single Chip, Expanded, Bootstrap, and Special
Test. The mode is selected by the status of the MODA and MODB hardware input pins.

Load the Reset Vector

After the reset operation has initialized and configured the hardware, the hardware
fetches the reset vector from the vector table and loads the program counter. Control
is then transferred to the software, beginning with the instruction located at the vector
in memory. Similar to the process of servicing an interrupt, the vector is the address
of the first instruction to be executed as a result of the reset.

Self-Test Questions 10.8
1. What are the five steps performed each time a reset is serviced?
2. What is the default state of the TCNT register after reset?
3. What is the state of timer system flags after reset?
4. What is the state of the analog-to-digital converter after reset? Why?
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 Summary 

Interrupts and resets are often discussed together because they share a common
function. Each must fetch a vector from memory to initialize the starting point of
software to complete the servicing of the interrupt or reset.

Interrupts are a powerful mechanism of computers designed to allow the more efficient
use of system resources. Interrupts allow multiple tasks to happen in a completely
random order, controlled by events internal or external to the processor. The HC11
supports 21 independent interrupts. Six of these are classified as nonmaskable
interrupts, and the remaining 15 are classified as maskable. In general, maskable
interrupts can be controlled (enabled or inhibited) by the user at anytime. Nonmask-
able interrupts cannot be controlled by the user.

In reality, the three highest-priority interrupts are reset functions. The reset functions
establish the initial conditions of the processor prior to executing the service routine.
Without the proper initial conditions, the processor cannot start processing instructions
in an orderly fashion.

 Chapter Questions 

Section 10.1
 1. What is the reset state of the S, X and I control bits in the CCR? Why is this

state significant?
 2. Can the user software set the X bit?

Section 10.2
 3. Explain the following terms: interrupt service routine and interrupt request.
 4. What purpose does an interrupt service routine serve?
 5. Define in your own words: interrupt vector, vector address and vector table.

Section 10.3
 6. Explain the difference between local and global interrupt control.
 7. Explain the difference between an interrupt mask and an interrupt enable.

Section 10.4
 8. What is unique regarding the Strobe A interrupt?
 9. What value must be written to the PSELx bits of the HPRIO register to elevate

the Timer Overflow Interrupt?
10. If the Real Time and the SCI Serial System interrupts occur during the

execution of the same instruction, which interrupt request will be serviced first?
11. If the HPRIO register contains $0D, which of the maskable interrupts has the

highest priority?

Section 10.5
12. Where is the JMP instruction located in the Vector Jump Table for the SPI

Transfer Complete Interrupt?
13. Why does the EVBU require the Vector Table and the Vector Jump Table?
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Section 10.6
14. For what purpose is the Illegal Opcode interrupt used?
15. Can the nonmaskable interrupts be reprioritized?
16. What is the relative priority of the SWI in reference to the other nonmaskable

interrupts?

Section 10.7
17. What is the difference between an internal and an external reset?
18. What is the COP? What does it do?
19. Describe the process of arming and servicing the COP timer.
20. What happens if the E clock rate drops below 10 kHz and the Clock Monitor

system is enabled?

Section 10.8
21. Describe the process of events that follows a reset condition.
22. What is the state of the Pulse Accumulator after reset?

 Chapter Problems 

1. If the SP is $0035 and an interrupt occurs, explain what data will be written to the
stack and which address locations will be used.

2. If the SP is $0041 and an interrupt occurs, what will the SP change to after the
registers are stacked?

3. If the starting address of the IRQISR is $019D, write the instructions necessary to
load this starting address into the Vector Jump Table.

4. Write the code necessary to elevate the priority of the RTI interrupt to highest
priority.

5. Write an interrupt service routine designed to count the number of 1’s in the 8-bit
word present at PORTC. Display the value on the monitor. Use the Strobe A
interrupt. Originate the code at $0100.

 Answers to Self-Test Questions 

Section 10.1
1. The I bit must be cleared to enable maskable interrupts.
2. The X bit is located in b6.

Section 10.2
1. The fetch and all execute cycles are completed for the current instruction before

the interrupt is serviced.
2. Nine bytes are pushed to the stack.
3. The RTI instruction is required to complete the interrupt service routine.

Section 10.3
1. The WAI instruction.
2. Execute the SEI instruction. It sets the I bit in the CCR disabling all maskable

interrupts.
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3. Timer Overflow Interrupt can be locally controlled by the TOI in the TMSK2 register.

Section 10.4
1. IRQE = 0 to select level-sensitive operation.
2. RTI has the second-highest priority of the nonmaskable interrupts.
3. Timer Input Capture 1 has priority 3 and Pulse Accumulator Overflow has priority

12, so the IC1 interrupt would be serviced first.

Section 10.5
1. The vector table is located from $FFD6 to $FFFF in ROM.
2. The first instruction is the JMP instruction located in the Vector Jump Table.

Section 10.6
1. There are six nonmaskable interrupt sources.
2. Yes. XIRQ can be globally unmasked via the X bit in the CCR, COP Failure and

Clock Monitor Fail can be locally masked via control bits in the CONFIG and
OPTION registers.

3. The SWI is the only interrupt that can be directly caused by a software instruction.
4. Nonmaskable interrupts have higher priority than all maskable interrupts.

Section 10.7
1. An external reset is a stimulus received by the processor via the RESET * pin on

the HC11. The internal reset sources come from internal hardware, like the COP.
2. Power-on reset, External reset, COP Watchdog Timer reset and Clock monitor

reset.
3. The default COP time-out rate is 16.384 ms.

Section 10.8
1. Stop execution of the current instruction.
1. System hardware enters the initial conditions.
1. Load the system configuration data from the CONFIG register.
1. Establish the mode of operation.
1. Load the program counter with the reset vector.
2. The TCNT register is cleared after reset.
3. All timer system flags are cleared after reset.
4. The analog-to-digital converter is disabled because the ADPU bit in the OPTION

register is cleared.
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 Objectives 
Analo g Capture—Port E

After completing this chapter, you should be able to:

◗ Explain the theoretical process of analog-to-digital conversion

◗ Calculate Range, Step Voltage and Resolution

◗ Predict the digital code generated from any analog input

◗ Describe the four major functional blocks of the HC11 analog-to-
digital system

◗ Explain the meaning of a channel

◗ Set up the HC11 for single and multichannel conversions

◗ Explain the timing of the HC11 conversion sequence

◗ Interface the LM34/35 temperature sensors from National Semicon-
ductor

 Outline 

◗ 11.1 Theory of Analog Conversion

◗ 11.2 A/D Hardware

◗ 11.3 A/D Function

◗ 11.4 Example Using an LM34/35 Temperature Sensor

 Introduction 

As is shown in chapter 1, the HC11 has an internal processor. This processor can process
data in a digital format. It requires the data to be in a binary format. In contrast to

Analog Capture—Port E

 c h a p t e r 11
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binary-formatted data, most measurable data, like current, voltage, temperature or
speed, is analog by nature. This data is not formatted in a machine-readable binary
format; thus it is necessary to convert the analog data to a digital format for processing.
Moreover, most measurable data is nonelectrical. Temperature, for example, must be
converted from degrees to a voltage for this data to be processed by the HC11. This
chapter focuses on the theory behind the conversion process of analog data to a digital
format and on how this theory is implemented using the HC11 microcontroller.
Specific application examples relevant to this study of the HC11 are provided.

This chapter directly correlates to section 12 of the HC11 Reference Manual and section 10 of the
Technical Data Manual.

 11.1 Theory of Analog Conversion 

Analog data is any data that is continuous in nature. Continuous means “any level at
any time.” The signal can be at any level. For example, 1.23 V, 437.8 mV and 3.89 V
are all valid analog input values. Temperatures change continuously. If the temperature
is rising, it does not remain at 72 degrees exactly until it has raised a full point to 73.
It moves from 72.1 to 72.2 and so on slowly and smoothly until it reaches the next level.
On the other hand, digital data by nature is discrete. Discrete means that the data can
only be specific values. It also means that the data is valid only at specific points in time.
Digital temperatures are limited to a fixed set of possible temperatures. At any point
in time, the temperature can be represented on the digital system only by a discrete
value.

Analog-to-digital conversion is the process of classifying ranges of analog input values
by assigning a multibit digital code to that range of input values. The number of
possible input values is infinite (any signal level). However, the number of digital codes
(commonly called steps) is finite. The number of codes is a function of the number of
digital bits in the code. For example, the HC11 uses an 8-bit code to represent the
input analog values; therefore, there are 28 or 256 possible codes or steps (2n, where
n = number of bits in the code).

Analog Data Capture

Many sources of data are in an analog format. Often this data is nonelectrical; it appears
in a physical analog format. For example, a temperature is measured in degrees. A
digital system like the HC11 cannot directly read degrees. Therefore, the physical
analog quantities must be converted to electrical values before they can be captured
and converted to digital. A sensor or a transducer is a device that is used to accomplish
this physical-to-electrical conversion. For example, a temperature sensor is used to
convert an actual physical temperature to an electrical voltage. The electrical voltage
can be captured and converted to digital by the analog-to-digital system.

Figure 11.1 shows the overall conversion process of physical quantities such as
temperature, pressure, light, weight or humidity to an analog voltage. The sensor
translates the physical quantities to an initial electrical quantity. The output of the
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sensor is connected to some scaling hardware. The job of the scaling hardware is to
amplify and shift the electrical signal so that it matches the input requirements of the
analog-to-digital converter. This analog voltage is then converted to a digital quantity
so that the computer can process it.

Range

There is a limited number of digital codes that can be generated for a given analog
range. Thus, limits must be placed on the analog input signals. The analog inputs will
be limited to values that fall between a high and a low reference voltage. The voltage
range is defined as the difference between the high and low reference voltages. On the
HC11 the high reference is referred to as VRH (voltage - reference high) and the low
reference voltage is referred to as VRL (voltage - reference low).

 Range = VRH – VRL Equation 11.1

Every A/D system has a maximum and a minimum reference voltage. The maximum
range is calculated using the maximum and minimum reference voltages. For example,
a system is designed to handle analog input values in the range from –15 volts to +15
volts. These points would be the maximum and minimum voltage levels. Using
Equation 11.1, the maximum range for this system would be 30 Volts, (+15 V) – (– 15
V). VRH cannot exceed the maximum reference voltage, and VRL cannot be less than
the minimum reference voltage. However, a system could be designed so that VRH is 5
volts and VRL is 0.0 volts. This allows a system to focus on only a small portion of the
maximum range. The maximums for the system could still be +/– 15 volts, as shown
in Figure 11.2. Limiting the range to some subset of the maximum range provides a
smaller step size and finer resolution. Step size and resolution are explained in the
next two sections.

Steps

The conversion of analog data to digital format requires that analog input values be
categorized or quantified into small ranges. A step is a small section of the range. Each
step within the range has a name or a digital code assigned to it. These codes are always
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a sequence of hex numbers starting with the lowest numeric value and increasing to
the highest numeric value in the coded range. Figure 11.3 illustrates the relationship
of steps, with their corresponding names (digital codes), to the input range.

The number of steps in a range is a function of the number of bits in the resulting
digital code. It represents the number of unique codes that can be created with the
given number of bits, as shown in Equation 11.2.
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 Number of Steps = 2n Equation 11.2

where n = the number of bits in the resulting digital code.

NOTE: Because of the view that zero should not be assigned to a step value, some
texts and A/D circuitry calculate the number of steps as 2n – 1. The HC11 is
designed to use the zero code for the first step and thus uses 2n.

Calculating the Step Voltage

Each step has a unique code; the converter and the processor thus have a way of
differentiating each step. The step voltage (VSTEP) is the size of each step (step size),
measured in volts. It is calculated by dividing the range by the number of steps, as
shown in Equation 11.3:

VSTEP = 
Range

Number of steps
 = 

VRH − VRL

2n
Equation 11.3

If VRH = 5.0 V and VRL = 0 V, VSTEP would be calculated by using Equation 11.3, as
follows:

VSTEP = 
VRH − VRL

2n  = 
5V − 0V

28  = 
5V
256

 = 19.53mV

This means that each step is equal to a range of 19.53 mV. Essentially the range is
divided into 256 steps, where each step represents a unique 19.53 mV subset of the
range. The upper and lower limits to each step are called step boundaries. Figure 11.4
illustrates the various steps with their corresponding digital codes and step boundaries.
The digital code $00 is assigned to the first step, which occupies the portion of the
range from VRL up to 19.53 mV. The digital code $01 is assigned to the second step,
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which occupies the portion of the range from 19.53 mV up to 39.06 mV. This process
continues through all 256 steps until the entire range is assigned steps and digital codes.
The top step, digital code $FF, will be equal to the range from 4.980 V (255 * VSTEP)
up to VRH.

The reason for having the steps is to provide categories so that the analog input voltages
can be converted in an orderly manner. All input voltages that fall within the
boundaries of a single step are assigned the digital code for that step. For example, if
the input voltage is equal to 12.0 mV, it falls into the first step; therefore, it is assigned
the digital code of $00. All analog input values at least 0.0 V and less than 19.53 mV
fall into this step and are assigned the digital code of $00. In the same manner, all
input voltages of at least 19.53 mV but less than 39.06 mV fall into the second step and
are assigned the digital code $01.

Determining the Digital Code

It is intuitive to determine which input values are assigned to the first few steps, but
what happens when the input voltage is in the middle of the range? There is a simple
method of calculating which step is assigned to any input analog voltage. It is calculated
by dividing the analog input voltage (VIN) by the step voltage (VSTEP), as shown in
Equation 11.4.

STEP = 
VIN − VRL

VSTEP

Equation 11.4

If the input voltage is equal to 3.21 V, the step would be calculated as follows:

STEP = 
VIN − VRL

VSTEP
 = 

3.21V − 0.0V
19.53mV

 = 164.36steps

Since there is no way of quantifying partial steps, this value is truncated to 164 steps.
Some systems round these values, but the HC11 calculates the steps by truncating the
remainder, as has been shown. When 164 is converted to hex, the digital code of $A0
results. A quick analysis shows that this is correct. The lower step boundary of the 164th
step is calculated as follows:

Lower Step Boundary = 164 × VSTEP = 164 × 19.53 mV = 3.203 V

Since the upper boundary is equal to the lower boundary of the next step, the upper
boundary for the 164th step is calculated as follows:

Upper Step Boundary = 165 × VSTEP = 165 × 19.53 mV = 3.222 V

It is evident that the input voltage of 3.21 volts falls between these lower and upper
boundaries, thus, the proper step has been assigned.

Resolution

Another term that is important to understand is resolution. Resolution is the
relationship of each step to the range. The step voltage is the resolution of the system
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in volts. As the step voltage decreases in reference to the range, the resolution of the
system increases. Resolution is also calculated as a percentage of the total range.
Percent resolution is calculated as follows:

Resolution (%) = 
100%

Number of steps
 = 

100%

2n
Equation 11.5

The similarities of Equation 11.5 to Equation 11.3 are apparent. Both divide the range
by the number of steps to calculate the size of a step. In Equation 11.3, the step size is
shown in volts, a small piece of the range. In Equation 11.5, the step size is shown as
a percentage of the range, where 100% is the whole range.

The percent resolution on the HC11, with its 8-bit converter, is

Resolution (%) = 
100%

28  = 
100%
256

 = 0.3906%

This means that each step of a 256-step system represents 1/256th of the range. Systems
with smaller values for percent resolution have greater resolution, i.e. more steps within
the range. More steps within a given range increase the number of possible codes and
minimize the errors introduced by conversion process.

Self-Test Questions 11.1

 11.2 A/D Hardware 

The analog-to-digital (A/D) system is an 8-channel multiplexed input converter that
utilizes a sample and hold and an 8-bit successive approximation converter. A channel
is a path for analog data to be converted to digital codes. A charge distribution
technique performs the internal sample and hold function. The A/D conversion
process can be synchronized to the internal system E clock or configured to be driven
by an internal RC oscillator.

The system hardware can be broken down into four functional blocks, as shown in Figure
11.5: analog input multiplexer, analog-to-digital converter, digital control, and result storage
registers. Each of these blocks will be discussed individually in the following sections.

Analog Input

As explained in chapter 10, Port E is a general-purpose digital input port. It can also
be configured as an analog-to-digital (A/D) converter. When it is used for digital input,
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4. In your own words, define resolution, as it relates to A/D conversion.
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the input pins are named PE7 through PE0. When the input pins are used for analog
input they are named AN7 through AN0, as shown in Figure 11.6.

The analog input process begins at these pins. The analog voltage signals are applied
to one or more of the input pins. Thus, the input multiplexer receives up to eight
unique analog inputs. The job of the multiplexer is to select one of these eight inputs
and forward the selected data signal to the analog converter because only one channel
can be converted at a time. Each input path (pin) is called an analog channel. Each
channel is selected by the CD, CC, CB and CA control bits in the A/D Control Register
(ADCTL). This function of the ADCTL register is described later in the conversion
control section.

Digital input and analog input are selectable on a bit-by-bit basis. In other words, some
bits can be configured to receive digital data at the same time others are configured
to receive analog signals.

NOTE: Digital input can continue on inputs not connected to analog sources.
The digital signals are stored in the PORTE register, and analog values are
processed by the A/D system.
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Analog-to-Digital Converter

The analog channel selected by the input multiplexer is converted to digital in this
block. It contains a capacitive array digital-to-analog converter (DAC), a comparator
and a successive approximation register (SAR). The DAC array acts as a sample and
hold circuit during the conversion sequence, and it provides a comparison voltage to
the comparator during the successive approximation conversion process. Each bit of
the 8-bit result is calculated using the successive approximation technique, starting with
the most significant bit (MSB). As each bit is calculated, it is stored in the SAR. When
the conversion is complete, the contents of the SAR are transferred to one of the four
result registers.

T his text leaves the study of the function of capacitive arrays and the successive approximation
conversion method to the student. Further information can be found in sections 12.1 and 12.2 of
the Reference Manual.

Conversion Control

The A/D function on the HC11 is controlled by a set of eight control bits and one
status flag. These bits reside in two control registers: the Option Register (OPTION)
and the A/D Control Regsiter (ADCTL).

The OPTION register contains two control bits relevant to the A/D function: ADPU
and CSEL, as shown in Figure 11.7. The ADPU bit (b7) is used to control the power-up
status of the A/D hardware block. The ADPU bit acts like a master enable. A 0 in this
bit disables the A/D hardware block, and a 1 in this bit enables the A/D hardware
block. A delay of as much as 100 s is required after power-up (ADPU set) to allow the
charge pump and comparator circuits to stabilize before the converter system can be
used.

The CSEL bit (b6) determines which reference clock will be used by the A/D and the
EEPROM hardware. When CSEL = 1, an on-chip RC oscillator will be used. When CSEL
= 0, the system E clock will be used. Because the E clock is synchronized to the MCU
clock, the comparator output can be sampled during relatively quiet times during the
MCU clock cycle. Since the internal RC oscillator is asynchronous to the MCU clock,
there is more error attributable to clock noise. Therefore, when the internal RC
oscillator is being used, the A/D converter accuracy is reduced.

NOTE: CSEL is used to determine the reference clock for the A/D conversion
hardware as well as the EEPROM programming hardware. Setting CSEL for the
A/D functions automatically reconfigures the EEPROM function.

OPTION b7 b6 b5 b4 b3 b2 b1 b0

$1039 ADPU CSEL IREQ DLY CME − CR1 CR0

RESET 0 0 0 1 0 0 0 0

Figure 11.7 OPTION Register Control Bits Used For A/D Control
253

Analog Capture—Port E



The ADCTL register contains one status flag CCF (b7), one unused bit (b6), and six
control bits (b5–b0), as shown in Figure 11.8. The ADCTL register controls when to
start a conversion, what type of conversion to complete and which channel or channels
to scan. CCF is a read-only flag that is set only by the conversion hardware. Once a
conversion sequence is invoked by writing to the ADCTL register, the conversion
sequence continues without further software intervention. When the conversion is
complete, the CCF is set. CCF is cleared by any write to the ADCTL register and is not
affected by a read of the ADCTL. CCF is cleared after reset.

The SCAN bit controls continuous/single scan modes. When the SCAN bit is set,
conversion sequences will occur continuously. The completion of a sequence will
automatically start another sequence without another write to the ADCTL register.
When SCAN is cleared, a single conversion sequence will occur. Subsequent conversion
sequences can be started only by a write to the ADCTL register.

The MULT bit controls whether (a) one channel will be converted four times or (b)
four sequential channels will be converted one time each during the conversion
sequence. When MULT is set, four channels are converted, one time each. The CC
control bit determines which group of four channels will be converted. When MULT
is cleared, a single channel is converted four consecutive times. The CC:CB:CA control
bits determine which channel is selected.

The CD:CC:CB:CA bits control which channel or channels will be converted during
the sequence, as described in Figure 11.9 and Figure 11.10. There are 16 channels
available. They are numbered 1 to 16. Channels 1–8 correspond to the PORTE pins.

ADCTL b7 b6 b5 b4 b3 b2 b1 b0

$1030 CCF − SCAN MULT CD CC CB CA

RESET 0 0 U U U U U U

Figure 11.8 ADCTL Register Control Bit and Status Flag

Channel
Number

Channel Select
Control Bits
CD CC CB CA

Channel
Signal

Corresponding
ADRx
if MULT = 1

1 0  0  X  X AN0 ADR1
2 0  0  X  X AN1 ADR2
3 0  0  X  X AN2 ADR3
4 0  0  X  X AN3 ADR4
5 0  1  X  X AN4 ADR1
6 0  1  X  X AN5 ADR2
7 0  1  X  X AN6 ADR3
8 0  1  X  X AN7 ADR4

Figure 11.9 Converter Multichannel Selection and Assignments (adapted with
permission from Motorola)

254

Technician’s Guide to the 68HC11 Microcontroller



Channels 9–16 are used for internal testing and reference and are not used during
normal operation.

CD is set only during factory testing; therefore, it is always cleared during normal
operation. When MULT = 1, CC selects the upper or lower group of the eight analog
input channels: set = upper group (channels 5–8), cleared = lower group (channels
1–4). CB and CA are ignored when MULT = 1. When MULT = 0, CC, CB and CA
determine which channel will be converted, as shown in Figure 11.10.

Result Registers

The HC11 is configured to always perform four conversions during a conversion
sequence. The 8-bit result of the four conversions are stored in a set of four result
registers. Each register has a name and unique address. Each register can be read by
the CPU at any time. These registers contain the results of the four conversions. Named
ADR1–ADR4, they reside at locations $1031–$1034 in the register block, as shown in
Figure 11.11. They are read-only registers. A write to these register addresses has no
effect on the contents of the register.

Hardware Connections

The A/D utilizes 10 hardware pins, 8 for the corresponding analog inputs (AN0–AN7),
the same pins used for PORTE digital input (PE0–PE7) and 2 for the reference voltage

Channel
Number

Channel Select
Control Bits
CD CC CB CA

Channel
Signal

1 0  0  0  0 AN0
2 0  0  0  1 AN1
3 0  0  1  0 AN2
4 0  0  1  1 AN3
5 0  1  0  0 AN4
6 0  1  0  1 AN5
7 0  1  1  0 AN6
8 0  1  1  1 AN7

Figure 11.10 Single-Channel Selection and Assignments (adapted with permission
from Motorola)

ADRx

$1031 ADR1 b7 b6 b5 b4 b3 b2 b1 b0

$1032 ADR2 b7 b6 b5 b4 b3 b2 b1 b0

$1033 ADR3 b7 b6 b5 b4 b3 b2 b1 b0

$1034 ADR4 b7 b6 b5 b4 b3 b2 b1 b0

RESET U U U U U U U U

Figure 11.11 Analog-to-Digital Result Registers
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VRH and VRL. VRH is the high reference voltage or the top end of the reference range.
VRL is the low reference voltage or the bottom end of the reference range.

VRL must be greater than or equal to VSS (processor reference voltage - ground). If the
VRL drops below VSS, the input can be permanently damaged. VRH must not exceed 6
volts. The best performance occurs when the difference between VRH and VRL is at
least 2.5 volts (2.5V ≤ VRH – VRL ≤ 6.0V).

NOTE: Two of the most common A/D application errors occur when connections
are made with too much or too little source impedance (series resistance). Too
much impedance increases errors due to leakage currents, and too little
impedance results in permanent damage to the A/D. Input impedance should
be limited to 10 kΩ. Typical connections will use a 1 kΩ series resistor.

Self-Test Questions 11.2

 11.3 A/D Function 

After hardware reset, the PORTE input pins are designated as digital inputs that can
be accessed by the PORTE register. In order to make these inputs receive and process
analog data, the A/D converter must be configured as follows:

1. Build a control word for the OPTION register to power-up the A/D converter by
setting the ADPU bit (ADPU = 1) and selecting the clock source (CSEL = 0/1).

2. Write this control word to the OPTION register.
3. Build a control word for the ADCTL register by answering the following questions:

a. Should the conversion sequence be performed once or continuously (SCAN
= 0/1)?

b. Is one channel to be converted four times, or are four separate channels to be
converted once each (MULT = 0/1)?

c. Which channel or channels are to be converted (CD, CC, CB, CA)?

4. Write this control word to the ADCTL register (remember any write to this register
starts a conversion sequence and clears the CCF bit).

Following are two examples showing how this is done.

1. What is the default use (state after reset) of the PORTE input pins?
2. How many analog input channels are provided?
3. How many bits are in each digital value are calculated during a conversion on

the HC11?
4. How many channels are converted before the CCF is set?
5. Which register is programmed to select single or continuous scan?

256

Technician’s Guide to the 68HC11 Microcontroller



Example 11.1

Problem: What has to be written to the ADCTL register to start a single scan of
channel 7 and then wait for the conversion to complete?

Solution: The first step is to build a control word for the OPTION register. On the
EVBU, BUFFALO activates the A/D system by setting the ADPU bit in the OPTION
register; no further action is necessary. Next, a control word for the ADCTL register
must be built. Since the CCF is a read-only status flag, what is written to b7 is
irrelevant. As the unused bit will always be read as a zero, what is written to b6 is
also irrelevant. To perform a single scan, SCAN = 0. To scan a single channel, MULT
= 0. Using Figure 11.10, channel 7 requires CD:CC:CB:CA = 0110. These choices
result in the following control word $06.

When this control word is written to the ADCTL register, a conversion sequence is
started that samples and converts the single channel 7 (AN6) four successive times
and writes the results into the result registers ADR1 through ADR4 respectively.
The following codes show how to write the control word to the ADCTL register and
wait for the CCF to set.

        LDAA   #$06   ;SCAN = 0, MULT = 0, CD:CC:CB:CA = 0110

        STAA   $1030  ;Start conversion sequence

LOOP1   LDAA   $1030  ;Test for CCF = 1

        BPL    LOOP1  ;  If CCF = 0 read ADCTL again

Example 11.2

Problem: What has to be written to the ADCTL register to start a single scan of
channels 1–4 and then wait for the conversion to complete?

Solution: As shown in the previous example, b7 and b6 are irrelevant. To perform
a single scan, SCAN = 0. To scan multiple channels, MULT = 1. Using Figure 11.9,
channels 1–4 require CD:CC = 00 and CB:CA are irrelevant. In this case they are
cleared, but can be any binary combination (00, 01, 10, or 11). When this control
word is written to the ADCTL register, a conversion sequence is started that
samples and converts the signals on channels 1 (AN0) through channels 4 (AN3)
and writes the results in ADR1 through ADR4 respectively.

ADCTL b7 b6 b5 b4 b3 b2 b1 b0

$1030 CCF − SCAN MULT CD CC CB CA

0 0 0 0 0 1 1 0Control word

ADCTL b7 b6 b5 b4 b3 b2 b1 b0

$1030 CCF − SCAN MULT CD CC CB CA

0 0 0 1 0 0 0 0Control word
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       LDAA   #$10   ;SCAN = 0, MULT = 1, CD:CC:CB:CA = 0000

       STAA   $1030  ;Start conversion sequence

WAIT2  LDAA   $1030  ;Test for CCF = 1

       BPL    WAIT2  ;  If CCF = 0 read ADCTL again

Conversion Sequence and Timing

The A/D function on the HC11 is configured always to perform a set of four
conversions. This is called a conversion sequence. If the MULT bit is set in the ADCTL
register, the conversion sequence will consist of four consecutive channels. The four
channel groups are limited to the upper set of four channels (1–4) and the lower set
of four channels (5–8). When the MULT bit is cleared, four consecutive conversions
of a single channel are performed during the conversion sequence.

The timing of the conversion sequence is dependent on the status of the CSEL bit in
the OPTION register. Whenever possible the CSEL bit should be cleared, selecting the
E clock as the master clock for the A/D conversion sequence. When E clock is used as
the master clock for the A/D converter, all A/D functions are synchronized with the
system clock. Sampling takes place at relatively quiet times in the system clock cycle,
thus reducing the effects of internal MCU noise. Also, the result register updates
automatically occur during a portion of the system clock cycle when reads do not occur;
therefore, an update to a result register cannot interfere with another system data read.

When the internal RC oscillator is used as the A/D master clock, the A/D functions
are asynchronous to the system clock. There is more error attributable to internal
system noise since sampling occurs anytime within the system clock cycle, rather than
at a relatively quiet time. Potential conflicts that could arise between result register
updates and normal read operations are avoided by the addition of a delay at the end
of each channel conversion to allow for synchronization to the system E clock.

When system clock speed is less than 750 kHz, the on-chip RC oscillator should be used
to minimize the potential for increased error due to charge leakage at temperature
extremes. When the system clock is greater than 750 kHz, the E clock should be used
because of the advantages described earlier.

Figure 11.12 shows a complete conversion sequence in relation to E clock, when
CSEL = 0. This timing diagram can be used to determine the earliest availability
of valid data for each converted channel. For example, ADR1 has valid conversion
results 32 E clocks after a write to the ADCTL register, ADR2 will be available
in 64 E clocks, and so on.

NOTE: A conversion sequence is initiated by a write to the ADCTL register. A
conversion sequence in progress can be aborted by performing another write to
the ADCTL register, thus initiating a new conversion sequence.258
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Self-Test Questions 11.3

 11.4 Example Using an LM34/35 Temperature Sensor 

The A/D functions on the HC11 have the job of capturing analog data and converting
it into a digital format. Since real-world sensors produce data in an analog form, the
PORTE A/D functions are ideal to access and process this data. For example, the LM34
temperature sensor is a device that produces a 10 mV /˚F linear output voltage. The
device is proportional and linear across the range of temperatures between –50˚F and
+300˚F. 0˚F will generate the output voltage of 0 mV, and 300˚ F will generate a 3.0 V
(3,000 mV) output. National Semiconductor also has a Celsius temperature sensor, the
LM35. It is identical to the LM34, except it generates 10 mV/˚C.

The rest of this section will show how the LM34 is interfaced to the HC11, how the
HC11 processes the data and how it displays the results on a monitor using BUFFALO.
Figure 11.13 shows how the hardware would be connected. AN7 has been selected since
AN0 is used by the EVBU to determine EEPROM boot. In this particular circuit,
temperatures below 0˚F will produce negative voltages to the HC11. Since the LM34

Figure 11.12 HC11 Conversion Sequence Timing (courtesy of Motorola)

1. How does the user start a conversion sequence?
2. When CSEL = 0, how many E clock cycles are required to convert a single

channel?
3. How many clock cycles are required to complete a conversion sequence?

LM34

10 mV/ oF
AN7

VRH

VRL

VDD 5.0 V

VSS

VDD(5 V) HCII

Figure 11.13 Digital Thermometer Hardware Diagram
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will not produce negative voltages greater than the –1 V maximum allowed by the
HC11, no damage will be caused.

Digital thermometer software is a bit more involved than the hardware connections. A
flowchart and the source code for the program are shown in Figures 11.14 and 11.15
respectively. The software must sample and convert the temperature input and then
convert it to the decimal temperature value. A single subroutine in BUFFALO allows
the temperature to be displayed on the monitor. The following code is an example of
how this software may be written. It sets the A/D converter up to convert the data on
AN7 using a single-channel, noncontinuous conversion. Since the converted code is in
hex, it must be converted to decimal before display. This routine uses a common
dividing and scaling scheme to accomplish the conversion. The resulting decimal digits
are stored as 4-bit BCD digits in the rightmost digits of the two bytes called BUFFER.
The program uses the internal BUFFALO subroutines OUT2BS and OUTCRL to

Thermometer

Start a single
scan of channel 8

CCF = 1?

Get sample from
ADRx

Scale to
19.5 mV/step

Calculate 100's
digit

Calculate 10's
digit

Calculate 1's
digit

Output three digit
temperature

Delay 1 second

POLL

LOOP

Figure 11.14 Flowchart of Thermometer Example
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display the temperature on the monitor. Finally, the program waits one second by
calling the BUFFALO 10 ms delay subroutine and then repeating the program
continuously.

Self-Test Questions 11.4

 Summary 

Analog-to-digital conversion is the process of capturing a continuous signal and
converting it to multibit digital code. The theories behind range, steps and resolution

***********************************************************
* HC11 Digital Thermometer Example
*
* This program outputs to the monitor the decimal
* temperature in degrees Fahrenheit using an LM34
* temperature sensor and PORTE
***********************************************************

ADCTL   EQU     $1030    Define labels to make code
ADR1    EQU     $1031      more readable.

OUT2BS  EQU     $FFC1    BUFFALO subroutines - output two bytes
OUTCRL  EQU     $FFC4      - output carriage return/line feed
DLY10MS EQU     $E2E5      - internal 10 ms delay

        ORG     $0000
BUFFER  RMB     2        Temporary storage of digital temp

        ORG     $0100    Starting address of executable code

LOOP    LDAA    #$07     single scan of AN7
        STAA    ADCTL    Start the conversion sequence

POLL    LDAA    ADCTL    Wait until conversion is complete
BPL     POLL

LDAA    ADR1     Get the digital temp from result reg
LDAB    #195     scale to 19.5 mV step size
MUL
LDX     #100     remove hundreds scale
IDIV
XGDX
LDX     #100     calculate hundreds digit
IDIV             hundreds digit in X, remainder in D
XGDX             hundreds in B, remainder in X
STAB    BUFFER   save hundreds until ready to display
XGDX
LDX     #10      calculate tens & ones digits
IDIV             tens digit in X, ones digit in D
STAB    BUFFER+1 save ones digit temporarily
XGDX             tens digit to B
LSLB             move tens digit to 4 MSBs
LSLB
LSLB
LSLB
ADDB    BUFFER+1 add ones digit to tens
STAB    BUFFER+1 save tens and ones

LDX     #BUFFER  load X with address of temp to display
JSR     OUT2BS   display the temp
JSR     OUTCRL   output carriage return/line feed

 LDAB    #100     wait 1 sec before it is done again
WAIT1   JSR     DLY10MS  BUFFALO 10 ms delay

 DECB
 BNE     WAIT1    100, 10 ms delays complete?
 BRA     LOOP     go back to top and do it again

Figure 11.15 Source Code of Thermometer Example

1. What is the output voltage of an LM34 when the input temperature is 34 degrees?
2. What is the output voltage of an LM34 when the input temperature is 218 degrees?
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were presented. The range is the difference between the high and low reference
voltages. A step is a small section of the range that has a unique name or a code assigned
to it. The resolution is the ratio of the “size of the step” to the “size of the range.” It is
normally expressed in percentage.

Port E is a general-purpose digital input port that can also be configured as an analog
input port. When configured as an analog input, up to eight independent analog
channels can be accessed by the internal A/D conversion system. Each input channel
can be sampled and converted to digital and stored in up to four result registers. A
conversion sequence consists of four successive conversions of either a single channel
or a group of four channels. Conversion sequences can be converted on a continuous
or single sequence basis. Conversion sequences are initiated by writing a control word
to the ADCTL register.

 Chapter Questions 

Section 11.1
 1. What is the voltage range when VRH = 4.0 volts and VRL = 1.5 volts?
 2. What is the step voltage on the HC11 if the voltage range is 3.456 volts?
 3. What is the step voltage if VRH = 4.096 volts and VRL is grounded?
 4. Calculate the digital code that will be assigned to the analog input of 3.65 V, if

VSTEP = 16 mV and VRL = 0 V.
 5. Calculate the digital code that will be assigned to the analog input of 1.985 V,

if VSTEP = 5 mV and VRL = 1.2 V.
 6. What is the percent resolution of a 12-bit A/D converter?
 7. What is the percent resolution of an 8-bit A/D converter?

Section 11.2
 8. When not being used for A/D, is Port E an input or an output port?
 9. What label names are associated with the PORTE inputs when they are

configured for analog input?
10. What hardware pin number is used for PE3/AN3?
11. What is the address of the register that receives digital data from the PEx pins?
12. Assume that channel 1 and channel 2 both have valid analog input signals

applied and the A/D converter performed a multichannel conversion. At what
addresses will the digital results of the channels be stored?

13. What is the address of the OPTION register?
14. What is the address of ADR4?
15. How many channels of the A/D inputs can be multiplexed at one time?
16. Which register selects the analog channel to be converted?
17. Which bit in the OPTION register must be set to power-up the A/D?
18. Which bit in the ADCTL register is set to indicate that a conversion has been

completed?
19. During a multichannel conversion, which ADR register will contain the digital

sample of channel 5?
20. Can the user write data to one of the ADRx registers?
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Section 11.3
21. What hex value needs to be loaded into the lower nibble of the ADCTL to

select channel 5 for conversion?
22. Fully describe what will be accomplished if $10 is written to the ADCTL.
23. How long in seconds does it take to complete the conversion sequence?
24. If the E clock was 3.2 MHz, how long in seconds does it take to complete the

conversion sequence?

Section 11.4
25. Which LM series temperature sensor is used to convert temperature from

degrees C?
26. What output voltage will be produced on an LM34 from an input temperature

of 159 degrees?
27. What is the minimum resolution in degrees of a system that has an LM34

directly connected to AN7, VRH = 5.0 V and VRL = 0.0 V?
28. What could be done to increase the resolution to 1/2 of a degree in the system

from question 27?

 Chapter Problems 

1. Calculate the range of voltage for the steps associated with the codes $3A, $57, $9D,
and $E2, when VRH = 4.0 V and VRL = 0.8 V.

2. Calculate the ideal range of a system using an LM34 for temperature measurement
where the desired range of temperatures is between 50˚F and 250˚F. Take measures
to optimize the resolution and step size of the system for better accuracy.

3. Draw a flowchart and write a program that will convert the single channel connected
to AN5. Store the results of the conversion sequence in a 4-byte memory buffer
located at $0010 in RAM. Originate the program at $0100.

4. Draw a flowchart and write a program that will perform a multichannel conversion
that includes channel 3. Store the results of the conversion sequence in a 4-byte
memory buffer located at $01A0 in RAM. Originate the program at $0120.

5. Draw a flowchart and write a program that will perform a multichannel conversion
of channels 5–8. Store each of the four results on LEDs that are connected to the
lower four bits of PORTB. Write a two-second time delay and execute between each
write to PORTB. Originate the program at $0160.

 Answers to Self-Test Questions 

Section 11.1
1. Range is the set of possible input voltages that are allowed in the system.
2. Range = VRH – VRL = 3.6 – 0.0 = 3.6 volts.
3. Step is the smallest level of resolution of a system. Step voltage is a small voltage

range associated with a single step. Step boundaries are the upper and lower
voltage limits of a step.

4. Resolution is the percentage of the whole range that is associated to a single step.
263

Analog Capture—Port E



Section 11.2
1. The PORTE pins are configured for digital input after reset.
2. The HC11 can support 8 independent analog input channels.
3. The HC11 is an 8-bit conversion system.
4. The HC11 is configured to always convert four channels before the CCF is set.
5. The ADCTL register controls the type of conversion to complete.

Section 11.3
1. A conversion sequence is started by writing to the ADCTL register.
2. A single channel requires 32 E clock cycles.
3. A conversion sequence requires 128 E clock cycles.

Section 11.4
1. 34 degrees × 10 mV / degree = 340 mV.
2. 218 degrees × 10 mV / degree = 2.18 V.
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 Objectives 
Timed  Events—P ort  A

After completing this chapter, you should be able to:

◗ Define the concept of a timed event
◗ Describe the pin assignments of the Port A timing system
◗ Show understanding of status flags and interrupt mask bits
◗ Capture the time of input events using input capture
◗ Calculate pulse width and period of input signals from times captured

by input-capture hardware
◗ Cause output events to happen at specified times
◗ Generate pulses and square waves on OCx output pins
◗ Use input capture in conjunction with output compare to generate

time delays
◗ Count the number of occurrences of input events using event mode in

pulse accumulator
◗ Calculate the pulse width using gated mode in pulse accumulator
◗ Cause periodic or timed interrupts to occur via the real-time interrupt

hardware

 Outline 

◗ 12.1 Theory of Timed Events

◗ 12.2 Main Timer Functions

◗ 12.3 Input Capture

◗ 12.4 Output Compare

◗ 12.5 Pulse Accumulator

◗ 12.6 Real-Time Interrupts

Timed Events—Port A

 c h a p t e r 12
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 Introduction 

Port A is a general-purpose I/O port that can also be configured for a variety of timer
functions. This chapter will present some theory behind the concept of timed events
and then address the five major functions performed within the HC11 timing system:

1. Timing event master control
2. Input-capture: Capturing the time at which input events occur
3. Output Compare: Causing output events to occur at specified times
4. Pulse Accumulation: Ability to count events
5. Real-Time Interrupts: Events occurring on a periodic basis

The timer system uses more registers and control bits than any other system within the
HC11. Each of the input-capture and output compare features has a dedicated 16-bit
data register, control bits to select the particular type of event, an event flag and an
interrupt enable. The pulse accumulator uses an 8-bit accumulator, event control bits
and two independent flags and interrupt enable bits. The real-time interrupt feature
has additional control bits. Each data register will be described, as well as the control
bits specific to each timer system function, in the following sections.

Although many of the control bits within the timer system are hardwired to specific
timer functions, the timer system is essentially software driven. The system is easily
adaptable via the programmable registers to a wide range of timer-related functions.

Since Port A contains only eight bits, each bit serves multiple functions, as shown in
Figure 12.1. For example, if the IC4 feature is being used, then the OC5, OC1 and b3
digital I/O feature must be disabled. When the pulse accumulator input (PAI) is being
used, digital I/O on b7 is disabled. Some of the features can be active simultaneously
on the same pins. The OC1 features can be active at the same time as any of the other
OCx functions. OC1 and pulse accumulation can also be active concurrently. In this
case, the pulse accumulator will count events caused by the OC1 output. Further
information regarding all of these features appears throughout this chapter.

This chapter directly correlates to sections 10 and 11 of the HC11 Reference Manual and section
9 of the Technical Data Manual.
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b7 b6 b5 b4 b3 b2 b1 b0

In/Out Out Out Out In/Out In In In

DIGITAL I/O PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

IC FUNCTION - - - - IC4 IC1 IC2 IC3

OC FUNCTION OC1 OC1
OC2

OC1
OC3

OC1
OC4

OC1
OC5

- - -

PA FUNCTION PAI - - - - - - -

Port A

Figure 12.1 Port A Pin Designations and Function Assignments

Technician’s Guide to the 68HC11 Microcontroller



 12.1 Theory of Timed Events 

All microcomputing systems have a need for functions to occur at specific points in
time. For example, the digital clock on the PC is a timer system that increments the
seconds, minutes and hours. A timed event in this case occurs on a one-second interval.
This event causes the clock to count.

In general, an event is a signal transition, high to low or low to high, but can be a
variety of other occurrences. An input event is a signal coming from some external
source and is sensed by the HC11. An output event is created by some function within
the HC11 and is output to some external circuit.

An input event is sensed by an edge transition on an input signal. For example, a
control system needs to keep track of what time the lights were turned on in a particular
room. The system would need to monitor the power on the line. No power would be
a 0 V state. When power was applied by turning on the light, the line power would
transition to a high state, which would be sensed and interpreted as an input event.
The input-capture system would then store the time at which this event happened.

Input events have the tendency to be random by nature; thus they occur at many
different times. Often, the time at which the event occurs is more significant than the
event itself. In other cases, the frequency of events within a specified period is
significant; thus the ability to count events is important. The HC11 supports each of
these methods to handle and process input events. These types of events will be
discussed in the input-capture and pulse accumulation sections later in this chapter.

An output event is represented by a transition on an output signal. For example, a
control system needs to automatically turn off the lights 15 minutes after closing time.
A control register is loaded with the time the event is to take place, for example, 15
minutes after closing. The system then compares the system clock to the event time.
When the system clock matches the designated event time, the output event will take
place. The output event, in this case, would create a state change on the output signal,
which would signal the lights to be shut off.

Output events are often controlled by some input event. The previous example could
be viewed this way. The input event of “closing time” triggered the output event of
“turning out the lights.” This approach allows complete flexibility in regards to the time
the output events take place. Output events can also occur on a periodic basis: Every
minute, go check the fluid level in the tank, the temperature in the oven, the state of
a process. Periodic events allow background tasks to be controlled without the normal
required overhead.

Self-Test Questions 12.1
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1. In your own words, describe an event.
2. Define an input event.
3. Define an output event.
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 12.2 Main Timer Functions 

The HC11 timing system is comprised of five major timing chains. Three of these chains
are tied to features of Port A, and the other two chains are tied to features of Port D,
which are discussed in the next chapter. As shown in Figure 12.2, all timing chains are
a derivative of the internal bus clock, which is at the same frequency as E Clock.
Therefore, all Port A timing functions are a function of the E Clock frequency and are
synchronized to the phase of the internal bus clock.

The main clock divider chain drives a 16-bit free running counter called the Timer
Counter register (TCNT). The user cannot change the contents of the counter, thus the
name “free-running” counter. The 16-bit counter occupies two bytes of register space at
locations $100E and $100F, and it is cleared after reset, as shown in Figure 12.3.

Since the TCNT register is a 16-bit counter, it can count from $0000 to $FFFF, or 0
through 65,535. When it reaches the maximum count, the register rolls over and starts
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Figure 12.2 Timer Clock Divider Chains (adapted with permission from Motorola)
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the sequence over again. Each time the register rolls over, the timer overflow flag (TOF)
is set in the Timer Interrrupt Flag Register 2 (TFLG2). TOF indicates that the TCNT
register has rolled over; thus the value in the TCNT register represents the number of
counts since the last time TCNT rolled over. If the Timer Overflow Interrupt Enable
(TOI) bit of the Timer Interrupt Mask Register 2 (TMSK2) is set when the timer
overflow occurs, an interrupt will be requested. The location of the TOF and TOI bits
within the TFLG2 and TMSK2 registers is shown in Figure 12.4.

The value in the TCNT register always indicates the number of counts since the last
time the register overflowed (rolled over). By default, the clock for the counter is E
clock; therefore, the value in TCNT is the number of E clocks since the last time the
register overflowed. If the desired clock rate is slower than the E clock rate, the clock
rate can be reduced by changing the programmable prescaler. Slowing the clock rate
slows the TCNT register count rate and overflow rate.

The prescaler can be set to one of four scale values, E/1, E/4, E/8 or E/16, as shown
in the timing chain shown in Figure 12.2. The default scale factor is 1; thus the timer
count is E clock divided by 1, or the E clock rate. The scale value is selected by the
value stored in the Timer Prescaler Select bits (PR1, PR0) in the TMSK2 register
(location of these bits is shown in Figure 12.4). Figure 12.5 contains the timing
characteristics of the TCNT register in relation to the value stored in PR0 and PR1.

NOTE: The TMSK2 register is one of four protected control registers (BPROT,
INIT, OPTION and TMSK2). In order to protect the sensitivity of the PR1 and
PR0 bits in the TMSK2 register, write operations are restricted. The PR1 and PR0
bits in the TMSK2 register can be written only once, and that write must occur
in the first 64 machine cycles after reset.
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TCNT

$100E (HI) b15 b14 b13 b12 b11 b10 b9 b8

$100F (LO) b7 b6 b5 b4 b3 b2 b1 b0

RESET 0 0 0 0 0 0 0 0

Figure 12.3 TCNT Register Layout

TFLG2 b7 b6 b5 b4 b3 b2 b1 b0

$1025 TOF RTIF PAOVF PAIF − − − −

RESET 0 0 0 0 0 0 0 0

TMSK2 b7 b6 b5 b4 b3 b2 b1 b0

$1024 TOI RTII PAOVI PAII − − PR1 PR0

Reset 0 0 0 0 0 0 0 0

Figure 12.4 Timer System Control and Status Bits in the TFLG2 and TMSK2
Registers
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Clearing Timer Flags

The flag bits, within the Port A timing system, are cleared by writing a 1 to the
respective bit. The most common method used to clear a timer flag is to build
a control word and then write this control word to the corresponding flag register.
This is accomplished by loading an accumulator with a mask that has bits set
corresponding to the flags to be cleared. This mask value is then written to the
Timer Interrupt Register 1 or 2 (TFLG1 or TFLG2). The write operation acts like
an XOR operation. The contents of the flag register are essentially XORed with
the mask. Individual flag bits will be cleared by the 1’s in the mask. Zeros in the
mask have no effect on the flag register bits.

Example 12.1

Problem: Assume that the TOF and the Pulse Accumulator Overflow (PAOVF) flags
are set in the TFLG2 register. Clear TOF in the TFLG2 register by writing a mask
to the register. This operation should have no effect on the other bits in TFLG2.

Solution: The register data is $A0 (TOF and PAOVF set). If the user wishes to clear
the TOF flag only, a mask of $80 would be built and then written to the flag register,
as shown with the following lines of code.

LDAA #%10000000    Build mask to clear TOF

STAA $1025         Store mask at TFLG2 register

Conceptually, an XOR operation takes place when these two lines of code are
executed:

$A0 1 0 1 0 0 0 0 0 Contents of flag register before write
XOR $80 1 0 0 0 0 0 0 0 Mask, isolating the TOF flag only

$20 0 0 1 0 0 0 0 0 Result in flag register after store

The BCLR instruction can also be used to accomplish the same task; however, the mask
supplied with the BCLR instruction must have 0’s in the bit positions corresponding
to the flags that are to be cleared. All other positions in the BCLR mask must be set
to 1’s. The BCLR instruction works because it performs an AND operation on the data
in the flag register, using the inverted value from the mask.
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Control Bits Scale
Value

Timer Count
(E/x)

Clock
Period (ns)

Overflow 
Period (ms)PR1 PR0

0 0 1 E/1 500 32.768
0 1 4 E/4 2,000 131.072
1 0 8 E/8 4,000 262.144
1 1 16 E/16 8,000 524.288

Figure 12.5 TCNT Register Timing for 2 MHz E clock
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Example 12.2

Problem: Assume that the TOF and the Pulse Accumulator Overflow (PAOVF) flags
are set in the TFLG2 register. Clear TOF in the TFLG2 register using only a BCLR
instruction. This operation should have no effect on the other bits in TFLG2.

Solution: The register data is $A0 (TOF and PAOVF set). If the user wishes to clear
the TOF flag only using the BCLR instruction, a mask of $7F would be built so that
the bit is identified by 0’s in the mask.

BCLR $25,X $7F    Clear TOF using $7F as mask

The BCLR instruction reads the data from the register, ANDs it with the inverted
mask, then writes this result back to the register. The write operation has the same
effect as the store operation in Example 12.1. Conceptually, an XOR operation
takes place that clears TOF.

$A0 1 0 1 0 0 0 0 0 Contents of flag register before write
XOR $80 1 0 0 0 0 0 0 0 Inverse of BCLR mask, isolating the TOF flag only

$80 0 0 1 0 0 0 0 0 Result that is then written back to flag register
XOR $A0 1 0 1 0 0 0 0 0 Contents of the flag register during write

$20 0 0 1 0 0 0 0 0 Result in flag register after write

It is not safe to use the BSET instruction to clear flags in the timer flag registers. This
instruction performs an OR operation on the data in the flag register using the mask.
Thus, flags that were previously set in the flag register may be inadvertently cleared
when this data word is written back to the flag register.

NOTE: A BSET instruction used for the purpose of clearing flags will clear all
flags that were set in the register regardless of the value in the mask. Thus, the
BSET instruction should NOT be used to clear individual flags.

Since there are several instruction sequences that can be used to clear timer flags,
Figure 12.6 summarizes some of the options. Each sequence requires a different
number of  bytes of object code and machine cycles to execute; the best sequence is a
function of user preferences (i.e., minimum program size versus minimum execution
time). Since some of the sequences provided require the indexed addressing mode,
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Example
Number Instruction Sequence

Address
Mode Bytes

Machine
Cycles

Total
Bytes

Total
Cycles

1 LDAA   #$80 
STAA   $1025

IMM 
EXT

2
3

2
4

5 6

2 LDAA   #$80 
STAA   $25,X

IMM
IND,X

2
2

2
4

4 6

3 LDAA   #$80 
STAA   $25,Y

IMM
IND,Y

2
3

2
5

5 7

4 BCLR   $25,X $7F IND,X 3 7 3 7
5 BCLR   $25,Y $7F IND,Y 4 8 4 8

Figure 12.6 Instruction Sequences to Clear TOF
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the index register must be loaded with the proper address to point to the register space.
Direct addressing mode sequences are not shown since the default register space on
the EVBU is located from $1000 to $103F, which is outside the direct addressing modes’
limited zero page address range ($0000 to $00FF).

Relationship of Flag Bits and Interrupt Enable Bits

Each timer system function has associated status flag bits and local interrupt enable
bits. There are twelve flag/interrupt enable bit pairs. The flag bits are located in two
Timer Interrupt Flag registers (TFLG1 and TFLG2). The local interrupt enable bits
are located in two Timer Interrupt Mask registers (TMSK1 and TMSK2). The flag bits
in the flag registers correspond bit for bit with the enable bits in the mask registers.
For example, the TOF bit is b7 of the TFLG2 register, and the corresponding interrupt
enable bit is b7 of the TMSK2 register, as shown in Figure 12.7. The register pairs are
shown in Figure 12.7 to emphasize this relationship between the flag bits and the
interrupt enable bits. The specific application of these bits will be discussed in
subsequent sections of this chapter.

When interrupts are enabled, the corresponding flag bits indicate to the interrupt
control logic that the event has taken place. This causes an interrupt to be requested.
During the interrupt service routine, the user must clear the flag bit. If the user neglects
to clear the flag bit, when the process returns from the interrupt service routine it will
again check the flag bit and determine that an event has occurred during the prior
servicing. This will cause the hardware to erroneously request another interrupt. The
process will then be stuck in an endless interrupt-servicing loop.

NOTE: Flag bits must be cleared during the servicing of an interrupt or the
hardware will assume that another event has occurred while the previous event
was being serviced. If the flag is not cleared, the software will be stuck in an endless
interrupt loop.

272

TFLG1 b7 b6 b5 b4 b3 b2 b1 b0

$1023 OC1F OC2F OC3F OC4F I4/O5F IC1F IC2F IC3F

RESET 0 0 0 0 0 0 0 0

TMSK1 b7 b6 b5 b4 b3 b2 b1 b0

$1022 OC1I OC2I OC3I OC4I I4/O5I IC1I IC2I IC3I

RESET 0 0 0 0 0 0 0 0

TFLG2 b7 b6 b5 b4 b3 b2 b1 b0

$1025 TOF RTIF PAOVF PAIF − − − −

RESET 0 0 0 0 0 0 0 0

TMSK2 b7 b6 b5 b4 b3 b2 b1 b0

$1024 TOI RTII PAOVI PAII − − PR1 PR0

Reset 0 0 0 0 0 0 0 0

Figure 12.7 Timer System Flag and Interrupt Enable Bits
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Self-Test Questions 12.2

 12.3 Input Capture 

Input capture is designed to capture the time at which input events take place. There
are four input-capture functions on the HC11E9: IC1, IC2, IC3 and IC4. Each of these
functions includes an input-capture register, input edge detection logic, and interrupt
generation logic, as shown in Figure 12.8. The Timer Input-Capture registers (TICx
and TI4/O5) latch the current time from the free-running counter (the TCNT
register). The Motorola literature refers to these registers as the “input-capture latches.”
The edge detection logic in each of the four input-capture functions is user
programmable to detect rising edges only, falling edges only, or any edge (rising or
falling). The interrupt generation logic includes a status flag and an interrupt enable
bit for each input-capture function. The interrupt enable bit determines whether an
interrupt request will be generated when an input-capture event occurs.

IC3

IC2

IC1

IC4

b0

b1

b2

b3

b4

b5

b6

b7

TCNT

TIC3

TIC2

TIC1

TI4/O5

TICx 

TI4/O5 

TCTL2

PACTL

TFLG1

TMSK1

16

8

8

8

8

16

16

16

Input Edge
Detection Logic

TCTL2

PACTL

Interrupt
Generation

Logic

Port A Pins

TFLG1

TMSK1

Input Capture Register Summary

Timer Input-Capture
Register ($1010 - $1015)
Shared Timer Input-Capture
Register ($101E - $101F)
Timer Control Register 2
($1021)
Pulse Accumulator Control
Register ($1026)
Timer Interrupt Flag
Register 1 ($1023)
Timer Interrupt Mask
Register 1 ($1022)

Figure 12.8 Input-Capture Functional Block Diagram

1. How many bits are in the TCNT register?
2. Can the TCNT register be preloaded to some value by the user?
3. What is the address of the TFLG2 register?
4. How many flag bits are there in the timer system?
5. What is the purpose of the TOI bit in the TMSK2 register?
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Uniqueness of the IC4 Function

The IC4 function shares hardware with the Output-Capture 5 (OC5) function and
therefore is different from the IC1, IC2 and IC3 functions. Special control bits that
reside in the Pulse Accumulator Control (PACTL) register must be manipulated to
assure proper operation of this function. In addition, the IC4 function does not have
a dedicated TICx register (input-capture latch). It shares a 16-bit register with the OC5
function. This register is called TI4/O5. Specific differences relevant to the IC4
functions are mentioned throughout the next sections as each feature of the
input-capture system is described.

Input-Capture Registers

Each input-capture function has a corresponding 16-bit Timer Input-Capture register
(TIC1, TIC2, TIC3 and TI4/O5). The purpose of the registers is to capture the 16-bit
value from the TCNT register when the input-capture event occurs. This value is
transferred as a single 16-bit parallel word, and it indicates the relative time that the
input event occurred. Each register can be read by software as a pair of 8-bit registers,
as shown in Figure 12.9.

The TICx registers are not affected by reset and cannot be written by software. TI4/O5
register is reset to $FFFF and when configured for the IC4 function cannot be written
by software.

Each input-capture function operates independently. Each one can capture the same
16-bit value from the TCNT register if their corresponding input events occurred simul-
taneously. The user should always access the data in these registers with a double byte
read, that is, load D (LDD). If an input-capture event occurs during a double-byte read,
the hardware write to the TICx register will be delayed until the software read is complete.

TICx

$1010 (TIC1 HI) b15 b14 b13 b12 b11 b10 b9 b8

$1011 (TIC1 LO) b7 b6 b5 b4 b3 b2 b1 b0

$1012 (TIC2 HI) b15 b14 b13 b12 b11 b10 b9 b8

$1013 (TIC2 LO) b7 b6 b5 b4 b3 b2 b1 b0

$1014 (TIC3 HI) b15 b14 b13 b12 b11 b10 b9 b8

$1015 (TIC3 LO) b7 b6 b5 b4 b3 b2 b1 b0

RESET U U U U U U U U

TI4/O5

$101E (HI) b15 b14 b13 b12 b11 b10 b9 b8

$101F (LO) b7 b6 b5 b4 b3 b2 b1 b0

RESET 1 1 1 1 1 1 1 1

Figure 12.9 TIC Register Layout
274
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The new value will NOT be lost, but will be temporarily stored until the end of the read
cycle, then be written to the corresponding register. If, however, two single-byte read
instructions are used, that is, Load A (LDAA) followed by Load B (LDAB), the hardware
write to the TICx register will be inhibited only for a single bus cycle. Thus, the data in the
TICx register could change before the second byte is read by the user software.

Input Edge Detection Logic

The input-capture functions recognize three types of input events: rising edge only,
falling edge only or any edge (rising or falling). The user can program each of the
input-capture functions independently. A pair of control bits (EDGxB and EDGxA) in
the Timer Control Register 2 (TCTL2) are used to select which type of edge will be
detected by each of the input-capture functions, as shown in Figure 12.10. There are
four two bit codes that are used to activate each of the TIC functions. The default-state
of the edge bits is 00, which disables all four input-capture functions.

If the user wished to activate the IC1 function to capture on rising edges only, the
binary value 01 would have to be written to b5 and b4 of the TCTL2 register. If the user
wished to activate the IC3 function to capture on any edge, the binary value 11 would
have to be written to b1 and b0 of the TCTL2 register. These two functions could be
activated simultaneously with a single write to the TCTL2 register.

The IC4 function requires two extra control bits to assure proper operation. The extra
control bits are located in the PACTL register, as shown in Figure 12.11. DDRA3 is the
data direction control bit for PA3. When PA3 is being used for general purpose I/O,
this bit controls whether PA3 (bit 3 of the Port A register) is an input pin or an output
pin. For the IC4 function to operate properly, DDRA3 should be cleared. The I4/O5
bit controls whether the IC4 function or the OC5 function is active. I4/O5 must be set
to activate the IC4 function, which in turn automatically disables the OC5 function.

NOTE: If the DDRA3 bit is set when the IC4 function is active, writes to PA3 via
the Port A register will cause edges on the IC4 pin to be captured.

Figure 12.10 Edge Control Bits for the TIC Functions

EDGxB EDGxA Event Configuration

0 0 Input-capture function disabled
0 1 Capture on rising edges only
1 0 Capture on falling edges only
1 1 Capture on rising or falling edge

TCTL2 b7 b6 b5 b4 b3 b2 b1 b0

$1021 EDG4B EDG4A EDG1B EDG1A EDG2B EDG2A EDG3B EDG3A

RESET 0 0 0 0 0 0 0 0
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Example 12.1

Problem: What has to be written to the TCTL2 register to activate the IC2 function
to capture on any edge?

Solution: A command word must be built and then written to TCTL2. EDG2B and
EDG2A must be set to activate IC2 to capture on any edge.

When this control word is written to the TCTL2 register, IC2 is activated to capture
on any edge on the IC2 input pin.

LDAA   #%00001100  ;IC2 capture on any edge

STAA   $1021       ;Activate IC2

Interrupt Generation Logic

The input-capture interrupt generation logic contains status and control bits. The timer
interrupt flag register 1 (TFLG1) contains input-capture status flags (ICxF, I4/O5F),
as shown in Figure 12.12. These flags are automatically set by the hardware each time
a selected edge is detected at the corresponding input-capture pin. Of course, the
input-capture function must be active for the corresponding flag to be set. The status
flags are cleared by writing a 1 to the corresponding bit position.

The timer interrupt mask register 1 (TMSK1) contains input-capture interrupt enable
control bits (ICxI, I4/O5I). These bits provide local control of the input-capture

PACTL b7 b6 b5 b4 b3 b2 b1 b0

$1026 DDRA7 PAEN PAMOD PEDGE DDRA3 I4/O5 RTR1 RTR0

RESET 0 0 0 0 0 0 0 0

Figure 12.11 Special Control Bits for the IC4 Function

TCTL2 b7 b6 b5 b4 b3 b2 b1 b0

$1021 EDG4B EDG4A EDG1B EDG1A EDG2B EDG2A EDG3B EDG3A

CONTROL  WORD 0 0 0 0 1 1 0 0

Figure 12.12 Input-Capture Status Flag and Local Interrupt Enable Bits

TFLG1 b7 b6 b5 b4 b3 b2 b1 b0

$1023 OC1F OC2F OC3F OC4F I4/O5F IC1F IC2F IC3F

RESET 0 0 0 0 0 0 0 0

TMSK1 b7 b6 b5 b4 b3 b2 b1 b0

$1022 OC1I OC2I OC3I OC4I I4/O5I IC1I IC2I IC3I

RESET 0 0 0 0 0 0 0 0
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interrupts. They allow each input-capture function to be configured for polled mode
or for interrupt-driven operation but do not affect the setting or clearing of the
corresponding flag bits in the TFLG1 register. If the interrupt enable bit is set, the
corresponding interrupt request will be made each time the status flag is set.

Because of the unique characteristics of IC4, the I4/O5F bit is set by either the IC4
function or the OC5 function, depending upon which function is enabled by the I4/O5
bit in the PACTL register. The I4/O5I bit will enable the interrupt for the IC4 or OC5
function in the same manner.

NOTE: Bits in the TMSK1 register correlate bit for bit with the flag bits in the
TFLG1 register. Ones in the TMSK1 bits enable the corresponding interrupt
sources.

See chapter 10 for further discussion on interrupts.

Input-Capture Application

The input-capture functions provide the ability to record the time at which various
input events occur. Groups of events can be captured, allowing the measurement
of the pulse width or period of a signal. The period of an input waveform is
measured by capturing two successive edges of the same polarity, two rising edges
or two falling edges of the same signal, as shown in Figure 12.13. The difference
in time of the two events is the period measured by the counts in the TCNT
register. The width of a pulse would be measured by capturing the time of two
edges of opposite polarity. The width of positive-going pulses would be measured
by subtracting the time of the leading (rising) edge from the time of the trailing
(falling) edge. The difference in the time of these two events is the pulse width
measured in counts from the TCNT register.

Example 12.2 shows a method to measure and store the period of signal present on
IC1. Example 12.3 shows how to modify the program to measure the pulse width of
the same waveform.

Figure 12.13 Pulse Width and Period of an Input Waveform

Period Period

Pulse Width
of rising
pulse

Pulse Width
of falling

pulse
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Example 12.2

Problem: Using IC1 to capture input edges, write a program that will measure and
store the period of an input waveform.

Solution: Figure 12.14 shows a flowchart that will measure and store the period of an
input waveform. The program first sets up the IC1 function to trigger off rising input
edges. Then it clears the IC1 flag. Next the program waits for the IC1 flag to be set.
When the flag is detected, the contents of the TIC1 register are temporarily stored, the
flag is cleared and the program waits for another edge. When the second edge is de-
tected, the period is calculated by subtracting the time of the first edge from the time
of the second edge. The difference is the PERIOD of the input waveform measured in
counts of the TCNT register. If the count rate is set to the default, then each count is
equal to 500 ns. Source code for this program is shown in Figure 12.15.

Figure 12.14 Flowchart for Input Capture

Begin

Activate IC1
for rising

edge detection

AGAIN

No

WAIT2

No

WAIT1

Clear IC1 flag

IC1F = 1?

Store time of
first edge
(EDGE1)

Clear IC1 flag

IC1F = 1?

Get second edge

Subtract EDGE1
from second edge

Store period
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Example 12.3

Problem: Using IC1 to capture input edges, write a program that will measure and
store the period of a negative-going or positive-going input pulse.

Solution: This program is identical to the program that measures period except for
which input signal edges cause a trigger. The program first sets up the IC1 function
to trigger off any input edges. The following two lines of code would be used to
replace the similar lines at the beginning of the program in Example 12.2 to
accomplish this change.

     LDAA   #$30        ;detect either edge of IC1 input

STAA   TCTL2,Y

Self-Test Questions 12.3

 12.4 Output Compare 

Output compare is designed to cause output events (pin actions) to occur on the OCx
output pins at specified times. Time is defined for this function by the value in the
TCNT register. There are five output-compare functions on the HC11E9: OC1, OC2,

Figure 12.15 Source Code for Input Capture Example

        ORG     $0000
EDGE1   RMB     2               ;temp storage of time of edge1
PERIOD  RMB     2               ;storage of calculated period

        ORG     $0120           ;Start program at $0120
        LDY     #$1000          ;Load register base address in Index Y
        LDAA    #$10            ;detect rising edge of IC1 input
        STAA    TCTL2,Y
AGAIN   BCLR    TFLG1,Y $FB     ;clear IC1 flag

WAIT1   BRCLR   TFLG1,Y $04 WAIT1  ;wait for IC1 flag to be set by hardware

        LDD     TIC1,Y          ;get time of edge and store it in EDGE1
        STD     EDGE1
        BCLR    TFLG1,Y $FB     ;clear IC1 flag
WAIT2   BRCLR   TFLG1,Y $04 WAIT2  ;wait for IC1 flag to be set
        LDD     TIC1,Y          ;get time of second edge
        SUBD    EDGE1           ;PERIOD = EDGE2 - EDGE1
        STD     PERIOD          ;Store calc’ed period in PERIOD
        BRA     AGAIN           ;Do the whole thing again
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1. In your own words, what is captured by the input-capture functions?
2. What are the three functional blocks of each input-capture system?
3. What is the address of each of the following input-capture registers: TMSK1,

TFLG1, PACTL, TCTL2, TIC2, TI4/O5?  What purpose do these registers have
in regards to the input-capture functions?
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OC3, OC4 and OC5. Each of these functions is implemented with three functional
hardware blocks: an output-compare register, a dedicated 16-bit comparator and
interrupt generation logic, as shown in Figure 12.16. The comparators check the value
in the TCNT register against the 16-bit compare registers (TOCx and TI4/O5) during
each timer count. When a match is detected, the corresponding Output-Compare Flag
(OCxF) is set, and the corresponding programmed output event or pin action takes
place. If enabled, an interrupt will be requested.

There are two types of output compare functions on the HC11E9. The OC2 through
OC5 functions constitute one of the groups, and the OC1 function has special features
that will be discussed separately. All of the output-compare functions have common
features; these features will be discussed first, followed by the extended features of OC1.

Uniqueness of OC5

The OC5 function shares hardware with the IC4 function, and therefore it is different
from the OC2, OC3 and OC4 functions. Special control bits that reside in the PACTL

Figure 12.16 Output Compare Functional Block Diagram
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OC3 Comparator

OC2 Comparator

OC1 Comparator

Interrupt
Generation

Logic
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TMSK1
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Port A PinsOutput-Compare Register Summary

TOCx

T14/05

TCTL1

PACTL

TFLG1

TMSK1

OC1M

OC1D

CFORC

Timer Output-Compare
Registers ($1016 - $101D)
Shared Timer Output-
Compare Register
($101E - $101F)

Timer Control Register 1
($1020)
Pulse Accumulator Control
Register ($1026)
Timer Interrupt Flag
Register 1 ($1023)
Timer Interrupt Mask
Register 1 ($1022)
Output-Compare 1 Mask
Register ($100C)
Output-Compare 1 Data
Register ($100D)
Timer Compare Force
Register ($100B)
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register must be manipulated to assure proper operation of this function. In addition,
the OC5 function does not have a dedicated TOCx register (output-compare register).
It shares a 16-bit register with the IC4 function. This register is called TI4/O5. Specific
differences relevant to the OC5 function are mentioned throughout the next sections
as each feature of the output compare system is described.

Output-Compare Registers

Each output-compare function has a corresponding 16-bit output-compare register:
TOC1, TOC2, TOC3, TOC4 and TI4/O5. The purpose of the registers is to store the
16-bit value that will be compared to the TCNT register during each E clock cycle. This
value indicates the relative time at which the output event will occur. Each register is
read/write. They are accessed by software as a pair of 8-bit registers, as shown in Figure
12.17.

The TOCx registers and the TI4/O5 register are reset to $FFFF, the maximum value
in TCNT.

Each output-compare function operates independently. Each one can cause output
events to occur simultaneously, if the corresponding TOCx registers contain the same
16-bit value. For the active OC functions, the hardware compares the contents of the
TOCx registers to the TCNT register during each timer count. Therefore, the user
should always change the data in the TOCx registers with a double-byte write
instruction, that is, store D (STD). During a double-byte write instruction, the compare
operation is inhibited. Single-byte writes to each half of the output-compare registers
are permitted; however, an 8-bit write to one byte of the output-compare registers

Figure 12.17 TOC Register Layouts

TOCx

$1016 (TOC1 HI) b15 b14 b13 b12 b11 b10 b9 b8

$1017 (TOC1 LO) b7 b6 b5 b4 b3 b2 b1 b0

$1018 (TOC2 HI) b15 b14 b13 b12 b11 b10 b9 b8

$1019 (TOC2 LO) b7 b6 b5 b4 b3 b2 b1 b0

$101A (TOC3 HI) b15 b14 b13 b12 b11 b10 b9 b8

$101B(TOC3 LO) b7 b6 b5 b4 b3 b2 b1 b0

$101C (TOC4 HI) b15 b14 b13 b12 b11 b10 b9 b8

$101D(TOC4 LO) b7 b6 b5 b4 b3 b2 b1 b0

RESET 1 1 1 1 1 1 1 1

TI4/O5

$101E (HI) b15 b14 b13 b12 b11 b10 b9 b8

$101F (LO) b7 b6 b5 b4 b3 b2 b1 b0

RESET 1 1 1 1 1 1 1 1
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inhibits the output-compare function for only one bus cycle. Before the second half of
the register can be written with a single-byte write, the compare operation resumes.
Erroneous compares may take place during the two single-byte writes.

Read operations will work the same using single- or double-byte reads since hardware
cannot change the contents of these registers.

Dedicated Comparators

The output-compare functions have dedicated comparators. If active, the comparator
compares the value in the output-compare register to the value in the TCNT register.
This compare occurs during every timer count. If a successful compare happens (the
two registers match), the output event will take place. Four different output events can
take place: no change, make the output high, make the output low or toggle the output.

The user can program each of the output-compare functions independently. A pair of
control bits (OMx and OLx) in the Timer Control Register 1 (TCTL1) are used to
select which type of output event or automatic pin action will take place when a
successful compare takes place. Figure 12.18 shows the layout of the TCTL1 register.
The default state of the bit pairs is 00, which disables the OC2, OC3, OC4 and OC5
functions. If the user wishes to activate the OC3 function to clear the OC3 pin on each
successful compare, the binary value 10 would have to be written to OM3 and OL3 of
the TCTL1 register. If the user wishes to toggle the OC4 pin on each successful
compare, the binary value 01 would have to be written to OM4 and OL4 of the TCTL1
register. These two functions could be activated simultaneously with a single write to
the TCTL1 register.

The OC5 function requires two extra control bits to assure proper operation. The extra
OC5 control bits are located in the PACTL register, as shown in Figure 12.19. The
I4/O5 bit controls whether the OC5 function or the IC4 function is active. I4/O5 must
be cleared to activate the OC5 function, which in turn automatically disables the IC4
function. DDRA3 has no effect on the OC5 function. The state of the DDRA3 bit is
overridden when the I4/O5 is cleared to activate the OC5 function.

Figure 12.18 Event Control Bits for the TOC Functions OC2–OC5

OMx OLx

OC2 through OC5 event
with successful compare
(Automatic Pin Action)

0 0 No change, OCx disabled
0 1 Toggle OCx pin
1 0 Clear OCx pin
1 1 Set OCx pin

TCTL1 b7 b6 b5 b4 b3 b2 b1 b0

$1020 OM2 OL2 OM3 OL3 OM4 OL4 OM5 OL5

RESET 0 0 0 0 0 0 0 0
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Example 12.4

Problem: What has to be written to the TCTL1 register to activate the OC3 function
to cause the output signal to toggle on a valid compare?

Solution: A command word must be built and then written to TCTL1. OM3 and OL3
must be set to activate OC3 to toggle on each valid compare.

When this control word is written to the TCTL1 register, OC3 is activated to toggle
on each valid compare.

LDAA   #%00010000  ;OC3 toggle on valid compare

STAA   $1020       ;Activate OC3

Interrupt Generation Logic

The output-compare interrupt generation logic contains status and control bits. The
Timer Interrupt Flag Register 1 (TFLG1) contains Output-Compare Flags (OCxF,
I4/O5F), as shown in Figure 12.20. These flags are automatically set each time a
successful compare occurs for one of the active output-compare functions. The status
flags are cleared by writing a 1 to the corresponding bit position.

The Timer Interrupt Mask Register 1 (TMSK1) contains Output-Compare Local
Interrupt enables (OCxI, I4/O5I). These bits provide local control of the output-com-
pare interrupts. They allow each input-capture function to be configured for polled

PACTL b7 b6 b5 b4 b3 b2 b1 b0

$1026 DDRA7 PAEN PAMOD PEDGE DDRA3 I4/O5 RTR1 RTR0

RESET 0 0 0 0 0 0 0 0

Figure 12.19 Special Control Bits for the OC5 Function

TCTL1
b7 b6 b5 b4 b3 b2 b1 b0

$1020 OM2 OL2 OM3 OL3 OM4 OL4 OM5 OL5

CONTROL  WORD 0 0 0 1 0 0 0 0

Figure 12.20 Output-Compare Status Flag Bits

TFLG1 b7 b6 b5 b4 b3 b2 b1 b0

$1023 OC1F OC2F OC3F OC4F I4/O5F IC1F IC2F IC3F

RESET 0 0 0 0 0 0 0 0

TMSK1 b7 b6 b5 b4 b3 b2 b1 b0

$1022 OC1I OC2I OC3I OC4I I4/O5I IC1I IC2I IC3I

RESET 0 0 0 0 0 0 0 0
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mode or for interrupt-driven operation but do not affect the setting or clearing of the
corresponding flag bits in the TFLG1 register. If the interrupt enable bit is set, the
corresponding interrupt request will be made each time the status flag is set.

Because of the unique characteristics of OC5, the I4/O5F is set by either OC5 or IC4,
depending on which function is enabled by the I4/O5 bit in the PACTL register. The
I4/O5I bit will enable the interrupt for the OC5 or IC4 function in the same manner.

NOTE: The bits in the TMSK1 register correspond bit for bit with the flag bits in
the TFLG1 register. Ones in the TMSK1 bits enable the corresponding interrupt
sources.

See chapter 10 for further discussion on interrupts.

OC1 Function

The OC1 function is similar to the OC2 through OC5 functions except that five output
pins can be controlled concurrently. The pin actions are controlled by the values in
the Output Compare 1 Mask (OC1M) and the Output Compare 1 Data (OC1D)
registers, as shown in Figure 12.21. The five MSBs of each of these registers are used
so that the programmed bits directly correlate to the five Port A OC1 Pins (b7–b3). The
three LSBs of these registers are not used and are always read as zeros.

For a Port A pin to be affected by the OC1 function, the pin must be activated by setting
the corresponding bit in the OC1M register. Only the bits that have 1’s in the mask
register will be activated. Any combination of 1’s and 0’s is allowed to activate any
pattern of the five available bits. The reset state of this register is cleared, disabling the
OC1 function. When a successful OC1 compare occurs, each Port A OC1 pin activated
by the values in the OC1M register will assume the value of the corresponding bit in
the OC1D register.

The ability to affect more than one pin with a single timing function is quite useful in
applications where more than one pin is connected to a single device. In the case of a
stepper motor, four of the five output pins might be connected. Since the control
signals for these four pins must change simultaneously to assure proper operation of
the stepper motor, the OC1 function is ideal.

Figure 12.21 OC1 Mask and Data Bits

OC1M b7 b6 b5 b4 b3 b2 b1 b0

$100C OC1M7 OC1M6 OC1M5 OC1M4 OC1M3 − − −

RESET 0 0 0 0 0 0 0 0

OC1D b7 b6 b5 b4 b3 b2 b1 b0

$100D OC1D7 OC1D6 OC1D5 OC1D4 OC1D3 − − −

RESET 0 0 0 0 0 0 0 0
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Two separate output-compare functions can also control a single pin. OC1 can be used
in conjunction with any one or all of the other output-compare functions. This allows
both edges of an output signal to be programmed at the same time, greatly reducing
the necessary software overhead. It also allows for an easier method of controlling which
edge will cause an interrupt.

The DDRA7 and DDRA3 bits of the PACTL register have no effect on the OC1 function.
The states of DDRA7 and DDRA3 are overridden when the OC1 function is active on
b7 and b3 of Port A.

Forced State of OC1 through OC5

The output-compare subsystem contains the ability to cause forced early compares on
the five output-compare pins. OCx functions are selected for early forced compare by
setting the corresponding FOCx bits in the CFORC register. The FOCx bits correspond
to the OCx bits of Port A, as shown in Figure 12.22. The action taken because of a
forced compare is the same as if there were a successful compare between the OCx
register and the TCNT register. However, forced early compares do not cause the
corresponding interrupt status flag bits (OCxF) to be set. Therefore, writing to this
register does not cause interrupt requests to be generated if the interrupts are enabled
for the affected output-compare functions. The forced channels trigger their pro-
grammed pin actions to occur after the write to the CFORC register at the next count
of the TCNT register.

Output-Compare Application

The output-compare functions provide the ability to cause output events to occur at
specified points in time, where time is measured by the TCNT register. A square wave
can be generated by toggling an output pin on a regular basis. The rate at which the
pin toggles determines the frequency of the waveform (see Figure 12.23). A square
wave with a 50% duty cycle must toggle each half cycle. For a 1 kHz waveform, the
period would be 1 ms, and the half period would be 500 µs. Since time is measured in
reference to the value in the TCNT register, this half period is determined by a number
of counts of the TCNT register. If the TCNT prescaler is set to E/1, the 500 µs half
cycle would require 1,000 counts (500 µs/500 ns per count).

A short program is shown in Example 12.5 that generates a 1 kHz square wave on OC2.

Figure 12.22 Early Forced Compare Control Bits

CFORC b7 b6 b5 b4 b3 b2 b1 b0

$100B FOC1 FOC2 FOC3 FOC4 FOC5 − − −

RESET 0 0 0 0 0 0 0 0
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Example 12.5

Problem: Using OC2 to output a signal, write a program that will create a 1 kHz
square wave.

Solution: Figure 12.24 shows a flowchart that causes OC2 to toggle each half
cycle. The half-cycle delay is set so that the resulting waveform has a 1 kHz
frequency. The program first activates the OC2 function to toggle on each event.
Next the OC2 flag is cleared; then it waits for the event to take place. When the
event occurs, the program calculates the next event time, stores the time in the
TOC2 register and loops back to do the entire process over again. The source code
for this program is shown in Figure 12.25.

Self-Test Questions 12.4

 12.5 Pulse Accumulator 

The pulse accumulator allows the user to count events. It is much simpler than
the input-capture, output-compare and real-time interrupt systems. This system is
based on an 8-bit counter and can be configured to operate as a simple event
counter or for time accumulation. The pulse accumulator functional block diagram
is shown in Figure 12.26.

Figure 12.23 Output-Compare Square Wave Timing

1. How many output-compare functions are available on the 68HC11E9?
2. In your own words, what is the purpose of the output-compare functions?
3. What is stored in each of the TOCx registers?
4. How many bits are contained in each of the four TOCx registers?
5. What is the reset state of the TOCx and TI4/O5 registers?
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One transition
per ½ Cycle

Two transitions
per cycle

If ƒ=1 kHz, then the period is equal to 1/ƒ=(1/1 kHz) = 1 ms

Since there are two transitions per cycle, then the transitions must happen
every 500 µs to produce a 50% duty cycle 1 kHz waveform.
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Begin

Activate OC2
to toggle each

half cycle

Clear OC2 flag

WAITFLG

CLRFLAG

No
OC2F = 1?

Get current
event time

Calculate next
event time

Store event time
in TOC2

for next event

Figure 12.24 Flowchart for Square Wave Creation

***********************************************************
* This program generates a 1KHz squarewave on OC2 (pin 28)
***********************************************************
TOC2    EQU     $18
TCTL1   EQU     $20
TMSK1   EQU     $22
TFLG1   EQU     $23

ORG     $0100                  ;Start program at $0100

        LDX     #$1000         ;Load register base address into Index X

        LDAA    #$40           ;toggle OC2 on successful compare
        STAA    TCTL1,X

CLRFLAG BCLR    TFLG1,X $BF          ;clear OC2 flag

WAITFLG BRCLR   TFLG1,X $40 WAITFLG  ;wait for OC2 flag to be set

        LDD     TOC2,X         ;get compare value from TOC2
        ADDD    #$3E8          ;add offset for next pulse transition
        STD     TOC2,X         ; 1000 (3E8) counts high / low for 1KHz
        BRA     CLRFLAG        ;Loop continuously

Figure 12.25 Source Code for Square Wave Generation
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When Port A b7 is used for pulse accumulator input, it is called the Pulse Accumulator
Input pin (PAI). When this bit is being used for input to the pulse accumulator
function, the optional digital I/O function (PA7) is disabled. The OC1 function on
this pin is also normally disabled when using the pulse accumulator; however, in some
special applications both the OC1 function and the pulse accumulator function can be
active. In this case, the output event caused by the OC1 function triggers the pulse
accumulator input, thus allowing output events to be counted.

Pulse Accumulator Counter Register

The Pulse Accumulator Counter Register (PACNT) contains the count of external input
events if the pulse accumulator is configured to count events. When the pulse accumula-
tor is configured for gated mode, this register contains the frequency of pulses during the
gated period. The PACNT has a maximum count of 255 since it is an 8-bit register, as
shown in Figure 12.27. When the count reaches this maximum count, a subsequent count
causes the register to roll over to 0. The register is read/write and can be accessed even
when the pulse accumulator is not enabled. It is not affected by reset.

Pulse Accumulator Enable and Mode Select

Four bits control the overall function of the pulse accumulator system, as shown in
Figure 12.28. The Pulse Accumulator Enable (PAEN) bit is set to enable the pulse

Figure 12.26 Pulse Accumulator Functional Block Diagram

PAI

b0

b1

b2

b3

b4

b5

b6

b7

8

8

8

8

Port A Pins

PACTL

Edge Protection
Logic

Interrupt
Generation

Logic

TFLG2

TMSK2

PACNT

Pulse Accumulator
Register Summary

PACNT

PACTL

TFLG2

TMSK2

Pulse Accumulator Counter
Register ($1027)
Pulse Accumulator Control
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Timer Interrupt Flag
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Timer Interrupt Mask
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PACNT

$1027 b7 b6 b5 b4 b3 b2 b1 b0

RESET U U U U U U U U

Figure 12.27 PACNT Register Layout
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accumulator system. When PAEN is cleared, the pulse accumulator system is disabled.
The Data Direction Port A Bit 7 (DDRA7) control bit is normally cleared when using
the pulse accumulator system so that the PA7/PAI bit is programmed for input
operation. However, the bit can also be used for general-purpose I/O concurrent with
the pulse accumulator function being active. If PA7 is programmed for general-purpose
output by setting DDRA7, then output edges will cause the input on PAI concurrently.
The pulse accumulator can be operated in one of two modes, event mode and gated
mode. These modes are activated by the Pulse Accumulator Mode (PAMOD) control
bit in the PACTL register.

Event Counting Mode

Event mode allows the user of the pulse accumulator to count each event that is
recognized at PAI. Many microcontroller applications require events to be counted.
For example, a sensor could be used to sense a box moving down a conveyor system.
Each time the sensor activates, it sends a signal to the pulse accumulator via the PAI
bit and the event (a box in this case) is counted. To select the event counting mode,
the PAMOD bit of the PACTL register must be cleared. When configured this way, the
signal on the PAI pin of Port A acts like a clock input to the counter. The Pulse
Accumulator Edge (PEDGE) control bit of the PACTL register allows the user to select
to which edge, rising or falling, the pulse accumulator will respond. If PEDGE is cleared,
falling edges on PAI will clock the accumulator. If PEDGE is set, rising edges will clock
the accumulator.

Gated Time Accumulation Mode

The gated mode changes the pulse accumulator into a timer. This timer can be used
to measure the duration of input signals by counting the number of clocks that occur
during the input pulse. During an active input, the accumulator counts every 64th E
clock. Thus, the time duration is accurate within 64 E clocks (32 µs for a 2 MHz clock).
Gated mode is selected by setting the PAMOD bit. The active state is selected with the
PEDGE bit. This bit is essentially an inhibitor. When PEDGE is cleared, the accumulator
will stop counting when PAI is zero. When PEDGE is set, the accumulator will stop
counting when PAI is one.

Figure 12.28 Pulse Accumulator Control Bits

PACTL b7 b6 b5 b4 b3 b2 b1 b0

$1026 DDRA7 PAEN PAMOD PEDGE DDRA3 I4/O5 RTR1 RTR0

RESET 0 0 0 0 0 0 0 0

PAMOD PEDGE MODE Action

0 0 Event PA counter incremented by falling edge on PAI
0 1 Event PA counter incremented by rising edge on PAI
1 0 Gated 0 on PAI inhibits counting of E/64
1 1 Gated 1 on PAI inhibits counting on E/64
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Figure 12.29 illustrates how the pulse accumulator will count input events in event
mode versus how the pulse accumulator will count each E/64 during the active input
on PAI while using gated mode.

Interrupt Generation Logic

The pulse accumulator interrupt generation logic contains status and control bits.
TFLG2 contains a pulse accumulator input status flag (PAIF) and a pulse accumulator
overflow flag (PAOVF), as shown in Figure 12.30. In event mode, PAIF is automatically
set each time an input occurs on the PAI pin. For gated time accumulation mode, PAIF
is set when the count is inhibited (counting is stopped). PAOVF is automatically set
when the PACNT register overflows from $FF to $00. The pulse accumulator status
flags are cleared by writing a 1 to the corresponding bit position.

TMSK2 contains two pulse accumulator interrupt enable control bits (PAII and
PAOVI). These bits provide local control of interrupts that are related to the pulse
accumulator function. They allow the PAIF and the PAOVF to be configured for polled
mode or for interrupt-driven operation. The interrupt enable control bits have no

Figure 12.29 Pulse Accumulator Mode Examples

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4

1 2 3 4 5 6 7 8 91 1

0 0

Count in PACNT Register

E/64

PAI

Mode PAMOD PEDGE

Event

Gated
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TFLG2 b7 b6 b5 b4 b3 b2 b1 b0

$1025 TOF RTIF PAOVF PAIF − − − −

RESET 0 0 0 0 0 0 0 0

TMSK2 b7 b6 b5 b4 b3 b2 b1 b0

$1024 TOI RTII PAOVI PAII − − PR1 PR0

RESET 0 0 0 0 0 0 0 0

Figure 12.30 Pulse Accumulator Status Flag Bits
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effect of the flag bits in the TFLG2 register. If the interrupt enable bit is set, the
corresponding interrupt request will be made each time the status flag is set.

NOTE: The bits in the TMSK2 register correspond bit for bit with the flag bits in
the TFLG2 register. Ones in the TMSK2 bits enable the corresponding interrupt
sources.

See chapter 10 for further discussion on interrupts.

Self-Test Questions 12.5

 12.6 Real-Time Interrupts 

The real-time interrupt (RTI) function on the 68HC11 can be used to generate events
at a fixed periodic rate. Unlike the other Port A features, the RTI does not have to be
activated. The periodic events take place on a continuous basis by default. The user
can choose to ignore these events or to do something when they happen, but cannot
stop them from happening or interrupt them in any way. This free-running aspect
causes the periodic rate to be constant and free of software latencies caused by flag
clearing and interrupt service.

Functionally the RTI feature of the 68HC11 is a timing metronome similar to those
used by musicians to set the rate at which they play a piece of music. The events take
place at a fixed periodic rate and can be the trigger for any other event that the user
can control via software functions. Similar to the other functions contained in the Port
A timing system, the RTI function has a flag bit (RTIF) and an interrupt enable bit
(RTII). These bits are located in the TFLG2 and TMSK2 registers, as shown in Figure
12.31. Each time the periodic event occurs, the RTIF bit is set. If the RTII bit is set
when the periodic event takes place, an interrupt will be requested. The user cannot
disable the periodic events, but can ignore that they have happened. There is no
external hardware connection tied to the RTI function; it must be software controlled.

NOTE: Bits in the TMSK2 register coincide bit for bit with the flag bits in the
TFLG2 register. Ones in the TMSK2 bits enable the corresponding interrupt
sources.

See chapter 10 for further discussion on interrupts.

1. Which bit in the PACTL register must be set to enable Pulse Accumulation?
2. What is the name of the pulse accumulator mode that counts the duration of a

high or low state on PAI?
3. What is the name of the pulse accumulator mode that counts all pulses that come

in on PAI?
4. How many bits are in the PACNT register?
5. What is the maximum count of the PACNT register?
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NOTE: The most common problem that users encounter with the RTI system is
caused by not clearing the RTIF bit after it is recognized. If the flag is not cleared,
the hardware thinks another event has taken place. Since this bit is checked when
the process returns from an interrupt request, the system will immediately cause
another interrupt request. The program will be lost in an endless loop.

The events happen at a fixed periodic rate, yet this rate can be changed by the user.
The PACTL register contains two bits, called Real Time Interrupt Rate bits (RTR1 and
RTR0). They control the real-time interrupt rate, as shown in Figure 12.32. The rates
shown in the table are for a 2 MHz E clock. Typically these bits are set once at the start
of a program, but can be changed at anytime.

Self-Test Questions 12.6

TFLG2 b7 b6 b5 b4 b3 b2 b1 b0

$1025 TOF RTIF PAOVF PAIF − − − −

RESET 0 0 0 0 0 0 0 0

TMSK2 b7 b6 b5 b4 b3 b2 b1 b0

$1024 TOI RTII PAOVI PAII − − PR1 PR0

RESET 0 0 0 0 0 0 0 0

Figure 12.31 Real-Time Interrupt Status Flag Bit

Figure 12.32 Real-Time Rate Control Bits

PACTL b7 b6 b5 b4 b3 b2 b1 b0

$1026

RESET 0 0 0 0 0 0 0 0

DDRAT       PAEN       PAMOD     PEDGE      DDRA3       I4/O5         RTR1        RTR0 

RTR1 RTR0
Clock Divider
E/x RTI Rate

0 0 E/213 4.096 ms
0 1 E/214 8.192 ms
1 0 E/215 16.384 ms
1 1 E/216 32.768 ms

1. Which bit of the TMSK2 register must be set to cause an interrupt to be requested
when the RTIF bit is set?

2. Can the user turn off the periodic events caused by the RTI hardware?
3. Which bit of Port A is connected to the RTI hardware?
4. How is the RTIF bit cleared?292
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 Summary 

Port A is a general purpose I/O that can also be configured for a variety of
timer functions. This chapter presented the theory of timed events as well as
explanation and examples of the five major functions performed within the HC11
timing system.

The input-capture and output-compare features are dependent on the master clock
timer, the TCNT register. This 16-bit free-running register is dedicated to counting E
clocks. The user has the ability to slow the count to every 4th, 8th or 16th E clock via
two configuration bits, PR1 and PR0, in the TMSK2 register. The value in the TCNT
register always represents the number of counts since the last timer overflow (TOF).
This value is the time that is captured by the input-capture functions when an input
event occurs. It is also the reference time used by the output-compare functions to
determine when to cause output events.

This timing system also has the ability to count events using the pulse accumulator. The
8-bit pulse accumulator register can count up to 255 events before it rolls over. Pulse
accumulator overflows are tracked by the pulse accumulator overflow flag (PEOVF),
which has a corresponding interrupt. This register can also be preset to any value
between 0 and 255, which makes it convenient to count only a few events before rolling
over.

Finally, the Port A timing system has a built-in periodic event generator, the real-time
interrupt feature. Any task that needs to be performed on a routine periodic basis can
be linked to this timing feature.

 Chapter Questions 

Section 12.1
 1. Can a rising edge be considered an input event?
 2. Can the time that an input event will occur be typically predicted?
 3. If the HC11 were connected to an external circuit, what type of event would

need to take place to have the HC11 send a signal to the external circuit?

Section 12.2
 4. Can the TCNT register be read at anytime by the user?
 5. Which kind of register is checked to see if the timer system overflow events

have occurred?
 6. What value would be loaded into PR0 and PR1 of the TMSK2 register to set

the TCNT clock to prescale by 16?
 7. Show two methods of clearing TOF without affecting any other flags.
 8. Why should BSET instructions not be used to clear timer system flag bits?
 9. How many interrupt enable bits are there in the timer system?
10. What registers contain interrupt enable bits?
11. What is the relationship of the flag bits to the interrupt enable bits?
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12. Why is it important for the user to clear the flag bits while servicing an
interrupt?

Section 12.3
13. How many input-capture functions are available on the HC11E9?
14. What value is in the TCTL2 register after reset?
15. How many bits are contained in each of the TICx registers?
16. What value is loaded into the TICx and TI4/O5 registers at reset? 
17. What binary value must be loaded into the EDGxB and EDGxA of the TCTL2

register to capture falling edges only?
18. What control word would be written to the TCTL2 register to activate the IC2

function to capture on falling edges only and to activate the IC3 function for
capture on rising edges only?

19. Why are the DDRA3 and I4/O5 bits of the PACTL register significant to an
input-capture function?

20. Explain what must be done to activate the IC4 function to capture on any edge.
21. Can pulse width be measured using data collected with an input-capture function?
22. Can frequency (rate of change) be calculated using data collected with an

input-capture function? Why?

Section 12.4
23. How many output-compare functions are available on the HC11E9?
24. Which Port A pin(s) is/are used for the OC1 function?
25. What are the dedicated comparators comparing?  Why?
26. What is the address of the TOC3 register?
27. Why should double-byte read/write instructions be used when writing data to

the TOCx registers?
28. What are the three functional hardware blocks of each output-compare

function?
29. What binary value must be loaded into the OMx and OLx of the TCTL1 register

to cause the output-compare pin to toggle on a successful compare?
30. What hex value is written to the TCTL1 register to activate the OC3 function

(disabling OC2, OC4 and OC5) so that it will cause the output to go high when
there is a successful compare?

31. What value needs to be written to the I4/O5 bit of the PACTL register to select
the OC5 function and disable the IC4 function?

32. What causes the OCxF bits in the TFLG1 register to be set?
33. How does the user clear the OCxF bits of the TFLG1 register?
34. If the OC3I bit is set, what happens when the OC3F bit is set by the hardware?
35. What happens on a successful OC1 compare when the OC1M register is loaded

with $F0 and the OC1D register is loaded with $A0?
36. How can a user set the default state of the OCx output pins to be high?
37. Can the output-compare feature be used to create an event timer (i.e., sequence

of events to happen at specific times)?

Section 12.5
38. Which Port A pin(s) is/are used for the pulse accumulator input?
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39. What is the value loaded into the PAMOD and PEDGE bits of the PACTL
register so that a rising edge on PAI increments the count?

40. What is the value loaded into the PAMOD and PEDGE bits of the PACTL
register so that a high state on PAI inhibits the count?

41. Fully explain what happens when the PACNT register contains $FF, the PACTL
register contains $40 and a rising edge comes in on PAI?

Section 12.6
42. What value must be written to RTR1 and RTR0 of the PACTL register to set

the periodic rate to 16.384 ms?
43. At what rate do the real-time interrupts occur after reset?

 Chapter Problems 

1. What value should be written to the PR1 and PR0 bits of the TMSK2 register if a
timing-dependent system has events that need to occur on a 200 µs interval and the
entire sequence is completed on a 100 ms interval?

2. If the PR1 and PR0 bits of the TMSK2 register are set to 01 and the TCNT register
contains $01D0, how long has it been (in seconds) since the TCNT register
overflowed?

3. Write a program that will measure the pulse width of a signal connected to IC1.
Display the pulse as a hex number of E clocks on the monitor. Originate the program
at $0100.

4. Write a program that will generate a 5 kHz square wave on OC3. Originate the
program at $0120.

5. Write a program that will count rising edges of pulses on PAI and display on the
monitor the current count. Originate the program at $0100.

6. Write a program that will generate a 1 Hz square wave on PB0 using the RTI
function. Originate the program at $0100.

 Answers to Self-Test Questions 

Section 12.1
1. An event is an electrical signal that is caused by the hardware or sensed by the

hardware.
2. An input event is an electrical signal that comes from some external source. It is

sensed by the hardware.
3. An output event is an electrical signal that is caused by some internal function.

The hardware causes the event on an output pin.

Section 12.2
1. The TCNT register is a 16-bit free-running counter.
2. No, the register is cleared at reset and then counts continuously without interruption.
3. The address of the TFLG2 register is $1025.
4. There is a total of 12 timer system flag bits contained in the TFLG1 and TFLG2

registers.
5. This is a local interrupt enable control bit for the Timer Overflow Interrupt.
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Section 12.3
1. The time at which the event occurred where the time is the relative time contained

in the TCNT register.
2. Input-capture register, input edge detection logic, and interrupt generation logic.
3. TMSK1 $1022 Local interrupt control bits

TFLG1 $1023 Input-capture status flags
PACTL $1026 Control for IC4
TCTL2 $1021 Control for the type of event detection
TIC2 $1012–$1013 16-bit register where captured time is stored for IC2
TI4/O5 $101E–$101F 16-bit register where captured time is stored for IC4

Section 12.4
1. There are five independent OC functions available on the HC11E9, OC1–OC5.
2. The OC functions cause an output event at a specified time. The time of the event

is relative to the value in the TCNT register.
3. The TOCx registers contain the time, relative to the time in the TCNT register, that

designates the time that the output event will take place.
4. The TOCx contains 16 bits.
5. The bits of all OC registers are set high at reset.

Section 12.5
1. The PAEN bit must be set to activate the pulse accumulator system.
2. The gated mode measures the duration of a pulse.
3. The event mode counts pulses (events) on the PAI pin.
4. The PACNT register is an 8-bit register.
5. Since the PACNT register is an 8-bit register, the maximum count is $FF or 255.

Section 12.6
1. The RTII bit must be set to request interrupts when the RTIF is set.
2. No, they are constantly running, but can be ignored.
3. RTI has no external hardware connections.
4. RTIF is cleared by writing a 1 to it.
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 Objectives 
Serial Communicat ion—P ort  D

After completing this chapter, you should be able to:

◗ Explain the difference between asynchronous and synchronous serial
communications

◗ Configure the HC11 SCI for transmit and receive

◗ Change the SCI BAUD rate

◗ Understand the function of the SPI system

 Outline 

◗ 13.1 Theory of Serial Communications

◗ 13.2 Serial Communications Interface (SCI)

◗ 13.3 Serial Peripheral Interface (SPI)

 Introduction 

This chapter will discuss two types of serial communications interfaces: asynchronous
and synchronous. Both of these interfaces are part of the PORTD subsystem in the
68HC11. The asynchronous interface is implemented with the serial communications
interface (SCI) hardware, and the synchronous interface is implemented with the serial
peripheral interface (SPI) hardware. The SCI subsystem is a full-duplex UART-type
asynchronous system using standard nonreturn-to-zero (NRZ) format. The SPI subsys-
tem is typically used to provide high-speed communications between the MCU and
system peripheral devices that are usually located on the same circuit board.

T his chapter directly correlates to sections 8 and 9 of the HC11 Reference Manual and sections
7 and 8 of the Technical Data Manual.
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 13.1 Theory of Serial Communications 

In chapter 1, it was shown that data is stored on a computer in multibit words. These
words are usually 8 bits wide and are called bytes. This data moves around inside the
computer from registers to memory and the various processor components via the data
bus. The data bus is a parallel bus in that it contains multiple wires, one wire for each
data bit in the data word. This parallel structure allows all bits of the data word to be
transmitted simultaneously, but requires dedicated wires for each bit in the data word.

Most communication media consist of single data conductors (wires). A serial interface
is one in which the data is transmitted one bit at a time on a single conductor. Network
systems like the Internet and local area networks use serial communication technology;
the data is transmitted one bit at a time. In addition, the standard modems that are
included in most computers interface to the telephone system using serial technology
to allow the computer to transmit and receive data using the single pair of telephone
wires.

Sending Data

Because data is stored in the computer in a parallel fashion, additional hardware
is necessary to interface the parallel system to the serial interface. When data is
being transmitted from the parallel environment on the computer, it must first
be converted into a serial format. This is accomplished with a parallel-to-serial
converter, which can be implemented with a single parallel-in, serial-out shift
register, as shown in Figure 13.1.

After the data is converted to a serial stream, additional control bits are added to the
data before it is transmitted. The control bits usually appear at the beginning and the
end of the data stream. Often these control bits are called the data header and footer.
They are used to package the actual data and help with the transmission.

Receiving Data

In the opposite fashion to the transmit hardware, the receive hardware has the job of
converting the received serial bit stream back into the parallel data words. This is
accomplished with a serial-to-parallel converter, which can be implemented with a
single serial-in, parallel-out shift register, as shown in Figure 13.2.
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When the data is received from the serial medium, the control bits are no longer
needed and are stripped from the stream. This leaves only the original data, which is
converted back to the parallel words.

Asynchronous Communications

RS-232 is an interface standard for asynchronous serial communications. It outlined
the connection of the computer to serial communications equipment on a telephone
system. Since it was established in 1960, it has become one of the common standards
followed for connecting two devices via a serial interface. The RS-232 specification
designates mechanical, electrical, functional and procedural specifications. This text
will focus on only a small portion of the procedural specifications in order to highlight
the principles of serial data transfer.

Asynchronous communications is a method that encapsulates the data within control
bits, so that a timing signal or clock is not necessary for the transmission to take place.
The following rules must be observed to assure that the data is transmitted and received
properly.

1. The data must be transferred one byte at a time (often it is a seven-bit code for an
alpha/numeric character).

2. Data is transmitted LSB first.
3. Data is joined with control bits to form a character for transmission. The format of

the character is 1 start bit, 7 or 8 data bits (LSB first), optional parity bit and 1 to 2
stop bits, as shown in Figure 13.3.

4. Start bits must be low and stop bits must be high because the idle line is high. The
falling edge of the start bit indicates to the receiver that data is being sent. The stop
bits return the line to the idle state.

The start and stop bits identify the beginning and end of a character and permit the
receiver to synchronize to the transmit clock rate for each character transmitted. They
are the header and footer that are added to the data. The parity bit is used for error
detection. This bit is designated as odd or even parity and is added to the data to assure
that there is an odd or even number of 1’s in the data stream.
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Synchronous Communications

Synchronous communications is a method of transmitting serial data by using a
synchronizing clock. The clock is transmitted with the data so that the receiving device
knows exactly when to clock in the received data. Consequently, a synchronous system
can operate more efficiently than an asynchronous system.

In a synchronous system, a control signal is sent indicating that data transmission will
start. When the transmission starts, the data is converted from parallel to serial and
transmitted serially. The receiving device clocks the data in using the accompanying
clock. No header or footer bits are required to synchronize the transmission because
the transmission is controlled by separate control signals and the clock.

Self-Test Questions 13.1

 13.2 Serial Communications Interface (SCI) 

The Serial Communications Interface (SCI) is an asynchronous serial communications
system that supports simultaneous transmit and receive. It supports one start bit, eight
or nine data bits and one stop bit. The SCI transmitter and receiver are functionally
independent, although they use the same data format and baud rate. The SCI uses
separate pins for transmit and receive. The Port D b1 is used for transmit (TxD) and
Port D b0 is used for receive (RxD), as shown in Figure 13.4.

NOTE: During transmit and receive operations the values stored in DDRD1 and
DDRD0 bits of the DDRD register are overridden. Thus, the state of the DDRD1
and DDRD0 bits has no effect on the operation of the SCI.300
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Figure 13.3 Asynchronous Serial Character Format

1. How is data converted from the parallel format to the serial format?
2. What is the format of an asynchronous data character?
3. What is the state of the idle line on an asynchronous transmission medium?
4. What is the difference between synchronous and asynchronous communications?
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SCI Timing Control

All timing for the SCI system is derived from the HC11 bus clock. The bus clock
operates at the same frequency as the E clock, but at a different phase. Figure 13.5
illustrates the functional timing blocks of the SCI system and their relationship to main
HC11 timing system.

The main bus clock feeds the SCI Baud-Rate Prescaler. The output of the prescaler is
16 times the highest baud rate available in the system. The output of the prescaler is
sent to the baud-rate selector that determines the actual receive clock used by the SCI
receiver. The receiver clock is 16 times the transmit baud rate. The transmit section
further divides the receiver clock rate by a factor of 16 to generate the transmit baud
rate. All values shown presume that the master E clock rate is 2 MHz.

The prescaler and selector are controlled by values stored in the Baud-Rate Control
register (BAUD). The location of these bits in the BAUD register is shown in Figure
13.6a. The prescaler is controlled by two bits called the SCI Baud Rate Prescaler Selects
(SCP1 and SCP0). Figure 13.6b illustrates the highest rate that will be selected for each
of four possible SCPx bit combinations. Since the factors 3 and 13 are not evenly
divisible into the 2 MHz master clock, the resulting highest baud rate is not an integer
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Figure 13.4 Port D Pin Designations for SCI

Figure 13.5 SCI Timing Block Diagram (adapted with permission from Motorola)
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number of cycles. The highest baud rate is approximately 41 kHz and 9600 Hz
respectively.

The output of the prescaler is sent on to the baud-rate selector. Three bits are used to
select the final baud rate which are called the SCI Baud Rate Selects (SCR2, SCR1 and
SCR0). Figure 13.6c illustrates what baud rates will be generated from the output of
the selector as a function of the eight possible values present on the SCRx bits. This
table is based on the highest baud rate, equal to 9600.

The rate of the receive clock is 16 times the transmit rate to allow for over-sampling of
the receive data. The receive data is checked 16 times while each bit is being received.
This oversampling of the received data compensates for minor differences in the
transmit and receive baud rates.

There are three additional bits in the BAUD register. One bit, b6, is unused; and the
other two, TCLR and RCKB, are used only in the processor special-test mode.

BAUD b7 b6 b5 b4 b3 b2 b1 b0

$102B TCLR − SCP1 SCP0 RCKB SCR2 SCR1 SCR0

RESET 0 0 0 0 0 U U U

SCP1 SCP0
Factor
(E/x)

Prescaler
Output Rate
(16X Tx Rate)

Highest Baud
Rate
(Tx Rate)

0 0 E/1 2 MHz 125 kHz
0 1 E/3 ≈667 kHz ≈41 kHz
1 0 E/4 500 kHz ≈31 kHz
1 1 E/13 ≈154 kHz ≈9600 Hz

SCR2 SCR1 SCR0
Factor
(Highest / x)

Selector
Output Rate
(Rx clock)

Baud Rate
(Tx clock
= Rx / 16)

0 0 0 1 154 kHz 9600
0 0 1 2 77 kHz 4800
0 1 0 4 38.5 kHz 2400
0 1 1 8 19.2 kHz 1200
1 0 0 16 9.6 kHz 600
1 0 1 32 4.8 kHz 300
1 1 0 64 2.4 kHz 150
1 1 1 128 1.2 kHz 75

a) Baud-Rate Register Layout

b) Baud-Rate Prescale Selects

c) Baud Rate Selects for Highest Baud Rate = 9600

Figure 13.6 SCI Baud-Rate Control
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Example 13.1

Problem: Build a command word that will configure the SCI for 4800 BAUD.

Solution: The SCP1 and SCP0 bits should be set to %11 to select the maximum
BAUD rate to be 9600; then the SCR2–SCR0 bits should be set to %001 to select
4800 BAUD. The whole command word would be %00110001 or $31 that would
have to be written to the BAUD register.

SCI Transmitter

The SCI transmitter functions in the same manner as the transmit features of a UART
(Universal Asynchronous Receiver/Transmitter). Figure 13.7 illustrates the transmit
function. The transmit function is enabled via the TE bit in the SCCR2 register. The
transmitter automatically sends a preamble of all 1’s when it is enabled (idle state of
the line). After it is enabled, a byte of data, called a character, is written to the SCI Data
register (SCDR). The SCDR then moves this data to the internal shift register. The shift
register adds the start and stop bits to the data and shifts the character serially to the
transmit pin, TxD. Each time a character is moved from the SCDR to the shift register
for transmission, the TDRE flag is set. This indicates to the user that the hardware is
ready for another character. The TC flag is set when the entire transmission is complete.

The SCDR register is used for the transmit, as well as the receive operations. The layout
of the SCDR register is shown in Figure 13.8a. The contents of this register are
undefined after reset.
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The process of transmitting characters is controlled by the bits in two SCI Control Regis-
ters (SCCR1 and SCCR2). The SCCR1 register contains two bits that directly control the
SCI transmit function, as shown in Figure 13.8b. The SCI allows for data transfers of 8 or
9 bits. The M bit is the mode bit that selects this character format. When M = 0, the
character format is set to 8-bit data. When M = 1, the character format is set to 9-bit data.
When the M bit is set, the T8 bit holds the 9th bit of the transmit data character.

The SCCR2 register contains four bits that are relevant to the transmit function. The
Transmit Interrupt Enable (TIE) bit is used to enable the SCI interrupt when the
transmit data register is empty. When TIE = 1, an SCI interrupt is requested if the
Transmit Data Register Empty Flag (TDRE) in the SCSR register is set. When TIE = 0,
TDRE interrupts are disabled. The Transmit Complete Interrupt Enable (TCIE) bit is
used to enable the SCI interrupt when the transmission is complete. When TCIE = 1,
an SCI interrupt is requested if the TC bit in the SCI Status register (SCSR) is set. When
TCIE = 0, TC interrupts are disabled.

The Transmit Enable (TE) bit of the SCCR2 register is used to enable the SCI
transmit function. When TE changes from zero to one, a preamble character is
transmitted. The preamble character consists of all logic ones, including the start
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SCDR b7 b6 b5 b4 b3 b2 b1 b0

$102F R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0

RESET U U U U U U U U

SCCR1 b7 b6 b5 b4 b3 b2 b1 b0

$102C R8 T8 − M WAKE − − −

RESET U U 0 0 0 0 0 0

a) SCI Data Register (SCDR) Layout

b) SCI Control 1 Register (SCCR1) Layout

SCCR2 b7 b6 b5 b4 b3 b2 b1 b0

$102D TIE TCIE RIE ILIE TE RE RWU SBK

RESET 0 0 0 0 0 0 0 0

c) SCI Control 2 Register (SCCR2) Layout

SCSR b7 b6 b5 b4 b3 b2 b1 b0

$102E TDRE TC RDRF IDLE OR NF FE −

RESET 1 1 0 0 0 0 0 0

d) SCI Register (SCSR) Layout

Figure 13.8 SCI Data, Control and Status Register Layouts (grayed bits are not
relevant to the transmit operations)
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and stop bits. Logic ones create the idle line condition necessary for receive
hardware to recognize the first character of a transmission. Transmission continues
with subsequent writes to the SCDR. The last bit in the SCCR2 register that is
relevant to the transmit operation is called Send Break (SBK). It is used to send
the break character, which consists of all logic zeros, including the start and stop
bits. When SBK = 1, the break character is queued for transmission. Setting the
SBK will not Affect the transmission of the current character, but will queue the
break character to be transmitted next. As long as the SBK bit remains set, break
characters will be queued and transmitted. SBK must be cleared for the transmitter
to resume sending normal characters.

The SCI Status Register (SCSR) contains two bits that provide status for the
transmit operations, as shown in Figure 13.8d. The Transmit Data Register Empty
(TDRE) flag indicates that the last character has been moved to the shift register
and the SCDR is ready to receive another character. When TDRE = 1, the SCDR
is empty and ready for a new character. When TDRE = 0, the SDCR still contains
the previous data. The Transmit Complete (TC) flag indicates that the last character
has been transmitted and that the transmitter has entered the idle state. When
TC = 1, the transmitter has completed sending the last character. When TC = 0,
the transmitter is still busy transmitting. The TDRE and TC bits are cleared by
a two-step process. The SCSR must be read when TDRE = 1 and/or the TC = 1
followed by a write to the SCDR.

Example 13.2

Problem: Write a program to transmit the short message “Hello!” via the SCI to a
terminal running a terminal emulator like PROCOMM. Configure the SCI for 9600
Baud, 8 data bits and 1 stop bit. Place the message starting with $0000 and
terminate the message with the EOT character. Assemble the program at $100.

Solution: The first step is to initialize the X and Y registers. The X register is used
as the register base address so that the indexed address mode can be used to
access the registers. The Y register will be the pointer into the data message. Next
the baud rate must be set and the SCI configured for transmit of 8-bit data. Finally,
the transmitter needs to be enabled. Once the system is enabled, a loop must be
executed that includes clearing the transmit data flag (TDRE) and writing a
character to the data register. Loop until complete.

0001                         *        This program is designed to transmit a short

                                      message to monitor via

0002                         *        the SCI without using BUFFALO subroutines.

0003

0004 1000                    REGBASE EQU   $1000

0005 002b                    BAUD    EQU   $2B

0006 002c                    SCCR1   EQU   $2C

0007 002d                    SCCR2   EQU   $2D

0008 002e                    SCSR    EQU   $2E
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0009 002f                    SCDR    EQU   $2F

0010

0011 0100                            ORG   $0100

0012 0100 ce 10 00                   LDX   #REGBASE

0013 0103 18 ce 00 00                LDY   #MSG

0014

0015 0107 86 18                      LDAA  #%0011000  ;Set BAUD rate for 9600

0016 0109 a7 2b                      STAA  BAUD,X

0017

0018 010b 6f 2c                      CLR   SCCR1,X    ;Set Xmit Mode to 8-bit

0019

0020 010d 86 08                      LDAA  #%00001000 ;Enable transmitter

0021 010f a7 2d                      STAA  SCCR2,X

0022

0023 0111 a6 2e              XMIT    LDAA  SCSR,X     ;Read Status Reg to clear 

                                                        flags

0024

0025 0113 18 a6 00                   LDAA  0,Y        ;Get character of message

0026 0116 81 04                      CMPA  #$04       ;Check for EOT 0027

0118 27 0a                           BEQ   DONE       ;If EOT xmit is done

0028 0029 011a a7 2f                  STAA  SCDR,X     ;xmit the character

0030

0031 011c 1f 2e 40 fc        WAIT    BRCLR  SCSR,X #%01000000 WAIT   ;Wait for TC

0032 0120 18 08                      INY              ;point to next character

0033

0034 0122 20 ed                      BRA     XMIT     ;Do it again

0035

0036 0124 3f                 DONE    SWI

0037

0038

0039 0000                            ORG     $0000

0040 0000 48 65 6c 6c 6f 21  MSG     FCC     Hello!’

0041 0006 04                         FCB     $04

SCI Receiver

The SCI receiver functions in the same manner as the receive features of a UART
(Universal Asynchronous Receiver/Transmitter). Figure 13.9 illustrates the receive
function.

The receive function is enabled via the RE bit in the SCCR2 register. The receiver
automatically starts looking for a start bit. After the start bit is detected, the
character data is shifted into the shift register one bit at a time. When the stop
bit is properly detected, the received character is moved to the SCDR and the
status flags are updated, RDRF is set and error flags are updated appropriately.
Each time a character is moved to the SCDR from the shift register, the RDRF
flag is set. This indicates to the user that the character in the SCDR register
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needs to be read to avoid an overrun error. The IDLE flag is set when the entire
transmission is complete and the RxD line returns to the idle state.

The SCDR register is used for the transmit operations as well as for the receive
operations. The layout of the SCDR register is shown in Figure 13.8a.

The process of receiving characters is controlled by the bits in two SCI Control Registers
(SCCR1 and SCCR2). The SCCR1 register contains three bits that directly control the
SCI transmit function, as shown in Figure 13.10. The SCI receives data characters of 8 or
9 bits in length. The M bit is the mode bit that selects this character format. When M = 0,
the character format is set to 8-bit data. When M = 1, the character format is set to 9-bit
data. If the M bit is set, the R8 bit receives the 9th bit of the transmit data character when
the lower eight bits are transferred to the SCDR from the shift register. The WAKE bit
determines the receiver wake-up method when the RWU bit in the SCCR2 register is set.
When WAKE = 1, an address mark will cause wake-up. An address mark is defined as a
logic one in the MSB (8th or 9th bit position depending upon the state of the M bit) of
the character. When WAKE = 0, an idle line condition will cause the receiver to wake up.

The SCCR2 register contains four bits that are relevant to the receive function. The
Receive Interrupt Enable (RIE) bit is used to enable the SCI interrupt when the receive
data register is full. When RIE = 1, an SCI interrupt is requested if the RDRF or the OR bits
in the SCSR register are set. When RIE = 0, RDRF and OR interrupts are disabled. The
Idle-Line Interrupt Enable (ILIE) bit is used to enable the SCI interrupt when the receive
operation is complete. When ILIE = 1, an SCI interrupt is requested if the IDLE bit in the
SCSR register is set. When TIE = 0, IDLE interrupts are disabled.
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The Receive Enable (RE) bit of the SCCR2 register is used to enable the SCI receive
function. When RE =1, the receiver begins waiting for character data. When RC = 0,
the SCI receiver is disabled and the RDRF, IDLE, OR, NF and FE receive status flags
cannot be changed. The last bit in the SCCR2 register that is relevant to the receive
operation is called Receiver Wake Up (RWU). It is used to place the receiver into a
standby mode until some hardware condition is met to wake up the sleeping receiver.
The specific hardware condition depends on the state of the WAKE bit in the SCCR1.
Wake-up mode is only used when receiver-related interrupts are inhibited. When RWU
= 1, the receiver enters standby mode.

The SCI Status Register (SCSR) contains five bits that provide status for the transmit
operations, as shown in Figure 13.10c. The Register Data Register Full (RDRF) flag
indicates that the shift register has moved a completed character to the SCDR where the
software can read it. When RDRF = 1, the SCDR contains a received character. When
RDRF = 0, nothing has been received from the shift register since the last time the SDCR
was read. The Idle-Line Detect (IDLE) flag indicates that the RxD data line has become
idle. Idle is defined as at least one full character of all 1’s. When IDLE = 1, the idle
condition has been detected on the RxD line. When IDLE = 0, the RxD is either currently
active or has never become active since the last time the IDLE flag was cleared.

The Overrun Error (OR) indicates that another character has been received serially
and is ready to be transferred to the SCDR, but that the previous character has not yet
been read by the software. When an overrun occurs, the character in the shift register
is lost and the data in the SCDR is not disturbed. When OR = 1, the overrun condition
has occurred. When OR = 0, no overrun error has occurred.
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SCCR1 b7 b6 b5 b4 b3 b2 b1 b0

$102C R8 T8 − M WAKE − − −

RESET I I 0 0 0 0 0 0

SCCR2 b7 b6 b5 b4 b3 b2 b1 b0

$102D TIE TCIE RIE ILIE TE RE RWU SBK

RESET 0 0 0 0 0 0 0 0

SCSR b7 b6 b5 b4 b3 b2 b1 b0

$102E TDRE TC RDRF IDLE OR NF FE −

RESET 1 1 0 0 0 0 0 0

a) SCI Control 1 Register (SCCR1) Layout

b) SCI Control 2 Register (SCCR2) Layout

c) SCI Status Register (SCSR) Layout

Figure 13.10 SCI Control and Status Layout for Receive
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The Noise Flag (NF) indicates that the data recovery logic detected noise during the
reception of the character. Noise is indicated if three samples taken during the center
of the data bit or stop are not the same. The noise test for the start bit involves three
bits in the middle of the bit and four samples at the start of the bit. All seven samples
must be zero. The NF flag is only set for a data character that was successfully
transferred to the SCDR. The NF flag is updated at the same time the RDRF bit is
updated. When NF = 1, noise was perceived for the last character. When NF = 0, no
noise was detected during the reception of the character that is in the SCDR.

The Framing Error (FE) flag indicates that a new start bit was detected during the time
that the stop bit was expected for the current character. Asynchronous serial data
reception requires the receiver to be aligned with the character reception. This
alignment is achieved by detecting the falling edge of the start bit. The alignment is
verified by checking for the proper logic state (logic one) during the stop bit. When
the alignment cannot be verified, a framing error has occurred. The FE flag is only set
for a data character that was successfully transferred to the SCDR. The FE flag is
updated at the same time the RDRF bit is updated. When FE = 1, a framing has
occurred. When FE = 0, no framing error was detected during the reception of the
character currently in the SCDR.

The RDRF, IDLE, OR, NF and FE bits are cleared by a two-step process. The SCSR must
be read when one or more of the bits are set followed by a write to the SCDR.

Example 13.3

Problem: Write a program to receive data from a terminal running a terminal
emulator like PROCOMM via the SCI until a <CR> is received. Store the received
data in a BUFFER starting at $01E0. Configure the SCI for 9600 Baud, 8 data bits
and 1 stop bit. Assemble the program at $120.

Solution: The first step is to initialize the X and Y registers. The X register is used as
the register base address so that the indexed address mode can be used to access
the registers. The Y register will be the pointer into the buffer where the characters will
be stored. Next the baud rate must be set and the SCI configured for receive of 8-bit
data. Finally, the receiver needs to be enabled. Once the system is enabled, a loop
must be executed that includes clearing the receive data flag (RDRE) and reading a
character from the data register and store it in the BUFFER. Loop until complete.

0001                   *   This program is designed to receive a short message

                           from the

0002                   *   keyboard via the SCI without using BUFFALO subroutines.

0003

0004 1000              REGBASE  EQU    $1000

0005 002b              BAUD     EQU    $2B

0006 002c              SCCR1    EQU    $2C

0007 002d              SCCR2    EQU    $2D

0008 002e              SCSR     EQU    $2E

0009 002f              SCDR     EQU    $2F
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0010

0011 0120                       ORG    $0120

0012 0120 ce 10 00              LDX    #REGBASE

0013 0123 18 ce 01 e0           LDY    #BUFFER

0014

0015 0127 86 18                 LDAA   #%0011000   ;Set BAUD rate for 9600

0016 0129 a7 2b                 STAA   BAUD,X

0017

0018 012b 6f 2c                 CLR    SCCR1,X     ;Set Rcv Mode to 8-bit

0019

0020 012d 86 04                 LDAA   #%00000100  ;Enable receiver

0021 012f a7 2d                 STAA   SCCR2,X

0022

0023 0131 1f 2e 20 fc  RCV      BRCLR  SCSR,X #%00100000 RCV ;Wait for data to

                                                              arrive

0024

0025 0135 a6 2f                 LDAA   SCDR,X      ;Get character from Data Reg

0026 0137 81 0d                 CMPA   #$0D        ;Check for CR

0027 0139 27 07                 BEQ    DONE        ;If CR rcv R is done

0028

0029 013b 18 a7 00              STAA   0,Y         ;save the character

0030 013e 18 08                 INY                ;point to next character

0031

0032 0140 20 ef                 BRA    RCV          ;Do it again

0033

0034 0142 3f           DONE    SWI

0035

0036

0037 01e0                      ORG    $01E0

0038 01e0             BUFFER  RMB    32           ;reserve 32 bytes

Self-Test Questions 13.2

 13.3 Serial Peripheral Interface (SPI) 

The Serial Peripheral Interface (SPI) is another alternative function available on the
Port D pins. This interface is a bidirectional synchronous serial interface. It supports
a master/slave configuration with multiple slaves in the configuration. In addition, it
allows for simultaneous transmit and receive functions. While data is being transmitted
from the master, the master can also be receiving data from the slave device.
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1. How are the PORTD pins configured when they are not being used for serial
communications?

2. Can the SCI transmitter and receiver be used simultaneously?
3. What register is used to transfer data to the SCI as well as to read data that has

been received?
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The block diagram of the SPI system is shown in Figure 13.11. The SPI has the ability
to transmit and receive data simultaneously. Data is set up to transfer by writing to the
Serial Peripheral Data Register (SPDR). This data is transferred to the shift register for
transmission. While a word is being shifted out, data is shifted in. When a whole data
word is received, it is transferred into an internal data buffer. The same register address
of the SPDR is used to both write to the shifter and read from the data buffer. Data is
transmitted MSB first on this system.

There are four Port D pins, which are used for the SPI system. Slave Select (SS) is used
to select a slave device. When SS = 0, the device is designated as a slave device. When
a device is configured as a master, the SS pin must remain high. Serial Clock (SCK) is
the input clock to the slave device. It is generated by the master device and is used to
synchronize the data movement over the SPI interface. Since the SPI is a serial
interface, it requires eight clock pulses to transfer a byte of data. Since the SPI interface
is synchronous, it does not use start and stop bits; thus it requires only eight clock pulses
to transfer a byte of data. The start and stop control is derived from the SS bit. The
phase and polarity of the clock on SCK are selected by the CPOL and CPHA bits in
the SPCR. Both master and slave device must be configured for the same polarity and
clock phase. The clock rate is selected by the SPR1and SPR0 bits in the SPCR on the
master device. The SPR1 and SPR0 bits on the slave device are ignored.

The SPI interface has two unidirectional data pins. Master In Slave Out (MISO) is used as
the data input pin on a master device. It is used as the data output pin on a slave device.
MISO is placed in a high impedance state if the slave device is not selected via the SS pin.
Master Out Slave In (MOSI) is used as the data output pin on a master device. It is used as
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Figure 13.11 SPI Functional Block Diagram
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the data input pin on a slave device. Data from the master is placed on the MOSI pin 1⁄2
clock cycle prior to the clock edge used by the slave device to latch the data.

When a device is configured as a master, the SS, SCK and MOSI pins must be configured
as outputs and the MISO bit must be configured for input. This is done by writing 1’s
to DDRD5–DDRD3 in the DDRD register. When a device is configured as a slave, the
MISO bit must be configured as an output and MOSI, SCK and SS must be configured
as input. This is done by writing a 1 to DDRD2 of the DDRD register. The relationship
of the pins to the DDRD bits is shown in Figure 13.12.

NOTE: SPI pins that are configured for output will not operate unless the
corresponding bit in the DDRD register is set. SPI pins that are configured for
input ignore the state of the corresponding DDRD bits.

Once the interface is configured, data can be transferred between the master and the
slave. If properly configured, both devices can simultaneously transfer data. The
transfer is initiated by writing data to the SPI Data Register (SPDR) on the master. The
act of writing the data causes the whole process to begin. The SPDR is an 8-bit data
register that is directly linked to the internal SPI shift register. Received data is also
available via the SPDR. At the completion of a transfer, the received data is placed in
the receive data buffer. When the user reads the SPDR, the received data is moved from
the receive buffer to the SPDR so that it can be read. The SPDR is located at $102A in
the memory map; it is shown in Figure 13.13.

The SPI process is configured and controlled by seven bits contained in the SPI Control
Register (SPCR), as shown in Figure 13.14. This register can be read or written at
anytime. The DDRD register must also be configured for the SPI system to operate
properly. The SPI Interrupt Enable (SPIE) bit is used to enable SPI interrupt requests
when the SPIF or the MODF bits of the SPSR is set. When SPIE = 1, the SPI interrupt
is requested. When SPIE = 0, the SPI interrupt is inhibited. The SPI System Enable
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Figure 13.12 Relationship of SPI Pins to Bits in the DDRD Register

Port D Pins b7 b6 b5 b4 b3 b2 b1 b0

− − SS SCK MOSI MISO TxD RxD

RESET 0 0 0 0 0 0 0 0

DDRD b7 b6 b5 b4 b3 b2 b1 b0

$1009 − − DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0

RESET 0 0 0 0 0 0 0 0

Figure 13.13 SPI Data Register Layout

SPDR

$102A b7 b6 b5 b4 b3 b2 b1 b0

RESET U U U U U U U U
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(SPE) bit is the master enable for the SPI system. This bit must be set to activate the
features of the SPI system. When SPE = 1, the SPI is enabled. When SPE = 0, the SPI
is disabled.

The Master/Slave Mode Select (MSTR) bit configures the SPI system as a master
or a slave device. Regardless of the mode, the SPI system can simultaneously send
and receive data. When MSTR = 1, the SPI system is configured as a master.
When MSTR = 0, the SPI system is configured as a slave. The SPI Clock Rate
Selects (SPR1 and SPR0) are used to select the transfer bit rate. This transfer
rate is a function of the E clock rate. The four possible transfer rates are shown
in Figure 13.14b.

The Clock Polarity Select (CPOL) bit configures the active and idle states of the
SPI clock present at the SCK pin of the interface. When CPOL = 1, active low
clocks are selected and the SCK pin will idle in the high state. When CPOL =
0, active high clocks are selected and the SCK pin will idle in the low state. The
SPI support two different transfer timing formats. The two formats are shown in
Figure 13.15. The Clock Phase Select (CPHA) bit selects one of the two transfer
formats. This bit is used in conjunction with the CPOL to determine the actual
clock that will be present on the SCK pin.

The SPSR register layout is shown in Figure 13.16. The SPI Transfer Complete
Flag (SPIF) bit is set to indicate that a transfer is complete. This bit is cleared
by reading the SPSR followed by accessing the SPDR. The Write Collision flag
(WCOL) is set if the MCU tries to write data into the SPDR while an SPI data
transfer is in progress. Clear this bit by reading the SPSR followed by accessing
the SPDR. The Mode Fault flag (MODF) is set when SS is pulled low while MSTR
= 1. Clear this flag by reading the SPSR with the MODF bit set, followed by a
write to the SPCR.
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SPCR b7 b6 b5 b4 b3 b2 b1 b0

$1028 SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0

RESET 0 0 0 0 0 1 U U

a) SPI Control Register Layout

SPR1 SPR0
E Clock
Divisor E/x Transfer Bit Rate

0 0 E/2 1.0 MHz
0 1 E/4 500 kHz
1 0 E/16 125 kHz
1 1 E/32 62.5 kHz

b) SPI Clock Rates for 2 MHz E Clock

Figure 13.14 SPI Control
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Self-Test Questions 13.3

 Summary 

The Port D serial communications system consists of two communications interfaces,
the SCI and the SPI. The SCI is an asynchronous interface, and the SPI is a synchronous
interface. When the Port D pins are not being used for serial communications, they
can be configured for digital I/O. The DDRD register controls the direction of the
I/O on these pins.
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Figure 13.15 SPI Transfer Timing Formats

Figure 13.16 SPI Status Register Layout

SPSR b7 b6 b5 b4 b3 b2 b1 b0

$1029 SPIF WCOL − MODF − − − −

RESET 0 0 0 0 0 0 0 0

1. What are the two communications functions available in the Port D communica-
tions system?

2. Is the SPI a synchronous or an asynchronous interface?
3. What register must be written to start an SPI transfer?
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 Chapter Questions 

Section 13.1
 1. Define serial data.
 2. What was a reason that RS-232 was first developed?
 3. In what order are the data bits transferred within a character in an asynchro-

nous system?
 4. What is the purpose of the start bit in an asynchronous system?
 5. What is the key difference between an asynchronous system and a synchronous

system?

Section 13.2
 6. Which two Port D pins are used by the SCI system?
 7. What is the master clock that drives the SCI timing?
 8. What are the names of the bits in the BAUD register used to control the SCI

timing prescale?
 9. What are the names of the bits in the BAUD register used to select the specific

BAUD rate?
10. What value should be written to the BAUD register to select 300 BAUD?
11. What state is automatically transmitted when the SCI transmitter is enabled?
12. What bit in the SCCR2 register is used to enable transmit data register empty

interrupt?
13. What happens when the SBK bit is set?
14. What process is necessary to clear the SCI transmit flags?
15. What bit is used to enable 9-bit characters?
16. Which bit enable interrupts when the receive data register is full?
17. Why would an overrun error occur, and how does the SCI system indicate that

it happened?

Section 13.3
18. Which of the Port D pins are used by the SPI system?
19. What is the fastest transfer rate of the SPI system?
20. Which signal is used to signal the receiving device that data will be sent?
21. What is the required state of the corresponding DDRD bits when SPI pins are

configured for input?
22. Can there be more than one slave in an SPI system?
23. Can there be more than one master in an SPI system?
24. For continuous transmission, why would it be faster to send data each time

TDRE is set rather than waiting for TC to set?
25. What process is necessary to clear SPIF?

 Chapter Problems 

1. Write a program to configure the Port D system for serial asynchronous communi-
cation. Use 9600 baud, 8-bit data and 1 stop bit and enable both receive and transmit
functions.
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2. Calculate the total amount of transmit time for 10 characters in the SCI system with
the following format: 8-bit data, 1 start bit, 1 stop bit, no parity. Use 4800 BAUD.
Recalculate for 300 BAUD.

 Answers to Self-Test Questions 

Section 13.1
1. A parallel in serial out shift register is used.
2. One start bit, 7 or 8 data bits, optional parity bit and 1–2 stop bits.
3. The state of the idle line is high.
4. Synchronous uses control signals and a clock to synchronize the transmission,

and asynchronous uses header and footer bits attached to the data character.

Section 13.2
1. They are configured for digital I/O. The value in the DDRD register controls the

direction of each of these I/O bits.
2. Yes. The SCI system is a full duplex communication system.
3. The SCDR is used for transmit and receive data.

Section 13.3
1. The SCI (Serial Communications Interface) and the SPI (Serial Peripheral

Interface).
2. The SPI is a synchronous interface.
3. A byte of data must be written to the SPDR register to start the transfer.
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C Programming U sing the HC11

 Objectives 

After completing this chapter, you should be able to:

◗ Understand the basic concepts of programming in a higher-level lan-
guage

◗ Write simple C statements and expressions

◗ Write short C programs that will accomplish specific tasks on the HC11

 Outline 
◗ 14.1 C programming

◗ 14.2 Data Types

◗ 14.3 Operators

◗ 14.4 Variables

◗ 14.5 Special Statements

◗ 14.6 Subroutines

◗ 14.7 Examples

 Introduction 
In chapter 2 the idea of a computer language was presented. Higher-level languages
are more English-like and therefore more readable by humans, while the lower-level
languages are more similar to the actual machine code that is used on the machine.

This chapter teaches principles surrounding the C programming language and the
relationship of C program statements to the resulting assembled machine code that
would run on an HC11 microcontroller. In no way is this presentation a complete
discussion of the numerous features, strengths and weaknesses of the C language; it is

C Programming Using the HC11

 c h a p t e r 14
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rather a brief overview of some common features and their direct correlation to blocks
of assembly code.

The C language was developed by engineers at Bell Labs during the 1970s as a tool to
develop the UNIX operating system. Since then, it has evolved into the primary
language used for most large programming and software development projects. It has
strong uses in engineering and scientific applications. It is also used as the core
language when teaching programming.

C is considered a medium-level language. It has many capabilities of the highest-level
languages and yet supports assembler-level code embedded in the source code files. C
source code files are not converted directly to machine code by an assembler. The files
are first processed by a compiler that converts them to the equivalent assembly-lan-
guage source code. This assembly-level code is then assembled into the machine code.
Each of the examples provided at the end of this chapter shows this relationship.

 14.1 C Programming 

The C programming language uses English-like verbs and key words, thus it reads in a
fashion similar to a spoken language. This is in contrast to a low-level language-like
assembler that consists of mnemonic instructions that translate into single machine
operations. C consists of a series of program statements, each terminated by a
semicolon. Each statement can perform the equivalent of one or many assembly-level
instructions. Each statement consists of compiler keywords, user-defined variable names
and operators. Figure 14.1 contains five examples of statements in C.

More than one statement can be put on a single line, or one statement can be written
across many lines, as shown in Figure 14.2.

C ignores almost any combination of white space within the code. The program may
contain any number of blank spaces, blank lines, tabs and new line characters. This
rule regarding white space applies to all white space except for spaces contained inside
of double quotes, function names and reserved words. For example, a keyword cannot
contain a blank or new line character. An example of the improper use of the new line
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Figure 14.1 Examples of C Statements

z = x + y;
radius = 2.0;
sum = sum + result;
volume = (4.0/3.0) * 3.1416 * pow(radius,3);
printf(“The volume of the sphere is %f, volume);

x = 2; y = 43; z = x + y;

printf
(“Hello World”);

Figure 14.2 Clustered and Split Statements in C
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character is shown in Figure 14.3. In this example the keyword “printf” is split, which
will cause a compiler error.

Statements are grouped together in functional groups by the braces { }. These braces
are often referred to as curly brackets. This grouping of statements is sometimes
required by the structure of the program and at other times is optional. Figure 14.4
shows one example of three statements being grouped together by braces into a single
complex statement. A complex statement is sometimes referred to as a code block.

Each C program is structured around a series of programming routines or subroutines.
These subroutines are called functions in C. The primary routine is designated by the
keyword main ( ). A program must contain one and only one main ( ). The syntax for
the main ( ) statement is shown in Figure 14.5.

Self-Test Questions 14.1

 14.2 Data Types 

A data type is used by the compiler to allocate memory and to establish a set of rules
for a particular data variable. There are four basic data types supported in C: character,
integer, floating point and double precision. When a variable is declared in C, it is
assigned to a particular data type. The type controls which kinds of operations can be
performed using the particular variable.
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prin
tf(“This would not work because the keyword printf is split”);

Figure 14.3 Improper Use of White Space

{
  x = 120;
  y = 64;
  z = x / y;
}

Figure 14.4 Use of the Braces to Form a Complex Statement

main () {
  statements;
}

Figure 14.5 The Main Statement in C

1. What is a C statement?
2. How can white space be used in the C source code?
3. What is the purpose of the braces { }?
4. What is the name of the primary function of each C program?  How many primary

functions can a C program have?
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The character type consists of single bytes of data. This byte can contain any 8-bit data
element, including ASCII character codes, signed and unsigned 8-bit binary/hexadec-
imal data and decimal numbers. Examples include “A”, $45, –123. The programmer
can use any format that makes the most sense in the source code; however, the compiler
will convert this data to the binary/hex format in the actual machine code. The
character data type is declared using the char keyword, as shown in Figure 14.6.

Integer data consists of two bytes (on some machines the basic integer type is four
bytes). Any signed or unsigned integer number (a number that has no digits to the
right of the decimal point) that can be represented in 16 binary bits can be stored,
processed and manipulated by this data type. Examples include $13AB, +3568, –491.
The range of 2-byte signed decimal values is –32,768 to +32,767. The range of 2-byte
unsigned decimal values is 0 to 65,535. The integer data type is declared using the int
keyword. The default integer type is considered signed. If an unsigned type is desired,
the int keyword must be preceded by the unsigned keyword. Examples of the int and
unsigned keywords are shown in Figure 14.7.

The floating point and double precision data types are designed to handle any signed
or unsigned numbers containing a decimal point. Examples include +10.625, –6.2, 0.33,
0.0, 100.0, 1.625e3, –7.23e–4. The floating point type is sometimes called single precision
because it typically requires half of the memory storage space of the equivalent double
precision type. The “e” character represents exponent or power of ten and provides a
simple way of showing numbers in scientific notation. The floating point type uses the
float keyword, and the double precision type uses the double keyword, as shown in
Figure 14.8.

Self-Test Questions 14.2
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char a, b; /*declares two single byte variables a and b. */

Figure 14.6 Char Data Type

int x; /*declares a 16 bit signed variable named x.   */
unsigned int y; /*declares a 16 bit unsigned variable named y. */

Figure 14.7 Int Data Type

float firstnum; /*declares a floating point variable called firstnum. */
double total; /*declares a double precision variable called total.  */

Figure 14.8 Float and Double Data Types

1. What is a data type?
2. How many bytes are occupied by each of the following data types: char, int and

unsigned int?
3. What is the difference between a float and an int type?
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 14.3 Operators 

Data of any type can be added, subtracted, multiplied or divided. Each arithmetic
function has a defined operator, as shown in Figure 14.9. Each operator is used to
indicate the respective arithmetic operation.

Each arithmetic operator requires two operands; therefore, it is called a binary operator
(unary operators require only one operand). The operator is used between the two
operands to designate the desired arithmetic operation. Figure 14.10 illustrates a variety
of arithmetic operations using the C operators and syntax.

The division of two integers produces only the integer quotient. Sometimes it is
desirable to know the integer remainder when division is performed. A special operator
is defined (%) called the modulus operator that returns only the remainder of a
division problem. Like the other arithmetic operators, it is a binary operator. It is used
in the same manner as the division operator for integer values. Figure 14.11 illustrates
the use of this operator.

There is one unary operator relevant to this discussion, the negation operator (–).
When the minus sign is used in front of any numerical value, it negates (changes the
sign of) the number.

Each operator has a relative order of precedence. When two or more operators occur
within the same statement, an order must be established for the processing of the
operations or the results would be ambiguous. Precedence can be changed by the use
of parentheses ( ). Operations grouped within parentheses will be evaluated first,
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Operation Operator

Addition +
Subtraction -
Multiplication *
Division /

Figure 14.9 Arithmetic Operators

5/3

5%3

Figure 14.10 Examples of Arithmetic Operations

3 + 7 This operation designates the addition of two integer values 3 and 7.

18 – 3 This operation designates the subtraction of two integer values 18 and 3.

12.62 + 9.8 This operation designates the addition of two floating point values 12.62 and 9.8.

7 * 4 This operation designates the multiplication of two integer values 7 and 4.

2.6 / 3.0 This operation designates the division of two floating point values 2.6 and 3.0.

Figure 14.11 Example of the % Operator

This results in the integer quotient of 1.

This results in the integer remainder of 2.
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followed by the operations outside the parentheses. Multiple sets of parentheses are
evaluated in a left-to-right fashion. If parentheses are contained within other parenthe-
ses, the innermost parentheses are evaluated first.

All operators have a set order of precedence, as shown in Figure 14.12.

Example 14.1

Problem: Evaluate the following expression, using the proper order of precedence.

 8 + 5 * 7 % 2 * 4

Solution: As the * and % operators have the same precedence, they will be
evaluated one at a time, left to right, before the + operation is evaluated. Each
operation is shown with the underline.

⇒ 8 + 5 * 7 % 2 * 4 5 * 7 = 35
⇒ 8 + 35 % 2 * 4 35 % 2 = 1
⇒ 8 + 1 * 4 1 * 4 = 4
⇒ 8 + 4 8 + 4 = 12
⇒ 12 Final result

Self-Test Questions 14.3

 14.4 Variables 

All data on a computer must be stored in the memory. Before higher-level languages
like C were used, the source code specified the exact storage locations used in the
memory. High-level languages use symbolic names in place of actual memory addresses
to designate where the data is being stored. These symbolic names are called variables.
Each variable is simply a name, given by the programmer to a storage location. In C,
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Operator Associativity

Unary - right to left
(, ) left to right
*, /, % left to right
+, - left to right

Figure 14.12 Order of Precedence of Operators

1. What is an arithmetic operator?
2. What symbol is used for the operator that returns the remainder, rather than the

quotient, from an integer division operation?
3. What is the difference between a unary and binary operator?
4. Which operator has highest order of precedence?
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these variable names can be almost anything. Definition of the variable names is left
to the programmer and follows two simple rules.

1. The names must begin with a letter or underscore (_) and may only contain
characters, digits or the underscore. They cannot contain any blanks (spaces) or
special symbols, such as ( ) & $ # . , ! ?

2. A variable cannot be a keyword (keywords are reserved and have special meaning).

Naming and defining the data type that can be stored in each variable is accomplished
by using declaration statements. A declaration statement, in its simplest form, provides
a data type and a variable name. Examples of variable declarations were provided in
Figures 14.6, 14.7 and 14.8.

In C, the equal sign (=) is used in assignment statements. It is a binary operator. The
= symbol is called the assignment operator and is used to assign an operand to a
variable. The variable appears on the left side of the operator, and the operand appears
on the right of the operator. The operand on the right can be a constant (i.e., 2, 4.3,
–16.3e5), another variable designation or a valid C expression. The assignment operator
causes the value of the operand to be evaluated first and then be stored in the memory
location(s) named by the variable; thus it has a lower relative precedence than the
other operators already mentioned. Examples of valid assignment expressions are
shown in Figure 14.13.

Accumulation can take place by using the variable on both sides of the assignment
operator in combination with another arithmetic operator. The current value stored
in the variable is then used to calculate the new value, which is then stored in
the variable, overwriting the previous value. Examples of accumulation are shown
in Figure 14.14.

Example 14.2

Problem: Write a short segment of C code that will calculate the average of three
grades: 85, 93 and 98. Use integer variables for all values.

Solution: The variables must be declared first, then assign the grades and
calculate the average.
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year = 1988;
sum = 6 + 5 + 18;
rate = prime;
inches = 12 * feet;
classAvg = (grade1 + grade2 + grade3) / 3.0 * factor;

Figure 14.13 Examples of the Use of the Assignment Operator

sum = sum + newvalue;
value = value * (1 + rate);

Figure 14.14 Examples of Accumulation
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Int Grade1, Grade2,

Grade3;

/* variables for grades */

Int Average; /* variable for average */

Grade1 = 85;

Grade2 = 93;

Grade3 = 98;

Average = (Grade1 + Grade2 + Grade3) / 3;

Self-Test Questions 14.4

 14.5 Special Statements 
There are many special statements defined in C to perform a variety functions. These
special statements use specific keywords and follow a set format (called the syntax).
Consider the following special statements.

If-then-else statement
The if-then-else format allows statements to be written that will be executed only if the
conditional expression is true. If the conditional expression is not true, an alternative
statement following the else keyword can be executed. The else keyword is optional.
An expression is similar to a program statement but uses relational operators like <,>
or ==, and evaluates to a true or false state. The double equal is used for relational
equality to show a visual difference from an assignment. The general syntax for the
if-then-else structure is shown in Figure 14.15.

Example 14.3

Problem: Write a short C code segment using the if-then-else structure that will
set the timeofday to afternoon if the hour is at least 12.

Solution: First the expression must be evaluated to determine if the condition is
true. If it is true, then execute the statement.

if (hours >= 12)
timeofday = afternoon;324

1. What is a variable?  How is it used?
2. What is the assignment operator used for?
3. How can accumulation be accomplished?

Figure 14.15 General Syntax of the If-Then-Else Statement

else

if(expression)

statement1;

statement2;
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Example 14.4

Problem: Write a short C code segment using the if-then-else structure that will
check to see if x is greater than zero. If x is greater than zero, then assign x plus
1 to y, else assign zero to y.

Solution: First the expression must be evaluated to determine if the condition is
true. If it is true, then execute the statement, else execute the other statement.

if (x > 0)

        y = x + 1

else

        y =0 ;

For Statement

The for statement format allows statements to be written that will be executed for a
certain duration or while a conditional expression is true. The syntax for the “for”
statement requires three terms: an initializing list, an expression and an altering list.
The initializing list indicates the starting condition of the conditional variable. The
expression designates what condition must be true for the statements to be executed.
The condition is tested before the statements are executed. The altering list indicates
how the conditional variable will be changed. Each term must be separated by the
semicolon within the parenthesis, as shown in Figure 14.16.

Example 14.5

Problem: Write a short C code segment using the “for” structure that will set up a
loop to execute 20 times.

Solution: First the loop counter (i) is initialized, the loop condition is set (< 20) and
how the loop counter will be altered (i+1) is defined. The body of the “for” loop is a
complex statement that assigns a value to the variables x and y.

for i = l; i < 20; i = i + 1

        {

        x = x + y;

        y = z * 7 % 2;

        };

for (initializing list; expression; altering list)

statement;

Figure 14.16 General Syntax of the For Statement
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Self-Test Questions 14.5

 14.6 Subroutines 

Subroutines in C are called functions. The programmer can write functions to
perform any task. As is explained in chapter 6, functions (i.e., subroutines) provide
the ability to reuse the same code over and over without physically duplicating
the code. Figure 14.17 provides an example of how subroutines work. The name
of the function becomes the keyword that causes the function to be executed.
Any time the name of the function is followed by the parenthesis characters (i.e.,
addemup() ) in the source code, the function is called and the statements within
the function are executed. The compiler identifies the functions by the trailing
parenthesis. If the parentheses are not used, the compiler will interpret the function
call as a variable and report an error.

The subroutine or C function addemup is called in the main. The function adds the
two numbers together and assigns the sum to the variable z. Anything that can be done
with in-line code can be done with functions.

Self-Test Questions 14.6

 14.7 Examples 

The following pages contain several small C programs and the listing files generated
by a C compiler designed to produce HC11-compatible assembly and machine

Figure 14.17 Example of C Function

main(){
   char x, y, z;     /* declare three 1-byte variables */
   x = 2;            /* Assign the value 2 to x */ 
   y = -4;           /* assign the value -4 to y */ 
   addemup();        /* perform the addition function *?
}

{
    z = x + y;        /* add the two numbers and assign the sum to z */ 
};

addemup()          /* addemup function code */

1. For what purpose is the if-then structure used?
2. What does the keyword “else” provide to the if-then structure?
3. How is the “for” statement similar to the if-then structure?

1. What is the main advantage of using functions instead of in-line code?
2. What keyword has to be used to call a function?
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code. The purpose in these examples is to provide insight into the process the
compiler goes through of translating the high-level commands (statements) into
low-level mnemonic instructions. The function of these programs is somewhat
trivial; however, they do serve to illustrate the relationship of higher-level “C” code
to the lower-level assembly code.

Example 14.6

Problem: Write a C program to perform a 16-bit multiplication of two integers.

Solution: The program starts by defining three integer (2-byte) variables x, y and
z. It then assigns the value 2 to x and the value 4 to y. It then multiplies x and y
and assigns the result to the variable z. Since the HC11 is an 8-bit processor, it
must use the 16-bit registers to perform this operation. Also note that this
assembly-level program calls an external subroutine called c_imul (provided by the
compiler) to actually complete the operation. The three variables z, y and x are
assigned to the memory locations $0000, $0002 and $0004 respectively (see
Figure 14.18).

Figure 14.18 16-Bit Integer Multiply Example

int x, y, z;

main(){
 x = 2;
 y = 4;
 z = x * y;
}

0001                      ;     int x, y, z;
0002    0000                 org $0000
0003                      _z:
0004    0000              rmb 2
0005                      _y:
0006    0002              rmb 2
0007                      _x:
0008    0004              rmb 2
0009                      ;
0010    0100                 org $0100
0011                      ;     main(){
0012                      _main:
0013                      ;     x = 2;
0014    0100  CC0002      ldd #2
0015    0103  FD0004      std _x
0016                      ;     y = 4;
0017    0106  C604        ldab #4
0018    0108  FD0002      std _y
0019                      ;     z = x * y;
0020    010B  FC0004      ldd _x
0021    010E  18FE0002    ldy _y
0022    0112  BD0119      jsr c_imul
0023    0115  FD0000      std _z
0024                      ;     }
0025    0118  39          rts
0026                      LData:
0027    0119              .external c_imul
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Example 14.7

Problem: Write a C program to perform a 16-bit division of two integers.

Solution: This example defines three integer (2 byte) variables x, y, and z. It assigns
the value 4 to x and the value 2 to y. It then divides x by y and assigns the result
to the variable z. Since the HC11 supports 16-bit division, it uses the IDIV instruction
to perform the division. The three variables z, y and x are assigned to the memory
locations $0000, $0002 and $0004 respectively (see Figure 14.19).

Example 14.8

Problem: Write a C program to perform the addition of two 8-bit numbers using a
subroutine.

Solution: This example defines three character (1-byte) variables x, y and z. It
assigns the value 2 to x and the value –4 to y. It then adds x and y via a subroutine
(function) and assigns the result to the variable z. Since the HC11 is an 8-bit
processor, it uses the 8-bit AccB to perform this operation. The three variables z,
y and x are assigned to the memory locations $0000, $0001 and $0002 respectively
(see Figure 14.20)

int x,y,z;

main(){
 x = 4;
 y = 2;
 z = x / y;
}

0001                      ;     int x,y,z;
0002                      org $0000
0003                      _z:
0004    0000              rmb 2
0005                      _y:
0006    0002              rmb 2
0007                      _x:
0008    0004              rmb 2
0009                      ;
0010                      ;     org $0100
0011                      ;     main(){
0012    0100                  _main:
0013                      ;     x = 4;
0014    0100  CC0004      ldd #4
0015    0103  FD0004      std _x
0016                      ;     y = 2;
0017    0106  C602        ldab #2
0018    0108  FD0002      std _y
0019                      ;     z = x / y;
0020    010B  FC0004      ldd _x
0021    010E  FE0002    ldx _y
0022    0111  02      idiv
0023    0112  FF0000      stx _z
0024                      ;     }
0025    0115  39          rts

Figure 14.19 16-Bit Integer Division Example
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Example 14.9

Problem: Write a C program that will determine if x equals y. If it does, it will set z
equal to x, otherwise it will set z equal to y.

Solution: This example defines three character (1 byte) variables x, y and z. It
assigns the value 5 to x and the value 6 to y. It then performs a conditional test to
determine if x equals y. Note the use of the double-equals for relational equality. If
x equals y, it assigns x to z, otherwise it assigns y to z. The three variables z, y
and x are assigned to the memory locations $0000, $0001 and $0002 respectively
(see Figure 14.21).

char x, y, z;
main(){
  x = 2;
  y = -4;
  addemup();
}
addemup()
{
  z = x + y;
}
0001                      ;     char x, y, z;
0002    0000              org $0000
0003                      _z:
0004    0000              rmb 1
0005                      _y:
0006    0001              rmb 1
0007                      _x:
0008    0002              rmb 1
0009                      ;
0010    0100 org $0100
0011                     ;     main(){
0012                      _main:
0013                      ;     x = 2;
0014    0000  C602        ldab #2
0015    0002  D702      stab _x
0016                      ;     y = -4;
0017    0005  C6FC        ldab #252
0018    0007  D701      stab _y
0019                      ;     addemup();
0020    0010  8D01        bsr _addemup
0021                      ;     }
0022    0014  39          rts
0023                      ;
0024                      ;     addemup()
0025                      ;     {
0026                      _addemup:
0027                      ;     z = x + y;
0028    0015  D601      ldab _y
0029    0018  DB02      addb _x
0030    001B  D700      stab _z
0031                      ;     }
0032    001E  39          rts

Figure 14.20 8-Bit Addition Using a Subroutine Example

329

C Programming Using the HC11



Example 14.10

Problem: Write a C program to perform the addition of two 8-bit numbers using a
subroutine.

Solution: This example defines two character (1-byte) variables x and i. It assigns
the value 0 to x. It then enters a while loop that is implemented from the for
statement in C. The job of the while loop is to increment x so long as i is greater
than zero. Each time the loop is executed, i is decremented. The two variables i
and x are assigned to the memory locations $0000 and $0001 respectively (see
Figure 14.22).

char  x, y, z;

main()
{
  x = 5;
  y = 6;
  if(x == y)
    z = x;
  else
    z = y;
}

0001    0000                    org $0000
0002                      _z:
0003    0000              rmb 1
0004                      _y:
0005    0001              rmb 1
0006                      _x:
0007    0002              rmb 1
0008                     ;
0009    0100              ;     org $0100
0010                      ;     main()
0011                      ;     {
0012                      _main:
0013                      ;     x = 5;
0014    0100  C605        ldab #5
0015    0102  D702      stab _x
0016                     ;     y = 6;
0014    0104  5C          incb
0015    0105  D701      stab _y
0016                     ;     if(x == y)
0017    0107  D602      ldab _x
0018    0109  D101      cmpb _y
0019    010B  2604        bne L1
0020                      ;     z = x;
0021    010D  D700      stab _z
0022                      ;     else
0023    010F  2004        bra L11
0024                      L1:
0025                      ;     z = y;
0026    0111  D601      ldab _y
0027    0113  D700      stab _z
0028                      L11:
0029                      ;     }
0030    0115  39          rts

Figure 14.21 If-Then-Else Example
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 Summary 

This chapter offered a brief overview of some common features of the C programming
language and their direct correlation to blocks of HC11 assembly code. C is considered
a medium-level language. It has many capabilities of the highest-level languages and
yet supports assembler-level code embedded in the source code files. C source code
files are not converted directly to machine code by an assembler. First, they are
processed by a compiler that converts them to the equivalent assembly-language source
code. This assembly-level code is then assembled into the machine code.

 Chapter Questions 

Section 14.1
 1. What character is used to terminate statements in C?

char x, i;

main()
{
  x = 0;

  for(i = 5; i > 0; i = i - 1)
  {
    x = x + 1;
  }
}

0001                      ;     char x, i;
0002                    ;
0003    0000              org $0000
0004                      _i:
0005    0000              rmb 1
0006                    _x:
0007    0001              rmb 1
0008                   ;
0009    0100 org $0100
0010                      ;     main()
0011                      ;     {
0012                      _main:
0013                      ;     x = 0;
0014    0000  7F0001      clr _x
0015                      ;    
0016                      ;     for(i = 5; i > 0; i = i - 1)
0017    0003  C605        ldab #5
0018    0005  D700      stab _i
0019                      L1:
0020    0007  7D0000      tst _i
0021    000A  2708        beq L11
0022                      ;     {
0023                      ;     x = x + 1;
0024    000C  7C0001      inc _x
0025                      ;     }
0026    000F  7A0000      dec _i
0027    0012  20F3        bra L1
0028                      L11:
0029                      ;     }

   0030    0014  39          rts

Figure 14.22 For Loop Example
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 2. How are statements grouped together into a complex statement?
 3. What is the format of the main function of each C program?

Section 14.2
 4. What is the maximum number that can be stored using an unsigned int?
 5. Can hex, binary, decimal or ASCII data all be stored in unique char variable

types?
 6. What data type would be necessary to complete 89 + 34?  Why?
 7. What data type would be necessary to complete 634 * 72?  Why?

Section 14.3
 8. What arithmetic operators are used to indicate multiplication and division?
 9. If a statement contains an addition operator and then a division operator,

which is done first?
10. If a statement contains more than one multiplication operation, which is done

first?

Section 14.4
11. Which of the following are valid uses of variables?

A. _Hello B. George Patton
C. MiddleOfTheWeek D. lastNAME
E. school.com F. Window2

12. In the following statement which variable is unchanged and which is changed:
x1 = y?

13. In the following statement what is accomplished: product = product * 4?

Section 14.5
14. What is the difference between a statement and an expression in C?
15. Is the “else” keyword required in the if-then-else structure?
16. Is the “for” structure more like the “while” or the “until” presented in chapter 4?
17. If count is initialized to zero, what value will be in count when this “for”

structure completes execution?

for (x = 2; x < 18; x = x + 2)

count = count + 1;

Section 14.6
18. What are subroutines called in “C”?
19. How is a function call identified in the source code?

 Chapter Problems 

1. Write a small program that will multiply the character variables X and Y if Y > X,
otherwise it will perform an integer divide, X/Y.

2. Write a small program that will set the character variable R = 0 if the remainder of
an integer division is equal to zero, otherwise it will set R = 1.

3. Evaluate the following expression using the proper order of precedence:
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(18 – 5) / (–37) + 2 * 64

4. Evaluate the following expression using the proper order of precedence:

(524 – 5 * 88) % 3 + (–2) * (64 / 8 + 22)

 Answers to Self-Test Questions 

Section 14.1
1. The C statement is an instruction or operation terminated by a semicolon.
2. White space can be used anywhere in the program in any quantity with three

exceptions. White space must be controlled within double quotes, function names
and reserved words.

3. The curly brackets are used to designate a complex statement.
4. Each C program must have one and only one main ().

Section 14.2
1. A designation applied to a variable so that the compiler can properly allocate

memory and establish a set of rules for processing the data.
2. Char variables need one byte. Integer and unsigned integer variables consist of

two bytes.
3. An integer type must be a number without a decimal place; floating point numbers

allow for decimal point (fractional) values.

Section 14.3
1. An arithmetic operator tells the compiler what operation to perform on the data.
2. The % symbol is used to designate the remainder instead of the quotient.
3. A unary operator requires a single operand (data element). The binary operator

requires two operands (data elements).
4. The unary minus has the highest priority, followed by the parenthesis.

Section 14.4
1. A variable is a symbolic name that a programmer assigns to a location in memory.
2. The assignment operator is used to set a variable equal to some value.
3. Accumulation can be accomplished by using the variable name on the left and

on the right of assignment operator in conjunction with another operator.

Section 14.5
1. The if-then allows conditional processing. The process will only be executed if the

conditional expression is true.
2. The else keyword provides an alternative process to execute if the conditional

expression is not true.
3. The “for” statement will execute a set of instructions so long as the condition is

true.

Section 14.6
1. A function can be executed over and over without repeating the code.
2. Only the name of the function is required to call the function. 333
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Computer Mathematics

 Introduction 

All computer systems process data. Data represents information in various forms.
However, all data processed by a computer must be in a binary form. For example,
characters are stored in computer memories and processed by computer hardware.
Most character-based data is stored as binary codes; for example, the ASCII code for
the capital A is binary 1000001. Numeric data can also be stored as characters; yet it is
more efficient to store numeric data as binary codes.

Since humans are generally accustomed only to the decimal number system, it is
important for computers to allow decimal data to be input and output from the system.
Internally the data will be processed in binary form; thus, the computer must convert
decimal to binary and then binary back to decimal before output. Since the negative
sign cannot be attached to a number in binary form, the conversion of signed numbers
has additional concerns that must be addressed.

In addition, data is stored and processed on computer systems in 8-bit groups called
bytes. Each byte is made up of an upper and a lower nibble of four bits each. A word
is a group of any number of binary bits. A word can be 4 bits, 5 bits, 8 bits, 16 bits or
32 bits.

Remember that a calculator is a tool and cannot think. The user of the calculator
controls what it is does and determines if the result is correct. It is important to learn
the principles behind fundamental computer mathematical calculations. Without an
understanding of the fundamentals of computer math, it cannot be known if the
calculator is functioning properly.

 A.1 Number Systems / Conversions 

All number systems are based on the same principles. Each system has a set of defined
symbols. The layout is the same for each number system, as shown in Figure A.1. The

Computer Mathematics

 a p p e n d i x A
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weight assigned to each position is equal to a multiple of the base. The digit to the
immediate left of the radix (decimal point in decimal, binary point in binary, etc.) is
always the base raised to the zero power (base0). Positions to the left increase the power
of the exponent and positions to the right decrease the power of the exponent, as
shown in Figure A.1.

Decimal, Binary and Hex

A number system is made up of an ordered set of symbols. The ordered set of
symbols that makes up a number system is called a number line. The symbols
themselves have little relevance, for any symbols could be used. The order of the
symbols is very important, because the order determines the arrangement of the
ascending and the descending order. The number of symbols in the system is
called the base or radix of the system. Base 2 has two symbols, base 10 has ten
symbols and base 16 has 16 symbols.

Base 10 is called decimal because it consists of 10 characters or symbols, as shown in
Figure A.2 as a number line. These symbols are the numeric digits 0–9. The symbol or
digit 9 is greater than 8, which is greater than 7, and so on, because of their order in
the sequence. Any ten symbols could be used to create a decimal number system. All
a user has to understand is the actual symbols and their order. All rules of numbers
still apply.

The distance between the symbols is always equal to a single unit, and the pattern
repeats forever in a cyclical fashion. In other words, the zero (0) symbol follows the
nine (9) symbol in ascending order. In the same manner, the nine (9) symbol follows
the zero (0) symbol in descending order.

Base 2 is called binary because it consists of two symbols. Base 16 is called hexadecimal
because it consists of 16 symbols. Binary and hex number system symbols are shown in
Figure A.3. The name hexadecimal is usually shortened to just hex.
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bn

OR

 b3 b2 b1 b0  b−n b−1 b−2 b−3

bn  b3 b2 b1 b0
 bn b    b2   b3

radix point

 1  1  1  1

Figure A.1 Basic Layout of a Number System

Figure A.2 Symbols of the Decimal Number System

0    1    2    3    4    5    6    7    8    9

Descending order

Ascending order
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The distance between symbols, in binary and hex, is always equal to a single unit, and
the patterns repeat forever in a cyclical fashion. The zero (0) symbol follows the F
symbol in ascending order in hex. In the same manner, the F symbol follows the zero
(0) symbol in descending order. Binary seems more complicated because it is so simple.

Hex has a special relationship to binary. It is in essence a superset of binary. Each hex
symbol can be represented as four binary bits, as shown in Figure A.4.

Humans depend on the decimal number system. In fact, the metric system is decimal
based. All factors of the metric systems are functions of ten. Decimal is efficient and
useful for most of our needs.

0    1

Descending order

Ascending order

(a)

0    1    2    3    4    5    6    7    8    9    A    B    C    D    E    F

Descending order

Ascending order

(b)

Figure A.3 Symbols of Number Systems: (a) Binary and (b) Hexadecimal.

Decimal Binary Hex

0 %0000 $0
1 %0001 $1
2 %0010 $2
3 %0011 $3
4 %0100 $4
5 %0101 $5
6 %0110 $6
7 %0111 $7
8 %1000 $8
9 %1001 $9
10 %1010 $A
11 %1011 $B
12 %1100 $C
13 %1101 $D
14 %1110 $E
15 %1111 $F

Figure A.4 Relationship of Decimal, Binary and Hex Numbers
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Conversions Between Number Systems

Since computers are built from thousands of switches, they are inherently binary.
Humans have difficulty reading and writing binary because of the number of digits
required for large numbers. Therefore, hex is used regularly to display data used by
the computer. Three different number systems are used regularly with modern
computers: binary, hex and decimal. Therefore, it is necessary to convert numeric data
from one system to another.

There have been numerous conversion methods developed to provide a process of
converting numbers from one system to another. It would be impractical to attempt a
presentation of them all. Many of them are very similar, and most are based on the
concepts behind weighting of the digits and modulo arithmetic. Two methods of
conversion will be shown that are based on these two principles. Examples are provided
for these methods using binary, hex and decimal only; however, they are applicable to
any radix or base.

Weight and Add

The weight and add method is based on the natural weighting that occurs with a
multidigit number. The symbol positions have a natural weight determined by their
position in the number.

The weights increase in size to the left of the radix point and decrease in size to the
right of the radix point. Simply assign the power of zero to the radix point. The powers
increase to the left and decrease to the right. Thus, the first digit to the left of the radix
point has a weight of Base0, the next digit Base1, then Base2 and so on. To the right
of the radix point the weights are Base-1, Base-2, and so on.

The rightmost digit of any number always has the weight of 1. Each subsequent digit
to the left has a weight equal to a power of the base. Equation A.1 shows how the weight
is calculated.

Weight = Base(n-1) Equation A.1

where n = the symbol position counting from the digit immediately to the left of the
radix point.

Consider the example in Figure A.5. The decimal number 75 is read seventy-five.
This means it is equal to 7 times 10 plus 5 times 1, where 10 and 1 are the
weights of the positions that the 7 and the 5 occupy respectively. Using Equation
A.1, the weights for the first position and the second position from the right are
calculated as follows:

Weight (n=1) = Base(n-1) = 10(1-1) = 100 = 1

Weight (n=2) = Base(n-1) = 10(2-1) = 101 = 10
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The number 75 is represented in binary as %01001011. The weight and add method
can be used to show that this binary number is equivalent to the decimal number 75.
First all digits of the binary number have to be weighted using Equation A.1, as shown
in Figure A.6(a). To complete the conversion, each digit must be multiplied by its
weight and then totaled up, as shown in Figure A.6(b).

Seventy-five is represented in hex as $4B. The weight and add method can be used to
show that this hex number is equivalent to the decimal number 75. First, weight all
digits using Equation A.1, multiply each digit by its weight, and then sum up the
weighted digits, as shown in Figure A.7.

The weight and add method can also be used to convert a decimal number to binary.
When the conversion goes from decimal to binary, the method really should be called
weight and subtract, as will be seen in the following example.
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2         1
10         1
101     100

7        510

Position, starting from right

Weights of digits
as a function of
digit position

Base indicator

digits

7   ×   10   =   70

75
5   ×     1   =     5

weight

total value in decimal

digit

(a)

(b)

Figure A.5 Weighting of Digits in a Multidigit Decimal Number

%

Positions

Weights

Motorola
base 2

convention

8        7        6       5       4      3      2      1
2        2        2       2       2      2      2      2

128      64      32      16      8      4      2      1
0        1        0        0      1      0      1      1

7           6           5          4         3        2        1         0 

(a)

7510

0   ×   128   =    0
1   ×     64   =  64
0   ×     32   =    0
0   ×     16   =    0
1   ×       8   =    8
0   ×       4   =    0

  1   ×       2   =    2
1   ×       1   =    1

Value in decimal

(b)

Figure A.6 Conversion from Binary to Decimal Using the Weight and Add Method
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Figure A.8 shows how this method is applied to convert 149 to binary and hex. First,
calculate the weights of the positions for the target number system. Then, starting at
the left, determine whether the weight is smaller than the number being converted.
For a decimal to binary conversion in Figure A.8, is 128 less than 149? Yes, it is, which
means that there is a 128s digit in 149. Now subtract 128 from 149 = 21. Is 64 less than
21? No; therefore, there is a zero 64s digit. Is 32 less than 21? No; therefore, there is a
zero 32s digit. Is 16 less than 21? Yes; therefore, there is a 16s digit. Subtract: 21 – 16
= 5, and continue. Is 8 less than 5? No. Is 4 less than 5? Yes. Subtract: 5 – 4 = 1. No 2s
digit and there is one 1s digit. Thus, 149 is equal to %10010101.

Most students find this method works best when converting a number from another
number system to decimal. Other methods tend to be more straightforward when
converting from decimal to binary or hex.

Divide by Base

Modulo division is concerned with the remainder of a division problem rather than
the quotient. The modulus of a number system is equal to the number of symbols
represented; therefore, this method is sometimes called radix division. Since decimal
consists of 10 symbols, it has a modulus of 10. In the same manner, hex has a modulus
of 16 and binary has a modulus of 2.

Since modulo division is concerned with the remainder, it is very useful as a conversion
tool. The divide-by-base method uses the base of the target number system as a divisor
when calculating the converted number. This method simply performs repeated
divisions on the source number. The remainder of each division is the resulting
conversion. The divisions repeat until the quotient is zero. The remainder that results
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2         1

16         1
161     160

$4        B   

Positions

Weights
Motorola
base 16

convention

11   ×    1   =   11

7510

4   ×  16   =   64

$B = 1110 
Value in decimal.

Figure A.7 Conversion from Hex to Decimal Using the Weight and Add Method

Figure A.8 Conversion from Decimal to Binary Using the Weight and Add Method

8        7       6       5     4      3      2      1  
27       26      25      24    23    22    21    20

1        0       0       1     0      1      0      1  

14910

%

128     64     32     16     8      4      2      1  

Positions
Binary

Number to be converted

Weights
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from the first division is always the least significant digit of the result, and the remainder
from the last division is always the most significant digit of the result.

Figure A.9 illustrates how this process works. The number 58 will be converted to binary
using the divide-by-base method. The target number system is base 2, so 2 will be used
as the divisor. 58/2 = 29 remainder 0. 29 will be used as the dividend for the next
division and zero is the least significant digit of the new number. 29/2 = 14 remainder
1. 14 is the dividend for the next division, and 1 is the second digit of the number in
the target number system. This process continues until the quotient is zero. For the
number 58, this would require six divisions. Each division produces a remainder; the
successive remainders become the digits of the target number. In this example, 58
equals the six-digit binary number %111010.

Figure A.10 illustrates the use of the divide-by-base method for decimal to hex
conversion. The number 201 will be converted to hex using the divide-by-base method.
The target number system is base 16, so 16 ($10) will be used as the divisor. 201/16 =
12 remainder 9. 12 will be used as the dividend for the next division, and 9 is the least
significant digit of the new number. 12/16 = 0 remainder 12. The 0 result indicates
that the conversion process is complete and the remainder 12 is the decimal equivalent
of the most significant digit of the target number. 12 decimal is equal to $C. In this
example, 201 equals the two-digit hex number $C9.

Hex ↔ Binary Conversions

Special methods are not necessary for conversions from binary to hex and from hex
to binary. A hexadecimal digit is simply a grouping of four binary bits. Therefore, any
binary number can quickly be compressed into the equivalent hex by grouping the
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58
29
14

7
3
1
0

0
1

1

0
1
1
1

2
2
2
2
2
2

Source number

Remainders from
each divisionQuotients

of each
division

Base of target number system

Converted number        % 1 1 1 0 1 0

Figure A.9 Conversion from Decimal to Binary Using the Divide-by-Base Method

Figure A.10 Conversion from Decimal to Hex Using the Divide-by-Base Method

4
201
12
0

9
12

$9
$C

16
16

Source number

Quotients of each
division

Remainders from each
  division converted
  to target number system

Converted number       $ C9

10
10
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binary digits in sets of four, starting with the least significant digit. The conversion of
a hex number to binary requires that each hex digit be expanded to its 4-bit binary
equivalent. Figure A.11 illustrates this process for two different number combinations.
This process is simple when the binary equivalents of the 16 hex digits are committed
to memory.

Leading Zeros

Decimal numbers rarely are shown with leading zeros. For example, the decimal
number 342 is made up of three digits: 3 in the hundreds position, 4 in the tens
position, and 2 in the ones position. The number 342 is rarely written as 0342
or 00000342 because it is always assumed that all leading digits are zero filled.
Zero filling is the process of appending zeros to the leftmost digits of a number
so that the number has a fixed number of digits. These extra digits are referred
to as leading zeros.

In some cases, leading zeros are shown. Numeric dates will often include the leading
zeros. For example, 12/01/99 is used instead of the simpler 12/1/99 to represent
December 1, 1999. Time is also shown with leading zeros, particularly when used to
show absolute time in a military or scientific environment. For example, 3 A.M. is
commonly referred to as 0300 in military time. Often these rare instances of leading
zeros are required because the data is stored on a computer.

Humans have the ability to easily add leading zeros to a number if they are
needed, as well as to truncate the leading zeros if they are not needed. However,
computers are much more finicky about data types and formats. Inside the memory
of a computer, numeric data is always stored using a fixed number of binary
digits (bits). Typically, these blocks of data are grouped as bytes. If leading digits
are not used, they must be filled with either 1’s or 0’s because there are never
empty bits in a computer memory.

In Figure A.9, the decimal number 58 was converted to binary %111010. Using an
unsigned 8-bit convention, this binary number would be zero filled out to eight places.
%111010 would become %00111010. Zero filling always works for unsigned numbers,
but does not always work for signed numbers. Signed numbers will be discussed in
section A.3.

342

0101

5

0011

3

1001

9

0110

6

0010

2

1101

D

%

$

(a)

1011

B

0111

7

0000

0

1111

F

1010

A

1000

8

%

$

(b)

Figure A.11 Hex ↔ Binary Conversions

Technician’s Guide to the 68HC11 Microcontroller



 A.2 Arithmetic 

Humans typically can perform simple arithmetic calculations in their heads because
they have memorized the addition operations through 10 or 12. They don’t have to
think about how to add, they just recall from memory the result of a particular problem.
There is a limit to what they can do off the top of their heads, because there is a limit
to what has been committed to memory. The memory limit usually ends with two or
more single-digit numbers. When the problem requires several multidigit numbers,
another method must be used. In the old days, a scratch pad was used. The numbers
were written out and added in columns following addition rules learned in elementary
school. Nowadays, calculators or computers are used for most arithmetic. The
developers of these electronic tools have designed the devices to perform any
arithmetic operation within the limits of the device’s memory. To understand how a
computer performs arithmetic, it is necessary to understand the rules. The rules apply
to any number system.

Decimal Addition

What is the answer to 3 + 4? Well, of course, the answer is 7, but why? Why isn’t it 8, 5,
or 9? Why isn’t it $ or * or #? It is 7 because some time back in second grade, we
memorized it and since then have not been required to worry about it. The number
line provides us insight into the truth behind 3 + 4 = 7. Figure A.12 shows how the
number line can be used to prove that 3 + 4 = 7. Start with the first number and find
its position on the number line. Then move down the line to the right the distance of
the second symbol. The last location on the number line represents the result of this
problem.

It would be nice if no addition problems ever produced a carry, but this is simply not
the case. A carry is the shown by a rollover on the number line. For example, when 6
+ 8 is performed, the result will be 14. Actually, 4 is the result and 1 is the carry to the
next column. The next column has a weight one base greater than the previous column.
This is shown on the number line in Figure A.13. Multidigit numbers are added using
the same rules. The carry is simply added to the next column of numbers, as shown in
Figure A.13.

Problem starts
with 3 symbol.

Apply number line order
until second number symbol.

Result is
here.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4
3

+4
7

(a)                (b)  

Figure A.12 Simple Addition Using a Number Line
343
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Machines do arithmetic in binary and must convert the decimal input and output to
and from binary/hex. The concepts surrounding the conversion of numbers from
decimal to binary and then back to decimal were presented earlier in the chapter.

Binary Addition

Binary addition uses the same rules as a decimal addition problem. Consider the same
problem of decimal addition, 3 + 4. For the computer to add these numbers, they first
have to be converted to binary. Using the divide-by-base method, each is quickly
converted to 4-bit binary, as shown in Figure A.14.

Result
is

here.

Carry 

Problem
starts
with 6

symbol.

0    1    2    3    4    5    6    7    8    9
4          5      6      7     8              0      1     2         3

(a) single-column number line

Result = 4 with a carry
                 or 14.

Carry
101

0
0 

100

+
6
8

1 4

1

(b) single-column addition

(c) rightmost column (d) next column to the left

(e) last column on left

102

1
1
4+

101

1
9
5

100

This carry is
equal to 10
(101).

This carry is
equal to 100
(102).

7
6

6 5 3

(f) multicolumn addition

Figure A.13 Addition with Carry Using a Number Line
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Carry

0    1    2    3    4    5    6    7    8    9
3         4      5     6                       0       1        2

Result of
first column 
is here.

Problem
starts
with 7 
symbol.

1     2      3     4      5

Carry

0    1    2    3    4    5    6    7    8    9

      0     1      2     3      4      5      6      7        8               

1+9=0
with a
carry.

Second column
addition starts
with carry from
previous column.

Result of
1+9+5=5
with a carry.

9 0

Result of
1+1+4=6.

0    1    2    3    4    5    6    7    8    9

      0      1      1      2     3      4                        

Third column
addition starts
with carry
from previous
column.

1+1=2

0
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The number line is not very helpful with binary addition because there are only two
symbols. Since there are only two symbols, there are only four combinations of bits that
will ever occur; therefore, these operations can be easily summarized in a table. Figure
A.15 contains all possible combinations.

Applying the information from this table to the 4-bit binary addition problem, the result
is quickly found. Figure A.15 shows how 1 + 0 = 1 with 0 carry, and 0 + 1 = 1 with 0
carry, and so on. Consider another 4-bit example that shows carry conditions. Figure
A.16 shows a simple 8-bit binary addition.

Hex Addition

Addition in binary can be very tedious. Although machines do addition at the binary
level, the human interface is typically in hex. Earlier it was explained that a hex digit
is just a grouping of four binary bits. Any hex or binary number can be quickly
converted to the other form. The study of computers will require the knowledge of hex
for numeric operations and the human interface; however, inside the computer the
data is actually processed as binary.

3
1
0

310   =   00112

1
1

2
2

1
0

410   =   01002

0
1

0
2

4
2

2
2

(a)                  (b)

Figure A.14 Conversion of Decimal Numbers to 4-Bit Binary
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Figure A.15 2-Bit Binary Combinations

First Second Sum Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

(a) 4-bit binary (b) 8-bit binary

Figure A.16 Binary Additions

0
0
0%

%

%
0 0

1
0

carry from
previous column

result

1
0

0

0
1
1 1 1

0
0%

%

%
0 0 1

1
0

0
0

1

1
1
0 1 1

1
1
0

1 0
1
1

0
1

0

1
1
1 0 1

Computer Mathematics



The number-line concepts and rules from the presentation on decimal addition now
directly apply. Consider the single-digit example that illustrates the number-line
principles applied to an addition problem consisting of hex digits. Figure A.17 shows
the hex number line and addition of $6 and $8. Well, everybody knows that 6 + 8 = 14.
Interesting enough, 14 is equal to $E, therefore $6 + $8 = $E. The second example in
Figure A.17 shows the result of a carry. $D + $C = $19. The number line is very useful
in illustrating this result.

Multidigit numbers are added using the same rules. The carry is simply added to the
next column of numbers, as shown in Figure A.18. $3E9 + $78C = $B75.

346

Start
with 6
symbol.

Result of 
6+8 = E.

0    1    2    3    4    5    6    7    8    9 A    B   C   D    E    F

0    1    2    3    4    5    6    7    8

(a)

$ 6
$ 8
$ E

+

(b)

Start with
D symbol.

Result of
D+C=9.

carry 1

0    1    2    3    4    5    6    7    8    9 A   B   C    D   E    F

3    4    5    6    7    8    9 0    1    2A    B    C

  $ D
  $ C
$ 19

+

(c) (d)

Figure A.17 Single-Digit Hex Addition

Carry

0    1    2    3    4    5    6    7    8    9 A    B    C    D    E    F

7     8       9 0       1       2       3       4      5       6A      B      C

Result of first
column is here.

Problem starts 
with 9 symbol.

(a) rightmost column

0    1    2    3    4    5    6    7    8    9 A    B    C    D    E    F

0       1       2       3       4       5       6        7       8       9  A       B     C      D       E

1 + E = FResult of
1 + E + 8  = 7
with a carry.

Second column
addition starts
with carry from
previous column.

0
1

2 3         4        5         6         7         8

(b) next column to left

Figure A.18 Multicolumn Hex Addition with Carry Using a Number Line (continues)
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 A.3 Signed Numbers (2’s Complement Number System) 

Up to this point, all numbers presented have been positive numbers. It would be nice
if all numbers were positive in real life, but this is just not the case. The decimal number
system uses a pair of symbols to indicate polarity. The plus sign “+” indicates a positive
number, and the minus sign “–” indicates that a number is negative. Although it may
not seem like it, the number zero is always considered a positive number. For this
reason, negative numbers can be defined as any number less than zero, and positive
numbers are any numbers that are not negative.

This extra symbol (+ or –) occupies another digit (position) in the number. If the
numbers are all positive, the leading symbol is rarely shown. If no sign is shown in
decimal, the number is presumed to be a positive number. Figure A.19 illustrates
various positive and negative decimal numbers.

The binary number system does not have the luxury of being able to use additional
symbols to indicate sign. Computers only understand 1’s and 0’s; therefore, signed
numbers must somehow utilize these symbols to represent the sign of a number.

There are several methods used to incorporate signed numbers into the binary
number system. Signed number methods use a single bit to indicate sign. The
sign bit is the leftmost or most significant bit, similar to the sign symbol used in

1 1
  $ 3  E  9
  $ 7  8  C

$ B  7  5
+

This carry is
equal to 256
(162).

162  161 160

This carry is
equal to 16
(161).

(c) last column on left

(d) multicolumn addition

Positive
Numbers

465
+  109

0

Negative
Numbers

−  465
−  109

−  3
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 1    2    3    4    5    6    7    8    9 A    B   C    D    E    F

0 1 2 3

0
1    2     3    4     5     6    7

Third column
addition starts
with carry
from previous
column.

1 + 3 = 4 1 + 3 + 7 = B

0

Figure A.18 Multicolumn Hex Addition with Carry Using a Number Line (continued )

Figure A.19 Examples of Positive and Negative Decimal Numbers
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decimal. In binary, the “1” symbol indicates negative and the “0” symbol indicates
positive. As has been discussed, there cannot be empty bits in a binary number;
therefore, all signed numbers have a 1 or a 0 in the most significant bit position
to indicate negative or positive.

The 2’s complement number system is one of many ways of implementing signed
numbers with binary data. This method is used by all major computer systems for signed
arithmetic processes and storage of signed data. The advantage in using the 2’s
complement number system is observed in the arithmetic operations performed by a
computer. All computers have the need to perform four basic arithmetic operations:
addition, multiplication, subtraction, and division. Each arithmetic operation is
performed by an arithmetic logic unit (ALU), which for arithmetic operations is in
essence a smart binary adder.

Multiplication, for example, is simply repeated addition. The multiplication problem
3 × 4 can be performed by adding 4 + 4 + 4 to result in the correct answer, 12.
Subtraction can be performed by an adder if the sign of the second number is changed
prior to the addition operation. For example, 5 – 2 = 5 + (–2) = 3. The 2’s complement
number system allows for this negation operation; thus subtraction is simply a special
case of addition. Since division is repeated subtraction just as multiplication is repeated
addition, division can also be done in a binary adder.

To understand how a computer performs arithmetic operations, an understanding of the
2’s complement number system must be gained first. All positive numbers within the 2’s
complement system are interpreted in the same manner as unsigned numbers (often this
is called the true magnitude). %0111 is still 7, and %00110101 is still equal to 53. Note
that in each of these examples the sign bit is zero, indicating positive numbers. Negative
numbers are represented in a form unique to the 2’s complement form.

2’s Complement Negation

All negative numbers within the 2’s complement number system can be derived from
their positive equivalents. Negation is the process of calculating the negative equivalent
of a number. By definition, negation is the result of subtracting a number from zero.
This rule works in any number system. Since 2’s complement numbers can be
represented by hex or binary symbols, they can be easily subtracted from zero, as shown
in Figure A.20.

Figure A.20 Negation by Subtracting from Zero.

Dec Binary Hex

0
−27
−27

borrow

1  1  1  1    1  1  1  0  0  0  0    0  0  0  0
1

1

1

1

0  0  0  1    1  0  1  1

F
$  0  0
$  1  B
$  E  51  1  1  0    0  1  0  1

borrow

1  1  1  1    1  1  1  
%
%
%
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NOTE: Although the term “2’s complement” technically applies only to the binary
number system, the term “2’s complement” will be used here to refer to negation
in any number system. When a decimal number is negated, it is called the 10’s
complement, and when a hex number is negated, it is technically called the 16’s
complement.

The 2’s complement negation is done by first representing the positive number in the
proper number of bits, inverting all of the bits and then adding one. The process of
inverting all of the bits is referred to as the 1’s complement. Figure A.21 illustrates the
application of 2’s complement negation to the positive number 5.

Another great advantage of the 2’s complement number system is that the process is
reversible. The 2’s complement negation process can be applied to any positive number
to find the negative equivalent and to any negative number to find its positive
equivalent. Figure A.22 illustrates this reversibility.

2’s Complement Negation Shortcut

Since the 2’s complement negation operation requires two steps, it can be somewhat
tedious to apply. A shortcut has been discovered that produces the same result, yet only

+5

1  1  1  1    1  0  1  0
0  0  0  0    0  0  0  1

0  0  0  0    0  1  0  1

1  1  1  1    1  0  1  1

%

+

%

%

1's complement

add 1

2's complement
code for −5

Figure A.21 2’s Complement Negation
Process

+71

1  0  1  1    1  0  0  0
1

1

0  1  0  0    0  1  1  1
%

+

%

0  1  0  0    0  1  1  0
1  0  1  1    1  0  0  1

0  1  0  0    0  1  1  1

%

+

%

%

1's complement

add 1

−71

1's complement

add 1
+71

Figure A.22 Reversibility of 2’s
Complement Negation
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0    0    1      1  0  0  0  0
 1    1    0      1  0  0  0  0

1  ×  32  =  32
1  ×  16  =  16

48

+48
−48

−128  64  32    16  8  4  2  1

invert
remaining

bits

1  ×  −128  =  −128
1  ×      64  =      64
1  ×      16  =      16

−48

digits up to and 
including the first "1"

1    0    1    1    1   0   0   1
0    1    0    0    0   1   1   1

1  ×  64  =  32

−71
+71

−128  64  32  16    8   4   2   1

copy digits up to and
including the first "1"

invert remaining bits

1  ×    4  =    4

1  ×    1  =    1
1  ×    2  =    2

71

−128  ×  1  =  −128
32  ×  1  =      32
16  ×  1  =      16

1  ×  1  =        1
8  ×  1  =        8

−71

(a) (b)

Figure A.23 2’s Complement Negation Shortcut

Computer Mathematics



requires a single step. This process consists of starting with the original binary number
that is to be negated. Simply begin writing down all the digits starting from the right
up to and including the first “1” digit. Then invert the remaining bits. Figure A.23
illustrates how this works on a 4-bit number and on an 8-bit number.

Weighting Using 2’s Complement Signed Numbers

The only thing that has changed when converting 2’s complement numbers to decimal
is what the numbers might represent in decimal. Figure A.24 shows several decimal
numbers and their equivalent values in the 2’s complement form.

The principles of weighting still apply to 2’s complement sign numbers; however, the
most significant weight always carries the negative sign. For example, the weights of a
4-bit binary number would be 1, 2, 4, and –8, as shown in Figure A.25. The weights of
an 8-digit binary number then would be 1, 2, 4, 8, 16, 32, 64, and –128.

Figure A.24 2’s Complement Decimal Equivalents

Decimal
2’s Complement
Form Decimal

2’s Complement
Form

0 00000000 -1 11111111
1 00000001 -2 11111110
2 00000010 -3 11111101
38 00100110 -39 11011001
75 01001011 -87 10101001
112 01101110 -100 10011100
120 01111000 -120 10001000
126 01111110 -127 10000001
127 01111111 -128 10000000
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0  ×  −8  =  0
+ 1  ×    4  =  4

+ 1  ×    1  =  1
+ 0  ×    2  =  0

5

− 8    4    2    1
0    1    0    1

weights

+ 5

1     0     1     1   0   0   1   0 −78
−128   64   32   16   8   4   2   1

−128  ×  1  =  −128
64  ×  0  =        0
32  ×  1  =      32

0  ×  8  =        0
16  ×  1  =      16

0  ×  4  =        0

0  ×  1  =        0+
1  ×  2  =        2

−78

(a) (b)

Figure A.25 Binary Weights of 2’s Complement Numbers
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Arithmetic Using 2’s Complement Numbers

Since a number in the 2’s complement form still is a binary set of digits, all the addition
rules presented earlier in this chapter still apply. Figure A.26 illustrates this different
relationship to the decimal equivalents. Since the largest unsigned number that can
be represented in eight bits is 255 and the modulus of an 8-bit system is 28 = 256, then
the unsigned value of 258 is out of range. The range of unsigned 8-bit numbers is
0–255, and the range of signed 8-bit numbers is –128 to +127.

 A.4 Binary-Coded Decimal 

Binary-coded decimal (BCD) is a means of encoding single decimal digits into a 4-bit
code. It is rarely used on computers because BCD numbers are very inefficient. Since
only 10 of the 16 possible codes are used in each 4-bit nibble, storage and processing
capacity is wasted. The BCD codes are shown in Figure A.27.

BCD also requires the hex adder to perform decimal adjustments after each arithmetic
operation. The adder is designed for hex digits; therefore, it will produce the hex values
A–F, which are invalid BCD results. Consider the example shown in Figure A.28. When
3 and 9 are added, the result should be 12. Using 8-bit BCD for each of the numbers
and a hex adder, the result is $0C, not 12. The hex number line illustrates why this
occurs. There are six unused hex symbols in BCD. These symbols must be skipped each
time an addition is performed.

2 digit
hex

8-bit Binary
2's complement form

unsigned
decimal

signed
decimal

0  0  0  0    0  1  1  1
1  1  1  1    1  0  1  1
0  0  0  0    0  0  1  0

+      7
+ 251
+ 258

%

%

%

$07
$FB

$02

+7
− 5

2
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Figure A.26 Relationship of Signed and Unsigned Numbers

Decimal BCD

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Figure A.27 BCD Codes
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The process of skipping the unused hex symbols is called decimal adjusting or BCD
correction. Two specific rules can be applied to accomplish the proper decimal
adjustment after BCD addition is performed in a hex adder:

Rule 1: Is the result greater than 9?
Rule 2: Did the result cause a carry?

If the answer to either of these questions is yes, then an adjustment must be made to
the hex result. The adjustment is made by adding 6 to the original hex result, as shown
in Figure A.29. In Figure A.29(a), the hex adder comes up with $6B. Since $B is greater
than 9, Rule 1 applies, and the adjustment of 6 must be added to that column to achieve
the proper result of 71. In Figure A.29(b), the hex adder comes up with $80, which

Decimal BCD

0  0  0  0    0  0  1  1
0  0  0  0    1  0  0  1
0  0  0  0    1  1  0  0

$0               C

3
+  9
12

(a)

unused hex
symbols in BCD

0    1    2    3    4    5    6    7    8    9

0    1    2    3    4    5    6    7    8    9

A    B     C   D   E   F

startresult

carry

0    1    2    3    4    5    6    7    8    9 A   B   C    D   E    F

skip7    8    9    0    1    2    3    4    5    6

(b)

(c)

Figure A.28 Decimal Adjusting a BCD Result
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0 1 0 0   0 0 1 1
0 0 1 0   1 0 0 0
0 1 1 0   1 0 1 1

0 1 1 0
not BCD

43
28
71

0 1 1 1   0 0 0 1

$ 4 3

True:
BCD Decimal

BCD in
hex adder

$ 2 8
6 B
0 6
7 1

7            1

1

1

0 1 0 1   0 1 1 1
0 0 1 0   1 0 0 1
1 0 0 0   0 0 0 0
0 0 0 0   0 1 1 0

5 711 1

2 9
8 6

1 0 0 0   0 1 1 0

$ 5 7

Carry from one
column to next.

$ 2 9
8 0
0 6
8 6

8            6

(a) (b)

Figure A.29 BCD Correction
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produces a carry from the first column to the next. This carry satisfies Rule 2, so 6 must
be added to achieve the proper result of 86.

 A.5 Numeric Notation 

When performing mathematical calculations of any type, it is often more important to
have the proper units for what is being calculated than the absolute accuracy of the
calculated value. This is particularly true when scientific or engineering notation is
used. Scientific and engineering notation represent values as several significant digits
and a multiplier. The multiplier is usually a power of ten. The number of significant
digits represents the number of digits to the left of the multiplier. Several examples are
shown in Figure A.30.

Scientific notation uses any integer power of ten, and the value to the left of the
multiplier must be greater than or equal to one and less than 10. Engineering notation
uses powers of ten that must be an integer multiple of three (i.e., 3, 6, 9, –3, –6, –15,
etc.). The value to the left of the multiplier must be greater than or equal to one and
less than 1,000.

The base 10 multipliers work well in the decimal number system. The decimal point is
easily shifted to the right or to the left of any decimal number with the use of the
multipliers. The engineering notation can conveniently be shown using metric
notation. Figure A.31 shows some of the typical metric notations in relation to the
power of 10.

Computers don’t use decimal as their primary number system; rather, they use the
binary system. Therefore, it makes sense that if the principles of scientific and
engineering notation are applied to the computer environment, the multipliers should

353

Number
Significant 
Digits

Scientific
Notation

Engineering
Notation

Volts Using
Metric Units

27,948 3 2.79 × 104 27.9 × 103 27.9 × kV
0.194501 3 1.95 × 10-1 195 × 10-3 195 × mV
52,117,654 4 5.212 × 107 52.12 × 106 52.12 × MV

Figure A.30 Examples of Scientific and Engineering Notation

10X Decimal Metric Notation

109 1 Billion G Giga
106 1 Million M Mega
103 1 Thousand k kilo
10-3 1 Thousandth m milli
10-6 1 Millionth µ micro
10-9 1 Billionth n nano
10-12 1 Trillionth p pico

Figure A.31 Notation Using Powers of Ten
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be powers of two. The number of possible combination of eight bits can be expressed
as 1 × 28 = 256. The number of memory locations that can be addressed by a 16-bit
address bus is 1 × 216 = 65,536. Whenever this technique is used to refer to memory
capacity, the “powers of two” notation is used. The engineering notation uses integer
powers of two that are multiples of 10 (i.e., 210, 220, etc.) The 65,536 unique addresses
from the 16-address bit system can then be written as 216 = 26 × 210 = 64 × 210. It is
common practice to replace the powers of two with a single letter, as shown in Figure
A.32. Thus, the common memory convention of megabytes is really 220 bytes, or Mbytes.
64 Mbytes of memory is actually 64 × 220 bytes = 67,108,864 bytes.

 A.6 Multiprecision Arithmetic 

The HC11 has instructions that independently perform 8-bit and 16-bit addition and
subtraction operations, as is shown in chapter 3. If the desire is to perform addition
and subtraction on larger data words, special instructions must be used that are nested
into loops. For example, the HC11 could be used to perform 32-bit arithmetic using
these special instructions.

Consider the example shown in Figure A.33. The objective is to add two 32-bit values
using the 8-bit addition operation available on the HC11. Each 8-bit pair can cause a
full carry that must be considered when performing the addition on the next most
significant pair. This carry must be cleared to start the operation properly. In this
example, $98 is added to $0F, which results in $A7 and a 0 carry. The next two are
then added, $B5 + $70 + the zero carry. This results in $25 with a full carry. Then $EA
is added to $69 with the carry from the previous operation. This results in $54 with
another full carry. Finally, the last two are added, $12 + $5C, which results in $6F and
a zero carry.

The code to accomplish this task is quite straightforward. It consists of a loop that is
executed four times (four bytes = 32 bits) and the addition and storage instructions.
In this particular example, the X register is the address of the most significant byte of
the first number. The first number is expected to occupy (X) through (X+3), the
second number (X+4) through (X+7) and the result (X+8) through (X+11).

Add and Subtract with Carry Instructions

ADCA and ADCB function similar to the ADDA and ADDB instructions, except they
add with carry, as shown in Figure A.34. An 8-bit operand is added to the contents of
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2X Decimal Notation

210 1,024 K
220 1,048,576 M
230 1,073,741,824 G
240 1,099,511,627,776 T

Figure A.32 Notation Using Powers of Two
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the A or B accumulator along with the contents of the C flag of the CCR. These
instructions operate in the IMM, DIR, EXT, INDX and INDY addressing modes. The
ADCA and ADCB instructions affect the H, N, Z, V and C bits of the CCR register.

SBCA and SBCB function similar to the SUBA and SUBB instructions, except they
subtract with carry. An 8-bit operand is subtracted from the contents of the A or B
accumulator along with the contents of the C flag of the CCR. These instructions
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0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022

0100

0100  0c

0101  37
0102  c6  04

0104  a6  00
0106  a9  04
0108  a7  08

010a  5a
010b  26  f7

010d  33
010e  39

* This subroutine is designed to perform an addition
* of two 32-bit words. The X register contains the address
* of the data block, where the first four bytes are occupied
* by the first word, next four by the second word, and the 
* last four by the result.

ORG

CLC

PSHB
LDAB

LDAA
ADCA
STAA

DECB
BNE

PULB
RTS

AGAIN

$0100

#4

$0,X
$4,X
$8,X

AGAIN

; Clear the initial carry flag

; Save current B
; init loop counter

; Get first byte
; Add with carry
; Store first result

; One add is done
; Do it again

; Restore B

(a) Multiprecision Addition Code

Carry 
Out

Interim
Carries

Initial 
Carry

$ 12    EA    B5    98
0      1      1      0      0

+   $ 5C    69    70    0F

$ 6F    54    25    A7

(b) Multiprecision Addition Process

Figure A.33 Multiprecision Addition

Figure A.34 Add and Subtract with Carry Instructions

Mnemonic Description Function IMM DIR EXT INDX INDY INH REL S X H I N Z V C

ADCA
ADCB

Add contents of
memory to Acc with
carry

A+(M)+C ⇒ A
B+(M)+C ⇒ B X X X X X - - - - ↕ - ↕ ↕ ↕ ↕

SBCA
SBCB

Subtract contents of
memory from Acc
with carry

A–(M)–C ⇒ Α 
B–(M)–C ⇒ B X X X X X - - - - - - ↕ Ã Ã ↕
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operate in the IMM, DIR, EXT, INDX and INDY addressing modes, and they affect the
N, Z, V and C bits of the CCR.

Placement of Radix Point

The result of the IDIV instruction assumes that the result is to the left of the radix
point. Since the FDIV is calculating the result of a fraction that is less than one, it is
assumed that the result is to the right of the radix point. The IDIV and FDIV
instructions can be used in conjunction to determine a 16-bit value for each side of the
radix point, which results in 32 bits of binary-weighted information for each calculation.
Consider the example in Figure A.35.

The decimal value 9.68 can be shown as the fraction 242/25. The value 9 is actually
225/25 and the decimal value 0.68 can be calculated from 17/25. Both IDIV and FDIV
would have to be used to convert the fraction 242/25 into the binary-weighted
equivalent. How this is done is shown in Figure A.35. The first step is to load AccD with
the numerator 242 ($00F2) and the X register with the denominator 25 ($0019). Then
perform the integer divide using IDIV, which results in $0009 (stored in X) and the
remainder $0011 (stored in D). The result must be saved to another location to allow
the X register to be used for the next calculation.

Next load the X register again with the denominator 25 ($0019). With the remainder
from the previous operation still in AccD, FDIV can be executed. Remember, FDIV
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2-1

1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0

$A $E $1 $4

2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16

•1 0 0 1

23 22 21 20

$9 •

Radix Point

0 0 0 0

27 26 25 24

$0

242

25
=    9.68   OR   9 R 17,  which can be shown as

225

25

17

25
+

IDIV FDIV

=  1/2 + 1/8 + 1/32 + 1/64 + 1/128 + 1/4096 + 1/16384

=  (8192 + 2048 + 512 + 256 + 128 + 4 + 1) / 16384

=  11141/16384  =  0.679993  ≈  0.68

Thus 9.68 is represented in 24-bit hex as $09.AE14 and can be easily rounded to
16-bit hex as $09.AE, where the radix point is placed between the bytes.

9 ($9) .68 ($.AE14)

Figure A.35 Placement of the Radix Point
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expects the numerator to be less than the denominator so that it can calculate the
value to the right of the radix point. When FDIV is executed, the result will be $AE14
(stored in X) and the remainder $000C (stored in D). The remainder represents the
difference between 0.680000 and the calculated binary-weighted equivalent 0.679993.
Additional precision could be achieved by repeatedly performing the FDIV using the
remainder from each preceding operation.
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Booting from EEPROM

The BUFFALO monitor program and the EVBU were designed to allow simple access
to programs loaded into the EEPROM. The programs loaded into the EEPROM can
be used as the startup software after reset. Booting directly from the EEPROM requires
several steps because of the many functions that the Buffalo Monitor program performs
during the boot process (i.e., setting the baud rate, initializing interrupts, etc.). To
properly get the EVBU to come to life running your program, two things must be
accomplished:

1. The program must be modified to include some initialization code.
2. A jumper must be changed on the EVBU board.

 Modifying the EEPROM Program to Include Initialization Code 

In order to get the EVBU to boot directly to the program in EEPROM, several lines of
code must be copied directly from the Buffalo Monitor program into the EEPROM
program. These lines of code are needed to do the minimum initialization of the EVBU
board to make it function.

The following entries are necessary to boot from the EEPROM program.

A. Set up the OPTION register.
LDAA #$93 ;Power up A/D, Enable Startup Delay, COP rate 1.049 s
STAA OPTION ($1039 for BUFFALO 3.4)

B. Initialize the user stack space.
LDS #USTACK ($0041 for BUFFALO 3.4)

 

C. Initialize the SCI (RS-232 serial communications)
CLR IODEV ($00A5 for BUFFALO 3.4)
JSR INIT ($E378 for BUFFALO 3.4)

Booting from EEPROM

 a p p e n d i x B
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The following entries may be necessary if these features are being used in the EEPROM
program.

D. Initialize the Interrupt Jump Table (only necessary if interrupts are being
used).
JSR VECINIT ($E357 for BUFFALO 3.4)

E. Initialize the Timer Prescaler (only necessary if prescaler other than default is
being used).
LDAA #$0x ;x= timer prescale select bits
STAA TMSK2 ($1025 for BUFFALO 3.4)

 

F. Un-Protect the EEPROM (only necessary if data is written to EEPROM during
execution).
LDAA #$0x ;x = Block protect bits
STAA BPROT ($1035 for BUFFALO 3.4)

Download this modified version of the program to the EEPROM.

See page B-4 of the Buffalo monitor listing for further information.
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HC11 P rogramming

The following procedure is the process that can be used to successfully load a user
program into the EEPROM. This process includes reducing the baud rate of the serial
communications interface. This change is necessary to allow sufficient time (at least 10
ms) for the byte to be burned into the EEPROM location.

NOTE: The procedure shown here uses BUFFALO 3.4 and PROCOMM. The
procedure can be modified for use with other versions of BUFFALO and other
terminal emulators.

 Procedure 

1. Change program start address. Assemble the program using addresses in the
EEPROM range ($B600–$B7FF). The address of the first instruction must be $B600.
Some other minor changes may be necessary to get the program to run from the
EEPROM. Beware that variable space must remain in the RAM; thus, additional
ORG statements may be necessary.

For example: ORG $B600.

2. Erase contents of EEPROM. Perform a bulk erase of the EEPROM area by executing
BUFFALO command “BULK” at the EVBU > prompt.

For example: > BULK

3. Change EVBU Baud rate to 300. Change the contents of the BAUD rate register
($102B) to talk 300 baud by using the MM command. (Default baud rate is 9600,
which is selected by $30 in this register; 300 baud is selected by $35 in this register.)

The screen will freeze when this is done because PROCOMM is still trying to
talk at 9600 baud.

For example: MM 02B
           >102B 30 35 <CR>

Loading Programs Directly into the
EEPROM

 a p p e n d i x C
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4. Change PROCOMM to talk 300 baud. In PROCOMM, enter the baud rate screen
(ALT-P) and select 7 (300, N, 8, 1). Do not save these settings to disk. Press ESC to
exit this screen.

5. Confirm 300 baud. Hit the enter key to confirm communications between
PROCOMM and EVBU. This may require more than our <CR>.

6. Load and verify the program. Go through the normal process of loading a program
into memory (i.e., LOAD T... NOTE: The transfer rate is now 300 bits per second,
so it will appear much slower than normal), but load a program that has been
assembled to execute from the EEPROM. Execute a memory dump on the EEPROM
to verify that the program was loaded properly.

7. Reset PROCOMM baud rate to 9600. Change PROCOMM to talk 9600 baud by
entering the baud rate screen (ALT-P) and selecting 11 (9600, N, 8, 1). Do not save
these settings to disk. Press ESC to exit this screen.

8. Reset EVBU baud rate to 9600. Reset EVBU to get the baud rate set back to 9600.
At this point the program can be run out of EEPROM by using the Go command
and the appropriate EEPROM start address.

For example: >G B600

 Changing the EVBU Jumper 

Once the EEPROM has been loaded with a bootable program, the EVBU must be told
to boot to the program in the EEPROM. The EVBU has a dedicated hardware
connection between PE0/AN0 and the boot jumper (J2). This jumper tells the
BUFFALO monitor program to boot to BUFFALO or to boot to the program loaded
into the EEPROM.

The Jumper (J2) on the EVBU needs to be moved from the default position (pins 2–3)
to pins (1–2).

Refer to section 2.3.2 Program Execution Select Header of the EVBU User’s Manual for detailed
information.
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Acronym List

ABA Add AccB to AccA

ABX Add AccB to Index Register X

ABY Add AccB to Index Register Y

AccA Accumulator A

AccB Accumulator B

AccD Accumulator D

ADDA Add to AccA

ADDB Add to AccB

ADDD Add to AccD

ALU Arithmetic Logic Unit

ANDA Logical AND AccA with Byte from Memory

ANDB Logical AND AccB with Byte from Memory

ASCII American National Standard Code for Information Interchange

ASR Arithmetic Shift Right Byte in Memory

ASRA Arithmetic Shift Right AccA

ASRB Arithmetic Shift Right AccB

BCC Branch If Carry Clear

BCD Binary Coded Decimal

BCS Branch If Carry Set

BEQ Branch If Equal (to Zero)

Acronym List
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BGE Branch If Greater Than or Equal (Signed)

BGT Branch If Greater Than  (Signed)

BHI Branch If Higher (Unsigned)

BHS Branch If Higher or Same (Unsigned)

BLE Branch If less Than or Equal (Signed)

BLO Branch If Lower (Unsigned)

BLS Branch If Lower or Same (Unsigned)

BLT Branch If LessThan (Signed)

BMI Branch If Minus

BNE Branch If Not Equal (to Zero)

BPL Branch If Plus

BRA Branch Always

BRN Branch Never

BSR Branch to Subroutine

BUFFALO Bit User Fast Friendly Aid to Logical Operations

BVC Branch If Overflow Clear

BVS Branch If Overflow Set

C C Programming Language

CBA Compare AccB to AccA

CCR Condition Code Register

CD-ROM Compact Disk – Read Only Memory

CLC Clear Carry Flag in CCR

CLI Clear Interrupt Mask Bit in CCR

CLR Clear Byte in Memory

CLRA Clear Accumulator A

CLRB Clear Accumulator B

CLV Clear Overflow Flag in CCR

CMPA Compare Memory to AccA

CMPB Compare Memory to AccB

COM Complement Byte in Memory (Logical NOT)
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COMA Complement AccA (Logical NOT)

COMB Complement AccB (Logical NOT)

CPD Compare Memory to AccD

CPU Central Processing Unit

CPX Compare Memory to AccX

CPY Compare Memory to AccY

DA Destination Address

DAA Decimal Adjust AccA

DEC Decrement a Byte in Memory

DECA Decrement AccA

DECB Decrement AccB

DES Decrement Stack Pointer

DEX Decrement Index Register X

DEY Decrement Index Register Y

DIR Direct Addressing Mode on the HC11

EA Effective Address

EEPROM Electrically Erasable Programmable Read Only Memory

EORA Logical XOR AccA with Byte from Memory

EORB Logical XOR AccB with Byte from Memory

EPROM Erasable Programmable Read Only Memory

EQU Equate

EVBU Motorola M68HC11 Universal Evaluation Board

EXT Extended Addressing Mode on the HC11

FCB Form Constant Byte

FCC Form Constant Character

FDIV Fractional Division

ff Indexed Mode 8-bit Offest

IDIV Integer Division

IMM Immediate Addressing Mode on the HC11

INC Increment a Byte in Memory
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INCA Increment AccA

INCB Increment AccB

IND Index Addressing Mode on the HC11

INDX Index Addressing Mode that uses the X index register

INDY Index Addressing Mode that uses the Y index register

INH Inherent Addressing Mode on the HC11

INS Increment Stack Pointer

INX Increment Index Register X

INY Increment Index Register Y

I/O Input/Output

IR Instruction Register

JMP Jump to Memory Location

JSR Jump to Subroutine

LDAA Load Accumulator A

LDAB Load Accumulator B

LDD Load Accumulator D

LDS Load Stack Pointer

LDX Load Index Register X

LDY Load Index Register Y

LIFO Last In First Out

LSB Least Significant Bit

LSL Logical Shift Left Byte in Memory

LSLA Logical Shift Left AccA

LSLB Logical Shift Left AccB

LSLD Logical Shift Left AccD

LSR Logical Shift Right Byte in Memory

LSRA Logical Shift Right AccA

LSRB Logical Shift Right AccB

LSRD Logical Shift Right AccD

MAR Memory Address Register
366

Technician’s Guide to the 68HC11 Microcontroller



MDR Memory Data Register

MODA/B Mode A/B (pins on HC11)

MSB Most Significant Bit

MUL Multiply

NEG Negate a Byte in Memory

NEGA Negate AccA

NEGB Negate AccB

NOP No Operation

NRZ Nonreturn-to-zero

ORAA Logical OR AccA with Byte from Memory

ORAB Logical OR AccB with Byte from Memory

ORG Originate

PC Program Counter

PH1 Phase 1 of internal machine clock

PH2 Phase 2 of internal machine clock

PROM Programmable Read Only Memory

PSHA Push Byte to Stack from AccA

PSHB Push Byte to Stack from AccB

PSHX Push Two Bytes to Stack from Index Register X

PSHY Push Two Bytes to Stack from Index Register Y

PULA Pull Byte from Stack to AccA

PULB Pull Byte from Stack to AccB

PULX Pull Two Bytes from Stack to Index Register X

PULY Pull Two Bytes from Stack to Index Register Y

RAM Random Access Memory

REL Relative Addressing Mode on the HC11

RMB Reserve Memory Byte

ROL Rotate Left Byte in Memory

ROLA Rotate Left AccA

ROLB Rotate Left AccB
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ROM Read Only Memory

ROR Rotate Right Byte in Memory

RORA Rotate Right AccA

RORB Rotate Right AccB

rr Sign Relative Mode Offset

RTI Real Time Interrupt

RTS Return from Subroutine

SBA Subtract AccB from AccA

SCI Serial Communications Interface

SEC Set Carry Flag in CCR

SEI Set Interrupt Mask Bit in CCR

SEV Set Overflow Flag in CCR

SPI Serial Peripheral Interface

STAA Store Accumulator A

STAB Store Accumulator B

STD Store Accumulator D

STS Store Stack Pointer

STX Store Index Register X

STY Store Index Register Y

SUBA Subtract from AccA

SUBB Subtract from AccB

SUBD Subtract from AccD

TAB Transfer AccA to AccB

TAP Transfer AccA to CCR

TBA Transfer AccB to AccA

TPA Transfer CCR to AccA

TST Compare Zero to Byte in Memory

TSTA Compare Zero to AccA

TSTB Compare Zero to AccB

TSX Transfer Stack Pointer to Index Register X
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TSY Transfer Stack Pointer to Index Register Y

TXS Transfer Index Register X to Stack Pointer

TYS Transfer Index Register Y to Stack Pointer

UI User Interface

XGDX Exchange AccD and Index Register X

XGDY Exchange AccD and Index Register Y
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Glossary

1’s complement The inversion of all the bits in a binary word (logical NOT).

2’s complement A method of representing signed binary data.

Absolute Addressing The effective address of the operand is stored in memory
following the instruction opcode. The HC11 has two modes that use the absolute
addressing technique, the extended (EXT) and direct (DIR) modes. EXT uses a
16-bit address that occupies the two bytes following the opcode in memory. DIR uses
a 16-bit address in which the upper byte is always $00 and the lower byte occupies a
single byte following the opcode in memory.

Accumulator Special registers that are directly linked to the ALU to assist with the
arithmetic and logical operations. The results of arithmetic operations are stored in
an accumulator.

Accumulator A or B HC11 8-bit accumulators. Used as the primary data-processing
registers.

Accumulator D HC11 16-bit accumulator. It is the combination of the A and B
accumulators. It is not a separate hardware register. Allows for a limited set of 16-bit
arithmetic operations.

Address A unique identifier of a memory location. Also called a pointer.

Address Bus Responsible for the transfer of addresses from the processor to memory
or from the processor to I/O.

Address Register General-purpose registers that typically contain an address. They are
used specifically by the instructions to address memory.

Addressing Mode A method of addressing or accessing memory.

Analog Continuous signal that is defined for all levels within the range, as well as at
all points in time.

 g l o s s a r y
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Analog Data Data that is continuous in nature.

Arithmetic Logic Unit (ALU) Major subsystem of a processor. It is responsible for
performing simple mathematical operations like addition and subtraction, logical
AND, OR and NOT operations and data shifting.

Arithmetic Shifting A method of data shifting that maintains the sign of the data. On
the HC11, this is implemented only as shift right where the sign bit is retained and
shifting out the LSB into the carry flag of the CCR.

ASCII A computer code used extensively for the transmission and storage of
character-based data.

Assembler A piece of software that converts mnemonic instructions into machine code.

Assembly Language The lowest-level programming language, made up of special
instructions called mnemonics.

Balanced Stack All bytes that are pushed to the stack by an operation are also removed
when the operation is complete.

Balanced Use The process of pulling every byte from the stack that is pushed onto
the stack during an operation.

Base The number of unique symbols in a number system.

Bidirectional bus Data can travel to or from the processor and other devices.

Binary Base 2. A number system that consists of two symbols.

Binary Coded Decimal (BCD) A method of representing decimal digits as 4 binary
numbers.

Binary Weighted Fractions A method of representing a fractional value that is less than
zero. On the HC11 this is used exclusively with FDIV instructions and is a 16-bit value
where the MSB has the weight of 2-1 and the LSB has a weight of 2-16.

Bit A single binary digit.

Bootstrap Mode A special hardware mode that is designed to allow loading of
permanent programs and other production-related programming tasks.

Branching A set of instructions on the HC11 that uses the relative addressing mode
to change the flow of the program.

BUFFALO Bit User Fast Friendly Aid to Logical Operations. The monitor program
loaded into the ROM of chips used in the HC11 EVBU development system.

Bug An undesirable behavior of a software program.

Bus A set of two or more conductors that are ganged together to form a parallel
information path to and/or from the processor. All computer systems have three
main busses: address, data and control.
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Byte Eight bits of binary data grouped into a data word. A byte is the fundamental
data unit on most computers. The HC11 processes data in one- or two-byte units.

Central Processing Unit (CPU) A term used to refer to the main processor in a system.

Channel A path of analog data to be converted to digital. The HC11 supports eight
channels or eight independent analog sources.

Compiler A program that translates the high-level language to the machine-level code
in one bulk operation.

Complex Statement The grouping of two or more “C” programming statements by
the use of the curly brackets {}. This is sometimes called a code block.

Condition Code Register (CCR) HC11 status and control register. It contains five
status flags and three processor control bits.

Control Bus Responsible for the control signals necessary to interface the devices
within a computer system.

Control Unit One of three major functional blocks within a processor. It is responsible
for the control of fetching and execution of the instructions.

Data Any information used by a program. Often it refers solely to the information
processed and manipulated; functionally anything stored in memory is data.

Data Bus Responsible for the transfer of data between the processor and memory or
the processor and I/O.

Decimal Base 10. A number system that consists of ten symbols.

Destination Address The target address of the jump or branch instruction or the
address of the next instruction that will be executed after a jump or branch
instruction.

Destructive A description of a write operation in that the previous data is overwritten
(destroyed) by the new data.

Digital Discrete signal that is defined for only a specific set of levels within the range
as well as specific points in time.

Digital Data Data that is discrete in nature.

Directive A command that tells the assembler what to do and indirectly affects the
resulting machine code.

Discrete A type of data that can only represent a specific set of values (i.e., 1 and 0).

Dynamic RAM RAM that uses a capacitor as the main storage device and must be
refreshed to maintain data.

EEPROM Electrically Erasable Programmable ROM. It can be field programmed as
well as electrically erased and then reprogrammed.

Effective Address The address of the operand in memory.
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EPROM Erasable Programmable ROM. It can be field programmed as well as erased
via ultraviolet light and then reprogrammed.

Event Signal transition, high to low or low to high.

Execute Cycle All machine cycles other than the fetch cycle necessary to complete the
execution of an instruction.

Expanded Mode An alternative normal operating mode on the HC11. It allows for
off-chip memory connection. In this mode, the PORTB and Port C pins are converted
to a multiplexed address and data bus. In addition, the strobe A and strobe B control
lines become the address strobe and read/write control lines.

External Reset A reset caused by an external stimulus.

Fetch Cycle The process of reading an instruction opcode from memory and decoding
it in the instruction decoder. It is always the first instruction of a sequence of machine
cycles necessary to complete the processing of the instruction.

Finite Loop A loop that continues until or while some criterion is true.

Flowchart A graphical diagram used to show the function and flow of a program. It
is a representation of the processes, the input and output of data, decisions and flow
of the program.

Global Interrupt Control The ability through a single bit to activate or deactivate the
interrupt function for an entire class of interrupts.

Handshaking A method of data transfer that uses control signals between the
computer and the peripheral device.

Hexadecimal Base 16. A number system that consists of 16 symbols.

Hi-byte First The high byte of a 16-bit data word or address will be stored in the first
location, followed in memory by the low byte.

High-level languages Programming languages that are more like a spoken language.
They have syntax similar to sentence structure, making them even easier to read.
Single keywords can cause many machine-level instructions to be executed.

Immediate Addressing The operand immediately follows the instruction opcode in
memory. The effective address of the operand is the address of the memory location
immediately following the opcode in memory. The HC11 immediate mode (IMM)
uses this immediate addressing technique.

Implied Addressing No address is necessary because the location of the data is implied
by the instruction. The HC11 has the inherent mode, which is a direct application
of the implied addressing concept.

Indeterminate Data can be any value. Data in a RAM is indeterminate after power-up.
Many bits in the HC11 processor registers are indeterminate after power-up.
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Index Register X or Y 16-bit address registers used by the HC11 index addressing
mode instructions. They can also be used as general-purpose, 16-bit data registers.

Indexed Addressing Uses a base address plus an index (address offset) to determine
the effective address of the operand. The HC11 has two index addressing modes,
INDX and INDY. Each uses the address from one of the two index registers (X or
Y) as the base address. The address offset is always located in the operand field of
the instruction.

Indirect Addressing Uses an address to point to the t4effective address of the operand.
The address that follows the instruction opcode in memory is the address of where
the actual address of the operand is stored in memory. The HC11 does not support
indirect addressing.

Infinite Loop A loop that continues unconditionally, that is, it never stops.

Input/Output (I/O) A term that refers to any subsystem that has the responsibility of
receiving data for the processor (input) or sending data out from the processor
(output).

Instruction Decoder The main section of the processor control block. It has the job
of decoding the instruction opcode from the instruction register and controlling the
execution of the instruction.

Instruction Pointer Another name for the Program Counter register.

Instruction Register A special register that always contains the opcode for the current
instruction.

Instructions Commands that control what the processor does.

Internal Reset A reset caused by an internal stimulus.

Interpreter A program that translates the high-level language to the machine-level
code in one line or command at a time.

Interrupt An internal or external stimulus that requests immediate attention from the
processor.

Interrupt Request The stimulus that signals the processor of a pending interrupt.

Interrupt Service Routine A set of instructions that gets executed each time an
interrupt is serviced.

Interrupt Vector The address of the first instruction of the interrupt service routine.
It is stored at the vector address in the vector table.

Jump An instruction that causes an unconditional change in the program flow.

Jump Instructions Are used to change the flow of the program by using an absolute
16-bit address rather than the relative addressing mode used by branch instructions.

Jump Table A table of jump instructions that jump to the starting addresses of internal
subroutines. The jump instructions are located in the same ROM memory locations
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for all versions of BUFFALO, regardless of the actual locations of the subroutines in
memory.

Label A name of a byte or data or an address used in a program.

Least Significant Bit (LSB) The lowest-order binary bit within a data word. This bit
has the lowest binary weighting (i.e., for %00000001, the 1 is the LSB). It is always
best to write the LSB on the right if writing data left to right or on the bottom if
writing data top to bottom.

Listing File A file that contains the combination of the original source code and the
corresponding assembled machine code.

Local Interrupt Control A control bit that is specific to a single interrupt function.

Logical Shifting A method of data shifting that ignores the sign of the data. On the
HC11, this is implemented by shifting in a zero and shifting out one bit into the
carry flag of the CCR.

Loop Any set of instructions that is repeated within a program.

Machine Code Multibit binary code that tells the computer the specific tasks to
perform. It consist of opcodes, operands, masks, offsets and addresses.

Machine Cycle A short set of steps that are performed during a single processor clock
cycle.

Mask An 8-bit word that designates which bits within the operand will be considered
as part of the instruction. 1’s in the mask indicate bit positions under consideration,
and 0’s indicate bit positions that are ignored.

Maskable Interrupt An interrupt that can be controlled (enabled or inhibited) by the
user at anytime.

Master/Slave A configuration that allows multiple devices to be connected together
on a common medium or bus. A single device in the group acts as the master and
controls the processes. All other devices in the group act as slaves taking their
commands from the master.

Memory A term that refers to any component that stores data for the processor.
Memory can have many forms. There are semiconductor memories, magnetic
memories and optical memories.

Memory Address An n-bit binary number that the processor uses to select a specific
memory location. The HC11 uses a 16-bit address and can address 216 or 65,536
unique memory locations.

Memory Address Register (MAR) A special address register that is linked to the
program counter. The job of the MAR is to contain the address of the current
memory location that is being addressed.

Memory Data Register (MDR) A special data register that resides between the data
bus and the various processor registers.
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Memory Map The layout of each memory block within the entire address space.

Mnemonics Special abbreviations (English-like words) that are the keywords of
assembly-level programming languages. Each mnemonic correlates to a single
machine code instruction.

Monitor Program A piece of software that controls the functions of a system and
provides a user interface so that users can interact with the system. The HC11 EVBU
uses the BUFFALO monitor program.

Most Significant Bit (MSB) The highest-order binary bit within a data word. This bit
has the highest binary weighting (i.e., for %10000000, the 1 is the MSB). It is always
best to write the MSB on the left if writing data left to right or on the top if writing
data top to bottom.

Negation The process of changing the sign of a number.

Nibble A 4-bit group of binary bits. A half-byte.

Nondestructive The data in the memory or register location is not affected by the
operation. Read operations are nondestructive.

Nonmaskable  An interrupt that cannot be controlled (enabled or inhibited) by the
user except in special circumstances.

Nonreturn-to-zero (NRZ) A data transmission format where a 1 is a positive voltage
and a 0 is negative voltage. The voltage level is maintained for the entire bit duration
and does not return to the 0 state.

Nonvolatile A characteristic of a memory device. Data will be retained when power is
lost.

Number Line The ordered set of symbols that makes up a number system.

Number System An ordered set of symbols where the number of symbols in the set is
called the base or radix.

Object Code The actual machine-level code processed by the computer (see machine
code).

Offset A value that is added to a base address to reference another memory location.

Opcode Operational Code. An opcode is a multibit code that identifies an instruction.
Each opcode contains specific information about the instruction to be executed, as
well as how to execute it.

Operand Data that is operated upon by the instruction.

Operand Field The group of bytes following the opcode in memory that are necessary
to complete the instruction.

Parallel Multiple bits at a time.

Parallel Port A port that allows transfer data in parallel (multiple bits at a time).
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Pass by Reference A method of passing data to a subroutine that allows the data to
be changed. During the execution of the subroutine, the data is accessed via a
reference (memory address or register), processed and returned to the reference
location before returning to the calling program.

Pass by Value A method of passing data to a subroutine that does not allow the data
to be changed. When the routine is completed, the data is discarded and not
returned to the calling program.

Pointer Another name for a memory address.

Port An I/O connection that allows the movement of data between the computer and
an I/O device.

Prebyte An additional opcode that precedes the instruction opcode in memory.

Processor The intelligent device at the center of the machine. It has the responsibility
to execute instructions. It controls and manages the activities of the entire machine.

Processor Registers A set of registers needed to perform the instruction execution.
The registers are used to temporarily store data and memory pointers, as well as to
contain status and control information.

Program A detailed set of steps that must be followed to complete a task. A computer
program is a set of instructions to complete a task.

Program Counter A processor register that keeps track of the address of the next
instruction to be executed. It is also called the Instruction Pointer.

Programmers Model A name for the set of processor registers on the HC11 (i.e., A,
B, D, X, Y, etc.)

Programming Language A set of English-like words that are used to create a source
code file of instructions for the computer.

PROM Programmable ROM. It can be field programmed one time (write-once).

Radix See Base.

RAM Random Access Memory. A read/write general-purpose memory. It is volatile
semiconductor memory.

Random Access The ability to address memory in any order rather than in a sequential
order.

Range The difference between the high reference voltage and the low reference
voltage.

Read Operation The process of accessing data in memory and moving the data to the
processor. Data in memory is not affected.

Relative Address A signed 8-bit number that indicates the number of bytes to branch
forward or backward in memory.
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Relative Addressing Used to change the flow of the program so that the instructions
do not have to be laid out in a sequential manner. The address of the next instruction
is calculated relative to the current position in memory. The HC11 has one relative
addressing mode that is used only by branching instructions.

Reset The feature of a microcomputing system that is used to set the initial conditions
within the system and begin executing instructions from a predetermined address.

Resolution The ratio of the step voltage over the range. It is usually shown as a
percentage.

Return Address The address of the instruction that will be executed immediately
following the RTS or RTI instructions.

ROM Read Only Memory. ROM is used for permanent storage of programs and data.
It is a nonvolatile semiconductor memory. It is programmed during the manufactur-
ing process.

Rotating Similar to shifting; however, the data shifted in comes from the carry flag of
the CCR.

Scratch Pad An area of RAM used as a temporary data storage block.

Sensor A device that accomplishes a conversion of some physical measurement to an
electrical form (i.e., temperature to volts).

Serial One bit at a time.

Serial Port A port that allows transfer of data as a serial data stream (one bit at a time).

Sign Bit The MSB of a signed value represented in the 2’s complement form.

Sign Extension The process of filling in each bit to the left of a value with the sign bit
to maintain the sign of a number while representing the number in various bit
lengths, (i.e., the 4-bit binary value 1001 would be sign extended to the 8-bit value
11111001 because the sign bit of 1001 is 1).

Single Chip Mode The normal operating mode of the HC11. As the name implies, the
single chip mode requires that all software needed to control the processor is con-
tained in the on-chip memories. External address and data busses are not available.

Source Code A program in its original form prior to compilation and assembly. It is
written in a programming language.

Special Test Mode A special hardware mode intended primarily for testing during the
chip production process.

Stack A sequential block of memory that is configured as a LIFO.

Stack Pointer A processor register that contains the address pointer that indicates the
next available memory location on the stack.

Static RAM RAM that uses a register as the main storage device.
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Status Flags A set of bits in the condition code register and other status registers
throughout the HC11 system that are used to indicate the status or condition of the
processor.

Status Register A group of bits that indicate the status of the last operation (processor
status). The most common status bits are sign flags, carry/borrow flags, zero flags,
and overflow flags.

Step A small piece of the range that is associated with a single digital code.

Step Voltage VSTEP. The voltage range of a single step. Also called Step Size.

Subprocessors Processors in a system that are subordinate to the CPU.

Subroutine A self-contained function or subprogram terminated by the RTS instruction.

Subroutine Overhead The time it takes to call and return from a subroutine (JSR/BSR
plus RTS).

Transducer See Sensor.

Unidirectional bus One-way bus. Data moves only one direction.

Until A conditional loop that repeats until some condition is true.

User Interface (UI) A feature of the HC11 monitor program that allows a user of the
EVBU to enter some simple commands to access memory, run programs and monitor
the function of the HC11. The UI also displays the results of operations.

Vector See Interrupt Vector.

Vector Address The address of the vector in the vector table.

Vector Jump Table A set of jump instructions in RAM that are used as the first
instruction of the interrupt service routines. Their location in RAM allows the users
of the HC11 in conjunction with the BUFFALO monitor program to change the
location of interrupt service routines in memory.

Vector Table The group of all the system interrupt vectors. On the HC11 the vector
table is located in ROM.

Volatile A characteristic of a memory device. Data will be lost when power is lost.

While A conditional loop that repeats while some condition is true.

Word A group of any number of binary bits. A word can be 4 bits, 5 bits, 8 bits, 16
bits or 32 bits, and so on.

Write Operation The processing of storing data in memory.

Zero Filling The process of filling in each bit to the left of a value with zeros to
maintain a fixed number of bits in each data word. (i.e., the 4-bit binary value 1001
would be zero filled to the 8-bit value 00001001).
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